1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 // FIXME: This flag should either be removed or moved to clang as a driver flag. 97 static llvm::cl::opt<bool> IgnoreEmptyThinLTOIndexFile( 98 "ignore-empty-index-file", llvm::cl::ZeroOrMore, 99 llvm::cl::desc( 100 "Ignore an empty index file and perform non-ThinLTO compilation"), 101 llvm::cl::init(false)); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 Error error(const Twine &Message) { 110 return make_error<StringError>( 111 Message, make_error_code(BitcodeError::CorruptedBitcode)); 112 } 113 114 /// Helper to read the header common to all bitcode files. 115 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 116 // Sniff for the signature. 117 if (!Stream.canSkipToPos(4) || 118 Stream.Read(8) != 'B' || 119 Stream.Read(8) != 'C' || 120 Stream.Read(4) != 0x0 || 121 Stream.Read(4) != 0xC || 122 Stream.Read(4) != 0xE || 123 Stream.Read(4) != 0xD) 124 return false; 125 return true; 126 } 127 128 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (!hasValidBitcodeHeader(Stream)) 143 return error("Invalid bitcode signature"); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return error("Invalid record"); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry = Stream.advance(); 183 184 switch (Entry.Kind) { 185 default: 186 case BitstreamEntry::Error: 187 return error("Malformed block"); 188 case BitstreamEntry::EndBlock: 189 return ProducerIdentification; 190 case BitstreamEntry::Record: 191 // The interesting case. 192 break; 193 } 194 195 // Read a record. 196 Record.clear(); 197 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 198 switch (BitCode) { 199 default: // Default behavior: reject 200 return error("Invalid value"); 201 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 202 convertToString(Record, 0, ProducerIdentification); 203 break; 204 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 205 unsigned epoch = (unsigned)Record[0]; 206 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 207 return error( 208 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 209 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 210 } 211 } 212 } 213 } 214 } 215 216 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 217 // We expect a number of well-defined blocks, though we don't necessarily 218 // need to understand them all. 219 while (true) { 220 if (Stream.AtEndOfStream()) 221 return ""; 222 223 BitstreamEntry Entry = Stream.advance(); 224 switch (Entry.Kind) { 225 case BitstreamEntry::EndBlock: 226 case BitstreamEntry::Error: 227 return error("Malformed block"); 228 229 case BitstreamEntry::SubBlock: 230 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 231 return readIdentificationBlock(Stream); 232 233 // Ignore other sub-blocks. 234 if (Stream.SkipBlock()) 235 return error("Malformed block"); 236 continue; 237 case BitstreamEntry::Record: 238 Stream.skipRecord(Entry.ID); 239 continue; 240 } 241 } 242 } 243 244 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 245 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 246 return error("Invalid record"); 247 248 SmallVector<uint64_t, 64> Record; 249 // Read all the records for this module. 250 251 while (true) { 252 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::SubBlock: // Handled for us already. 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 case BitstreamEntry::EndBlock: 259 return false; 260 case BitstreamEntry::Record: 261 // The interesting case. 262 break; 263 } 264 265 // Read a record. 266 switch (Stream.readRecord(Entry.ID, Record)) { 267 default: 268 break; // Default behavior, ignore unknown content. 269 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 270 std::string S; 271 if (convertToString(Record, 0, S)) 272 return error("Invalid record"); 273 // Check for the i386 and other (x86_64, ARM) conventions 274 if (S.find("__DATA, __objc_catlist") != std::string::npos || 275 S.find("__OBJC,__category") != std::string::npos) 276 return true; 277 break; 278 } 279 } 280 Record.clear(); 281 } 282 llvm_unreachable("Exit infinite loop"); 283 } 284 285 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 286 // We expect a number of well-defined blocks, though we don't necessarily 287 // need to understand them all. 288 while (true) { 289 BitstreamEntry Entry = Stream.advance(); 290 291 switch (Entry.Kind) { 292 case BitstreamEntry::Error: 293 return error("Malformed block"); 294 case BitstreamEntry::EndBlock: 295 return false; 296 297 case BitstreamEntry::SubBlock: 298 if (Entry.ID == bitc::MODULE_BLOCK_ID) 299 return hasObjCCategoryInModule(Stream); 300 301 // Ignore other sub-blocks. 302 if (Stream.SkipBlock()) 303 return error("Malformed block"); 304 continue; 305 306 case BitstreamEntry::Record: 307 Stream.skipRecord(Entry.ID); 308 continue; 309 } 310 } 311 } 312 313 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 314 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 315 return error("Invalid record"); 316 317 SmallVector<uint64_t, 64> Record; 318 319 std::string Triple; 320 321 // Read all the records for this module. 322 while (true) { 323 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 324 325 switch (Entry.Kind) { 326 case BitstreamEntry::SubBlock: // Handled for us already. 327 case BitstreamEntry::Error: 328 return error("Malformed block"); 329 case BitstreamEntry::EndBlock: 330 return Triple; 331 case BitstreamEntry::Record: 332 // The interesting case. 333 break; 334 } 335 336 // Read a record. 337 switch (Stream.readRecord(Entry.ID, Record)) { 338 default: break; // Default behavior, ignore unknown content. 339 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 340 std::string S; 341 if (convertToString(Record, 0, S)) 342 return error("Invalid record"); 343 Triple = S; 344 break; 345 } 346 } 347 Record.clear(); 348 } 349 llvm_unreachable("Exit infinite loop"); 350 } 351 352 Expected<std::string> readTriple(BitstreamCursor &Stream) { 353 // We expect a number of well-defined blocks, though we don't necessarily 354 // need to understand them all. 355 while (true) { 356 BitstreamEntry Entry = Stream.advance(); 357 358 switch (Entry.Kind) { 359 case BitstreamEntry::Error: 360 return error("Malformed block"); 361 case BitstreamEntry::EndBlock: 362 return ""; 363 364 case BitstreamEntry::SubBlock: 365 if (Entry.ID == bitc::MODULE_BLOCK_ID) 366 return readModuleTriple(Stream); 367 368 // Ignore other sub-blocks. 369 if (Stream.SkipBlock()) 370 return error("Malformed block"); 371 continue; 372 373 case BitstreamEntry::Record: 374 Stream.skipRecord(Entry.ID); 375 continue; 376 } 377 } 378 } 379 380 class BitcodeReaderBase { 381 protected: 382 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 383 : Stream(std::move(Stream)), Strtab(Strtab) { 384 this->Stream.setBlockInfo(&BlockInfo); 385 } 386 387 BitstreamBlockInfo BlockInfo; 388 BitstreamCursor Stream; 389 StringRef Strtab; 390 391 /// In version 2 of the bitcode we store names of global values and comdats in 392 /// a string table rather than in the VST. 393 bool UseStrtab = false; 394 395 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 396 397 /// If this module uses a string table, pop the reference to the string table 398 /// and return the referenced string and the rest of the record. Otherwise 399 /// just return the record itself. 400 std::pair<StringRef, ArrayRef<uint64_t>> 401 readNameFromStrtab(ArrayRef<uint64_t> Record); 402 403 bool readBlockInfo(); 404 405 // Contains an arbitrary and optional string identifying the bitcode producer 406 std::string ProducerIdentification; 407 408 Error error(const Twine &Message); 409 }; 410 411 Error BitcodeReaderBase::error(const Twine &Message) { 412 std::string FullMsg = Message.str(); 413 if (!ProducerIdentification.empty()) 414 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 415 LLVM_VERSION_STRING "')"; 416 return ::error(FullMsg); 417 } 418 419 Expected<unsigned> 420 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 421 if (Record.size() < 1) 422 return error("Invalid record"); 423 unsigned ModuleVersion = Record[0]; 424 if (ModuleVersion > 2) 425 return error("Invalid value"); 426 UseStrtab = ModuleVersion >= 2; 427 return ModuleVersion; 428 } 429 430 std::pair<StringRef, ArrayRef<uint64_t>> 431 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 432 if (!UseStrtab) 433 return {"", Record}; 434 // Invalid reference. Let the caller complain about the record being empty. 435 if (Record[0] + Record[1] > Strtab.size()) 436 return {"", {}}; 437 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 438 } 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 461 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 462 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 463 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 524 public: 525 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 526 StringRef ProducerIdentification, LLVMContext &Context); 527 528 Error materializeForwardReferencedFunctions(); 529 530 Error materialize(GlobalValue *GV) override; 531 Error materializeModule() override; 532 std::vector<StructType *> getIdentifiedStructTypes() const override; 533 534 /// \brief Main interface to parsing a bitcode buffer. 535 /// \returns true if an error occurred. 536 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 537 bool IsImporting = false); 538 539 static uint64_t decodeSignRotatedValue(uint64_t V); 540 541 /// Materialize any deferred Metadata block. 542 Error materializeMetadata() override; 543 544 void setStripDebugInfo() override; 545 546 private: 547 std::vector<StructType *> IdentifiedStructTypes; 548 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 549 StructType *createIdentifiedStructType(LLVMContext &Context); 550 551 Type *getTypeByID(unsigned ID); 552 553 Value *getFnValueByID(unsigned ID, Type *Ty) { 554 if (Ty && Ty->isMetadataTy()) 555 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 556 return ValueList.getValueFwdRef(ID, Ty); 557 } 558 559 Metadata *getFnMetadataByID(unsigned ID) { 560 return MDLoader->getMetadataFwdRefOrLoad(ID); 561 } 562 563 BasicBlock *getBasicBlock(unsigned ID) const { 564 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 565 return FunctionBBs[ID]; 566 } 567 568 AttributeList getAttributes(unsigned i) const { 569 if (i-1 < MAttributes.size()) 570 return MAttributes[i-1]; 571 return AttributeList(); 572 } 573 574 /// Read a value/type pair out of the specified record from slot 'Slot'. 575 /// Increment Slot past the number of slots used in the record. Return true on 576 /// failure. 577 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 578 unsigned InstNum, Value *&ResVal) { 579 if (Slot == Record.size()) return true; 580 unsigned ValNo = (unsigned)Record[Slot++]; 581 // Adjust the ValNo, if it was encoded relative to the InstNum. 582 if (UseRelativeIDs) 583 ValNo = InstNum - ValNo; 584 if (ValNo < InstNum) { 585 // If this is not a forward reference, just return the value we already 586 // have. 587 ResVal = getFnValueByID(ValNo, nullptr); 588 return ResVal == nullptr; 589 } 590 if (Slot == Record.size()) 591 return true; 592 593 unsigned TypeNo = (unsigned)Record[Slot++]; 594 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 595 return ResVal == nullptr; 596 } 597 598 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 599 /// past the number of slots used by the value in the record. Return true if 600 /// there is an error. 601 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 602 unsigned InstNum, Type *Ty, Value *&ResVal) { 603 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 604 return true; 605 // All values currently take a single record slot. 606 ++Slot; 607 return false; 608 } 609 610 /// Like popValue, but does not increment the Slot number. 611 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 612 unsigned InstNum, Type *Ty, Value *&ResVal) { 613 ResVal = getValue(Record, Slot, InstNum, Ty); 614 return ResVal == nullptr; 615 } 616 617 /// Version of getValue that returns ResVal directly, or 0 if there is an 618 /// error. 619 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 620 unsigned InstNum, Type *Ty) { 621 if (Slot == Record.size()) return nullptr; 622 unsigned ValNo = (unsigned)Record[Slot]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 return getFnValueByID(ValNo, Ty); 627 } 628 629 /// Like getValue, but decodes signed VBRs. 630 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 631 unsigned InstNum, Type *Ty) { 632 if (Slot == Record.size()) return nullptr; 633 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 634 // Adjust the ValNo, if it was encoded relative to the InstNum. 635 if (UseRelativeIDs) 636 ValNo = InstNum - ValNo; 637 return getFnValueByID(ValNo, Ty); 638 } 639 640 /// Converts alignment exponent (i.e. power of two (or zero)) to the 641 /// corresponding alignment to use. If alignment is too large, returns 642 /// a corresponding error code. 643 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 644 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 645 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 646 647 Error parseComdatRecord(ArrayRef<uint64_t> Record); 648 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 649 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 651 ArrayRef<uint64_t> Record); 652 653 Error parseAttributeBlock(); 654 Error parseAttributeGroupBlock(); 655 Error parseTypeTable(); 656 Error parseTypeTableBody(); 657 Error parseOperandBundleTags(); 658 659 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 660 unsigned NameIndex, Triple &TT); 661 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 662 ArrayRef<uint64_t> Record); 663 Error parseValueSymbolTable(uint64_t Offset = 0); 664 Error parseGlobalValueSymbolTable(); 665 Error parseConstants(); 666 Error rememberAndSkipFunctionBodies(); 667 Error rememberAndSkipFunctionBody(); 668 /// Save the positions of the Metadata blocks and skip parsing the blocks. 669 Error rememberAndSkipMetadata(); 670 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 671 Error parseFunctionBody(Function *F); 672 Error globalCleanup(); 673 Error resolveGlobalAndIndirectSymbolInits(); 674 Error parseUseLists(); 675 Error findFunctionInStream( 676 Function *F, 677 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 678 }; 679 680 /// Class to manage reading and parsing function summary index bitcode 681 /// files/sections. 