1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code materializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 405 const Twine &Message) { 406 return Error(DiagnosticHandler, 407 make_error_code(BitcodeError::CorruptedBitcode), Message); 408 } 409 410 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 411 return ::Error(DiagnosticHandler, make_error_code(E), Message); 412 } 413 414 std::error_code BitcodeReader::Error(const Twine &Message) { 415 return ::Error(DiagnosticHandler, 416 make_error_code(BitcodeError::CorruptedBitcode), Message); 417 } 418 419 std::error_code BitcodeReader::Error(BitcodeError E) { 420 return ::Error(DiagnosticHandler, make_error_code(E)); 421 } 422 423 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 424 LLVMContext &C) { 425 if (F) 426 return F; 427 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 428 } 429 430 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 431 DiagnosticHandlerFunction DiagnosticHandler) 432 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 433 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 434 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 435 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 436 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 437 438 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 439 DiagnosticHandlerFunction DiagnosticHandler) 440 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 441 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 442 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 443 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 444 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 445 446 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 447 if (WillMaterializeAllForwardRefs) 448 return std::error_code(); 449 450 // Prevent recursion. 451 WillMaterializeAllForwardRefs = true; 452 453 while (!BasicBlockFwdRefQueue.empty()) { 454 Function *F = BasicBlockFwdRefQueue.front(); 455 BasicBlockFwdRefQueue.pop_front(); 456 assert(F && "Expected valid function"); 457 if (!BasicBlockFwdRefs.count(F)) 458 // Already materialized. 459 continue; 460 461 // Check for a function that isn't materializable to prevent an infinite 462 // loop. When parsing a blockaddress stored in a global variable, there 463 // isn't a trivial way to check if a function will have a body without a 464 // linear search through FunctionsWithBodies, so just check it here. 465 if (!F->isMaterializable()) 466 return Error("Never resolved function from blockaddress"); 467 468 // Try to materialize F. 469 if (std::error_code EC = materialize(F)) 470 return EC; 471 } 472 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 473 474 // Reset state. 475 WillMaterializeAllForwardRefs = false; 476 return std::error_code(); 477 } 478 479 void BitcodeReader::FreeState() { 480 Buffer = nullptr; 481 std::vector<Type*>().swap(TypeList); 482 ValueList.clear(); 483 MDValueList.clear(); 484 std::vector<Comdat *>().swap(ComdatList); 485 486 std::vector<AttributeSet>().swap(MAttributes); 487 std::vector<BasicBlock*>().swap(FunctionBBs); 488 std::vector<Function*>().swap(FunctionsWithBodies); 489 DeferredFunctionInfo.clear(); 490 DeferredMetadataInfo.clear(); 491 MDKindMap.clear(); 492 493 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 494 BasicBlockFwdRefQueue.clear(); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // Helper functions to implement forward reference resolution, etc. 499 //===----------------------------------------------------------------------===// 500 501 /// ConvertToString - Convert a string from a record into an std::string, return 502 /// true on failure. 503 template<typename StrTy> 504 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 505 StrTy &Result) { 506 if (Idx > Record.size()) 507 return true; 508 509 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 510 Result += (char)Record[i]; 511 return false; 512 } 513 514 static bool hasImplicitComdat(size_t Val) { 515 switch (Val) { 516 default: 517 return false; 518 case 1: // Old WeakAnyLinkage 519 case 4: // Old LinkOnceAnyLinkage 520 case 10: // Old WeakODRLinkage 521 case 11: // Old LinkOnceODRLinkage 522 return true; 523 } 524 } 525 526 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 527 switch (Val) { 528 default: // Map unknown/new linkages to external 529 case 0: 530 return GlobalValue::ExternalLinkage; 531 case 2: 532 return GlobalValue::AppendingLinkage; 533 case 3: 534 return GlobalValue::InternalLinkage; 535 case 5: 536 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 537 case 6: 538 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 539 case 7: 540 return GlobalValue::ExternalWeakLinkage; 541 case 8: 542 return GlobalValue::CommonLinkage; 543 case 9: 544 return GlobalValue::PrivateLinkage; 545 case 12: 546 return GlobalValue::AvailableExternallyLinkage; 547 case 13: 548 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 549 case 14: 550 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 551 case 15: 552 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 553 case 1: // Old value with implicit comdat. 554 case 16: 555 return GlobalValue::WeakAnyLinkage; 556 case 10: // Old value with implicit comdat. 557 case 17: 558 return GlobalValue::WeakODRLinkage; 559 case 4: // Old value with implicit comdat. 560 case 18: 561 return GlobalValue::LinkOnceAnyLinkage; 562 case 11: // Old value with implicit comdat. 563 case 19: 564 return GlobalValue::LinkOnceODRLinkage; 565 } 566 } 567 568 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 569 switch (Val) { 570 default: // Map unknown visibilities to default. 571 case 0: return GlobalValue::DefaultVisibility; 572 case 1: return GlobalValue::HiddenVisibility; 573 case 2: return GlobalValue::ProtectedVisibility; 574 } 575 } 576 577 static GlobalValue::DLLStorageClassTypes 578 GetDecodedDLLStorageClass(unsigned Val) { 579 switch (Val) { 580 default: // Map unknown values to default. 581 case 0: return GlobalValue::DefaultStorageClass; 582 case 1: return GlobalValue::DLLImportStorageClass; 583 case 2: return GlobalValue::DLLExportStorageClass; 584 } 585 } 586 587 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 588 switch (Val) { 589 case 0: return GlobalVariable::NotThreadLocal; 590 default: // Map unknown non-zero value to general dynamic. 591 case 1: return GlobalVariable::GeneralDynamicTLSModel; 592 case 2: return GlobalVariable::LocalDynamicTLSModel; 593 case 3: return GlobalVariable::InitialExecTLSModel; 594 case 4: return GlobalVariable::LocalExecTLSModel; 595 } 596 } 597 598 static int GetDecodedCastOpcode(unsigned Val) { 599 switch (Val) { 600 default: return -1; 601 case bitc::CAST_TRUNC : return Instruction::Trunc; 602 case bitc::CAST_ZEXT : return Instruction::ZExt; 603 case bitc::CAST_SEXT : return Instruction::SExt; 604 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 605 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 606 case bitc::CAST_UITOFP : return Instruction::UIToFP; 607 case bitc::CAST_SITOFP : return Instruction::SIToFP; 608 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 609 case bitc::CAST_FPEXT : return Instruction::FPExt; 610 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 611 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 612 case bitc::CAST_BITCAST : return Instruction::BitCast; 613 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 614 } 615 } 616 617 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 618 bool IsFP = Ty->isFPOrFPVectorTy(); 619 // BinOps are only valid for int/fp or vector of int/fp types 620 if (!IsFP && !Ty->isIntOrIntVectorTy()) 621 return -1; 622 623 switch (Val) { 624 default: 625 return -1; 626 case bitc::BINOP_ADD: 627 return IsFP ? Instruction::FAdd : Instruction::Add; 628 case bitc::BINOP_SUB: 629 return IsFP ? Instruction::FSub : Instruction::Sub; 630 case bitc::BINOP_MUL: 631 return IsFP ? Instruction::FMul : Instruction::Mul; 632 case bitc::BINOP_UDIV: 633 return IsFP ? -1 : Instruction::UDiv; 634 case bitc::BINOP_SDIV: 635 return IsFP ? Instruction::FDiv : Instruction::SDiv; 636 case bitc::BINOP_UREM: 637 return IsFP ? -1 : Instruction::URem; 638 case bitc::BINOP_SREM: 639 return IsFP ? Instruction::FRem : Instruction::SRem; 640 case bitc::BINOP_SHL: 641 return IsFP ? -1 : Instruction::Shl; 642 case bitc::BINOP_LSHR: 643 return IsFP ? -1 : Instruction::LShr; 644 case bitc::BINOP_ASHR: 645 return IsFP ? -1 : Instruction::AShr; 646 case bitc::BINOP_AND: 647 return IsFP ? -1 : Instruction::And; 648 case bitc::BINOP_OR: 649 return IsFP ? -1 : Instruction::Or; 650 case bitc::BINOP_XOR: 651 return IsFP ? -1 : Instruction::Xor; 652 } 653 } 654 655 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 656 switch (Val) { 657 default: return AtomicRMWInst::BAD_BINOP; 658 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 659 case bitc::RMW_ADD: return AtomicRMWInst::Add; 660 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 661 case bitc::RMW_AND: return AtomicRMWInst::And; 662 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 663 case bitc::RMW_OR: return AtomicRMWInst::Or; 664 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 665 case bitc::RMW_MAX: return AtomicRMWInst::Max; 666 case bitc::RMW_MIN: return AtomicRMWInst::Min; 667 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 668 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 669 } 670 } 671 672 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 673 switch (Val) { 674 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 675 case bitc::ORDERING_UNORDERED: return Unordered; 676 case bitc::ORDERING_MONOTONIC: return Monotonic; 677 case bitc::ORDERING_ACQUIRE: return Acquire; 678 case bitc::ORDERING_RELEASE: return Release; 679 case bitc::ORDERING_ACQREL: return AcquireRelease; 680 default: // Map unknown orderings to sequentially-consistent. 681 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 682 } 683 } 684 685 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 686 switch (Val) { 687 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 688 default: // Map unknown scopes to cross-thread. 689 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 690 } 691 } 692 693 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 694 switch (Val) { 695 default: // Map unknown selection kinds to any. 696 case bitc::COMDAT_SELECTION_KIND_ANY: 697 return Comdat::Any; 698 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 699 return Comdat::ExactMatch; 700 case bitc::COMDAT_SELECTION_KIND_LARGEST: 701 return Comdat::Largest; 702 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 703 return Comdat::NoDuplicates; 704 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 705 return Comdat::SameSize; 706 } 707 } 708 709 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 710 switch (Val) { 711 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 712 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 713 } 714 } 715 716 namespace llvm { 717 namespace { 718 /// @brief A class for maintaining the slot number definition 719 /// as a placeholder for the actual definition for forward constants defs. 720 class ConstantPlaceHolder : public ConstantExpr { 721 void operator=(const ConstantPlaceHolder &) = delete; 722 public: 723 // allocate space for exactly one operand 724 void *operator new(size_t s) { 725 return User::operator new(s, 1); 726 } 727 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 728 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 729 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 730 } 731 732 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 733 static bool classof(const Value *V) { 734 return isa<ConstantExpr>(V) && 735 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 736 } 737 738 739 /// Provide fast operand accessors 740 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 741 }; 742 } 743 744 // FIXME: can we inherit this from ConstantExpr? 745 template <> 746 struct OperandTraits<ConstantPlaceHolder> : 747 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 748 }; 749 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 750 } 751 752 753 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 754 if (Idx == size()) { 755 push_back(V); 756 return; 757 } 758 759 if (Idx >= size()) 760 resize(Idx+1); 761 762 WeakVH &OldV = ValuePtrs[Idx]; 763 if (!OldV) { 764 OldV = V; 765 return; 766 } 767 768 // Handle constants and non-constants (e.g. instrs) differently for 769 // efficiency. 770 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 771 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 772 OldV = V; 773 } else { 774 // If there was a forward reference to this value, replace it. 775 Value *PrevVal = OldV; 776 OldV->replaceAllUsesWith(V); 777 delete PrevVal; 778 } 779 } 780 781 782 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 783 Type *Ty) { 784 if (Idx >= size()) 785 resize(Idx + 1); 786 787 if (Value *V = ValuePtrs[Idx]) { 788 assert(Ty == V->getType() && "Type mismatch in constant table!"); 789 return cast<Constant>(V); 790 } 791 792 // Create and return a placeholder, which will later be RAUW'd. 793 Constant *C = new ConstantPlaceHolder(Ty, Context); 794 ValuePtrs[Idx] = C; 795 return C; 796 } 797 798 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 799 // Bail out for a clearly invalid value. This would make us call resize(0) 800 if (Idx == UINT_MAX) 801 return nullptr; 802 803 if (Idx >= size()) 804 resize(Idx + 1); 805 806 if (Value *V = ValuePtrs[Idx]) { 807 // If the types don't match, it's invalid. 808 if (Ty && Ty != V->getType()) 809 return nullptr; 810 return V; 811 } 812 813 // No type specified, must be invalid reference. 814 if (!Ty) return nullptr; 815 816 // Create and return a placeholder, which will later be RAUW'd. 817 Value *V = new Argument(Ty); 818 ValuePtrs[Idx] = V; 819 return V; 820 } 821 822 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 823 /// resolves any forward references. The idea behind this is that we sometimes 824 /// get constants (such as large arrays) which reference *many* forward ref 825 /// constants. Replacing each of these causes a lot of thrashing when 826 /// building/reuniquing the constant. Instead of doing this, we look at all the 827 /// uses and rewrite all the place holders at once for any constant that uses 828 /// a placeholder. 829 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 830 // Sort the values by-pointer so that they are efficient to look up with a 831 // binary search. 832 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 833 834 SmallVector<Constant*, 64> NewOps; 835 836 while (!ResolveConstants.empty()) { 837 Value *RealVal = operator[](ResolveConstants.back().second); 838 Constant *Placeholder = ResolveConstants.back().first; 839 ResolveConstants.pop_back(); 840 841 // Loop over all users of the placeholder, updating them to reference the 842 // new value. If they reference more than one placeholder, update them all 843 // at once. 844 while (!Placeholder->use_empty()) { 845 auto UI = Placeholder->user_begin(); 846 User *U = *UI; 847 848 // If the using object isn't uniqued, just update the operands. This 849 // handles instructions and initializers for global variables. 850 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 851 UI.getUse().set(RealVal); 852 continue; 853 } 854 855 // Otherwise, we have a constant that uses the placeholder. Replace that 856 // constant with a new constant that has *all* placeholder uses updated. 857 Constant *UserC = cast<Constant>(U); 858 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 859 I != E; ++I) { 860 Value *NewOp; 861 if (!isa<ConstantPlaceHolder>(*I)) { 862 // Not a placeholder reference. 863 NewOp = *I; 864 } else if (*I == Placeholder) { 865 // Common case is that it just references this one placeholder. 866 NewOp = RealVal; 867 } else { 868 // Otherwise, look up the placeholder in ResolveConstants. 869 ResolveConstantsTy::iterator It = 870 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 871 std::pair<Constant*, unsigned>(cast<Constant>(*I), 872 0)); 873 assert(It != ResolveConstants.end() && It->first == *I); 874 NewOp = operator[](It->second); 875 } 876 877 NewOps.push_back(cast<Constant>(NewOp)); 878 } 879 880 // Make the new constant. 881 Constant *NewC; 882 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 883 NewC = ConstantArray::get(UserCA->getType(), NewOps); 884 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 885 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 886 } else if (isa<ConstantVector>(UserC)) { 887 NewC = ConstantVector::get(NewOps); 888 } else { 889 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 890 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 891 } 892 893 UserC->replaceAllUsesWith(NewC); 894 UserC->destroyConstant(); 895 NewOps.clear(); 896 } 897 898 // Update all ValueHandles, they should be the only users at this point. 899 Placeholder->replaceAllUsesWith(RealVal); 900 delete Placeholder; 901 } 902 } 903 904 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 905 if (Idx == size()) { 906 push_back(MD); 907 return; 908 } 909 910 if (Idx >= size()) 911 resize(Idx+1); 912 913 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 914 if (!OldMD) { 915 OldMD.reset(MD); 916 return; 917 } 918 919 // If there was a forward reference to this value, replace it. 920 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 921 PrevMD->replaceAllUsesWith(MD); 922 --NumFwdRefs; 923 } 924 925 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 926 if (Idx >= size()) 927 resize(Idx + 1); 928 929 if (Metadata *MD = MDValuePtrs[Idx]) 930 return MD; 931 932 // Track forward refs to be resolved later. 933 if (AnyFwdRefs) { 934 MinFwdRef = std::min(MinFwdRef, Idx); 935 MaxFwdRef = std::max(MaxFwdRef, Idx); 936 } else { 937 AnyFwdRefs = true; 938 MinFwdRef = MaxFwdRef = Idx; 939 } 940 ++NumFwdRefs; 941 942 // Create and return a placeholder, which will later be RAUW'd. 943 Metadata *MD = MDNode::getTemporary(Context, None).release(); 944 MDValuePtrs[Idx].reset(MD); 945 return MD; 946 } 947 948 void BitcodeReaderMDValueList::tryToResolveCycles() { 949 if (!AnyFwdRefs) 950 // Nothing to do. 951 return; 952 953 if (NumFwdRefs) 954 // Still forward references... can't resolve cycles. 