1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   Type *getTypeByID(unsigned ID);
597 
598   Value *getFnValueByID(unsigned ID, Type *Ty) {
599     if (Ty && Ty->isMetadataTy())
600       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
601     return ValueList.getValueFwdRef(ID, Ty);
602   }
603 
604   Metadata *getFnMetadataByID(unsigned ID) {
605     return MDLoader->getMetadataFwdRefOrLoad(ID);
606   }
607 
608   BasicBlock *getBasicBlock(unsigned ID) const {
609     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
610     return FunctionBBs[ID];
611   }
612 
613   AttributeList getAttributes(unsigned i) const {
614     if (i-1 < MAttributes.size())
615       return MAttributes[i-1];
616     return AttributeList();
617   }
618 
619   /// Read a value/type pair out of the specified record from slot 'Slot'.
620   /// Increment Slot past the number of slots used in the record. Return true on
621   /// failure.
622   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
623                         unsigned InstNum, Value *&ResVal) {
624     if (Slot == Record.size()) return true;
625     unsigned ValNo = (unsigned)Record[Slot++];
626     // Adjust the ValNo, if it was encoded relative to the InstNum.
627     if (UseRelativeIDs)
628       ValNo = InstNum - ValNo;
629     if (ValNo < InstNum) {
630       // If this is not a forward reference, just return the value we already
631       // have.
632       ResVal = getFnValueByID(ValNo, nullptr);
633       return ResVal == nullptr;
634     }
635     if (Slot == Record.size())
636       return true;
637 
638     unsigned TypeNo = (unsigned)Record[Slot++];
639     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
640     return ResVal == nullptr;
641   }
642 
643   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
644   /// past the number of slots used by the value in the record. Return true if
645   /// there is an error.
646   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
647                 unsigned InstNum, Type *Ty, Value *&ResVal) {
648     if (getValue(Record, Slot, InstNum, Ty, ResVal))
649       return true;
650     // All values currently take a single record slot.
651     ++Slot;
652     return false;
653   }
654 
655   /// Like popValue, but does not increment the Slot number.
656   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
657                 unsigned InstNum, Type *Ty, Value *&ResVal) {
658     ResVal = getValue(Record, Slot, InstNum, Ty);
659     return ResVal == nullptr;
660   }
661 
662   /// Version of getValue that returns ResVal directly, or 0 if there is an
663   /// error.
664   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
665                   unsigned InstNum, Type *Ty) {
666     if (Slot == Record.size()) return nullptr;
667     unsigned ValNo = (unsigned)Record[Slot];
668     // Adjust the ValNo, if it was encoded relative to the InstNum.
669     if (UseRelativeIDs)
670       ValNo = InstNum - ValNo;
671     return getFnValueByID(ValNo, Ty);
672   }
673 
674   /// Like getValue, but decodes signed VBRs.
675   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
676                         unsigned InstNum, Type *Ty) {
677     if (Slot == Record.size()) return nullptr;
678     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
679     // Adjust the ValNo, if it was encoded relative to the InstNum.
680     if (UseRelativeIDs)
681       ValNo = InstNum - ValNo;
682     return getFnValueByID(ValNo, Ty);
683   }
684 
685   /// Upgrades old-style typeless byval or sret attributes by adding the
686   /// corresponding argument's pointee type.
687   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
688 
689   /// Converts alignment exponent (i.e. power of two (or zero)) to the
690   /// corresponding alignment to use. If alignment is too large, returns
691   /// a corresponding error code.
692   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
693   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
694   Error parseModule(
695       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
696       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
697 
698   Error parseComdatRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
700   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
701   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
702                                         ArrayRef<uint64_t> Record);
703 
704   Error parseAttributeBlock();
705   Error parseAttributeGroupBlock();
706   Error parseTypeTable();
707   Error parseTypeTableBody();
708   Error parseOperandBundleTags();
709   Error parseSyncScopeNames();
710 
711   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
712                                 unsigned NameIndex, Triple &TT);
713   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
714                                ArrayRef<uint64_t> Record);
715   Error parseValueSymbolTable(uint64_t Offset = 0);
716   Error parseGlobalValueSymbolTable();
717   Error parseConstants();
718   Error rememberAndSkipFunctionBodies();
719   Error rememberAndSkipFunctionBody();
720   /// Save the positions of the Metadata blocks and skip parsing the blocks.
721   Error rememberAndSkipMetadata();
722   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
723   Error parseFunctionBody(Function *F);
724   Error globalCleanup();
725   Error resolveGlobalAndIndirectSymbolInits();
726   Error parseUseLists();
727   Error findFunctionInStream(
728       Function *F,
729       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
730 
731   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
732 };
733 
734 /// Class to manage reading and parsing function summary index bitcode
735 /// files/sections.
736 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
737   /// The module index built during parsing.
738   ModuleSummaryIndex &TheIndex;
739 
740   /// Indicates whether we have encountered a global value summary section
741   /// yet during parsing.
742   bool SeenGlobalValSummary = false;
743 
744   /// Indicates whether we have already parsed the VST, used for error checking.
745   bool SeenValueSymbolTable = false;
746 
747   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
748   /// Used to enable on-demand parsing of the VST.
749   uint64_t VSTOffset = 0;
750 
751   // Map to save ValueId to ValueInfo association that was recorded in the
752   // ValueSymbolTable. It is used after the VST is parsed to convert
753   // call graph edges read from the function summary from referencing
754   // callees by their ValueId to using the ValueInfo instead, which is how
755   // they are recorded in the summary index being built.
756   // We save a GUID which refers to the same global as the ValueInfo, but
757   // ignoring the linkage, i.e. for values other than local linkage they are
758   // identical.
759   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
760       ValueIdToValueInfoMap;
761 
762   /// Map populated during module path string table parsing, from the
763   /// module ID to a string reference owned by the index's module
764   /// path string table, used to correlate with combined index
765   /// summary records.
766   DenseMap<uint64_t, StringRef> ModuleIdMap;
767 
768   /// Original source file name recorded in a bitcode record.
769   std::string SourceFileName;
770 
771   /// The string identifier given to this module by the client, normally the
772   /// path to the bitcode file.
773   StringRef ModulePath;
774 
775   /// For per-module summary indexes, the unique numerical identifier given to
776   /// this module by the client.
777   unsigned ModuleId;
778 
779 public:
780   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
781                                   ModuleSummaryIndex &TheIndex,
782                                   StringRef ModulePath, unsigned ModuleId);
783 
784   Error parseModule();
785 
786 private:
787   void setValueGUID(uint64_t ValueID, StringRef ValueName,
788                     GlobalValue::LinkageTypes Linkage,
789                     StringRef SourceFileName);
790   Error parseValueSymbolTable(
791       uint64_t Offset,
792       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
793   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
794   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
795                                                     bool IsOldProfileFormat,
796                                                     bool HasProfile,
797                                                     bool HasRelBF);
798   Error parseEntireSummary(unsigned ID);
799   Error parseModuleStringTable();
800   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
801   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
802                                        TypeIdCompatibleVtableInfo &TypeId);
803   std::vector<FunctionSummary::ParamAccess>
804   parseParamAccesses(ArrayRef<uint64_t> Record);
805 
806   std::pair<ValueInfo, GlobalValue::GUID>
807   getValueInfoFromValueId(unsigned ValueId);
808 
809   void addThisModule();
810   ModuleSummaryIndex::ModuleInfo *getThisModule();
811 };
812 
813 } // end anonymous namespace
814 
815 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
816                                                     Error Err) {
817   if (Err) {
818     std::error_code EC;
819     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
820       EC = EIB.convertToErrorCode();
821       Ctx.emitError(EIB.message());
822     });
823     return EC;
824   }
825   return std::error_code();
826 }
827 
828 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
829                              StringRef ProducerIdentification,
830                              LLVMContext &Context)
831     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
832       ValueList(Context, Stream.SizeInBytes()) {
833   this->ProducerIdentification = std::string(ProducerIdentification);
834 }
835 
836 Error BitcodeReader::materializeForwardReferencedFunctions() {
837   if (WillMaterializeAllForwardRefs)
838     return Error::success();
839 
840   // Prevent recursion.
841   WillMaterializeAllForwardRefs = true;
842 
843   while (!BasicBlockFwdRefQueue.empty()) {
844     Function *F = BasicBlockFwdRefQueue.front();
845     BasicBlockFwdRefQueue.pop_front();
846     assert(F && "Expected valid function");
847     if (!BasicBlockFwdRefs.count(F))
848       // Already materialized.
849       continue;
850 
851     // Check for a function that isn't materializable to prevent an infinite
852     // loop.  When parsing a blockaddress stored in a global variable, there
853     // isn't a trivial way to check if a function will have a body without a
854     // linear search through FunctionsWithBodies, so just check it here.
855     if (!F->isMaterializable())
856       return error("Never resolved function from blockaddress");
857 
858     // Try to materialize F.
859     if (Error Err = materialize(F))
860       return Err;
861   }
862   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
863 
864   // Reset state.
865   WillMaterializeAllForwardRefs = false;
866   return Error::success();
867 }
868 
869 //===----------------------------------------------------------------------===//
870 //  Helper functions to implement forward reference resolution, etc.
871 //===----------------------------------------------------------------------===//
872 
873 static bool hasImplicitComdat(size_t Val) {
874   switch (Val) {
875   default:
876     return false;
877   case 1:  // Old WeakAnyLinkage
878   case 4:  // Old LinkOnceAnyLinkage
879   case 10: // Old WeakODRLinkage
880   case 11: // Old LinkOnceODRLinkage
881     return true;
882   }
883 }
884 
885 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
886   switch (Val) {
887   default: // Map unknown/new linkages to external
888   case 0:
889     return GlobalValue::ExternalLinkage;
890   case 2:
891     return GlobalValue::AppendingLinkage;
892   case 3:
893     return GlobalValue::InternalLinkage;
894   case 5:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
896   case 6:
897     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
898   case 7:
899     return GlobalValue::ExternalWeakLinkage;
900   case 8:
901     return GlobalValue::CommonLinkage;
902   case 9:
903     return GlobalValue::PrivateLinkage;
904   case 12:
905     return GlobalValue::AvailableExternallyLinkage;
906   case 13:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
908   case 14:
909     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
910   case 15:
911     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
912   case 1: // Old value with implicit comdat.
913   case 16:
914     return GlobalValue::WeakAnyLinkage;
915   case 10: // Old value with implicit comdat.
916   case 17:
917     return GlobalValue::WeakODRLinkage;
918   case 4: // Old value with implicit comdat.
919   case 18:
920     return GlobalValue::LinkOnceAnyLinkage;
921   case 11: // Old value with implicit comdat.
922   case 19:
923     return GlobalValue::LinkOnceODRLinkage;
924   }
925 }
926 
927 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
928   FunctionSummary::FFlags Flags;
929   Flags.ReadNone = RawFlags & 0x1;
930   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
931   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
932   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
933   Flags.NoInline = (RawFlags >> 4) & 0x1;
934   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
935   return Flags;
936 }
937 
938 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
939 //
940 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
941 // visibility: [8, 10).
942 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
943                                                             uint64_t Version) {
944   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
945   // like getDecodedLinkage() above. Any future change to the linkage enum and
946   // to getDecodedLinkage() will need to be taken into account here as above.
947   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
948   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
949   RawFlags = RawFlags >> 4;
950   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
951   // The Live flag wasn't introduced until version 3. For dead stripping
952   // to work correctly on earlier versions, we must conservatively treat all
953   // values as live.
954   bool Live = (RawFlags & 0x2) || Version < 3;
955   bool Local = (RawFlags & 0x4);
956   bool AutoHide = (RawFlags & 0x8);
957 
958   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
959                                      Live, Local, AutoHide);
960 }
961 
962 // Decode the flags for GlobalVariable in the summary
963 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
964   return GlobalVarSummary::GVarFlags(
965       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
966       (RawFlags & 0x4) ? true : false,
967       (GlobalObject::VCallVisibility)(RawFlags >> 3));
968 }
969 
970 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
971   switch (Val) {
972   default: // Map unknown visibilities to default.
973   case 0: return GlobalValue::DefaultVisibility;
974   case 1: return GlobalValue::HiddenVisibility;
975   case 2: return GlobalValue::ProtectedVisibility;
976   }
977 }
978 
979 static GlobalValue::DLLStorageClassTypes
980 getDecodedDLLStorageClass(unsigned Val) {
981   switch (Val) {
982   default: // Map unknown values to default.
983   case 0: return GlobalValue::DefaultStorageClass;
984   case 1: return GlobalValue::DLLImportStorageClass;
985   case 2: return GlobalValue::DLLExportStorageClass;
986   }
987 }
988 
989 static bool getDecodedDSOLocal(unsigned Val) {
990   switch(Val) {
991   default: // Map unknown values to preemptable.
992   case 0:  return false;
993   case 1:  return true;
994   }
995 }
996 
997 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
998   switch (Val) {
999     case 0: return GlobalVariable::NotThreadLocal;
1000     default: // Map unknown non-zero value to general dynamic.
1001     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1002     case 2: return GlobalVariable::LocalDynamicTLSModel;
1003     case 3: return GlobalVariable::InitialExecTLSModel;
1004     case 4: return GlobalVariable::LocalExecTLSModel;
1005   }
1006 }
1007 
1008 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1009   switch (Val) {
1010     default: // Map unknown to UnnamedAddr::None.
1011     case 0: return GlobalVariable::UnnamedAddr::None;
1012     case 1: return GlobalVariable::UnnamedAddr::Global;
1013     case 2: return GlobalVariable::UnnamedAddr::Local;
1014   }
1015 }
1016 
1017 static int getDecodedCastOpcode(unsigned Val) {
1018   switch (Val) {
1019   default: return -1;
1020   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1021   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1022   case bitc::CAST_SEXT    : return Instruction::SExt;
1023   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1024   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1025   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1026   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1027   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1028   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1029   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1030   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1031   case bitc::CAST_BITCAST : return Instruction::BitCast;
1032   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1033   }
1034 }
1035 
1036 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1037   bool IsFP = Ty->isFPOrFPVectorTy();
1038   // UnOps are only valid for int/fp or vector of int/fp types
1039   if (!IsFP && !Ty->isIntOrIntVectorTy())
1040     return -1;
1041 
1042   switch (Val) {
1043   default:
1044     return -1;
1045   case bitc::UNOP_FNEG:
1046     return IsFP ? Instruction::FNeg : -1;
1047   }
1048 }
1049 
1050 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1051   bool IsFP = Ty->isFPOrFPVectorTy();
1052   // BinOps are only valid for int/fp or vector of int/fp types
1053   if (!IsFP && !Ty->isIntOrIntVectorTy())
1054     return -1;
1055 
1056   switch (Val) {
1057   default:
1058     return -1;
1059   case bitc::BINOP_ADD:
1060     return IsFP ? Instruction::FAdd : Instruction::Add;
1061   case bitc::BINOP_SUB:
1062     return IsFP ? Instruction::FSub : Instruction::Sub;
1063   case bitc::BINOP_MUL:
1064     return IsFP ? Instruction::FMul : Instruction::Mul;
1065   case bitc::BINOP_UDIV:
1066     return IsFP ? -1 : Instruction::UDiv;
1067   case bitc::BINOP_SDIV:
1068     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1069   case bitc::BINOP_UREM:
1070     return IsFP ? -1 : Instruction::URem;
1071   case bitc::BINOP_SREM:
1072     return IsFP ? Instruction::FRem : Instruction::SRem;
1073   case bitc::BINOP_SHL:
1074     return IsFP ? -1 : Instruction::Shl;
1075   case bitc::BINOP_LSHR:
1076     return IsFP ? -1 : Instruction::LShr;
1077   case bitc::BINOP_ASHR:
1078     return IsFP ? -1 : Instruction::AShr;
1079   case bitc::BINOP_AND:
1080     return IsFP ? -1 : Instruction::And;
1081   case bitc::BINOP_OR:
1082     return IsFP ? -1 : Instruction::Or;
1083   case bitc::BINOP_XOR:
1084     return IsFP ? -1 : Instruction::Xor;
1085   }
1086 }
1087 
1088 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1089   switch (Val) {
1090   default: return AtomicRMWInst::BAD_BINOP;
1091   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1092   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1093   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1094   case bitc::RMW_AND: return AtomicRMWInst::And;
1095   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1096   case bitc::RMW_OR: return AtomicRMWInst::Or;
1097   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1098   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1099   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1100   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1101   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1102   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1103   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1104   }
1105 }
1106 
1107 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1108   switch (Val) {
1109   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1110   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1111   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1112   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1113   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1114   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1115   default: // Map unknown orderings to sequentially-consistent.
1116   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1117   }
1118 }
1119 
1120 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown selection kinds to any.
1123   case bitc::COMDAT_SELECTION_KIND_ANY:
1124     return Comdat::Any;
1125   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1126     return Comdat::ExactMatch;
1127   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1128     return Comdat::Largest;
1129   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1130     return Comdat::NoDuplicates;
1131   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1132     return Comdat::SameSize;
1133   }
1134 }
1135 
1136 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1137   FastMathFlags FMF;
1138   if (0 != (Val & bitc::UnsafeAlgebra))
1139     FMF.setFast();
1140   if (0 != (Val & bitc::AllowReassoc))
1141     FMF.setAllowReassoc();
1142   if (0 != (Val & bitc::NoNaNs))
1143     FMF.setNoNaNs();
1144   if (0 != (Val & bitc::NoInfs))
1145     FMF.setNoInfs();
1146   if (0 != (Val & bitc::NoSignedZeros))
1147     FMF.setNoSignedZeros();
1148   if (0 != (Val & bitc::AllowReciprocal))
1149     FMF.setAllowReciprocal();
1150   if (0 != (Val & bitc::AllowContract))
1151     FMF.setAllowContract(true);
1152   if (0 != (Val & bitc::ApproxFunc))
1153     FMF.setApproxFunc();
1154   return FMF;
1155 }
1156 
1157 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1158   switch (Val) {
1159   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1160   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1161   }
1162 }
1163 
1164 Type *BitcodeReader::getTypeByID(unsigned ID) {
1165   // The type table size is always specified correctly.
1166   if (ID >= TypeList.size())
1167     return nullptr;
1168 
1169   if (Type *Ty = TypeList[ID])
1170     return Ty;
1171 
1172   // If we have a forward reference, the only possible case is when it is to a
1173   // named struct.  Just create a placeholder for now.
1174   return TypeList[ID] = createIdentifiedStructType(Context);
1175 }
1176 
1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1178                                                       StringRef Name) {
1179   auto *Ret = StructType::create(Context, Name);
1180   IdentifiedStructTypes.push_back(Ret);
1181   return Ret;
1182 }
1183 
1184 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1185   auto *Ret = StructType::create(Context);
1186   IdentifiedStructTypes.push_back(Ret);
1187   return Ret;
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 //  Functions for parsing blocks from the bitcode file
1192 //===----------------------------------------------------------------------===//
1193 
1194 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1195   switch (Val) {
1196   case Attribute::EndAttrKinds:
1197   case Attribute::EmptyKey:
1198   case Attribute::TombstoneKey:
1199     llvm_unreachable("Synthetic enumerators which should never get here");
1200 
1201   case Attribute::None:            return 0;
1202   case Attribute::ZExt:            return 1 << 0;
1203   case Attribute::SExt:            return 1 << 1;
1204   case Attribute::NoReturn:        return 1 << 2;
1205   case Attribute::InReg:           return 1 << 3;
1206   case Attribute::StructRet:       return 1 << 4;
1207   case Attribute::NoUnwind:        return 1 << 5;
1208   case Attribute::NoAlias:         return 1 << 6;
1209   case Attribute::ByVal:           return 1 << 7;
1210   case Attribute::Nest:            return 1 << 8;
1211   case Attribute::ReadNone:        return 1 << 9;
1212   case Attribute::ReadOnly:        return 1 << 10;
1213   case Attribute::NoInline:        return 1 << 11;
1214   case Attribute::AlwaysInline:    return 1 << 12;
1215   case Attribute::OptimizeForSize: return 1 << 13;
1216   case Attribute::StackProtect:    return 1 << 14;
1217   case Attribute::StackProtectReq: return 1 << 15;
1218   case Attribute::Alignment:       return 31 << 16;
1219   case Attribute::NoCapture:       return 1 << 21;
1220   case Attribute::NoRedZone:       return 1 << 22;
1221   case Attribute::NoImplicitFloat: return 1 << 23;
1222   case Attribute::Naked:           return 1 << 24;
1223   case Attribute::InlineHint:      return 1 << 25;
1224   case Attribute::StackAlignment:  return 7 << 26;
1225   case Attribute::ReturnsTwice:    return 1 << 29;
1226   case Attribute::UWTable:         return 1 << 30;
1227   case Attribute::NonLazyBind:     return 1U << 31;
1228   case Attribute::SanitizeAddress: return 1ULL << 32;
1229   case Attribute::MinSize:         return 1ULL << 33;
1230   case Attribute::NoDuplicate:     return 1ULL << 34;
1231   case Attribute::StackProtectStrong: return 1ULL << 35;
1232   case Attribute::SanitizeThread:  return 1ULL << 36;
1233   case Attribute::SanitizeMemory:  return 1ULL << 37;
1234   case Attribute::NoBuiltin:       return 1ULL << 38;
1235   case Attribute::Returned:        return 1ULL << 39;
1236   case Attribute::Cold:            return 1ULL << 40;
1237   case Attribute::Builtin:         return 1ULL << 41;
1238   case Attribute::OptimizeNone:    return 1ULL << 42;
1239   case Attribute::InAlloca:        return 1ULL << 43;
1240   case Attribute::NonNull:         return 1ULL << 44;
1241   case Attribute::JumpTable:       return 1ULL << 45;
1242   case Attribute::Convergent:      return 1ULL << 46;
1243   case Attribute::SafeStack:       return 1ULL << 47;
1244   case Attribute::NoRecurse:       return 1ULL << 48;
1245   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1246   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1247   case Attribute::SwiftSelf:       return 1ULL << 51;
1248   case Attribute::SwiftError:      return 1ULL << 52;
1249   case Attribute::WriteOnly:       return 1ULL << 53;
1250   case Attribute::Speculatable:    return 1ULL << 54;
1251   case Attribute::StrictFP:        return 1ULL << 55;
1252   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1253   case Attribute::NoCfCheck:       return 1ULL << 57;
1254   case Attribute::OptForFuzzing:   return 1ULL << 58;
1255   case Attribute::ShadowCallStack: return 1ULL << 59;
1256   case Attribute::SpeculativeLoadHardening:
1257     return 1ULL << 60;
1258   case Attribute::ImmArg:
1259     return 1ULL << 61;
1260   case Attribute::WillReturn:
1261     return 1ULL << 62;
1262   case Attribute::NoFree:
1263     return 1ULL << 63;
1264   default:
1265     // Other attributes are not supported in the raw format,
1266     // as we ran out of space.
1267     return 0;
1268   }
1269   llvm_unreachable("Unsupported attribute type");
1270 }
1271 
1272 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1273   if (!Val) return;
1274 
1275   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1276        I = Attribute::AttrKind(I + 1)) {
1277     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1278       if (I == Attribute::Alignment)
1279         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1280       else if (I == Attribute::StackAlignment)
1281         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1282       else
1283         B.addAttribute(I);
1284     }
1285   }
1286 }
1287 
1288 /// This fills an AttrBuilder object with the LLVM attributes that have
1289 /// been decoded from the given integer. This function must stay in sync with
1290 /// 'encodeLLVMAttributesForBitcode'.
1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1292                                            uint64_t EncodedAttrs) {
1293   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1294   // the bits above 31 down by 11 bits.
1295   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1296   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1297          "Alignment must be a power of two.");
1298 
1299   if (Alignment)
1300     B.addAlignmentAttr(Alignment);
1301   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1302                           (EncodedAttrs & 0xffff));
1303 }
1304 
1305 Error BitcodeReader::parseAttributeBlock() {
1306   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1307     return Err;
1308 
1309   if (!MAttributes.empty())
1310     return error("Invalid multiple blocks");
1311 
1312   SmallVector<uint64_t, 64> Record;
1313 
1314   SmallVector<AttributeList, 8> Attrs;
1315 
1316   // Read all the records.
1317   while (true) {
1318     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1319     if (!MaybeEntry)
1320       return MaybeEntry.takeError();
1321     BitstreamEntry Entry = MaybeEntry.get();
1322 
1323     switch (Entry.Kind) {
1324     case BitstreamEntry::SubBlock: // Handled for us already.
1325     case BitstreamEntry::Error:
1326       return error("Malformed block");
1327     case BitstreamEntry::EndBlock:
1328       return Error::success();
1329     case BitstreamEntry::Record:
1330       // The interesting case.
1331       break;
1332     }
1333 
1334     // Read a record.
1335     Record.clear();
1336     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1337     if (!MaybeRecord)
1338       return MaybeRecord.takeError();
1339     switch (MaybeRecord.get()) {
1340     default:  // Default behavior: ignore.
1341       break;
1342     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1343       // Deprecated, but still needed to read old bitcode files.
1344       if (Record.size() & 1)
1345         return error("Invalid record");
1346 
1347       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1348         AttrBuilder B;
1349         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1350         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1351       }
1352 
1353       MAttributes.push_back(AttributeList::get(Context, Attrs));
1354       Attrs.clear();
1355       break;
1356     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1357       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1358         Attrs.push_back(MAttributeGroups[Record[i]]);
1359 
1360       MAttributes.push_back(AttributeList::get(Context, Attrs));
1361       Attrs.clear();
1362       break;
1363     }
1364   }
1365 }
1366 
1367 // Returns Attribute::None on unrecognized codes.
