1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   Type *getTypeByID(unsigned ID);
597 
598   Value *getFnValueByID(unsigned ID, Type *Ty) {
599     if (Ty && Ty->isMetadataTy())
600       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
601     return ValueList.getValueFwdRef(ID, Ty);
602   }
603 
604   Metadata *getFnMetadataByID(unsigned ID) {
605     return MDLoader->getMetadataFwdRefOrLoad(ID);
606   }
607 
608   BasicBlock *getBasicBlock(unsigned ID) const {
609     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
610     return FunctionBBs[ID];
611   }
612 
613   AttributeList getAttributes(unsigned i) const {
614     if (i-1 < MAttributes.size())
615       return MAttributes[i-1];
616     return AttributeList();
617   }
618 
619   /// Read a value/type pair out of the specified record from slot 'Slot'.
620   /// Increment Slot past the number of slots used in the record. Return true on
621   /// failure.
622   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
623                         unsigned InstNum, Value *&ResVal) {
624     if (Slot == Record.size()) return true;
625     unsigned ValNo = (unsigned)Record[Slot++];
626     // Adjust the ValNo, if it was encoded relative to the InstNum.
627     if (UseRelativeIDs)
628       ValNo = InstNum - ValNo;
629     if (ValNo < InstNum) {
630       // If this is not a forward reference, just return the value we already
631       // have.
632       ResVal = getFnValueByID(ValNo, nullptr);
633       return ResVal == nullptr;
634     }
635     if (Slot == Record.size())
636       return true;
637 
638     unsigned TypeNo = (unsigned)Record[Slot++];
639     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
640     return ResVal == nullptr;
641   }
642 
643   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
644   /// past the number of slots used by the value in the record. Return true if
645   /// there is an error.
646   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
647                 unsigned InstNum, Type *Ty, Value *&ResVal) {
648     if (getValue(Record, Slot, InstNum, Ty, ResVal))
649       return true;
650     // All values currently take a single record slot.
651     ++Slot;
652     return false;
653   }
654 
655   /// Like popValue, but does not increment the Slot number.
656   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
657                 unsigned InstNum, Type *Ty, Value *&ResVal) {
658     ResVal = getValue(Record, Slot, InstNum, Ty);
659     return ResVal == nullptr;
660   }
661 
662   /// Version of getValue that returns ResVal directly, or 0 if there is an
663   /// error.
664   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
665                   unsigned InstNum, Type *Ty) {
666     if (Slot == Record.size()) return nullptr;
667     unsigned ValNo = (unsigned)Record[Slot];
668     // Adjust the ValNo, if it was encoded relative to the InstNum.
669     if (UseRelativeIDs)
670       ValNo = InstNum - ValNo;
671     return getFnValueByID(ValNo, Ty);
672   }
673 
674   /// Like getValue, but decodes signed VBRs.
675   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
676                         unsigned InstNum, Type *Ty) {
677     if (Slot == Record.size()) return nullptr;
678     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
679     // Adjust the ValNo, if it was encoded relative to the InstNum.
680     if (UseRelativeIDs)
681       ValNo = InstNum - ValNo;
682     return getFnValueByID(ValNo, Ty);
683   }
684 
685   /// Upgrades old-style typeless byval or sret attributes by adding the
686   /// corresponding argument's pointee type.
687   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
688 
689   /// Converts alignment exponent (i.e. power of two (or zero)) to the
690   /// corresponding alignment to use. If alignment is too large, returns
691   /// a corresponding error code.
692   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
693   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
694   Error parseModule(
695       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
696       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
697 
698   Error parseComdatRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
700   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
701   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
702                                         ArrayRef<uint64_t> Record);
703 
704   Error parseAttributeBlock();
705   Error parseAttributeGroupBlock();
706   Error parseTypeTable();
707   Error parseTypeTableBody();
708   Error parseOperandBundleTags();
709   Error parseSyncScopeNames();
710 
711   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
712                                 unsigned NameIndex, Triple &TT);
713   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
714                                ArrayRef<uint64_t> Record);
715   Error parseValueSymbolTable(uint64_t Offset = 0);
716   Error parseGlobalValueSymbolTable();
717   Error parseConstants();
718   Error rememberAndSkipFunctionBodies();
719   Error rememberAndSkipFunctionBody();
720   /// Save the positions of the Metadata blocks and skip parsing the blocks.
721   Error rememberAndSkipMetadata();
722   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
723   Error parseFunctionBody(Function *F);
724   Error globalCleanup();
725   Error resolveGlobalAndIndirectSymbolInits();
726   Error parseUseLists();
727   Error findFunctionInStream(
728       Function *F,
729       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
730 
731   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
732 };
733 
734 /// Class to manage reading and parsing function summary index bitcode
735 /// files/sections.
736 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
737   /// The module index built during parsing.
738   ModuleSummaryIndex &TheIndex;
739 
740   /// Indicates whether we have encountered a global value summary section
741   /// yet during parsing.
742   bool SeenGlobalValSummary = false;
743 
744   /// Indicates whether we have already parsed the VST, used for error checking.
745   bool SeenValueSymbolTable = false;
746 
747   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
748   /// Used to enable on-demand parsing of the VST.
749   uint64_t VSTOffset = 0;
750 
751   // Map to save ValueId to ValueInfo association that was recorded in the
752   // ValueSymbolTable. It is used after the VST is parsed to convert
753   // call graph edges read from the function summary from referencing
754   // callees by their ValueId to using the ValueInfo instead, which is how
755   // they are recorded in the summary index being built.
756   // We save a GUID which refers to the same global as the ValueInfo, but
757   // ignoring the linkage, i.e. for values other than local linkage they are
758   // identical.
759   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
760       ValueIdToValueInfoMap;
761 
762   /// Map populated during module path string table parsing, from the
763   /// module ID to a string reference owned by the index's module
764   /// path string table, used to correlate with combined index
765   /// summary records.
766   DenseMap<uint64_t, StringRef> ModuleIdMap;
767 
768   /// Original source file name recorded in a bitcode record.
769   std::string SourceFileName;
770 
771   /// The string identifier given to this module by the client, normally the
772   /// path to the bitcode file.
773   StringRef ModulePath;
774 
775   /// For per-module summary indexes, the unique numerical identifier given to
776   /// this module by the client.
777   unsigned ModuleId;
778 
779 public:
780   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
781                                   ModuleSummaryIndex &TheIndex,
782                                   StringRef ModulePath, unsigned ModuleId);
783 
784   Error parseModule();
785 
786 private:
787   void setValueGUID(uint64_t ValueID, StringRef ValueName,
788                     GlobalValue::LinkageTypes Linkage,
789                     StringRef SourceFileName);
790   Error parseValueSymbolTable(
791       uint64_t Offset,
792       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
793   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
794   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
795                                                     bool IsOldProfileFormat,
796                                                     bool HasProfile,
797                                                     bool HasRelBF);
798   Error parseEntireSummary(unsigned ID);
799   Error parseModuleStringTable();
800   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
801   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
802                                        TypeIdCompatibleVtableInfo &TypeId);
803   std::vector<FunctionSummary::ParamAccess>
804   parseParamAccesses(ArrayRef<uint64_t> Record);
805 
806   std::pair<ValueInfo, GlobalValue::GUID>
807   getValueInfoFromValueId(unsigned ValueId);
808 
809   void addThisModule();
810   ModuleSummaryIndex::ModuleInfo *getThisModule();
811 };
812 
813 } // end anonymous namespace
814 
815 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
816                                                     Error Err) {
817   if (Err) {
818     std::error_code EC;
819     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
820       EC = EIB.convertToErrorCode();
821       Ctx.emitError(EIB.message());
822     });
823     return EC;
824   }
825   return std::error_code();
826 }
827 
828 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
829                              StringRef ProducerIdentification,
830                              LLVMContext &Context)
831     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
832       ValueList(Context, Stream.SizeInBytes()) {
833   this->ProducerIdentification = std::string(ProducerIdentification);
834 }
835 
836 Error BitcodeReader::materializeForwardReferencedFunctions() {
837   if (WillMaterializeAllForwardRefs)
838     return Error::success();
839 
840   // Prevent recursion.
841   WillMaterializeAllForwardRefs = true;
842 
843   while (!BasicBlockFwdRefQueue.empty()) {
844     Function *F = BasicBlockFwdRefQueue.front();
845     BasicBlockFwdRefQueue.pop_front();
846     assert(F && "Expected valid function");
847     if (!BasicBlockFwdRefs.count(F))
848       // Already materialized.
849       continue;
850 
851     // Check for a function that isn't materializable to prevent an infinite
852     // loop.  When parsing a blockaddress stored in a global variable, there
853     // isn't a trivial way to check if a function will have a body without a
854     // linear search through FunctionsWithBodies, so just check it here.
855     if (!F->isMaterializable())
856       return error("Never resolved function from blockaddress");
857 
858     // Try to materialize F.
859     if (Error Err = materialize(F))
860       return Err;
861   }
862   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
863 
864   // Reset state.
865   WillMaterializeAllForwardRefs = false;
866   return Error::success();
867 }
868 
869 //===----------------------------------------------------------------------===//
870 //  Helper functions to implement forward reference resolution, etc.
871 //===----------------------------------------------------------------------===//
872 
873 static bool hasImplicitComdat(size_t Val) {
874   switch (Val) {
875   default:
876     return false;
877   case 1:  // Old WeakAnyLinkage
878   case 4:  // Old LinkOnceAnyLinkage
879   case 10: // Old WeakODRLinkage
880   case 11: // Old LinkOnceODRLinkage
881     return true;
882   }
883 }
884 
885 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
886   switch (Val) {
887   default: // Map unknown/new linkages to external
888   case 0:
889     return GlobalValue::ExternalLinkage;
890   case 2:
891     return GlobalValue::AppendingLinkage;
892   case 3:
893     return GlobalValue::InternalLinkage;
894   case 5:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
896   case 6:
897     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
898   case 7:
899     return GlobalValue::ExternalWeakLinkage;
900   case 8:
901     return GlobalValue::CommonLinkage;
902   case 9:
903     return GlobalValue::PrivateLinkage;
904   case 12:
905     return GlobalValue::AvailableExternallyLinkage;
906   case 13:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
908   case 14:
909     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
910   case 15:
911     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
912   case 1: // Old value with implicit comdat.
913   case 16:
914     return GlobalValue::WeakAnyLinkage;
915   case 10: // Old value with implicit comdat.
916   case 17:
917     return GlobalValue::WeakODRLinkage;
918   case 4: // Old value with implicit comdat.
919   case 18:
920     return GlobalValue::LinkOnceAnyLinkage;
921   case 11: // Old value with implicit comdat.
922   case 19:
923     return GlobalValue::LinkOnceODRLinkage;
924   }
925 }
926 
927 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
928   FunctionSummary::FFlags Flags;
929   Flags.ReadNone = RawFlags & 0x1;
930   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
931   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
932   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
933   Flags.NoInline = (RawFlags >> 4) & 0x1;
934   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
935   return Flags;
936 }
937 
938 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
939 //
940 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
941 // visibility: [8, 10).
942 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
943                                                             uint64_t Version) {
944   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
945   // like getDecodedLinkage() above. Any future change to the linkage enum and
946   // to getDecodedLinkage() will need to be taken into account here as above.
947   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
948   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
949   RawFlags = RawFlags >> 4;
950   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
951   // The Live flag wasn't introduced until version 3. For dead stripping
952   // to work correctly on earlier versions, we must conservatively treat all
953   // values as live.
954   bool Live = (RawFlags & 0x2) || Version < 3;
955   bool Local = (RawFlags & 0x4);
956   bool AutoHide = (RawFlags & 0x8);
957 
958   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
959                                      Live, Local, AutoHide);
960 }
961 
962 // Decode the flags for GlobalVariable in the summary
963 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
964   return GlobalVarSummary::GVarFlags(
965       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
966       (RawFlags & 0x4) ? true : false,
967       (GlobalObject::VCallVisibility)(RawFlags >> 3));
968 }
969 
970 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
971   switch (Val) {
972   default: // Map unknown visibilities to default.
973   case 0: return GlobalValue::DefaultVisibility;
974   case 1: return GlobalValue::HiddenVisibility;
975   case 2: return GlobalValue::ProtectedVisibility;
976   }
977 }
978 
979 static GlobalValue::DLLStorageClassTypes
980 getDecodedDLLStorageClass(unsigned Val) {
981   switch (Val) {
982   default: // Map unknown values to default.
983   case 0: return GlobalValue::DefaultStorageClass;
984   case 1: return GlobalValue::DLLImportStorageClass;
985   case 2: return GlobalValue::DLLExportStorageClass;
986   }
987 }
988 
989 static bool getDecodedDSOLocal(unsigned Val) {
990   switch(Val) {
991   default: // Map unknown values to preemptable.
992   case 0:  return false;
993   case 1:  return true;
994   }
995 }
996 
997 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
998   switch (Val) {
999     case 0: return GlobalVariable::NotThreadLocal;
1000     default: // Map unknown non-zero value to general dynamic.
1001     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1002     case 2: return GlobalVariable::LocalDynamicTLSModel;
1003     case 3: return GlobalVariable::InitialExecTLSModel;
1004     case 4: return GlobalVariable::LocalExecTLSModel;
1005   }
1006 }
1007 
1008 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1009   switch (Val) {
1010     default: // Map unknown to UnnamedAddr::None.
1011     case 0: return GlobalVariable::UnnamedAddr::None;
1012     case 1: return GlobalVariable::UnnamedAddr::Global;
1013     case 2: return GlobalVariable::UnnamedAddr::Local;
1014   }
1015 }
1016 
1017 static int getDecodedCastOpcode(unsigned Val) {
1018   switch (Val) {
1019   default: return -1;
1020   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1021   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1022   case bitc::CAST_SEXT    : return Instruction::SExt;
1023   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1024   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1025   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1026   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1027   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1028   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1029   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1030   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1031   case bitc::CAST_BITCAST : return Instruction::BitCast;
1032   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1033   }
1034 }
1035 
1036 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1037   bool IsFP = Ty->isFPOrFPVectorTy();
1038   // UnOps are only valid for int/fp or vector of int/fp types
1039   if (!IsFP && !Ty->isIntOrIntVectorTy())
1040     return -1;
1041 
1042   switch (Val) {
1043   default:
1044     return -1;
1045   case bitc::UNOP_FNEG:
1046     return IsFP ? Instruction::FNeg : -1;
1047   }
1048 }
1049 
1050 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1051   bool IsFP = Ty->isFPOrFPVectorTy();
1052   // BinOps are only valid for int/fp or vector of int/fp types
1053   if (!IsFP && !Ty->isIntOrIntVectorTy())
1054     return -1;
1055 
1056   switch (Val) {
1057   default:
1058     return -1;
1059   case bitc::BINOP_ADD:
1060     return IsFP ? Instruction::FAdd : Instruction::Add;
1061   case bitc::BINOP_SUB:
1062     return IsFP ? Instruction::FSub : Instruction::Sub;
1063   case bitc::BINOP_MUL:
1064     return IsFP ? Instruction::FMul : Instruction::Mul;
1065   case bitc::BINOP_UDIV:
1066     return IsFP ? -1 : Instruction::UDiv;
1067   case bitc::BINOP_SDIV:
1068     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1069   case bitc::BINOP_UREM:
1070     return IsFP ? -1 : Instruction::URem;
1071   case bitc::BINOP_SREM:
1072     return IsFP ? Instruction::FRem : Instruction::SRem;
1073   case bitc::BINOP_SHL:
1074     return IsFP ? -1 : Instruction::Shl;
1075   case bitc::BINOP_LSHR:
1076     return IsFP ? -1 : Instruction::LShr;
1077   case bitc::BINOP_ASHR:
1078     return IsFP ? -1 : Instruction::AShr;
1079   case bitc::BINOP_AND:
1080     return IsFP ? -1 : Instruction::And;
1081   case bitc::BINOP_OR:
1082     return IsFP ? -1 : Instruction::Or;
1083   case bitc::BINOP_XOR:
1084     return IsFP ? -1 : Instruction::Xor;
1085   }
1086 }
1087 
1088 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1089   switch (Val) {
1090   default: return AtomicRMWInst::BAD_BINOP;
1091   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1092   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1093   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1094   case bitc::RMW_AND: return AtomicRMWInst::And;
1095   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1096   case bitc::RMW_OR: return AtomicRMWInst::Or;
1097   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1098   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1099   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1100   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1101   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1102   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1103   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1104   }
1105 }
1106 
1107 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1108   switch (Val) {
1109   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1110   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1111   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1112   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1113   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1114   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1115   default: // Map unknown orderings to sequentially-consistent.
1116   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1117   }
1118 }
1119 
1120 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown selection kinds to any.
1123   case bitc::COMDAT_SELECTION_KIND_ANY:
1124     return Comdat::Any;
1125   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1126     return Comdat::ExactMatch;
1127   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1128     return Comdat::Largest;
1129   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1130     return Comdat::NoDuplicates;
1131   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1132     return Comdat::SameSize;
1133   }
1134 }
1135 
1136 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1137   FastMathFlags FMF;
1138   if (0 != (Val & bitc::UnsafeAlgebra))
1139     FMF.setFast();
1140   if (0 != (Val & bitc::AllowReassoc))
1141     FMF.setAllowReassoc();
1142   if (0 != (Val & bitc::NoNaNs))
1143     FMF.setNoNaNs();
1144   if (0 != (Val & bitc::NoInfs))
1145     FMF.setNoInfs();
1146   if (0 != (Val & bitc::NoSignedZeros))
1147     FMF.setNoSignedZeros();
1148   if (0 != (Val & bitc::AllowReciprocal))
1149     FMF.setAllowReciprocal();
1150   if (0 != (Val & bitc::AllowContract))
1151     FMF.setAllowContract(true);
1152   if (0 != (Val & bitc::ApproxFunc))
1153     FMF.setApproxFunc();
1154   return FMF;
1155 }
1156 
1157 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1158   switch (Val) {
1159   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1160   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1161   }
1162 }
1163 
1164 Type *BitcodeReader::getTypeByID(unsigned ID) {
1165   // The type table size is always specified correctly.
1166   if (ID >= TypeList.size())
1167     return nullptr;
1168 
1169   if (Type *Ty = TypeList[ID])
1170     return Ty;
1171 
1172   // If we have a forward reference, the only possible case is when it is to a
1173   // named struct.  Just create a placeholder for now.
1174   return TypeList[ID] = createIdentifiedStructType(Context);
1175 }
1176 
1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1178                                                       StringRef Name) {
1179   auto *Ret = StructType::create(Context, Name);
1180   IdentifiedStructTypes.push_back(Ret);
1181   return Ret;
1182 }
1183 
1184 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1185   auto *Ret = StructType::create(Context);
1186   IdentifiedStructTypes.push_back(Ret);
1187   return Ret;
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 //  Functions for parsing blocks from the bitcode file
1192 //===----------------------------------------------------------------------===//
1193 
1194 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1195   switch (Val) {
1196   case Attribute::EndAttrKinds:
1197   case Attribute::EmptyKey:
1198   case Attribute::TombstoneKey:
1199     llvm_unreachable("Synthetic enumerators which should never get here");
1200 
1201   case Attribute::None:            return 0;
1202   case Attribute::ZExt:            return 1 << 0;
1203   case Attribute::SExt:            return 1 << 1;
1204   case Attribute::NoReturn:        return 1 << 2;
1205   case Attribute::InReg:           return 1 << 3;
1206   case Attribute::StructRet:       return 1 << 4;
1207   case Attribute::NoUnwind:        return 1 << 5;
1208   case Attribute::NoAlias:         return 1 << 6;
1209   case Attribute::ByVal:           return 1 << 7;
1210   case Attribute::Nest:            return 1 << 8;
1211   case Attribute::ReadNone:        return 1 << 9;
1212   case Attribute::ReadOnly:        return 1 << 10;
1213   case Attribute::NoInline:        return 1 << 11;
1214   case Attribute::AlwaysInline:    return 1 << 12;
1215   case Attribute::OptimizeForSize: return 1 << 13;
1216   case Attribute::StackProtect:    return 1 << 14;
1217   case Attribute::StackProtectReq: return 1 << 15;
1218   case Attribute::Alignment:       return 31 << 16;
1219   case Attribute::NoCapture:       return 1 << 21;
1220   case Attribute::NoRedZone:       return 1 << 22;
1221   case Attribute::NoImplicitFloat: return 1 << 23;
1222   case Attribute::Naked:           return 1 << 24;
1223   case Attribute::InlineHint:      return 1 << 25;
1224   case Attribute::StackAlignment:  return 7 << 26;
1225   case Attribute::ReturnsTwice:    return 1 << 29;
1226   case Attribute::UWTable:         return 1 << 30;
1227   case Attribute::NonLazyBind:     return 1U << 31;
1228   case Attribute::SanitizeAddress: return 1ULL << 32;
1229   case Attribute::MinSize:         return 1ULL << 33;
1230   case Attribute::NoDuplicate:     return 1ULL << 34;
1231   case Attribute::StackProtectStrong: return 1ULL << 35;
1232   case Attribute::SanitizeThread:  return 1ULL << 36;
1233   case Attribute::SanitizeMemory:  return 1ULL << 37;
1234   case Attribute::NoBuiltin:       return 1ULL << 38;
1235   case Attribute::Returned:        return 1ULL << 39;
1236   case Attribute::Cold:            return 1ULL << 40;
1237   case Attribute::Builtin:         return 1ULL << 41;
1238   case Attribute::OptimizeNone:    return 1ULL << 42;
1239   case Attribute::InAlloca:        return 1ULL << 43;
1240   case Attribute::NonNull:         return 1ULL << 44;
1241   case Attribute::JumpTable:       return 1ULL << 45;
1242   case Attribute::Convergent:      return 1ULL << 46;
1243   case Attribute::SafeStack:       return 1ULL << 47;
1244   case Attribute::NoRecurse:       return 1ULL << 48;
1245   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1246   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1247   case Attribute::SwiftSelf:       return 1ULL << 51;
1248   case Attribute::SwiftError:      return 1ULL << 52;
1249   case Attribute::WriteOnly:       return 1ULL << 53;
1250   case Attribute::Speculatable:    return 1ULL << 54;
1251   case Attribute::StrictFP:        return 1ULL << 55;
1252   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1253   case Attribute::NoCfCheck:       return 1ULL << 57;
1254   case Attribute::OptForFuzzing:   return 1ULL << 58;
1255   case Attribute::ShadowCallStack: return 1ULL << 59;
1256   case Attribute::SpeculativeLoadHardening:
1257     return 1ULL << 60;
1258   case Attribute::ImmArg:
1259     return 1ULL << 61;
1260   case Attribute::WillReturn:
1261     return 1ULL << 62;
1262   case Attribute::NoFree:
1263     return 1ULL << 63;
1264   default:
1265     // Other attributes are not supported in the raw format,
1266     // as we ran out of space.
1267     return 0;
1268   }
1269   llvm_unreachable("Unsupported attribute type");
1270 }
1271 
1272 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1273   if (!Val) return;
1274 
1275   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1276        I = Attribute::AttrKind(I + 1)) {
1277     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1278       if (I == Attribute::Alignment)
1279         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1280       else if (I == Attribute::StackAlignment)
1281         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1282       else
1283         B.addAttribute(I);
1284     }
1285   }
1286 }
1287 
1288 /// This fills an AttrBuilder object with the LLVM attributes that have
1289 /// been decoded from the given integer. This function must stay in sync with
1290 /// 'encodeLLVMAttributesForBitcode'.
1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1292                                            uint64_t EncodedAttrs) {
1293   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1294   // the bits above 31 down by 11 bits.
1295   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1296   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1297          "Alignment must be a power of two.");
1298 
1299   if (Alignment)
1300     B.addAlignmentAttr(Alignment);
1301   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1302                           (EncodedAttrs & 0xffff));
1303 }
1304 
1305 Error BitcodeReader::parseAttributeBlock() {
1306   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1307     return Err;
1308 
1309   if (!MAttributes.empty())
1310     return error("Invalid multiple blocks");
1311 
1312   SmallVector<uint64_t, 64> Record;
1313 
1314   SmallVector<AttributeList, 8> Attrs;
1315 
1316   // Read all the records.
1317   while (true) {
1318     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1319     if (!MaybeEntry)
1320       return MaybeEntry.takeError();
1321     BitstreamEntry Entry = MaybeEntry.get();
1322 
1323     switch (Entry.Kind) {
1324     case BitstreamEntry::SubBlock: // Handled for us already.
1325     case BitstreamEntry::Error:
1326       return error("Malformed block");
1327     case BitstreamEntry::EndBlock:
1328       return Error::success();
1329     case BitstreamEntry::Record:
1330       // The interesting case.
1331       break;
1332     }
1333 
1334     // Read a record.
1335     Record.clear();
1336     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1337     if (!MaybeRecord)
1338       return MaybeRecord.takeError();
1339     switch (MaybeRecord.get()) {
1340     default:  // Default behavior: ignore.
1341       break;
1342     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1343       // Deprecated, but still needed to read old bitcode files.
1344       if (Record.size() & 1)
1345         return error("Invalid record");
1346 
1347       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1348         AttrBuilder B;
1349         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1350         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1351       }
1352 
1353       MAttributes.push_back(AttributeList::get(Context, Attrs));
1354       Attrs.clear();
1355       break;
1356     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1357       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1358         Attrs.push_back(MAttributeGroups[Record[i]]);
1359 
1360       MAttributes.push_back(AttributeList::get(Context, Attrs));
1361       Attrs.clear();
1362       break;
1363     }
1364   }
1365 }
1366 
1367 // Returns Attribute::None on unrecognized codes.
