1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 /// Structures for resolving old type refs. 118 struct { 119 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 120 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 121 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 122 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 123 } OldTypeRefs; 124 125 LLVMContext &Context; 126 public: 127 BitcodeReaderMetadataList(LLVMContext &C) 128 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 129 130 // vector compatibility methods 131 unsigned size() const { return MetadataPtrs.size(); } 132 void resize(unsigned N) { MetadataPtrs.resize(N); } 133 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 134 void clear() { MetadataPtrs.clear(); } 135 Metadata *back() const { return MetadataPtrs.back(); } 136 void pop_back() { MetadataPtrs.pop_back(); } 137 bool empty() const { return MetadataPtrs.empty(); } 138 139 Metadata *operator[](unsigned i) const { 140 assert(i < MetadataPtrs.size()); 141 return MetadataPtrs[i]; 142 } 143 144 Metadata *lookup(unsigned I) const { 145 if (I < MetadataPtrs.size()) 146 return MetadataPtrs[I]; 147 return nullptr; 148 } 149 150 void shrinkTo(unsigned N) { 151 assert(N <= size() && "Invalid shrinkTo request!"); 152 assert(!AnyFwdRefs && "Unexpected forward refs"); 153 MetadataPtrs.resize(N); 154 } 155 156 /// Return the given metadata, creating a replaceable forward reference if 157 /// necessary. 158 Metadata *getMetadataFwdRef(unsigned Idx); 159 160 /// Return the the given metadata only if it is fully resolved. 161 /// 162 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 163 /// would give \c false. 164 Metadata *getMetadataIfResolved(unsigned Idx); 165 166 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 167 void assignValue(Metadata *MD, unsigned Idx); 168 void tryToResolveCycles(); 169 bool hasFwdRefs() const { return AnyFwdRefs; } 170 171 /// Upgrade a type that had an MDString reference. 172 void addTypeRef(MDString &UUID, DICompositeType &CT); 173 174 /// Upgrade a type that had an MDString reference. 175 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 176 177 /// Upgrade a type ref array that may have MDString references. 178 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 179 180 private: 181 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 182 }; 183 184 class BitcodeReader : public GVMaterializer { 185 LLVMContext &Context; 186 Module *TheModule = nullptr; 187 std::unique_ptr<MemoryBuffer> Buffer; 188 std::unique_ptr<BitstreamReader> StreamFile; 189 BitstreamCursor Stream; 190 // Next offset to start scanning for lazy parsing of function bodies. 191 uint64_t NextUnreadBit = 0; 192 // Last function offset found in the VST. 193 uint64_t LastFunctionBlockBit = 0; 194 bool SeenValueSymbolTable = false; 195 uint64_t VSTOffset = 0; 196 // Contains an arbitrary and optional string identifying the bitcode producer 197 std::string ProducerIdentification; 198 199 std::vector<Type*> TypeList; 200 BitcodeReaderValueList ValueList; 201 BitcodeReaderMetadataList MetadataList; 202 std::vector<Comdat *> ComdatList; 203 SmallVector<Instruction *, 64> InstructionList; 204 205 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 206 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 207 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 209 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 210 211 SmallVector<Instruction*, 64> InstsWithTBAATag; 212 213 bool HasSeenOldLoopTags = false; 214 215 /// The set of attributes by index. Index zero in the file is for null, and 216 /// is thus not represented here. As such all indices are off by one. 217 std::vector<AttributeSet> MAttributes; 218 219 /// The set of attribute groups. 220 std::map<unsigned, AttributeSet> MAttributeGroups; 221 222 /// While parsing a function body, this is a list of the basic blocks for the 223 /// function. 224 std::vector<BasicBlock*> FunctionBBs; 225 226 // When reading the module header, this list is populated with functions that 227 // have bodies later in the file. 228 std::vector<Function*> FunctionsWithBodies; 229 230 // When intrinsic functions are encountered which require upgrading they are 231 // stored here with their replacement function. 232 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 233 UpgradedIntrinsicMap UpgradedIntrinsics; 234 235 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 236 DenseMap<unsigned, unsigned> MDKindMap; 237 238 // Several operations happen after the module header has been read, but 239 // before function bodies are processed. This keeps track of whether 240 // we've done this yet. 241 bool SeenFirstFunctionBody = false; 242 243 /// When function bodies are initially scanned, this map contains info about 244 /// where to find deferred function body in the stream. 245 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 246 247 /// When Metadata block is initially scanned when parsing the module, we may 248 /// choose to defer parsing of the metadata. This vector contains info about 249 /// which Metadata blocks are deferred. 250 std::vector<uint64_t> DeferredMetadataInfo; 251 252 /// These are basic blocks forward-referenced by block addresses. They are 253 /// inserted lazily into functions when they're loaded. The basic block ID is 254 /// its index into the vector. 255 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 256 std::deque<Function *> BasicBlockFwdRefQueue; 257 258 /// Indicates that we are using a new encoding for instruction operands where 259 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 260 /// instruction number, for a more compact encoding. Some instruction 261 /// operands are not relative to the instruction ID: basic block numbers, and 262 /// types. Once the old style function blocks have been phased out, we would 263 /// not need this flag. 264 bool UseRelativeIDs = false; 265 266 /// True if all functions will be materialized, negating the need to process 267 /// (e.g.) blockaddress forward references. 268 bool WillMaterializeAllForwardRefs = false; 269 270 /// True if any Metadata block has been materialized. 271 bool IsMetadataMaterialized = false; 272 273 bool StripDebugInfo = false; 274 275 /// Functions that need to be matched with subprograms when upgrading old 276 /// metadata. 277 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 278 279 std::vector<std::string> BundleTags; 280 281 public: 282 std::error_code error(BitcodeError E, const Twine &Message); 283 std::error_code error(BitcodeError E); 284 std::error_code error(const Twine &Message); 285 286 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 287 BitcodeReader(LLVMContext &Context); 288 ~BitcodeReader() override { freeState(); } 289 290 std::error_code materializeForwardReferencedFunctions(); 291 292 void freeState(); 293 294 void releaseBuffer(); 295 296 std::error_code materialize(GlobalValue *GV) override; 297 std::error_code materializeModule() override; 298 std::vector<StructType *> getIdentifiedStructTypes() const override; 299 300 /// \brief Main interface to parsing a bitcode buffer. 301 /// \returns true if an error occurred. 302 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 303 Module *M, 304 bool ShouldLazyLoadMetadata = false); 305 306 /// \brief Cheap mechanism to just extract module triple 307 /// \returns true if an error occurred. 308 ErrorOr<std::string> parseTriple(); 309 310 /// Cheap mechanism to just extract the identification block out of bitcode. 311 ErrorOr<std::string> parseIdentificationBlock(); 312 313 static uint64_t decodeSignRotatedValue(uint64_t V); 314 315 /// Materialize any deferred Metadata block. 316 std::error_code materializeMetadata() override; 317 318 void setStripDebugInfo() override; 319 320 private: 321 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 322 // ProducerIdentification data member, and do some basic enforcement on the 323 // "epoch" encoded in the bitcode. 324 std::error_code parseBitcodeVersion(); 325 326 std::vector<StructType *> IdentifiedStructTypes; 327 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 328 StructType *createIdentifiedStructType(LLVMContext &Context); 329 330 Type *getTypeByID(unsigned ID); 331 Value *getFnValueByID(unsigned ID, Type *Ty) { 332 if (Ty && Ty->isMetadataTy()) 333 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 334 return ValueList.getValueFwdRef(ID, Ty); 335 } 336 Metadata *getFnMetadataByID(unsigned ID) { 337 return MetadataList.getMetadataFwdRef(ID); 338 } 339 BasicBlock *getBasicBlock(unsigned ID) const { 340 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 341 return FunctionBBs[ID]; 342 } 343 AttributeSet getAttributes(unsigned i) const { 344 if (i-1 < MAttributes.size()) 345 return MAttributes[i-1]; 346 return AttributeSet(); 347 } 348 349 /// Read a value/type pair out of the specified record from slot 'Slot'. 350 /// Increment Slot past the number of slots used in the record. Return true on 351 /// failure. 352 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 353 unsigned InstNum, Value *&ResVal) { 354 if (Slot == Record.size()) return true; 355 unsigned ValNo = (unsigned)Record[Slot++]; 356 // Adjust the ValNo, if it was encoded relative to the InstNum. 357 if (UseRelativeIDs) 358 ValNo = InstNum - ValNo; 359 if (ValNo < InstNum) { 360 // If this is not a forward reference, just return the value we already 361 // have. 362 ResVal = getFnValueByID(ValNo, nullptr); 363 return ResVal == nullptr; 364 } 365 if (Slot == Record.size()) 366 return true; 367 368 unsigned TypeNo = (unsigned)Record[Slot++]; 369 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 370 return ResVal == nullptr; 371 } 372 373 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 374 /// past the number of slots used by the value in the record. Return true if 375 /// there is an error. 376 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 377 unsigned InstNum, Type *Ty, Value *&ResVal) { 378 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 379 return true; 380 // All values currently take a single record slot. 381 ++Slot; 382 return false; 383 } 384 385 /// Like popValue, but does not increment the Slot number. 386 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 387 unsigned InstNum, Type *Ty, Value *&ResVal) { 388 ResVal = getValue(Record, Slot, InstNum, Ty); 389 return ResVal == nullptr; 390 } 391 392 /// Version of getValue that returns ResVal directly, or 0 if there is an 393 /// error. 394 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 395 unsigned InstNum, Type *Ty) { 396 if (Slot == Record.size()) return nullptr; 397 unsigned ValNo = (unsigned)Record[Slot]; 398 // Adjust the ValNo, if it was encoded relative to the InstNum. 399 if (UseRelativeIDs) 400 ValNo = InstNum - ValNo; 401 return getFnValueByID(ValNo, Ty); 402 } 403 404 /// Like getValue, but decodes signed VBRs. 405 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 406 unsigned InstNum, Type *Ty) { 407 if (Slot == Record.size()) return nullptr; 408 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 409 // Adjust the ValNo, if it was encoded relative to the InstNum. 410 if (UseRelativeIDs) 411 ValNo = InstNum - ValNo; 412 return getFnValueByID(ValNo, Ty); 413 } 414 415 /// Converts alignment exponent (i.e. power of two (or zero)) to the 416 /// corresponding alignment to use. If alignment is too large, returns 417 /// a corresponding error code. 418 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 419 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 420 std::error_code parseModule(uint64_t ResumeBit, 421 bool ShouldLazyLoadMetadata = false); 422 std::error_code parseAttributeBlock(); 423 std::error_code parseAttributeGroupBlock(); 424 std::error_code parseTypeTable(); 425 std::error_code parseTypeTableBody(); 426 std::error_code parseOperandBundleTags(); 427 428 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 429 unsigned NameIndex, Triple &TT); 430 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 431 std::error_code parseConstants(); 432 std::error_code rememberAndSkipFunctionBodies(); 433 std::error_code rememberAndSkipFunctionBody(); 434 /// Save the positions of the Metadata blocks and skip parsing the blocks. 435 std::error_code rememberAndSkipMetadata(); 436 std::error_code parseFunctionBody(Function *F); 437 std::error_code globalCleanup(); 438 std::error_code resolveGlobalAndIndirectSymbolInits(); 439 std::error_code parseMetadata(bool ModuleLevel = false); 440 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 441 StringRef Blob, 442 unsigned &NextMetadataNo); 443 std::error_code parseMetadataKinds(); 444 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 445 std::error_code parseMetadataAttachment(Function &F); 446 ErrorOr<std::string> parseModuleTriple(); 447 std::error_code parseUseLists(); 448 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 449 std::error_code initStreamFromBuffer(); 450 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 451 std::error_code findFunctionInStream( 452 Function *F, 453 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 454 }; 455 456 /// Class to manage reading and parsing function summary index bitcode 457 /// files/sections. 458 class ModuleSummaryIndexBitcodeReader { 459 DiagnosticHandlerFunction DiagnosticHandler; 460 461 /// Eventually points to the module index built during parsing. 462 ModuleSummaryIndex *TheIndex = nullptr; 463 464 std::unique_ptr<MemoryBuffer> Buffer; 465 std::unique_ptr<BitstreamReader> StreamFile; 466 BitstreamCursor Stream; 467 468 /// Used to indicate whether caller only wants to check for the presence 469 /// of the global value summary bitcode section. All blocks are skipped, 470 /// but the SeenGlobalValSummary boolean is set. 471 bool CheckGlobalValSummaryPresenceOnly = false; 472 473 /// Indicates whether we have encountered a global value summary section 474 /// yet during parsing, used when checking if file contains global value 475 /// summary section. 476 bool SeenGlobalValSummary = false; 477 478 /// Indicates whether we have already parsed the VST, used for error checking. 479 bool SeenValueSymbolTable = false; 480 481 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 482 /// Used to enable on-demand parsing of the VST. 483 uint64_t VSTOffset = 0; 484 485 // Map to save ValueId to GUID association that was recorded in the 486 // ValueSymbolTable. It is used after the VST is parsed to convert 487 // call graph edges read from the function summary from referencing 488 // callees by their ValueId to using the GUID instead, which is how 489 // they are recorded in the summary index being built. 490 // We save a second GUID which is the same as the first one, but ignoring the 491 // linkage, i.e. for value other than local linkage they are identical. 492 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 493 ValueIdToCallGraphGUIDMap; 494 495 /// Map to save the association between summary offset in the VST to the 496 /// GlobalValueInfo object created when parsing it. Used to access the 497 /// info object when parsing the summary section. 498 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 499 500 /// Map populated during module path string table parsing, from the 501 /// module ID to a string reference owned by the index's module 502 /// path string table, used to correlate with combined index 503 /// summary records. 504 DenseMap<uint64_t, StringRef> ModuleIdMap; 505 506 /// Original source file name recorded in a bitcode record. 507 std::string SourceFileName; 508 509 public: 510 std::error_code error(BitcodeError E, const Twine &Message); 511 std::error_code error(BitcodeError E); 512 std::error_code error(const Twine &Message); 513 514 ModuleSummaryIndexBitcodeReader( 515 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 516 bool CheckGlobalValSummaryPresenceOnly = false); 517 ModuleSummaryIndexBitcodeReader( 518 DiagnosticHandlerFunction DiagnosticHandler, 519 bool CheckGlobalValSummaryPresenceOnly = false); 520 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 521 522 void freeState(); 523 524 void releaseBuffer(); 525 526 /// Check if the parser has encountered a summary section. 527 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 528 529 /// \brief Main interface to parsing a bitcode buffer. 530 /// \returns true if an error occurred. 531 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 532 ModuleSummaryIndex *I); 533 534 /// \brief Interface for parsing a summary lazily. 535 std::error_code 536 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 537 ModuleSummaryIndex *I, size_t SummaryOffset); 538 539 private: 540 std::error_code parseModule(); 541 std::error_code parseValueSymbolTable( 542 uint64_t Offset, 543 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 544 std::error_code parseEntireSummary(); 545 std::error_code parseModuleStringTable(); 546 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 547 std::error_code initStreamFromBuffer(); 548 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 549 std::pair<GlobalValue::GUID, GlobalValue::GUID> 550 getGUIDFromValueId(unsigned ValueId); 551 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 552 }; 553 } // end anonymous namespace 554 555 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 556 DiagnosticSeverity Severity, 557 const Twine &Msg) 558 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 559 560 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 561 562 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 563 std::error_code EC, const Twine &Message) { 564 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 565 DiagnosticHandler(DI); 566 return EC; 567 } 568 569 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 570 std::error_code EC) { 571 return error(DiagnosticHandler, EC, EC.message()); 572 } 573 574 static std::error_code error(LLVMContext &Context, std::error_code EC, 575 const Twine &Message) { 576 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 577 Message); 578 } 579 580 static std::error_code error(LLVMContext &Context, std::error_code EC) { 581 return error(Context, EC, EC.message()); 582 } 583 584 static std::error_code error(LLVMContext &Context, const Twine &Message) { 585 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 586 Message); 587 } 588 589 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 590 if (!ProducerIdentification.empty()) { 591 return ::error(Context, make_error_code(E), 592 Message + " (Producer: '" + ProducerIdentification + 593 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 594 } 595 return ::error(Context, make_error_code(E), Message); 596 } 597 598 std::error_code BitcodeReader::error(const Twine &Message) { 599 if (!ProducerIdentification.empty()) { 600 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 601 Message + " (Producer: '" + ProducerIdentification + 602 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 603 } 604 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 605 Message); 606 } 607 608 std::error_code BitcodeReader::error(BitcodeError E) { 609 return ::error(Context, make_error_code(E)); 610 } 611 612 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 613 : Context(Context), Buffer(Buffer), ValueList(Context), 614 MetadataList(Context) {} 615 616 BitcodeReader::BitcodeReader(LLVMContext &Context) 617 : Context(Context), Buffer(nullptr), ValueList(Context), 618 MetadataList(Context) {} 619 620 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 621 if (WillMaterializeAllForwardRefs) 622 return std::error_code(); 623 624 // Prevent recursion. 625 WillMaterializeAllForwardRefs = true; 626 627 while (!BasicBlockFwdRefQueue.empty()) { 628 Function *F = BasicBlockFwdRefQueue.front(); 629 BasicBlockFwdRefQueue.pop_front(); 630 assert(F && "Expected valid function"); 631 if (!BasicBlockFwdRefs.count(F)) 632 // Already materialized. 633 continue; 634 635 // Check for a function that isn't materializable to prevent an infinite 636 // loop. When parsing a blockaddress stored in a global variable, there 637 // isn't a trivial way to check if a function will have a body without a 638 // linear search through FunctionsWithBodies, so just check it here. 639 if (!F->isMaterializable()) 640 return error("Never resolved function from blockaddress"); 641 642 // Try to materialize F. 643 if (std::error_code EC = materialize(F)) 644 return EC; 645 } 646 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 647 648 // Reset state. 649 WillMaterializeAllForwardRefs = false; 650 return std::error_code(); 651 } 652 653 void BitcodeReader::freeState() { 654 Buffer = nullptr; 655 std::vector<Type*>().swap(TypeList); 656 ValueList.clear(); 657 MetadataList.clear(); 658 std::vector<Comdat *>().swap(ComdatList); 659 660 std::vector<AttributeSet>().swap(MAttributes); 661 std::vector<BasicBlock*>().swap(FunctionBBs); 662 std::vector<Function*>().swap(FunctionsWithBodies); 663 DeferredFunctionInfo.clear(); 664 DeferredMetadataInfo.clear(); 665 MDKindMap.clear(); 666 667 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 668 BasicBlockFwdRefQueue.clear(); 669 } 670 671 //===----------------------------------------------------------------------===// 672 // Helper functions to implement forward reference resolution, etc. 673 //===----------------------------------------------------------------------===// 674 675 /// Convert a string from a record into an std::string, return true on failure. 676 template <typename StrTy> 677 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 678 StrTy &Result) { 679 if (Idx > Record.size()) 680 return true; 681 682 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 683 Result += (char)Record[i]; 684 return false; 685 } 686 687 static bool hasImplicitComdat(size_t Val) { 688 switch (Val) { 689 default: 690 return false; 691 case 1: // Old WeakAnyLinkage 692 case 4: // Old LinkOnceAnyLinkage 693 case 10: // Old WeakODRLinkage 694 case 11: // Old LinkOnceODRLinkage 695 return true; 696 } 697 } 698 699 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 700 switch (Val) { 701 default: // Map unknown/new linkages to external 702 case 0: 703 return GlobalValue::ExternalLinkage; 704 case 2: 705 return GlobalValue::AppendingLinkage; 706 case 3: 707 return GlobalValue::InternalLinkage; 708 case 5: 709 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 710 case 6: 711 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 712 case 7: 713 return GlobalValue::ExternalWeakLinkage; 714 case 8: 715 return GlobalValue::CommonLinkage; 716 case 9: 717 return GlobalValue::PrivateLinkage; 718 case 12: 719 return GlobalValue::AvailableExternallyLinkage; 720 case 13: 721 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 722 case 14: 723 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 724 case 15: 725 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 726 case 1: // Old value with implicit comdat. 727 case 16: 728 return GlobalValue::WeakAnyLinkage; 729 case 10: // Old value with implicit comdat. 730 case 17: 731 return GlobalValue::WeakODRLinkage; 732 case 4: // Old value with implicit comdat. 733 case 18: 734 return GlobalValue::LinkOnceAnyLinkage; 735 case 11: // Old value with implicit comdat. 736 case 19: 737 return GlobalValue::LinkOnceODRLinkage; 738 } 739 } 740 741 // Decode the flags for GlobalValue in the summary 742 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 743 uint64_t Version) { 744 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 745 // like getDecodedLinkage() above. Any future change to the linkage enum and 746 // to getDecodedLinkage() will need to be taken into account here as above. 747 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 748 RawFlags = RawFlags >> 4; 749 auto HasSection = RawFlags & 0x1; // bool 750 return GlobalValueSummary::GVFlags(Linkage, HasSection); 751 } 752 753 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 754 switch (Val) { 755 default: // Map unknown visibilities to default. 756 case 0: return GlobalValue::DefaultVisibility; 757 case 1: return GlobalValue::HiddenVisibility; 758 case 2: return GlobalValue::ProtectedVisibility; 759 } 760 } 761 762 static GlobalValue::DLLStorageClassTypes 763 getDecodedDLLStorageClass(unsigned Val) { 764 switch (Val) { 765 default: // Map unknown values to default. 766 case 0: return GlobalValue::DefaultStorageClass; 767 case 1: return GlobalValue::DLLImportStorageClass; 768 case 2: return GlobalValue::DLLExportStorageClass; 769 } 770 } 771 772 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 773 switch (Val) { 774 case 0: return GlobalVariable::NotThreadLocal; 775 default: // Map unknown non-zero value to general dynamic. 776 case 1: return GlobalVariable::GeneralDynamicTLSModel; 777 case 2: return GlobalVariable::LocalDynamicTLSModel; 778 case 3: return GlobalVariable::InitialExecTLSModel; 779 case 4: return GlobalVariable::LocalExecTLSModel; 780 } 781 } 782 783 static int getDecodedCastOpcode(unsigned Val) { 784 switch (Val) { 785 default: return -1; 786 case bitc::CAST_TRUNC : return Instruction::Trunc; 787 case bitc::CAST_ZEXT : return Instruction::ZExt; 788 case bitc::CAST_SEXT : return Instruction::SExt; 789 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 790 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 791 case bitc::CAST_UITOFP : return Instruction::UIToFP; 792 case bitc::CAST_SITOFP : return Instruction::SIToFP; 793 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 794 case bitc::CAST_FPEXT : return Instruction::FPExt; 795 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 796 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 797 case bitc::CAST_BITCAST : return Instruction::BitCast; 798 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 799 } 800 } 801 802 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 803 bool IsFP = Ty->isFPOrFPVectorTy(); 804 // BinOps are only valid for int/fp or vector of int/fp types 805 if (!IsFP && !Ty->isIntOrIntVectorTy()) 806 return -1; 807 808 switch (Val) { 809 default: 810 return -1; 811 case bitc::BINOP_ADD: 812 return IsFP ? Instruction::FAdd : Instruction::Add; 813 case bitc::BINOP_SUB: 814 return IsFP ? Instruction::FSub : Instruction::Sub; 815 case bitc::BINOP_MUL: 816 return IsFP ? Instruction::FMul : Instruction::Mul; 817 case bitc::BINOP_UDIV: 818 return IsFP ? -1 : Instruction::UDiv; 819 case bitc::BINOP_SDIV: 820 return IsFP ? Instruction::FDiv : Instruction::SDiv; 821 case bitc::BINOP_UREM: 822 return IsFP ? -1 : Instruction::URem; 823 case bitc::BINOP_SREM: 824 return IsFP ? Instruction::FRem : Instruction::SRem; 825 case bitc::BINOP_SHL: 826 return IsFP ? -1 : Instruction::Shl; 827 case bitc::BINOP_LSHR: 828 return IsFP ? -1 : Instruction::LShr; 829 case bitc::BINOP_ASHR: 830 return IsFP ? -1 : Instruction::AShr; 831 case bitc::BINOP_AND: 832 return IsFP ? -1 : Instruction::And; 833 case bitc::BINOP_OR: 834 return IsFP ? -1 : Instruction::Or; 835 case bitc::BINOP_XOR: 836 return IsFP ? -1 : Instruction::Xor; 837 } 838 } 839 840 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 841 switch (Val) { 842 default: return AtomicRMWInst::BAD_BINOP; 843 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 844 case bitc::RMW_ADD: return AtomicRMWInst::Add; 845 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 846 case bitc::RMW_AND: return AtomicRMWInst::And; 847 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 848 case bitc::RMW_OR: return AtomicRMWInst::Or; 849 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 850 case bitc::RMW_MAX: return AtomicRMWInst::Max; 851 case bitc::RMW_MIN: return AtomicRMWInst::Min; 852 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 853 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 854 } 855 } 856 857 static AtomicOrdering getDecodedOrdering(unsigned Val) { 858 switch (Val) { 859 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 860 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 861 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 862 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 863 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 864 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 865 default: // Map unknown orderings to sequentially-consistent. 