1368 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1369   switch (Code) {
1370   default:
1371     return Attribute::None;
1372   case bitc::ATTR_KIND_ALIGNMENT:
1373     return Attribute::Alignment;
1374   case bitc::ATTR_KIND_ALWAYS_INLINE:
1375     return Attribute::AlwaysInline;
1376   case bitc::ATTR_KIND_ARGMEMONLY:
1377     return Attribute::ArgMemOnly;
1378   case bitc::ATTR_KIND_BUILTIN:
1379     return Attribute::Builtin;
1380   case bitc::ATTR_KIND_BY_VAL:
1381     return Attribute::ByVal;
1382   case bitc::ATTR_KIND_IN_ALLOCA:
1383     return Attribute::InAlloca;
1384   case bitc::ATTR_KIND_COLD:
1385     return Attribute::Cold;
1386   case bitc::ATTR_KIND_CONVERGENT:
1387     return Attribute::Convergent;
1388   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1389     return Attribute::InaccessibleMemOnly;
1390   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1391     return Attribute::InaccessibleMemOrArgMemOnly;
1392   case bitc::ATTR_KIND_INLINE_HINT:
1393     return Attribute::InlineHint;
1394   case bitc::ATTR_KIND_IN_REG:
1395     return Attribute::InReg;
1396   case bitc::ATTR_KIND_JUMP_TABLE:
1397     return Attribute::JumpTable;
1398   case bitc::ATTR_KIND_MIN_SIZE:
1399     return Attribute::MinSize;
1400   case bitc::ATTR_KIND_NAKED:
1401     return Attribute::Naked;
1402   case bitc::ATTR_KIND_NEST:
1403     return Attribute::Nest;
1404   case bitc::ATTR_KIND_NO_ALIAS:
1405     return Attribute::NoAlias;
1406   case bitc::ATTR_KIND_NO_BUILTIN:
1407     return Attribute::NoBuiltin;
1408   case bitc::ATTR_KIND_NO_CALLBACK:
1409     return Attribute::NoCallback;
1410   case bitc::ATTR_KIND_NO_CAPTURE:
1411     return Attribute::NoCapture;
1412   case bitc::ATTR_KIND_NO_DUPLICATE:
1413     return Attribute::NoDuplicate;
1414   case bitc::ATTR_KIND_NOFREE:
1415     return Attribute::NoFree;
1416   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1417     return Attribute::NoImplicitFloat;
1418   case bitc::ATTR_KIND_NO_INLINE:
1419     return Attribute::NoInline;
1420   case bitc::ATTR_KIND_NO_RECURSE:
1421     return Attribute::NoRecurse;
1422   case bitc::ATTR_KIND_NO_MERGE:
1423     return Attribute::NoMerge;
1424   case bitc::ATTR_KIND_NON_LAZY_BIND:
1425     return Attribute::NonLazyBind;
1426   case bitc::ATTR_KIND_NON_NULL:
1427     return Attribute::NonNull;
1428   case bitc::ATTR_KIND_DEREFERENCEABLE:
1429     return Attribute::Dereferenceable;
1430   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1431     return Attribute::DereferenceableOrNull;
1432   case bitc::ATTR_KIND_ALLOC_SIZE:
1433     return Attribute::AllocSize;
1434   case bitc::ATTR_KIND_NO_RED_ZONE:
1435     return Attribute::NoRedZone;
1436   case bitc::ATTR_KIND_NO_RETURN:
1437     return Attribute::NoReturn;
1438   case bitc::ATTR_KIND_NOSYNC:
1439     return Attribute::NoSync;
1440   case bitc::ATTR_KIND_NOCF_CHECK:
1441     return Attribute::NoCfCheck;
1442   case bitc::ATTR_KIND_NO_PROFILE:
1443     return Attribute::NoProfile;
1444   case bitc::ATTR_KIND_NO_UNWIND:
1445     return Attribute::NoUnwind;
1446   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1447     return Attribute::NoSanitizeCoverage;
1448   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1449     return Attribute::NullPointerIsValid;
1450   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1451     return Attribute::OptForFuzzing;
1452   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1453     return Attribute::OptimizeForSize;
1454   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1455     return Attribute::OptimizeNone;
1456   case bitc::ATTR_KIND_READ_NONE:
1457     return Attribute::ReadNone;
1458   case bitc::ATTR_KIND_READ_ONLY:
1459     return Attribute::ReadOnly;
1460   case bitc::ATTR_KIND_RETURNED:
1461     return Attribute::Returned;
1462   case bitc::ATTR_KIND_RETURNS_TWICE:
1463     return Attribute::ReturnsTwice;
1464   case bitc::ATTR_KIND_S_EXT:
1465     return Attribute::SExt;
1466   case bitc::ATTR_KIND_SPECULATABLE:
1467     return Attribute::Speculatable;
1468   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1469     return Attribute::StackAlignment;
1470   case bitc::ATTR_KIND_STACK_PROTECT:
1471     return Attribute::StackProtect;
1472   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1473     return Attribute::StackProtectReq;
1474   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1475     return Attribute::StackProtectStrong;
1476   case bitc::ATTR_KIND_SAFESTACK:
1477     return Attribute::SafeStack;
1478   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1479     return Attribute::ShadowCallStack;
1480   case bitc::ATTR_KIND_STRICT_FP:
1481     return Attribute::StrictFP;
1482   case bitc::ATTR_KIND_STRUCT_RET:
1483     return Attribute::StructRet;
1484   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1485     return Attribute::SanitizeAddress;
1486   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1487     return Attribute::SanitizeHWAddress;
1488   case bitc::ATTR_KIND_SANITIZE_THREAD:
1489     return Attribute::SanitizeThread;
1490   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1491     return Attribute::SanitizeMemory;
1492   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1493     return Attribute::SpeculativeLoadHardening;
1494   case bitc::ATTR_KIND_SWIFT_ERROR:
1495     return Attribute::SwiftError;
1496   case bitc::ATTR_KIND_SWIFT_SELF:
1497     return Attribute::SwiftSelf;
1498   case bitc::ATTR_KIND_SWIFT_ASYNC:
1499     return Attribute::SwiftAsync;
1500   case bitc::ATTR_KIND_UW_TABLE:
1501     return Attribute::UWTable;
1502   case bitc::ATTR_KIND_VSCALE_RANGE:
1503     return Attribute::VScaleRange;
1504   case bitc::ATTR_KIND_WILLRETURN:
1505     return Attribute::WillReturn;
1506   case bitc::ATTR_KIND_WRITEONLY:
1507     return Attribute::WriteOnly;
1508   case bitc::ATTR_KIND_Z_EXT:
1509     return Attribute::ZExt;
1510   case bitc::ATTR_KIND_IMMARG:
1511     return Attribute::ImmArg;
1512   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1513     return Attribute::SanitizeMemTag;
1514   case bitc::ATTR_KIND_PREALLOCATED:
1515     return Attribute::Preallocated;
1516   case bitc::ATTR_KIND_NOUNDEF:
1517     return Attribute::NoUndef;
1518   case bitc::ATTR_KIND_BYREF:
1519     return Attribute::ByRef;
1520   case bitc::ATTR_KIND_MUSTPROGRESS:
1521     return Attribute::MustProgress;
1522   case bitc::ATTR_KIND_HOT:
1523     return Attribute::Hot;
1524   }
1525 }
1526 
1527 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1528                                          MaybeAlign &Alignment) {
1529   // Note: Alignment in bitcode files is incremented by 1, so that zero
1530   // can be used for default alignment.
1531   if (Exponent > Value::MaxAlignmentExponent + 1)
1532     return error("Invalid alignment value");
1533   Alignment = decodeMaybeAlign(Exponent);
1534   return Error::success();
1535 }
1536 
1537 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1538   *Kind = getAttrFromCode(Code);
1539   if (*Kind == Attribute::None)
1540     return error("Unknown attribute kind (" + Twine(Code) + ")");
1541   return Error::success();
1542 }
1543 
1544 Error BitcodeReader::parseAttributeGroupBlock() {
1545   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1546     return Err;
1547 
1548   if (!MAttributeGroups.empty())
1549     return error("Invalid multiple blocks");
1550 
1551   SmallVector<uint64_t, 64> Record;
1552 
1553   // Read all the records.
1554   while (true) {
1555     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1556     if (!MaybeEntry)
1557       return MaybeEntry.takeError();
1558     BitstreamEntry Entry = MaybeEntry.get();
1559 
1560     switch (Entry.Kind) {
1561     case BitstreamEntry::SubBlock: // Handled for us already.
1562     case BitstreamEntry::Error:
1563       return error("Malformed block");
1564     case BitstreamEntry::EndBlock:
1565       return Error::success();
1566     case BitstreamEntry::Record:
1567       // The interesting case.
1568       break;
1569     }
1570 
1571     // Read a record.
1572     Record.clear();
1573     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1574     if (!MaybeRecord)
1575       return MaybeRecord.takeError();
1576     switch (MaybeRecord.get()) {
1577     default:  // Default behavior: ignore.
1578       break;
1579     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1580       if (Record.size() < 3)
1581         return error("Invalid record");
1582 
1583       uint64_t GrpID = Record[0];
1584       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1585 
1586       AttrBuilder B;
1587       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1588         if (Record[i] == 0) {        // Enum attribute
1589           Attribute::AttrKind Kind;
1590           if (Error Err = parseAttrKind(Record[++i], &Kind))
1591             return Err;
1592 
1593           // Upgrade old-style byval attribute to one with a type, even if it's
1594           // nullptr. We will have to insert the real type when we associate
1595           // this AttributeList with a function.
1596           if (Kind == Attribute::ByVal)
1597             B.addByValAttr(nullptr);
1598           else if (Kind == Attribute::StructRet)
1599             B.addStructRetAttr(nullptr);
1600           else if (Kind == Attribute::InAlloca)
1601             B.addInAllocaAttr(nullptr);
1602 
1603           B.addAttribute(Kind);
1604         } else if (Record[i] == 1) { // Integer attribute
1605           Attribute::AttrKind Kind;
1606           if (Error Err = parseAttrKind(Record[++i], &Kind))
1607             return Err;
1608           if (Kind == Attribute::Alignment)
1609             B.addAlignmentAttr(Record[++i]);
1610           else if (Kind == Attribute::StackAlignment)
1611             B.addStackAlignmentAttr(Record[++i]);
1612           else if (Kind == Attribute::Dereferenceable)
1613             B.addDereferenceableAttr(Record[++i]);
1614           else if (Kind == Attribute::DereferenceableOrNull)
1615             B.addDereferenceableOrNullAttr(Record[++i]);
1616           else if (Kind == Attribute::AllocSize)
1617             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1618           else if (Kind == Attribute::VScaleRange)
1619             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1620         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1621           bool HasValue = (Record[i++] == 4);
1622           SmallString<64> KindStr;
1623           SmallString<64> ValStr;
1624 
1625           while (Record[i] != 0 && i != e)
1626             KindStr += Record[i++];
1627           assert(Record[i] == 0 && "Kind string not null terminated");
1628 
1629           if (HasValue) {
1630             // Has a value associated with it.
1631             ++i; // Skip the '0' that terminates the "kind" string.
1632             while (Record[i] != 0 && i != e)
1633               ValStr += Record[i++];
1634             assert(Record[i] == 0 && "Value string not null terminated");
1635           }
1636 
1637           B.addAttribute(KindStr.str(), ValStr.str());
1638         } else {
1639           assert((Record[i] == 5 || Record[i] == 6) &&
1640                  "Invalid attribute group entry");
1641           bool HasType = Record[i] == 6;
1642           Attribute::AttrKind Kind;
1643           if (Error Err = parseAttrKind(Record[++i], &Kind))
1644             return Err;
1645           if (Kind == Attribute::ByVal) {
1646             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1647           } else if (Kind == Attribute::StructRet) {
1648             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1649           } else if (Kind == Attribute::ByRef) {
1650             B.addByRefAttr(getTypeByID(Record[++i]));
1651           } else if (Kind == Attribute::Preallocated) {
1652             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1653           } else if (Kind == Attribute::InAlloca) {
1654             B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1655           }
1656         }
1657       }
1658 
1659       UpgradeAttributes(B);
1660       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1661       break;
1662     }
1663     }
1664   }
1665 }
1666 
1667 Error BitcodeReader::parseTypeTable() {
1668   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1669     return Err;
1670 
1671   return parseTypeTableBody();
1672 }
1673 
1674 Error BitcodeReader::parseTypeTableBody() {
1675   if (!TypeList.empty())
1676     return error("Invalid multiple blocks");
1677 
1678   SmallVector<uint64_t, 64> Record;
1679   unsigned NumRecords = 0;
1680 
1681   SmallString<64> TypeName;
1682 
1683   // Read all the records for this type table.
1684   while (true) {
1685     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1686     if (!MaybeEntry)
1687       return MaybeEntry.takeError();
1688     BitstreamEntry Entry = MaybeEntry.get();
1689 
1690     switch (Entry.Kind) {
1691     case BitstreamEntry::SubBlock: // Handled for us already.
1692     case BitstreamEntry::Error:
1693       return error("Malformed block");
1694     case BitstreamEntry::EndBlock:
1695       if (NumRecords != TypeList.size())
1696         return error("Malformed block");
1697       return Error::success();
1698     case BitstreamEntry::Record:
1699       // The interesting case.
1700       break;
1701     }
1702 
1703     // Read a record.
1704     Record.clear();
1705     Type *ResultTy = nullptr;
1706     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1707     if (!MaybeRecord)
1708       return MaybeRecord.takeError();
1709     switch (MaybeRecord.get()) {
1710     default:
1711       return error("Invalid value");
1712     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1713       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1714       // type list.  This allows us to reserve space.
1715       if (Record.empty())
1716         return error("Invalid record");
1717       TypeList.resize(Record[0]);
1718       continue;
1719     case bitc::TYPE_CODE_VOID:      // VOID
1720       ResultTy = Type::getVoidTy(Context);
1721       break;
1722     case bitc::TYPE_CODE_HALF:     // HALF
1723       ResultTy = Type::getHalfTy(Context);
1724       break;
1725     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1726       ResultTy = Type::getBFloatTy(Context);
1727       break;
1728     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1729       ResultTy = Type::getFloatTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1732       ResultTy = Type::getDoubleTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1735       ResultTy = Type::getX86_FP80Ty(Context);
1736       break;
1737     case bitc::TYPE_CODE_FP128:     // FP128
1738       ResultTy = Type::getFP128Ty(Context);
1739       break;
1740     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1741       ResultTy = Type::getPPC_FP128Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_LABEL:     // LABEL
1744       ResultTy = Type::getLabelTy(Context);
1745       break;
1746     case bitc::TYPE_CODE_METADATA:  // METADATA
1747       ResultTy = Type::getMetadataTy(Context);
1748       break;
1749     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1750       ResultTy = Type::getX86_MMXTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1753       ResultTy = Type::getX86_AMXTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1756       ResultTy = Type::getTokenTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1759       if (Record.empty())
1760         return error("Invalid record");
1761 
1762       uint64_t NumBits = Record[0];
1763       if (NumBits < IntegerType::MIN_INT_BITS ||
1764           NumBits > IntegerType::MAX_INT_BITS)
1765         return error("Bitwidth for integer type out of range");
1766       ResultTy = IntegerType::get(Context, NumBits);
1767       break;
1768     }
1769     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1770                                     //          [pointee type, address space]
1771       if (Record.empty())
1772         return error("Invalid record");
1773       unsigned AddressSpace = 0;
1774       if (Record.size() == 2)
1775         AddressSpace = Record[1];
1776       ResultTy = getTypeByID(Record[0]);
1777       if (!ResultTy ||
1778           !PointerType::isValidElementType(ResultTy))
1779         return error("Invalid type");
1780       ResultTy = PointerType::get(ResultTy, AddressSpace);
1781       break;
1782     }
1783     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1784       if (Record.size() != 1)
1785         return error("Invalid record");
1786       unsigned AddressSpace = Record[0];
1787       ResultTy = PointerType::get(Context, AddressSpace);
1788       break;
1789     }
1790     case bitc::TYPE_CODE_FUNCTION_OLD: {
1791       // Deprecated, but still needed to read old bitcode files.
1792       // FUNCTION: [vararg, attrid, retty, paramty x N]
1793       if (Record.size() < 3)
1794         return error("Invalid record");
1795       SmallVector<Type*, 8> ArgTys;
1796       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1797         if (Type *T = getTypeByID(Record[i]))
1798           ArgTys.push_back(T);
1799         else
1800           break;
1801       }
1802 
1803       ResultTy = getTypeByID(Record[2]);
1804       if (!ResultTy || ArgTys.size() < Record.size()-3)
1805         return error("Invalid type");
1806 
1807       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1808       break;
1809     }
1810     case bitc::TYPE_CODE_FUNCTION: {
1811       // FUNCTION: [vararg, retty, paramty x N]
1812       if (Record.size() < 2)
1813         return error("Invalid record");
1814       SmallVector<Type*, 8> ArgTys;
1815       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1816         if (Type *T = getTypeByID(Record[i])) {
1817           if (!FunctionType::isValidArgumentType(T))
1818             return error("Invalid function argument type");
1819           ArgTys.push_back(T);
1820         }
1821         else
1822           break;
1823       }
1824 
1825       ResultTy = getTypeByID(Record[1]);
1826       if (!ResultTy || ArgTys.size() < Record.size()-2)
1827         return error("Invalid type");
1828 
1829       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1830       break;
1831     }
1832     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1833       if (Record.empty())
1834         return error("Invalid record");
1835       SmallVector<Type*, 8> EltTys;
1836       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1837         if (Type *T = getTypeByID(Record[i]))
1838           EltTys.push_back(T);
1839         else
1840           break;
1841       }
1842       if (EltTys.size() != Record.size()-1)
1843         return error("Invalid type");
1844       ResultTy = StructType::get(Context, EltTys, Record[0]);
1845       break;
1846     }
1847     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1848       if (convertToString(Record, 0, TypeName))
1849         return error("Invalid record");
1850       continue;
1851 
1852     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1853       if (Record.empty())
1854         return error("Invalid record");
1855 
1856       if (NumRecords >= TypeList.size())
1857         return error("Invalid TYPE table");
1858 
1859       // Check to see if this was forward referenced, if so fill in the temp.
1860       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1861       if (Res) {
1862         Res->setName(TypeName);
1863         TypeList[NumRecords] = nullptr;
1864       } else  // Otherwise, create a new struct.
1865         Res = createIdentifiedStructType(Context, TypeName);
1866       TypeName.clear();
1867 
1868       SmallVector<Type*, 8> EltTys;
1869       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1870         if (Type *T = getTypeByID(Record[i]))
1871           EltTys.push_back(T);
1872         else
1873           break;
1874       }
1875       if (EltTys.size() != Record.size()-1)
1876         return error("Invalid record");
1877       Res->setBody(EltTys, Record[0]);
1878       ResultTy = Res;
1879       break;
1880     }
1881     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1882       if (Record.size() != 1)
1883         return error("Invalid record");
1884 
1885       if (NumRecords >= TypeList.size())
1886         return error("Invalid TYPE table");
1887 
1888       // Check to see if this was forward referenced, if so fill in the temp.
1889       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1890       if (Res) {
1891         Res->setName(TypeName);
1892         TypeList[NumRecords] = nullptr;
1893       } else  // Otherwise, create a new struct with no body.
1894         Res = createIdentifiedStructType(Context, TypeName);
1895       TypeName.clear();
1896       ResultTy = Res;
1897       break;
1898     }
1899     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1900       if (Record.size() < 2)
1901         return error("Invalid record");
1902       ResultTy = getTypeByID(Record[1]);
1903       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1904         return error("Invalid type");
1905       ResultTy = ArrayType::get(ResultTy, Record[0]);
1906       break;
1907     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1908                                     //         [numelts, eltty, scalable]
1909       if (Record.size() < 2)
1910         return error("Invalid record");
1911       if (Record[0] == 0)
1912         return error("Invalid vector length");
1913       ResultTy = getTypeByID(Record[1]);
1914       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1915         return error("Invalid type");
1916       bool Scalable = Record.size() > 2 ? Record[2] : false;
1917       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1918       break;
1919     }
1920 
1921     if (NumRecords >= TypeList.size())
1922       return error("Invalid TYPE table");
1923     if (TypeList[NumRecords])
1924       return error(
1925           "Invalid TYPE table: Only named structs can be forward referenced");
1926     assert(ResultTy && "Didn't read a type?");
1927     TypeList[NumRecords++] = ResultTy;
1928   }
1929 }
1930 
1931 Error BitcodeReader::parseOperandBundleTags() {
1932   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1933     return Err;
1934 
1935   if (!BundleTags.empty())
1936     return error("Invalid multiple blocks");
1937 
1938   SmallVector<uint64_t, 64> Record;
1939 
1940   while (true) {
1941     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1942     if (!MaybeEntry)
1943       return MaybeEntry.takeError();
1944     BitstreamEntry Entry = MaybeEntry.get();
1945 
1946     switch (Entry.Kind) {
1947     case BitstreamEntry::SubBlock: // Handled for us already.
1948     case BitstreamEntry::Error:
1949       return error("Malformed block");
1950     case BitstreamEntry::EndBlock:
1951       return Error::success();
1952     case BitstreamEntry::Record:
1953       // The interesting case.
1954       break;
1955     }
1956 
1957     // Tags are implicitly mapped to integers by their order.
1958 
1959     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1960     if (!MaybeRecord)
1961       return MaybeRecord.takeError();
1962     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1963       return error("Invalid record");
1964 
1965     // OPERAND_BUNDLE_TAG: [strchr x N]
1966     BundleTags.emplace_back();
1967     if (convertToString(Record, 0, BundleTags.back()))
1968       return error("Invalid record");
1969     Record.clear();
1970   }
1971 }
1972 
1973 Error BitcodeReader::parseSyncScopeNames() {
1974   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1975     return Err;
1976 
1977   if (!SSIDs.empty())
1978     return error("Invalid multiple synchronization scope names blocks");
1979 
1980   SmallVector<uint64_t, 64> Record;
1981   while (true) {
1982     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1983     if (!MaybeEntry)
1984       return MaybeEntry.takeError();
1985     BitstreamEntry Entry = MaybeEntry.get();
1986 
1987     switch (Entry.Kind) {
1988     case BitstreamEntry::SubBlock: // Handled for us already.
1989     case BitstreamEntry::Error:
1990       return error("Malformed block");
1991     case BitstreamEntry::EndBlock:
1992       if (SSIDs.empty())
1993         return error("Invalid empty synchronization scope names block");
1994       return Error::success();
1995     case BitstreamEntry::Record:
1996       // The interesting case.
1997       break;
1998     }
1999 
2000     // Synchronization scope names are implicitly mapped to synchronization
2001     // scope IDs by their order.
2002 
2003     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2004     if (!MaybeRecord)
2005       return MaybeRecord.takeError();
2006     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2007       return error("Invalid record");
2008 
2009     SmallString<16> SSN;
2010     if (convertToString(Record, 0, SSN))
2011       return error("Invalid record");
2012 
2013     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2014     Record.clear();
2015   }
2016 }
2017 
2018 /// Associate a value with its name from the given index in the provided record.
2019 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2020                                              unsigned NameIndex, Triple &TT) {
2021   SmallString<128> ValueName;
2022   if (convertToString(Record, NameIndex, ValueName))
2023     return error("Invalid record");
2024   unsigned ValueID = Record[0];
2025   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2026     return error("Invalid record");
2027   Value *V = ValueList[ValueID];
2028 
2029   StringRef NameStr(ValueName.data(), ValueName.size());
2030   if (NameStr.find_first_of(0) != StringRef::npos)
2031     return error("Invalid value name");
2032   V->setName(NameStr);
2033   auto *GO = dyn_cast<GlobalObject>(V);
2034   if (GO) {
2035     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2036       if (TT.supportsCOMDAT())
2037         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2038       else
2039         GO->setComdat(nullptr);
2040     }
2041   }
2042   return V;
2043 }
2044 
2045 /// Helper to note and return the current location, and jump to the given
2046 /// offset.
2047 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2048                                                  BitstreamCursor &Stream) {
2049   // Save the current parsing location so we can jump back at the end
2050   // of the VST read.
2051   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2052   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2053     return std::move(JumpFailed);
2054   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2055   if (!MaybeEntry)
2056     return MaybeEntry.takeError();
2057   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2058   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2059   return CurrentBit;
2060 }
2061 
2062 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2063                                             Function *F,
2064                                             ArrayRef<uint64_t> Record) {
2065   // Note that we subtract 1 here because the offset is relative to one word
2066   // before the start of the identification or module block, which was
2067   // historically always the start of the regular bitcode header.
2068   uint64_t FuncWordOffset = Record[1] - 1;
2069   uint64_t FuncBitOffset = FuncWordOffset * 32;
2070   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2071   // Set the LastFunctionBlockBit to point to the last function block.
2072   // Later when parsing is resumed after function materialization,
2073   // we can simply skip that last function block.
2074   if (FuncBitOffset > LastFunctionBlockBit)
2075     LastFunctionBlockBit = FuncBitOffset;
2076 }
2077 
2078 /// Read a new-style GlobalValue symbol table.
2079 Error BitcodeReader::parseGlobalValueSymbolTable() {
2080   unsigned FuncBitcodeOffsetDelta =
2081       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2082 
2083   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2084     return Err;
2085 
2086   SmallVector<uint64_t, 64> Record;
2087   while (true) {
2088     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2089     if (!MaybeEntry)
2090       return MaybeEntry.takeError();
2091     BitstreamEntry Entry = MaybeEntry.get();
2092 
2093     switch (Entry.Kind) {
2094     case BitstreamEntry::SubBlock:
2095     case BitstreamEntry::Error:
2096       return error("Malformed block");
2097     case BitstreamEntry::EndBlock:
2098       return Error::success();
2099     case BitstreamEntry::Record:
2100       break;
2101     }
2102 
2103     Record.clear();
2104     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2105     if (!MaybeRecord)
2106       return MaybeRecord.takeError();
2107     switch (MaybeRecord.get()) {
2108     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2109       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2110                               cast<Function>(ValueList[Record[0]]), Record);
2111       break;
2112     }
2113   }
2114 }
2115 
2116 /// Parse the value symbol table at either the current parsing location or
2117 /// at the given bit offset if provided.