682 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 683 /// The module index built during parsing. 684 ModuleSummaryIndex &TheIndex; 685 686 /// Indicates whether we have encountered a global value summary section 687 /// yet during parsing. 688 bool SeenGlobalValSummary = false; 689 690 /// Indicates whether we have already parsed the VST, used for error checking. 691 bool SeenValueSymbolTable = false; 692 693 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 694 /// Used to enable on-demand parsing of the VST. 695 uint64_t VSTOffset = 0; 696 697 // Map to save ValueId to GUID association that was recorded in the 698 // ValueSymbolTable. It is used after the VST is parsed to convert 699 // call graph edges read from the function summary from referencing 700 // callees by their ValueId to using the GUID instead, which is how 701 // they are recorded in the summary index being built. 702 // We save a second GUID which is the same as the first one, but ignoring the 703 // linkage, i.e. for value other than local linkage they are identical. 704 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 705 ValueIdToCallGraphGUIDMap; 706 707 /// Map populated during module path string table parsing, from the 708 /// module ID to a string reference owned by the index's module 709 /// path string table, used to correlate with combined index 710 /// summary records. 711 DenseMap<uint64_t, StringRef> ModuleIdMap; 712 713 /// Original source file name recorded in a bitcode record. 714 std::string SourceFileName; 715 716 public: 717 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 718 ModuleSummaryIndex &TheIndex); 719 720 Error parseModule(StringRef ModulePath); 721 722 private: 723 void setValueGUID(uint64_t ValueID, StringRef ValueName, 724 GlobalValue::LinkageTypes Linkage, 725 StringRef SourceFileName); 726 Error parseValueSymbolTable( 727 uint64_t Offset, 728 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 729 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 730 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 731 bool IsOldProfileFormat, 732 bool HasProfile); 733 Error parseEntireSummary(StringRef ModulePath); 734 Error parseModuleStringTable(); 735 736 std::pair<GlobalValue::GUID, GlobalValue::GUID> 737 getGUIDFromValueId(unsigned ValueId); 738 }; 739 740 } // end anonymous namespace 741 742 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 743 Error Err) { 744 if (Err) { 745 std::error_code EC; 746 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 747 EC = EIB.convertToErrorCode(); 748 Ctx.emitError(EIB.message()); 749 }); 750 return EC; 751 } 752 return std::error_code(); 753 } 754 755 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 756 StringRef ProducerIdentification, 757 LLVMContext &Context) 758 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 759 ValueList(Context) { 760 this->ProducerIdentification = ProducerIdentification; 761 } 762 763 Error BitcodeReader::materializeForwardReferencedFunctions() { 764 if (WillMaterializeAllForwardRefs) 765 return Error::success(); 766 767 // Prevent recursion. 768 WillMaterializeAllForwardRefs = true; 769 770 while (!BasicBlockFwdRefQueue.empty()) { 771 Function *F = BasicBlockFwdRefQueue.front(); 772 BasicBlockFwdRefQueue.pop_front(); 773 assert(F && "Expected valid function"); 774 if (!BasicBlockFwdRefs.count(F)) 775 // Already materialized. 776 continue; 777 778 // Check for a function that isn't materializable to prevent an infinite 779 // loop. When parsing a blockaddress stored in a global variable, there 780 // isn't a trivial way to check if a function will have a body without a 781 // linear search through FunctionsWithBodies, so just check it here. 782 if (!F->isMaterializable()) 783 return error("Never resolved function from blockaddress"); 784 785 // Try to materialize F. 786 if (Error Err = materialize(F)) 787 return Err; 788 } 789 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 790 791 // Reset state. 792 WillMaterializeAllForwardRefs = false; 793 return Error::success(); 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Helper functions to implement forward reference resolution, etc. 798 //===----------------------------------------------------------------------===// 799 800 static bool hasImplicitComdat(size_t Val) { 801 switch (Val) { 802 default: 803 return false; 804 case 1: // Old WeakAnyLinkage 805 case 4: // Old LinkOnceAnyLinkage 806 case 10: // Old WeakODRLinkage 807 case 11: // Old LinkOnceODRLinkage 808 return true; 809 } 810 } 811 812 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 813 switch (Val) { 814 default: // Map unknown/new linkages to external 815 case 0: 816 return GlobalValue::ExternalLinkage; 817 case 2: 818 return GlobalValue::AppendingLinkage; 819 case 3: 820 return GlobalValue::InternalLinkage; 821 case 5: 822 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 823 case 6: 824 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 825 case 7: 826 return GlobalValue::ExternalWeakLinkage; 827 case 8: 828 return GlobalValue::CommonLinkage; 829 case 9: 830 return GlobalValue::PrivateLinkage; 831 case 12: 832 return GlobalValue::AvailableExternallyLinkage; 833 case 13: 834 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 835 case 14: 836 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 837 case 15: 838 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 839 case 1: // Old value with implicit comdat. 840 case 16: 841 return GlobalValue::WeakAnyLinkage; 842 case 10: // Old value with implicit comdat. 843 case 17: 844 return GlobalValue::WeakODRLinkage; 845 case 4: // Old value with implicit comdat. 846 case 18: 847 return GlobalValue::LinkOnceAnyLinkage; 848 case 11: // Old value with implicit comdat. 849 case 19: 850 return GlobalValue::LinkOnceODRLinkage; 851 } 852 } 853 854 /// Decode the flags for GlobalValue in the summary. 855 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 856 uint64_t Version) { 857 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 858 // like getDecodedLinkage() above. Any future change to the linkage enum and 859 // to getDecodedLinkage() will need to be taken into account here as above. 860 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 861 RawFlags = RawFlags >> 4; 862 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 863 // The LiveRoot flag wasn't introduced until version 3. For dead stripping 864 // to work correctly on earlier versions, we must conservatively treat all 865 // values as live. 866 bool LiveRoot = (RawFlags & 0x2) || Version < 3; 867 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot); 868 } 869 870 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 871 switch (Val) { 872 default: // Map unknown visibilities to default. 873 case 0: return GlobalValue::DefaultVisibility; 874 case 1: return GlobalValue::HiddenVisibility; 875 case 2: return GlobalValue::ProtectedVisibility; 876 } 877 } 878 879 static GlobalValue::DLLStorageClassTypes 880 getDecodedDLLStorageClass(unsigned Val) { 881 switch (Val) { 882 default: // Map unknown values to default. 883 case 0: return GlobalValue::DefaultStorageClass; 884 case 1: return GlobalValue::DLLImportStorageClass; 885 case 2: return GlobalValue::DLLExportStorageClass; 886 } 887 } 888 889 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 890 switch (Val) { 891 case 0: return GlobalVariable::NotThreadLocal; 892 default: // Map unknown non-zero value to general dynamic. 893 case 1: return GlobalVariable::GeneralDynamicTLSModel; 894 case 2: return GlobalVariable::LocalDynamicTLSModel; 895 case 3: return GlobalVariable::InitialExecTLSModel; 896 case 4: return GlobalVariable::LocalExecTLSModel; 897 } 898 } 899 900 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 901 switch (Val) { 902 default: // Map unknown to UnnamedAddr::None. 903 case 0: return GlobalVariable::UnnamedAddr::None; 904 case 1: return GlobalVariable::UnnamedAddr::Global; 905 case 2: return GlobalVariable::UnnamedAddr::Local; 906 } 907 } 908 909 static int getDecodedCastOpcode(unsigned Val) { 910 switch (Val) { 911 default: return -1; 912 case bitc::CAST_TRUNC : return Instruction::Trunc; 913 case bitc::CAST_ZEXT : return Instruction::ZExt; 914 case bitc::CAST_SEXT : return Instruction::SExt; 915 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 916 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 917 case bitc::CAST_UITOFP : return Instruction::UIToFP; 918 case bitc::CAST_SITOFP : return Instruction::SIToFP; 919 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 920 case bitc::CAST_FPEXT : return Instruction::FPExt; 921 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 922 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 923 case bitc::CAST_BITCAST : return Instruction::BitCast; 924 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 925 } 926 } 927 928 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 929 bool IsFP = Ty->isFPOrFPVectorTy(); 930 // BinOps are only valid for int/fp or vector of int/fp types 931 if (!IsFP && !Ty->isIntOrIntVectorTy()) 932 return -1; 933 934 switch (Val) { 935 default: 936 return -1; 937 case bitc::BINOP_ADD: 938 return IsFP ? Instruction::FAdd : Instruction::Add; 939 case bitc::BINOP_SUB: 940 return IsFP ? Instruction::FSub : Instruction::Sub; 941 case bitc::BINOP_MUL: 942 return IsFP ? Instruction::FMul : Instruction::Mul; 943 case bitc::BINOP_UDIV: 944 return IsFP ? -1 : Instruction::UDiv; 945 case bitc::BINOP_SDIV: 946 return IsFP ? Instruction::FDiv : Instruction::SDiv; 947 case bitc::BINOP_UREM: 948 return IsFP ? -1 : Instruction::URem; 949 case bitc::BINOP_SREM: 950 return IsFP ? Instruction::FRem : Instruction::SRem; 951 case bitc::BINOP_SHL: 952 return IsFP ? -1 : Instruction::Shl; 953 case bitc::BINOP_LSHR: 954 return IsFP ? -1 : Instruction::LShr; 955 case bitc::BINOP_ASHR: 956 return IsFP ? -1 : Instruction::AShr; 957 case bitc::BINOP_AND: 958 return IsFP ? -1 : Instruction::And; 959 case bitc::BINOP_OR: 960 return IsFP ? -1 : Instruction::Or; 961 case bitc::BINOP_XOR: 962 return IsFP ? -1 : Instruction::Xor; 963 } 964 } 965 966 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 967 switch (Val) { 968 default: return AtomicRMWInst::BAD_BINOP; 969 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 970 case bitc::RMW_ADD: return AtomicRMWInst::Add; 971 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 972 case bitc::RMW_AND: return AtomicRMWInst::And; 973 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 974 case bitc::RMW_OR: return AtomicRMWInst::Or; 975 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 976 case bitc::RMW_MAX: return AtomicRMWInst::Max; 977 case bitc::RMW_MIN: return AtomicRMWInst::Min; 978 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 979 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 980 } 981 } 982 983 static AtomicOrdering getDecodedOrdering(unsigned Val) { 984 switch (Val) { 985 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 986 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 987 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 988 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 989 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 990 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 991 default: // Map unknown orderings to sequentially-consistent. 992 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 993 } 994 } 995 996 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 997 switch (Val) { 998 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 999 default: // Map unknown scopes to cross-thread. 1000 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1001 } 1002 } 1003 1004 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1005 switch (Val) { 1006 default: // Map unknown selection kinds to any. 1007 case bitc::COMDAT_SELECTION_KIND_ANY: 1008 return Comdat::Any; 1009 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1010 return Comdat::ExactMatch; 1011 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1012 return Comdat::Largest; 1013 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1014 return Comdat::NoDuplicates; 1015 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1016 return Comdat::SameSize; 1017 } 1018 } 1019 1020 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1021 FastMathFlags FMF; 1022 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1023 FMF.setUnsafeAlgebra(); 1024 if (0 != (Val & FastMathFlags::NoNaNs)) 1025 FMF.setNoNaNs(); 1026 if (0 != (Val & FastMathFlags::NoInfs)) 1027 FMF.setNoInfs(); 1028 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1029 FMF.setNoSignedZeros(); 1030 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1031 FMF.setAllowReciprocal(); 1032 if (0 != (Val & FastMathFlags::AllowContract)) 1033 FMF.setAllowContract(true); 1034 return FMF; 1035 } 1036 1037 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1038 switch (Val) { 1039 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1040 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1041 } 1042 } 1043 1044 1045 Type *BitcodeReader::getTypeByID(unsigned ID) { 1046 // The type table size is always specified correctly. 