955 return; 956 957 // Resolve any cycles. 958 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 959 auto &MD = MDValuePtrs[I]; 960 auto *N = dyn_cast_or_null<MDNode>(MD); 961 if (!N) 962 continue; 963 964 assert(!N->isTemporary() && "Unexpected forward reference"); 965 N->resolveCycles(); 966 } 967 968 // Make sure we return early again until there's another forward ref. 969 AnyFwdRefs = false; 970 } 971 972 Type *BitcodeReader::getTypeByID(unsigned ID) { 973 // The type table size is always specified correctly. 974 if (ID >= TypeList.size()) 975 return nullptr; 976 977 if (Type *Ty = TypeList[ID]) 978 return Ty; 979 980 // If we have a forward reference, the only possible case is when it is to a 981 // named struct. Just create a placeholder for now. 982 return TypeList[ID] = createIdentifiedStructType(Context); 983 } 984 985 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 986 StringRef Name) { 987 auto *Ret = StructType::create(Context, Name); 988 IdentifiedStructTypes.push_back(Ret); 989 return Ret; 990 } 991 992 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 993 auto *Ret = StructType::create(Context); 994 IdentifiedStructTypes.push_back(Ret); 995 return Ret; 996 } 997 998 999 //===----------------------------------------------------------------------===// 1000 // Functions for parsing blocks from the bitcode file 1001 //===----------------------------------------------------------------------===// 1002 1003 1004 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1005 /// been decoded from the given integer. This function must stay in sync with 1006 /// 'encodeLLVMAttributesForBitcode'. 1007 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1008 uint64_t EncodedAttrs) { 1009 // FIXME: Remove in 4.0. 1010 1011 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1012 // the bits above 31 down by 11 bits. 1013 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1014 assert((!Alignment || isPowerOf2_32(Alignment)) && 1015 "Alignment must be a power of two."); 1016 1017 if (Alignment) 1018 B.addAlignmentAttr(Alignment); 1019 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1020 (EncodedAttrs & 0xffff)); 1021 } 1022 1023 std::error_code BitcodeReader::ParseAttributeBlock() { 1024 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1025 return Error("Invalid record"); 1026 1027 if (!MAttributes.empty()) 1028 return Error("Invalid multiple blocks"); 1029 1030 SmallVector<uint64_t, 64> Record; 1031 1032 SmallVector<AttributeSet, 8> Attrs; 1033 1034 // Read all the records. 1035 while (1) { 1036 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1037 1038 switch (Entry.Kind) { 1039 case BitstreamEntry::SubBlock: // Handled for us already. 1040 case BitstreamEntry::Error: 1041 return Error("Malformed block"); 1042 case BitstreamEntry::EndBlock: 1043 return std::error_code(); 1044 case BitstreamEntry::Record: 1045 // The interesting case. 1046 break; 1047 } 1048 1049 // Read a record. 1050 Record.clear(); 1051 switch (Stream.readRecord(Entry.ID, Record)) { 1052 default: // Default behavior: ignore. 1053 break; 1054 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1055 // FIXME: Remove in 4.0. 1056 if (Record.size() & 1) 1057 return Error("Invalid record"); 1058 1059 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1060 AttrBuilder B; 1061 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1062 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1063 } 1064 1065 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1066 Attrs.clear(); 1067 break; 1068 } 1069 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1070 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1071 Attrs.push_back(MAttributeGroups[Record[i]]); 1072 1073 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1074 Attrs.clear(); 1075 break; 1076 } 1077 } 1078 } 1079 } 1080 1081 // Returns Attribute::None on unrecognized codes. 1082 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1083 switch (Code) { 1084 default: 1085 return Attribute::None; 1086 case bitc::ATTR_KIND_ALIGNMENT: 1087 return Attribute::Alignment; 1088 case bitc::ATTR_KIND_ALWAYS_INLINE: 1089 return Attribute::AlwaysInline; 1090 case bitc::ATTR_KIND_BUILTIN: 1091 return Attribute::Builtin; 1092 case bitc::ATTR_KIND_BY_VAL: 1093 return Attribute::ByVal; 1094 case bitc::ATTR_KIND_IN_ALLOCA: 1095 return Attribute::InAlloca; 1096 case bitc::ATTR_KIND_COLD: 1097 return Attribute::Cold; 1098 case bitc::ATTR_KIND_INLINE_HINT: 1099 return Attribute::InlineHint; 1100 case bitc::ATTR_KIND_IN_REG: 1101 return Attribute::InReg; 1102 case bitc::ATTR_KIND_JUMP_TABLE: 1103 return Attribute::JumpTable; 1104 case bitc::ATTR_KIND_MIN_SIZE: 1105 return Attribute::MinSize; 1106 case bitc::ATTR_KIND_NAKED: 1107 return Attribute::Naked; 1108 case bitc::ATTR_KIND_NEST: 1109 return Attribute::Nest; 1110 case bitc::ATTR_KIND_NO_ALIAS: 1111 return Attribute::NoAlias; 1112 case bitc::ATTR_KIND_NO_BUILTIN: 1113 return Attribute::NoBuiltin; 1114 case bitc::ATTR_KIND_NO_CAPTURE: 1115 return Attribute::NoCapture; 1116 case bitc::ATTR_KIND_NO_DUPLICATE: 1117 return Attribute::NoDuplicate; 1118 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1119 return Attribute::NoImplicitFloat; 1120 case bitc::ATTR_KIND_NO_INLINE: 1121 return Attribute::NoInline; 1122 case bitc::ATTR_KIND_NON_LAZY_BIND: 1123 return Attribute::NonLazyBind; 1124 case bitc::ATTR_KIND_NON_NULL: 1125 return Attribute::NonNull; 1126 case bitc::ATTR_KIND_DEREFERENCEABLE: 1127 return Attribute::Dereferenceable; 1128 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1129 return Attribute::DereferenceableOrNull; 1130 case bitc::ATTR_KIND_NO_RED_ZONE: 1131 return Attribute::NoRedZone; 1132 case bitc::ATTR_KIND_NO_RETURN: 1133 return Attribute::NoReturn; 1134 case bitc::ATTR_KIND_NO_UNWIND: 1135 return Attribute::NoUnwind; 1136 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1137 return Attribute::OptimizeForSize; 1138 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1139 return Attribute::OptimizeNone; 1140 case bitc::ATTR_KIND_READ_NONE: 1141 return Attribute::ReadNone; 1142 case bitc::ATTR_KIND_READ_ONLY: 1143 return Attribute::ReadOnly; 1144 case bitc::ATTR_KIND_RETURNED: 1145 return Attribute::Returned; 1146 case bitc::ATTR_KIND_RETURNS_TWICE: 1147 return Attribute::ReturnsTwice; 1148 case bitc::ATTR_KIND_S_EXT: 1149 return Attribute::SExt; 1150 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1151 return Attribute::StackAlignment; 1152 case bitc::ATTR_KIND_STACK_PROTECT: 1153 return Attribute::StackProtect; 1154 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1155 return Attribute::StackProtectReq; 1156 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1157 return Attribute::StackProtectStrong; 1158 case bitc::ATTR_KIND_STRUCT_RET: 1159 return Attribute::StructRet; 1160 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1161 return Attribute::SanitizeAddress; 1162 case bitc::ATTR_KIND_SANITIZE_THREAD: 1163 return Attribute::SanitizeThread; 1164 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1165 return Attribute::SanitizeMemory; 1166 case bitc::ATTR_KIND_UW_TABLE: 1167 return Attribute::UWTable; 1168 case bitc::ATTR_KIND_Z_EXT: 1169 return Attribute::ZExt; 1170 } 1171 } 1172 1173 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1174 unsigned &Alignment) { 1175 // Note: Alignment in bitcode files is incremented by 1, so that zero 1176 // can be used for default alignment. 1177 if (Exponent > Value::MaxAlignmentExponent + 1) 1178 return Error("Invalid alignment value"); 1179 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1180 return std::error_code(); 1181 } 1182 1183 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1184 Attribute::AttrKind *Kind) { 1185 *Kind = GetAttrFromCode(Code); 1186 if (*Kind == Attribute::None) 1187 return Error(BitcodeError::CorruptedBitcode, 1188 "Unknown attribute kind (" + Twine(Code) + ")"); 1189 return std::error_code(); 1190 } 1191 1192 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1193 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1194 return Error("Invalid record"); 1195 1196 if (!MAttributeGroups.empty()) 1197 return Error("Invalid multiple blocks"); 1198 1199 SmallVector<uint64_t, 64> Record; 1200 1201 // Read all the records. 1202 while (1) { 1203 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1204 1205 switch (Entry.Kind) { 1206 case BitstreamEntry::SubBlock: // Handled for us already. 1207 case BitstreamEntry::Error: 1208 return Error("Malformed block"); 1209 case BitstreamEntry::EndBlock: 1210 return std::error_code(); 1211 case BitstreamEntry::Record: 1212 // The interesting case. 1213 break; 1214 } 1215 1216 // Read a record. 1217 Record.clear(); 1218 switch (Stream.readRecord(Entry.ID, Record)) { 1219 default: // Default behavior: ignore. 1220 break; 1221 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1222 if (Record.size() < 3) 1223 return Error("Invalid record"); 1224 1225 uint64_t GrpID = Record[0]; 1226 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1227 1228 AttrBuilder B; 1229 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1230 if (Record[i] == 0) { // Enum attribute 1231 Attribute::AttrKind Kind; 1232 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1233 return EC; 1234 1235 B.addAttribute(Kind); 1236 } else if (Record[i] == 1) { // Integer attribute 1237 Attribute::AttrKind Kind; 1238 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1239 return EC; 1240 if (Kind == Attribute::Alignment) 1241 B.addAlignmentAttr(Record[++i]); 1242 else if (Kind == Attribute::StackAlignment) 1243 B.addStackAlignmentAttr(Record[++i]); 1244 else if (Kind == Attribute::Dereferenceable) 1245 B.addDereferenceableAttr(Record[++i]); 1246 else if (Kind == Attribute::DereferenceableOrNull) 1247 B.addDereferenceableOrNullAttr(Record[++i]); 1248 } else { // String attribute 1249 assert((Record[i] == 3 || Record[i] == 4) && 1250 "Invalid attribute group entry"); 1251 bool HasValue = (Record[i++] == 4); 1252 SmallString<64> KindStr; 1253 SmallString<64> ValStr; 1254 1255 while (Record[i] != 0 && i != e) 1256 KindStr += Record[i++]; 1257 assert(Record[i] == 0 && "Kind string not null terminated"); 1258 1259 if (HasValue) { 1260 // Has a value associated with it. 1261 ++i; // Skip the '0' that terminates the "kind" string. 1262 while (Record[i] != 0 && i != e) 1263 ValStr += Record[i++]; 1264 assert(Record[i] == 0 && "Value string not null terminated"); 1265 } 1266 1267 B.addAttribute(KindStr.str(), ValStr.str()); 1268 } 1269 } 1270 1271 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1272 break; 1273 } 1274 } 1275 } 1276 } 1277 1278 std::error_code BitcodeReader::ParseTypeTable() { 1279 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1280 return Error("Invalid record"); 1281 1282 return ParseTypeTableBody(); 1283 } 1284 1285 std::error_code BitcodeReader::ParseTypeTableBody() { 1286 if (!TypeList.empty()) 1287 return Error("Invalid multiple blocks"); 1288 1289 SmallVector<uint64_t, 64> Record; 1290 unsigned NumRecords = 0; 1291 1292 SmallString<64> TypeName; 1293 1294 // Read all the records for this type table. 1295 while (1) { 1296 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1297 1298 switch (Entry.Kind) { 1299 case BitstreamEntry::SubBlock: // Handled for us already. 1300 case BitstreamEntry::Error: 1301 return Error("Malformed block"); 1302 case BitstreamEntry::EndBlock: 1303 if (NumRecords != TypeList.size()) 1304 return Error("Malformed block"); 1305 return std::error_code(); 1306 case BitstreamEntry::Record: 1307 // The interesting case. 1308 break; 1309 } 1310 1311 // Read a record. 1312 Record.clear(); 1313 Type *ResultTy = nullptr; 1314 switch (Stream.readRecord(Entry.ID, Record)) { 1315 default: 1316 return Error("Invalid value"); 1317 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1318 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1319 // type list. This allows us to reserve space. 1320 if (Record.size() < 1) 1321 return Error("Invalid record"); 1322 TypeList.resize(Record[0]); 1323 continue; 1324 case bitc::TYPE_CODE_VOID: // VOID 1325 ResultTy = Type::getVoidTy(Context); 1326 break; 1327 case bitc::TYPE_CODE_HALF: // HALF 1328 ResultTy = Type::getHalfTy(Context); 1329 break; 1330 case bitc::TYPE_CODE_FLOAT: // FLOAT 1331 ResultTy = Type::getFloatTy(Context); 1332 break; 1333 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1334 ResultTy = Type::getDoubleTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1337 ResultTy = Type::getX86_FP80Ty(Context); 1338 break; 1339 case bitc::TYPE_CODE_FP128: // FP128 1340 ResultTy = Type::getFP128Ty(Context); 1341 break; 1342 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1343 ResultTy = Type::getPPC_FP128Ty(Context); 1344 break; 1345 case bitc::TYPE_CODE_LABEL: // LABEL 1346 ResultTy = Type::getLabelTy(Context); 1347 break; 1348 case bitc::TYPE_CODE_METADATA: // METADATA 1349 ResultTy = Type::getMetadataTy(Context); 1350 break; 1351 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1352 ResultTy = Type::getX86_MMXTy(Context); 1353 break; 1354 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1355 if (Record.size() < 1) 1356 return Error("Invalid record"); 1357 1358 uint64_t NumBits = Record[0]; 1359 if (NumBits < IntegerType::MIN_INT_BITS || 1360 NumBits > IntegerType::MAX_INT_BITS) 1361 return Error("Bitwidth for integer type out of range"); 1362 ResultTy = IntegerType::get(Context, NumBits); 1363 break; 1364 } 1365 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1366 // [pointee type, address space] 1367 if (Record.size() < 1) 1368 return Error("Invalid record"); 1369 unsigned AddressSpace = 0; 1370 if (Record.size() == 2) 1371 AddressSpace = Record[1]; 1372 ResultTy = getTypeByID(Record[0]); 1373 if (!ResultTy || 1374 !PointerType::isValidElementType(ResultTy)) 1375 return Error("Invalid type"); 1376 ResultTy = PointerType::get(ResultTy, AddressSpace); 1377 break; 1378 } 1379 case bitc::TYPE_CODE_FUNCTION_OLD: { 1380 // FIXME: attrid is dead, remove it in LLVM 4.0 1381 // FUNCTION: [vararg, attrid, retty, paramty x N] 1382 if (Record.size() < 3) 1383 return Error("Invalid record"); 1384 SmallVector<Type*, 8> ArgTys; 1385 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1386 if (Type *T = getTypeByID(Record[i])) 1387 ArgTys.push_back(T); 1388 else 1389 break; 1390 } 1391 1392 ResultTy = getTypeByID(Record[2]); 1393 if (!ResultTy || ArgTys.size() < Record.size()-3) 1394 return Error("Invalid type"); 1395 1396 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1397 break; 1398 } 1399 case bitc::TYPE_CODE_FUNCTION: { 1400 // FUNCTION: [vararg, retty, paramty x N] 1401 if (Record.size() < 2) 1402 return Error("Invalid record"); 1403 SmallVector<Type*, 8> ArgTys; 1404 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1405 if (Type *T = getTypeByID(Record[i])) { 1406 if (!FunctionType::isValidArgumentType(T)) 1407 return Error("Invalid function argument type"); 1408 ArgTys.push_back(T); 1409 } 1410 else 1411 break; 1412 } 1413 1414 ResultTy = getTypeByID(Record[1]); 1415 if (!ResultTy || ArgTys.size() < Record.size()-2) 1416 return Error("Invalid type"); 1417 1418 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1419 break; 1420 } 1421 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1422 if (Record.size() < 1) 1423 return Error("Invalid record"); 1424 SmallVector<Type*, 8> EltTys; 1425 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1426 if (Type *T = getTypeByID(Record[i])) 1427 EltTys.push_back(T); 1428 else 1429 break; 1430 } 1431 if (EltTys.size() != Record.size()-1) 1432 return Error("Invalid type"); 1433 ResultTy = StructType::get(Context, EltTys, Record[0]); 1434 break; 1435 } 1436 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1437 if (ConvertToString(Record, 0, TypeName)) 1438 return Error("Invalid record"); 1439 continue; 1440 1441 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1442 if (Record.size() < 1) 1443 return Error("Invalid record"); 1444 1445 if (NumRecords >= TypeList.size()) 1446 return Error("Invalid TYPE table"); 1447 1448 // Check to see if this was forward referenced, if so fill in the temp. 1449 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1450 if (Res) { 1451 Res->setName(TypeName); 1452 TypeList[NumRecords] = nullptr; 1453 } else // Otherwise, create a new struct. 1454 Res = createIdentifiedStructType(Context, TypeName); 1455 TypeName.clear(); 1456 1457 SmallVector<Type*, 8> EltTys; 1458 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1459 if (Type *T = getTypeByID(Record[i])) 1460 EltTys.push_back(T); 1461 else 1462 break; 1463 } 1464 if (EltTys.size() != Record.size()-1) 1465 return Error("Invalid record"); 1466 Res->setBody(EltTys, Record[0]); 1467 ResultTy = Res; 1468 break; 1469 } 1470 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1471 if (Record.size() != 1) 1472 return Error("Invalid record"); 1473 1474 if (NumRecords >= TypeList.size()) 1475 return Error("Invalid TYPE table"); 1476 1477 // Check to see if this was forward referenced, if so fill in the temp. 1478 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1479 if (Res) { 1480 Res->setName(TypeName); 1481 TypeList[NumRecords] = nullptr; 1482 } else // Otherwise, create a new struct with no body. 1483 Res = createIdentifiedStructType(Context, TypeName); 1484 TypeName.clear(); 1485 ResultTy = Res; 1486 break; 1487 } 1488 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1489 if (Record.size() < 2) 1490 return Error("Invalid record"); 1491 ResultTy = getTypeByID(Record[1]); 1492 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1493 return Error("Invalid type"); 1494 ResultTy = ArrayType::get(ResultTy, Record[0]); 1495 break; 1496 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1497 if (Record.size() < 2) 1498 return Error("Invalid record"); 1499 ResultTy = getTypeByID(Record[1]); 1500 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1501 return Error("Invalid type"); 1502 ResultTy = VectorType::get(ResultTy, Record[0]); 1503 break; 1504 } 1505 1506 if (NumRecords >= TypeList.size()) 1507 return Error("Invalid TYPE table"); 1508 if (TypeList[NumRecords]) 1509 return Error( 1510 "Invalid TYPE table: Only named structs can be forward referenced"); 1511 assert(ResultTy && "Didn't read a type?"); 1512 TypeList[NumRecords++] = ResultTy; 1513 } 1514 } 1515 1516 std::error_code BitcodeReader::ParseValueSymbolTable() { 1517 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1518 return Error("Invalid record"); 1519 1520 SmallVector<uint64_t, 64> Record; 1521 1522 Triple TT(TheModule->getTargetTriple()); 1523 1524 // Read all the records for this value table. 