1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 245 continue; 246 else 247 return Skipped.takeError(); 248 } 249 } 250 } 251 252 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 253 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 254 return std::move(Err); 255 256 SmallVector<uint64_t, 64> Record; 257 // Read all the records for this module. 258 259 while (true) { 260 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 261 if (!MaybeEntry) 262 return MaybeEntry.takeError(); 263 BitstreamEntry Entry = MaybeEntry.get(); 264 265 switch (Entry.Kind) { 266 case BitstreamEntry::SubBlock: // Handled for us already. 267 case BitstreamEntry::Error: 268 return error("Malformed block"); 269 case BitstreamEntry::EndBlock: 270 return false; 271 case BitstreamEntry::Record: 272 // The interesting case. 273 break; 274 } 275 276 // Read a record. 277 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 278 if (!MaybeRecord) 279 return MaybeRecord.takeError(); 280 switch (MaybeRecord.get()) { 281 default: 282 break; // Default behavior, ignore unknown content. 283 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 284 std::string S; 285 if (convertToString(Record, 0, S)) 286 return error("Invalid record"); 287 // Check for the i386 and other (x86_64, ARM) conventions 288 if (S.find("__DATA,__objc_catlist") != std::string::npos || 289 S.find("__OBJC,__category") != std::string::npos) 290 return true; 291 break; 292 } 293 } 294 Record.clear(); 295 } 296 llvm_unreachable("Exit infinite loop"); 297 } 298 299 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 300 // We expect a number of well-defined blocks, though we don't necessarily 301 // need to understand them all. 302 while (true) { 303 BitstreamEntry Entry; 304 if (Error E = Stream.advance().moveInto(Entry)) 305 return std::move(E); 306 307 switch (Entry.Kind) { 308 case BitstreamEntry::Error: 309 return error("Malformed block"); 310 case BitstreamEntry::EndBlock: 311 return false; 312 313 case BitstreamEntry::SubBlock: 314 if (Entry.ID == bitc::MODULE_BLOCK_ID) 315 return hasObjCCategoryInModule(Stream); 316 317 // Ignore other sub-blocks. 318 if (Error Err = Stream.SkipBlock()) 319 return std::move(Err); 320 continue; 321 322 case BitstreamEntry::Record: 323 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 324 continue; 325 else 326 return Skipped.takeError(); 327 } 328 } 329 } 330 331 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 332 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 333 return std::move(Err); 334 335 SmallVector<uint64_t, 64> Record; 336 337 std::string Triple; 338 339 // Read all the records for this module. 340 while (true) { 341 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 342 if (!MaybeEntry) 343 return MaybeEntry.takeError(); 344 BitstreamEntry Entry = MaybeEntry.get(); 345 346 switch (Entry.Kind) { 347 case BitstreamEntry::SubBlock: // Handled for us already. 348 case BitstreamEntry::Error: 349 return error("Malformed block"); 350 case BitstreamEntry::EndBlock: 351 return Triple; 352 case BitstreamEntry::Record: 353 // The interesting case. 354 break; 355 } 356 357 // Read a record. 358 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 359 if (!MaybeRecord) 360 return MaybeRecord.takeError(); 361 switch (MaybeRecord.get()) { 362 default: break; // Default behavior, ignore unknown content. 363 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 364 std::string S; 365 if (convertToString(Record, 0, S)) 366 return error("Invalid record"); 367 Triple = S; 368 break; 369 } 370 } 371 Record.clear(); 372 } 373 llvm_unreachable("Exit infinite loop"); 374 } 375 376 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 377 // We expect a number of well-defined blocks, though we don't necessarily 378 // need to understand them all. 379 while (true) { 380 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 381 if (!MaybeEntry) 382 return MaybeEntry.takeError(); 383 BitstreamEntry Entry = MaybeEntry.get(); 384 385 switch (Entry.Kind) { 386 case BitstreamEntry::Error: 387 return error("Malformed block"); 388 case BitstreamEntry::EndBlock: 389 return ""; 390 391 case BitstreamEntry::SubBlock: 392 if (Entry.ID == bitc::MODULE_BLOCK_ID) 393 return readModuleTriple(Stream); 394 395 // Ignore other sub-blocks. 396 if (Error Err = Stream.SkipBlock()) 397 return std::move(Err); 398 continue; 399 400 case BitstreamEntry::Record: 401 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 402 continue; 403 else 404 return Skipped.takeError(); 405 } 406 } 407 } 408 409 namespace { 410 411 class BitcodeReaderBase { 412 protected: 413 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 414 : Stream(std::move(Stream)), Strtab(Strtab) { 415 this->Stream.setBlockInfo(&BlockInfo); 416 } 417 418 BitstreamBlockInfo BlockInfo; 419 BitstreamCursor Stream; 420 StringRef Strtab; 421 422 /// In version 2 of the bitcode we store names of global values and comdats in 423 /// a string table rather than in the VST. 424 bool UseStrtab = false; 425 426 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 427 428 /// If this module uses a string table, pop the reference to the string table 429 /// and return the referenced string and the rest of the record. Otherwise 430 /// just return the record itself. 431 std::pair<StringRef, ArrayRef<uint64_t>> 432 readNameFromStrtab(ArrayRef<uint64_t> Record); 433 434 bool readBlockInfo(); 435 436 // Contains an arbitrary and optional string identifying the bitcode producer 437 std::string ProducerIdentification; 438 439 Error error(const Twine &Message); 440 }; 441 442 } // end anonymous namespace 443 444 Error BitcodeReaderBase::error(const Twine &Message) { 445 std::string FullMsg = Message.str(); 446 if (!ProducerIdentification.empty()) 447 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 448 LLVM_VERSION_STRING "')"; 449 return ::error(FullMsg); 450 } 451 452 Expected<unsigned> 453 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 454 if (Record.empty()) 455 return error("Invalid record"); 456 unsigned ModuleVersion = Record[0]; 457 if (ModuleVersion > 2) 458 return error("Invalid value"); 459 UseStrtab = ModuleVersion >= 2; 460 return ModuleVersion; 461 } 462 463 std::pair<StringRef, ArrayRef<uint64_t>> 464 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 465 if (!UseStrtab) 466 return {"", Record}; 467 // Invalid reference. Let the caller complain about the record being empty. 468 if (Record[0] + Record[1] > Strtab.size()) 469 return {"", {}}; 470 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 471 } 472 473 namespace { 474 475 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 476 LLVMContext &Context; 477 Module *TheModule = nullptr; 478 // Next offset to start scanning for lazy parsing of function bodies. 479 uint64_t NextUnreadBit = 0; 480 // Last function offset found in the VST. 481 uint64_t LastFunctionBlockBit = 0; 482 bool SeenValueSymbolTable = false; 483 uint64_t VSTOffset = 0; 484 485 std::vector<std::string> SectionTable; 486 std::vector<std::string> GCTable; 487 488 std::vector<Type*> TypeList; 489 DenseMap<Function *, FunctionType *> FunctionTypes; 490 BitcodeReaderValueList ValueList; 491 Optional<MetadataLoader> MDLoader; 492 std::vector<Comdat *> ComdatList; 493 SmallVector<Instruction *, 64> InstructionList; 494 495 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 496 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 497 498 struct FunctionOperandInfo { 499 Function *F; 500 unsigned PersonalityFn; 501 unsigned Prefix; 502 unsigned Prologue; 503 }; 504 std::vector<FunctionOperandInfo> FunctionOperands; 505 506 /// The set of attributes by index. Index zero in the file is for null, and 507 /// is thus not represented here. As such all indices are off by one. 508 std::vector<AttributeList> MAttributes; 509 510 /// The set of attribute groups. 511 std::map<unsigned, AttributeList> MAttributeGroups; 512 513 /// While parsing a function body, this is a list of the basic blocks for the 514 /// function. 515 std::vector<BasicBlock*> FunctionBBs; 516 517 // When reading the module header, this list is populated with functions that 518 // have bodies later in the file. 519 std::vector<Function*> FunctionsWithBodies; 520 521 // When intrinsic functions are encountered which require upgrading they are 522 // stored here with their replacement function. 523 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 524 UpdatedIntrinsicMap UpgradedIntrinsics; 525 // Intrinsics which were remangled because of types rename 526 UpdatedIntrinsicMap RemangledIntrinsics; 527 528 // Several operations happen after the module header has been read, but 529 // before function bodies are processed. This keeps track of whether 530 // we've done this yet. 531 bool SeenFirstFunctionBody = false; 532 533 /// When function bodies are initially scanned, this map contains info about 534 /// where to find deferred function body in the stream. 535 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 536 537 /// When Metadata block is initially scanned when parsing the module, we may 538 /// choose to defer parsing of the metadata. This vector contains info about 539 /// which Metadata blocks are deferred. 540 std::vector<uint64_t> DeferredMetadataInfo; 541 542 /// These are basic blocks forward-referenced by block addresses. They are 543 /// inserted lazily into functions when they're loaded. The basic block ID is 544 /// its index into the vector. 545 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 546 std::deque<Function *> BasicBlockFwdRefQueue; 547 548 /// Indicates that we are using a new encoding for instruction operands where 549 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 550 /// instruction number, for a more compact encoding. Some instruction 551 /// operands are not relative to the instruction ID: basic block numbers, and 552 /// types. Once the old style function blocks have been phased out, we would 553 /// not need this flag. 554 bool UseRelativeIDs = false; 555 556 /// True if all functions will be materialized, negating the need to process 557 /// (e.g.) blockaddress forward references. 558 bool WillMaterializeAllForwardRefs = false; 559 560 bool StripDebugInfo = false; 561 TBAAVerifier TBAAVerifyHelper; 562 563 std::vector<std::string> BundleTags; 564 SmallVector<SyncScope::ID, 8> SSIDs; 565 566 public: 567 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 568 StringRef ProducerIdentification, LLVMContext &Context); 569 570 Error materializeForwardReferencedFunctions(); 571 572 Error materialize(GlobalValue *GV) override; 573 Error materializeModule() override; 574 std::vector<StructType *> getIdentifiedStructTypes() const override; 575 576 /// Main interface to parsing a bitcode buffer. 577 /// \returns true if an error occurred. 578 Error parseBitcodeInto( 579 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 580 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 581 582 static uint64_t decodeSignRotatedValue(uint64_t V); 583 584 /// Materialize any deferred Metadata block. 585 Error materializeMetadata() override; 586 587 void setStripDebugInfo() override; 588 589 private: 590 std::vector<StructType *> IdentifiedStructTypes; 591 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 592 StructType *createIdentifiedStructType(LLVMContext &Context); 593 594 Type *getTypeByID(unsigned ID); 595 596 Value *getFnValueByID(unsigned ID, Type *Ty) { 597 if (Ty && Ty->isMetadataTy()) 598 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 599 return ValueList.getValueFwdRef(ID, Ty); 600 } 601 602 Metadata *getFnMetadataByID(unsigned ID) { 603 return MDLoader->getMetadataFwdRefOrLoad(ID); 604 } 605 606 BasicBlock *getBasicBlock(unsigned ID) const { 607 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 608 return FunctionBBs[ID]; 609 } 610 611 AttributeList getAttributes(unsigned i) const { 612 if (i-1 < MAttributes.size()) 613 return MAttributes[i-1]; 614 return AttributeList(); 615 } 616 617 /// Read a value/type pair out of the specified record from slot 'Slot'. 618 /// Increment Slot past the number of slots used in the record. Return true on 619 /// failure. 620 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 621 unsigned InstNum, Value *&ResVal) { 622 if (Slot == Record.size()) return true; 623 unsigned ValNo = (unsigned)Record[Slot++]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 if (ValNo < InstNum) { 628 // If this is not a forward reference, just return the value we already 629 // have. 630 ResVal = getFnValueByID(ValNo, nullptr); 631 return ResVal == nullptr; 632 } 633 if (Slot == Record.size()) 634 return true; 635 636 unsigned TypeNo = (unsigned)Record[Slot++]; 637 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 638 return ResVal == nullptr; 639 } 640 641 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 642 /// past the number of slots used by the value in the record. Return true if 643 /// there is an error. 644 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 645 unsigned InstNum, Type *Ty, Value *&ResVal) { 646 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 647 return true; 648 // All values currently take a single record slot. 649 ++Slot; 650 return false; 651 } 652 653 /// Like popValue, but does not increment the Slot number. 654 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 655 unsigned InstNum, Type *Ty, Value *&ResVal) { 656 ResVal = getValue(Record, Slot, InstNum, Ty); 657 return ResVal == nullptr; 658 } 659 660 /// Version of getValue that returns ResVal directly, or 0 if there is an 661 /// error. 662 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 663 unsigned InstNum, Type *Ty) { 664 if (Slot == Record.size()) return nullptr; 665 unsigned ValNo = (unsigned)Record[Slot]; 666 // Adjust the ValNo, if it was encoded relative to the InstNum. 667 if (UseRelativeIDs) 668 ValNo = InstNum - ValNo; 669 return getFnValueByID(ValNo, Ty); 670 } 671 672 /// Like getValue, but decodes signed VBRs. 673 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 674 unsigned InstNum, Type *Ty) { 675 if (Slot == Record.size()) return nullptr; 676 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 677 // Adjust the ValNo, if it was encoded relative to the InstNum. 678 if (UseRelativeIDs) 679 ValNo = InstNum - ValNo; 680 return getFnValueByID(ValNo, Ty); 681 } 682 683 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 684 /// corresponding argument's pointee type. Also upgrades intrinsics that now 685 /// require an elementtype attribute. 686 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 687 688 /// Converts alignment exponent (i.e. power of two (or zero)) to the 689 /// corresponding alignment to use. If alignment is too large, returns 690 /// a corresponding error code. 691 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 692 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 693 Error parseModule( 694 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 695 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 696 697 Error parseComdatRecord(ArrayRef<uint64_t> Record); 698 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 699 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 700 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 701 ArrayRef<uint64_t> Record); 702 703 Error parseAttributeBlock(); 704 Error parseAttributeGroupBlock(); 705 Error parseTypeTable(); 706 Error parseTypeTableBody(); 707 Error parseOperandBundleTags(); 708 Error parseSyncScopeNames(); 709 710 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 711 unsigned NameIndex, Triple &TT); 712 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 713 ArrayRef<uint64_t> Record); 714 Error parseValueSymbolTable(uint64_t Offset = 0); 715 Error parseGlobalValueSymbolTable(); 716 Error parseConstants(); 717 Error rememberAndSkipFunctionBodies(); 718 Error rememberAndSkipFunctionBody(); 719 /// Save the positions of the Metadata blocks and skip parsing the blocks. 720 Error rememberAndSkipMetadata(); 721 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 722 Error parseFunctionBody(Function *F); 723 Error globalCleanup(); 724 Error resolveGlobalAndIndirectSymbolInits(); 725 Error parseUseLists(); 726 Error findFunctionInStream( 727 Function *F, 728 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 729 730 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 731 }; 732 733 /// Class to manage reading and parsing function summary index bitcode 734 /// files/sections. 735 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 736 /// The module index built during parsing. 737 ModuleSummaryIndex &TheIndex; 738 739 /// Indicates whether we have encountered a global value summary section 740 /// yet during parsing. 741 bool SeenGlobalValSummary = false; 742 743 /// Indicates whether we have already parsed the VST, used for error checking. 744 bool SeenValueSymbolTable = false; 745 746 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 747 /// Used to enable on-demand parsing of the VST. 748 uint64_t VSTOffset = 0; 749 750 // Map to save ValueId to ValueInfo association that was recorded in the 751 // ValueSymbolTable. It is used after the VST is parsed to convert 752 // call graph edges read from the function summary from referencing 753 // callees by their ValueId to using the ValueInfo instead, which is how 754 // they are recorded in the summary index being built. 755 // We save a GUID which refers to the same global as the ValueInfo, but 756 // ignoring the linkage, i.e. for values other than local linkage they are 757 // identical. 758 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 759 ValueIdToValueInfoMap; 760 761 /// Map populated during module path string table parsing, from the 762 /// module ID to a string reference owned by the index's module 763 /// path string table, used to correlate with combined index 764 /// summary records. 765 DenseMap<uint64_t, StringRef> ModuleIdMap; 766 767 /// Original source file name recorded in a bitcode record. 768 std::string SourceFileName; 769 770 /// The string identifier given to this module by the client, normally the 771 /// path to the bitcode file. 772 StringRef ModulePath; 773 774 /// For per-module summary indexes, the unique numerical identifier given to 775 /// this module by the client. 776 unsigned ModuleId; 777 778 public: 779 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 780 ModuleSummaryIndex &TheIndex, 781 StringRef ModulePath, unsigned ModuleId); 782 783 Error parseModule(); 784 785 private: 786 void setValueGUID(uint64_t ValueID, StringRef ValueName, 787 GlobalValue::LinkageTypes Linkage, 788 StringRef SourceFileName); 789 Error parseValueSymbolTable( 790 uint64_t Offset, 791 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 792 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 793 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 794 bool IsOldProfileFormat, 795 bool HasProfile, 796 bool HasRelBF); 797 Error parseEntireSummary(unsigned ID); 798 Error parseModuleStringTable(); 799 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 800 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 801 TypeIdCompatibleVtableInfo &TypeId); 802 std::vector<FunctionSummary::ParamAccess> 803 parseParamAccesses(ArrayRef<uint64_t> Record); 804 805 std::pair<ValueInfo, GlobalValue::GUID> 806 getValueInfoFromValueId(unsigned ValueId); 807 808 void addThisModule(); 809 ModuleSummaryIndex::ModuleInfo *getThisModule(); 810 }; 811 812 } // end anonymous namespace 813 814 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 815 Error Err) { 816 if (Err) { 817 std::error_code EC; 818 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 819 EC = EIB.convertToErrorCode(); 820 Ctx.emitError(EIB.message()); 821 }); 822 return EC; 823 } 824 return std::error_code(); 825 } 826 827 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 828 StringRef ProducerIdentification, 829 LLVMContext &Context) 830 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 831 ValueList(Context, Stream.SizeInBytes()) { 832 this->ProducerIdentification = std::string(ProducerIdentification); 833 } 834 835 Error BitcodeReader::materializeForwardReferencedFunctions() { 836 if (WillMaterializeAllForwardRefs) 837 return Error::success(); 838 839 // Prevent recursion. 840 WillMaterializeAllForwardRefs = true; 841 842 while (!BasicBlockFwdRefQueue.empty()) { 843 Function *F = BasicBlockFwdRefQueue.front(); 844 BasicBlockFwdRefQueue.pop_front(); 845 assert(F && "Expected valid function"); 846 if (!BasicBlockFwdRefs.count(F)) 847 // Already materialized. 848 continue; 849 850 // Check for a function that isn't materializable to prevent an infinite 851 // loop. When parsing a blockaddress stored in a global variable, there 852 // isn't a trivial way to check if a function will have a body without a 853 // linear search through FunctionsWithBodies, so just check it here. 854 if (!F->isMaterializable()) 855 return error("Never resolved function from blockaddress"); 856 857 // Try to materialize F. 858 if (Error Err = materialize(F)) 859 return Err; 860 } 861 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 862 863 // Reset state. 864 WillMaterializeAllForwardRefs = false; 865 return Error::success(); 866 } 867 868 //===----------------------------------------------------------------------===// 869 // Helper functions to implement forward reference resolution, etc. 870 //===----------------------------------------------------------------------===// 871 872 static bool hasImplicitComdat(size_t Val) { 873 switch (Val) { 874 default: 875 return false; 876 case 1: // Old WeakAnyLinkage 877 case 4: // Old LinkOnceAnyLinkage 878 case 10: // Old WeakODRLinkage 879 case 11: // Old LinkOnceODRLinkage 880 return true; 881 } 882 } 883 884 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 885 switch (Val) { 886 default: // Map unknown/new linkages to external 887 case 0: 888 return GlobalValue::ExternalLinkage; 889 case 2: 890 return GlobalValue::AppendingLinkage; 891 case 3: 892 return GlobalValue::InternalLinkage; 893 case 5: 894 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 895 case 6: 896 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 897 case 7: 898 return GlobalValue::ExternalWeakLinkage; 899 case 8: 900 return GlobalValue::CommonLinkage; 901 case 9: 902 return GlobalValue::PrivateLinkage; 903 case 12: 904 return GlobalValue::AvailableExternallyLinkage; 905 case 13: 906 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 907 case 14: 908 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 909 case 15: 910 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 911 case 1: // Old value with implicit comdat. 912 case 16: 913 return GlobalValue::WeakAnyLinkage; 914 case 10: // Old value with implicit comdat. 915 case 17: 916 return GlobalValue::WeakODRLinkage; 917 case 4: // Old value with implicit comdat. 918 case 18: 919 return GlobalValue::LinkOnceAnyLinkage; 920 case 11: // Old value with implicit comdat. 921 case 19: 922 return GlobalValue::LinkOnceODRLinkage; 923 } 924 } 925 926 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 927 FunctionSummary::FFlags Flags; 928 Flags.ReadNone = RawFlags & 0x1; 929 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 930 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 931 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 932 Flags.NoInline = (RawFlags >> 4) & 0x1; 933 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 934 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 935 Flags.MayThrow = (RawFlags >> 7) & 0x1; 936 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 937 return Flags; 938 } 939 940 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 941 // 942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 943 // visibility: [8, 10). 944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 945 uint64_t Version) { 946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 947 // like getDecodedLinkage() above. Any future change to the linkage enum and 948 // to getDecodedLinkage() will need to be taken into account here as above. 949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 951 RawFlags = RawFlags >> 4; 952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 953 // The Live flag wasn't introduced until version 3. For dead stripping 954 // to work correctly on earlier versions, we must conservatively treat all 955 // values as live. 956 bool Live = (RawFlags & 0x2) || Version < 3; 957 bool Local = (RawFlags & 0x4); 958 bool AutoHide = (RawFlags & 0x8); 959 960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 961 Live, Local, AutoHide); 962 } 963 964 // Decode the flags for GlobalVariable in the summary 965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 966 return GlobalVarSummary::GVarFlags( 967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 968 (RawFlags & 0x4) ? true : false, 969 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 970 } 971 972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 973 switch (Val) { 974 default: // Map unknown visibilities to default. 975 case 0: return GlobalValue::DefaultVisibility; 976 case 1: return GlobalValue::HiddenVisibility; 977 case 2: return GlobalValue::ProtectedVisibility; 978 } 979 } 980 981 static GlobalValue::DLLStorageClassTypes 982 getDecodedDLLStorageClass(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown values to default. 985 case 0: return GlobalValue::DefaultStorageClass; 986 case 1: return GlobalValue::DLLImportStorageClass; 987 case 2: return GlobalValue::DLLExportStorageClass; 988 } 989 } 990 991 static bool getDecodedDSOLocal(unsigned Val) { 992 switch(Val) { 993 default: // Map unknown values to preemptable. 994 case 0: return false; 995 case 1: return true; 996 } 997 } 998 999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1000 switch (Val) { 1001 case 0: return GlobalVariable::NotThreadLocal; 1002 default: // Map unknown non-zero value to general dynamic. 1003 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1004 case 2: return GlobalVariable::LocalDynamicTLSModel; 1005 case 3: return GlobalVariable::InitialExecTLSModel; 1006 case 4: return GlobalVariable::LocalExecTLSModel; 1007 } 1008 } 1009 1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1011 switch (Val) { 1012 default: // Map unknown to UnnamedAddr::None. 1013 case 0: return GlobalVariable::UnnamedAddr::None; 1014 case 1: return GlobalVariable::UnnamedAddr::Global; 1015 case 2: return GlobalVariable::UnnamedAddr::Local; 1016 } 1017 } 1018 1019 static int getDecodedCastOpcode(unsigned Val) { 1020 switch (Val) { 1021 default: return -1; 1022 case bitc::CAST_TRUNC : return Instruction::Trunc; 1023 case bitc::CAST_ZEXT : return Instruction::ZExt; 1024 case bitc::CAST_SEXT : return Instruction::SExt; 1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1027 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1028 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1030 case bitc::CAST_FPEXT : return Instruction::FPExt; 1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1033 case bitc::CAST_BITCAST : return Instruction::BitCast; 1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1035 } 1036 } 1037 1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1039 bool IsFP = Ty->isFPOrFPVectorTy(); 1040 // UnOps are only valid for int/fp or vector of int/fp types 1041 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1042 return -1; 1043 1044 switch (Val) { 1045 default: 1046 return -1; 1047 case bitc::UNOP_FNEG: 1048 return IsFP ? Instruction::FNeg : -1; 1049 } 1050 } 1051 1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1053 bool IsFP = Ty->isFPOrFPVectorTy(); 1054 // BinOps are only valid for int/fp or vector of int/fp types 1055 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1056 return -1; 1057 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::BINOP_ADD: 1062 return IsFP ? Instruction::FAdd : Instruction::Add; 1063 case bitc::BINOP_SUB: 1064 return IsFP ? Instruction::FSub : Instruction::Sub; 1065 case bitc::BINOP_MUL: 1066 return IsFP ? Instruction::FMul : Instruction::Mul; 1067 case bitc::BINOP_UDIV: 1068 return IsFP ? -1 : Instruction::UDiv; 1069 case bitc::BINOP_SDIV: 1070 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1071 case bitc::BINOP_UREM: 1072 return IsFP ? -1 : Instruction::URem; 1073 case bitc::BINOP_SREM: 1074 return IsFP ? Instruction::FRem : Instruction::SRem; 1075 case bitc::BINOP_SHL: 1076 return IsFP ? -1 : Instruction::Shl; 1077 case bitc::BINOP_LSHR: 1078 return IsFP ? -1 : Instruction::LShr; 1079 case bitc::BINOP_ASHR: 1080 return IsFP ? -1 : Instruction::AShr; 1081 case bitc::BINOP_AND: 1082 return IsFP ? -1 : Instruction::And; 1083 case bitc::BINOP_OR: 1084 return IsFP ? -1 : Instruction::Or; 1085 case bitc::BINOP_XOR: 1086 return IsFP ? -1 : Instruction::Xor; 1087 } 1088 } 1089 1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1091 switch (Val) { 1092 default: return AtomicRMWInst::BAD_BINOP; 1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1094 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1096 case bitc::RMW_AND: return AtomicRMWInst::And; 1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1098 case bitc::RMW_OR: return AtomicRMWInst::Or; 1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1100 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1101 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1106 } 1107 } 1108 1109 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1110 switch (Val) { 1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1117 default: // Map unknown orderings to sequentially-consistent. 