1047 if (ID >= TypeList.size()) 1048 return nullptr; 1049 1050 if (Type *Ty = TypeList[ID]) 1051 return Ty; 1052 1053 // If we have a forward reference, the only possible case is when it is to a 1054 // named struct. Just create a placeholder for now. 1055 return TypeList[ID] = createIdentifiedStructType(Context); 1056 } 1057 1058 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1059 StringRef Name) { 1060 auto *Ret = StructType::create(Context, Name); 1061 IdentifiedStructTypes.push_back(Ret); 1062 return Ret; 1063 } 1064 1065 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1066 auto *Ret = StructType::create(Context); 1067 IdentifiedStructTypes.push_back(Ret); 1068 return Ret; 1069 } 1070 1071 //===----------------------------------------------------------------------===// 1072 // Functions for parsing blocks from the bitcode file 1073 //===----------------------------------------------------------------------===// 1074 1075 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1076 switch (Val) { 1077 case Attribute::EndAttrKinds: 1078 llvm_unreachable("Synthetic enumerators which should never get here"); 1079 1080 case Attribute::None: return 0; 1081 case Attribute::ZExt: return 1 << 0; 1082 case Attribute::SExt: return 1 << 1; 1083 case Attribute::NoReturn: return 1 << 2; 1084 case Attribute::InReg: return 1 << 3; 1085 case Attribute::StructRet: return 1 << 4; 1086 case Attribute::NoUnwind: return 1 << 5; 1087 case Attribute::NoAlias: return 1 << 6; 1088 case Attribute::ByVal: return 1 << 7; 1089 case Attribute::Nest: return 1 << 8; 1090 case Attribute::ReadNone: return 1 << 9; 1091 case Attribute::ReadOnly: return 1 << 10; 1092 case Attribute::NoInline: return 1 << 11; 1093 case Attribute::AlwaysInline: return 1 << 12; 1094 case Attribute::OptimizeForSize: return 1 << 13; 1095 case Attribute::StackProtect: return 1 << 14; 1096 case Attribute::StackProtectReq: return 1 << 15; 1097 case Attribute::Alignment: return 31 << 16; 1098 case Attribute::NoCapture: return 1 << 21; 1099 case Attribute::NoRedZone: return 1 << 22; 1100 case Attribute::NoImplicitFloat: return 1 << 23; 1101 case Attribute::Naked: return 1 << 24; 1102 case Attribute::InlineHint: return 1 << 25; 1103 case Attribute::StackAlignment: return 7 << 26; 1104 case Attribute::ReturnsTwice: return 1 << 29; 1105 case Attribute::UWTable: return 1 << 30; 1106 case Attribute::NonLazyBind: return 1U << 31; 1107 case Attribute::SanitizeAddress: return 1ULL << 32; 1108 case Attribute::MinSize: return 1ULL << 33; 1109 case Attribute::NoDuplicate: return 1ULL << 34; 1110 case Attribute::StackProtectStrong: return 1ULL << 35; 1111 case Attribute::SanitizeThread: return 1ULL << 36; 1112 case Attribute::SanitizeMemory: return 1ULL << 37; 1113 case Attribute::NoBuiltin: return 1ULL << 38; 1114 case Attribute::Returned: return 1ULL << 39; 1115 case Attribute::Cold: return 1ULL << 40; 1116 case Attribute::Builtin: return 1ULL << 41; 1117 case Attribute::OptimizeNone: return 1ULL << 42; 1118 case Attribute::InAlloca: return 1ULL << 43; 1119 case Attribute::NonNull: return 1ULL << 44; 1120 case Attribute::JumpTable: return 1ULL << 45; 1121 case Attribute::Convergent: return 1ULL << 46; 1122 case Attribute::SafeStack: return 1ULL << 47; 1123 case Attribute::NoRecurse: return 1ULL << 48; 1124 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1125 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1126 case Attribute::SwiftSelf: return 1ULL << 51; 1127 case Attribute::SwiftError: return 1ULL << 52; 1128 case Attribute::WriteOnly: return 1ULL << 53; 1129 case Attribute::Speculatable: return 1ULL << 54; 1130 case Attribute::Dereferenceable: 1131 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1132 break; 1133 case Attribute::DereferenceableOrNull: 1134 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1135 "format"); 1136 break; 1137 case Attribute::ArgMemOnly: 1138 llvm_unreachable("argmemonly attribute not supported in raw format"); 1139 break; 1140 case Attribute::AllocSize: 1141 llvm_unreachable("allocsize not supported in raw format"); 1142 break; 1143 } 1144 llvm_unreachable("Unsupported attribute type"); 1145 } 1146 1147 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1148 if (!Val) return; 1149 1150 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1151 I = Attribute::AttrKind(I + 1)) { 1152 if (I == Attribute::Dereferenceable || 1153 I == Attribute::DereferenceableOrNull || 1154 I == Attribute::ArgMemOnly || 1155 I == Attribute::AllocSize) 1156 continue; 1157 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1158 if (I == Attribute::Alignment) 1159 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1160 else if (I == Attribute::StackAlignment) 1161 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1162 else 1163 B.addAttribute(I); 1164 } 1165 } 1166 } 1167 1168 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1169 /// been decoded from the given integer. This function must stay in sync with 1170 /// 'encodeLLVMAttributesForBitcode'. 1171 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1172 uint64_t EncodedAttrs) { 1173 // FIXME: Remove in 4.0. 1174 1175 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1176 // the bits above 31 down by 11 bits. 1177 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1178 assert((!Alignment || isPowerOf2_32(Alignment)) && 1179 "Alignment must be a power of two."); 1180 1181 if (Alignment) 1182 B.addAlignmentAttr(Alignment); 1183 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1184 (EncodedAttrs & 0xffff)); 1185 } 1186 1187 Error BitcodeReader::parseAttributeBlock() { 1188 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1189 return error("Invalid record"); 1190 1191 if (!MAttributes.empty()) 1192 return error("Invalid multiple blocks"); 1193 1194 SmallVector<uint64_t, 64> Record; 1195 1196 SmallVector<AttributeList, 8> Attrs; 1197 1198 // Read all the records. 1199 while (true) { 1200 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1201 1202 switch (Entry.Kind) { 1203 case BitstreamEntry::SubBlock: // Handled for us already. 1204 case BitstreamEntry::Error: 1205 return error("Malformed block"); 1206 case BitstreamEntry::EndBlock: 1207 return Error::success(); 1208 case BitstreamEntry::Record: 1209 // The interesting case. 1210 break; 1211 } 1212 1213 // Read a record. 1214 Record.clear(); 1215 switch (Stream.readRecord(Entry.ID, Record)) { 1216 default: // Default behavior: ignore. 1217 break; 1218 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1219 // FIXME: Remove in 4.0. 1220 if (Record.size() & 1) 1221 return error("Invalid record"); 1222 1223 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1224 AttrBuilder B; 1225 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1226 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1227 } 1228 1229 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1230 Attrs.clear(); 1231 break; 1232 } 1233 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1234 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1235 Attrs.push_back(MAttributeGroups[Record[i]]); 1236 1237 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1238 Attrs.clear(); 1239 break; 1240 } 1241 } 1242 } 1243 } 1244 1245 // Returns Attribute::None on unrecognized codes. 1246 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1247 switch (Code) { 1248 default: 1249 return Attribute::None; 1250 case bitc::ATTR_KIND_ALIGNMENT: 1251 return Attribute::Alignment; 1252 case bitc::ATTR_KIND_ALWAYS_INLINE: 1253 return Attribute::AlwaysInline; 1254 case bitc::ATTR_KIND_ARGMEMONLY: 1255 return Attribute::ArgMemOnly; 1256 case bitc::ATTR_KIND_BUILTIN: 1257 return Attribute::Builtin; 1258 case bitc::ATTR_KIND_BY_VAL: 1259 return Attribute::ByVal; 1260 case bitc::ATTR_KIND_IN_ALLOCA: 1261 return Attribute::InAlloca; 1262 case bitc::ATTR_KIND_COLD: 1263 return Attribute::Cold; 1264 case bitc::ATTR_KIND_CONVERGENT: 1265 return Attribute::Convergent; 1266 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1267 return Attribute::InaccessibleMemOnly; 1268 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1269 return Attribute::InaccessibleMemOrArgMemOnly; 1270 case bitc::ATTR_KIND_INLINE_HINT: 1271 return Attribute::InlineHint; 1272 case bitc::ATTR_KIND_IN_REG: 1273 return Attribute::InReg; 1274 case bitc::ATTR_KIND_JUMP_TABLE: 1275 return Attribute::JumpTable; 1276 case bitc::ATTR_KIND_MIN_SIZE: 1277 return Attribute::MinSize; 1278 case bitc::ATTR_KIND_NAKED: 1279 return Attribute::Naked; 1280 case bitc::ATTR_KIND_NEST: 1281 return Attribute::Nest; 1282 case bitc::ATTR_KIND_NO_ALIAS: 1283 return Attribute::NoAlias; 1284 case bitc::ATTR_KIND_NO_BUILTIN: 1285 return Attribute::NoBuiltin; 1286 case bitc::ATTR_KIND_NO_CAPTURE: 1287 return Attribute::NoCapture; 1288 case bitc::ATTR_KIND_NO_DUPLICATE: 1289 return Attribute::NoDuplicate; 1290 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1291 return Attribute::NoImplicitFloat; 1292 case bitc::ATTR_KIND_NO_INLINE: 1293 return Attribute::NoInline; 1294 case bitc::ATTR_KIND_NO_RECURSE: 1295 return Attribute::NoRecurse; 1296 case bitc::ATTR_KIND_NON_LAZY_BIND: 1297 return Attribute::NonLazyBind; 1298 case bitc::ATTR_KIND_NON_NULL: 1299 return Attribute::NonNull; 1300 case bitc::ATTR_KIND_DEREFERENCEABLE: 1301 return Attribute::Dereferenceable; 1302 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1303 return Attribute::DereferenceableOrNull; 1304 case bitc::ATTR_KIND_ALLOC_SIZE: 1305 return Attribute::AllocSize; 1306 case bitc::ATTR_KIND_NO_RED_ZONE: 1307 return Attribute::NoRedZone; 1308 case bitc::ATTR_KIND_NO_RETURN: 1309 return Attribute::NoReturn; 1310 case bitc::ATTR_KIND_NO_UNWIND: 1311 return Attribute::NoUnwind; 1312 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1313 return Attribute::OptimizeForSize; 1314 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1315 return Attribute::OptimizeNone; 1316 case bitc::ATTR_KIND_READ_NONE: 1317 return Attribute::ReadNone; 1318 case bitc::ATTR_KIND_READ_ONLY: 1319 return Attribute::ReadOnly; 1320 case bitc::ATTR_KIND_RETURNED: 1321 return Attribute::Returned; 1322 case bitc::ATTR_KIND_RETURNS_TWICE: 1323 return Attribute::ReturnsTwice; 1324 case bitc::ATTR_KIND_S_EXT: 1325 return Attribute::SExt; 1326 case bitc::ATTR_KIND_SPECULATABLE: 1327 return Attribute::Speculatable; 1328 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1329 return Attribute::StackAlignment; 1330 case bitc::ATTR_KIND_STACK_PROTECT: 1331 return Attribute::StackProtect; 1332 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1333 return Attribute::StackProtectReq; 1334 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1335 return Attribute::StackProtectStrong; 1336 case bitc::ATTR_KIND_SAFESTACK: 1337 return Attribute::SafeStack; 1338 case bitc::ATTR_KIND_STRUCT_RET: 1339 return Attribute::StructRet; 1340 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1341 return Attribute::SanitizeAddress; 1342 case bitc::ATTR_KIND_SANITIZE_THREAD: 1343 return Attribute::SanitizeThread; 1344 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1345 return Attribute::SanitizeMemory; 1346 case bitc::ATTR_KIND_SWIFT_ERROR: 1347 return Attribute::SwiftError; 1348 case bitc::ATTR_KIND_SWIFT_SELF: 1349 return Attribute::SwiftSelf; 1350 case bitc::ATTR_KIND_UW_TABLE: 1351 return Attribute::UWTable; 1352 case bitc::ATTR_KIND_WRITEONLY: 1353 return Attribute::WriteOnly; 1354 case bitc::ATTR_KIND_Z_EXT: 1355 return Attribute::ZExt; 1356 } 1357 } 1358 1359 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1360 unsigned &Alignment) { 1361 // Note: Alignment in bitcode files is incremented by 1, so that zero 1362 // can be used for default alignment. 1363 if (Exponent > Value::MaxAlignmentExponent + 1) 1364 return error("Invalid alignment value"); 1365 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1366 return Error::success(); 1367 } 1368 1369 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1370 *Kind = getAttrFromCode(Code); 1371 if (*Kind == Attribute::None) 1372 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1373 return Error::success(); 1374 } 1375 1376 Error BitcodeReader::parseAttributeGroupBlock() { 1377 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1378 return error("Invalid record"); 1379 1380 if (!MAttributeGroups.empty()) 1381 return error("Invalid multiple blocks"); 1382 1383 SmallVector<uint64_t, 64> Record; 1384 1385 // Read all the records. 1386 while (true) { 1387 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1388 1389 switch (Entry.Kind) { 1390 case BitstreamEntry::SubBlock: // Handled for us already. 1391 case BitstreamEntry::Error: 1392 return error("Malformed block"); 1393 case BitstreamEntry::EndBlock: 1394 return Error::success(); 1395 case BitstreamEntry::Record: 1396 // The interesting case. 1397 break; 1398 } 1399 1400 // Read a record. 1401 Record.clear(); 1402 switch (Stream.readRecord(Entry.ID, Record)) { 1403 default: // Default behavior: ignore. 1404 break; 1405 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1406 if (Record.size() < 3) 1407 return error("Invalid record"); 1408 1409 uint64_t GrpID = Record[0]; 1410 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1411 1412 AttrBuilder B; 1413 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1414 if (Record[i] == 0) { // Enum attribute 1415 Attribute::AttrKind Kind; 1416 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1417 return Err; 1418 1419 B.addAttribute(Kind); 1420 } else if (Record[i] == 1) { // Integer attribute 1421 Attribute::AttrKind Kind; 1422 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1423 return Err; 1424 if (Kind == Attribute::Alignment) 1425 B.addAlignmentAttr(Record[++i]); 1426 else if (Kind == Attribute::StackAlignment) 1427 B.addStackAlignmentAttr(Record[++i]); 1428 else if (Kind == Attribute::Dereferenceable) 1429 B.addDereferenceableAttr(Record[++i]); 1430 else if (Kind == Attribute::DereferenceableOrNull) 1431 B.addDereferenceableOrNullAttr(Record[++i]); 1432 else if (Kind == Attribute::AllocSize) 1433 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1434 } else { // String attribute 1435 assert((Record[i] == 3 || Record[i] == 4) && 1436 "Invalid attribute group entry"); 1437 bool HasValue = (Record[i++] == 4); 1438 SmallString<64> KindStr; 1439 SmallString<64> ValStr; 1440 1441 while (Record[i] != 0 && i != e) 1442 KindStr += Record[i++]; 1443 assert(Record[i] == 0 && "Kind string not null terminated"); 1444 1445 if (HasValue) { 1446 // Has a value associated with it. 1447 ++i; // Skip the '0' that terminates the "kind" string. 1448 while (Record[i] != 0 && i != e) 1449 ValStr += Record[i++]; 1450 assert(Record[i] == 0 && "Value string not null terminated"); 1451 } 1452 1453 B.addAttribute(KindStr.str(), ValStr.str()); 1454 } 1455 } 1456 1457 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1458 break; 1459 } 1460 } 1461 } 1462 } 1463 1464 Error BitcodeReader::parseTypeTable() { 1465 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1466 return error("Invalid record"); 1467 1468 return parseTypeTableBody(); 1469 } 1470 1471 Error BitcodeReader::parseTypeTableBody() { 1472 if (!TypeList.empty()) 1473 return error("Invalid multiple blocks"); 1474 1475 SmallVector<uint64_t, 64> Record; 1476 unsigned NumRecords = 0; 1477 1478 SmallString<64> TypeName; 1479 1480 // Read all the records for this type table. 