1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_NAMESPACE: { 1494 if (Record.size() != 5) 1495 return Error("Invalid record"); 1496 1497 MDValueList.AssignValue( 1498 GET_OR_DISTINCT(MDNamespace, Record[0], 1499 (Context, getMDOrNull(Record[1]), 1500 getMDOrNull(Record[2]), getMDString(Record[3]), 1501 Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_TEMPLATE_TYPE: { 1506 if (Record.size() != 4) 1507 return Error("Invalid record"); 1508 1509 MDValueList.AssignValue( 1510 GET_OR_DISTINCT(MDTemplateTypeParameter, Record[0], 1511 (Context, getMDOrNull(Record[1]), 1512 getMDString(Record[2]), getMDOrNull(Record[3]))), 1513 NextMDValueNo++); 1514 break; 1515 } 1516 case bitc::METADATA_TEMPLATE_VALUE: { 1517 if (Record.size() != 6) 1518 return Error("Invalid record"); 1519 1520 MDValueList.AssignValue( 1521 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1522 (Context, Record[1], getMDOrNull(Record[2]), 1523 getMDString(Record[3]), getMDOrNull(Record[4]), 1524 getMDOrNull(Record[5]))), 1525 NextMDValueNo++); 1526 break; 1527 } 1528 case bitc::METADATA_GLOBAL_VAR: { 1529 if (Record.size() != 11) 1530 return Error("Invalid record"); 1531 1532 MDValueList.AssignValue( 1533 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1534 (Context, getMDOrNull(Record[1]), 1535 getMDString(Record[2]), getMDString(Record[3]), 1536 getMDOrNull(Record[4]), Record[5], 1537 getMDOrNull(Record[6]), Record[7], Record[8], 1538 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1539 NextMDValueNo++); 1540 break; 1541 } 1542 case bitc::METADATA_STRING: { 1543 std::string String(Record.begin(), Record.end()); 1544 llvm::UpgradeMDStringConstant(String); 1545 Metadata *MD = MDString::get(Context, String); 1546 MDValueList.AssignValue(MD, NextMDValueNo++); 1547 break; 1548 } 1549 case bitc::METADATA_KIND: { 1550 if (Record.size() < 2) 1551 return Error("Invalid record"); 1552 1553 unsigned Kind = Record[0]; 1554 SmallString<8> Name(Record.begin()+1, Record.end()); 1555 1556 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1557 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1558 return Error("Conflicting METADATA_KIND records"); 1559 break; 1560 } 1561 } 1562 } 1563 #undef GET_OR_DISTINCT 1564 } 1565 1566 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1567 /// the LSB for dense VBR encoding. 1568 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1569 if ((V & 1) == 0) 1570 return V >> 1; 1571 if (V != 1) 1572 return -(V >> 1); 1573 // There is no such thing as -0 with integers. "-0" really means MININT. 1574 return 1ULL << 63; 1575 } 1576 1577 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1578 /// values and aliases that we can. 1579 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1580 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1581 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1582 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1583 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1584 1585 GlobalInitWorklist.swap(GlobalInits); 1586 AliasInitWorklist.swap(AliasInits); 1587 FunctionPrefixWorklist.swap(FunctionPrefixes); 1588 FunctionPrologueWorklist.swap(FunctionPrologues); 1589 1590 while (!GlobalInitWorklist.empty()) { 1591 unsigned ValID = GlobalInitWorklist.back().second; 1592 if (ValID >= ValueList.size()) { 1593 // Not ready to resolve this yet, it requires something later in the file. 1594 GlobalInits.push_back(GlobalInitWorklist.back()); 1595 } else { 1596 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1597 GlobalInitWorklist.back().first->setInitializer(C); 1598 else 1599 return Error("Expected a constant"); 1600 } 1601 GlobalInitWorklist.pop_back(); 1602 } 1603 1604 while (!AliasInitWorklist.empty()) { 1605 unsigned ValID = AliasInitWorklist.back().second; 1606 if (ValID >= ValueList.size()) { 1607 AliasInits.push_back(AliasInitWorklist.back()); 1608 } else { 1609 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1610 AliasInitWorklist.back().first->setAliasee(C); 1611 else 1612 return Error("Expected a constant"); 1613 } 1614 AliasInitWorklist.pop_back(); 1615 } 1616 1617 while (!FunctionPrefixWorklist.empty()) { 1618 unsigned ValID = FunctionPrefixWorklist.back().second; 1619 if (ValID >= ValueList.size()) { 1620 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1621 } else { 1622 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1623 FunctionPrefixWorklist.back().first->setPrefixData(C); 1624 else 1625 return Error("Expected a constant"); 1626 } 1627 FunctionPrefixWorklist.pop_back(); 1628 } 1629 1630 while (!FunctionPrologueWorklist.empty()) { 1631 unsigned ValID = FunctionPrologueWorklist.back().second; 1632 if (ValID >= ValueList.size()) { 1633 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1634 } else { 1635 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1636 FunctionPrologueWorklist.back().first->setPrologueData(C); 1637 else 1638 return Error("Expected a constant"); 1639 } 1640 FunctionPrologueWorklist.pop_back(); 1641 } 1642 1643 return std::error_code(); 1644 } 1645 1646 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1647 SmallVector<uint64_t, 8> Words(Vals.size()); 1648 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1649 BitcodeReader::decodeSignRotatedValue); 1650 1651 return APInt(TypeBits, Words); 1652 } 1653 1654 std::error_code BitcodeReader::ParseConstants() { 1655 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1656 return Error("Invalid record"); 1657 1658 SmallVector<uint64_t, 64> Record; 1659 1660 // Read all the records for this value table. 1661 Type *CurTy = Type::getInt32Ty(Context); 1662 unsigned NextCstNo = ValueList.size(); 1663 while (1) { 1664 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1665 1666 switch (Entry.Kind) { 1667 case BitstreamEntry::SubBlock: // Handled for us already. 1668 case BitstreamEntry::Error: 1669 return Error("Malformed block"); 1670 case BitstreamEntry::EndBlock: 1671 if (NextCstNo != ValueList.size()) 1672 return Error("Invalid ronstant reference"); 1673 1674 // Once all the constants have been read, go through and resolve forward 1675 // references. 1676 ValueList.ResolveConstantForwardRefs(); 1677 return std::error_code(); 1678 case BitstreamEntry::Record: 1679 // The interesting case. 1680 break; 1681 } 1682 1683 // Read a record. 1684 Record.clear(); 1685 Value *V = nullptr; 1686 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1687 switch (BitCode) { 1688 default: // Default behavior: unknown constant 1689 case bitc::CST_CODE_UNDEF: // UNDEF 1690 V = UndefValue::get(CurTy); 1691 break; 1692 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1693 if (Record.empty()) 1694 return Error("Invalid record"); 1695 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1696 return Error("Invalid record"); 1697 CurTy = TypeList[Record[0]]; 1698 continue; // Skip the ValueList manipulation. 1699 case bitc::CST_CODE_NULL: // NULL 1700 V = Constant::getNullValue(CurTy); 1701 break; 1702 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1703 if (!CurTy->isIntegerTy() || Record.empty()) 1704 return Error("Invalid record"); 1705 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1706 break; 1707 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1708 if (!CurTy->isIntegerTy() || Record.empty()) 1709 return Error("Invalid record"); 1710 1711 APInt VInt = ReadWideAPInt(Record, 1712 cast<IntegerType>(CurTy)->getBitWidth()); 1713 V = ConstantInt::get(Context, VInt); 1714 1715 break; 1716 } 1717 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1718 if (Record.empty()) 1719 return Error("Invalid record"); 1720 if (CurTy->isHalfTy()) 1721 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1722 APInt(16, (uint16_t)Record[0]))); 1723 else if (CurTy->isFloatTy()) 1724 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1725 APInt(32, (uint32_t)Record[0]))); 1726 else if (CurTy->isDoubleTy()) 1727 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1728 APInt(64, Record[0]))); 1729 else if (CurTy->isX86_FP80Ty()) { 1730 // Bits are not stored the same way as a normal i80 APInt, compensate. 1731 uint64_t Rearrange[2]; 1732 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1733 Rearrange[1] = Record[0] >> 48; 1734 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1735 APInt(80, Rearrange))); 1736 } else if (CurTy->isFP128Ty()) 1737 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1738 APInt(128, Record))); 1739 else if (CurTy->isPPC_FP128Ty()) 1740 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1741 APInt(128, Record))); 1742 else 1743 V = UndefValue::get(CurTy); 1744 break; 1745 } 1746 1747 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1748 if (Record.empty()) 1749 return Error("Invalid record"); 1750 1751 unsigned Size = Record.size(); 1752 SmallVector<Constant*, 16> Elts; 1753 1754 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1755 for (unsigned i = 0; i != Size; ++i) 1756 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1757 STy->getElementType(i))); 1758 V = ConstantStruct::get(STy, Elts); 1759 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1760 Type *EltTy = ATy->getElementType(); 1761 for (unsigned i = 0; i != Size; ++i) 1762 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1763 V = ConstantArray::get(ATy, Elts); 1764 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1765 Type *EltTy = VTy->getElementType(); 1766 for (unsigned i = 0; i != Size; ++i) 1767 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1768 V = ConstantVector::get(Elts); 1769 } else { 1770 V = UndefValue::get(CurTy); 1771 } 1772 break; 1773 } 1774 case bitc::CST_CODE_STRING: // STRING: [values] 1775 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1776 if (Record.empty()) 1777 return Error("Invalid record"); 1778 1779 SmallString<16> Elts(Record.begin(), Record.end()); 1780 V = ConstantDataArray::getString(Context, Elts, 1781 BitCode == bitc::CST_CODE_CSTRING); 1782 break; 1783 } 1784 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1785 if (Record.empty()) 1786 return Error("Invalid record"); 1787 1788 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1789 unsigned Size = Record.size(); 1790 1791 if (EltTy->isIntegerTy(8)) { 1792 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1793 if (isa<VectorType>(CurTy)) 1794 V = ConstantDataVector::get(Context, Elts); 1795 else 1796 V = ConstantDataArray::get(Context, Elts); 1797 } else if (EltTy->isIntegerTy(16)) { 1798 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1799 if (isa<VectorType>(CurTy)) 1800 V = ConstantDataVector::get(Context, Elts); 1801 else 1802 V = ConstantDataArray::get(Context, Elts); 1803 } else if (EltTy->isIntegerTy(32)) { 1804 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1805 if (isa<VectorType>(CurTy)) 1806 V = ConstantDataVector::get(Context, Elts); 1807 else 1808 V = ConstantDataArray::get(Context, Elts); 1809 } else if (EltTy->isIntegerTy(64)) { 1810 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1811 if (isa<VectorType>(CurTy)) 1812 V = ConstantDataVector::get(Context, Elts); 1813 else 1814 V = ConstantDataArray::get(Context, Elts); 1815 } else if (EltTy->isFloatTy()) { 1816 SmallVector<float, 16> Elts(Size); 1817 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1818 if (isa<VectorType>(CurTy)) 1819 V = ConstantDataVector::get(Context, Elts); 1820 else 1821 V = ConstantDataArray::get(Context, Elts); 1822 } else if (EltTy->isDoubleTy()) { 1823 SmallVector<double, 16> Elts(Size); 1824 std::transform(Record.begin(), Record.end(), Elts.begin(), 1825 BitsToDouble); 1826 if (isa<VectorType>(CurTy)) 1827 V = ConstantDataVector::get(Context, Elts); 1828 else 1829 V = ConstantDataArray::get(Context, Elts); 1830 } else { 1831 return Error("Invalid type for value"); 1832 } 1833 break; 1834 } 1835 1836 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1837 if (Record.size() < 3) 1838 return Error("Invalid record"); 1839 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1840 if (Opc < 0) { 1841 V = UndefValue::get(CurTy); // Unknown binop. 