1368 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1369   switch (Code) {
1370   default:
1371     return Attribute::None;
1372   case bitc::ATTR_KIND_ALIGNMENT:
1373     return Attribute::Alignment;
1374   case bitc::ATTR_KIND_ALWAYS_INLINE:
1375     return Attribute::AlwaysInline;
1376   case bitc::ATTR_KIND_ARGMEMONLY:
1377     return Attribute::ArgMemOnly;
1378   case bitc::ATTR_KIND_BUILTIN:
1379     return Attribute::Builtin;
1380   case bitc::ATTR_KIND_BY_VAL:
1381     return Attribute::ByVal;
1382   case bitc::ATTR_KIND_IN_ALLOCA:
1383     return Attribute::InAlloca;
1384   case bitc::ATTR_KIND_COLD:
1385     return Attribute::Cold;
1386   case bitc::ATTR_KIND_CONVERGENT:
1387     return Attribute::Convergent;
1388   case bitc::ATTR_KIND_ELEMENTTYPE:
1389     return Attribute::ElementType;
1390   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1391     return Attribute::InaccessibleMemOnly;
1392   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1393     return Attribute::InaccessibleMemOrArgMemOnly;
1394   case bitc::ATTR_KIND_INLINE_HINT:
1395     return Attribute::InlineHint;
1396   case bitc::ATTR_KIND_IN_REG:
1397     return Attribute::InReg;
1398   case bitc::ATTR_KIND_JUMP_TABLE:
1399     return Attribute::JumpTable;
1400   case bitc::ATTR_KIND_MIN_SIZE:
1401     return Attribute::MinSize;
1402   case bitc::ATTR_KIND_NAKED:
1403     return Attribute::Naked;
1404   case bitc::ATTR_KIND_NEST:
1405     return Attribute::Nest;
1406   case bitc::ATTR_KIND_NO_ALIAS:
1407     return Attribute::NoAlias;
1408   case bitc::ATTR_KIND_NO_BUILTIN:
1409     return Attribute::NoBuiltin;
1410   case bitc::ATTR_KIND_NO_CALLBACK:
1411     return Attribute::NoCallback;
1412   case bitc::ATTR_KIND_NO_CAPTURE:
1413     return Attribute::NoCapture;
1414   case bitc::ATTR_KIND_NO_DUPLICATE:
1415     return Attribute::NoDuplicate;
1416   case bitc::ATTR_KIND_NOFREE:
1417     return Attribute::NoFree;
1418   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1419     return Attribute::NoImplicitFloat;
1420   case bitc::ATTR_KIND_NO_INLINE:
1421     return Attribute::NoInline;
1422   case bitc::ATTR_KIND_NO_RECURSE:
1423     return Attribute::NoRecurse;
1424   case bitc::ATTR_KIND_NO_MERGE:
1425     return Attribute::NoMerge;
1426   case bitc::ATTR_KIND_NON_LAZY_BIND:
1427     return Attribute::NonLazyBind;
1428   case bitc::ATTR_KIND_NON_NULL:
1429     return Attribute::NonNull;
1430   case bitc::ATTR_KIND_DEREFERENCEABLE:
1431     return Attribute::Dereferenceable;
1432   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1433     return Attribute::DereferenceableOrNull;
1434   case bitc::ATTR_KIND_ALLOC_SIZE:
1435     return Attribute::AllocSize;
1436   case bitc::ATTR_KIND_NO_RED_ZONE:
1437     return Attribute::NoRedZone;
1438   case bitc::ATTR_KIND_NO_RETURN:
1439     return Attribute::NoReturn;
1440   case bitc::ATTR_KIND_NOSYNC:
1441     return Attribute::NoSync;
1442   case bitc::ATTR_KIND_NOCF_CHECK:
1443     return Attribute::NoCfCheck;
1444   case bitc::ATTR_KIND_NO_PROFILE:
1445     return Attribute::NoProfile;
1446   case bitc::ATTR_KIND_NO_UNWIND:
1447     return Attribute::NoUnwind;
1448   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1449     return Attribute::NoSanitizeCoverage;
1450   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1451     return Attribute::NullPointerIsValid;
1452   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1453     return Attribute::OptForFuzzing;
1454   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1455     return Attribute::OptimizeForSize;
1456   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1457     return Attribute::OptimizeNone;
1458   case bitc::ATTR_KIND_READ_NONE:
1459     return Attribute::ReadNone;
1460   case bitc::ATTR_KIND_READ_ONLY:
1461     return Attribute::ReadOnly;
1462   case bitc::ATTR_KIND_RETURNED:
1463     return Attribute::Returned;
1464   case bitc::ATTR_KIND_RETURNS_TWICE:
1465     return Attribute::ReturnsTwice;
1466   case bitc::ATTR_KIND_S_EXT:
1467     return Attribute::SExt;
1468   case bitc::ATTR_KIND_SPECULATABLE:
1469     return Attribute::Speculatable;
1470   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1471     return Attribute::StackAlignment;
1472   case bitc::ATTR_KIND_STACK_PROTECT:
1473     return Attribute::StackProtect;
1474   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1475     return Attribute::StackProtectReq;
1476   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1477     return Attribute::StackProtectStrong;
1478   case bitc::ATTR_KIND_SAFESTACK:
1479     return Attribute::SafeStack;
1480   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1481     return Attribute::ShadowCallStack;
1482   case bitc::ATTR_KIND_STRICT_FP:
1483     return Attribute::StrictFP;
1484   case bitc::ATTR_KIND_STRUCT_RET:
1485     return Attribute::StructRet;
1486   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1487     return Attribute::SanitizeAddress;
1488   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1489     return Attribute::SanitizeHWAddress;
1490   case bitc::ATTR_KIND_SANITIZE_THREAD:
1491     return Attribute::SanitizeThread;
1492   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1493     return Attribute::SanitizeMemory;
1494   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1495     return Attribute::SpeculativeLoadHardening;
1496   case bitc::ATTR_KIND_SWIFT_ERROR:
1497     return Attribute::SwiftError;
1498   case bitc::ATTR_KIND_SWIFT_SELF:
1499     return Attribute::SwiftSelf;
1500   case bitc::ATTR_KIND_SWIFT_ASYNC:
1501     return Attribute::SwiftAsync;
1502   case bitc::ATTR_KIND_UW_TABLE:
1503     return Attribute::UWTable;
1504   case bitc::ATTR_KIND_VSCALE_RANGE:
1505     return Attribute::VScaleRange;
1506   case bitc::ATTR_KIND_WILLRETURN:
1507     return Attribute::WillReturn;
1508   case bitc::ATTR_KIND_WRITEONLY:
1509     return Attribute::WriteOnly;
1510   case bitc::ATTR_KIND_Z_EXT:
1511     return Attribute::ZExt;
1512   case bitc::ATTR_KIND_IMMARG:
1513     return Attribute::ImmArg;
1514   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1515     return Attribute::SanitizeMemTag;
1516   case bitc::ATTR_KIND_PREALLOCATED:
1517     return Attribute::Preallocated;
1518   case bitc::ATTR_KIND_NOUNDEF:
1519     return Attribute::NoUndef;
1520   case bitc::ATTR_KIND_BYREF:
1521     return Attribute::ByRef;
1522   case bitc::ATTR_KIND_MUSTPROGRESS:
1523     return Attribute::MustProgress;
1524   case bitc::ATTR_KIND_HOT:
1525     return Attribute::Hot;
1526   }
1527 }
1528 
1529 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1530                                          MaybeAlign &Alignment) {
1531   // Note: Alignment in bitcode files is incremented by 1, so that zero
1532   // can be used for default alignment.
1533   if (Exponent > Value::MaxAlignmentExponent + 1)
1534     return error("Invalid alignment value");
1535   Alignment = decodeMaybeAlign(Exponent);
1536   return Error::success();
1537 }
1538 
1539 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1540   *Kind = getAttrFromCode(Code);
1541   if (*Kind == Attribute::None)
1542     return error("Unknown attribute kind (" + Twine(Code) + ")");
1543   return Error::success();
1544 }
1545 
1546 Error BitcodeReader::parseAttributeGroupBlock() {
1547   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1548     return Err;
1549 
1550   if (!MAttributeGroups.empty())
1551     return error("Invalid multiple blocks");
1552 
1553   SmallVector<uint64_t, 64> Record;
1554 
1555   // Read all the records.
1556   while (true) {
1557     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1558     if (!MaybeEntry)
1559       return MaybeEntry.takeError();
1560     BitstreamEntry Entry = MaybeEntry.get();
1561 
1562     switch (Entry.Kind) {
1563     case BitstreamEntry::SubBlock: // Handled for us already.
1564     case BitstreamEntry::Error:
1565       return error("Malformed block");
1566     case BitstreamEntry::EndBlock:
1567       return Error::success();
1568     case BitstreamEntry::Record:
1569       // The interesting case.
1570       break;
1571     }
1572 
1573     // Read a record.
1574     Record.clear();
1575     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1576     if (!MaybeRecord)
1577       return MaybeRecord.takeError();
1578     switch (MaybeRecord.get()) {
1579     default:  // Default behavior: ignore.
1580       break;
1581     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1582       if (Record.size() < 3)
1583         return error("Invalid record");
1584 
1585       uint64_t GrpID = Record[0];
1586       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1587 
1588       AttrBuilder B;
1589       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1590         if (Record[i] == 0) {        // Enum attribute
1591           Attribute::AttrKind Kind;
1592           if (Error Err = parseAttrKind(Record[++i], &Kind))
1593             return Err;
1594 
1595           // Upgrade old-style byval attribute to one with a type, even if it's
1596           // nullptr. We will have to insert the real type when we associate
1597           // this AttributeList with a function.
1598           if (Kind == Attribute::ByVal)
1599             B.addByValAttr(nullptr);
1600           else if (Kind == Attribute::StructRet)
1601             B.addStructRetAttr(nullptr);
1602           else if (Kind == Attribute::InAlloca)
1603             B.addInAllocaAttr(nullptr);
1604           else if (Attribute::isEnumAttrKind(Kind))
1605             B.addAttribute(Kind);
1606           else
1607             return error("Not an enum attribute");
1608         } else if (Record[i] == 1) { // Integer attribute
1609           Attribute::AttrKind Kind;
1610           if (Error Err = parseAttrKind(Record[++i], &Kind))
1611             return Err;
1612           if (!Attribute::isIntAttrKind(Kind))
1613             return error("Not an int attribute");
1614           if (Kind == Attribute::Alignment)
1615             B.addAlignmentAttr(Record[++i]);
1616           else if (Kind == Attribute::StackAlignment)
1617             B.addStackAlignmentAttr(Record[++i]);
1618           else if (Kind == Attribute::Dereferenceable)
1619             B.addDereferenceableAttr(Record[++i]);
1620           else if (Kind == Attribute::DereferenceableOrNull)
1621             B.addDereferenceableOrNullAttr(Record[++i]);
1622           else if (Kind == Attribute::AllocSize)
1623             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1624           else if (Kind == Attribute::VScaleRange)
1625             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1626         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1627           bool HasValue = (Record[i++] == 4);
1628           SmallString<64> KindStr;
1629           SmallString<64> ValStr;
1630 
1631           while (Record[i] != 0 && i != e)
1632             KindStr += Record[i++];
1633           assert(Record[i] == 0 && "Kind string not null terminated");
1634 
1635           if (HasValue) {
1636             // Has a value associated with it.
1637             ++i; // Skip the '0' that terminates the "kind" string.
1638             while (Record[i] != 0 && i != e)
1639               ValStr += Record[i++];
1640             assert(Record[i] == 0 && "Value string not null terminated");
1641           }
1642 
1643           B.addAttribute(KindStr.str(), ValStr.str());
1644         } else {
1645           assert((Record[i] == 5 || Record[i] == 6) &&
1646                  "Invalid attribute group entry");
1647           bool HasType = Record[i] == 6;
1648           Attribute::AttrKind Kind;
1649           if (Error Err = parseAttrKind(Record[++i], &Kind))
1650             return Err;
1651           if (!Attribute::isTypeAttrKind(Kind))
1652             return error("Not a type attribute");
1653 
1654           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1655         }
1656       }
1657 
1658       UpgradeAttributes(B);
1659       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1660       break;
1661     }
1662     }
1663   }
1664 }
1665 
1666 Error BitcodeReader::parseTypeTable() {
1667   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1668     return Err;
1669 
1670   return parseTypeTableBody();
1671 }
1672 
1673 Error BitcodeReader::parseTypeTableBody() {
1674   if (!TypeList.empty())
1675     return error("Invalid multiple blocks");
1676 
1677   SmallVector<uint64_t, 64> Record;
1678   unsigned NumRecords = 0;
1679 
1680   SmallString<64> TypeName;
1681 
1682   // Read all the records for this type table.
1683   while (true) {
1684     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1685     if (!MaybeEntry)
1686       return MaybeEntry.takeError();
1687     BitstreamEntry Entry = MaybeEntry.get();
1688 
1689     switch (Entry.Kind) {
1690     case BitstreamEntry::SubBlock: // Handled for us already.
1691     case BitstreamEntry::Error:
1692       return error("Malformed block");
1693     case BitstreamEntry::EndBlock:
1694       if (NumRecords != TypeList.size())
1695         return error("Malformed block");
1696       return Error::success();
1697     case BitstreamEntry::Record:
1698       // The interesting case.
1699       break;
1700     }
1701 
1702     // Read a record.
1703     Record.clear();
1704     Type *ResultTy = nullptr;
1705     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1706     if (!MaybeRecord)
1707       return MaybeRecord.takeError();
1708     switch (MaybeRecord.get()) {
1709     default:
1710       return error("Invalid value");
1711     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1712       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1713       // type list.  This allows us to reserve space.
1714       if (Record.empty())
1715         return error("Invalid record");
1716       TypeList.resize(Record[0]);
1717       continue;
1718     case bitc::TYPE_CODE_VOID:      // VOID
1719       ResultTy = Type::getVoidTy(Context);
1720       break;
1721     case bitc::TYPE_CODE_HALF:     // HALF
1722       ResultTy = Type::getHalfTy(Context);
1723       break;
1724     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1725       ResultTy = Type::getBFloatTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1728       ResultTy = Type::getFloatTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1731       ResultTy = Type::getDoubleTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1734       ResultTy = Type::getX86_FP80Ty(Context);
1735       break;
1736     case bitc::TYPE_CODE_FP128:     // FP128
1737       ResultTy = Type::getFP128Ty(Context);
1738       break;
1739     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1740       ResultTy = Type::getPPC_FP128Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_LABEL:     // LABEL
1743       ResultTy = Type::getLabelTy(Context);
1744       break;
1745     case bitc::TYPE_CODE_METADATA:  // METADATA
1746       ResultTy = Type::getMetadataTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1749       ResultTy = Type::getX86_MMXTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1752       ResultTy = Type::getX86_AMXTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1755       ResultTy = Type::getTokenTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1758       if (Record.empty())
1759         return error("Invalid record");
1760 
1761       uint64_t NumBits = Record[0];
1762       if (NumBits < IntegerType::MIN_INT_BITS ||
1763           NumBits > IntegerType::MAX_INT_BITS)
1764         return error("Bitwidth for integer type out of range");
1765       ResultTy = IntegerType::get(Context, NumBits);
1766       break;
1767     }
1768     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1769                                     //          [pointee type, address space]
1770       if (Record.empty())
1771         return error("Invalid record");
1772       unsigned AddressSpace = 0;
1773       if (Record.size() == 2)
1774         AddressSpace = Record[1];
1775       ResultTy = getTypeByID(Record[0]);
1776       if (!ResultTy ||
1777           !PointerType::isValidElementType(ResultTy))
1778         return error("Invalid type");
1779       ResultTy = PointerType::get(ResultTy, AddressSpace);
1780       break;
1781     }
1782     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1783       if (Record.size() != 1)
1784         return error("Invalid record");
1785       unsigned AddressSpace = Record[0];
1786       ResultTy = PointerType::get(Context, AddressSpace);
1787       break;
1788     }
1789     case bitc::TYPE_CODE_FUNCTION_OLD: {
1790       // Deprecated, but still needed to read old bitcode files.
1791       // FUNCTION: [vararg, attrid, retty, paramty x N]
1792       if (Record.size() < 3)
1793         return error("Invalid record");
1794       SmallVector<Type*, 8> ArgTys;
1795       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1796         if (Type *T = getTypeByID(Record[i]))
1797           ArgTys.push_back(T);
1798         else
1799           break;
1800       }
1801 
1802       ResultTy = getTypeByID(Record[2]);
1803       if (!ResultTy || ArgTys.size() < Record.size()-3)
1804         return error("Invalid type");
1805 
1806       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1807       break;
1808     }
1809     case bitc::TYPE_CODE_FUNCTION: {
1810       // FUNCTION: [vararg, retty, paramty x N]
1811       if (Record.size() < 2)
1812         return error("Invalid record");
1813       SmallVector<Type*, 8> ArgTys;
1814       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1815         if (Type *T = getTypeByID(Record[i])) {
1816           if (!FunctionType::isValidArgumentType(T))
1817             return error("Invalid function argument type");
1818           ArgTys.push_back(T);
1819         }
1820         else
1821           break;
1822       }
1823 
1824       ResultTy = getTypeByID(Record[1]);
1825       if (!ResultTy || ArgTys.size() < Record.size()-2)
1826         return error("Invalid type");
1827 
1828       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1829       break;
1830     }
1831     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1832       if (Record.empty())
1833         return error("Invalid record");
1834       SmallVector<Type*, 8> EltTys;
1835       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1836         if (Type *T = getTypeByID(Record[i]))
1837           EltTys.push_back(T);
1838         else
1839           break;
1840       }
1841       if (EltTys.size() != Record.size()-1)
1842         return error("Invalid type");
1843       ResultTy = StructType::get(Context, EltTys, Record[0]);
1844       break;
1845     }
1846     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1847       if (convertToString(Record, 0, TypeName))
1848         return error("Invalid record");
1849       continue;
1850 
1851     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1852       if (Record.empty())
1853         return error("Invalid record");
1854 
1855       if (NumRecords >= TypeList.size())
1856         return error("Invalid TYPE table");
1857 
1858       // Check to see if this was forward referenced, if so fill in the temp.
1859       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1860       if (Res) {
1861         Res->setName(TypeName);
1862         TypeList[NumRecords] = nullptr;
1863       } else  // Otherwise, create a new struct.
1864         Res = createIdentifiedStructType(Context, TypeName);
1865       TypeName.clear();
1866 
1867       SmallVector<Type*, 8> EltTys;
1868       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1869         if (Type *T = getTypeByID(Record[i]))
1870           EltTys.push_back(T);
1871         else
1872           break;
1873       }
1874       if (EltTys.size() != Record.size()-1)
1875         return error("Invalid record");
1876       Res->setBody(EltTys, Record[0]);
1877       ResultTy = Res;
1878       break;
1879     }
1880     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1881       if (Record.size() != 1)
1882         return error("Invalid record");
1883 
1884       if (NumRecords >= TypeList.size())
1885         return error("Invalid TYPE table");
1886 
1887       // Check to see if this was forward referenced, if so fill in the temp.
1888       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1889       if (Res) {
1890         Res->setName(TypeName);
1891         TypeList[NumRecords] = nullptr;
1892       } else  // Otherwise, create a new struct with no body.
1893         Res = createIdentifiedStructType(Context, TypeName);
1894       TypeName.clear();
1895       ResultTy = Res;
1896       break;
1897     }
1898     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1899       if (Record.size() < 2)
1900         return error("Invalid record");
1901       ResultTy = getTypeByID(Record[1]);
1902       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1903         return error("Invalid type");
1904       ResultTy = ArrayType::get(ResultTy, Record[0]);
1905       break;
1906     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1907                                     //         [numelts, eltty, scalable]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       if (Record[0] == 0)
1911         return error("Invalid vector length");
1912       ResultTy = getTypeByID(Record[1]);
1913       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1914         return error("Invalid type");
1915       bool Scalable = Record.size() > 2 ? Record[2] : false;
1916       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1917       break;
1918     }
1919 
1920     if (NumRecords >= TypeList.size())
1921       return error("Invalid TYPE table");
1922     if (TypeList[NumRecords])
1923       return error(
1924           "Invalid TYPE table: Only named structs can be forward referenced");
1925     assert(ResultTy && "Didn't read a type?");
1926     TypeList[NumRecords++] = ResultTy;
1927   }
1928 }
1929 
1930 Error BitcodeReader::parseOperandBundleTags() {
1931   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1932     return Err;
1933 
1934   if (!BundleTags.empty())
1935     return error("Invalid multiple blocks");
1936 
1937   SmallVector<uint64_t, 64> Record;
1938 
1939   while (true) {
1940     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1941     if (!MaybeEntry)
1942       return MaybeEntry.takeError();
1943     BitstreamEntry Entry = MaybeEntry.get();
1944 
1945     switch (Entry.Kind) {
1946     case BitstreamEntry::SubBlock: // Handled for us already.
1947     case BitstreamEntry::Error:
1948       return error("Malformed block");
1949     case BitstreamEntry::EndBlock:
1950       return Error::success();
1951     case BitstreamEntry::Record:
1952       // The interesting case.
1953       break;
1954     }
1955 
1956     // Tags are implicitly mapped to integers by their order.
1957 
1958     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1959     if (!MaybeRecord)
1960       return MaybeRecord.takeError();
1961     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1962       return error("Invalid record");
1963 
1964     // OPERAND_BUNDLE_TAG: [strchr x N]
1965     BundleTags.emplace_back();
1966     if (convertToString(Record, 0, BundleTags.back()))
1967       return error("Invalid record");
1968     Record.clear();
1969   }
1970 }
1971 
1972 Error BitcodeReader::parseSyncScopeNames() {
1973   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1974     return Err;
1975 
1976   if (!SSIDs.empty())
1977     return error("Invalid multiple synchronization scope names blocks");
1978 
1979   SmallVector<uint64_t, 64> Record;
1980   while (true) {
1981     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1982     if (!MaybeEntry)
1983       return MaybeEntry.takeError();
1984     BitstreamEntry Entry = MaybeEntry.get();
1985 
1986     switch (Entry.Kind) {
1987     case BitstreamEntry::SubBlock: // Handled for us already.
1988     case BitstreamEntry::Error:
1989       return error("Malformed block");
1990     case BitstreamEntry::EndBlock:
1991       if (SSIDs.empty())
1992         return error("Invalid empty synchronization scope names block");
1993       return Error::success();
1994     case BitstreamEntry::Record:
1995       // The interesting case.
1996       break;
1997     }
1998 
1999     // Synchronization scope names are implicitly mapped to synchronization
2000     // scope IDs by their order.
2001 
2002     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2003     if (!MaybeRecord)
2004       return MaybeRecord.takeError();
2005     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2006       return error("Invalid record");
2007 
2008     SmallString<16> SSN;
2009     if (convertToString(Record, 0, SSN))
2010       return error("Invalid record");
2011 
2012     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2013     Record.clear();
2014   }
2015 }
2016 
2017 /// Associate a value with its name from the given index in the provided record.
2018 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2019                                              unsigned NameIndex, Triple &TT) {
2020   SmallString<128> ValueName;
2021   if (convertToString(Record, NameIndex, ValueName))
2022     return error("Invalid record");
2023   unsigned ValueID = Record[0];
2024   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2025     return error("Invalid record");
2026   Value *V = ValueList[ValueID];
2027 
2028   StringRef NameStr(ValueName.data(), ValueName.size());
2029   if (NameStr.find_first_of(0) != StringRef::npos)
2030     return error("Invalid value name");
2031   V->setName(NameStr);
2032   auto *GO = dyn_cast<GlobalObject>(V);
2033   if (GO) {
2034     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2035       if (TT.supportsCOMDAT())
2036         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2037       else
2038         GO->setComdat(nullptr);
2039     }
2040   }
2041   return V;
2042 }
2043 
2044 /// Helper to note and return the current location, and jump to the given
2045 /// offset.
2046 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2047                                                  BitstreamCursor &Stream) {
2048   // Save the current parsing location so we can jump back at the end
2049   // of the VST read.
2050   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2051   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2052     return std::move(JumpFailed);
2053   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2054   if (!MaybeEntry)
2055     return MaybeEntry.takeError();
2056   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2057   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2058   return CurrentBit;
2059 }
2060 
2061 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2062                                             Function *F,
2063                                             ArrayRef<uint64_t> Record) {
2064   // Note that we subtract 1 here because the offset is relative to one word
2065   // before the start of the identification or module block, which was
2066   // historically always the start of the regular bitcode header.
2067   uint64_t FuncWordOffset = Record[1] - 1;
2068   uint64_t FuncBitOffset = FuncWordOffset * 32;
2069   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2070   // Set the LastFunctionBlockBit to point to the last function block.
2071   // Later when parsing is resumed after function materialization,
2072   // we can simply skip that last function block.
2073   if (FuncBitOffset > LastFunctionBlockBit)
2074     LastFunctionBlockBit = FuncBitOffset;
2075 }
2076 
2077 /// Read a new-style GlobalValue symbol table.
2078 Error BitcodeReader::parseGlobalValueSymbolTable() {
2079   unsigned FuncBitcodeOffsetDelta =
2080       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2081 
2082   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2083     return Err;
2084 
2085   SmallVector<uint64_t, 64> Record;
2086   while (true) {
2087     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2088     if (!MaybeEntry)
2089       return MaybeEntry.takeError();
2090     BitstreamEntry Entry = MaybeEntry.get();
2091 
2092     switch (Entry.Kind) {
2093     case BitstreamEntry::SubBlock:
2094     case BitstreamEntry::Error:
2095       return error("Malformed block");
2096     case BitstreamEntry::EndBlock:
2097       return Error::success();
2098     case BitstreamEntry::Record:
2099       break;
2100     }
2101 
2102     Record.clear();
2103     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2104     if (!MaybeRecord)
2105       return MaybeRecord.takeError();
2106     switch (MaybeRecord.get()) {
2107     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2108       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2109                               cast<Function>(ValueList[Record[0]]), Record);
2110       break;
2111     }
2112   }
2113 }
2114 
2115 /// Parse the value symbol table at either the current parsing location or
2116 /// at the given bit offset if provided.