2118 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2119   uint64_t CurrentBit;
2120   // Pass in the Offset to distinguish between calling for the module-level
2121   // VST (where we want to jump to the VST offset) and the function-level
2122   // VST (where we don't).
2123   if (Offset > 0) {
2124     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2125     if (!MaybeCurrentBit)
2126       return MaybeCurrentBit.takeError();
2127     CurrentBit = MaybeCurrentBit.get();
2128     // If this module uses a string table, read this as a module-level VST.
2129     if (UseStrtab) {
2130       if (Error Err = parseGlobalValueSymbolTable())
2131         return Err;
2132       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2133         return JumpFailed;
2134       return Error::success();
2135     }
2136     // Otherwise, the VST will be in a similar format to a function-level VST,
2137     // and will contain symbol names.
2138   }
2139 
2140   // Compute the delta between the bitcode indices in the VST (the word offset
2141   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2142   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2143   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2144   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2145   // just before entering the VST subblock because: 1) the EnterSubBlock
2146   // changes the AbbrevID width; 2) the VST block is nested within the same
2147   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2148   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2149   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2150   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2151   unsigned FuncBitcodeOffsetDelta =
2152       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2153 
2154   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2155     return Err;
2156 
2157   SmallVector<uint64_t, 64> Record;
2158 
2159   Triple TT(TheModule->getTargetTriple());
2160 
2161   // Read all the records for this value table.
2162   SmallString<128> ValueName;
2163 
2164   while (true) {
2165     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2166     if (!MaybeEntry)
2167       return MaybeEntry.takeError();
2168     BitstreamEntry Entry = MaybeEntry.get();
2169 
2170     switch (Entry.Kind) {
2171     case BitstreamEntry::SubBlock: // Handled for us already.
2172     case BitstreamEntry::Error:
2173       return error("Malformed block");
2174     case BitstreamEntry::EndBlock:
2175       if (Offset > 0)
2176         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2177           return JumpFailed;
2178       return Error::success();
2179     case BitstreamEntry::Record:
2180       // The interesting case.
2181       break;
2182     }
2183 
2184     // Read a record.
2185     Record.clear();
2186     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2187     if (!MaybeRecord)
2188       return MaybeRecord.takeError();
2189     switch (MaybeRecord.get()) {
2190     default:  // Default behavior: unknown type.
2191       break;
2192     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2193       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2194       if (Error Err = ValOrErr.takeError())
2195         return Err;
2196       ValOrErr.get();
2197       break;
2198     }
2199     case bitc::VST_CODE_FNENTRY: {
2200       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2201       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2202       if (Error Err = ValOrErr.takeError())
2203         return Err;
2204       Value *V = ValOrErr.get();
2205 
2206       // Ignore function offsets emitted for aliases of functions in older
2207       // versions of LLVM.
2208       if (auto *F = dyn_cast<Function>(V))
2209         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2210       break;
2211     }
2212     case bitc::VST_CODE_BBENTRY: {
2213       if (convertToString(Record, 1, ValueName))
2214         return error("Invalid record");
2215       BasicBlock *BB = getBasicBlock(Record[0]);
2216       if (!BB)
2217         return error("Invalid record");
2218 
2219       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2220       ValueName.clear();
2221       break;
2222     }
2223     }
2224   }
2225 }
2226 
2227 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2228 /// encoding.
2229 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2230   if ((V & 1) == 0)
2231     return V >> 1;
2232   if (V != 1)
2233     return -(V >> 1);
2234   // There is no such thing as -0 with integers.  "-0" really means MININT.
2235   return 1ULL << 63;
2236 }
2237 
2238 /// Resolve all of the initializers for global values and aliases that we can.
2239 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2240   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2241   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2242       IndirectSymbolInitWorklist;
2243   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2244   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2245   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2246 
2247   GlobalInitWorklist.swap(GlobalInits);
2248   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2249   FunctionPrefixWorklist.swap(FunctionPrefixes);
2250   FunctionPrologueWorklist.swap(FunctionPrologues);
2251   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2252 
2253   while (!GlobalInitWorklist.empty()) {
2254     unsigned ValID = GlobalInitWorklist.back().second;
2255     if (ValID >= ValueList.size()) {
2256       // Not ready to resolve this yet, it requires something later in the file.
2257       GlobalInits.push_back(GlobalInitWorklist.back());
2258     } else {
2259       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2260         GlobalInitWorklist.back().first->setInitializer(C);
2261       else
2262         return error("Expected a constant");
2263     }
2264     GlobalInitWorklist.pop_back();
2265   }
2266 
2267   while (!IndirectSymbolInitWorklist.empty()) {
2268     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2269     if (ValID >= ValueList.size()) {
2270       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2271     } else {
2272       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2273       if (!C)
2274         return error("Expected a constant");
2275       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2276       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2277         return error("Alias and aliasee types don't match");
2278       GIS->setIndirectSymbol(C);
2279     }
2280     IndirectSymbolInitWorklist.pop_back();
2281   }
2282 
2283   while (!FunctionPrefixWorklist.empty()) {
2284     unsigned ValID = FunctionPrefixWorklist.back().second;
2285     if (ValID >= ValueList.size()) {
2286       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2287     } else {
2288       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2289         FunctionPrefixWorklist.back().first->setPrefixData(C);
2290       else
2291         return error("Expected a constant");
2292     }
2293     FunctionPrefixWorklist.pop_back();
2294   }
2295 
2296   while (!FunctionPrologueWorklist.empty()) {
2297     unsigned ValID = FunctionPrologueWorklist.back().second;
2298     if (ValID >= ValueList.size()) {
2299       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2300     } else {
2301       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2302         FunctionPrologueWorklist.back().first->setPrologueData(C);
2303       else
2304         return error("Expected a constant");
2305     }
2306     FunctionPrologueWorklist.pop_back();
2307   }
2308 
2309   while (!FunctionPersonalityFnWorklist.empty()) {
2310     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2311     if (ValID >= ValueList.size()) {
2312       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2313     } else {
2314       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2315         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2316       else
2317         return error("Expected a constant");
2318     }
2319     FunctionPersonalityFnWorklist.pop_back();
2320   }
2321 
2322   return Error::success();
2323 }
2324 
2325 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2326   SmallVector<uint64_t, 8> Words(Vals.size());
2327   transform(Vals, Words.begin(),
2328                  BitcodeReader::decodeSignRotatedValue);
2329 
2330   return APInt(TypeBits, Words);
2331 }
2332 
2333 Error BitcodeReader::parseConstants() {
2334   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2335     return Err;
2336 
2337   SmallVector<uint64_t, 64> Record;
2338 
2339   // Read all the records for this value table.
2340   Type *CurTy = Type::getInt32Ty(Context);
2341   unsigned NextCstNo = ValueList.size();
2342 
2343   struct DelayedShufTy {
2344     VectorType *OpTy;
2345     VectorType *RTy;
2346     uint64_t Op0Idx;
2347     uint64_t Op1Idx;
2348     uint64_t Op2Idx;
2349     unsigned CstNo;
2350   };
2351   std::vector<DelayedShufTy> DelayedShuffles;
2352   while (true) {
2353     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2354     if (!MaybeEntry)
2355       return MaybeEntry.takeError();
2356     BitstreamEntry Entry = MaybeEntry.get();
2357 
2358     switch (Entry.Kind) {
2359     case BitstreamEntry::SubBlock: // Handled for us already.
2360     case BitstreamEntry::Error:
2361       return error("Malformed block");
2362     case BitstreamEntry::EndBlock:
2363       // Once all the constants have been read, go through and resolve forward
2364       // references.
2365       //
2366       // We have to treat shuffles specially because they don't have three
2367       // operands anymore.  We need to convert the shuffle mask into an array,
2368       // and we can't convert a forward reference.
2369       for (auto &DelayedShuffle : DelayedShuffles) {
2370         VectorType *OpTy = DelayedShuffle.OpTy;
2371         VectorType *RTy = DelayedShuffle.RTy;
2372         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2373         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2374         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2375         uint64_t CstNo = DelayedShuffle.CstNo;
2376         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2377         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2378         Type *ShufTy =
2379             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2380         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2381         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2382           return error("Invalid shufflevector operands");
2383         SmallVector<int, 16> Mask;
2384         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2385         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2386         ValueList.assignValue(V, CstNo);
2387       }
2388 
2389       if (NextCstNo != ValueList.size())
2390         return error("Invalid constant reference");
2391 
2392       ValueList.resolveConstantForwardRefs();
2393       return Error::success();
2394     case BitstreamEntry::Record:
2395       // The interesting case.
2396       break;
2397     }
2398 
2399     // Read a record.
2400     Record.clear();
2401     Type *VoidType = Type::getVoidTy(Context);
2402     Value *V = nullptr;
2403     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2404     if (!MaybeBitCode)
2405       return MaybeBitCode.takeError();
2406     switch (unsigned BitCode = MaybeBitCode.get()) {
2407     default:  // Default behavior: unknown constant
2408     case bitc::CST_CODE_UNDEF:     // UNDEF
2409       V = UndefValue::get(CurTy);
2410       break;
2411     case bitc::CST_CODE_POISON:    // POISON
2412       V = PoisonValue::get(CurTy);
2413       break;
2414     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2415       if (Record.empty())
2416         return error("Invalid record");
2417       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2418         return error("Invalid record");
2419       if (TypeList[Record[0]] == VoidType)
2420         return error("Invalid constant type");
2421       CurTy = TypeList[Record[0]];
2422       continue;  // Skip the ValueList manipulation.
2423     case bitc::CST_CODE_NULL:      // NULL
2424       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2425         return error("Invalid type for a constant null value");
2426       V = Constant::getNullValue(CurTy);
2427       break;
2428     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2429       if (!CurTy->isIntegerTy() || Record.empty())
2430         return error("Invalid record");
2431       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2432       break;
2433     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2434       if (!CurTy->isIntegerTy() || Record.empty())
2435         return error("Invalid record");
2436 
2437       APInt VInt =
2438           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2439       V = ConstantInt::get(Context, VInt);
2440 
2441       break;
2442     }
2443     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2444       if (Record.empty())
2445         return error("Invalid record");
2446       if (CurTy->isHalfTy())
2447         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2448                                              APInt(16, (uint16_t)Record[0])));
2449       else if (CurTy->isBFloatTy())
2450         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2451                                              APInt(16, (uint32_t)Record[0])));
2452       else if (CurTy->isFloatTy())
2453         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2454                                              APInt(32, (uint32_t)Record[0])));
2455       else if (CurTy->isDoubleTy())
2456         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2457                                              APInt(64, Record[0])));
2458       else if (CurTy->isX86_FP80Ty()) {
2459         // Bits are not stored the same way as a normal i80 APInt, compensate.
2460         uint64_t Rearrange[2];
2461         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2462         Rearrange[1] = Record[0] >> 48;
2463         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2464                                              APInt(80, Rearrange)));
2465       } else if (CurTy->isFP128Ty())
2466         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2467                                              APInt(128, Record)));
2468       else if (CurTy->isPPC_FP128Ty())
2469         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2470                                              APInt(128, Record)));
2471       else
2472         V = UndefValue::get(CurTy);
2473       break;
2474     }
2475 
2476     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2477       if (Record.empty())
2478         return error("Invalid record");
2479 
2480       unsigned Size = Record.size();
2481       SmallVector<Constant*, 16> Elts;
2482 
2483       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2484         for (unsigned i = 0; i != Size; ++i)
2485           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2486                                                      STy->getElementType(i)));
2487         V = ConstantStruct::get(STy, Elts);
2488       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2489         Type *EltTy = ATy->getElementType();
2490         for (unsigned i = 0; i != Size; ++i)
2491           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2492         V = ConstantArray::get(ATy, Elts);
2493       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2494         Type *EltTy = VTy->getElementType();
2495         for (unsigned i = 0; i != Size; ++i)
2496           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2497         V = ConstantVector::get(Elts);
2498       } else {
2499         V = UndefValue::get(CurTy);
2500       }
2501       break;
2502     }
2503     case bitc::CST_CODE_STRING:    // STRING: [values]
2504     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2505       if (Record.empty())
2506         return error("Invalid record");
2507 
2508       SmallString<16> Elts(Record.begin(), Record.end());
2509       V = ConstantDataArray::getString(Context, Elts,
2510                                        BitCode == bitc::CST_CODE_CSTRING);
2511       break;
2512     }
2513     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2514       if (Record.empty())
2515         return error("Invalid record");
2516 
2517       Type *EltTy;
2518       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2519         EltTy = Array->getElementType();
2520       else
2521         EltTy = cast<VectorType>(CurTy)->getElementType();
2522       if (EltTy->isIntegerTy(8)) {
2523         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2524         if (isa<VectorType>(CurTy))
2525           V = ConstantDataVector::get(Context, Elts);
2526         else
2527           V = ConstantDataArray::get(Context, Elts);
2528       } else if (EltTy->isIntegerTy(16)) {
2529         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2530         if (isa<VectorType>(CurTy))
2531           V = ConstantDataVector::get(Context, Elts);
2532         else
2533           V = ConstantDataArray::get(Context, Elts);
2534       } else if (EltTy->isIntegerTy(32)) {
2535         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2536         if (isa<VectorType>(CurTy))
2537           V = ConstantDataVector::get(Context, Elts);
2538         else
2539           V = ConstantDataArray::get(Context, Elts);
2540       } else if (EltTy->isIntegerTy(64)) {
2541         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2542         if (isa<VectorType>(CurTy))
2543           V = ConstantDataVector::get(Context, Elts);
2544         else
2545           V = ConstantDataArray::get(Context, Elts);
2546       } else if (EltTy->isHalfTy()) {
2547         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2548         if (isa<VectorType>(CurTy))
2549           V = ConstantDataVector::getFP(EltTy, Elts);
2550         else
2551           V = ConstantDataArray::getFP(EltTy, Elts);
2552       } else if (EltTy->isBFloatTy()) {
2553         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2554         if (isa<VectorType>(CurTy))
2555           V = ConstantDataVector::getFP(EltTy, Elts);
2556         else
2557           V = ConstantDataArray::getFP(EltTy, Elts);
2558       } else if (EltTy->isFloatTy()) {
2559         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2560         if (isa<VectorType>(CurTy))
2561           V = ConstantDataVector::getFP(EltTy, Elts);
2562         else
2563           V = ConstantDataArray::getFP(EltTy, Elts);
2564       } else if (EltTy->isDoubleTy()) {
2565         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2566         if (isa<VectorType>(CurTy))
2567           V = ConstantDataVector::getFP(EltTy, Elts);
2568         else
2569           V = ConstantDataArray::getFP(EltTy, Elts);
2570       } else {
2571         return error("Invalid type for value");
2572       }
2573       break;
2574     }
2575     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2576       if (Record.size() < 2)
2577         return error("Invalid record");
2578       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2579       if (Opc < 0) {
2580         V = UndefValue::get(CurTy);  // Unknown unop.
2581       } else {
2582         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2583         unsigned Flags = 0;
2584         V = ConstantExpr::get(Opc, LHS, Flags);
2585       }
2586       break;
2587     }
2588     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2589       if (Record.size() < 3)
2590         return error("Invalid record");
2591       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2592       if (Opc < 0) {
2593         V = UndefValue::get(CurTy);  // Unknown binop.
2594       } else {
2595         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2596         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2597         unsigned Flags = 0;
2598         if (Record.size() >= 4) {
2599           if (Opc == Instruction::Add ||
2600               Opc == Instruction::Sub ||
2601               Opc == Instruction::Mul ||
2602               Opc == Instruction::Shl) {
2603             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2604               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2605             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2606               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2607           } else if (Opc == Instruction::SDiv ||
2608                      Opc == Instruction::UDiv ||
2609                      Opc == Instruction::LShr ||
2610                      Opc == Instruction::AShr) {
2611             if (Record[3] & (1 << bitc::PEO_EXACT))
2612               Flags |= SDivOperator::IsExact;
2613           }
2614         }
2615         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2616       }
2617       break;
2618     }
2619     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2620       if (Record.size() < 3)
2621         return error("Invalid record");
2622       int Opc = getDecodedCastOpcode(Record[0]);
2623       if (Opc < 0) {
2624         V = UndefValue::get(CurTy);  // Unknown cast.
2625       } else {
2626         Type *OpTy = getTypeByID(Record[1]);
2627         if (!OpTy)
2628           return error("Invalid record");
2629         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2630         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2631         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2632       }
2633       break;
2634     }
2635     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2636     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2637     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2638                                                      // operands]
2639       unsigned OpNum = 0;
2640       Type *PointeeType = nullptr;
2641       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2642           Record.size() % 2)
2643         PointeeType = getTypeByID(Record[OpNum++]);
2644 
2645       bool InBounds = false;
2646       Optional<unsigned> InRangeIndex;
2647       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2648         uint64_t Op = Record[OpNum++];
2649         InBounds = Op & 1;
2650         InRangeIndex = Op >> 1;
2651       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2652         InBounds = true;
2653 
2654       SmallVector<Constant*, 16> Elts;
2655       Type *Elt0FullTy = nullptr;
2656       while (OpNum != Record.size()) {
2657         if (!Elt0FullTy)
2658           Elt0FullTy = getTypeByID(Record[OpNum]);
2659         Type *ElTy = getTypeByID(Record[OpNum++]);
2660         if (!ElTy)
2661           return error("Invalid record");
2662         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2663       }
2664 
2665       if (Elts.size() < 1)
2666         return error("Invalid gep with no operands");
2667 
2668       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2669       if (!PointeeType)
2670         PointeeType = OrigPtrTy->getElementType();
2671       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2672         return error("Explicit gep operator type does not match pointee type "
2673                      "of pointer operand");
2674 
2675       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2676       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2677                                          InBounds, InRangeIndex);
2678       break;
2679     }
2680     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2681       if (Record.size() < 3)
2682         return error("Invalid record");
2683 
2684       Type *SelectorTy = Type::getInt1Ty(Context);
2685 
2686       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2687       // Get the type from the ValueList before getting a forward ref.
2688       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2689         if (Value *V = ValueList[Record[0]])
2690           if (SelectorTy != V->getType())
2691             SelectorTy = VectorType::get(SelectorTy,
2692                                          VTy->getElementCount());
2693 
2694       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2695                                                               SelectorTy),
2696                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2697                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2698       break;
2699     }
2700     case bitc::CST_CODE_CE_EXTRACTELT
2701         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2702       if (Record.size() < 3)
2703         return error("Invalid record");
2704       VectorType *OpTy =
2705         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2706       if (!OpTy)
2707         return error("Invalid record");
2708       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2709       Constant *Op1 = nullptr;
2710       if (Record.size() == 4) {
2711         Type *IdxTy = getTypeByID(Record[2]);
2712         if (!IdxTy)
2713           return error("Invalid record");
2714         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2715       } else {
2716         // Deprecated, but still needed to read old bitcode files.
2717         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2718       }
2719       if (!Op1)
2720         return error("Invalid record");
2721       V = ConstantExpr::getExtractElement(Op0, Op1);
2722       break;
2723     }
2724     case bitc::CST_CODE_CE_INSERTELT
2725         : { // CE_INSERTELT: [opval, opval, opty, opval]
2726       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2727       if (Record.size() < 3 || !OpTy)
2728         return error("Invalid record");
2729       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2730       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2731                                                   OpTy->getElementType());
2732       Constant *Op2 = nullptr;
2733       if (Record.size() == 4) {
2734         Type *IdxTy = getTypeByID(Record[2]);
2735         if (!IdxTy)
2736           return error("Invalid record");
2737         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2738       } else {
2739         // Deprecated, but still needed to read old bitcode files.
2740         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2741       }
2742       if (!Op2)
2743         return error("Invalid record");
2744       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2745       break;
2746     }
2747     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2748       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2749       if (Record.size() < 3 || !OpTy)
2750         return error("Invalid record");
2751       DelayedShuffles.push_back(
2752           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2753       ++NextCstNo;
2754       continue;
2755     }
2756     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2757       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2758       VectorType *OpTy =
2759         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2760       if (Record.size() < 4 || !RTy || !OpTy)
2761         return error("Invalid record");
2762       DelayedShuffles.push_back(
2763           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2764       ++NextCstNo;
2765       continue;
2766     }
2767     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2768       if (Record.size() < 4)
2769         return error("Invalid record");
2770       Type *OpTy = getTypeByID(Record[0]);
2771       if (!OpTy)
2772         return error("Invalid record");
2773       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2774       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2775 
2776       if (OpTy->isFPOrFPVectorTy())
2777         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2778       else
2779         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2780       break;
2781     }
2782     // This maintains backward compatibility, pre-asm dialect keywords.
2783     // Deprecated, but still needed to read old bitcode files.
2784     case bitc::CST_CODE_INLINEASM_OLD: {
2785       if (Record.size() < 2)
2786         return error("Invalid record");
2787       std::string AsmStr, ConstrStr;
2788       bool HasSideEffects = Record[0] & 1;
2789       bool IsAlignStack = Record[0] >> 1;
2790       unsigned AsmStrSize = Record[1];
2791       if (2+AsmStrSize >= Record.size())
2792         return error("Invalid record");
2793       unsigned ConstStrSize = Record[2+AsmStrSize];
2794       if (3+AsmStrSize+ConstStrSize > Record.size())
2795         return error("Invalid record");
2796 
2797       for (unsigned i = 0; i != AsmStrSize; ++i)
2798         AsmStr += (char)Record[2+i];
2799       for (unsigned i = 0; i != ConstStrSize; ++i)
2800         ConstrStr += (char)Record[3+AsmStrSize+i];
2801       UpgradeInlineAsmString(&AsmStr);
2802       V = InlineAsm::get(
2803           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2804           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2805       break;
2806     }
2807     // This version adds support for the asm dialect keywords (e.g.,
2808     // inteldialect).
2809     case bitc::CST_CODE_INLINEASM_OLD2: {
2810       if (Record.size() < 2)
2811         return error("Invalid record");
2812       std::string AsmStr, ConstrStr;
2813       bool HasSideEffects = Record[0] & 1;
2814       bool IsAlignStack = (Record[0] >> 1) & 1;
2815       unsigned AsmDialect = Record[0] >> 2;
2816       unsigned AsmStrSize = Record[1];
2817       if (2+AsmStrSize >= Record.size())
2818         return error("Invalid record");
2819       unsigned ConstStrSize = Record[2+AsmStrSize];
2820       if (3+AsmStrSize+ConstStrSize > Record.size())
2821         return error("Invalid record");
2822 
2823       for (unsigned i = 0; i != AsmStrSize; ++i)
2824         AsmStr += (char)Record[2+i];
2825       for (unsigned i = 0; i != ConstStrSize; ++i)
2826         ConstrStr += (char)Record[3+AsmStrSize+i];
2827       UpgradeInlineAsmString(&AsmStr);
2828       V = InlineAsm::get(
2829           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2830           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2831           InlineAsm::AsmDialect(AsmDialect));
2832       break;
2833     }
2834     // This version adds support for the unwind keyword.
2835     case bitc::CST_CODE_INLINEASM: {
2836       if (Record.size() < 2)
2837         return error("Invalid record");
2838       std::string AsmStr, ConstrStr;
2839       bool HasSideEffects = Record[0] & 1;
2840       bool IsAlignStack = (Record[0] >> 1) & 1;
2841       unsigned AsmDialect = (Record[0] >> 2) & 1;
2842       bool CanThrow = (Record[0] >> 3) & 1;
2843       unsigned AsmStrSize = Record[1];
2844       if (2 + AsmStrSize >= Record.size())
2845         return error("Invalid record");
2846       unsigned ConstStrSize = Record[2 + AsmStrSize];
2847       if (3 + AsmStrSize + ConstStrSize > Record.size())
2848         return error("Invalid record");
2849 
2850       for (unsigned i = 0; i != AsmStrSize; ++i)
2851         AsmStr += (char)Record[2 + i];
2852       for (unsigned i = 0; i != ConstStrSize; ++i)
2853         ConstrStr += (char)Record[3 + AsmStrSize + i];
2854       UpgradeInlineAsmString(&AsmStr);
2855       V = InlineAsm::get(
2856           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2857           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2858           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2859       break;
2860     }
2861     case bitc::CST_CODE_BLOCKADDRESS:{
2862       if (Record.size() < 3)
2863         return error("Invalid record");
2864       Type *FnTy = getTypeByID(Record[0]);
2865       if (!FnTy)
2866         return error("Invalid record");
2867       Function *Fn =
2868         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2869       if (!Fn)
2870         return error("Invalid record");
2871 
2872       // If the function is already parsed we can insert the block address right
2873       // away.
2874       BasicBlock *BB;
2875       unsigned BBID = Record[2];
2876       if (!BBID)
2877         // Invalid reference to entry block.
2878         return error("Invalid ID");
2879       if (!Fn->empty()) {
2880         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2881         for (size_t I = 0, E = BBID; I != E; ++I) {
2882           if (BBI == BBE)
2883             return error("Invalid ID");
2884           ++BBI;
2885         }
2886         BB = &*BBI;
2887       } else {
2888         // Otherwise insert a placeholder and remember it so it can be inserted
2889         // when the function is parsed.
2890         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2891         if (FwdBBs.empty())
2892           BasicBlockFwdRefQueue.push_back(Fn);
2893         if (FwdBBs.size() < BBID + 1)
2894           FwdBBs.resize(BBID + 1);
2895         if (!FwdBBs[BBID])
2896           FwdBBs[BBID] = BasicBlock::Create(Context);
2897         BB = FwdBBs[BBID];
2898       }
2899       V = BlockAddress::get(Fn, BB);
2900       break;
2901     }
2902     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2903       if (Record.size() < 2)
2904         return error("Invalid record");
2905       Type *GVTy = getTypeByID(Record[0]);
2906       if (!GVTy)
2907         return error("Invalid record");
2908       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2909           ValueList.getConstantFwdRef(Record[1], GVTy));
2910       if (!GV)
2911         return error("Invalid record");
2912 
2913       V = DSOLocalEquivalent::get(GV);
2914       break;
2915     }
2916     }
2917 
2918     ValueList.assignValue(V, NextCstNo);
2919     ++NextCstNo;
2920   }
2921 }
2922 
2923 Error BitcodeReader::parseUseLists() {
2924   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2925     return Err;
2926 
2927   // Read all the records.