1842 } else { 1843 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1844 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1845 unsigned Flags = 0; 1846 if (Record.size() >= 4) { 1847 if (Opc == Instruction::Add || 1848 Opc == Instruction::Sub || 1849 Opc == Instruction::Mul || 1850 Opc == Instruction::Shl) { 1851 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1852 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1853 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1854 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1855 } else if (Opc == Instruction::SDiv || 1856 Opc == Instruction::UDiv || 1857 Opc == Instruction::LShr || 1858 Opc == Instruction::AShr) { 1859 if (Record[3] & (1 << bitc::PEO_EXACT)) 1860 Flags |= SDivOperator::IsExact; 1861 } 1862 } 1863 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1864 } 1865 break; 1866 } 1867 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1868 if (Record.size() < 3) 1869 return Error("Invalid record"); 1870 int Opc = GetDecodedCastOpcode(Record[0]); 1871 if (Opc < 0) { 1872 V = UndefValue::get(CurTy); // Unknown cast. 1873 } else { 1874 Type *OpTy = getTypeByID(Record[1]); 1875 if (!OpTy) 1876 return Error("Invalid record"); 1877 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1878 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1879 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1880 } 1881 break; 1882 } 1883 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1884 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1885 if (Record.size() & 1) 1886 return Error("Invalid record"); 1887 SmallVector<Constant*, 16> Elts; 1888 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1889 Type *ElTy = getTypeByID(Record[i]); 1890 if (!ElTy) 1891 return Error("Invalid record"); 1892 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1893 } 1894 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1895 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1896 BitCode == 1897 bitc::CST_CODE_CE_INBOUNDS_GEP); 1898 break; 1899 } 1900 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1901 if (Record.size() < 3) 1902 return Error("Invalid record"); 1903 1904 Type *SelectorTy = Type::getInt1Ty(Context); 1905 1906 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1907 // vector. Otherwise, it must be a single bit. 1908 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1909 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1910 VTy->getNumElements()); 1911 1912 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1913 SelectorTy), 1914 ValueList.getConstantFwdRef(Record[1],CurTy), 1915 ValueList.getConstantFwdRef(Record[2],CurTy)); 1916 break; 1917 } 1918 case bitc::CST_CODE_CE_EXTRACTELT 1919 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1920 if (Record.size() < 3) 1921 return Error("Invalid record"); 1922 VectorType *OpTy = 1923 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1924 if (!OpTy) 1925 return Error("Invalid record"); 1926 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1927 Constant *Op1 = nullptr; 1928 if (Record.size() == 4) { 1929 Type *IdxTy = getTypeByID(Record[2]); 1930 if (!IdxTy) 1931 return Error("Invalid record"); 1932 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1933 } else // TODO: Remove with llvm 4.0 1934 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1935 if (!Op1) 1936 return Error("Invalid record"); 1937 V = ConstantExpr::getExtractElement(Op0, Op1); 1938 break; 1939 } 1940 case bitc::CST_CODE_CE_INSERTELT 1941 : { // CE_INSERTELT: [opval, opval, opty, opval] 1942 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1943 if (Record.size() < 3 || !OpTy) 1944 return Error("Invalid record"); 1945 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1946 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1947 OpTy->getElementType()); 1948 Constant *Op2 = nullptr; 1949 if (Record.size() == 4) { 1950 Type *IdxTy = getTypeByID(Record[2]); 1951 if (!IdxTy) 1952 return Error("Invalid record"); 1953 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1954 } else // TODO: Remove with llvm 4.0 1955 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1956 if (!Op2) 1957 return Error("Invalid record"); 1958 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1959 break; 1960 } 1961 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1962 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1963 if (Record.size() < 3 || !OpTy) 1964 return Error("Invalid record"); 1965 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1966 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1967 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1968 OpTy->getNumElements()); 1969 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1970 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1971 break; 1972 } 1973 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1974 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1975 VectorType *OpTy = 1976 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1977 if (Record.size() < 4 || !RTy || !OpTy) 1978 return Error("Invalid record"); 1979 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1980 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1981 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1982 RTy->getNumElements()); 1983 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1984 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1985 break; 1986 } 1987 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1988 if (Record.size() < 4) 1989 return Error("Invalid record"); 1990 Type *OpTy = getTypeByID(Record[0]); 1991 if (!OpTy) 1992 return Error("Invalid record"); 1993 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1994 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1995 1996 if (OpTy->isFPOrFPVectorTy()) 1997 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1998 else 1999 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2000 break; 2001 } 2002 // This maintains backward compatibility, pre-asm dialect keywords. 2003 // FIXME: Remove with the 4.0 release. 2004 case bitc::CST_CODE_INLINEASM_OLD: { 2005 if (Record.size() < 2) 2006 return Error("Invalid record"); 2007 std::string AsmStr, ConstrStr; 2008 bool HasSideEffects = Record[0] & 1; 2009 bool IsAlignStack = Record[0] >> 1; 2010 unsigned AsmStrSize = Record[1]; 2011 if (2+AsmStrSize >= Record.size()) 2012 return Error("Invalid record"); 2013 unsigned ConstStrSize = Record[2+AsmStrSize]; 2014 if (3+AsmStrSize+ConstStrSize > Record.size()) 2015 return Error("Invalid record"); 2016 2017 for (unsigned i = 0; i != AsmStrSize; ++i) 2018 AsmStr += (char)Record[2+i]; 2019 for (unsigned i = 0; i != ConstStrSize; ++i) 2020 ConstrStr += (char)Record[3+AsmStrSize+i]; 2021 PointerType *PTy = cast<PointerType>(CurTy); 2022 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2023 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2024 break; 2025 } 2026 // This version adds support for the asm dialect keywords (e.g., 2027 // inteldialect). 2028 case bitc::CST_CODE_INLINEASM: { 2029 if (Record.size() < 2) 2030 return Error("Invalid record"); 2031 std::string AsmStr, ConstrStr; 2032 bool HasSideEffects = Record[0] & 1; 2033 bool IsAlignStack = (Record[0] >> 1) & 1; 2034 unsigned AsmDialect = Record[0] >> 2; 2035 unsigned AsmStrSize = Record[1]; 2036 if (2+AsmStrSize >= Record.size()) 2037 return Error("Invalid record"); 2038 unsigned ConstStrSize = Record[2+AsmStrSize]; 2039 if (3+AsmStrSize+ConstStrSize > Record.size()) 2040 return Error("Invalid record"); 2041 2042 for (unsigned i = 0; i != AsmStrSize; ++i) 2043 AsmStr += (char)Record[2+i]; 2044 for (unsigned i = 0; i != ConstStrSize; ++i) 2045 ConstrStr += (char)Record[3+AsmStrSize+i]; 2046 PointerType *PTy = cast<PointerType>(CurTy); 2047 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2048 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2049 InlineAsm::AsmDialect(AsmDialect)); 2050 break; 2051 } 2052 case bitc::CST_CODE_BLOCKADDRESS:{ 2053 if (Record.size() < 3) 2054 return Error("Invalid record"); 2055 Type *FnTy = getTypeByID(Record[0]); 2056 if (!FnTy) 2057 return Error("Invalid record"); 2058 Function *Fn = 2059 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2060 if (!Fn) 2061 return Error("Invalid record"); 2062 2063 // Don't let Fn get dematerialized. 2064 BlockAddressesTaken.insert(Fn); 2065 2066 // If the function is already parsed we can insert the block address right 2067 // away. 2068 BasicBlock *BB; 2069 unsigned BBID = Record[2]; 2070 if (!BBID) 2071 // Invalid reference to entry block. 2072 return Error("Invalid ID"); 2073 if (!Fn->empty()) { 2074 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2075 for (size_t I = 0, E = BBID; I != E; ++I) { 2076 if (BBI == BBE) 2077 return Error("Invalid ID"); 2078 ++BBI; 2079 } 2080 BB = BBI; 2081 } else { 2082 // Otherwise insert a placeholder and remember it so it can be inserted 2083 // when the function is parsed. 2084 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2085 if (FwdBBs.empty()) 2086 BasicBlockFwdRefQueue.push_back(Fn); 2087 if (FwdBBs.size() < BBID + 1) 2088 FwdBBs.resize(BBID + 1); 2089 if (!FwdBBs[BBID]) 2090 FwdBBs[BBID] = BasicBlock::Create(Context); 2091 BB = FwdBBs[BBID]; 2092 } 2093 V = BlockAddress::get(Fn, BB); 2094 break; 2095 } 2096 } 2097 2098 ValueList.AssignValue(V, NextCstNo); 2099 ++NextCstNo; 2100 } 2101 } 2102 2103 std::error_code BitcodeReader::ParseUseLists() { 2104 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2105 return Error("Invalid record"); 2106 2107 // Read all the records. 