1525 SmallString<128> ValueName; 1526 while (1) { 1527 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1528 1529 switch (Entry.Kind) { 1530 case BitstreamEntry::SubBlock: // Handled for us already. 1531 case BitstreamEntry::Error: 1532 return Error("Malformed block"); 1533 case BitstreamEntry::EndBlock: 1534 return std::error_code(); 1535 case BitstreamEntry::Record: 1536 // The interesting case. 1537 break; 1538 } 1539 1540 // Read a record. 1541 Record.clear(); 1542 switch (Stream.readRecord(Entry.ID, Record)) { 1543 default: // Default behavior: unknown type. 1544 break; 1545 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1546 if (ConvertToString(Record, 1, ValueName)) 1547 return Error("Invalid record"); 1548 unsigned ValueID = Record[0]; 1549 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1550 return Error("Invalid record"); 1551 Value *V = ValueList[ValueID]; 1552 1553 V->setName(StringRef(ValueName.data(), ValueName.size())); 1554 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1555 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1556 if (TT.isOSBinFormatMachO()) 1557 GO->setComdat(nullptr); 1558 else 1559 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1560 } 1561 } 1562 ValueName.clear(); 1563 break; 1564 } 1565 case bitc::VST_CODE_BBENTRY: { 1566 if (ConvertToString(Record, 1, ValueName)) 1567 return Error("Invalid record"); 1568 BasicBlock *BB = getBasicBlock(Record[0]); 1569 if (!BB) 1570 return Error("Invalid record"); 1571 1572 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1573 ValueName.clear(); 1574 break; 1575 } 1576 } 1577 } 1578 } 1579 1580 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1581 1582 std::error_code BitcodeReader::ParseMetadata() { 1583 IsMetadataMaterialized = true; 1584 unsigned NextMDValueNo = MDValueList.size(); 1585 1586 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1587 return Error("Invalid record"); 1588 1589 SmallVector<uint64_t, 64> Record; 1590 1591 auto getMD = 1592 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1593 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1594 if (ID) 1595 return getMD(ID - 1); 1596 return nullptr; 1597 }; 1598 auto getMDString = [&](unsigned ID) -> MDString *{ 1599 // This requires that the ID is not really a forward reference. In 1600 // particular, the MDString must already have been resolved. 1601 return cast_or_null<MDString>(getMDOrNull(ID)); 1602 }; 1603 1604 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1605 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1606 1607 // Read all the records. 1608 while (1) { 1609 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1610 1611 switch (Entry.Kind) { 1612 case BitstreamEntry::SubBlock: // Handled for us already. 1613 case BitstreamEntry::Error: 1614 return Error("Malformed block"); 1615 case BitstreamEntry::EndBlock: 1616 MDValueList.tryToResolveCycles(); 1617 return std::error_code(); 1618 case BitstreamEntry::Record: 1619 // The interesting case. 1620 break; 1621 } 1622 1623 // Read a record. 1624 Record.clear(); 1625 unsigned Code = Stream.readRecord(Entry.ID, Record); 1626 bool IsDistinct = false; 1627 switch (Code) { 1628 default: // Default behavior: ignore. 1629 break; 1630 case bitc::METADATA_NAME: { 1631 // Read name of the named metadata. 1632 SmallString<8> Name(Record.begin(), Record.end()); 1633 Record.clear(); 1634 Code = Stream.ReadCode(); 1635 1636 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1637 unsigned NextBitCode = Stream.readRecord(Code, Record); 1638 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1639 1640 // Read named metadata elements. 1641 unsigned Size = Record.size(); 1642 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1643 for (unsigned i = 0; i != Size; ++i) { 1644 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1645 if (!MD) 1646 return Error("Invalid record"); 1647 NMD->addOperand(MD); 1648 } 1649 break; 1650 } 1651 case bitc::METADATA_OLD_FN_NODE: { 1652 // FIXME: Remove in 4.0. 1653 // This is a LocalAsMetadata record, the only type of function-local 1654 // metadata. 1655 if (Record.size() % 2 == 1) 1656 return Error("Invalid record"); 1657 1658 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1659 // to be legal, but there's no upgrade path. 1660 auto dropRecord = [&] { 1661 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1662 }; 1663 if (Record.size() != 2) { 1664 dropRecord(); 1665 break; 1666 } 1667 1668 Type *Ty = getTypeByID(Record[0]); 1669 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1670 dropRecord(); 1671 break; 1672 } 1673 1674 MDValueList.AssignValue( 1675 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1676 NextMDValueNo++); 1677 break; 1678 } 1679 case bitc::METADATA_OLD_NODE: { 1680 // FIXME: Remove in 4.0. 1681 if (Record.size() % 2 == 1) 1682 return Error("Invalid record"); 1683 1684 unsigned Size = Record.size(); 1685 SmallVector<Metadata *, 8> Elts; 1686 for (unsigned i = 0; i != Size; i += 2) { 1687 Type *Ty = getTypeByID(Record[i]); 1688 if (!Ty) 1689 return Error("Invalid record"); 1690 if (Ty->isMetadataTy()) 1691 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1692 else if (!Ty->isVoidTy()) { 1693 auto *MD = 1694 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1695 assert(isa<ConstantAsMetadata>(MD) && 1696 "Expected non-function-local metadata"); 1697 Elts.push_back(MD); 1698 } else 1699 Elts.push_back(nullptr); 1700 } 1701 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1702 break; 1703 } 1704 case bitc::METADATA_VALUE: { 1705 if (Record.size() != 2) 1706 return Error("Invalid record"); 1707 1708 Type *Ty = getTypeByID(Record[0]); 1709 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1710 return Error("Invalid record"); 1711 1712 MDValueList.AssignValue( 1713 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1714 NextMDValueNo++); 1715 break; 1716 } 1717 case bitc::METADATA_DISTINCT_NODE: 1718 IsDistinct = true; 1719 // fallthrough... 1720 case bitc::METADATA_NODE: { 1721 SmallVector<Metadata *, 8> Elts; 1722 Elts.reserve(Record.size()); 1723 for (unsigned ID : Record) 1724 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1725 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1726 : MDNode::get(Context, Elts), 1727 NextMDValueNo++); 1728 break; 1729 } 1730 case bitc::METADATA_LOCATION: { 1731 if (Record.size() != 5) 1732 return Error("Invalid record"); 1733 1734 unsigned Line = Record[1]; 1735 unsigned Column = Record[2]; 1736 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1737 Metadata *InlinedAt = 1738 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1739 MDValueList.AssignValue( 1740 GET_OR_DISTINCT(DILocation, Record[0], 1741 (Context, Line, Column, Scope, InlinedAt)), 1742 NextMDValueNo++); 1743 break; 1744 } 1745 case bitc::METADATA_GENERIC_DEBUG: { 1746 if (Record.size() < 4) 1747 return Error("Invalid record"); 1748 1749 unsigned Tag = Record[1]; 1750 unsigned Version = Record[2]; 1751 1752 if (Tag >= 1u << 16 || Version != 0) 1753 return Error("Invalid record"); 1754 1755 auto *Header = getMDString(Record[3]); 1756 SmallVector<Metadata *, 8> DwarfOps; 1757 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1758 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1759 : nullptr); 1760 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1761 (Context, Tag, Header, DwarfOps)), 1762 NextMDValueNo++); 1763 break; 1764 } 1765 case bitc::METADATA_SUBRANGE: { 1766 if (Record.size() != 3) 1767 return Error("Invalid record"); 1768 1769 MDValueList.AssignValue( 1770 GET_OR_DISTINCT(DISubrange, Record[0], 1771 (Context, Record[1], unrotateSign(Record[2]))), 1772 NextMDValueNo++); 1773 break; 1774 } 1775 case bitc::METADATA_ENUMERATOR: { 1776 if (Record.size() != 3) 1777 return Error("Invalid record"); 1778 1779 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1780 (Context, unrotateSign(Record[1]), 1781 getMDString(Record[2]))), 1782 NextMDValueNo++); 1783 break; 1784 } 1785 case bitc::METADATA_BASIC_TYPE: { 1786 if (Record.size() != 6) 1787 return Error("Invalid record"); 1788 1789 MDValueList.AssignValue( 1790 GET_OR_DISTINCT(DIBasicType, Record[0], 1791 (Context, Record[1], getMDString(Record[2]), 1792 Record[3], Record[4], Record[5])), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_DERIVED_TYPE: { 1797 if (Record.size() != 12) 1798 return Error("Invalid record"); 1799 1800 MDValueList.AssignValue( 1801 GET_OR_DISTINCT(DIDerivedType, Record[0], 1802 (Context, Record[1], getMDString(Record[2]), 1803 getMDOrNull(Record[3]), Record[4], 1804 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1805 Record[7], Record[8], Record[9], Record[10], 1806 getMDOrNull(Record[11]))), 1807 NextMDValueNo++); 1808 break; 1809 } 1810 case bitc::METADATA_COMPOSITE_TYPE: { 1811 if (Record.size() != 16) 1812 return Error("Invalid record"); 1813 1814 MDValueList.AssignValue( 1815 GET_OR_DISTINCT(DICompositeType, Record[0], 1816 (Context, Record[1], getMDString(Record[2]), 1817 getMDOrNull(Record[3]), Record[4], 1818 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1819 Record[7], Record[8], Record[9], Record[10], 1820 getMDOrNull(Record[11]), Record[12], 1821 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1822 getMDString(Record[15]))), 1823 NextMDValueNo++); 1824 break; 1825 } 1826 case bitc::METADATA_SUBROUTINE_TYPE: { 1827 if (Record.size() != 3) 1828 return Error("Invalid record"); 1829 1830 MDValueList.AssignValue( 1831 GET_OR_DISTINCT(DISubroutineType, Record[0], 1832 (Context, Record[1], getMDOrNull(Record[2]))), 1833 NextMDValueNo++); 1834 break; 1835 } 1836 case bitc::METADATA_FILE: { 1837 if (Record.size() != 3) 1838 return Error("Invalid record"); 1839 1840 MDValueList.AssignValue( 1841 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1842 getMDString(Record[2]))), 1843 NextMDValueNo++); 1844 break; 1845 } 1846 case bitc::METADATA_COMPILE_UNIT: { 1847 if (Record.size() < 14 || Record.size() > 15) 1848 return Error("Invalid record"); 1849 1850 MDValueList.AssignValue( 1851 GET_OR_DISTINCT(DICompileUnit, Record[0], 1852 (Context, Record[1], getMDOrNull(Record[2]), 1853 getMDString(Record[3]), Record[4], 1854 getMDString(Record[5]), Record[6], 1855 getMDString(Record[7]), Record[8], 1856 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1857 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1858 getMDOrNull(Record[13]), 1859 Record.size() == 14 ? 0 : Record[14])), 1860 NextMDValueNo++); 1861 break; 1862 } 1863 case bitc::METADATA_SUBPROGRAM: { 1864 if (Record.size() != 19) 1865 return Error("Invalid record"); 1866 1867 MDValueList.AssignValue( 1868 GET_OR_DISTINCT( 1869 DISubprogram, Record[0], 1870 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1871 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1872 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1873 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1874 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1875 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1876 NextMDValueNo++); 1877 break; 1878 } 1879 case bitc::METADATA_LEXICAL_BLOCK: { 1880 if (Record.size() != 5) 1881 return Error("Invalid record"); 1882 1883 MDValueList.AssignValue( 1884 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1885 (Context, getMDOrNull(Record[1]), 1886 getMDOrNull(Record[2]), Record[3], Record[4])), 1887 NextMDValueNo++); 1888 break; 1889 } 1890 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1891 if (Record.size() != 4) 1892 return Error("Invalid record"); 1893 1894 MDValueList.AssignValue( 1895 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1896 (Context, getMDOrNull(Record[1]), 1897 getMDOrNull(Record[2]), Record[3])), 1898 NextMDValueNo++); 1899 break; 1900 } 1901 case bitc::METADATA_NAMESPACE: { 1902 if (Record.size() != 5) 1903 return Error("Invalid record"); 1904 1905 MDValueList.AssignValue( 1906 GET_OR_DISTINCT(DINamespace, Record[0], 1907 (Context, getMDOrNull(Record[1]), 1908 getMDOrNull(Record[2]), getMDString(Record[3]), 1909 Record[4])), 1910 NextMDValueNo++); 1911 break; 1912 } 1913 case bitc::METADATA_TEMPLATE_TYPE: { 1914 if (Record.size() != 3) 1915 return Error("Invalid record"); 1916 1917 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1918 Record[0], 1919 (Context, getMDString(Record[1]), 1920 getMDOrNull(Record[2]))), 1921 NextMDValueNo++); 1922 break; 1923 } 1924 case bitc::METADATA_TEMPLATE_VALUE: { 1925 if (Record.size() != 5) 1926 return Error("Invalid record"); 1927 1928 MDValueList.AssignValue( 1929 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1930 (Context, Record[1], getMDString(Record[2]), 1931 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1932 NextMDValueNo++); 1933 break; 1934 } 1935 case bitc::METADATA_GLOBAL_VAR: { 1936 if (Record.size() != 11) 1937 return Error("Invalid record"); 1938 1939 MDValueList.AssignValue( 1940 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1941 (Context, getMDOrNull(Record[1]), 1942 getMDString(Record[2]), getMDString(Record[3]), 1943 getMDOrNull(Record[4]), Record[5], 1944 getMDOrNull(Record[6]), Record[7], Record[8], 1945 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1946 NextMDValueNo++); 1947 break; 1948 } 1949 case bitc::METADATA_LOCAL_VAR: { 1950 // 10th field is for the obseleted 'inlinedAt:' field. 1951 if (Record.size() != 9 && Record.size() != 10) 1952 return Error("Invalid record"); 1953 1954 MDValueList.AssignValue( 1955 GET_OR_DISTINCT(DILocalVariable, Record[0], 1956 (Context, Record[1], getMDOrNull(Record[2]), 1957 getMDString(Record[3]), getMDOrNull(Record[4]), 1958 Record[5], getMDOrNull(Record[6]), Record[7], 1959 Record[8])), 1960 NextMDValueNo++); 1961 break; 1962 } 1963 case bitc::METADATA_EXPRESSION: { 1964 if (Record.size() < 1) 1965 return Error("Invalid record"); 1966 1967 MDValueList.AssignValue( 1968 GET_OR_DISTINCT(DIExpression, Record[0], 1969 (Context, makeArrayRef(Record).slice(1))), 1970 NextMDValueNo++); 1971 break; 1972 } 1973 case bitc::METADATA_OBJC_PROPERTY: { 1974 if (Record.size() != 8) 1975 return Error("Invalid record"); 1976 1977 MDValueList.AssignValue( 1978 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1979 (Context, getMDString(Record[1]), 1980 getMDOrNull(Record[2]), Record[3], 1981 getMDString(Record[4]), getMDString(Record[5]), 1982 Record[6], getMDOrNull(Record[7]))), 1983 NextMDValueNo++); 1984 break; 1985 } 1986 case bitc::METADATA_IMPORTED_ENTITY: { 1987 if (Record.size() != 6) 1988 return Error("Invalid record"); 1989 1990 MDValueList.AssignValue( 1991 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1992 (Context, Record[1], getMDOrNull(Record[2]), 1993 getMDOrNull(Record[3]), Record[4], 1994 getMDString(Record[5]))), 1995 NextMDValueNo++); 1996 break; 1997 } 1998 case bitc::METADATA_STRING: { 1999 std::string String(Record.begin(), Record.end()); 2000 llvm::UpgradeMDStringConstant(String); 2001 Metadata *MD = MDString::get(Context, String); 2002 MDValueList.AssignValue(MD, NextMDValueNo++); 2003 break; 2004 } 2005 case bitc::METADATA_KIND: { 2006 if (Record.size() < 2) 2007 return Error("Invalid record"); 2008 2009 unsigned Kind = Record[0]; 2010 SmallString<8> Name(Record.begin()+1, Record.end()); 2011 2012 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2013 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2014 return Error("Conflicting METADATA_KIND records"); 2015 break; 2016 } 2017 } 2018 } 2019 #undef GET_OR_DISTINCT 2020 } 2021 2022 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2023 /// the LSB for dense VBR encoding. 2024 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2025 if ((V & 1) == 0) 2026 return V >> 1; 2027 if (V != 1) 2028 return -(V >> 1); 2029 // There is no such thing as -0 with integers. "-0" really means MININT. 