866 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 867 } 868 } 869 870 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 871 switch (Val) { 872 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 873 default: // Map unknown scopes to cross-thread. 874 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 875 } 876 } 877 878 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 879 switch (Val) { 880 default: // Map unknown selection kinds to any. 881 case bitc::COMDAT_SELECTION_KIND_ANY: 882 return Comdat::Any; 883 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 884 return Comdat::ExactMatch; 885 case bitc::COMDAT_SELECTION_KIND_LARGEST: 886 return Comdat::Largest; 887 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 888 return Comdat::NoDuplicates; 889 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 890 return Comdat::SameSize; 891 } 892 } 893 894 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 895 FastMathFlags FMF; 896 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 897 FMF.setUnsafeAlgebra(); 898 if (0 != (Val & FastMathFlags::NoNaNs)) 899 FMF.setNoNaNs(); 900 if (0 != (Val & FastMathFlags::NoInfs)) 901 FMF.setNoInfs(); 902 if (0 != (Val & FastMathFlags::NoSignedZeros)) 903 FMF.setNoSignedZeros(); 904 if (0 != (Val & FastMathFlags::AllowReciprocal)) 905 FMF.setAllowReciprocal(); 906 return FMF; 907 } 908 909 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 910 switch (Val) { 911 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 912 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 913 } 914 } 915 916 namespace llvm { 917 namespace { 918 /// \brief A class for maintaining the slot number definition 919 /// as a placeholder for the actual definition for forward constants defs. 920 class ConstantPlaceHolder : public ConstantExpr { 921 void operator=(const ConstantPlaceHolder &) = delete; 922 923 public: 924 // allocate space for exactly one operand 925 void *operator new(size_t s) { return User::operator new(s, 1); } 926 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 927 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 928 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 929 } 930 931 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 932 static bool classof(const Value *V) { 933 return isa<ConstantExpr>(V) && 934 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 935 } 936 937 /// Provide fast operand accessors 938 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 939 }; 940 } // end anonymous namespace 941 942 // FIXME: can we inherit this from ConstantExpr? 943 template <> 944 struct OperandTraits<ConstantPlaceHolder> : 945 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 946 }; 947 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 948 } // end namespace llvm 949 950 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 951 if (Idx == size()) { 952 push_back(V); 953 return; 954 } 955 956 if (Idx >= size()) 957 resize(Idx+1); 958 959 WeakVH &OldV = ValuePtrs[Idx]; 960 if (!OldV) { 961 OldV = V; 962 return; 963 } 964 965 // Handle constants and non-constants (e.g. instrs) differently for 966 // efficiency. 967 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 968 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 969 OldV = V; 970 } else { 971 // If there was a forward reference to this value, replace it. 972 Value *PrevVal = OldV; 973 OldV->replaceAllUsesWith(V); 974 delete PrevVal; 975 } 976 } 977 978 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 979 Type *Ty) { 980 if (Idx >= size()) 981 resize(Idx + 1); 982 983 if (Value *V = ValuePtrs[Idx]) { 984 if (Ty != V->getType()) 985 report_fatal_error("Type mismatch in constant table!"); 986 return cast<Constant>(V); 987 } 988 989 // Create and return a placeholder, which will later be RAUW'd. 990 Constant *C = new ConstantPlaceHolder(Ty, Context); 991 ValuePtrs[Idx] = C; 992 return C; 993 } 994 995 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 996 // Bail out for a clearly invalid value. This would make us call resize(0) 997 if (Idx == UINT_MAX) 998 return nullptr; 999 1000 if (Idx >= size()) 1001 resize(Idx + 1); 1002 1003 if (Value *V = ValuePtrs[Idx]) { 1004 // If the types don't match, it's invalid. 1005 if (Ty && Ty != V->getType()) 1006 return nullptr; 1007 return V; 1008 } 1009 1010 // No type specified, must be invalid reference. 1011 if (!Ty) return nullptr; 1012 1013 // Create and return a placeholder, which will later be RAUW'd. 1014 Value *V = new Argument(Ty); 1015 ValuePtrs[Idx] = V; 1016 return V; 1017 } 1018 1019 /// Once all constants are read, this method bulk resolves any forward 1020 /// references. The idea behind this is that we sometimes get constants (such 1021 /// as large arrays) which reference *many* forward ref constants. Replacing 1022 /// each of these causes a lot of thrashing when building/reuniquing the 1023 /// constant. Instead of doing this, we look at all the uses and rewrite all 1024 /// the place holders at once for any constant that uses a placeholder. 1025 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1026 // Sort the values by-pointer so that they are efficient to look up with a 1027 // binary search. 1028 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1029 1030 SmallVector<Constant*, 64> NewOps; 1031 1032 while (!ResolveConstants.empty()) { 1033 Value *RealVal = operator[](ResolveConstants.back().second); 1034 Constant *Placeholder = ResolveConstants.back().first; 1035 ResolveConstants.pop_back(); 1036 1037 // Loop over all users of the placeholder, updating them to reference the 1038 // new value. If they reference more than one placeholder, update them all 1039 // at once. 1040 while (!Placeholder->use_empty()) { 1041 auto UI = Placeholder->user_begin(); 1042 User *U = *UI; 1043 1044 // If the using object isn't uniqued, just update the operands. This 1045 // handles instructions and initializers for global variables. 1046 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1047 UI.getUse().set(RealVal); 1048 continue; 1049 } 1050 1051 // Otherwise, we have a constant that uses the placeholder. Replace that 1052 // constant with a new constant that has *all* placeholder uses updated. 1053 Constant *UserC = cast<Constant>(U); 1054 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1055 I != E; ++I) { 1056 Value *NewOp; 1057 if (!isa<ConstantPlaceHolder>(*I)) { 1058 // Not a placeholder reference. 1059 NewOp = *I; 1060 } else if (*I == Placeholder) { 1061 // Common case is that it just references this one placeholder. 1062 NewOp = RealVal; 1063 } else { 1064 // Otherwise, look up the placeholder in ResolveConstants. 1065 ResolveConstantsTy::iterator It = 1066 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1067 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1068 0)); 1069 assert(It != ResolveConstants.end() && It->first == *I); 1070 NewOp = operator[](It->second); 1071 } 1072 1073 NewOps.push_back(cast<Constant>(NewOp)); 1074 } 1075 1076 // Make the new constant. 1077 Constant *NewC; 1078 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1079 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1080 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1081 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1082 } else if (isa<ConstantVector>(UserC)) { 1083 NewC = ConstantVector::get(NewOps); 1084 } else { 1085 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1086 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1087 } 1088 1089 UserC->replaceAllUsesWith(NewC); 1090 UserC->destroyConstant(); 1091 NewOps.clear(); 1092 } 1093 1094 // Update all ValueHandles, they should be the only users at this point. 1095 Placeholder->replaceAllUsesWith(RealVal); 1096 delete Placeholder; 1097 } 1098 } 1099 1100 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1101 if (Idx == size()) { 1102 push_back(MD); 1103 return; 1104 } 1105 1106 if (Idx >= size()) 1107 resize(Idx+1); 1108 1109 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1110 if (!OldMD) { 1111 OldMD.reset(MD); 1112 return; 1113 } 1114 1115 // If there was a forward reference to this value, replace it. 1116 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1117 PrevMD->replaceAllUsesWith(MD); 1118 --NumFwdRefs; 1119 } 1120 1121 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1122 if (Idx >= size()) 1123 resize(Idx + 1); 1124 1125 if (Metadata *MD = MetadataPtrs[Idx]) 1126 return MD; 1127 1128 // Track forward refs to be resolved later. 1129 if (AnyFwdRefs) { 1130 MinFwdRef = std::min(MinFwdRef, Idx); 1131 MaxFwdRef = std::max(MaxFwdRef, Idx); 1132 } else { 1133 AnyFwdRefs = true; 1134 MinFwdRef = MaxFwdRef = Idx; 1135 } 1136 ++NumFwdRefs; 1137 1138 // Create and return a placeholder, which will later be RAUW'd. 1139 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1140 MetadataPtrs[Idx].reset(MD); 1141 return MD; 1142 } 1143 1144 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1145 Metadata *MD = lookup(Idx); 1146 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1147 if (!N->isResolved()) 1148 return nullptr; 1149 return MD; 1150 } 1151 1152 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1153 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1154 } 1155 1156 void BitcodeReaderMetadataList::tryToResolveCycles() { 1157 if (NumFwdRefs) 1158 // Still forward references... can't resolve cycles. 1159 return; 1160 1161 // Give up on finding a full definition for any forward decls that remain. 1162 for (const auto &Ref : OldTypeRefs.FwdDecls) 1163 OldTypeRefs.Final.insert(Ref); 1164 OldTypeRefs.FwdDecls.clear(); 1165 1166 // Upgrade from old type ref arrays. In strange cases, this could add to 1167 // OldTypeRefs.Unknown. 1168 for (const auto &Array : OldTypeRefs.Arrays) 1169 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1170 1171 // Replace old string-based type refs with the resolved node, if possible. 1172 // If we haven't seen the node, leave it to the verifier to complain about 1173 // the invalid string reference. 1174 for (const auto &Ref : OldTypeRefs.Unknown) 1175 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1176 Ref.second->replaceAllUsesWith(CT); 1177 else 1178 Ref.second->replaceAllUsesWith(Ref.first); 1179 OldTypeRefs.Unknown.clear(); 1180 1181 if (!AnyFwdRefs) 1182 // Nothing to do. 1183 return; 1184 1185 // Resolve any cycles. 1186 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1187 auto &MD = MetadataPtrs[I]; 1188 auto *N = dyn_cast_or_null<MDNode>(MD); 1189 if (!N) 1190 continue; 1191 1192 assert(!N->isTemporary() && "Unexpected forward reference"); 1193 N->resolveCycles(); 1194 } 1195 1196 // Make sure we return early again until there's another forward ref. 1197 AnyFwdRefs = false; 1198 } 1199 1200 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1201 DICompositeType &CT) { 1202 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1203 if (CT.isForwardDecl()) 1204 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1205 else 1206 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1207 } 1208 1209 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1210 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1211 if (LLVM_LIKELY(!UUID)) 1212 return MaybeUUID; 1213 1214 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1215 return CT; 1216 1217 auto &Ref = OldTypeRefs.Unknown[UUID]; 1218 if (!Ref) 1219 Ref = MDNode::getTemporary(Context, None); 1220 return Ref.get(); 1221 } 1222 1223 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1224 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1225 if (!Tuple || Tuple->isDistinct()) 1226 return MaybeTuple; 1227 1228 // Look through the array immediately if possible. 1229 if (!Tuple->isTemporary()) 1230 return resolveTypeRefArray(Tuple); 1231 1232 // Create and return a placeholder to use for now. Eventually 1233 // resolveTypeRefArrays() will be resolve this forward reference. 1234 OldTypeRefs.Arrays.emplace_back(); 1235 OldTypeRefs.Arrays.back().first.reset(Tuple); 1236 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1237 return OldTypeRefs.Arrays.back().second.get(); 1238 } 1239 1240 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1241 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1242 if (!Tuple || Tuple->isDistinct()) 1243 return MaybeTuple; 1244 1245 // Look through the DITypeRefArray, upgrading each DITypeRef. 1246 SmallVector<Metadata *, 32> Ops; 1247 Ops.reserve(Tuple->getNumOperands()); 1248 for (Metadata *MD : Tuple->operands()) 1249 Ops.push_back(upgradeTypeRef(MD)); 1250 1251 return MDTuple::get(Context, Ops); 1252 } 1253 1254 Type *BitcodeReader::getTypeByID(unsigned ID) { 1255 // The type table size is always specified correctly. 1256 if (ID >= TypeList.size()) 1257 return nullptr; 1258 1259 if (Type *Ty = TypeList[ID]) 1260 return Ty; 1261 1262 // If we have a forward reference, the only possible case is when it is to a 1263 // named struct. Just create a placeholder for now. 1264 return TypeList[ID] = createIdentifiedStructType(Context); 1265 } 1266 1267 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1268 StringRef Name) { 1269 auto *Ret = StructType::create(Context, Name); 1270 IdentifiedStructTypes.push_back(Ret); 1271 return Ret; 1272 } 1273 1274 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1275 auto *Ret = StructType::create(Context); 1276 IdentifiedStructTypes.push_back(Ret); 1277 return Ret; 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // Functions for parsing blocks from the bitcode file 1282 //===----------------------------------------------------------------------===// 1283 1284 1285 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1286 /// been decoded from the given integer. This function must stay in sync with 1287 /// 'encodeLLVMAttributesForBitcode'. 1288 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1289 uint64_t EncodedAttrs) { 1290 // FIXME: Remove in 4.0. 1291 1292 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1293 // the bits above 31 down by 11 bits. 1294 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1295 assert((!Alignment || isPowerOf2_32(Alignment)) && 1296 "Alignment must be a power of two."); 1297 1298 if (Alignment) 1299 B.addAlignmentAttr(Alignment); 1300 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1301 (EncodedAttrs & 0xffff)); 1302 } 1303 1304 std::error_code BitcodeReader::parseAttributeBlock() { 1305 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1306 return error("Invalid record"); 1307 1308 if (!MAttributes.empty()) 1309 return error("Invalid multiple blocks"); 1310 1311 SmallVector<uint64_t, 64> Record; 1312 1313 SmallVector<AttributeSet, 8> Attrs; 1314 1315 // Read all the records. 1316 while (1) { 1317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1318 1319 switch (Entry.Kind) { 1320 case BitstreamEntry::SubBlock: // Handled for us already. 1321 case BitstreamEntry::Error: 1322 return error("Malformed block"); 1323 case BitstreamEntry::EndBlock: 1324 return std::error_code(); 1325 case BitstreamEntry::Record: 1326 // The interesting case. 1327 break; 1328 } 1329 1330 // Read a record. 1331 Record.clear(); 1332 switch (Stream.readRecord(Entry.ID, Record)) { 1333 default: // Default behavior: ignore. 1334 break; 1335 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1336 // FIXME: Remove in 4.0. 1337 if (Record.size() & 1) 1338 return error("Invalid record"); 1339 1340 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1341 AttrBuilder B; 1342 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1343 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1344 } 1345 1346 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1347 Attrs.clear(); 1348 break; 1349 } 1350 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1351 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1352 Attrs.push_back(MAttributeGroups[Record[i]]); 1353 1354 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1355 Attrs.clear(); 1356 break; 1357 } 1358 } 1359 } 1360 } 1361 1362 // Returns Attribute::None on unrecognized codes. 1363 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1364 switch (Code) { 1365 default: 1366 return Attribute::None; 1367 case bitc::ATTR_KIND_ALIGNMENT: 1368 return Attribute::Alignment; 1369 case bitc::ATTR_KIND_ALWAYS_INLINE: 1370 return Attribute::AlwaysInline; 1371 case bitc::ATTR_KIND_ARGMEMONLY: 1372 return Attribute::ArgMemOnly; 1373 case bitc::ATTR_KIND_BUILTIN: 1374 return Attribute::Builtin; 1375 case bitc::ATTR_KIND_BY_VAL: 1376 return Attribute::ByVal; 1377 case bitc::ATTR_KIND_IN_ALLOCA: 1378 return Attribute::InAlloca; 1379 case bitc::ATTR_KIND_COLD: 1380 return Attribute::Cold; 1381 case bitc::ATTR_KIND_CONVERGENT: 1382 return Attribute::Convergent; 1383 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1384 return Attribute::InaccessibleMemOnly; 1385 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1386 return Attribute::InaccessibleMemOrArgMemOnly; 1387 case bitc::ATTR_KIND_INLINE_HINT: 1388 return Attribute::InlineHint; 1389 case bitc::ATTR_KIND_IN_REG: 1390 return Attribute::InReg; 1391 case bitc::ATTR_KIND_JUMP_TABLE: 1392 return Attribute::JumpTable; 1393 case bitc::ATTR_KIND_MIN_SIZE: 1394 return Attribute::MinSize; 1395 case bitc::ATTR_KIND_NAKED: 1396 return Attribute::Naked; 1397 case bitc::ATTR_KIND_NEST: 1398 return Attribute::Nest; 1399 case bitc::ATTR_KIND_NO_ALIAS: 1400 return Attribute::NoAlias; 1401 case bitc::ATTR_KIND_NO_BUILTIN: 1402 return Attribute::NoBuiltin; 1403 case bitc::ATTR_KIND_NO_CAPTURE: 1404 return Attribute::NoCapture; 1405 case bitc::ATTR_KIND_NO_DUPLICATE: 1406 return Attribute::NoDuplicate; 1407 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1408 return Attribute::NoImplicitFloat; 1409 case bitc::ATTR_KIND_NO_INLINE: 1410 return Attribute::NoInline; 1411 case bitc::ATTR_KIND_NO_RECURSE: 1412 return Attribute::NoRecurse; 1413 case bitc::ATTR_KIND_NON_LAZY_BIND: 1414 return Attribute::NonLazyBind; 1415 case bitc::ATTR_KIND_NON_NULL: 1416 return Attribute::NonNull; 1417 case bitc::ATTR_KIND_DEREFERENCEABLE: 1418 return Attribute::Dereferenceable; 1419 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1420 return Attribute::DereferenceableOrNull; 1421 case bitc::ATTR_KIND_ALLOC_SIZE: 1422 return Attribute::AllocSize; 1423 case bitc::ATTR_KIND_NO_RED_ZONE: 1424 return Attribute::NoRedZone; 1425 case bitc::ATTR_KIND_NO_RETURN: 1426 return Attribute::NoReturn; 1427 case bitc::ATTR_KIND_NO_UNWIND: 1428 return Attribute::NoUnwind; 1429 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1430 return Attribute::OptimizeForSize; 1431 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1432 return Attribute::OptimizeNone; 1433 case bitc::ATTR_KIND_READ_NONE: 1434 return Attribute::ReadNone; 1435 case bitc::ATTR_KIND_READ_ONLY: 1436 return Attribute::ReadOnly; 1437 case bitc::ATTR_KIND_RETURNED: 1438 return Attribute::Returned; 1439 case bitc::ATTR_KIND_RETURNS_TWICE: 1440 return Attribute::ReturnsTwice; 1441 case bitc::ATTR_KIND_S_EXT: 1442 return Attribute::SExt; 1443 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1444 return Attribute::StackAlignment; 1445 case bitc::ATTR_KIND_STACK_PROTECT: 1446 return Attribute::StackProtect; 1447 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1448 return Attribute::StackProtectReq; 1449 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1450 return Attribute::StackProtectStrong; 1451 case bitc::ATTR_KIND_SAFESTACK: 1452 return Attribute::SafeStack; 1453 case bitc::ATTR_KIND_STRUCT_RET: 1454 return Attribute::StructRet; 1455 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1456 return Attribute::SanitizeAddress; 1457 case bitc::ATTR_KIND_SANITIZE_THREAD: 1458 return Attribute::SanitizeThread; 1459 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1460 return Attribute::SanitizeMemory; 1461 case bitc::ATTR_KIND_SWIFT_ERROR: 1462 return Attribute::SwiftError; 1463 case bitc::ATTR_KIND_SWIFT_SELF: 1464 return Attribute::SwiftSelf; 1465 case bitc::ATTR_KIND_UW_TABLE: 1466 return Attribute::UWTable; 1467 case bitc::ATTR_KIND_Z_EXT: 1468 return Attribute::ZExt; 1469 } 1470 } 1471 1472 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1473 unsigned &Alignment) { 1474 // Note: Alignment in bitcode files is incremented by 1, so that zero 1475 // can be used for default alignment. 1476 if (Exponent > Value::MaxAlignmentExponent + 1) 1477 return error("Invalid alignment value"); 1478 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1479 return std::error_code(); 1480 } 1481 1482 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1483 Attribute::AttrKind *Kind) { 1484 *Kind = getAttrFromCode(Code); 1485 if (*Kind == Attribute::None) 1486 return error(BitcodeError::CorruptedBitcode, 1487 "Unknown attribute kind (" + Twine(Code) + ")"); 1488 return std::error_code(); 1489 } 1490 1491 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1492 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1493 return error("Invalid record"); 1494 1495 if (!MAttributeGroups.empty()) 1496 return error("Invalid multiple blocks"); 1497 1498 SmallVector<uint64_t, 64> Record; 1499 1500 // Read all the records. 1501 while (1) { 1502 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1503 1504 switch (Entry.Kind) { 1505 case BitstreamEntry::SubBlock: // Handled for us already. 1506 case BitstreamEntry::Error: 1507 return error("Malformed block"); 1508 case BitstreamEntry::EndBlock: 1509 return std::error_code(); 1510 case BitstreamEntry::Record: 1511 // The interesting case. 1512 break; 1513 } 1514 1515 // Read a record. 1516 Record.clear(); 1517 switch (Stream.readRecord(Entry.ID, Record)) { 1518 default: // Default behavior: ignore. 1519 break; 1520 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1521 if (Record.size() < 3) 1522 return error("Invalid record"); 1523 1524 uint64_t GrpID = Record[0]; 1525 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1526 1527 AttrBuilder B; 1528 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1529 if (Record[i] == 0) { // Enum attribute 1530 Attribute::AttrKind Kind; 1531 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1532 return EC; 1533 1534 B.addAttribute(Kind); 1535 } else if (Record[i] == 1) { // Integer attribute 1536 Attribute::AttrKind Kind; 1537 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1538 return EC; 1539 if (Kind == Attribute::Alignment) 1540 B.addAlignmentAttr(Record[++i]); 1541 else if (Kind == Attribute::StackAlignment) 1542 B.addStackAlignmentAttr(Record[++i]); 1543 else if (Kind == Attribute::Dereferenceable) 1544 B.addDereferenceableAttr(Record[++i]); 1545 else if (Kind == Attribute::DereferenceableOrNull) 1546 B.addDereferenceableOrNullAttr(Record[++i]); 1547 else if (Kind == Attribute::AllocSize) 1548 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1549 } else { // String attribute 1550 assert((Record[i] == 3 || Record[i] == 4) && 1551 "Invalid attribute group entry"); 1552 bool HasValue = (Record[i++] == 4); 1553 SmallString<64> KindStr; 1554 SmallString<64> ValStr; 1555 1556 while (Record[i] != 0 && i != e) 1557 KindStr += Record[i++]; 1558 assert(Record[i] == 0 && "Kind string not null terminated"); 1559 1560 if (HasValue) { 1561 // Has a value associated with it. 1562 ++i; // Skip the '0' that terminates the "kind" string. 1563 while (Record[i] != 0 && i != e) 1564 ValStr += Record[i++]; 1565 assert(Record[i] == 0 && "Value string not null terminated"); 1566 } 1567 1568 B.addAttribute(KindStr.str(), ValStr.str()); 1569 } 1570 } 1571 1572 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1573 break; 1574 } 1575 } 1576 } 1577 } 1578 1579 std::error_code BitcodeReader::parseTypeTable() { 1580 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1581 return error("Invalid record"); 1582 1583 return parseTypeTableBody(); 1584 } 1585 1586 std::error_code BitcodeReader::parseTypeTableBody() { 1587 if (!TypeList.empty()) 1588 return error("Invalid multiple blocks"); 1589 1590 SmallVector<uint64_t, 64> Record; 1591 unsigned NumRecords = 0; 1592 1593 SmallString<64> TypeName; 1594 1595 // Read all the records for this type table. 1596 while (1) { 1597 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1598 1599 switch (Entry.Kind) { 1600 case BitstreamEntry::SubBlock: // Handled for us already. 1601 case BitstreamEntry::Error: 1602 return error("Malformed block"); 1603 case BitstreamEntry::EndBlock: 1604 if (NumRecords != TypeList.size()) 1605 return error("Malformed block"); 1606 return std::error_code(); 1607 case BitstreamEntry::Record: 1608 // The interesting case. 1609 break; 1610 } 1611 1612 // Read a record. 1613 Record.clear(); 1614 Type *ResultTy = nullptr; 1615 switch (Stream.readRecord(Entry.ID, Record)) { 1616 default: 1617 return error("Invalid value"); 1618 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1619 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1620 // type list. This allows us to reserve space. 1621 if (Record.size() < 1) 1622 return error("Invalid record"); 1623 TypeList.resize(Record[0]); 1624 continue; 1625 case bitc::TYPE_CODE_VOID: // VOID 1626 ResultTy = Type::getVoidTy(Context); 1627 break; 1628 case bitc::TYPE_CODE_HALF: // HALF 1629 ResultTy = Type::getHalfTy(Context); 1630 break; 1631 case bitc::TYPE_CODE_FLOAT: // FLOAT 1632 ResultTy = Type::getFloatTy(Context); 1633 break; 1634 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1635 ResultTy = Type::getDoubleTy(Context); 1636 break; 1637 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1638 ResultTy = Type::getX86_FP80Ty(Context); 1639 break; 1640 case bitc::TYPE_CODE_FP128: // FP128 1641 ResultTy = Type::getFP128Ty(Context); 1642 break; 1643 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1644 ResultTy = Type::getPPC_FP128Ty(Context); 1645 break; 1646 case bitc::TYPE_CODE_LABEL: // LABEL 1647 ResultTy = Type::getLabelTy(Context); 1648 break; 1649 case bitc::TYPE_CODE_METADATA: // METADATA 1650 ResultTy = Type::getMetadataTy(Context); 1651 break; 1652 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1653 ResultTy = Type::getX86_MMXTy(Context); 1654 break; 1655 case bitc::TYPE_CODE_TOKEN: // TOKEN 1656 ResultTy = Type::getTokenTy(Context); 1657 break; 1658 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1659 if (Record.size() < 1) 1660 return error("Invalid record"); 1661 1662 uint64_t NumBits = Record[0]; 1663 if (NumBits < IntegerType::MIN_INT_BITS || 1664 NumBits > IntegerType::MAX_INT_BITS) 1665 return error("Bitwidth for integer type out of range"); 1666 ResultTy = IntegerType::get(Context, NumBits); 1667 break; 1668 } 1669 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1670 // [pointee type, address space] 1671 if (Record.size() < 1) 1672 return error("Invalid record"); 1673 unsigned AddressSpace = 0; 1674 if (Record.size() == 2) 1675 AddressSpace = Record[1]; 1676 ResultTy = getTypeByID(Record[0]); 1677 if (!ResultTy || 1678 !PointerType::isValidElementType(ResultTy)) 1679 return error("Invalid type"); 1680 ResultTy = PointerType::get(ResultTy, AddressSpace); 1681 break; 1682 } 1683 case bitc::TYPE_CODE_FUNCTION_OLD: { 1684 // FIXME: attrid is dead, remove it in LLVM 4.0 1685 // FUNCTION: [vararg, attrid, retty, paramty x N] 1686 if (Record.size() < 3) 1687 return error("Invalid record"); 1688 SmallVector<Type*, 8> ArgTys; 1689 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1690 if (Type *T = getTypeByID(Record[i])) 1691 ArgTys.push_back(T); 1692 else 1693 break; 1694 } 1695 1696 ResultTy = getTypeByID(Record[2]); 1697 if (!ResultTy || ArgTys.size() < Record.size()-3) 1698 return error("Invalid type"); 1699 1700 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1701 break; 1702 } 1703 case bitc::TYPE_CODE_FUNCTION: { 1704 // FUNCTION: [vararg, retty, paramty x N] 1705 if (Record.size() < 2) 1706 return error("Invalid record"); 1707 SmallVector<Type*, 8> ArgTys; 1708 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1709 if (Type *T = getTypeByID(Record[i])) { 1710 if (!FunctionType::isValidArgumentType(T)) 1711 return error("Invalid function argument type"); 1712 ArgTys.push_back(T); 1713 } 1714 else 1715 break; 1716 } 1717 1718 ResultTy = getTypeByID(Record[1]); 1719 if (!ResultTy || ArgTys.size() < Record.size()-2) 1720 return error("Invalid type"); 1721 1722 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1723 break; 1724 } 1725 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1726 if (Record.size() < 1) 1727 return error("Invalid record"); 1728 SmallVector<Type*, 8> EltTys; 1729 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1730 if (Type *T = getTypeByID(Record[i])) 1731 EltTys.push_back(T); 1732 else 1733 break; 1734 } 1735 if (EltTys.size() != Record.size()-1) 1736 return error("Invalid type"); 1737 ResultTy = StructType::get(Context, EltTys, Record[0]); 1738 break; 1739 } 1740 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1741 if (convertToString(Record, 0, TypeName)) 1742 return error("Invalid record"); 1743 continue; 1744 1745 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1746 if (Record.size() < 1) 1747 return error("Invalid record"); 1748 1749 if (NumRecords >= TypeList.size()) 1750 return error("Invalid TYPE table"); 1751 1752 // Check to see if this was forward referenced, if so fill in the temp. 1753 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1754 if (Res) { 1755 Res->setName(TypeName); 1756 TypeList[NumRecords] = nullptr; 1757 } else // Otherwise, create a new struct. 