2108 SmallVector<uint64_t, 64> Record; 2109 while (1) { 2110 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2111 2112 switch (Entry.Kind) { 2113 case BitstreamEntry::SubBlock: // Handled for us already. 2114 case BitstreamEntry::Error: 2115 return Error("Malformed block"); 2116 case BitstreamEntry::EndBlock: 2117 return std::error_code(); 2118 case BitstreamEntry::Record: 2119 // The interesting case. 2120 break; 2121 } 2122 2123 // Read a use list record. 2124 Record.clear(); 2125 bool IsBB = false; 2126 switch (Stream.readRecord(Entry.ID, Record)) { 2127 default: // Default behavior: unknown type. 2128 break; 2129 case bitc::USELIST_CODE_BB: 2130 IsBB = true; 2131 // fallthrough 2132 case bitc::USELIST_CODE_DEFAULT: { 2133 unsigned RecordLength = Record.size(); 2134 if (RecordLength < 3) 2135 // Records should have at least an ID and two indexes. 2136 return Error("Invalid record"); 2137 unsigned ID = Record.back(); 2138 Record.pop_back(); 2139 2140 Value *V; 2141 if (IsBB) { 2142 assert(ID < FunctionBBs.size() && "Basic block not found"); 2143 V = FunctionBBs[ID]; 2144 } else 2145 V = ValueList[ID]; 2146 unsigned NumUses = 0; 2147 SmallDenseMap<const Use *, unsigned, 16> Order; 2148 for (const Use &U : V->uses()) { 2149 if (++NumUses > Record.size()) 2150 break; 2151 Order[&U] = Record[NumUses - 1]; 2152 } 2153 if (Order.size() != Record.size() || NumUses > Record.size()) 2154 // Mismatches can happen if the functions are being materialized lazily 2155 // (out-of-order), or a value has been upgraded. 2156 break; 2157 2158 V->sortUseList([&](const Use &L, const Use &R) { 2159 return Order.lookup(&L) < Order.lookup(&R); 2160 }); 2161 break; 2162 } 2163 } 2164 } 2165 } 2166 2167 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2168 /// remember where it is and then skip it. This lets us lazily deserialize the 2169 /// functions. 2170 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2171 // Get the function we are talking about. 2172 if (FunctionsWithBodies.empty()) 2173 return Error("Insufficient function protos"); 2174 2175 Function *Fn = FunctionsWithBodies.back(); 2176 FunctionsWithBodies.pop_back(); 2177 2178 // Save the current stream state. 2179 uint64_t CurBit = Stream.GetCurrentBitNo(); 2180 DeferredFunctionInfo[Fn] = CurBit; 2181 2182 // Skip over the function block for now. 2183 if (Stream.SkipBlock()) 2184 return Error("Invalid record"); 2185 return std::error_code(); 2186 } 2187 2188 std::error_code BitcodeReader::GlobalCleanup() { 2189 // Patch the initializers for globals and aliases up. 2190 ResolveGlobalAndAliasInits(); 2191 if (!GlobalInits.empty() || !AliasInits.empty()) 2192 return Error("Malformed global initializer set"); 2193 2194 // Look for intrinsic functions which need to be upgraded at some point 2195 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2196 FI != FE; ++FI) { 2197 Function *NewFn; 2198 if (UpgradeIntrinsicFunction(FI, NewFn)) 2199 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2200 } 2201 2202 // Look for global variables which need to be renamed. 2203 for (Module::global_iterator 2204 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2205 GI != GE;) { 2206 GlobalVariable *GV = GI++; 2207 UpgradeGlobalVariable(GV); 2208 } 2209 2210 // Force deallocation of memory for these vectors to favor the client that 2211 // want lazy deserialization. 2212 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2213 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2214 return std::error_code(); 2215 } 2216 2217 std::error_code BitcodeReader::ParseModule(bool Resume) { 2218 if (Resume) 2219 Stream.JumpToBit(NextUnreadBit); 2220 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2221 return Error("Invalid record"); 2222 2223 SmallVector<uint64_t, 64> Record; 2224 std::vector<std::string> SectionTable; 2225 std::vector<std::string> GCTable; 2226 2227 // Read all the records for this module. 2228 while (1) { 2229 BitstreamEntry Entry = Stream.advance(); 2230 2231 switch (Entry.Kind) { 2232 case BitstreamEntry::Error: 2233 return Error("Malformed block"); 2234 case BitstreamEntry::EndBlock: 2235 return GlobalCleanup(); 2236 2237 case BitstreamEntry::SubBlock: 2238 switch (Entry.ID) { 2239 default: // Skip unknown content. 2240 if (Stream.SkipBlock()) 2241 return Error("Invalid record"); 2242 break; 2243 case bitc::BLOCKINFO_BLOCK_ID: 2244 if (Stream.ReadBlockInfoBlock()) 2245 return Error("Malformed block"); 2246 break; 2247 case bitc::PARAMATTR_BLOCK_ID: 2248 if (std::error_code EC = ParseAttributeBlock()) 2249 return EC; 2250 break; 2251 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2252 if (std::error_code EC = ParseAttributeGroupBlock()) 2253 return EC; 2254 break; 2255 case bitc::TYPE_BLOCK_ID_NEW: 2256 if (std::error_code EC = ParseTypeTable()) 2257 return EC; 2258 break; 2259 case bitc::VALUE_SYMTAB_BLOCK_ID: 2260 if (std::error_code EC = ParseValueSymbolTable()) 2261 return EC; 2262 SeenValueSymbolTable = true; 2263 break; 2264 case bitc::CONSTANTS_BLOCK_ID: 2265 if (std::error_code EC = ParseConstants()) 2266 return EC; 2267 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2268 return EC; 2269 break; 2270 case bitc::METADATA_BLOCK_ID: 2271 if (std::error_code EC = ParseMetadata()) 2272 return EC; 2273 break; 2274 case bitc::FUNCTION_BLOCK_ID: 2275 // If this is the first function body we've seen, reverse the 2276 // FunctionsWithBodies list. 2277 if (!SeenFirstFunctionBody) { 2278 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2279 if (std::error_code EC = GlobalCleanup()) 2280 return EC; 2281 SeenFirstFunctionBody = true; 2282 } 2283 2284 if (std::error_code EC = RememberAndSkipFunctionBody()) 2285 return EC; 2286 // For streaming bitcode, suspend parsing when we reach the function 2287 // bodies. Subsequent materialization calls will resume it when 2288 // necessary. For streaming, the function bodies must be at the end of 2289 // the bitcode. If the bitcode file is old, the symbol table will be 2290 // at the end instead and will not have been seen yet. In this case, 2291 // just finish the parse now. 2292 if (LazyStreamer && SeenValueSymbolTable) { 2293 NextUnreadBit = Stream.GetCurrentBitNo(); 2294 return std::error_code(); 2295 } 2296 break; 2297 case bitc::USELIST_BLOCK_ID: 2298 if (std::error_code EC = ParseUseLists()) 2299 return EC; 2300 break; 2301 } 2302 continue; 2303 2304 case BitstreamEntry::Record: 2305 // The interesting case. 2306 break; 2307 } 2308 2309 2310 // Read a record. 2311 switch (Stream.readRecord(Entry.ID, Record)) { 2312 default: break; // Default behavior, ignore unknown content. 2313 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2314 if (Record.size() < 1) 2315 return Error("Invalid record"); 2316 // Only version #0 and #1 are supported so far. 2317 unsigned module_version = Record[0]; 2318 switch (module_version) { 2319 default: 2320 return Error("Invalid value"); 2321 case 0: 2322 UseRelativeIDs = false; 2323 break; 2324 case 1: 2325 UseRelativeIDs = true; 2326 break; 2327 } 2328 break; 2329 } 2330 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2331 std::string S; 2332 if (ConvertToString(Record, 0, S)) 2333 return Error("Invalid record"); 2334 TheModule->setTargetTriple(S); 2335 break; 2336 } 2337 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2338 std::string S; 2339 if (ConvertToString(Record, 0, S)) 2340 return Error("Invalid record"); 2341 TheModule->setDataLayout(S); 2342 break; 2343 } 2344 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2345 std::string S; 2346 if (ConvertToString(Record, 0, S)) 2347 return Error("Invalid record"); 2348 TheModule->setModuleInlineAsm(S); 2349 break; 2350 } 2351 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2352 // FIXME: Remove in 4.0. 2353 std::string S; 2354 if (ConvertToString(Record, 0, S)) 2355 return Error("Invalid record"); 2356 // Ignore value. 2357 break; 2358 } 2359 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2360 std::string S; 2361 if (ConvertToString(Record, 0, S)) 2362 return Error("Invalid record"); 2363 SectionTable.push_back(S); 2364 break; 2365 } 2366 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2367 std::string S; 2368 if (ConvertToString(Record, 0, S)) 2369 return Error("Invalid record"); 2370 GCTable.push_back(S); 2371 break; 2372 } 2373 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2374 if (Record.size() < 2) 2375 return Error("Invalid record"); 2376 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2377 unsigned ComdatNameSize = Record[1]; 2378 std::string ComdatName; 2379 ComdatName.reserve(ComdatNameSize); 2380 for (unsigned i = 0; i != ComdatNameSize; ++i) 2381 ComdatName += (char)Record[2 + i]; 2382 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2383 C->setSelectionKind(SK); 2384 ComdatList.push_back(C); 2385 break; 2386 } 2387 // GLOBALVAR: [pointer type, isconst, initid, 2388 // linkage, alignment, section, visibility, threadlocal, 2389 // unnamed_addr, externally_initialized, dllstorageclass, 2390 // comdat] 2391 case bitc::MODULE_CODE_GLOBALVAR: { 2392 if (Record.size() < 6) 2393 return Error("Invalid record"); 2394 Type *Ty = getTypeByID(Record[0]); 2395 if (!Ty) 2396 return Error("Invalid record"); 2397 if (!Ty->isPointerTy()) 2398 return Error("Invalid type for value"); 2399 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2400 Ty = cast<PointerType>(Ty)->getElementType(); 2401 2402 bool isConstant = Record[1]; 2403 uint64_t RawLinkage = Record[3]; 2404 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2405 unsigned Alignment = (1 << Record[4]) >> 1; 2406 std::string Section; 2407 if (Record[5]) { 2408 if (Record[5]-1 >= SectionTable.size()) 2409 return Error("Invalid ID"); 2410 Section = SectionTable[Record[5]-1]; 2411 } 2412 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2413 // Local linkage must have default visibility. 2414 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2415 // FIXME: Change to an error if non-default in 4.0. 2416 Visibility = GetDecodedVisibility(Record[6]); 2417 2418 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2419 if (Record.size() > 7) 2420 TLM = GetDecodedThreadLocalMode(Record[7]); 2421 2422 bool UnnamedAddr = false; 2423 if (Record.size() > 8) 2424 UnnamedAddr = Record[8]; 2425 2426 bool ExternallyInitialized = false; 2427 if (Record.size() > 9) 2428 ExternallyInitialized = Record[9]; 2429 2430 GlobalVariable *NewGV = 2431 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2432 TLM, AddressSpace, ExternallyInitialized); 2433 NewGV->setAlignment(Alignment); 2434 if (!Section.empty()) 2435 NewGV->setSection(Section); 2436 NewGV->setVisibility(Visibility); 2437 NewGV->setUnnamedAddr(UnnamedAddr); 2438 2439 if (Record.size() > 10) 2440 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2441 else 2442 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2443 2444 ValueList.push_back(NewGV); 2445 2446 // Remember which value to use for the global initializer. 