1481 while (true) { 1482 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1483 1484 switch (Entry.Kind) { 1485 case BitstreamEntry::SubBlock: // Handled for us already. 1486 case BitstreamEntry::Error: 1487 return error("Malformed block"); 1488 case BitstreamEntry::EndBlock: 1489 if (NumRecords != TypeList.size()) 1490 return error("Malformed block"); 1491 return Error::success(); 1492 case BitstreamEntry::Record: 1493 // The interesting case. 1494 break; 1495 } 1496 1497 // Read a record. 1498 Record.clear(); 1499 Type *ResultTy = nullptr; 1500 switch (Stream.readRecord(Entry.ID, Record)) { 1501 default: 1502 return error("Invalid value"); 1503 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1504 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1505 // type list. This allows us to reserve space. 1506 if (Record.size() < 1) 1507 return error("Invalid record"); 1508 TypeList.resize(Record[0]); 1509 continue; 1510 case bitc::TYPE_CODE_VOID: // VOID 1511 ResultTy = Type::getVoidTy(Context); 1512 break; 1513 case bitc::TYPE_CODE_HALF: // HALF 1514 ResultTy = Type::getHalfTy(Context); 1515 break; 1516 case bitc::TYPE_CODE_FLOAT: // FLOAT 1517 ResultTy = Type::getFloatTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1520 ResultTy = Type::getDoubleTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1523 ResultTy = Type::getX86_FP80Ty(Context); 1524 break; 1525 case bitc::TYPE_CODE_FP128: // FP128 1526 ResultTy = Type::getFP128Ty(Context); 1527 break; 1528 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1529 ResultTy = Type::getPPC_FP128Ty(Context); 1530 break; 1531 case bitc::TYPE_CODE_LABEL: // LABEL 1532 ResultTy = Type::getLabelTy(Context); 1533 break; 1534 case bitc::TYPE_CODE_METADATA: // METADATA 1535 ResultTy = Type::getMetadataTy(Context); 1536 break; 1537 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1538 ResultTy = Type::getX86_MMXTy(Context); 1539 break; 1540 case bitc::TYPE_CODE_TOKEN: // TOKEN 1541 ResultTy = Type::getTokenTy(Context); 1542 break; 1543 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1544 if (Record.size() < 1) 1545 return error("Invalid record"); 1546 1547 uint64_t NumBits = Record[0]; 1548 if (NumBits < IntegerType::MIN_INT_BITS || 1549 NumBits > IntegerType::MAX_INT_BITS) 1550 return error("Bitwidth for integer type out of range"); 1551 ResultTy = IntegerType::get(Context, NumBits); 1552 break; 1553 } 1554 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1555 // [pointee type, address space] 1556 if (Record.size() < 1) 1557 return error("Invalid record"); 1558 unsigned AddressSpace = 0; 1559 if (Record.size() == 2) 1560 AddressSpace = Record[1]; 1561 ResultTy = getTypeByID(Record[0]); 1562 if (!ResultTy || 1563 !PointerType::isValidElementType(ResultTy)) 1564 return error("Invalid type"); 1565 ResultTy = PointerType::get(ResultTy, AddressSpace); 1566 break; 1567 } 1568 case bitc::TYPE_CODE_FUNCTION_OLD: { 1569 // FIXME: attrid is dead, remove it in LLVM 4.0 1570 // FUNCTION: [vararg, attrid, retty, paramty x N] 1571 if (Record.size() < 3) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> ArgTys; 1574 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 ArgTys.push_back(T); 1577 else 1578 break; 1579 } 1580 1581 ResultTy = getTypeByID(Record[2]); 1582 if (!ResultTy || ArgTys.size() < Record.size()-3) 1583 return error("Invalid type"); 1584 1585 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1586 break; 1587 } 1588 case bitc::TYPE_CODE_FUNCTION: { 1589 // FUNCTION: [vararg, retty, paramty x N] 1590 if (Record.size() < 2) 1591 return error("Invalid record"); 1592 SmallVector<Type*, 8> ArgTys; 1593 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1594 if (Type *T = getTypeByID(Record[i])) { 1595 if (!FunctionType::isValidArgumentType(T)) 1596 return error("Invalid function argument type"); 1597 ArgTys.push_back(T); 1598 } 1599 else 1600 break; 1601 } 1602 1603 ResultTy = getTypeByID(Record[1]); 1604 if (!ResultTy || ArgTys.size() < Record.size()-2) 1605 return error("Invalid type"); 1606 1607 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1608 break; 1609 } 1610 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1611 if (Record.size() < 1) 1612 return error("Invalid record"); 1613 SmallVector<Type*, 8> EltTys; 1614 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1615 if (Type *T = getTypeByID(Record[i])) 1616 EltTys.push_back(T); 1617 else 1618 break; 1619 } 1620 if (EltTys.size() != Record.size()-1) 1621 return error("Invalid type"); 1622 ResultTy = StructType::get(Context, EltTys, Record[0]); 1623 break; 1624 } 1625 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1626 if (convertToString(Record, 0, TypeName)) 1627 return error("Invalid record"); 1628 continue; 1629 1630 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1631 if (Record.size() < 1) 1632 return error("Invalid record"); 1633 1634 if (NumRecords >= TypeList.size()) 1635 return error("Invalid TYPE table"); 1636 1637 // Check to see if this was forward referenced, if so fill in the temp. 1638 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1639 if (Res) { 1640 Res->setName(TypeName); 1641 TypeList[NumRecords] = nullptr; 1642 } else // Otherwise, create a new struct. 1643 Res = createIdentifiedStructType(Context, TypeName); 1644 TypeName.clear(); 1645 1646 SmallVector<Type*, 8> EltTys; 1647 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1648 if (Type *T = getTypeByID(Record[i])) 1649 EltTys.push_back(T); 1650 else 1651 break; 1652 } 1653 if (EltTys.size() != Record.size()-1) 1654 return error("Invalid record"); 1655 Res->setBody(EltTys, Record[0]); 1656 ResultTy = Res; 1657 break; 1658 } 1659 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1660 if (Record.size() != 1) 1661 return error("Invalid record"); 1662 1663 if (NumRecords >= TypeList.size()) 1664 return error("Invalid TYPE table"); 1665 1666 // Check to see if this was forward referenced, if so fill in the temp. 1667 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1668 if (Res) { 1669 Res->setName(TypeName); 1670 TypeList[NumRecords] = nullptr; 1671 } else // Otherwise, create a new struct with no body. 1672 Res = createIdentifiedStructType(Context, TypeName); 1673 TypeName.clear(); 1674 ResultTy = Res; 1675 break; 1676 } 1677 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1678 if (Record.size() < 2) 1679 return error("Invalid record"); 1680 ResultTy = getTypeByID(Record[1]); 1681 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1682 return error("Invalid type"); 1683 ResultTy = ArrayType::get(ResultTy, Record[0]); 1684 break; 1685 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1686 if (Record.size() < 2) 1687 return error("Invalid record"); 1688 if (Record[0] == 0) 1689 return error("Invalid vector length"); 1690 ResultTy = getTypeByID(Record[1]); 1691 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1692 return error("Invalid type"); 1693 ResultTy = VectorType::get(ResultTy, Record[0]); 1694 break; 1695 } 1696 1697 if (NumRecords >= TypeList.size()) 1698 return error("Invalid TYPE table"); 1699 if (TypeList[NumRecords]) 1700 return error( 1701 "Invalid TYPE table: Only named structs can be forward referenced"); 1702 assert(ResultTy && "Didn't read a type?"); 1703 TypeList[NumRecords++] = ResultTy; 1704 } 1705 } 1706 1707 Error BitcodeReader::parseOperandBundleTags() { 1708 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1709 return error("Invalid record"); 1710 1711 if (!BundleTags.empty()) 1712 return error("Invalid multiple blocks"); 1713 1714 SmallVector<uint64_t, 64> Record; 1715 1716 while (true) { 1717 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1718 1719 switch (Entry.Kind) { 1720 case BitstreamEntry::SubBlock: // Handled for us already. 1721 case BitstreamEntry::Error: 1722 return error("Malformed block"); 1723 case BitstreamEntry::EndBlock: 1724 return Error::success(); 1725 case BitstreamEntry::Record: 1726 // The interesting case. 1727 break; 1728 } 1729 1730 // Tags are implicitly mapped to integers by their order. 1731 1732 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1733 return error("Invalid record"); 1734 1735 // OPERAND_BUNDLE_TAG: [strchr x N] 1736 BundleTags.emplace_back(); 1737 if (convertToString(Record, 0, BundleTags.back())) 1738 return error("Invalid record"); 1739 Record.clear(); 1740 } 1741 } 1742 1743 /// Associate a value with its name from the given index in the provided record. 1744 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1745 unsigned NameIndex, Triple &TT) { 1746 SmallString<128> ValueName; 1747 if (convertToString(Record, NameIndex, ValueName)) 1748 return error("Invalid record"); 1749 unsigned ValueID = Record[0]; 1750 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1751 return error("Invalid record"); 1752 Value *V = ValueList[ValueID]; 1753 1754 StringRef NameStr(ValueName.data(), ValueName.size()); 1755 if (NameStr.find_first_of(0) != StringRef::npos) 1756 return error("Invalid value name"); 1757 V->setName(NameStr); 1758 auto *GO = dyn_cast<GlobalObject>(V); 1759 if (GO) { 1760 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1761 if (TT.isOSBinFormatMachO()) 1762 GO->setComdat(nullptr); 1763 else 1764 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1765 } 1766 } 1767 return V; 1768 } 1769 1770 /// Helper to note and return the current location, and jump to the given 1771 /// offset. 1772 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1773 BitstreamCursor &Stream) { 1774 // Save the current parsing location so we can jump back at the end 1775 // of the VST read. 1776 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1777 Stream.JumpToBit(Offset * 32); 1778 #ifndef NDEBUG 1779 // Do some checking if we are in debug mode. 1780 BitstreamEntry Entry = Stream.advance(); 1781 assert(Entry.Kind == BitstreamEntry::SubBlock); 1782 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1783 #else 1784 // In NDEBUG mode ignore the output so we don't get an unused variable 1785 // warning. 1786 Stream.advance(); 1787 #endif 1788 return CurrentBit; 1789 } 1790 1791 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1792 Function *F, 1793 ArrayRef<uint64_t> Record) { 1794 // Note that we subtract 1 here because the offset is relative to one word 1795 // before the start of the identification or module block, which was 1796 // historically always the start of the regular bitcode header. 1797 uint64_t FuncWordOffset = Record[1] - 1; 1798 uint64_t FuncBitOffset = FuncWordOffset * 32; 1799 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1800 // Set the LastFunctionBlockBit to point to the last function block. 1801 // Later when parsing is resumed after function materialization, 1802 // we can simply skip that last function block. 1803 if (FuncBitOffset > LastFunctionBlockBit) 1804 LastFunctionBlockBit = FuncBitOffset; 1805 } 1806 1807 /// Read a new-style GlobalValue symbol table. 1808 Error BitcodeReader::parseGlobalValueSymbolTable() { 1809 unsigned FuncBitcodeOffsetDelta = 1810 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1811 1812 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1813 return error("Invalid record"); 1814 1815 SmallVector<uint64_t, 64> Record; 1816 while (true) { 1817 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1818 1819 switch (Entry.Kind) { 1820 case BitstreamEntry::SubBlock: 1821 case BitstreamEntry::Error: 1822 return error("Malformed block"); 1823 case BitstreamEntry::EndBlock: 1824 return Error::success(); 1825 case BitstreamEntry::Record: 1826 break; 1827 } 1828 1829 Record.clear(); 1830 switch (Stream.readRecord(Entry.ID, Record)) { 1831 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1832 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1833 cast<Function>(ValueList[Record[0]]), Record); 1834 break; 1835 } 1836 } 1837 } 1838 1839 /// Parse the value symbol table at either the current parsing location or 1840 /// at the given bit offset if provided. 1841 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1842 uint64_t CurrentBit; 1843 // Pass in the Offset to distinguish between calling for the module-level 1844 // VST (where we want to jump to the VST offset) and the function-level 1845 // VST (where we don't). 1846 if (Offset > 0) { 1847 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1848 // If this module uses a string table, read this as a module-level VST. 1849 if (UseStrtab) { 1850 if (Error Err = parseGlobalValueSymbolTable()) 1851 return Err; 1852 Stream.JumpToBit(CurrentBit); 1853 return Error::success(); 1854 } 1855 // Otherwise, the VST will be in a similar format to a function-level VST, 1856 // and will contain symbol names. 1857 } 1858 1859 // Compute the delta between the bitcode indices in the VST (the word offset 1860 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1861 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1862 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1863 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1864 // just before entering the VST subblock because: 1) the EnterSubBlock 1865 // changes the AbbrevID width; 2) the VST block is nested within the same 1866 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1867 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1868 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1869 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1870 unsigned FuncBitcodeOffsetDelta = 1871 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1872 1873 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1874 return error("Invalid record"); 1875 1876 SmallVector<uint64_t, 64> Record; 1877 1878 Triple TT(TheModule->getTargetTriple()); 1879 1880 // Read all the records for this value table. 1881 SmallString<128> ValueName; 1882 1883 while (true) { 1884 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1885 1886 switch (Entry.Kind) { 1887 case BitstreamEntry::SubBlock: // Handled for us already. 