1758 Res = createIdentifiedStructType(Context, TypeName); 1759 TypeName.clear(); 1760 1761 SmallVector<Type*, 8> EltTys; 1762 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1763 if (Type *T = getTypeByID(Record[i])) 1764 EltTys.push_back(T); 1765 else 1766 break; 1767 } 1768 if (EltTys.size() != Record.size()-1) 1769 return error("Invalid record"); 1770 Res->setBody(EltTys, Record[0]); 1771 ResultTy = Res; 1772 break; 1773 } 1774 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1775 if (Record.size() != 1) 1776 return error("Invalid record"); 1777 1778 if (NumRecords >= TypeList.size()) 1779 return error("Invalid TYPE table"); 1780 1781 // Check to see if this was forward referenced, if so fill in the temp. 1782 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1783 if (Res) { 1784 Res->setName(TypeName); 1785 TypeList[NumRecords] = nullptr; 1786 } else // Otherwise, create a new struct with no body. 1787 Res = createIdentifiedStructType(Context, TypeName); 1788 TypeName.clear(); 1789 ResultTy = Res; 1790 break; 1791 } 1792 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1793 if (Record.size() < 2) 1794 return error("Invalid record"); 1795 ResultTy = getTypeByID(Record[1]); 1796 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1797 return error("Invalid type"); 1798 ResultTy = ArrayType::get(ResultTy, Record[0]); 1799 break; 1800 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1801 if (Record.size() < 2) 1802 return error("Invalid record"); 1803 if (Record[0] == 0) 1804 return error("Invalid vector length"); 1805 ResultTy = getTypeByID(Record[1]); 1806 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1807 return error("Invalid type"); 1808 ResultTy = VectorType::get(ResultTy, Record[0]); 1809 break; 1810 } 1811 1812 if (NumRecords >= TypeList.size()) 1813 return error("Invalid TYPE table"); 1814 if (TypeList[NumRecords]) 1815 return error( 1816 "Invalid TYPE table: Only named structs can be forward referenced"); 1817 assert(ResultTy && "Didn't read a type?"); 1818 TypeList[NumRecords++] = ResultTy; 1819 } 1820 } 1821 1822 std::error_code BitcodeReader::parseOperandBundleTags() { 1823 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1824 return error("Invalid record"); 1825 1826 if (!BundleTags.empty()) 1827 return error("Invalid multiple blocks"); 1828 1829 SmallVector<uint64_t, 64> Record; 1830 1831 while (1) { 1832 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1833 1834 switch (Entry.Kind) { 1835 case BitstreamEntry::SubBlock: // Handled for us already. 1836 case BitstreamEntry::Error: 1837 return error("Malformed block"); 1838 case BitstreamEntry::EndBlock: 1839 return std::error_code(); 1840 case BitstreamEntry::Record: 1841 // The interesting case. 1842 break; 1843 } 1844 1845 // Tags are implicitly mapped to integers by their order. 1846 1847 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1848 return error("Invalid record"); 1849 1850 // OPERAND_BUNDLE_TAG: [strchr x N] 1851 BundleTags.emplace_back(); 1852 if (convertToString(Record, 0, BundleTags.back())) 1853 return error("Invalid record"); 1854 Record.clear(); 1855 } 1856 } 1857 1858 /// Associate a value with its name from the given index in the provided record. 1859 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1860 unsigned NameIndex, Triple &TT) { 1861 SmallString<128> ValueName; 1862 if (convertToString(Record, NameIndex, ValueName)) 1863 return error("Invalid record"); 1864 unsigned ValueID = Record[0]; 1865 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1866 return error("Invalid record"); 1867 Value *V = ValueList[ValueID]; 1868 1869 StringRef NameStr(ValueName.data(), ValueName.size()); 1870 if (NameStr.find_first_of(0) != StringRef::npos) 1871 return error("Invalid value name"); 1872 V->setName(NameStr); 1873 auto *GO = dyn_cast<GlobalObject>(V); 1874 if (GO) { 1875 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1876 if (TT.isOSBinFormatMachO()) 1877 GO->setComdat(nullptr); 1878 else 1879 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1880 } 1881 } 1882 return V; 1883 } 1884 1885 /// Helper to note and return the current location, and jump to the given 1886 /// offset. 1887 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1888 BitstreamCursor &Stream) { 1889 // Save the current parsing location so we can jump back at the end 1890 // of the VST read. 1891 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1892 Stream.JumpToBit(Offset * 32); 1893 #ifndef NDEBUG 1894 // Do some checking if we are in debug mode. 1895 BitstreamEntry Entry = Stream.advance(); 1896 assert(Entry.Kind == BitstreamEntry::SubBlock); 1897 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1898 #else 1899 // In NDEBUG mode ignore the output so we don't get an unused variable 1900 // warning. 1901 Stream.advance(); 1902 #endif 1903 return CurrentBit; 1904 } 1905 1906 /// Parse the value symbol table at either the current parsing location or 1907 /// at the given bit offset if provided. 1908 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1909 uint64_t CurrentBit; 1910 // Pass in the Offset to distinguish between calling for the module-level 1911 // VST (where we want to jump to the VST offset) and the function-level 1912 // VST (where we don't). 1913 if (Offset > 0) 1914 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1915 1916 // Compute the delta between the bitcode indices in the VST (the word offset 1917 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1918 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1919 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1920 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1921 // just before entering the VST subblock because: 1) the EnterSubBlock 1922 // changes the AbbrevID width; 2) the VST block is nested within the same 1923 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1924 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1925 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1926 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1927 unsigned FuncBitcodeOffsetDelta = 1928 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1929 1930 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1931 return error("Invalid record"); 1932 1933 SmallVector<uint64_t, 64> Record; 1934 1935 Triple TT(TheModule->getTargetTriple()); 1936 1937 // Read all the records for this value table. 1938 SmallString<128> ValueName; 1939 while (1) { 1940 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1941 1942 switch (Entry.Kind) { 1943 case BitstreamEntry::SubBlock: // Handled for us already. 1944 case BitstreamEntry::Error: 1945 return error("Malformed block"); 1946 case BitstreamEntry::EndBlock: 1947 if (Offset > 0) 1948 Stream.JumpToBit(CurrentBit); 1949 return std::error_code(); 1950 case BitstreamEntry::Record: 1951 // The interesting case. 1952 break; 1953 } 1954 1955 // Read a record. 1956 Record.clear(); 1957 switch (Stream.readRecord(Entry.ID, Record)) { 1958 default: // Default behavior: unknown type. 1959 break; 1960 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1961 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1962 if (std::error_code EC = ValOrErr.getError()) 1963 return EC; 1964 ValOrErr.get(); 1965 break; 1966 } 1967 case bitc::VST_CODE_FNENTRY: { 1968 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1969 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1970 if (std::error_code EC = ValOrErr.getError()) 1971 return EC; 1972 Value *V = ValOrErr.get(); 1973 1974 auto *GO = dyn_cast<GlobalObject>(V); 1975 if (!GO) { 1976 // If this is an alias, need to get the actual Function object 1977 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1978 auto *GA = dyn_cast<GlobalAlias>(V); 1979 if (GA) 1980 GO = GA->getBaseObject(); 1981 assert(GO); 1982 } 1983 1984 uint64_t FuncWordOffset = Record[1]; 1985 Function *F = dyn_cast<Function>(GO); 1986 assert(F); 1987 uint64_t FuncBitOffset = FuncWordOffset * 32; 1988 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1989 // Set the LastFunctionBlockBit to point to the last function block. 1990 // Later when parsing is resumed after function materialization, 1991 // we can simply skip that last function block. 1992 if (FuncBitOffset > LastFunctionBlockBit) 1993 LastFunctionBlockBit = FuncBitOffset; 1994 break; 1995 } 1996 case bitc::VST_CODE_BBENTRY: { 1997 if (convertToString(Record, 1, ValueName)) 1998 return error("Invalid record"); 1999 BasicBlock *BB = getBasicBlock(Record[0]); 2000 if (!BB) 2001 return error("Invalid record"); 2002 2003 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2004 ValueName.clear(); 2005 break; 2006 } 2007 } 2008 } 2009 } 2010 2011 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2012 std::error_code 2013 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2014 if (Record.size() < 2) 2015 return error("Invalid record"); 2016 2017 unsigned Kind = Record[0]; 2018 SmallString<8> Name(Record.begin() + 1, Record.end()); 2019 2020 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2021 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2022 return error("Conflicting METADATA_KIND records"); 2023 return std::error_code(); 2024 } 2025 2026 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2027 2028 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2029 StringRef Blob, 2030 unsigned &NextMetadataNo) { 2031 // All the MDStrings in the block are emitted together in a single 2032 // record. The strings are concatenated and stored in a blob along with 2033 // their sizes. 2034 if (Record.size() != 2) 2035 return error("Invalid record: metadata strings layout"); 2036 2037 unsigned NumStrings = Record[0]; 2038 unsigned StringsOffset = Record[1]; 2039 if (!NumStrings) 2040 return error("Invalid record: metadata strings with no strings"); 2041 if (StringsOffset > Blob.size()) 2042 return error("Invalid record: metadata strings corrupt offset"); 2043 2044 StringRef Lengths = Blob.slice(0, StringsOffset); 2045 SimpleBitstreamCursor R(*StreamFile); 2046 R.jumpToPointer(Lengths.begin()); 2047 2048 // Ensure that Blob doesn't get invalidated, even if this is reading from 2049 // a StreamingMemoryObject with corrupt data. 2050 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2051 2052 StringRef Strings = Blob.drop_front(StringsOffset); 2053 do { 2054 if (R.AtEndOfStream()) 2055 return error("Invalid record: metadata strings bad length"); 2056 2057 unsigned Size = R.ReadVBR(6); 2058 if (Strings.size() < Size) 2059 return error("Invalid record: metadata strings truncated chars"); 2060 2061 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2062 NextMetadataNo++); 2063 Strings = Strings.drop_front(Size); 2064 } while (--NumStrings); 2065 2066 return std::error_code(); 2067 } 2068 2069 namespace { 2070 class PlaceholderQueue { 2071 // Placeholders would thrash around when moved, so store in a std::deque 2072 // instead of some sort of vector. 2073 std::deque<DistinctMDOperandPlaceholder> PHs; 2074 2075 public: 2076 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2077 void flush(BitcodeReaderMetadataList &MetadataList); 2078 }; 2079 } // end namespace 2080 2081 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2082 PHs.emplace_back(ID); 2083 return PHs.back(); 2084 } 2085 2086 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2087 while (!PHs.empty()) { 2088 PHs.front().replaceUseWith( 2089 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2090 PHs.pop_front(); 2091 } 2092 } 2093 2094 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2095 /// module level metadata. 2096 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2097 IsMetadataMaterialized = true; 2098 unsigned NextMetadataNo = MetadataList.size(); 2099 2100 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2101 return error("Invalid metadata: fwd refs into function blocks"); 2102 2103 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2104 return error("Invalid record"); 2105 2106 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2107 SmallVector<uint64_t, 64> Record; 2108 2109 PlaceholderQueue Placeholders; 2110 bool IsDistinct; 2111 auto getMD = [&](unsigned ID) -> Metadata * { 2112 if (!IsDistinct) 2113 return MetadataList.getMetadataFwdRef(ID); 2114 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2115 return MD; 2116 return &Placeholders.getPlaceholderOp(ID); 2117 }; 2118 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2119 if (ID) 2120 return getMD(ID - 1); 2121 return nullptr; 2122 }; 2123 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2124 if (ID) 2125 return MetadataList.getMetadataFwdRef(ID - 1); 2126 return nullptr; 2127 }; 2128 auto getMDString = [&](unsigned ID) -> MDString *{ 2129 // This requires that the ID is not really a forward reference. In 2130 // particular, the MDString must already have been resolved. 2131 return cast_or_null<MDString>(getMDOrNull(ID)); 2132 }; 2133 2134 // Support for old type refs. 2135 auto getDITypeRefOrNull = [&](unsigned ID) { 2136 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2137 }; 2138 2139 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2140 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2141 2142 // Read all the records. 2143 while (1) { 2144 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2145 2146 switch (Entry.Kind) { 2147 case BitstreamEntry::SubBlock: // Handled for us already. 2148 case BitstreamEntry::Error: 2149 return error("Malformed block"); 2150 case BitstreamEntry::EndBlock: 2151 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2152 for (auto CU_SP : CUSubprograms) 2153 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2154 for (auto &Op : SPs->operands()) 2155 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2156 SP->replaceOperandWith(7, CU_SP.first); 2157 2158 MetadataList.tryToResolveCycles(); 2159 Placeholders.flush(MetadataList); 2160 return std::error_code(); 2161 case BitstreamEntry::Record: 2162 // The interesting case. 2163 break; 2164 } 2165 2166 // Read a record. 2167 Record.clear(); 2168 StringRef Blob; 2169 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2170 IsDistinct = false; 2171 switch (Code) { 2172 default: // Default behavior: ignore. 2173 break; 2174 case bitc::METADATA_NAME: { 2175 // Read name of the named metadata. 2176 SmallString<8> Name(Record.begin(), Record.end()); 2177 Record.clear(); 2178 Code = Stream.ReadCode(); 2179 2180 unsigned NextBitCode = Stream.readRecord(Code, Record); 2181 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2182 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2183 2184 // Read named metadata elements. 2185 unsigned Size = Record.size(); 2186 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2187 for (unsigned i = 0; i != Size; ++i) { 2188 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2189 if (!MD) 2190 return error("Invalid record"); 2191 NMD->addOperand(MD); 2192 } 2193 break; 2194 } 2195 case bitc::METADATA_OLD_FN_NODE: { 2196 // FIXME: Remove in 4.0. 2197 // This is a LocalAsMetadata record, the only type of function-local 2198 // metadata. 2199 if (Record.size() % 2 == 1) 2200 return error("Invalid record"); 2201 2202 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2203 // to be legal, but there's no upgrade path. 2204 auto dropRecord = [&] { 2205 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2206 }; 2207 if (Record.size() != 2) { 2208 dropRecord(); 2209 break; 2210 } 2211 2212 Type *Ty = getTypeByID(Record[0]); 2213 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2214 dropRecord(); 2215 break; 2216 } 2217 2218 MetadataList.assignValue( 2219 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2220 NextMetadataNo++); 2221 break; 2222 } 2223 case bitc::METADATA_OLD_NODE: { 2224 // FIXME: Remove in 4.0. 2225 if (Record.size() % 2 == 1) 2226 return error("Invalid record"); 2227 2228 unsigned Size = Record.size(); 2229 SmallVector<Metadata *, 8> Elts; 2230 for (unsigned i = 0; i != Size; i += 2) { 2231 Type *Ty = getTypeByID(Record[i]); 2232 if (!Ty) 2233 return error("Invalid record"); 2234 if (Ty->isMetadataTy()) 2235 Elts.push_back(getMD(Record[i + 1])); 2236 else if (!Ty->isVoidTy()) { 2237 auto *MD = 2238 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2239 assert(isa<ConstantAsMetadata>(MD) && 2240 "Expected non-function-local metadata"); 2241 Elts.push_back(MD); 2242 } else 2243 Elts.push_back(nullptr); 2244 } 2245 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2246 break; 2247 } 2248 case bitc::METADATA_VALUE: { 2249 if (Record.size() != 2) 2250 return error("Invalid record"); 2251 2252 Type *Ty = getTypeByID(Record[0]); 2253 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2254 return error("Invalid record"); 2255 2256 MetadataList.assignValue( 2257 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2258 NextMetadataNo++); 2259 break; 2260 } 2261 case bitc::METADATA_DISTINCT_NODE: 2262 IsDistinct = true; 2263 // fallthrough... 2264 case bitc::METADATA_NODE: { 2265 SmallVector<Metadata *, 8> Elts; 2266 Elts.reserve(Record.size()); 2267 for (unsigned ID : Record) 2268 Elts.push_back(getMDOrNull(ID)); 2269 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2270 : MDNode::get(Context, Elts), 2271 NextMetadataNo++); 2272 break; 2273 } 2274 case bitc::METADATA_LOCATION: { 2275 if (Record.size() != 5) 2276 return error("Invalid record"); 2277 2278 IsDistinct = Record[0]; 2279 unsigned Line = Record[1]; 2280 unsigned Column = Record[2]; 2281 Metadata *Scope = getMD(Record[3]); 2282 Metadata *InlinedAt = getMDOrNull(Record[4]); 2283 MetadataList.assignValue( 2284 GET_OR_DISTINCT(DILocation, 2285 (Context, Line, Column, Scope, InlinedAt)), 2286 NextMetadataNo++); 2287 break; 2288 } 2289 case bitc::METADATA_GENERIC_DEBUG: { 2290 if (Record.size() < 4) 2291 return error("Invalid record"); 2292 2293 IsDistinct = Record[0]; 2294 unsigned Tag = Record[1]; 2295 unsigned Version = Record[2]; 2296 2297 if (Tag >= 1u << 16 || Version != 0) 2298 return error("Invalid record"); 2299 2300 auto *Header = getMDString(Record[3]); 2301 SmallVector<Metadata *, 8> DwarfOps; 2302 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2303 DwarfOps.push_back(getMDOrNull(Record[I])); 2304 MetadataList.assignValue( 2305 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2306 NextMetadataNo++); 2307 break; 2308 } 2309 case bitc::METADATA_SUBRANGE: { 2310 if (Record.size() != 3) 2311 return error("Invalid record"); 2312 2313 IsDistinct = Record[0]; 2314 MetadataList.assignValue( 2315 GET_OR_DISTINCT(DISubrange, 2316 (Context, Record[1], unrotateSign(Record[2]))), 2317 NextMetadataNo++); 2318 break; 2319 } 2320 case bitc::METADATA_ENUMERATOR: { 2321 if (Record.size() != 3) 2322 return error("Invalid record"); 2323 2324 IsDistinct = Record[0]; 2325 MetadataList.assignValue( 2326 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2327 getMDString(Record[2]))), 2328 NextMetadataNo++); 2329 break; 2330 } 2331 case bitc::METADATA_BASIC_TYPE: { 2332 if (Record.size() != 6) 2333 return error("Invalid record"); 2334 2335 IsDistinct = Record[0]; 2336 MetadataList.assignValue( 2337 GET_OR_DISTINCT(DIBasicType, 2338 (Context, Record[1], getMDString(Record[2]), 2339 Record[3], Record[4], Record[5])), 2340 NextMetadataNo++); 2341 break; 2342 } 2343 case bitc::METADATA_DERIVED_TYPE: { 2344 if (Record.size() != 12) 2345 return error("Invalid record"); 2346 2347 IsDistinct = Record[0]; 2348 MetadataList.assignValue( 2349 GET_OR_DISTINCT(DIDerivedType, 2350 (Context, Record[1], getMDString(Record[2]), 2351 getMDOrNull(Record[3]), Record[4], 2352 getDITypeRefOrNull(Record[5]), 2353 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2354 Record[9], Record[10], getMDOrNull(Record[11]))), 2355 NextMetadataNo++); 2356 break; 2357 } 2358 case bitc::METADATA_COMPOSITE_TYPE: { 2359 if (Record.size() != 16) 2360 return error("Invalid record"); 2361 2362 // If we have a UUID and this is not a forward declaration, lookup the 2363 // mapping. 2364 IsDistinct = Record[0] & 0x1; 2365 bool IsNotUsedInTypeRef = Record[0] >= 2; 2366 unsigned Tag = Record[1]; 2367 MDString *Name = getMDString(Record[2]); 2368 Metadata *File = getMDOrNull(Record[3]); 2369 unsigned Line = Record[4]; 2370 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2371 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2372 uint64_t SizeInBits = Record[7]; 2373 uint64_t AlignInBits = Record[8]; 2374 uint64_t OffsetInBits = Record[9]; 2375 unsigned Flags = Record[10]; 2376 Metadata *Elements = getMDOrNull(Record[11]); 2377 unsigned RuntimeLang = Record[12]; 2378 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2379 Metadata *TemplateParams = getMDOrNull(Record[14]); 2380 auto *Identifier = getMDString(Record[15]); 2381 DICompositeType *CT = nullptr; 2382 if (Identifier) 2383 CT = DICompositeType::buildODRType( 2384 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2385 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2386 VTableHolder, TemplateParams); 2387 2388 // Create a node if we didn't get a lazy ODR type. 2389 if (!CT) 2390 CT = GET_OR_DISTINCT(DICompositeType, 2391 (Context, Tag, Name, File, Line, Scope, BaseType, 2392 SizeInBits, AlignInBits, OffsetInBits, Flags, 2393 Elements, RuntimeLang, VTableHolder, 2394 TemplateParams, Identifier)); 2395 if (!IsNotUsedInTypeRef && Identifier) 2396 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2397 2398 MetadataList.assignValue(CT, NextMetadataNo++); 2399 break; 2400 } 2401 case bitc::METADATA_SUBROUTINE_TYPE: { 2402 if (Record.size() != 3) 2403 return error("Invalid record"); 2404 2405 IsDistinct = Record[0] & 0x1; 2406 bool IsOldTypeRefArray = Record[0] < 2; 2407 Metadata *Types = getMDOrNull(Record[2]); 2408 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2409 Types = MetadataList.upgradeTypeRefArray(Types); 2410 2411 MetadataList.assignValue( 2412 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2413 NextMetadataNo++); 2414 break; 2415 } 2416 2417 case bitc::METADATA_MODULE: { 2418 if (Record.size() != 6) 2419 return error("Invalid record"); 2420 2421 IsDistinct = Record[0]; 2422 MetadataList.assignValue( 2423 GET_OR_DISTINCT(DIModule, 2424 (Context, getMDOrNull(Record[1]), 2425 getMDString(Record[2]), getMDString(Record[3]), 2426 getMDString(Record[4]), getMDString(Record[5]))), 2427 NextMetadataNo++); 2428 break; 2429 } 2430 2431 case bitc::METADATA_FILE: { 2432 if (Record.size() != 3) 2433 return error("Invalid record"); 2434 2435 IsDistinct = Record[0]; 2436 MetadataList.assignValue( 2437 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2438 getMDString(Record[2]))), 2439 NextMetadataNo++); 2440 break; 2441 } 2442 case bitc::METADATA_COMPILE_UNIT: { 2443 if (Record.size() < 14 || Record.size() > 16) 2444 return error("Invalid record"); 2445 2446 // Ignore Record[0], which indicates whether this compile unit is 2447 // distinct. It's always distinct. 2448 IsDistinct = true; 2449 auto *CU = DICompileUnit::getDistinct( 2450 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2451 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2452 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2453 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2454 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2455 Record.size() <= 14 ? 0 : Record[14]); 2456 2457 MetadataList.assignValue(CU, NextMetadataNo++); 2458 2459 // Move the Upgrade the list of subprograms. 2460 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2461 CUSubprograms.push_back({CU, SPs}); 2462 break; 2463 } 2464 case bitc::METADATA_SUBPROGRAM: { 2465 if (Record.size() != 18 && Record.size() != 19) 2466 return error("Invalid record"); 2467 2468 IsDistinct = 2469 Record[0] || Record[8]; // All definitions should be distinct. 2470 // Version 1 has a Function as Record[15]. 2471 // Version 2 has removed Record[15]. 2472 // Version 3 has the Unit as Record[15]. 2473 Metadata *CUorFn = getMDOrNull(Record[15]); 2474 unsigned Offset = Record.size() == 19 ? 1 : 0; 2475 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2476 bool HasCU = Offset && !HasFn; 2477 DISubprogram *SP = GET_OR_DISTINCT( 2478 DISubprogram, 2479 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2480 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2481 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2482 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2483 Record[14], HasCU ? CUorFn : nullptr, 2484 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2485 getMDOrNull(Record[17 + Offset]))); 2486 MetadataList.assignValue(SP, NextMetadataNo++); 2487 2488 // Upgrade sp->function mapping to function->sp mapping. 2489 if (HasFn) { 2490 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2491 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2492 if (F->isMaterializable()) 2493 // Defer until materialized; unmaterialized functions may not have 2494 // metadata. 2495 FunctionsWithSPs[F] = SP; 2496 else if (!F->empty()) 2497 F->setSubprogram(SP); 2498 } 2499 } 2500 break; 2501 } 2502 case bitc::METADATA_LEXICAL_BLOCK: { 2503 if (Record.size() != 5) 2504 return error("Invalid record"); 2505 2506 IsDistinct = Record[0]; 2507 MetadataList.assignValue( 2508 GET_OR_DISTINCT(DILexicalBlock, 2509 (Context, getMDOrNull(Record[1]), 2510 getMDOrNull(Record[2]), Record[3], Record[4])), 2511 NextMetadataNo++); 2512 break; 2513 } 2514 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2515 if (Record.size() != 4) 2516 return error("Invalid record"); 2517 2518 IsDistinct = Record[0]; 2519 MetadataList.assignValue( 2520 GET_OR_DISTINCT(DILexicalBlockFile, 2521 (Context, getMDOrNull(Record[1]), 2522 getMDOrNull(Record[2]), Record[3])), 2523 NextMetadataNo++); 2524 break; 2525 } 2526 case bitc::METADATA_NAMESPACE: { 2527 if (Record.size() != 5) 2528 return error("Invalid record"); 2529 2530 IsDistinct = Record[0]; 2531 MetadataList.assignValue( 2532 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2533 getMDOrNull(Record[2]), 2534 getMDString(Record[3]), Record[4])), 2535 NextMetadataNo++); 2536 break; 2537 } 2538 case bitc::METADATA_MACRO: { 2539 if (Record.size() != 5) 2540 return error("Invalid record"); 2541 2542 IsDistinct = Record[0]; 2543 MetadataList.assignValue( 2544 GET_OR_DISTINCT(DIMacro, 2545 (Context, Record[1], Record[2], 2546 getMDString(Record[3]), getMDString(Record[4]))), 2547 NextMetadataNo++); 2548 break; 2549 } 2550 case bitc::METADATA_MACRO_FILE: { 2551 if (Record.size() != 5) 2552 return error("Invalid record"); 2553 2554 IsDistinct = Record[0]; 2555 MetadataList.assignValue( 2556 GET_OR_DISTINCT(DIMacroFile, 2557 (Context, Record[1], Record[2], 2558 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2559 NextMetadataNo++); 2560 break; 2561 } 2562 case bitc::METADATA_TEMPLATE_TYPE: { 2563 if (Record.size() != 3) 2564 return error("Invalid record"); 2565 2566 IsDistinct = Record[0]; 2567 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2568 (Context, getMDString(Record[1]), 2569 getDITypeRefOrNull(Record[2]))), 2570 NextMetadataNo++); 2571 break; 2572 } 2573 case bitc::METADATA_TEMPLATE_VALUE: { 2574 if (Record.size() != 5) 2575 return error("Invalid record"); 2576 2577 IsDistinct = Record[0]; 2578 MetadataList.assignValue( 2579 GET_OR_DISTINCT(DITemplateValueParameter, 2580 (Context, Record[1], getMDString(Record[2]), 2581 getDITypeRefOrNull(Record[3]), 2582 getMDOrNull(Record[4]))), 2583 NextMetadataNo++); 2584 break; 2585 } 2586 case bitc::METADATA_GLOBAL_VAR: { 2587 if (Record.size() != 11) 2588 return error("Invalid record"); 2589 2590 IsDistinct = Record[0]; 2591 MetadataList.assignValue( 2592 GET_OR_DISTINCT(DIGlobalVariable, 2593 (Context, getMDOrNull(Record[1]), 2594 getMDString(Record[2]), getMDString(Record[3]), 2595 getMDOrNull(Record[4]), Record[5], 2596 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2597 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2598 NextMetadataNo++); 2599 break; 2600 } 2601 case bitc::METADATA_LOCAL_VAR: { 2602 // 10th field is for the obseleted 'inlinedAt:' field. 