1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1119 } 1120 } 1121 1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown selection kinds to any. 1125 case bitc::COMDAT_SELECTION_KIND_ANY: 1126 return Comdat::Any; 1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1128 return Comdat::ExactMatch; 1129 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1130 return Comdat::Largest; 1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1132 return Comdat::NoDeduplicate; 1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1134 return Comdat::SameSize; 1135 } 1136 } 1137 1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1139 FastMathFlags FMF; 1140 if (0 != (Val & bitc::UnsafeAlgebra)) 1141 FMF.setFast(); 1142 if (0 != (Val & bitc::AllowReassoc)) 1143 FMF.setAllowReassoc(); 1144 if (0 != (Val & bitc::NoNaNs)) 1145 FMF.setNoNaNs(); 1146 if (0 != (Val & bitc::NoInfs)) 1147 FMF.setNoInfs(); 1148 if (0 != (Val & bitc::NoSignedZeros)) 1149 FMF.setNoSignedZeros(); 1150 if (0 != (Val & bitc::AllowReciprocal)) 1151 FMF.setAllowReciprocal(); 1152 if (0 != (Val & bitc::AllowContract)) 1153 FMF.setAllowContract(true); 1154 if (0 != (Val & bitc::ApproxFunc)) 1155 FMF.setApproxFunc(); 1156 return FMF; 1157 } 1158 1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1160 switch (Val) { 1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1163 } 1164 } 1165 1166 Type *BitcodeReader::getTypeByID(unsigned ID) { 1167 // The type table size is always specified correctly. 1168 if (ID >= TypeList.size()) 1169 return nullptr; 1170 1171 if (Type *Ty = TypeList[ID]) 1172 return Ty; 1173 1174 // If we have a forward reference, the only possible case is when it is to a 1175 // named struct. Just create a placeholder for now. 1176 return TypeList[ID] = createIdentifiedStructType(Context); 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1180 StringRef Name) { 1181 auto *Ret = StructType::create(Context, Name); 1182 IdentifiedStructTypes.push_back(Ret); 1183 return Ret; 1184 } 1185 1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1187 auto *Ret = StructType::create(Context); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Functions for parsing blocks from the bitcode file 1194 //===----------------------------------------------------------------------===// 1195 1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1197 switch (Val) { 1198 case Attribute::EndAttrKinds: 1199 case Attribute::EmptyKey: 1200 case Attribute::TombstoneKey: 1201 llvm_unreachable("Synthetic enumerators which should never get here"); 1202 1203 case Attribute::None: return 0; 1204 case Attribute::ZExt: return 1 << 0; 1205 case Attribute::SExt: return 1 << 1; 1206 case Attribute::NoReturn: return 1 << 2; 1207 case Attribute::InReg: return 1 << 3; 1208 case Attribute::StructRet: return 1 << 4; 1209 case Attribute::NoUnwind: return 1 << 5; 1210 case Attribute::NoAlias: return 1 << 6; 1211 case Attribute::ByVal: return 1 << 7; 1212 case Attribute::Nest: return 1 << 8; 1213 case Attribute::ReadNone: return 1 << 9; 1214 case Attribute::ReadOnly: return 1 << 10; 1215 case Attribute::NoInline: return 1 << 11; 1216 case Attribute::AlwaysInline: return 1 << 12; 1217 case Attribute::OptimizeForSize: return 1 << 13; 1218 case Attribute::StackProtect: return 1 << 14; 1219 case Attribute::StackProtectReq: return 1 << 15; 1220 case Attribute::Alignment: return 31 << 16; 1221 case Attribute::NoCapture: return 1 << 21; 1222 case Attribute::NoRedZone: return 1 << 22; 1223 case Attribute::NoImplicitFloat: return 1 << 23; 1224 case Attribute::Naked: return 1 << 24; 1225 case Attribute::InlineHint: return 1 << 25; 1226 case Attribute::StackAlignment: return 7 << 26; 1227 case Attribute::ReturnsTwice: return 1 << 29; 1228 case Attribute::UWTable: return 1 << 30; 1229 case Attribute::NonLazyBind: return 1U << 31; 1230 case Attribute::SanitizeAddress: return 1ULL << 32; 1231 case Attribute::MinSize: return 1ULL << 33; 1232 case Attribute::NoDuplicate: return 1ULL << 34; 1233 case Attribute::StackProtectStrong: return 1ULL << 35; 1234 case Attribute::SanitizeThread: return 1ULL << 36; 1235 case Attribute::SanitizeMemory: return 1ULL << 37; 1236 case Attribute::NoBuiltin: return 1ULL << 38; 1237 case Attribute::Returned: return 1ULL << 39; 1238 case Attribute::Cold: return 1ULL << 40; 1239 case Attribute::Builtin: return 1ULL << 41; 1240 case Attribute::OptimizeNone: return 1ULL << 42; 1241 case Attribute::InAlloca: return 1ULL << 43; 1242 case Attribute::NonNull: return 1ULL << 44; 1243 case Attribute::JumpTable: return 1ULL << 45; 1244 case Attribute::Convergent: return 1ULL << 46; 1245 case Attribute::SafeStack: return 1ULL << 47; 1246 case Attribute::NoRecurse: return 1ULL << 48; 1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1249 case Attribute::SwiftSelf: return 1ULL << 51; 1250 case Attribute::SwiftError: return 1ULL << 52; 1251 case Attribute::WriteOnly: return 1ULL << 53; 1252 case Attribute::Speculatable: return 1ULL << 54; 1253 case Attribute::StrictFP: return 1ULL << 55; 1254 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1255 case Attribute::NoCfCheck: return 1ULL << 57; 1256 case Attribute::OptForFuzzing: return 1ULL << 58; 1257 case Attribute::ShadowCallStack: return 1ULL << 59; 1258 case Attribute::SpeculativeLoadHardening: 1259 return 1ULL << 60; 1260 case Attribute::ImmArg: 1261 return 1ULL << 61; 1262 case Attribute::WillReturn: 1263 return 1ULL << 62; 1264 case Attribute::NoFree: 1265 return 1ULL << 63; 1266 default: 1267 // Other attributes are not supported in the raw format, 1268 // as we ran out of space. 1269 return 0; 1270 } 1271 llvm_unreachable("Unsupported attribute type"); 1272 } 1273 1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1275 if (!Val) return; 1276 1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1278 I = Attribute::AttrKind(I + 1)) { 1279 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1280 if (I == Attribute::Alignment) 1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1282 else if (I == Attribute::StackAlignment) 1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1284 else if (Attribute::isTypeAttrKind(I)) 1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1286 else 1287 B.addAttribute(I); 1288 } 1289 } 1290 } 1291 1292 /// This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1298 // the bits above 31 down by 11 bits. 1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1300 assert((!Alignment || isPowerOf2_32(Alignment)) && 1301 "Alignment must be a power of two."); 1302 1303 if (Alignment) 1304 B.addAlignmentAttr(Alignment); 1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1306 (EncodedAttrs & 0xffff)); 1307 } 1308 1309 Error BitcodeReader::parseAttributeBlock() { 1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1311 return Err; 1312 1313 if (!MAttributes.empty()) 1314 return error("Invalid multiple blocks"); 1315 1316 SmallVector<uint64_t, 64> Record; 1317 1318 SmallVector<AttributeList, 8> Attrs; 1319 1320 // Read all the records. 1321 while (true) { 1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1323 if (!MaybeEntry) 1324 return MaybeEntry.takeError(); 1325 BitstreamEntry Entry = MaybeEntry.get(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1341 if (!MaybeRecord) 1342 return MaybeRecord.takeError(); 1343 switch (MaybeRecord.get()) { 1344 default: // Default behavior: ignore. 1345 break; 1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1347 // Deprecated, but still needed to read old bitcode files. 1348 if (Record.size() & 1) 1349 return error("Invalid record"); 1350 1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1352 AttrBuilder B; 1353 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1354 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1355 } 1356 1357 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1361 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1362 Attrs.push_back(MAttributeGroups[Record[i]]); 1363 1364 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1365 Attrs.clear(); 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Returns Attribute::None on unrecognized codes. 1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1373 switch (Code) { 1374 default: 1375 return Attribute::None; 1376 case bitc::ATTR_KIND_ALIGNMENT: 1377 return Attribute::Alignment; 1378 case bitc::ATTR_KIND_ALWAYS_INLINE: 1379 return Attribute::AlwaysInline; 1380 case bitc::ATTR_KIND_ARGMEMONLY: 1381 return Attribute::ArgMemOnly; 1382 case bitc::ATTR_KIND_BUILTIN: 1383 return Attribute::Builtin; 1384 case bitc::ATTR_KIND_BY_VAL: 1385 return Attribute::ByVal; 1386 case bitc::ATTR_KIND_IN_ALLOCA: 1387 return Attribute::InAlloca; 1388 case bitc::ATTR_KIND_COLD: 1389 return Attribute::Cold; 1390 case bitc::ATTR_KIND_CONVERGENT: 1391 return Attribute::Convergent; 1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1393 return Attribute::DisableSanitizerInstrumentation; 1394 case bitc::ATTR_KIND_ELEMENTTYPE: 1395 return Attribute::ElementType; 1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1397 return Attribute::InaccessibleMemOnly; 1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1399 return Attribute::InaccessibleMemOrArgMemOnly; 1400 case bitc::ATTR_KIND_INLINE_HINT: 1401 return Attribute::InlineHint; 1402 case bitc::ATTR_KIND_IN_REG: 1403 return Attribute::InReg; 1404 case bitc::ATTR_KIND_JUMP_TABLE: 1405 return Attribute::JumpTable; 1406 case bitc::ATTR_KIND_MIN_SIZE: 1407 return Attribute::MinSize; 1408 case bitc::ATTR_KIND_NAKED: 1409 return Attribute::Naked; 1410 case bitc::ATTR_KIND_NEST: 1411 return Attribute::Nest; 1412 case bitc::ATTR_KIND_NO_ALIAS: 1413 return Attribute::NoAlias; 1414 case bitc::ATTR_KIND_NO_BUILTIN: 1415 return Attribute::NoBuiltin; 1416 case bitc::ATTR_KIND_NO_CALLBACK: 1417 return Attribute::NoCallback; 1418 case bitc::ATTR_KIND_NO_CAPTURE: 1419 return Attribute::NoCapture; 1420 case bitc::ATTR_KIND_NO_DUPLICATE: 1421 return Attribute::NoDuplicate; 1422 case bitc::ATTR_KIND_NOFREE: 1423 return Attribute::NoFree; 1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1425 return Attribute::NoImplicitFloat; 1426 case bitc::ATTR_KIND_NO_INLINE: 1427 return Attribute::NoInline; 1428 case bitc::ATTR_KIND_NO_RECURSE: 1429 return Attribute::NoRecurse; 1430 case bitc::ATTR_KIND_NO_MERGE: 1431 return Attribute::NoMerge; 1432 case bitc::ATTR_KIND_NON_LAZY_BIND: 1433 return Attribute::NonLazyBind; 1434 case bitc::ATTR_KIND_NON_NULL: 1435 return Attribute::NonNull; 1436 case bitc::ATTR_KIND_DEREFERENCEABLE: 1437 return Attribute::Dereferenceable; 1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1439 return Attribute::DereferenceableOrNull; 1440 case bitc::ATTR_KIND_ALLOC_SIZE: 1441 return Attribute::AllocSize; 1442 case bitc::ATTR_KIND_NO_RED_ZONE: 1443 return Attribute::NoRedZone; 1444 case bitc::ATTR_KIND_NO_RETURN: 1445 return Attribute::NoReturn; 1446 case bitc::ATTR_KIND_NOSYNC: 1447 return Attribute::NoSync; 1448 case bitc::ATTR_KIND_NOCF_CHECK: 1449 return Attribute::NoCfCheck; 1450 case bitc::ATTR_KIND_NO_PROFILE: 1451 return Attribute::NoProfile; 1452 case bitc::ATTR_KIND_NO_UNWIND: 1453 return Attribute::NoUnwind; 1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1455 return Attribute::NoSanitizeCoverage; 1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1457 return Attribute::NullPointerIsValid; 1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1459 return Attribute::OptForFuzzing; 1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1461 return Attribute::OptimizeForSize; 1462 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1463 return Attribute::OptimizeNone; 1464 case bitc::ATTR_KIND_READ_NONE: 1465 return Attribute::ReadNone; 1466 case bitc::ATTR_KIND_READ_ONLY: 1467 return Attribute::ReadOnly; 1468 case bitc::ATTR_KIND_RETURNED: 1469 return Attribute::Returned; 1470 case bitc::ATTR_KIND_RETURNS_TWICE: 1471 return Attribute::ReturnsTwice; 1472 case bitc::ATTR_KIND_S_EXT: 1473 return Attribute::SExt; 1474 case bitc::ATTR_KIND_SPECULATABLE: 1475 return Attribute::Speculatable; 1476 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1477 return Attribute::StackAlignment; 1478 case bitc::ATTR_KIND_STACK_PROTECT: 1479 return Attribute::StackProtect; 1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1481 return Attribute::StackProtectReq; 1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1483 return Attribute::StackProtectStrong; 1484 case bitc::ATTR_KIND_SAFESTACK: 1485 return Attribute::SafeStack; 1486 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1487 return Attribute::ShadowCallStack; 1488 case bitc::ATTR_KIND_STRICT_FP: 1489 return Attribute::StrictFP; 1490 case bitc::ATTR_KIND_STRUCT_RET: 1491 return Attribute::StructRet; 1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1493 return Attribute::SanitizeAddress; 1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1495 return Attribute::SanitizeHWAddress; 1496 case bitc::ATTR_KIND_SANITIZE_THREAD: 1497 return Attribute::SanitizeThread; 1498 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1499 return Attribute::SanitizeMemory; 1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1501 return Attribute::SpeculativeLoadHardening; 1502 case bitc::ATTR_KIND_SWIFT_ERROR: 1503 return Attribute::SwiftError; 1504 case bitc::ATTR_KIND_SWIFT_SELF: 1505 return Attribute::SwiftSelf; 1506 case bitc::ATTR_KIND_SWIFT_ASYNC: 1507 return Attribute::SwiftAsync; 1508 case bitc::ATTR_KIND_UW_TABLE: 1509 return Attribute::UWTable; 1510 case bitc::ATTR_KIND_VSCALE_RANGE: 1511 return Attribute::VScaleRange; 1512 case bitc::ATTR_KIND_WILLRETURN: 1513 return Attribute::WillReturn; 1514 case bitc::ATTR_KIND_WRITEONLY: 1515 return Attribute::WriteOnly; 1516 case bitc::ATTR_KIND_Z_EXT: 1517 return Attribute::ZExt; 1518 case bitc::ATTR_KIND_IMMARG: 1519 return Attribute::ImmArg; 1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1521 return Attribute::SanitizeMemTag; 1522 case bitc::ATTR_KIND_PREALLOCATED: 1523 return Attribute::Preallocated; 1524 case bitc::ATTR_KIND_NOUNDEF: 1525 return Attribute::NoUndef; 1526 case bitc::ATTR_KIND_BYREF: 1527 return Attribute::ByRef; 1528 case bitc::ATTR_KIND_MUSTPROGRESS: 1529 return Attribute::MustProgress; 1530 case bitc::ATTR_KIND_HOT: 1531 return Attribute::Hot; 1532 } 1533 } 1534 1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 MaybeAlign &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = decodeMaybeAlign(Exponent); 1542 return Error::success(); 1543 } 1544 1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1546 *Kind = getAttrFromCode(Code); 1547 if (*Kind == Attribute::None) 1548 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1549 return Error::success(); 1550 } 1551 1552 Error BitcodeReader::parseAttributeGroupBlock() { 1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return Err; 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1564 if (!MaybeEntry) 1565 return MaybeEntry.takeError(); 1566 BitstreamEntry Entry = MaybeEntry.get(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return error("Malformed block"); 1572 case BitstreamEntry::EndBlock: 1573 return Error::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a record. 1580 Record.clear(); 1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1582 if (!MaybeRecord) 1583 return MaybeRecord.takeError(); 1584 switch (MaybeRecord.get()) { 1585 default: // Default behavior: ignore. 1586 break; 1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1588 if (Record.size() < 3) 1589 return error("Invalid record"); 1590 1591 uint64_t GrpID = Record[0]; 1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1593 1594 AttrBuilder B; 1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1596 if (Record[i] == 0) { // Enum attribute 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 1601 // Upgrade old-style byval attribute to one with a type, even if it's 1602 // nullptr. We will have to insert the real type when we associate 1603 // this AttributeList with a function. 1604 if (Kind == Attribute::ByVal) 1605 B.addByValAttr(nullptr); 1606 else if (Kind == Attribute::StructRet) 1607 B.addStructRetAttr(nullptr); 1608 else if (Kind == Attribute::InAlloca) 1609 B.addInAllocaAttr(nullptr); 1610 else if (Attribute::isEnumAttrKind(Kind)) 1611 B.addAttribute(Kind); 1612 else 1613 return error("Not an enum attribute"); 1614 } else if (Record[i] == 1) { // Integer attribute 1615 Attribute::AttrKind Kind; 1616 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1617 return Err; 1618 if (!Attribute::isIntAttrKind(Kind)) 1619 return error("Not an int attribute"); 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 else if (Kind == Attribute::VScaleRange) 1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else { 1651 assert((Record[i] == 5 || Record[i] == 6) && 1652 "Invalid attribute group entry"); 1653 bool HasType = Record[i] == 6; 1654 Attribute::AttrKind Kind; 1655 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1656 return Err; 1657 if (!Attribute::isTypeAttrKind(Kind)) 1658 return error("Not a type attribute"); 1659 1660 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 UpgradeAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.empty()) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1731 ResultTy = Type::getBFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_FLOAT: // FLOAT 1734 ResultTy = Type::getFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1737 ResultTy = Type::getDoubleTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1740 ResultTy = Type::getX86_FP80Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_FP128: // FP128 1743 ResultTy = Type::getFP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1746 ResultTy = Type::getPPC_FP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_LABEL: // LABEL 1749 ResultTy = Type::getLabelTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_METADATA: // METADATA 1752 ResultTy = Type::getMetadataTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1755 ResultTy = Type::getX86_MMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1758 ResultTy = Type::getX86_AMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 if (Context.supportsTypedPointers()) 1792 return error( 1793 "Opaque pointers are only supported in -opaque-pointers mode"); 1794 unsigned AddressSpace = Record[0]; 1795 ResultTy = PointerType::get(Context, AddressSpace); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION_OLD: { 1799 // Deprecated, but still needed to read old bitcode files. 1800 // FUNCTION: [vararg, attrid, retty, paramty x N] 1801 if (Record.size() < 3) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> ArgTys; 1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 ArgTys.push_back(T); 1807 else 1808 break; 1809 } 1810 1811 ResultTy = getTypeByID(Record[2]); 1812 if (!ResultTy || ArgTys.size() < Record.size()-3) 1813 return error("Invalid type"); 1814 1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1816 break; 1817 } 1818 case bitc::TYPE_CODE_FUNCTION: { 1819 // FUNCTION: [vararg, retty, paramty x N] 1820 if (Record.size() < 2) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) { 1825 if (!FunctionType::isValidArgumentType(T)) 1826 return error("Invalid function argument type"); 1827 ArgTys.push_back(T); 1828 } 1829 else 1830 break; 1831 } 1832 1833 ResultTy = getTypeByID(Record[1]); 1834 if (!ResultTy || ArgTys.size() < Record.size()-2) 1835 return error("Invalid type"); 1836 1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.empty()) 1842 return error("Invalid record"); 1843 SmallVector<Type*, 8> EltTys; 1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1845 if (Type *T = getTypeByID(Record[i])) 1846 EltTys.push_back(T); 1847 else 1848 break; 1849 } 1850 if (EltTys.size() != Record.size()-1) 1851 return error("Invalid type"); 1852 ResultTy = StructType::get(Context, EltTys, Record[0]); 1853 break; 1854 } 1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1856 if (convertToString(Record, 0, TypeName)) 1857 return error("Invalid record"); 1858 continue; 1859 1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1861 if (Record.empty()) 1862 return error("Invalid record"); 1863 1864 if (NumRecords >= TypeList.size()) 1865 return error("Invalid TYPE table"); 1866 1867 // Check to see if this was forward referenced, if so fill in the temp. 1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1869 if (Res) { 1870 Res->setName(TypeName); 1871 TypeList[NumRecords] = nullptr; 1872 } else // Otherwise, create a new struct. 1873 Res = createIdentifiedStructType(Context, TypeName); 1874 TypeName.clear(); 1875 1876 SmallVector<Type*, 8> EltTys; 1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1878 if (Type *T = getTypeByID(Record[i])) 1879 EltTys.push_back(T); 1880 else 1881 break; 1882 } 1883 if (EltTys.size() != Record.size()-1) 1884 return error("Invalid record"); 1885 Res->setBody(EltTys, Record[0]); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1890 if (Record.size() != 1) 1891 return error("Invalid record"); 1892 1893 if (NumRecords >= TypeList.size()) 1894 return error("Invalid TYPE table"); 1895 1896 // Check to see if this was forward referenced, if so fill in the temp. 1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1898 if (Res) { 1899 Res->setName(TypeName); 1900 TypeList[NumRecords] = nullptr; 1901 } else // Otherwise, create a new struct with no body. 1902 Res = createIdentifiedStructType(Context, TypeName); 1903 TypeName.clear(); 1904 ResultTy = Res; 1905 break; 1906 } 1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1908 if (Record.size() < 2) 1909 return error("Invalid record"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 ResultTy = ArrayType::get(ResultTy, Record[0]); 1914 break; 1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1916 // [numelts, eltty, scalable] 1917 if (Record.size() < 2) 1918 return error("Invalid record"); 1919 if (Record[0] == 0) 1920 return error("Invalid vector length"); 1921 ResultTy = getTypeByID(Record[1]); 1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1923 return error("Invalid type"); 1924 bool Scalable = Record.size() > 2 ? Record[2] : false; 1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 Error BitcodeReader::parseOperandBundleTags() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return Err; 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1950 if (!MaybeEntry) 1951 return MaybeEntry.takeError(); 1952 BitstreamEntry Entry = MaybeEntry.get(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 return Error::success(); 1960 case BitstreamEntry::Record: 1961 // The interesting case. 1962 break; 1963 } 1964 1965 // Tags are implicitly mapped to integers by their order. 1966 1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1968 if (!MaybeRecord) 1969 return MaybeRecord.takeError(); 1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1971 return error("Invalid record"); 1972 1973 // OPERAND_BUNDLE_TAG: [strchr x N] 1974 BundleTags.emplace_back(); 1975 if (convertToString(Record, 0, BundleTags.back())) 1976 return error("Invalid record"); 1977 Record.clear(); 1978 } 1979 } 1980 1981 Error BitcodeReader::parseSyncScopeNames() { 1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1983 return Err; 1984 1985 if (!SSIDs.empty()) 1986 return error("Invalid multiple synchronization scope names blocks"); 1987 1988 SmallVector<uint64_t, 64> Record; 1989 while (true) { 1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1991 if (!MaybeEntry) 1992 return MaybeEntry.takeError(); 1993 BitstreamEntry Entry = MaybeEntry.get(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (SSIDs.empty()) 2001 return error("Invalid empty synchronization scope names block"); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Synchronization scope names are implicitly mapped to synchronization 2009 // scope IDs by their order. 2010 2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2012 if (!MaybeRecord) 2013 return MaybeRecord.takeError(); 2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2015 return error("Invalid record"); 2016 2017 SmallString<16> SSN; 2018 if (convertToString(Record, 0, SSN)) 2019 return error("Invalid record"); 2020 2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO) { 2043 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2044 if (TT.supportsCOMDAT()) 2045 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2046 else 2047 GO->setComdat(nullptr); 2048 } 2049 } 2050 return V; 2051 } 2052 2053 /// Helper to note and return the current location, and jump to the given 2054 /// offset. 2055 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2056 BitstreamCursor &Stream) { 2057 // Save the current parsing location so we can jump back at the end 2058 // of the VST read. 2059 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2060 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2061 return std::move(JumpFailed); 2062 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2063 if (!MaybeEntry) 2064 return MaybeEntry.takeError(); 2065 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2066 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2067 return CurrentBit; 2068 } 2069 2070 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2071 Function *F, 2072 ArrayRef<uint64_t> Record) { 2073 // Note that we subtract 1 here because the offset is relative to one word 2074 // before the start of the identification or module block, which was 2075 // historically always the start of the regular bitcode header. 2076 uint64_t FuncWordOffset = Record[1] - 1; 2077 uint64_t FuncBitOffset = FuncWordOffset * 32; 2078 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2079 // Set the LastFunctionBlockBit to point to the last function block. 2080 // Later when parsing is resumed after function materialization, 2081 // we can simply skip that last function block. 2082 if (FuncBitOffset > LastFunctionBlockBit) 2083 LastFunctionBlockBit = FuncBitOffset; 2084 } 2085 2086 /// Read a new-style GlobalValue symbol table. 2087 Error BitcodeReader::parseGlobalValueSymbolTable() { 2088 unsigned FuncBitcodeOffsetDelta = 2089 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2090 2091 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2092 return Err; 2093 2094 SmallVector<uint64_t, 64> Record; 2095 while (true) { 2096 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2097 if (!MaybeEntry) 2098 return MaybeEntry.takeError(); 2099 BitstreamEntry Entry = MaybeEntry.get(); 2100 2101 switch (Entry.Kind) { 2102 case BitstreamEntry::SubBlock: 2103 case BitstreamEntry::Error: 2104 return error("Malformed block"); 2105 case BitstreamEntry::EndBlock: 2106 return Error::success(); 2107 case BitstreamEntry::Record: 2108 break; 2109 } 2110 2111 Record.clear(); 2112 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2113 if (!MaybeRecord) 2114 return MaybeRecord.takeError(); 2115 switch (MaybeRecord.get()) { 2116 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2117 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2118 cast<Function>(ValueList[Record[0]]), Record); 2119 break; 2120 } 2121 } 2122 } 2123 2124 /// Parse the value symbol table at either the current parsing location or 2125 /// at the given bit offset if provided. 2126 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2127 uint64_t CurrentBit; 2128 // Pass in the Offset to distinguish between calling for the module-level 2129 // VST (where we want to jump to the VST offset) and the function-level 2130 // VST (where we don't). 