2117 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2118   uint64_t CurrentBit;
2119   // Pass in the Offset to distinguish between calling for the module-level
2120   // VST (where we want to jump to the VST offset) and the function-level
2121   // VST (where we don't).
2122   if (Offset > 0) {
2123     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2124     if (!MaybeCurrentBit)
2125       return MaybeCurrentBit.takeError();
2126     CurrentBit = MaybeCurrentBit.get();
2127     // If this module uses a string table, read this as a module-level VST.
2128     if (UseStrtab) {
2129       if (Error Err = parseGlobalValueSymbolTable())
2130         return Err;
2131       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2132         return JumpFailed;
2133       return Error::success();
2134     }
2135     // Otherwise, the VST will be in a similar format to a function-level VST,
2136     // and will contain symbol names.
2137   }
2138 
2139   // Compute the delta between the bitcode indices in the VST (the word offset
2140   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2141   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2142   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2143   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2144   // just before entering the VST subblock because: 1) the EnterSubBlock
2145   // changes the AbbrevID width; 2) the VST block is nested within the same
2146   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2147   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2148   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2149   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2150   unsigned FuncBitcodeOffsetDelta =
2151       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2152 
2153   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2154     return Err;
2155 
2156   SmallVector<uint64_t, 64> Record;
2157 
2158   Triple TT(TheModule->getTargetTriple());
2159 
2160   // Read all the records for this value table.
2161   SmallString<128> ValueName;
2162 
2163   while (true) {
2164     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2165     if (!MaybeEntry)
2166       return MaybeEntry.takeError();
2167     BitstreamEntry Entry = MaybeEntry.get();
2168 
2169     switch (Entry.Kind) {
2170     case BitstreamEntry::SubBlock: // Handled for us already.
2171     case BitstreamEntry::Error:
2172       return error("Malformed block");
2173     case BitstreamEntry::EndBlock:
2174       if (Offset > 0)
2175         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2176           return JumpFailed;
2177       return Error::success();
2178     case BitstreamEntry::Record:
2179       // The interesting case.
2180       break;
2181     }
2182 
2183     // Read a record.
2184     Record.clear();
2185     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2186     if (!MaybeRecord)
2187       return MaybeRecord.takeError();
2188     switch (MaybeRecord.get()) {
2189     default:  // Default behavior: unknown type.
2190       break;
2191     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2192       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2193       if (Error Err = ValOrErr.takeError())
2194         return Err;
2195       ValOrErr.get();
2196       break;
2197     }
2198     case bitc::VST_CODE_FNENTRY: {
2199       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2200       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2201       if (Error Err = ValOrErr.takeError())
2202         return Err;
2203       Value *V = ValOrErr.get();
2204 
2205       // Ignore function offsets emitted for aliases of functions in older
2206       // versions of LLVM.
2207       if (auto *F = dyn_cast<Function>(V))
2208         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2209       break;
2210     }
2211     case bitc::VST_CODE_BBENTRY: {
2212       if (convertToString(Record, 1, ValueName))
2213         return error("Invalid record");
2214       BasicBlock *BB = getBasicBlock(Record[0]);
2215       if (!BB)
2216         return error("Invalid record");
2217 
2218       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2219       ValueName.clear();
2220       break;
2221     }
2222     }
2223   }
2224 }
2225 
2226 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2227 /// encoding.
2228 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2229   if ((V & 1) == 0)
2230     return V >> 1;
2231   if (V != 1)
2232     return -(V >> 1);
2233   // There is no such thing as -0 with integers.  "-0" really means MININT.
2234   return 1ULL << 63;
2235 }
2236 
2237 /// Resolve all of the initializers for global values and aliases that we can.
2238 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2239   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2240   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2241       IndirectSymbolInitWorklist;
2242   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2243   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2244   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2245 
2246   GlobalInitWorklist.swap(GlobalInits);
2247   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2248   FunctionPrefixWorklist.swap(FunctionPrefixes);
2249   FunctionPrologueWorklist.swap(FunctionPrologues);
2250   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2251 
2252   while (!GlobalInitWorklist.empty()) {
2253     unsigned ValID = GlobalInitWorklist.back().second;
2254     if (ValID >= ValueList.size()) {
2255       // Not ready to resolve this yet, it requires something later in the file.
2256       GlobalInits.push_back(GlobalInitWorklist.back());
2257     } else {
2258       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2259         GlobalInitWorklist.back().first->setInitializer(C);
2260       else
2261         return error("Expected a constant");
2262     }
2263     GlobalInitWorklist.pop_back();
2264   }
2265 
2266   while (!IndirectSymbolInitWorklist.empty()) {
2267     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2268     if (ValID >= ValueList.size()) {
2269       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2270     } else {
2271       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2272       if (!C)
2273         return error("Expected a constant");
2274       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2275       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2276         return error("Alias and aliasee types don't match");
2277       GIS->setIndirectSymbol(C);
2278     }
2279     IndirectSymbolInitWorklist.pop_back();
2280   }
2281 
2282   while (!FunctionPrefixWorklist.empty()) {
2283     unsigned ValID = FunctionPrefixWorklist.back().second;
2284     if (ValID >= ValueList.size()) {
2285       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2286     } else {
2287       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2288         FunctionPrefixWorklist.back().first->setPrefixData(C);
2289       else
2290         return error("Expected a constant");
2291     }
2292     FunctionPrefixWorklist.pop_back();
2293   }
2294 
2295   while (!FunctionPrologueWorklist.empty()) {
2296     unsigned ValID = FunctionPrologueWorklist.back().second;
2297     if (ValID >= ValueList.size()) {
2298       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2299     } else {
2300       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2301         FunctionPrologueWorklist.back().first->setPrologueData(C);
2302       else
2303         return error("Expected a constant");
2304     }
2305     FunctionPrologueWorklist.pop_back();
2306   }
2307 
2308   while (!FunctionPersonalityFnWorklist.empty()) {
2309     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2310     if (ValID >= ValueList.size()) {
2311       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2312     } else {
2313       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2314         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2315       else
2316         return error("Expected a constant");
2317     }
2318     FunctionPersonalityFnWorklist.pop_back();
2319   }
2320 
2321   return Error::success();
2322 }
2323 
2324 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2325   SmallVector<uint64_t, 8> Words(Vals.size());
2326   transform(Vals, Words.begin(),
2327                  BitcodeReader::decodeSignRotatedValue);
2328 
2329   return APInt(TypeBits, Words);
2330 }
2331 
2332 Error BitcodeReader::parseConstants() {
2333   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2334     return Err;
2335 
2336   SmallVector<uint64_t, 64> Record;
2337 
2338   // Read all the records for this value table.
2339   Type *CurTy = Type::getInt32Ty(Context);
2340   unsigned NextCstNo = ValueList.size();
2341 
2342   struct DelayedShufTy {
2343     VectorType *OpTy;
2344     VectorType *RTy;
2345     uint64_t Op0Idx;
2346     uint64_t Op1Idx;
2347     uint64_t Op2Idx;
2348     unsigned CstNo;
2349   };
2350   std::vector<DelayedShufTy> DelayedShuffles;
2351   while (true) {
2352     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2353     if (!MaybeEntry)
2354       return MaybeEntry.takeError();
2355     BitstreamEntry Entry = MaybeEntry.get();
2356 
2357     switch (Entry.Kind) {
2358     case BitstreamEntry::SubBlock: // Handled for us already.
2359     case BitstreamEntry::Error:
2360       return error("Malformed block");
2361     case BitstreamEntry::EndBlock:
2362       // Once all the constants have been read, go through and resolve forward
2363       // references.
2364       //
2365       // We have to treat shuffles specially because they don't have three
2366       // operands anymore.  We need to convert the shuffle mask into an array,
2367       // and we can't convert a forward reference.
2368       for (auto &DelayedShuffle : DelayedShuffles) {
2369         VectorType *OpTy = DelayedShuffle.OpTy;
2370         VectorType *RTy = DelayedShuffle.RTy;
2371         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2372         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2373         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2374         uint64_t CstNo = DelayedShuffle.CstNo;
2375         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2376         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2377         Type *ShufTy =
2378             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2379         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2380         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2381           return error("Invalid shufflevector operands");
2382         SmallVector<int, 16> Mask;
2383         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2384         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2385         ValueList.assignValue(V, CstNo);
2386       }
2387 
2388       if (NextCstNo != ValueList.size())
2389         return error("Invalid constant reference");
2390 
2391       ValueList.resolveConstantForwardRefs();
2392       return Error::success();
2393     case BitstreamEntry::Record:
2394       // The interesting case.
2395       break;
2396     }
2397 
2398     // Read a record.
2399     Record.clear();
2400     Type *VoidType = Type::getVoidTy(Context);
2401     Value *V = nullptr;
2402     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2403     if (!MaybeBitCode)
2404       return MaybeBitCode.takeError();
2405     switch (unsigned BitCode = MaybeBitCode.get()) {
2406     default:  // Default behavior: unknown constant
2407     case bitc::CST_CODE_UNDEF:     // UNDEF
2408       V = UndefValue::get(CurTy);
2409       break;
2410     case bitc::CST_CODE_POISON:    // POISON
2411       V = PoisonValue::get(CurTy);
2412       break;
2413     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2414       if (Record.empty())
2415         return error("Invalid record");
2416       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2417         return error("Invalid record");
2418       if (TypeList[Record[0]] == VoidType)
2419         return error("Invalid constant type");
2420       CurTy = TypeList[Record[0]];
2421       continue;  // Skip the ValueList manipulation.
2422     case bitc::CST_CODE_NULL:      // NULL
2423       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2424         return error("Invalid type for a constant null value");
2425       V = Constant::getNullValue(CurTy);
2426       break;
2427     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2428       if (!CurTy->isIntegerTy() || Record.empty())
2429         return error("Invalid record");
2430       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2431       break;
2432     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2433       if (!CurTy->isIntegerTy() || Record.empty())
2434         return error("Invalid record");
2435 
2436       APInt VInt =
2437           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2438       V = ConstantInt::get(Context, VInt);
2439 
2440       break;
2441     }
2442     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2443       if (Record.empty())
2444         return error("Invalid record");
2445       if (CurTy->isHalfTy())
2446         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2447                                              APInt(16, (uint16_t)Record[0])));
2448       else if (CurTy->isBFloatTy())
2449         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2450                                              APInt(16, (uint32_t)Record[0])));
2451       else if (CurTy->isFloatTy())
2452         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2453                                              APInt(32, (uint32_t)Record[0])));
2454       else if (CurTy->isDoubleTy())
2455         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2456                                              APInt(64, Record[0])));
2457       else if (CurTy->isX86_FP80Ty()) {
2458         // Bits are not stored the same way as a normal i80 APInt, compensate.
2459         uint64_t Rearrange[2];
2460         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2461         Rearrange[1] = Record[0] >> 48;
2462         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2463                                              APInt(80, Rearrange)));
2464       } else if (CurTy->isFP128Ty())
2465         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2466                                              APInt(128, Record)));
2467       else if (CurTy->isPPC_FP128Ty())
2468         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2469                                              APInt(128, Record)));
2470       else
2471         V = UndefValue::get(CurTy);
2472       break;
2473     }
2474 
2475     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2476       if (Record.empty())
2477         return error("Invalid record");
2478 
2479       unsigned Size = Record.size();
2480       SmallVector<Constant*, 16> Elts;
2481 
2482       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2483         for (unsigned i = 0; i != Size; ++i)
2484           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2485                                                      STy->getElementType(i)));
2486         V = ConstantStruct::get(STy, Elts);
2487       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2488         Type *EltTy = ATy->getElementType();
2489         for (unsigned i = 0; i != Size; ++i)
2490           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2491         V = ConstantArray::get(ATy, Elts);
2492       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2493         Type *EltTy = VTy->getElementType();
2494         for (unsigned i = 0; i != Size; ++i)
2495           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2496         V = ConstantVector::get(Elts);
2497       } else {
2498         V = UndefValue::get(CurTy);
2499       }
2500       break;
2501     }
2502     case bitc::CST_CODE_STRING:    // STRING: [values]
2503     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2504       if (Record.empty())
2505         return error("Invalid record");
2506 
2507       SmallString<16> Elts(Record.begin(), Record.end());
2508       V = ConstantDataArray::getString(Context, Elts,
2509                                        BitCode == bitc::CST_CODE_CSTRING);
2510       break;
2511     }
2512     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2513       if (Record.empty())
2514         return error("Invalid record");
2515 
2516       Type *EltTy;
2517       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2518         EltTy = Array->getElementType();
2519       else
2520         EltTy = cast<VectorType>(CurTy)->getElementType();
2521       if (EltTy->isIntegerTy(8)) {
2522         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2523         if (isa<VectorType>(CurTy))
2524           V = ConstantDataVector::get(Context, Elts);
2525         else
2526           V = ConstantDataArray::get(Context, Elts);
2527       } else if (EltTy->isIntegerTy(16)) {
2528         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2529         if (isa<VectorType>(CurTy))
2530           V = ConstantDataVector::get(Context, Elts);
2531         else
2532           V = ConstantDataArray::get(Context, Elts);
2533       } else if (EltTy->isIntegerTy(32)) {
2534         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2535         if (isa<VectorType>(CurTy))
2536           V = ConstantDataVector::get(Context, Elts);
2537         else
2538           V = ConstantDataArray::get(Context, Elts);
2539       } else if (EltTy->isIntegerTy(64)) {
2540         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2541         if (isa<VectorType>(CurTy))
2542           V = ConstantDataVector::get(Context, Elts);
2543         else
2544           V = ConstantDataArray::get(Context, Elts);
2545       } else if (EltTy->isHalfTy()) {
2546         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2547         if (isa<VectorType>(CurTy))
2548           V = ConstantDataVector::getFP(EltTy, Elts);
2549         else
2550           V = ConstantDataArray::getFP(EltTy, Elts);
2551       } else if (EltTy->isBFloatTy()) {
2552         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2553         if (isa<VectorType>(CurTy))
2554           V = ConstantDataVector::getFP(EltTy, Elts);
2555         else
2556           V = ConstantDataArray::getFP(EltTy, Elts);
2557       } else if (EltTy->isFloatTy()) {
2558         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::getFP(EltTy, Elts);
2561         else
2562           V = ConstantDataArray::getFP(EltTy, Elts);
2563       } else if (EltTy->isDoubleTy()) {
2564         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::getFP(EltTy, Elts);
2567         else
2568           V = ConstantDataArray::getFP(EltTy, Elts);
2569       } else {
2570         return error("Invalid type for value");
2571       }
2572       break;
2573     }
2574     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2575       if (Record.size() < 2)
2576         return error("Invalid record");
2577       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2578       if (Opc < 0) {
2579         V = UndefValue::get(CurTy);  // Unknown unop.
2580       } else {
2581         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2582         unsigned Flags = 0;
2583         V = ConstantExpr::get(Opc, LHS, Flags);
2584       }
2585       break;
2586     }
2587     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2588       if (Record.size() < 3)
2589         return error("Invalid record");
2590       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2591       if (Opc < 0) {
2592         V = UndefValue::get(CurTy);  // Unknown binop.
2593       } else {
2594         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2595         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2596         unsigned Flags = 0;
2597         if (Record.size() >= 4) {
2598           if (Opc == Instruction::Add ||
2599               Opc == Instruction::Sub ||
2600               Opc == Instruction::Mul ||
2601               Opc == Instruction::Shl) {
2602             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2603               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2604             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2605               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2606           } else if (Opc == Instruction::SDiv ||
2607                      Opc == Instruction::UDiv ||
2608                      Opc == Instruction::LShr ||
2609                      Opc == Instruction::AShr) {
2610             if (Record[3] & (1 << bitc::PEO_EXACT))
2611               Flags |= SDivOperator::IsExact;
2612           }
2613         }
2614         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2615       }
2616       break;
2617     }
2618     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2619       if (Record.size() < 3)
2620         return error("Invalid record");
2621       int Opc = getDecodedCastOpcode(Record[0]);
2622       if (Opc < 0) {
2623         V = UndefValue::get(CurTy);  // Unknown cast.
2624       } else {
2625         Type *OpTy = getTypeByID(Record[1]);
2626         if (!OpTy)
2627           return error("Invalid record");
2628         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2629         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2630         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2631       }
2632       break;
2633     }
2634     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2635     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2636     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2637                                                      // operands]
2638       unsigned OpNum = 0;
2639       Type *PointeeType = nullptr;
2640       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2641           Record.size() % 2)
2642         PointeeType = getTypeByID(Record[OpNum++]);
2643 
2644       bool InBounds = false;
2645       Optional<unsigned> InRangeIndex;
2646       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2647         uint64_t Op = Record[OpNum++];
2648         InBounds = Op & 1;
2649         InRangeIndex = Op >> 1;
2650       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2651         InBounds = true;
2652 
2653       SmallVector<Constant*, 16> Elts;
2654       Type *Elt0FullTy = nullptr;
2655       while (OpNum != Record.size()) {
2656         if (!Elt0FullTy)
2657           Elt0FullTy = getTypeByID(Record[OpNum]);
2658         Type *ElTy = getTypeByID(Record[OpNum++]);
2659         if (!ElTy)
2660           return error("Invalid record");
2661         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2662       }
2663 
2664       if (Elts.size() < 1)
2665         return error("Invalid gep with no operands");
2666 
2667       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2668       if (!PointeeType)
2669         PointeeType = OrigPtrTy->getElementType();
2670       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2671         return error("Explicit gep operator type does not match pointee type "
2672                      "of pointer operand");
2673 
2674       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2675       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2676                                          InBounds, InRangeIndex);
2677       break;
2678     }
2679     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2680       if (Record.size() < 3)
2681         return error("Invalid record");
2682 
2683       Type *SelectorTy = Type::getInt1Ty(Context);
2684 
2685       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2686       // Get the type from the ValueList before getting a forward ref.
2687       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2688         if (Value *V = ValueList[Record[0]])
2689           if (SelectorTy != V->getType())
2690             SelectorTy = VectorType::get(SelectorTy,
2691                                          VTy->getElementCount());
2692 
2693       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2694                                                               SelectorTy),
2695                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2696                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2697       break;
2698     }
2699     case bitc::CST_CODE_CE_EXTRACTELT
2700         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2701       if (Record.size() < 3)
2702         return error("Invalid record");
2703       VectorType *OpTy =
2704         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2705       if (!OpTy)
2706         return error("Invalid record");
2707       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2708       Constant *Op1 = nullptr;
2709       if (Record.size() == 4) {
2710         Type *IdxTy = getTypeByID(Record[2]);
2711         if (!IdxTy)
2712           return error("Invalid record");
2713         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2714       } else {
2715         // Deprecated, but still needed to read old bitcode files.
2716         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2717       }
2718       if (!Op1)
2719         return error("Invalid record");
2720       V = ConstantExpr::getExtractElement(Op0, Op1);
2721       break;
2722     }
2723     case bitc::CST_CODE_CE_INSERTELT
2724         : { // CE_INSERTELT: [opval, opval, opty, opval]
2725       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2726       if (Record.size() < 3 || !OpTy)
2727         return error("Invalid record");
2728       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2729       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2730                                                   OpTy->getElementType());
2731       Constant *Op2 = nullptr;
2732       if (Record.size() == 4) {
2733         Type *IdxTy = getTypeByID(Record[2]);
2734         if (!IdxTy)
2735           return error("Invalid record");
2736         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2737       } else {
2738         // Deprecated, but still needed to read old bitcode files.
2739         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2740       }
2741       if (!Op2)
2742         return error("Invalid record");
2743       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2744       break;
2745     }
2746     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2747       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2748       if (Record.size() < 3 || !OpTy)
2749         return error("Invalid record");
2750       DelayedShuffles.push_back(
2751           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2752       ++NextCstNo;
2753       continue;
2754     }
2755     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2756       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2757       VectorType *OpTy =
2758         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2759       if (Record.size() < 4 || !RTy || !OpTy)
2760         return error("Invalid record");
2761       DelayedShuffles.push_back(
2762           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2763       ++NextCstNo;
2764       continue;
2765     }
2766     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2767       if (Record.size() < 4)
2768         return error("Invalid record");
2769       Type *OpTy = getTypeByID(Record[0]);
2770       if (!OpTy)
2771         return error("Invalid record");
2772       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2773       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2774 
2775       if (OpTy->isFPOrFPVectorTy())
2776         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2777       else
2778         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2779       break;
2780     }
2781     // This maintains backward compatibility, pre-asm dialect keywords.
2782     // Deprecated, but still needed to read old bitcode files.
2783     case bitc::CST_CODE_INLINEASM_OLD: {
2784       if (Record.size() < 2)
2785         return error("Invalid record");
2786       std::string AsmStr, ConstrStr;
2787       bool HasSideEffects = Record[0] & 1;
2788       bool IsAlignStack = Record[0] >> 1;
2789       unsigned AsmStrSize = Record[1];
2790       if (2+AsmStrSize >= Record.size())
2791         return error("Invalid record");
2792       unsigned ConstStrSize = Record[2+AsmStrSize];
2793       if (3+AsmStrSize+ConstStrSize > Record.size())
2794         return error("Invalid record");
2795 
2796       for (unsigned i = 0; i != AsmStrSize; ++i)
2797         AsmStr += (char)Record[2+i];
2798       for (unsigned i = 0; i != ConstStrSize; ++i)
2799         ConstrStr += (char)Record[3+AsmStrSize+i];
2800       UpgradeInlineAsmString(&AsmStr);
2801       V = InlineAsm::get(
2802           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2803           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2804       break;
2805     }
2806     // This version adds support for the asm dialect keywords (e.g.,
2807     // inteldialect).
2808     case bitc::CST_CODE_INLINEASM_OLD2: {
2809       if (Record.size() < 2)
2810         return error("Invalid record");
2811       std::string AsmStr, ConstrStr;
2812       bool HasSideEffects = Record[0] & 1;
2813       bool IsAlignStack = (Record[0] >> 1) & 1;
2814       unsigned AsmDialect = Record[0] >> 2;
2815       unsigned AsmStrSize = Record[1];
2816       if (2+AsmStrSize >= Record.size())
2817         return error("Invalid record");
2818       unsigned ConstStrSize = Record[2+AsmStrSize];
2819       if (3+AsmStrSize+ConstStrSize > Record.size())
2820         return error("Invalid record");
2821 
2822       for (unsigned i = 0; i != AsmStrSize; ++i)
2823         AsmStr += (char)Record[2+i];
2824       for (unsigned i = 0; i != ConstStrSize; ++i)
2825         ConstrStr += (char)Record[3+AsmStrSize+i];
2826       UpgradeInlineAsmString(&AsmStr);
2827       V = InlineAsm::get(
2828           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2829           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2830           InlineAsm::AsmDialect(AsmDialect));
2831       break;
2832     }
2833     // This version adds support for the unwind keyword.
2834     case bitc::CST_CODE_INLINEASM: {
2835       if (Record.size() < 2)
2836         return error("Invalid record");
2837       std::string AsmStr, ConstrStr;
2838       bool HasSideEffects = Record[0] & 1;
2839       bool IsAlignStack = (Record[0] >> 1) & 1;
2840       unsigned AsmDialect = (Record[0] >> 2) & 1;
2841       bool CanThrow = (Record[0] >> 3) & 1;
2842       unsigned AsmStrSize = Record[1];
2843       if (2 + AsmStrSize >= Record.size())
2844         return error("Invalid record");
2845       unsigned ConstStrSize = Record[2 + AsmStrSize];
2846       if (3 + AsmStrSize + ConstStrSize > Record.size())
2847         return error("Invalid record");
2848 
2849       for (unsigned i = 0; i != AsmStrSize; ++i)
2850         AsmStr += (char)Record[2 + i];
2851       for (unsigned i = 0; i != ConstStrSize; ++i)
2852         ConstrStr += (char)Record[3 + AsmStrSize + i];
2853       UpgradeInlineAsmString(&AsmStr);
2854       V = InlineAsm::get(
2855           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2856           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2857           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2858       break;
2859     }
2860     case bitc::CST_CODE_BLOCKADDRESS:{
2861       if (Record.size() < 3)
2862         return error("Invalid record");
2863       Type *FnTy = getTypeByID(Record[0]);
2864       if (!FnTy)
2865         return error("Invalid record");
2866       Function *Fn =
2867         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2868       if (!Fn)
2869         return error("Invalid record");
2870 
2871       // If the function is already parsed we can insert the block address right
2872       // away.
2873       BasicBlock *BB;
2874       unsigned BBID = Record[2];
2875       if (!BBID)
2876         // Invalid reference to entry block.
2877         return error("Invalid ID");
2878       if (!Fn->empty()) {
2879         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2880         for (size_t I = 0, E = BBID; I != E; ++I) {
2881           if (BBI == BBE)
2882             return error("Invalid ID");
2883           ++BBI;
2884         }
2885         BB = &*BBI;
2886       } else {
2887         // Otherwise insert a placeholder and remember it so it can be inserted
2888         // when the function is parsed.
2889         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2890         if (FwdBBs.empty())
2891           BasicBlockFwdRefQueue.push_back(Fn);
2892         if (FwdBBs.size() < BBID + 1)
2893           FwdBBs.resize(BBID + 1);
2894         if (!FwdBBs[BBID])
2895           FwdBBs[BBID] = BasicBlock::Create(Context);
2896         BB = FwdBBs[BBID];
2897       }
2898       V = BlockAddress::get(Fn, BB);
2899       break;
2900     }
2901     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2902       if (Record.size() < 2)
2903         return error("Invalid record");
2904       Type *GVTy = getTypeByID(Record[0]);
2905       if (!GVTy)
2906         return error("Invalid record");
2907       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2908           ValueList.getConstantFwdRef(Record[1], GVTy));
2909       if (!GV)
2910         return error("Invalid record");
2911 
2912       V = DSOLocalEquivalent::get(GV);
2913       break;
2914     }
2915     }
2916 
2917     ValueList.assignValue(V, NextCstNo);
2918     ++NextCstNo;
2919   }
2920 }
2921 
2922 Error BitcodeReader::parseUseLists() {
2923   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2924     return Err;
2925 
2926   // Read all the records.