2030 return 1ULL << 63; 2031 } 2032 2033 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2034 /// values and aliases that we can. 2035 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2036 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2037 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2038 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2039 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2040 2041 GlobalInitWorklist.swap(GlobalInits); 2042 AliasInitWorklist.swap(AliasInits); 2043 FunctionPrefixWorklist.swap(FunctionPrefixes); 2044 FunctionPrologueWorklist.swap(FunctionPrologues); 2045 2046 while (!GlobalInitWorklist.empty()) { 2047 unsigned ValID = GlobalInitWorklist.back().second; 2048 if (ValID >= ValueList.size()) { 2049 // Not ready to resolve this yet, it requires something later in the file. 2050 GlobalInits.push_back(GlobalInitWorklist.back()); 2051 } else { 2052 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2053 GlobalInitWorklist.back().first->setInitializer(C); 2054 else 2055 return Error("Expected a constant"); 2056 } 2057 GlobalInitWorklist.pop_back(); 2058 } 2059 2060 while (!AliasInitWorklist.empty()) { 2061 unsigned ValID = AliasInitWorklist.back().second; 2062 if (ValID >= ValueList.size()) { 2063 AliasInits.push_back(AliasInitWorklist.back()); 2064 } else { 2065 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2066 AliasInitWorklist.back().first->setAliasee(C); 2067 else 2068 return Error("Expected a constant"); 2069 } 2070 AliasInitWorklist.pop_back(); 2071 } 2072 2073 while (!FunctionPrefixWorklist.empty()) { 2074 unsigned ValID = FunctionPrefixWorklist.back().second; 2075 if (ValID >= ValueList.size()) { 2076 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2077 } else { 2078 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2079 FunctionPrefixWorklist.back().first->setPrefixData(C); 2080 else 2081 return Error("Expected a constant"); 2082 } 2083 FunctionPrefixWorklist.pop_back(); 2084 } 2085 2086 while (!FunctionPrologueWorklist.empty()) { 2087 unsigned ValID = FunctionPrologueWorklist.back().second; 2088 if (ValID >= ValueList.size()) { 2089 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2090 } else { 2091 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2092 FunctionPrologueWorklist.back().first->setPrologueData(C); 2093 else 2094 return Error("Expected a constant"); 2095 } 2096 FunctionPrologueWorklist.pop_back(); 2097 } 2098 2099 return std::error_code(); 2100 } 2101 2102 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2103 SmallVector<uint64_t, 8> Words(Vals.size()); 2104 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2105 BitcodeReader::decodeSignRotatedValue); 2106 2107 return APInt(TypeBits, Words); 2108 } 2109 2110 std::error_code BitcodeReader::ParseConstants() { 2111 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2112 return Error("Invalid record"); 2113 2114 SmallVector<uint64_t, 64> Record; 2115 2116 // Read all the records for this value table. 2117 Type *CurTy = Type::getInt32Ty(Context); 2118 unsigned NextCstNo = ValueList.size(); 2119 while (1) { 2120 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2121 2122 switch (Entry.Kind) { 2123 case BitstreamEntry::SubBlock: // Handled for us already. 2124 case BitstreamEntry::Error: 2125 return Error("Malformed block"); 2126 case BitstreamEntry::EndBlock: 2127 if (NextCstNo != ValueList.size()) 2128 return Error("Invalid ronstant reference"); 2129 2130 // Once all the constants have been read, go through and resolve forward 2131 // references. 2132 ValueList.ResolveConstantForwardRefs(); 2133 return std::error_code(); 2134 case BitstreamEntry::Record: 2135 // The interesting case. 2136 break; 2137 } 2138 2139 // Read a record. 2140 Record.clear(); 2141 Value *V = nullptr; 2142 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2143 switch (BitCode) { 2144 default: // Default behavior: unknown constant 2145 case bitc::CST_CODE_UNDEF: // UNDEF 2146 V = UndefValue::get(CurTy); 2147 break; 2148 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2149 if (Record.empty()) 2150 return Error("Invalid record"); 2151 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2152 return Error("Invalid record"); 2153 CurTy = TypeList[Record[0]]; 2154 continue; // Skip the ValueList manipulation. 2155 case bitc::CST_CODE_NULL: // NULL 2156 V = Constant::getNullValue(CurTy); 2157 break; 2158 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2159 if (!CurTy->isIntegerTy() || Record.empty()) 2160 return Error("Invalid record"); 2161 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2162 break; 2163 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2164 if (!CurTy->isIntegerTy() || Record.empty()) 2165 return Error("Invalid record"); 2166 2167 APInt VInt = ReadWideAPInt(Record, 2168 cast<IntegerType>(CurTy)->getBitWidth()); 2169 V = ConstantInt::get(Context, VInt); 2170 2171 break; 2172 } 2173 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2174 if (Record.empty()) 2175 return Error("Invalid record"); 2176 if (CurTy->isHalfTy()) 2177 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2178 APInt(16, (uint16_t)Record[0]))); 2179 else if (CurTy->isFloatTy()) 2180 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2181 APInt(32, (uint32_t)Record[0]))); 2182 else if (CurTy->isDoubleTy()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2184 APInt(64, Record[0]))); 2185 else if (CurTy->isX86_FP80Ty()) { 2186 // Bits are not stored the same way as a normal i80 APInt, compensate. 2187 uint64_t Rearrange[2]; 2188 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2189 Rearrange[1] = Record[0] >> 48; 2190 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2191 APInt(80, Rearrange))); 2192 } else if (CurTy->isFP128Ty()) 2193 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2194 APInt(128, Record))); 2195 else if (CurTy->isPPC_FP128Ty()) 2196 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2197 APInt(128, Record))); 2198 else 2199 V = UndefValue::get(CurTy); 2200 break; 2201 } 2202 2203 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2204 if (Record.empty()) 2205 return Error("Invalid record"); 2206 2207 unsigned Size = Record.size(); 2208 SmallVector<Constant*, 16> Elts; 2209 2210 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2211 for (unsigned i = 0; i != Size; ++i) 2212 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2213 STy->getElementType(i))); 2214 V = ConstantStruct::get(STy, Elts); 2215 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2216 Type *EltTy = ATy->getElementType(); 2217 for (unsigned i = 0; i != Size; ++i) 2218 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2219 V = ConstantArray::get(ATy, Elts); 2220 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2221 Type *EltTy = VTy->getElementType(); 2222 for (unsigned i = 0; i != Size; ++i) 2223 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2224 V = ConstantVector::get(Elts); 2225 } else { 2226 V = UndefValue::get(CurTy); 2227 } 2228 break; 2229 } 2230 case bitc::CST_CODE_STRING: // STRING: [values] 2231 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2232 if (Record.empty()) 2233 return Error("Invalid record"); 2234 2235 SmallString<16> Elts(Record.begin(), Record.end()); 2236 V = ConstantDataArray::getString(Context, Elts, 2237 BitCode == bitc::CST_CODE_CSTRING); 2238 break; 2239 } 2240 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2241 if (Record.empty()) 2242 return Error("Invalid record"); 2243 2244 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2245 unsigned Size = Record.size(); 2246 2247 if (EltTy->isIntegerTy(8)) { 2248 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2249 if (isa<VectorType>(CurTy)) 2250 V = ConstantDataVector::get(Context, Elts); 2251 else 2252 V = ConstantDataArray::get(Context, Elts); 2253 } else if (EltTy->isIntegerTy(16)) { 2254 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::get(Context, Elts); 2257 else 2258 V = ConstantDataArray::get(Context, Elts); 2259 } else if (EltTy->isIntegerTy(32)) { 2260 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2261 if (isa<VectorType>(CurTy)) 2262 V = ConstantDataVector::get(Context, Elts); 2263 else 2264 V = ConstantDataArray::get(Context, Elts); 2265 } else if (EltTy->isIntegerTy(64)) { 2266 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2267 if (isa<VectorType>(CurTy)) 2268 V = ConstantDataVector::get(Context, Elts); 2269 else 2270 V = ConstantDataArray::get(Context, Elts); 2271 } else if (EltTy->isFloatTy()) { 2272 SmallVector<float, 16> Elts(Size); 2273 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isDoubleTy()) { 2279 SmallVector<double, 16> Elts(Size); 2280 std::transform(Record.begin(), Record.end(), Elts.begin(), 2281 BitsToDouble); 2282 if (isa<VectorType>(CurTy)) 2283 V = ConstantDataVector::get(Context, Elts); 2284 else 2285 V = ConstantDataArray::get(Context, Elts); 2286 } else { 2287 return Error("Invalid type for value"); 2288 } 2289 break; 2290 } 2291 2292 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2293 if (Record.size() < 3) 2294 return Error("Invalid record"); 2295 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2296 if (Opc < 0) { 2297 V = UndefValue::get(CurTy); // Unknown binop. 2298 } else { 2299 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2300 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2301 unsigned Flags = 0; 2302 if (Record.size() >= 4) { 2303 if (Opc == Instruction::Add || 2304 Opc == Instruction::Sub || 2305 Opc == Instruction::Mul || 2306 Opc == Instruction::Shl) { 2307 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2308 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2309 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2310 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2311 } else if (Opc == Instruction::SDiv || 2312 Opc == Instruction::UDiv || 2313 Opc == Instruction::LShr || 2314 Opc == Instruction::AShr) { 2315 if (Record[3] & (1 << bitc::PEO_EXACT)) 2316 Flags |= SDivOperator::IsExact; 2317 } 2318 } 2319 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2320 } 2321 break; 2322 } 2323 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2324 if (Record.size() < 3) 2325 return Error("Invalid record"); 2326 int Opc = GetDecodedCastOpcode(Record[0]); 2327 if (Opc < 0) { 2328 V = UndefValue::get(CurTy); // Unknown cast. 2329 } else { 2330 Type *OpTy = getTypeByID(Record[1]); 2331 if (!OpTy) 2332 return Error("Invalid record"); 2333 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2334 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2335 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2336 } 2337 break; 2338 } 2339 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2340 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2341 unsigned OpNum = 0; 2342 Type *PointeeType = nullptr; 2343 if (Record.size() % 2) 2344 PointeeType = getTypeByID(Record[OpNum++]); 2345 SmallVector<Constant*, 16> Elts; 2346 while (OpNum != Record.size()) { 2347 Type *ElTy = getTypeByID(Record[OpNum++]); 2348 if (!ElTy) 2349 return Error("Invalid record"); 2350 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2351 } 2352 2353 if (PointeeType && 2354 PointeeType != 2355 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2356 ->getElementType()) 2357 return Error("Explicit gep operator type does not match pointee type " 2358 "of pointer operand"); 2359 2360 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2361 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2362 BitCode == 2363 bitc::CST_CODE_CE_INBOUNDS_GEP); 2364 break; 2365 } 2366 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2367 if (Record.size() < 3) 2368 return Error("Invalid record"); 2369 2370 Type *SelectorTy = Type::getInt1Ty(Context); 2371 2372 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2373 // vector. Otherwise, it must be a single bit. 2374 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2375 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2376 VTy->getNumElements()); 2377 2378 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2379 SelectorTy), 2380 ValueList.getConstantFwdRef(Record[1],CurTy), 2381 ValueList.getConstantFwdRef(Record[2],CurTy)); 2382 break; 2383 } 2384 case bitc::CST_CODE_CE_EXTRACTELT 2385 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2386 if (Record.size() < 3) 2387 return Error("Invalid record"); 2388 VectorType *OpTy = 2389 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2390 if (!OpTy) 2391 return Error("Invalid record"); 2392 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2393 Constant *Op1 = nullptr; 2394 if (Record.size() == 4) { 2395 Type *IdxTy = getTypeByID(Record[2]); 2396 if (!IdxTy) 2397 return Error("Invalid record"); 2398 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2399 } else // TODO: Remove with llvm 4.0 2400 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2401 if (!Op1) 2402 return Error("Invalid record"); 2403 V = ConstantExpr::getExtractElement(Op0, Op1); 2404 break; 2405 } 2406 case bitc::CST_CODE_CE_INSERTELT 2407 : { // CE_INSERTELT: [opval, opval, opty, opval] 2408 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2409 if (Record.size() < 3 || !OpTy) 2410 return Error("Invalid record"); 2411 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2412 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2413 OpTy->getElementType()); 2414 Constant *Op2 = nullptr; 2415 if (Record.size() == 4) { 2416 Type *IdxTy = getTypeByID(Record[2]); 2417 if (!IdxTy) 2418 return Error("Invalid record"); 2419 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2420 } else // TODO: Remove with llvm 4.0 2421 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2422 if (!Op2) 2423 return Error("Invalid record"); 2424 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2425 break; 2426 } 2427 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2428 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2429 if (Record.size() < 3 || !OpTy) 2430 return Error("Invalid record"); 2431 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2432 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2433 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2434 OpTy->getNumElements()); 2435 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2436 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2437 break; 2438 } 2439 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2440 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2441 VectorType *OpTy = 2442 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2443 if (Record.size() < 4 || !RTy || !OpTy) 2444 return Error("Invalid record"); 2445 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2446 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2447 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2448 RTy->getNumElements()); 2449 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2450 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2451 break; 2452 } 2453 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2454 if (Record.size() < 4) 2455 return Error("Invalid record"); 2456 Type *OpTy = getTypeByID(Record[0]); 2457 if (!OpTy) 2458 return Error("Invalid record"); 2459 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2460 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2461 2462 if (OpTy->isFPOrFPVectorTy()) 2463 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2464 else 2465 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2466 break; 2467 } 2468 // This maintains backward compatibility, pre-asm dialect keywords. 2469 // FIXME: Remove with the 4.0 release. 2470 case bitc::CST_CODE_INLINEASM_OLD: { 2471 if (Record.size() < 2) 2472 return Error("Invalid record"); 2473 std::string AsmStr, ConstrStr; 2474 bool HasSideEffects = Record[0] & 1; 2475 bool IsAlignStack = Record[0] >> 1; 2476 unsigned AsmStrSize = Record[1]; 2477 if (2+AsmStrSize >= Record.size()) 2478 return Error("Invalid record"); 2479 unsigned ConstStrSize = Record[2+AsmStrSize]; 2480 if (3+AsmStrSize+ConstStrSize > Record.size()) 2481 return Error("Invalid record"); 2482 2483 for (unsigned i = 0; i != AsmStrSize; ++i) 2484 AsmStr += (char)Record[2+i]; 2485 for (unsigned i = 0; i != ConstStrSize; ++i) 2486 ConstrStr += (char)Record[3+AsmStrSize+i]; 2487 PointerType *PTy = cast<PointerType>(CurTy); 2488 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2489 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2490 break; 2491 } 2492 // This version adds support for the asm dialect keywords (e.g., 2493 // inteldialect). 2494 case bitc::CST_CODE_INLINEASM: { 2495 if (Record.size() < 2) 2496 return Error("Invalid record"); 2497 std::string AsmStr, ConstrStr; 2498 bool HasSideEffects = Record[0] & 1; 2499 bool IsAlignStack = (Record[0] >> 1) & 1; 2500 unsigned AsmDialect = Record[0] >> 2; 2501 unsigned AsmStrSize = Record[1]; 2502 if (2+AsmStrSize >= Record.size()) 2503 return Error("Invalid record"); 2504 unsigned ConstStrSize = Record[2+AsmStrSize]; 2505 if (3+AsmStrSize+ConstStrSize > Record.size()) 2506 return Error("Invalid record"); 2507 2508 for (unsigned i = 0; i != AsmStrSize; ++i) 2509 AsmStr += (char)Record[2+i]; 2510 for (unsigned i = 0; i != ConstStrSize; ++i) 2511 ConstrStr += (char)Record[3+AsmStrSize+i]; 2512 PointerType *PTy = cast<PointerType>(CurTy); 2513 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2514 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2515 InlineAsm::AsmDialect(AsmDialect)); 2516 break; 2517 } 2518 case bitc::CST_CODE_BLOCKADDRESS:{ 2519 if (Record.size() < 3) 2520 return Error("Invalid record"); 2521 Type *FnTy = getTypeByID(Record[0]); 2522 if (!FnTy) 2523 return Error("Invalid record"); 2524 Function *Fn = 2525 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2526 if (!Fn) 2527 return Error("Invalid record"); 2528 2529 // Don't let Fn get dematerialized. 2530 BlockAddressesTaken.insert(Fn); 2531 2532 // If the function is already parsed we can insert the block address right 2533 // away. 2534 BasicBlock *BB; 2535 unsigned BBID = Record[2]; 2536 if (!BBID) 2537 // Invalid reference to entry block. 2538 return Error("Invalid ID"); 2539 if (!Fn->empty()) { 2540 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2541 for (size_t I = 0, E = BBID; I != E; ++I) { 2542 if (BBI == BBE) 2543 return Error("Invalid ID"); 2544 ++BBI; 2545 } 2546 BB = BBI; 2547 } else { 2548 // Otherwise insert a placeholder and remember it so it can be inserted 2549 // when the function is parsed. 2550 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2551 if (FwdBBs.empty()) 2552 BasicBlockFwdRefQueue.push_back(Fn); 2553 if (FwdBBs.size() < BBID + 1) 2554 FwdBBs.resize(BBID + 1); 2555 if (!FwdBBs[BBID]) 2556 FwdBBs[BBID] = BasicBlock::Create(Context); 2557 BB = FwdBBs[BBID]; 2558 } 2559 V = BlockAddress::get(Fn, BB); 2560 break; 2561 } 2562 } 2563 2564 ValueList.AssignValue(V, NextCstNo); 2565 ++NextCstNo; 2566 } 2567 } 2568 2569 std::error_code BitcodeReader::ParseUseLists() { 2570 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2571 return Error("Invalid record"); 2572 2573 // Read all the records. 2574 SmallVector<uint64_t, 64> Record; 2575 while (1) { 2576 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2577 2578 switch (Entry.Kind) { 2579 case BitstreamEntry::SubBlock: // Handled for us already. 2580 case BitstreamEntry::Error: 2581 return Error("Malformed block"); 2582 case BitstreamEntry::EndBlock: 2583 return std::error_code(); 2584 case BitstreamEntry::Record: 2585 // The interesting case. 2586 break; 2587 } 2588 2589 // Read a use list record. 