2131 if (Offset > 0) { 2132 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2133 if (!MaybeCurrentBit) 2134 return MaybeCurrentBit.takeError(); 2135 CurrentBit = MaybeCurrentBit.get(); 2136 // If this module uses a string table, read this as a module-level VST. 2137 if (UseStrtab) { 2138 if (Error Err = parseGlobalValueSymbolTable()) 2139 return Err; 2140 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2141 return JumpFailed; 2142 return Error::success(); 2143 } 2144 // Otherwise, the VST will be in a similar format to a function-level VST, 2145 // and will contain symbol names. 2146 } 2147 2148 // Compute the delta between the bitcode indices in the VST (the word offset 2149 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2150 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2151 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2152 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2153 // just before entering the VST subblock because: 1) the EnterSubBlock 2154 // changes the AbbrevID width; 2) the VST block is nested within the same 2155 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2156 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2157 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2158 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2159 unsigned FuncBitcodeOffsetDelta = 2160 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2161 2162 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2163 return Err; 2164 2165 SmallVector<uint64_t, 64> Record; 2166 2167 Triple TT(TheModule->getTargetTriple()); 2168 2169 // Read all the records for this value table. 2170 SmallString<128> ValueName; 2171 2172 while (true) { 2173 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2174 if (!MaybeEntry) 2175 return MaybeEntry.takeError(); 2176 BitstreamEntry Entry = MaybeEntry.get(); 2177 2178 switch (Entry.Kind) { 2179 case BitstreamEntry::SubBlock: // Handled for us already. 2180 case BitstreamEntry::Error: 2181 return error("Malformed block"); 2182 case BitstreamEntry::EndBlock: 2183 if (Offset > 0) 2184 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2185 return JumpFailed; 2186 return Error::success(); 2187 case BitstreamEntry::Record: 2188 // The interesting case. 2189 break; 2190 } 2191 2192 // Read a record. 2193 Record.clear(); 2194 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2195 if (!MaybeRecord) 2196 return MaybeRecord.takeError(); 2197 switch (MaybeRecord.get()) { 2198 default: // Default behavior: unknown type. 2199 break; 2200 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2201 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2202 if (Error Err = ValOrErr.takeError()) 2203 return Err; 2204 ValOrErr.get(); 2205 break; 2206 } 2207 case bitc::VST_CODE_FNENTRY: { 2208 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2209 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2210 if (Error Err = ValOrErr.takeError()) 2211 return Err; 2212 Value *V = ValOrErr.get(); 2213 2214 // Ignore function offsets emitted for aliases of functions in older 2215 // versions of LLVM. 2216 if (auto *F = dyn_cast<Function>(V)) 2217 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2218 break; 2219 } 2220 case bitc::VST_CODE_BBENTRY: { 2221 if (convertToString(Record, 1, ValueName)) 2222 return error("Invalid record"); 2223 BasicBlock *BB = getBasicBlock(Record[0]); 2224 if (!BB) 2225 return error("Invalid record"); 2226 2227 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2228 ValueName.clear(); 2229 break; 2230 } 2231 } 2232 } 2233 } 2234 2235 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2236 /// encoding. 2237 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2238 if ((V & 1) == 0) 2239 return V >> 1; 2240 if (V != 1) 2241 return -(V >> 1); 2242 // There is no such thing as -0 with integers. "-0" really means MININT. 2243 return 1ULL << 63; 2244 } 2245 2246 /// Resolve all of the initializers for global values and aliases that we can. 2247 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2248 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2249 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2250 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2251 2252 GlobalInitWorklist.swap(GlobalInits); 2253 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2254 FunctionOperandWorklist.swap(FunctionOperands); 2255 2256 while (!GlobalInitWorklist.empty()) { 2257 unsigned ValID = GlobalInitWorklist.back().second; 2258 if (ValID >= ValueList.size()) { 2259 // Not ready to resolve this yet, it requires something later in the file. 2260 GlobalInits.push_back(GlobalInitWorklist.back()); 2261 } else { 2262 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2263 GlobalInitWorklist.back().first->setInitializer(C); 2264 else 2265 return error("Expected a constant"); 2266 } 2267 GlobalInitWorklist.pop_back(); 2268 } 2269 2270 while (!IndirectSymbolInitWorklist.empty()) { 2271 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2272 if (ValID >= ValueList.size()) { 2273 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2274 } else { 2275 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2276 if (!C) 2277 return error("Expected a constant"); 2278 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2279 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2280 if (C->getType() != GV->getType()) 2281 return error("Alias and aliasee types don't match"); 2282 GA->setAliasee(C); 2283 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2284 GI->setResolver(C); 2285 } else { 2286 return error("Expected an alias or an ifunc"); 2287 } 2288 } 2289 IndirectSymbolInitWorklist.pop_back(); 2290 } 2291 2292 while (!FunctionOperandWorklist.empty()) { 2293 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2294 if (Info.PersonalityFn) { 2295 unsigned ValID = Info.PersonalityFn - 1; 2296 if (ValID < ValueList.size()) { 2297 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2298 Info.F->setPersonalityFn(C); 2299 else 2300 return error("Expected a constant"); 2301 Info.PersonalityFn = 0; 2302 } 2303 } 2304 if (Info.Prefix) { 2305 unsigned ValID = Info.Prefix - 1; 2306 if (ValID < ValueList.size()) { 2307 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2308 Info.F->setPrefixData(C); 2309 else 2310 return error("Expected a constant"); 2311 Info.Prefix = 0; 2312 } 2313 } 2314 if (Info.Prologue) { 2315 unsigned ValID = Info.Prologue - 1; 2316 if (ValID < ValueList.size()) { 2317 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2318 Info.F->setPrologueData(C); 2319 else 2320 return error("Expected a constant"); 2321 Info.Prologue = 0; 2322 } 2323 } 2324 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2325 FunctionOperands.push_back(Info); 2326 FunctionOperandWorklist.pop_back(); 2327 } 2328 2329 return Error::success(); 2330 } 2331 2332 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2333 SmallVector<uint64_t, 8> Words(Vals.size()); 2334 transform(Vals, Words.begin(), 2335 BitcodeReader::decodeSignRotatedValue); 2336 2337 return APInt(TypeBits, Words); 2338 } 2339 2340 Error BitcodeReader::parseConstants() { 2341 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2342 return Err; 2343 2344 SmallVector<uint64_t, 64> Record; 2345 2346 // Read all the records for this value table. 2347 Type *CurTy = Type::getInt32Ty(Context); 2348 unsigned NextCstNo = ValueList.size(); 2349 2350 struct DelayedShufTy { 2351 VectorType *OpTy; 2352 VectorType *RTy; 2353 uint64_t Op0Idx; 2354 uint64_t Op1Idx; 2355 uint64_t Op2Idx; 2356 unsigned CstNo; 2357 }; 2358 std::vector<DelayedShufTy> DelayedShuffles; 2359 struct DelayedSelTy { 2360 Type *OpTy; 2361 uint64_t Op0Idx; 2362 uint64_t Op1Idx; 2363 uint64_t Op2Idx; 2364 unsigned CstNo; 2365 }; 2366 std::vector<DelayedSelTy> DelayedSelectors; 2367 2368 while (true) { 2369 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2370 if (!MaybeEntry) 2371 return MaybeEntry.takeError(); 2372 BitstreamEntry Entry = MaybeEntry.get(); 2373 2374 switch (Entry.Kind) { 2375 case BitstreamEntry::SubBlock: // Handled for us already. 2376 case BitstreamEntry::Error: 2377 return error("Malformed block"); 2378 case BitstreamEntry::EndBlock: 2379 // Once all the constants have been read, go through and resolve forward 2380 // references. 2381 // 2382 // We have to treat shuffles specially because they don't have three 2383 // operands anymore. We need to convert the shuffle mask into an array, 2384 // and we can't convert a forward reference. 2385 for (auto &DelayedShuffle : DelayedShuffles) { 2386 VectorType *OpTy = DelayedShuffle.OpTy; 2387 VectorType *RTy = DelayedShuffle.RTy; 2388 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2389 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2390 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2391 uint64_t CstNo = DelayedShuffle.CstNo; 2392 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2393 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2394 Type *ShufTy = 2395 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2396 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2397 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2398 return error("Invalid shufflevector operands"); 2399 SmallVector<int, 16> Mask; 2400 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2401 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2402 ValueList.assignValue(V, CstNo); 2403 } 2404 for (auto &DelayedSelector : DelayedSelectors) { 2405 Type *OpTy = DelayedSelector.OpTy; 2406 Type *SelectorTy = Type::getInt1Ty(Context); 2407 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2408 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2409 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2410 uint64_t CstNo = DelayedSelector.CstNo; 2411 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2412 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2413 // The selector might be an i1 or an <n x i1> 2414 // Get the type from the ValueList before getting a forward ref. 2415 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2416 Value *V = ValueList[Op0Idx]; 2417 assert(V); 2418 if (SelectorTy != V->getType()) 2419 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2420 } 2421 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2422 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2423 ValueList.assignValue(V, CstNo); 2424 } 2425 2426 if (NextCstNo != ValueList.size()) 2427 return error("Invalid constant reference"); 2428 2429 ValueList.resolveConstantForwardRefs(); 2430 return Error::success(); 2431 case BitstreamEntry::Record: 2432 // The interesting case. 2433 break; 2434 } 2435 2436 // Read a record. 2437 Record.clear(); 2438 Type *VoidType = Type::getVoidTy(Context); 2439 Value *V = nullptr; 2440 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2441 if (!MaybeBitCode) 2442 return MaybeBitCode.takeError(); 2443 switch (unsigned BitCode = MaybeBitCode.get()) { 2444 default: // Default behavior: unknown constant 2445 case bitc::CST_CODE_UNDEF: // UNDEF 2446 V = UndefValue::get(CurTy); 2447 break; 2448 case bitc::CST_CODE_POISON: // POISON 2449 V = PoisonValue::get(CurTy); 2450 break; 2451 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2452 if (Record.empty()) 2453 return error("Invalid record"); 2454 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2455 return error("Invalid record"); 2456 if (TypeList[Record[0]] == VoidType) 2457 return error("Invalid constant type"); 2458 CurTy = TypeList[Record[0]]; 2459 continue; // Skip the ValueList manipulation. 2460 case bitc::CST_CODE_NULL: // NULL 2461 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2462 return error("Invalid type for a constant null value"); 2463 V = Constant::getNullValue(CurTy); 2464 break; 2465 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2466 if (!CurTy->isIntegerTy() || Record.empty()) 2467 return error("Invalid record"); 2468 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2469 break; 2470 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2471 if (!CurTy->isIntegerTy() || Record.empty()) 2472 return error("Invalid record"); 2473 2474 APInt VInt = 2475 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2476 V = ConstantInt::get(Context, VInt); 2477 2478 break; 2479 } 2480 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2481 if (Record.empty()) 2482 return error("Invalid record"); 2483 if (CurTy->isHalfTy()) 2484 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2485 APInt(16, (uint16_t)Record[0]))); 2486 else if (CurTy->isBFloatTy()) 2487 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2488 APInt(16, (uint32_t)Record[0]))); 2489 else if (CurTy->isFloatTy()) 2490 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2491 APInt(32, (uint32_t)Record[0]))); 2492 else if (CurTy->isDoubleTy()) 2493 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2494 APInt(64, Record[0]))); 2495 else if (CurTy->isX86_FP80Ty()) { 2496 // Bits are not stored the same way as a normal i80 APInt, compensate. 2497 uint64_t Rearrange[2]; 2498 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2499 Rearrange[1] = Record[0] >> 48; 2500 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2501 APInt(80, Rearrange))); 2502 } else if (CurTy->isFP128Ty()) 2503 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2504 APInt(128, Record))); 2505 else if (CurTy->isPPC_FP128Ty()) 2506 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2507 APInt(128, Record))); 2508 else 2509 V = UndefValue::get(CurTy); 2510 break; 2511 } 2512 2513 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2514 if (Record.empty()) 2515 return error("Invalid record"); 2516 2517 unsigned Size = Record.size(); 2518 SmallVector<Constant*, 16> Elts; 2519 2520 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2521 for (unsigned i = 0; i != Size; ++i) 2522 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2523 STy->getElementType(i))); 2524 V = ConstantStruct::get(STy, Elts); 2525 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2526 Type *EltTy = ATy->getElementType(); 2527 for (unsigned i = 0; i != Size; ++i) 2528 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2529 V = ConstantArray::get(ATy, Elts); 2530 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2531 Type *EltTy = VTy->getElementType(); 2532 for (unsigned i = 0; i != Size; ++i) 2533 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2534 V = ConstantVector::get(Elts); 2535 } else { 2536 V = UndefValue::get(CurTy); 2537 } 2538 break; 2539 } 2540 case bitc::CST_CODE_STRING: // STRING: [values] 2541 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2542 if (Record.empty()) 2543 return error("Invalid record"); 2544 2545 SmallString<16> Elts(Record.begin(), Record.end()); 2546 V = ConstantDataArray::getString(Context, Elts, 2547 BitCode == bitc::CST_CODE_CSTRING); 2548 break; 2549 } 2550 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2551 if (Record.empty()) 2552 return error("Invalid record"); 2553 2554 Type *EltTy; 2555 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2556 EltTy = Array->getElementType(); 2557 else 2558 EltTy = cast<VectorType>(CurTy)->getElementType(); 2559 if (EltTy->isIntegerTy(8)) { 2560 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2561 if (isa<VectorType>(CurTy)) 2562 V = ConstantDataVector::get(Context, Elts); 2563 else 2564 V = ConstantDataArray::get(Context, Elts); 2565 } else if (EltTy->isIntegerTy(16)) { 2566 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2567 if (isa<VectorType>(CurTy)) 2568 V = ConstantDataVector::get(Context, Elts); 2569 else 2570 V = ConstantDataArray::get(Context, Elts); 2571 } else if (EltTy->isIntegerTy(32)) { 2572 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2573 if (isa<VectorType>(CurTy)) 2574 V = ConstantDataVector::get(Context, Elts); 2575 else 2576 V = ConstantDataArray::get(Context, Elts); 2577 } else if (EltTy->isIntegerTy(64)) { 2578 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2579 if (isa<VectorType>(CurTy)) 2580 V = ConstantDataVector::get(Context, Elts); 2581 else 2582 V = ConstantDataArray::get(Context, Elts); 2583 } else if (EltTy->isHalfTy()) { 2584 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2585 if (isa<VectorType>(CurTy)) 2586 V = ConstantDataVector::getFP(EltTy, Elts); 2587 else 2588 V = ConstantDataArray::getFP(EltTy, Elts); 2589 } else if (EltTy->isBFloatTy()) { 2590 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2591 if (isa<VectorType>(CurTy)) 2592 V = ConstantDataVector::getFP(EltTy, Elts); 2593 else 2594 V = ConstantDataArray::getFP(EltTy, Elts); 2595 } else if (EltTy->isFloatTy()) { 2596 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2597 if (isa<VectorType>(CurTy)) 2598 V = ConstantDataVector::getFP(EltTy, Elts); 2599 else 2600 V = ConstantDataArray::getFP(EltTy, Elts); 2601 } else if (EltTy->isDoubleTy()) { 2602 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2603 if (isa<VectorType>(CurTy)) 2604 V = ConstantDataVector::getFP(EltTy, Elts); 2605 else 2606 V = ConstantDataArray::getFP(EltTy, Elts); 2607 } else { 2608 return error("Invalid type for value"); 2609 } 2610 break; 2611 } 2612 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2613 if (Record.size() < 2) 2614 return error("Invalid record"); 2615 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2616 if (Opc < 0) { 2617 V = UndefValue::get(CurTy); // Unknown unop. 2618 } else { 2619 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2620 unsigned Flags = 0; 2621 V = ConstantExpr::get(Opc, LHS, Flags); 2622 } 2623 break; 2624 } 2625 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2626 if (Record.size() < 3) 2627 return error("Invalid record"); 2628 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2629 if (Opc < 0) { 2630 V = UndefValue::get(CurTy); // Unknown binop. 2631 } else { 2632 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2633 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2634 unsigned Flags = 0; 2635 if (Record.size() >= 4) { 2636 if (Opc == Instruction::Add || 2637 Opc == Instruction::Sub || 2638 Opc == Instruction::Mul || 2639 Opc == Instruction::Shl) { 2640 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2641 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2642 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2643 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2644 } else if (Opc == Instruction::SDiv || 2645 Opc == Instruction::UDiv || 2646 Opc == Instruction::LShr || 2647 Opc == Instruction::AShr) { 2648 if (Record[3] & (1 << bitc::PEO_EXACT)) 2649 Flags |= SDivOperator::IsExact; 2650 } 2651 } 2652 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2653 } 2654 break; 2655 } 2656 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2657 if (Record.size() < 3) 2658 return error("Invalid record"); 2659 int Opc = getDecodedCastOpcode(Record[0]); 2660 if (Opc < 0) { 2661 V = UndefValue::get(CurTy); // Unknown cast. 2662 } else { 2663 Type *OpTy = getTypeByID(Record[1]); 2664 if (!OpTy) 2665 return error("Invalid record"); 2666 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2667 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2668 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2669 } 2670 break; 2671 } 2672 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2673 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2674 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2675 // operands] 2676 unsigned OpNum = 0; 2677 Type *PointeeType = nullptr; 2678 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2679 Record.size() % 2) 2680 PointeeType = getTypeByID(Record[OpNum++]); 2681 2682 bool InBounds = false; 2683 Optional<unsigned> InRangeIndex; 2684 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2685 uint64_t Op = Record[OpNum++]; 2686 InBounds = Op & 1; 2687 InRangeIndex = Op >> 1; 2688 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2689 InBounds = true; 2690 2691 SmallVector<Constant*, 16> Elts; 2692 Type *Elt0FullTy = nullptr; 2693 while (OpNum != Record.size()) { 2694 if (!Elt0FullTy) 2695 Elt0FullTy = getTypeByID(Record[OpNum]); 2696 Type *ElTy = getTypeByID(Record[OpNum++]); 2697 if (!ElTy) 2698 return error("Invalid record"); 2699 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2700 } 2701 2702 if (Elts.size() < 1) 2703 return error("Invalid gep with no operands"); 2704 2705 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2706 if (!PointeeType) 2707 PointeeType = OrigPtrTy->getElementType(); 2708 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2709 return error("Explicit gep operator type does not match pointee type " 2710 "of pointer operand"); 2711 2712 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2713 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2714 InBounds, InRangeIndex); 2715 break; 2716 } 2717 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2718 if (Record.size() < 3) 2719 return error("Invalid record"); 2720 2721 DelayedSelectors.push_back( 2722 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2723 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2724 ++NextCstNo; 2725 continue; 2726 } 2727 case bitc::CST_CODE_CE_EXTRACTELT 2728 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2729 if (Record.size() < 3) 2730 return error("Invalid record"); 2731 VectorType *OpTy = 2732 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2733 if (!OpTy) 2734 return error("Invalid record"); 2735 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2736 Constant *Op1 = nullptr; 2737 if (Record.size() == 4) { 2738 Type *IdxTy = getTypeByID(Record[2]); 2739 if (!IdxTy) 2740 return error("Invalid record"); 2741 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2742 } else { 2743 // Deprecated, but still needed to read old bitcode files. 2744 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2745 } 2746 if (!Op1) 2747 return error("Invalid record"); 2748 V = ConstantExpr::getExtractElement(Op0, Op1); 2749 break; 2750 } 2751 case bitc::CST_CODE_CE_INSERTELT 2752 : { // CE_INSERTELT: [opval, opval, opty, opval] 2753 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2754 if (Record.size() < 3 || !OpTy) 2755 return error("Invalid record"); 2756 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2757 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2758 OpTy->getElementType()); 2759 Constant *Op2 = nullptr; 2760 if (Record.size() == 4) { 2761 Type *IdxTy = getTypeByID(Record[2]); 2762 if (!IdxTy) 2763 return error("Invalid record"); 2764 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2765 } else { 2766 // Deprecated, but still needed to read old bitcode files. 2767 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2768 } 2769 if (!Op2) 2770 return error("Invalid record"); 2771 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2772 break; 2773 } 2774 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2775 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2776 if (Record.size() < 3 || !OpTy) 2777 return error("Invalid record"); 2778 DelayedShuffles.push_back( 2779 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2780 ++NextCstNo; 2781 continue; 2782 } 2783 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2784 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2785 VectorType *OpTy = 2786 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2787 if (Record.size() < 4 || !RTy || !OpTy) 2788 return error("Invalid record"); 2789 DelayedShuffles.push_back( 2790 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2791 ++NextCstNo; 2792 continue; 2793 } 2794 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2795 if (Record.size() < 4) 2796 return error("Invalid record"); 2797 Type *OpTy = getTypeByID(Record[0]); 2798 if (!OpTy) 2799 return error("Invalid record"); 2800 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2801 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2802 2803 if (OpTy->isFPOrFPVectorTy()) 2804 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2805 else 2806 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2807 break; 2808 } 2809 // This maintains backward compatibility, pre-asm dialect keywords. 2810 // Deprecated, but still needed to read old bitcode files. 2811 case bitc::CST_CODE_INLINEASM_OLD: { 2812 if (Record.size() < 2) 2813 return error("Invalid record"); 2814 std::string AsmStr, ConstrStr; 2815 bool HasSideEffects = Record[0] & 1; 2816 bool IsAlignStack = Record[0] >> 1; 2817 unsigned AsmStrSize = Record[1]; 2818 if (2+AsmStrSize >= Record.size()) 2819 return error("Invalid record"); 2820 unsigned ConstStrSize = Record[2+AsmStrSize]; 2821 if (3+AsmStrSize+ConstStrSize > Record.size()) 2822 return error("Invalid record"); 2823 2824 for (unsigned i = 0; i != AsmStrSize; ++i) 2825 AsmStr += (char)Record[2+i]; 2826 for (unsigned i = 0; i != ConstStrSize; ++i) 2827 ConstrStr += (char)Record[3+AsmStrSize+i]; 2828 UpgradeInlineAsmString(&AsmStr); 2829 V = InlineAsm::get( 2830 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2831 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2832 break; 2833 } 2834 // This version adds support for the asm dialect keywords (e.g., 2835 // inteldialect). 2836 case bitc::CST_CODE_INLINEASM_OLD2: { 2837 if (Record.size() < 2) 2838 return error("Invalid record"); 2839 std::string AsmStr, ConstrStr; 2840 bool HasSideEffects = Record[0] & 1; 2841 bool IsAlignStack = (Record[0] >> 1) & 1; 2842 unsigned AsmDialect = Record[0] >> 2; 2843 unsigned AsmStrSize = Record[1]; 2844 if (2+AsmStrSize >= Record.size()) 2845 return error("Invalid record"); 2846 unsigned ConstStrSize = Record[2+AsmStrSize]; 2847 if (3+AsmStrSize+ConstStrSize > Record.size()) 2848 return error("Invalid record"); 2849 2850 for (unsigned i = 0; i != AsmStrSize; ++i) 2851 AsmStr += (char)Record[2+i]; 2852 for (unsigned i = 0; i != ConstStrSize; ++i) 2853 ConstrStr += (char)Record[3+AsmStrSize+i]; 2854 UpgradeInlineAsmString(&AsmStr); 2855 V = InlineAsm::get( 2856 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2857 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2858 InlineAsm::AsmDialect(AsmDialect)); 2859 break; 2860 } 2861 // This version adds support for the unwind keyword. 2862 case bitc::CST_CODE_INLINEASM: { 2863 if (Record.size() < 2) 2864 return error("Invalid record"); 2865 std::string AsmStr, ConstrStr; 2866 bool HasSideEffects = Record[0] & 1; 2867 bool IsAlignStack = (Record[0] >> 1) & 1; 2868 unsigned AsmDialect = (Record[0] >> 2) & 1; 2869 bool CanThrow = (Record[0] >> 3) & 1; 2870 unsigned AsmStrSize = Record[1]; 2871 if (2 + AsmStrSize >= Record.size()) 2872 return error("Invalid record"); 2873 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2874 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2875 return error("Invalid record"); 2876 2877 for (unsigned i = 0; i != AsmStrSize; ++i) 2878 AsmStr += (char)Record[2 + i]; 2879 for (unsigned i = 0; i != ConstStrSize; ++i) 2880 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2881 UpgradeInlineAsmString(&AsmStr); 2882 V = InlineAsm::get( 2883 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2884 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2885 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2886 break; 2887 } 2888 case bitc::CST_CODE_BLOCKADDRESS:{ 2889 if (Record.size() < 3) 2890 return error("Invalid record"); 2891 Type *FnTy = getTypeByID(Record[0]); 2892 if (!FnTy) 2893 return error("Invalid record"); 2894 Function *Fn = 2895 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2896 if (!Fn) 2897 return error("Invalid record"); 2898 2899 // If the function is already parsed we can insert the block address right 2900 // away. 2901 BasicBlock *BB; 2902 unsigned BBID = Record[2]; 2903 if (!BBID) 2904 // Invalid reference to entry block. 2905 return error("Invalid ID"); 2906 if (!Fn->empty()) { 2907 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2908 for (size_t I = 0, E = BBID; I != E; ++I) { 2909 if (BBI == BBE) 2910 return error("Invalid ID"); 2911 ++BBI; 2912 } 2913 BB = &*BBI; 2914 } else { 2915 // Otherwise insert a placeholder and remember it so it can be inserted 2916 // when the function is parsed. 