2927   SmallVector<uint64_t, 64> Record;
2928 
2929   while (true) {
2930     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2931     if (!MaybeEntry)
2932       return MaybeEntry.takeError();
2933     BitstreamEntry Entry = MaybeEntry.get();
2934 
2935     switch (Entry.Kind) {
2936     case BitstreamEntry::SubBlock: // Handled for us already.
2937     case BitstreamEntry::Error:
2938       return error("Malformed block");
2939     case BitstreamEntry::EndBlock:
2940       return Error::success();
2941     case BitstreamEntry::Record:
2942       // The interesting case.
2943       break;
2944     }
2945 
2946     // Read a use list record.
2947     Record.clear();
2948     bool IsBB = false;
2949     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2950     if (!MaybeRecord)
2951       return MaybeRecord.takeError();
2952     switch (MaybeRecord.get()) {
2953     default:  // Default behavior: unknown type.
2954       break;
2955     case bitc::USELIST_CODE_BB:
2956       IsBB = true;
2957       LLVM_FALLTHROUGH;
2958     case bitc::USELIST_CODE_DEFAULT: {
2959       unsigned RecordLength = Record.size();
2960       if (RecordLength < 3)
2961         // Records should have at least an ID and two indexes.
2962         return error("Invalid record");
2963       unsigned ID = Record.pop_back_val();
2964 
2965       Value *V;
2966       if (IsBB) {
2967         assert(ID < FunctionBBs.size() && "Basic block not found");
2968         V = FunctionBBs[ID];
2969       } else
2970         V = ValueList[ID];
2971       unsigned NumUses = 0;
2972       SmallDenseMap<const Use *, unsigned, 16> Order;
2973       for (const Use &U : V->materialized_uses()) {
2974         if (++NumUses > Record.size())
2975           break;
2976         Order[&U] = Record[NumUses - 1];
2977       }
2978       if (Order.size() != Record.size() || NumUses > Record.size())
2979         // Mismatches can happen if the functions are being materialized lazily
2980         // (out-of-order), or a value has been upgraded.
2981         break;
2982 
2983       V->sortUseList([&](const Use &L, const Use &R) {
2984         return Order.lookup(&L) < Order.lookup(&R);
2985       });
2986       break;
2987     }
2988     }
2989   }
2990 }
2991 
2992 /// When we see the block for metadata, remember where it is and then skip it.
2993 /// This lets us lazily deserialize the metadata.
2994 Error BitcodeReader::rememberAndSkipMetadata() {
2995   // Save the current stream state.
2996   uint64_t CurBit = Stream.GetCurrentBitNo();
2997   DeferredMetadataInfo.push_back(CurBit);
2998 
2999   // Skip over the block for now.
3000   if (Error Err = Stream.SkipBlock())
3001     return Err;
3002   return Error::success();
3003 }
3004 
3005 Error BitcodeReader::materializeMetadata() {
3006   for (uint64_t BitPos : DeferredMetadataInfo) {
3007     // Move the bit stream to the saved position.
3008     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3009       return JumpFailed;
3010     if (Error Err = MDLoader->parseModuleMetadata())
3011       return Err;
3012   }
3013 
3014   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3015   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3016   // multiple times.
3017   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3018     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3019       NamedMDNode *LinkerOpts =
3020           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3021       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3022         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3023     }
3024   }
3025 
3026   DeferredMetadataInfo.clear();
3027   return Error::success();
3028 }
3029 
3030 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3031 
3032 /// When we see the block for a function body, remember where it is and then
3033 /// skip it.  This lets us lazily deserialize the functions.
3034 Error BitcodeReader::rememberAndSkipFunctionBody() {
3035   // Get the function we are talking about.
3036   if (FunctionsWithBodies.empty())
3037     return error("Insufficient function protos");
3038 
3039   Function *Fn = FunctionsWithBodies.back();
3040   FunctionsWithBodies.pop_back();
3041 
3042   // Save the current stream state.
3043   uint64_t CurBit = Stream.GetCurrentBitNo();
3044   assert(
3045       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3046       "Mismatch between VST and scanned function offsets");
3047   DeferredFunctionInfo[Fn] = CurBit;
3048 
3049   // Skip over the function block for now.
3050   if (Error Err = Stream.SkipBlock())
3051     return Err;
3052   return Error::success();
3053 }
3054 
3055 Error BitcodeReader::globalCleanup() {
3056   // Patch the initializers for globals and aliases up.
3057   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3058     return Err;
3059   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3060     return error("Malformed global initializer set");
3061 
3062   // Look for intrinsic functions which need to be upgraded at some point
3063   // and functions that need to have their function attributes upgraded.
3064   for (Function &F : *TheModule) {
3065     MDLoader->upgradeDebugIntrinsics(F);
3066     Function *NewFn;
3067     if (UpgradeIntrinsicFunction(&F, NewFn))
3068       UpgradedIntrinsics[&F] = NewFn;
3069     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3070       // Some types could be renamed during loading if several modules are
3071       // loaded in the same LLVMContext (LTO scenario). In this case we should
3072       // remangle intrinsics names as well.
3073       RemangledIntrinsics[&F] = Remangled.getValue();
3074     // Look for functions that rely on old function attribute behavior.
3075     UpgradeFunctionAttributes(F);
3076   }
3077 
3078   // Look for global variables which need to be renamed.
3079   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3080   for (GlobalVariable &GV : TheModule->globals())
3081     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3082       UpgradedVariables.emplace_back(&GV, Upgraded);
3083   for (auto &Pair : UpgradedVariables) {
3084     Pair.first->eraseFromParent();
3085     TheModule->getGlobalList().push_back(Pair.second);
3086   }
3087 
3088   // Force deallocation of memory for these vectors to favor the client that
3089   // want lazy deserialization.
3090   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3091   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3092       IndirectSymbolInits);
3093   return Error::success();
3094 }
3095 
3096 /// Support for lazy parsing of function bodies. This is required if we
3097 /// either have an old bitcode file without a VST forward declaration record,
3098 /// or if we have an anonymous function being materialized, since anonymous
3099 /// functions do not have a name and are therefore not in the VST.
3100 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3101   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3102     return JumpFailed;
3103 
3104   if (Stream.AtEndOfStream())
3105     return error("Could not find function in stream");
3106 
3107   if (!SeenFirstFunctionBody)
3108     return error("Trying to materialize functions before seeing function blocks");
3109 
3110   // An old bitcode file with the symbol table at the end would have
3111   // finished the parse greedily.
3112   assert(SeenValueSymbolTable);
3113 
3114   SmallVector<uint64_t, 64> Record;
3115 
3116   while (true) {
3117     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3118     if (!MaybeEntry)
3119       return MaybeEntry.takeError();
3120     llvm::BitstreamEntry Entry = MaybeEntry.get();
3121 
3122     switch (Entry.Kind) {
3123     default:
3124       return error("Expect SubBlock");
3125     case BitstreamEntry::SubBlock:
3126       switch (Entry.ID) {
3127       default:
3128         return error("Expect function block");
3129       case bitc::FUNCTION_BLOCK_ID:
3130         if (Error Err = rememberAndSkipFunctionBody())
3131           return Err;
3132         NextUnreadBit = Stream.GetCurrentBitNo();
3133         return Error::success();
3134       }
3135     }
3136   }
3137 }
3138 
3139 bool BitcodeReaderBase::readBlockInfo() {
3140   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3141       Stream.ReadBlockInfoBlock();
3142   if (!MaybeNewBlockInfo)
3143     return true; // FIXME Handle the error.
3144   Optional<BitstreamBlockInfo> NewBlockInfo =
3145       std::move(MaybeNewBlockInfo.get());
3146   if (!NewBlockInfo)
3147     return true;
3148   BlockInfo = std::move(*NewBlockInfo);
3149   return false;
3150 }
3151 
3152 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3153   // v1: [selection_kind, name]
3154   // v2: [strtab_offset, strtab_size, selection_kind]
3155   StringRef Name;
3156   std::tie(Name, Record) = readNameFromStrtab(Record);
3157 
3158   if (Record.empty())
3159     return error("Invalid record");
3160   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3161   std::string OldFormatName;
3162   if (!UseStrtab) {
3163     if (Record.size() < 2)
3164       return error("Invalid record");
3165     unsigned ComdatNameSize = Record[1];
3166     OldFormatName.reserve(ComdatNameSize);
3167     for (unsigned i = 0; i != ComdatNameSize; ++i)
3168       OldFormatName += (char)Record[2 + i];
3169     Name = OldFormatName;
3170   }
3171   Comdat *C = TheModule->getOrInsertComdat(Name);
3172   C->setSelectionKind(SK);
3173   ComdatList.push_back(C);
3174   return Error::success();
3175 }
3176 
3177 static void inferDSOLocal(GlobalValue *GV) {
3178   // infer dso_local from linkage and visibility if it is not encoded.
3179   if (GV->hasLocalLinkage() ||
3180       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3181     GV->setDSOLocal(true);
3182 }
3183 
3184 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3185   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3186   // visibility, threadlocal, unnamed_addr, externally_initialized,
3187   // dllstorageclass, comdat, attributes, preemption specifier,
3188   // partition strtab offset, partition strtab size] (name in VST)
3189   // v2: [strtab_offset, strtab_size, v1]
3190   StringRef Name;
3191   std::tie(Name, Record) = readNameFromStrtab(Record);
3192 
3193   if (Record.size() < 6)
3194     return error("Invalid record");
3195   Type *Ty = getTypeByID(Record[0]);
3196   if (!Ty)
3197     return error("Invalid record");
3198   bool isConstant = Record[1] & 1;
3199   bool explicitType = Record[1] & 2;
3200   unsigned AddressSpace;
3201   if (explicitType) {
3202     AddressSpace = Record[1] >> 2;
3203   } else {
3204     if (!Ty->isPointerTy())
3205       return error("Invalid type for value");
3206     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3207     Ty = cast<PointerType>(Ty)->getElementType();
3208   }
3209 
3210   uint64_t RawLinkage = Record[3];
3211   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3212   MaybeAlign Alignment;
3213   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3214     return Err;
3215   std::string Section;
3216   if (Record[5]) {
3217     if (Record[5] - 1 >= SectionTable.size())
3218       return error("Invalid ID");
3219     Section = SectionTable[Record[5] - 1];
3220   }
3221   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3222   // Local linkage must have default visibility.
3223   // auto-upgrade `hidden` and `protected` for old bitcode.
3224   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3225     Visibility = getDecodedVisibility(Record[6]);
3226 
3227   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3228   if (Record.size() > 7)
3229     TLM = getDecodedThreadLocalMode(Record[7]);
3230 
3231   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3232   if (Record.size() > 8)
3233     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3234 
3235   bool ExternallyInitialized = false;
3236   if (Record.size() > 9)
3237     ExternallyInitialized = Record[9];
3238 
3239   GlobalVariable *NewGV =
3240       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3241                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3242   NewGV->setAlignment(Alignment);
3243   if (!Section.empty())
3244     NewGV->setSection(Section);
3245   NewGV->setVisibility(Visibility);
3246   NewGV->setUnnamedAddr(UnnamedAddr);
3247 
3248   if (Record.size() > 10)
3249     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3250   else
3251     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3252 
3253   ValueList.push_back(NewGV);
3254 
3255   // Remember which value to use for the global initializer.
3256   if (unsigned InitID = Record[2])
3257     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3258 
3259   if (Record.size() > 11) {
3260     if (unsigned ComdatID = Record[11]) {
3261       if (ComdatID > ComdatList.size())
3262         return error("Invalid global variable comdat ID");
3263       NewGV->setComdat(ComdatList[ComdatID - 1]);
3264     }
3265   } else if (hasImplicitComdat(RawLinkage)) {
3266     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3267   }
3268 
3269   if (Record.size() > 12) {
3270     auto AS = getAttributes(Record[12]).getFnAttributes();
3271     NewGV->setAttributes(AS);
3272   }
3273 
3274   if (Record.size() > 13) {
3275     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3276   }
3277   inferDSOLocal(NewGV);
3278 
3279   // Check whether we have enough values to read a partition name.
3280   if (Record.size() > 15)
3281     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3282 
3283   return Error::success();
3284 }
3285 
3286 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3287   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3288   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3289   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3290   // v2: [strtab_offset, strtab_size, v1]
3291   StringRef Name;
3292   std::tie(Name, Record) = readNameFromStrtab(Record);
3293 
3294   if (Record.size() < 8)
3295     return error("Invalid record");
3296   Type *FTy = getTypeByID(Record[0]);
3297   if (!FTy)
3298     return error("Invalid record");
3299   if (auto *PTy = dyn_cast<PointerType>(FTy))
3300     FTy = PTy->getElementType();
3301 
3302   if (!isa<FunctionType>(FTy))
3303     return error("Invalid type for value");
3304   auto CC = static_cast<CallingConv::ID>(Record[1]);
3305   if (CC & ~CallingConv::MaxID)
3306     return error("Invalid calling convention ID");
3307 
3308   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3309   if (Record.size() > 16)
3310     AddrSpace = Record[16];
3311 
3312   Function *Func =
3313       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3314                        AddrSpace, Name, TheModule);
3315 
3316   assert(Func->getFunctionType() == FTy &&
3317          "Incorrect fully specified type provided for function");
3318   FunctionTypes[Func] = cast<FunctionType>(FTy);
3319 
3320   Func->setCallingConv(CC);
3321   bool isProto = Record[2];
3322   uint64_t RawLinkage = Record[3];
3323   Func->setLinkage(getDecodedLinkage(RawLinkage));
3324   Func->setAttributes(getAttributes(Record[4]));
3325 
3326   // Upgrade any old-style byval or sret without a type by propagating the
3327   // argument's pointee type. There should be no opaque pointers where the byval
3328   // type is implicit.
3329   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3330     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3331                                      Attribute::InAlloca}) {
3332       if (!Func->hasParamAttribute(i, Kind))
3333         continue;
3334 
3335       if (Func->getParamAttribute(i, Kind).getValueAsType())
3336         continue;
3337 
3338       Func->removeParamAttr(i, Kind);
3339 
3340       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3341       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3342       Attribute NewAttr;
3343       switch (Kind) {
3344       case Attribute::ByVal:
3345         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3346         break;
3347       case Attribute::StructRet:
3348         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3349         break;
3350       case Attribute::InAlloca:
3351         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3352         break;
3353       default:
3354         llvm_unreachable("not an upgraded type attribute");
3355       }
3356 
3357       Func->addParamAttr(i, NewAttr);
3358     }
3359   }
3360 
3361   MaybeAlign Alignment;
3362   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3363     return Err;
3364   Func->setAlignment(Alignment);
3365   if (Record[6]) {
3366     if (Record[6] - 1 >= SectionTable.size())
3367       return error("Invalid ID");
3368     Func->setSection(SectionTable[Record[6] - 1]);
3369   }
3370   // Local linkage must have default visibility.
3371   // auto-upgrade `hidden` and `protected` for old bitcode.
3372   if (!Func->hasLocalLinkage())
3373     Func->setVisibility(getDecodedVisibility(Record[7]));
3374   if (Record.size() > 8 && Record[8]) {
3375     if (Record[8] - 1 >= GCTable.size())
3376       return error("Invalid ID");
3377     Func->setGC(GCTable[Record[8] - 1]);
3378   }
3379   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3380   if (Record.size() > 9)
3381     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3382   Func->setUnnamedAddr(UnnamedAddr);
3383   if (Record.size() > 10 && Record[10] != 0)
3384     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3385 
3386   if (Record.size() > 11)
3387     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3388   else
3389     upgradeDLLImportExportLinkage(Func, RawLinkage);
3390 
3391   if (Record.size() > 12) {
3392     if (unsigned ComdatID = Record[12]) {
3393       if (ComdatID > ComdatList.size())
3394         return error("Invalid function comdat ID");
3395       Func->setComdat(ComdatList[ComdatID - 1]);
3396     }
3397   } else if (hasImplicitComdat(RawLinkage)) {
3398     Func->setComdat(reinterpret_cast<Comdat *>(1));
3399   }
3400 
3401   if (Record.size() > 13 && Record[13] != 0)
3402     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3403 
3404   if (Record.size() > 14 && Record[14] != 0)
3405     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3406 
3407   if (Record.size() > 15) {
3408     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3409   }
3410   inferDSOLocal(Func);
3411 
3412   // Record[16] is the address space number.
3413 
3414   // Check whether we have enough values to read a partition name. Also make
3415   // sure Strtab has enough values.
3416   if (Record.size() > 18 && Strtab.data() &&
3417       Record[17] + Record[18] <= Strtab.size()) {
3418     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3419   }
3420 
3421   ValueList.push_back(Func);
3422 
3423   // If this is a function with a body, remember the prototype we are
3424   // creating now, so that we can match up the body with them later.
3425   if (!isProto) {
3426     Func->setIsMaterializable(true);
3427     FunctionsWithBodies.push_back(Func);
3428     DeferredFunctionInfo[Func] = 0;
3429   }
3430   return Error::success();
3431 }
3432 
3433 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3434     unsigned BitCode, ArrayRef<uint64_t> Record) {
3435   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3436   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3437   // dllstorageclass, threadlocal, unnamed_addr,
3438   // preemption specifier] (name in VST)
3439   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3440   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3441   // preemption specifier] (name in VST)
3442   // v2: [strtab_offset, strtab_size, v1]
3443   StringRef Name;
3444   std::tie(Name, Record) = readNameFromStrtab(Record);
3445 
3446   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3447   if (Record.size() < (3 + (unsigned)NewRecord))
3448     return error("Invalid record");
3449   unsigned OpNum = 0;
3450   Type *Ty = getTypeByID(Record[OpNum++]);
3451   if (!Ty)
3452     return error("Invalid record");
3453 
3454   unsigned AddrSpace;
3455   if (!NewRecord) {
3456     auto *PTy = dyn_cast<PointerType>(Ty);
3457     if (!PTy)
3458       return error("Invalid type for value");
3459     Ty = PTy->getElementType();
3460     AddrSpace = PTy->getAddressSpace();
3461   } else {
3462     AddrSpace = Record[OpNum++];
3463   }
3464 
3465   auto Val = Record[OpNum++];
3466   auto Linkage = Record[OpNum++];
3467   GlobalIndirectSymbol *NewGA;
3468   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3469       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3470     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3471                                 TheModule);
3472   else
3473     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3474                                 nullptr, TheModule);
3475 
3476   // Local linkage must have default visibility.
3477   // auto-upgrade `hidden` and `protected` for old bitcode.
3478   if (OpNum != Record.size()) {
3479     auto VisInd = OpNum++;
3480     if (!NewGA->hasLocalLinkage())
3481       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3482   }
3483   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3484       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3485     if (OpNum != Record.size())
3486       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3487     else
3488       upgradeDLLImportExportLinkage(NewGA, Linkage);
3489     if (OpNum != Record.size())
3490       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3491     if (OpNum != Record.size())
3492       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3493   }
3494   if (OpNum != Record.size())
3495     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3496   inferDSOLocal(NewGA);
3497 
3498   // Check whether we have enough values to read a partition name.
3499   if (OpNum + 1 < Record.size()) {
3500     NewGA->setPartition(
3501         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3502     OpNum += 2;
3503   }
3504 
3505   ValueList.push_back(NewGA);
3506   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3507   return Error::success();
3508 }
3509 
3510 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3511                                  bool ShouldLazyLoadMetadata,
3512                                  DataLayoutCallbackTy DataLayoutCallback) {
3513   if (ResumeBit) {
3514     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3515       return JumpFailed;
3516   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3517     return Err;
3518 
3519   SmallVector<uint64_t, 64> Record;
3520 
3521   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3522   // finalize the datalayout before we run any of that code.
3523   bool ResolvedDataLayout = false;
3524   auto ResolveDataLayout = [&] {
3525     if (ResolvedDataLayout)
3526       return;
3527 
3528     // datalayout and triple can't be parsed after this point.
3529     ResolvedDataLayout = true;
3530 
3531     // Upgrade data layout string.
3532     std::string DL = llvm::UpgradeDataLayoutString(
3533         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3534     TheModule->setDataLayout(DL);
3535 
3536     if (auto LayoutOverride =
3537             DataLayoutCallback(TheModule->getTargetTriple()))
3538       TheModule->setDataLayout(*LayoutOverride);
3539   };
3540 
3541   // Read all the records for this module.
3542   while (true) {
3543     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3544     if (!MaybeEntry)
3545       return MaybeEntry.takeError();
3546     llvm::BitstreamEntry Entry = MaybeEntry.get();
3547 
3548     switch (Entry.Kind) {
3549     case BitstreamEntry::Error:
3550       return error("Malformed block");
3551     case BitstreamEntry::EndBlock:
3552       ResolveDataLayout();
3553       return globalCleanup();
3554 
3555     case BitstreamEntry::SubBlock:
3556       switch (Entry.ID) {
3557       default:  // Skip unknown content.
3558         if (Error Err = Stream.SkipBlock())
3559           return Err;
3560         break;
3561       case bitc::BLOCKINFO_BLOCK_ID:
3562         if (readBlockInfo())
3563           return error("Malformed block");
3564         break;
3565       case bitc::PARAMATTR_BLOCK_ID:
3566         if (Error Err = parseAttributeBlock())
3567           return Err;
3568         break;
3569       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3570         if (Error Err = parseAttributeGroupBlock())
3571           return Err;
3572         break;
3573       case bitc::TYPE_BLOCK_ID_NEW:
3574         if (Error Err = parseTypeTable())
3575           return Err;
3576         break;
3577       case bitc::VALUE_SYMTAB_BLOCK_ID:
3578         if (!SeenValueSymbolTable) {
3579           // Either this is an old form VST without function index and an
3580           // associated VST forward declaration record (which would have caused
3581           // the VST to be jumped to and parsed before it was encountered
3582           // normally in the stream), or there were no function blocks to
3583           // trigger an earlier parsing of the VST.
3584           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3585           if (Error Err = parseValueSymbolTable())
3586             return Err;
3587           SeenValueSymbolTable = true;
3588         } else {
3589           // We must have had a VST forward declaration record, which caused
3590           // the parser to jump to and parse the VST earlier.
3591           assert(VSTOffset > 0);
3592           if (Error Err = Stream.SkipBlock())
3593             return Err;
3594         }
3595         break;
3596       case bitc::CONSTANTS_BLOCK_ID:
3597         if (Error Err = parseConstants())
3598           return Err;
3599         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3600           return Err;
3601         break;
3602       case bitc::METADATA_BLOCK_ID:
3603         if (ShouldLazyLoadMetadata) {
3604           if (Error Err = rememberAndSkipMetadata())
3605             return Err;
3606           break;
3607         }
3608         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3609         if (Error Err = MDLoader->parseModuleMetadata())
3610           return Err;
3611         break;
3612       case bitc::METADATA_KIND_BLOCK_ID:
3613         if (Error Err = MDLoader->parseMetadataKinds())
3614           return Err;
3615         break;
3616       case bitc::FUNCTION_BLOCK_ID:
3617         ResolveDataLayout();
3618 
3619         // If this is the first function body we've seen, reverse the
3620         // FunctionsWithBodies list.
3621         if (!SeenFirstFunctionBody) {
3622           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3623           if (Error Err = globalCleanup())
3624             return Err;
3625           SeenFirstFunctionBody = true;
3626         }
3627 
3628         if (VSTOffset > 0) {
3629           // If we have a VST forward declaration record, make sure we
3630           // parse the VST now if we haven't already. It is needed to
3631           // set up the DeferredFunctionInfo vector for lazy reading.
3632           if (!SeenValueSymbolTable) {
3633             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3634               return Err;
3635             SeenValueSymbolTable = true;
3636             // Fall through so that we record the NextUnreadBit below.
3637             // This is necessary in case we have an anonymous function that
3638             // is later materialized. Since it will not have a VST entry we
3639             // need to fall back to the lazy parse to find its offset.
3640           } else {
3641             // If we have a VST forward declaration record, but have already
3642             // parsed the VST (just above, when the first function body was
3643             // encountered here), then we are resuming the parse after
3644             // materializing functions. The ResumeBit points to the
3645             // start of the last function block recorded in the
3646             // DeferredFunctionInfo map. Skip it.
3647             if (Error Err = Stream.SkipBlock())
3648               return Err;
3649             continue;
3650           }
3651         }
3652 
3653         // Support older bitcode files that did not have the function
3654         // index in the VST, nor a VST forward declaration record, as
3655         // well as anonymous functions that do not have VST entries.
3656         // Build the DeferredFunctionInfo vector on the fly.
3657         if (Error Err = rememberAndSkipFunctionBody())
3658           return Err;
3659 
3660         // Suspend parsing when we reach the function bodies. Subsequent
3661         // materialization calls will resume it when necessary. If the bitcode
3662         // file is old, the symbol table will be at the end instead and will not
3663         // have been seen yet. In this case, just finish the parse now.
3664         if (SeenValueSymbolTable) {
3665           NextUnreadBit = Stream.GetCurrentBitNo();
3666           // After the VST has been parsed, we need to make sure intrinsic name
3667           // are auto-upgraded.
3668           return globalCleanup();
3669         }
3670         break;
3671       case bitc::USELIST_BLOCK_ID:
3672         if (Error Err = parseUseLists())
3673           return Err;
3674         break;
3675       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3676         if (Error Err = parseOperandBundleTags())
3677           return Err;
3678         break;
3679       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3680         if (Error Err = parseSyncScopeNames())
3681           return Err;
3682         break;
3683       }
3684       continue;
3685 
3686     case BitstreamEntry::Record:
3687       // The interesting case.
3688       break;
3689     }
3690 
3691     // Read a record.
3692     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3693     if (!MaybeBitCode)
3694       return MaybeBitCode.takeError();
3695     switch (unsigned BitCode = MaybeBitCode.get()) {
3696     default: break;  // Default behavior, ignore unknown content.