2590 Record.clear(); 2591 bool IsBB = false; 2592 switch (Stream.readRecord(Entry.ID, Record)) { 2593 default: // Default behavior: unknown type. 2594 break; 2595 case bitc::USELIST_CODE_BB: 2596 IsBB = true; 2597 // fallthrough 2598 case bitc::USELIST_CODE_DEFAULT: { 2599 unsigned RecordLength = Record.size(); 2600 if (RecordLength < 3) 2601 // Records should have at least an ID and two indexes. 2602 return Error("Invalid record"); 2603 unsigned ID = Record.back(); 2604 Record.pop_back(); 2605 2606 Value *V; 2607 if (IsBB) { 2608 assert(ID < FunctionBBs.size() && "Basic block not found"); 2609 V = FunctionBBs[ID]; 2610 } else 2611 V = ValueList[ID]; 2612 unsigned NumUses = 0; 2613 SmallDenseMap<const Use *, unsigned, 16> Order; 2614 for (const Use &U : V->uses()) { 2615 if (++NumUses > Record.size()) 2616 break; 2617 Order[&U] = Record[NumUses - 1]; 2618 } 2619 if (Order.size() != Record.size() || NumUses > Record.size()) 2620 // Mismatches can happen if the functions are being materialized lazily 2621 // (out-of-order), or a value has been upgraded. 2622 break; 2623 2624 V->sortUseList([&](const Use &L, const Use &R) { 2625 return Order.lookup(&L) < Order.lookup(&R); 2626 }); 2627 break; 2628 } 2629 } 2630 } 2631 } 2632 2633 /// When we see the block for metadata, remember where it is and then skip it. 2634 /// This lets us lazily deserialize the metadata. 2635 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2636 // Save the current stream state. 2637 uint64_t CurBit = Stream.GetCurrentBitNo(); 2638 DeferredMetadataInfo.push_back(CurBit); 2639 2640 // Skip over the block for now. 2641 if (Stream.SkipBlock()) 2642 return Error("Invalid record"); 2643 return std::error_code(); 2644 } 2645 2646 std::error_code BitcodeReader::materializeMetadata() { 2647 for (uint64_t BitPos : DeferredMetadataInfo) { 2648 // Move the bit stream to the saved position. 2649 Stream.JumpToBit(BitPos); 2650 if (std::error_code EC = ParseMetadata()) 2651 return EC; 2652 } 2653 DeferredMetadataInfo.clear(); 2654 return std::error_code(); 2655 } 2656 2657 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2658 2659 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2660 /// remember where it is and then skip it. This lets us lazily deserialize the 2661 /// functions. 2662 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2663 // Get the function we are talking about. 2664 if (FunctionsWithBodies.empty()) 2665 return Error("Insufficient function protos"); 2666 2667 Function *Fn = FunctionsWithBodies.back(); 2668 FunctionsWithBodies.pop_back(); 2669 2670 // Save the current stream state. 2671 uint64_t CurBit = Stream.GetCurrentBitNo(); 2672 DeferredFunctionInfo[Fn] = CurBit; 2673 2674 // Skip over the function block for now. 2675 if (Stream.SkipBlock()) 2676 return Error("Invalid record"); 2677 return std::error_code(); 2678 } 2679 2680 std::error_code BitcodeReader::GlobalCleanup() { 2681 // Patch the initializers for globals and aliases up. 2682 ResolveGlobalAndAliasInits(); 2683 if (!GlobalInits.empty() || !AliasInits.empty()) 2684 return Error("Malformed global initializer set"); 2685 2686 // Look for intrinsic functions which need to be upgraded at some point 2687 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2688 FI != FE; ++FI) { 2689 Function *NewFn; 2690 if (UpgradeIntrinsicFunction(FI, NewFn)) 2691 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2692 } 2693 2694 // Look for global variables which need to be renamed. 2695 for (Module::global_iterator 2696 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2697 GI != GE;) { 2698 GlobalVariable *GV = GI++; 2699 UpgradeGlobalVariable(GV); 2700 } 2701 2702 // Force deallocation of memory for these vectors to favor the client that 2703 // want lazy deserialization. 2704 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2705 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2706 return std::error_code(); 2707 } 2708 2709 std::error_code BitcodeReader::ParseModule(bool Resume, 2710 bool ShouldLazyLoadMetadata) { 2711 if (Resume) 2712 Stream.JumpToBit(NextUnreadBit); 2713 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2714 return Error("Invalid record"); 2715 2716 SmallVector<uint64_t, 64> Record; 2717 std::vector<std::string> SectionTable; 2718 std::vector<std::string> GCTable; 2719 2720 // Read all the records for this module. 2721 while (1) { 2722 BitstreamEntry Entry = Stream.advance(); 2723 2724 switch (Entry.Kind) { 2725 case BitstreamEntry::Error: 2726 return Error("Malformed block"); 2727 case BitstreamEntry::EndBlock: 2728 return GlobalCleanup(); 2729 2730 case BitstreamEntry::SubBlock: 2731 switch (Entry.ID) { 2732 default: // Skip unknown content. 2733 if (Stream.SkipBlock()) 2734 return Error("Invalid record"); 2735 break; 2736 case bitc::BLOCKINFO_BLOCK_ID: 2737 if (Stream.ReadBlockInfoBlock()) 2738 return Error("Malformed block"); 2739 break; 2740 case bitc::PARAMATTR_BLOCK_ID: 2741 if (std::error_code EC = ParseAttributeBlock()) 2742 return EC; 2743 break; 2744 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2745 if (std::error_code EC = ParseAttributeGroupBlock()) 2746 return EC; 2747 break; 2748 case bitc::TYPE_BLOCK_ID_NEW: 2749 if (std::error_code EC = ParseTypeTable()) 2750 return EC; 2751 break; 2752 case bitc::VALUE_SYMTAB_BLOCK_ID: 2753 if (std::error_code EC = ParseValueSymbolTable()) 2754 return EC; 2755 SeenValueSymbolTable = true; 2756 break; 2757 case bitc::CONSTANTS_BLOCK_ID: 2758 if (std::error_code EC = ParseConstants()) 2759 return EC; 2760 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2761 return EC; 2762 break; 2763 case bitc::METADATA_BLOCK_ID: 2764 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2765 if (std::error_code EC = rememberAndSkipMetadata()) 2766 return EC; 2767 break; 2768 } 2769 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2770 if (std::error_code EC = ParseMetadata()) 2771 return EC; 2772 break; 2773 case bitc::FUNCTION_BLOCK_ID: 2774 // If this is the first function body we've seen, reverse the 2775 // FunctionsWithBodies list. 2776 if (!SeenFirstFunctionBody) { 2777 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2778 if (std::error_code EC = GlobalCleanup()) 2779 return EC; 2780 SeenFirstFunctionBody = true; 2781 } 2782 2783 if (std::error_code EC = RememberAndSkipFunctionBody()) 2784 return EC; 2785 // For streaming bitcode, suspend parsing when we reach the function 2786 // bodies. Subsequent materialization calls will resume it when 2787 // necessary. For streaming, the function bodies must be at the end of 2788 // the bitcode. If the bitcode file is old, the symbol table will be 2789 // at the end instead and will not have been seen yet. In this case, 2790 // just finish the parse now. 2791 if (LazyStreamer && SeenValueSymbolTable) { 2792 NextUnreadBit = Stream.GetCurrentBitNo(); 2793 return std::error_code(); 2794 } 2795 break; 2796 case bitc::USELIST_BLOCK_ID: 2797 if (std::error_code EC = ParseUseLists()) 2798 return EC; 2799 break; 2800 } 2801 continue; 2802 2803 case BitstreamEntry::Record: 2804 // The interesting case. 2805 break; 2806 } 2807 2808 2809 // Read a record. 2810 switch (Stream.readRecord(Entry.ID, Record)) { 2811 default: break; // Default behavior, ignore unknown content. 2812 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2813 if (Record.size() < 1) 2814 return Error("Invalid record"); 2815 // Only version #0 and #1 are supported so far. 2816 unsigned module_version = Record[0]; 2817 switch (module_version) { 2818 default: 2819 return Error("Invalid value"); 2820 case 0: 2821 UseRelativeIDs = false; 2822 break; 2823 case 1: 2824 UseRelativeIDs = true; 2825 break; 2826 } 2827 break; 2828 } 2829 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2830 std::string S; 2831 if (ConvertToString(Record, 0, S)) 2832 return Error("Invalid record"); 2833 TheModule->setTargetTriple(S); 2834 break; 2835 } 2836 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2837 std::string S; 2838 if (ConvertToString(Record, 0, S)) 2839 return Error("Invalid record"); 2840 TheModule->setDataLayout(S); 2841 break; 2842 } 2843 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2844 std::string S; 2845 if (ConvertToString(Record, 0, S)) 2846 return Error("Invalid record"); 2847 TheModule->setModuleInlineAsm(S); 2848 break; 2849 } 2850 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2851 // FIXME: Remove in 4.0. 2852 std::string S; 2853 if (ConvertToString(Record, 0, S)) 2854 return Error("Invalid record"); 2855 // Ignore value. 2856 break; 2857 } 2858 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2859 std::string S; 2860 if (ConvertToString(Record, 0, S)) 2861 return Error("Invalid record"); 2862 SectionTable.push_back(S); 2863 break; 2864 } 2865 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2866 std::string S; 2867 if (ConvertToString(Record, 0, S)) 2868 return Error("Invalid record"); 2869 GCTable.push_back(S); 2870 break; 2871 } 2872 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2873 if (Record.size() < 2) 2874 return Error("Invalid record"); 2875 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2876 unsigned ComdatNameSize = Record[1]; 2877 std::string ComdatName; 2878 ComdatName.reserve(ComdatNameSize); 2879 for (unsigned i = 0; i != ComdatNameSize; ++i) 2880 ComdatName += (char)Record[2 + i]; 2881 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2882 C->setSelectionKind(SK); 2883 ComdatList.push_back(C); 2884 break; 2885 } 2886 // GLOBALVAR: [pointer type, isconst, initid, 2887 // linkage, alignment, section, visibility, threadlocal, 2888 // unnamed_addr, externally_initialized, dllstorageclass, 2889 // comdat] 2890 case bitc::MODULE_CODE_GLOBALVAR: { 2891 if (Record.size() < 6) 2892 return Error("Invalid record"); 2893 Type *Ty = getTypeByID(Record[0]); 2894 if (!Ty) 2895 return Error("Invalid record"); 2896 bool isConstant = Record[1] & 1; 2897 bool explicitType = Record[1] & 2; 2898 unsigned AddressSpace; 2899 if (explicitType) { 2900 AddressSpace = Record[1] >> 2; 2901 } else { 2902 if (!Ty->isPointerTy()) 2903 return Error("Invalid type for value"); 2904 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2905 Ty = cast<PointerType>(Ty)->getElementType(); 2906 } 2907 2908 uint64_t RawLinkage = Record[3]; 2909 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2910 unsigned Alignment; 2911 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2912 return EC; 2913 std::string Section; 2914 if (Record[5]) { 2915 if (Record[5]-1 >= SectionTable.size()) 2916 return Error("Invalid ID"); 2917 Section = SectionTable[Record[5]-1]; 2918 } 2919 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2920 // Local linkage must have default visibility. 2921 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2922 // FIXME: Change to an error if non-default in 4.0. 2923 Visibility = GetDecodedVisibility(Record[6]); 2924 2925 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2926 if (Record.size() > 7) 2927 TLM = GetDecodedThreadLocalMode(Record[7]); 2928 2929 bool UnnamedAddr = false; 2930 if (Record.size() > 8) 2931 UnnamedAddr = Record[8]; 2932 2933 bool ExternallyInitialized = false; 2934 if (Record.size() > 9) 2935 ExternallyInitialized = Record[9]; 2936 2937 GlobalVariable *NewGV = 2938 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2939 TLM, AddressSpace, ExternallyInitialized); 2940 NewGV->setAlignment(Alignment); 2941 if (!Section.empty()) 2942 NewGV->setSection(Section); 2943 NewGV->setVisibility(Visibility); 2944 NewGV->setUnnamedAddr(UnnamedAddr); 2945 2946 if (Record.size() > 10) 2947 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2948 else 2949 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2950 2951 ValueList.push_back(NewGV); 2952 2953 // Remember which value to use for the global initializer. 2954 if (unsigned InitID = Record[2]) 2955 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2956 2957 if (Record.size() > 11) { 2958 if (unsigned ComdatID = Record[11]) { 2959 assert(ComdatID <= ComdatList.size()); 2960 NewGV->setComdat(ComdatList[ComdatID - 1]); 2961 } 2962 } else if (hasImplicitComdat(RawLinkage)) { 2963 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2964 } 2965 break; 2966 } 2967 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2968 // alignment, section, visibility, gc, unnamed_addr, 2969 // prologuedata, dllstorageclass, comdat, prefixdata] 2970 case bitc::MODULE_CODE_FUNCTION: { 2971 if (Record.size() < 8) 2972 return Error("Invalid record"); 2973 Type *Ty = getTypeByID(Record[0]); 2974 if (!Ty) 2975 return Error("Invalid record"); 2976 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2977 Ty = PTy->getElementType(); 2978 auto *FTy = dyn_cast<FunctionType>(Ty); 2979 if (!FTy) 2980 return Error("Invalid type for value"); 2981 2982 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2983 "", TheModule); 2984 2985 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2986 bool isProto = Record[2]; 2987 uint64_t RawLinkage = Record[3]; 2988 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2989 Func->setAttributes(getAttributes(Record[4])); 2990 2991 unsigned Alignment; 2992 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2993 return EC; 2994 Func->setAlignment(Alignment); 2995 if (Record[6]) { 2996 if (Record[6]-1 >= SectionTable.size()) 2997 return Error("Invalid ID"); 2998 Func->setSection(SectionTable[Record[6]-1]); 2999 } 3000 // Local linkage must have default visibility. 3001 if (!Func->hasLocalLinkage()) 3002 // FIXME: Change to an error if non-default in 4.0. 3003 Func->setVisibility(GetDecodedVisibility(Record[7])); 3004 if (Record.size() > 8 && Record[8]) { 3005 if (Record[8]-1 >= GCTable.size()) 3006 return Error("Invalid ID"); 3007 Func->setGC(GCTable[Record[8]-1].c_str()); 3008 } 3009 bool UnnamedAddr = false; 3010 if (Record.size() > 9) 3011 UnnamedAddr = Record[9]; 3012 Func->setUnnamedAddr(UnnamedAddr); 3013 if (Record.size() > 10 && Record[10] != 0) 3014 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3015 3016 if (Record.size() > 11) 3017 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3018 else 3019 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3020 3021 if (Record.size() > 12) { 3022 if (unsigned ComdatID = Record[12]) { 3023 assert(ComdatID <= ComdatList.size()); 3024 Func->setComdat(ComdatList[ComdatID - 1]); 3025 } 3026 } else if (hasImplicitComdat(RawLinkage)) { 3027 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3028 } 3029 3030 if (Record.size() > 13 && Record[13] != 0) 3031 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3032 3033 ValueList.push_back(Func); 3034 3035 // If this is a function with a body, remember the prototype we are 3036 // creating now, so that we can match up the body with them later. 3037 if (!isProto) { 3038 Func->setIsMaterializable(true); 3039 FunctionsWithBodies.push_back(Func); 3040 if (LazyStreamer) 3041 DeferredFunctionInfo[Func] = 0; 3042 } 3043 break; 3044 } 3045 // ALIAS: [alias type, aliasee val#, linkage] 3046 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3047 case bitc::MODULE_CODE_ALIAS: { 3048 if (Record.size() < 3) 3049 return Error("Invalid record"); 3050 Type *Ty = getTypeByID(Record[0]); 3051 if (!Ty) 3052 return Error("Invalid record"); 3053 auto *PTy = dyn_cast<PointerType>(Ty); 3054 if (!PTy) 3055 return Error("Invalid type for value"); 3056 3057 auto *NewGA = 3058 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3059 // Old bitcode files didn't have visibility field. 3060 // Local linkage must have default visibility. 3061 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3062 // FIXME: Change to an error if non-default in 4.0. 3063 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3064 if (Record.size() > 4) 3065 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3066 else 3067 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3068 if (Record.size() > 5) 3069 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3070 if (Record.size() > 6) 3071 NewGA->setUnnamedAddr(Record[6]); 3072 ValueList.push_back(NewGA); 3073 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3074 break; 3075 } 3076 /// MODULE_CODE_PURGEVALS: [numvals] 3077 case bitc::MODULE_CODE_PURGEVALS: 3078 // Trim down the value list to the specified size. 3079 if (Record.size() < 1 || Record[0] > ValueList.size()) 3080 return Error("Invalid record"); 3081 ValueList.shrinkTo(Record[0]); 3082 break; 3083 } 3084 Record.clear(); 3085 } 3086 } 3087 3088 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3089 bool ShouldLazyLoadMetadata) { 3090 TheModule = nullptr; 3091 3092 if (std::error_code EC = InitStream()) 3093 return EC; 3094 3095 // Sniff for the signature. 3096 if (Stream.Read(8) != 'B' || 3097 Stream.Read(8) != 'C' || 3098 Stream.Read(4) != 0x0 || 3099 Stream.Read(4) != 0xC || 3100 Stream.Read(4) != 0xE || 3101 Stream.Read(4) != 0xD) 3102 return Error("Invalid bitcode signature"); 3103 3104 // We expect a number of well-defined blocks, though we don't necessarily 3105 // need to understand them all. 3106 while (1) { 3107 if (Stream.AtEndOfStream()) { 3108 if (TheModule) 3109 return std::error_code(); 3110 // We didn't really read a proper Module. 3111 return Error("Malformed IR file"); 3112 } 3113 3114 BitstreamEntry Entry = 3115 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3116 3117 switch (Entry.Kind) { 3118 case BitstreamEntry::Error: 3119 return Error("Malformed block"); 3120 case BitstreamEntry::EndBlock: 3121 return std::error_code(); 3122 3123 case BitstreamEntry::SubBlock: 3124 switch (Entry.ID) { 3125 case bitc::BLOCKINFO_BLOCK_ID: 3126 if (Stream.ReadBlockInfoBlock()) 3127 return Error("Malformed block"); 3128 break; 3129 case bitc::MODULE_BLOCK_ID: 3130 // Reject multiple MODULE_BLOCK's in a single bitstream. 