2928   SmallVector<uint64_t, 64> Record;
2929 
2930   while (true) {
2931     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2932     if (!MaybeEntry)
2933       return MaybeEntry.takeError();
2934     BitstreamEntry Entry = MaybeEntry.get();
2935 
2936     switch (Entry.Kind) {
2937     case BitstreamEntry::SubBlock: // Handled for us already.
2938     case BitstreamEntry::Error:
2939       return error("Malformed block");
2940     case BitstreamEntry::EndBlock:
2941       return Error::success();
2942     case BitstreamEntry::Record:
2943       // The interesting case.
2944       break;
2945     }
2946 
2947     // Read a use list record.
2948     Record.clear();
2949     bool IsBB = false;
2950     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2951     if (!MaybeRecord)
2952       return MaybeRecord.takeError();
2953     switch (MaybeRecord.get()) {
2954     default:  // Default behavior: unknown type.
2955       break;
2956     case bitc::USELIST_CODE_BB:
2957       IsBB = true;
2958       LLVM_FALLTHROUGH;
2959     case bitc::USELIST_CODE_DEFAULT: {
2960       unsigned RecordLength = Record.size();
2961       if (RecordLength < 3)
2962         // Records should have at least an ID and two indexes.
2963         return error("Invalid record");
2964       unsigned ID = Record.pop_back_val();
2965 
2966       Value *V;
2967       if (IsBB) {
2968         assert(ID < FunctionBBs.size() && "Basic block not found");
2969         V = FunctionBBs[ID];
2970       } else
2971         V = ValueList[ID];
2972       unsigned NumUses = 0;
2973       SmallDenseMap<const Use *, unsigned, 16> Order;
2974       for (const Use &U : V->materialized_uses()) {
2975         if (++NumUses > Record.size())
2976           break;
2977         Order[&U] = Record[NumUses - 1];
2978       }
2979       if (Order.size() != Record.size() || NumUses > Record.size())
2980         // Mismatches can happen if the functions are being materialized lazily
2981         // (out-of-order), or a value has been upgraded.
2982         break;
2983 
2984       V->sortUseList([&](const Use &L, const Use &R) {
2985         return Order.lookup(&L) < Order.lookup(&R);
2986       });
2987       break;
2988     }
2989     }
2990   }
2991 }
2992 
2993 /// When we see the block for metadata, remember where it is and then skip it.
2994 /// This lets us lazily deserialize the metadata.
2995 Error BitcodeReader::rememberAndSkipMetadata() {
2996   // Save the current stream state.
2997   uint64_t CurBit = Stream.GetCurrentBitNo();
2998   DeferredMetadataInfo.push_back(CurBit);
2999 
3000   // Skip over the block for now.
3001   if (Error Err = Stream.SkipBlock())
3002     return Err;
3003   return Error::success();
3004 }
3005 
3006 Error BitcodeReader::materializeMetadata() {
3007   for (uint64_t BitPos : DeferredMetadataInfo) {
3008     // Move the bit stream to the saved position.
3009     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3010       return JumpFailed;
3011     if (Error Err = MDLoader->parseModuleMetadata())
3012       return Err;
3013   }
3014 
3015   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3016   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3017   // multiple times.
3018   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3019     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3020       NamedMDNode *LinkerOpts =
3021           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3022       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3023         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3024     }
3025   }
3026 
3027   DeferredMetadataInfo.clear();
3028   return Error::success();
3029 }
3030 
3031 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3032 
3033 /// When we see the block for a function body, remember where it is and then
3034 /// skip it.  This lets us lazily deserialize the functions.
3035 Error BitcodeReader::rememberAndSkipFunctionBody() {
3036   // Get the function we are talking about.
3037   if (FunctionsWithBodies.empty())
3038     return error("Insufficient function protos");
3039 
3040   Function *Fn = FunctionsWithBodies.back();
3041   FunctionsWithBodies.pop_back();
3042 
3043   // Save the current stream state.
3044   uint64_t CurBit = Stream.GetCurrentBitNo();
3045   assert(
3046       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3047       "Mismatch between VST and scanned function offsets");
3048   DeferredFunctionInfo[Fn] = CurBit;
3049 
3050   // Skip over the function block for now.
3051   if (Error Err = Stream.SkipBlock())
3052     return Err;
3053   return Error::success();
3054 }
3055 
3056 Error BitcodeReader::globalCleanup() {
3057   // Patch the initializers for globals and aliases up.
3058   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3059     return Err;
3060   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3061     return error("Malformed global initializer set");
3062 
3063   // Look for intrinsic functions which need to be upgraded at some point
3064   // and functions that need to have their function attributes upgraded.
3065   for (Function &F : *TheModule) {
3066     MDLoader->upgradeDebugIntrinsics(F);
3067     Function *NewFn;
3068     if (UpgradeIntrinsicFunction(&F, NewFn))
3069       UpgradedIntrinsics[&F] = NewFn;
3070     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3071       // Some types could be renamed during loading if several modules are
3072       // loaded in the same LLVMContext (LTO scenario). In this case we should
3073       // remangle intrinsics names as well.
3074       RemangledIntrinsics[&F] = Remangled.getValue();
3075     // Look for functions that rely on old function attribute behavior.
3076     UpgradeFunctionAttributes(F);
3077   }
3078 
3079   // Look for global variables which need to be renamed.
3080   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3081   for (GlobalVariable &GV : TheModule->globals())
3082     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3083       UpgradedVariables.emplace_back(&GV, Upgraded);
3084   for (auto &Pair : UpgradedVariables) {
3085     Pair.first->eraseFromParent();
3086     TheModule->getGlobalList().push_back(Pair.second);
3087   }
3088 
3089   // Force deallocation of memory for these vectors to favor the client that
3090   // want lazy deserialization.
3091   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3092   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3093       IndirectSymbolInits);
3094   return Error::success();
3095 }
3096 
3097 /// Support for lazy parsing of function bodies. This is required if we
3098 /// either have an old bitcode file without a VST forward declaration record,
3099 /// or if we have an anonymous function being materialized, since anonymous
3100 /// functions do not have a name and are therefore not in the VST.
3101 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3102   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3103     return JumpFailed;
3104 
3105   if (Stream.AtEndOfStream())
3106     return error("Could not find function in stream");
3107 
3108   if (!SeenFirstFunctionBody)
3109     return error("Trying to materialize functions before seeing function blocks");
3110 
3111   // An old bitcode file with the symbol table at the end would have
3112   // finished the parse greedily.
3113   assert(SeenValueSymbolTable);
3114 
3115   SmallVector<uint64_t, 64> Record;
3116 
3117   while (true) {
3118     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3119     if (!MaybeEntry)
3120       return MaybeEntry.takeError();
3121     llvm::BitstreamEntry Entry = MaybeEntry.get();
3122 
3123     switch (Entry.Kind) {
3124     default:
3125       return error("Expect SubBlock");
3126     case BitstreamEntry::SubBlock:
3127       switch (Entry.ID) {
3128       default:
3129         return error("Expect function block");
3130       case bitc::FUNCTION_BLOCK_ID:
3131         if (Error Err = rememberAndSkipFunctionBody())
3132           return Err;
3133         NextUnreadBit = Stream.GetCurrentBitNo();
3134         return Error::success();
3135       }
3136     }
3137   }
3138 }
3139 
3140 bool BitcodeReaderBase::readBlockInfo() {
3141   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3142       Stream.ReadBlockInfoBlock();
3143   if (!MaybeNewBlockInfo)
3144     return true; // FIXME Handle the error.
3145   Optional<BitstreamBlockInfo> NewBlockInfo =
3146       std::move(MaybeNewBlockInfo.get());
3147   if (!NewBlockInfo)
3148     return true;
3149   BlockInfo = std::move(*NewBlockInfo);
3150   return false;
3151 }
3152 
3153 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3154   // v1: [selection_kind, name]
3155   // v2: [strtab_offset, strtab_size, selection_kind]
3156   StringRef Name;
3157   std::tie(Name, Record) = readNameFromStrtab(Record);
3158 
3159   if (Record.empty())
3160     return error("Invalid record");
3161   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3162   std::string OldFormatName;
3163   if (!UseStrtab) {
3164     if (Record.size() < 2)
3165       return error("Invalid record");
3166     unsigned ComdatNameSize = Record[1];
3167     OldFormatName.reserve(ComdatNameSize);
3168     for (unsigned i = 0; i != ComdatNameSize; ++i)
3169       OldFormatName += (char)Record[2 + i];
3170     Name = OldFormatName;
3171   }
3172   Comdat *C = TheModule->getOrInsertComdat(Name);
3173   C->setSelectionKind(SK);
3174   ComdatList.push_back(C);
3175   return Error::success();
3176 }
3177 
3178 static void inferDSOLocal(GlobalValue *GV) {
3179   // infer dso_local from linkage and visibility if it is not encoded.
3180   if (GV->hasLocalLinkage() ||
3181       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3182     GV->setDSOLocal(true);
3183 }
3184 
3185 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3186   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3187   // visibility, threadlocal, unnamed_addr, externally_initialized,
3188   // dllstorageclass, comdat, attributes, preemption specifier,
3189   // partition strtab offset, partition strtab size] (name in VST)
3190   // v2: [strtab_offset, strtab_size, v1]
3191   StringRef Name;
3192   std::tie(Name, Record) = readNameFromStrtab(Record);
3193 
3194   if (Record.size() < 6)
3195     return error("Invalid record");
3196   Type *Ty = getTypeByID(Record[0]);
3197   if (!Ty)
3198     return error("Invalid record");
3199   bool isConstant = Record[1] & 1;
3200   bool explicitType = Record[1] & 2;
3201   unsigned AddressSpace;
3202   if (explicitType) {
3203     AddressSpace = Record[1] >> 2;
3204   } else {
3205     if (!Ty->isPointerTy())
3206       return error("Invalid type for value");
3207     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3208     Ty = cast<PointerType>(Ty)->getElementType();
3209   }
3210 
3211   uint64_t RawLinkage = Record[3];
3212   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3213   MaybeAlign Alignment;
3214   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3215     return Err;
3216   std::string Section;
3217   if (Record[5]) {
3218     if (Record[5] - 1 >= SectionTable.size())
3219       return error("Invalid ID");
3220     Section = SectionTable[Record[5] - 1];
3221   }
3222   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3223   // Local linkage must have default visibility.
3224   // auto-upgrade `hidden` and `protected` for old bitcode.
3225   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3226     Visibility = getDecodedVisibility(Record[6]);
3227 
3228   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3229   if (Record.size() > 7)
3230     TLM = getDecodedThreadLocalMode(Record[7]);
3231 
3232   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3233   if (Record.size() > 8)
3234     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3235 
3236   bool ExternallyInitialized = false;
3237   if (Record.size() > 9)
3238     ExternallyInitialized = Record[9];
3239 
3240   GlobalVariable *NewGV =
3241       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3242                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3243   NewGV->setAlignment(Alignment);
3244   if (!Section.empty())
3245     NewGV->setSection(Section);
3246   NewGV->setVisibility(Visibility);
3247   NewGV->setUnnamedAddr(UnnamedAddr);
3248 
3249   if (Record.size() > 10)
3250     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3251   else
3252     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3253 
3254   ValueList.push_back(NewGV);
3255 
3256   // Remember which value to use for the global initializer.
3257   if (unsigned InitID = Record[2])
3258     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3259 
3260   if (Record.size() > 11) {
3261     if (unsigned ComdatID = Record[11]) {
3262       if (ComdatID > ComdatList.size())
3263         return error("Invalid global variable comdat ID");
3264       NewGV->setComdat(ComdatList[ComdatID - 1]);
3265     }
3266   } else if (hasImplicitComdat(RawLinkage)) {
3267     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3268   }
3269 
3270   if (Record.size() > 12) {
3271     auto AS = getAttributes(Record[12]).getFnAttributes();
3272     NewGV->setAttributes(AS);
3273   }
3274 
3275   if (Record.size() > 13) {
3276     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3277   }
3278   inferDSOLocal(NewGV);
3279 
3280   // Check whether we have enough values to read a partition name.
3281   if (Record.size() > 15)
3282     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3283 
3284   return Error::success();
3285 }
3286 
3287 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3288   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3289   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3290   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3291   // v2: [strtab_offset, strtab_size, v1]
3292   StringRef Name;
3293   std::tie(Name, Record) = readNameFromStrtab(Record);
3294 
3295   if (Record.size() < 8)
3296     return error("Invalid record");
3297   Type *FTy = getTypeByID(Record[0]);
3298   if (!FTy)
3299     return error("Invalid record");
3300   if (auto *PTy = dyn_cast<PointerType>(FTy))
3301     FTy = PTy->getElementType();
3302 
3303   if (!isa<FunctionType>(FTy))
3304     return error("Invalid type for value");
3305   auto CC = static_cast<CallingConv::ID>(Record[1]);
3306   if (CC & ~CallingConv::MaxID)
3307     return error("Invalid calling convention ID");
3308 
3309   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3310   if (Record.size() > 16)
3311     AddrSpace = Record[16];
3312 
3313   Function *Func =
3314       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3315                        AddrSpace, Name, TheModule);
3316 
3317   assert(Func->getFunctionType() == FTy &&
3318          "Incorrect fully specified type provided for function");
3319   FunctionTypes[Func] = cast<FunctionType>(FTy);
3320 
3321   Func->setCallingConv(CC);
3322   bool isProto = Record[2];
3323   uint64_t RawLinkage = Record[3];
3324   Func->setLinkage(getDecodedLinkage(RawLinkage));
3325   Func->setAttributes(getAttributes(Record[4]));
3326 
3327   // Upgrade any old-style byval or sret without a type by propagating the
3328   // argument's pointee type. There should be no opaque pointers where the byval
3329   // type is implicit.
3330   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3331     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3332                                      Attribute::InAlloca}) {
3333       if (!Func->hasParamAttribute(i, Kind))
3334         continue;
3335 
3336       if (Func->getParamAttribute(i, Kind).getValueAsType())
3337         continue;
3338 
3339       Func->removeParamAttr(i, Kind);
3340 
3341       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3342       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3343       Attribute NewAttr;
3344       switch (Kind) {
3345       case Attribute::ByVal:
3346         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3347         break;
3348       case Attribute::StructRet:
3349         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3350         break;
3351       case Attribute::InAlloca:
3352         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3353         break;
3354       default:
3355         llvm_unreachable("not an upgraded type attribute");
3356       }
3357 
3358       Func->addParamAttr(i, NewAttr);
3359     }
3360   }
3361 
3362   MaybeAlign Alignment;
3363   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3364     return Err;
3365   Func->setAlignment(Alignment);
3366   if (Record[6]) {
3367     if (Record[6] - 1 >= SectionTable.size())
3368       return error("Invalid ID");
3369     Func->setSection(SectionTable[Record[6] - 1]);
3370   }
3371   // Local linkage must have default visibility.
3372   // auto-upgrade `hidden` and `protected` for old bitcode.
3373   if (!Func->hasLocalLinkage())
3374     Func->setVisibility(getDecodedVisibility(Record[7]));
3375   if (Record.size() > 8 && Record[8]) {
3376     if (Record[8] - 1 >= GCTable.size())
3377       return error("Invalid ID");
3378     Func->setGC(GCTable[Record[8] - 1]);
3379   }
3380   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3381   if (Record.size() > 9)
3382     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3383   Func->setUnnamedAddr(UnnamedAddr);
3384   if (Record.size() > 10 && Record[10] != 0)
3385     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3386 
3387   if (Record.size() > 11)
3388     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3389   else
3390     upgradeDLLImportExportLinkage(Func, RawLinkage);
3391 
3392   if (Record.size() > 12) {
3393     if (unsigned ComdatID = Record[12]) {
3394       if (ComdatID > ComdatList.size())
3395         return error("Invalid function comdat ID");
3396       Func->setComdat(ComdatList[ComdatID - 1]);
3397     }
3398   } else if (hasImplicitComdat(RawLinkage)) {
3399     Func->setComdat(reinterpret_cast<Comdat *>(1));
3400   }
3401 
3402   if (Record.size() > 13 && Record[13] != 0)
3403     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3404 
3405   if (Record.size() > 14 && Record[14] != 0)
3406     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3407 
3408   if (Record.size() > 15) {
3409     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3410   }
3411   inferDSOLocal(Func);
3412 
3413   // Record[16] is the address space number.
3414 
3415   // Check whether we have enough values to read a partition name. Also make
3416   // sure Strtab has enough values.
3417   if (Record.size() > 18 && Strtab.data() &&
3418       Record[17] + Record[18] <= Strtab.size()) {
3419     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3420   }
3421 
3422   ValueList.push_back(Func);
3423 
3424   // If this is a function with a body, remember the prototype we are
3425   // creating now, so that we can match up the body with them later.
3426   if (!isProto) {
3427     Func->setIsMaterializable(true);
3428     FunctionsWithBodies.push_back(Func);
3429     DeferredFunctionInfo[Func] = 0;
3430   }
3431   return Error::success();
3432 }
3433 
3434 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3435     unsigned BitCode, ArrayRef<uint64_t> Record) {
3436   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3437   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3438   // dllstorageclass, threadlocal, unnamed_addr,
3439   // preemption specifier] (name in VST)
3440   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3441   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3442   // preemption specifier] (name in VST)
3443   // v2: [strtab_offset, strtab_size, v1]
3444   StringRef Name;
3445   std::tie(Name, Record) = readNameFromStrtab(Record);
3446 
3447   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3448   if (Record.size() < (3 + (unsigned)NewRecord))
3449     return error("Invalid record");
3450   unsigned OpNum = 0;
3451   Type *Ty = getTypeByID(Record[OpNum++]);
3452   if (!Ty)
3453     return error("Invalid record");
3454 
3455   unsigned AddrSpace;
3456   if (!NewRecord) {
3457     auto *PTy = dyn_cast<PointerType>(Ty);
3458     if (!PTy)
3459       return error("Invalid type for value");
3460     Ty = PTy->getElementType();
3461     AddrSpace = PTy->getAddressSpace();
3462   } else {
3463     AddrSpace = Record[OpNum++];
3464   }
3465 
3466   auto Val = Record[OpNum++];
3467   auto Linkage = Record[OpNum++];
3468   GlobalIndirectSymbol *NewGA;
3469   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3470       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3471     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3472                                 TheModule);
3473   else
3474     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3475                                 nullptr, TheModule);
3476 
3477   // Local linkage must have default visibility.
3478   // auto-upgrade `hidden` and `protected` for old bitcode.
3479   if (OpNum != Record.size()) {
3480     auto VisInd = OpNum++;
3481     if (!NewGA->hasLocalLinkage())
3482       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3483   }
3484   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3485       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3486     if (OpNum != Record.size())
3487       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3488     else
3489       upgradeDLLImportExportLinkage(NewGA, Linkage);
3490     if (OpNum != Record.size())
3491       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3492     if (OpNum != Record.size())
3493       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3494   }
3495   if (OpNum != Record.size())
3496     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3497   inferDSOLocal(NewGA);
3498 
3499   // Check whether we have enough values to read a partition name.
3500   if (OpNum + 1 < Record.size()) {
3501     NewGA->setPartition(
3502         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3503     OpNum += 2;
3504   }
3505 
3506   ValueList.push_back(NewGA);
3507   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3508   return Error::success();
3509 }
3510 
3511 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3512                                  bool ShouldLazyLoadMetadata,
3513                                  DataLayoutCallbackTy DataLayoutCallback) {
3514   if (ResumeBit) {
3515     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3516       return JumpFailed;
3517   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3518     return Err;
3519 
3520   SmallVector<uint64_t, 64> Record;
3521 
3522   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3523   // finalize the datalayout before we run any of that code.
3524   bool ResolvedDataLayout = false;
3525   auto ResolveDataLayout = [&] {
3526     if (ResolvedDataLayout)
3527       return;
3528 
3529     // datalayout and triple can't be parsed after this point.
3530     ResolvedDataLayout = true;
3531 
3532     // Upgrade data layout string.
3533     std::string DL = llvm::UpgradeDataLayoutString(
3534         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3535     TheModule->setDataLayout(DL);
3536 
3537     if (auto LayoutOverride =
3538             DataLayoutCallback(TheModule->getTargetTriple()))
3539       TheModule->setDataLayout(*LayoutOverride);
3540   };
3541 
3542   // Read all the records for this module.
3543   while (true) {
3544     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3545     if (!MaybeEntry)
3546       return MaybeEntry.takeError();
3547     llvm::BitstreamEntry Entry = MaybeEntry.get();
3548 
3549     switch (Entry.Kind) {
3550     case BitstreamEntry::Error:
3551       return error("Malformed block");
3552     case BitstreamEntry::EndBlock:
3553       ResolveDataLayout();
3554       return globalCleanup();
3555 
3556     case BitstreamEntry::SubBlock:
3557       switch (Entry.ID) {
3558       default:  // Skip unknown content.
3559         if (Error Err = Stream.SkipBlock())
3560           return Err;
3561         break;
3562       case bitc::BLOCKINFO_BLOCK_ID:
3563         if (readBlockInfo())
3564           return error("Malformed block");
3565         break;
3566       case bitc::PARAMATTR_BLOCK_ID:
3567         if (Error Err = parseAttributeBlock())
3568           return Err;
3569         break;
3570       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3571         if (Error Err = parseAttributeGroupBlock())
3572           return Err;
3573         break;
3574       case bitc::TYPE_BLOCK_ID_NEW:
3575         if (Error Err = parseTypeTable())
3576           return Err;
3577         break;
3578       case bitc::VALUE_SYMTAB_BLOCK_ID:
3579         if (!SeenValueSymbolTable) {
3580           // Either this is an old form VST without function index and an
3581           // associated VST forward declaration record (which would have caused
3582           // the VST to be jumped to and parsed before it was encountered
3583           // normally in the stream), or there were no function blocks to
3584           // trigger an earlier parsing of the VST.
3585           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3586           if (Error Err = parseValueSymbolTable())
3587             return Err;
3588           SeenValueSymbolTable = true;
3589         } else {
3590           // We must have had a VST forward declaration record, which caused
3591           // the parser to jump to and parse the VST earlier.
3592           assert(VSTOffset > 0);
3593           if (Error Err = Stream.SkipBlock())
3594             return Err;
3595         }
3596         break;
3597       case bitc::CONSTANTS_BLOCK_ID:
3598         if (Error Err = parseConstants())
3599           return Err;
3600         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3601           return Err;
3602         break;
3603       case bitc::METADATA_BLOCK_ID:
3604         if (ShouldLazyLoadMetadata) {
3605           if (Error Err = rememberAndSkipMetadata())
3606             return Err;
3607           break;
3608         }
3609         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3610         if (Error Err = MDLoader->parseModuleMetadata())
3611           return Err;
3612         break;
3613       case bitc::METADATA_KIND_BLOCK_ID:
3614         if (Error Err = MDLoader->parseMetadataKinds())
3615           return Err;
3616         break;
3617       case bitc::FUNCTION_BLOCK_ID:
3618         ResolveDataLayout();
3619 
3620         // If this is the first function body we've seen, reverse the
3621         // FunctionsWithBodies list.
3622         if (!SeenFirstFunctionBody) {
3623           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3624           if (Error Err = globalCleanup())
3625             return Err;
3626           SeenFirstFunctionBody = true;
3627         }
3628 
3629         if (VSTOffset > 0) {
3630           // If we have a VST forward declaration record, make sure we
3631           // parse the VST now if we haven't already. It is needed to
3632           // set up the DeferredFunctionInfo vector for lazy reading.
3633           if (!SeenValueSymbolTable) {
3634             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3635               return Err;
3636             SeenValueSymbolTable = true;
3637             // Fall through so that we record the NextUnreadBit below.
3638             // This is necessary in case we have an anonymous function that
3639             // is later materialized. Since it will not have a VST entry we
3640             // need to fall back to the lazy parse to find its offset.
3641           } else {
3642             // If we have a VST forward declaration record, but have already
3643             // parsed the VST (just above, when the first function body was
3644             // encountered here), then we are resuming the parse after
3645             // materializing functions. The ResumeBit points to the
3646             // start of the last function block recorded in the
3647             // DeferredFunctionInfo map. Skip it.
3648             if (Error Err = Stream.SkipBlock())
3649               return Err;
3650             continue;
3651           }
3652         }
3653 
3654         // Support older bitcode files that did not have the function
3655         // index in the VST, nor a VST forward declaration record, as
3656         // well as anonymous functions that do not have VST entries.
3657         // Build the DeferredFunctionInfo vector on the fly.
3658         if (Error Err = rememberAndSkipFunctionBody())
3659           return Err;
3660 
3661         // Suspend parsing when we reach the function bodies. Subsequent
3662         // materialization calls will resume it when necessary. If the bitcode
3663         // file is old, the symbol table will be at the end instead and will not
3664         // have been seen yet. In this case, just finish the parse now.
3665         if (SeenValueSymbolTable) {
3666           NextUnreadBit = Stream.GetCurrentBitNo();
3667           // After the VST has been parsed, we need to make sure intrinsic name
3668           // are auto-upgraded.
3669           return globalCleanup();
3670         }
3671         break;
3672       case bitc::USELIST_BLOCK_ID:
3673         if (Error Err = parseUseLists())
3674           return Err;
3675         break;
3676       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3677         if (Error Err = parseOperandBundleTags())
3678           return Err;
3679         break;
3680       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3681         if (Error Err = parseSyncScopeNames())
3682           return Err;
3683         break;
3684       }
3685       continue;
3686 
3687     case BitstreamEntry::Record:
3688       // The interesting case.
3689       break;
3690     }
3691 
3692     // Read a record.