3697     case bitc::MODULE_CODE_VERSION: {
3698       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3699       if (!VersionOrErr)
3700         return VersionOrErr.takeError();
3701       UseRelativeIDs = *VersionOrErr >= 1;
3702       break;
3703     }
3704     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3705       if (ResolvedDataLayout)
3706         return error("target triple too late in module");
3707       std::string S;
3708       if (convertToString(Record, 0, S))
3709         return error("Invalid record");
3710       TheModule->setTargetTriple(S);
3711       break;
3712     }
3713     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3714       if (ResolvedDataLayout)
3715         return error("datalayout too late in module");
3716       std::string S;
3717       if (convertToString(Record, 0, S))
3718         return error("Invalid record");
3719       TheModule->setDataLayout(S);
3720       break;
3721     }
3722     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3723       std::string S;
3724       if (convertToString(Record, 0, S))
3725         return error("Invalid record");
3726       TheModule->setModuleInlineAsm(S);
3727       break;
3728     }
3729     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3730       // Deprecated, but still needed to read old bitcode files.
3731       std::string S;
3732       if (convertToString(Record, 0, S))
3733         return error("Invalid record");
3734       // Ignore value.
3735       break;
3736     }
3737     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3738       std::string S;
3739       if (convertToString(Record, 0, S))
3740         return error("Invalid record");
3741       SectionTable.push_back(S);
3742       break;
3743     }
3744     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3745       std::string S;
3746       if (convertToString(Record, 0, S))
3747         return error("Invalid record");
3748       GCTable.push_back(S);
3749       break;
3750     }
3751     case bitc::MODULE_CODE_COMDAT:
3752       if (Error Err = parseComdatRecord(Record))
3753         return Err;
3754       break;
3755     case bitc::MODULE_CODE_GLOBALVAR:
3756       if (Error Err = parseGlobalVarRecord(Record))
3757         return Err;
3758       break;
3759     case bitc::MODULE_CODE_FUNCTION:
3760       ResolveDataLayout();
3761       if (Error Err = parseFunctionRecord(Record))
3762         return Err;
3763       break;
3764     case bitc::MODULE_CODE_IFUNC:
3765     case bitc::MODULE_CODE_ALIAS:
3766     case bitc::MODULE_CODE_ALIAS_OLD:
3767       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3768         return Err;
3769       break;
3770     /// MODULE_CODE_VSTOFFSET: [offset]
3771     case bitc::MODULE_CODE_VSTOFFSET:
3772       if (Record.empty())
3773         return error("Invalid record");
3774       // Note that we subtract 1 here because the offset is relative to one word
3775       // before the start of the identification or module block, which was
3776       // historically always the start of the regular bitcode header.
3777       VSTOffset = Record[0] - 1;
3778       break;
3779     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3780     case bitc::MODULE_CODE_SOURCE_FILENAME:
3781       SmallString<128> ValueName;
3782       if (convertToString(Record, 0, ValueName))
3783         return error("Invalid record");
3784       TheModule->setSourceFileName(ValueName);
3785       break;
3786     }
3787     Record.clear();
3788   }
3789 }
3790 
3791 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3792                                       bool IsImporting,
3793                                       DataLayoutCallbackTy DataLayoutCallback) {
3794   TheModule = M;
3795   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3796                             [&](unsigned ID) { return getTypeByID(ID); });
3797   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3798 }
3799 
3800 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3801   if (!isa<PointerType>(PtrType))
3802     return error("Load/Store operand is not a pointer type");
3803 
3804   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3805     return error("Explicit load/store type does not match pointee "
3806                  "type of pointer operand");
3807   if (!PointerType::isLoadableOrStorableType(ValType))
3808     return error("Cannot load/store from pointer");
3809   return Error::success();
3810 }
3811 
3812 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3813                                             ArrayRef<Type *> ArgsTys) {
3814   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3815     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3816                                      Attribute::InAlloca}) {
3817       if (!CB->paramHasAttr(i, Kind))
3818         continue;
3819 
3820       CB->removeParamAttr(i, Kind);
3821 
3822       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3823       Attribute NewAttr;
3824       switch (Kind) {
3825       case Attribute::ByVal:
3826         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3827         break;
3828       case Attribute::StructRet:
3829         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3830         break;
3831       case Attribute::InAlloca:
3832         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3833         break;
3834       default:
3835         llvm_unreachable("not an upgraded type attribute");
3836       }
3837 
3838       CB->addParamAttr(i, NewAttr);
3839     }
3840   }
3841 }
3842 
3843 /// Lazily parse the specified function body block.
3844 Error BitcodeReader::parseFunctionBody(Function *F) {
3845   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3846     return Err;
3847 
3848   // Unexpected unresolved metadata when parsing function.
3849   if (MDLoader->hasFwdRefs())
3850     return error("Invalid function metadata: incoming forward references");
3851 
3852   InstructionList.clear();
3853   unsigned ModuleValueListSize = ValueList.size();
3854   unsigned ModuleMDLoaderSize = MDLoader->size();
3855 
3856   // Add all the function arguments to the value table.
3857 #ifndef NDEBUG
3858   unsigned ArgNo = 0;
3859   FunctionType *FTy = FunctionTypes[F];
3860 #endif
3861   for (Argument &I : F->args()) {
3862     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3863            "Incorrect fully specified type for Function Argument");
3864     ValueList.push_back(&I);
3865   }
3866   unsigned NextValueNo = ValueList.size();
3867   BasicBlock *CurBB = nullptr;
3868   unsigned CurBBNo = 0;
3869 
3870   DebugLoc LastLoc;
3871   auto getLastInstruction = [&]() -> Instruction * {
3872     if (CurBB && !CurBB->empty())
3873       return &CurBB->back();
3874     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3875              !FunctionBBs[CurBBNo - 1]->empty())
3876       return &FunctionBBs[CurBBNo - 1]->back();
3877     return nullptr;
3878   };
3879 
3880   std::vector<OperandBundleDef> OperandBundles;
3881 
3882   // Read all the records.
3883   SmallVector<uint64_t, 64> Record;
3884 
3885   while (true) {
3886     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3887     if (!MaybeEntry)
3888       return MaybeEntry.takeError();
3889     llvm::BitstreamEntry Entry = MaybeEntry.get();
3890 
3891     switch (Entry.Kind) {
3892     case BitstreamEntry::Error:
3893       return error("Malformed block");
3894     case BitstreamEntry::EndBlock:
3895       goto OutOfRecordLoop;
3896 
3897     case BitstreamEntry::SubBlock:
3898       switch (Entry.ID) {
3899       default:  // Skip unknown content.
3900         if (Error Err = Stream.SkipBlock())
3901           return Err;
3902         break;
3903       case bitc::CONSTANTS_BLOCK_ID:
3904         if (Error Err = parseConstants())
3905           return Err;
3906         NextValueNo = ValueList.size();
3907         break;
3908       case bitc::VALUE_SYMTAB_BLOCK_ID:
3909         if (Error Err = parseValueSymbolTable())
3910           return Err;
3911         break;
3912       case bitc::METADATA_ATTACHMENT_ID:
3913         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3914           return Err;
3915         break;
3916       case bitc::METADATA_BLOCK_ID:
3917         assert(DeferredMetadataInfo.empty() &&
3918                "Must read all module-level metadata before function-level");
3919         if (Error Err = MDLoader->parseFunctionMetadata())
3920           return Err;
3921         break;
3922       case bitc::USELIST_BLOCK_ID:
3923         if (Error Err = parseUseLists())
3924           return Err;
3925         break;
3926       }
3927       continue;
3928 
3929     case BitstreamEntry::Record:
3930       // The interesting case.
3931       break;
3932     }
3933 
3934     // Read a record.
3935     Record.clear();
3936     Instruction *I = nullptr;
3937     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3938     if (!MaybeBitCode)
3939       return MaybeBitCode.takeError();
3940     switch (unsigned BitCode = MaybeBitCode.get()) {
3941     default: // Default behavior: reject
3942       return error("Invalid value");
3943     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3944       if (Record.empty() || Record[0] == 0)
3945         return error("Invalid record");
3946       // Create all the basic blocks for the function.
3947       FunctionBBs.resize(Record[0]);
3948 
3949       // See if anything took the address of blocks in this function.
3950       auto BBFRI = BasicBlockFwdRefs.find(F);
3951       if (BBFRI == BasicBlockFwdRefs.end()) {
3952         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3953           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3954       } else {
3955         auto &BBRefs = BBFRI->second;
3956         // Check for invalid basic block references.
3957         if (BBRefs.size() > FunctionBBs.size())
3958           return error("Invalid ID");
3959         assert(!BBRefs.empty() && "Unexpected empty array");
3960         assert(!BBRefs.front() && "Invalid reference to entry block");
3961         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3962              ++I)
3963           if (I < RE && BBRefs[I]) {
3964             BBRefs[I]->insertInto(F);
3965             FunctionBBs[I] = BBRefs[I];
3966           } else {
3967             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3968           }
3969 
3970         // Erase from the table.
3971         BasicBlockFwdRefs.erase(BBFRI);
3972       }
3973 
3974       CurBB = FunctionBBs[0];
3975       continue;
3976     }
3977 
3978     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3979       // This record indicates that the last instruction is at the same
3980       // location as the previous instruction with a location.
3981       I = getLastInstruction();
3982 
3983       if (!I)
3984         return error("Invalid record");
3985       I->setDebugLoc(LastLoc);
3986       I = nullptr;
3987       continue;
3988 
3989     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3990       I = getLastInstruction();
3991       if (!I || Record.size() < 4)
3992         return error("Invalid record");
3993 
3994       unsigned Line = Record[0], Col = Record[1];
3995       unsigned ScopeID = Record[2], IAID = Record[3];
3996       bool isImplicitCode = Record.size() == 5 && Record[4];
3997 
3998       MDNode *Scope = nullptr, *IA = nullptr;
3999       if (ScopeID) {
4000         Scope = dyn_cast_or_null<MDNode>(
4001             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4002         if (!Scope)
4003           return error("Invalid record");
4004       }
4005       if (IAID) {
4006         IA = dyn_cast_or_null<MDNode>(
4007             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4008         if (!IA)
4009           return error("Invalid record");
4010       }
4011       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4012                                 isImplicitCode);
4013       I->setDebugLoc(LastLoc);
4014       I = nullptr;
4015       continue;
4016     }
4017     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4018       unsigned OpNum = 0;
4019       Value *LHS;
4020       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4021           OpNum+1 > Record.size())
4022         return error("Invalid record");
4023 
4024       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4025       if (Opc == -1)
4026         return error("Invalid record");
4027       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4028       InstructionList.push_back(I);
4029       if (OpNum < Record.size()) {
4030         if (isa<FPMathOperator>(I)) {
4031           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4032           if (FMF.any())
4033             I->setFastMathFlags(FMF);
4034         }
4035       }
4036       break;
4037     }
4038     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4039       unsigned OpNum = 0;
4040       Value *LHS, *RHS;
4041       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4042           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4043           OpNum+1 > Record.size())
4044         return error("Invalid record");
4045 
4046       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4047       if (Opc == -1)
4048         return error("Invalid record");
4049       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4050       InstructionList.push_back(I);
4051       if (OpNum < Record.size()) {
4052         if (Opc == Instruction::Add ||
4053             Opc == Instruction::Sub ||
4054             Opc == Instruction::Mul ||
4055             Opc == Instruction::Shl) {
4056           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4057             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4058           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4059             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4060         } else if (Opc == Instruction::SDiv ||
4061                    Opc == Instruction::UDiv ||
4062                    Opc == Instruction::LShr ||
4063                    Opc == Instruction::AShr) {
4064           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4065             cast<BinaryOperator>(I)->setIsExact(true);
4066         } else if (isa<FPMathOperator>(I)) {
4067           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4068           if (FMF.any())
4069             I->setFastMathFlags(FMF);
4070         }
4071 
4072       }
4073       break;
4074     }
4075     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4076       unsigned OpNum = 0;
4077       Value *Op;
4078       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4079           OpNum+2 != Record.size())
4080         return error("Invalid record");
4081 
4082       Type *ResTy = getTypeByID(Record[OpNum]);
4083       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4084       if (Opc == -1 || !ResTy)
4085         return error("Invalid record");
4086       Instruction *Temp = nullptr;
4087       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4088         if (Temp) {
4089           InstructionList.push_back(Temp);
4090           assert(CurBB && "No current BB?");
4091           CurBB->getInstList().push_back(Temp);
4092         }
4093       } else {
4094         auto CastOp = (Instruction::CastOps)Opc;
4095         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4096           return error("Invalid cast");
4097         I = CastInst::Create(CastOp, Op, ResTy);
4098       }
4099       InstructionList.push_back(I);
4100       break;
4101     }
4102     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4103     case bitc::FUNC_CODE_INST_GEP_OLD:
4104     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4105       unsigned OpNum = 0;
4106 
4107       Type *Ty;
4108       bool InBounds;
4109 
4110       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4111         InBounds = Record[OpNum++];
4112         Ty = getTypeByID(Record[OpNum++]);
4113       } else {
4114         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4115         Ty = nullptr;
4116       }
4117 
4118       Value *BasePtr;
4119       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4120         return error("Invalid record");
4121 
4122       if (!Ty) {
4123         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4124                  ->getElementType();
4125       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4126                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4127         return error(
4128             "Explicit gep type does not match pointee type of pointer operand");
4129       }
4130 
4131       SmallVector<Value*, 16> GEPIdx;
4132       while (OpNum != Record.size()) {
4133         Value *Op;
4134         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4135           return error("Invalid record");
4136         GEPIdx.push_back(Op);
4137       }
4138 
4139       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4140 
4141       InstructionList.push_back(I);
4142       if (InBounds)
4143         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4144       break;
4145     }
4146 
4147     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4148                                        // EXTRACTVAL: [opty, opval, n x indices]
4149       unsigned OpNum = 0;
4150       Value *Agg;
4151       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4152         return error("Invalid record");
4153       Type *Ty = Agg->getType();
4154 
4155       unsigned RecSize = Record.size();
4156       if (OpNum == RecSize)
4157         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4158 
4159       SmallVector<unsigned, 4> EXTRACTVALIdx;
4160       for (; OpNum != RecSize; ++OpNum) {
4161         bool IsArray = Ty->isArrayTy();
4162         bool IsStruct = Ty->isStructTy();
4163         uint64_t Index = Record[OpNum];
4164 
4165         if (!IsStruct && !IsArray)
4166           return error("EXTRACTVAL: Invalid type");
4167         if ((unsigned)Index != Index)
4168           return error("Invalid value");
4169         if (IsStruct && Index >= Ty->getStructNumElements())
4170           return error("EXTRACTVAL: Invalid struct index");
4171         if (IsArray && Index >= Ty->getArrayNumElements())
4172           return error("EXTRACTVAL: Invalid array index");
4173         EXTRACTVALIdx.push_back((unsigned)Index);
4174 
4175         if (IsStruct)
4176           Ty = Ty->getStructElementType(Index);
4177         else
4178           Ty = Ty->getArrayElementType();
4179       }
4180 
4181       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4182       InstructionList.push_back(I);
4183       break;
4184     }
4185 
4186     case bitc::FUNC_CODE_INST_INSERTVAL: {
4187                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4188       unsigned OpNum = 0;
4189       Value *Agg;
4190       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4191         return error("Invalid record");
4192       Value *Val;
4193       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4194         return error("Invalid record");
4195 
4196       unsigned RecSize = Record.size();
4197       if (OpNum == RecSize)
4198         return error("INSERTVAL: Invalid instruction with 0 indices");
4199 
4200       SmallVector<unsigned, 4> INSERTVALIdx;
4201       Type *CurTy = Agg->getType();
4202       for (; OpNum != RecSize; ++OpNum) {
4203         bool IsArray = CurTy->isArrayTy();
4204         bool IsStruct = CurTy->isStructTy();
4205         uint64_t Index = Record[OpNum];
4206 
4207         if (!IsStruct && !IsArray)
4208           return error("INSERTVAL: Invalid type");
4209         if ((unsigned)Index != Index)
4210           return error("Invalid value");
4211         if (IsStruct && Index >= CurTy->getStructNumElements())
4212           return error("INSERTVAL: Invalid struct index");
4213         if (IsArray && Index >= CurTy->getArrayNumElements())
4214           return error("INSERTVAL: Invalid array index");
4215 
4216         INSERTVALIdx.push_back((unsigned)Index);
4217         if (IsStruct)
4218           CurTy = CurTy->getStructElementType(Index);
4219         else
4220           CurTy = CurTy->getArrayElementType();
4221       }
4222 
4223       if (CurTy != Val->getType())
4224         return error("Inserted value type doesn't match aggregate type");
4225 
4226       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4227       InstructionList.push_back(I);
4228       break;
4229     }
4230 
4231     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4232       // obsolete form of select
4233       // handles select i1 ... in old bitcode
4234       unsigned OpNum = 0;
4235       Value *TrueVal, *FalseVal, *Cond;
4236       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4237           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4238           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4239         return error("Invalid record");
4240 
4241       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4242       InstructionList.push_back(I);
4243       break;
4244     }
4245 
4246     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4247       // new form of select
4248       // handles select i1 or select [N x i1]
4249       unsigned OpNum = 0;
4250       Value *TrueVal, *FalseVal, *Cond;
4251       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4252           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4253           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4254         return error("Invalid record");
4255 
4256       // select condition can be either i1 or [N x i1]
4257       if (VectorType* vector_type =
4258           dyn_cast<VectorType>(Cond->getType())) {
4259         // expect <n x i1>
4260         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4261           return error("Invalid type for value");
4262       } else {
4263         // expect i1
4264         if (Cond->getType() != Type::getInt1Ty(Context))
4265           return error("Invalid type for value");
4266       }
4267 
4268       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4269       InstructionList.push_back(I);
4270       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4271         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4272         if (FMF.any())
4273           I->setFastMathFlags(FMF);
4274       }
4275       break;
4276     }
4277 
4278     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4279       unsigned OpNum = 0;
4280       Value *Vec, *Idx;
4281       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4282           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4283         return error("Invalid record");
4284       if (!Vec->getType()->isVectorTy())
4285         return error("Invalid type for value");
4286       I = ExtractElementInst::Create(Vec, Idx);
4287       InstructionList.push_back(I);
4288       break;
4289     }
4290 
4291     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4292       unsigned OpNum = 0;
4293       Value *Vec, *Elt, *Idx;
4294       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4295         return error("Invalid record");
4296       if (!Vec->getType()->isVectorTy())
4297         return error("Invalid type for value");
4298       if (popValue(Record, OpNum, NextValueNo,
4299                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4300           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4301         return error("Invalid record");
4302       I = InsertElementInst::Create(Vec, Elt, Idx);
4303       InstructionList.push_back(I);
4304       break;
4305     }
4306 
4307     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4308       unsigned OpNum = 0;
4309       Value *Vec1, *Vec2, *Mask;
4310       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4311           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4312         return error("Invalid record");
4313 
4314       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4315         return error("Invalid record");
4316       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4317         return error("Invalid type for value");
4318 
4319       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4320       InstructionList.push_back(I);
4321       break;
4322     }
4323 
4324     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4325       // Old form of ICmp/FCmp returning bool
4326       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4327       // both legal on vectors but had different behaviour.
4328     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4329       // FCmp/ICmp returning bool or vector of bool
4330 
4331       unsigned OpNum = 0;
4332       Value *LHS, *RHS;
4333       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4334           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4335         return error("Invalid record");
4336 
4337       if (OpNum >= Record.size())
4338         return error(
4339             "Invalid record: operand number exceeded available operands");
4340 
4341       unsigned PredVal = Record[OpNum];
4342       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4343       FastMathFlags FMF;
4344       if (IsFP && Record.size() > OpNum+1)
4345         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4346 
4347       if (OpNum+1 != Record.size())
4348         return error("Invalid record");
4349 
4350       if (LHS->getType()->isFPOrFPVectorTy())
4351         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4352       else
4353         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4354 
4355       if (FMF.any())
4356         I->setFastMathFlags(FMF);
4357       InstructionList.push_back(I);
4358       break;
4359     }
4360 
4361     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4362       {
4363         unsigned Size = Record.size();
4364         if (Size == 0) {
4365           I = ReturnInst::Create(Context);
4366           InstructionList.push_back(I);
4367           break;
4368         }
4369 
4370         unsigned OpNum = 0;
4371         Value *Op = nullptr;
4372         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4373           return error("Invalid record");
4374         if (OpNum != Record.size())
4375           return error("Invalid record");
4376 
4377         I = ReturnInst::Create(Context, Op);
4378         InstructionList.push_back(I);
4379         break;
4380       }
4381     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4382       if (Record.size() != 1 && Record.size() != 3)
4383         return error("Invalid record");
4384       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4385       if (!TrueDest)
4386         return error("Invalid record");
4387 
4388       if (Record.size() == 1) {
4389         I = BranchInst::Create(TrueDest);
4390         InstructionList.push_back(I);
4391       }
4392       else {
4393         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4394         Value *Cond = getValue(Record, 2, NextValueNo,
4395                                Type::getInt1Ty(Context));
4396         if (!FalseDest || !Cond)
4397           return error("Invalid record");
4398         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4399         InstructionList.push_back(I);
4400       }
4401       break;
4402     }
4403     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4404       if (Record.size() != 1 && Record.size() != 2)
4405         return error("Invalid record");
4406       unsigned Idx = 0;
4407       Value *CleanupPad =
4408           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4409       if (!CleanupPad)
4410         return error("Invalid record");
4411       BasicBlock *UnwindDest = nullptr;
4412       if (Record.size() == 2) {
4413         UnwindDest = getBasicBlock(Record[Idx++]);
4414         if (!UnwindDest)
4415           return error("Invalid record");
4416       }
4417 
4418       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4419       InstructionList.push_back(I);
4420       break;
4421     }
4422     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4423       if (Record.size() != 2)
4424         return error("Invalid record");
4425       unsigned Idx = 0;
4426       Value *CatchPad =
4427           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4428       if (!CatchPad)
4429         return error("Invalid record");
4430       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4431       if (!BB)
4432         return error("Invalid record");
4433 
4434       I = CatchReturnInst::Create(CatchPad, BB);
4435       InstructionList.push_back(I);
4436       break;
4437     }
4438     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4439       // We must have, at minimum, the outer scope and the number of arguments.
4440       if (Record.size() < 2)
4441         return error("Invalid record");
4442 
4443       unsigned Idx = 0;
4444 
4445       Value *ParentPad =
4446           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4447 
4448       unsigned NumHandlers = Record[Idx++];
4449 
4450       SmallVector<BasicBlock *, 2> Handlers;
4451       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4452         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4453         if (!BB)
4454           return error("Invalid record");
4455         Handlers.push_back(BB);
4456       }
4457 
4458       BasicBlock *UnwindDest = nullptr;
4459       if (Idx + 1 == Record.size()) {
4460         UnwindDest = getBasicBlock(Record[Idx++]);
4461         if (!UnwindDest)
4462           return error("Invalid record");
4463       }
4464 
4465       if (Record.size() != Idx)
4466         return error("Invalid record");
4467 
4468       auto *CatchSwitch =
4469           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4470       for (BasicBlock *Handler : Handlers)
4471         CatchSwitch->addHandler(Handler);
4472       I = CatchSwitch;
4473       InstructionList.push_back(I);
4474       break;
4475     }
4476     case bitc::FUNC_CODE_INST_CATCHPAD:
4477     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4478       // We must have, at minimum, the outer scope and the number of arguments.
4479       if (Record.size() < 2)
4480         return error("Invalid record");
4481 
4482       unsigned Idx = 0;
4483 
4484       Value *ParentPad =
4485           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4486 
4487       unsigned NumArgOperands = Record[Idx++];
4488 
4489       SmallVector<Value *, 2> Args;
4490       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4491         Value *Val;
4492         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4493           return error("Invalid record");
4494         Args.push_back(Val);
4495       }
4496 
4497       if (Record.size() != Idx)
4498         return error("Invalid record");
4499 
4500       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4501         I = CleanupPadInst::Create(ParentPad, Args);
4502       else
4503         I = CatchPadInst::Create(ParentPad, Args);
4504       InstructionList.push_back(I);
4505       break;
4506     }
4507     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4508       // Check magic
4509       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4510         // "New" SwitchInst format with case ranges. The changes to write this
4511         // format were reverted but we still recognize bitcode that uses it.
4512         // Hopefully someday we will have support for case ranges and can use
4513         // this format again.
4514 
4515         Type *OpTy = getTypeByID(Record[1]);
4516         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4517 
4518         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4519         BasicBlock *Default = getBasicBlock(Record[3]);
4520         if (!OpTy || !Cond || !Default)
4521           return error("Invalid record");
4522 
4523         unsigned NumCases = Record[4];
4524 
4525         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4526         InstructionList.push_back(SI);
4527 
4528         unsigned CurIdx = 5;
4529         for (unsigned i = 0; i != NumCases; ++i) {
4530           SmallVector<ConstantInt*, 1> CaseVals;
4531           unsigned NumItems = Record[CurIdx++];
4532           for (unsigned ci = 0; ci != NumItems; ++ci) {
4533             bool isSingleNumber = Record[CurIdx++];
4534 
4535             APInt Low;
4536             unsigned ActiveWords = 1;
4537             if (ValueBitWidth > 64)
4538               ActiveWords = Record[CurIdx++];
4539             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4540                                 ValueBitWidth);
4541             CurIdx += ActiveWords;
4542 
4543             if (!isSingleNumber) {
4544               ActiveWords = 1;
4545               if (ValueBitWidth > 64)
4546                 ActiveWords = Record[CurIdx++];
4547               APInt High = readWideAPInt(
4548                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4549               CurIdx += ActiveWords;
4550 
4551               // FIXME: It is not clear whether values in the range should be
4552               // compared as signed or unsigned values. The partially
4553               // implemented changes that used this format in the past used
4554               // unsigned comparisons.