3131 if (TheModule) 3132 return Error("Invalid multiple blocks"); 3133 TheModule = M; 3134 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3135 return EC; 3136 if (LazyStreamer) 3137 return std::error_code(); 3138 break; 3139 default: 3140 if (Stream.SkipBlock()) 3141 return Error("Invalid record"); 3142 break; 3143 } 3144 continue; 3145 case BitstreamEntry::Record: 3146 // There should be no records in the top-level of blocks. 3147 3148 // The ranlib in Xcode 4 will align archive members by appending newlines 3149 // to the end of them. If this file size is a multiple of 4 but not 8, we 3150 // have to read and ignore these final 4 bytes :-( 3151 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3152 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3153 Stream.AtEndOfStream()) 3154 return std::error_code(); 3155 3156 return Error("Invalid record"); 3157 } 3158 } 3159 } 3160 3161 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3162 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3163 return Error("Invalid record"); 3164 3165 SmallVector<uint64_t, 64> Record; 3166 3167 std::string Triple; 3168 // Read all the records for this module. 3169 while (1) { 3170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3171 3172 switch (Entry.Kind) { 3173 case BitstreamEntry::SubBlock: // Handled for us already. 3174 case BitstreamEntry::Error: 3175 return Error("Malformed block"); 3176 case BitstreamEntry::EndBlock: 3177 return Triple; 3178 case BitstreamEntry::Record: 3179 // The interesting case. 3180 break; 3181 } 3182 3183 // Read a record. 3184 switch (Stream.readRecord(Entry.ID, Record)) { 3185 default: break; // Default behavior, ignore unknown content. 3186 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3187 std::string S; 3188 if (ConvertToString(Record, 0, S)) 3189 return Error("Invalid record"); 3190 Triple = S; 3191 break; 3192 } 3193 } 3194 Record.clear(); 3195 } 3196 llvm_unreachable("Exit infinite loop"); 3197 } 3198 3199 ErrorOr<std::string> BitcodeReader::parseTriple() { 3200 if (std::error_code EC = InitStream()) 3201 return EC; 3202 3203 // Sniff for the signature. 3204 if (Stream.Read(8) != 'B' || 3205 Stream.Read(8) != 'C' || 3206 Stream.Read(4) != 0x0 || 3207 Stream.Read(4) != 0xC || 3208 Stream.Read(4) != 0xE || 3209 Stream.Read(4) != 0xD) 3210 return Error("Invalid bitcode signature"); 3211 3212 // We expect a number of well-defined blocks, though we don't necessarily 3213 // need to understand them all. 3214 while (1) { 3215 BitstreamEntry Entry = Stream.advance(); 3216 3217 switch (Entry.Kind) { 3218 case BitstreamEntry::Error: 3219 return Error("Malformed block"); 3220 case BitstreamEntry::EndBlock: 3221 return std::error_code(); 3222 3223 case BitstreamEntry::SubBlock: 3224 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3225 return parseModuleTriple(); 3226 3227 // Ignore other sub-blocks. 3228 if (Stream.SkipBlock()) 3229 return Error("Malformed block"); 3230 continue; 3231 3232 case BitstreamEntry::Record: 3233 Stream.skipRecord(Entry.ID); 3234 continue; 3235 } 3236 } 3237 } 3238 3239 /// ParseMetadataAttachment - Parse metadata attachments. 3240 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3241 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3242 return Error("Invalid record"); 3243 3244 SmallVector<uint64_t, 64> Record; 3245 while (1) { 3246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3247 3248 switch (Entry.Kind) { 3249 case BitstreamEntry::SubBlock: // Handled for us already. 3250 case BitstreamEntry::Error: 3251 return Error("Malformed block"); 3252 case BitstreamEntry::EndBlock: 3253 return std::error_code(); 3254 case BitstreamEntry::Record: 3255 // The interesting case. 3256 break; 3257 } 3258 3259 // Read a metadata attachment record. 3260 Record.clear(); 3261 switch (Stream.readRecord(Entry.ID, Record)) { 3262 default: // Default behavior: ignore. 3263 break; 3264 case bitc::METADATA_ATTACHMENT: { 3265 unsigned RecordLength = Record.size(); 3266 if (Record.empty()) 3267 return Error("Invalid record"); 3268 if (RecordLength % 2 == 0) { 3269 // A function attachment. 3270 for (unsigned I = 0; I != RecordLength; I += 2) { 3271 auto K = MDKindMap.find(Record[I]); 3272 if (K == MDKindMap.end()) 3273 return Error("Invalid ID"); 3274 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3275 F.setMetadata(K->second, cast<MDNode>(MD)); 3276 } 3277 continue; 3278 } 3279 3280 // An instruction attachment. 3281 Instruction *Inst = InstructionList[Record[0]]; 3282 for (unsigned i = 1; i != RecordLength; i = i+2) { 3283 unsigned Kind = Record[i]; 3284 DenseMap<unsigned, unsigned>::iterator I = 3285 MDKindMap.find(Kind); 3286 if (I == MDKindMap.end()) 3287 return Error("Invalid ID"); 3288 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3289 if (isa<LocalAsMetadata>(Node)) 3290 // Drop the attachment. This used to be legal, but there's no 3291 // upgrade path. 3292 break; 3293 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3294 if (I->second == LLVMContext::MD_tbaa) 3295 InstsWithTBAATag.push_back(Inst); 3296 } 3297 break; 3298 } 3299 } 3300 } 3301 } 3302 3303 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3304 Type *ValType, Type *PtrType) { 3305 if (!isa<PointerType>(PtrType)) 3306 return Error(DH, "Load/Store operand is not a pointer type"); 3307 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3308 3309 if (ValType && ValType != ElemType) 3310 return Error(DH, "Explicit load/store type does not match pointee type of " 3311 "pointer operand"); 3312 if (!PointerType::isLoadableOrStorableType(ElemType)) 3313 return Error(DH, "Cannot load/store from pointer"); 3314 return std::error_code(); 3315 } 3316 3317 /// ParseFunctionBody - Lazily parse the specified function body block. 3318 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3319 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3320 return Error("Invalid record"); 3321 3322 InstructionList.clear(); 3323 unsigned ModuleValueListSize = ValueList.size(); 3324 unsigned ModuleMDValueListSize = MDValueList.size(); 3325 3326 // Add all the function arguments to the value table. 3327 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3328 ValueList.push_back(I); 3329 3330 unsigned NextValueNo = ValueList.size(); 3331 BasicBlock *CurBB = nullptr; 3332 unsigned CurBBNo = 0; 3333 3334 DebugLoc LastLoc; 3335 auto getLastInstruction = [&]() -> Instruction * { 3336 if (CurBB && !CurBB->empty()) 3337 return &CurBB->back(); 3338 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3339 !FunctionBBs[CurBBNo - 1]->empty()) 3340 return &FunctionBBs[CurBBNo - 1]->back(); 3341 return nullptr; 3342 }; 3343 3344 // Read all the records. 3345 SmallVector<uint64_t, 64> Record; 3346 while (1) { 3347 BitstreamEntry Entry = Stream.advance(); 3348 3349 switch (Entry.Kind) { 3350 case BitstreamEntry::Error: 3351 return Error("Malformed block"); 3352 case BitstreamEntry::EndBlock: 3353 goto OutOfRecordLoop; 3354 3355 case BitstreamEntry::SubBlock: 3356 switch (Entry.ID) { 3357 default: // Skip unknown content. 3358 if (Stream.SkipBlock()) 3359 return Error("Invalid record"); 3360 break; 3361 case bitc::CONSTANTS_BLOCK_ID: 3362 if (std::error_code EC = ParseConstants()) 3363 return EC; 3364 NextValueNo = ValueList.size(); 3365 break; 3366 case bitc::VALUE_SYMTAB_BLOCK_ID: 3367 if (std::error_code EC = ParseValueSymbolTable()) 3368 return EC; 3369 break; 3370 case bitc::METADATA_ATTACHMENT_ID: 3371 if (std::error_code EC = ParseMetadataAttachment(*F)) 3372 return EC; 3373 break; 3374 case bitc::METADATA_BLOCK_ID: 3375 if (std::error_code EC = ParseMetadata()) 3376 return EC; 3377 break; 3378 case bitc::USELIST_BLOCK_ID: 3379 if (std::error_code EC = ParseUseLists()) 3380 return EC; 3381 break; 3382 } 3383 continue; 3384 3385 case BitstreamEntry::Record: 3386 // The interesting case. 3387 break; 3388 } 3389 3390 // Read a record. 3391 Record.clear(); 3392 Instruction *I = nullptr; 3393 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3394 switch (BitCode) { 3395 default: // Default behavior: reject 3396 return Error("Invalid value"); 3397 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3398 if (Record.size() < 1 || Record[0] == 0) 3399 return Error("Invalid record"); 3400 // Create all the basic blocks for the function. 3401 FunctionBBs.resize(Record[0]); 3402 3403 // See if anything took the address of blocks in this function. 3404 auto BBFRI = BasicBlockFwdRefs.find(F); 3405 if (BBFRI == BasicBlockFwdRefs.end()) { 3406 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3407 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3408 } else { 3409 auto &BBRefs = BBFRI->second; 3410 // Check for invalid basic block references. 3411 if (BBRefs.size() > FunctionBBs.size()) 3412 return Error("Invalid ID"); 3413 assert(!BBRefs.empty() && "Unexpected empty array"); 3414 assert(!BBRefs.front() && "Invalid reference to entry block"); 3415 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3416 ++I) 3417 if (I < RE && BBRefs[I]) { 3418 BBRefs[I]->insertInto(F); 3419 FunctionBBs[I] = BBRefs[I]; 3420 } else { 3421 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3422 } 3423 3424 // Erase from the table. 3425 BasicBlockFwdRefs.erase(BBFRI); 3426 } 3427 3428 CurBB = FunctionBBs[0]; 3429 continue; 3430 } 3431 3432 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3433 // This record indicates that the last instruction is at the same 3434 // location as the previous instruction with a location. 3435 I = getLastInstruction(); 3436 3437 if (!I) 3438 return Error("Invalid record"); 3439 I->setDebugLoc(LastLoc); 3440 I = nullptr; 3441 continue; 3442 3443 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3444 I = getLastInstruction(); 3445 if (!I || Record.size() < 4) 3446 return Error("Invalid record"); 3447 3448 unsigned Line = Record[0], Col = Record[1]; 3449 unsigned ScopeID = Record[2], IAID = Record[3]; 3450 3451 MDNode *Scope = nullptr, *IA = nullptr; 3452 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3453 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3454 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3455 I->setDebugLoc(LastLoc); 3456 I = nullptr; 3457 continue; 3458 } 3459 3460 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3461 unsigned OpNum = 0; 3462 Value *LHS, *RHS; 3463 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3464 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3465 OpNum+1 > Record.size()) 3466 return Error("Invalid record"); 3467 3468 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3469 if (Opc == -1) 3470 return Error("Invalid record"); 3471 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3472 InstructionList.push_back(I); 3473 if (OpNum < Record.size()) { 3474 if (Opc == Instruction::Add || 3475 Opc == Instruction::Sub || 3476 Opc == Instruction::Mul || 3477 Opc == Instruction::Shl) { 3478 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3479 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3480 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3481 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3482 } else if (Opc == Instruction::SDiv || 3483 Opc == Instruction::UDiv || 3484 Opc == Instruction::LShr || 3485 Opc == Instruction::AShr) { 3486 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3487 cast<BinaryOperator>(I)->setIsExact(true); 3488 } else if (isa<FPMathOperator>(I)) { 3489 FastMathFlags FMF; 3490 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3491 FMF.setUnsafeAlgebra(); 3492 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3493 FMF.setNoNaNs(); 3494 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3495 FMF.setNoInfs(); 3496 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3497 FMF.setNoSignedZeros(); 3498 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3499 FMF.setAllowReciprocal(); 3500 if (FMF.any()) 3501 I->setFastMathFlags(FMF); 3502 } 3503 3504 } 3505 break; 3506 } 3507 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3508 unsigned OpNum = 0; 3509 Value *Op; 3510 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3511 OpNum+2 != Record.size()) 3512 return Error("Invalid record"); 3513 3514 Type *ResTy = getTypeByID(Record[OpNum]); 3515 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3516 if (Opc == -1 || !ResTy) 3517 return Error("Invalid record"); 3518 Instruction *Temp = nullptr; 3519 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3520 if (Temp) { 3521 InstructionList.push_back(Temp); 3522 CurBB->getInstList().push_back(Temp); 3523 } 3524 } else { 3525 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3526 } 3527 InstructionList.push_back(I); 3528 break; 3529 } 3530 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3531 case bitc::FUNC_CODE_INST_GEP_OLD: 3532 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3533 unsigned OpNum = 0; 3534 3535 Type *Ty; 3536 bool InBounds; 3537 3538 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3539 InBounds = Record[OpNum++]; 3540 Ty = getTypeByID(Record[OpNum++]); 3541 } else { 3542 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3543 Ty = nullptr; 3544 } 3545 3546 Value *BasePtr; 3547 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3548 return Error("Invalid record"); 3549 3550 if (!Ty) 3551 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3552 ->getElementType(); 3553 else if (Ty != 3554 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3555 ->getElementType()) 3556 return Error( 3557 "Explicit gep type does not match pointee type of pointer operand"); 3558 3559 SmallVector<Value*, 16> GEPIdx; 3560 while (OpNum != Record.size()) { 3561 Value *Op; 3562 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3563 return Error("Invalid record"); 3564 GEPIdx.push_back(Op); 3565 } 3566 3567 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3568 3569 InstructionList.push_back(I); 3570 if (InBounds) 3571 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3572 break; 3573 } 3574 3575 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3576 // EXTRACTVAL: [opty, opval, n x indices] 3577 unsigned OpNum = 0; 3578 Value *Agg; 3579 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3580 return Error("Invalid record"); 3581 3582 unsigned RecSize = Record.size(); 3583 if (OpNum == RecSize) 3584 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3585 3586 SmallVector<unsigned, 4> EXTRACTVALIdx; 3587 Type *CurTy = Agg->getType(); 3588 for (; OpNum != RecSize; ++OpNum) { 3589 bool IsArray = CurTy->isArrayTy(); 3590 bool IsStruct = CurTy->isStructTy(); 3591 uint64_t Index = Record[OpNum]; 3592 3593 if (!IsStruct && !IsArray) 3594 return Error("EXTRACTVAL: Invalid type"); 3595 if ((unsigned)Index != Index) 3596 return Error("Invalid value"); 3597 if (IsStruct && Index >= CurTy->subtypes().size()) 3598 return Error("EXTRACTVAL: Invalid struct index"); 3599 if (IsArray && Index >= CurTy->getArrayNumElements()) 3600 return Error("EXTRACTVAL: Invalid array index"); 3601 EXTRACTVALIdx.push_back((unsigned)Index); 3602 3603 if (IsStruct) 3604 CurTy = CurTy->subtypes()[Index]; 3605 else 3606 CurTy = CurTy->subtypes()[0]; 3607 } 3608 3609 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3610 InstructionList.push_back(I); 3611 break; 3612 } 3613 3614 case bitc::FUNC_CODE_INST_INSERTVAL: { 3615 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3616 unsigned OpNum = 0; 3617 Value *Agg; 3618 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3619 return Error("Invalid record"); 3620 Value *Val; 3621 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3622 return Error("Invalid record"); 3623 3624 unsigned RecSize = Record.size(); 3625 if (OpNum == RecSize) 3626 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3627 3628 SmallVector<unsigned, 4> INSERTVALIdx; 3629 Type *CurTy = Agg->getType(); 3630 for (; OpNum != RecSize; ++OpNum) { 3631 bool IsArray = CurTy->isArrayTy(); 3632 bool IsStruct = CurTy->isStructTy(); 3633 uint64_t Index = Record[OpNum]; 3634 3635 if (!IsStruct && !IsArray) 3636 return Error("INSERTVAL: Invalid type"); 3637 if ((unsigned)Index != Index) 3638 return Error("Invalid value"); 3639 if (IsStruct && Index >= CurTy->subtypes().size()) 3640 return Error("INSERTVAL: Invalid struct index"); 3641 if (IsArray && Index >= CurTy->getArrayNumElements()) 3642 return Error("INSERTVAL: Invalid array index"); 3643 3644 INSERTVALIdx.push_back((unsigned)Index); 3645 if (IsStruct) 3646 CurTy = CurTy->subtypes()[Index]; 3647 else 3648 CurTy = CurTy->subtypes()[0]; 3649 } 3650 3651 if (CurTy != Val->getType()) 3652 return Error("Inserted value type doesn't match aggregate type"); 3653 3654 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3655 InstructionList.push_back(I); 3656 break; 3657 } 3658 3659 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3660 // obsolete form of select 3661 // handles select i1 ... in old bitcode 3662 unsigned OpNum = 0; 3663 Value *TrueVal, *FalseVal, *Cond; 3664 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3665 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3666 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3667 return Error("Invalid record"); 3668 3669 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3670 InstructionList.push_back(I); 3671 break; 3672 } 3673 3674 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3675 // new form of select 3676 // handles select i1 or select [N x i1] 3677 unsigned OpNum = 0; 3678 Value *TrueVal, *FalseVal, *Cond; 3679 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3680 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3681 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3682 return Error("Invalid record"); 3683 3684 // select condition can be either i1 or [N x i1] 3685 if (VectorType* vector_type = 3686 dyn_cast<VectorType>(Cond->getType())) { 3687 // expect <n x i1> 3688 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3689 return Error("Invalid type for value"); 3690 } else { 3691 // expect i1 3692 if (Cond->getType() != Type::getInt1Ty(Context)) 3693 return Error("Invalid type for value"); 3694 } 3695 3696 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3697 InstructionList.push_back(I); 3698 break; 3699 } 3700 3701 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3702 unsigned OpNum = 0; 3703 Value *Vec, *Idx; 3704 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3705 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3706 return Error("Invalid record"); 3707 if (!Vec->getType()->isVectorTy()) 3708 return Error("Invalid type for value"); 3709 I = ExtractElementInst::Create(Vec, Idx); 3710 InstructionList.push_back(I); 3711 break; 3712 } 3713 3714 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3715 unsigned OpNum = 0; 3716 Value *Vec, *Elt, *Idx; 3717 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3718 return Error("Invalid record"); 3719 if (!Vec->getType()->isVectorTy()) 3720 return Error("Invalid type for value"); 3721 if (popValue(Record, OpNum, NextValueNo, 3722 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3723 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3724 return Error("Invalid record"); 3725 I = InsertElementInst::Create(Vec, Elt, Idx); 3726 InstructionList.push_back(I); 3727 break; 3728 } 3729 3730 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3731 unsigned OpNum = 0; 3732 Value *Vec1, *Vec2, *Mask; 3733 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3734 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3735 return Error("Invalid record"); 3736 3737 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3738 return Error("Invalid record"); 3739 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3740 return Error("Invalid type for value"); 3741 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3742 InstructionList.push_back(I); 3743 break; 3744 } 3745 3746 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3747 // Old form of ICmp/FCmp returning bool 3748 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3749 // both legal on vectors but had different behaviour. 