3693     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3694     if (!MaybeBitCode)
3695       return MaybeBitCode.takeError();
3696     switch (unsigned BitCode = MaybeBitCode.get()) {
3697     default: break;  // Default behavior, ignore unknown content.
3698     case bitc::MODULE_CODE_VERSION: {
3699       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3700       if (!VersionOrErr)
3701         return VersionOrErr.takeError();
3702       UseRelativeIDs = *VersionOrErr >= 1;
3703       break;
3704     }
3705     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3706       if (ResolvedDataLayout)
3707         return error("target triple too late in module");
3708       std::string S;
3709       if (convertToString(Record, 0, S))
3710         return error("Invalid record");
3711       TheModule->setTargetTriple(S);
3712       break;
3713     }
3714     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3715       if (ResolvedDataLayout)
3716         return error("datalayout too late in module");
3717       std::string S;
3718       if (convertToString(Record, 0, S))
3719         return error("Invalid record");
3720       TheModule->setDataLayout(S);
3721       break;
3722     }
3723     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3724       std::string S;
3725       if (convertToString(Record, 0, S))
3726         return error("Invalid record");
3727       TheModule->setModuleInlineAsm(S);
3728       break;
3729     }
3730     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3731       // Deprecated, but still needed to read old bitcode files.
3732       std::string S;
3733       if (convertToString(Record, 0, S))
3734         return error("Invalid record");
3735       // Ignore value.
3736       break;
3737     }
3738     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3739       std::string S;
3740       if (convertToString(Record, 0, S))
3741         return error("Invalid record");
3742       SectionTable.push_back(S);
3743       break;
3744     }
3745     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3746       std::string S;
3747       if (convertToString(Record, 0, S))
3748         return error("Invalid record");
3749       GCTable.push_back(S);
3750       break;
3751     }
3752     case bitc::MODULE_CODE_COMDAT:
3753       if (Error Err = parseComdatRecord(Record))
3754         return Err;
3755       break;
3756     case bitc::MODULE_CODE_GLOBALVAR:
3757       if (Error Err = parseGlobalVarRecord(Record))
3758         return Err;
3759       break;
3760     case bitc::MODULE_CODE_FUNCTION:
3761       ResolveDataLayout();
3762       if (Error Err = parseFunctionRecord(Record))
3763         return Err;
3764       break;
3765     case bitc::MODULE_CODE_IFUNC:
3766     case bitc::MODULE_CODE_ALIAS:
3767     case bitc::MODULE_CODE_ALIAS_OLD:
3768       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3769         return Err;
3770       break;
3771     /// MODULE_CODE_VSTOFFSET: [offset]
3772     case bitc::MODULE_CODE_VSTOFFSET:
3773       if (Record.empty())
3774         return error("Invalid record");
3775       // Note that we subtract 1 here because the offset is relative to one word
3776       // before the start of the identification or module block, which was
3777       // historically always the start of the regular bitcode header.
3778       VSTOffset = Record[0] - 1;
3779       break;
3780     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3781     case bitc::MODULE_CODE_SOURCE_FILENAME:
3782       SmallString<128> ValueName;
3783       if (convertToString(Record, 0, ValueName))
3784         return error("Invalid record");
3785       TheModule->setSourceFileName(ValueName);
3786       break;
3787     }
3788     Record.clear();
3789   }
3790 }
3791 
3792 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3793                                       bool IsImporting,
3794                                       DataLayoutCallbackTy DataLayoutCallback) {
3795   TheModule = M;
3796   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3797                             [&](unsigned ID) { return getTypeByID(ID); });
3798   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3799 }
3800 
3801 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3802   if (!isa<PointerType>(PtrType))
3803     return error("Load/Store operand is not a pointer type");
3804 
3805   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3806     return error("Explicit load/store type does not match pointee "
3807                  "type of pointer operand");
3808   if (!PointerType::isLoadableOrStorableType(ValType))
3809     return error("Cannot load/store from pointer");
3810   return Error::success();
3811 }
3812 
3813 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3814                                             ArrayRef<Type *> ArgsTys) {
3815   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3816     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3817                                      Attribute::InAlloca}) {
3818       if (!CB->paramHasAttr(i, Kind))
3819         continue;
3820 
3821       CB->removeParamAttr(i, Kind);
3822 
3823       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3824       Attribute NewAttr;
3825       switch (Kind) {
3826       case Attribute::ByVal:
3827         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3828         break;
3829       case Attribute::StructRet:
3830         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3831         break;
3832       case Attribute::InAlloca:
3833         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3834         break;
3835       default:
3836         llvm_unreachable("not an upgraded type attribute");
3837       }
3838 
3839       CB->addParamAttr(i, NewAttr);
3840     }
3841   }
3842 }
3843 
3844 /// Lazily parse the specified function body block.
3845 Error BitcodeReader::parseFunctionBody(Function *F) {
3846   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3847     return Err;
3848 
3849   // Unexpected unresolved metadata when parsing function.
3850   if (MDLoader->hasFwdRefs())
3851     return error("Invalid function metadata: incoming forward references");
3852 
3853   InstructionList.clear();
3854   unsigned ModuleValueListSize = ValueList.size();
3855   unsigned ModuleMDLoaderSize = MDLoader->size();
3856 
3857   // Add all the function arguments to the value table.
3858 #ifndef NDEBUG
3859   unsigned ArgNo = 0;
3860   FunctionType *FTy = FunctionTypes[F];
3861 #endif
3862   for (Argument &I : F->args()) {
3863     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3864            "Incorrect fully specified type for Function Argument");
3865     ValueList.push_back(&I);
3866   }
3867   unsigned NextValueNo = ValueList.size();
3868   BasicBlock *CurBB = nullptr;
3869   unsigned CurBBNo = 0;
3870 
3871   DebugLoc LastLoc;
3872   auto getLastInstruction = [&]() -> Instruction * {
3873     if (CurBB && !CurBB->empty())
3874       return &CurBB->back();
3875     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3876              !FunctionBBs[CurBBNo - 1]->empty())
3877       return &FunctionBBs[CurBBNo - 1]->back();
3878     return nullptr;
3879   };
3880 
3881   std::vector<OperandBundleDef> OperandBundles;
3882 
3883   // Read all the records.
3884   SmallVector<uint64_t, 64> Record;
3885 
3886   while (true) {
3887     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3888     if (!MaybeEntry)
3889       return MaybeEntry.takeError();
3890     llvm::BitstreamEntry Entry = MaybeEntry.get();
3891 
3892     switch (Entry.Kind) {
3893     case BitstreamEntry::Error:
3894       return error("Malformed block");
3895     case BitstreamEntry::EndBlock:
3896       goto OutOfRecordLoop;
3897 
3898     case BitstreamEntry::SubBlock:
3899       switch (Entry.ID) {
3900       default:  // Skip unknown content.
3901         if (Error Err = Stream.SkipBlock())
3902           return Err;
3903         break;
3904       case bitc::CONSTANTS_BLOCK_ID:
3905         if (Error Err = parseConstants())
3906           return Err;
3907         NextValueNo = ValueList.size();
3908         break;
3909       case bitc::VALUE_SYMTAB_BLOCK_ID:
3910         if (Error Err = parseValueSymbolTable())
3911           return Err;
3912         break;
3913       case bitc::METADATA_ATTACHMENT_ID:
3914         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3915           return Err;
3916         break;
3917       case bitc::METADATA_BLOCK_ID:
3918         assert(DeferredMetadataInfo.empty() &&
3919                "Must read all module-level metadata before function-level");
3920         if (Error Err = MDLoader->parseFunctionMetadata())
3921           return Err;
3922         break;
3923       case bitc::USELIST_BLOCK_ID:
3924         if (Error Err = parseUseLists())
3925           return Err;
3926         break;
3927       }
3928       continue;
3929 
3930     case BitstreamEntry::Record:
3931       // The interesting case.
3932       break;
3933     }
3934 
3935     // Read a record.
3936     Record.clear();
3937     Instruction *I = nullptr;
3938     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3939     if (!MaybeBitCode)
3940       return MaybeBitCode.takeError();
3941     switch (unsigned BitCode = MaybeBitCode.get()) {
3942     default: // Default behavior: reject
3943       return error("Invalid value");
3944     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3945       if (Record.empty() || Record[0] == 0)
3946         return error("Invalid record");
3947       // Create all the basic blocks for the function.
3948       FunctionBBs.resize(Record[0]);
3949 
3950       // See if anything took the address of blocks in this function.
3951       auto BBFRI = BasicBlockFwdRefs.find(F);
3952       if (BBFRI == BasicBlockFwdRefs.end()) {
3953         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3954           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3955       } else {
3956         auto &BBRefs = BBFRI->second;
3957         // Check for invalid basic block references.
3958         if (BBRefs.size() > FunctionBBs.size())
3959           return error("Invalid ID");
3960         assert(!BBRefs.empty() && "Unexpected empty array");
3961         assert(!BBRefs.front() && "Invalid reference to entry block");
3962         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3963              ++I)
3964           if (I < RE && BBRefs[I]) {
3965             BBRefs[I]->insertInto(F);
3966             FunctionBBs[I] = BBRefs[I];
3967           } else {
3968             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3969           }
3970 
3971         // Erase from the table.
3972         BasicBlockFwdRefs.erase(BBFRI);
3973       }
3974 
3975       CurBB = FunctionBBs[0];
3976       continue;
3977     }
3978 
3979     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3980       // This record indicates that the last instruction is at the same
3981       // location as the previous instruction with a location.
3982       I = getLastInstruction();
3983 
3984       if (!I)
3985         return error("Invalid record");
3986       I->setDebugLoc(LastLoc);
3987       I = nullptr;
3988       continue;
3989 
3990     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3991       I = getLastInstruction();
3992       if (!I || Record.size() < 4)
3993         return error("Invalid record");
3994 
3995       unsigned Line = Record[0], Col = Record[1];
3996       unsigned ScopeID = Record[2], IAID = Record[3];
3997       bool isImplicitCode = Record.size() == 5 && Record[4];
3998 
3999       MDNode *Scope = nullptr, *IA = nullptr;
4000       if (ScopeID) {
4001         Scope = dyn_cast_or_null<MDNode>(
4002             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4003         if (!Scope)
4004           return error("Invalid record");
4005       }
4006       if (IAID) {
4007         IA = dyn_cast_or_null<MDNode>(
4008             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4009         if (!IA)
4010           return error("Invalid record");
4011       }
4012       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4013                                 isImplicitCode);
4014       I->setDebugLoc(LastLoc);
4015       I = nullptr;
4016       continue;
4017     }
4018     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4019       unsigned OpNum = 0;
4020       Value *LHS;
4021       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4022           OpNum+1 > Record.size())
4023         return error("Invalid record");
4024 
4025       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4026       if (Opc == -1)
4027         return error("Invalid record");
4028       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4029       InstructionList.push_back(I);
4030       if (OpNum < Record.size()) {
4031         if (isa<FPMathOperator>(I)) {
4032           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4033           if (FMF.any())
4034             I->setFastMathFlags(FMF);
4035         }
4036       }
4037       break;
4038     }
4039     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4040       unsigned OpNum = 0;
4041       Value *LHS, *RHS;
4042       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4043           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4044           OpNum+1 > Record.size())
4045         return error("Invalid record");
4046 
4047       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4048       if (Opc == -1)
4049         return error("Invalid record");
4050       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4051       InstructionList.push_back(I);
4052       if (OpNum < Record.size()) {
4053         if (Opc == Instruction::Add ||
4054             Opc == Instruction::Sub ||
4055             Opc == Instruction::Mul ||
4056             Opc == Instruction::Shl) {
4057           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4058             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4059           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4060             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4061         } else if (Opc == Instruction::SDiv ||
4062                    Opc == Instruction::UDiv ||
4063                    Opc == Instruction::LShr ||
4064                    Opc == Instruction::AShr) {
4065           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4066             cast<BinaryOperator>(I)->setIsExact(true);
4067         } else if (isa<FPMathOperator>(I)) {
4068           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4069           if (FMF.any())
4070             I->setFastMathFlags(FMF);
4071         }
4072 
4073       }
4074       break;
4075     }
4076     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4077       unsigned OpNum = 0;
4078       Value *Op;
4079       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4080           OpNum+2 != Record.size())
4081         return error("Invalid record");
4082 
4083       Type *ResTy = getTypeByID(Record[OpNum]);
4084       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4085       if (Opc == -1 || !ResTy)
4086         return error("Invalid record");
4087       Instruction *Temp = nullptr;
4088       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4089         if (Temp) {
4090           InstructionList.push_back(Temp);
4091           assert(CurBB && "No current BB?");
4092           CurBB->getInstList().push_back(Temp);
4093         }
4094       } else {
4095         auto CastOp = (Instruction::CastOps)Opc;
4096         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4097           return error("Invalid cast");
4098         I = CastInst::Create(CastOp, Op, ResTy);
4099       }
4100       InstructionList.push_back(I);
4101       break;
4102     }
4103     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4104     case bitc::FUNC_CODE_INST_GEP_OLD:
4105     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4106       unsigned OpNum = 0;
4107 
4108       Type *Ty;
4109       bool InBounds;
4110 
4111       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4112         InBounds = Record[OpNum++];
4113         Ty = getTypeByID(Record[OpNum++]);
4114       } else {
4115         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4116         Ty = nullptr;
4117       }
4118 
4119       Value *BasePtr;
4120       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4121         return error("Invalid record");
4122 
4123       if (!Ty) {
4124         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4125                  ->getElementType();
4126       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4127                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4128         return error(
4129             "Explicit gep type does not match pointee type of pointer operand");
4130       }
4131 
4132       SmallVector<Value*, 16> GEPIdx;
4133       while (OpNum != Record.size()) {
4134         Value *Op;
4135         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4136           return error("Invalid record");
4137         GEPIdx.push_back(Op);
4138       }
4139 
4140       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4141 
4142       InstructionList.push_back(I);
4143       if (InBounds)
4144         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4145       break;
4146     }
4147 
4148     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4149                                        // EXTRACTVAL: [opty, opval, n x indices]
4150       unsigned OpNum = 0;
4151       Value *Agg;
4152       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4153         return error("Invalid record");
4154       Type *Ty = Agg->getType();
4155 
4156       unsigned RecSize = Record.size();
4157       if (OpNum == RecSize)
4158         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4159 
4160       SmallVector<unsigned, 4> EXTRACTVALIdx;
4161       for (; OpNum != RecSize; ++OpNum) {
4162         bool IsArray = Ty->isArrayTy();
4163         bool IsStruct = Ty->isStructTy();
4164         uint64_t Index = Record[OpNum];
4165 
4166         if (!IsStruct && !IsArray)
4167           return error("EXTRACTVAL: Invalid type");
4168         if ((unsigned)Index != Index)
4169           return error("Invalid value");
4170         if (IsStruct && Index >= Ty->getStructNumElements())
4171           return error("EXTRACTVAL: Invalid struct index");
4172         if (IsArray && Index >= Ty->getArrayNumElements())
4173           return error("EXTRACTVAL: Invalid array index");
4174         EXTRACTVALIdx.push_back((unsigned)Index);
4175 
4176         if (IsStruct)
4177           Ty = Ty->getStructElementType(Index);
4178         else
4179           Ty = Ty->getArrayElementType();
4180       }
4181 
4182       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4183       InstructionList.push_back(I);
4184       break;
4185     }
4186 
4187     case bitc::FUNC_CODE_INST_INSERTVAL: {
4188                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4189       unsigned OpNum = 0;
4190       Value *Agg;
4191       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4192         return error("Invalid record");
4193       Value *Val;
4194       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4195         return error("Invalid record");
4196 
4197       unsigned RecSize = Record.size();
4198       if (OpNum == RecSize)
4199         return error("INSERTVAL: Invalid instruction with 0 indices");
4200 
4201       SmallVector<unsigned, 4> INSERTVALIdx;
4202       Type *CurTy = Agg->getType();
4203       for (; OpNum != RecSize; ++OpNum) {
4204         bool IsArray = CurTy->isArrayTy();
4205         bool IsStruct = CurTy->isStructTy();
4206         uint64_t Index = Record[OpNum];
4207 
4208         if (!IsStruct && !IsArray)
4209           return error("INSERTVAL: Invalid type");
4210         if ((unsigned)Index != Index)
4211           return error("Invalid value");
4212         if (IsStruct && Index >= CurTy->getStructNumElements())
4213           return error("INSERTVAL: Invalid struct index");
4214         if (IsArray && Index >= CurTy->getArrayNumElements())
4215           return error("INSERTVAL: Invalid array index");
4216 
4217         INSERTVALIdx.push_back((unsigned)Index);
4218         if (IsStruct)
4219           CurTy = CurTy->getStructElementType(Index);
4220         else
4221           CurTy = CurTy->getArrayElementType();
4222       }
4223 
4224       if (CurTy != Val->getType())
4225         return error("Inserted value type doesn't match aggregate type");
4226 
4227       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4228       InstructionList.push_back(I);
4229       break;
4230     }
4231 
4232     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4233       // obsolete form of select
4234       // handles select i1 ... in old bitcode
4235       unsigned OpNum = 0;
4236       Value *TrueVal, *FalseVal, *Cond;
4237       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4238           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4239           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4240         return error("Invalid record");
4241 
4242       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4243       InstructionList.push_back(I);
4244       break;
4245     }
4246 
4247     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4248       // new form of select
4249       // handles select i1 or select [N x i1]
4250       unsigned OpNum = 0;
4251       Value *TrueVal, *FalseVal, *Cond;
4252       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4253           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4254           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4255         return error("Invalid record");
4256 
4257       // select condition can be either i1 or [N x i1]
4258       if (VectorType* vector_type =
4259           dyn_cast<VectorType>(Cond->getType())) {
4260         // expect <n x i1>
4261         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4262           return error("Invalid type for value");
4263       } else {
4264         // expect i1
4265         if (Cond->getType() != Type::getInt1Ty(Context))
4266           return error("Invalid type for value");
4267       }
4268 
4269       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4270       InstructionList.push_back(I);
4271       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4272         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4273         if (FMF.any())
4274           I->setFastMathFlags(FMF);
4275       }
4276       break;
4277     }
4278 
4279     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4280       unsigned OpNum = 0;
4281       Value *Vec, *Idx;
4282       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4283           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4284         return error("Invalid record");
4285       if (!Vec->getType()->isVectorTy())
4286         return error("Invalid type for value");
4287       I = ExtractElementInst::Create(Vec, Idx);
4288       InstructionList.push_back(I);
4289       break;
4290     }
4291 
4292     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4293       unsigned OpNum = 0;
4294       Value *Vec, *Elt, *Idx;
4295       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4296         return error("Invalid record");
4297       if (!Vec->getType()->isVectorTy())
4298         return error("Invalid type for value");
4299       if (popValue(Record, OpNum, NextValueNo,
4300                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4301           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4302         return error("Invalid record");
4303       I = InsertElementInst::Create(Vec, Elt, Idx);
4304       InstructionList.push_back(I);
4305       break;
4306     }
4307 
4308     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4309       unsigned OpNum = 0;
4310       Value *Vec1, *Vec2, *Mask;
4311       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4312           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4313         return error("Invalid record");
4314 
4315       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4316         return error("Invalid record");
4317       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4318         return error("Invalid type for value");
4319 
4320       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4321       InstructionList.push_back(I);
4322       break;
4323     }
4324 
4325     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4326       // Old form of ICmp/FCmp returning bool
4327       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4328       // both legal on vectors but had different behaviour.
4329     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4330       // FCmp/ICmp returning bool or vector of bool
4331 
4332       unsigned OpNum = 0;
4333       Value *LHS, *RHS;
4334       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4335           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4336         return error("Invalid record");
4337 
4338       if (OpNum >= Record.size())
4339         return error(
4340             "Invalid record: operand number exceeded available operands");
4341 
4342       unsigned PredVal = Record[OpNum];
4343       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4344       FastMathFlags FMF;
4345       if (IsFP && Record.size() > OpNum+1)
4346         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4347 
4348       if (OpNum+1 != Record.size())
4349         return error("Invalid record");
4350 
4351       if (LHS->getType()->isFPOrFPVectorTy())
4352         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4353       else
4354         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4355 
4356       if (FMF.any())
4357         I->setFastMathFlags(FMF);
4358       InstructionList.push_back(I);
4359       break;
4360     }
4361 
4362     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4363       {
4364         unsigned Size = Record.size();
4365         if (Size == 0) {
4366           I = ReturnInst::Create(Context);
4367           InstructionList.push_back(I);
4368           break;
4369         }
4370 
4371         unsigned OpNum = 0;
4372         Value *Op = nullptr;
4373         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4374           return error("Invalid record");
4375         if (OpNum != Record.size())
4376           return error("Invalid record");
4377 
4378         I = ReturnInst::Create(Context, Op);
4379         InstructionList.push_back(I);
4380         break;
4381       }
4382     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4383       if (Record.size() != 1 && Record.size() != 3)
4384         return error("Invalid record");
4385       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4386       if (!TrueDest)
4387         return error("Invalid record");
4388 
4389       if (Record.size() == 1) {
4390         I = BranchInst::Create(TrueDest);
4391         InstructionList.push_back(I);
4392       }
4393       else {
4394         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4395         Value *Cond = getValue(Record, 2, NextValueNo,
4396                                Type::getInt1Ty(Context));
4397         if (!FalseDest || !Cond)
4398           return error("Invalid record");
4399         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4400         InstructionList.push_back(I);
4401       }
4402       break;
4403     }
4404     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4405       if (Record.size() != 1 && Record.size() != 2)
4406         return error("Invalid record");
4407       unsigned Idx = 0;
4408       Value *CleanupPad =
4409           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4410       if (!CleanupPad)
4411         return error("Invalid record");
4412       BasicBlock *UnwindDest = nullptr;
4413       if (Record.size() == 2) {
4414         UnwindDest = getBasicBlock(Record[Idx++]);
4415         if (!UnwindDest)
4416           return error("Invalid record");
4417       }
4418 
4419       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4420       InstructionList.push_back(I);
4421       break;
4422     }
4423     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4424       if (Record.size() != 2)
4425         return error("Invalid record");
4426       unsigned Idx = 0;
4427       Value *CatchPad =
4428           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4429       if (!CatchPad)
4430         return error("Invalid record");
4431       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4432       if (!BB)
4433         return error("Invalid record");
4434 
4435       I = CatchReturnInst::Create(CatchPad, BB);
4436       InstructionList.push_back(I);
4437       break;
4438     }
4439     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4440       // We must have, at minimum, the outer scope and the number of arguments.
4441       if (Record.size() < 2)
4442         return error("Invalid record");
4443 
4444       unsigned Idx = 0;
4445 
4446       Value *ParentPad =
4447           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4448 
4449       unsigned NumHandlers = Record[Idx++];
4450 
4451       SmallVector<BasicBlock *, 2> Handlers;
4452       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4453         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4454         if (!BB)
4455           return error("Invalid record");
4456         Handlers.push_back(BB);
4457       }
4458 
4459       BasicBlock *UnwindDest = nullptr;
4460       if (Idx + 1 == Record.size()) {
4461         UnwindDest = getBasicBlock(Record[Idx++]);
4462         if (!UnwindDest)
4463           return error("Invalid record");
4464       }
4465 
4466       if (Record.size() != Idx)
4467         return error("Invalid record");
4468 
4469       auto *CatchSwitch =
4470           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4471       for (BasicBlock *Handler : Handlers)
4472         CatchSwitch->addHandler(Handler);
4473       I = CatchSwitch;
4474       InstructionList.push_back(I);
4475       break;
4476     }
4477     case bitc::FUNC_CODE_INST_CATCHPAD:
4478     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4479       // We must have, at minimum, the outer scope and the number of arguments.
4480       if (Record.size() < 2)
4481         return error("Invalid record");
4482 
4483       unsigned Idx = 0;
4484 
4485       Value *ParentPad =
4486           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4487 
4488       unsigned NumArgOperands = Record[Idx++];
4489 
4490       SmallVector<Value *, 2> Args;
4491       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4492         Value *Val;
4493         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4494           return error("Invalid record");
4495         Args.push_back(Val);
4496       }
4497 
4498       if (Record.size() != Idx)
4499         return error("Invalid record");
4500 
4501       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4502         I = CleanupPadInst::Create(ParentPad, Args);
4503       else
4504         I = CatchPadInst::Create(ParentPad, Args);
4505       InstructionList.push_back(I);
4506       break;
4507     }
4508     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4509       // Check magic
4510       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4511         // "New" SwitchInst format with case ranges. The changes to write this
4512         // format were reverted but we still recognize bitcode that uses it.
4513         // Hopefully someday we will have support for case ranges and can use
4514         // this format again.
4515 
4516         Type *OpTy = getTypeByID(Record[1]);
4517         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4518 
4519         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4520         BasicBlock *Default = getBasicBlock(Record[3]);
4521         if (!OpTy || !Cond || !Default)
4522           return error("Invalid record");
4523 
4524         unsigned NumCases = Record[4];
4525 
4526         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4527         InstructionList.push_back(SI);
4528 
4529         unsigned CurIdx = 5;
4530         for (unsigned i = 0; i != NumCases; ++i) {
4531           SmallVector<ConstantInt*, 1> CaseVals;
4532           unsigned NumItems = Record[CurIdx++];
4533           for (unsigned ci = 0; ci != NumItems; ++ci) {
4534             bool isSingleNumber = Record[CurIdx++];
4535 
4536             APInt Low;
4537             unsigned ActiveWords = 1;
4538             if (ValueBitWidth > 64)
4539               ActiveWords = Record[CurIdx++];
4540             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4541                                 ValueBitWidth);
4542             CurIdx += ActiveWords;
4543 
4544             if (!isSingleNumber) {
4545               ActiveWords = 1;
4546               if (ValueBitWidth > 64)
4547                 ActiveWords = Record[CurIdx++];
4548               APInt High = readWideAPInt(
4549                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4550               CurIdx += ActiveWords;
4551 
4552               // FIXME: It is not clear whether values in the range should be
4553               // compared as signed or unsigned values. The partially
4554               // implemented changes that used this format in the past used
4555               // unsigned comparisons.