2447 if (unsigned InitID = Record[2]) 2448 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2449 2450 if (Record.size() > 11) { 2451 if (unsigned ComdatID = Record[11]) { 2452 assert(ComdatID <= ComdatList.size()); 2453 NewGV->setComdat(ComdatList[ComdatID - 1]); 2454 } 2455 } else if (hasImplicitComdat(RawLinkage)) { 2456 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2457 } 2458 break; 2459 } 2460 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2461 // alignment, section, visibility, gc, unnamed_addr, 2462 // prologuedata, dllstorageclass, comdat, prefixdata] 2463 case bitc::MODULE_CODE_FUNCTION: { 2464 if (Record.size() < 8) 2465 return Error("Invalid record"); 2466 Type *Ty = getTypeByID(Record[0]); 2467 if (!Ty) 2468 return Error("Invalid record"); 2469 if (!Ty->isPointerTy()) 2470 return Error("Invalid type for value"); 2471 FunctionType *FTy = 2472 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2473 if (!FTy) 2474 return Error("Invalid type for value"); 2475 2476 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2477 "", TheModule); 2478 2479 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2480 bool isProto = Record[2]; 2481 uint64_t RawLinkage = Record[3]; 2482 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2483 Func->setAttributes(getAttributes(Record[4])); 2484 2485 Func->setAlignment((1 << Record[5]) >> 1); 2486 if (Record[6]) { 2487 if (Record[6]-1 >= SectionTable.size()) 2488 return Error("Invalid ID"); 2489 Func->setSection(SectionTable[Record[6]-1]); 2490 } 2491 // Local linkage must have default visibility. 2492 if (!Func->hasLocalLinkage()) 2493 // FIXME: Change to an error if non-default in 4.0. 2494 Func->setVisibility(GetDecodedVisibility(Record[7])); 2495 if (Record.size() > 8 && Record[8]) { 2496 if (Record[8]-1 > GCTable.size()) 2497 return Error("Invalid ID"); 2498 Func->setGC(GCTable[Record[8]-1].c_str()); 2499 } 2500 bool UnnamedAddr = false; 2501 if (Record.size() > 9) 2502 UnnamedAddr = Record[9]; 2503 Func->setUnnamedAddr(UnnamedAddr); 2504 if (Record.size() > 10 && Record[10] != 0) 2505 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2506 2507 if (Record.size() > 11) 2508 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2509 else 2510 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2511 2512 if (Record.size() > 12) { 2513 if (unsigned ComdatID = Record[12]) { 2514 assert(ComdatID <= ComdatList.size()); 2515 Func->setComdat(ComdatList[ComdatID - 1]); 2516 } 2517 } else if (hasImplicitComdat(RawLinkage)) { 2518 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2519 } 2520 2521 if (Record.size() > 13 && Record[13] != 0) 2522 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2523 2524 ValueList.push_back(Func); 2525 2526 // If this is a function with a body, remember the prototype we are 2527 // creating now, so that we can match up the body with them later. 2528 if (!isProto) { 2529 Func->setIsMaterializable(true); 2530 FunctionsWithBodies.push_back(Func); 2531 if (LazyStreamer) 2532 DeferredFunctionInfo[Func] = 0; 2533 } 2534 break; 2535 } 2536 // ALIAS: [alias type, aliasee val#, linkage] 2537 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2538 case bitc::MODULE_CODE_ALIAS: { 2539 if (Record.size() < 3) 2540 return Error("Invalid record"); 2541 Type *Ty = getTypeByID(Record[0]); 2542 if (!Ty) 2543 return Error("Invalid record"); 2544 auto *PTy = dyn_cast<PointerType>(Ty); 2545 if (!PTy) 2546 return Error("Invalid type for value"); 2547 2548 auto *NewGA = 2549 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2550 getDecodedLinkage(Record[2]), "", TheModule); 2551 // Old bitcode files didn't have visibility field. 2552 // Local linkage must have default visibility. 2553 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2554 // FIXME: Change to an error if non-default in 4.0. 2555 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2556 if (Record.size() > 4) 2557 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2558 else 2559 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2560 if (Record.size() > 5) 2561 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2562 if (Record.size() > 6) 2563 NewGA->setUnnamedAddr(Record[6]); 2564 ValueList.push_back(NewGA); 2565 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2566 break; 2567 } 2568 /// MODULE_CODE_PURGEVALS: [numvals] 2569 case bitc::MODULE_CODE_PURGEVALS: 2570 // Trim down the value list to the specified size. 2571 if (Record.size() < 1 || Record[0] > ValueList.size()) 2572 return Error("Invalid record"); 2573 ValueList.shrinkTo(Record[0]); 2574 break; 2575 } 2576 Record.clear(); 2577 } 2578 } 2579 2580 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2581 TheModule = nullptr; 2582 2583 if (std::error_code EC = InitStream()) 2584 return EC; 2585 2586 // Sniff for the signature. 2587 if (Stream.Read(8) != 'B' || 2588 Stream.Read(8) != 'C' || 2589 Stream.Read(4) != 0x0 || 2590 Stream.Read(4) != 0xC || 2591 Stream.Read(4) != 0xE || 2592 Stream.Read(4) != 0xD) 2593 return Error("Invalid bitcode signature"); 2594 2595 // We expect a number of well-defined blocks, though we don't necessarily 2596 // need to understand them all. 2597 while (1) { 2598 if (Stream.AtEndOfStream()) 2599 return std::error_code(); 2600 2601 BitstreamEntry Entry = 2602 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2603 2604 switch (Entry.Kind) { 2605 case BitstreamEntry::Error: 2606 return Error("Malformed block"); 2607 case BitstreamEntry::EndBlock: 2608 return std::error_code(); 2609 2610 case BitstreamEntry::SubBlock: 2611 switch (Entry.ID) { 2612 case bitc::BLOCKINFO_BLOCK_ID: 2613 if (Stream.ReadBlockInfoBlock()) 2614 return Error("Malformed block"); 2615 break; 2616 case bitc::MODULE_BLOCK_ID: 2617 // Reject multiple MODULE_BLOCK's in a single bitstream. 2618 if (TheModule) 2619 return Error("Invalid multiple blocks"); 2620 TheModule = M; 2621 if (std::error_code EC = ParseModule(false)) 2622 return EC; 2623 if (LazyStreamer) 2624 return std::error_code(); 2625 break; 2626 default: 2627 if (Stream.SkipBlock()) 2628 return Error("Invalid record"); 2629 break; 2630 } 2631 continue; 2632 case BitstreamEntry::Record: 2633 // There should be no records in the top-level of blocks. 2634 2635 // The ranlib in Xcode 4 will align archive members by appending newlines 2636 // to the end of them. If this file size is a multiple of 4 but not 8, we 2637 // have to read and ignore these final 4 bytes :-( 2638 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2639 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2640 Stream.AtEndOfStream()) 2641 return std::error_code(); 2642 2643 return Error("Invalid record"); 2644 } 2645 } 2646 } 2647 2648 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2649 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2650 return Error("Invalid record"); 2651 2652 SmallVector<uint64_t, 64> Record; 2653 2654 std::string Triple; 2655 // Read all the records for this module. 2656 while (1) { 2657 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2658 2659 switch (Entry.Kind) { 2660 case BitstreamEntry::SubBlock: // Handled for us already. 2661 case BitstreamEntry::Error: 2662 return Error("Malformed block"); 2663 case BitstreamEntry::EndBlock: 2664 return Triple; 2665 case BitstreamEntry::Record: 2666 // The interesting case. 2667 break; 2668 } 2669 2670 // Read a record. 2671 switch (Stream.readRecord(Entry.ID, Record)) { 2672 default: break; // Default behavior, ignore unknown content. 2673 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2674 std::string S; 2675 if (ConvertToString(Record, 0, S)) 2676 return Error("Invalid record"); 2677 Triple = S; 2678 break; 2679 } 2680 } 2681 Record.clear(); 2682 } 2683 llvm_unreachable("Exit infinite loop"); 2684 } 2685 2686 ErrorOr<std::string> BitcodeReader::parseTriple() { 2687 if (std::error_code EC = InitStream()) 2688 return EC; 2689 2690 // Sniff for the signature. 2691 if (Stream.Read(8) != 'B' || 2692 Stream.Read(8) != 'C' || 2693 Stream.Read(4) != 0x0 || 2694 Stream.Read(4) != 0xC || 2695 Stream.Read(4) != 0xE || 2696 Stream.Read(4) != 0xD) 2697 return Error("Invalid bitcode signature"); 2698 2699 // We expect a number of well-defined blocks, though we don't necessarily 2700 // need to understand them all. 2701 while (1) { 2702 BitstreamEntry Entry = Stream.advance(); 2703 2704 switch (Entry.Kind) { 2705 case BitstreamEntry::Error: 2706 return Error("Malformed block"); 2707 case BitstreamEntry::EndBlock: 2708 return std::error_code(); 2709 2710 case BitstreamEntry::SubBlock: 2711 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2712 return parseModuleTriple(); 2713 2714 // Ignore other sub-blocks. 2715 if (Stream.SkipBlock()) 2716 return Error("Malformed block"); 2717 continue; 2718 2719 case BitstreamEntry::Record: 2720 Stream.skipRecord(Entry.ID); 2721 continue; 2722 } 2723 } 2724 } 2725 2726 /// ParseMetadataAttachment - Parse metadata attachments. 2727 std::error_code BitcodeReader::ParseMetadataAttachment() { 2728 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2729 return Error("Invalid record"); 2730 2731 SmallVector<uint64_t, 64> Record; 2732 while (1) { 2733 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2734 2735 switch (Entry.Kind) { 2736 case BitstreamEntry::SubBlock: // Handled for us already. 2737 case BitstreamEntry::Error: 2738 return Error("Malformed block"); 2739 case BitstreamEntry::EndBlock: 2740 return std::error_code(); 2741 case BitstreamEntry::Record: 2742 // The interesting case. 2743 break; 2744 } 2745 2746 // Read a metadata attachment record. 2747 Record.clear(); 2748 switch (Stream.readRecord(Entry.ID, Record)) { 2749 default: // Default behavior: ignore. 2750 break; 2751 case bitc::METADATA_ATTACHMENT: { 2752 unsigned RecordLength = Record.size(); 2753 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2754 return Error("Invalid record"); 2755 Instruction *Inst = InstructionList[Record[0]]; 2756 for (unsigned i = 1; i != RecordLength; i = i+2) { 2757 unsigned Kind = Record[i]; 2758 DenseMap<unsigned, unsigned>::iterator I = 2759 MDKindMap.find(Kind); 2760 if (I == MDKindMap.end()) 2761 return Error("Invalid ID"); 2762 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2763 if (isa<LocalAsMetadata>(Node)) 2764 // Drop the attachment. This used to be legal, but there's no 2765 // upgrade path. 2766 break; 2767 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2768 if (I->second == LLVMContext::MD_tbaa) 2769 InstsWithTBAATag.push_back(Inst); 2770 } 2771 break; 2772 } 2773 } 2774 } 2775 } 2776 2777 /// ParseFunctionBody - Lazily parse the specified function body block. 