2917 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2918 if (FwdBBs.empty()) 2919 BasicBlockFwdRefQueue.push_back(Fn); 2920 if (FwdBBs.size() < BBID + 1) 2921 FwdBBs.resize(BBID + 1); 2922 if (!FwdBBs[BBID]) 2923 FwdBBs[BBID] = BasicBlock::Create(Context); 2924 BB = FwdBBs[BBID]; 2925 } 2926 V = BlockAddress::get(Fn, BB); 2927 break; 2928 } 2929 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2930 if (Record.size() < 2) 2931 return error("Invalid record"); 2932 Type *GVTy = getTypeByID(Record[0]); 2933 if (!GVTy) 2934 return error("Invalid record"); 2935 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2936 ValueList.getConstantFwdRef(Record[1], GVTy)); 2937 if (!GV) 2938 return error("Invalid record"); 2939 2940 V = DSOLocalEquivalent::get(GV); 2941 break; 2942 } 2943 } 2944 2945 ValueList.assignValue(V, NextCstNo); 2946 ++NextCstNo; 2947 } 2948 } 2949 2950 Error BitcodeReader::parseUseLists() { 2951 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2952 return Err; 2953 2954 // Read all the records. 2955 SmallVector<uint64_t, 64> Record; 2956 2957 while (true) { 2958 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2959 if (!MaybeEntry) 2960 return MaybeEntry.takeError(); 2961 BitstreamEntry Entry = MaybeEntry.get(); 2962 2963 switch (Entry.Kind) { 2964 case BitstreamEntry::SubBlock: // Handled for us already. 2965 case BitstreamEntry::Error: 2966 return error("Malformed block"); 2967 case BitstreamEntry::EndBlock: 2968 return Error::success(); 2969 case BitstreamEntry::Record: 2970 // The interesting case. 2971 break; 2972 } 2973 2974 // Read a use list record. 2975 Record.clear(); 2976 bool IsBB = false; 2977 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2978 if (!MaybeRecord) 2979 return MaybeRecord.takeError(); 2980 switch (MaybeRecord.get()) { 2981 default: // Default behavior: unknown type. 2982 break; 2983 case bitc::USELIST_CODE_BB: 2984 IsBB = true; 2985 LLVM_FALLTHROUGH; 2986 case bitc::USELIST_CODE_DEFAULT: { 2987 unsigned RecordLength = Record.size(); 2988 if (RecordLength < 3) 2989 // Records should have at least an ID and two indexes. 2990 return error("Invalid record"); 2991 unsigned ID = Record.pop_back_val(); 2992 2993 Value *V; 2994 if (IsBB) { 2995 assert(ID < FunctionBBs.size() && "Basic block not found"); 2996 V = FunctionBBs[ID]; 2997 } else 2998 V = ValueList[ID]; 2999 unsigned NumUses = 0; 3000 SmallDenseMap<const Use *, unsigned, 16> Order; 3001 for (const Use &U : V->materialized_uses()) { 3002 if (++NumUses > Record.size()) 3003 break; 3004 Order[&U] = Record[NumUses - 1]; 3005 } 3006 if (Order.size() != Record.size() || NumUses > Record.size()) 3007 // Mismatches can happen if the functions are being materialized lazily 3008 // (out-of-order), or a value has been upgraded. 3009 break; 3010 3011 V->sortUseList([&](const Use &L, const Use &R) { 3012 return Order.lookup(&L) < Order.lookup(&R); 3013 }); 3014 break; 3015 } 3016 } 3017 } 3018 } 3019 3020 /// When we see the block for metadata, remember where it is and then skip it. 3021 /// This lets us lazily deserialize the metadata. 3022 Error BitcodeReader::rememberAndSkipMetadata() { 3023 // Save the current stream state. 3024 uint64_t CurBit = Stream.GetCurrentBitNo(); 3025 DeferredMetadataInfo.push_back(CurBit); 3026 3027 // Skip over the block for now. 3028 if (Error Err = Stream.SkipBlock()) 3029 return Err; 3030 return Error::success(); 3031 } 3032 3033 Error BitcodeReader::materializeMetadata() { 3034 for (uint64_t BitPos : DeferredMetadataInfo) { 3035 // Move the bit stream to the saved position. 3036 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3037 return JumpFailed; 3038 if (Error Err = MDLoader->parseModuleMetadata()) 3039 return Err; 3040 } 3041 3042 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3043 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3044 // multiple times. 3045 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3046 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3047 NamedMDNode *LinkerOpts = 3048 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3049 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3050 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3051 } 3052 } 3053 3054 DeferredMetadataInfo.clear(); 3055 return Error::success(); 3056 } 3057 3058 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3059 3060 /// When we see the block for a function body, remember where it is and then 3061 /// skip it. This lets us lazily deserialize the functions. 3062 Error BitcodeReader::rememberAndSkipFunctionBody() { 3063 // Get the function we are talking about. 3064 if (FunctionsWithBodies.empty()) 3065 return error("Insufficient function protos"); 3066 3067 Function *Fn = FunctionsWithBodies.back(); 3068 FunctionsWithBodies.pop_back(); 3069 3070 // Save the current stream state. 3071 uint64_t CurBit = Stream.GetCurrentBitNo(); 3072 assert( 3073 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3074 "Mismatch between VST and scanned function offsets"); 3075 DeferredFunctionInfo[Fn] = CurBit; 3076 3077 // Skip over the function block for now. 3078 if (Error Err = Stream.SkipBlock()) 3079 return Err; 3080 return Error::success(); 3081 } 3082 3083 Error BitcodeReader::globalCleanup() { 3084 // Patch the initializers for globals and aliases up. 3085 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3086 return Err; 3087 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3088 return error("Malformed global initializer set"); 3089 3090 // Look for intrinsic functions which need to be upgraded at some point 3091 // and functions that need to have their function attributes upgraded. 3092 for (Function &F : *TheModule) { 3093 MDLoader->upgradeDebugIntrinsics(F); 3094 Function *NewFn; 3095 if (UpgradeIntrinsicFunction(&F, NewFn)) 3096 UpgradedIntrinsics[&F] = NewFn; 3097 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3098 // Some types could be renamed during loading if several modules are 3099 // loaded in the same LLVMContext (LTO scenario). In this case we should 3100 // remangle intrinsics names as well. 3101 RemangledIntrinsics[&F] = Remangled.getValue(); 3102 // Look for functions that rely on old function attribute behavior. 3103 UpgradeFunctionAttributes(F); 3104 } 3105 3106 // Look for global variables which need to be renamed. 3107 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3108 for (GlobalVariable &GV : TheModule->globals()) 3109 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3110 UpgradedVariables.emplace_back(&GV, Upgraded); 3111 for (auto &Pair : UpgradedVariables) { 3112 Pair.first->eraseFromParent(); 3113 TheModule->getGlobalList().push_back(Pair.second); 3114 } 3115 3116 // Force deallocation of memory for these vectors to favor the client that 3117 // want lazy deserialization. 3118 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3119 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3120 return Error::success(); 3121 } 3122 3123 /// Support for lazy parsing of function bodies. This is required if we 3124 /// either have an old bitcode file without a VST forward declaration record, 3125 /// or if we have an anonymous function being materialized, since anonymous 3126 /// functions do not have a name and are therefore not in the VST. 3127 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3128 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3129 return JumpFailed; 3130 3131 if (Stream.AtEndOfStream()) 3132 return error("Could not find function in stream"); 3133 3134 if (!SeenFirstFunctionBody) 3135 return error("Trying to materialize functions before seeing function blocks"); 3136 3137 // An old bitcode file with the symbol table at the end would have 3138 // finished the parse greedily. 3139 assert(SeenValueSymbolTable); 3140 3141 SmallVector<uint64_t, 64> Record; 3142 3143 while (true) { 3144 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3145 if (!MaybeEntry) 3146 return MaybeEntry.takeError(); 3147 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3148 3149 switch (Entry.Kind) { 3150 default: 3151 return error("Expect SubBlock"); 3152 case BitstreamEntry::SubBlock: 3153 switch (Entry.ID) { 3154 default: 3155 return error("Expect function block"); 3156 case bitc::FUNCTION_BLOCK_ID: 3157 if (Error Err = rememberAndSkipFunctionBody()) 3158 return Err; 3159 NextUnreadBit = Stream.GetCurrentBitNo(); 3160 return Error::success(); 3161 } 3162 } 3163 } 3164 } 3165 3166 bool BitcodeReaderBase::readBlockInfo() { 3167 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3168 Stream.ReadBlockInfoBlock(); 3169 if (!MaybeNewBlockInfo) 3170 return true; // FIXME Handle the error. 3171 Optional<BitstreamBlockInfo> NewBlockInfo = 3172 std::move(MaybeNewBlockInfo.get()); 3173 if (!NewBlockInfo) 3174 return true; 3175 BlockInfo = std::move(*NewBlockInfo); 3176 return false; 3177 } 3178 3179 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3180 // v1: [selection_kind, name] 3181 // v2: [strtab_offset, strtab_size, selection_kind] 3182 StringRef Name; 3183 std::tie(Name, Record) = readNameFromStrtab(Record); 3184 3185 if (Record.empty()) 3186 return error("Invalid record"); 3187 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3188 std::string OldFormatName; 3189 if (!UseStrtab) { 3190 if (Record.size() < 2) 3191 return error("Invalid record"); 3192 unsigned ComdatNameSize = Record[1]; 3193 OldFormatName.reserve(ComdatNameSize); 3194 for (unsigned i = 0; i != ComdatNameSize; ++i) 3195 OldFormatName += (char)Record[2 + i]; 3196 Name = OldFormatName; 3197 } 3198 Comdat *C = TheModule->getOrInsertComdat(Name); 3199 C->setSelectionKind(SK); 3200 ComdatList.push_back(C); 3201 return Error::success(); 3202 } 3203 3204 static void inferDSOLocal(GlobalValue *GV) { 3205 // infer dso_local from linkage and visibility if it is not encoded. 3206 if (GV->hasLocalLinkage() || 3207 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3208 GV->setDSOLocal(true); 3209 } 3210 3211 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3212 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3213 // visibility, threadlocal, unnamed_addr, externally_initialized, 3214 // dllstorageclass, comdat, attributes, preemption specifier, 3215 // partition strtab offset, partition strtab size] (name in VST) 3216 // v2: [strtab_offset, strtab_size, v1] 3217 StringRef Name; 3218 std::tie(Name, Record) = readNameFromStrtab(Record); 3219 3220 if (Record.size() < 6) 3221 return error("Invalid record"); 3222 Type *Ty = getTypeByID(Record[0]); 3223 if (!Ty) 3224 return error("Invalid record"); 3225 bool isConstant = Record[1] & 1; 3226 bool explicitType = Record[1] & 2; 3227 unsigned AddressSpace; 3228 if (explicitType) { 3229 AddressSpace = Record[1] >> 2; 3230 } else { 3231 if (!Ty->isPointerTy()) 3232 return error("Invalid type for value"); 3233 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3234 Ty = cast<PointerType>(Ty)->getElementType(); 3235 } 3236 3237 uint64_t RawLinkage = Record[3]; 3238 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3239 MaybeAlign Alignment; 3240 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3241 return Err; 3242 std::string Section; 3243 if (Record[5]) { 3244 if (Record[5] - 1 >= SectionTable.size()) 3245 return error("Invalid ID"); 3246 Section = SectionTable[Record[5] - 1]; 3247 } 3248 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3249 // Local linkage must have default visibility. 3250 // auto-upgrade `hidden` and `protected` for old bitcode. 3251 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3252 Visibility = getDecodedVisibility(Record[6]); 3253 3254 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3255 if (Record.size() > 7) 3256 TLM = getDecodedThreadLocalMode(Record[7]); 3257 3258 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3259 if (Record.size() > 8) 3260 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3261 3262 bool ExternallyInitialized = false; 3263 if (Record.size() > 9) 3264 ExternallyInitialized = Record[9]; 3265 3266 GlobalVariable *NewGV = 3267 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3268 nullptr, TLM, AddressSpace, ExternallyInitialized); 3269 NewGV->setAlignment(Alignment); 3270 if (!Section.empty()) 3271 NewGV->setSection(Section); 3272 NewGV->setVisibility(Visibility); 3273 NewGV->setUnnamedAddr(UnnamedAddr); 3274 3275 if (Record.size() > 10) 3276 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3277 else 3278 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3279 3280 ValueList.push_back(NewGV); 3281 3282 // Remember which value to use for the global initializer. 3283 if (unsigned InitID = Record[2]) 3284 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3285 3286 if (Record.size() > 11) { 3287 if (unsigned ComdatID = Record[11]) { 3288 if (ComdatID > ComdatList.size()) 3289 return error("Invalid global variable comdat ID"); 3290 NewGV->setComdat(ComdatList[ComdatID - 1]); 3291 } 3292 } else if (hasImplicitComdat(RawLinkage)) { 3293 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3294 } 3295 3296 if (Record.size() > 12) { 3297 auto AS = getAttributes(Record[12]).getFnAttrs(); 3298 NewGV->setAttributes(AS); 3299 } 3300 3301 if (Record.size() > 13) { 3302 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3303 } 3304 inferDSOLocal(NewGV); 3305 3306 // Check whether we have enough values to read a partition name. 3307 if (Record.size() > 15) 3308 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3309 3310 return Error::success(); 3311 } 3312 3313 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3314 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3315 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3316 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3317 // v2: [strtab_offset, strtab_size, v1] 3318 StringRef Name; 3319 std::tie(Name, Record) = readNameFromStrtab(Record); 3320 3321 if (Record.size() < 8) 3322 return error("Invalid record"); 3323 Type *FTy = getTypeByID(Record[0]); 3324 if (!FTy) 3325 return error("Invalid record"); 3326 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3327 FTy = PTy->getElementType(); 3328 3329 if (!isa<FunctionType>(FTy)) 3330 return error("Invalid type for value"); 3331 auto CC = static_cast<CallingConv::ID>(Record[1]); 3332 if (CC & ~CallingConv::MaxID) 3333 return error("Invalid calling convention ID"); 3334 3335 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3336 if (Record.size() > 16) 3337 AddrSpace = Record[16]; 3338 3339 Function *Func = 3340 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3341 AddrSpace, Name, TheModule); 3342 3343 assert(Func->getFunctionType() == FTy && 3344 "Incorrect fully specified type provided for function"); 3345 FunctionTypes[Func] = cast<FunctionType>(FTy); 3346 3347 Func->setCallingConv(CC); 3348 bool isProto = Record[2]; 3349 uint64_t RawLinkage = Record[3]; 3350 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3351 Func->setAttributes(getAttributes(Record[4])); 3352 3353 // Upgrade any old-style byval or sret without a type by propagating the 3354 // argument's pointee type. There should be no opaque pointers where the byval 3355 // type is implicit. 3356 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3357 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3358 Attribute::InAlloca}) { 3359 if (!Func->hasParamAttribute(i, Kind)) 3360 continue; 3361 3362 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3363 continue; 3364 3365 Func->removeParamAttr(i, Kind); 3366 3367 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3368 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3369 Attribute NewAttr; 3370 switch (Kind) { 3371 case Attribute::ByVal: 3372 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3373 break; 3374 case Attribute::StructRet: 3375 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3376 break; 3377 case Attribute::InAlloca: 3378 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3379 break; 3380 default: 3381 llvm_unreachable("not an upgraded type attribute"); 3382 } 3383 3384 Func->addParamAttr(i, NewAttr); 3385 } 3386 } 3387 3388 MaybeAlign Alignment; 3389 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3390 return Err; 3391 Func->setAlignment(Alignment); 3392 if (Record[6]) { 3393 if (Record[6] - 1 >= SectionTable.size()) 3394 return error("Invalid ID"); 3395 Func->setSection(SectionTable[Record[6] - 1]); 3396 } 3397 // Local linkage must have default visibility. 3398 // auto-upgrade `hidden` and `protected` for old bitcode. 3399 if (!Func->hasLocalLinkage()) 3400 Func->setVisibility(getDecodedVisibility(Record[7])); 3401 if (Record.size() > 8 && Record[8]) { 3402 if (Record[8] - 1 >= GCTable.size()) 3403 return error("Invalid ID"); 3404 Func->setGC(GCTable[Record[8] - 1]); 3405 } 3406 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3407 if (Record.size() > 9) 3408 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3409 Func->setUnnamedAddr(UnnamedAddr); 3410 3411 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3412 if (Record.size() > 10) 3413 OperandInfo.Prologue = Record[10]; 3414 3415 if (Record.size() > 11) 3416 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3417 else 3418 upgradeDLLImportExportLinkage(Func, RawLinkage); 3419 3420 if (Record.size() > 12) { 3421 if (unsigned ComdatID = Record[12]) { 3422 if (ComdatID > ComdatList.size()) 3423 return error("Invalid function comdat ID"); 3424 Func->setComdat(ComdatList[ComdatID - 1]); 3425 } 3426 } else if (hasImplicitComdat(RawLinkage)) { 3427 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3428 } 3429 3430 if (Record.size() > 13) 3431 OperandInfo.Prefix = Record[13]; 3432 3433 if (Record.size() > 14) 3434 OperandInfo.PersonalityFn = Record[14]; 3435 3436 if (Record.size() > 15) { 3437 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3438 } 3439 inferDSOLocal(Func); 3440 3441 // Record[16] is the address space number. 3442 3443 // Check whether we have enough values to read a partition name. Also make 3444 // sure Strtab has enough values. 3445 if (Record.size() > 18 && Strtab.data() && 3446 Record[17] + Record[18] <= Strtab.size()) { 3447 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3448 } 3449 3450 ValueList.push_back(Func); 3451 3452 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3453 FunctionOperands.push_back(OperandInfo); 3454 3455 // If this is a function with a body, remember the prototype we are 3456 // creating now, so that we can match up the body with them later. 3457 if (!isProto) { 3458 Func->setIsMaterializable(true); 3459 FunctionsWithBodies.push_back(Func); 3460 DeferredFunctionInfo[Func] = 0; 3461 } 3462 return Error::success(); 3463 } 3464 3465 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3466 unsigned BitCode, ArrayRef<uint64_t> Record) { 3467 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3468 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3469 // dllstorageclass, threadlocal, unnamed_addr, 3470 // preemption specifier] (name in VST) 3471 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3472 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3473 // preemption specifier] (name in VST) 3474 // v2: [strtab_offset, strtab_size, v1] 3475 StringRef Name; 3476 std::tie(Name, Record) = readNameFromStrtab(Record); 3477 3478 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3479 if (Record.size() < (3 + (unsigned)NewRecord)) 3480 return error("Invalid record"); 3481 unsigned OpNum = 0; 3482 Type *Ty = getTypeByID(Record[OpNum++]); 3483 if (!Ty) 3484 return error("Invalid record"); 3485 3486 unsigned AddrSpace; 3487 if (!NewRecord) { 3488 auto *PTy = dyn_cast<PointerType>(Ty); 3489 if (!PTy) 3490 return error("Invalid type for value"); 3491 Ty = PTy->getElementType(); 3492 AddrSpace = PTy->getAddressSpace(); 3493 } else { 3494 AddrSpace = Record[OpNum++]; 3495 } 3496 3497 auto Val = Record[OpNum++]; 3498 auto Linkage = Record[OpNum++]; 3499 GlobalValue *NewGA; 3500 if (BitCode == bitc::MODULE_CODE_ALIAS || 3501 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3502 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3503 TheModule); 3504 else 3505 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3506 nullptr, TheModule); 3507 3508 // Local linkage must have default visibility. 3509 // auto-upgrade `hidden` and `protected` for old bitcode. 3510 if (OpNum != Record.size()) { 3511 auto VisInd = OpNum++; 3512 if (!NewGA->hasLocalLinkage()) 3513 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3514 } 3515 if (BitCode == bitc::MODULE_CODE_ALIAS || 3516 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3517 if (OpNum != Record.size()) 3518 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3519 else 3520 upgradeDLLImportExportLinkage(NewGA, Linkage); 3521 if (OpNum != Record.size()) 3522 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3523 if (OpNum != Record.size()) 3524 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3525 } 3526 if (OpNum != Record.size()) 3527 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3528 inferDSOLocal(NewGA); 3529 3530 // Check whether we have enough values to read a partition name. 3531 if (OpNum + 1 < Record.size()) { 3532 NewGA->setPartition( 3533 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3534 OpNum += 2; 3535 } 3536 3537 ValueList.push_back(NewGA); 3538 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3539 return Error::success(); 3540 } 3541 3542 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3543 bool ShouldLazyLoadMetadata, 3544 DataLayoutCallbackTy DataLayoutCallback) { 3545 if (ResumeBit) { 3546 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3547 return JumpFailed; 3548 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3549 return Err; 3550 3551 SmallVector<uint64_t, 64> Record; 3552 3553 // Parts of bitcode parsing depend on the datalayout. Make sure we 3554 // finalize the datalayout before we run any of that code. 3555 bool ResolvedDataLayout = false; 3556 auto ResolveDataLayout = [&] { 3557 if (ResolvedDataLayout) 3558 return; 3559 3560 // datalayout and triple can't be parsed after this point. 3561 ResolvedDataLayout = true; 3562 3563 // Upgrade data layout string. 3564 std::string DL = llvm::UpgradeDataLayoutString( 3565 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3566 TheModule->setDataLayout(DL); 3567 3568 if (auto LayoutOverride = 3569 DataLayoutCallback(TheModule->getTargetTriple())) 3570 TheModule->setDataLayout(*LayoutOverride); 3571 }; 3572 3573 // Read all the records for this module. 3574 while (true) { 3575 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3576 if (!MaybeEntry) 3577 return MaybeEntry.takeError(); 3578 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3579 3580 switch (Entry.Kind) { 3581 case BitstreamEntry::Error: 3582 return error("Malformed block"); 3583 case BitstreamEntry::EndBlock: 3584 ResolveDataLayout(); 3585 return globalCleanup(); 3586 3587 case BitstreamEntry::SubBlock: 3588 switch (Entry.ID) { 3589 default: // Skip unknown content. 3590 if (Error Err = Stream.SkipBlock()) 3591 return Err; 3592 break; 3593 case bitc::BLOCKINFO_BLOCK_ID: 3594 if (readBlockInfo()) 3595 return error("Malformed block"); 3596 break; 3597 case bitc::PARAMATTR_BLOCK_ID: 3598 if (Error Err = parseAttributeBlock()) 3599 return Err; 3600 break; 3601 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3602 if (Error Err = parseAttributeGroupBlock()) 3603 return Err; 3604 break; 3605 case bitc::TYPE_BLOCK_ID_NEW: 3606 if (Error Err = parseTypeTable()) 3607 return Err; 3608 break; 3609 case bitc::VALUE_SYMTAB_BLOCK_ID: 3610 if (!SeenValueSymbolTable) { 3611 // Either this is an old form VST without function index and an 3612 // associated VST forward declaration record (which would have caused 3613 // the VST to be jumped to and parsed before it was encountered 3614 // normally in the stream), or there were no function blocks to 3615 // trigger an earlier parsing of the VST. 3616 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3617 if (Error Err = parseValueSymbolTable()) 3618 return Err; 3619 SeenValueSymbolTable = true; 3620 } else { 3621 // We must have had a VST forward declaration record, which caused 3622 // the parser to jump to and parse the VST earlier. 3623 assert(VSTOffset > 0); 3624 if (Error Err = Stream.SkipBlock()) 3625 return Err; 3626 } 3627 break; 3628 case bitc::CONSTANTS_BLOCK_ID: 3629 if (Error Err = parseConstants()) 3630 return Err; 3631 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3632 return Err; 3633 break; 3634 case bitc::METADATA_BLOCK_ID: 3635 if (ShouldLazyLoadMetadata) { 3636 if (Error Err = rememberAndSkipMetadata()) 3637 return Err; 3638 break; 3639 } 3640 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3641 if (Error Err = MDLoader->parseModuleMetadata()) 3642 return Err; 3643 break; 3644 case bitc::METADATA_KIND_BLOCK_ID: 3645 if (Error Err = MDLoader->parseMetadataKinds()) 3646 return Err; 3647 break; 3648 case bitc::FUNCTION_BLOCK_ID: 3649 ResolveDataLayout(); 3650 3651 // If this is the first function body we've seen, reverse the 3652 // FunctionsWithBodies list. 3653 if (!SeenFirstFunctionBody) { 3654 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3655 if (Error Err = globalCleanup()) 3656 return Err; 3657 SeenFirstFunctionBody = true; 3658 } 3659 3660 if (VSTOffset > 0) { 3661 // If we have a VST forward declaration record, make sure we 3662 // parse the VST now if we haven't already. It is needed to 3663 // set up the DeferredFunctionInfo vector for lazy reading. 3664 if (!SeenValueSymbolTable) { 3665 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3666 return Err; 3667 SeenValueSymbolTable = true; 3668 // Fall through so that we record the NextUnreadBit below. 3669 // This is necessary in case we have an anonymous function that 3670 // is later materialized. Since it will not have a VST entry we 3671 // need to fall back to the lazy parse to find its offset. 3672 } else { 3673 // If we have a VST forward declaration record, but have already 3674 // parsed the VST (just above, when the first function body was 3675 // encountered here), then we are resuming the parse after 3676 // materializing functions. The ResumeBit points to the 3677 // start of the last function block recorded in the 3678 // DeferredFunctionInfo map. Skip it. 3679 if (Error Err = Stream.SkipBlock()) 3680 return Err; 3681 continue; 3682 } 3683 } 3684 3685 // Support older bitcode files that did not have the function 3686 // index in the VST, nor a VST forward declaration record, as 3687 // well as anonymous functions that do not have VST entries. 3688 // Build the DeferredFunctionInfo vector on the fly. 3689 if (Error Err = rememberAndSkipFunctionBody()) 3690 return Err; 3691 3692 // Suspend parsing when we reach the function bodies. Subsequent 3693 // materialization calls will resume it when necessary. If the bitcode 3694 // file is old, the symbol table will be at the end instead and will not 3695 // have been seen yet. In this case, just finish the parse now. 3696 if (SeenValueSymbolTable) { 3697 NextUnreadBit = Stream.GetCurrentBitNo(); 3698 // After the VST has been parsed, we need to make sure intrinsic name 3699 // are auto-upgraded. 3700 return globalCleanup(); 3701 } 3702 break; 3703 case bitc::USELIST_BLOCK_ID: 3704 if (Error Err = parseUseLists()) 3705 return Err; 3706 break; 3707 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3708 if (Error Err = parseOperandBundleTags()) 3709 return Err; 3710 break; 3711 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3712 if (Error Err = parseSyncScopeNames()) 3713 return Err; 3714 break; 3715 } 3716 continue; 3717 3718 case BitstreamEntry::Record: 3719 // The interesting case. 3720 break; 3721 } 3722 3723 // Read a record. 3724 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3725 if (!MaybeBitCode) 3726 return MaybeBitCode.takeError(); 3727 switch (unsigned BitCode = MaybeBitCode.get()) { 3728 default: break; // Default behavior, ignore unknown content. 3729 case bitc::MODULE_CODE_VERSION: { 3730 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3731 if (!VersionOrErr) 3732 return VersionOrErr.takeError(); 3733 UseRelativeIDs = *VersionOrErr >= 1; 3734 break; 3735 } 3736 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3737 if (ResolvedDataLayout) 3738 return error("target triple too late in module"); 3739 std::string S; 3740 if (convertToString(Record, 0, S)) 3741 return error("Invalid record"); 3742 TheModule->setTargetTriple(S); 3743 break; 3744 } 3745 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3746 if (ResolvedDataLayout) 3747 return error("datalayout too late in module"); 3748 std::string S; 3749 if (convertToString(Record, 0, S)) 3750 return error("Invalid record"); 3751 TheModule->setDataLayout(S); 3752 break; 3753 } 3754 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3755 std::string S; 3756 if (convertToString(Record, 0, S)) 3757 return error("Invalid record"); 3758 TheModule->setModuleInlineAsm(S); 3759 break; 3760 } 3761 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3762 // Deprecated, but still needed to read old bitcode files. 