4556               for ( ; Low.ule(High); ++Low)
4557                 CaseVals.push_back(ConstantInt::get(Context, Low));
4558             } else
4559               CaseVals.push_back(ConstantInt::get(Context, Low));
4560           }
4561           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4562           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4563                  cve = CaseVals.end(); cvi != cve; ++cvi)
4564             SI->addCase(*cvi, DestBB);
4565         }
4566         I = SI;
4567         break;
4568       }
4569 
4570       // Old SwitchInst format without case ranges.
4571 
4572       if (Record.size() < 3 || (Record.size() & 1) == 0)
4573         return error("Invalid record");
4574       Type *OpTy = getTypeByID(Record[0]);
4575       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4576       BasicBlock *Default = getBasicBlock(Record[2]);
4577       if (!OpTy || !Cond || !Default)
4578         return error("Invalid record");
4579       unsigned NumCases = (Record.size()-3)/2;
4580       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4581       InstructionList.push_back(SI);
4582       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4583         ConstantInt *CaseVal =
4584           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4585         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4586         if (!CaseVal || !DestBB) {
4587           delete SI;
4588           return error("Invalid record");
4589         }
4590         SI->addCase(CaseVal, DestBB);
4591       }
4592       I = SI;
4593       break;
4594     }
4595     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4596       if (Record.size() < 2)
4597         return error("Invalid record");
4598       Type *OpTy = getTypeByID(Record[0]);
4599       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4600       if (!OpTy || !Address)
4601         return error("Invalid record");
4602       unsigned NumDests = Record.size()-2;
4603       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4604       InstructionList.push_back(IBI);
4605       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4606         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4607           IBI->addDestination(DestBB);
4608         } else {
4609           delete IBI;
4610           return error("Invalid record");
4611         }
4612       }
4613       I = IBI;
4614       break;
4615     }
4616 
4617     case bitc::FUNC_CODE_INST_INVOKE: {
4618       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4619       if (Record.size() < 4)
4620         return error("Invalid record");
4621       unsigned OpNum = 0;
4622       AttributeList PAL = getAttributes(Record[OpNum++]);
4623       unsigned CCInfo = Record[OpNum++];
4624       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4625       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4626 
4627       FunctionType *FTy = nullptr;
4628       if ((CCInfo >> 13) & 1) {
4629         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4630         if (!FTy)
4631           return error("Explicit invoke type is not a function type");
4632       }
4633 
4634       Value *Callee;
4635       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4636         return error("Invalid record");
4637 
4638       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4639       if (!CalleeTy)
4640         return error("Callee is not a pointer");
4641       if (!FTy) {
4642         FTy = dyn_cast<FunctionType>(
4643             cast<PointerType>(Callee->getType())->getElementType());
4644         if (!FTy)
4645           return error("Callee is not of pointer to function type");
4646       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4647         return error("Explicit invoke type does not match pointee type of "
4648                      "callee operand");
4649       if (Record.size() < FTy->getNumParams() + OpNum)
4650         return error("Insufficient operands to call");
4651 
4652       SmallVector<Value*, 16> Ops;
4653       SmallVector<Type *, 16> ArgsTys;
4654       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4655         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4656                                FTy->getParamType(i)));
4657         ArgsTys.push_back(FTy->getParamType(i));
4658         if (!Ops.back())
4659           return error("Invalid record");
4660       }
4661 
4662       if (!FTy->isVarArg()) {
4663         if (Record.size() != OpNum)
4664           return error("Invalid record");
4665       } else {
4666         // Read type/value pairs for varargs params.
4667         while (OpNum != Record.size()) {
4668           Value *Op;
4669           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4670             return error("Invalid record");
4671           Ops.push_back(Op);
4672           ArgsTys.push_back(Op->getType());
4673         }
4674       }
4675 
4676       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4677                              OperandBundles);
4678       OperandBundles.clear();
4679       InstructionList.push_back(I);
4680       cast<InvokeInst>(I)->setCallingConv(
4681           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4682       cast<InvokeInst>(I)->setAttributes(PAL);
4683       propagateByValSRetTypes(cast<CallBase>(I), ArgsTys);
4684 
4685       break;
4686     }
4687     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4688       unsigned Idx = 0;
4689       Value *Val = nullptr;
4690       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4691         return error("Invalid record");
4692       I = ResumeInst::Create(Val);
4693       InstructionList.push_back(I);
4694       break;
4695     }
4696     case bitc::FUNC_CODE_INST_CALLBR: {
4697       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4698       unsigned OpNum = 0;
4699       AttributeList PAL = getAttributes(Record[OpNum++]);
4700       unsigned CCInfo = Record[OpNum++];
4701 
4702       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4703       unsigned NumIndirectDests = Record[OpNum++];
4704       SmallVector<BasicBlock *, 16> IndirectDests;
4705       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4706         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4707 
4708       FunctionType *FTy = nullptr;
4709       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4710         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4711         if (!FTy)
4712           return error("Explicit call type is not a function type");
4713       }
4714 
4715       Value *Callee;
4716       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4717         return error("Invalid record");
4718 
4719       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4720       if (!OpTy)
4721         return error("Callee is not a pointer type");
4722       if (!FTy) {
4723         FTy = dyn_cast<FunctionType>(
4724             cast<PointerType>(Callee->getType())->getElementType());
4725         if (!FTy)
4726           return error("Callee is not of pointer to function type");
4727       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4728         return error("Explicit call type does not match pointee type of "
4729                      "callee operand");
4730       if (Record.size() < FTy->getNumParams() + OpNum)
4731         return error("Insufficient operands to call");
4732 
4733       SmallVector<Value*, 16> Args;
4734       // Read the fixed params.
4735       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4736         if (FTy->getParamType(i)->isLabelTy())
4737           Args.push_back(getBasicBlock(Record[OpNum]));
4738         else
4739           Args.push_back(getValue(Record, OpNum, NextValueNo,
4740                                   FTy->getParamType(i)));
4741         if (!Args.back())
4742           return error("Invalid record");
4743       }
4744 
4745       // Read type/value pairs for varargs params.
4746       if (!FTy->isVarArg()) {
4747         if (OpNum != Record.size())
4748           return error("Invalid record");
4749       } else {
4750         while (OpNum != Record.size()) {
4751           Value *Op;
4752           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4753             return error("Invalid record");
4754           Args.push_back(Op);
4755         }
4756       }
4757 
4758       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4759                              OperandBundles);
4760       OperandBundles.clear();
4761       InstructionList.push_back(I);
4762       cast<CallBrInst>(I)->setCallingConv(
4763           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4764       cast<CallBrInst>(I)->setAttributes(PAL);
4765       break;
4766     }
4767     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4768       I = new UnreachableInst(Context);
4769       InstructionList.push_back(I);
4770       break;
4771     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4772       if (Record.empty())
4773         return error("Invalid record");
4774       // The first record specifies the type.
4775       Type *Ty = getTypeByID(Record[0]);
4776       if (!Ty)
4777         return error("Invalid record");
4778 
4779       // Phi arguments are pairs of records of [value, basic block].
4780       // There is an optional final record for fast-math-flags if this phi has a
4781       // floating-point type.
4782       size_t NumArgs = (Record.size() - 1) / 2;
4783       PHINode *PN = PHINode::Create(Ty, NumArgs);
4784       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4785         return error("Invalid record");
4786       InstructionList.push_back(PN);
4787 
4788       for (unsigned i = 0; i != NumArgs; i++) {
4789         Value *V;
4790         // With the new function encoding, it is possible that operands have
4791         // negative IDs (for forward references).  Use a signed VBR
4792         // representation to keep the encoding small.
4793         if (UseRelativeIDs)
4794           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4795         else
4796           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4797         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4798         if (!V || !BB)
4799           return error("Invalid record");
4800         PN->addIncoming(V, BB);
4801       }
4802       I = PN;
4803 
4804       // If there are an even number of records, the final record must be FMF.
4805       if (Record.size() % 2 == 0) {
4806         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4807         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4808         if (FMF.any())
4809           I->setFastMathFlags(FMF);
4810       }
4811 
4812       break;
4813     }
4814 
4815     case bitc::FUNC_CODE_INST_LANDINGPAD:
4816     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4817       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4818       unsigned Idx = 0;
4819       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4820         if (Record.size() < 3)
4821           return error("Invalid record");
4822       } else {
4823         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4824         if (Record.size() < 4)
4825           return error("Invalid record");
4826       }
4827       Type *Ty = getTypeByID(Record[Idx++]);
4828       if (!Ty)
4829         return error("Invalid record");
4830       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4831         Value *PersFn = nullptr;
4832         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4833           return error("Invalid record");
4834 
4835         if (!F->hasPersonalityFn())
4836           F->setPersonalityFn(cast<Constant>(PersFn));
4837         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4838           return error("Personality function mismatch");
4839       }
4840 
4841       bool IsCleanup = !!Record[Idx++];
4842       unsigned NumClauses = Record[Idx++];
4843       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4844       LP->setCleanup(IsCleanup);
4845       for (unsigned J = 0; J != NumClauses; ++J) {
4846         LandingPadInst::ClauseType CT =
4847           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4848         Value *Val;
4849 
4850         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4851           delete LP;
4852           return error("Invalid record");
4853         }
4854 
4855         assert((CT != LandingPadInst::Catch ||
4856                 !isa<ArrayType>(Val->getType())) &&
4857                "Catch clause has a invalid type!");
4858         assert((CT != LandingPadInst::Filter ||
4859                 isa<ArrayType>(Val->getType())) &&
4860                "Filter clause has invalid type!");
4861         LP->addClause(cast<Constant>(Val));
4862       }
4863 
4864       I = LP;
4865       InstructionList.push_back(I);
4866       break;
4867     }
4868 
4869     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4870       if (Record.size() != 4)
4871         return error("Invalid record");
4872       using APV = AllocaPackedValues;
4873       const uint64_t Rec = Record[3];
4874       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4875       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4876       Type *Ty = getTypeByID(Record[0]);
4877       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4878         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4879         if (!PTy)
4880           return error("Old-style alloca with a non-pointer type");
4881         Ty = PTy->getElementType();
4882       }
4883       Type *OpTy = getTypeByID(Record[1]);
4884       Value *Size = getFnValueByID(Record[2], OpTy);
4885       MaybeAlign Align;
4886       if (Error Err =
4887               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4888         return Err;
4889       }
4890       if (!Ty || !Size)
4891         return error("Invalid record");
4892 
4893       // FIXME: Make this an optional field.
4894       const DataLayout &DL = TheModule->getDataLayout();
4895       unsigned AS = DL.getAllocaAddrSpace();
4896 
4897       SmallPtrSet<Type *, 4> Visited;
4898       if (!Align && !Ty->isSized(&Visited))
4899         return error("alloca of unsized type");
4900       if (!Align)
4901         Align = DL.getPrefTypeAlign(Ty);
4902 
4903       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4904       AI->setUsedWithInAlloca(InAlloca);
4905       AI->setSwiftError(SwiftError);
4906       I = AI;
4907       InstructionList.push_back(I);
4908       break;
4909     }
4910     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4911       unsigned OpNum = 0;
4912       Value *Op;
4913       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4914           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4915         return error("Invalid record");
4916 
4917       if (!isa<PointerType>(Op->getType()))
4918         return error("Load operand is not a pointer type");
4919 
4920       Type *Ty = nullptr;
4921       if (OpNum + 3 == Record.size()) {
4922         Ty = getTypeByID(Record[OpNum++]);
4923       } else {
4924         Ty = cast<PointerType>(Op->getType())->getElementType();
4925       }
4926 
4927       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4928         return Err;
4929 
4930       MaybeAlign Align;
4931       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4932         return Err;
4933       SmallPtrSet<Type *, 4> Visited;
4934       if (!Align && !Ty->isSized(&Visited))
4935         return error("load of unsized type");
4936       if (!Align)
4937         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4938       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4939       InstructionList.push_back(I);
4940       break;
4941     }
4942     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4943        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4944       unsigned OpNum = 0;
4945       Value *Op;
4946       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4947           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4948         return error("Invalid record");
4949 
4950       if (!isa<PointerType>(Op->getType()))
4951         return error("Load operand is not a pointer type");
4952 
4953       Type *Ty = nullptr;
4954       if (OpNum + 5 == Record.size()) {
4955         Ty = getTypeByID(Record[OpNum++]);
4956       } else {
4957         Ty = cast<PointerType>(Op->getType())->getElementType();
4958       }
4959 
4960       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4961         return Err;
4962 
4963       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4964       if (Ordering == AtomicOrdering::NotAtomic ||
4965           Ordering == AtomicOrdering::Release ||
4966           Ordering == AtomicOrdering::AcquireRelease)
4967         return error("Invalid record");
4968       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4969         return error("Invalid record");
4970       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4971 
4972       MaybeAlign Align;
4973       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4974         return Err;
4975       if (!Align)
4976         return error("Alignment missing from atomic load");
4977       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4978       InstructionList.push_back(I);
4979       break;
4980     }
4981     case bitc::FUNC_CODE_INST_STORE:
4982     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4983       unsigned OpNum = 0;
4984       Value *Val, *Ptr;
4985       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4986           (BitCode == bitc::FUNC_CODE_INST_STORE
4987                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4988                : popValue(Record, OpNum, NextValueNo,
4989                           cast<PointerType>(Ptr->getType())->getElementType(),
4990                           Val)) ||
4991           OpNum + 2 != Record.size())
4992         return error("Invalid record");
4993 
4994       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4995         return Err;
4996       MaybeAlign Align;
4997       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4998         return Err;
4999       SmallPtrSet<Type *, 4> Visited;
5000       if (!Align && !Val->getType()->isSized(&Visited))
5001         return error("store of unsized type");
5002       if (!Align)
5003         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5004       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5005       InstructionList.push_back(I);
5006       break;
5007     }
5008     case bitc::FUNC_CODE_INST_STOREATOMIC:
5009     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5010       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5011       unsigned OpNum = 0;
5012       Value *Val, *Ptr;
5013       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5014           !isa<PointerType>(Ptr->getType()) ||
5015           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5016                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5017                : popValue(Record, OpNum, NextValueNo,
5018                           cast<PointerType>(Ptr->getType())->getElementType(),
5019                           Val)) ||
5020           OpNum + 4 != Record.size())
5021         return error("Invalid record");
5022 
5023       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5024         return Err;
5025       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5026       if (Ordering == AtomicOrdering::NotAtomic ||
5027           Ordering == AtomicOrdering::Acquire ||
5028           Ordering == AtomicOrdering::AcquireRelease)
5029         return error("Invalid record");
5030       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5031       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5032         return error("Invalid record");
5033 
5034       MaybeAlign Align;
5035       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5036         return Err;
5037       if (!Align)
5038         return error("Alignment missing from atomic store");
5039       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5040       InstructionList.push_back(I);
5041       break;
5042     }
5043     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5044       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5045       // failure_ordering?, weak?]
5046       const size_t NumRecords = Record.size();
5047       unsigned OpNum = 0;
5048       Value *Ptr = nullptr;
5049       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5050         return error("Invalid record");
5051 
5052       if (!isa<PointerType>(Ptr->getType()))
5053         return error("Cmpxchg operand is not a pointer type");
5054 
5055       Value *Cmp = nullptr;
5056       if (popValue(Record, OpNum, NextValueNo,
5057                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5058                    Cmp))
5059         return error("Invalid record");
5060 
5061       Value *New = nullptr;
5062       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5063           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5064         return error("Invalid record");
5065 
5066       const AtomicOrdering SuccessOrdering =
5067           getDecodedOrdering(Record[OpNum + 1]);
5068       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5069           SuccessOrdering == AtomicOrdering::Unordered)
5070         return error("Invalid record");
5071 
5072       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5073 
5074       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5075         return Err;
5076 
5077       const AtomicOrdering FailureOrdering =
5078           NumRecords < 7
5079               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5080               : getDecodedOrdering(Record[OpNum + 3]);
5081 
5082       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5083           FailureOrdering == AtomicOrdering::Unordered)
5084         return error("Invalid record");
5085 
5086       const Align Alignment(
5087           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5088 
5089       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5090                                 FailureOrdering, SSID);
5091       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5092 
5093       if (NumRecords < 8) {
5094         // Before weak cmpxchgs existed, the instruction simply returned the
5095         // value loaded from memory, so bitcode files from that era will be
5096         // expecting the first component of a modern cmpxchg.
5097         CurBB->getInstList().push_back(I);
5098         I = ExtractValueInst::Create(I, 0);
5099       } else {
5100         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5101       }
5102 
5103       InstructionList.push_back(I);
5104       break;
5105     }
5106     case bitc::FUNC_CODE_INST_CMPXCHG: {
5107       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5108       // failure_ordering, weak, align?]
5109       const size_t NumRecords = Record.size();
5110       unsigned OpNum = 0;
5111       Value *Ptr = nullptr;
5112       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5113         return error("Invalid record");
5114 
5115       if (!isa<PointerType>(Ptr->getType()))
5116         return error("Cmpxchg operand is not a pointer type");
5117 
5118       Value *Cmp = nullptr;
5119       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5120         return error("Invalid record");
5121 
5122       Value *Val = nullptr;
5123       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5124         return error("Invalid record");
5125 
5126       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5127         return error("Invalid record");
5128 
5129       const bool IsVol = Record[OpNum];
5130 
5131       const AtomicOrdering SuccessOrdering =
5132           getDecodedOrdering(Record[OpNum + 1]);
5133       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5134         return error("Invalid cmpxchg success ordering");
5135 
5136       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5137 
5138       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5139         return Err;
5140 
5141       const AtomicOrdering FailureOrdering =
5142           getDecodedOrdering(Record[OpNum + 3]);
5143       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5144         return error("Invalid cmpxchg failure ordering");
5145 
5146       const bool IsWeak = Record[OpNum + 4];
5147 
5148       MaybeAlign Alignment;
5149 
5150       if (NumRecords == (OpNum + 6)) {
5151         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5152           return Err;
5153       }
5154       if (!Alignment)
5155         Alignment =
5156             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5157 
5158       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5159                                 FailureOrdering, SSID);
5160       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5161       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5162 
5163       InstructionList.push_back(I);
5164       break;
5165     }
5166     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5167     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5168       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5169       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5170       const size_t NumRecords = Record.size();
5171       unsigned OpNum = 0;
5172 
5173       Value *Ptr = nullptr;
5174       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5175         return error("Invalid record");
5176 
5177       if (!isa<PointerType>(Ptr->getType()))
5178         return error("Invalid record");
5179 
5180       Value *Val = nullptr;
5181       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5182         if (popValue(Record, OpNum, NextValueNo,
5183                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5184                      Val))
5185           return error("Invalid record");
5186       } else {
5187         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5188           return error("Invalid record");
5189       }
5190 
5191       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5192         return error("Invalid record");
5193 
5194       const AtomicRMWInst::BinOp Operation =
5195           getDecodedRMWOperation(Record[OpNum]);
5196       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5197           Operation > AtomicRMWInst::LAST_BINOP)
5198         return error("Invalid record");
5199 
5200       const bool IsVol = Record[OpNum + 1];
5201 
5202       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5203       if (Ordering == AtomicOrdering::NotAtomic ||
5204           Ordering == AtomicOrdering::Unordered)
5205         return error("Invalid record");
5206 
5207       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5208 
5209       MaybeAlign Alignment;
5210 
5211       if (NumRecords == (OpNum + 5)) {
5212         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5213           return Err;
5214       }
5215 
5216       if (!Alignment)
5217         Alignment =
5218             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5219 
5220       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5221       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5222 
5223       InstructionList.push_back(I);
5224       break;
5225     }
5226     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5227       if (2 != Record.size())
5228         return error("Invalid record");
5229       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5230       if (Ordering == AtomicOrdering::NotAtomic ||
5231           Ordering == AtomicOrdering::Unordered ||
5232           Ordering == AtomicOrdering::Monotonic)
5233         return error("Invalid record");
5234       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5235       I = new FenceInst(Context, Ordering, SSID);
5236       InstructionList.push_back(I);
5237       break;
5238     }
5239     case bitc::FUNC_CODE_INST_CALL: {
5240       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5241       if (Record.size() < 3)
5242         return error("Invalid record");
5243 
5244       unsigned OpNum = 0;
5245       AttributeList PAL = getAttributes(Record[OpNum++]);
5246       unsigned CCInfo = Record[OpNum++];
5247 
5248       FastMathFlags FMF;
5249       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5250         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5251         if (!FMF.any())
5252           return error("Fast math flags indicator set for call with no FMF");
5253       }
5254 
5255       FunctionType *FTy = nullptr;
5256       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5257         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5258         if (!FTy)
5259           return error("Explicit call type is not a function type");
5260       }
5261 
5262       Value *Callee;
5263       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5264         return error("Invalid record");
5265 
5266       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5267       if (!OpTy)
5268         return error("Callee is not a pointer type");
5269       if (!FTy) {
5270         FTy = dyn_cast<FunctionType>(
5271             cast<PointerType>(Callee->getType())->getElementType());
5272         if (!FTy)
5273           return error("Callee is not of pointer to function type");
5274       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5275         return error("Explicit call type does not match pointee type of "
5276                      "callee operand");
5277       if (Record.size() < FTy->getNumParams() + OpNum)
5278         return error("Insufficient operands to call");
5279 
5280       SmallVector<Value*, 16> Args;
5281       SmallVector<Type *, 16> ArgsTys;
5282       // Read the fixed params.
5283       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5284         if (FTy->getParamType(i)->isLabelTy())
5285           Args.push_back(getBasicBlock(Record[OpNum]));
5286         else
5287           Args.push_back(getValue(Record, OpNum, NextValueNo,
5288                                   FTy->getParamType(i)));
5289         ArgsTys.push_back(FTy->getParamType(i));
5290         if (!Args.back())
5291           return error("Invalid record");
5292       }
5293 
5294       // Read type/value pairs for varargs params.
5295       if (!FTy->isVarArg()) {
5296         if (OpNum != Record.size())
5297           return error("Invalid record");
5298       } else {
5299         while (OpNum != Record.size()) {
5300           Value *Op;
5301           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5302             return error("Invalid record");
5303           Args.push_back(Op);
5304           ArgsTys.push_back(Op->getType());
5305         }
5306       }
5307 
5308       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5309       OperandBundles.clear();
5310       InstructionList.push_back(I);
5311       cast<CallInst>(I)->setCallingConv(
5312           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5313       CallInst::TailCallKind TCK = CallInst::TCK_None;
5314       if (CCInfo & 1 << bitc::CALL_TAIL)
5315         TCK = CallInst::TCK_Tail;
5316       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5317         TCK = CallInst::TCK_MustTail;
5318       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5319         TCK = CallInst::TCK_NoTail;
5320       cast<CallInst>(I)->setTailCallKind(TCK);
5321       cast<CallInst>(I)->setAttributes(PAL);
5322       propagateByValSRetTypes(cast<CallBase>(I), ArgsTys);
5323       if (FMF.any()) {
5324         if (!isa<FPMathOperator>(I))
5325           return error("Fast-math-flags specified for call without "
5326                        "floating-point scalar or vector return type");
5327         I->setFastMathFlags(FMF);
5328       }
5329       break;
5330     }
5331     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5332       if (Record.size() < 3)
5333         return error("Invalid record");
5334       Type *OpTy = getTypeByID(Record[0]);
5335       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5336       Type *ResTy = getTypeByID(Record[2]);
5337       if (!OpTy || !Op || !ResTy)
5338         return error("Invalid record");
5339       I = new VAArgInst(Op, ResTy);
5340       InstructionList.push_back(I);
5341       break;
5342     }
5343 
5344     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5345       // A call or an invoke can be optionally prefixed with some variable
5346       // number of operand bundle blocks.  These blocks are read into
5347       // OperandBundles and consumed at the next call or invoke instruction.
5348 
5349       if (Record.empty() || Record[0] >= BundleTags.size())
5350         return error("Invalid record");
5351 
5352       std::vector<Value *> Inputs;
5353 
5354       unsigned OpNum = 1;
5355       while (OpNum != Record.size()) {
5356         Value *Op;
5357         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5358           return error("Invalid record");
5359         Inputs.push_back(Op);
5360       }
5361 
5362       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5363       continue;
5364     }
5365 
5366     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5367       unsigned OpNum = 0;
5368       Value *Op = nullptr;
5369       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5370         return error("Invalid record");
5371       if (OpNum != Record.size())
5372         return error("Invalid record");
5373 
5374       I = new FreezeInst(Op);
5375       InstructionList.push_back(I);
5376       break;
5377     }
5378     }
5379 
5380     // Add instruction to end of current BB.  If there is no current BB, reject
5381     // this file.
5382     if (!CurBB) {
5383       I->deleteValue();
5384       return error("Invalid instruction with no BB");
5385     }
5386     if (!OperandBundles.empty()) {
5387       I->deleteValue();
5388       return error("Operand bundles found with no consumer");
5389     }
5390     CurBB->getInstList().push_back(I);
5391 
5392     // If this was a terminator instruction, move to the next block.
5393     if (I->isTerminator()) {
5394       ++CurBBNo;
5395       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5396     }
5397 
5398     // Non-void values get registered in the value table for future use.
5399     if (!I->getType()->isVoidTy())
5400       ValueList.assignValue(I, NextValueNo++);
5401   }
5402 
5403 OutOfRecordLoop:
5404 
5405   if (!OperandBundles.empty())
5406     return error("Operand bundles found with no consumer");
5407 
5408   // Check the function list for unresolved values.
5409   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5410     if (!A->getParent()) {
5411       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5412       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5413         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5414           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5415           delete A;
5416         }
5417       }
5418       return error("Never resolved value found in function");
5419     }
5420   }
5421 
5422   // Unexpected unresolved metadata about to be dropped.