2603 if (Record.size() < 8 || Record.size() > 10) 2604 return error("Invalid record"); 2605 2606 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2607 // DW_TAG_arg_variable. 2608 IsDistinct = Record[0]; 2609 bool HasTag = Record.size() > 8; 2610 MetadataList.assignValue( 2611 GET_OR_DISTINCT(DILocalVariable, 2612 (Context, getMDOrNull(Record[1 + HasTag]), 2613 getMDString(Record[2 + HasTag]), 2614 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2615 getDITypeRefOrNull(Record[5 + HasTag]), 2616 Record[6 + HasTag], Record[7 + HasTag])), 2617 NextMetadataNo++); 2618 break; 2619 } 2620 case bitc::METADATA_EXPRESSION: { 2621 if (Record.size() < 1) 2622 return error("Invalid record"); 2623 2624 IsDistinct = Record[0]; 2625 MetadataList.assignValue( 2626 GET_OR_DISTINCT(DIExpression, 2627 (Context, makeArrayRef(Record).slice(1))), 2628 NextMetadataNo++); 2629 break; 2630 } 2631 case bitc::METADATA_OBJC_PROPERTY: { 2632 if (Record.size() != 8) 2633 return error("Invalid record"); 2634 2635 IsDistinct = Record[0]; 2636 MetadataList.assignValue( 2637 GET_OR_DISTINCT(DIObjCProperty, 2638 (Context, getMDString(Record[1]), 2639 getMDOrNull(Record[2]), Record[3], 2640 getMDString(Record[4]), getMDString(Record[5]), 2641 Record[6], getDITypeRefOrNull(Record[7]))), 2642 NextMetadataNo++); 2643 break; 2644 } 2645 case bitc::METADATA_IMPORTED_ENTITY: { 2646 if (Record.size() != 6) 2647 return error("Invalid record"); 2648 2649 IsDistinct = Record[0]; 2650 MetadataList.assignValue( 2651 GET_OR_DISTINCT(DIImportedEntity, 2652 (Context, Record[1], getMDOrNull(Record[2]), 2653 getDITypeRefOrNull(Record[3]), Record[4], 2654 getMDString(Record[5]))), 2655 NextMetadataNo++); 2656 break; 2657 } 2658 case bitc::METADATA_STRING_OLD: { 2659 std::string String(Record.begin(), Record.end()); 2660 2661 // Test for upgrading !llvm.loop. 2662 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2663 2664 Metadata *MD = MDString::get(Context, String); 2665 MetadataList.assignValue(MD, NextMetadataNo++); 2666 break; 2667 } 2668 case bitc::METADATA_STRINGS: 2669 if (std::error_code EC = 2670 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2671 return EC; 2672 break; 2673 case bitc::METADATA_KIND: { 2674 // Support older bitcode files that had METADATA_KIND records in a 2675 // block with METADATA_BLOCK_ID. 2676 if (std::error_code EC = parseMetadataKindRecord(Record)) 2677 return EC; 2678 break; 2679 } 2680 } 2681 } 2682 #undef GET_OR_DISTINCT 2683 } 2684 2685 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2686 std::error_code BitcodeReader::parseMetadataKinds() { 2687 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2688 return error("Invalid record"); 2689 2690 SmallVector<uint64_t, 64> Record; 2691 2692 // Read all the records. 2693 while (1) { 2694 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2695 2696 switch (Entry.Kind) { 2697 case BitstreamEntry::SubBlock: // Handled for us already. 2698 case BitstreamEntry::Error: 2699 return error("Malformed block"); 2700 case BitstreamEntry::EndBlock: 2701 return std::error_code(); 2702 case BitstreamEntry::Record: 2703 // The interesting case. 2704 break; 2705 } 2706 2707 // Read a record. 2708 Record.clear(); 2709 unsigned Code = Stream.readRecord(Entry.ID, Record); 2710 switch (Code) { 2711 default: // Default behavior: ignore. 2712 break; 2713 case bitc::METADATA_KIND: { 2714 if (std::error_code EC = parseMetadataKindRecord(Record)) 2715 return EC; 2716 break; 2717 } 2718 } 2719 } 2720 } 2721 2722 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2723 /// encoding. 2724 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2725 if ((V & 1) == 0) 2726 return V >> 1; 2727 if (V != 1) 2728 return -(V >> 1); 2729 // There is no such thing as -0 with integers. "-0" really means MININT. 2730 return 1ULL << 63; 2731 } 2732 2733 /// Resolve all of the initializers for global values and aliases that we can. 2734 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2735 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2736 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2737 IndirectSymbolInitWorklist; 2738 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2739 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2740 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2741 2742 GlobalInitWorklist.swap(GlobalInits); 2743 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2744 FunctionPrefixWorklist.swap(FunctionPrefixes); 2745 FunctionPrologueWorklist.swap(FunctionPrologues); 2746 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2747 2748 while (!GlobalInitWorklist.empty()) { 2749 unsigned ValID = GlobalInitWorklist.back().second; 2750 if (ValID >= ValueList.size()) { 2751 // Not ready to resolve this yet, it requires something later in the file. 2752 GlobalInits.push_back(GlobalInitWorklist.back()); 2753 } else { 2754 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2755 GlobalInitWorklist.back().first->setInitializer(C); 2756 else 2757 return error("Expected a constant"); 2758 } 2759 GlobalInitWorklist.pop_back(); 2760 } 2761 2762 while (!IndirectSymbolInitWorklist.empty()) { 2763 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2764 if (ValID >= ValueList.size()) { 2765 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2766 } else { 2767 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2768 if (!C) 2769 return error("Expected a constant"); 2770 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2771 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2772 return error("Alias and aliasee types don't match"); 2773 GIS->setIndirectSymbol(C); 2774 } 2775 IndirectSymbolInitWorklist.pop_back(); 2776 } 2777 2778 while (!FunctionPrefixWorklist.empty()) { 2779 unsigned ValID = FunctionPrefixWorklist.back().second; 2780 if (ValID >= ValueList.size()) { 2781 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2782 } else { 2783 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2784 FunctionPrefixWorklist.back().first->setPrefixData(C); 2785 else 2786 return error("Expected a constant"); 2787 } 2788 FunctionPrefixWorklist.pop_back(); 2789 } 2790 2791 while (!FunctionPrologueWorklist.empty()) { 2792 unsigned ValID = FunctionPrologueWorklist.back().second; 2793 if (ValID >= ValueList.size()) { 2794 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2795 } else { 2796 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2797 FunctionPrologueWorklist.back().first->setPrologueData(C); 2798 else 2799 return error("Expected a constant"); 2800 } 2801 FunctionPrologueWorklist.pop_back(); 2802 } 2803 2804 while (!FunctionPersonalityFnWorklist.empty()) { 2805 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2806 if (ValID >= ValueList.size()) { 2807 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2808 } else { 2809 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2810 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2811 else 2812 return error("Expected a constant"); 2813 } 2814 FunctionPersonalityFnWorklist.pop_back(); 2815 } 2816 2817 return std::error_code(); 2818 } 2819 2820 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2821 SmallVector<uint64_t, 8> Words(Vals.size()); 2822 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2823 BitcodeReader::decodeSignRotatedValue); 2824 2825 return APInt(TypeBits, Words); 2826 } 2827 2828 std::error_code BitcodeReader::parseConstants() { 2829 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2830 return error("Invalid record"); 2831 2832 SmallVector<uint64_t, 64> Record; 2833 2834 // Read all the records for this value table. 2835 Type *CurTy = Type::getInt32Ty(Context); 2836 unsigned NextCstNo = ValueList.size(); 2837 while (1) { 2838 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2839 2840 switch (Entry.Kind) { 2841 case BitstreamEntry::SubBlock: // Handled for us already. 2842 case BitstreamEntry::Error: 2843 return error("Malformed block"); 2844 case BitstreamEntry::EndBlock: 2845 if (NextCstNo != ValueList.size()) 2846 return error("Invalid constant reference"); 2847 2848 // Once all the constants have been read, go through and resolve forward 2849 // references. 2850 ValueList.resolveConstantForwardRefs(); 2851 return std::error_code(); 2852 case BitstreamEntry::Record: 2853 // The interesting case. 2854 break; 2855 } 2856 2857 // Read a record. 2858 Record.clear(); 2859 Value *V = nullptr; 2860 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2861 switch (BitCode) { 2862 default: // Default behavior: unknown constant 2863 case bitc::CST_CODE_UNDEF: // UNDEF 2864 V = UndefValue::get(CurTy); 2865 break; 2866 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2867 if (Record.empty()) 2868 return error("Invalid record"); 2869 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2870 return error("Invalid record"); 2871 CurTy = TypeList[Record[0]]; 2872 continue; // Skip the ValueList manipulation. 2873 case bitc::CST_CODE_NULL: // NULL 2874 V = Constant::getNullValue(CurTy); 2875 break; 2876 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2877 if (!CurTy->isIntegerTy() || Record.empty()) 2878 return error("Invalid record"); 2879 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2880 break; 2881 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2882 if (!CurTy->isIntegerTy() || Record.empty()) 2883 return error("Invalid record"); 2884 2885 APInt VInt = 2886 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2887 V = ConstantInt::get(Context, VInt); 2888 2889 break; 2890 } 2891 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2892 if (Record.empty()) 2893 return error("Invalid record"); 2894 if (CurTy->isHalfTy()) 2895 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2896 APInt(16, (uint16_t)Record[0]))); 2897 else if (CurTy->isFloatTy()) 2898 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2899 APInt(32, (uint32_t)Record[0]))); 2900 else if (CurTy->isDoubleTy()) 2901 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2902 APInt(64, Record[0]))); 2903 else if (CurTy->isX86_FP80Ty()) { 2904 // Bits are not stored the same way as a normal i80 APInt, compensate. 2905 uint64_t Rearrange[2]; 2906 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2907 Rearrange[1] = Record[0] >> 48; 2908 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2909 APInt(80, Rearrange))); 2910 } else if (CurTy->isFP128Ty()) 2911 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2912 APInt(128, Record))); 2913 else if (CurTy->isPPC_FP128Ty()) 2914 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2915 APInt(128, Record))); 2916 else 2917 V = UndefValue::get(CurTy); 2918 break; 2919 } 2920 2921 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2922 if (Record.empty()) 2923 return error("Invalid record"); 2924 2925 unsigned Size = Record.size(); 2926 SmallVector<Constant*, 16> Elts; 2927 2928 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2929 for (unsigned i = 0; i != Size; ++i) 2930 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2931 STy->getElementType(i))); 2932 V = ConstantStruct::get(STy, Elts); 2933 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2934 Type *EltTy = ATy->getElementType(); 2935 for (unsigned i = 0; i != Size; ++i) 2936 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2937 V = ConstantArray::get(ATy, Elts); 2938 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2939 Type *EltTy = VTy->getElementType(); 2940 for (unsigned i = 0; i != Size; ++i) 2941 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2942 V = ConstantVector::get(Elts); 2943 } else { 2944 V = UndefValue::get(CurTy); 2945 } 2946 break; 2947 } 2948 case bitc::CST_CODE_STRING: // STRING: [values] 2949 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2950 if (Record.empty()) 2951 return error("Invalid record"); 2952 2953 SmallString<16> Elts(Record.begin(), Record.end()); 2954 V = ConstantDataArray::getString(Context, Elts, 2955 BitCode == bitc::CST_CODE_CSTRING); 2956 break; 2957 } 2958 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2959 if (Record.empty()) 2960 return error("Invalid record"); 2961 2962 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2963 if (EltTy->isIntegerTy(8)) { 2964 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2965 if (isa<VectorType>(CurTy)) 2966 V = ConstantDataVector::get(Context, Elts); 2967 else 2968 V = ConstantDataArray::get(Context, Elts); 2969 } else if (EltTy->isIntegerTy(16)) { 2970 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2971 if (isa<VectorType>(CurTy)) 2972 V = ConstantDataVector::get(Context, Elts); 2973 else 2974 V = ConstantDataArray::get(Context, Elts); 2975 } else if (EltTy->isIntegerTy(32)) { 2976 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2977 if (isa<VectorType>(CurTy)) 2978 V = ConstantDataVector::get(Context, Elts); 2979 else 2980 V = ConstantDataArray::get(Context, Elts); 2981 } else if (EltTy->isIntegerTy(64)) { 2982 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2983 if (isa<VectorType>(CurTy)) 2984 V = ConstantDataVector::get(Context, Elts); 2985 else 2986 V = ConstantDataArray::get(Context, Elts); 2987 } else if (EltTy->isHalfTy()) { 2988 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2989 if (isa<VectorType>(CurTy)) 2990 V = ConstantDataVector::getFP(Context, Elts); 2991 else 2992 V = ConstantDataArray::getFP(Context, Elts); 2993 } else if (EltTy->isFloatTy()) { 2994 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2995 if (isa<VectorType>(CurTy)) 2996 V = ConstantDataVector::getFP(Context, Elts); 2997 else 2998 V = ConstantDataArray::getFP(Context, Elts); 2999 } else if (EltTy->isDoubleTy()) { 3000 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3001 if (isa<VectorType>(CurTy)) 3002 V = ConstantDataVector::getFP(Context, Elts); 3003 else 3004 V = ConstantDataArray::getFP(Context, Elts); 3005 } else { 3006 return error("Invalid type for value"); 3007 } 3008 break; 3009 } 3010 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3011 if (Record.size() < 3) 3012 return error("Invalid record"); 3013 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3014 if (Opc < 0) { 3015 V = UndefValue::get(CurTy); // Unknown binop. 3016 } else { 3017 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3018 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3019 unsigned Flags = 0; 3020 if (Record.size() >= 4) { 3021 if (Opc == Instruction::Add || 3022 Opc == Instruction::Sub || 3023 Opc == Instruction::Mul || 3024 Opc == Instruction::Shl) { 3025 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3026 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3027 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3028 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3029 } else if (Opc == Instruction::SDiv || 3030 Opc == Instruction::UDiv || 3031 Opc == Instruction::LShr || 3032 Opc == Instruction::AShr) { 3033 if (Record[3] & (1 << bitc::PEO_EXACT)) 3034 Flags |= SDivOperator::IsExact; 3035 } 3036 } 3037 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3038 } 3039 break; 3040 } 3041 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3042 if (Record.size() < 3) 3043 return error("Invalid record"); 3044 int Opc = getDecodedCastOpcode(Record[0]); 3045 if (Opc < 0) { 3046 V = UndefValue::get(CurTy); // Unknown cast. 3047 } else { 3048 Type *OpTy = getTypeByID(Record[1]); 3049 if (!OpTy) 3050 return error("Invalid record"); 3051 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3052 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3053 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3054 } 3055 break; 3056 } 3057 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3058 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3059 unsigned OpNum = 0; 3060 Type *PointeeType = nullptr; 3061 if (Record.size() % 2) 3062 PointeeType = getTypeByID(Record[OpNum++]); 3063 SmallVector<Constant*, 16> Elts; 3064 while (OpNum != Record.size()) { 3065 Type *ElTy = getTypeByID(Record[OpNum++]); 3066 if (!ElTy) 3067 return error("Invalid record"); 3068 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3069 } 3070 3071 if (PointeeType && 3072 PointeeType != 3073 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3074 ->getElementType()) 3075 return error("Explicit gep operator type does not match pointee type " 3076 "of pointer operand"); 3077 3078 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3079 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3080 BitCode == 3081 bitc::CST_CODE_CE_INBOUNDS_GEP); 3082 break; 3083 } 3084 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3085 if (Record.size() < 3) 3086 return error("Invalid record"); 3087 3088 Type *SelectorTy = Type::getInt1Ty(Context); 3089 3090 // The selector might be an i1 or an <n x i1> 3091 // Get the type from the ValueList before getting a forward ref. 3092 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3093 if (Value *V = ValueList[Record[0]]) 3094 if (SelectorTy != V->getType()) 3095 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3096 3097 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3098 SelectorTy), 3099 ValueList.getConstantFwdRef(Record[1],CurTy), 3100 ValueList.getConstantFwdRef(Record[2],CurTy)); 3101 break; 3102 } 3103 case bitc::CST_CODE_CE_EXTRACTELT 3104 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3105 if (Record.size() < 3) 3106 return error("Invalid record"); 3107 VectorType *OpTy = 3108 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3109 if (!OpTy) 3110 return error("Invalid record"); 3111 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3112 Constant *Op1 = nullptr; 3113 if (Record.size() == 4) { 3114 Type *IdxTy = getTypeByID(Record[2]); 3115 if (!IdxTy) 3116 return error("Invalid record"); 3117 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3118 } else // TODO: Remove with llvm 4.0 3119 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3120 if (!Op1) 3121 return error("Invalid record"); 3122 V = ConstantExpr::getExtractElement(Op0, Op1); 3123 break; 3124 } 3125 case bitc::CST_CODE_CE_INSERTELT 3126 : { // CE_INSERTELT: [opval, opval, opty, opval] 3127 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3128 if (Record.size() < 3 || !OpTy) 3129 return error("Invalid record"); 3130 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3131 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3132 OpTy->getElementType()); 3133 Constant *Op2 = nullptr; 3134 if (Record.size() == 4) { 3135 Type *IdxTy = getTypeByID(Record[2]); 3136 if (!IdxTy) 3137 return error("Invalid record"); 3138 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3139 } else // TODO: Remove with llvm 4.0 3140 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3141 if (!Op2) 3142 return error("Invalid record"); 3143 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3144 break; 3145 } 3146 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3147 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3148 if (Record.size() < 3 || !OpTy) 3149 return error("Invalid record"); 3150 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3151 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3152 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3153 OpTy->getNumElements()); 3154 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3155 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3156 break; 3157 } 3158 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3159 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3160 VectorType *OpTy = 3161 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3162 if (Record.size() < 4 || !RTy || !OpTy) 3163 return error("Invalid record"); 3164 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3165 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3166 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3167 RTy->getNumElements()); 3168 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3169 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3170 break; 3171 } 3172 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3173 if (Record.size() < 4) 3174 return error("Invalid record"); 3175 Type *OpTy = getTypeByID(Record[0]); 3176 if (!OpTy) 3177 return error("Invalid record"); 3178 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3179 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3180 3181 if (OpTy->isFPOrFPVectorTy()) 3182 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3183 else 3184 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3185 break; 3186 } 3187 // This maintains backward compatibility, pre-asm dialect keywords. 3188 // FIXME: Remove with the 4.0 release. 3189 case bitc::CST_CODE_INLINEASM_OLD: { 3190 if (Record.size() < 2) 3191 return error("Invalid record"); 3192 std::string AsmStr, ConstrStr; 3193 bool HasSideEffects = Record[0] & 1; 3194 bool IsAlignStack = Record[0] >> 1; 3195 unsigned AsmStrSize = Record[1]; 3196 if (2+AsmStrSize >= Record.size()) 3197 return error("Invalid record"); 3198 unsigned ConstStrSize = Record[2+AsmStrSize]; 3199 if (3+AsmStrSize+ConstStrSize > Record.size()) 3200 return error("Invalid record"); 3201 3202 for (unsigned i = 0; i != AsmStrSize; ++i) 3203 AsmStr += (char)Record[2+i]; 3204 for (unsigned i = 0; i != ConstStrSize; ++i) 3205 ConstrStr += (char)Record[3+AsmStrSize+i]; 3206 PointerType *PTy = cast<PointerType>(CurTy); 3207 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3208 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3209 break; 3210 } 3211 // This version adds support for the asm dialect keywords (e.g., 3212 // inteldialect). 3213 case bitc::CST_CODE_INLINEASM: { 3214 if (Record.size() < 2) 3215 return error("Invalid record"); 3216 std::string AsmStr, ConstrStr; 3217 bool HasSideEffects = Record[0] & 1; 3218 bool IsAlignStack = (Record[0] >> 1) & 1; 3219 unsigned AsmDialect = Record[0] >> 2; 3220 unsigned AsmStrSize = Record[1]; 3221 if (2+AsmStrSize >= Record.size()) 3222 return error("Invalid record"); 3223 unsigned ConstStrSize = Record[2+AsmStrSize]; 3224 if (3+AsmStrSize+ConstStrSize > Record.size()) 3225 return error("Invalid record"); 3226 3227 for (unsigned i = 0; i != AsmStrSize; ++i) 3228 AsmStr += (char)Record[2+i]; 3229 for (unsigned i = 0; i != ConstStrSize; ++i) 3230 ConstrStr += (char)Record[3+AsmStrSize+i]; 3231 PointerType *PTy = cast<PointerType>(CurTy); 3232 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3233 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3234 InlineAsm::AsmDialect(AsmDialect)); 3235 break; 3236 } 3237 case bitc::CST_CODE_BLOCKADDRESS:{ 3238 if (Record.size() < 3) 3239 return error("Invalid record"); 3240 Type *FnTy = getTypeByID(Record[0]); 3241 if (!FnTy) 3242 return error("Invalid record"); 3243 Function *Fn = 3244 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3245 if (!Fn) 3246 return error("Invalid record"); 3247 3248 // If the function is already parsed we can insert the block address right 3249 // away. 3250 BasicBlock *BB; 3251 unsigned BBID = Record[2]; 3252 if (!BBID) 3253 // Invalid reference to entry block. 3254 return error("Invalid ID"); 3255 if (!Fn->empty()) { 3256 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3257 for (size_t I = 0, E = BBID; I != E; ++I) { 3258 if (BBI == BBE) 3259 return error("Invalid ID"); 3260 ++BBI; 3261 } 3262 BB = &*BBI; 3263 } else { 3264 // Otherwise insert a placeholder and remember it so it can be inserted 3265 // when the function is parsed. 3266 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3267 if (FwdBBs.empty()) 3268 BasicBlockFwdRefQueue.push_back(Fn); 3269 if (FwdBBs.size() < BBID + 1) 3270 FwdBBs.resize(BBID + 1); 3271 if (!FwdBBs[BBID]) 3272 FwdBBs[BBID] = BasicBlock::Create(Context); 3273 BB = FwdBBs[BBID]; 3274 } 3275 V = BlockAddress::get(Fn, BB); 3276 break; 3277 } 3278 } 3279 3280 ValueList.assignValue(V, NextCstNo); 3281 ++NextCstNo; 3282 } 3283 } 3284 3285 std::error_code BitcodeReader::parseUseLists() { 3286 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3287 return error("Invalid record"); 3288 3289 // Read all the records. 3290 SmallVector<uint64_t, 64> Record; 3291 while (1) { 3292 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3293 3294 switch (Entry.Kind) { 3295 case BitstreamEntry::SubBlock: // Handled for us already. 3296 case BitstreamEntry::Error: 3297 return error("Malformed block"); 3298 case BitstreamEntry::EndBlock: 3299 return std::error_code(); 3300 case BitstreamEntry::Record: 3301 // The interesting case. 3302 break; 3303 } 3304 3305 // Read a use list record. 3306 Record.clear(); 3307 bool IsBB = false; 3308 switch (Stream.readRecord(Entry.ID, Record)) { 3309 default: // Default behavior: unknown type. 3310 break; 3311 case bitc::USELIST_CODE_BB: 3312 IsBB = true; 3313 // fallthrough 3314 case bitc::USELIST_CODE_DEFAULT: { 3315 unsigned RecordLength = Record.size(); 3316 if (RecordLength < 3) 3317 // Records should have at least an ID and two indexes. 3318 return error("Invalid record"); 3319 unsigned ID = Record.back(); 3320 Record.pop_back(); 3321 3322 Value *V; 3323 if (IsBB) { 3324 assert(ID < FunctionBBs.size() && "Basic block not found"); 3325 V = FunctionBBs[ID]; 3326 } else 3327 V = ValueList[ID]; 3328 unsigned NumUses = 0; 3329 SmallDenseMap<const Use *, unsigned, 16> Order; 3330 for (const Use &U : V->materialized_uses()) { 3331 if (++NumUses > Record.size()) 3332 break; 3333 Order[&U] = Record[NumUses - 1]; 3334 } 3335 if (Order.size() != Record.size() || NumUses > Record.size()) 3336 // Mismatches can happen if the functions are being materialized lazily 3337 // (out-of-order), or a value has been upgraded. 3338 break; 3339 3340 V->sortUseList([&](const Use &L, const Use &R) { 3341 return Order.lookup(&L) < Order.lookup(&R); 3342 }); 3343 break; 3344 } 3345 } 3346 } 3347 } 3348 3349 /// When we see the block for metadata, remember where it is and then skip it. 3350 /// This lets us lazily deserialize the metadata. 3351 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3352 // Save the current stream state. 3353 uint64_t CurBit = Stream.GetCurrentBitNo(); 3354 DeferredMetadataInfo.push_back(CurBit); 3355 3356 // Skip over the block for now. 3357 if (Stream.SkipBlock()) 3358 return error("Invalid record"); 3359 return std::error_code(); 3360 } 3361 3362 std::error_code BitcodeReader::materializeMetadata() { 3363 for (uint64_t BitPos : DeferredMetadataInfo) { 3364 // Move the bit stream to the saved position. 3365 Stream.JumpToBit(BitPos); 3366 if (std::error_code EC = parseMetadata(true)) 3367 return EC; 3368 } 3369 DeferredMetadataInfo.clear(); 3370 return std::error_code(); 3371 } 3372 3373 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3374 3375 /// When we see the block for a function body, remember where it is and then 3376 /// skip it. This lets us lazily deserialize the functions. 3377 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3378 // Get the function we are talking about. 3379 if (FunctionsWithBodies.empty()) 3380 return error("Insufficient function protos"); 3381 3382 Function *Fn = FunctionsWithBodies.back(); 3383 FunctionsWithBodies.pop_back(); 3384 3385 // Save the current stream state. 