3750 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3751 // FCmp/ICmp returning bool or vector of bool 3752 3753 unsigned OpNum = 0; 3754 Value *LHS, *RHS; 3755 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3756 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3757 OpNum+1 != Record.size()) 3758 return Error("Invalid record"); 3759 3760 if (LHS->getType()->isFPOrFPVectorTy()) 3761 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3762 else 3763 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3764 InstructionList.push_back(I); 3765 break; 3766 } 3767 3768 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3769 { 3770 unsigned Size = Record.size(); 3771 if (Size == 0) { 3772 I = ReturnInst::Create(Context); 3773 InstructionList.push_back(I); 3774 break; 3775 } 3776 3777 unsigned OpNum = 0; 3778 Value *Op = nullptr; 3779 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3780 return Error("Invalid record"); 3781 if (OpNum != Record.size()) 3782 return Error("Invalid record"); 3783 3784 I = ReturnInst::Create(Context, Op); 3785 InstructionList.push_back(I); 3786 break; 3787 } 3788 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3789 if (Record.size() != 1 && Record.size() != 3) 3790 return Error("Invalid record"); 3791 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3792 if (!TrueDest) 3793 return Error("Invalid record"); 3794 3795 if (Record.size() == 1) { 3796 I = BranchInst::Create(TrueDest); 3797 InstructionList.push_back(I); 3798 } 3799 else { 3800 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3801 Value *Cond = getValue(Record, 2, NextValueNo, 3802 Type::getInt1Ty(Context)); 3803 if (!FalseDest || !Cond) 3804 return Error("Invalid record"); 3805 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3806 InstructionList.push_back(I); 3807 } 3808 break; 3809 } 3810 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3811 // Check magic 3812 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3813 // "New" SwitchInst format with case ranges. The changes to write this 3814 // format were reverted but we still recognize bitcode that uses it. 3815 // Hopefully someday we will have support for case ranges and can use 3816 // this format again. 3817 3818 Type *OpTy = getTypeByID(Record[1]); 3819 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3820 3821 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3822 BasicBlock *Default = getBasicBlock(Record[3]); 3823 if (!OpTy || !Cond || !Default) 3824 return Error("Invalid record"); 3825 3826 unsigned NumCases = Record[4]; 3827 3828 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3829 InstructionList.push_back(SI); 3830 3831 unsigned CurIdx = 5; 3832 for (unsigned i = 0; i != NumCases; ++i) { 3833 SmallVector<ConstantInt*, 1> CaseVals; 3834 unsigned NumItems = Record[CurIdx++]; 3835 for (unsigned ci = 0; ci != NumItems; ++ci) { 3836 bool isSingleNumber = Record[CurIdx++]; 3837 3838 APInt Low; 3839 unsigned ActiveWords = 1; 3840 if (ValueBitWidth > 64) 3841 ActiveWords = Record[CurIdx++]; 3842 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3843 ValueBitWidth); 3844 CurIdx += ActiveWords; 3845 3846 if (!isSingleNumber) { 3847 ActiveWords = 1; 3848 if (ValueBitWidth > 64) 3849 ActiveWords = Record[CurIdx++]; 3850 APInt High = 3851 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3852 ValueBitWidth); 3853 CurIdx += ActiveWords; 3854 3855 // FIXME: It is not clear whether values in the range should be 3856 // compared as signed or unsigned values. The partially 3857 // implemented changes that used this format in the past used 3858 // unsigned comparisons. 3859 for ( ; Low.ule(High); ++Low) 3860 CaseVals.push_back(ConstantInt::get(Context, Low)); 3861 } else 3862 CaseVals.push_back(ConstantInt::get(Context, Low)); 3863 } 3864 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3865 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3866 cve = CaseVals.end(); cvi != cve; ++cvi) 3867 SI->addCase(*cvi, DestBB); 3868 } 3869 I = SI; 3870 break; 3871 } 3872 3873 // Old SwitchInst format without case ranges. 3874 3875 if (Record.size() < 3 || (Record.size() & 1) == 0) 3876 return Error("Invalid record"); 3877 Type *OpTy = getTypeByID(Record[0]); 3878 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3879 BasicBlock *Default = getBasicBlock(Record[2]); 3880 if (!OpTy || !Cond || !Default) 3881 return Error("Invalid record"); 3882 unsigned NumCases = (Record.size()-3)/2; 3883 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3884 InstructionList.push_back(SI); 3885 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3886 ConstantInt *CaseVal = 3887 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3888 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3889 if (!CaseVal || !DestBB) { 3890 delete SI; 3891 return Error("Invalid record"); 3892 } 3893 SI->addCase(CaseVal, DestBB); 3894 } 3895 I = SI; 3896 break; 3897 } 3898 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3899 if (Record.size() < 2) 3900 return Error("Invalid record"); 3901 Type *OpTy = getTypeByID(Record[0]); 3902 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3903 if (!OpTy || !Address) 3904 return Error("Invalid record"); 3905 unsigned NumDests = Record.size()-2; 3906 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3907 InstructionList.push_back(IBI); 3908 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3909 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3910 IBI->addDestination(DestBB); 3911 } else { 3912 delete IBI; 3913 return Error("Invalid record"); 3914 } 3915 } 3916 I = IBI; 3917 break; 3918 } 3919 3920 case bitc::FUNC_CODE_INST_INVOKE: { 3921 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3922 if (Record.size() < 4) 3923 return Error("Invalid record"); 3924 unsigned OpNum = 0; 3925 AttributeSet PAL = getAttributes(Record[OpNum++]); 3926 unsigned CCInfo = Record[OpNum++]; 3927 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3928 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3929 3930 FunctionType *FTy = nullptr; 3931 if (CCInfo >> 13 & 1 && 3932 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3933 return Error("Explicit invoke type is not a function type"); 3934 3935 Value *Callee; 3936 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3937 return Error("Invalid record"); 3938 3939 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3940 if (!CalleeTy) 3941 return Error("Callee is not a pointer"); 3942 if (!FTy) { 3943 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3944 if (!FTy) 3945 return Error("Callee is not of pointer to function type"); 3946 } else if (CalleeTy->getElementType() != FTy) 3947 return Error("Explicit invoke type does not match pointee type of " 3948 "callee operand"); 3949 if (Record.size() < FTy->getNumParams() + OpNum) 3950 return Error("Insufficient operands to call"); 3951 3952 SmallVector<Value*, 16> Ops; 3953 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3954 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3955 FTy->getParamType(i))); 3956 if (!Ops.back()) 3957 return Error("Invalid record"); 3958 } 3959 3960 if (!FTy->isVarArg()) { 3961 if (Record.size() != OpNum) 3962 return Error("Invalid record"); 3963 } else { 3964 // Read type/value pairs for varargs params. 3965 while (OpNum != Record.size()) { 3966 Value *Op; 3967 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3968 return Error("Invalid record"); 3969 Ops.push_back(Op); 3970 } 3971 } 3972 3973 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3974 InstructionList.push_back(I); 3975 cast<InvokeInst>(I) 3976 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3977 cast<InvokeInst>(I)->setAttributes(PAL); 3978 break; 3979 } 3980 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3981 unsigned Idx = 0; 3982 Value *Val = nullptr; 3983 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3984 return Error("Invalid record"); 3985 I = ResumeInst::Create(Val); 3986 InstructionList.push_back(I); 3987 break; 3988 } 3989 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3990 I = new UnreachableInst(Context); 3991 InstructionList.push_back(I); 3992 break; 3993 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3994 if (Record.size() < 1 || ((Record.size()-1)&1)) 3995 return Error("Invalid record"); 3996 Type *Ty = getTypeByID(Record[0]); 3997 if (!Ty) 3998 return Error("Invalid record"); 3999 4000 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4001 InstructionList.push_back(PN); 4002 4003 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4004 Value *V; 4005 // With the new function encoding, it is possible that operands have 4006 // negative IDs (for forward references). Use a signed VBR 4007 // representation to keep the encoding small. 4008 if (UseRelativeIDs) 4009 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4010 else 4011 V = getValue(Record, 1+i, NextValueNo, Ty); 4012 BasicBlock *BB = getBasicBlock(Record[2+i]); 4013 if (!V || !BB) 4014 return Error("Invalid record"); 4015 PN->addIncoming(V, BB); 4016 } 4017 I = PN; 4018 break; 4019 } 4020 4021 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4022 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4023 unsigned Idx = 0; 4024 if (Record.size() < 4) 4025 return Error("Invalid record"); 4026 Type *Ty = getTypeByID(Record[Idx++]); 4027 if (!Ty) 4028 return Error("Invalid record"); 4029 Value *PersFn = nullptr; 4030 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4031 return Error("Invalid record"); 4032 4033 bool IsCleanup = !!Record[Idx++]; 4034 unsigned NumClauses = Record[Idx++]; 4035 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4036 LP->setCleanup(IsCleanup); 4037 for (unsigned J = 0; J != NumClauses; ++J) { 4038 LandingPadInst::ClauseType CT = 4039 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4040 Value *Val; 4041 4042 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4043 delete LP; 4044 return Error("Invalid record"); 4045 } 4046 4047 assert((CT != LandingPadInst::Catch || 4048 !isa<ArrayType>(Val->getType())) && 4049 "Catch clause has a invalid type!"); 4050 assert((CT != LandingPadInst::Filter || 4051 isa<ArrayType>(Val->getType())) && 4052 "Filter clause has invalid type!"); 4053 LP->addClause(cast<Constant>(Val)); 4054 } 4055 4056 I = LP; 4057 InstructionList.push_back(I); 4058 break; 4059 } 4060 4061 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4062 if (Record.size() != 4) 4063 return Error("Invalid record"); 4064 uint64_t AlignRecord = Record[3]; 4065 const uint64_t InAllocaMask = uint64_t(1) << 5; 4066 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4067 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4068 bool InAlloca = AlignRecord & InAllocaMask; 4069 Type *Ty = getTypeByID(Record[0]); 4070 if ((AlignRecord & ExplicitTypeMask) == 0) { 4071 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4072 if (!PTy) 4073 return Error("Old-style alloca with a non-pointer type"); 4074 Ty = PTy->getElementType(); 4075 } 4076 Type *OpTy = getTypeByID(Record[1]); 4077 Value *Size = getFnValueByID(Record[2], OpTy); 4078 unsigned Align; 4079 if (std::error_code EC = 4080 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4081 return EC; 4082 } 4083 if (!Ty || !Size) 4084 return Error("Invalid record"); 4085 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4086 AI->setUsedWithInAlloca(InAlloca); 4087 I = AI; 4088 InstructionList.push_back(I); 4089 break; 4090 } 4091 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4092 unsigned OpNum = 0; 4093 Value *Op; 4094 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4095 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4096 return Error("Invalid record"); 4097 4098 Type *Ty = nullptr; 4099 if (OpNum + 3 == Record.size()) 4100 Ty = getTypeByID(Record[OpNum++]); 4101 if (std::error_code EC = 4102 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4103 return EC; 4104 if (!Ty) 4105 Ty = cast<PointerType>(Op->getType())->getElementType(); 4106 4107 unsigned Align; 4108 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4109 return EC; 4110 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4111 4112 InstructionList.push_back(I); 4113 break; 4114 } 4115 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4116 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4117 unsigned OpNum = 0; 4118 Value *Op; 4119 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4120 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4121 return Error("Invalid record"); 4122 4123 Type *Ty = nullptr; 4124 if (OpNum + 5 == Record.size()) 4125 Ty = getTypeByID(Record[OpNum++]); 4126 if (std::error_code EC = 4127 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4128 return EC; 4129 if (!Ty) 4130 Ty = cast<PointerType>(Op->getType())->getElementType(); 4131 4132 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4133 if (Ordering == NotAtomic || Ordering == Release || 4134 Ordering == AcquireRelease) 4135 return Error("Invalid record"); 4136 if (Ordering != NotAtomic && Record[OpNum] == 0) 4137 return Error("Invalid record"); 4138 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4139 4140 unsigned Align; 4141 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4142 return EC; 4143 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4144 4145 InstructionList.push_back(I); 4146 break; 4147 } 4148 case bitc::FUNC_CODE_INST_STORE: 4149 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4150 unsigned OpNum = 0; 4151 Value *Val, *Ptr; 4152 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4153 (BitCode == bitc::FUNC_CODE_INST_STORE 4154 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4155 : popValue(Record, OpNum, NextValueNo, 4156 cast<PointerType>(Ptr->getType())->getElementType(), 4157 Val)) || 4158 OpNum + 2 != Record.size()) 4159 return Error("Invalid record"); 4160 4161 if (std::error_code EC = TypeCheckLoadStoreInst( 4162 DiagnosticHandler, Val->getType(), Ptr->getType())) 4163 return EC; 4164 unsigned Align; 4165 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4166 return EC; 4167 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4168 InstructionList.push_back(I); 4169 break; 4170 } 4171 case bitc::FUNC_CODE_INST_STOREATOMIC: 4172 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4173 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4174 unsigned OpNum = 0; 4175 Value *Val, *Ptr; 4176 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4177 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4178 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4179 : popValue(Record, OpNum, NextValueNo, 4180 cast<PointerType>(Ptr->getType())->getElementType(), 4181 Val)) || 4182 OpNum + 4 != Record.size()) 4183 return Error("Invalid record"); 4184 4185 if (std::error_code EC = TypeCheckLoadStoreInst( 4186 DiagnosticHandler, Val->getType(), Ptr->getType())) 4187 return EC; 4188 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4189 if (Ordering == NotAtomic || Ordering == Acquire || 4190 Ordering == AcquireRelease) 4191 return Error("Invalid record"); 4192 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4193 if (Ordering != NotAtomic && Record[OpNum] == 0) 4194 return Error("Invalid record"); 4195 4196 unsigned Align; 4197 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4198 return EC; 4199 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4200 InstructionList.push_back(I); 4201 break; 4202 } 4203 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4204 case bitc::FUNC_CODE_INST_CMPXCHG: { 4205 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4206 // failureordering?, isweak?] 