1888 case BitstreamEntry::Error: 1889 return error("Malformed block"); 1890 case BitstreamEntry::EndBlock: 1891 if (Offset > 0) 1892 Stream.JumpToBit(CurrentBit); 1893 return Error::success(); 1894 case BitstreamEntry::Record: 1895 // The interesting case. 1896 break; 1897 } 1898 1899 // Read a record. 1900 Record.clear(); 1901 switch (Stream.readRecord(Entry.ID, Record)) { 1902 default: // Default behavior: unknown type. 1903 break; 1904 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1905 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1906 if (Error Err = ValOrErr.takeError()) 1907 return Err; 1908 ValOrErr.get(); 1909 break; 1910 } 1911 case bitc::VST_CODE_FNENTRY: { 1912 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1913 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1914 if (Error Err = ValOrErr.takeError()) 1915 return Err; 1916 Value *V = ValOrErr.get(); 1917 1918 // Ignore function offsets emitted for aliases of functions in older 1919 // versions of LLVM. 1920 if (auto *F = dyn_cast<Function>(V)) 1921 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1922 break; 1923 } 1924 case bitc::VST_CODE_BBENTRY: { 1925 if (convertToString(Record, 1, ValueName)) 1926 return error("Invalid record"); 1927 BasicBlock *BB = getBasicBlock(Record[0]); 1928 if (!BB) 1929 return error("Invalid record"); 1930 1931 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1932 ValueName.clear(); 1933 break; 1934 } 1935 } 1936 } 1937 } 1938 1939 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1940 /// encoding. 1941 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1942 if ((V & 1) == 0) 1943 return V >> 1; 1944 if (V != 1) 1945 return -(V >> 1); 1946 // There is no such thing as -0 with integers. "-0" really means MININT. 1947 return 1ULL << 63; 1948 } 1949 1950 /// Resolve all of the initializers for global values and aliases that we can. 1951 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1952 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1953 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1954 IndirectSymbolInitWorklist; 1955 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1956 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1957 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1958 1959 GlobalInitWorklist.swap(GlobalInits); 1960 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1961 FunctionPrefixWorklist.swap(FunctionPrefixes); 1962 FunctionPrologueWorklist.swap(FunctionPrologues); 1963 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1964 1965 while (!GlobalInitWorklist.empty()) { 1966 unsigned ValID = GlobalInitWorklist.back().second; 1967 if (ValID >= ValueList.size()) { 1968 // Not ready to resolve this yet, it requires something later in the file. 1969 GlobalInits.push_back(GlobalInitWorklist.back()); 1970 } else { 1971 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1972 GlobalInitWorklist.back().first->setInitializer(C); 1973 else 1974 return error("Expected a constant"); 1975 } 1976 GlobalInitWorklist.pop_back(); 1977 } 1978 1979 while (!IndirectSymbolInitWorklist.empty()) { 1980 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1981 if (ValID >= ValueList.size()) { 1982 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1983 } else { 1984 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1985 if (!C) 1986 return error("Expected a constant"); 1987 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1988 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1989 return error("Alias and aliasee types don't match"); 1990 GIS->setIndirectSymbol(C); 1991 } 1992 IndirectSymbolInitWorklist.pop_back(); 1993 } 1994 1995 while (!FunctionPrefixWorklist.empty()) { 1996 unsigned ValID = FunctionPrefixWorklist.back().second; 1997 if (ValID >= ValueList.size()) { 1998 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1999 } else { 2000 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2001 FunctionPrefixWorklist.back().first->setPrefixData(C); 2002 else 2003 return error("Expected a constant"); 2004 } 2005 FunctionPrefixWorklist.pop_back(); 2006 } 2007 2008 while (!FunctionPrologueWorklist.empty()) { 2009 unsigned ValID = FunctionPrologueWorklist.back().second; 2010 if (ValID >= ValueList.size()) { 2011 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2012 } else { 2013 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2014 FunctionPrologueWorklist.back().first->setPrologueData(C); 2015 else 2016 return error("Expected a constant"); 2017 } 2018 FunctionPrologueWorklist.pop_back(); 2019 } 2020 2021 while (!FunctionPersonalityFnWorklist.empty()) { 2022 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2023 if (ValID >= ValueList.size()) { 2024 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2025 } else { 2026 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2027 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2028 else 2029 return error("Expected a constant"); 2030 } 2031 FunctionPersonalityFnWorklist.pop_back(); 2032 } 2033 2034 return Error::success(); 2035 } 2036 2037 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2038 SmallVector<uint64_t, 8> Words(Vals.size()); 2039 transform(Vals, Words.begin(), 2040 BitcodeReader::decodeSignRotatedValue); 2041 2042 return APInt(TypeBits, Words); 2043 } 2044 2045 Error BitcodeReader::parseConstants() { 2046 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2047 return error("Invalid record"); 2048 2049 SmallVector<uint64_t, 64> Record; 2050 2051 // Read all the records for this value table. 2052 Type *CurTy = Type::getInt32Ty(Context); 2053 unsigned NextCstNo = ValueList.size(); 2054 2055 while (true) { 2056 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2057 2058 switch (Entry.Kind) { 2059 case BitstreamEntry::SubBlock: // Handled for us already. 2060 case BitstreamEntry::Error: 2061 return error("Malformed block"); 2062 case BitstreamEntry::EndBlock: 2063 if (NextCstNo != ValueList.size()) 2064 return error("Invalid constant reference"); 2065 2066 // Once all the constants have been read, go through and resolve forward 2067 // references. 2068 ValueList.resolveConstantForwardRefs(); 2069 return Error::success(); 2070 case BitstreamEntry::Record: 2071 // The interesting case. 2072 break; 2073 } 2074 2075 // Read a record. 2076 Record.clear(); 2077 Type *VoidType = Type::getVoidTy(Context); 2078 Value *V = nullptr; 2079 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2080 switch (BitCode) { 2081 default: // Default behavior: unknown constant 2082 case bitc::CST_CODE_UNDEF: // UNDEF 2083 V = UndefValue::get(CurTy); 2084 break; 2085 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2086 if (Record.empty()) 2087 return error("Invalid record"); 2088 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2089 return error("Invalid record"); 2090 if (TypeList[Record[0]] == VoidType) 2091 return error("Invalid constant type"); 2092 CurTy = TypeList[Record[0]]; 2093 continue; // Skip the ValueList manipulation. 2094 case bitc::CST_CODE_NULL: // NULL 2095 V = Constant::getNullValue(CurTy); 2096 break; 2097 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2098 if (!CurTy->isIntegerTy() || Record.empty()) 2099 return error("Invalid record"); 2100 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2101 break; 2102 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2103 if (!CurTy->isIntegerTy() || Record.empty()) 2104 return error("Invalid record"); 2105 2106 APInt VInt = 2107 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2108 V = ConstantInt::get(Context, VInt); 2109 2110 break; 2111 } 2112 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2113 if (Record.empty()) 2114 return error("Invalid record"); 2115 if (CurTy->isHalfTy()) 2116 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2117 APInt(16, (uint16_t)Record[0]))); 2118 else if (CurTy->isFloatTy()) 2119 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2120 APInt(32, (uint32_t)Record[0]))); 2121 else if (CurTy->isDoubleTy()) 2122 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2123 APInt(64, Record[0]))); 2124 else if (CurTy->isX86_FP80Ty()) { 2125 // Bits are not stored the same way as a normal i80 APInt, compensate. 2126 uint64_t Rearrange[2]; 2127 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2128 Rearrange[1] = Record[0] >> 48; 2129 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2130 APInt(80, Rearrange))); 2131 } else if (CurTy->isFP128Ty()) 2132 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2133 APInt(128, Record))); 2134 else if (CurTy->isPPC_FP128Ty()) 2135 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2136 APInt(128, Record))); 2137 else 2138 V = UndefValue::get(CurTy); 2139 break; 2140 } 2141 2142 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2143 if (Record.empty()) 2144 return error("Invalid record"); 2145 2146 unsigned Size = Record.size(); 2147 SmallVector<Constant*, 16> Elts; 2148 2149 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2150 for (unsigned i = 0; i != Size; ++i) 2151 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2152 STy->getElementType(i))); 2153 V = ConstantStruct::get(STy, Elts); 2154 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2155 Type *EltTy = ATy->getElementType(); 2156 for (unsigned i = 0; i != Size; ++i) 2157 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2158 V = ConstantArray::get(ATy, Elts); 2159 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2160 Type *EltTy = VTy->getElementType(); 2161 for (unsigned i = 0; i != Size; ++i) 2162 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2163 V = ConstantVector::get(Elts); 2164 } else { 2165 V = UndefValue::get(CurTy); 2166 } 2167 break; 2168 } 2169 case bitc::CST_CODE_STRING: // STRING: [values] 2170 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2171 if (Record.empty()) 2172 return error("Invalid record"); 2173 2174 SmallString<16> Elts(Record.begin(), Record.end()); 2175 V = ConstantDataArray::getString(Context, Elts, 2176 BitCode == bitc::CST_CODE_CSTRING); 2177 break; 2178 } 2179 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2180 if (Record.empty()) 2181 return error("Invalid record"); 2182 2183 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2184 if (EltTy->isIntegerTy(8)) { 2185 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2186 if (isa<VectorType>(CurTy)) 2187 V = ConstantDataVector::get(Context, Elts); 2188 else 2189 V = ConstantDataArray::get(Context, Elts); 2190 } else if (EltTy->isIntegerTy(16)) { 2191 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2192 if (isa<VectorType>(CurTy)) 2193 V = ConstantDataVector::get(Context, Elts); 2194 else 2195 V = ConstantDataArray::get(Context, Elts); 2196 } else if (EltTy->isIntegerTy(32)) { 2197 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2198 if (isa<VectorType>(CurTy)) 2199 V = ConstantDataVector::get(Context, Elts); 2200 else 2201 V = ConstantDataArray::get(Context, Elts); 2202 } else if (EltTy->isIntegerTy(64)) { 2203 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2204 if (isa<VectorType>(CurTy)) 2205 V = ConstantDataVector::get(Context, Elts); 2206 else 2207 V = ConstantDataArray::get(Context, Elts); 2208 } else if (EltTy->isHalfTy()) { 2209 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2210 if (isa<VectorType>(CurTy)) 2211 V = ConstantDataVector::getFP(Context, Elts); 2212 else 2213 V = ConstantDataArray::getFP(Context, Elts); 2214 } else if (EltTy->isFloatTy()) { 2215 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2216 if (isa<VectorType>(CurTy)) 2217 V = ConstantDataVector::getFP(Context, Elts); 2218 else 2219 V = ConstantDataArray::getFP(Context, Elts); 2220 } else if (EltTy->isDoubleTy()) { 2221 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2222 if (isa<VectorType>(CurTy)) 2223 V = ConstantDataVector::getFP(Context, Elts); 2224 else 2225 V = ConstantDataArray::getFP(Context, Elts); 2226 } else { 2227 return error("Invalid type for value"); 2228 } 2229 break; 2230 } 2231 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2232 if (Record.size() < 3) 2233 return error("Invalid record"); 2234 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2235 if (Opc < 0) { 2236 V = UndefValue::get(CurTy); // Unknown binop. 