3386 uint64_t CurBit = Stream.GetCurrentBitNo(); 3387 assert( 3388 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3389 "Mismatch between VST and scanned function offsets"); 3390 DeferredFunctionInfo[Fn] = CurBit; 3391 3392 // Skip over the function block for now. 3393 if (Stream.SkipBlock()) 3394 return error("Invalid record"); 3395 return std::error_code(); 3396 } 3397 3398 std::error_code BitcodeReader::globalCleanup() { 3399 // Patch the initializers for globals and aliases up. 3400 resolveGlobalAndIndirectSymbolInits(); 3401 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3402 return error("Malformed global initializer set"); 3403 3404 // Look for intrinsic functions which need to be upgraded at some point 3405 for (Function &F : *TheModule) { 3406 Function *NewFn; 3407 if (UpgradeIntrinsicFunction(&F, NewFn)) 3408 UpgradedIntrinsics[&F] = NewFn; 3409 } 3410 3411 // Look for global variables which need to be renamed. 3412 for (GlobalVariable &GV : TheModule->globals()) 3413 UpgradeGlobalVariable(&GV); 3414 3415 // Force deallocation of memory for these vectors to favor the client that 3416 // want lazy deserialization. 3417 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3418 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3419 IndirectSymbolInits); 3420 return std::error_code(); 3421 } 3422 3423 /// Support for lazy parsing of function bodies. This is required if we 3424 /// either have an old bitcode file without a VST forward declaration record, 3425 /// or if we have an anonymous function being materialized, since anonymous 3426 /// functions do not have a name and are therefore not in the VST. 3427 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3428 Stream.JumpToBit(NextUnreadBit); 3429 3430 if (Stream.AtEndOfStream()) 3431 return error("Could not find function in stream"); 3432 3433 if (!SeenFirstFunctionBody) 3434 return error("Trying to materialize functions before seeing function blocks"); 3435 3436 // An old bitcode file with the symbol table at the end would have 3437 // finished the parse greedily. 3438 assert(SeenValueSymbolTable); 3439 3440 SmallVector<uint64_t, 64> Record; 3441 3442 while (1) { 3443 BitstreamEntry Entry = Stream.advance(); 3444 switch (Entry.Kind) { 3445 default: 3446 return error("Expect SubBlock"); 3447 case BitstreamEntry::SubBlock: 3448 switch (Entry.ID) { 3449 default: 3450 return error("Expect function block"); 3451 case bitc::FUNCTION_BLOCK_ID: 3452 if (std::error_code EC = rememberAndSkipFunctionBody()) 3453 return EC; 3454 NextUnreadBit = Stream.GetCurrentBitNo(); 3455 return std::error_code(); 3456 } 3457 } 3458 } 3459 } 3460 3461 std::error_code BitcodeReader::parseBitcodeVersion() { 3462 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3463 return error("Invalid record"); 3464 3465 // Read all the records. 3466 SmallVector<uint64_t, 64> Record; 3467 while (1) { 3468 BitstreamEntry Entry = Stream.advance(); 3469 3470 switch (Entry.Kind) { 3471 default: 3472 case BitstreamEntry::Error: 3473 return error("Malformed block"); 3474 case BitstreamEntry::EndBlock: 3475 return std::error_code(); 3476 case BitstreamEntry::Record: 3477 // The interesting case. 3478 break; 3479 } 3480 3481 // Read a record. 3482 Record.clear(); 3483 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3484 switch (BitCode) { 3485 default: // Default behavior: reject 3486 return error("Invalid value"); 3487 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3488 // N] 3489 convertToString(Record, 0, ProducerIdentification); 3490 break; 3491 } 3492 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3493 unsigned epoch = (unsigned)Record[0]; 3494 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3495 return error( 3496 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3497 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3498 } 3499 } 3500 } 3501 } 3502 } 3503 3504 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3505 bool ShouldLazyLoadMetadata) { 3506 if (ResumeBit) 3507 Stream.JumpToBit(ResumeBit); 3508 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3509 return error("Invalid record"); 3510 3511 SmallVector<uint64_t, 64> Record; 3512 std::vector<std::string> SectionTable; 3513 std::vector<std::string> GCTable; 3514 3515 // Read all the records for this module. 3516 while (1) { 3517 BitstreamEntry Entry = Stream.advance(); 3518 3519 switch (Entry.Kind) { 3520 case BitstreamEntry::Error: 3521 return error("Malformed block"); 3522 case BitstreamEntry::EndBlock: 3523 return globalCleanup(); 3524 3525 case BitstreamEntry::SubBlock: 3526 switch (Entry.ID) { 3527 default: // Skip unknown content. 3528 if (Stream.SkipBlock()) 3529 return error("Invalid record"); 3530 break; 3531 case bitc::BLOCKINFO_BLOCK_ID: 3532 if (Stream.ReadBlockInfoBlock()) 3533 return error("Malformed block"); 3534 break; 3535 case bitc::PARAMATTR_BLOCK_ID: 3536 if (std::error_code EC = parseAttributeBlock()) 3537 return EC; 3538 break; 3539 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3540 if (std::error_code EC = parseAttributeGroupBlock()) 3541 return EC; 3542 break; 3543 case bitc::TYPE_BLOCK_ID_NEW: 3544 if (std::error_code EC = parseTypeTable()) 3545 return EC; 3546 break; 3547 case bitc::VALUE_SYMTAB_BLOCK_ID: 3548 if (!SeenValueSymbolTable) { 3549 // Either this is an old form VST without function index and an 3550 // associated VST forward declaration record (which would have caused 3551 // the VST to be jumped to and parsed before it was encountered 3552 // normally in the stream), or there were no function blocks to 3553 // trigger an earlier parsing of the VST. 3554 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3555 if (std::error_code EC = parseValueSymbolTable()) 3556 return EC; 3557 SeenValueSymbolTable = true; 3558 } else { 3559 // We must have had a VST forward declaration record, which caused 3560 // the parser to jump to and parse the VST earlier. 3561 assert(VSTOffset > 0); 3562 if (Stream.SkipBlock()) 3563 return error("Invalid record"); 3564 } 3565 break; 3566 case bitc::CONSTANTS_BLOCK_ID: 3567 if (std::error_code EC = parseConstants()) 3568 return EC; 3569 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3570 return EC; 3571 break; 3572 case bitc::METADATA_BLOCK_ID: 3573 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3574 if (std::error_code EC = rememberAndSkipMetadata()) 3575 return EC; 3576 break; 3577 } 3578 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3579 if (std::error_code EC = parseMetadata(true)) 3580 return EC; 3581 break; 3582 case bitc::METADATA_KIND_BLOCK_ID: 3583 if (std::error_code EC = parseMetadataKinds()) 3584 return EC; 3585 break; 3586 case bitc::FUNCTION_BLOCK_ID: 3587 // If this is the first function body we've seen, reverse the 3588 // FunctionsWithBodies list. 3589 if (!SeenFirstFunctionBody) { 3590 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3591 if (std::error_code EC = globalCleanup()) 3592 return EC; 3593 SeenFirstFunctionBody = true; 3594 } 3595 3596 if (VSTOffset > 0) { 3597 // If we have a VST forward declaration record, make sure we 3598 // parse the VST now if we haven't already. It is needed to 3599 // set up the DeferredFunctionInfo vector for lazy reading. 3600 if (!SeenValueSymbolTable) { 3601 if (std::error_code EC = 3602 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3603 return EC; 3604 SeenValueSymbolTable = true; 3605 // Fall through so that we record the NextUnreadBit below. 3606 // This is necessary in case we have an anonymous function that 3607 // is later materialized. Since it will not have a VST entry we 3608 // need to fall back to the lazy parse to find its offset. 3609 } else { 3610 // If we have a VST forward declaration record, but have already 3611 // parsed the VST (just above, when the first function body was 3612 // encountered here), then we are resuming the parse after 3613 // materializing functions. The ResumeBit points to the 3614 // start of the last function block recorded in the 3615 // DeferredFunctionInfo map. Skip it. 3616 if (Stream.SkipBlock()) 3617 return error("Invalid record"); 3618 continue; 3619 } 3620 } 3621 3622 // Support older bitcode files that did not have the function 3623 // index in the VST, nor a VST forward declaration record, as 3624 // well as anonymous functions that do not have VST entries. 3625 // Build the DeferredFunctionInfo vector on the fly. 3626 if (std::error_code EC = rememberAndSkipFunctionBody()) 3627 return EC; 3628 3629 // Suspend parsing when we reach the function bodies. Subsequent 3630 // materialization calls will resume it when necessary. If the bitcode 3631 // file is old, the symbol table will be at the end instead and will not 3632 // have been seen yet. In this case, just finish the parse now. 3633 if (SeenValueSymbolTable) { 3634 NextUnreadBit = Stream.GetCurrentBitNo(); 3635 return std::error_code(); 3636 } 3637 break; 3638 case bitc::USELIST_BLOCK_ID: 3639 if (std::error_code EC = parseUseLists()) 3640 return EC; 3641 break; 3642 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3643 if (std::error_code EC = parseOperandBundleTags()) 3644 return EC; 3645 break; 3646 } 3647 continue; 3648 3649 case BitstreamEntry::Record: 3650 // The interesting case. 3651 break; 3652 } 3653 3654 // Read a record. 3655 auto BitCode = Stream.readRecord(Entry.ID, Record); 3656 switch (BitCode) { 3657 default: break; // Default behavior, ignore unknown content. 3658 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3659 if (Record.size() < 1) 3660 return error("Invalid record"); 3661 // Only version #0 and #1 are supported so far. 3662 unsigned module_version = Record[0]; 3663 switch (module_version) { 3664 default: 3665 return error("Invalid value"); 3666 case 0: 3667 UseRelativeIDs = false; 3668 break; 3669 case 1: 3670 UseRelativeIDs = true; 3671 break; 3672 } 3673 break; 3674 } 3675 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3676 std::string S; 3677 if (convertToString(Record, 0, S)) 3678 return error("Invalid record"); 3679 TheModule->setTargetTriple(S); 3680 break; 3681 } 3682 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3683 std::string S; 3684 if (convertToString(Record, 0, S)) 3685 return error("Invalid record"); 3686 TheModule->setDataLayout(S); 3687 break; 3688 } 3689 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3690 std::string S; 3691 if (convertToString(Record, 0, S)) 3692 return error("Invalid record"); 3693 TheModule->setModuleInlineAsm(S); 3694 break; 3695 } 3696 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3697 // FIXME: Remove in 4.0. 3698 std::string S; 3699 if (convertToString(Record, 0, S)) 3700 return error("Invalid record"); 3701 // Ignore value. 3702 break; 3703 } 3704 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3705 std::string S; 3706 if (convertToString(Record, 0, S)) 3707 return error("Invalid record"); 3708 SectionTable.push_back(S); 3709 break; 3710 } 3711 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3712 std::string S; 3713 if (convertToString(Record, 0, S)) 3714 return error("Invalid record"); 3715 GCTable.push_back(S); 3716 break; 3717 } 3718 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3719 if (Record.size() < 2) 3720 return error("Invalid record"); 3721 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3722 unsigned ComdatNameSize = Record[1]; 3723 std::string ComdatName; 3724 ComdatName.reserve(ComdatNameSize); 3725 for (unsigned i = 0; i != ComdatNameSize; ++i) 3726 ComdatName += (char)Record[2 + i]; 3727 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3728 C->setSelectionKind(SK); 3729 ComdatList.push_back(C); 3730 break; 3731 } 3732 // GLOBALVAR: [pointer type, isconst, initid, 3733 // linkage, alignment, section, visibility, threadlocal, 3734 // unnamed_addr, externally_initialized, dllstorageclass, 3735 // comdat] 3736 case bitc::MODULE_CODE_GLOBALVAR: { 3737 if (Record.size() < 6) 3738 return error("Invalid record"); 3739 Type *Ty = getTypeByID(Record[0]); 3740 if (!Ty) 3741 return error("Invalid record"); 3742 bool isConstant = Record[1] & 1; 3743 bool explicitType = Record[1] & 2; 3744 unsigned AddressSpace; 3745 if (explicitType) { 3746 AddressSpace = Record[1] >> 2; 3747 } else { 3748 if (!Ty->isPointerTy()) 3749 return error("Invalid type for value"); 3750 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3751 Ty = cast<PointerType>(Ty)->getElementType(); 3752 } 3753 3754 uint64_t RawLinkage = Record[3]; 3755 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3756 unsigned Alignment; 3757 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3758 return EC; 3759 std::string Section; 3760 if (Record[5]) { 3761 if (Record[5]-1 >= SectionTable.size()) 3762 return error("Invalid ID"); 3763 Section = SectionTable[Record[5]-1]; 3764 } 3765 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3766 // Local linkage must have default visibility. 3767 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3768 // FIXME: Change to an error if non-default in 4.0. 3769 Visibility = getDecodedVisibility(Record[6]); 3770 3771 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3772 if (Record.size() > 7) 3773 TLM = getDecodedThreadLocalMode(Record[7]); 3774 3775 bool UnnamedAddr = false; 3776 if (Record.size() > 8) 3777 UnnamedAddr = Record[8]; 3778 3779 bool ExternallyInitialized = false; 3780 if (Record.size() > 9) 3781 ExternallyInitialized = Record[9]; 3782 3783 GlobalVariable *NewGV = 3784 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3785 TLM, AddressSpace, ExternallyInitialized); 3786 NewGV->setAlignment(Alignment); 3787 if (!Section.empty()) 3788 NewGV->setSection(Section); 3789 NewGV->setVisibility(Visibility); 3790 NewGV->setUnnamedAddr(UnnamedAddr); 3791 3792 if (Record.size() > 10) 3793 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3794 else 3795 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3796 3797 ValueList.push_back(NewGV); 3798 3799 // Remember which value to use for the global initializer. 3800 if (unsigned InitID = Record[2]) 3801 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3802 3803 if (Record.size() > 11) { 3804 if (unsigned ComdatID = Record[11]) { 3805 if (ComdatID > ComdatList.size()) 3806 return error("Invalid global variable comdat ID"); 3807 NewGV->setComdat(ComdatList[ComdatID - 1]); 3808 } 3809 } else if (hasImplicitComdat(RawLinkage)) { 3810 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3811 } 3812 break; 3813 } 3814 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3815 // alignment, section, visibility, gc, unnamed_addr, 3816 // prologuedata, dllstorageclass, comdat, prefixdata] 3817 case bitc::MODULE_CODE_FUNCTION: { 3818 if (Record.size() < 8) 3819 return error("Invalid record"); 3820 Type *Ty = getTypeByID(Record[0]); 3821 if (!Ty) 3822 return error("Invalid record"); 3823 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3824 Ty = PTy->getElementType(); 3825 auto *FTy = dyn_cast<FunctionType>(Ty); 3826 if (!FTy) 3827 return error("Invalid type for value"); 3828 auto CC = static_cast<CallingConv::ID>(Record[1]); 3829 if (CC & ~CallingConv::MaxID) 3830 return error("Invalid calling convention ID"); 3831 3832 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3833 "", TheModule); 3834 3835 Func->setCallingConv(CC); 3836 bool isProto = Record[2]; 3837 uint64_t RawLinkage = Record[3]; 3838 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3839 Func->setAttributes(getAttributes(Record[4])); 3840 3841 unsigned Alignment; 3842 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3843 return EC; 3844 Func->setAlignment(Alignment); 3845 if (Record[6]) { 3846 if (Record[6]-1 >= SectionTable.size()) 3847 return error("Invalid ID"); 3848 Func->setSection(SectionTable[Record[6]-1]); 3849 } 3850 // Local linkage must have default visibility. 3851 if (!Func->hasLocalLinkage()) 3852 // FIXME: Change to an error if non-default in 4.0. 3853 Func->setVisibility(getDecodedVisibility(Record[7])); 3854 if (Record.size() > 8 && Record[8]) { 3855 if (Record[8]-1 >= GCTable.size()) 3856 return error("Invalid ID"); 3857 Func->setGC(GCTable[Record[8]-1].c_str()); 3858 } 3859 bool UnnamedAddr = false; 3860 if (Record.size() > 9) 3861 UnnamedAddr = Record[9]; 3862 Func->setUnnamedAddr(UnnamedAddr); 3863 if (Record.size() > 10 && Record[10] != 0) 3864 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3865 3866 if (Record.size() > 11) 3867 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3868 else 3869 upgradeDLLImportExportLinkage(Func, RawLinkage); 3870 3871 if (Record.size() > 12) { 3872 if (unsigned ComdatID = Record[12]) { 3873 if (ComdatID > ComdatList.size()) 3874 return error("Invalid function comdat ID"); 3875 Func->setComdat(ComdatList[ComdatID - 1]); 3876 } 3877 } else if (hasImplicitComdat(RawLinkage)) { 3878 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3879 } 3880 3881 if (Record.size() > 13 && Record[13] != 0) 3882 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3883 3884 if (Record.size() > 14 && Record[14] != 0) 3885 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3886 3887 ValueList.push_back(Func); 3888 3889 // If this is a function with a body, remember the prototype we are 3890 // creating now, so that we can match up the body with them later. 3891 if (!isProto) { 3892 Func->setIsMaterializable(true); 3893 FunctionsWithBodies.push_back(Func); 3894 DeferredFunctionInfo[Func] = 0; 3895 } 3896 break; 3897 } 3898 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3899 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3900 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3901 case bitc::MODULE_CODE_IFUNC: 3902 case bitc::MODULE_CODE_ALIAS: 3903 case bitc::MODULE_CODE_ALIAS_OLD: { 3904 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3905 if (Record.size() < (3 + (unsigned)NewRecord)) 3906 return error("Invalid record"); 3907 unsigned OpNum = 0; 3908 Type *Ty = getTypeByID(Record[OpNum++]); 3909 if (!Ty) 3910 return error("Invalid record"); 3911 3912 unsigned AddrSpace; 3913 if (!NewRecord) { 3914 auto *PTy = dyn_cast<PointerType>(Ty); 3915 if (!PTy) 3916 return error("Invalid type for value"); 3917 Ty = PTy->getElementType(); 3918 AddrSpace = PTy->getAddressSpace(); 3919 } else { 3920 AddrSpace = Record[OpNum++]; 3921 } 3922 3923 auto Val = Record[OpNum++]; 3924 auto Linkage = Record[OpNum++]; 3925 GlobalIndirectSymbol *NewGA; 3926 if (BitCode == bitc::MODULE_CODE_ALIAS || 3927 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3928 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3929 "", TheModule); 3930 else 3931 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3932 "", nullptr, TheModule); 3933 // Old bitcode files didn't have visibility field. 3934 // Local linkage must have default visibility. 3935 if (OpNum != Record.size()) { 3936 auto VisInd = OpNum++; 3937 if (!NewGA->hasLocalLinkage()) 3938 // FIXME: Change to an error if non-default in 4.0. 3939 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3940 } 3941 if (OpNum != Record.size()) 3942 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3943 else 3944 upgradeDLLImportExportLinkage(NewGA, Linkage); 3945 if (OpNum != Record.size()) 3946 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3947 if (OpNum != Record.size()) 3948 NewGA->setUnnamedAddr(Record[OpNum++]); 3949 ValueList.push_back(NewGA); 3950 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3951 break; 3952 } 3953 /// MODULE_CODE_PURGEVALS: [numvals] 3954 case bitc::MODULE_CODE_PURGEVALS: 3955 // Trim down the value list to the specified size. 3956 if (Record.size() < 1 || Record[0] > ValueList.size()) 3957 return error("Invalid record"); 3958 ValueList.shrinkTo(Record[0]); 3959 break; 3960 /// MODULE_CODE_VSTOFFSET: [offset] 3961 case bitc::MODULE_CODE_VSTOFFSET: 3962 if (Record.size() < 1) 3963 return error("Invalid record"); 3964 VSTOffset = Record[0]; 3965 break; 3966 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3967 case bitc::MODULE_CODE_SOURCE_FILENAME: 3968 SmallString<128> ValueName; 3969 if (convertToString(Record, 0, ValueName)) 3970 return error("Invalid record"); 3971 TheModule->setSourceFileName(ValueName); 3972 break; 3973 } 3974 Record.clear(); 3975 } 3976 } 3977 3978 /// Helper to read the header common to all bitcode files. 3979 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3980 // Sniff for the signature. 3981 if (Stream.Read(8) != 'B' || 3982 Stream.Read(8) != 'C' || 3983 Stream.Read(4) != 0x0 || 3984 Stream.Read(4) != 0xC || 3985 Stream.Read(4) != 0xE || 3986 Stream.Read(4) != 0xD) 3987 return false; 3988 return true; 3989 } 3990 3991 std::error_code 3992 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3993 Module *M, bool ShouldLazyLoadMetadata) { 3994 TheModule = M; 3995 3996 if (std::error_code EC = initStream(std::move(Streamer))) 3997 return EC; 3998 3999 // Sniff for the signature. 4000 if (!hasValidBitcodeHeader(Stream)) 4001 return error("Invalid bitcode signature"); 4002 4003 // We expect a number of well-defined blocks, though we don't necessarily 4004 // need to understand them all. 4005 while (1) { 4006 if (Stream.AtEndOfStream()) { 4007 // We didn't really read a proper Module. 4008 return error("Malformed IR file"); 4009 } 4010 4011 BitstreamEntry Entry = 4012 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4013 4014 if (Entry.Kind != BitstreamEntry::SubBlock) 4015 return error("Malformed block"); 4016 4017 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4018 parseBitcodeVersion(); 4019 continue; 4020 } 4021 4022 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4023 return parseModule(0, ShouldLazyLoadMetadata); 4024 4025 if (Stream.SkipBlock()) 4026 return error("Invalid record"); 4027 } 4028 } 4029 4030 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4031 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4032 return error("Invalid record"); 4033 4034 SmallVector<uint64_t, 64> Record; 4035 4036 std::string Triple; 4037 // Read all the records for this module. 4038 while (1) { 4039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4040 4041 switch (Entry.Kind) { 4042 case BitstreamEntry::SubBlock: // Handled for us already. 4043 case BitstreamEntry::Error: 4044 return error("Malformed block"); 4045 case BitstreamEntry::EndBlock: 4046 return Triple; 4047 case BitstreamEntry::Record: 4048 // The interesting case. 4049 break; 4050 } 4051 4052 // Read a record. 4053 switch (Stream.readRecord(Entry.ID, Record)) { 4054 default: break; // Default behavior, ignore unknown content. 4055 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4056 std::string S; 4057 if (convertToString(Record, 0, S)) 4058 return error("Invalid record"); 4059 Triple = S; 4060 break; 4061 } 4062 } 4063 Record.clear(); 4064 } 4065 llvm_unreachable("Exit infinite loop"); 4066 } 4067 4068 ErrorOr<std::string> BitcodeReader::parseTriple() { 4069 if (std::error_code EC = initStream(nullptr)) 4070 return EC; 4071 4072 // Sniff for the signature. 4073 if (!hasValidBitcodeHeader(Stream)) 4074 return error("Invalid bitcode signature"); 4075 4076 // We expect a number of well-defined blocks, though we don't necessarily 4077 // need to understand them all. 4078 while (1) { 4079 BitstreamEntry Entry = Stream.advance(); 4080 4081 switch (Entry.Kind) { 4082 case BitstreamEntry::Error: 4083 return error("Malformed block"); 4084 case BitstreamEntry::EndBlock: 4085 return std::error_code(); 4086 4087 case BitstreamEntry::SubBlock: 4088 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4089 return parseModuleTriple(); 4090 4091 // Ignore other sub-blocks. 4092 if (Stream.SkipBlock()) 4093 return error("Malformed block"); 4094 continue; 4095 4096 case BitstreamEntry::Record: 4097 Stream.skipRecord(Entry.ID); 4098 continue; 4099 } 4100 } 4101 } 4102 4103 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4104 if (std::error_code EC = initStream(nullptr)) 4105 return EC; 4106 4107 // Sniff for the signature. 4108 if (!hasValidBitcodeHeader(Stream)) 4109 return error("Invalid bitcode signature"); 4110 4111 // We expect a number of well-defined blocks, though we don't necessarily 4112 // need to understand them all. 4113 while (1) { 4114 BitstreamEntry Entry = Stream.advance(); 4115 switch (Entry.Kind) { 4116 case BitstreamEntry::Error: 4117 return error("Malformed block"); 4118 case BitstreamEntry::EndBlock: 4119 return std::error_code(); 4120 4121 case BitstreamEntry::SubBlock: 4122 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4123 if (std::error_code EC = parseBitcodeVersion()) 4124 return EC; 4125 return ProducerIdentification; 4126 } 4127 // Ignore other sub-blocks. 4128 if (Stream.SkipBlock()) 4129 return error("Malformed block"); 4130 continue; 4131 case BitstreamEntry::Record: 4132 Stream.skipRecord(Entry.ID); 4133 continue; 4134 } 4135 } 4136 } 4137 4138 /// Parse metadata attachments. 4139 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4140 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4141 return error("Invalid record"); 4142 4143 SmallVector<uint64_t, 64> Record; 4144 while (1) { 4145 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4146 4147 switch (Entry.Kind) { 4148 case BitstreamEntry::SubBlock: // Handled for us already. 4149 case BitstreamEntry::Error: 4150 return error("Malformed block"); 4151 case BitstreamEntry::EndBlock: 4152 return std::error_code(); 4153 case BitstreamEntry::Record: 4154 // The interesting case. 4155 break; 4156 } 4157 4158 // Read a metadata attachment record. 4159 Record.clear(); 4160 switch (Stream.readRecord(Entry.ID, Record)) { 4161 default: // Default behavior: ignore. 4162 break; 4163 case bitc::METADATA_ATTACHMENT: { 4164 unsigned RecordLength = Record.size(); 4165 if (Record.empty()) 4166 return error("Invalid record"); 4167 if (RecordLength % 2 == 0) { 4168 // A function attachment. 4169 for (unsigned I = 0; I != RecordLength; I += 2) { 4170 auto K = MDKindMap.find(Record[I]); 4171 if (K == MDKindMap.end()) 4172 return error("Invalid ID"); 4173 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4174 if (!MD) 4175 return error("Invalid metadata attachment"); 4176 F.setMetadata(K->second, MD); 4177 } 4178 continue; 4179 } 4180 4181 // An instruction attachment. 4182 Instruction *Inst = InstructionList[Record[0]]; 4183 for (unsigned i = 1; i != RecordLength; i = i+2) { 4184 unsigned Kind = Record[i]; 4185 DenseMap<unsigned, unsigned>::iterator I = 4186 MDKindMap.find(Kind); 4187 if (I == MDKindMap.end()) 4188 return error("Invalid ID"); 4189 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4190 if (isa<LocalAsMetadata>(Node)) 4191 // Drop the attachment. This used to be legal, but there's no 4192 // upgrade path. 4193 break; 4194 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4195 if (!MD) 4196 return error("Invalid metadata attachment"); 4197 4198 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4199 MD = upgradeInstructionLoopAttachment(*MD); 4200 4201 Inst->setMetadata(I->second, MD); 4202 if (I->second == LLVMContext::MD_tbaa) { 4203 InstsWithTBAATag.push_back(Inst); 4204 continue; 4205 } 4206 } 4207 break; 4208 } 4209 } 4210 } 4211 } 4212 4213 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4214 LLVMContext &Context = PtrType->getContext(); 4215 if (!isa<PointerType>(PtrType)) 4216 return error(Context, "Load/Store operand is not a pointer type"); 4217 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4218 4219 if (ValType && ValType != ElemType) 4220 return error(Context, "Explicit load/store type does not match pointee " 4221 "type of pointer operand"); 4222 if (!PointerType::isLoadableOrStorableType(ElemType)) 4223 return error(Context, "Cannot load/store from pointer"); 4224 return std::error_code(); 4225 } 4226 4227 /// Lazily parse the specified function body block. 4228 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4229 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4230 return error("Invalid record"); 4231 4232 // Unexpected unresolved metadata when parsing function. 4233 if (MetadataList.hasFwdRefs()) 4234 return error("Invalid function metadata: incoming forward references"); 4235 4236 InstructionList.clear(); 4237 unsigned ModuleValueListSize = ValueList.size(); 4238 unsigned ModuleMetadataListSize = MetadataList.size(); 4239 4240 // Add all the function arguments to the value table. 