2778 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2779 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2780 return Error("Invalid record"); 2781 2782 InstructionList.clear(); 2783 unsigned ModuleValueListSize = ValueList.size(); 2784 unsigned ModuleMDValueListSize = MDValueList.size(); 2785 2786 // Add all the function arguments to the value table. 2787 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2788 ValueList.push_back(I); 2789 2790 unsigned NextValueNo = ValueList.size(); 2791 BasicBlock *CurBB = nullptr; 2792 unsigned CurBBNo = 0; 2793 2794 DebugLoc LastLoc; 2795 auto getLastInstruction = [&]() -> Instruction * { 2796 if (CurBB && !CurBB->empty()) 2797 return &CurBB->back(); 2798 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2799 !FunctionBBs[CurBBNo - 1]->empty()) 2800 return &FunctionBBs[CurBBNo - 1]->back(); 2801 return nullptr; 2802 }; 2803 2804 // Read all the records. 2805 SmallVector<uint64_t, 64> Record; 2806 while (1) { 2807 BitstreamEntry Entry = Stream.advance(); 2808 2809 switch (Entry.Kind) { 2810 case BitstreamEntry::Error: 2811 return Error("Malformed block"); 2812 case BitstreamEntry::EndBlock: 2813 goto OutOfRecordLoop; 2814 2815 case BitstreamEntry::SubBlock: 2816 switch (Entry.ID) { 2817 default: // Skip unknown content. 2818 if (Stream.SkipBlock()) 2819 return Error("Invalid record"); 2820 break; 2821 case bitc::CONSTANTS_BLOCK_ID: 2822 if (std::error_code EC = ParseConstants()) 2823 return EC; 2824 NextValueNo = ValueList.size(); 2825 break; 2826 case bitc::VALUE_SYMTAB_BLOCK_ID: 2827 if (std::error_code EC = ParseValueSymbolTable()) 2828 return EC; 2829 break; 2830 case bitc::METADATA_ATTACHMENT_ID: 2831 if (std::error_code EC = ParseMetadataAttachment()) 2832 return EC; 2833 break; 2834 case bitc::METADATA_BLOCK_ID: 2835 if (std::error_code EC = ParseMetadata()) 2836 return EC; 2837 break; 2838 case bitc::USELIST_BLOCK_ID: 2839 if (std::error_code EC = ParseUseLists()) 2840 return EC; 2841 break; 2842 } 2843 continue; 2844 2845 case BitstreamEntry::Record: 2846 // The interesting case. 2847 break; 2848 } 2849 2850 // Read a record. 2851 Record.clear(); 2852 Instruction *I = nullptr; 2853 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2854 switch (BitCode) { 2855 default: // Default behavior: reject 2856 return Error("Invalid value"); 2857 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2858 if (Record.size() < 1 || Record[0] == 0) 2859 return Error("Invalid record"); 2860 // Create all the basic blocks for the function. 2861 FunctionBBs.resize(Record[0]); 2862 2863 // See if anything took the address of blocks in this function. 2864 auto BBFRI = BasicBlockFwdRefs.find(F); 2865 if (BBFRI == BasicBlockFwdRefs.end()) { 2866 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2867 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2868 } else { 2869 auto &BBRefs = BBFRI->second; 2870 // Check for invalid basic block references. 2871 if (BBRefs.size() > FunctionBBs.size()) 2872 return Error("Invalid ID"); 2873 assert(!BBRefs.empty() && "Unexpected empty array"); 2874 assert(!BBRefs.front() && "Invalid reference to entry block"); 2875 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2876 ++I) 2877 if (I < RE && BBRefs[I]) { 2878 BBRefs[I]->insertInto(F); 2879 FunctionBBs[I] = BBRefs[I]; 2880 } else { 2881 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2882 } 2883 2884 // Erase from the table. 2885 BasicBlockFwdRefs.erase(BBFRI); 2886 } 2887 2888 CurBB = FunctionBBs[0]; 2889 continue; 2890 } 2891 2892 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2893 // This record indicates that the last instruction is at the same 2894 // location as the previous instruction with a location. 2895 I = getLastInstruction(); 2896 2897 if (!I) 2898 return Error("Invalid record"); 2899 I->setDebugLoc(LastLoc); 2900 I = nullptr; 2901 continue; 2902 2903 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2904 I = getLastInstruction(); 2905 if (!I || Record.size() < 4) 2906 return Error("Invalid record"); 2907 2908 unsigned Line = Record[0], Col = Record[1]; 2909 unsigned ScopeID = Record[2], IAID = Record[3]; 2910 2911 MDNode *Scope = nullptr, *IA = nullptr; 2912 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2913 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2914 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2915 I->setDebugLoc(LastLoc); 2916 I = nullptr; 2917 continue; 2918 } 2919 2920 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2921 unsigned OpNum = 0; 2922 Value *LHS, *RHS; 2923 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2924 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2925 OpNum+1 > Record.size()) 2926 return Error("Invalid record"); 2927 2928 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2929 if (Opc == -1) 2930 return Error("Invalid record"); 2931 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2932 InstructionList.push_back(I); 2933 if (OpNum < Record.size()) { 2934 if (Opc == Instruction::Add || 2935 Opc == Instruction::Sub || 2936 Opc == Instruction::Mul || 2937 Opc == Instruction::Shl) { 2938 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2939 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2940 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2941 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2942 } else if (Opc == Instruction::SDiv || 2943 Opc == Instruction::UDiv || 2944 Opc == Instruction::LShr || 2945 Opc == Instruction::AShr) { 2946 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2947 cast<BinaryOperator>(I)->setIsExact(true); 2948 } else if (isa<FPMathOperator>(I)) { 2949 FastMathFlags FMF; 2950 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2951 FMF.setUnsafeAlgebra(); 2952 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2953 FMF.setNoNaNs(); 2954 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2955 FMF.setNoInfs(); 2956 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2957 FMF.setNoSignedZeros(); 2958 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2959 FMF.setAllowReciprocal(); 2960 if (FMF.any()) 2961 I->setFastMathFlags(FMF); 2962 } 2963 2964 } 2965 break; 2966 } 2967 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2968 unsigned OpNum = 0; 2969 Value *Op; 2970 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2971 OpNum+2 != Record.size()) 2972 return Error("Invalid record"); 2973 2974 Type *ResTy = getTypeByID(Record[OpNum]); 2975 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2976 if (Opc == -1 || !ResTy) 2977 return Error("Invalid record"); 2978 Instruction *Temp = nullptr; 2979 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2980 if (Temp) { 2981 InstructionList.push_back(Temp); 2982 CurBB->getInstList().push_back(Temp); 2983 } 2984 } else { 2985 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2986 } 2987 InstructionList.push_back(I); 2988 break; 2989 } 2990 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2991 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2992 unsigned OpNum = 0; 2993 Value *BasePtr; 2994 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2995 return Error("Invalid record"); 2996 2997 SmallVector<Value*, 16> GEPIdx; 2998 while (OpNum != Record.size()) { 2999 Value *Op; 3000 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3001 return Error("Invalid record"); 3002 GEPIdx.push_back(Op); 3003 } 3004 3005 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 3006 InstructionList.push_back(I); 3007 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 3008 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3009 break; 3010 } 3011 3012 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3013 // EXTRACTVAL: [opty, opval, n x indices] 3014 unsigned OpNum = 0; 3015 Value *Agg; 3016 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3017 return Error("Invalid record"); 3018 3019 SmallVector<unsigned, 4> EXTRACTVALIdx; 3020 for (unsigned RecSize = Record.size(); 3021 OpNum != RecSize; ++OpNum) { 3022 uint64_t Index = Record[OpNum]; 3023 if ((unsigned)Index != Index) 3024 return Error("Invalid value"); 3025 EXTRACTVALIdx.push_back((unsigned)Index); 3026 } 3027 3028 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3029 InstructionList.push_back(I); 3030 break; 3031 } 3032 3033 case bitc::FUNC_CODE_INST_INSERTVAL: { 3034 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3035 unsigned OpNum = 0; 3036 Value *Agg; 3037 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3038 return Error("Invalid record"); 3039 Value *Val; 3040 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3041 return Error("Invalid record"); 3042 3043 SmallVector<unsigned, 4> INSERTVALIdx; 3044 for (unsigned RecSize = Record.size(); 3045 OpNum != RecSize; ++OpNum) { 3046 uint64_t Index = Record[OpNum]; 3047 if ((unsigned)Index != Index) 3048 return Error("Invalid value"); 3049 INSERTVALIdx.push_back((unsigned)Index); 3050 } 3051 3052 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3053 InstructionList.push_back(I); 3054 break; 3055 } 3056 3057 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3058 // obsolete form of select 3059 // handles select i1 ... in old bitcode 3060 unsigned OpNum = 0; 3061 Value *TrueVal, *FalseVal, *Cond; 3062 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3063 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3064 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3065 return Error("Invalid record"); 3066 3067 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3068 InstructionList.push_back(I); 3069 break; 3070 } 3071 3072 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3073 // new form of select 3074 // handles select i1 or select [N x i1] 3075 unsigned OpNum = 0; 3076 Value *TrueVal, *FalseVal, *Cond; 3077 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3078 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3079 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3080 return Error("Invalid record"); 3081 3082 // select condition can be either i1 or [N x i1] 3083 if (VectorType* vector_type = 3084 dyn_cast<VectorType>(Cond->getType())) { 3085 // expect <n x i1> 3086 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3087 return Error("Invalid type for value"); 3088 } else { 3089 // expect i1 3090 if (Cond->getType() != Type::getInt1Ty(Context)) 3091 return Error("Invalid type for value"); 3092 } 3093 3094 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3095 InstructionList.push_back(I); 3096 break; 3097 } 3098 3099 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3100 unsigned OpNum = 0; 3101 Value *Vec, *Idx; 3102 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3103 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3104 return Error("Invalid record"); 3105 I = ExtractElementInst::Create(Vec, Idx); 3106 InstructionList.push_back(I); 3107 break; 3108 } 3109 3110 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3111 unsigned OpNum = 0; 3112 Value *Vec, *Elt, *Idx; 3113 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3114 popValue(Record, OpNum, NextValueNo, 3115 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3116 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3117 return Error("Invalid record"); 3118 I = InsertElementInst::Create(Vec, Elt, Idx); 3119 InstructionList.push_back(I); 3120 break; 3121 } 3122 3123 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3124 unsigned OpNum = 0; 3125 Value *Vec1, *Vec2, *Mask; 3126 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3127 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3128 return Error("Invalid record"); 3129 3130 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3131 return Error("Invalid record"); 3132 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3133 InstructionList.push_back(I); 3134 break; 3135 } 3136 3137 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3138 // Old form of ICmp/FCmp returning bool 3139 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3140 // both legal on vectors but had different behaviour. 