2237 } else { 2238 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2239 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2240 unsigned Flags = 0; 2241 if (Record.size() >= 4) { 2242 if (Opc == Instruction::Add || 2243 Opc == Instruction::Sub || 2244 Opc == Instruction::Mul || 2245 Opc == Instruction::Shl) { 2246 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2247 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2248 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2249 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2250 } else if (Opc == Instruction::SDiv || 2251 Opc == Instruction::UDiv || 2252 Opc == Instruction::LShr || 2253 Opc == Instruction::AShr) { 2254 if (Record[3] & (1 << bitc::PEO_EXACT)) 2255 Flags |= SDivOperator::IsExact; 2256 } 2257 } 2258 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2259 } 2260 break; 2261 } 2262 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2263 if (Record.size() < 3) 2264 return error("Invalid record"); 2265 int Opc = getDecodedCastOpcode(Record[0]); 2266 if (Opc < 0) { 2267 V = UndefValue::get(CurTy); // Unknown cast. 2268 } else { 2269 Type *OpTy = getTypeByID(Record[1]); 2270 if (!OpTy) 2271 return error("Invalid record"); 2272 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2273 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2274 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2275 } 2276 break; 2277 } 2278 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2279 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2280 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2281 // operands] 2282 unsigned OpNum = 0; 2283 Type *PointeeType = nullptr; 2284 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2285 Record.size() % 2) 2286 PointeeType = getTypeByID(Record[OpNum++]); 2287 2288 bool InBounds = false; 2289 Optional<unsigned> InRangeIndex; 2290 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2291 uint64_t Op = Record[OpNum++]; 2292 InBounds = Op & 1; 2293 InRangeIndex = Op >> 1; 2294 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2295 InBounds = true; 2296 2297 SmallVector<Constant*, 16> Elts; 2298 while (OpNum != Record.size()) { 2299 Type *ElTy = getTypeByID(Record[OpNum++]); 2300 if (!ElTy) 2301 return error("Invalid record"); 2302 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2303 } 2304 2305 if (PointeeType && 2306 PointeeType != 2307 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2308 ->getElementType()) 2309 return error("Explicit gep operator type does not match pointee type " 2310 "of pointer operand"); 2311 2312 if (Elts.size() < 1) 2313 return error("Invalid gep with no operands"); 2314 2315 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2316 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2317 InBounds, InRangeIndex); 2318 break; 2319 } 2320 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2321 if (Record.size() < 3) 2322 return error("Invalid record"); 2323 2324 Type *SelectorTy = Type::getInt1Ty(Context); 2325 2326 // The selector might be an i1 or an <n x i1> 2327 // Get the type from the ValueList before getting a forward ref. 2328 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2329 if (Value *V = ValueList[Record[0]]) 2330 if (SelectorTy != V->getType()) 2331 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2332 2333 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2334 SelectorTy), 2335 ValueList.getConstantFwdRef(Record[1],CurTy), 2336 ValueList.getConstantFwdRef(Record[2],CurTy)); 2337 break; 2338 } 2339 case bitc::CST_CODE_CE_EXTRACTELT 2340 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2341 if (Record.size() < 3) 2342 return error("Invalid record"); 2343 VectorType *OpTy = 2344 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2345 if (!OpTy) 2346 return error("Invalid record"); 2347 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2348 Constant *Op1 = nullptr; 2349 if (Record.size() == 4) { 2350 Type *IdxTy = getTypeByID(Record[2]); 2351 if (!IdxTy) 2352 return error("Invalid record"); 2353 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2354 } else // TODO: Remove with llvm 4.0 2355 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2356 if (!Op1) 2357 return error("Invalid record"); 2358 V = ConstantExpr::getExtractElement(Op0, Op1); 2359 break; 2360 } 2361 case bitc::CST_CODE_CE_INSERTELT 2362 : { // CE_INSERTELT: [opval, opval, opty, opval] 2363 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2364 if (Record.size() < 3 || !OpTy) 2365 return error("Invalid record"); 2366 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2367 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2368 OpTy->getElementType()); 2369 Constant *Op2 = nullptr; 2370 if (Record.size() == 4) { 2371 Type *IdxTy = getTypeByID(Record[2]); 2372 if (!IdxTy) 2373 return error("Invalid record"); 2374 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2375 } else // TODO: Remove with llvm 4.0 2376 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2377 if (!Op2) 2378 return error("Invalid record"); 2379 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2380 break; 2381 } 2382 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2383 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2384 if (Record.size() < 3 || !OpTy) 2385 return error("Invalid record"); 2386 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2387 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2388 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2389 OpTy->getNumElements()); 2390 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2391 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2392 break; 2393 } 2394 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2395 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2396 VectorType *OpTy = 2397 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2398 if (Record.size() < 4 || !RTy || !OpTy) 2399 return error("Invalid record"); 2400 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2401 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2402 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2403 RTy->getNumElements()); 2404 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2405 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2406 break; 2407 } 2408 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2409 if (Record.size() < 4) 2410 return error("Invalid record"); 2411 Type *OpTy = getTypeByID(Record[0]); 2412 if (!OpTy) 2413 return error("Invalid record"); 2414 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2415 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2416 2417 if (OpTy->isFPOrFPVectorTy()) 2418 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2419 else 2420 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2421 break; 2422 } 2423 // This maintains backward compatibility, pre-asm dialect keywords. 2424 // FIXME: Remove with the 4.0 release. 2425 case bitc::CST_CODE_INLINEASM_OLD: { 2426 if (Record.size() < 2) 2427 return error("Invalid record"); 2428 std::string AsmStr, ConstrStr; 2429 bool HasSideEffects = Record[0] & 1; 2430 bool IsAlignStack = Record[0] >> 1; 2431 unsigned AsmStrSize = Record[1]; 2432 if (2+AsmStrSize >= Record.size()) 2433 return error("Invalid record"); 2434 unsigned ConstStrSize = Record[2+AsmStrSize]; 2435 if (3+AsmStrSize+ConstStrSize > Record.size()) 2436 return error("Invalid record"); 2437 2438 for (unsigned i = 0; i != AsmStrSize; ++i) 2439 AsmStr += (char)Record[2+i]; 2440 for (unsigned i = 0; i != ConstStrSize; ++i) 2441 ConstrStr += (char)Record[3+AsmStrSize+i]; 2442 PointerType *PTy = cast<PointerType>(CurTy); 2443 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2444 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2445 break; 2446 } 2447 // This version adds support for the asm dialect keywords (e.g., 2448 // inteldialect). 2449 case bitc::CST_CODE_INLINEASM: { 2450 if (Record.size() < 2) 2451 return error("Invalid record"); 2452 std::string AsmStr, ConstrStr; 2453 bool HasSideEffects = Record[0] & 1; 2454 bool IsAlignStack = (Record[0] >> 1) & 1; 2455 unsigned AsmDialect = Record[0] >> 2; 2456 unsigned AsmStrSize = Record[1]; 2457 if (2+AsmStrSize >= Record.size()) 2458 return error("Invalid record"); 2459 unsigned ConstStrSize = Record[2+AsmStrSize]; 2460 if (3+AsmStrSize+ConstStrSize > Record.size()) 2461 return error("Invalid record"); 2462 2463 for (unsigned i = 0; i != AsmStrSize; ++i) 2464 AsmStr += (char)Record[2+i]; 2465 for (unsigned i = 0; i != ConstStrSize; ++i) 2466 ConstrStr += (char)Record[3+AsmStrSize+i]; 2467 PointerType *PTy = cast<PointerType>(CurTy); 2468 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2469 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2470 InlineAsm::AsmDialect(AsmDialect)); 2471 break; 2472 } 2473 case bitc::CST_CODE_BLOCKADDRESS:{ 2474 if (Record.size() < 3) 2475 return error("Invalid record"); 2476 Type *FnTy = getTypeByID(Record[0]); 2477 if (!FnTy) 2478 return error("Invalid record"); 2479 Function *Fn = 2480 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2481 if (!Fn) 2482 return error("Invalid record"); 2483 2484 // If the function is already parsed we can insert the block address right 2485 // away. 2486 BasicBlock *BB; 2487 unsigned BBID = Record[2]; 2488 if (!BBID) 2489 // Invalid reference to entry block. 2490 return error("Invalid ID"); 2491 if (!Fn->empty()) { 2492 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2493 for (size_t I = 0, E = BBID; I != E; ++I) { 2494 if (BBI == BBE) 2495 return error("Invalid ID"); 2496 ++BBI; 2497 } 2498 BB = &*BBI; 2499 } else { 2500 // Otherwise insert a placeholder and remember it so it can be inserted 2501 // when the function is parsed. 2502 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2503 if (FwdBBs.empty()) 2504 BasicBlockFwdRefQueue.push_back(Fn); 2505 if (FwdBBs.size() < BBID + 1) 2506 FwdBBs.resize(BBID + 1); 2507 if (!FwdBBs[BBID]) 2508 FwdBBs[BBID] = BasicBlock::Create(Context); 2509 BB = FwdBBs[BBID]; 2510 } 2511 V = BlockAddress::get(Fn, BB); 2512 break; 2513 } 2514 } 2515 2516 ValueList.assignValue(V, NextCstNo); 2517 ++NextCstNo; 2518 } 2519 } 2520 2521 Error BitcodeReader::parseUseLists() { 2522 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2523 return error("Invalid record"); 2524 2525 // Read all the records. 2526 SmallVector<uint64_t, 64> Record; 2527 2528 while (true) { 2529 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2530 2531 switch (Entry.Kind) { 2532 case BitstreamEntry::SubBlock: // Handled for us already. 2533 case BitstreamEntry::Error: 2534 return error("Malformed block"); 2535 case BitstreamEntry::EndBlock: 2536 return Error::success(); 2537 case BitstreamEntry::Record: 2538 // The interesting case. 2539 break; 2540 } 2541 2542 // Read a use list record. 2543 Record.clear(); 2544 bool IsBB = false; 2545 switch (Stream.readRecord(Entry.ID, Record)) { 2546 default: // Default behavior: unknown type. 2547 break; 2548 case bitc::USELIST_CODE_BB: 2549 IsBB = true; 2550 LLVM_FALLTHROUGH; 2551 case bitc::USELIST_CODE_DEFAULT: { 2552 unsigned RecordLength = Record.size(); 2553 if (RecordLength < 3) 2554 // Records should have at least an ID and two indexes. 2555 return error("Invalid record"); 2556 unsigned ID = Record.back(); 2557 Record.pop_back(); 2558 2559 Value *V; 2560 if (IsBB) { 2561 assert(ID < FunctionBBs.size() && "Basic block not found"); 2562 V = FunctionBBs[ID]; 2563 } else 2564 V = ValueList[ID]; 2565 unsigned NumUses = 0; 2566 SmallDenseMap<const Use *, unsigned, 16> Order; 2567 for (const Use &U : V->materialized_uses()) { 2568 if (++NumUses > Record.size()) 2569 break; 2570 Order[&U] = Record[NumUses - 1]; 2571 } 2572 if (Order.size() != Record.size() || NumUses > Record.size()) 2573 // Mismatches can happen if the functions are being materialized lazily 2574 // (out-of-order), or a value has been upgraded. 2575 break; 2576 2577 V->sortUseList([&](const Use &L, const Use &R) { 2578 return Order.lookup(&L) < Order.lookup(&R); 2579 }); 2580 break; 2581 } 2582 } 2583 } 2584 } 2585 2586 /// When we see the block for metadata, remember where it is and then skip it. 2587 /// This lets us lazily deserialize the metadata. 2588 Error BitcodeReader::rememberAndSkipMetadata() { 2589 // Save the current stream state. 2590 uint64_t CurBit = Stream.GetCurrentBitNo(); 2591 DeferredMetadataInfo.push_back(CurBit); 2592 2593 // Skip over the block for now. 2594 if (Stream.SkipBlock()) 2595 return error("Invalid record"); 2596 return Error::success(); 2597 } 2598 2599 Error BitcodeReader::materializeMetadata() { 2600 for (uint64_t BitPos : DeferredMetadataInfo) { 2601 // Move the bit stream to the saved position. 2602 Stream.JumpToBit(BitPos); 2603 if (Error Err = MDLoader->parseModuleMetadata()) 2604 return Err; 2605 } 2606 DeferredMetadataInfo.clear(); 2607 return Error::success(); 2608 } 2609 2610 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2611 2612 /// When we see the block for a function body, remember where it is and then 2613 /// skip it. This lets us lazily deserialize the functions. 2614 Error BitcodeReader::rememberAndSkipFunctionBody() { 2615 // Get the function we are talking about. 2616 if (FunctionsWithBodies.empty()) 2617 return error("Insufficient function protos"); 2618 2619 Function *Fn = FunctionsWithBodies.back(); 2620 FunctionsWithBodies.pop_back(); 2621 2622 // Save the current stream state. 2623 uint64_t CurBit = Stream.GetCurrentBitNo(); 2624 assert( 2625 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2626 "Mismatch between VST and scanned function offsets"); 2627 DeferredFunctionInfo[Fn] = CurBit; 2628 2629 // Skip over the function block for now. 2630 if (Stream.SkipBlock()) 2631 return error("Invalid record"); 2632 return Error::success(); 2633 } 2634 2635 Error BitcodeReader::globalCleanup() { 2636 // Patch the initializers for globals and aliases up. 2637 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2638 return Err; 2639 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2640 return error("Malformed global initializer set"); 2641 2642 // Look for intrinsic functions which need to be upgraded at some point 2643 for (Function &F : *TheModule) { 2644 MDLoader->upgradeDebugIntrinsics(F); 2645 Function *NewFn; 2646 if (UpgradeIntrinsicFunction(&F, NewFn)) 2647 UpgradedIntrinsics[&F] = NewFn; 2648 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2649 // Some types could be renamed during loading if several modules are 2650 // loaded in the same LLVMContext (LTO scenario). In this case we should 2651 // remangle intrinsics names as well. 2652 RemangledIntrinsics[&F] = Remangled.getValue(); 2653 } 2654 2655 // Look for global variables which need to be renamed. 2656 for (GlobalVariable &GV : TheModule->globals()) 2657 UpgradeGlobalVariable(&GV); 2658 2659 // Force deallocation of memory for these vectors to favor the client that 2660 // want lazy deserialization. 2661 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2662 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2663 IndirectSymbolInits); 2664 return Error::success(); 2665 } 2666 2667 /// Support for lazy parsing of function bodies. This is required if we 2668 /// either have an old bitcode file without a VST forward declaration record, 2669 /// or if we have an anonymous function being materialized, since anonymous 2670 /// functions do not have a name and are therefore not in the VST. 2671 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2672 Stream.JumpToBit(NextUnreadBit); 2673 2674 if (Stream.AtEndOfStream()) 2675 return error("Could not find function in stream"); 2676 2677 if (!SeenFirstFunctionBody) 2678 return error("Trying to materialize functions before seeing function blocks"); 2679 2680 // An old bitcode file with the symbol table at the end would have 2681 // finished the parse greedily. 