4241 for (Argument &I : F->args()) 4242 ValueList.push_back(&I); 4243 4244 unsigned NextValueNo = ValueList.size(); 4245 BasicBlock *CurBB = nullptr; 4246 unsigned CurBBNo = 0; 4247 4248 DebugLoc LastLoc; 4249 auto getLastInstruction = [&]() -> Instruction * { 4250 if (CurBB && !CurBB->empty()) 4251 return &CurBB->back(); 4252 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4253 !FunctionBBs[CurBBNo - 1]->empty()) 4254 return &FunctionBBs[CurBBNo - 1]->back(); 4255 return nullptr; 4256 }; 4257 4258 std::vector<OperandBundleDef> OperandBundles; 4259 4260 // Read all the records. 4261 SmallVector<uint64_t, 64> Record; 4262 while (1) { 4263 BitstreamEntry Entry = Stream.advance(); 4264 4265 switch (Entry.Kind) { 4266 case BitstreamEntry::Error: 4267 return error("Malformed block"); 4268 case BitstreamEntry::EndBlock: 4269 goto OutOfRecordLoop; 4270 4271 case BitstreamEntry::SubBlock: 4272 switch (Entry.ID) { 4273 default: // Skip unknown content. 4274 if (Stream.SkipBlock()) 4275 return error("Invalid record"); 4276 break; 4277 case bitc::CONSTANTS_BLOCK_ID: 4278 if (std::error_code EC = parseConstants()) 4279 return EC; 4280 NextValueNo = ValueList.size(); 4281 break; 4282 case bitc::VALUE_SYMTAB_BLOCK_ID: 4283 if (std::error_code EC = parseValueSymbolTable()) 4284 return EC; 4285 break; 4286 case bitc::METADATA_ATTACHMENT_ID: 4287 if (std::error_code EC = parseMetadataAttachment(*F)) 4288 return EC; 4289 break; 4290 case bitc::METADATA_BLOCK_ID: 4291 if (std::error_code EC = parseMetadata()) 4292 return EC; 4293 break; 4294 case bitc::USELIST_BLOCK_ID: 4295 if (std::error_code EC = parseUseLists()) 4296 return EC; 4297 break; 4298 } 4299 continue; 4300 4301 case BitstreamEntry::Record: 4302 // The interesting case. 4303 break; 4304 } 4305 4306 // Read a record. 4307 Record.clear(); 4308 Instruction *I = nullptr; 4309 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4310 switch (BitCode) { 4311 default: // Default behavior: reject 4312 return error("Invalid value"); 4313 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4314 if (Record.size() < 1 || Record[0] == 0) 4315 return error("Invalid record"); 4316 // Create all the basic blocks for the function. 4317 FunctionBBs.resize(Record[0]); 4318 4319 // See if anything took the address of blocks in this function. 4320 auto BBFRI = BasicBlockFwdRefs.find(F); 4321 if (BBFRI == BasicBlockFwdRefs.end()) { 4322 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4323 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4324 } else { 4325 auto &BBRefs = BBFRI->second; 4326 // Check for invalid basic block references. 4327 if (BBRefs.size() > FunctionBBs.size()) 4328 return error("Invalid ID"); 4329 assert(!BBRefs.empty() && "Unexpected empty array"); 4330 assert(!BBRefs.front() && "Invalid reference to entry block"); 4331 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4332 ++I) 4333 if (I < RE && BBRefs[I]) { 4334 BBRefs[I]->insertInto(F); 4335 FunctionBBs[I] = BBRefs[I]; 4336 } else { 4337 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4338 } 4339 4340 // Erase from the table. 4341 BasicBlockFwdRefs.erase(BBFRI); 4342 } 4343 4344 CurBB = FunctionBBs[0]; 4345 continue; 4346 } 4347 4348 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4349 // This record indicates that the last instruction is at the same 4350 // location as the previous instruction with a location. 4351 I = getLastInstruction(); 4352 4353 if (!I) 4354 return error("Invalid record"); 4355 I->setDebugLoc(LastLoc); 4356 I = nullptr; 4357 continue; 4358 4359 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4360 I = getLastInstruction(); 4361 if (!I || Record.size() < 4) 4362 return error("Invalid record"); 4363 4364 unsigned Line = Record[0], Col = Record[1]; 4365 unsigned ScopeID = Record[2], IAID = Record[3]; 4366 4367 MDNode *Scope = nullptr, *IA = nullptr; 4368 if (ScopeID) { 4369 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4370 if (!Scope) 4371 return error("Invalid record"); 4372 } 4373 if (IAID) { 4374 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4375 if (!IA) 4376 return error("Invalid record"); 4377 } 4378 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4379 I->setDebugLoc(LastLoc); 4380 I = nullptr; 4381 continue; 4382 } 4383 4384 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4385 unsigned OpNum = 0; 4386 Value *LHS, *RHS; 4387 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4388 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4389 OpNum+1 > Record.size()) 4390 return error("Invalid record"); 4391 4392 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4393 if (Opc == -1) 4394 return error("Invalid record"); 4395 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4396 InstructionList.push_back(I); 4397 if (OpNum < Record.size()) { 4398 if (Opc == Instruction::Add || 4399 Opc == Instruction::Sub || 4400 Opc == Instruction::Mul || 4401 Opc == Instruction::Shl) { 4402 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4403 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4404 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4405 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4406 } else if (Opc == Instruction::SDiv || 4407 Opc == Instruction::UDiv || 4408 Opc == Instruction::LShr || 4409 Opc == Instruction::AShr) { 4410 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4411 cast<BinaryOperator>(I)->setIsExact(true); 4412 } else if (isa<FPMathOperator>(I)) { 4413 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4414 if (FMF.any()) 4415 I->setFastMathFlags(FMF); 4416 } 4417 4418 } 4419 break; 4420 } 4421 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4422 unsigned OpNum = 0; 4423 Value *Op; 4424 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4425 OpNum+2 != Record.size()) 4426 return error("Invalid record"); 4427 4428 Type *ResTy = getTypeByID(Record[OpNum]); 4429 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4430 if (Opc == -1 || !ResTy) 4431 return error("Invalid record"); 4432 Instruction *Temp = nullptr; 4433 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4434 if (Temp) { 4435 InstructionList.push_back(Temp); 4436 CurBB->getInstList().push_back(Temp); 4437 } 4438 } else { 4439 auto CastOp = (Instruction::CastOps)Opc; 4440 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4441 return error("Invalid cast"); 4442 I = CastInst::Create(CastOp, Op, ResTy); 4443 } 4444 InstructionList.push_back(I); 4445 break; 4446 } 4447 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4448 case bitc::FUNC_CODE_INST_GEP_OLD: 4449 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4450 unsigned OpNum = 0; 4451 4452 Type *Ty; 4453 bool InBounds; 4454 4455 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4456 InBounds = Record[OpNum++]; 4457 Ty = getTypeByID(Record[OpNum++]); 4458 } else { 4459 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4460 Ty = nullptr; 4461 } 4462 4463 Value *BasePtr; 4464 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4465 return error("Invalid record"); 4466 4467 if (!Ty) 4468 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4469 ->getElementType(); 4470 else if (Ty != 4471 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4472 ->getElementType()) 4473 return error( 4474 "Explicit gep type does not match pointee type of pointer operand"); 4475 4476 SmallVector<Value*, 16> GEPIdx; 4477 while (OpNum != Record.size()) { 4478 Value *Op; 4479 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4480 return error("Invalid record"); 4481 GEPIdx.push_back(Op); 4482 } 4483 4484 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4485 4486 InstructionList.push_back(I); 4487 if (InBounds) 4488 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4489 break; 4490 } 4491 4492 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4493 // EXTRACTVAL: [opty, opval, n x indices] 4494 unsigned OpNum = 0; 4495 Value *Agg; 4496 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4497 return error("Invalid record"); 4498 4499 unsigned RecSize = Record.size(); 4500 if (OpNum == RecSize) 4501 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4502 4503 SmallVector<unsigned, 4> EXTRACTVALIdx; 4504 Type *CurTy = Agg->getType(); 4505 for (; OpNum != RecSize; ++OpNum) { 4506 bool IsArray = CurTy->isArrayTy(); 4507 bool IsStruct = CurTy->isStructTy(); 4508 uint64_t Index = Record[OpNum]; 4509 4510 if (!IsStruct && !IsArray) 4511 return error("EXTRACTVAL: Invalid type"); 4512 if ((unsigned)Index != Index) 4513 return error("Invalid value"); 4514 if (IsStruct && Index >= CurTy->subtypes().size()) 4515 return error("EXTRACTVAL: Invalid struct index"); 4516 if (IsArray && Index >= CurTy->getArrayNumElements()) 4517 return error("EXTRACTVAL: Invalid array index"); 4518 EXTRACTVALIdx.push_back((unsigned)Index); 4519 4520 if (IsStruct) 4521 CurTy = CurTy->subtypes()[Index]; 4522 else 4523 CurTy = CurTy->subtypes()[0]; 4524 } 4525 4526 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4527 InstructionList.push_back(I); 4528 break; 4529 } 4530 4531 case bitc::FUNC_CODE_INST_INSERTVAL: { 4532 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4533 unsigned OpNum = 0; 4534 Value *Agg; 4535 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4536 return error("Invalid record"); 4537 Value *Val; 4538 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4539 return error("Invalid record"); 4540 4541 unsigned RecSize = Record.size(); 4542 if (OpNum == RecSize) 4543 return error("INSERTVAL: Invalid instruction with 0 indices"); 4544 4545 SmallVector<unsigned, 4> INSERTVALIdx; 4546 Type *CurTy = Agg->getType(); 4547 for (; OpNum != RecSize; ++OpNum) { 4548 bool IsArray = CurTy->isArrayTy(); 4549 bool IsStruct = CurTy->isStructTy(); 4550 uint64_t Index = Record[OpNum]; 4551 4552 if (!IsStruct && !IsArray) 4553 return error("INSERTVAL: Invalid type"); 4554 if ((unsigned)Index != Index) 4555 return error("Invalid value"); 4556 if (IsStruct && Index >= CurTy->subtypes().size()) 4557 return error("INSERTVAL: Invalid struct index"); 4558 if (IsArray && Index >= CurTy->getArrayNumElements()) 4559 return error("INSERTVAL: Invalid array index"); 4560 4561 INSERTVALIdx.push_back((unsigned)Index); 4562 if (IsStruct) 4563 CurTy = CurTy->subtypes()[Index]; 4564 else 4565 CurTy = CurTy->subtypes()[0]; 4566 } 4567 4568 if (CurTy != Val->getType()) 4569 return error("Inserted value type doesn't match aggregate type"); 4570 4571 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4572 InstructionList.push_back(I); 4573 break; 4574 } 4575 4576 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4577 // obsolete form of select 4578 // handles select i1 ... in old bitcode 4579 unsigned OpNum = 0; 4580 Value *TrueVal, *FalseVal, *Cond; 4581 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4582 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4583 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4584 return error("Invalid record"); 4585 4586 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4587 InstructionList.push_back(I); 4588 break; 4589 } 4590 4591 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4592 // new form of select 4593 // handles select i1 or select [N x i1] 4594 unsigned OpNum = 0; 4595 Value *TrueVal, *FalseVal, *Cond; 4596 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4597 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4598 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4599 return error("Invalid record"); 4600 4601 // select condition can be either i1 or [N x i1] 4602 if (VectorType* vector_type = 4603 dyn_cast<VectorType>(Cond->getType())) { 4604 // expect <n x i1> 4605 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4606 return error("Invalid type for value"); 4607 } else { 4608 // expect i1 4609 if (Cond->getType() != Type::getInt1Ty(Context)) 4610 return error("Invalid type for value"); 4611 } 4612 4613 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4614 InstructionList.push_back(I); 4615 break; 4616 } 4617 4618 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4619 unsigned OpNum = 0; 4620 Value *Vec, *Idx; 4621 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4622 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4623 return error("Invalid record"); 4624 if (!Vec->getType()->isVectorTy()) 4625 return error("Invalid type for value"); 4626 I = ExtractElementInst::Create(Vec, Idx); 4627 InstructionList.push_back(I); 4628 break; 4629 } 4630 4631 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4632 unsigned OpNum = 0; 4633 Value *Vec, *Elt, *Idx; 4634 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4635 return error("Invalid record"); 4636 if (!Vec->getType()->isVectorTy()) 4637 return error("Invalid type for value"); 4638 if (popValue(Record, OpNum, NextValueNo, 4639 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4640 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4641 return error("Invalid record"); 4642 I = InsertElementInst::Create(Vec, Elt, Idx); 4643 InstructionList.push_back(I); 4644 break; 4645 } 4646 4647 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4648 unsigned OpNum = 0; 4649 Value *Vec1, *Vec2, *Mask; 4650 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4651 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4652 return error("Invalid record"); 4653 4654 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4655 return error("Invalid record"); 4656 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4657 return error("Invalid type for value"); 4658 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4659 InstructionList.push_back(I); 4660 break; 4661 } 4662 4663 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4664 // Old form of ICmp/FCmp returning bool 4665 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4666 // both legal on vectors but had different behaviour. 4667 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4668 // FCmp/ICmp returning bool or vector of bool 4669 4670 unsigned OpNum = 0; 4671 Value *LHS, *RHS; 4672 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4673 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4674 return error("Invalid record"); 4675 4676 unsigned PredVal = Record[OpNum]; 4677 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4678 FastMathFlags FMF; 4679 if (IsFP && Record.size() > OpNum+1) 4680 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4681 4682 if (OpNum+1 != Record.size()) 4683 return error("Invalid record"); 4684 4685 if (LHS->getType()->isFPOrFPVectorTy()) 4686 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4687 else 4688 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4689 4690 if (FMF.any()) 4691 I->setFastMathFlags(FMF); 4692 InstructionList.push_back(I); 4693 break; 4694 } 4695 4696 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4697 { 4698 unsigned Size = Record.size(); 4699 if (Size == 0) { 4700 I = ReturnInst::Create(Context); 4701 InstructionList.push_back(I); 4702 break; 4703 } 4704 4705 unsigned OpNum = 0; 4706 Value *Op = nullptr; 4707 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4708 return error("Invalid record"); 4709 if (OpNum != Record.size()) 4710 return error("Invalid record"); 4711 4712 I = ReturnInst::Create(Context, Op); 4713 InstructionList.push_back(I); 4714 break; 4715 } 4716 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4717 if (Record.size() != 1 && Record.size() != 3) 4718 return error("Invalid record"); 4719 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4720 if (!TrueDest) 4721 return error("Invalid record"); 4722 4723 if (Record.size() == 1) { 4724 I = BranchInst::Create(TrueDest); 4725 InstructionList.push_back(I); 4726 } 4727 else { 4728 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4729 Value *Cond = getValue(Record, 2, NextValueNo, 4730 Type::getInt1Ty(Context)); 4731 if (!FalseDest || !Cond) 4732 return error("Invalid record"); 4733 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4734 InstructionList.push_back(I); 4735 } 4736 break; 4737 } 4738 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4739 if (Record.size() != 1 && Record.size() != 2) 4740 return error("Invalid record"); 4741 unsigned Idx = 0; 4742 Value *CleanupPad = 4743 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4744 if (!CleanupPad) 4745 return error("Invalid record"); 4746 BasicBlock *UnwindDest = nullptr; 4747 if (Record.size() == 2) { 4748 UnwindDest = getBasicBlock(Record[Idx++]); 4749 if (!UnwindDest) 4750 return error("Invalid record"); 4751 } 4752 4753 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4754 InstructionList.push_back(I); 4755 break; 4756 } 4757 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4758 if (Record.size() != 2) 4759 return error("Invalid record"); 4760 unsigned Idx = 0; 4761 Value *CatchPad = 4762 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4763 if (!CatchPad) 4764 return error("Invalid record"); 4765 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4766 if (!BB) 4767 return error("Invalid record"); 4768 4769 I = CatchReturnInst::Create(CatchPad, BB); 4770 InstructionList.push_back(I); 4771 break; 4772 } 4773 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4774 // We must have, at minimum, the outer scope and the number of arguments. 4775 if (Record.size() < 2) 4776 return error("Invalid record"); 4777 4778 unsigned Idx = 0; 4779 4780 Value *ParentPad = 4781 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4782 4783 unsigned NumHandlers = Record[Idx++]; 4784 4785 SmallVector<BasicBlock *, 2> Handlers; 4786 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4787 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4788 if (!BB) 4789 return error("Invalid record"); 4790 Handlers.push_back(BB); 4791 } 4792 4793 BasicBlock *UnwindDest = nullptr; 4794 if (Idx + 1 == Record.size()) { 4795 UnwindDest = getBasicBlock(Record[Idx++]); 4796 if (!UnwindDest) 4797 return error("Invalid record"); 4798 } 4799 4800 if (Record.size() != Idx) 4801 return error("Invalid record"); 4802 4803 auto *CatchSwitch = 4804 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4805 for (BasicBlock *Handler : Handlers) 4806 CatchSwitch->addHandler(Handler); 4807 I = CatchSwitch; 4808 InstructionList.push_back(I); 4809 break; 4810 } 4811 case bitc::FUNC_CODE_INST_CATCHPAD: 4812 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4813 // We must have, at minimum, the outer scope and the number of arguments. 4814 if (Record.size() < 2) 4815 return error("Invalid record"); 4816 4817 unsigned Idx = 0; 4818 4819 Value *ParentPad = 4820 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4821 4822 unsigned NumArgOperands = Record[Idx++]; 4823 4824 SmallVector<Value *, 2> Args; 4825 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4826 Value *Val; 4827 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4828 return error("Invalid record"); 4829 Args.push_back(Val); 4830 } 4831 4832 if (Record.size() != Idx) 4833 return error("Invalid record"); 4834 4835 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4836 I = CleanupPadInst::Create(ParentPad, Args); 4837 else 4838 I = CatchPadInst::Create(ParentPad, Args); 4839 InstructionList.push_back(I); 4840 break; 4841 } 4842 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4843 // Check magic 4844 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4845 // "New" SwitchInst format with case ranges. The changes to write this 4846 // format were reverted but we still recognize bitcode that uses it. 4847 // Hopefully someday we will have support for case ranges and can use 4848 // this format again. 4849 4850 Type *OpTy = getTypeByID(Record[1]); 4851 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4852 4853 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4854 BasicBlock *Default = getBasicBlock(Record[3]); 4855 if (!OpTy || !Cond || !Default) 4856 return error("Invalid record"); 4857 4858 unsigned NumCases = Record[4]; 4859 4860 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4861 InstructionList.push_back(SI); 4862 4863 unsigned CurIdx = 5; 4864 for (unsigned i = 0; i != NumCases; ++i) { 4865 SmallVector<ConstantInt*, 1> CaseVals; 4866 unsigned NumItems = Record[CurIdx++]; 4867 for (unsigned ci = 0; ci != NumItems; ++ci) { 4868 bool isSingleNumber = Record[CurIdx++]; 4869 4870 APInt Low; 4871 unsigned ActiveWords = 1; 4872 if (ValueBitWidth > 64) 4873 ActiveWords = Record[CurIdx++]; 4874 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4875 ValueBitWidth); 4876 CurIdx += ActiveWords; 4877 4878 if (!isSingleNumber) { 4879 ActiveWords = 1; 4880 if (ValueBitWidth > 64) 4881 ActiveWords = Record[CurIdx++]; 4882 APInt High = readWideAPInt( 4883 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4884 CurIdx += ActiveWords; 4885 4886 // FIXME: It is not clear whether values in the range should be 4887 // compared as signed or unsigned values. The partially 4888 // implemented changes that used this format in the past used 4889 // unsigned comparisons. 4890 for ( ; Low.ule(High); ++Low) 4891 CaseVals.push_back(ConstantInt::get(Context, Low)); 4892 } else 4893 CaseVals.push_back(ConstantInt::get(Context, Low)); 4894 } 4895 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4896 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4897 cve = CaseVals.end(); cvi != cve; ++cvi) 4898 SI->addCase(*cvi, DestBB); 4899 } 4900 I = SI; 4901 break; 4902 } 4903 4904 // Old SwitchInst format without case ranges. 4905 4906 if (Record.size() < 3 || (Record.size() & 1) == 0) 4907 return error("Invalid record"); 4908 Type *OpTy = getTypeByID(Record[0]); 4909 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4910 BasicBlock *Default = getBasicBlock(Record[2]); 4911 if (!OpTy || !Cond || !Default) 4912 return error("Invalid record"); 4913 unsigned NumCases = (Record.size()-3)/2; 4914 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4915 InstructionList.push_back(SI); 4916 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4917 ConstantInt *CaseVal = 4918 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4919 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4920 if (!CaseVal || !DestBB) { 4921 delete SI; 4922 return error("Invalid record"); 4923 } 4924 SI->addCase(CaseVal, DestBB); 4925 } 4926 I = SI; 4927 break; 4928 } 4929 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4930 if (Record.size() < 2) 4931 return error("Invalid record"); 4932 Type *OpTy = getTypeByID(Record[0]); 4933 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4934 if (!OpTy || !Address) 4935 return error("Invalid record"); 4936 unsigned NumDests = Record.size()-2; 4937 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4938 InstructionList.push_back(IBI); 4939 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4940 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4941 IBI->addDestination(DestBB); 4942 } else { 4943 delete IBI; 4944 return error("Invalid record"); 4945 } 4946 } 4947 I = IBI; 4948 break; 4949 } 4950 4951 case bitc::FUNC_CODE_INST_INVOKE: { 4952 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4953 if (Record.size() < 4) 4954 return error("Invalid record"); 4955 unsigned OpNum = 0; 4956 AttributeSet PAL = getAttributes(Record[OpNum++]); 4957 unsigned CCInfo = Record[OpNum++]; 4958 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4959 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4960 4961 FunctionType *FTy = nullptr; 4962 if (CCInfo >> 13 & 1 && 4963 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4964 return error("Explicit invoke type is not a function type"); 4965 4966 Value *Callee; 4967 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4968 return error("Invalid record"); 4969 4970 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4971 if (!CalleeTy) 4972 return error("Callee is not a pointer"); 4973 if (!FTy) { 4974 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4975 if (!FTy) 4976 return error("Callee is not of pointer to function type"); 4977 } else if (CalleeTy->getElementType() != FTy) 4978 return error("Explicit invoke type does not match pointee type of " 4979 "callee operand"); 4980 if (Record.size() < FTy->getNumParams() + OpNum) 4981 return error("Insufficient operands to call"); 4982 4983 SmallVector<Value*, 16> Ops; 4984 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4985 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4986 FTy->getParamType(i))); 4987 if (!Ops.back()) 4988 return error("Invalid record"); 4989 } 4990 4991 if (!FTy->isVarArg()) { 4992 if (Record.size() != OpNum) 4993 return error("Invalid record"); 4994 } else { 4995 // Read type/value pairs for varargs params. 4996 while (OpNum != Record.size()) { 4997 Value *Op; 4998 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4999 return error("Invalid record"); 5000 Ops.push_back(Op); 5001 } 5002 } 5003 5004 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5005 OperandBundles.clear(); 5006 InstructionList.push_back(I); 5007 cast<InvokeInst>(I)->setCallingConv( 5008 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5009 cast<InvokeInst>(I)->setAttributes(PAL); 5010 break; 5011 } 5012 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5013 unsigned Idx = 0; 5014 Value *Val = nullptr; 5015 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5016 return error("Invalid record"); 5017 I = ResumeInst::Create(Val); 5018 InstructionList.push_back(I); 5019 break; 5020 } 5021 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5022 I = new UnreachableInst(Context); 5023 InstructionList.push_back(I); 5024 break; 5025 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5026 if (Record.size() < 1 || ((Record.size()-1)&1)) 5027 return error("Invalid record"); 5028 Type *Ty = getTypeByID(Record[0]); 5029 if (!Ty) 5030 return error("Invalid record"); 5031 5032 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5033 InstructionList.push_back(PN); 5034 5035 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5036 Value *V; 5037 // With the new function encoding, it is possible that operands have 5038 // negative IDs (for forward references). Use a signed VBR 5039 // representation to keep the encoding small. 