3141 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3142 // FCmp/ICmp returning bool or vector of bool 3143 3144 unsigned OpNum = 0; 3145 Value *LHS, *RHS; 3146 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3147 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3148 OpNum+1 != Record.size()) 3149 return Error("Invalid record"); 3150 3151 if (LHS->getType()->isFPOrFPVectorTy()) 3152 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3153 else 3154 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3155 InstructionList.push_back(I); 3156 break; 3157 } 3158 3159 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3160 { 3161 unsigned Size = Record.size(); 3162 if (Size == 0) { 3163 I = ReturnInst::Create(Context); 3164 InstructionList.push_back(I); 3165 break; 3166 } 3167 3168 unsigned OpNum = 0; 3169 Value *Op = nullptr; 3170 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3171 return Error("Invalid record"); 3172 if (OpNum != Record.size()) 3173 return Error("Invalid record"); 3174 3175 I = ReturnInst::Create(Context, Op); 3176 InstructionList.push_back(I); 3177 break; 3178 } 3179 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3180 if (Record.size() != 1 && Record.size() != 3) 3181 return Error("Invalid record"); 3182 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3183 if (!TrueDest) 3184 return Error("Invalid record"); 3185 3186 if (Record.size() == 1) { 3187 I = BranchInst::Create(TrueDest); 3188 InstructionList.push_back(I); 3189 } 3190 else { 3191 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3192 Value *Cond = getValue(Record, 2, NextValueNo, 3193 Type::getInt1Ty(Context)); 3194 if (!FalseDest || !Cond) 3195 return Error("Invalid record"); 3196 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3197 InstructionList.push_back(I); 3198 } 3199 break; 3200 } 3201 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3202 // Check magic 3203 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3204 // "New" SwitchInst format with case ranges. The changes to write this 3205 // format were reverted but we still recognize bitcode that uses it. 3206 // Hopefully someday we will have support for case ranges and can use 3207 // this format again. 3208 3209 Type *OpTy = getTypeByID(Record[1]); 3210 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3211 3212 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3213 BasicBlock *Default = getBasicBlock(Record[3]); 3214 if (!OpTy || !Cond || !Default) 3215 return Error("Invalid record"); 3216 3217 unsigned NumCases = Record[4]; 3218 3219 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3220 InstructionList.push_back(SI); 3221 3222 unsigned CurIdx = 5; 3223 for (unsigned i = 0; i != NumCases; ++i) { 3224 SmallVector<ConstantInt*, 1> CaseVals; 3225 unsigned NumItems = Record[CurIdx++]; 3226 for (unsigned ci = 0; ci != NumItems; ++ci) { 3227 bool isSingleNumber = Record[CurIdx++]; 3228 3229 APInt Low; 3230 unsigned ActiveWords = 1; 3231 if (ValueBitWidth > 64) 3232 ActiveWords = Record[CurIdx++]; 3233 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3234 ValueBitWidth); 3235 CurIdx += ActiveWords; 3236 3237 if (!isSingleNumber) { 3238 ActiveWords = 1; 3239 if (ValueBitWidth > 64) 3240 ActiveWords = Record[CurIdx++]; 3241 APInt High = 3242 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3243 ValueBitWidth); 3244 CurIdx += ActiveWords; 3245 3246 // FIXME: It is not clear whether values in the range should be 3247 // compared as signed or unsigned values. The partially 3248 // implemented changes that used this format in the past used 3249 // unsigned comparisons. 3250 for ( ; Low.ule(High); ++Low) 3251 CaseVals.push_back(ConstantInt::get(Context, Low)); 3252 } else 3253 CaseVals.push_back(ConstantInt::get(Context, Low)); 3254 } 3255 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3256 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3257 cve = CaseVals.end(); cvi != cve; ++cvi) 3258 SI->addCase(*cvi, DestBB); 3259 } 3260 I = SI; 3261 break; 3262 } 3263 3264 // Old SwitchInst format without case ranges. 3265 3266 if (Record.size() < 3 || (Record.size() & 1) == 0) 3267 return Error("Invalid record"); 3268 Type *OpTy = getTypeByID(Record[0]); 3269 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3270 BasicBlock *Default = getBasicBlock(Record[2]); 3271 if (!OpTy || !Cond || !Default) 3272 return Error("Invalid record"); 3273 unsigned NumCases = (Record.size()-3)/2; 3274 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3275 InstructionList.push_back(SI); 3276 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3277 ConstantInt *CaseVal = 3278 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3279 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3280 if (!CaseVal || !DestBB) { 3281 delete SI; 3282 return Error("Invalid record"); 3283 } 3284 SI->addCase(CaseVal, DestBB); 3285 } 3286 I = SI; 3287 break; 3288 } 3289 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3290 if (Record.size() < 2) 3291 return Error("Invalid record"); 3292 Type *OpTy = getTypeByID(Record[0]); 3293 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3294 if (!OpTy || !Address) 3295 return Error("Invalid record"); 3296 unsigned NumDests = Record.size()-2; 3297 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3298 InstructionList.push_back(IBI); 3299 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3300 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3301 IBI->addDestination(DestBB); 3302 } else { 3303 delete IBI; 3304 return Error("Invalid record"); 3305 } 3306 } 3307 I = IBI; 3308 break; 3309 } 3310 3311 case bitc::FUNC_CODE_INST_INVOKE: { 3312 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3313 if (Record.size() < 4) 3314 return Error("Invalid record"); 3315 AttributeSet PAL = getAttributes(Record[0]); 3316 unsigned CCInfo = Record[1]; 3317 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3318 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3319 3320 unsigned OpNum = 4; 3321 Value *Callee; 3322 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3323 return Error("Invalid record"); 3324 3325 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3326 FunctionType *FTy = !CalleeTy ? nullptr : 3327 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3328 3329 // Check that the right number of fixed parameters are here. 3330 if (!FTy || !NormalBB || !UnwindBB || 3331 Record.size() < OpNum+FTy->getNumParams()) 3332 return Error("Invalid record"); 3333 3334 SmallVector<Value*, 16> Ops; 3335 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3336 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3337 FTy->getParamType(i))); 3338 if (!Ops.back()) 3339 return Error("Invalid record"); 3340 } 3341 3342 if (!FTy->isVarArg()) { 3343 if (Record.size() != OpNum) 3344 return Error("Invalid record"); 3345 } else { 3346 // Read type/value pairs for varargs params. 3347 while (OpNum != Record.size()) { 3348 Value *Op; 3349 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3350 return Error("Invalid record"); 3351 Ops.push_back(Op); 3352 } 3353 } 3354 3355 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3356 InstructionList.push_back(I); 3357 cast<InvokeInst>(I)->setCallingConv( 3358 static_cast<CallingConv::ID>(CCInfo)); 3359 cast<InvokeInst>(I)->setAttributes(PAL); 3360 break; 3361 } 3362 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3363 unsigned Idx = 0; 3364 Value *Val = nullptr; 3365 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3366 return Error("Invalid record"); 3367 I = ResumeInst::Create(Val); 3368 InstructionList.push_back(I); 3369 break; 3370 } 3371 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3372 I = new UnreachableInst(Context); 3373 InstructionList.push_back(I); 3374 break; 3375 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3376 if (Record.size() < 1 || ((Record.size()-1)&1)) 3377 return Error("Invalid record"); 3378 Type *Ty = getTypeByID(Record[0]); 3379 if (!Ty) 3380 return Error("Invalid record"); 3381 3382 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3383 InstructionList.push_back(PN); 3384 3385 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3386 Value *V; 3387 // With the new function encoding, it is possible that operands have 3388 // negative IDs (for forward references). Use a signed VBR 3389 // representation to keep the encoding small. 