2682 assert(SeenValueSymbolTable); 2683 2684 SmallVector<uint64_t, 64> Record; 2685 2686 while (true) { 2687 BitstreamEntry Entry = Stream.advance(); 2688 switch (Entry.Kind) { 2689 default: 2690 return error("Expect SubBlock"); 2691 case BitstreamEntry::SubBlock: 2692 switch (Entry.ID) { 2693 default: 2694 return error("Expect function block"); 2695 case bitc::FUNCTION_BLOCK_ID: 2696 if (Error Err = rememberAndSkipFunctionBody()) 2697 return Err; 2698 NextUnreadBit = Stream.GetCurrentBitNo(); 2699 return Error::success(); 2700 } 2701 } 2702 } 2703 } 2704 2705 bool BitcodeReaderBase::readBlockInfo() { 2706 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2707 if (!NewBlockInfo) 2708 return true; 2709 BlockInfo = std::move(*NewBlockInfo); 2710 return false; 2711 } 2712 2713 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2714 // v1: [selection_kind, name] 2715 // v2: [strtab_offset, strtab_size, selection_kind] 2716 StringRef Name; 2717 std::tie(Name, Record) = readNameFromStrtab(Record); 2718 2719 if (Record.size() < 1) 2720 return error("Invalid record"); 2721 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2722 std::string OldFormatName; 2723 if (!UseStrtab) { 2724 if (Record.size() < 2) 2725 return error("Invalid record"); 2726 unsigned ComdatNameSize = Record[1]; 2727 OldFormatName.reserve(ComdatNameSize); 2728 for (unsigned i = 0; i != ComdatNameSize; ++i) 2729 OldFormatName += (char)Record[2 + i]; 2730 Name = OldFormatName; 2731 } 2732 Comdat *C = TheModule->getOrInsertComdat(Name); 2733 C->setSelectionKind(SK); 2734 ComdatList.push_back(C); 2735 return Error::success(); 2736 } 2737 2738 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2739 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2740 // visibility, threadlocal, unnamed_addr, externally_initialized, 2741 // dllstorageclass, comdat] (name in VST) 2742 // v2: [strtab_offset, strtab_size, v1] 2743 StringRef Name; 2744 std::tie(Name, Record) = readNameFromStrtab(Record); 2745 2746 if (Record.size() < 6) 2747 return error("Invalid record"); 2748 Type *Ty = getTypeByID(Record[0]); 2749 if (!Ty) 2750 return error("Invalid record"); 2751 bool isConstant = Record[1] & 1; 2752 bool explicitType = Record[1] & 2; 2753 unsigned AddressSpace; 2754 if (explicitType) { 2755 AddressSpace = Record[1] >> 2; 2756 } else { 2757 if (!Ty->isPointerTy()) 2758 return error("Invalid type for value"); 2759 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2760 Ty = cast<PointerType>(Ty)->getElementType(); 2761 } 2762 2763 uint64_t RawLinkage = Record[3]; 2764 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2765 unsigned Alignment; 2766 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2767 return Err; 2768 std::string Section; 2769 if (Record[5]) { 2770 if (Record[5] - 1 >= SectionTable.size()) 2771 return error("Invalid ID"); 2772 Section = SectionTable[Record[5] - 1]; 2773 } 2774 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2775 // Local linkage must have default visibility. 2776 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2777 // FIXME: Change to an error if non-default in 4.0. 2778 Visibility = getDecodedVisibility(Record[6]); 2779 2780 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2781 if (Record.size() > 7) 2782 TLM = getDecodedThreadLocalMode(Record[7]); 2783 2784 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2785 if (Record.size() > 8) 2786 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2787 2788 bool ExternallyInitialized = false; 2789 if (Record.size() > 9) 2790 ExternallyInitialized = Record[9]; 2791 2792 GlobalVariable *NewGV = 2793 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2794 nullptr, TLM, AddressSpace, ExternallyInitialized); 2795 NewGV->setAlignment(Alignment); 2796 if (!Section.empty()) 2797 NewGV->setSection(Section); 2798 NewGV->setVisibility(Visibility); 2799 NewGV->setUnnamedAddr(UnnamedAddr); 2800 2801 if (Record.size() > 10) 2802 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2803 else 2804 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2805 2806 ValueList.push_back(NewGV); 2807 2808 // Remember which value to use for the global initializer. 2809 if (unsigned InitID = Record[2]) 2810 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2811 2812 if (Record.size() > 11) { 2813 if (unsigned ComdatID = Record[11]) { 2814 if (ComdatID > ComdatList.size()) 2815 return error("Invalid global variable comdat ID"); 2816 NewGV->setComdat(ComdatList[ComdatID - 1]); 2817 } 2818 } else if (hasImplicitComdat(RawLinkage)) { 2819 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2820 } 2821 return Error::success(); 2822 } 2823 2824 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2825 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2826 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2827 // prefixdata] (name in VST) 2828 // v2: [strtab_offset, strtab_size, v1] 2829 StringRef Name; 2830 std::tie(Name, Record) = readNameFromStrtab(Record); 2831 2832 if (Record.size() < 8) 2833 return error("Invalid record"); 2834 Type *Ty = getTypeByID(Record[0]); 2835 if (!Ty) 2836 return error("Invalid record"); 2837 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2838 Ty = PTy->getElementType(); 2839 auto *FTy = dyn_cast<FunctionType>(Ty); 2840 if (!FTy) 2841 return error("Invalid type for value"); 2842 auto CC = static_cast<CallingConv::ID>(Record[1]); 2843 if (CC & ~CallingConv::MaxID) 2844 return error("Invalid calling convention ID"); 2845 2846 Function *Func = 2847 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2848 2849 Func->setCallingConv(CC); 2850 bool isProto = Record[2]; 2851 uint64_t RawLinkage = Record[3]; 2852 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2853 Func->setAttributes(getAttributes(Record[4])); 2854 2855 unsigned Alignment; 2856 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2857 return Err; 2858 Func->setAlignment(Alignment); 2859 if (Record[6]) { 2860 if (Record[6] - 1 >= SectionTable.size()) 2861 return error("Invalid ID"); 2862 Func->setSection(SectionTable[Record[6] - 1]); 2863 } 2864 // Local linkage must have default visibility. 2865 if (!Func->hasLocalLinkage()) 2866 // FIXME: Change to an error if non-default in 4.0. 2867 Func->setVisibility(getDecodedVisibility(Record[7])); 2868 if (Record.size() > 8 && Record[8]) { 2869 if (Record[8] - 1 >= GCTable.size()) 2870 return error("Invalid ID"); 2871 Func->setGC(GCTable[Record[8] - 1]); 2872 } 2873 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2874 if (Record.size() > 9) 2875 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2876 Func->setUnnamedAddr(UnnamedAddr); 2877 if (Record.size() > 10 && Record[10] != 0) 2878 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2879 2880 if (Record.size() > 11) 2881 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2882 else 2883 upgradeDLLImportExportLinkage(Func, RawLinkage); 2884 2885 if (Record.size() > 12) { 2886 if (unsigned ComdatID = Record[12]) { 2887 if (ComdatID > ComdatList.size()) 2888 return error("Invalid function comdat ID"); 2889 Func->setComdat(ComdatList[ComdatID - 1]); 2890 } 2891 } else if (hasImplicitComdat(RawLinkage)) { 2892 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2893 } 2894 2895 if (Record.size() > 13 && Record[13] != 0) 2896 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2897 2898 if (Record.size() > 14 && Record[14] != 0) 2899 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2900 2901 ValueList.push_back(Func); 2902 2903 // If this is a function with a body, remember the prototype we are 2904 // creating now, so that we can match up the body with them later. 2905 if (!isProto) { 2906 Func->setIsMaterializable(true); 2907 FunctionsWithBodies.push_back(Func); 2908 DeferredFunctionInfo[Func] = 0; 2909 } 2910 return Error::success(); 2911 } 2912 2913 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2914 unsigned BitCode, ArrayRef<uint64_t> Record) { 2915 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2916 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2917 // dllstorageclass] (name in VST) 2918 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2919 // visibility, dllstorageclass] (name in VST) 2920 // v2: [strtab_offset, strtab_size, v1] 2921 StringRef Name; 2922 std::tie(Name, Record) = readNameFromStrtab(Record); 2923 2924 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2925 if (Record.size() < (3 + (unsigned)NewRecord)) 2926 return error("Invalid record"); 2927 unsigned OpNum = 0; 2928 Type *Ty = getTypeByID(Record[OpNum++]); 2929 if (!Ty) 2930 return error("Invalid record"); 2931 2932 unsigned AddrSpace; 2933 if (!NewRecord) { 2934 auto *PTy = dyn_cast<PointerType>(Ty); 2935 if (!PTy) 2936 return error("Invalid type for value"); 2937 Ty = PTy->getElementType(); 2938 AddrSpace = PTy->getAddressSpace(); 2939 } else { 2940 AddrSpace = Record[OpNum++]; 2941 } 2942 2943 auto Val = Record[OpNum++]; 2944 auto Linkage = Record[OpNum++]; 2945 GlobalIndirectSymbol *NewGA; 2946 if (BitCode == bitc::MODULE_CODE_ALIAS || 2947 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 2948 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2949 TheModule); 2950 else 2951 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2952 nullptr, TheModule); 2953 // Old bitcode files didn't have visibility field. 2954 // Local linkage must have default visibility. 2955 if (OpNum != Record.size()) { 2956 auto VisInd = OpNum++; 2957 if (!NewGA->hasLocalLinkage()) 2958 // FIXME: Change to an error if non-default in 4.0. 2959 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 2960 } 2961 if (OpNum != Record.size()) 2962 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 2963 else 2964 upgradeDLLImportExportLinkage(NewGA, Linkage); 2965 if (OpNum != Record.size()) 2966 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 2967 if (OpNum != Record.size()) 2968 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 2969 ValueList.push_back(NewGA); 2970 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 2971 return Error::success(); 2972 } 2973 2974 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2975 bool ShouldLazyLoadMetadata) { 2976 if (ResumeBit) 2977 Stream.JumpToBit(ResumeBit); 2978 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2979 return error("Invalid record"); 2980 2981 SmallVector<uint64_t, 64> Record; 2982 2983 // Read all the records for this module. 2984 while (true) { 2985 BitstreamEntry Entry = Stream.advance(); 2986 2987 switch (Entry.Kind) { 2988 case BitstreamEntry::Error: 2989 return error("Malformed block"); 2990 case BitstreamEntry::EndBlock: 2991 return globalCleanup(); 2992 2993 case BitstreamEntry::SubBlock: 2994 switch (Entry.ID) { 2995 default: // Skip unknown content. 2996 if (Stream.SkipBlock()) 2997 return error("Invalid record"); 2998 break; 2999 case bitc::BLOCKINFO_BLOCK_ID: 3000 if (readBlockInfo()) 3001 return error("Malformed block"); 3002 break; 3003 case bitc::PARAMATTR_BLOCK_ID: 3004 if (Error Err = parseAttributeBlock()) 3005 return Err; 3006 break; 3007 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3008 if (Error Err = parseAttributeGroupBlock()) 3009 return Err; 3010 break; 3011 case bitc::TYPE_BLOCK_ID_NEW: 3012 if (Error Err = parseTypeTable()) 3013 return Err; 3014 break; 3015 case bitc::VALUE_SYMTAB_BLOCK_ID: 3016 if (!SeenValueSymbolTable) { 3017 // Either this is an old form VST without function index and an 3018 // associated VST forward declaration record (which would have caused 3019 // the VST to be jumped to and parsed before it was encountered 3020 // normally in the stream), or there were no function blocks to 3021 // trigger an earlier parsing of the VST. 3022 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3023 if (Error Err = parseValueSymbolTable()) 3024 return Err; 3025 SeenValueSymbolTable = true; 3026 } else { 3027 // We must have had a VST forward declaration record, which caused 3028 // the parser to jump to and parse the VST earlier. 3029 assert(VSTOffset > 0); 3030 if (Stream.SkipBlock()) 3031 return error("Invalid record"); 3032 } 3033 break; 3034 case bitc::CONSTANTS_BLOCK_ID: 3035 if (Error Err = parseConstants()) 3036 return Err; 3037 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3038 return Err; 3039 break; 3040 case bitc::METADATA_BLOCK_ID: 3041 if (ShouldLazyLoadMetadata) { 3042 if (Error Err = rememberAndSkipMetadata()) 3043 return Err; 3044 break; 3045 } 3046 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3047 if (Error Err = MDLoader->parseModuleMetadata()) 3048 return Err; 3049 break; 3050 case bitc::METADATA_KIND_BLOCK_ID: 3051 if (Error Err = MDLoader->parseMetadataKinds()) 3052 return Err; 3053 break; 3054 case bitc::FUNCTION_BLOCK_ID: 3055 // If this is the first function body we've seen, reverse the 3056 // FunctionsWithBodies list. 3057 if (!SeenFirstFunctionBody) { 3058 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3059 if (Error Err = globalCleanup()) 3060 return Err; 3061 SeenFirstFunctionBody = true; 3062 } 3063 3064 if (VSTOffset > 0) { 3065 // If we have a VST forward declaration record, make sure we 3066 // parse the VST now if we haven't already. It is needed to 3067 // set up the DeferredFunctionInfo vector for lazy reading. 3068 if (!SeenValueSymbolTable) { 3069 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3070 return Err; 3071 SeenValueSymbolTable = true; 3072 // Fall through so that we record the NextUnreadBit below. 3073 // This is necessary in case we have an anonymous function that 3074 // is later materialized. Since it will not have a VST entry we 3075 // need to fall back to the lazy parse to find its offset. 3076 } else { 3077 // If we have a VST forward declaration record, but have already 3078 // parsed the VST (just above, when the first function body was 3079 // encountered here), then we are resuming the parse after 3080 // materializing functions. The ResumeBit points to the 3081 // start of the last function block recorded in the 3082 // DeferredFunctionInfo map. Skip it. 3083 if (Stream.SkipBlock()) 3084 return error("Invalid record"); 3085 continue; 3086 } 3087 } 3088 3089 // Support older bitcode files that did not have the function 3090 // index in the VST, nor a VST forward declaration record, as 3091 // well as anonymous functions that do not have VST entries. 3092 // Build the DeferredFunctionInfo vector on the fly. 3093 if (Error Err = rememberAndSkipFunctionBody()) 3094 return Err; 3095 3096 // Suspend parsing when we reach the function bodies. Subsequent 3097 // materialization calls will resume it when necessary. If the bitcode 3098 // file is old, the symbol table will be at the end instead and will not 3099 // have been seen yet. In this case, just finish the parse now. 3100 if (SeenValueSymbolTable) { 3101 NextUnreadBit = Stream.GetCurrentBitNo(); 3102 // After the VST has been parsed, we need to make sure intrinsic name 3103 // are auto-upgraded. 