5040 if (UseRelativeIDs) 5041 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5042 else 5043 V = getValue(Record, 1+i, NextValueNo, Ty); 5044 BasicBlock *BB = getBasicBlock(Record[2+i]); 5045 if (!V || !BB) 5046 return error("Invalid record"); 5047 PN->addIncoming(V, BB); 5048 } 5049 I = PN; 5050 break; 5051 } 5052 5053 case bitc::FUNC_CODE_INST_LANDINGPAD: 5054 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5055 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5056 unsigned Idx = 0; 5057 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5058 if (Record.size() < 3) 5059 return error("Invalid record"); 5060 } else { 5061 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5062 if (Record.size() < 4) 5063 return error("Invalid record"); 5064 } 5065 Type *Ty = getTypeByID(Record[Idx++]); 5066 if (!Ty) 5067 return error("Invalid record"); 5068 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5069 Value *PersFn = nullptr; 5070 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5071 return error("Invalid record"); 5072 5073 if (!F->hasPersonalityFn()) 5074 F->setPersonalityFn(cast<Constant>(PersFn)); 5075 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5076 return error("Personality function mismatch"); 5077 } 5078 5079 bool IsCleanup = !!Record[Idx++]; 5080 unsigned NumClauses = Record[Idx++]; 5081 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5082 LP->setCleanup(IsCleanup); 5083 for (unsigned J = 0; J != NumClauses; ++J) { 5084 LandingPadInst::ClauseType CT = 5085 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5086 Value *Val; 5087 5088 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5089 delete LP; 5090 return error("Invalid record"); 5091 } 5092 5093 assert((CT != LandingPadInst::Catch || 5094 !isa<ArrayType>(Val->getType())) && 5095 "Catch clause has a invalid type!"); 5096 assert((CT != LandingPadInst::Filter || 5097 isa<ArrayType>(Val->getType())) && 5098 "Filter clause has invalid type!"); 5099 LP->addClause(cast<Constant>(Val)); 5100 } 5101 5102 I = LP; 5103 InstructionList.push_back(I); 5104 break; 5105 } 5106 5107 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5108 if (Record.size() != 4) 5109 return error("Invalid record"); 5110 uint64_t AlignRecord = Record[3]; 5111 const uint64_t InAllocaMask = uint64_t(1) << 5; 5112 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5113 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5114 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5115 SwiftErrorMask; 5116 bool InAlloca = AlignRecord & InAllocaMask; 5117 bool SwiftError = AlignRecord & SwiftErrorMask; 5118 Type *Ty = getTypeByID(Record[0]); 5119 if ((AlignRecord & ExplicitTypeMask) == 0) { 5120 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5121 if (!PTy) 5122 return error("Old-style alloca with a non-pointer type"); 5123 Ty = PTy->getElementType(); 5124 } 5125 Type *OpTy = getTypeByID(Record[1]); 5126 Value *Size = getFnValueByID(Record[2], OpTy); 5127 unsigned Align; 5128 if (std::error_code EC = 5129 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5130 return EC; 5131 } 5132 if (!Ty || !Size) 5133 return error("Invalid record"); 5134 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5135 AI->setUsedWithInAlloca(InAlloca); 5136 AI->setSwiftError(SwiftError); 5137 I = AI; 5138 InstructionList.push_back(I); 5139 break; 5140 } 5141 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5142 unsigned OpNum = 0; 5143 Value *Op; 5144 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5145 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5146 return error("Invalid record"); 5147 5148 Type *Ty = nullptr; 5149 if (OpNum + 3 == Record.size()) 5150 Ty = getTypeByID(Record[OpNum++]); 5151 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5152 return EC; 5153 if (!Ty) 5154 Ty = cast<PointerType>(Op->getType())->getElementType(); 5155 5156 unsigned Align; 5157 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5158 return EC; 5159 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5160 5161 InstructionList.push_back(I); 5162 break; 5163 } 5164 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5165 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5166 unsigned OpNum = 0; 5167 Value *Op; 5168 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5169 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5170 return error("Invalid record"); 5171 5172 Type *Ty = nullptr; 5173 if (OpNum + 5 == Record.size()) 5174 Ty = getTypeByID(Record[OpNum++]); 5175 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5176 return EC; 5177 if (!Ty) 5178 Ty = cast<PointerType>(Op->getType())->getElementType(); 5179 5180 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5181 if (Ordering == AtomicOrdering::NotAtomic || 5182 Ordering == AtomicOrdering::Release || 5183 Ordering == AtomicOrdering::AcquireRelease) 5184 return error("Invalid record"); 5185 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5186 return error("Invalid record"); 5187 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5188 5189 unsigned Align; 5190 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5191 return EC; 5192 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5193 5194 InstructionList.push_back(I); 5195 break; 5196 } 5197 case bitc::FUNC_CODE_INST_STORE: 5198 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5199 unsigned OpNum = 0; 5200 Value *Val, *Ptr; 5201 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5202 (BitCode == bitc::FUNC_CODE_INST_STORE 5203 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5204 : popValue(Record, OpNum, NextValueNo, 5205 cast<PointerType>(Ptr->getType())->getElementType(), 5206 Val)) || 5207 OpNum + 2 != Record.size()) 5208 return error("Invalid record"); 5209 5210 if (std::error_code EC = 5211 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5212 return EC; 5213 unsigned Align; 5214 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5215 return EC; 5216 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5217 InstructionList.push_back(I); 5218 break; 5219 } 5220 case bitc::FUNC_CODE_INST_STOREATOMIC: 5221 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5222 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5223 unsigned OpNum = 0; 5224 Value *Val, *Ptr; 5225 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5226 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5227 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5228 : popValue(Record, OpNum, NextValueNo, 5229 cast<PointerType>(Ptr->getType())->getElementType(), 5230 Val)) || 5231 OpNum + 4 != Record.size()) 5232 return error("Invalid record"); 5233 5234 if (std::error_code EC = 5235 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5236 return EC; 5237 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5238 if (Ordering == AtomicOrdering::NotAtomic || 5239 Ordering == AtomicOrdering::Acquire || 5240 Ordering == AtomicOrdering::AcquireRelease) 5241 return error("Invalid record"); 5242 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5243 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5244 return error("Invalid record"); 5245 5246 unsigned Align; 5247 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5248 return EC; 5249 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5250 InstructionList.push_back(I); 5251 break; 5252 } 5253 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5254 case bitc::FUNC_CODE_INST_CMPXCHG: { 5255 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5256 // failureordering?, isweak?] 5257 unsigned OpNum = 0; 5258 Value *Ptr, *Cmp, *New; 5259 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5260 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5261 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5262 : popValue(Record, OpNum, NextValueNo, 5263 cast<PointerType>(Ptr->getType())->getElementType(), 5264 Cmp)) || 5265 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5266 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5267 return error("Invalid record"); 5268 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5269 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5270 SuccessOrdering == AtomicOrdering::Unordered) 5271 return error("Invalid record"); 5272 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5273 5274 if (std::error_code EC = 5275 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5276 return EC; 5277 AtomicOrdering FailureOrdering; 5278 if (Record.size() < 7) 5279 FailureOrdering = 5280 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5281 else 5282 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5283 5284 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5285 SynchScope); 5286 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5287 5288 if (Record.size() < 8) { 5289 // Before weak cmpxchgs existed, the instruction simply returned the 5290 // value loaded from memory, so bitcode files from that era will be 5291 // expecting the first component of a modern cmpxchg. 5292 CurBB->getInstList().push_back(I); 5293 I = ExtractValueInst::Create(I, 0); 5294 } else { 5295 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5296 } 5297 5298 InstructionList.push_back(I); 5299 break; 5300 } 5301 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5302 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5303 unsigned OpNum = 0; 5304 Value *Ptr, *Val; 5305 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5306 popValue(Record, OpNum, NextValueNo, 5307 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5308 OpNum+4 != Record.size()) 5309 return error("Invalid record"); 5310 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5311 if (Operation < AtomicRMWInst::FIRST_BINOP || 5312 Operation > AtomicRMWInst::LAST_BINOP) 5313 return error("Invalid record"); 5314 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5315 if (Ordering == AtomicOrdering::NotAtomic || 5316 Ordering == AtomicOrdering::Unordered) 5317 return error("Invalid record"); 5318 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5319 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5320 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5321 InstructionList.push_back(I); 5322 break; 5323 } 5324 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5325 if (2 != Record.size()) 5326 return error("Invalid record"); 5327 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5328 if (Ordering == AtomicOrdering::NotAtomic || 5329 Ordering == AtomicOrdering::Unordered || 5330 Ordering == AtomicOrdering::Monotonic) 5331 return error("Invalid record"); 5332 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5333 I = new FenceInst(Context, Ordering, SynchScope); 5334 InstructionList.push_back(I); 5335 break; 5336 } 5337 case bitc::FUNC_CODE_INST_CALL: { 5338 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5339 if (Record.size() < 3) 5340 return error("Invalid record"); 5341 5342 unsigned OpNum = 0; 5343 AttributeSet PAL = getAttributes(Record[OpNum++]); 5344 unsigned CCInfo = Record[OpNum++]; 5345 5346 FastMathFlags FMF; 5347 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5348 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5349 if (!FMF.any()) 5350 return error("Fast math flags indicator set for call with no FMF"); 5351 } 5352 5353 FunctionType *FTy = nullptr; 5354 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5355 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5356 return error("Explicit call type is not a function type"); 5357 5358 Value *Callee; 5359 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5360 return error("Invalid record"); 5361 5362 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5363 if (!OpTy) 5364 return error("Callee is not a pointer type"); 5365 if (!FTy) { 5366 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5367 if (!FTy) 5368 return error("Callee is not of pointer to function type"); 5369 } else if (OpTy->getElementType() != FTy) 5370 return error("Explicit call type does not match pointee type of " 5371 "callee operand"); 5372 if (Record.size() < FTy->getNumParams() + OpNum) 5373 return error("Insufficient operands to call"); 5374 5375 SmallVector<Value*, 16> Args; 5376 // Read the fixed params. 5377 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5378 if (FTy->getParamType(i)->isLabelTy()) 5379 Args.push_back(getBasicBlock(Record[OpNum])); 5380 else 5381 Args.push_back(getValue(Record, OpNum, NextValueNo, 5382 FTy->getParamType(i))); 5383 if (!Args.back()) 5384 return error("Invalid record"); 5385 } 5386 5387 // Read type/value pairs for varargs params. 5388 if (!FTy->isVarArg()) { 5389 if (OpNum != Record.size()) 5390 return error("Invalid record"); 5391 } else { 5392 while (OpNum != Record.size()) { 5393 Value *Op; 5394 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5395 return error("Invalid record"); 5396 Args.push_back(Op); 5397 } 5398 } 5399 5400 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5401 OperandBundles.clear(); 5402 InstructionList.push_back(I); 5403 cast<CallInst>(I)->setCallingConv( 5404 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5405 CallInst::TailCallKind TCK = CallInst::TCK_None; 5406 if (CCInfo & 1 << bitc::CALL_TAIL) 5407 TCK = CallInst::TCK_Tail; 5408 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5409 TCK = CallInst::TCK_MustTail; 5410 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5411 TCK = CallInst::TCK_NoTail; 5412 cast<CallInst>(I)->setTailCallKind(TCK); 5413 cast<CallInst>(I)->setAttributes(PAL); 5414 if (FMF.any()) { 5415 if (!isa<FPMathOperator>(I)) 5416 return error("Fast-math-flags specified for call without " 5417 "floating-point scalar or vector return type"); 5418 I->setFastMathFlags(FMF); 5419 } 5420 break; 5421 } 5422 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5423 if (Record.size() < 3) 5424 return error("Invalid record"); 5425 Type *OpTy = getTypeByID(Record[0]); 5426 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5427 Type *ResTy = getTypeByID(Record[2]); 5428 if (!OpTy || !Op || !ResTy) 5429 return error("Invalid record"); 5430 I = new VAArgInst(Op, ResTy); 5431 InstructionList.push_back(I); 5432 break; 5433 } 5434 5435 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5436 // A call or an invoke can be optionally prefixed with some variable 5437 // number of operand bundle blocks. These blocks are read into 5438 // OperandBundles and consumed at the next call or invoke instruction. 5439 5440 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5441 return error("Invalid record"); 5442 5443 std::vector<Value *> Inputs; 5444 5445 unsigned OpNum = 1; 5446 while (OpNum != Record.size()) { 5447 Value *Op; 5448 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5449 return error("Invalid record"); 5450 Inputs.push_back(Op); 5451 } 5452 5453 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5454 continue; 5455 } 5456 } 5457 5458 // Add instruction to end of current BB. If there is no current BB, reject 5459 // this file. 5460 if (!CurBB) { 5461 delete I; 5462 return error("Invalid instruction with no BB"); 5463 } 5464 if (!OperandBundles.empty()) { 5465 delete I; 5466 return error("Operand bundles found with no consumer"); 5467 } 5468 CurBB->getInstList().push_back(I); 5469 5470 // If this was a terminator instruction, move to the next block. 5471 if (isa<TerminatorInst>(I)) { 5472 ++CurBBNo; 5473 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5474 } 5475 5476 // Non-void values get registered in the value table for future use. 5477 if (I && !I->getType()->isVoidTy()) 5478 ValueList.assignValue(I, NextValueNo++); 5479 } 5480 5481 OutOfRecordLoop: 5482 5483 if (!OperandBundles.empty()) 5484 return error("Operand bundles found with no consumer"); 5485 5486 // Check the function list for unresolved values. 5487 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5488 if (!A->getParent()) { 5489 // We found at least one unresolved value. Nuke them all to avoid leaks. 5490 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5491 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5492 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5493 delete A; 5494 } 5495 } 5496 return error("Never resolved value found in function"); 5497 } 5498 } 5499 5500 // Unexpected unresolved metadata about to be dropped. 5501 if (MetadataList.hasFwdRefs()) 5502 return error("Invalid function metadata: outgoing forward refs"); 5503 5504 // Trim the value list down to the size it was before we parsed this function. 5505 ValueList.shrinkTo(ModuleValueListSize); 5506 MetadataList.shrinkTo(ModuleMetadataListSize); 5507 std::vector<BasicBlock*>().swap(FunctionBBs); 5508 return std::error_code(); 5509 } 5510 5511 /// Find the function body in the bitcode stream 5512 std::error_code BitcodeReader::findFunctionInStream( 5513 Function *F, 5514 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5515 while (DeferredFunctionInfoIterator->second == 0) { 5516 // This is the fallback handling for the old format bitcode that 5517 // didn't contain the function index in the VST, or when we have 5518 // an anonymous function which would not have a VST entry. 5519 // Assert that we have one of those two cases. 5520 assert(VSTOffset == 0 || !F->hasName()); 5521 // Parse the next body in the stream and set its position in the 5522 // DeferredFunctionInfo map. 5523 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5524 return EC; 5525 } 5526 return std::error_code(); 5527 } 5528 5529 //===----------------------------------------------------------------------===// 5530 // GVMaterializer implementation 5531 //===----------------------------------------------------------------------===// 5532 5533 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5534 5535 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5536 if (std::error_code EC = materializeMetadata()) 5537 return EC; 5538 5539 Function *F = dyn_cast<Function>(GV); 5540 // If it's not a function or is already material, ignore the request. 5541 if (!F || !F->isMaterializable()) 5542 return std::error_code(); 5543 5544 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5545 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5546 // If its position is recorded as 0, its body is somewhere in the stream 5547 // but we haven't seen it yet. 5548 if (DFII->second == 0) 5549 if (std::error_code EC = findFunctionInStream(F, DFII)) 5550 return EC; 5551 5552 // Move the bit stream to the saved position of the deferred function body. 5553 Stream.JumpToBit(DFII->second); 5554 5555 if (std::error_code EC = parseFunctionBody(F)) 5556 return EC; 5557 F->setIsMaterializable(false); 5558 5559 if (StripDebugInfo) 5560 stripDebugInfo(*F); 5561 5562 // Upgrade any old intrinsic calls in the function. 5563 for (auto &I : UpgradedIntrinsics) { 5564 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5565 UI != UE;) { 5566 User *U = *UI; 5567 ++UI; 5568 if (CallInst *CI = dyn_cast<CallInst>(U)) 5569 UpgradeIntrinsicCall(CI, I.second); 5570 } 5571 } 5572 5573 // Finish fn->subprogram upgrade for materialized functions. 5574 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5575 F->setSubprogram(SP); 5576 5577 // Bring in any functions that this function forward-referenced via 5578 // blockaddresses. 5579 return materializeForwardReferencedFunctions(); 5580 } 5581 5582 std::error_code BitcodeReader::materializeModule() { 5583 if (std::error_code EC = materializeMetadata()) 5584 return EC; 5585 5586 // Promise to materialize all forward references. 5587 WillMaterializeAllForwardRefs = true; 5588 5589 // Iterate over the module, deserializing any functions that are still on 5590 // disk. 5591 for (Function &F : *TheModule) { 5592 if (std::error_code EC = materialize(&F)) 5593 return EC; 5594 } 5595 // At this point, if there are any function bodies, parse the rest of 5596 // the bits in the module past the last function block we have recorded 5597 // through either lazy scanning or the VST. 5598 if (LastFunctionBlockBit || NextUnreadBit) 5599 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5600 : NextUnreadBit); 5601 5602 // Check that all block address forward references got resolved (as we 5603 // promised above). 5604 if (!BasicBlockFwdRefs.empty()) 5605 return error("Never resolved function from blockaddress"); 5606 5607 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5608 // to prevent this instructions with TBAA tags should be upgraded first. 5609 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5610 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5611 5612 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5613 // delete the old functions to clean up. We can't do this unless the entire 5614 // module is materialized because there could always be another function body 5615 // with calls to the old function. 5616 for (auto &I : UpgradedIntrinsics) { 5617 for (auto *U : I.first->users()) { 5618 if (CallInst *CI = dyn_cast<CallInst>(U)) 5619 UpgradeIntrinsicCall(CI, I.second); 5620 } 5621 if (!I.first->use_empty()) 5622 I.first->replaceAllUsesWith(I.second); 5623 I.first->eraseFromParent(); 5624 } 5625 UpgradedIntrinsics.clear(); 5626 5627 UpgradeDebugInfo(*TheModule); 5628 return std::error_code(); 5629 } 5630 5631 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5632 return IdentifiedStructTypes; 5633 } 5634 5635 std::error_code 5636 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5637 if (Streamer) 5638 return initLazyStream(std::move(Streamer)); 5639 return initStreamFromBuffer(); 5640 } 5641 5642 std::error_code BitcodeReader::initStreamFromBuffer() { 5643 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5644 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5645 5646 if (Buffer->getBufferSize() & 3) 5647 return error("Invalid bitcode signature"); 5648 5649 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5650 // The magic number is 0x0B17C0DE stored in little endian. 5651 if (isBitcodeWrapper(BufPtr, BufEnd)) 5652 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5653 return error("Invalid bitcode wrapper header"); 5654 5655 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5656 Stream.init(&*StreamFile); 5657 5658 return std::error_code(); 5659 } 5660 5661 std::error_code 5662 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5663 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5664 // see it. 5665 auto OwnedBytes = 5666 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5667 StreamingMemoryObject &Bytes = *OwnedBytes; 5668 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5669 Stream.init(&*StreamFile); 5670 5671 unsigned char buf[16]; 5672 if (Bytes.readBytes(buf, 16, 0) != 16) 5673 return error("Invalid bitcode signature"); 5674 5675 if (!isBitcode(buf, buf + 16)) 5676 return error("Invalid bitcode signature"); 5677 5678 if (isBitcodeWrapper(buf, buf + 4)) { 5679 const unsigned char *bitcodeStart = buf; 5680 const unsigned char *bitcodeEnd = buf + 16; 5681 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5682 Bytes.dropLeadingBytes(bitcodeStart - buf); 5683 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5684 } 5685 return std::error_code(); 5686 } 5687 5688 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5689 const Twine &Message) { 5690 return ::error(DiagnosticHandler, make_error_code(E), Message); 5691 } 5692 5693 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5694 return ::error(DiagnosticHandler, 5695 make_error_code(BitcodeError::CorruptedBitcode), Message); 5696 } 5697 5698 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5699 return ::error(DiagnosticHandler, make_error_code(E)); 5700 } 5701 5702 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5703 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5704 bool CheckGlobalValSummaryPresenceOnly) 5705 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5706 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5707 5708 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5709 DiagnosticHandlerFunction DiagnosticHandler, 5710 bool CheckGlobalValSummaryPresenceOnly) 5711 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5712 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5713 5714 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5715 5716 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5717 5718 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5719 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5720 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5721 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5722 return VGI->second; 5723 } 5724 5725 GlobalValueInfo * 5726 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5727 auto I = SummaryOffsetToInfoMap.find(Offset); 5728 assert(I != SummaryOffsetToInfoMap.end()); 5729 return I->second; 5730 } 5731 5732 // Specialized value symbol table parser used when reading module index 5733 // blocks where we don't actually create global values. 5734 // At the end of this routine the module index is populated with a map 5735 // from global value name to GlobalValueInfo. The global value info contains 5736 // the function block's bitcode offset (if applicable), or the offset into the 5737 // summary section for the combined index. 5738 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5739 uint64_t Offset, 5740 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5741 assert(Offset > 0 && "Expected non-zero VST offset"); 5742 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5743 5744 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5745 return error("Invalid record"); 5746 5747 SmallVector<uint64_t, 64> Record; 5748 5749 // Read all the records for this value table. 5750 SmallString<128> ValueName; 5751 while (1) { 5752 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5753 5754 switch (Entry.Kind) { 5755 case BitstreamEntry::SubBlock: // Handled for us already. 5756 case BitstreamEntry::Error: 5757 return error("Malformed block"); 5758 case BitstreamEntry::EndBlock: 5759 // Done parsing VST, jump back to wherever we came from. 5760 Stream.JumpToBit(CurrentBit); 5761 return std::error_code(); 5762 case BitstreamEntry::Record: 5763 // The interesting case. 5764 break; 5765 } 5766 5767 // Read a record. 5768 Record.clear(); 5769 switch (Stream.readRecord(Entry.ID, Record)) { 5770 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5771 break; 5772 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5773 if (convertToString(Record, 1, ValueName)) 5774 return error("Invalid record"); 5775 unsigned ValueID = Record[0]; 5776 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5777 llvm::make_unique<GlobalValueInfo>(); 5778 assert(!SourceFileName.empty()); 5779 auto VLI = ValueIdToLinkageMap.find(ValueID); 5780 assert(VLI != ValueIdToLinkageMap.end() && 5781 "No linkage found for VST entry?"); 5782 auto Linkage = VLI->second; 5783 std::string GlobalId = 5784 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5785 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5786 auto OriginalNameID = ValueGUID; 5787 if (GlobalValue::isLocalLinkage(Linkage)) 5788 OriginalNameID = GlobalValue::getGUID(ValueName); 5789 if (PrintSummaryGUIDs) 5790 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5791 << ValueName << "\n"; 5792 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5793 ValueIdToCallGraphGUIDMap[ValueID] = 5794 std::make_pair(ValueGUID, OriginalNameID); 5795 ValueName.clear(); 5796 break; 5797 } 5798 case bitc::VST_CODE_FNENTRY: { 5799 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5800 if (convertToString(Record, 2, ValueName)) 5801 return error("Invalid record"); 5802 unsigned ValueID = Record[0]; 5803 uint64_t FuncOffset = Record[1]; 5804 std::unique_ptr<GlobalValueInfo> FuncInfo = 5805 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5806 assert(!SourceFileName.empty()); 5807 auto VLI = ValueIdToLinkageMap.find(ValueID); 5808 assert(VLI != ValueIdToLinkageMap.end() && 5809 "No linkage found for VST entry?"); 5810 auto Linkage = VLI->second; 5811 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5812 ValueName, VLI->second, SourceFileName); 5813 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5814 auto OriginalNameID = FunctionGUID; 5815 if (GlobalValue::isLocalLinkage(Linkage)) 5816 OriginalNameID = GlobalValue::getGUID(ValueName); 5817 if (PrintSummaryGUIDs) 5818 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5819 << ValueName << "\n"; 5820 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5821 ValueIdToCallGraphGUIDMap[ValueID] = 5822 std::make_pair(FunctionGUID, OriginalNameID); 5823 5824 ValueName.clear(); 5825 break; 5826 } 5827 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5828 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5829 unsigned ValueID = Record[0]; 5830 uint64_t GlobalValSummaryOffset = Record[1]; 5831 GlobalValue::GUID GlobalValGUID = Record[2]; 5832 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5833 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5834 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5835 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5836 // The "original name", which is the second value of the pair will be 5837 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5838 ValueIdToCallGraphGUIDMap[ValueID] = 5839 std::make_pair(GlobalValGUID, GlobalValGUID); 5840 break; 5841 } 5842 case bitc::VST_CODE_COMBINED_ENTRY: { 5843 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5844 unsigned ValueID = Record[0]; 5845 GlobalValue::GUID RefGUID = Record[1]; 5846 // The "original name", which is the second value of the pair will be 5847 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5848 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5849 break; 5850 } 5851 } 5852 } 5853 } 5854 5855 // Parse just the blocks needed for building the index out of the module. 5856 // At the end of this routine the module Index is populated with a map 5857 // from global value name to GlobalValueInfo. The global value info contains 5858 // the parsed summary information (when parsing summaries eagerly). 