3390 if (UseRelativeIDs) 3391 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3392 else 3393 V = getValue(Record, 1+i, NextValueNo, Ty); 3394 BasicBlock *BB = getBasicBlock(Record[2+i]); 3395 if (!V || !BB) 3396 return Error("Invalid record"); 3397 PN->addIncoming(V, BB); 3398 } 3399 I = PN; 3400 break; 3401 } 3402 3403 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3404 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3405 unsigned Idx = 0; 3406 if (Record.size() < 4) 3407 return Error("Invalid record"); 3408 Type *Ty = getTypeByID(Record[Idx++]); 3409 if (!Ty) 3410 return Error("Invalid record"); 3411 Value *PersFn = nullptr; 3412 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3413 return Error("Invalid record"); 3414 3415 bool IsCleanup = !!Record[Idx++]; 3416 unsigned NumClauses = Record[Idx++]; 3417 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3418 LP->setCleanup(IsCleanup); 3419 for (unsigned J = 0; J != NumClauses; ++J) { 3420 LandingPadInst::ClauseType CT = 3421 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3422 Value *Val; 3423 3424 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3425 delete LP; 3426 return Error("Invalid record"); 3427 } 3428 3429 assert((CT != LandingPadInst::Catch || 3430 !isa<ArrayType>(Val->getType())) && 3431 "Catch clause has a invalid type!"); 3432 assert((CT != LandingPadInst::Filter || 3433 isa<ArrayType>(Val->getType())) && 3434 "Filter clause has invalid type!"); 3435 LP->addClause(cast<Constant>(Val)); 3436 } 3437 3438 I = LP; 3439 InstructionList.push_back(I); 3440 break; 3441 } 3442 3443 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3444 if (Record.size() != 4) 3445 return Error("Invalid record"); 3446 PointerType *Ty = 3447 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3448 Type *OpTy = getTypeByID(Record[1]); 3449 Value *Size = getFnValueByID(Record[2], OpTy); 3450 unsigned AlignRecord = Record[3]; 3451 bool InAlloca = AlignRecord & (1 << 5); 3452 unsigned Align = AlignRecord & ((1 << 5) - 1); 3453 if (!Ty || !Size) 3454 return Error("Invalid record"); 3455 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3456 AI->setUsedWithInAlloca(InAlloca); 3457 I = AI; 3458 InstructionList.push_back(I); 3459 break; 3460 } 3461 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3462 unsigned OpNum = 0; 3463 Value *Op; 3464 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3465 OpNum+2 != Record.size()) 3466 return Error("Invalid record"); 3467 3468 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3469 InstructionList.push_back(I); 3470 break; 3471 } 3472 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3473 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3474 unsigned OpNum = 0; 3475 Value *Op; 3476 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3477 OpNum+4 != Record.size()) 3478 return Error("Invalid record"); 3479 3480 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3481 if (Ordering == NotAtomic || Ordering == Release || 3482 Ordering == AcquireRelease) 3483 return Error("Invalid record"); 3484 if (Ordering != NotAtomic && Record[OpNum] == 0) 3485 return Error("Invalid record"); 3486 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3487 3488 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3489 Ordering, SynchScope); 3490 InstructionList.push_back(I); 3491 break; 3492 } 3493 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3494 unsigned OpNum = 0; 3495 Value *Val, *Ptr; 3496 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3497 popValue(Record, OpNum, NextValueNo, 3498 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3499 OpNum+2 != Record.size()) 3500 return Error("Invalid record"); 3501 3502 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3503 InstructionList.push_back(I); 3504 break; 3505 } 3506 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3507 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3508 unsigned OpNum = 0; 3509 Value *Val, *Ptr; 3510 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3511 popValue(Record, OpNum, NextValueNo, 3512 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3513 OpNum+4 != Record.size()) 3514 return Error("Invalid record"); 3515 3516 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3517 if (Ordering == NotAtomic || Ordering == Acquire || 3518 Ordering == AcquireRelease) 3519 return Error("Invalid record"); 3520 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3521 if (Ordering != NotAtomic && Record[OpNum] == 0) 3522 return Error("Invalid record"); 3523 3524 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3525 Ordering, SynchScope); 3526 InstructionList.push_back(I); 3527 break; 3528 } 3529 case bitc::FUNC_CODE_INST_CMPXCHG: { 3530 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3531 // failureordering?, isweak?] 3532 unsigned OpNum = 0; 3533 Value *Ptr, *Cmp, *New; 3534 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3535 popValue(Record, OpNum, NextValueNo, 3536 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3537 popValue(Record, OpNum, NextValueNo, 3538 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3539 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3540 return Error("Invalid record"); 3541 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3542 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3543 return Error("Invalid record"); 3544 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3545 3546 AtomicOrdering FailureOrdering; 3547 if (Record.size() < 7) 3548 FailureOrdering = 3549 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3550 else 3551 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3552 3553 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3554 SynchScope); 3555 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3556 3557 if (Record.size() < 8) { 3558 // Before weak cmpxchgs existed, the instruction simply returned the 3559 // value loaded from memory, so bitcode files from that era will be 3560 // expecting the first component of a modern cmpxchg. 3561 CurBB->getInstList().push_back(I); 3562 I = ExtractValueInst::Create(I, 0); 3563 } else { 3564 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3565 } 3566 3567 InstructionList.push_back(I); 3568 break; 3569 } 3570 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3571 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3572 unsigned OpNum = 0; 3573 Value *Ptr, *Val; 3574 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3575 popValue(Record, OpNum, NextValueNo, 3576 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3577 OpNum+4 != Record.size()) 3578 return Error("Invalid record"); 3579 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3580 if (Operation < AtomicRMWInst::FIRST_BINOP || 3581 Operation > AtomicRMWInst::LAST_BINOP) 3582 return Error("Invalid record"); 3583 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3584 if (Ordering == NotAtomic || Ordering == Unordered) 3585 return Error("Invalid record"); 3586 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3587 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3588 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3589 InstructionList.push_back(I); 3590 break; 3591 } 3592 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3593 if (2 != Record.size()) 3594 return Error("Invalid record"); 3595 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3596 if (Ordering == NotAtomic || Ordering == Unordered || 3597 Ordering == Monotonic) 3598 return Error("Invalid record"); 3599 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3600 I = new FenceInst(Context, Ordering, SynchScope); 3601 InstructionList.push_back(I); 3602 break; 3603 } 3604 case bitc::FUNC_CODE_INST_CALL: { 3605 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3606 if (Record.size() < 3) 3607 return Error("Invalid record"); 3608 3609 AttributeSet PAL = getAttributes(Record[0]); 3610 unsigned CCInfo = Record[1]; 3611 3612 unsigned OpNum = 2; 3613 Value *Callee; 3614 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3615 return Error("Invalid record"); 3616 3617 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3618 FunctionType *FTy = nullptr; 3619 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3620 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3621 return Error("Invalid record"); 3622 3623 SmallVector<Value*, 16> Args; 3624 // Read the fixed params. 3625 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3626 if (FTy->getParamType(i)->isLabelTy()) 3627 Args.push_back(getBasicBlock(Record[OpNum])); 3628 else 3629 Args.push_back(getValue(Record, OpNum, NextValueNo, 3630 FTy->getParamType(i))); 3631 if (!Args.back()) 3632 return Error("Invalid record"); 3633 } 3634 3635 // Read type/value pairs for varargs params. 3636 if (!FTy->isVarArg()) { 3637 if (OpNum != Record.size()) 3638 return Error("Invalid record"); 3639 } else { 3640 while (OpNum != Record.size()) { 3641 Value *Op; 3642 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3643 return Error("Invalid record"); 3644 Args.push_back(Op); 3645 } 3646 } 3647 3648 I = CallInst::Create(Callee, Args); 3649 InstructionList.push_back(I); 3650 cast<CallInst>(I)->setCallingConv( 3651 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3652 CallInst::TailCallKind TCK = CallInst::TCK_None; 3653 if (CCInfo & 1) 3654 TCK = CallInst::TCK_Tail; 3655 if (CCInfo & (1 << 14)) 3656 TCK = CallInst::TCK_MustTail; 3657 cast<CallInst>(I)->setTailCallKind(TCK); 3658 cast<CallInst>(I)->setAttributes(PAL); 3659 break; 3660 } 3661 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3662 if (Record.size() < 3) 3663 return Error("Invalid record"); 3664 Type *OpTy = getTypeByID(Record[0]); 3665 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3666 Type *ResTy = getTypeByID(Record[2]); 3667 if (!OpTy || !Op || !ResTy) 3668 return Error("Invalid record"); 3669 I = new VAArgInst(Op, ResTy); 3670 InstructionList.push_back(I); 3671 break; 3672 } 3673 } 3674 3675 // Add instruction to end of current BB. If there is no current BB, reject 3676 // this file. 3677 if (!CurBB) { 3678 delete I; 3679 return Error("Invalid instruction with no BB"); 3680 } 3681 CurBB->getInstList().push_back(I); 3682 3683 // If this was a terminator instruction, move to the next block. 3684 if (isa<TerminatorInst>(I)) { 3685 ++CurBBNo; 3686 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3687 } 3688 3689 // Non-void values get registered in the value table for future use. 3690 if (I && !I->getType()->isVoidTy()) 3691 ValueList.AssignValue(I, NextValueNo++); 3692 } 3693 3694 OutOfRecordLoop: 3695 3696 // Check the function list for unresolved values. 3697 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3698 if (!A->getParent()) { 3699 // We found at least one unresolved value. Nuke them all to avoid leaks. 3700 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3701 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3702 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3703 delete A; 3704 } 3705 } 3706 return Error("Never resolved value found in function"); 3707 } 3708 } 3709 3710 // FIXME: Check for unresolved forward-declared metadata references 3711 // and clean up leaks. 3712 3713 // Trim the value list down to the size it was before we parsed this function. 