3763 std::string S; 3764 if (convertToString(Record, 0, S)) 3765 return error("Invalid record"); 3766 // Ignore value. 3767 break; 3768 } 3769 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3770 std::string S; 3771 if (convertToString(Record, 0, S)) 3772 return error("Invalid record"); 3773 SectionTable.push_back(S); 3774 break; 3775 } 3776 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3777 std::string S; 3778 if (convertToString(Record, 0, S)) 3779 return error("Invalid record"); 3780 GCTable.push_back(S); 3781 break; 3782 } 3783 case bitc::MODULE_CODE_COMDAT: 3784 if (Error Err = parseComdatRecord(Record)) 3785 return Err; 3786 break; 3787 case bitc::MODULE_CODE_GLOBALVAR: 3788 if (Error Err = parseGlobalVarRecord(Record)) 3789 return Err; 3790 break; 3791 case bitc::MODULE_CODE_FUNCTION: 3792 ResolveDataLayout(); 3793 if (Error Err = parseFunctionRecord(Record)) 3794 return Err; 3795 break; 3796 case bitc::MODULE_CODE_IFUNC: 3797 case bitc::MODULE_CODE_ALIAS: 3798 case bitc::MODULE_CODE_ALIAS_OLD: 3799 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3800 return Err; 3801 break; 3802 /// MODULE_CODE_VSTOFFSET: [offset] 3803 case bitc::MODULE_CODE_VSTOFFSET: 3804 if (Record.empty()) 3805 return error("Invalid record"); 3806 // Note that we subtract 1 here because the offset is relative to one word 3807 // before the start of the identification or module block, which was 3808 // historically always the start of the regular bitcode header. 3809 VSTOffset = Record[0] - 1; 3810 break; 3811 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3812 case bitc::MODULE_CODE_SOURCE_FILENAME: 3813 SmallString<128> ValueName; 3814 if (convertToString(Record, 0, ValueName)) 3815 return error("Invalid record"); 3816 TheModule->setSourceFileName(ValueName); 3817 break; 3818 } 3819 Record.clear(); 3820 } 3821 } 3822 3823 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3824 bool IsImporting, 3825 DataLayoutCallbackTy DataLayoutCallback) { 3826 TheModule = M; 3827 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3828 [&](unsigned ID) { return getTypeByID(ID); }); 3829 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3830 } 3831 3832 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3833 if (!isa<PointerType>(PtrType)) 3834 return error("Load/Store operand is not a pointer type"); 3835 3836 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3837 return error("Explicit load/store type does not match pointee " 3838 "type of pointer operand"); 3839 if (!PointerType::isLoadableOrStorableType(ValType)) 3840 return error("Cannot load/store from pointer"); 3841 return Error::success(); 3842 } 3843 3844 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3845 ArrayRef<Type *> ArgsTys) { 3846 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3847 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3848 Attribute::InAlloca}) { 3849 if (!CB->paramHasAttr(i, Kind)) 3850 continue; 3851 3852 CB->removeParamAttr(i, Kind); 3853 3854 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3855 Attribute NewAttr; 3856 switch (Kind) { 3857 case Attribute::ByVal: 3858 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3859 break; 3860 case Attribute::StructRet: 3861 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3862 break; 3863 case Attribute::InAlloca: 3864 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3865 break; 3866 default: 3867 llvm_unreachable("not an upgraded type attribute"); 3868 } 3869 3870 CB->addParamAttr(i, NewAttr); 3871 } 3872 } 3873 3874 switch (CB->getIntrinsicID()) { 3875 case Intrinsic::preserve_array_access_index: 3876 case Intrinsic::preserve_struct_access_index: 3877 if (!CB->getAttributes().getParamElementType(0)) { 3878 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3879 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3880 CB->addParamAttr(0, NewAttr); 3881 } 3882 break; 3883 default: 3884 break; 3885 } 3886 } 3887 3888 /// Lazily parse the specified function body block. 3889 Error BitcodeReader::parseFunctionBody(Function *F) { 3890 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3891 return Err; 3892 3893 // Unexpected unresolved metadata when parsing function. 3894 if (MDLoader->hasFwdRefs()) 3895 return error("Invalid function metadata: incoming forward references"); 3896 3897 InstructionList.clear(); 3898 unsigned ModuleValueListSize = ValueList.size(); 3899 unsigned ModuleMDLoaderSize = MDLoader->size(); 3900 3901 // Add all the function arguments to the value table. 3902 #ifndef NDEBUG 3903 unsigned ArgNo = 0; 3904 FunctionType *FTy = FunctionTypes[F]; 3905 #endif 3906 for (Argument &I : F->args()) { 3907 assert(I.getType() == FTy->getParamType(ArgNo++) && 3908 "Incorrect fully specified type for Function Argument"); 3909 ValueList.push_back(&I); 3910 } 3911 unsigned NextValueNo = ValueList.size(); 3912 BasicBlock *CurBB = nullptr; 3913 unsigned CurBBNo = 0; 3914 3915 DebugLoc LastLoc; 3916 auto getLastInstruction = [&]() -> Instruction * { 3917 if (CurBB && !CurBB->empty()) 3918 return &CurBB->back(); 3919 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3920 !FunctionBBs[CurBBNo - 1]->empty()) 3921 return &FunctionBBs[CurBBNo - 1]->back(); 3922 return nullptr; 3923 }; 3924 3925 std::vector<OperandBundleDef> OperandBundles; 3926 3927 // Read all the records. 3928 SmallVector<uint64_t, 64> Record; 3929 3930 while (true) { 3931 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3932 if (!MaybeEntry) 3933 return MaybeEntry.takeError(); 3934 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3935 3936 switch (Entry.Kind) { 3937 case BitstreamEntry::Error: 3938 return error("Malformed block"); 3939 case BitstreamEntry::EndBlock: 3940 goto OutOfRecordLoop; 3941 3942 case BitstreamEntry::SubBlock: 3943 switch (Entry.ID) { 3944 default: // Skip unknown content. 3945 if (Error Err = Stream.SkipBlock()) 3946 return Err; 3947 break; 3948 case bitc::CONSTANTS_BLOCK_ID: 3949 if (Error Err = parseConstants()) 3950 return Err; 3951 NextValueNo = ValueList.size(); 3952 break; 3953 case bitc::VALUE_SYMTAB_BLOCK_ID: 3954 if (Error Err = parseValueSymbolTable()) 3955 return Err; 3956 break; 3957 case bitc::METADATA_ATTACHMENT_ID: 3958 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3959 return Err; 3960 break; 3961 case bitc::METADATA_BLOCK_ID: 3962 assert(DeferredMetadataInfo.empty() && 3963 "Must read all module-level metadata before function-level"); 3964 if (Error Err = MDLoader->parseFunctionMetadata()) 3965 return Err; 3966 break; 3967 case bitc::USELIST_BLOCK_ID: 3968 if (Error Err = parseUseLists()) 3969 return Err; 3970 break; 3971 } 3972 continue; 3973 3974 case BitstreamEntry::Record: 3975 // The interesting case. 3976 break; 3977 } 3978 3979 // Read a record. 3980 Record.clear(); 3981 Instruction *I = nullptr; 3982 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3983 if (!MaybeBitCode) 3984 return MaybeBitCode.takeError(); 3985 switch (unsigned BitCode = MaybeBitCode.get()) { 3986 default: // Default behavior: reject 3987 return error("Invalid value"); 3988 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3989 if (Record.empty() || Record[0] == 0) 3990 return error("Invalid record"); 3991 // Create all the basic blocks for the function. 3992 FunctionBBs.resize(Record[0]); 3993 3994 // See if anything took the address of blocks in this function. 3995 auto BBFRI = BasicBlockFwdRefs.find(F); 3996 if (BBFRI == BasicBlockFwdRefs.end()) { 3997 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3998 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3999 } else { 4000 auto &BBRefs = BBFRI->second; 4001 // Check for invalid basic block references. 4002 if (BBRefs.size() > FunctionBBs.size()) 4003 return error("Invalid ID"); 4004 assert(!BBRefs.empty() && "Unexpected empty array"); 4005 assert(!BBRefs.front() && "Invalid reference to entry block"); 4006 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4007 ++I) 4008 if (I < RE && BBRefs[I]) { 4009 BBRefs[I]->insertInto(F); 4010 FunctionBBs[I] = BBRefs[I]; 4011 } else { 4012 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4013 } 4014 4015 // Erase from the table. 4016 BasicBlockFwdRefs.erase(BBFRI); 4017 } 4018 4019 CurBB = FunctionBBs[0]; 4020 continue; 4021 } 4022 4023 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4024 // This record indicates that the last instruction is at the same 4025 // location as the previous instruction with a location. 4026 I = getLastInstruction(); 4027 4028 if (!I) 4029 return error("Invalid record"); 4030 I->setDebugLoc(LastLoc); 4031 I = nullptr; 4032 continue; 4033 4034 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4035 I = getLastInstruction(); 4036 if (!I || Record.size() < 4) 4037 return error("Invalid record"); 4038 4039 unsigned Line = Record[0], Col = Record[1]; 4040 unsigned ScopeID = Record[2], IAID = Record[3]; 4041 bool isImplicitCode = Record.size() == 5 && Record[4]; 4042 4043 MDNode *Scope = nullptr, *IA = nullptr; 4044 if (ScopeID) { 4045 Scope = dyn_cast_or_null<MDNode>( 4046 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4047 if (!Scope) 4048 return error("Invalid record"); 4049 } 4050 if (IAID) { 4051 IA = dyn_cast_or_null<MDNode>( 4052 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4053 if (!IA) 4054 return error("Invalid record"); 4055 } 4056 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4057 isImplicitCode); 4058 I->setDebugLoc(LastLoc); 4059 I = nullptr; 4060 continue; 4061 } 4062 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4063 unsigned OpNum = 0; 4064 Value *LHS; 4065 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4066 OpNum+1 > Record.size()) 4067 return error("Invalid record"); 4068 4069 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4070 if (Opc == -1) 4071 return error("Invalid record"); 4072 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4073 InstructionList.push_back(I); 4074 if (OpNum < Record.size()) { 4075 if (isa<FPMathOperator>(I)) { 4076 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4077 if (FMF.any()) 4078 I->setFastMathFlags(FMF); 4079 } 4080 } 4081 break; 4082 } 4083 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4084 unsigned OpNum = 0; 4085 Value *LHS, *RHS; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4087 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4088 OpNum+1 > Record.size()) 4089 return error("Invalid record"); 4090 4091 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4092 if (Opc == -1) 4093 return error("Invalid record"); 4094 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4095 InstructionList.push_back(I); 4096 if (OpNum < Record.size()) { 4097 if (Opc == Instruction::Add || 4098 Opc == Instruction::Sub || 4099 Opc == Instruction::Mul || 4100 Opc == Instruction::Shl) { 4101 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4102 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4103 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4104 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4105 } else if (Opc == Instruction::SDiv || 4106 Opc == Instruction::UDiv || 4107 Opc == Instruction::LShr || 4108 Opc == Instruction::AShr) { 4109 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4110 cast<BinaryOperator>(I)->setIsExact(true); 4111 } else if (isa<FPMathOperator>(I)) { 4112 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4113 if (FMF.any()) 4114 I->setFastMathFlags(FMF); 4115 } 4116 4117 } 4118 break; 4119 } 4120 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4121 unsigned OpNum = 0; 4122 Value *Op; 4123 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4124 OpNum+2 != Record.size()) 4125 return error("Invalid record"); 4126 4127 Type *ResTy = getTypeByID(Record[OpNum]); 4128 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4129 if (Opc == -1 || !ResTy) 4130 return error("Invalid record"); 4131 Instruction *Temp = nullptr; 4132 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4133 if (Temp) { 4134 InstructionList.push_back(Temp); 4135 assert(CurBB && "No current BB?"); 4136 CurBB->getInstList().push_back(Temp); 4137 } 4138 } else { 4139 auto CastOp = (Instruction::CastOps)Opc; 4140 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4141 return error("Invalid cast"); 4142 I = CastInst::Create(CastOp, Op, ResTy); 4143 } 4144 InstructionList.push_back(I); 4145 break; 4146 } 4147 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4148 case bitc::FUNC_CODE_INST_GEP_OLD: 4149 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4150 unsigned OpNum = 0; 4151 4152 Type *Ty; 4153 bool InBounds; 4154 4155 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4156 InBounds = Record[OpNum++]; 4157 Ty = getTypeByID(Record[OpNum++]); 4158 } else { 4159 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4160 Ty = nullptr; 4161 } 4162 4163 Value *BasePtr; 4164 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4165 return error("Invalid record"); 4166 4167 if (!Ty) { 4168 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4169 ->getElementType(); 4170 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4171 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4172 return error( 4173 "Explicit gep type does not match pointee type of pointer operand"); 4174 } 4175 4176 SmallVector<Value*, 16> GEPIdx; 4177 while (OpNum != Record.size()) { 4178 Value *Op; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4180 return error("Invalid record"); 4181 GEPIdx.push_back(Op); 4182 } 4183 4184 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4185 4186 InstructionList.push_back(I); 4187 if (InBounds) 4188 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4189 break; 4190 } 4191 4192 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4193 // EXTRACTVAL: [opty, opval, n x indices] 4194 unsigned OpNum = 0; 4195 Value *Agg; 4196 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4197 return error("Invalid record"); 4198 Type *Ty = Agg->getType(); 4199 4200 unsigned RecSize = Record.size(); 4201 if (OpNum == RecSize) 4202 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4203 4204 SmallVector<unsigned, 4> EXTRACTVALIdx; 4205 for (; OpNum != RecSize; ++OpNum) { 4206 bool IsArray = Ty->isArrayTy(); 4207 bool IsStruct = Ty->isStructTy(); 4208 uint64_t Index = Record[OpNum]; 4209 4210 if (!IsStruct && !IsArray) 4211 return error("EXTRACTVAL: Invalid type"); 4212 if ((unsigned)Index != Index) 4213 return error("Invalid value"); 4214 if (IsStruct && Index >= Ty->getStructNumElements()) 4215 return error("EXTRACTVAL: Invalid struct index"); 4216 if (IsArray && Index >= Ty->getArrayNumElements()) 4217 return error("EXTRACTVAL: Invalid array index"); 4218 EXTRACTVALIdx.push_back((unsigned)Index); 4219 4220 if (IsStruct) 4221 Ty = Ty->getStructElementType(Index); 4222 else 4223 Ty = Ty->getArrayElementType(); 4224 } 4225 4226 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 4231 case bitc::FUNC_CODE_INST_INSERTVAL: { 4232 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4233 unsigned OpNum = 0; 4234 Value *Agg; 4235 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4236 return error("Invalid record"); 4237 Value *Val; 4238 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4239 return error("Invalid record"); 4240 4241 unsigned RecSize = Record.size(); 4242 if (OpNum == RecSize) 4243 return error("INSERTVAL: Invalid instruction with 0 indices"); 4244 4245 SmallVector<unsigned, 4> INSERTVALIdx; 4246 Type *CurTy = Agg->getType(); 4247 for (; OpNum != RecSize; ++OpNum) { 4248 bool IsArray = CurTy->isArrayTy(); 4249 bool IsStruct = CurTy->isStructTy(); 4250 uint64_t Index = Record[OpNum]; 4251 4252 if (!IsStruct && !IsArray) 4253 return error("INSERTVAL: Invalid type"); 4254 if ((unsigned)Index != Index) 4255 return error("Invalid value"); 4256 if (IsStruct && Index >= CurTy->getStructNumElements()) 4257 return error("INSERTVAL: Invalid struct index"); 4258 if (IsArray && Index >= CurTy->getArrayNumElements()) 4259 return error("INSERTVAL: Invalid array index"); 4260 4261 INSERTVALIdx.push_back((unsigned)Index); 4262 if (IsStruct) 4263 CurTy = CurTy->getStructElementType(Index); 4264 else 4265 CurTy = CurTy->getArrayElementType(); 4266 } 4267 4268 if (CurTy != Val->getType()) 4269 return error("Inserted value type doesn't match aggregate type"); 4270 4271 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 4276 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4277 // obsolete form of select 4278 // handles select i1 ... in old bitcode 4279 unsigned OpNum = 0; 4280 Value *TrueVal, *FalseVal, *Cond; 4281 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4282 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4283 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4284 return error("Invalid record"); 4285 4286 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4287 InstructionList.push_back(I); 4288 break; 4289 } 4290 4291 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4292 // new form of select 4293 // handles select i1 or select [N x i1] 4294 unsigned OpNum = 0; 4295 Value *TrueVal, *FalseVal, *Cond; 4296 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4297 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4298 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4299 return error("Invalid record"); 4300 4301 // select condition can be either i1 or [N x i1] 4302 if (VectorType* vector_type = 4303 dyn_cast<VectorType>(Cond->getType())) { 4304 // expect <n x i1> 4305 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4306 return error("Invalid type for value"); 4307 } else { 4308 // expect i1 4309 if (Cond->getType() != Type::getInt1Ty(Context)) 4310 return error("Invalid type for value"); 4311 } 4312 4313 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4314 InstructionList.push_back(I); 4315 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4316 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4317 if (FMF.any()) 4318 I->setFastMathFlags(FMF); 4319 } 4320 break; 4321 } 4322 4323 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4324 unsigned OpNum = 0; 4325 Value *Vec, *Idx; 4326 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4327 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4328 return error("Invalid record"); 4329 if (!Vec->getType()->isVectorTy()) 4330 return error("Invalid type for value"); 4331 I = ExtractElementInst::Create(Vec, Idx); 4332 InstructionList.push_back(I); 4333 break; 4334 } 4335 4336 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4337 unsigned OpNum = 0; 4338 Value *Vec, *Elt, *Idx; 4339 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4340 return error("Invalid record"); 4341 if (!Vec->getType()->isVectorTy()) 4342 return error("Invalid type for value"); 4343 if (popValue(Record, OpNum, NextValueNo, 4344 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4345 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4346 return error("Invalid record"); 4347 I = InsertElementInst::Create(Vec, Elt, Idx); 4348 InstructionList.push_back(I); 4349 break; 4350 } 4351 4352 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4353 unsigned OpNum = 0; 4354 Value *Vec1, *Vec2, *Mask; 4355 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4356 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4357 return error("Invalid record"); 4358 4359 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4360 return error("Invalid record"); 4361 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4362 return error("Invalid type for value"); 4363 4364 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 4369 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4370 // Old form of ICmp/FCmp returning bool 4371 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4372 // both legal on vectors but had different behaviour. 4373 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4374 // FCmp/ICmp returning bool or vector of bool 4375 4376 unsigned OpNum = 0; 4377 Value *LHS, *RHS; 4378 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4379 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4380 return error("Invalid record"); 4381 4382 if (OpNum >= Record.size()) 4383 return error( 4384 "Invalid record: operand number exceeded available operands"); 4385 4386 unsigned PredVal = Record[OpNum]; 4387 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4388 FastMathFlags FMF; 4389 if (IsFP && Record.size() > OpNum+1) 4390 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4391 4392 if (OpNum+1 != Record.size()) 4393 return error("Invalid record"); 4394 4395 if (LHS->getType()->isFPOrFPVectorTy()) 4396 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4397 else 4398 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4399 4400 if (FMF.any()) 4401 I->setFastMathFlags(FMF); 4402 InstructionList.push_back(I); 4403 break; 4404 } 4405 4406 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4407 { 4408 unsigned Size = Record.size(); 4409 if (Size == 0) { 4410 I = ReturnInst::Create(Context); 4411 InstructionList.push_back(I); 4412 break; 4413 } 4414 4415 unsigned OpNum = 0; 4416 Value *Op = nullptr; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4418 return error("Invalid record"); 4419 if (OpNum != Record.size()) 4420 return error("Invalid record"); 4421 4422 I = ReturnInst::Create(Context, Op); 4423 InstructionList.push_back(I); 4424 break; 4425 } 4426 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4427 if (Record.size() != 1 && Record.size() != 3) 4428 return error("Invalid record"); 4429 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4430 if (!TrueDest) 4431 return error("Invalid record"); 4432 4433 if (Record.size() == 1) { 4434 I = BranchInst::Create(TrueDest); 4435 InstructionList.push_back(I); 4436 } 4437 else { 4438 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4439 Value *Cond = getValue(Record, 2, NextValueNo, 4440 Type::getInt1Ty(Context)); 4441 if (!FalseDest || !Cond) 4442 return error("Invalid record"); 4443 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4444 InstructionList.push_back(I); 4445 } 4446 break; 4447 } 4448 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4449 if (Record.size() != 1 && Record.size() != 2) 4450 return error("Invalid record"); 4451 unsigned Idx = 0; 4452 Value *CleanupPad = 4453 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4454 if (!CleanupPad) 4455 return error("Invalid record"); 4456 BasicBlock *UnwindDest = nullptr; 4457 if (Record.size() == 2) { 4458 UnwindDest = getBasicBlock(Record[Idx++]); 4459 if (!UnwindDest) 4460 return error("Invalid record"); 4461 } 4462 4463 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4468 if (Record.size() != 2) 4469 return error("Invalid record"); 4470 unsigned Idx = 0; 4471 Value *CatchPad = 4472 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4473 if (!CatchPad) 4474 return error("Invalid record"); 4475 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4476 if (!BB) 4477 return error("Invalid record"); 4478 4479 I = CatchReturnInst::Create(CatchPad, BB); 4480 InstructionList.push_back(I); 4481 break; 4482 } 4483 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4484 // We must have, at minimum, the outer scope and the number of arguments. 4485 if (Record.size() < 2) 4486 return error("Invalid record"); 4487 4488 unsigned Idx = 0; 4489 4490 Value *ParentPad = 4491 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4492 4493 unsigned NumHandlers = Record[Idx++]; 4494 4495 SmallVector<BasicBlock *, 2> Handlers; 4496 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4497 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4498 if (!BB) 4499 return error("Invalid record"); 4500 Handlers.push_back(BB); 4501 } 4502 4503 BasicBlock *UnwindDest = nullptr; 4504 if (Idx + 1 == Record.size()) { 4505 UnwindDest = getBasicBlock(Record[Idx++]); 4506 if (!UnwindDest) 4507 return error("Invalid record"); 4508 } 4509 4510 if (Record.size() != Idx) 4511 return error("Invalid record"); 4512 4513 auto *CatchSwitch = 4514 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4515 for (BasicBlock *Handler : Handlers) 4516 CatchSwitch->addHandler(Handler); 4517 I = CatchSwitch; 4518 InstructionList.push_back(I); 4519 break; 4520 } 4521 case bitc::FUNC_CODE_INST_CATCHPAD: 4522 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4523 // We must have, at minimum, the outer scope and the number of arguments. 4524 if (Record.size() < 2) 4525 return error("Invalid record"); 4526 4527 unsigned Idx = 0; 4528 4529 Value *ParentPad = 4530 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4531 4532 unsigned NumArgOperands = Record[Idx++]; 4533 4534 SmallVector<Value *, 2> Args; 4535 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4536 Value *Val; 4537 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4538 return error("Invalid record"); 4539 Args.push_back(Val); 4540 } 4541 4542 if (Record.size() != Idx) 4543 return error("Invalid record"); 4544 4545 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4546 I = CleanupPadInst::Create(ParentPad, Args); 4547 else 4548 I = CatchPadInst::Create(ParentPad, Args); 4549 InstructionList.push_back(I); 4550 break; 4551 } 4552 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4553 // Check magic 4554 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4555 // "New" SwitchInst format with case ranges. The changes to write this 4556 // format were reverted but we still recognize bitcode that uses it. 4557 // Hopefully someday we will have support for case ranges and can use 4558 // this format again. 4559 4560 Type *OpTy = getTypeByID(Record[1]); 4561 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4562 4563 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4564 BasicBlock *Default = getBasicBlock(Record[3]); 4565 if (!OpTy || !Cond || !Default) 4566 return error("Invalid record"); 4567 4568 unsigned NumCases = Record[4]; 4569 4570 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4571 InstructionList.push_back(SI); 4572 4573 unsigned CurIdx = 5; 4574 for (unsigned i = 0; i != NumCases; ++i) { 4575 SmallVector<ConstantInt*, 1> CaseVals; 4576 unsigned NumItems = Record[CurIdx++]; 4577 for (unsigned ci = 0; ci != NumItems; ++ci) { 4578 bool isSingleNumber = Record[CurIdx++]; 4579 4580 APInt Low; 4581 unsigned ActiveWords = 1; 4582 if (ValueBitWidth > 64) 4583 ActiveWords = Record[CurIdx++]; 4584 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4585 ValueBitWidth); 4586 CurIdx += ActiveWords; 4587 4588 if (!isSingleNumber) { 4589 ActiveWords = 1; 4590 if (ValueBitWidth > 64) 4591 ActiveWords = Record[CurIdx++]; 4592 APInt High = readWideAPInt( 4593 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4594 CurIdx += ActiveWords; 4595 4596 // FIXME: It is not clear whether values in the range should be 4597 // compared as signed or unsigned values. The partially 4598 // implemented changes that used this format in the past used 4599 // unsigned comparisons. 4600 for ( ; Low.ule(High); ++Low) 4601 CaseVals.push_back(ConstantInt::get(Context, Low)); 4602 } else 4603 CaseVals.push_back(ConstantInt::get(Context, Low)); 4604 } 4605 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4606 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4607 cve = CaseVals.end(); cvi != cve; ++cvi) 4608 SI->addCase(*cvi, DestBB); 4609 } 4610 I = SI; 4611 break; 4612 } 4613 4614 // Old SwitchInst format without case ranges. 