5423   if (MDLoader->hasFwdRefs())
5424     return error("Invalid function metadata: outgoing forward refs");
5425 
5426   // Trim the value list down to the size it was before we parsed this function.
5427   ValueList.shrinkTo(ModuleValueListSize);
5428   MDLoader->shrinkTo(ModuleMDLoaderSize);
5429   std::vector<BasicBlock*>().swap(FunctionBBs);
5430   return Error::success();
5431 }
5432 
5433 /// Find the function body in the bitcode stream
5434 Error BitcodeReader::findFunctionInStream(
5435     Function *F,
5436     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5437   while (DeferredFunctionInfoIterator->second == 0) {
5438     // This is the fallback handling for the old format bitcode that
5439     // didn't contain the function index in the VST, or when we have
5440     // an anonymous function which would not have a VST entry.
5441     // Assert that we have one of those two cases.
5442     assert(VSTOffset == 0 || !F->hasName());
5443     // Parse the next body in the stream and set its position in the
5444     // DeferredFunctionInfo map.
5445     if (Error Err = rememberAndSkipFunctionBodies())
5446       return Err;
5447   }
5448   return Error::success();
5449 }
5450 
5451 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5452   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5453     return SyncScope::ID(Val);
5454   if (Val >= SSIDs.size())
5455     return SyncScope::System; // Map unknown synchronization scopes to system.
5456   return SSIDs[Val];
5457 }
5458 
5459 //===----------------------------------------------------------------------===//
5460 // GVMaterializer implementation
5461 //===----------------------------------------------------------------------===//
5462 
5463 Error BitcodeReader::materialize(GlobalValue *GV) {
5464   Function *F = dyn_cast<Function>(GV);
5465   // If it's not a function or is already material, ignore the request.
5466   if (!F || !F->isMaterializable())
5467     return Error::success();
5468 
5469   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5470   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5471   // If its position is recorded as 0, its body is somewhere in the stream
5472   // but we haven't seen it yet.
5473   if (DFII->second == 0)
5474     if (Error Err = findFunctionInStream(F, DFII))
5475       return Err;
5476 
5477   // Materialize metadata before parsing any function bodies.
5478   if (Error Err = materializeMetadata())
5479     return Err;
5480 
5481   // Move the bit stream to the saved position of the deferred function body.
5482   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5483     return JumpFailed;
5484   if (Error Err = parseFunctionBody(F))
5485     return Err;
5486   F->setIsMaterializable(false);
5487 
5488   if (StripDebugInfo)
5489     stripDebugInfo(*F);
5490 
5491   // Upgrade any old intrinsic calls in the function.
5492   for (auto &I : UpgradedIntrinsics) {
5493     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5494          UI != UE;) {
5495       User *U = *UI;
5496       ++UI;
5497       if (CallInst *CI = dyn_cast<CallInst>(U))
5498         UpgradeIntrinsicCall(CI, I.second);
5499     }
5500   }
5501 
5502   // Update calls to the remangled intrinsics
5503   for (auto &I : RemangledIntrinsics)
5504     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5505          UI != UE;)
5506       // Don't expect any other users than call sites
5507       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5508 
5509   // Finish fn->subprogram upgrade for materialized functions.
5510   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5511     F->setSubprogram(SP);
5512 
5513   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5514   if (!MDLoader->isStrippingTBAA()) {
5515     for (auto &I : instructions(F)) {
5516       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5517       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5518         continue;
5519       MDLoader->setStripTBAA(true);
5520       stripTBAA(F->getParent());
5521     }
5522   }
5523 
5524   for (auto &I : instructions(F)) {
5525     // "Upgrade" older incorrect branch weights by dropping them.
5526     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5527       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5528         MDString *MDS = cast<MDString>(MD->getOperand(0));
5529         StringRef ProfName = MDS->getString();
5530         // Check consistency of !prof branch_weights metadata.
5531         if (!ProfName.equals("branch_weights"))
5532           continue;
5533         unsigned ExpectedNumOperands = 0;
5534         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5535           ExpectedNumOperands = BI->getNumSuccessors();
5536         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5537           ExpectedNumOperands = SI->getNumSuccessors();
5538         else if (isa<CallInst>(&I))
5539           ExpectedNumOperands = 1;
5540         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5541           ExpectedNumOperands = IBI->getNumDestinations();
5542         else if (isa<SelectInst>(&I))
5543           ExpectedNumOperands = 2;
5544         else
5545           continue; // ignore and continue.
5546 
5547         // If branch weight doesn't match, just strip branch weight.
5548         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5549           I.setMetadata(LLVMContext::MD_prof, nullptr);
5550       }
5551     }
5552 
5553     // Remove incompatible attributes on function calls.
5554     if (auto *CI = dyn_cast<CallBase>(&I)) {
5555       CI->removeAttributes(AttributeList::ReturnIndex,
5556                            AttributeFuncs::typeIncompatible(
5557                                CI->getFunctionType()->getReturnType()));
5558 
5559       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5560         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5561                                         CI->getArgOperand(ArgNo)->getType()));
5562     }
5563   }
5564 
5565   // Look for functions that rely on old function attribute behavior.
5566   UpgradeFunctionAttributes(*F);
5567 
5568   // Bring in any functions that this function forward-referenced via
5569   // blockaddresses.
5570   return materializeForwardReferencedFunctions();
5571 }
5572 
5573 Error BitcodeReader::materializeModule() {
5574   if (Error Err = materializeMetadata())
5575     return Err;
5576 
5577   // Promise to materialize all forward references.
5578   WillMaterializeAllForwardRefs = true;
5579 
5580   // Iterate over the module, deserializing any functions that are still on
5581   // disk.
5582   for (Function &F : *TheModule) {
5583     if (Error Err = materialize(&F))
5584       return Err;
5585   }
5586   // At this point, if there are any function bodies, parse the rest of
5587   // the bits in the module past the last function block we have recorded
5588   // through either lazy scanning or the VST.
5589   if (LastFunctionBlockBit || NextUnreadBit)
5590     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5591                                     ? LastFunctionBlockBit
5592                                     : NextUnreadBit))
5593       return Err;
5594 
5595   // Check that all block address forward references got resolved (as we
5596   // promised above).
5597   if (!BasicBlockFwdRefs.empty())
5598     return error("Never resolved function from blockaddress");
5599 
5600   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5601   // delete the old functions to clean up. We can't do this unless the entire
5602   // module is materialized because there could always be another function body
5603   // with calls to the old function.
5604   for (auto &I : UpgradedIntrinsics) {
5605     for (auto *U : I.first->users()) {
5606       if (CallInst *CI = dyn_cast<CallInst>(U))
5607         UpgradeIntrinsicCall(CI, I.second);
5608     }
5609     if (!I.first->use_empty())
5610       I.first->replaceAllUsesWith(I.second);
5611     I.first->eraseFromParent();
5612   }
5613   UpgradedIntrinsics.clear();
5614   // Do the same for remangled intrinsics
5615   for (auto &I : RemangledIntrinsics) {
5616     I.first->replaceAllUsesWith(I.second);
5617     I.first->eraseFromParent();
5618   }
5619   RemangledIntrinsics.clear();
5620 
5621   UpgradeDebugInfo(*TheModule);
5622 
5623   UpgradeModuleFlags(*TheModule);
5624 
5625   UpgradeARCRuntime(*TheModule);
5626 
5627   return Error::success();
5628 }
5629 
5630 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5631   return IdentifiedStructTypes;
5632 }
5633 
5634 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5635     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5636     StringRef ModulePath, unsigned ModuleId)
5637     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5638       ModulePath(ModulePath), ModuleId(ModuleId) {}
5639 
5640 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5641   TheIndex.addModule(ModulePath, ModuleId);
5642 }
5643 
5644 ModuleSummaryIndex::ModuleInfo *
5645 ModuleSummaryIndexBitcodeReader::getThisModule() {
5646   return TheIndex.getModule(ModulePath);
5647 }
5648 
5649 std::pair<ValueInfo, GlobalValue::GUID>
5650 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5651   auto VGI = ValueIdToValueInfoMap[ValueId];
5652   assert(VGI.first);
5653   return VGI;
5654 }
5655 
5656 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5657     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5658     StringRef SourceFileName) {
5659   std::string GlobalId =
5660       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5661   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5662   auto OriginalNameID = ValueGUID;
5663   if (GlobalValue::isLocalLinkage(Linkage))
5664     OriginalNameID = GlobalValue::getGUID(ValueName);
5665   if (PrintSummaryGUIDs)
5666     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5667            << ValueName << "\n";
5668 
5669   // UseStrtab is false for legacy summary formats and value names are
5670   // created on stack. In that case we save the name in a string saver in
5671   // the index so that the value name can be recorded.
5672   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5673       TheIndex.getOrInsertValueInfo(
5674           ValueGUID,
5675           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5676       OriginalNameID);
5677 }
5678 
5679 // Specialized value symbol table parser used when reading module index
5680 // blocks where we don't actually create global values. The parsed information
5681 // is saved in the bitcode reader for use when later parsing summaries.
5682 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5683     uint64_t Offset,
5684     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5685   // With a strtab the VST is not required to parse the summary.
5686   if (UseStrtab)
5687     return Error::success();
5688 
5689   assert(Offset > 0 && "Expected non-zero VST offset");
5690   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5691   if (!MaybeCurrentBit)
5692     return MaybeCurrentBit.takeError();
5693   uint64_t CurrentBit = MaybeCurrentBit.get();
5694 
5695   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5696     return Err;
5697 
5698   SmallVector<uint64_t, 64> Record;
5699 
5700   // Read all the records for this value table.
5701   SmallString<128> ValueName;
5702 
5703   while (true) {
5704     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5705     if (!MaybeEntry)
5706       return MaybeEntry.takeError();
5707     BitstreamEntry Entry = MaybeEntry.get();
5708 
5709     switch (Entry.Kind) {
5710     case BitstreamEntry::SubBlock: // Handled for us already.
5711     case BitstreamEntry::Error:
5712       return error("Malformed block");
5713     case BitstreamEntry::EndBlock:
5714       // Done parsing VST, jump back to wherever we came from.
5715       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5716         return JumpFailed;
5717       return Error::success();
5718     case BitstreamEntry::Record:
5719       // The interesting case.
5720       break;
5721     }
5722 
5723     // Read a record.
5724     Record.clear();
5725     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5726     if (!MaybeRecord)
5727       return MaybeRecord.takeError();
5728     switch (MaybeRecord.get()) {
5729     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5730       break;
5731     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5732       if (convertToString(Record, 1, ValueName))
5733         return error("Invalid record");
5734       unsigned ValueID = Record[0];
5735       assert(!SourceFileName.empty());
5736       auto VLI = ValueIdToLinkageMap.find(ValueID);
5737       assert(VLI != ValueIdToLinkageMap.end() &&
5738              "No linkage found for VST entry?");
5739       auto Linkage = VLI->second;
5740       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5741       ValueName.clear();
5742       break;
5743     }
5744     case bitc::VST_CODE_FNENTRY: {
5745       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5746       if (convertToString(Record, 2, ValueName))
5747         return error("Invalid record");
5748       unsigned ValueID = Record[0];
5749       assert(!SourceFileName.empty());
5750       auto VLI = ValueIdToLinkageMap.find(ValueID);
5751       assert(VLI != ValueIdToLinkageMap.end() &&
5752              "No linkage found for VST entry?");
5753       auto Linkage = VLI->second;
5754       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5755       ValueName.clear();
5756       break;
5757     }
5758     case bitc::VST_CODE_COMBINED_ENTRY: {
5759       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5760       unsigned ValueID = Record[0];
5761       GlobalValue::GUID RefGUID = Record[1];
5762       // The "original name", which is the second value of the pair will be
5763       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5764       ValueIdToValueInfoMap[ValueID] =
5765           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5766       break;
5767     }
5768     }
5769   }
5770 }
5771 
5772 // Parse just the blocks needed for building the index out of the module.
5773 // At the end of this routine the module Index is populated with a map
5774 // from global value id to GlobalValueSummary objects.
5775 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5776   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5777     return Err;
5778 
5779   SmallVector<uint64_t, 64> Record;
5780   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5781   unsigned ValueId = 0;
5782 
5783   // Read the index for this module.
5784   while (true) {
5785     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5786     if (!MaybeEntry)
5787       return MaybeEntry.takeError();
5788     llvm::BitstreamEntry Entry = MaybeEntry.get();
5789 
5790     switch (Entry.Kind) {
5791     case BitstreamEntry::Error:
5792       return error("Malformed block");
5793     case BitstreamEntry::EndBlock:
5794       return Error::success();
5795 
5796     case BitstreamEntry::SubBlock:
5797       switch (Entry.ID) {
5798       default: // Skip unknown content.
5799         if (Error Err = Stream.SkipBlock())
5800           return Err;
5801         break;
5802       case bitc::BLOCKINFO_BLOCK_ID:
5803         // Need to parse these to get abbrev ids (e.g. for VST)
5804         if (readBlockInfo())
5805           return error("Malformed block");
5806         break;
5807       case bitc::VALUE_SYMTAB_BLOCK_ID:
5808         // Should have been parsed earlier via VSTOffset, unless there
5809         // is no summary section.
5810         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5811                 !SeenGlobalValSummary) &&
5812                "Expected early VST parse via VSTOffset record");
5813         if (Error Err = Stream.SkipBlock())
5814           return Err;
5815         break;
5816       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5817       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5818         // Add the module if it is a per-module index (has a source file name).
5819         if (!SourceFileName.empty())
5820           addThisModule();
5821         assert(!SeenValueSymbolTable &&
5822                "Already read VST when parsing summary block?");
5823         // We might not have a VST if there were no values in the
5824         // summary. An empty summary block generated when we are
5825         // performing ThinLTO compiles so we don't later invoke
5826         // the regular LTO process on them.
5827         if (VSTOffset > 0) {
5828           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5829             return Err;
5830           SeenValueSymbolTable = true;
5831         }
5832         SeenGlobalValSummary = true;
5833         if (Error Err = parseEntireSummary(Entry.ID))
5834           return Err;
5835         break;
5836       case bitc::MODULE_STRTAB_BLOCK_ID:
5837         if (Error Err = parseModuleStringTable())
5838           return Err;
5839         break;
5840       }
5841       continue;
5842 
5843     case BitstreamEntry::Record: {
5844         Record.clear();
5845         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5846         if (!MaybeBitCode)
5847           return MaybeBitCode.takeError();
5848         switch (MaybeBitCode.get()) {
5849         default:
5850           break; // Default behavior, ignore unknown content.
5851         case bitc::MODULE_CODE_VERSION: {
5852           if (Error Err = parseVersionRecord(Record).takeError())
5853             return Err;
5854           break;
5855         }
5856         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5857         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5858           SmallString<128> ValueName;
5859           if (convertToString(Record, 0, ValueName))
5860             return error("Invalid record");
5861           SourceFileName = ValueName.c_str();
5862           break;
5863         }
5864         /// MODULE_CODE_HASH: [5*i32]
5865         case bitc::MODULE_CODE_HASH: {
5866           if (Record.size() != 5)
5867             return error("Invalid hash length " + Twine(Record.size()).str());
5868           auto &Hash = getThisModule()->second.second;
5869           int Pos = 0;
5870           for (auto &Val : Record) {
5871             assert(!(Val >> 32) && "Unexpected high bits set");
5872             Hash[Pos++] = Val;
5873           }
5874           break;
5875         }
5876         /// MODULE_CODE_VSTOFFSET: [offset]
5877         case bitc::MODULE_CODE_VSTOFFSET:
5878           if (Record.empty())
5879             return error("Invalid record");
5880           // Note that we subtract 1 here because the offset is relative to one
5881           // word before the start of the identification or module block, which
5882           // was historically always the start of the regular bitcode header.
5883           VSTOffset = Record[0] - 1;
5884           break;
5885         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5886         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5887         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5888         // v2: [strtab offset, strtab size, v1]
5889         case bitc::MODULE_CODE_GLOBALVAR:
5890         case bitc::MODULE_CODE_FUNCTION:
5891         case bitc::MODULE_CODE_ALIAS: {
5892           StringRef Name;
5893           ArrayRef<uint64_t> GVRecord;
5894           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5895           if (GVRecord.size() <= 3)
5896             return error("Invalid record");
5897           uint64_t RawLinkage = GVRecord[3];
5898           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5899           if (!UseStrtab) {
5900             ValueIdToLinkageMap[ValueId++] = Linkage;
5901             break;
5902           }
5903 
5904           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5905           break;
5906         }
5907         }
5908       }
5909       continue;
5910     }
5911   }
5912 }
5913 
5914 std::vector<ValueInfo>
5915 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5916   std::vector<ValueInfo> Ret;
5917   Ret.reserve(Record.size());
5918   for (uint64_t RefValueId : Record)
5919     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5920   return Ret;
5921 }
5922 
5923 std::vector<FunctionSummary::EdgeTy>
5924 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5925                                               bool IsOldProfileFormat,
5926                                               bool HasProfile, bool HasRelBF) {
5927   std::vector<FunctionSummary::EdgeTy> Ret;
5928   Ret.reserve(Record.size());
5929   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5930     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5931     uint64_t RelBF = 0;
5932     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5933     if (IsOldProfileFormat) {
5934       I += 1; // Skip old callsitecount field
5935       if (HasProfile)
5936         I += 1; // Skip old profilecount field
5937     } else if (HasProfile)
5938       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5939     else if (HasRelBF)
5940       RelBF = Record[++I];
5941     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5942   }
5943   return Ret;
5944 }
5945 
5946 static void
5947 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5948                                        WholeProgramDevirtResolution &Wpd) {
5949   uint64_t ArgNum = Record[Slot++];
5950   WholeProgramDevirtResolution::ByArg &B =
5951       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5952   Slot += ArgNum;
5953 
5954   B.TheKind =
5955       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5956   B.Info = Record[Slot++];
5957   B.Byte = Record[Slot++];
5958   B.Bit = Record[Slot++];
5959 }
5960 
5961 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5962                                               StringRef Strtab, size_t &Slot,
5963                                               TypeIdSummary &TypeId) {
5964   uint64_t Id = Record[Slot++];
5965   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5966 
5967   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5968   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5969                         static_cast<size_t>(Record[Slot + 1])};
5970   Slot += 2;
5971 
5972   uint64_t ResByArgNum = Record[Slot++];
5973   for (uint64_t I = 0; I != ResByArgNum; ++I)
5974     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5975 }
5976 
5977 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5978                                      StringRef Strtab,
5979                                      ModuleSummaryIndex &TheIndex) {
5980   size_t Slot = 0;
5981   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5982       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5983   Slot += 2;
5984 
5985   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5986   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5987   TypeId.TTRes.AlignLog2 = Record[Slot++];
5988   TypeId.TTRes.SizeM1 = Record[Slot++];
5989   TypeId.TTRes.BitMask = Record[Slot++];
5990   TypeId.TTRes.InlineBits = Record[Slot++];
5991 
5992   while (Slot < Record.size())
5993     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5994 }
5995 
5996 std::vector<FunctionSummary::ParamAccess>
5997 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5998   auto ReadRange = [&]() {
5999     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6000                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6001     Record = Record.drop_front();
6002     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6003                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6004     Record = Record.drop_front();
6005     ConstantRange Range{Lower, Upper};
6006     assert(!Range.isFullSet());
6007     assert(!Range.isUpperSignWrapped());
6008     return Range;
6009   };
6010 
6011   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6012   while (!Record.empty()) {
6013     PendingParamAccesses.emplace_back();
6014     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6015     ParamAccess.ParamNo = Record.front();
6016     Record = Record.drop_front();
6017     ParamAccess.Use = ReadRange();
6018     ParamAccess.Calls.resize(Record.front());
6019     Record = Record.drop_front();
6020     for (auto &Call : ParamAccess.Calls) {
6021       Call.ParamNo = Record.front();
6022       Record = Record.drop_front();
6023       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6024       Record = Record.drop_front();
6025       Call.Offsets = ReadRange();
6026     }
6027   }
6028   return PendingParamAccesses;
6029 }
6030 
6031 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6032     ArrayRef<uint64_t> Record, size_t &Slot,
6033     TypeIdCompatibleVtableInfo &TypeId) {
6034   uint64_t Offset = Record[Slot++];
6035   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6036   TypeId.push_back({Offset, Callee});
6037 }
6038 
6039 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6040     ArrayRef<uint64_t> Record) {
6041   size_t Slot = 0;
6042   TypeIdCompatibleVtableInfo &TypeId =
6043       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6044           {Strtab.data() + Record[Slot],
6045            static_cast<size_t>(Record[Slot + 1])});
6046   Slot += 2;
6047 
6048   while (Slot < Record.size())
6049     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6050 }
6051 
6052 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6053                            unsigned WOCnt) {
6054   // Readonly and writeonly refs are in the end of the refs list.
6055   assert(ROCnt + WOCnt <= Refs.size());
6056   unsigned FirstWORef = Refs.size() - WOCnt;
6057   unsigned RefNo = FirstWORef - ROCnt;
6058   for (; RefNo < FirstWORef; ++RefNo)
6059     Refs[RefNo].setReadOnly();
6060   for (; RefNo < Refs.size(); ++RefNo)
6061     Refs[RefNo].setWriteOnly();
6062 }
6063 
6064 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6065 // objects in the index.
6066 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6067   if (Error Err = Stream.EnterSubBlock(ID))
6068     return Err;
6069   SmallVector<uint64_t, 64> Record;
6070 
6071   // Parse version
6072   {
6073     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6074     if (!MaybeEntry)
6075       return MaybeEntry.takeError();
6076     BitstreamEntry Entry = MaybeEntry.get();
6077 
6078     if (Entry.Kind != BitstreamEntry::Record)
6079       return error("Invalid Summary Block: record for version expected");
6080     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6081     if (!MaybeRecord)
6082       return MaybeRecord.takeError();
6083     if (MaybeRecord.get() != bitc::FS_VERSION)
6084       return error("Invalid Summary Block: version expected");
6085   }
6086   const uint64_t Version = Record[0];
6087   const bool IsOldProfileFormat = Version == 1;
6088   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6089     return error("Invalid summary version " + Twine(Version) +
6090                  ". Version should be in the range [1-" +
6091                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6092                  "].");
6093   Record.clear();
6094 
6095   // Keep around the last seen summary to be used when we see an optional
6096   // "OriginalName" attachement.
6097   GlobalValueSummary *LastSeenSummary = nullptr;
6098   GlobalValue::GUID LastSeenGUID = 0;
6099 
6100   // We can expect to see any number of type ID information records before
6101   // each function summary records; these variables store the information
6102   // collected so far so that it can be used to create the summary object.
6103   std::vector<GlobalValue::GUID> PendingTypeTests;
6104   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6105       PendingTypeCheckedLoadVCalls;
6106   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6107       PendingTypeCheckedLoadConstVCalls;
6108   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6109 
6110   while (true) {
6111     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6112     if (!MaybeEntry)
6113       return MaybeEntry.takeError();
6114     BitstreamEntry Entry = MaybeEntry.get();
6115 
6116     switch (Entry.Kind) {
6117     case BitstreamEntry::SubBlock: // Handled for us already.
6118     case BitstreamEntry::Error:
6119       return error("Malformed block");
6120     case BitstreamEntry::EndBlock:
6121       return Error::success();
6122     case BitstreamEntry::Record:
6123       // The interesting case.
6124       break;
6125     }
6126 
6127     // Read a record. The record format depends on whether this
6128     // is a per-module index or a combined index file. In the per-module
6129     // case the records contain the associated value's ID for correlation
6130     // with VST entries. In the combined index the correlation is done
6131     // via the bitcode offset of the summary records (which were saved
6132     // in the combined index VST entries). The records also contain
6133     // information used for ThinLTO renaming and importing.
6134     Record.clear();
6135     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6136     if (!MaybeBitCode)
6137       return MaybeBitCode.takeError();
6138     switch (unsigned BitCode = MaybeBitCode.get()) {
6139     default: // Default behavior: ignore.
6140       break;
6141     case bitc::FS_FLAGS: {  // [flags]
6142       TheIndex.setFlags(Record[0]);
6143       break;
6144     }
6145     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6146       uint64_t ValueID = Record[0];
6147       GlobalValue::GUID RefGUID = Record[1];
6148       ValueIdToValueInfoMap[ValueID] =
6149           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6150       break;
6151     }
6152     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6153     //                numrefs x valueid, n x (valueid)]
6154     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6155     //                        numrefs x valueid,
6156     //                        n x (valueid, hotness)]
6157     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6158     //                      numrefs x valueid,
6159     //                      n x (valueid, relblockfreq)]
6160     case bitc::FS_PERMODULE:
6161     case bitc::FS_PERMODULE_RELBF:
6162     case bitc::FS_PERMODULE_PROFILE: {
6163       unsigned ValueID = Record[0];
6164       uint64_t RawFlags = Record[1];
6165       unsigned InstCount = Record[2];
6166       uint64_t RawFunFlags = 0;
6167       unsigned NumRefs = Record[3];
6168       unsigned NumRORefs = 0, NumWORefs = 0;
6169       int RefListStartIndex = 4;
6170       if (Version >= 4) {
6171         RawFunFlags = Record[3];
6172         NumRefs = Record[4];
6173         RefListStartIndex = 5;
6174         if (Version >= 5) {
6175           NumRORefs = Record[5];
6176           RefListStartIndex = 6;
6177           if (Version >= 7) {
6178             NumWORefs = Record[6];
6179             RefListStartIndex = 7;
6180           }
6181         }
6182       }
6183 
6184       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6185       // The module path string ref set in the summary must be owned by the
6186       // index's module string table. Since we don't have a module path
6187       // string table section in the per-module index, we create a single
6188       // module path string table entry with an empty (0) ID to take
6189       // ownership.