4555               for ( ; Low.ule(High); ++Low)
4556                 CaseVals.push_back(ConstantInt::get(Context, Low));
4557             } else
4558               CaseVals.push_back(ConstantInt::get(Context, Low));
4559           }
4560           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4561           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4562                  cve = CaseVals.end(); cvi != cve; ++cvi)
4563             SI->addCase(*cvi, DestBB);
4564         }
4565         I = SI;
4566         break;
4567       }
4568 
4569       // Old SwitchInst format without case ranges.
4570 
4571       if (Record.size() < 3 || (Record.size() & 1) == 0)
4572         return error("Invalid record");
4573       Type *OpTy = getTypeByID(Record[0]);
4574       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4575       BasicBlock *Default = getBasicBlock(Record[2]);
4576       if (!OpTy || !Cond || !Default)
4577         return error("Invalid record");
4578       unsigned NumCases = (Record.size()-3)/2;
4579       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4580       InstructionList.push_back(SI);
4581       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4582         ConstantInt *CaseVal =
4583           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4584         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4585         if (!CaseVal || !DestBB) {
4586           delete SI;
4587           return error("Invalid record");
4588         }
4589         SI->addCase(CaseVal, DestBB);
4590       }
4591       I = SI;
4592       break;
4593     }
4594     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4595       if (Record.size() < 2)
4596         return error("Invalid record");
4597       Type *OpTy = getTypeByID(Record[0]);
4598       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4599       if (!OpTy || !Address)
4600         return error("Invalid record");
4601       unsigned NumDests = Record.size()-2;
4602       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4603       InstructionList.push_back(IBI);
4604       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4605         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4606           IBI->addDestination(DestBB);
4607         } else {
4608           delete IBI;
4609           return error("Invalid record");
4610         }
4611       }
4612       I = IBI;
4613       break;
4614     }
4615 
4616     case bitc::FUNC_CODE_INST_INVOKE: {
4617       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4618       if (Record.size() < 4)
4619         return error("Invalid record");
4620       unsigned OpNum = 0;
4621       AttributeList PAL = getAttributes(Record[OpNum++]);
4622       unsigned CCInfo = Record[OpNum++];
4623       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4624       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4625 
4626       FunctionType *FTy = nullptr;
4627       if ((CCInfo >> 13) & 1) {
4628         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4629         if (!FTy)
4630           return error("Explicit invoke type is not a function type");
4631       }
4632 
4633       Value *Callee;
4634       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4635         return error("Invalid record");
4636 
4637       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4638       if (!CalleeTy)
4639         return error("Callee is not a pointer");
4640       if (!FTy) {
4641         FTy = dyn_cast<FunctionType>(
4642             cast<PointerType>(Callee->getType())->getElementType());
4643         if (!FTy)
4644           return error("Callee is not of pointer to function type");
4645       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4646         return error("Explicit invoke type does not match pointee type of "
4647                      "callee operand");
4648       if (Record.size() < FTy->getNumParams() + OpNum)
4649         return error("Insufficient operands to call");
4650 
4651       SmallVector<Value*, 16> Ops;
4652       SmallVector<Type *, 16> ArgsTys;
4653       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4654         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4655                                FTy->getParamType(i)));
4656         ArgsTys.push_back(FTy->getParamType(i));
4657         if (!Ops.back())
4658           return error("Invalid record");
4659       }
4660 
4661       if (!FTy->isVarArg()) {
4662         if (Record.size() != OpNum)
4663           return error("Invalid record");
4664       } else {
4665         // Read type/value pairs for varargs params.
4666         while (OpNum != Record.size()) {
4667           Value *Op;
4668           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4669             return error("Invalid record");
4670           Ops.push_back(Op);
4671           ArgsTys.push_back(Op->getType());
4672         }
4673       }
4674 
4675       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4676                              OperandBundles);
4677       OperandBundles.clear();
4678       InstructionList.push_back(I);
4679       cast<InvokeInst>(I)->setCallingConv(
4680           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4681       cast<InvokeInst>(I)->setAttributes(PAL);
4682       propagateByValSRetTypes(cast<CallBase>(I), ArgsTys);
4683 
4684       break;
4685     }
4686     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4687       unsigned Idx = 0;
4688       Value *Val = nullptr;
4689       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4690         return error("Invalid record");
4691       I = ResumeInst::Create(Val);
4692       InstructionList.push_back(I);
4693       break;
4694     }
4695     case bitc::FUNC_CODE_INST_CALLBR: {
4696       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4697       unsigned OpNum = 0;
4698       AttributeList PAL = getAttributes(Record[OpNum++]);
4699       unsigned CCInfo = Record[OpNum++];
4700 
4701       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4702       unsigned NumIndirectDests = Record[OpNum++];
4703       SmallVector<BasicBlock *, 16> IndirectDests;
4704       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4705         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4706 
4707       FunctionType *FTy = nullptr;
4708       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4709         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4710         if (!FTy)
4711           return error("Explicit call type is not a function type");
4712       }
4713 
4714       Value *Callee;
4715       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4716         return error("Invalid record");
4717 
4718       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4719       if (!OpTy)
4720         return error("Callee is not a pointer type");
4721       if (!FTy) {
4722         FTy = dyn_cast<FunctionType>(
4723             cast<PointerType>(Callee->getType())->getElementType());
4724         if (!FTy)
4725           return error("Callee is not of pointer to function type");
4726       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4727         return error("Explicit call type does not match pointee type of "
4728                      "callee operand");
4729       if (Record.size() < FTy->getNumParams() + OpNum)
4730         return error("Insufficient operands to call");
4731 
4732       SmallVector<Value*, 16> Args;
4733       // Read the fixed params.
4734       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4735         if (FTy->getParamType(i)->isLabelTy())
4736           Args.push_back(getBasicBlock(Record[OpNum]));
4737         else
4738           Args.push_back(getValue(Record, OpNum, NextValueNo,
4739                                   FTy->getParamType(i)));
4740         if (!Args.back())
4741           return error("Invalid record");
4742       }
4743 
4744       // Read type/value pairs for varargs params.
4745       if (!FTy->isVarArg()) {
4746         if (OpNum != Record.size())
4747           return error("Invalid record");
4748       } else {
4749         while (OpNum != Record.size()) {
4750           Value *Op;
4751           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4752             return error("Invalid record");
4753           Args.push_back(Op);
4754         }
4755       }
4756 
4757       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4758                              OperandBundles);
4759       OperandBundles.clear();
4760       InstructionList.push_back(I);
4761       cast<CallBrInst>(I)->setCallingConv(
4762           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4763       cast<CallBrInst>(I)->setAttributes(PAL);
4764       break;
4765     }
4766     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4767       I = new UnreachableInst(Context);
4768       InstructionList.push_back(I);
4769       break;
4770     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4771       if (Record.empty())
4772         return error("Invalid record");
4773       // The first record specifies the type.
4774       Type *Ty = getTypeByID(Record[0]);
4775       if (!Ty)
4776         return error("Invalid record");
4777 
4778       // Phi arguments are pairs of records of [value, basic block].
4779       // There is an optional final record for fast-math-flags if this phi has a
4780       // floating-point type.
4781       size_t NumArgs = (Record.size() - 1) / 2;
4782       PHINode *PN = PHINode::Create(Ty, NumArgs);
4783       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4784         return error("Invalid record");
4785       InstructionList.push_back(PN);
4786 
4787       for (unsigned i = 0; i != NumArgs; i++) {
4788         Value *V;
4789         // With the new function encoding, it is possible that operands have
4790         // negative IDs (for forward references).  Use a signed VBR
4791         // representation to keep the encoding small.
4792         if (UseRelativeIDs)
4793           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4794         else
4795           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4796         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4797         if (!V || !BB)
4798           return error("Invalid record");
4799         PN->addIncoming(V, BB);
4800       }
4801       I = PN;
4802 
4803       // If there are an even number of records, the final record must be FMF.
4804       if (Record.size() % 2 == 0) {
4805         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4806         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4807         if (FMF.any())
4808           I->setFastMathFlags(FMF);
4809       }
4810 
4811       break;
4812     }
4813 
4814     case bitc::FUNC_CODE_INST_LANDINGPAD:
4815     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4816       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4817       unsigned Idx = 0;
4818       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4819         if (Record.size() < 3)
4820           return error("Invalid record");
4821       } else {
4822         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4823         if (Record.size() < 4)
4824           return error("Invalid record");
4825       }
4826       Type *Ty = getTypeByID(Record[Idx++]);
4827       if (!Ty)
4828         return error("Invalid record");
4829       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4830         Value *PersFn = nullptr;
4831         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4832           return error("Invalid record");
4833 
4834         if (!F->hasPersonalityFn())
4835           F->setPersonalityFn(cast<Constant>(PersFn));
4836         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4837           return error("Personality function mismatch");
4838       }
4839 
4840       bool IsCleanup = !!Record[Idx++];
4841       unsigned NumClauses = Record[Idx++];
4842       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4843       LP->setCleanup(IsCleanup);
4844       for (unsigned J = 0; J != NumClauses; ++J) {
4845         LandingPadInst::ClauseType CT =
4846           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4847         Value *Val;
4848 
4849         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4850           delete LP;
4851           return error("Invalid record");
4852         }
4853 
4854         assert((CT != LandingPadInst::Catch ||
4855                 !isa<ArrayType>(Val->getType())) &&
4856                "Catch clause has a invalid type!");
4857         assert((CT != LandingPadInst::Filter ||
4858                 isa<ArrayType>(Val->getType())) &&
4859                "Filter clause has invalid type!");
4860         LP->addClause(cast<Constant>(Val));
4861       }
4862 
4863       I = LP;
4864       InstructionList.push_back(I);
4865       break;
4866     }
4867 
4868     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4869       if (Record.size() != 4)
4870         return error("Invalid record");
4871       using APV = AllocaPackedValues;
4872       const uint64_t Rec = Record[3];
4873       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4874       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4875       Type *Ty = getTypeByID(Record[0]);
4876       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4877         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4878         if (!PTy)
4879           return error("Old-style alloca with a non-pointer type");
4880         Ty = PTy->getElementType();
4881       }
4882       Type *OpTy = getTypeByID(Record[1]);
4883       Value *Size = getFnValueByID(Record[2], OpTy);
4884       MaybeAlign Align;
4885       if (Error Err =
4886               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4887         return Err;
4888       }
4889       if (!Ty || !Size)
4890         return error("Invalid record");
4891 
4892       // FIXME: Make this an optional field.
4893       const DataLayout &DL = TheModule->getDataLayout();
4894       unsigned AS = DL.getAllocaAddrSpace();
4895 
4896       SmallPtrSet<Type *, 4> Visited;
4897       if (!Align && !Ty->isSized(&Visited))
4898         return error("alloca of unsized type");
4899       if (!Align)
4900         Align = DL.getPrefTypeAlign(Ty);
4901 
4902       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4903       AI->setUsedWithInAlloca(InAlloca);
4904       AI->setSwiftError(SwiftError);
4905       I = AI;
4906       InstructionList.push_back(I);
4907       break;
4908     }
4909     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4910       unsigned OpNum = 0;
4911       Value *Op;
4912       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4913           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4914         return error("Invalid record");
4915 
4916       if (!isa<PointerType>(Op->getType()))
4917         return error("Load operand is not a pointer type");
4918 
4919       Type *Ty = nullptr;
4920       if (OpNum + 3 == Record.size()) {
4921         Ty = getTypeByID(Record[OpNum++]);
4922       } else {
4923         Ty = cast<PointerType>(Op->getType())->getElementType();
4924       }
4925 
4926       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4927         return Err;
4928 
4929       MaybeAlign Align;
4930       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4931         return Err;
4932       SmallPtrSet<Type *, 4> Visited;
4933       if (!Align && !Ty->isSized(&Visited))
4934         return error("load of unsized type");
4935       if (!Align)
4936         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4937       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4938       InstructionList.push_back(I);
4939       break;
4940     }
4941     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4942        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4943       unsigned OpNum = 0;
4944       Value *Op;
4945       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4946           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4947         return error("Invalid record");
4948 
4949       if (!isa<PointerType>(Op->getType()))
4950         return error("Load operand is not a pointer type");
4951 
4952       Type *Ty = nullptr;
4953       if (OpNum + 5 == Record.size()) {
4954         Ty = getTypeByID(Record[OpNum++]);
4955       } else {
4956         Ty = cast<PointerType>(Op->getType())->getElementType();
4957       }
4958 
4959       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4960         return Err;
4961 
4962       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4963       if (Ordering == AtomicOrdering::NotAtomic ||
4964           Ordering == AtomicOrdering::Release ||
4965           Ordering == AtomicOrdering::AcquireRelease)
4966         return error("Invalid record");
4967       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4968         return error("Invalid record");
4969       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4970 
4971       MaybeAlign Align;
4972       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4973         return Err;
4974       if (!Align)
4975         return error("Alignment missing from atomic load");
4976       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4977       InstructionList.push_back(I);
4978       break;
4979     }
4980     case bitc::FUNC_CODE_INST_STORE:
4981     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4982       unsigned OpNum = 0;
4983       Value *Val, *Ptr;
4984       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4985           (BitCode == bitc::FUNC_CODE_INST_STORE
4986                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4987                : popValue(Record, OpNum, NextValueNo,
4988                           cast<PointerType>(Ptr->getType())->getElementType(),
4989                           Val)) ||
4990           OpNum + 2 != Record.size())
4991         return error("Invalid record");
4992 
4993       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4994         return Err;
4995       MaybeAlign Align;
4996       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4997         return Err;
4998       SmallPtrSet<Type *, 4> Visited;
4999       if (!Align && !Val->getType()->isSized(&Visited))
5000         return error("store of unsized type");
5001       if (!Align)
5002         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5003       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5004       InstructionList.push_back(I);
5005       break;
5006     }
5007     case bitc::FUNC_CODE_INST_STOREATOMIC:
5008     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5009       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5010       unsigned OpNum = 0;
5011       Value *Val, *Ptr;
5012       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5013           !isa<PointerType>(Ptr->getType()) ||
5014           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5015                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5016                : popValue(Record, OpNum, NextValueNo,
5017                           cast<PointerType>(Ptr->getType())->getElementType(),
5018                           Val)) ||
5019           OpNum + 4 != Record.size())
5020         return error("Invalid record");
5021 
5022       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5023         return Err;
5024       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5025       if (Ordering == AtomicOrdering::NotAtomic ||
5026           Ordering == AtomicOrdering::Acquire ||
5027           Ordering == AtomicOrdering::AcquireRelease)
5028         return error("Invalid record");
5029       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5030       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5031         return error("Invalid record");
5032 
5033       MaybeAlign Align;
5034       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5035         return Err;
5036       if (!Align)
5037         return error("Alignment missing from atomic store");
5038       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5039       InstructionList.push_back(I);
5040       break;
5041     }
5042     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5043       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5044       // failure_ordering?, weak?]
5045       const size_t NumRecords = Record.size();
5046       unsigned OpNum = 0;
5047       Value *Ptr = nullptr;
5048       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5049         return error("Invalid record");
5050 
5051       if (!isa<PointerType>(Ptr->getType()))
5052         return error("Cmpxchg operand is not a pointer type");
5053 
5054       Value *Cmp = nullptr;
5055       if (popValue(Record, OpNum, NextValueNo,
5056                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5057                    Cmp))
5058         return error("Invalid record");
5059 
5060       Value *New = nullptr;
5061       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5062           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5063         return error("Invalid record");
5064 
5065       const AtomicOrdering SuccessOrdering =
5066           getDecodedOrdering(Record[OpNum + 1]);
5067       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5068           SuccessOrdering == AtomicOrdering::Unordered)
5069         return error("Invalid record");
5070 
5071       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5072 
5073       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5074         return Err;
5075 
5076       const AtomicOrdering FailureOrdering =
5077           NumRecords < 7
5078               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5079               : getDecodedOrdering(Record[OpNum + 3]);
5080 
5081       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5082           FailureOrdering == AtomicOrdering::Unordered)
5083         return error("Invalid record");
5084 
5085       const Align Alignment(
5086           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5087 
5088       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5089                                 FailureOrdering, SSID);
5090       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5091 
5092       if (NumRecords < 8) {
5093         // Before weak cmpxchgs existed, the instruction simply returned the
5094         // value loaded from memory, so bitcode files from that era will be
5095         // expecting the first component of a modern cmpxchg.
5096         CurBB->getInstList().push_back(I);
5097         I = ExtractValueInst::Create(I, 0);
5098       } else {
5099         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5100       }
5101 
5102       InstructionList.push_back(I);
5103       break;
5104     }
5105     case bitc::FUNC_CODE_INST_CMPXCHG: {
5106       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5107       // failure_ordering, weak, align?]
5108       const size_t NumRecords = Record.size();
5109       unsigned OpNum = 0;
5110       Value *Ptr = nullptr;
5111       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5112         return error("Invalid record");
5113 
5114       if (!isa<PointerType>(Ptr->getType()))
5115         return error("Cmpxchg operand is not a pointer type");
5116 
5117       Value *Cmp = nullptr;
5118       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5119         return error("Invalid record");
5120 
5121       Value *Val = nullptr;
5122       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5123         return error("Invalid record");
5124 
5125       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5126         return error("Invalid record");
5127 
5128       const bool IsVol = Record[OpNum];
5129 
5130       const AtomicOrdering SuccessOrdering =
5131           getDecodedOrdering(Record[OpNum + 1]);
5132       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5133         return error("Invalid cmpxchg success ordering");
5134 
5135       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5136 
5137       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5138         return Err;
5139 
5140       const AtomicOrdering FailureOrdering =
5141           getDecodedOrdering(Record[OpNum + 3]);
5142       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5143         return error("Invalid cmpxchg failure ordering");
5144 
5145       const bool IsWeak = Record[OpNum + 4];
5146 
5147       MaybeAlign Alignment;
5148 
5149       if (NumRecords == (OpNum + 6)) {
5150         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5151           return Err;
5152       }
5153       if (!Alignment)
5154         Alignment =
5155             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5156 
5157       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5158                                 FailureOrdering, SSID);
5159       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5160       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5161 
5162       InstructionList.push_back(I);
5163       break;
5164     }
5165     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5166     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5167       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5168       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5169       const size_t NumRecords = Record.size();
5170       unsigned OpNum = 0;
5171 
5172       Value *Ptr = nullptr;
5173       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5174         return error("Invalid record");
5175 
5176       if (!isa<PointerType>(Ptr->getType()))
5177         return error("Invalid record");
5178 
5179       Value *Val = nullptr;
5180       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5181         if (popValue(Record, OpNum, NextValueNo,
5182                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5183                      Val))
5184           return error("Invalid record");
5185       } else {
5186         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5187           return error("Invalid record");
5188       }
5189 
5190       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5191         return error("Invalid record");
5192 
5193       const AtomicRMWInst::BinOp Operation =
5194           getDecodedRMWOperation(Record[OpNum]);
5195       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5196           Operation > AtomicRMWInst::LAST_BINOP)
5197         return error("Invalid record");
5198 
5199       const bool IsVol = Record[OpNum + 1];
5200 
5201       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5202       if (Ordering == AtomicOrdering::NotAtomic ||
5203           Ordering == AtomicOrdering::Unordered)
5204         return error("Invalid record");
5205 
5206       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5207 
5208       MaybeAlign Alignment;
5209 
5210       if (NumRecords == (OpNum + 5)) {
5211         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5212           return Err;
5213       }
5214 
5215       if (!Alignment)
5216         Alignment =
5217             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5218 
5219       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5220       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5221 
5222       InstructionList.push_back(I);
5223       break;
5224     }
5225     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5226       if (2 != Record.size())
5227         return error("Invalid record");
5228       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5229       if (Ordering == AtomicOrdering::NotAtomic ||
5230           Ordering == AtomicOrdering::Unordered ||
5231           Ordering == AtomicOrdering::Monotonic)
5232         return error("Invalid record");
5233       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5234       I = new FenceInst(Context, Ordering, SSID);
5235       InstructionList.push_back(I);
5236       break;
5237     }
5238     case bitc::FUNC_CODE_INST_CALL: {
5239       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5240       if (Record.size() < 3)
5241         return error("Invalid record");
5242 
5243       unsigned OpNum = 0;
5244       AttributeList PAL = getAttributes(Record[OpNum++]);
5245       unsigned CCInfo = Record[OpNum++];
5246 
5247       FastMathFlags FMF;
5248       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5249         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5250         if (!FMF.any())
5251           return error("Fast math flags indicator set for call with no FMF");
5252       }
5253 
5254       FunctionType *FTy = nullptr;
5255       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5256         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5257         if (!FTy)
5258           return error("Explicit call type is not a function type");
5259       }
5260 
5261       Value *Callee;
5262       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5263         return error("Invalid record");
5264 
5265       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5266       if (!OpTy)
5267         return error("Callee is not a pointer type");
5268       if (!FTy) {
5269         FTy = dyn_cast<FunctionType>(
5270             cast<PointerType>(Callee->getType())->getElementType());
5271         if (!FTy)
5272           return error("Callee is not of pointer to function type");
5273       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5274         return error("Explicit call type does not match pointee type of "
5275                      "callee operand");
5276       if (Record.size() < FTy->getNumParams() + OpNum)
5277         return error("Insufficient operands to call");
5278 
5279       SmallVector<Value*, 16> Args;
5280       SmallVector<Type *, 16> ArgsTys;
5281       // Read the fixed params.
5282       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5283         if (FTy->getParamType(i)->isLabelTy())
5284           Args.push_back(getBasicBlock(Record[OpNum]));
5285         else
5286           Args.push_back(getValue(Record, OpNum, NextValueNo,
5287                                   FTy->getParamType(i)));
5288         ArgsTys.push_back(FTy->getParamType(i));
5289         if (!Args.back())
5290           return error("Invalid record");
5291       }
5292 
5293       // Read type/value pairs for varargs params.
5294       if (!FTy->isVarArg()) {
5295         if (OpNum != Record.size())
5296           return error("Invalid record");
5297       } else {
5298         while (OpNum != Record.size()) {
5299           Value *Op;
5300           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5301             return error("Invalid record");
5302           Args.push_back(Op);
5303           ArgsTys.push_back(Op->getType());
5304         }
5305       }
5306 
5307       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5308       OperandBundles.clear();
5309       InstructionList.push_back(I);
5310       cast<CallInst>(I)->setCallingConv(
5311           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5312       CallInst::TailCallKind TCK = CallInst::TCK_None;
5313       if (CCInfo & 1 << bitc::CALL_TAIL)
5314         TCK = CallInst::TCK_Tail;
5315       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5316         TCK = CallInst::TCK_MustTail;
5317       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5318         TCK = CallInst::TCK_NoTail;
5319       cast<CallInst>(I)->setTailCallKind(TCK);
5320       cast<CallInst>(I)->setAttributes(PAL);
5321       propagateByValSRetTypes(cast<CallBase>(I), ArgsTys);
5322       if (FMF.any()) {
5323         if (!isa<FPMathOperator>(I))
5324           return error("Fast-math-flags specified for call without "
5325                        "floating-point scalar or vector return type");
5326         I->setFastMathFlags(FMF);
5327       }
5328       break;
5329     }
5330     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5331       if (Record.size() < 3)
5332         return error("Invalid record");
5333       Type *OpTy = getTypeByID(Record[0]);
5334       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5335       Type *ResTy = getTypeByID(Record[2]);
5336       if (!OpTy || !Op || !ResTy)
5337         return error("Invalid record");
5338       I = new VAArgInst(Op, ResTy);
5339       InstructionList.push_back(I);
5340       break;
5341     }
5342 
5343     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5344       // A call or an invoke can be optionally prefixed with some variable
5345       // number of operand bundle blocks.  These blocks are read into
5346       // OperandBundles and consumed at the next call or invoke instruction.
5347 
5348       if (Record.empty() || Record[0] >= BundleTags.size())
5349         return error("Invalid record");
5350 
5351       std::vector<Value *> Inputs;
5352 
5353       unsigned OpNum = 1;
5354       while (OpNum != Record.size()) {
5355         Value *Op;
5356         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5357           return error("Invalid record");
5358         Inputs.push_back(Op);
5359       }
5360 
5361       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5362       continue;
5363     }
5364 
5365     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5366       unsigned OpNum = 0;
5367       Value *Op = nullptr;
5368       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5369         return error("Invalid record");
5370       if (OpNum != Record.size())
5371         return error("Invalid record");
5372 
5373       I = new FreezeInst(Op);
5374       InstructionList.push_back(I);
5375       break;
5376     }
5377     }
5378 
5379     // Add instruction to end of current BB.  If there is no current BB, reject
5380     // this file.
5381     if (!CurBB) {
5382       I->deleteValue();
5383       return error("Invalid instruction with no BB");
5384     }
5385     if (!OperandBundles.empty()) {
5386       I->deleteValue();
5387       return error("Operand bundles found with no consumer");
5388     }
5389     CurBB->getInstList().push_back(I);
5390 
5391     // If this was a terminator instruction, move to the next block.
5392     if (I->isTerminator()) {
5393       ++CurBBNo;
5394       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5395     }
5396 
5397     // Non-void values get registered in the value table for future use.
5398     if (!I->getType()->isVoidTy())
5399       ValueList.assignValue(I, NextValueNo++);
5400   }
5401 
5402 OutOfRecordLoop:
5403 
5404   if (!OperandBundles.empty())
5405     return error("Operand bundles found with no consumer");
5406 
5407   // Check the function list for unresolved values.
5408   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5409     if (!A->getParent()) {
5410       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5411       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5412         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5413           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5414           delete A;
5415         }
5416       }
5417       return error("Never resolved value found in function");
5418     }
5419   }
5420 
5421   // Unexpected unresolved metadata about to be dropped.
5422   if (MDLoader->hasFwdRefs())
5423     return error("Invalid function metadata: outgoing forward refs");
5424 
5425   // Trim the value list down to the size it was before we parsed this function.