4615 4616 if (Record.size() < 3 || (Record.size() & 1) == 0) 4617 return error("Invalid record"); 4618 Type *OpTy = getTypeByID(Record[0]); 4619 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4620 BasicBlock *Default = getBasicBlock(Record[2]); 4621 if (!OpTy || !Cond || !Default) 4622 return error("Invalid record"); 4623 unsigned NumCases = (Record.size()-3)/2; 4624 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4625 InstructionList.push_back(SI); 4626 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4627 ConstantInt *CaseVal = 4628 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4629 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4630 if (!CaseVal || !DestBB) { 4631 delete SI; 4632 return error("Invalid record"); 4633 } 4634 SI->addCase(CaseVal, DestBB); 4635 } 4636 I = SI; 4637 break; 4638 } 4639 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4640 if (Record.size() < 2) 4641 return error("Invalid record"); 4642 Type *OpTy = getTypeByID(Record[0]); 4643 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4644 if (!OpTy || !Address) 4645 return error("Invalid record"); 4646 unsigned NumDests = Record.size()-2; 4647 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4648 InstructionList.push_back(IBI); 4649 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4650 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4651 IBI->addDestination(DestBB); 4652 } else { 4653 delete IBI; 4654 return error("Invalid record"); 4655 } 4656 } 4657 I = IBI; 4658 break; 4659 } 4660 4661 case bitc::FUNC_CODE_INST_INVOKE: { 4662 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4663 if (Record.size() < 4) 4664 return error("Invalid record"); 4665 unsigned OpNum = 0; 4666 AttributeList PAL = getAttributes(Record[OpNum++]); 4667 unsigned CCInfo = Record[OpNum++]; 4668 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4669 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4670 4671 FunctionType *FTy = nullptr; 4672 if ((CCInfo >> 13) & 1) { 4673 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4674 if (!FTy) 4675 return error("Explicit invoke type is not a function type"); 4676 } 4677 4678 Value *Callee; 4679 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4680 return error("Invalid record"); 4681 4682 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4683 if (!CalleeTy) 4684 return error("Callee is not a pointer"); 4685 if (!FTy) { 4686 FTy = dyn_cast<FunctionType>( 4687 cast<PointerType>(Callee->getType())->getElementType()); 4688 if (!FTy) 4689 return error("Callee is not of pointer to function type"); 4690 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4691 return error("Explicit invoke type does not match pointee type of " 4692 "callee operand"); 4693 if (Record.size() < FTy->getNumParams() + OpNum) 4694 return error("Insufficient operands to call"); 4695 4696 SmallVector<Value*, 16> Ops; 4697 SmallVector<Type *, 16> ArgsTys; 4698 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4699 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4700 FTy->getParamType(i))); 4701 ArgsTys.push_back(FTy->getParamType(i)); 4702 if (!Ops.back()) 4703 return error("Invalid record"); 4704 } 4705 4706 if (!FTy->isVarArg()) { 4707 if (Record.size() != OpNum) 4708 return error("Invalid record"); 4709 } else { 4710 // Read type/value pairs for varargs params. 4711 while (OpNum != Record.size()) { 4712 Value *Op; 4713 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4714 return error("Invalid record"); 4715 Ops.push_back(Op); 4716 ArgsTys.push_back(Op->getType()); 4717 } 4718 } 4719 4720 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4721 OperandBundles); 4722 OperandBundles.clear(); 4723 InstructionList.push_back(I); 4724 cast<InvokeInst>(I)->setCallingConv( 4725 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4726 cast<InvokeInst>(I)->setAttributes(PAL); 4727 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4728 4729 break; 4730 } 4731 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4732 unsigned Idx = 0; 4733 Value *Val = nullptr; 4734 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4735 return error("Invalid record"); 4736 I = ResumeInst::Create(Val); 4737 InstructionList.push_back(I); 4738 break; 4739 } 4740 case bitc::FUNC_CODE_INST_CALLBR: { 4741 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4742 unsigned OpNum = 0; 4743 AttributeList PAL = getAttributes(Record[OpNum++]); 4744 unsigned CCInfo = Record[OpNum++]; 4745 4746 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4747 unsigned NumIndirectDests = Record[OpNum++]; 4748 SmallVector<BasicBlock *, 16> IndirectDests; 4749 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4750 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4751 4752 FunctionType *FTy = nullptr; 4753 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4754 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4755 if (!FTy) 4756 return error("Explicit call type is not a function type"); 4757 } 4758 4759 Value *Callee; 4760 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4761 return error("Invalid record"); 4762 4763 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4764 if (!OpTy) 4765 return error("Callee is not a pointer type"); 4766 if (!FTy) { 4767 FTy = dyn_cast<FunctionType>( 4768 cast<PointerType>(Callee->getType())->getElementType()); 4769 if (!FTy) 4770 return error("Callee is not of pointer to function type"); 4771 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4772 return error("Explicit call type does not match pointee type of " 4773 "callee operand"); 4774 if (Record.size() < FTy->getNumParams() + OpNum) 4775 return error("Insufficient operands to call"); 4776 4777 SmallVector<Value*, 16> Args; 4778 // Read the fixed params. 4779 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4780 if (FTy->getParamType(i)->isLabelTy()) 4781 Args.push_back(getBasicBlock(Record[OpNum])); 4782 else 4783 Args.push_back(getValue(Record, OpNum, NextValueNo, 4784 FTy->getParamType(i))); 4785 if (!Args.back()) 4786 return error("Invalid record"); 4787 } 4788 4789 // Read type/value pairs for varargs params. 4790 if (!FTy->isVarArg()) { 4791 if (OpNum != Record.size()) 4792 return error("Invalid record"); 4793 } else { 4794 while (OpNum != Record.size()) { 4795 Value *Op; 4796 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4797 return error("Invalid record"); 4798 Args.push_back(Op); 4799 } 4800 } 4801 4802 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4803 OperandBundles); 4804 OperandBundles.clear(); 4805 InstructionList.push_back(I); 4806 cast<CallBrInst>(I)->setCallingConv( 4807 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4808 cast<CallBrInst>(I)->setAttributes(PAL); 4809 break; 4810 } 4811 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4812 I = new UnreachableInst(Context); 4813 InstructionList.push_back(I); 4814 break; 4815 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4816 if (Record.empty()) 4817 return error("Invalid record"); 4818 // The first record specifies the type. 4819 Type *Ty = getTypeByID(Record[0]); 4820 if (!Ty) 4821 return error("Invalid record"); 4822 4823 // Phi arguments are pairs of records of [value, basic block]. 4824 // There is an optional final record for fast-math-flags if this phi has a 4825 // floating-point type. 4826 size_t NumArgs = (Record.size() - 1) / 2; 4827 PHINode *PN = PHINode::Create(Ty, NumArgs); 4828 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4829 return error("Invalid record"); 4830 InstructionList.push_back(PN); 4831 4832 for (unsigned i = 0; i != NumArgs; i++) { 4833 Value *V; 4834 // With the new function encoding, it is possible that operands have 4835 // negative IDs (for forward references). Use a signed VBR 4836 // representation to keep the encoding small. 4837 if (UseRelativeIDs) 4838 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4839 else 4840 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4841 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4842 if (!V || !BB) 4843 return error("Invalid record"); 4844 PN->addIncoming(V, BB); 4845 } 4846 I = PN; 4847 4848 // If there are an even number of records, the final record must be FMF. 4849 if (Record.size() % 2 == 0) { 4850 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4851 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4852 if (FMF.any()) 4853 I->setFastMathFlags(FMF); 4854 } 4855 4856 break; 4857 } 4858 4859 case bitc::FUNC_CODE_INST_LANDINGPAD: 4860 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4861 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4862 unsigned Idx = 0; 4863 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4864 if (Record.size() < 3) 4865 return error("Invalid record"); 4866 } else { 4867 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4868 if (Record.size() < 4) 4869 return error("Invalid record"); 4870 } 4871 Type *Ty = getTypeByID(Record[Idx++]); 4872 if (!Ty) 4873 return error("Invalid record"); 4874 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4875 Value *PersFn = nullptr; 4876 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4877 return error("Invalid record"); 4878 4879 if (!F->hasPersonalityFn()) 4880 F->setPersonalityFn(cast<Constant>(PersFn)); 4881 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4882 return error("Personality function mismatch"); 4883 } 4884 4885 bool IsCleanup = !!Record[Idx++]; 4886 unsigned NumClauses = Record[Idx++]; 4887 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4888 LP->setCleanup(IsCleanup); 4889 for (unsigned J = 0; J != NumClauses; ++J) { 4890 LandingPadInst::ClauseType CT = 4891 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4892 Value *Val; 4893 4894 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4895 delete LP; 4896 return error("Invalid record"); 4897 } 4898 4899 assert((CT != LandingPadInst::Catch || 4900 !isa<ArrayType>(Val->getType())) && 4901 "Catch clause has a invalid type!"); 4902 assert((CT != LandingPadInst::Filter || 4903 isa<ArrayType>(Val->getType())) && 4904 "Filter clause has invalid type!"); 4905 LP->addClause(cast<Constant>(Val)); 4906 } 4907 4908 I = LP; 4909 InstructionList.push_back(I); 4910 break; 4911 } 4912 4913 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4914 if (Record.size() != 4) 4915 return error("Invalid record"); 4916 using APV = AllocaPackedValues; 4917 const uint64_t Rec = Record[3]; 4918 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4919 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4920 Type *Ty = getTypeByID(Record[0]); 4921 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4922 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4923 if (!PTy) 4924 return error("Old-style alloca with a non-pointer type"); 4925 Ty = PTy->getElementType(); 4926 } 4927 Type *OpTy = getTypeByID(Record[1]); 4928 Value *Size = getFnValueByID(Record[2], OpTy); 4929 MaybeAlign Align; 4930 uint64_t AlignExp = 4931 Bitfield::get<APV::AlignLower>(Rec) | 4932 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 4933 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 4934 return Err; 4935 } 4936 if (!Ty || !Size) 4937 return error("Invalid record"); 4938 4939 // FIXME: Make this an optional field. 4940 const DataLayout &DL = TheModule->getDataLayout(); 4941 unsigned AS = DL.getAllocaAddrSpace(); 4942 4943 SmallPtrSet<Type *, 4> Visited; 4944 if (!Align && !Ty->isSized(&Visited)) 4945 return error("alloca of unsized type"); 4946 if (!Align) 4947 Align = DL.getPrefTypeAlign(Ty); 4948 4949 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4950 AI->setUsedWithInAlloca(InAlloca); 4951 AI->setSwiftError(SwiftError); 4952 I = AI; 4953 InstructionList.push_back(I); 4954 break; 4955 } 4956 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4957 unsigned OpNum = 0; 4958 Value *Op; 4959 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4960 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4961 return error("Invalid record"); 4962 4963 if (!isa<PointerType>(Op->getType())) 4964 return error("Load operand is not a pointer type"); 4965 4966 Type *Ty = nullptr; 4967 if (OpNum + 3 == Record.size()) { 4968 Ty = getTypeByID(Record[OpNum++]); 4969 } else { 4970 Ty = cast<PointerType>(Op->getType())->getElementType(); 4971 } 4972 4973 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4974 return Err; 4975 4976 MaybeAlign Align; 4977 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4978 return Err; 4979 SmallPtrSet<Type *, 4> Visited; 4980 if (!Align && !Ty->isSized(&Visited)) 4981 return error("load of unsized type"); 4982 if (!Align) 4983 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4984 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4985 InstructionList.push_back(I); 4986 break; 4987 } 4988 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4989 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4990 unsigned OpNum = 0; 4991 Value *Op; 4992 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4993 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4994 return error("Invalid record"); 4995 4996 if (!isa<PointerType>(Op->getType())) 4997 return error("Load operand is not a pointer type"); 4998 4999 Type *Ty = nullptr; 5000 if (OpNum + 5 == Record.size()) { 5001 Ty = getTypeByID(Record[OpNum++]); 5002 } else { 5003 Ty = cast<PointerType>(Op->getType())->getElementType(); 5004 } 5005 5006 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5007 return Err; 5008 5009 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5010 if (Ordering == AtomicOrdering::NotAtomic || 5011 Ordering == AtomicOrdering::Release || 5012 Ordering == AtomicOrdering::AcquireRelease) 5013 return error("Invalid record"); 5014 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5015 return error("Invalid record"); 5016 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5017 5018 MaybeAlign Align; 5019 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5020 return Err; 5021 if (!Align) 5022 return error("Alignment missing from atomic load"); 5023 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5024 InstructionList.push_back(I); 5025 break; 5026 } 5027 case bitc::FUNC_CODE_INST_STORE: 5028 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5029 unsigned OpNum = 0; 5030 Value *Val, *Ptr; 5031 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5032 (BitCode == bitc::FUNC_CODE_INST_STORE 5033 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5034 : popValue(Record, OpNum, NextValueNo, 5035 cast<PointerType>(Ptr->getType())->getElementType(), 5036 Val)) || 5037 OpNum + 2 != Record.size()) 5038 return error("Invalid record"); 5039 5040 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5041 return Err; 5042 MaybeAlign Align; 5043 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5044 return Err; 5045 SmallPtrSet<Type *, 4> Visited; 5046 if (!Align && !Val->getType()->isSized(&Visited)) 5047 return error("store of unsized type"); 5048 if (!Align) 5049 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5050 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5051 InstructionList.push_back(I); 5052 break; 5053 } 5054 case bitc::FUNC_CODE_INST_STOREATOMIC: 5055 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5056 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5057 unsigned OpNum = 0; 5058 Value *Val, *Ptr; 5059 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5060 !isa<PointerType>(Ptr->getType()) || 5061 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5062 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5063 : popValue(Record, OpNum, NextValueNo, 5064 cast<PointerType>(Ptr->getType())->getElementType(), 5065 Val)) || 5066 OpNum + 4 != Record.size()) 5067 return error("Invalid record"); 5068 5069 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5070 return Err; 5071 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5072 if (Ordering == AtomicOrdering::NotAtomic || 5073 Ordering == AtomicOrdering::Acquire || 5074 Ordering == AtomicOrdering::AcquireRelease) 5075 return error("Invalid record"); 5076 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5077 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5078 return error("Invalid record"); 5079 5080 MaybeAlign Align; 5081 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5082 return Err; 5083 if (!Align) 5084 return error("Alignment missing from atomic store"); 5085 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5086 InstructionList.push_back(I); 5087 break; 5088 } 5089 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5090 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5091 // failure_ordering?, weak?] 5092 const size_t NumRecords = Record.size(); 5093 unsigned OpNum = 0; 5094 Value *Ptr = nullptr; 5095 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5096 return error("Invalid record"); 5097 5098 if (!isa<PointerType>(Ptr->getType())) 5099 return error("Cmpxchg operand is not a pointer type"); 5100 5101 Value *Cmp = nullptr; 5102 if (popValue(Record, OpNum, NextValueNo, 5103 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5104 Cmp)) 5105 return error("Invalid record"); 5106 5107 Value *New = nullptr; 5108 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5109 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5110 return error("Invalid record"); 5111 5112 const AtomicOrdering SuccessOrdering = 5113 getDecodedOrdering(Record[OpNum + 1]); 5114 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5115 SuccessOrdering == AtomicOrdering::Unordered) 5116 return error("Invalid record"); 5117 5118 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5119 5120 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5121 return Err; 5122 5123 const AtomicOrdering FailureOrdering = 5124 NumRecords < 7 5125 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5126 : getDecodedOrdering(Record[OpNum + 3]); 5127 5128 if (FailureOrdering == AtomicOrdering::NotAtomic || 5129 FailureOrdering == AtomicOrdering::Unordered) 5130 return error("Invalid record"); 5131 5132 const Align Alignment( 5133 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5134 5135 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5136 FailureOrdering, SSID); 5137 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5138 5139 if (NumRecords < 8) { 5140 // Before weak cmpxchgs existed, the instruction simply returned the 5141 // value loaded from memory, so bitcode files from that era will be 5142 // expecting the first component of a modern cmpxchg. 5143 CurBB->getInstList().push_back(I); 5144 I = ExtractValueInst::Create(I, 0); 5145 } else { 5146 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5147 } 5148 5149 InstructionList.push_back(I); 5150 break; 5151 } 5152 case bitc::FUNC_CODE_INST_CMPXCHG: { 5153 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5154 // failure_ordering, weak, align?] 5155 const size_t NumRecords = Record.size(); 5156 unsigned OpNum = 0; 5157 Value *Ptr = nullptr; 5158 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5159 return error("Invalid record"); 5160 5161 if (!isa<PointerType>(Ptr->getType())) 5162 return error("Cmpxchg operand is not a pointer type"); 5163 5164 Value *Cmp = nullptr; 5165 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5166 return error("Invalid record"); 5167 5168 Value *Val = nullptr; 5169 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5170 return error("Invalid record"); 5171 5172 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5173 return error("Invalid record"); 5174 5175 const bool IsVol = Record[OpNum]; 5176 5177 const AtomicOrdering SuccessOrdering = 5178 getDecodedOrdering(Record[OpNum + 1]); 5179 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5180 return error("Invalid cmpxchg success ordering"); 5181 5182 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5183 5184 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5185 return Err; 5186 5187 const AtomicOrdering FailureOrdering = 5188 getDecodedOrdering(Record[OpNum + 3]); 5189 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5190 return error("Invalid cmpxchg failure ordering"); 5191 5192 const bool IsWeak = Record[OpNum + 4]; 5193 5194 MaybeAlign Alignment; 5195 5196 if (NumRecords == (OpNum + 6)) { 5197 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5198 return Err; 5199 } 5200 if (!Alignment) 5201 Alignment = 5202 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5203 5204 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5205 FailureOrdering, SSID); 5206 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5207 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5208 5209 InstructionList.push_back(I); 5210 break; 5211 } 5212 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5213 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5214 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5215 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5216 const size_t NumRecords = Record.size(); 5217 unsigned OpNum = 0; 5218 5219 Value *Ptr = nullptr; 5220 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5221 return error("Invalid record"); 5222 5223 if (!isa<PointerType>(Ptr->getType())) 5224 return error("Invalid record"); 5225 5226 Value *Val = nullptr; 5227 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5228 if (popValue(Record, OpNum, NextValueNo, 5229 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5230 Val)) 5231 return error("Invalid record"); 5232 } else { 5233 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5234 return error("Invalid record"); 5235 } 5236 5237 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5238 return error("Invalid record"); 5239 5240 const AtomicRMWInst::BinOp Operation = 5241 getDecodedRMWOperation(Record[OpNum]); 5242 if (Operation < AtomicRMWInst::FIRST_BINOP || 5243 Operation > AtomicRMWInst::LAST_BINOP) 5244 return error("Invalid record"); 5245 5246 const bool IsVol = Record[OpNum + 1]; 5247 5248 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5249 if (Ordering == AtomicOrdering::NotAtomic || 5250 Ordering == AtomicOrdering::Unordered) 5251 return error("Invalid record"); 5252 5253 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5254 5255 MaybeAlign Alignment; 5256 5257 if (NumRecords == (OpNum + 5)) { 5258 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5259 return Err; 5260 } 5261 5262 if (!Alignment) 5263 Alignment = 5264 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5265 5266 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5267 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5268 5269 InstructionList.push_back(I); 5270 break; 5271 } 5272 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5273 if (2 != Record.size()) 5274 return error("Invalid record"); 5275 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5276 if (Ordering == AtomicOrdering::NotAtomic || 5277 Ordering == AtomicOrdering::Unordered || 5278 Ordering == AtomicOrdering::Monotonic) 5279 return error("Invalid record"); 5280 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5281 I = new FenceInst(Context, Ordering, SSID); 5282 InstructionList.push_back(I); 5283 break; 5284 } 5285 case bitc::FUNC_CODE_INST_CALL: { 5286 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5287 if (Record.size() < 3) 5288 return error("Invalid record"); 5289 5290 unsigned OpNum = 0; 5291 AttributeList PAL = getAttributes(Record[OpNum++]); 5292 unsigned CCInfo = Record[OpNum++]; 5293 5294 FastMathFlags FMF; 5295 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5296 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5297 if (!FMF.any()) 5298 return error("Fast math flags indicator set for call with no FMF"); 5299 } 5300 5301 FunctionType *FTy = nullptr; 5302 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5303 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5304 if (!FTy) 5305 return error("Explicit call type is not a function type"); 5306 } 5307 5308 Value *Callee; 5309 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5310 return error("Invalid record"); 5311 5312 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5313 if (!OpTy) 5314 return error("Callee is not a pointer type"); 5315 if (!FTy) { 5316 FTy = dyn_cast<FunctionType>( 5317 cast<PointerType>(Callee->getType())->getElementType()); 5318 if (!FTy) 5319 return error("Callee is not of pointer to function type"); 5320 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5321 return error("Explicit call type does not match pointee type of " 5322 "callee operand"); 5323 if (Record.size() < FTy->getNumParams() + OpNum) 5324 return error("Insufficient operands to call"); 5325 5326 SmallVector<Value*, 16> Args; 5327 SmallVector<Type *, 16> ArgsTys; 5328 // Read the fixed params. 5329 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5330 if (FTy->getParamType(i)->isLabelTy()) 5331 Args.push_back(getBasicBlock(Record[OpNum])); 5332 else 5333 Args.push_back(getValue(Record, OpNum, NextValueNo, 5334 FTy->getParamType(i))); 5335 ArgsTys.push_back(FTy->getParamType(i)); 5336 if (!Args.back()) 5337 return error("Invalid record"); 5338 } 5339 5340 // Read type/value pairs for varargs params. 5341 if (!FTy->isVarArg()) { 5342 if (OpNum != Record.size()) 5343 return error("Invalid record"); 5344 } else { 5345 while (OpNum != Record.size()) { 5346 Value *Op; 5347 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5348 return error("Invalid record"); 5349 Args.push_back(Op); 5350 ArgsTys.push_back(Op->getType()); 5351 } 5352 } 5353 5354 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5355 OperandBundles.clear(); 5356 InstructionList.push_back(I); 5357 cast<CallInst>(I)->setCallingConv( 5358 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5359 CallInst::TailCallKind TCK = CallInst::TCK_None; 5360 if (CCInfo & 1 << bitc::CALL_TAIL) 5361 TCK = CallInst::TCK_Tail; 5362 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5363 TCK = CallInst::TCK_MustTail; 5364 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5365 TCK = CallInst::TCK_NoTail; 5366 cast<CallInst>(I)->setTailCallKind(TCK); 5367 cast<CallInst>(I)->setAttributes(PAL); 5368 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5369 if (FMF.any()) { 5370 if (!isa<FPMathOperator>(I)) 5371 return error("Fast-math-flags specified for call without " 5372 "floating-point scalar or vector return type"); 5373 I->setFastMathFlags(FMF); 5374 } 5375 break; 5376 } 5377 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5378 if (Record.size() < 3) 5379 return error("Invalid record"); 5380 Type *OpTy = getTypeByID(Record[0]); 5381 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5382 Type *ResTy = getTypeByID(Record[2]); 5383 if (!OpTy || !Op || !ResTy) 5384 return error("Invalid record"); 5385 I = new VAArgInst(Op, ResTy); 5386 InstructionList.push_back(I); 5387 break; 5388 } 5389 5390 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5391 // A call or an invoke can be optionally prefixed with some variable 5392 // number of operand bundle blocks. These blocks are read into 5393 // OperandBundles and consumed at the next call or invoke instruction. 5394 5395 if (Record.empty() || Record[0] >= BundleTags.size()) 5396 return error("Invalid record"); 5397 5398 std::vector<Value *> Inputs; 5399 5400 unsigned OpNum = 1; 5401 while (OpNum != Record.size()) { 5402 Value *Op; 5403 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5404 return error("Invalid record"); 5405 Inputs.push_back(Op); 5406 } 5407 5408 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5409 continue; 5410 } 5411 5412 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5413 unsigned OpNum = 0; 5414 Value *Op = nullptr; 5415 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5416 return error("Invalid record"); 5417 if (OpNum != Record.size()) 5418 return error("Invalid record"); 5419 5420 I = new FreezeInst(Op); 5421 InstructionList.push_back(I); 5422 break; 5423 } 5424 } 5425 5426 // Add instruction to end of current BB. If there is no current BB, reject 5427 // this file. 5428 if (!CurBB) { 5429 I->deleteValue(); 5430 return error("Invalid instruction with no BB"); 5431 } 5432 if (!OperandBundles.empty()) { 5433 I->deleteValue(); 5434 return error("Operand bundles found with no consumer"); 5435 } 5436 CurBB->getInstList().push_back(I); 5437 5438 // If this was a terminator instruction, move to the next block. 5439 if (I->isTerminator()) { 5440 ++CurBBNo; 5441 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5442 } 5443 5444 // Non-void values get registered in the value table for future use. 5445 if (!I->getType()->isVoidTy()) 5446 ValueList.assignValue(I, NextValueNo++); 5447 } 5448 5449 OutOfRecordLoop: 5450 5451 if (!OperandBundles.empty()) 5452 return error("Operand bundles found with no consumer"); 5453 5454 // Check the function list for unresolved values. 5455 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5456 if (!A->getParent()) { 5457 // We found at least one unresolved value. Nuke them all to avoid leaks. 5458 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5459 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5460 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5461 delete A; 5462 } 5463 } 5464 return error("Never resolved value found in function"); 5465 } 5466 } 5467 5468 // Unexpected unresolved metadata about to be dropped. 5469 if (MDLoader->hasFwdRefs()) 5470 return error("Invalid function metadata: outgoing forward refs"); 5471 5472 // Trim the value list down to the size it was before we parsed this function. 