5859 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5860 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5861 return error("Invalid record"); 5862 5863 SmallVector<uint64_t, 64> Record; 5864 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5865 unsigned ValueId = 0; 5866 5867 // Read the index for this module. 5868 while (1) { 5869 BitstreamEntry Entry = Stream.advance(); 5870 5871 switch (Entry.Kind) { 5872 case BitstreamEntry::Error: 5873 return error("Malformed block"); 5874 case BitstreamEntry::EndBlock: 5875 return std::error_code(); 5876 5877 case BitstreamEntry::SubBlock: 5878 if (CheckGlobalValSummaryPresenceOnly) { 5879 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5880 SeenGlobalValSummary = true; 5881 // No need to parse the rest since we found the summary. 5882 return std::error_code(); 5883 } 5884 if (Stream.SkipBlock()) 5885 return error("Invalid record"); 5886 continue; 5887 } 5888 switch (Entry.ID) { 5889 default: // Skip unknown content. 5890 if (Stream.SkipBlock()) 5891 return error("Invalid record"); 5892 break; 5893 case bitc::BLOCKINFO_BLOCK_ID: 5894 // Need to parse these to get abbrev ids (e.g. for VST) 5895 if (Stream.ReadBlockInfoBlock()) 5896 return error("Malformed block"); 5897 break; 5898 case bitc::VALUE_SYMTAB_BLOCK_ID: 5899 // Should have been parsed earlier via VSTOffset, unless there 5900 // is no summary section. 5901 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5902 !SeenGlobalValSummary) && 5903 "Expected early VST parse via VSTOffset record"); 5904 if (Stream.SkipBlock()) 5905 return error("Invalid record"); 5906 break; 5907 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5908 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5909 assert(!SeenValueSymbolTable && 5910 "Already read VST when parsing summary block?"); 5911 if (std::error_code EC = 5912 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5913 return EC; 5914 SeenValueSymbolTable = true; 5915 SeenGlobalValSummary = true; 5916 if (std::error_code EC = parseEntireSummary()) 5917 return EC; 5918 break; 5919 case bitc::MODULE_STRTAB_BLOCK_ID: 5920 if (std::error_code EC = parseModuleStringTable()) 5921 return EC; 5922 break; 5923 } 5924 continue; 5925 5926 case BitstreamEntry::Record: { 5927 Record.clear(); 5928 auto BitCode = Stream.readRecord(Entry.ID, Record); 5929 switch (BitCode) { 5930 default: 5931 break; // Default behavior, ignore unknown content. 5932 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5933 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5934 SmallString<128> ValueName; 5935 if (convertToString(Record, 0, ValueName)) 5936 return error("Invalid record"); 5937 SourceFileName = ValueName.c_str(); 5938 break; 5939 } 5940 /// MODULE_CODE_HASH: [5*i32] 5941 case bitc::MODULE_CODE_HASH: { 5942 if (Record.size() != 5) 5943 return error("Invalid hash length " + Twine(Record.size()).str()); 5944 if (!TheIndex) 5945 break; 5946 if (TheIndex->modulePaths().empty()) 5947 // Does not have any summary emitted. 5948 break; 5949 if (TheIndex->modulePaths().size() != 1) 5950 return error("Don't expect multiple modules defined?"); 5951 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5952 int Pos = 0; 5953 for (auto &Val : Record) { 5954 assert(!(Val >> 32) && "Unexpected high bits set"); 5955 Hash[Pos++] = Val; 5956 } 5957 break; 5958 } 5959 /// MODULE_CODE_VSTOFFSET: [offset] 5960 case bitc::MODULE_CODE_VSTOFFSET: 5961 if (Record.size() < 1) 5962 return error("Invalid record"); 5963 VSTOffset = Record[0]; 5964 break; 5965 // GLOBALVAR: [pointer type, isconst, initid, 5966 // linkage, alignment, section, visibility, threadlocal, 5967 // unnamed_addr, externally_initialized, dllstorageclass, 5968 // comdat] 5969 case bitc::MODULE_CODE_GLOBALVAR: { 5970 if (Record.size() < 6) 5971 return error("Invalid record"); 5972 uint64_t RawLinkage = Record[3]; 5973 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5974 ValueIdToLinkageMap[ValueId++] = Linkage; 5975 break; 5976 } 5977 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5978 // alignment, section, visibility, gc, unnamed_addr, 5979 // prologuedata, dllstorageclass, comdat, prefixdata] 5980 case bitc::MODULE_CODE_FUNCTION: { 5981 if (Record.size() < 8) 5982 return error("Invalid record"); 5983 uint64_t RawLinkage = Record[3]; 5984 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5985 ValueIdToLinkageMap[ValueId++] = Linkage; 5986 break; 5987 } 5988 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5989 // dllstorageclass] 5990 case bitc::MODULE_CODE_ALIAS: { 5991 if (Record.size() < 6) 5992 return error("Invalid record"); 5993 uint64_t RawLinkage = Record[3]; 5994 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5995 ValueIdToLinkageMap[ValueId++] = Linkage; 5996 break; 5997 } 5998 } 5999 } 6000 continue; 6001 } 6002 } 6003 } 6004 6005 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6006 // objects in the index. 6007 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6008 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6009 return error("Invalid record"); 6010 SmallVector<uint64_t, 64> Record; 6011 6012 // Parse version 6013 { 6014 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6015 if (Entry.Kind != BitstreamEntry::Record) 6016 return error("Invalid Summary Block: record for version expected"); 6017 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6018 return error("Invalid Summary Block: version expected"); 6019 } 6020 const uint64_t Version = Record[0]; 6021 if (Version != 1) 6022 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6023 Record.clear(); 6024 6025 // Keep around the last seen summary to be used when we see an optional 6026 // "OriginalName" attachement. 6027 GlobalValueSummary *LastSeenSummary = nullptr; 6028 bool Combined = false; 6029 while (1) { 6030 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6031 6032 switch (Entry.Kind) { 6033 case BitstreamEntry::SubBlock: // Handled for us already. 6034 case BitstreamEntry::Error: 6035 return error("Malformed block"); 6036 case BitstreamEntry::EndBlock: 6037 // For a per-module index, remove any entries that still have empty 6038 // summaries. The VST parsing creates entries eagerly for all symbols, 6039 // but not all have associated summaries (e.g. it doesn't know how to 6040 // distinguish between VST_CODE_ENTRY for function declarations vs global 6041 // variables with initializers that end up with a summary). Remove those 6042 // entries now so that we don't need to rely on the combined index merger 6043 // to clean them up (especially since that may not run for the first 6044 // module's index if we merge into that). 6045 if (!Combined) 6046 TheIndex->removeEmptySummaryEntries(); 6047 return std::error_code(); 6048 case BitstreamEntry::Record: 6049 // The interesting case. 6050 break; 6051 } 6052 6053 // Read a record. The record format depends on whether this 6054 // is a per-module index or a combined index file. In the per-module 6055 // case the records contain the associated value's ID for correlation 6056 // with VST entries. In the combined index the correlation is done 6057 // via the bitcode offset of the summary records (which were saved 6058 // in the combined index VST entries). The records also contain 6059 // information used for ThinLTO renaming and importing. 6060 Record.clear(); 6061 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 6062 auto BitCode = Stream.readRecord(Entry.ID, Record); 6063 switch (BitCode) { 6064 default: // Default behavior: ignore. 6065 break; 6066 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6067 // n x (valueid, callsitecount)] 6068 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6069 // numrefs x valueid, 6070 // n x (valueid, callsitecount, profilecount)] 6071 case bitc::FS_PERMODULE: 6072 case bitc::FS_PERMODULE_PROFILE: { 6073 unsigned ValueID = Record[0]; 6074 uint64_t RawFlags = Record[1]; 6075 unsigned InstCount = Record[2]; 6076 unsigned NumRefs = Record[3]; 6077 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6078 std::unique_ptr<FunctionSummary> FS = 6079 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6080 // The module path string ref set in the summary must be owned by the 6081 // index's module string table. Since we don't have a module path 6082 // string table section in the per-module index, we create a single 6083 // module path string table entry with an empty (0) ID to take 6084 // ownership. 6085 FS->setModulePath( 6086 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6087 static int RefListStartIndex = 4; 6088 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6089 assert(Record.size() >= RefListStartIndex + NumRefs && 6090 "Record size inconsistent with number of references"); 6091 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6092 unsigned RefValueId = Record[I]; 6093 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6094 FS->addRefEdge(RefGUID); 6095 } 6096 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6097 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6098 ++I) { 6099 unsigned CalleeValueId = Record[I]; 6100 unsigned CallsiteCount = Record[++I]; 6101 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6102 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6103 FS->addCallGraphEdge(CalleeGUID, 6104 CalleeInfo(CallsiteCount, ProfileCount)); 6105 } 6106 auto GUID = getGUIDFromValueId(ValueID); 6107 FS->setOriginalName(GUID.second); 6108 auto *Info = TheIndex->getGlobalValueInfo(GUID.first); 6109 assert(!Info->summary() && "Expected a single summary per VST entry"); 6110 Info->setSummary(std::move(FS)); 6111 break; 6112 } 6113 // FS_ALIAS: [valueid, flags, valueid] 6114 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6115 // they expect all aliasee summaries to be available. 6116 case bitc::FS_ALIAS: { 6117 unsigned ValueID = Record[0]; 6118 uint64_t RawFlags = Record[1]; 6119 unsigned AliaseeID = Record[2]; 6120 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6121 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6122 // The module path string ref set in the summary must be owned by the 6123 // index's module string table. Since we don't have a module path 6124 // string table section in the per-module index, we create a single 6125 // module path string table entry with an empty (0) ID to take 6126 // ownership. 6127 AS->setModulePath( 6128 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6129 6130 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6131 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 6132 if (!AliaseeInfo->summary()) 6133 return error("Alias expects aliasee summary to be parsed"); 6134 AS->setAliasee(AliaseeInfo->summary()); 6135 6136 auto GUID = getGUIDFromValueId(ValueID); 6137 AS->setOriginalName(GUID.second); 6138 auto *Info = TheIndex->getGlobalValueInfo(GUID.first); 6139 assert(!Info->summary() && "Expected a single summary per VST entry"); 6140 Info->setSummary(std::move(AS)); 6141 break; 6142 } 6143 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6144 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6145 unsigned ValueID = Record[0]; 6146 uint64_t RawFlags = Record[1]; 6147 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6148 std::unique_ptr<GlobalVarSummary> FS = 6149 llvm::make_unique<GlobalVarSummary>(Flags); 6150 FS->setModulePath( 6151 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6152 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6153 unsigned RefValueId = Record[I]; 6154 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6155 FS->addRefEdge(RefGUID); 6156 } 6157 auto GUID = getGUIDFromValueId(ValueID); 6158 FS->setOriginalName(GUID.second); 6159 auto *Info = TheIndex->getGlobalValueInfo(GUID.first); 6160 assert(!Info->summary() && "Expected a single summary per VST entry"); 6161 Info->setSummary(std::move(FS)); 6162 break; 6163 } 6164 // FS_COMBINED: [modid, flags, instcount, numrefs, numrefs x valueid, 6165 // n x (valueid, callsitecount)] 6166 // FS_COMBINED_PROFILE: [modid, flags, instcount, numrefs, 6167 // numrefs x valueid, 6168 // n x (valueid, callsitecount, profilecount)] 6169 case bitc::FS_COMBINED: 6170 case bitc::FS_COMBINED_PROFILE: { 6171 uint64_t ModuleId = Record[0]; 6172 uint64_t RawFlags = Record[1]; 6173 unsigned InstCount = Record[2]; 6174 unsigned NumRefs = Record[3]; 6175 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6176 std::unique_ptr<FunctionSummary> FS = 6177 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6178 LastSeenSummary = FS.get(); 6179 FS->setModulePath(ModuleIdMap[ModuleId]); 6180 static int RefListStartIndex = 4; 6181 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6182 assert(Record.size() >= RefListStartIndex + NumRefs && 6183 "Record size inconsistent with number of references"); 6184 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6185 unsigned RefValueId = Record[I]; 6186 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6187 FS->addRefEdge(RefGUID); 6188 } 6189 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6190 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6191 ++I) { 6192 unsigned CalleeValueId = Record[I]; 6193 unsigned CallsiteCount = Record[++I]; 6194 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6195 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6196 FS->addCallGraphEdge(CalleeGUID, 6197 CalleeInfo(CallsiteCount, ProfileCount)); 6198 } 6199 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6200 assert(!Info->summary() && "Expected a single summary per VST entry"); 6201 Info->setSummary(std::move(FS)); 6202 Combined = true; 6203 break; 6204 } 6205 // FS_COMBINED_ALIAS: [modid, flags, offset] 6206 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6207 // they expect all aliasee summaries to be available. 6208 case bitc::FS_COMBINED_ALIAS: { 6209 uint64_t ModuleId = Record[0]; 6210 uint64_t RawFlags = Record[1]; 6211 uint64_t AliaseeSummaryOffset = Record[2]; 6212 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6213 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6214 LastSeenSummary = AS.get(); 6215 AS->setModulePath(ModuleIdMap[ModuleId]); 6216 6217 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 6218 if (!AliaseeInfo->summary()) 6219 return error("Alias expects aliasee summary to be parsed"); 6220 AS->setAliasee(AliaseeInfo->summary()); 6221 6222 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6223 assert(!Info->summary() && "Expected a single summary per VST entry"); 6224 Info->setSummary(std::move(AS)); 6225 Combined = true; 6226 break; 6227 } 6228 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, flags, n x valueid] 6229 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6230 uint64_t ModuleId = Record[0]; 6231 uint64_t RawFlags = Record[1]; 6232 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6233 std::unique_ptr<GlobalVarSummary> FS = 6234 llvm::make_unique<GlobalVarSummary>(Flags); 6235 LastSeenSummary = FS.get(); 6236 FS->setModulePath(ModuleIdMap[ModuleId]); 6237 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6238 unsigned RefValueId = Record[I]; 6239 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6240 FS->addRefEdge(RefGUID); 6241 } 6242 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6243 assert(!Info->summary() && "Expected a single summary per VST entry"); 6244 Info->setSummary(std::move(FS)); 6245 Combined = true; 6246 break; 6247 } 6248 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6249 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6250 uint64_t OriginalName = Record[0]; 6251 if (!LastSeenSummary) 6252 return error("Name attachment that does not follow a combined record"); 6253 LastSeenSummary->setOriginalName(OriginalName); 6254 // Reset the LastSeenSummary 6255 LastSeenSummary = nullptr; 6256 } 6257 } 6258 } 6259 llvm_unreachable("Exit infinite loop"); 6260 } 6261 6262 // Parse the module string table block into the Index. 6263 // This populates the ModulePathStringTable map in the index. 6264 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6265 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6266 return error("Invalid record"); 6267 6268 SmallVector<uint64_t, 64> Record; 6269 6270 SmallString<128> ModulePath; 6271 ModulePathStringTableTy::iterator LastSeenModulePath; 6272 while (1) { 6273 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6274 6275 switch (Entry.Kind) { 6276 case BitstreamEntry::SubBlock: // Handled for us already. 6277 case BitstreamEntry::Error: 6278 return error("Malformed block"); 6279 case BitstreamEntry::EndBlock: 6280 return std::error_code(); 6281 case BitstreamEntry::Record: 6282 // The interesting case. 6283 break; 6284 } 6285 6286 Record.clear(); 6287 switch (Stream.readRecord(Entry.ID, Record)) { 6288 default: // Default behavior: ignore. 6289 break; 6290 case bitc::MST_CODE_ENTRY: { 6291 // MST_ENTRY: [modid, namechar x N] 6292 uint64_t ModuleId = Record[0]; 6293 6294 if (convertToString(Record, 1, ModulePath)) 6295 return error("Invalid record"); 6296 6297 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6298 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6299 6300 ModulePath.clear(); 6301 break; 6302 } 6303 /// MST_CODE_HASH: [5*i32] 6304 case bitc::MST_CODE_HASH: { 6305 if (Record.size() != 5) 6306 return error("Invalid hash length " + Twine(Record.size()).str()); 6307 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6308 return error("Invalid hash that does not follow a module path"); 6309 int Pos = 0; 6310 for (auto &Val : Record) { 6311 assert(!(Val >> 32) && "Unexpected high bits set"); 6312 LastSeenModulePath->second.second[Pos++] = Val; 6313 } 6314 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6315 LastSeenModulePath = TheIndex->modulePaths().end(); 6316 break; 6317 } 6318 } 6319 } 6320 llvm_unreachable("Exit infinite loop"); 6321 } 6322 6323 // Parse the function info index from the bitcode streamer into the given index. 6324 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6325 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6326 TheIndex = I; 6327 6328 if (std::error_code EC = initStream(std::move(Streamer))) 6329 return EC; 6330 6331 // Sniff for the signature. 6332 if (!hasValidBitcodeHeader(Stream)) 6333 return error("Invalid bitcode signature"); 6334 6335 // We expect a number of well-defined blocks, though we don't necessarily 6336 // need to understand them all. 6337 while (1) { 6338 if (Stream.AtEndOfStream()) { 6339 // We didn't really read a proper Module block. 6340 return error("Malformed block"); 6341 } 6342 6343 BitstreamEntry Entry = 6344 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6345 6346 if (Entry.Kind != BitstreamEntry::SubBlock) 6347 return error("Malformed block"); 6348 6349 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6350 // building the function summary index. 6351 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6352 return parseModule(); 6353 6354 if (Stream.SkipBlock()) 6355 return error("Invalid record"); 6356 } 6357 } 6358 6359 // Parse the summary information at the given offset in the buffer into 6360 // the index. Used to support lazy parsing of summaries from the 6361 // combined index during importing. 6362 // TODO: This function is not yet complete as it won't have a consumer 6363 // until ThinLTO function importing is added. 6364 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6365 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6366 size_t SummaryOffset) { 6367 TheIndex = I; 6368 6369 if (std::error_code EC = initStream(std::move(Streamer))) 6370 return EC; 6371 6372 // Sniff for the signature. 6373 if (!hasValidBitcodeHeader(Stream)) 6374 return error("Invalid bitcode signature"); 6375 6376 Stream.JumpToBit(SummaryOffset); 6377 6378 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6379 6380 switch (Entry.Kind) { 6381 default: 6382 return error("Malformed block"); 6383 case BitstreamEntry::Record: 6384 // The expected case. 6385 break; 6386 } 6387 6388 // TODO: Read a record. This interface will be completed when ThinLTO 6389 // importing is added so that it can be tested. 6390 SmallVector<uint64_t, 64> Record; 6391 switch (Stream.readRecord(Entry.ID, Record)) { 6392 case bitc::FS_COMBINED: 6393 case bitc::FS_COMBINED_PROFILE: 6394 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6395 default: 6396 return error("Invalid record"); 6397 } 6398 6399 return std::error_code(); 6400 } 6401 6402 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6403 std::unique_ptr<DataStreamer> Streamer) { 6404 if (Streamer) 6405 return initLazyStream(std::move(Streamer)); 6406 return initStreamFromBuffer(); 6407 } 6408 6409 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6410 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6411 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6412 6413 if (Buffer->getBufferSize() & 3) 6414 return error("Invalid bitcode signature"); 6415 6416 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6417 // The magic number is 0x0B17C0DE stored in little endian. 6418 if (isBitcodeWrapper(BufPtr, BufEnd)) 6419 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6420 return error("Invalid bitcode wrapper header"); 6421 6422 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6423 Stream.init(&*StreamFile); 6424 6425 return std::error_code(); 6426 } 6427 6428 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6429 std::unique_ptr<DataStreamer> Streamer) { 6430 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6431 // see it. 6432 auto OwnedBytes = 6433 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6434 StreamingMemoryObject &Bytes = *OwnedBytes; 6435 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6436 Stream.init(&*StreamFile); 6437 6438 unsigned char buf[16]; 6439 if (Bytes.readBytes(buf, 16, 0) != 16) 6440 return error("Invalid bitcode signature"); 6441 6442 if (!isBitcode(buf, buf + 16)) 6443 return error("Invalid bitcode signature"); 6444 6445 if (isBitcodeWrapper(buf, buf + 4)) { 6446 const unsigned char *bitcodeStart = buf; 6447 const unsigned char *bitcodeEnd = buf + 16; 6448 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6449 Bytes.dropLeadingBytes(bitcodeStart - buf); 6450 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6451 } 6452 return std::error_code(); 6453 } 6454 6455 namespace { 6456 class BitcodeErrorCategoryType : public std::error_category { 6457 const char *name() const LLVM_NOEXCEPT override { 6458 return "llvm.bitcode"; 6459 } 6460 std::string message(int IE) const override { 6461 BitcodeError E = static_cast<BitcodeError>(IE); 6462 switch (E) { 6463 case BitcodeError::InvalidBitcodeSignature: 6464 return "Invalid bitcode signature"; 6465 case BitcodeError::CorruptedBitcode: 6466 return "Corrupted bitcode"; 6467 } 6468 llvm_unreachable("Unknown error type!"); 6469 } 6470 }; 6471 } // end anonymous namespace 6472 6473 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6474 6475 const std::error_category &llvm::BitcodeErrorCategory() { 6476 return *ErrorCategory; 6477 } 6478 6479 //===----------------------------------------------------------------------===// 6480 // External interface 6481 //===----------------------------------------------------------------------===// 6482 6483 static ErrorOr<std::unique_ptr<Module>> 6484 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6485 BitcodeReader *R, LLVMContext &Context, 6486 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6487 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6488 M->setMaterializer(R); 6489 6490 auto cleanupOnError = [&](std::error_code EC) { 6491 R->releaseBuffer(); // Never take ownership on error. 6492 return EC; 6493 }; 6494 6495 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6496 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6497 ShouldLazyLoadMetadata)) 6498 return cleanupOnError(EC); 6499 6500 if (MaterializeAll) { 6501 // Read in the entire module, and destroy the BitcodeReader. 6502 if (std::error_code EC = M->materializeAll()) 6503 return cleanupOnError(EC); 6504 } else { 6505 // Resolve forward references from blockaddresses. 6506 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6507 return cleanupOnError(EC); 6508 } 6509 return std::move(M); 6510 } 6511 6512 /// \brief Get a lazy one-at-time loading module from bitcode. 6513 /// 6514 /// This isn't always used in a lazy context. In particular, it's also used by 6515 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6516 /// in forward-referenced functions from block address references. 6517 /// 6518 /// \param[in] MaterializeAll Set to \c true if we should materialize 6519 /// everything. 6520 static ErrorOr<std::unique_ptr<Module>> 6521 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6522 LLVMContext &Context, bool MaterializeAll, 6523 bool ShouldLazyLoadMetadata = false) { 6524 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6525 6526 ErrorOr<std::unique_ptr<Module>> Ret = 6527 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6528 MaterializeAll, ShouldLazyLoadMetadata); 6529 if (!Ret) 6530 return Ret; 6531 6532 Buffer.release(); // The BitcodeReader owns it now. 6533 return Ret; 6534 } 6535 6536 ErrorOr<std::unique_ptr<Module>> 6537 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6538 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6539 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6540 ShouldLazyLoadMetadata); 6541 } 6542 6543 ErrorOr<std::unique_ptr<Module>> 6544 llvm::getStreamedBitcodeModule(StringRef Name, 6545 std::unique_ptr<DataStreamer> Streamer, 6546 LLVMContext &Context) { 6547 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6548 BitcodeReader *R = new BitcodeReader(Context); 6549 6550 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6551 false); 6552 } 6553 6554 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6555 LLVMContext &Context) { 6556 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6557 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6558 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6559 // written. We must defer until the Module has been fully materialized. 6560 } 6561 6562 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6563 LLVMContext &Context) { 6564 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6565 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6566 ErrorOr<std::string> Triple = R->parseTriple(); 6567 if (Triple.getError()) 6568 return ""; 6569 return Triple.get(); 6570 } 6571 6572 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6573 LLVMContext &Context) { 6574 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6575 BitcodeReader R(Buf.release(), Context); 6576 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6577 if (ProducerString.getError()) 6578 return ""; 6579 return ProducerString.get(); 6580 } 6581 6582 // Parse the specified bitcode buffer, returning the function info index. 6583 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6584 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6585 DiagnosticHandlerFunction DiagnosticHandler) { 6586 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6587 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6588 6589 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6590 6591 auto cleanupOnError = [&](std::error_code EC) { 6592 R.releaseBuffer(); // Never take ownership on error. 6593 return EC; 6594 }; 6595 6596 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6597 return cleanupOnError(EC); 6598 6599 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6600 return std::move(Index); 6601 } 6602 6603 // Check if the given bitcode buffer contains a global value summary block. 6604 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6605 DiagnosticHandlerFunction DiagnosticHandler) { 6606 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6607 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6608 6609 auto cleanupOnError = [&](std::error_code EC) { 6610 R.releaseBuffer(); // Never take ownership on error. 6611 return false; 6612 }; 6613 6614 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6615 return cleanupOnError(EC); 6616 6617 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6618 return R.foundGlobalValSummary(); 6619 } 6620