5426   ValueList.shrinkTo(ModuleValueListSize);
5427   MDLoader->shrinkTo(ModuleMDLoaderSize);
5428   std::vector<BasicBlock*>().swap(FunctionBBs);
5429   return Error::success();
5430 }
5431 
5432 /// Find the function body in the bitcode stream
5433 Error BitcodeReader::findFunctionInStream(
5434     Function *F,
5435     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5436   while (DeferredFunctionInfoIterator->second == 0) {
5437     // This is the fallback handling for the old format bitcode that
5438     // didn't contain the function index in the VST, or when we have
5439     // an anonymous function which would not have a VST entry.
5440     // Assert that we have one of those two cases.
5441     assert(VSTOffset == 0 || !F->hasName());
5442     // Parse the next body in the stream and set its position in the
5443     // DeferredFunctionInfo map.
5444     if (Error Err = rememberAndSkipFunctionBodies())
5445       return Err;
5446   }
5447   return Error::success();
5448 }
5449 
5450 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5451   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5452     return SyncScope::ID(Val);
5453   if (Val >= SSIDs.size())
5454     return SyncScope::System; // Map unknown synchronization scopes to system.
5455   return SSIDs[Val];
5456 }
5457 
5458 //===----------------------------------------------------------------------===//
5459 // GVMaterializer implementation
5460 //===----------------------------------------------------------------------===//
5461 
5462 Error BitcodeReader::materialize(GlobalValue *GV) {
5463   Function *F = dyn_cast<Function>(GV);
5464   // If it's not a function or is already material, ignore the request.
5465   if (!F || !F->isMaterializable())
5466     return Error::success();
5467 
5468   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5469   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5470   // If its position is recorded as 0, its body is somewhere in the stream
5471   // but we haven't seen it yet.
5472   if (DFII->second == 0)
5473     if (Error Err = findFunctionInStream(F, DFII))
5474       return Err;
5475 
5476   // Materialize metadata before parsing any function bodies.
5477   if (Error Err = materializeMetadata())
5478     return Err;
5479 
5480   // Move the bit stream to the saved position of the deferred function body.
5481   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5482     return JumpFailed;
5483   if (Error Err = parseFunctionBody(F))
5484     return Err;
5485   F->setIsMaterializable(false);
5486 
5487   if (StripDebugInfo)
5488     stripDebugInfo(*F);
5489 
5490   // Upgrade any old intrinsic calls in the function.
5491   for (auto &I : UpgradedIntrinsics) {
5492     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5493          UI != UE;) {
5494       User *U = *UI;
5495       ++UI;
5496       if (CallInst *CI = dyn_cast<CallInst>(U))
5497         UpgradeIntrinsicCall(CI, I.second);
5498     }
5499   }
5500 
5501   // Update calls to the remangled intrinsics
5502   for (auto &I : RemangledIntrinsics)
5503     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5504          UI != UE;)
5505       // Don't expect any other users than call sites
5506       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5507 
5508   // Finish fn->subprogram upgrade for materialized functions.
5509   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5510     F->setSubprogram(SP);
5511 
5512   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5513   if (!MDLoader->isStrippingTBAA()) {
5514     for (auto &I : instructions(F)) {
5515       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5516       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5517         continue;
5518       MDLoader->setStripTBAA(true);
5519       stripTBAA(F->getParent());
5520     }
5521   }
5522 
5523   for (auto &I : instructions(F)) {
5524     // "Upgrade" older incorrect branch weights by dropping them.
5525     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5526       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5527         MDString *MDS = cast<MDString>(MD->getOperand(0));
5528         StringRef ProfName = MDS->getString();
5529         // Check consistency of !prof branch_weights metadata.
5530         if (!ProfName.equals("branch_weights"))
5531           continue;
5532         unsigned ExpectedNumOperands = 0;
5533         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5534           ExpectedNumOperands = BI->getNumSuccessors();
5535         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5536           ExpectedNumOperands = SI->getNumSuccessors();
5537         else if (isa<CallInst>(&I))
5538           ExpectedNumOperands = 1;
5539         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5540           ExpectedNumOperands = IBI->getNumDestinations();
5541         else if (isa<SelectInst>(&I))
5542           ExpectedNumOperands = 2;
5543         else
5544           continue; // ignore and continue.
5545 
5546         // If branch weight doesn't match, just strip branch weight.
5547         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5548           I.setMetadata(LLVMContext::MD_prof, nullptr);
5549       }
5550     }
5551 
5552     // Remove incompatible attributes on function calls.
5553     if (auto *CI = dyn_cast<CallBase>(&I)) {
5554       CI->removeAttributes(AttributeList::ReturnIndex,
5555                            AttributeFuncs::typeIncompatible(
5556                                CI->getFunctionType()->getReturnType()));
5557 
5558       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5559         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5560                                         CI->getArgOperand(ArgNo)->getType()));
5561     }
5562   }
5563 
5564   // Look for functions that rely on old function attribute behavior.
5565   UpgradeFunctionAttributes(*F);
5566 
5567   // Bring in any functions that this function forward-referenced via
5568   // blockaddresses.
5569   return materializeForwardReferencedFunctions();
5570 }
5571 
5572 Error BitcodeReader::materializeModule() {
5573   if (Error Err = materializeMetadata())
5574     return Err;
5575 
5576   // Promise to materialize all forward references.
5577   WillMaterializeAllForwardRefs = true;
5578 
5579   // Iterate over the module, deserializing any functions that are still on
5580   // disk.
5581   for (Function &F : *TheModule) {
5582     if (Error Err = materialize(&F))
5583       return Err;
5584   }
5585   // At this point, if there are any function bodies, parse the rest of
5586   // the bits in the module past the last function block we have recorded
5587   // through either lazy scanning or the VST.
5588   if (LastFunctionBlockBit || NextUnreadBit)
5589     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5590                                     ? LastFunctionBlockBit
5591                                     : NextUnreadBit))
5592       return Err;
5593 
5594   // Check that all block address forward references got resolved (as we
5595   // promised above).
5596   if (!BasicBlockFwdRefs.empty())
5597     return error("Never resolved function from blockaddress");
5598 
5599   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5600   // delete the old functions to clean up. We can't do this unless the entire
5601   // module is materialized because there could always be another function body
5602   // with calls to the old function.
5603   for (auto &I : UpgradedIntrinsics) {
5604     for (auto *U : I.first->users()) {
5605       if (CallInst *CI = dyn_cast<CallInst>(U))
5606         UpgradeIntrinsicCall(CI, I.second);
5607     }
5608     if (!I.first->use_empty())
5609       I.first->replaceAllUsesWith(I.second);
5610     I.first->eraseFromParent();
5611   }
5612   UpgradedIntrinsics.clear();
5613   // Do the same for remangled intrinsics
5614   for (auto &I : RemangledIntrinsics) {
5615     I.first->replaceAllUsesWith(I.second);
5616     I.first->eraseFromParent();
5617   }
5618   RemangledIntrinsics.clear();
5619 
5620   UpgradeDebugInfo(*TheModule);
5621 
5622   UpgradeModuleFlags(*TheModule);
5623 
5624   UpgradeARCRuntime(*TheModule);
5625 
5626   return Error::success();
5627 }
5628 
5629 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5630   return IdentifiedStructTypes;
5631 }
5632 
5633 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5634     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5635     StringRef ModulePath, unsigned ModuleId)
5636     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5637       ModulePath(ModulePath), ModuleId(ModuleId) {}
5638 
5639 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5640   TheIndex.addModule(ModulePath, ModuleId);
5641 }
5642 
5643 ModuleSummaryIndex::ModuleInfo *
5644 ModuleSummaryIndexBitcodeReader::getThisModule() {
5645   return TheIndex.getModule(ModulePath);
5646 }
5647 
5648 std::pair<ValueInfo, GlobalValue::GUID>
5649 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5650   auto VGI = ValueIdToValueInfoMap[ValueId];
5651   assert(VGI.first);
5652   return VGI;
5653 }
5654 
5655 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5656     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5657     StringRef SourceFileName) {
5658   std::string GlobalId =
5659       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5660   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5661   auto OriginalNameID = ValueGUID;
5662   if (GlobalValue::isLocalLinkage(Linkage))
5663     OriginalNameID = GlobalValue::getGUID(ValueName);
5664   if (PrintSummaryGUIDs)
5665     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5666            << ValueName << "\n";
5667 
5668   // UseStrtab is false for legacy summary formats and value names are
5669   // created on stack. In that case we save the name in a string saver in
5670   // the index so that the value name can be recorded.
5671   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5672       TheIndex.getOrInsertValueInfo(
5673           ValueGUID,
5674           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5675       OriginalNameID);
5676 }
5677 
5678 // Specialized value symbol table parser used when reading module index
5679 // blocks where we don't actually create global values. The parsed information
5680 // is saved in the bitcode reader for use when later parsing summaries.
5681 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5682     uint64_t Offset,
5683     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5684   // With a strtab the VST is not required to parse the summary.
5685   if (UseStrtab)
5686     return Error::success();
5687 
5688   assert(Offset > 0 && "Expected non-zero VST offset");
5689   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5690   if (!MaybeCurrentBit)
5691     return MaybeCurrentBit.takeError();
5692   uint64_t CurrentBit = MaybeCurrentBit.get();
5693 
5694   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5695     return Err;
5696 
5697   SmallVector<uint64_t, 64> Record;
5698 
5699   // Read all the records for this value table.
5700   SmallString<128> ValueName;
5701 
5702   while (true) {
5703     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5704     if (!MaybeEntry)
5705       return MaybeEntry.takeError();
5706     BitstreamEntry Entry = MaybeEntry.get();
5707 
5708     switch (Entry.Kind) {
5709     case BitstreamEntry::SubBlock: // Handled for us already.
5710     case BitstreamEntry::Error:
5711       return error("Malformed block");
5712     case BitstreamEntry::EndBlock:
5713       // Done parsing VST, jump back to wherever we came from.
5714       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5715         return JumpFailed;
5716       return Error::success();
5717     case BitstreamEntry::Record:
5718       // The interesting case.
5719       break;
5720     }
5721 
5722     // Read a record.
5723     Record.clear();
5724     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5725     if (!MaybeRecord)
5726       return MaybeRecord.takeError();
5727     switch (MaybeRecord.get()) {
5728     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5729       break;
5730     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5731       if (convertToString(Record, 1, ValueName))
5732         return error("Invalid record");
5733       unsigned ValueID = Record[0];
5734       assert(!SourceFileName.empty());
5735       auto VLI = ValueIdToLinkageMap.find(ValueID);
5736       assert(VLI != ValueIdToLinkageMap.end() &&
5737              "No linkage found for VST entry?");
5738       auto Linkage = VLI->second;
5739       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5740       ValueName.clear();
5741       break;
5742     }
5743     case bitc::VST_CODE_FNENTRY: {
5744       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5745       if (convertToString(Record, 2, ValueName))
5746         return error("Invalid record");
5747       unsigned ValueID = Record[0];
5748       assert(!SourceFileName.empty());
5749       auto VLI = ValueIdToLinkageMap.find(ValueID);
5750       assert(VLI != ValueIdToLinkageMap.end() &&
5751              "No linkage found for VST entry?");
5752       auto Linkage = VLI->second;
5753       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5754       ValueName.clear();
5755       break;
5756     }
5757     case bitc::VST_CODE_COMBINED_ENTRY: {
5758       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5759       unsigned ValueID = Record[0];
5760       GlobalValue::GUID RefGUID = Record[1];
5761       // The "original name", which is the second value of the pair will be
5762       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5763       ValueIdToValueInfoMap[ValueID] =
5764           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5765       break;
5766     }
5767     }
5768   }
5769 }
5770 
5771 // Parse just the blocks needed for building the index out of the module.
5772 // At the end of this routine the module Index is populated with a map
5773 // from global value id to GlobalValueSummary objects.
5774 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5775   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5776     return Err;
5777 
5778   SmallVector<uint64_t, 64> Record;
5779   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5780   unsigned ValueId = 0;
5781 
5782   // Read the index for this module.
5783   while (true) {
5784     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5785     if (!MaybeEntry)
5786       return MaybeEntry.takeError();
5787     llvm::BitstreamEntry Entry = MaybeEntry.get();
5788 
5789     switch (Entry.Kind) {
5790     case BitstreamEntry::Error:
5791       return error("Malformed block");
5792     case BitstreamEntry::EndBlock:
5793       return Error::success();
5794 
5795     case BitstreamEntry::SubBlock:
5796       switch (Entry.ID) {
5797       default: // Skip unknown content.
5798         if (Error Err = Stream.SkipBlock())
5799           return Err;
5800         break;
5801       case bitc::BLOCKINFO_BLOCK_ID:
5802         // Need to parse these to get abbrev ids (e.g. for VST)
5803         if (readBlockInfo())
5804           return error("Malformed block");
5805         break;
5806       case bitc::VALUE_SYMTAB_BLOCK_ID:
5807         // Should have been parsed earlier via VSTOffset, unless there
5808         // is no summary section.
5809         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5810                 !SeenGlobalValSummary) &&
5811                "Expected early VST parse via VSTOffset record");
5812         if (Error Err = Stream.SkipBlock())
5813           return Err;
5814         break;
5815       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5816       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5817         // Add the module if it is a per-module index (has a source file name).
5818         if (!SourceFileName.empty())
5819           addThisModule();
5820         assert(!SeenValueSymbolTable &&
5821                "Already read VST when parsing summary block?");
5822         // We might not have a VST if there were no values in the
5823         // summary. An empty summary block generated when we are
5824         // performing ThinLTO compiles so we don't later invoke
5825         // the regular LTO process on them.
5826         if (VSTOffset > 0) {
5827           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5828             return Err;
5829           SeenValueSymbolTable = true;
5830         }
5831         SeenGlobalValSummary = true;
5832         if (Error Err = parseEntireSummary(Entry.ID))
5833           return Err;
5834         break;
5835       case bitc::MODULE_STRTAB_BLOCK_ID:
5836         if (Error Err = parseModuleStringTable())
5837           return Err;
5838         break;
5839       }
5840       continue;
5841 
5842     case BitstreamEntry::Record: {
5843         Record.clear();
5844         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5845         if (!MaybeBitCode)
5846           return MaybeBitCode.takeError();
5847         switch (MaybeBitCode.get()) {
5848         default:
5849           break; // Default behavior, ignore unknown content.
5850         case bitc::MODULE_CODE_VERSION: {
5851           if (Error Err = parseVersionRecord(Record).takeError())
5852             return Err;
5853           break;
5854         }
5855         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5856         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5857           SmallString<128> ValueName;
5858           if (convertToString(Record, 0, ValueName))
5859             return error("Invalid record");
5860           SourceFileName = ValueName.c_str();
5861           break;
5862         }
5863         /// MODULE_CODE_HASH: [5*i32]
5864         case bitc::MODULE_CODE_HASH: {
5865           if (Record.size() != 5)
5866             return error("Invalid hash length " + Twine(Record.size()).str());
5867           auto &Hash = getThisModule()->second.second;
5868           int Pos = 0;
5869           for (auto &Val : Record) {
5870             assert(!(Val >> 32) && "Unexpected high bits set");
5871             Hash[Pos++] = Val;
5872           }
5873           break;
5874         }
5875         /// MODULE_CODE_VSTOFFSET: [offset]
5876         case bitc::MODULE_CODE_VSTOFFSET:
5877           if (Record.empty())
5878             return error("Invalid record");
5879           // Note that we subtract 1 here because the offset is relative to one
5880           // word before the start of the identification or module block, which
5881           // was historically always the start of the regular bitcode header.
5882           VSTOffset = Record[0] - 1;
5883           break;
5884         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5885         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5886         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5887         // v2: [strtab offset, strtab size, v1]
5888         case bitc::MODULE_CODE_GLOBALVAR:
5889         case bitc::MODULE_CODE_FUNCTION:
5890         case bitc::MODULE_CODE_ALIAS: {
5891           StringRef Name;
5892           ArrayRef<uint64_t> GVRecord;
5893           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5894           if (GVRecord.size() <= 3)
5895             return error("Invalid record");
5896           uint64_t RawLinkage = GVRecord[3];
5897           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5898           if (!UseStrtab) {
5899             ValueIdToLinkageMap[ValueId++] = Linkage;
5900             break;
5901           }
5902 
5903           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5904           break;
5905         }
5906         }
5907       }
5908       continue;
5909     }
5910   }
5911 }
5912 
5913 std::vector<ValueInfo>
5914 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5915   std::vector<ValueInfo> Ret;
5916   Ret.reserve(Record.size());
5917   for (uint64_t RefValueId : Record)
5918     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5919   return Ret;
5920 }
5921 
5922 std::vector<FunctionSummary::EdgeTy>
5923 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5924                                               bool IsOldProfileFormat,
5925                                               bool HasProfile, bool HasRelBF) {
5926   std::vector<FunctionSummary::EdgeTy> Ret;
5927   Ret.reserve(Record.size());
5928   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5929     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5930     uint64_t RelBF = 0;
5931     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5932     if (IsOldProfileFormat) {
5933       I += 1; // Skip old callsitecount field
5934       if (HasProfile)
5935         I += 1; // Skip old profilecount field
5936     } else if (HasProfile)
5937       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5938     else if (HasRelBF)
5939       RelBF = Record[++I];
5940     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5941   }
5942   return Ret;
5943 }
5944 
5945 static void
5946 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5947                                        WholeProgramDevirtResolution &Wpd) {
5948   uint64_t ArgNum = Record[Slot++];
5949   WholeProgramDevirtResolution::ByArg &B =
5950       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5951   Slot += ArgNum;
5952 
5953   B.TheKind =
5954       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5955   B.Info = Record[Slot++];
5956   B.Byte = Record[Slot++];
5957   B.Bit = Record[Slot++];
5958 }
5959 
5960 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5961                                               StringRef Strtab, size_t &Slot,
5962                                               TypeIdSummary &TypeId) {
5963   uint64_t Id = Record[Slot++];
5964   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5965 
5966   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5967   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5968                         static_cast<size_t>(Record[Slot + 1])};
5969   Slot += 2;
5970 
5971   uint64_t ResByArgNum = Record[Slot++];
5972   for (uint64_t I = 0; I != ResByArgNum; ++I)
5973     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5974 }
5975 
5976 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5977                                      StringRef Strtab,
5978                                      ModuleSummaryIndex &TheIndex) {
5979   size_t Slot = 0;
5980   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5981       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5982   Slot += 2;
5983 
5984   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5985   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5986   TypeId.TTRes.AlignLog2 = Record[Slot++];
5987   TypeId.TTRes.SizeM1 = Record[Slot++];
5988   TypeId.TTRes.BitMask = Record[Slot++];
5989   TypeId.TTRes.InlineBits = Record[Slot++];
5990 
5991   while (Slot < Record.size())
5992     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5993 }
5994 
5995 std::vector<FunctionSummary::ParamAccess>
5996 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5997   auto ReadRange = [&]() {
5998     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5999                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6000     Record = Record.drop_front();
6001     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6002                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6003     Record = Record.drop_front();
6004     ConstantRange Range{Lower, Upper};
6005     assert(!Range.isFullSet());
6006     assert(!Range.isUpperSignWrapped());
6007     return Range;
6008   };
6009 
6010   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6011   while (!Record.empty()) {
6012     PendingParamAccesses.emplace_back();
6013     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6014     ParamAccess.ParamNo = Record.front();
6015     Record = Record.drop_front();
6016     ParamAccess.Use = ReadRange();
6017     ParamAccess.Calls.resize(Record.front());
6018     Record = Record.drop_front();
6019     for (auto &Call : ParamAccess.Calls) {
6020       Call.ParamNo = Record.front();
6021       Record = Record.drop_front();
6022       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6023       Record = Record.drop_front();
6024       Call.Offsets = ReadRange();
6025     }
6026   }
6027   return PendingParamAccesses;
6028 }
6029 
6030 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6031     ArrayRef<uint64_t> Record, size_t &Slot,
6032     TypeIdCompatibleVtableInfo &TypeId) {
6033   uint64_t Offset = Record[Slot++];
6034   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6035   TypeId.push_back({Offset, Callee});
6036 }
6037 
6038 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6039     ArrayRef<uint64_t> Record) {
6040   size_t Slot = 0;
6041   TypeIdCompatibleVtableInfo &TypeId =
6042       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6043           {Strtab.data() + Record[Slot],
6044            static_cast<size_t>(Record[Slot + 1])});
6045   Slot += 2;
6046 
6047   while (Slot < Record.size())
6048     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6049 }
6050 
6051 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6052                            unsigned WOCnt) {
6053   // Readonly and writeonly refs are in the end of the refs list.
6054   assert(ROCnt + WOCnt <= Refs.size());
6055   unsigned FirstWORef = Refs.size() - WOCnt;
6056   unsigned RefNo = FirstWORef - ROCnt;
6057   for (; RefNo < FirstWORef; ++RefNo)
6058     Refs[RefNo].setReadOnly();
6059   for (; RefNo < Refs.size(); ++RefNo)
6060     Refs[RefNo].setWriteOnly();
6061 }
6062 
6063 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6064 // objects in the index.
6065 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6066   if (Error Err = Stream.EnterSubBlock(ID))
6067     return Err;
6068   SmallVector<uint64_t, 64> Record;
6069 
6070   // Parse version
6071   {
6072     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6073     if (!MaybeEntry)
6074       return MaybeEntry.takeError();
6075     BitstreamEntry Entry = MaybeEntry.get();
6076 
6077     if (Entry.Kind != BitstreamEntry::Record)
6078       return error("Invalid Summary Block: record for version expected");
6079     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6080     if (!MaybeRecord)
6081       return MaybeRecord.takeError();
6082     if (MaybeRecord.get() != bitc::FS_VERSION)
6083       return error("Invalid Summary Block: version expected");
6084   }
6085   const uint64_t Version = Record[0];
6086   const bool IsOldProfileFormat = Version == 1;
6087   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6088     return error("Invalid summary version " + Twine(Version) +
6089                  ". Version should be in the range [1-" +
6090                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6091                  "].");
6092   Record.clear();
6093 
6094   // Keep around the last seen summary to be used when we see an optional
6095   // "OriginalName" attachement.
6096   GlobalValueSummary *LastSeenSummary = nullptr;
6097   GlobalValue::GUID LastSeenGUID = 0;
6098 
6099   // We can expect to see any number of type ID information records before
6100   // each function summary records; these variables store the information
6101   // collected so far so that it can be used to create the summary object.
6102   std::vector<GlobalValue::GUID> PendingTypeTests;
6103   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6104       PendingTypeCheckedLoadVCalls;
6105   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6106       PendingTypeCheckedLoadConstVCalls;
6107   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6108 
6109   while (true) {
6110     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6111     if (!MaybeEntry)
6112       return MaybeEntry.takeError();
6113     BitstreamEntry Entry = MaybeEntry.get();
6114 
6115     switch (Entry.Kind) {
6116     case BitstreamEntry::SubBlock: // Handled for us already.
6117     case BitstreamEntry::Error:
6118       return error("Malformed block");
6119     case BitstreamEntry::EndBlock:
6120       return Error::success();
6121     case BitstreamEntry::Record:
6122       // The interesting case.
6123       break;
6124     }
6125 
6126     // Read a record. The record format depends on whether this
6127     // is a per-module index or a combined index file. In the per-module
6128     // case the records contain the associated value's ID for correlation
6129     // with VST entries. In the combined index the correlation is done
6130     // via the bitcode offset of the summary records (which were saved
6131     // in the combined index VST entries). The records also contain
6132     // information used for ThinLTO renaming and importing.
6133     Record.clear();
6134     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6135     if (!MaybeBitCode)
6136       return MaybeBitCode.takeError();
6137     switch (unsigned BitCode = MaybeBitCode.get()) {
6138     default: // Default behavior: ignore.
6139       break;
6140     case bitc::FS_FLAGS: {  // [flags]
6141       TheIndex.setFlags(Record[0]);
6142       break;
6143     }
6144     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6145       uint64_t ValueID = Record[0];
6146       GlobalValue::GUID RefGUID = Record[1];
6147       ValueIdToValueInfoMap[ValueID] =
6148           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6149       break;
6150     }
6151     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6152     //                numrefs x valueid, n x (valueid)]
6153     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6154     //                        numrefs x valueid,
6155     //                        n x (valueid, hotness)]
6156     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6157     //                      numrefs x valueid,
6158     //                      n x (valueid, relblockfreq)]
6159     case bitc::FS_PERMODULE:
6160     case bitc::FS_PERMODULE_RELBF:
6161     case bitc::FS_PERMODULE_PROFILE: {
6162       unsigned ValueID = Record[0];
6163       uint64_t RawFlags = Record[1];
6164       unsigned InstCount = Record[2];
6165       uint64_t RawFunFlags = 0;
6166       unsigned NumRefs = Record[3];
6167       unsigned NumRORefs = 0, NumWORefs = 0;
6168       int RefListStartIndex = 4;
6169       if (Version >= 4) {
6170         RawFunFlags = Record[3];
6171         NumRefs = Record[4];
6172         RefListStartIndex = 5;
6173         if (Version >= 5) {
6174           NumRORefs = Record[5];
6175           RefListStartIndex = 6;
6176           if (Version >= 7) {
6177             NumWORefs = Record[6];
6178             RefListStartIndex = 7;
6179           }
6180         }
6181       }
6182 
6183       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6184       // The module path string ref set in the summary must be owned by the
6185       // index's module string table. Since we don't have a module path
6186       // string table section in the per-module index, we create a single
6187       // module path string table entry with an empty (0) ID to take
6188       // ownership.