5473 ValueList.shrinkTo(ModuleValueListSize); 5474 MDLoader->shrinkTo(ModuleMDLoaderSize); 5475 std::vector<BasicBlock*>().swap(FunctionBBs); 5476 return Error::success(); 5477 } 5478 5479 /// Find the function body in the bitcode stream 5480 Error BitcodeReader::findFunctionInStream( 5481 Function *F, 5482 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5483 while (DeferredFunctionInfoIterator->second == 0) { 5484 // This is the fallback handling for the old format bitcode that 5485 // didn't contain the function index in the VST, or when we have 5486 // an anonymous function which would not have a VST entry. 5487 // Assert that we have one of those two cases. 5488 assert(VSTOffset == 0 || !F->hasName()); 5489 // Parse the next body in the stream and set its position in the 5490 // DeferredFunctionInfo map. 5491 if (Error Err = rememberAndSkipFunctionBodies()) 5492 return Err; 5493 } 5494 return Error::success(); 5495 } 5496 5497 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5498 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5499 return SyncScope::ID(Val); 5500 if (Val >= SSIDs.size()) 5501 return SyncScope::System; // Map unknown synchronization scopes to system. 5502 return SSIDs[Val]; 5503 } 5504 5505 //===----------------------------------------------------------------------===// 5506 // GVMaterializer implementation 5507 //===----------------------------------------------------------------------===// 5508 5509 Error BitcodeReader::materialize(GlobalValue *GV) { 5510 Function *F = dyn_cast<Function>(GV); 5511 // If it's not a function or is already material, ignore the request. 5512 if (!F || !F->isMaterializable()) 5513 return Error::success(); 5514 5515 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5516 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5517 // If its position is recorded as 0, its body is somewhere in the stream 5518 // but we haven't seen it yet. 5519 if (DFII->second == 0) 5520 if (Error Err = findFunctionInStream(F, DFII)) 5521 return Err; 5522 5523 // Materialize metadata before parsing any function bodies. 5524 if (Error Err = materializeMetadata()) 5525 return Err; 5526 5527 // Move the bit stream to the saved position of the deferred function body. 5528 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5529 return JumpFailed; 5530 if (Error Err = parseFunctionBody(F)) 5531 return Err; 5532 F->setIsMaterializable(false); 5533 5534 if (StripDebugInfo) 5535 stripDebugInfo(*F); 5536 5537 // Upgrade any old intrinsic calls in the function. 5538 for (auto &I : UpgradedIntrinsics) { 5539 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5540 UI != UE;) { 5541 User *U = *UI; 5542 ++UI; 5543 if (CallInst *CI = dyn_cast<CallInst>(U)) 5544 UpgradeIntrinsicCall(CI, I.second); 5545 } 5546 } 5547 5548 // Update calls to the remangled intrinsics 5549 for (auto &I : RemangledIntrinsics) 5550 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5551 UI != UE;) 5552 // Don't expect any other users than call sites 5553 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5554 5555 // Finish fn->subprogram upgrade for materialized functions. 5556 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5557 F->setSubprogram(SP); 5558 5559 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5560 if (!MDLoader->isStrippingTBAA()) { 5561 for (auto &I : instructions(F)) { 5562 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5563 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5564 continue; 5565 MDLoader->setStripTBAA(true); 5566 stripTBAA(F->getParent()); 5567 } 5568 } 5569 5570 for (auto &I : instructions(F)) { 5571 // "Upgrade" older incorrect branch weights by dropping them. 5572 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5573 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5574 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5575 StringRef ProfName = MDS->getString(); 5576 // Check consistency of !prof branch_weights metadata. 5577 if (!ProfName.equals("branch_weights")) 5578 continue; 5579 unsigned ExpectedNumOperands = 0; 5580 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5581 ExpectedNumOperands = BI->getNumSuccessors(); 5582 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5583 ExpectedNumOperands = SI->getNumSuccessors(); 5584 else if (isa<CallInst>(&I)) 5585 ExpectedNumOperands = 1; 5586 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5587 ExpectedNumOperands = IBI->getNumDestinations(); 5588 else if (isa<SelectInst>(&I)) 5589 ExpectedNumOperands = 2; 5590 else 5591 continue; // ignore and continue. 5592 5593 // If branch weight doesn't match, just strip branch weight. 5594 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5595 I.setMetadata(LLVMContext::MD_prof, nullptr); 5596 } 5597 } 5598 5599 // Remove incompatible attributes on function calls. 5600 if (auto *CI = dyn_cast<CallBase>(&I)) { 5601 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5602 CI->getFunctionType()->getReturnType())); 5603 5604 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5605 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5606 CI->getArgOperand(ArgNo)->getType())); 5607 } 5608 } 5609 5610 // Look for functions that rely on old function attribute behavior. 5611 UpgradeFunctionAttributes(*F); 5612 5613 // Bring in any functions that this function forward-referenced via 5614 // blockaddresses. 5615 return materializeForwardReferencedFunctions(); 5616 } 5617 5618 Error BitcodeReader::materializeModule() { 5619 if (Error Err = materializeMetadata()) 5620 return Err; 5621 5622 // Promise to materialize all forward references. 5623 WillMaterializeAllForwardRefs = true; 5624 5625 // Iterate over the module, deserializing any functions that are still on 5626 // disk. 5627 for (Function &F : *TheModule) { 5628 if (Error Err = materialize(&F)) 5629 return Err; 5630 } 5631 // At this point, if there are any function bodies, parse the rest of 5632 // the bits in the module past the last function block we have recorded 5633 // through either lazy scanning or the VST. 5634 if (LastFunctionBlockBit || NextUnreadBit) 5635 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5636 ? LastFunctionBlockBit 5637 : NextUnreadBit)) 5638 return Err; 5639 5640 // Check that all block address forward references got resolved (as we 5641 // promised above). 5642 if (!BasicBlockFwdRefs.empty()) 5643 return error("Never resolved function from blockaddress"); 5644 5645 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5646 // delete the old functions to clean up. We can't do this unless the entire 5647 // module is materialized because there could always be another function body 5648 // with calls to the old function. 5649 for (auto &I : UpgradedIntrinsics) { 5650 for (auto *U : I.first->users()) { 5651 if (CallInst *CI = dyn_cast<CallInst>(U)) 5652 UpgradeIntrinsicCall(CI, I.second); 5653 } 5654 if (!I.first->use_empty()) 5655 I.first->replaceAllUsesWith(I.second); 5656 I.first->eraseFromParent(); 5657 } 5658 UpgradedIntrinsics.clear(); 5659 // Do the same for remangled intrinsics 5660 for (auto &I : RemangledIntrinsics) { 5661 I.first->replaceAllUsesWith(I.second); 5662 I.first->eraseFromParent(); 5663 } 5664 RemangledIntrinsics.clear(); 5665 5666 UpgradeDebugInfo(*TheModule); 5667 5668 UpgradeModuleFlags(*TheModule); 5669 5670 UpgradeARCRuntime(*TheModule); 5671 5672 return Error::success(); 5673 } 5674 5675 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5676 return IdentifiedStructTypes; 5677 } 5678 5679 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5680 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5681 StringRef ModulePath, unsigned ModuleId) 5682 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5683 ModulePath(ModulePath), ModuleId(ModuleId) {} 5684 5685 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5686 TheIndex.addModule(ModulePath, ModuleId); 5687 } 5688 5689 ModuleSummaryIndex::ModuleInfo * 5690 ModuleSummaryIndexBitcodeReader::getThisModule() { 5691 return TheIndex.getModule(ModulePath); 5692 } 5693 5694 std::pair<ValueInfo, GlobalValue::GUID> 5695 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5696 auto VGI = ValueIdToValueInfoMap[ValueId]; 5697 assert(VGI.first); 5698 return VGI; 5699 } 5700 5701 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5702 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5703 StringRef SourceFileName) { 5704 std::string GlobalId = 5705 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5706 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5707 auto OriginalNameID = ValueGUID; 5708 if (GlobalValue::isLocalLinkage(Linkage)) 5709 OriginalNameID = GlobalValue::getGUID(ValueName); 5710 if (PrintSummaryGUIDs) 5711 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5712 << ValueName << "\n"; 5713 5714 // UseStrtab is false for legacy summary formats and value names are 5715 // created on stack. In that case we save the name in a string saver in 5716 // the index so that the value name can be recorded. 5717 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5718 TheIndex.getOrInsertValueInfo( 5719 ValueGUID, 5720 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5721 OriginalNameID); 5722 } 5723 5724 // Specialized value symbol table parser used when reading module index 5725 // blocks where we don't actually create global values. The parsed information 5726 // is saved in the bitcode reader for use when later parsing summaries. 5727 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5728 uint64_t Offset, 5729 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5730 // With a strtab the VST is not required to parse the summary. 5731 if (UseStrtab) 5732 return Error::success(); 5733 5734 assert(Offset > 0 && "Expected non-zero VST offset"); 5735 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5736 if (!MaybeCurrentBit) 5737 return MaybeCurrentBit.takeError(); 5738 uint64_t CurrentBit = MaybeCurrentBit.get(); 5739 5740 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5741 return Err; 5742 5743 SmallVector<uint64_t, 64> Record; 5744 5745 // Read all the records for this value table. 5746 SmallString<128> ValueName; 5747 5748 while (true) { 5749 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5750 if (!MaybeEntry) 5751 return MaybeEntry.takeError(); 5752 BitstreamEntry Entry = MaybeEntry.get(); 5753 5754 switch (Entry.Kind) { 5755 case BitstreamEntry::SubBlock: // Handled for us already. 5756 case BitstreamEntry::Error: 5757 return error("Malformed block"); 5758 case BitstreamEntry::EndBlock: 5759 // Done parsing VST, jump back to wherever we came from. 5760 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5761 return JumpFailed; 5762 return Error::success(); 5763 case BitstreamEntry::Record: 5764 // The interesting case. 5765 break; 5766 } 5767 5768 // Read a record. 5769 Record.clear(); 5770 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5771 if (!MaybeRecord) 5772 return MaybeRecord.takeError(); 5773 switch (MaybeRecord.get()) { 5774 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5775 break; 5776 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5777 if (convertToString(Record, 1, ValueName)) 5778 return error("Invalid record"); 5779 unsigned ValueID = Record[0]; 5780 assert(!SourceFileName.empty()); 5781 auto VLI = ValueIdToLinkageMap.find(ValueID); 5782 assert(VLI != ValueIdToLinkageMap.end() && 5783 "No linkage found for VST entry?"); 5784 auto Linkage = VLI->second; 5785 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5786 ValueName.clear(); 5787 break; 5788 } 5789 case bitc::VST_CODE_FNENTRY: { 5790 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5791 if (convertToString(Record, 2, ValueName)) 5792 return error("Invalid record"); 5793 unsigned ValueID = Record[0]; 5794 assert(!SourceFileName.empty()); 5795 auto VLI = ValueIdToLinkageMap.find(ValueID); 5796 assert(VLI != ValueIdToLinkageMap.end() && 5797 "No linkage found for VST entry?"); 5798 auto Linkage = VLI->second; 5799 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5800 ValueName.clear(); 5801 break; 5802 } 5803 case bitc::VST_CODE_COMBINED_ENTRY: { 5804 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5805 unsigned ValueID = Record[0]; 5806 GlobalValue::GUID RefGUID = Record[1]; 5807 // The "original name", which is the second value of the pair will be 5808 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5809 ValueIdToValueInfoMap[ValueID] = 5810 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5811 break; 5812 } 5813 } 5814 } 5815 } 5816 5817 // Parse just the blocks needed for building the index out of the module. 5818 // At the end of this routine the module Index is populated with a map 5819 // from global value id to GlobalValueSummary objects. 5820 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5821 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5822 return Err; 5823 5824 SmallVector<uint64_t, 64> Record; 5825 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5826 unsigned ValueId = 0; 5827 5828 // Read the index for this module. 5829 while (true) { 5830 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5831 if (!MaybeEntry) 5832 return MaybeEntry.takeError(); 5833 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5834 5835 switch (Entry.Kind) { 5836 case BitstreamEntry::Error: 5837 return error("Malformed block"); 5838 case BitstreamEntry::EndBlock: 5839 return Error::success(); 5840 5841 case BitstreamEntry::SubBlock: 5842 switch (Entry.ID) { 5843 default: // Skip unknown content. 5844 if (Error Err = Stream.SkipBlock()) 5845 return Err; 5846 break; 5847 case bitc::BLOCKINFO_BLOCK_ID: 5848 // Need to parse these to get abbrev ids (e.g. for VST) 5849 if (readBlockInfo()) 5850 return error("Malformed block"); 5851 break; 5852 case bitc::VALUE_SYMTAB_BLOCK_ID: 5853 // Should have been parsed earlier via VSTOffset, unless there 5854 // is no summary section. 5855 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5856 !SeenGlobalValSummary) && 5857 "Expected early VST parse via VSTOffset record"); 5858 if (Error Err = Stream.SkipBlock()) 5859 return Err; 5860 break; 5861 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5862 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5863 // Add the module if it is a per-module index (has a source file name). 5864 if (!SourceFileName.empty()) 5865 addThisModule(); 5866 assert(!SeenValueSymbolTable && 5867 "Already read VST when parsing summary block?"); 5868 // We might not have a VST if there were no values in the 5869 // summary. An empty summary block generated when we are 5870 // performing ThinLTO compiles so we don't later invoke 5871 // the regular LTO process on them. 5872 if (VSTOffset > 0) { 5873 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5874 return Err; 5875 SeenValueSymbolTable = true; 5876 } 5877 SeenGlobalValSummary = true; 5878 if (Error Err = parseEntireSummary(Entry.ID)) 5879 return Err; 5880 break; 5881 case bitc::MODULE_STRTAB_BLOCK_ID: 5882 if (Error Err = parseModuleStringTable()) 5883 return Err; 5884 break; 5885 } 5886 continue; 5887 5888 case BitstreamEntry::Record: { 5889 Record.clear(); 5890 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5891 if (!MaybeBitCode) 5892 return MaybeBitCode.takeError(); 5893 switch (MaybeBitCode.get()) { 5894 default: 5895 break; // Default behavior, ignore unknown content. 5896 case bitc::MODULE_CODE_VERSION: { 5897 if (Error Err = parseVersionRecord(Record).takeError()) 5898 return Err; 5899 break; 5900 } 5901 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5902 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5903 SmallString<128> ValueName; 5904 if (convertToString(Record, 0, ValueName)) 5905 return error("Invalid record"); 5906 SourceFileName = ValueName.c_str(); 5907 break; 5908 } 5909 /// MODULE_CODE_HASH: [5*i32] 5910 case bitc::MODULE_CODE_HASH: { 5911 if (Record.size() != 5) 5912 return error("Invalid hash length " + Twine(Record.size()).str()); 5913 auto &Hash = getThisModule()->second.second; 5914 int Pos = 0; 5915 for (auto &Val : Record) { 5916 assert(!(Val >> 32) && "Unexpected high bits set"); 5917 Hash[Pos++] = Val; 5918 } 5919 break; 5920 } 5921 /// MODULE_CODE_VSTOFFSET: [offset] 5922 case bitc::MODULE_CODE_VSTOFFSET: 5923 if (Record.empty()) 5924 return error("Invalid record"); 5925 // Note that we subtract 1 here because the offset is relative to one 5926 // word before the start of the identification or module block, which 5927 // was historically always the start of the regular bitcode header. 5928 VSTOffset = Record[0] - 1; 5929 break; 5930 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5931 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5932 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5933 // v2: [strtab offset, strtab size, v1] 5934 case bitc::MODULE_CODE_GLOBALVAR: 5935 case bitc::MODULE_CODE_FUNCTION: 5936 case bitc::MODULE_CODE_ALIAS: { 5937 StringRef Name; 5938 ArrayRef<uint64_t> GVRecord; 5939 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5940 if (GVRecord.size() <= 3) 5941 return error("Invalid record"); 5942 uint64_t RawLinkage = GVRecord[3]; 5943 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5944 if (!UseStrtab) { 5945 ValueIdToLinkageMap[ValueId++] = Linkage; 5946 break; 5947 } 5948 5949 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5950 break; 5951 } 5952 } 5953 } 5954 continue; 5955 } 5956 } 5957 } 5958 5959 std::vector<ValueInfo> 5960 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5961 std::vector<ValueInfo> Ret; 5962 Ret.reserve(Record.size()); 5963 for (uint64_t RefValueId : Record) 5964 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5965 return Ret; 5966 } 5967 5968 std::vector<FunctionSummary::EdgeTy> 5969 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5970 bool IsOldProfileFormat, 5971 bool HasProfile, bool HasRelBF) { 5972 std::vector<FunctionSummary::EdgeTy> Ret; 5973 Ret.reserve(Record.size()); 5974 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5975 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5976 uint64_t RelBF = 0; 5977 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5978 if (IsOldProfileFormat) { 5979 I += 1; // Skip old callsitecount field 5980 if (HasProfile) 5981 I += 1; // Skip old profilecount field 5982 } else if (HasProfile) 5983 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5984 else if (HasRelBF) 5985 RelBF = Record[++I]; 5986 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5987 } 5988 return Ret; 5989 } 5990 5991 static void 5992 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5993 WholeProgramDevirtResolution &Wpd) { 5994 uint64_t ArgNum = Record[Slot++]; 5995 WholeProgramDevirtResolution::ByArg &B = 5996 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5997 Slot += ArgNum; 5998 5999 B.TheKind = 6000 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6001 B.Info = Record[Slot++]; 6002 B.Byte = Record[Slot++]; 6003 B.Bit = Record[Slot++]; 6004 } 6005 6006 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6007 StringRef Strtab, size_t &Slot, 6008 TypeIdSummary &TypeId) { 6009 uint64_t Id = Record[Slot++]; 6010 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6011 6012 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6013 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6014 static_cast<size_t>(Record[Slot + 1])}; 6015 Slot += 2; 6016 6017 uint64_t ResByArgNum = Record[Slot++]; 6018 for (uint64_t I = 0; I != ResByArgNum; ++I) 6019 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6020 } 6021 6022 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6023 StringRef Strtab, 6024 ModuleSummaryIndex &TheIndex) { 6025 size_t Slot = 0; 6026 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6027 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6028 Slot += 2; 6029 6030 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6031 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6032 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6033 TypeId.TTRes.SizeM1 = Record[Slot++]; 6034 TypeId.TTRes.BitMask = Record[Slot++]; 6035 TypeId.TTRes.InlineBits = Record[Slot++]; 6036 6037 while (Slot < Record.size()) 6038 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6039 } 6040 6041 std::vector<FunctionSummary::ParamAccess> 6042 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6043 auto ReadRange = [&]() { 6044 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6045 BitcodeReader::decodeSignRotatedValue(Record.front())); 6046 Record = Record.drop_front(); 6047 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6048 BitcodeReader::decodeSignRotatedValue(Record.front())); 6049 Record = Record.drop_front(); 6050 ConstantRange Range{Lower, Upper}; 6051 assert(!Range.isFullSet()); 6052 assert(!Range.isUpperSignWrapped()); 6053 return Range; 6054 }; 6055 6056 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6057 while (!Record.empty()) { 6058 PendingParamAccesses.emplace_back(); 6059 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6060 ParamAccess.ParamNo = Record.front(); 6061 Record = Record.drop_front(); 6062 ParamAccess.Use = ReadRange(); 6063 ParamAccess.Calls.resize(Record.front()); 6064 Record = Record.drop_front(); 6065 for (auto &Call : ParamAccess.Calls) { 6066 Call.ParamNo = Record.front(); 6067 Record = Record.drop_front(); 6068 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6069 Record = Record.drop_front(); 6070 Call.Offsets = ReadRange(); 6071 } 6072 } 6073 return PendingParamAccesses; 6074 } 6075 6076 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6077 ArrayRef<uint64_t> Record, size_t &Slot, 6078 TypeIdCompatibleVtableInfo &TypeId) { 6079 uint64_t Offset = Record[Slot++]; 6080 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6081 TypeId.push_back({Offset, Callee}); 6082 } 6083 6084 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6085 ArrayRef<uint64_t> Record) { 6086 size_t Slot = 0; 6087 TypeIdCompatibleVtableInfo &TypeId = 6088 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6089 {Strtab.data() + Record[Slot], 6090 static_cast<size_t>(Record[Slot + 1])}); 6091 Slot += 2; 6092 6093 while (Slot < Record.size()) 6094 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6095 } 6096 6097 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6098 unsigned WOCnt) { 6099 // Readonly and writeonly refs are in the end of the refs list. 6100 assert(ROCnt + WOCnt <= Refs.size()); 6101 unsigned FirstWORef = Refs.size() - WOCnt; 6102 unsigned RefNo = FirstWORef - ROCnt; 6103 for (; RefNo < FirstWORef; ++RefNo) 6104 Refs[RefNo].setReadOnly(); 6105 for (; RefNo < Refs.size(); ++RefNo) 6106 Refs[RefNo].setWriteOnly(); 6107 } 6108 6109 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6110 // objects in the index. 6111 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6112 if (Error Err = Stream.EnterSubBlock(ID)) 6113 return Err; 6114 SmallVector<uint64_t, 64> Record; 6115 6116 // Parse version 6117 { 6118 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6119 if (!MaybeEntry) 6120 return MaybeEntry.takeError(); 6121 BitstreamEntry Entry = MaybeEntry.get(); 6122 6123 if (Entry.Kind != BitstreamEntry::Record) 6124 return error("Invalid Summary Block: record for version expected"); 6125 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6126 if (!MaybeRecord) 6127 return MaybeRecord.takeError(); 6128 if (MaybeRecord.get() != bitc::FS_VERSION) 6129 return error("Invalid Summary Block: version expected"); 6130 } 6131 const uint64_t Version = Record[0]; 6132 const bool IsOldProfileFormat = Version == 1; 6133 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6134 return error("Invalid summary version " + Twine(Version) + 6135 ". Version should be in the range [1-" + 6136 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6137 "]."); 6138 Record.clear(); 6139 6140 // Keep around the last seen summary to be used when we see an optional 6141 // "OriginalName" attachement. 6142 GlobalValueSummary *LastSeenSummary = nullptr; 6143 GlobalValue::GUID LastSeenGUID = 0; 6144 6145 // We can expect to see any number of type ID information records before 6146 // each function summary records; these variables store the information 6147 // collected so far so that it can be used to create the summary object. 6148 std::vector<GlobalValue::GUID> PendingTypeTests; 6149 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6150 PendingTypeCheckedLoadVCalls; 6151 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6152 PendingTypeCheckedLoadConstVCalls; 6153 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6154 6155 while (true) { 6156 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6157 if (!MaybeEntry) 6158 return MaybeEntry.takeError(); 6159 BitstreamEntry Entry = MaybeEntry.get(); 6160 6161 switch (Entry.Kind) { 6162 case BitstreamEntry::SubBlock: // Handled for us already. 6163 case BitstreamEntry::Error: 6164 return error("Malformed block"); 6165 case BitstreamEntry::EndBlock: 6166 return Error::success(); 6167 case BitstreamEntry::Record: 6168 // The interesting case. 6169 break; 6170 } 6171 6172 // Read a record. The record format depends on whether this 6173 // is a per-module index or a combined index file. In the per-module 6174 // case the records contain the associated value's ID for correlation 6175 // with VST entries. In the combined index the correlation is done 6176 // via the bitcode offset of the summary records (which were saved 6177 // in the combined index VST entries). The records also contain 6178 // information used for ThinLTO renaming and importing. 6179 Record.clear(); 6180 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6181 if (!MaybeBitCode) 6182 return MaybeBitCode.takeError(); 6183 switch (unsigned BitCode = MaybeBitCode.get()) { 6184 default: // Default behavior: ignore. 6185 break; 6186 case bitc::FS_FLAGS: { // [flags] 6187 TheIndex.setFlags(Record[0]); 6188 break; 6189 } 6190 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6191 uint64_t ValueID = Record[0]; 6192 GlobalValue::GUID RefGUID = Record[1]; 6193 ValueIdToValueInfoMap[ValueID] = 6194 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6195 break; 6196 } 6197 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6198 // numrefs x valueid, n x (valueid)] 6199 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6200 // numrefs x valueid, 6201 // n x (valueid, hotness)] 6202 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6203 // numrefs x valueid, 6204 // n x (valueid, relblockfreq)] 6205 case bitc::FS_PERMODULE: 6206 case bitc::FS_PERMODULE_RELBF: 6207 case bitc::FS_PERMODULE_PROFILE: { 6208 unsigned ValueID = Record[0]; 6209 uint64_t RawFlags = Record[1]; 6210 unsigned InstCount = Record[2]; 6211 uint64_t RawFunFlags = 0; 6212 unsigned NumRefs = Record[3]; 6213 unsigned NumRORefs = 0, NumWORefs = 0; 6214 int RefListStartIndex = 4; 6215 if (Version >= 4) { 6216 RawFunFlags = Record[3]; 6217 NumRefs = Record[4]; 6218 RefListStartIndex = 5; 6219 if (Version >= 5) { 6220 NumRORefs = Record[5]; 6221 RefListStartIndex = 6; 6222 if (Version >= 7) { 6223 NumWORefs = Record[6]; 6224 RefListStartIndex = 7; 6225 } 6226 } 6227 } 6228 6229 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6230 // The module path string ref set in the summary must be owned by the 6231 // index's module string table. Since we don't have a module path 6232 // string table section in the per-module index, we create a single 6233 // module path string table entry with an empty (0) ID to take 6234 // ownership. 6235 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6236 assert(Record.size() >= RefListStartIndex + NumRefs && 6237 "Record size inconsistent with number of references"); 6238 std::vector<ValueInfo> Refs = makeRefList( 6239 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6240 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6241 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6242 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6243 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6244 IsOldProfileFormat, HasProfile, HasRelBF); 6245 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6246 auto FS = std::make_unique<FunctionSummary>( 6247 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6248 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6249 std::move(PendingTypeTestAssumeVCalls), 6250 std::move(PendingTypeCheckedLoadVCalls), 6251 std::move(PendingTypeTestAssumeConstVCalls), 6252 std::move(PendingTypeCheckedLoadConstVCalls), 6253 std::move(PendingParamAccesses)); 6254 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6255 FS->setModulePath(getThisModule()->first()); 6256 FS->setOriginalName(VIAndOriginalGUID.second); 6257 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6258 break; 6259 } 6260 // FS_ALIAS: [valueid, flags, valueid] 6261 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6262 // they expect all aliasee summaries to be available. 