3714 ValueList.shrinkTo(ModuleValueListSize); 3715 MDValueList.shrinkTo(ModuleMDValueListSize); 3716 std::vector<BasicBlock*>().swap(FunctionBBs); 3717 return std::error_code(); 3718 } 3719 3720 /// Find the function body in the bitcode stream 3721 std::error_code BitcodeReader::FindFunctionInStream( 3722 Function *F, 3723 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3724 while (DeferredFunctionInfoIterator->second == 0) { 3725 if (Stream.AtEndOfStream()) 3726 return Error("Could not find function in stream"); 3727 // ParseModule will parse the next body in the stream and set its 3728 // position in the DeferredFunctionInfo map. 3729 if (std::error_code EC = ParseModule(true)) 3730 return EC; 3731 } 3732 return std::error_code(); 3733 } 3734 3735 //===----------------------------------------------------------------------===// 3736 // GVMaterializer implementation 3737 //===----------------------------------------------------------------------===// 3738 3739 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3740 3741 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3742 Function *F = dyn_cast<Function>(GV); 3743 // If it's not a function or is already material, ignore the request. 3744 if (!F || !F->isMaterializable()) 3745 return std::error_code(); 3746 3747 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3748 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3749 // If its position is recorded as 0, its body is somewhere in the stream 3750 // but we haven't seen it yet. 3751 if (DFII->second == 0 && LazyStreamer) 3752 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3753 return EC; 3754 3755 // Move the bit stream to the saved position of the deferred function body. 3756 Stream.JumpToBit(DFII->second); 3757 3758 if (std::error_code EC = ParseFunctionBody(F)) 3759 return EC; 3760 F->setIsMaterializable(false); 3761 3762 // Upgrade any old intrinsic calls in the function. 3763 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3764 E = UpgradedIntrinsics.end(); I != E; ++I) { 3765 if (I->first != I->second) { 3766 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3767 UI != UE;) { 3768 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3769 UpgradeIntrinsicCall(CI, I->second); 3770 } 3771 } 3772 } 3773 3774 // Bring in any functions that this function forward-referenced via 3775 // blockaddresses. 3776 return materializeForwardReferencedFunctions(); 3777 } 3778 3779 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3780 const Function *F = dyn_cast<Function>(GV); 3781 if (!F || F->isDeclaration()) 3782 return false; 3783 3784 // Dematerializing F would leave dangling references that wouldn't be 3785 // reconnected on re-materialization. 3786 if (BlockAddressesTaken.count(F)) 3787 return false; 3788 3789 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3790 } 3791 3792 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3793 Function *F = dyn_cast<Function>(GV); 3794 // If this function isn't dematerializable, this is a noop. 3795 if (!F || !isDematerializable(F)) 3796 return; 3797 3798 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3799 3800 // Just forget the function body, we can remat it later. 3801 F->dropAllReferences(); 3802 F->setIsMaterializable(true); 3803 } 3804 3805 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3806 assert(M == TheModule && 3807 "Can only Materialize the Module this BitcodeReader is attached to."); 3808 3809 // Promise to materialize all forward references. 3810 WillMaterializeAllForwardRefs = true; 3811 3812 // Iterate over the module, deserializing any functions that are still on 3813 // disk. 3814 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3815 F != E; ++F) { 3816 if (std::error_code EC = materialize(F)) 3817 return EC; 3818 } 3819 // At this point, if there are any function bodies, the current bit is 3820 // pointing to the END_BLOCK record after them. Now make sure the rest 3821 // of the bits in the module have been read. 3822 if (NextUnreadBit) 3823 ParseModule(true); 3824 3825 // Check that all block address forward references got resolved (as we 3826 // promised above). 3827 if (!BasicBlockFwdRefs.empty()) 3828 return Error("Never resolved function from blockaddress"); 3829 3830 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3831 // delete the old functions to clean up. We can't do this unless the entire 3832 // module is materialized because there could always be another function body 3833 // with calls to the old function. 3834 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3835 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3836 if (I->first != I->second) { 3837 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3838 UI != UE;) { 3839 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3840 UpgradeIntrinsicCall(CI, I->second); 3841 } 3842 if (!I->first->use_empty()) 3843 I->first->replaceAllUsesWith(I->second); 3844 I->first->eraseFromParent(); 3845 } 3846 } 3847 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3848 3849 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3850 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3851 3852 UpgradeDebugInfo(*M); 3853 return std::error_code(); 3854 } 3855 3856 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3857 return IdentifiedStructTypes; 3858 } 3859 3860 std::error_code BitcodeReader::InitStream() { 3861 if (LazyStreamer) 3862 return InitLazyStream(); 3863 return InitStreamFromBuffer(); 3864 } 3865 3866 std::error_code BitcodeReader::InitStreamFromBuffer() { 3867 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3868 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3869 3870 if (Buffer->getBufferSize() & 3) 3871 return Error("Invalid bitcode signature"); 3872 3873 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3874 // The magic number is 0x0B17C0DE stored in little endian. 3875 if (isBitcodeWrapper(BufPtr, BufEnd)) 3876 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3877 return Error("Invalid bitcode wrapper header"); 3878 3879 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3880 Stream.init(&*StreamFile); 3881 3882 return std::error_code(); 3883 } 3884 3885 std::error_code BitcodeReader::InitLazyStream() { 3886 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3887 // see it. 3888 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3889 StreamingMemoryObject &Bytes = *OwnedBytes; 3890 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3891 Stream.init(&*StreamFile); 3892 3893 unsigned char buf[16]; 3894 if (Bytes.readBytes(buf, 16, 0) != 16) 3895 return Error("Invalid bitcode signature"); 3896 3897 if (!isBitcode(buf, buf + 16)) 3898 return Error("Invalid bitcode signature"); 3899 3900 if (isBitcodeWrapper(buf, buf + 4)) { 3901 const unsigned char *bitcodeStart = buf; 3902 const unsigned char *bitcodeEnd = buf + 16; 3903 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3904 Bytes.dropLeadingBytes(bitcodeStart - buf); 3905 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3906 } 3907 return std::error_code(); 3908 } 3909 3910 namespace { 3911 class BitcodeErrorCategoryType : public std::error_category { 3912 const char *name() const LLVM_NOEXCEPT override { 3913 return "llvm.bitcode"; 3914 } 3915 std::string message(int IE) const override { 3916 BitcodeError E = static_cast<BitcodeError>(IE); 3917 switch (E) { 3918 case BitcodeError::InvalidBitcodeSignature: 3919 return "Invalid bitcode signature"; 3920 case BitcodeError::CorruptedBitcode: 3921 return "Corrupted bitcode"; 3922 } 3923 llvm_unreachable("Unknown error type!"); 3924 } 3925 }; 3926 } 3927 3928 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3929 3930 const std::error_category &llvm::BitcodeErrorCategory() { 3931 return *ErrorCategory; 3932 } 3933 3934 //===----------------------------------------------------------------------===// 3935 // External interface 3936 //===----------------------------------------------------------------------===// 3937 3938 /// \brief Get a lazy one-at-time loading module from bitcode. 3939 /// 3940 /// This isn't always used in a lazy context. In particular, it's also used by 3941 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3942 /// in forward-referenced functions from block address references. 3943 /// 3944 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3945 /// materialize everything -- in particular, if this isn't truly lazy. 3946 static ErrorOr<Module *> 3947 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3948 LLVMContext &Context, bool WillMaterializeAll, 3949 DiagnosticHandlerFunction DiagnosticHandler) { 3950 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3951 BitcodeReader *R = 3952 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3953 M->setMaterializer(R); 3954 3955 auto cleanupOnError = [&](std::error_code EC) { 3956 R->releaseBuffer(); // Never take ownership on error. 3957 delete M; // Also deletes R. 3958 return EC; 3959 }; 3960 3961 if (std::error_code EC = R->ParseBitcodeInto(M)) 3962 return cleanupOnError(EC); 3963 3964 if (!WillMaterializeAll) 3965 // Resolve forward references from blockaddresses. 3966 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3967 return cleanupOnError(EC); 3968 3969 Buffer.release(); // The BitcodeReader owns it now. 3970 return M; 3971 } 3972 3973 ErrorOr<Module *> 3974 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3975 LLVMContext &Context, 3976 DiagnosticHandlerFunction DiagnosticHandler) { 3977 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3978 DiagnosticHandler); 3979 } 3980 3981 ErrorOr<std::unique_ptr<Module>> 3982 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3983 LLVMContext &Context, 3984 DiagnosticHandlerFunction DiagnosticHandler) { 3985 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3986 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3987 M->setMaterializer(R); 3988 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3989 return EC; 3990 return std::move(M); 3991 } 3992 3993 ErrorOr<Module *> 3994 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3995 DiagnosticHandlerFunction DiagnosticHandler) { 3996 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3997 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3998 std::move(Buf), Context, true, DiagnosticHandler); 3999 if (!ModuleOrErr) 4000 return ModuleOrErr; 4001 Module *M = ModuleOrErr.get(); 4002 // Read in the entire module, and destroy the BitcodeReader. 4003 if (std::error_code EC = M->materializeAllPermanently()) { 4004 delete M; 4005 return EC; 4006 } 4007 4008 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4009 // written. We must defer until the Module has been fully materialized. 4010 4011 return M; 4012 } 4013 4014 std::string 4015 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4016 DiagnosticHandlerFunction DiagnosticHandler) { 4017 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4018 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4019 DiagnosticHandler); 4020 ErrorOr<std::string> Triple = R->parseTriple(); 4021 if (Triple.getError()) 4022 return ""; 4023 return Triple.get(); 4024 } 4025