4207 unsigned OpNum = 0; 4208 Value *Ptr, *Cmp, *New; 4209 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4210 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4211 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4212 : popValue(Record, OpNum, NextValueNo, 4213 cast<PointerType>(Ptr->getType())->getElementType(), 4214 Cmp)) || 4215 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4216 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4217 return Error("Invalid record"); 4218 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4219 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4220 return Error("Invalid record"); 4221 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4222 4223 if (std::error_code EC = TypeCheckLoadStoreInst( 4224 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4225 return EC; 4226 AtomicOrdering FailureOrdering; 4227 if (Record.size() < 7) 4228 FailureOrdering = 4229 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4230 else 4231 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4232 4233 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4234 SynchScope); 4235 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4236 4237 if (Record.size() < 8) { 4238 // Before weak cmpxchgs existed, the instruction simply returned the 4239 // value loaded from memory, so bitcode files from that era will be 4240 // expecting the first component of a modern cmpxchg. 4241 CurBB->getInstList().push_back(I); 4242 I = ExtractValueInst::Create(I, 0); 4243 } else { 4244 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4245 } 4246 4247 InstructionList.push_back(I); 4248 break; 4249 } 4250 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4251 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4252 unsigned OpNum = 0; 4253 Value *Ptr, *Val; 4254 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4255 popValue(Record, OpNum, NextValueNo, 4256 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4257 OpNum+4 != Record.size()) 4258 return Error("Invalid record"); 4259 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4260 if (Operation < AtomicRMWInst::FIRST_BINOP || 4261 Operation > AtomicRMWInst::LAST_BINOP) 4262 return Error("Invalid record"); 4263 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4264 if (Ordering == NotAtomic || Ordering == Unordered) 4265 return Error("Invalid record"); 4266 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4267 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4268 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4269 InstructionList.push_back(I); 4270 break; 4271 } 4272 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4273 if (2 != Record.size()) 4274 return Error("Invalid record"); 4275 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4276 if (Ordering == NotAtomic || Ordering == Unordered || 4277 Ordering == Monotonic) 4278 return Error("Invalid record"); 4279 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4280 I = new FenceInst(Context, Ordering, SynchScope); 4281 InstructionList.push_back(I); 4282 break; 4283 } 4284 case bitc::FUNC_CODE_INST_CALL: { 4285 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4286 if (Record.size() < 3) 4287 return Error("Invalid record"); 4288 4289 unsigned OpNum = 0; 4290 AttributeSet PAL = getAttributes(Record[OpNum++]); 4291 unsigned CCInfo = Record[OpNum++]; 4292 4293 FunctionType *FTy = nullptr; 4294 if (CCInfo >> 15 & 1 && 4295 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4296 return Error("Explicit call type is not a function type"); 4297 4298 Value *Callee; 4299 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4300 return Error("Invalid record"); 4301 4302 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4303 if (!OpTy) 4304 return Error("Callee is not a pointer type"); 4305 if (!FTy) { 4306 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4307 if (!FTy) 4308 return Error("Callee is not of pointer to function type"); 4309 } else if (OpTy->getElementType() != FTy) 4310 return Error("Explicit call type does not match pointee type of " 4311 "callee operand"); 4312 if (Record.size() < FTy->getNumParams() + OpNum) 4313 return Error("Insufficient operands to call"); 4314 4315 SmallVector<Value*, 16> Args; 4316 // Read the fixed params. 4317 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4318 if (FTy->getParamType(i)->isLabelTy()) 4319 Args.push_back(getBasicBlock(Record[OpNum])); 4320 else 4321 Args.push_back(getValue(Record, OpNum, NextValueNo, 4322 FTy->getParamType(i))); 4323 if (!Args.back()) 4324 return Error("Invalid record"); 4325 } 4326 4327 // Read type/value pairs for varargs params. 4328 if (!FTy->isVarArg()) { 4329 if (OpNum != Record.size()) 4330 return Error("Invalid record"); 4331 } else { 4332 while (OpNum != Record.size()) { 4333 Value *Op; 4334 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4335 return Error("Invalid record"); 4336 Args.push_back(Op); 4337 } 4338 } 4339 4340 I = CallInst::Create(FTy, Callee, Args); 4341 InstructionList.push_back(I); 4342 cast<CallInst>(I)->setCallingConv( 4343 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4344 CallInst::TailCallKind TCK = CallInst::TCK_None; 4345 if (CCInfo & 1) 4346 TCK = CallInst::TCK_Tail; 4347 if (CCInfo & (1 << 14)) 4348 TCK = CallInst::TCK_MustTail; 4349 cast<CallInst>(I)->setTailCallKind(TCK); 4350 cast<CallInst>(I)->setAttributes(PAL); 4351 break; 4352 } 4353 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4354 if (Record.size() < 3) 4355 return Error("Invalid record"); 4356 Type *OpTy = getTypeByID(Record[0]); 4357 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4358 Type *ResTy = getTypeByID(Record[2]); 4359 if (!OpTy || !Op || !ResTy) 4360 return Error("Invalid record"); 4361 I = new VAArgInst(Op, ResTy); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 } 4366 4367 // Add instruction to end of current BB. If there is no current BB, reject 4368 // this file. 4369 if (!CurBB) { 4370 delete I; 4371 return Error("Invalid instruction with no BB"); 4372 } 4373 CurBB->getInstList().push_back(I); 4374 4375 // If this was a terminator instruction, move to the next block. 4376 if (isa<TerminatorInst>(I)) { 4377 ++CurBBNo; 4378 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4379 } 4380 4381 // Non-void values get registered in the value table for future use. 4382 if (I && !I->getType()->isVoidTy()) 4383 ValueList.AssignValue(I, NextValueNo++); 4384 } 4385 4386 OutOfRecordLoop: 4387 4388 // Check the function list for unresolved values. 4389 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4390 if (!A->getParent()) { 4391 // We found at least one unresolved value. Nuke them all to avoid leaks. 4392 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4393 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4394 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4395 delete A; 4396 } 4397 } 4398 return Error("Never resolved value found in function"); 4399 } 4400 } 4401 4402 // FIXME: Check for unresolved forward-declared metadata references 4403 // and clean up leaks. 4404 4405 // Trim the value list down to the size it was before we parsed this function. 4406 ValueList.shrinkTo(ModuleValueListSize); 4407 MDValueList.shrinkTo(ModuleMDValueListSize); 4408 std::vector<BasicBlock*>().swap(FunctionBBs); 4409 return std::error_code(); 4410 } 4411 4412 /// Find the function body in the bitcode stream 4413 std::error_code BitcodeReader::FindFunctionInStream( 4414 Function *F, 4415 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4416 while (DeferredFunctionInfoIterator->second == 0) { 4417 if (Stream.AtEndOfStream()) 4418 return Error("Could not find function in stream"); 4419 // ParseModule will parse the next body in the stream and set its 4420 // position in the DeferredFunctionInfo map. 4421 if (std::error_code EC = ParseModule(true)) 4422 return EC; 4423 } 4424 return std::error_code(); 4425 } 4426 4427 //===----------------------------------------------------------------------===// 4428 // GVMaterializer implementation 4429 //===----------------------------------------------------------------------===// 4430 4431 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4432 4433 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4434 if (std::error_code EC = materializeMetadata()) 4435 return EC; 4436 4437 Function *F = dyn_cast<Function>(GV); 4438 // If it's not a function or is already material, ignore the request. 4439 if (!F || !F->isMaterializable()) 4440 return std::error_code(); 4441 4442 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4443 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4444 // If its position is recorded as 0, its body is somewhere in the stream 4445 // but we haven't seen it yet. 4446 if (DFII->second == 0 && LazyStreamer) 4447 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4448 return EC; 4449 4450 // Move the bit stream to the saved position of the deferred function body. 4451 Stream.JumpToBit(DFII->second); 4452 4453 if (std::error_code EC = ParseFunctionBody(F)) 4454 return EC; 4455 F->setIsMaterializable(false); 4456 4457 if (StripDebugInfo) 4458 stripDebugInfo(*F); 4459 4460 // Upgrade any old intrinsic calls in the function. 4461 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4462 E = UpgradedIntrinsics.end(); I != E; ++I) { 4463 if (I->first != I->second) { 4464 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4465 UI != UE;) { 4466 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4467 UpgradeIntrinsicCall(CI, I->second); 4468 } 4469 } 4470 } 4471 4472 // Bring in any functions that this function forward-referenced via 4473 // blockaddresses. 4474 return materializeForwardReferencedFunctions(); 4475 } 4476 4477 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4478 const Function *F = dyn_cast<Function>(GV); 4479 if (!F || F->isDeclaration()) 4480 return false; 4481 4482 // Dematerializing F would leave dangling references that wouldn't be 4483 // reconnected on re-materialization. 4484 if (BlockAddressesTaken.count(F)) 4485 return false; 4486 4487 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4488 } 4489 4490 void BitcodeReader::dematerialize(GlobalValue *GV) { 4491 Function *F = dyn_cast<Function>(GV); 4492 // If this function isn't dematerializable, this is a noop. 4493 if (!F || !isDematerializable(F)) 4494 return; 4495 4496 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4497 4498 // Just forget the function body, we can remat it later. 4499 F->dropAllReferences(); 4500 F->setIsMaterializable(true); 4501 } 4502 4503 std::error_code BitcodeReader::materializeModule(Module *M) { 4504 assert(M == TheModule && 4505 "Can only Materialize the Module this BitcodeReader is attached to."); 4506 4507 if (std::error_code EC = materializeMetadata()) 4508 return EC; 4509 4510 // Promise to materialize all forward references. 4511 WillMaterializeAllForwardRefs = true; 4512 4513 // Iterate over the module, deserializing any functions that are still on 4514 // disk. 4515 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4516 F != E; ++F) { 4517 if (std::error_code EC = materialize(F)) 4518 return EC; 4519 } 4520 // At this point, if there are any function bodies, the current bit is 4521 // pointing to the END_BLOCK record after them. Now make sure the rest 4522 // of the bits in the module have been read. 4523 if (NextUnreadBit) 4524 ParseModule(true); 4525 4526 // Check that all block address forward references got resolved (as we 4527 // promised above). 4528 if (!BasicBlockFwdRefs.empty()) 4529 return Error("Never resolved function from blockaddress"); 4530 4531 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4532 // delete the old functions to clean up. We can't do this unless the entire 4533 // module is materialized because there could always be another function body 4534 // with calls to the old function. 4535 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4536 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4537 if (I->first != I->second) { 4538 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4539 UI != UE;) { 4540 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4541 UpgradeIntrinsicCall(CI, I->second); 4542 } 4543 if (!I->first->use_empty()) 4544 I->first->replaceAllUsesWith(I->second); 4545 I->first->eraseFromParent(); 4546 } 4547 } 4548 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4549 4550 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4551 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4552 4553 UpgradeDebugInfo(*M); 4554 return std::error_code(); 4555 } 4556 4557 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4558 return IdentifiedStructTypes; 4559 } 4560 4561 std::error_code BitcodeReader::InitStream() { 4562 if (LazyStreamer) 4563 return InitLazyStream(); 4564 return InitStreamFromBuffer(); 4565 } 4566 4567 std::error_code BitcodeReader::InitStreamFromBuffer() { 4568 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4569 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4570 4571 if (Buffer->getBufferSize() & 3) 4572 return Error("Invalid bitcode signature"); 4573 4574 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4575 // The magic number is 0x0B17C0DE stored in little endian. 4576 if (isBitcodeWrapper(BufPtr, BufEnd)) 4577 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4578 return Error("Invalid bitcode wrapper header"); 4579 4580 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4581 Stream.init(&*StreamFile); 4582 4583 return std::error_code(); 4584 } 4585 4586 std::error_code BitcodeReader::InitLazyStream() { 4587 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4588 // see it. 4589 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4590 StreamingMemoryObject &Bytes = *OwnedBytes; 4591 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4592 Stream.init(&*StreamFile); 4593 4594 unsigned char buf[16]; 4595 if (Bytes.readBytes(buf, 16, 0) != 16) 4596 return Error("Invalid bitcode signature"); 4597 4598 if (!isBitcode(buf, buf + 16)) 4599 return Error("Invalid bitcode signature"); 4600 4601 if (isBitcodeWrapper(buf, buf + 4)) { 4602 const unsigned char *bitcodeStart = buf; 4603 const unsigned char *bitcodeEnd = buf + 16; 4604 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4605 Bytes.dropLeadingBytes(bitcodeStart - buf); 4606 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4607 } 4608 return std::error_code(); 4609 } 4610 4611 namespace { 4612 class BitcodeErrorCategoryType : public std::error_category { 4613 const char *name() const LLVM_NOEXCEPT override { 4614 return "llvm.bitcode"; 4615 } 4616 std::string message(int IE) const override { 4617 BitcodeError E = static_cast<BitcodeError>(IE); 4618 switch (E) { 4619 case BitcodeError::InvalidBitcodeSignature: 4620 return "Invalid bitcode signature"; 4621 case BitcodeError::CorruptedBitcode: 4622 return "Corrupted bitcode"; 4623 } 4624 llvm_unreachable("Unknown error type!"); 4625 } 4626 }; 4627 } 4628 4629 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4630 4631 const std::error_category &llvm::BitcodeErrorCategory() { 4632 return *ErrorCategory; 4633 } 4634 4635 //===----------------------------------------------------------------------===// 4636 // External interface 4637 //===----------------------------------------------------------------------===// 4638 4639 /// \brief Get a lazy one-at-time loading module from bitcode. 4640 /// 4641 /// This isn't always used in a lazy context. In particular, it's also used by 4642 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4643 /// in forward-referenced functions from block address references. 4644 /// 4645 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4646 /// materialize everything -- in particular, if this isn't truly lazy. 4647 static ErrorOr<Module *> 4648 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4649 LLVMContext &Context, bool WillMaterializeAll, 4650 DiagnosticHandlerFunction DiagnosticHandler, 4651 bool ShouldLazyLoadMetadata = false) { 4652 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4653 BitcodeReader *R = 4654 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4655 M->setMaterializer(R); 4656 4657 auto cleanupOnError = [&](std::error_code EC) { 4658 R->releaseBuffer(); // Never take ownership on error. 4659 delete M; // Also deletes R. 4660 return EC; 4661 }; 4662 4663 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4664 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4665 return cleanupOnError(EC); 4666 4667 if (!WillMaterializeAll) 4668 // Resolve forward references from blockaddresses. 4669 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4670 return cleanupOnError(EC); 4671 4672 Buffer.release(); // The BitcodeReader owns it now. 4673 return M; 4674 } 4675 4676 ErrorOr<Module *> 4677 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4678 LLVMContext &Context, 4679 DiagnosticHandlerFunction DiagnosticHandler, 4680 bool ShouldLazyLoadMetadata) { 4681 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4682 DiagnosticHandler, ShouldLazyLoadMetadata); 4683 } 4684 4685 ErrorOr<std::unique_ptr<Module>> 4686 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4687 LLVMContext &Context, 4688 DiagnosticHandlerFunction DiagnosticHandler) { 4689 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4690 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4691 M->setMaterializer(R); 4692 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4693 return EC; 4694 return std::move(M); 4695 } 4696 4697 ErrorOr<Module *> 4698 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4699 DiagnosticHandlerFunction DiagnosticHandler) { 4700 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4701 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4702 std::move(Buf), Context, true, DiagnosticHandler); 4703 if (!ModuleOrErr) 4704 return ModuleOrErr; 4705 Module *M = ModuleOrErr.get(); 4706 // Read in the entire module, and destroy the BitcodeReader. 4707 if (std::error_code EC = M->materializeAllPermanently()) { 4708 delete M; 4709 return EC; 4710 } 4711 4712 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4713 // written. We must defer until the Module has been fully materialized. 4714 4715 return M; 4716 } 4717 4718 std::string 4719 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4720 DiagnosticHandlerFunction DiagnosticHandler) { 4721 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4722 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4723 DiagnosticHandler); 4724 ErrorOr<std::string> Triple = R->parseTriple(); 4725 if (Triple.getError()) 4726 return ""; 4727 return Triple.get(); 4728 } 4729