6263 case bitc::FS_ALIAS: { 6264 unsigned ValueID = Record[0]; 6265 uint64_t RawFlags = Record[1]; 6266 unsigned AliaseeID = Record[2]; 6267 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6268 auto AS = std::make_unique<AliasSummary>(Flags); 6269 // The module path string ref set in the summary must be owned by the 6270 // index's module string table. Since we don't have a module path 6271 // string table section in the per-module index, we create a single 6272 // module path string table entry with an empty (0) ID to take 6273 // ownership. 6274 AS->setModulePath(getThisModule()->first()); 6275 6276 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6277 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6278 if (!AliaseeInModule) 6279 return error("Alias expects aliasee summary to be parsed"); 6280 AS->setAliasee(AliaseeVI, AliaseeInModule); 6281 6282 auto GUID = getValueInfoFromValueId(ValueID); 6283 AS->setOriginalName(GUID.second); 6284 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6285 break; 6286 } 6287 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6288 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6289 unsigned ValueID = Record[0]; 6290 uint64_t RawFlags = Record[1]; 6291 unsigned RefArrayStart = 2; 6292 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6293 /* WriteOnly */ false, 6294 /* Constant */ false, 6295 GlobalObject::VCallVisibilityPublic); 6296 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6297 if (Version >= 5) { 6298 GVF = getDecodedGVarFlags(Record[2]); 6299 RefArrayStart = 3; 6300 } 6301 std::vector<ValueInfo> Refs = 6302 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6303 auto FS = 6304 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6305 FS->setModulePath(getThisModule()->first()); 6306 auto GUID = getValueInfoFromValueId(ValueID); 6307 FS->setOriginalName(GUID.second); 6308 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6309 break; 6310 } 6311 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6312 // numrefs, numrefs x valueid, 6313 // n x (valueid, offset)] 6314 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6315 unsigned ValueID = Record[0]; 6316 uint64_t RawFlags = Record[1]; 6317 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6318 unsigned NumRefs = Record[3]; 6319 unsigned RefListStartIndex = 4; 6320 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6321 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6322 std::vector<ValueInfo> Refs = makeRefList( 6323 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6324 VTableFuncList VTableFuncs; 6325 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6326 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6327 uint64_t Offset = Record[++I]; 6328 VTableFuncs.push_back({Callee, Offset}); 6329 } 6330 auto VS = 6331 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6332 VS->setModulePath(getThisModule()->first()); 6333 VS->setVTableFuncs(VTableFuncs); 6334 auto GUID = getValueInfoFromValueId(ValueID); 6335 VS->setOriginalName(GUID.second); 6336 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6337 break; 6338 } 6339 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6340 // numrefs x valueid, n x (valueid)] 6341 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6342 // numrefs x valueid, n x (valueid, hotness)] 6343 case bitc::FS_COMBINED: 6344 case bitc::FS_COMBINED_PROFILE: { 6345 unsigned ValueID = Record[0]; 6346 uint64_t ModuleId = Record[1]; 6347 uint64_t RawFlags = Record[2]; 6348 unsigned InstCount = Record[3]; 6349 uint64_t RawFunFlags = 0; 6350 uint64_t EntryCount = 0; 6351 unsigned NumRefs = Record[4]; 6352 unsigned NumRORefs = 0, NumWORefs = 0; 6353 int RefListStartIndex = 5; 6354 6355 if (Version >= 4) { 6356 RawFunFlags = Record[4]; 6357 RefListStartIndex = 6; 6358 size_t NumRefsIndex = 5; 6359 if (Version >= 5) { 6360 unsigned NumRORefsOffset = 1; 6361 RefListStartIndex = 7; 6362 if (Version >= 6) { 6363 NumRefsIndex = 6; 6364 EntryCount = Record[5]; 6365 RefListStartIndex = 8; 6366 if (Version >= 7) { 6367 RefListStartIndex = 9; 6368 NumWORefs = Record[8]; 6369 NumRORefsOffset = 2; 6370 } 6371 } 6372 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6373 } 6374 NumRefs = Record[NumRefsIndex]; 6375 } 6376 6377 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6378 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6379 assert(Record.size() >= RefListStartIndex + NumRefs && 6380 "Record size inconsistent with number of references"); 6381 std::vector<ValueInfo> Refs = makeRefList( 6382 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6383 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6384 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6385 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6386 IsOldProfileFormat, HasProfile, false); 6387 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6388 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6389 auto FS = std::make_unique<FunctionSummary>( 6390 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6391 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6392 std::move(PendingTypeTestAssumeVCalls), 6393 std::move(PendingTypeCheckedLoadVCalls), 6394 std::move(PendingTypeTestAssumeConstVCalls), 6395 std::move(PendingTypeCheckedLoadConstVCalls), 6396 std::move(PendingParamAccesses)); 6397 LastSeenSummary = FS.get(); 6398 LastSeenGUID = VI.getGUID(); 6399 FS->setModulePath(ModuleIdMap[ModuleId]); 6400 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6401 break; 6402 } 6403 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6404 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6405 // they expect all aliasee summaries to be available. 6406 case bitc::FS_COMBINED_ALIAS: { 6407 unsigned ValueID = Record[0]; 6408 uint64_t ModuleId = Record[1]; 6409 uint64_t RawFlags = Record[2]; 6410 unsigned AliaseeValueId = Record[3]; 6411 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6412 auto AS = std::make_unique<AliasSummary>(Flags); 6413 LastSeenSummary = AS.get(); 6414 AS->setModulePath(ModuleIdMap[ModuleId]); 6415 6416 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6417 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6418 AS->setAliasee(AliaseeVI, AliaseeInModule); 6419 6420 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6421 LastSeenGUID = VI.getGUID(); 6422 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6423 break; 6424 } 6425 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6426 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6427 unsigned ValueID = Record[0]; 6428 uint64_t ModuleId = Record[1]; 6429 uint64_t RawFlags = Record[2]; 6430 unsigned RefArrayStart = 3; 6431 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6432 /* WriteOnly */ false, 6433 /* Constant */ false, 6434 GlobalObject::VCallVisibilityPublic); 6435 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6436 if (Version >= 5) { 6437 GVF = getDecodedGVarFlags(Record[3]); 6438 RefArrayStart = 4; 6439 } 6440 std::vector<ValueInfo> Refs = 6441 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6442 auto FS = 6443 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6444 LastSeenSummary = FS.get(); 6445 FS->setModulePath(ModuleIdMap[ModuleId]); 6446 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6447 LastSeenGUID = VI.getGUID(); 6448 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6449 break; 6450 } 6451 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6452 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6453 uint64_t OriginalName = Record[0]; 6454 if (!LastSeenSummary) 6455 return error("Name attachment that does not follow a combined record"); 6456 LastSeenSummary->setOriginalName(OriginalName); 6457 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6458 // Reset the LastSeenSummary 6459 LastSeenSummary = nullptr; 6460 LastSeenGUID = 0; 6461 break; 6462 } 6463 case bitc::FS_TYPE_TESTS: 6464 assert(PendingTypeTests.empty()); 6465 llvm::append_range(PendingTypeTests, Record); 6466 break; 6467 6468 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6469 assert(PendingTypeTestAssumeVCalls.empty()); 6470 for (unsigned I = 0; I != Record.size(); I += 2) 6471 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6472 break; 6473 6474 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6475 assert(PendingTypeCheckedLoadVCalls.empty()); 6476 for (unsigned I = 0; I != Record.size(); I += 2) 6477 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6478 break; 6479 6480 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6481 PendingTypeTestAssumeConstVCalls.push_back( 6482 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6483 break; 6484 6485 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6486 PendingTypeCheckedLoadConstVCalls.push_back( 6487 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6488 break; 6489 6490 case bitc::FS_CFI_FUNCTION_DEFS: { 6491 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6492 for (unsigned I = 0; I != Record.size(); I += 2) 6493 CfiFunctionDefs.insert( 6494 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6495 break; 6496 } 6497 6498 case bitc::FS_CFI_FUNCTION_DECLS: { 6499 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6500 for (unsigned I = 0; I != Record.size(); I += 2) 6501 CfiFunctionDecls.insert( 6502 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6503 break; 6504 } 6505 6506 case bitc::FS_TYPE_ID: 6507 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6508 break; 6509 6510 case bitc::FS_TYPE_ID_METADATA: 6511 parseTypeIdCompatibleVtableSummaryRecord(Record); 6512 break; 6513 6514 case bitc::FS_BLOCK_COUNT: 6515 TheIndex.addBlockCount(Record[0]); 6516 break; 6517 6518 case bitc::FS_PARAM_ACCESS: { 6519 PendingParamAccesses = parseParamAccesses(Record); 6520 break; 6521 } 6522 } 6523 } 6524 llvm_unreachable("Exit infinite loop"); 6525 } 6526 6527 // Parse the module string table block into the Index. 6528 // This populates the ModulePathStringTable map in the index. 6529 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6530 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6531 return Err; 6532 6533 SmallVector<uint64_t, 64> Record; 6534 6535 SmallString<128> ModulePath; 6536 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6537 6538 while (true) { 6539 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6540 if (!MaybeEntry) 6541 return MaybeEntry.takeError(); 6542 BitstreamEntry Entry = MaybeEntry.get(); 6543 6544 switch (Entry.Kind) { 6545 case BitstreamEntry::SubBlock: // Handled for us already. 6546 case BitstreamEntry::Error: 6547 return error("Malformed block"); 6548 case BitstreamEntry::EndBlock: 6549 return Error::success(); 6550 case BitstreamEntry::Record: 6551 // The interesting case. 6552 break; 6553 } 6554 6555 Record.clear(); 6556 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6557 if (!MaybeRecord) 6558 return MaybeRecord.takeError(); 6559 switch (MaybeRecord.get()) { 6560 default: // Default behavior: ignore. 6561 break; 6562 case bitc::MST_CODE_ENTRY: { 6563 // MST_ENTRY: [modid, namechar x N] 6564 uint64_t ModuleId = Record[0]; 6565 6566 if (convertToString(Record, 1, ModulePath)) 6567 return error("Invalid record"); 6568 6569 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6570 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6571 6572 ModulePath.clear(); 6573 break; 6574 } 6575 /// MST_CODE_HASH: [5*i32] 6576 case bitc::MST_CODE_HASH: { 6577 if (Record.size() != 5) 6578 return error("Invalid hash length " + Twine(Record.size()).str()); 6579 if (!LastSeenModule) 6580 return error("Invalid hash that does not follow a module path"); 6581 int Pos = 0; 6582 for (auto &Val : Record) { 6583 assert(!(Val >> 32) && "Unexpected high bits set"); 6584 LastSeenModule->second.second[Pos++] = Val; 6585 } 6586 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6587 LastSeenModule = nullptr; 6588 break; 6589 } 6590 } 6591 } 6592 llvm_unreachable("Exit infinite loop"); 6593 } 6594 6595 namespace { 6596 6597 // FIXME: This class is only here to support the transition to llvm::Error. It 6598 // will be removed once this transition is complete. Clients should prefer to 6599 // deal with the Error value directly, rather than converting to error_code. 6600 class BitcodeErrorCategoryType : public std::error_category { 6601 const char *name() const noexcept override { 6602 return "llvm.bitcode"; 6603 } 6604 6605 std::string message(int IE) const override { 6606 BitcodeError E = static_cast<BitcodeError>(IE); 6607 switch (E) { 6608 case BitcodeError::CorruptedBitcode: 6609 return "Corrupted bitcode"; 6610 } 6611 llvm_unreachable("Unknown error type!"); 6612 } 6613 }; 6614 6615 } // end anonymous namespace 6616 6617 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6618 6619 const std::error_category &llvm::BitcodeErrorCategory() { 6620 return *ErrorCategory; 6621 } 6622 6623 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6624 unsigned Block, unsigned RecordID) { 6625 if (Error Err = Stream.EnterSubBlock(Block)) 6626 return std::move(Err); 6627 6628 StringRef Strtab; 6629 while (true) { 6630 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6631 if (!MaybeEntry) 6632 return MaybeEntry.takeError(); 6633 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6634 6635 switch (Entry.Kind) { 6636 case BitstreamEntry::EndBlock: 6637 return Strtab; 6638 6639 case BitstreamEntry::Error: 6640 return error("Malformed block"); 6641 6642 case BitstreamEntry::SubBlock: 6643 if (Error Err = Stream.SkipBlock()) 6644 return std::move(Err); 6645 break; 6646 6647 case BitstreamEntry::Record: 6648 StringRef Blob; 6649 SmallVector<uint64_t, 1> Record; 6650 Expected<unsigned> MaybeRecord = 6651 Stream.readRecord(Entry.ID, Record, &Blob); 6652 if (!MaybeRecord) 6653 return MaybeRecord.takeError(); 6654 if (MaybeRecord.get() == RecordID) 6655 Strtab = Blob; 6656 break; 6657 } 6658 } 6659 } 6660 6661 //===----------------------------------------------------------------------===// 6662 // External interface 6663 //===----------------------------------------------------------------------===// 6664 6665 Expected<std::vector<BitcodeModule>> 6666 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6667 auto FOrErr = getBitcodeFileContents(Buffer); 6668 if (!FOrErr) 6669 return FOrErr.takeError(); 6670 return std::move(FOrErr->Mods); 6671 } 6672 6673 Expected<BitcodeFileContents> 6674 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6675 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6676 if (!StreamOrErr) 6677 return StreamOrErr.takeError(); 6678 BitstreamCursor &Stream = *StreamOrErr; 6679 6680 BitcodeFileContents F; 6681 while (true) { 6682 uint64_t BCBegin = Stream.getCurrentByteNo(); 6683 6684 // We may be consuming bitcode from a client that leaves garbage at the end 6685 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6686 // the end that there cannot possibly be another module, stop looking. 6687 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6688 return F; 6689 6690 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6691 if (!MaybeEntry) 6692 return MaybeEntry.takeError(); 6693 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6694 6695 switch (Entry.Kind) { 6696 case BitstreamEntry::EndBlock: 6697 case BitstreamEntry::Error: 6698 return error("Malformed block"); 6699 6700 case BitstreamEntry::SubBlock: { 6701 uint64_t IdentificationBit = -1ull; 6702 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6703 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6704 if (Error Err = Stream.SkipBlock()) 6705 return std::move(Err); 6706 6707 { 6708 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6709 if (!MaybeEntry) 6710 return MaybeEntry.takeError(); 6711 Entry = MaybeEntry.get(); 6712 } 6713 6714 if (Entry.Kind != BitstreamEntry::SubBlock || 6715 Entry.ID != bitc::MODULE_BLOCK_ID) 6716 return error("Malformed block"); 6717 } 6718 6719 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6720 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6721 if (Error Err = Stream.SkipBlock()) 6722 return std::move(Err); 6723 6724 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6725 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6726 Buffer.getBufferIdentifier(), IdentificationBit, 6727 ModuleBit}); 6728 continue; 6729 } 6730 6731 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6732 Expected<StringRef> Strtab = 6733 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6734 if (!Strtab) 6735 return Strtab.takeError(); 6736 // This string table is used by every preceding bitcode module that does 6737 // not have its own string table. A bitcode file may have multiple 6738 // string tables if it was created by binary concatenation, for example 6739 // with "llvm-cat -b". 6740 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6741 if (!I->Strtab.empty()) 6742 break; 6743 I->Strtab = *Strtab; 6744 } 6745 // Similarly, the string table is used by every preceding symbol table; 6746 // normally there will be just one unless the bitcode file was created 6747 // by binary concatenation. 6748 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6749 F.StrtabForSymtab = *Strtab; 6750 continue; 6751 } 6752 6753 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6754 Expected<StringRef> SymtabOrErr = 6755 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6756 if (!SymtabOrErr) 6757 return SymtabOrErr.takeError(); 6758 6759 // We can expect the bitcode file to have multiple symbol tables if it 6760 // was created by binary concatenation. In that case we silently 6761 // ignore any subsequent symbol tables, which is fine because this is a 6762 // low level function. The client is expected to notice that the number 6763 // of modules in the symbol table does not match the number of modules 6764 // in the input file and regenerate the symbol table. 6765 if (F.Symtab.empty()) 6766 F.Symtab = *SymtabOrErr; 6767 continue; 6768 } 6769 6770 if (Error Err = Stream.SkipBlock()) 6771 return std::move(Err); 6772 continue; 6773 } 6774 case BitstreamEntry::Record: 6775 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6776 continue; 6777 else 6778 return StreamFailed.takeError(); 6779 } 6780 } 6781 } 6782 6783 /// Get a lazy one-at-time loading module from bitcode. 6784 /// 6785 /// This isn't always used in a lazy context. In particular, it's also used by 6786 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6787 /// in forward-referenced functions from block address references. 6788 /// 6789 /// \param[in] MaterializeAll Set to \c true if we should materialize 6790 /// everything. 6791 Expected<std::unique_ptr<Module>> 6792 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6793 bool ShouldLazyLoadMetadata, bool IsImporting, 6794 DataLayoutCallbackTy DataLayoutCallback) { 6795 BitstreamCursor Stream(Buffer); 6796 6797 std::string ProducerIdentification; 6798 if (IdentificationBit != -1ull) { 6799 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6800 return std::move(JumpFailed); 6801 Expected<std::string> ProducerIdentificationOrErr = 6802 readIdentificationBlock(Stream); 6803 if (!ProducerIdentificationOrErr) 6804 return ProducerIdentificationOrErr.takeError(); 6805 6806 ProducerIdentification = *ProducerIdentificationOrErr; 6807 } 6808 6809 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6810 return std::move(JumpFailed); 6811 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6812 Context); 6813 6814 std::unique_ptr<Module> M = 6815 std::make_unique<Module>(ModuleIdentifier, Context); 6816 M->setMaterializer(R); 6817 6818 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6819 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6820 IsImporting, DataLayoutCallback)) 6821 return std::move(Err); 6822 6823 if (MaterializeAll) { 6824 // Read in the entire module, and destroy the BitcodeReader. 6825 if (Error Err = M->materializeAll()) 6826 return std::move(Err); 6827 } else { 6828 // Resolve forward references from blockaddresses. 6829 if (Error Err = R->materializeForwardReferencedFunctions()) 6830 return std::move(Err); 6831 } 6832 return std::move(M); 6833 } 6834 6835 Expected<std::unique_ptr<Module>> 6836 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6837 bool IsImporting) { 6838 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6839 [](StringRef) { return None; }); 6840 } 6841 6842 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6843 // We don't use ModuleIdentifier here because the client may need to control the 6844 // module path used in the combined summary (e.g. when reading summaries for 6845 // regular LTO modules). 6846 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6847 StringRef ModulePath, uint64_t ModuleId) { 6848 BitstreamCursor Stream(Buffer); 6849 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6850 return JumpFailed; 6851 6852 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6853 ModulePath, ModuleId); 6854 return R.parseModule(); 6855 } 6856 6857 // Parse the specified bitcode buffer, returning the function info index. 6858 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6859 BitstreamCursor Stream(Buffer); 6860 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6861 return std::move(JumpFailed); 6862 6863 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6864 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6865 ModuleIdentifier, 0); 6866 6867 if (Error Err = R.parseModule()) 6868 return std::move(Err); 6869 6870 return std::move(Index); 6871 } 6872 6873 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6874 unsigned ID) { 6875 if (Error Err = Stream.EnterSubBlock(ID)) 6876 return std::move(Err); 6877 SmallVector<uint64_t, 64> Record; 6878 6879 while (true) { 6880 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6881 if (!MaybeEntry) 6882 return MaybeEntry.takeError(); 6883 BitstreamEntry Entry = MaybeEntry.get(); 6884 6885 switch (Entry.Kind) { 6886 case BitstreamEntry::SubBlock: // Handled for us already. 6887 case BitstreamEntry::Error: 6888 return error("Malformed block"); 6889 case BitstreamEntry::EndBlock: 6890 // If no flags record found, conservatively return true to mimic 6891 // behavior before this flag was added. 6892 return true; 6893 case BitstreamEntry::Record: 6894 // The interesting case. 6895 break; 6896 } 6897 6898 // Look for the FS_FLAGS record. 6899 Record.clear(); 6900 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6901 if (!MaybeBitCode) 6902 return MaybeBitCode.takeError(); 6903 switch (MaybeBitCode.get()) { 6904 default: // Default behavior: ignore. 6905 break; 6906 case bitc::FS_FLAGS: { // [flags] 6907 uint64_t Flags = Record[0]; 6908 // Scan flags. 6909 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6910 6911 return Flags & 0x8; 6912 } 6913 } 6914 } 6915 llvm_unreachable("Exit infinite loop"); 6916 } 6917 6918 // Check if the given bitcode buffer contains a global value summary block. 6919 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6920 BitstreamCursor Stream(Buffer); 6921 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6922 return std::move(JumpFailed); 6923 6924 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6925 return std::move(Err); 6926 6927 while (true) { 6928 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6929 if (!MaybeEntry) 6930 return MaybeEntry.takeError(); 6931 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6932 6933 switch (Entry.Kind) { 6934 case BitstreamEntry::Error: 6935 return error("Malformed block"); 6936 case BitstreamEntry::EndBlock: 6937 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6938 /*EnableSplitLTOUnit=*/false}; 6939 6940 case BitstreamEntry::SubBlock: 6941 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6942 Expected<bool> EnableSplitLTOUnit = 6943 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6944 if (!EnableSplitLTOUnit) 6945 return EnableSplitLTOUnit.takeError(); 6946 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6947 *EnableSplitLTOUnit}; 6948 } 6949 6950 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6951 Expected<bool> EnableSplitLTOUnit = 6952 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6953 if (!EnableSplitLTOUnit) 6954 return EnableSplitLTOUnit.takeError(); 6955 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6956 *EnableSplitLTOUnit}; 6957 } 6958 6959 // Ignore other sub-blocks. 6960 if (Error Err = Stream.SkipBlock()) 6961 return std::move(Err); 6962 continue; 6963 6964 case BitstreamEntry::Record: 6965 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6966 continue; 6967 else 6968 return StreamFailed.takeError(); 6969 } 6970 } 6971 } 6972 6973 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6974 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6975 if (!MsOrErr) 6976 return MsOrErr.takeError(); 6977 6978 if (MsOrErr->size() != 1) 6979 return error("Expected a single module"); 6980 6981 return (*MsOrErr)[0]; 6982 } 6983 6984 Expected<std::unique_ptr<Module>> 6985 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6986 bool ShouldLazyLoadMetadata, bool IsImporting) { 6987 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6988 if (!BM) 6989 return BM.takeError(); 6990 6991 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6992 } 6993 6994 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6995 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6996 bool ShouldLazyLoadMetadata, bool IsImporting) { 6997 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6998 IsImporting); 6999 if (MOrErr) 7000 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7001 return MOrErr; 7002 } 7003 7004 Expected<std::unique_ptr<Module>> 7005 BitcodeModule::parseModule(LLVMContext &Context, 7006 DataLayoutCallbackTy DataLayoutCallback) { 7007 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7008 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7009 // written. We must defer until the Module has been fully materialized. 7010 } 7011 7012 Expected<std::unique_ptr<Module>> 7013 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7014 DataLayoutCallbackTy DataLayoutCallback) { 7015 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7016 if (!BM) 7017 return BM.takeError(); 7018 7019 return BM->parseModule(Context, DataLayoutCallback); 7020 } 7021 7022 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7023 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7024 if (!StreamOrErr) 7025 return StreamOrErr.takeError(); 7026 7027 return readTriple(*StreamOrErr); 7028 } 7029 7030 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7031 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7032 if (!StreamOrErr) 7033 return StreamOrErr.takeError(); 7034 7035 return hasObjCCategory(*StreamOrErr); 7036 } 7037 7038 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7039 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7040 if (!StreamOrErr) 7041 return StreamOrErr.takeError(); 7042 7043 return readIdentificationCode(*StreamOrErr); 7044 } 7045 7046 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7047 ModuleSummaryIndex &CombinedIndex, 7048 uint64_t ModuleId) { 7049 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7050 if (!BM) 7051 return BM.takeError(); 7052 7053 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7054 } 7055 7056 Expected<std::unique_ptr<ModuleSummaryIndex>> 7057 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7058 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7059 if (!BM) 7060 return BM.takeError(); 7061 7062 return BM->getSummary(); 7063 } 7064 7065 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7066 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7067 if (!BM) 7068 return BM.takeError(); 7069 7070 return BM->getLTOInfo(); 7071 } 7072 7073 Expected<std::unique_ptr<ModuleSummaryIndex>> 7074 llvm::getModuleSummaryIndexForFile(StringRef Path, 7075 bool IgnoreEmptyThinLTOIndexFile) { 7076 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7077 MemoryBuffer::getFileOrSTDIN(Path); 7078 if (!FileOrErr) 7079 return errorCodeToError(FileOrErr.getError()); 7080 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7081 return nullptr; 7082 return getModuleSummaryIndex(**FileOrErr); 7083 } 7084