6190       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6191       assert(Record.size() >= RefListStartIndex + NumRefs &&
6192              "Record size inconsistent with number of references");
6193       std::vector<ValueInfo> Refs = makeRefList(
6194           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6195       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6196       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6197       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6198           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6199           IsOldProfileFormat, HasProfile, HasRelBF);
6200       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6201       auto FS = std::make_unique<FunctionSummary>(
6202           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6203           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6204           std::move(PendingTypeTestAssumeVCalls),
6205           std::move(PendingTypeCheckedLoadVCalls),
6206           std::move(PendingTypeTestAssumeConstVCalls),
6207           std::move(PendingTypeCheckedLoadConstVCalls),
6208           std::move(PendingParamAccesses));
6209       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6210       FS->setModulePath(getThisModule()->first());
6211       FS->setOriginalName(VIAndOriginalGUID.second);
6212       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6213       break;
6214     }
6215     // FS_ALIAS: [valueid, flags, valueid]
6216     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6217     // they expect all aliasee summaries to be available.
6218     case bitc::FS_ALIAS: {
6219       unsigned ValueID = Record[0];
6220       uint64_t RawFlags = Record[1];
6221       unsigned AliaseeID = Record[2];
6222       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6223       auto AS = std::make_unique<AliasSummary>(Flags);
6224       // The module path string ref set in the summary must be owned by the
6225       // index's module string table. Since we don't have a module path
6226       // string table section in the per-module index, we create a single
6227       // module path string table entry with an empty (0) ID to take
6228       // ownership.
6229       AS->setModulePath(getThisModule()->first());
6230 
6231       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6232       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6233       if (!AliaseeInModule)
6234         return error("Alias expects aliasee summary to be parsed");
6235       AS->setAliasee(AliaseeVI, AliaseeInModule);
6236 
6237       auto GUID = getValueInfoFromValueId(ValueID);
6238       AS->setOriginalName(GUID.second);
6239       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6240       break;
6241     }
6242     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6243     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6244       unsigned ValueID = Record[0];
6245       uint64_t RawFlags = Record[1];
6246       unsigned RefArrayStart = 2;
6247       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6248                                       /* WriteOnly */ false,
6249                                       /* Constant */ false,
6250                                       GlobalObject::VCallVisibilityPublic);
6251       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6252       if (Version >= 5) {
6253         GVF = getDecodedGVarFlags(Record[2]);
6254         RefArrayStart = 3;
6255       }
6256       std::vector<ValueInfo> Refs =
6257           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6258       auto FS =
6259           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6260       FS->setModulePath(getThisModule()->first());
6261       auto GUID = getValueInfoFromValueId(ValueID);
6262       FS->setOriginalName(GUID.second);
6263       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6264       break;
6265     }
6266     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6267     //                        numrefs, numrefs x valueid,
6268     //                        n x (valueid, offset)]
6269     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6270       unsigned ValueID = Record[0];
6271       uint64_t RawFlags = Record[1];
6272       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6273       unsigned NumRefs = Record[3];
6274       unsigned RefListStartIndex = 4;
6275       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6276       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6277       std::vector<ValueInfo> Refs = makeRefList(
6278           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6279       VTableFuncList VTableFuncs;
6280       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6281         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6282         uint64_t Offset = Record[++I];
6283         VTableFuncs.push_back({Callee, Offset});
6284       }
6285       auto VS =
6286           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6287       VS->setModulePath(getThisModule()->first());
6288       VS->setVTableFuncs(VTableFuncs);
6289       auto GUID = getValueInfoFromValueId(ValueID);
6290       VS->setOriginalName(GUID.second);
6291       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6292       break;
6293     }
6294     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6295     //               numrefs x valueid, n x (valueid)]
6296     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6297     //                       numrefs x valueid, n x (valueid, hotness)]
6298     case bitc::FS_COMBINED:
6299     case bitc::FS_COMBINED_PROFILE: {
6300       unsigned ValueID = Record[0];
6301       uint64_t ModuleId = Record[1];
6302       uint64_t RawFlags = Record[2];
6303       unsigned InstCount = Record[3];
6304       uint64_t RawFunFlags = 0;
6305       uint64_t EntryCount = 0;
6306       unsigned NumRefs = Record[4];
6307       unsigned NumRORefs = 0, NumWORefs = 0;
6308       int RefListStartIndex = 5;
6309 
6310       if (Version >= 4) {
6311         RawFunFlags = Record[4];
6312         RefListStartIndex = 6;
6313         size_t NumRefsIndex = 5;
6314         if (Version >= 5) {
6315           unsigned NumRORefsOffset = 1;
6316           RefListStartIndex = 7;
6317           if (Version >= 6) {
6318             NumRefsIndex = 6;
6319             EntryCount = Record[5];
6320             RefListStartIndex = 8;
6321             if (Version >= 7) {
6322               RefListStartIndex = 9;
6323               NumWORefs = Record[8];
6324               NumRORefsOffset = 2;
6325             }
6326           }
6327           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6328         }
6329         NumRefs = Record[NumRefsIndex];
6330       }
6331 
6332       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6333       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6334       assert(Record.size() >= RefListStartIndex + NumRefs &&
6335              "Record size inconsistent with number of references");
6336       std::vector<ValueInfo> Refs = makeRefList(
6337           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6338       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6339       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6340           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6341           IsOldProfileFormat, HasProfile, false);
6342       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6343       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6344       auto FS = std::make_unique<FunctionSummary>(
6345           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6346           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6347           std::move(PendingTypeTestAssumeVCalls),
6348           std::move(PendingTypeCheckedLoadVCalls),
6349           std::move(PendingTypeTestAssumeConstVCalls),
6350           std::move(PendingTypeCheckedLoadConstVCalls),
6351           std::move(PendingParamAccesses));
6352       LastSeenSummary = FS.get();
6353       LastSeenGUID = VI.getGUID();
6354       FS->setModulePath(ModuleIdMap[ModuleId]);
6355       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6356       break;
6357     }
6358     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6359     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6360     // they expect all aliasee summaries to be available.
6361     case bitc::FS_COMBINED_ALIAS: {
6362       unsigned ValueID = Record[0];
6363       uint64_t ModuleId = Record[1];
6364       uint64_t RawFlags = Record[2];
6365       unsigned AliaseeValueId = Record[3];
6366       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6367       auto AS = std::make_unique<AliasSummary>(Flags);
6368       LastSeenSummary = AS.get();
6369       AS->setModulePath(ModuleIdMap[ModuleId]);
6370 
6371       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6372       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6373       AS->setAliasee(AliaseeVI, AliaseeInModule);
6374 
6375       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6376       LastSeenGUID = VI.getGUID();
6377       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6378       break;
6379     }
6380     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6381     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6382       unsigned ValueID = Record[0];
6383       uint64_t ModuleId = Record[1];
6384       uint64_t RawFlags = Record[2];
6385       unsigned RefArrayStart = 3;
6386       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6387                                       /* WriteOnly */ false,
6388                                       /* Constant */ false,
6389                                       GlobalObject::VCallVisibilityPublic);
6390       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6391       if (Version >= 5) {
6392         GVF = getDecodedGVarFlags(Record[3]);
6393         RefArrayStart = 4;
6394       }
6395       std::vector<ValueInfo> Refs =
6396           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6397       auto FS =
6398           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6399       LastSeenSummary = FS.get();
6400       FS->setModulePath(ModuleIdMap[ModuleId]);
6401       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6402       LastSeenGUID = VI.getGUID();
6403       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6404       break;
6405     }
6406     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6407     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6408       uint64_t OriginalName = Record[0];
6409       if (!LastSeenSummary)
6410         return error("Name attachment that does not follow a combined record");
6411       LastSeenSummary->setOriginalName(OriginalName);
6412       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6413       // Reset the LastSeenSummary
6414       LastSeenSummary = nullptr;
6415       LastSeenGUID = 0;
6416       break;
6417     }
6418     case bitc::FS_TYPE_TESTS:
6419       assert(PendingTypeTests.empty());
6420       llvm::append_range(PendingTypeTests, Record);
6421       break;
6422 
6423     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6424       assert(PendingTypeTestAssumeVCalls.empty());
6425       for (unsigned I = 0; I != Record.size(); I += 2)
6426         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6427       break;
6428 
6429     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6430       assert(PendingTypeCheckedLoadVCalls.empty());
6431       for (unsigned I = 0; I != Record.size(); I += 2)
6432         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6433       break;
6434 
6435     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6436       PendingTypeTestAssumeConstVCalls.push_back(
6437           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6438       break;
6439 
6440     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6441       PendingTypeCheckedLoadConstVCalls.push_back(
6442           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6443       break;
6444 
6445     case bitc::FS_CFI_FUNCTION_DEFS: {
6446       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6447       for (unsigned I = 0; I != Record.size(); I += 2)
6448         CfiFunctionDefs.insert(
6449             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6450       break;
6451     }
6452 
6453     case bitc::FS_CFI_FUNCTION_DECLS: {
6454       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6455       for (unsigned I = 0; I != Record.size(); I += 2)
6456         CfiFunctionDecls.insert(
6457             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6458       break;
6459     }
6460 
6461     case bitc::FS_TYPE_ID:
6462       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6463       break;
6464 
6465     case bitc::FS_TYPE_ID_METADATA:
6466       parseTypeIdCompatibleVtableSummaryRecord(Record);
6467       break;
6468 
6469     case bitc::FS_BLOCK_COUNT:
6470       TheIndex.addBlockCount(Record[0]);
6471       break;
6472 
6473     case bitc::FS_PARAM_ACCESS: {
6474       PendingParamAccesses = parseParamAccesses(Record);
6475       break;
6476     }
6477     }
6478   }
6479   llvm_unreachable("Exit infinite loop");
6480 }
6481 
6482 // Parse the  module string table block into the Index.
6483 // This populates the ModulePathStringTable map in the index.
6484 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6485   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6486     return Err;
6487 
6488   SmallVector<uint64_t, 64> Record;
6489 
6490   SmallString<128> ModulePath;
6491   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6492 
6493   while (true) {
6494     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6495     if (!MaybeEntry)
6496       return MaybeEntry.takeError();
6497     BitstreamEntry Entry = MaybeEntry.get();
6498 
6499     switch (Entry.Kind) {
6500     case BitstreamEntry::SubBlock: // Handled for us already.
6501     case BitstreamEntry::Error:
6502       return error("Malformed block");
6503     case BitstreamEntry::EndBlock:
6504       return Error::success();
6505     case BitstreamEntry::Record:
6506       // The interesting case.
6507       break;
6508     }
6509 
6510     Record.clear();
6511     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6512     if (!MaybeRecord)
6513       return MaybeRecord.takeError();
6514     switch (MaybeRecord.get()) {
6515     default: // Default behavior: ignore.
6516       break;
6517     case bitc::MST_CODE_ENTRY: {
6518       // MST_ENTRY: [modid, namechar x N]
6519       uint64_t ModuleId = Record[0];
6520 
6521       if (convertToString(Record, 1, ModulePath))
6522         return error("Invalid record");
6523 
6524       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6525       ModuleIdMap[ModuleId] = LastSeenModule->first();
6526 
6527       ModulePath.clear();
6528       break;
6529     }
6530     /// MST_CODE_HASH: [5*i32]
6531     case bitc::MST_CODE_HASH: {
6532       if (Record.size() != 5)
6533         return error("Invalid hash length " + Twine(Record.size()).str());
6534       if (!LastSeenModule)
6535         return error("Invalid hash that does not follow a module path");
6536       int Pos = 0;
6537       for (auto &Val : Record) {
6538         assert(!(Val >> 32) && "Unexpected high bits set");
6539         LastSeenModule->second.second[Pos++] = Val;
6540       }
6541       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6542       LastSeenModule = nullptr;
6543       break;
6544     }
6545     }
6546   }
6547   llvm_unreachable("Exit infinite loop");
6548 }
6549 
6550 namespace {
6551 
6552 // FIXME: This class is only here to support the transition to llvm::Error. It
6553 // will be removed once this transition is complete. Clients should prefer to
6554 // deal with the Error value directly, rather than converting to error_code.
6555 class BitcodeErrorCategoryType : public std::error_category {
6556   const char *name() const noexcept override {
6557     return "llvm.bitcode";
6558   }
6559 
6560   std::string message(int IE) const override {
6561     BitcodeError E = static_cast<BitcodeError>(IE);
6562     switch (E) {
6563     case BitcodeError::CorruptedBitcode:
6564       return "Corrupted bitcode";
6565     }
6566     llvm_unreachable("Unknown error type!");
6567   }
6568 };
6569 
6570 } // end anonymous namespace
6571 
6572 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6573 
6574 const std::error_category &llvm::BitcodeErrorCategory() {
6575   return *ErrorCategory;
6576 }
6577 
6578 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6579                                             unsigned Block, unsigned RecordID) {
6580   if (Error Err = Stream.EnterSubBlock(Block))
6581     return std::move(Err);
6582 
6583   StringRef Strtab;
6584   while (true) {
6585     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6586     if (!MaybeEntry)
6587       return MaybeEntry.takeError();
6588     llvm::BitstreamEntry Entry = MaybeEntry.get();
6589 
6590     switch (Entry.Kind) {
6591     case BitstreamEntry::EndBlock:
6592       return Strtab;
6593 
6594     case BitstreamEntry::Error:
6595       return error("Malformed block");
6596 
6597     case BitstreamEntry::SubBlock:
6598       if (Error Err = Stream.SkipBlock())
6599         return std::move(Err);
6600       break;
6601 
6602     case BitstreamEntry::Record:
6603       StringRef Blob;
6604       SmallVector<uint64_t, 1> Record;
6605       Expected<unsigned> MaybeRecord =
6606           Stream.readRecord(Entry.ID, Record, &Blob);
6607       if (!MaybeRecord)
6608         return MaybeRecord.takeError();
6609       if (MaybeRecord.get() == RecordID)
6610         Strtab = Blob;
6611       break;
6612     }
6613   }
6614 }
6615 
6616 //===----------------------------------------------------------------------===//
6617 // External interface
6618 //===----------------------------------------------------------------------===//
6619 
6620 Expected<std::vector<BitcodeModule>>
6621 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6622   auto FOrErr = getBitcodeFileContents(Buffer);
6623   if (!FOrErr)
6624     return FOrErr.takeError();
6625   return std::move(FOrErr->Mods);
6626 }
6627 
6628 Expected<BitcodeFileContents>
6629 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6630   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6631   if (!StreamOrErr)
6632     return StreamOrErr.takeError();
6633   BitstreamCursor &Stream = *StreamOrErr;
6634 
6635   BitcodeFileContents F;
6636   while (true) {
6637     uint64_t BCBegin = Stream.getCurrentByteNo();
6638 
6639     // We may be consuming bitcode from a client that leaves garbage at the end
6640     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6641     // the end that there cannot possibly be another module, stop looking.
6642     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6643       return F;
6644 
6645     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6646     if (!MaybeEntry)
6647       return MaybeEntry.takeError();
6648     llvm::BitstreamEntry Entry = MaybeEntry.get();
6649 
6650     switch (Entry.Kind) {
6651     case BitstreamEntry::EndBlock:
6652     case BitstreamEntry::Error:
6653       return error("Malformed block");
6654 
6655     case BitstreamEntry::SubBlock: {
6656       uint64_t IdentificationBit = -1ull;
6657       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6658         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6659         if (Error Err = Stream.SkipBlock())
6660           return std::move(Err);
6661 
6662         {
6663           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6664           if (!MaybeEntry)
6665             return MaybeEntry.takeError();
6666           Entry = MaybeEntry.get();
6667         }
6668 
6669         if (Entry.Kind != BitstreamEntry::SubBlock ||
6670             Entry.ID != bitc::MODULE_BLOCK_ID)
6671           return error("Malformed block");
6672       }
6673 
6674       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6675         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6676         if (Error Err = Stream.SkipBlock())
6677           return std::move(Err);
6678 
6679         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6680                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6681                           Buffer.getBufferIdentifier(), IdentificationBit,
6682                           ModuleBit});
6683         continue;
6684       }
6685 
6686       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6687         Expected<StringRef> Strtab =
6688             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6689         if (!Strtab)
6690           return Strtab.takeError();
6691         // This string table is used by every preceding bitcode module that does
6692         // not have its own string table. A bitcode file may have multiple
6693         // string tables if it was created by binary concatenation, for example
6694         // with "llvm-cat -b".
6695         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6696           if (!I->Strtab.empty())
6697             break;
6698           I->Strtab = *Strtab;
6699         }
6700         // Similarly, the string table is used by every preceding symbol table;
6701         // normally there will be just one unless the bitcode file was created
6702         // by binary concatenation.
6703         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6704           F.StrtabForSymtab = *Strtab;
6705         continue;
6706       }
6707 
6708       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6709         Expected<StringRef> SymtabOrErr =
6710             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6711         if (!SymtabOrErr)
6712           return SymtabOrErr.takeError();
6713 
6714         // We can expect the bitcode file to have multiple symbol tables if it
6715         // was created by binary concatenation. In that case we silently
6716         // ignore any subsequent symbol tables, which is fine because this is a
6717         // low level function. The client is expected to notice that the number
6718         // of modules in the symbol table does not match the number of modules
6719         // in the input file and regenerate the symbol table.
6720         if (F.Symtab.empty())
6721           F.Symtab = *SymtabOrErr;
6722         continue;
6723       }
6724 
6725       if (Error Err = Stream.SkipBlock())
6726         return std::move(Err);
6727       continue;
6728     }
6729     case BitstreamEntry::Record:
6730       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6731         continue;
6732       else
6733         return StreamFailed.takeError();
6734     }
6735   }
6736 }
6737 
6738 /// Get a lazy one-at-time loading module from bitcode.
6739 ///
6740 /// This isn't always used in a lazy context.  In particular, it's also used by
6741 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6742 /// in forward-referenced functions from block address references.
6743 ///
6744 /// \param[in] MaterializeAll Set to \c true if we should materialize
6745 /// everything.
6746 Expected<std::unique_ptr<Module>>
6747 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6748                              bool ShouldLazyLoadMetadata, bool IsImporting,
6749                              DataLayoutCallbackTy DataLayoutCallback) {
6750   BitstreamCursor Stream(Buffer);
6751 
6752   std::string ProducerIdentification;
6753   if (IdentificationBit != -1ull) {
6754     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6755       return std::move(JumpFailed);
6756     Expected<std::string> ProducerIdentificationOrErr =
6757         readIdentificationBlock(Stream);
6758     if (!ProducerIdentificationOrErr)
6759       return ProducerIdentificationOrErr.takeError();
6760 
6761     ProducerIdentification = *ProducerIdentificationOrErr;
6762   }
6763 
6764   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6765     return std::move(JumpFailed);
6766   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6767                               Context);
6768 
6769   std::unique_ptr<Module> M =
6770       std::make_unique<Module>(ModuleIdentifier, Context);
6771   M->setMaterializer(R);
6772 
6773   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6774   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6775                                       IsImporting, DataLayoutCallback))
6776     return std::move(Err);
6777 
6778   if (MaterializeAll) {
6779     // Read in the entire module, and destroy the BitcodeReader.
6780     if (Error Err = M->materializeAll())
6781       return std::move(Err);
6782   } else {
6783     // Resolve forward references from blockaddresses.
6784     if (Error Err = R->materializeForwardReferencedFunctions())
6785       return std::move(Err);
6786   }
6787   return std::move(M);
6788 }
6789 
6790 Expected<std::unique_ptr<Module>>
6791 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6792                              bool IsImporting) {
6793   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6794                        [](StringRef) { return None; });
6795 }
6796 
6797 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6798 // We don't use ModuleIdentifier here because the client may need to control the
6799 // module path used in the combined summary (e.g. when reading summaries for
6800 // regular LTO modules).
6801 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6802                                  StringRef ModulePath, uint64_t ModuleId) {
6803   BitstreamCursor Stream(Buffer);
6804   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6805     return JumpFailed;
6806 
6807   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6808                                     ModulePath, ModuleId);
6809   return R.parseModule();
6810 }
6811 
6812 // Parse the specified bitcode buffer, returning the function info index.
6813 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6814   BitstreamCursor Stream(Buffer);
6815   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6816     return std::move(JumpFailed);
6817 
6818   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6819   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6820                                     ModuleIdentifier, 0);
6821 
6822   if (Error Err = R.parseModule())
6823     return std::move(Err);
6824 
6825   return std::move(Index);
6826 }
6827 
6828 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6829                                                 unsigned ID) {
6830   if (Error Err = Stream.EnterSubBlock(ID))
6831     return std::move(Err);
6832   SmallVector<uint64_t, 64> Record;
6833 
6834   while (true) {
6835     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6836     if (!MaybeEntry)
6837       return MaybeEntry.takeError();
6838     BitstreamEntry Entry = MaybeEntry.get();
6839 
6840     switch (Entry.Kind) {
6841     case BitstreamEntry::SubBlock: // Handled for us already.
6842     case BitstreamEntry::Error:
6843       return error("Malformed block");
6844     case BitstreamEntry::EndBlock:
6845       // If no flags record found, conservatively return true to mimic
6846       // behavior before this flag was added.
6847       return true;
6848     case BitstreamEntry::Record:
6849       // The interesting case.
6850       break;
6851     }
6852 
6853     // Look for the FS_FLAGS record.
6854     Record.clear();
6855     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6856     if (!MaybeBitCode)
6857       return MaybeBitCode.takeError();
6858     switch (MaybeBitCode.get()) {
6859     default: // Default behavior: ignore.
6860       break;
6861     case bitc::FS_FLAGS: { // [flags]
6862       uint64_t Flags = Record[0];
6863       // Scan flags.
6864       assert(Flags <= 0x7f && "Unexpected bits in flag");
6865 
6866       return Flags & 0x8;
6867     }
6868     }
6869   }
6870   llvm_unreachable("Exit infinite loop");
6871 }
6872 
6873 // Check if the given bitcode buffer contains a global value summary block.
6874 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6875   BitstreamCursor Stream(Buffer);
6876   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6877     return std::move(JumpFailed);
6878 
6879   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6880     return std::move(Err);
6881 
6882   while (true) {
6883     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6884     if (!MaybeEntry)
6885       return MaybeEntry.takeError();
6886     llvm::BitstreamEntry Entry = MaybeEntry.get();
6887 
6888     switch (Entry.Kind) {
6889     case BitstreamEntry::Error:
6890       return error("Malformed block");
6891     case BitstreamEntry::EndBlock:
6892       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6893                             /*EnableSplitLTOUnit=*/false};
6894 
6895     case BitstreamEntry::SubBlock:
6896       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6897         Expected<bool> EnableSplitLTOUnit =
6898             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6899         if (!EnableSplitLTOUnit)
6900           return EnableSplitLTOUnit.takeError();
6901         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6902                               *EnableSplitLTOUnit};
6903       }
6904 
6905       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6906         Expected<bool> EnableSplitLTOUnit =
6907             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6908         if (!EnableSplitLTOUnit)
6909           return EnableSplitLTOUnit.takeError();
6910         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6911                               *EnableSplitLTOUnit};
6912       }
6913 
6914       // Ignore other sub-blocks.
6915       if (Error Err = Stream.SkipBlock())
6916         return std::move(Err);
6917       continue;
6918 
6919     case BitstreamEntry::Record:
6920       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6921         continue;
6922       else
6923         return StreamFailed.takeError();
6924     }
6925   }
6926 }
6927 
6928 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6929   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6930   if (!MsOrErr)
6931     return MsOrErr.takeError();
6932 
6933   if (MsOrErr->size() != 1)
6934     return error("Expected a single module");
6935 
6936   return (*MsOrErr)[0];
6937 }
6938 
6939 Expected<std::unique_ptr<Module>>
6940 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6941                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6942   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6943   if (!BM)
6944     return BM.takeError();
6945 
6946   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6947 }
6948 
6949 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6950     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6951     bool ShouldLazyLoadMetadata, bool IsImporting) {
6952   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6953                                      IsImporting);
6954   if (MOrErr)
6955     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6956   return MOrErr;
6957 }
6958 
6959 Expected<std::unique_ptr<Module>>
6960 BitcodeModule::parseModule(LLVMContext &Context,
6961                            DataLayoutCallbackTy DataLayoutCallback) {
6962   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6963   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6964   // written.  We must defer until the Module has been fully materialized.
6965 }
6966 
6967 Expected<std::unique_ptr<Module>>
6968 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6969                        DataLayoutCallbackTy DataLayoutCallback) {
6970   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6971   if (!BM)
6972     return BM.takeError();
6973 
6974   return BM->parseModule(Context, DataLayoutCallback);
6975 }
6976 
6977 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6978   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6979   if (!StreamOrErr)
6980     return StreamOrErr.takeError();
6981 
6982   return readTriple(*StreamOrErr);
6983 }
6984 
6985 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6986   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6987   if (!StreamOrErr)
6988     return StreamOrErr.takeError();
6989 
6990   return hasObjCCategory(*StreamOrErr);
6991 }
6992 
6993 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6994   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6995   if (!StreamOrErr)
6996     return StreamOrErr.takeError();
6997 
6998   return readIdentificationCode(*StreamOrErr);
6999 }
7000 
7001 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7002                                    ModuleSummaryIndex &CombinedIndex,
7003                                    uint64_t ModuleId) {
7004   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7005   if (!BM)
7006     return BM.takeError();
7007 
7008   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7009 }
7010 
7011 Expected<std::unique_ptr<ModuleSummaryIndex>>
7012 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7013   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7014   if (!BM)
7015     return BM.takeError();
7016 
7017   return BM->getSummary();
7018 }
7019 
7020 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7021   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7022   if (!BM)
7023     return BM.takeError();
7024 
7025   return BM->getLTOInfo();
7026 }
7027 
7028 Expected<std::unique_ptr<ModuleSummaryIndex>>
7029 llvm::getModuleSummaryIndexForFile(StringRef Path,
7030                                    bool IgnoreEmptyThinLTOIndexFile) {
7031   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7032       MemoryBuffer::getFileOrSTDIN(Path);
7033   if (!FileOrErr)
7034     return errorCodeToError(FileOrErr.getError());
7035   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7036     return nullptr;
7037   return getModuleSummaryIndex(**FileOrErr);
7038 }
7039