6189       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6190       assert(Record.size() >= RefListStartIndex + NumRefs &&
6191              "Record size inconsistent with number of references");
6192       std::vector<ValueInfo> Refs = makeRefList(
6193           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6194       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6195       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6196       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6197           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6198           IsOldProfileFormat, HasProfile, HasRelBF);
6199       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6200       auto FS = std::make_unique<FunctionSummary>(
6201           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6202           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6203           std::move(PendingTypeTestAssumeVCalls),
6204           std::move(PendingTypeCheckedLoadVCalls),
6205           std::move(PendingTypeTestAssumeConstVCalls),
6206           std::move(PendingTypeCheckedLoadConstVCalls),
6207           std::move(PendingParamAccesses));
6208       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6209       FS->setModulePath(getThisModule()->first());
6210       FS->setOriginalName(VIAndOriginalGUID.second);
6211       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6212       break;
6213     }
6214     // FS_ALIAS: [valueid, flags, valueid]
6215     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6216     // they expect all aliasee summaries to be available.
6217     case bitc::FS_ALIAS: {
6218       unsigned ValueID = Record[0];
6219       uint64_t RawFlags = Record[1];
6220       unsigned AliaseeID = Record[2];
6221       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6222       auto AS = std::make_unique<AliasSummary>(Flags);
6223       // The module path string ref set in the summary must be owned by the
6224       // index's module string table. Since we don't have a module path
6225       // string table section in the per-module index, we create a single
6226       // module path string table entry with an empty (0) ID to take
6227       // ownership.
6228       AS->setModulePath(getThisModule()->first());
6229 
6230       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6231       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6232       if (!AliaseeInModule)
6233         return error("Alias expects aliasee summary to be parsed");
6234       AS->setAliasee(AliaseeVI, AliaseeInModule);
6235 
6236       auto GUID = getValueInfoFromValueId(ValueID);
6237       AS->setOriginalName(GUID.second);
6238       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6239       break;
6240     }
6241     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6242     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6243       unsigned ValueID = Record[0];
6244       uint64_t RawFlags = Record[1];
6245       unsigned RefArrayStart = 2;
6246       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6247                                       /* WriteOnly */ false,
6248                                       /* Constant */ false,
6249                                       GlobalObject::VCallVisibilityPublic);
6250       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6251       if (Version >= 5) {
6252         GVF = getDecodedGVarFlags(Record[2]);
6253         RefArrayStart = 3;
6254       }
6255       std::vector<ValueInfo> Refs =
6256           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6257       auto FS =
6258           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6259       FS->setModulePath(getThisModule()->first());
6260       auto GUID = getValueInfoFromValueId(ValueID);
6261       FS->setOriginalName(GUID.second);
6262       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6263       break;
6264     }
6265     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6266     //                        numrefs, numrefs x valueid,
6267     //                        n x (valueid, offset)]
6268     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6269       unsigned ValueID = Record[0];
6270       uint64_t RawFlags = Record[1];
6271       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6272       unsigned NumRefs = Record[3];
6273       unsigned RefListStartIndex = 4;
6274       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6275       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6276       std::vector<ValueInfo> Refs = makeRefList(
6277           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6278       VTableFuncList VTableFuncs;
6279       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6280         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6281         uint64_t Offset = Record[++I];
6282         VTableFuncs.push_back({Callee, Offset});
6283       }
6284       auto VS =
6285           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6286       VS->setModulePath(getThisModule()->first());
6287       VS->setVTableFuncs(VTableFuncs);
6288       auto GUID = getValueInfoFromValueId(ValueID);
6289       VS->setOriginalName(GUID.second);
6290       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6291       break;
6292     }
6293     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6294     //               numrefs x valueid, n x (valueid)]
6295     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6296     //                       numrefs x valueid, n x (valueid, hotness)]
6297     case bitc::FS_COMBINED:
6298     case bitc::FS_COMBINED_PROFILE: {
6299       unsigned ValueID = Record[0];
6300       uint64_t ModuleId = Record[1];
6301       uint64_t RawFlags = Record[2];
6302       unsigned InstCount = Record[3];
6303       uint64_t RawFunFlags = 0;
6304       uint64_t EntryCount = 0;
6305       unsigned NumRefs = Record[4];
6306       unsigned NumRORefs = 0, NumWORefs = 0;
6307       int RefListStartIndex = 5;
6308 
6309       if (Version >= 4) {
6310         RawFunFlags = Record[4];
6311         RefListStartIndex = 6;
6312         size_t NumRefsIndex = 5;
6313         if (Version >= 5) {
6314           unsigned NumRORefsOffset = 1;
6315           RefListStartIndex = 7;
6316           if (Version >= 6) {
6317             NumRefsIndex = 6;
6318             EntryCount = Record[5];
6319             RefListStartIndex = 8;
6320             if (Version >= 7) {
6321               RefListStartIndex = 9;
6322               NumWORefs = Record[8];
6323               NumRORefsOffset = 2;
6324             }
6325           }
6326           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6327         }
6328         NumRefs = Record[NumRefsIndex];
6329       }
6330 
6331       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6332       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6333       assert(Record.size() >= RefListStartIndex + NumRefs &&
6334              "Record size inconsistent with number of references");
6335       std::vector<ValueInfo> Refs = makeRefList(
6336           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6337       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6338       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6339           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6340           IsOldProfileFormat, HasProfile, false);
6341       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6342       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6343       auto FS = std::make_unique<FunctionSummary>(
6344           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6345           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6346           std::move(PendingTypeTestAssumeVCalls),
6347           std::move(PendingTypeCheckedLoadVCalls),
6348           std::move(PendingTypeTestAssumeConstVCalls),
6349           std::move(PendingTypeCheckedLoadConstVCalls),
6350           std::move(PendingParamAccesses));
6351       LastSeenSummary = FS.get();
6352       LastSeenGUID = VI.getGUID();
6353       FS->setModulePath(ModuleIdMap[ModuleId]);
6354       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6355       break;
6356     }
6357     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6358     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6359     // they expect all aliasee summaries to be available.
6360     case bitc::FS_COMBINED_ALIAS: {
6361       unsigned ValueID = Record[0];
6362       uint64_t ModuleId = Record[1];
6363       uint64_t RawFlags = Record[2];
6364       unsigned AliaseeValueId = Record[3];
6365       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6366       auto AS = std::make_unique<AliasSummary>(Flags);
6367       LastSeenSummary = AS.get();
6368       AS->setModulePath(ModuleIdMap[ModuleId]);
6369 
6370       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6371       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6372       AS->setAliasee(AliaseeVI, AliaseeInModule);
6373 
6374       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6375       LastSeenGUID = VI.getGUID();
6376       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6377       break;
6378     }
6379     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6380     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6381       unsigned ValueID = Record[0];
6382       uint64_t ModuleId = Record[1];
6383       uint64_t RawFlags = Record[2];
6384       unsigned RefArrayStart = 3;
6385       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6386                                       /* WriteOnly */ false,
6387                                       /* Constant */ false,
6388                                       GlobalObject::VCallVisibilityPublic);
6389       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6390       if (Version >= 5) {
6391         GVF = getDecodedGVarFlags(Record[3]);
6392         RefArrayStart = 4;
6393       }
6394       std::vector<ValueInfo> Refs =
6395           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6396       auto FS =
6397           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6398       LastSeenSummary = FS.get();
6399       FS->setModulePath(ModuleIdMap[ModuleId]);
6400       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6401       LastSeenGUID = VI.getGUID();
6402       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6403       break;
6404     }
6405     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6406     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6407       uint64_t OriginalName = Record[0];
6408       if (!LastSeenSummary)
6409         return error("Name attachment that does not follow a combined record");
6410       LastSeenSummary->setOriginalName(OriginalName);
6411       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6412       // Reset the LastSeenSummary
6413       LastSeenSummary = nullptr;
6414       LastSeenGUID = 0;
6415       break;
6416     }
6417     case bitc::FS_TYPE_TESTS:
6418       assert(PendingTypeTests.empty());
6419       llvm::append_range(PendingTypeTests, Record);
6420       break;
6421 
6422     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6423       assert(PendingTypeTestAssumeVCalls.empty());
6424       for (unsigned I = 0; I != Record.size(); I += 2)
6425         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6426       break;
6427 
6428     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6429       assert(PendingTypeCheckedLoadVCalls.empty());
6430       for (unsigned I = 0; I != Record.size(); I += 2)
6431         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6432       break;
6433 
6434     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6435       PendingTypeTestAssumeConstVCalls.push_back(
6436           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6437       break;
6438 
6439     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6440       PendingTypeCheckedLoadConstVCalls.push_back(
6441           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6442       break;
6443 
6444     case bitc::FS_CFI_FUNCTION_DEFS: {
6445       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6446       for (unsigned I = 0; I != Record.size(); I += 2)
6447         CfiFunctionDefs.insert(
6448             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6449       break;
6450     }
6451 
6452     case bitc::FS_CFI_FUNCTION_DECLS: {
6453       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6454       for (unsigned I = 0; I != Record.size(); I += 2)
6455         CfiFunctionDecls.insert(
6456             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6457       break;
6458     }
6459 
6460     case bitc::FS_TYPE_ID:
6461       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6462       break;
6463 
6464     case bitc::FS_TYPE_ID_METADATA:
6465       parseTypeIdCompatibleVtableSummaryRecord(Record);
6466       break;
6467 
6468     case bitc::FS_BLOCK_COUNT:
6469       TheIndex.addBlockCount(Record[0]);
6470       break;
6471 
6472     case bitc::FS_PARAM_ACCESS: {
6473       PendingParamAccesses = parseParamAccesses(Record);
6474       break;
6475     }
6476     }
6477   }
6478   llvm_unreachable("Exit infinite loop");
6479 }
6480 
6481 // Parse the  module string table block into the Index.
6482 // This populates the ModulePathStringTable map in the index.
6483 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6484   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6485     return Err;
6486 
6487   SmallVector<uint64_t, 64> Record;
6488 
6489   SmallString<128> ModulePath;
6490   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6491 
6492   while (true) {
6493     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6494     if (!MaybeEntry)
6495       return MaybeEntry.takeError();
6496     BitstreamEntry Entry = MaybeEntry.get();
6497 
6498     switch (Entry.Kind) {
6499     case BitstreamEntry::SubBlock: // Handled for us already.
6500     case BitstreamEntry::Error:
6501       return error("Malformed block");
6502     case BitstreamEntry::EndBlock:
6503       return Error::success();
6504     case BitstreamEntry::Record:
6505       // The interesting case.
6506       break;
6507     }
6508 
6509     Record.clear();
6510     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6511     if (!MaybeRecord)
6512       return MaybeRecord.takeError();
6513     switch (MaybeRecord.get()) {
6514     default: // Default behavior: ignore.
6515       break;
6516     case bitc::MST_CODE_ENTRY: {
6517       // MST_ENTRY: [modid, namechar x N]
6518       uint64_t ModuleId = Record[0];
6519 
6520       if (convertToString(Record, 1, ModulePath))
6521         return error("Invalid record");
6522 
6523       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6524       ModuleIdMap[ModuleId] = LastSeenModule->first();
6525 
6526       ModulePath.clear();
6527       break;
6528     }
6529     /// MST_CODE_HASH: [5*i32]
6530     case bitc::MST_CODE_HASH: {
6531       if (Record.size() != 5)
6532         return error("Invalid hash length " + Twine(Record.size()).str());
6533       if (!LastSeenModule)
6534         return error("Invalid hash that does not follow a module path");
6535       int Pos = 0;
6536       for (auto &Val : Record) {
6537         assert(!(Val >> 32) && "Unexpected high bits set");
6538         LastSeenModule->second.second[Pos++] = Val;
6539       }
6540       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6541       LastSeenModule = nullptr;
6542       break;
6543     }
6544     }
6545   }
6546   llvm_unreachable("Exit infinite loop");
6547 }
6548 
6549 namespace {
6550 
6551 // FIXME: This class is only here to support the transition to llvm::Error. It
6552 // will be removed once this transition is complete. Clients should prefer to
6553 // deal with the Error value directly, rather than converting to error_code.
6554 class BitcodeErrorCategoryType : public std::error_category {
6555   const char *name() const noexcept override {
6556     return "llvm.bitcode";
6557   }
6558 
6559   std::string message(int IE) const override {
6560     BitcodeError E = static_cast<BitcodeError>(IE);
6561     switch (E) {
6562     case BitcodeError::CorruptedBitcode:
6563       return "Corrupted bitcode";
6564     }
6565     llvm_unreachable("Unknown error type!");
6566   }
6567 };
6568 
6569 } // end anonymous namespace
6570 
6571 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6572 
6573 const std::error_category &llvm::BitcodeErrorCategory() {
6574   return *ErrorCategory;
6575 }
6576 
6577 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6578                                             unsigned Block, unsigned RecordID) {
6579   if (Error Err = Stream.EnterSubBlock(Block))
6580     return std::move(Err);
6581 
6582   StringRef Strtab;
6583   while (true) {
6584     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6585     if (!MaybeEntry)
6586       return MaybeEntry.takeError();
6587     llvm::BitstreamEntry Entry = MaybeEntry.get();
6588 
6589     switch (Entry.Kind) {
6590     case BitstreamEntry::EndBlock:
6591       return Strtab;
6592 
6593     case BitstreamEntry::Error:
6594       return error("Malformed block");
6595 
6596     case BitstreamEntry::SubBlock:
6597       if (Error Err = Stream.SkipBlock())
6598         return std::move(Err);
6599       break;
6600 
6601     case BitstreamEntry::Record:
6602       StringRef Blob;
6603       SmallVector<uint64_t, 1> Record;
6604       Expected<unsigned> MaybeRecord =
6605           Stream.readRecord(Entry.ID, Record, &Blob);
6606       if (!MaybeRecord)
6607         return MaybeRecord.takeError();
6608       if (MaybeRecord.get() == RecordID)
6609         Strtab = Blob;
6610       break;
6611     }
6612   }
6613 }
6614 
6615 //===----------------------------------------------------------------------===//
6616 // External interface
6617 //===----------------------------------------------------------------------===//
6618 
6619 Expected<std::vector<BitcodeModule>>
6620 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6621   auto FOrErr = getBitcodeFileContents(Buffer);
6622   if (!FOrErr)
6623     return FOrErr.takeError();
6624   return std::move(FOrErr->Mods);
6625 }
6626 
6627 Expected<BitcodeFileContents>
6628 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6629   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6630   if (!StreamOrErr)
6631     return StreamOrErr.takeError();
6632   BitstreamCursor &Stream = *StreamOrErr;
6633 
6634   BitcodeFileContents F;
6635   while (true) {
6636     uint64_t BCBegin = Stream.getCurrentByteNo();
6637 
6638     // We may be consuming bitcode from a client that leaves garbage at the end
6639     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6640     // the end that there cannot possibly be another module, stop looking.
6641     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6642       return F;
6643 
6644     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6645     if (!MaybeEntry)
6646       return MaybeEntry.takeError();
6647     llvm::BitstreamEntry Entry = MaybeEntry.get();
6648 
6649     switch (Entry.Kind) {
6650     case BitstreamEntry::EndBlock:
6651     case BitstreamEntry::Error:
6652       return error("Malformed block");
6653 
6654     case BitstreamEntry::SubBlock: {
6655       uint64_t IdentificationBit = -1ull;
6656       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6657         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6658         if (Error Err = Stream.SkipBlock())
6659           return std::move(Err);
6660 
6661         {
6662           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6663           if (!MaybeEntry)
6664             return MaybeEntry.takeError();
6665           Entry = MaybeEntry.get();
6666         }
6667 
6668         if (Entry.Kind != BitstreamEntry::SubBlock ||
6669             Entry.ID != bitc::MODULE_BLOCK_ID)
6670           return error("Malformed block");
6671       }
6672 
6673       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6674         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6675         if (Error Err = Stream.SkipBlock())
6676           return std::move(Err);
6677 
6678         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6679                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6680                           Buffer.getBufferIdentifier(), IdentificationBit,
6681                           ModuleBit});
6682         continue;
6683       }
6684 
6685       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6686         Expected<StringRef> Strtab =
6687             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6688         if (!Strtab)
6689           return Strtab.takeError();
6690         // This string table is used by every preceding bitcode module that does
6691         // not have its own string table. A bitcode file may have multiple
6692         // string tables if it was created by binary concatenation, for example
6693         // with "llvm-cat -b".
6694         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6695           if (!I->Strtab.empty())
6696             break;
6697           I->Strtab = *Strtab;
6698         }
6699         // Similarly, the string table is used by every preceding symbol table;
6700         // normally there will be just one unless the bitcode file was created
6701         // by binary concatenation.
6702         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6703           F.StrtabForSymtab = *Strtab;
6704         continue;
6705       }
6706 
6707       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6708         Expected<StringRef> SymtabOrErr =
6709             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6710         if (!SymtabOrErr)
6711           return SymtabOrErr.takeError();
6712 
6713         // We can expect the bitcode file to have multiple symbol tables if it
6714         // was created by binary concatenation. In that case we silently
6715         // ignore any subsequent symbol tables, which is fine because this is a
6716         // low level function. The client is expected to notice that the number
6717         // of modules in the symbol table does not match the number of modules
6718         // in the input file and regenerate the symbol table.
6719         if (F.Symtab.empty())
6720           F.Symtab = *SymtabOrErr;
6721         continue;
6722       }
6723 
6724       if (Error Err = Stream.SkipBlock())
6725         return std::move(Err);
6726       continue;
6727     }
6728     case BitstreamEntry::Record:
6729       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6730         continue;
6731       else
6732         return StreamFailed.takeError();
6733     }
6734   }
6735 }
6736 
6737 /// Get a lazy one-at-time loading module from bitcode.
6738 ///
6739 /// This isn't always used in a lazy context.  In particular, it's also used by
6740 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6741 /// in forward-referenced functions from block address references.
6742 ///
6743 /// \param[in] MaterializeAll Set to \c true if we should materialize
6744 /// everything.
6745 Expected<std::unique_ptr<Module>>
6746 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6747                              bool ShouldLazyLoadMetadata, bool IsImporting,
6748                              DataLayoutCallbackTy DataLayoutCallback) {
6749   BitstreamCursor Stream(Buffer);
6750 
6751   std::string ProducerIdentification;
6752   if (IdentificationBit != -1ull) {
6753     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6754       return std::move(JumpFailed);
6755     Expected<std::string> ProducerIdentificationOrErr =
6756         readIdentificationBlock(Stream);
6757     if (!ProducerIdentificationOrErr)
6758       return ProducerIdentificationOrErr.takeError();
6759 
6760     ProducerIdentification = *ProducerIdentificationOrErr;
6761   }
6762 
6763   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6764     return std::move(JumpFailed);
6765   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6766                               Context);
6767 
6768   std::unique_ptr<Module> M =
6769       std::make_unique<Module>(ModuleIdentifier, Context);
6770   M->setMaterializer(R);
6771 
6772   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6773   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6774                                       IsImporting, DataLayoutCallback))
6775     return std::move(Err);
6776 
6777   if (MaterializeAll) {
6778     // Read in the entire module, and destroy the BitcodeReader.
6779     if (Error Err = M->materializeAll())
6780       return std::move(Err);
6781   } else {
6782     // Resolve forward references from blockaddresses.
6783     if (Error Err = R->materializeForwardReferencedFunctions())
6784       return std::move(Err);
6785   }
6786   return std::move(M);
6787 }
6788 
6789 Expected<std::unique_ptr<Module>>
6790 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6791                              bool IsImporting) {
6792   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6793                        [](StringRef) { return None; });
6794 }
6795 
6796 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6797 // We don't use ModuleIdentifier here because the client may need to control the
6798 // module path used in the combined summary (e.g. when reading summaries for
6799 // regular LTO modules).
6800 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6801                                  StringRef ModulePath, uint64_t ModuleId) {
6802   BitstreamCursor Stream(Buffer);
6803   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6804     return JumpFailed;
6805 
6806   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6807                                     ModulePath, ModuleId);
6808   return R.parseModule();
6809 }
6810 
6811 // Parse the specified bitcode buffer, returning the function info index.
6812 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6813   BitstreamCursor Stream(Buffer);
6814   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6815     return std::move(JumpFailed);
6816 
6817   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6818   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6819                                     ModuleIdentifier, 0);
6820 
6821   if (Error Err = R.parseModule())
6822     return std::move(Err);
6823 
6824   return std::move(Index);
6825 }
6826 
6827 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6828                                                 unsigned ID) {
6829   if (Error Err = Stream.EnterSubBlock(ID))
6830     return std::move(Err);
6831   SmallVector<uint64_t, 64> Record;
6832 
6833   while (true) {
6834     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6835     if (!MaybeEntry)
6836       return MaybeEntry.takeError();
6837     BitstreamEntry Entry = MaybeEntry.get();
6838 
6839     switch (Entry.Kind) {
6840     case BitstreamEntry::SubBlock: // Handled for us already.
6841     case BitstreamEntry::Error:
6842       return error("Malformed block");
6843     case BitstreamEntry::EndBlock:
6844       // If no flags record found, conservatively return true to mimic
6845       // behavior before this flag was added.
6846       return true;
6847     case BitstreamEntry::Record:
6848       // The interesting case.
6849       break;
6850     }
6851 
6852     // Look for the FS_FLAGS record.
6853     Record.clear();
6854     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6855     if (!MaybeBitCode)
6856       return MaybeBitCode.takeError();
6857     switch (MaybeBitCode.get()) {
6858     default: // Default behavior: ignore.
6859       break;
6860     case bitc::FS_FLAGS: { // [flags]
6861       uint64_t Flags = Record[0];
6862       // Scan flags.
6863       assert(Flags <= 0x7f && "Unexpected bits in flag");
6864 
6865       return Flags & 0x8;
6866     }
6867     }
6868   }
6869   llvm_unreachable("Exit infinite loop");
6870 }
6871 
6872 // Check if the given bitcode buffer contains a global value summary block.
6873 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6874   BitstreamCursor Stream(Buffer);
6875   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6876     return std::move(JumpFailed);
6877 
6878   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6879     return std::move(Err);
6880 
6881   while (true) {
6882     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6883     if (!MaybeEntry)
6884       return MaybeEntry.takeError();
6885     llvm::BitstreamEntry Entry = MaybeEntry.get();
6886 
6887     switch (Entry.Kind) {
6888     case BitstreamEntry::Error:
6889       return error("Malformed block");
6890     case BitstreamEntry::EndBlock:
6891       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6892                             /*EnableSplitLTOUnit=*/false};
6893 
6894     case BitstreamEntry::SubBlock:
6895       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6896         Expected<bool> EnableSplitLTOUnit =
6897             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6898         if (!EnableSplitLTOUnit)
6899           return EnableSplitLTOUnit.takeError();
6900         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6901                               *EnableSplitLTOUnit};
6902       }
6903 
6904       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6905         Expected<bool> EnableSplitLTOUnit =
6906             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6907         if (!EnableSplitLTOUnit)
6908           return EnableSplitLTOUnit.takeError();
6909         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6910                               *EnableSplitLTOUnit};
6911       }
6912 
6913       // Ignore other sub-blocks.
6914       if (Error Err = Stream.SkipBlock())
6915         return std::move(Err);
6916       continue;
6917 
6918     case BitstreamEntry::Record:
6919       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6920         continue;
6921       else
6922         return StreamFailed.takeError();
6923     }
6924   }
6925 }
6926 
6927 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6928   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6929   if (!MsOrErr)
6930     return MsOrErr.takeError();
6931 
6932   if (MsOrErr->size() != 1)
6933     return error("Expected a single module");
6934 
6935   return (*MsOrErr)[0];
6936 }
6937 
6938 Expected<std::unique_ptr<Module>>
6939 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6940                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6941   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6942   if (!BM)
6943     return BM.takeError();
6944 
6945   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6946 }
6947 
6948 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6949     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6950     bool ShouldLazyLoadMetadata, bool IsImporting) {
6951   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6952                                      IsImporting);
6953   if (MOrErr)
6954     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6955   return MOrErr;
6956 }
6957 
6958 Expected<std::unique_ptr<Module>>
6959 BitcodeModule::parseModule(LLVMContext &Context,
6960                            DataLayoutCallbackTy DataLayoutCallback) {
6961   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6962   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6963   // written.  We must defer until the Module has been fully materialized.
6964 }
6965 
6966 Expected<std::unique_ptr<Module>>
6967 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6968                        DataLayoutCallbackTy DataLayoutCallback) {
6969   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6970   if (!BM)
6971     return BM.takeError();
6972 
6973   return BM->parseModule(Context, DataLayoutCallback);
6974 }
6975 
6976 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6977   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6978   if (!StreamOrErr)
6979     return StreamOrErr.takeError();
6980 
6981   return readTriple(*StreamOrErr);
6982 }
6983 
6984 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6985   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6986   if (!StreamOrErr)
6987     return StreamOrErr.takeError();
6988 
6989   return hasObjCCategory(*StreamOrErr);
6990 }
6991 
6992 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6993   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6994   if (!StreamOrErr)
6995     return StreamOrErr.takeError();
6996 
6997   return readIdentificationCode(*StreamOrErr);
6998 }
6999 
7000 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7001                                    ModuleSummaryIndex &CombinedIndex,
7002                                    uint64_t ModuleId) {
7003   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7004   if (!BM)
7005     return BM.takeError();
7006 
7007   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7008 }
7009 
7010 Expected<std::unique_ptr<ModuleSummaryIndex>>
7011 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7012   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7013   if (!BM)
7014     return BM.takeError();
7015 
7016   return BM->getSummary();
7017 }
7018 
7019 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7020   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7021   if (!BM)
7022     return BM.takeError();
7023 
7024   return BM->getLTOInfo();
7025 }
7026 
7027 Expected<std::unique_ptr<ModuleSummaryIndex>>
7028 llvm::getModuleSummaryIndexForFile(StringRef Path,
7029                                    bool IgnoreEmptyThinLTOIndexFile) {
7030   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7031       MemoryBuffer::getFileOrSTDIN(Path);
7032   if (!FileOrErr)
7033     return errorCodeToError(FileOrErr.getError());
7034   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7035     return nullptr;
7036   return getModuleSummaryIndex(**FileOrErr);
7037 }
7038