3104 return globalCleanup(); 3105 } 3106 break; 3107 case bitc::USELIST_BLOCK_ID: 3108 if (Error Err = parseUseLists()) 3109 return Err; 3110 break; 3111 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3112 if (Error Err = parseOperandBundleTags()) 3113 return Err; 3114 break; 3115 } 3116 continue; 3117 3118 case BitstreamEntry::Record: 3119 // The interesting case. 3120 break; 3121 } 3122 3123 // Read a record. 3124 auto BitCode = Stream.readRecord(Entry.ID, Record); 3125 switch (BitCode) { 3126 default: break; // Default behavior, ignore unknown content. 3127 case bitc::MODULE_CODE_VERSION: { 3128 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3129 if (!VersionOrErr) 3130 return VersionOrErr.takeError(); 3131 UseRelativeIDs = *VersionOrErr >= 1; 3132 break; 3133 } 3134 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3135 std::string S; 3136 if (convertToString(Record, 0, S)) 3137 return error("Invalid record"); 3138 TheModule->setTargetTriple(S); 3139 break; 3140 } 3141 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3142 std::string S; 3143 if (convertToString(Record, 0, S)) 3144 return error("Invalid record"); 3145 TheModule->setDataLayout(S); 3146 break; 3147 } 3148 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3149 std::string S; 3150 if (convertToString(Record, 0, S)) 3151 return error("Invalid record"); 3152 TheModule->setModuleInlineAsm(S); 3153 break; 3154 } 3155 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3156 // FIXME: Remove in 4.0. 3157 std::string S; 3158 if (convertToString(Record, 0, S)) 3159 return error("Invalid record"); 3160 // Ignore value. 3161 break; 3162 } 3163 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3164 std::string S; 3165 if (convertToString(Record, 0, S)) 3166 return error("Invalid record"); 3167 SectionTable.push_back(S); 3168 break; 3169 } 3170 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3171 std::string S; 3172 if (convertToString(Record, 0, S)) 3173 return error("Invalid record"); 3174 GCTable.push_back(S); 3175 break; 3176 } 3177 case bitc::MODULE_CODE_COMDAT: { 3178 if (Error Err = parseComdatRecord(Record)) 3179 return Err; 3180 break; 3181 } 3182 case bitc::MODULE_CODE_GLOBALVAR: { 3183 if (Error Err = parseGlobalVarRecord(Record)) 3184 return Err; 3185 break; 3186 } 3187 case bitc::MODULE_CODE_FUNCTION: { 3188 if (Error Err = parseFunctionRecord(Record)) 3189 return Err; 3190 break; 3191 } 3192 case bitc::MODULE_CODE_IFUNC: 3193 case bitc::MODULE_CODE_ALIAS: 3194 case bitc::MODULE_CODE_ALIAS_OLD: { 3195 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3196 return Err; 3197 break; 3198 } 3199 /// MODULE_CODE_VSTOFFSET: [offset] 3200 case bitc::MODULE_CODE_VSTOFFSET: 3201 if (Record.size() < 1) 3202 return error("Invalid record"); 3203 // Note that we subtract 1 here because the offset is relative to one word 3204 // before the start of the identification or module block, which was 3205 // historically always the start of the regular bitcode header. 3206 VSTOffset = Record[0] - 1; 3207 break; 3208 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3209 case bitc::MODULE_CODE_SOURCE_FILENAME: 3210 SmallString<128> ValueName; 3211 if (convertToString(Record, 0, ValueName)) 3212 return error("Invalid record"); 3213 TheModule->setSourceFileName(ValueName); 3214 break; 3215 } 3216 Record.clear(); 3217 } 3218 } 3219 3220 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3221 bool IsImporting) { 3222 TheModule = M; 3223 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3224 [&](unsigned ID) { return getTypeByID(ID); }); 3225 return parseModule(0, ShouldLazyLoadMetadata); 3226 } 3227 3228 3229 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3230 if (!isa<PointerType>(PtrType)) 3231 return error("Load/Store operand is not a pointer type"); 3232 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3233 3234 if (ValType && ValType != ElemType) 3235 return error("Explicit load/store type does not match pointee " 3236 "type of pointer operand"); 3237 if (!PointerType::isLoadableOrStorableType(ElemType)) 3238 return error("Cannot load/store from pointer"); 3239 return Error::success(); 3240 } 3241 3242 /// Lazily parse the specified function body block. 3243 Error BitcodeReader::parseFunctionBody(Function *F) { 3244 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3245 return error("Invalid record"); 3246 3247 // Unexpected unresolved metadata when parsing function. 3248 if (MDLoader->hasFwdRefs()) 3249 return error("Invalid function metadata: incoming forward references"); 3250 3251 InstructionList.clear(); 3252 unsigned ModuleValueListSize = ValueList.size(); 3253 unsigned ModuleMDLoaderSize = MDLoader->size(); 3254 3255 // Add all the function arguments to the value table. 3256 for (Argument &I : F->args()) 3257 ValueList.push_back(&I); 3258 3259 unsigned NextValueNo = ValueList.size(); 3260 BasicBlock *CurBB = nullptr; 3261 unsigned CurBBNo = 0; 3262 3263 DebugLoc LastLoc; 3264 auto getLastInstruction = [&]() -> Instruction * { 3265 if (CurBB && !CurBB->empty()) 3266 return &CurBB->back(); 3267 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3268 !FunctionBBs[CurBBNo - 1]->empty()) 3269 return &FunctionBBs[CurBBNo - 1]->back(); 3270 return nullptr; 3271 }; 3272 3273 std::vector<OperandBundleDef> OperandBundles; 3274 3275 // Read all the records. 3276 SmallVector<uint64_t, 64> Record; 3277 3278 while (true) { 3279 BitstreamEntry Entry = Stream.advance(); 3280 3281 switch (Entry.Kind) { 3282 case BitstreamEntry::Error: 3283 return error("Malformed block"); 3284 case BitstreamEntry::EndBlock: 3285 goto OutOfRecordLoop; 3286 3287 case BitstreamEntry::SubBlock: 3288 switch (Entry.ID) { 3289 default: // Skip unknown content. 3290 if (Stream.SkipBlock()) 3291 return error("Invalid record"); 3292 break; 3293 case bitc::CONSTANTS_BLOCK_ID: 3294 if (Error Err = parseConstants()) 3295 return Err; 3296 NextValueNo = ValueList.size(); 3297 break; 3298 case bitc::VALUE_SYMTAB_BLOCK_ID: 3299 if (Error Err = parseValueSymbolTable()) 3300 return Err; 3301 break; 3302 case bitc::METADATA_ATTACHMENT_ID: 3303 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3304 return Err; 3305 break; 3306 case bitc::METADATA_BLOCK_ID: 3307 assert(DeferredMetadataInfo.empty() && 3308 "Must read all module-level metadata before function-level"); 3309 if (Error Err = MDLoader->parseFunctionMetadata()) 3310 return Err; 3311 break; 3312 case bitc::USELIST_BLOCK_ID: 3313 if (Error Err = parseUseLists()) 3314 return Err; 3315 break; 3316 } 3317 continue; 3318 3319 case BitstreamEntry::Record: 3320 // The interesting case. 3321 break; 3322 } 3323 3324 // Read a record. 3325 Record.clear(); 3326 Instruction *I = nullptr; 3327 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3328 switch (BitCode) { 3329 default: // Default behavior: reject 3330 return error("Invalid value"); 3331 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3332 if (Record.size() < 1 || Record[0] == 0) 3333 return error("Invalid record"); 3334 // Create all the basic blocks for the function. 3335 FunctionBBs.resize(Record[0]); 3336 3337 // See if anything took the address of blocks in this function. 3338 auto BBFRI = BasicBlockFwdRefs.find(F); 3339 if (BBFRI == BasicBlockFwdRefs.end()) { 3340 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3341 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3342 } else { 3343 auto &BBRefs = BBFRI->second; 3344 // Check for invalid basic block references. 3345 if (BBRefs.size() > FunctionBBs.size()) 3346 return error("Invalid ID"); 3347 assert(!BBRefs.empty() && "Unexpected empty array"); 3348 assert(!BBRefs.front() && "Invalid reference to entry block"); 3349 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3350 ++I) 3351 if (I < RE && BBRefs[I]) { 3352 BBRefs[I]->insertInto(F); 3353 FunctionBBs[I] = BBRefs[I]; 3354 } else { 3355 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3356 } 3357 3358 // Erase from the table. 3359 BasicBlockFwdRefs.erase(BBFRI); 3360 } 3361 3362 CurBB = FunctionBBs[0]; 3363 continue; 3364 } 3365 3366 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3367 // This record indicates that the last instruction is at the same 3368 // location as the previous instruction with a location. 3369 I = getLastInstruction(); 3370 3371 if (!I) 3372 return error("Invalid record"); 3373 I->setDebugLoc(LastLoc); 3374 I = nullptr; 3375 continue; 3376 3377 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3378 I = getLastInstruction(); 3379 if (!I || Record.size() < 4) 3380 return error("Invalid record"); 3381 3382 unsigned Line = Record[0], Col = Record[1]; 3383 unsigned ScopeID = Record[2], IAID = Record[3]; 3384 3385 MDNode *Scope = nullptr, *IA = nullptr; 3386 if (ScopeID) { 3387 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3388 if (!Scope) 3389 return error("Invalid record"); 3390 } 3391 if (IAID) { 3392 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3393 if (!IA) 3394 return error("Invalid record"); 3395 } 3396 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3397 I->setDebugLoc(LastLoc); 3398 I = nullptr; 3399 continue; 3400 } 3401 3402 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3403 unsigned OpNum = 0; 3404 Value *LHS, *RHS; 3405 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3406 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3407 OpNum+1 > Record.size()) 3408 return error("Invalid record"); 3409 3410 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3411 if (Opc == -1) 3412 return error("Invalid record"); 3413 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3414 InstructionList.push_back(I); 3415 if (OpNum < Record.size()) { 3416 if (Opc == Instruction::Add || 3417 Opc == Instruction::Sub || 3418 Opc == Instruction::Mul || 3419 Opc == Instruction::Shl) { 3420 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3421 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3422 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3423 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3424 } else if (Opc == Instruction::SDiv || 3425 Opc == Instruction::UDiv || 3426 Opc == Instruction::LShr || 3427 Opc == Instruction::AShr) { 3428 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3429 cast<BinaryOperator>(I)->setIsExact(true); 3430 } else if (isa<FPMathOperator>(I)) { 3431 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3432 if (FMF.any()) 3433 I->setFastMathFlags(FMF); 3434 } 3435 3436 } 3437 break; 3438 } 3439 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3440 unsigned OpNum = 0; 3441 Value *Op; 3442 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3443 OpNum+2 != Record.size()) 3444 return error("Invalid record"); 3445 3446 Type *ResTy = getTypeByID(Record[OpNum]); 3447 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3448 if (Opc == -1 || !ResTy) 3449 return error("Invalid record"); 3450 Instruction *Temp = nullptr; 3451 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3452 if (Temp) { 3453 InstructionList.push_back(Temp); 3454 CurBB->getInstList().push_back(Temp); 3455 } 3456 } else { 3457 auto CastOp = (Instruction::CastOps)Opc; 3458 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3459 return error("Invalid cast"); 3460 I = CastInst::Create(CastOp, Op, ResTy); 3461 } 3462 InstructionList.push_back(I); 3463 break; 3464 } 3465 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3466 case bitc::FUNC_CODE_INST_GEP_OLD: 3467 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3468 unsigned OpNum = 0; 3469 3470 Type *Ty; 3471 bool InBounds; 3472 3473 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3474 InBounds = Record[OpNum++]; 3475 Ty = getTypeByID(Record[OpNum++]); 3476 } else { 3477 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3478 Ty = nullptr; 3479 } 3480 3481 Value *BasePtr; 3482 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3483 return error("Invalid record"); 3484 3485 if (!Ty) 3486 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3487 ->getElementType(); 3488 else if (Ty != 3489 cast<PointerType>(BasePtr->getType()->getScalarType()) 3490 ->getElementType()) 3491 return error( 3492 "Explicit gep type does not match pointee type of pointer operand"); 3493 3494 SmallVector<Value*, 16> GEPIdx; 3495 while (OpNum != Record.size()) { 3496 Value *Op; 3497 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3498 return error("Invalid record"); 3499 GEPIdx.push_back(Op); 3500 } 3501 3502 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3503 3504 InstructionList.push_back(I); 3505 if (InBounds) 3506 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3507 break; 3508 } 3509 3510 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3511 // EXTRACTVAL: [opty, opval, n x indices] 3512 unsigned OpNum = 0; 3513 Value *Agg; 3514 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3515 return error("Invalid record"); 3516 3517 unsigned RecSize = Record.size(); 3518 if (OpNum == RecSize) 3519 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3520 3521 SmallVector<unsigned, 4> EXTRACTVALIdx; 3522 Type *CurTy = Agg->getType(); 3523 for (; OpNum != RecSize; ++OpNum) { 3524 bool IsArray = CurTy->isArrayTy(); 3525 bool IsStruct = CurTy->isStructTy(); 3526 uint64_t Index = Record[OpNum]; 3527 3528 if (!IsStruct && !IsArray) 3529 return error("EXTRACTVAL: Invalid type"); 3530 if ((unsigned)Index != Index) 3531 return error("Invalid value"); 3532 if (IsStruct && Index >= CurTy->subtypes().size()) 3533 return error("EXTRACTVAL: Invalid struct index"); 3534 if (IsArray && Index >= CurTy->getArrayNumElements()) 3535 return error("EXTRACTVAL: Invalid array index"); 3536 EXTRACTVALIdx.push_back((unsigned)Index); 3537 3538 if (IsStruct) 3539 CurTy = CurTy->subtypes()[Index]; 3540 else 3541 CurTy = CurTy->subtypes()[0]; 3542 } 3543 3544 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3545 InstructionList.push_back(I); 3546 break; 3547 } 3548 3549 case bitc::FUNC_CODE_INST_INSERTVAL: { 3550 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3551 unsigned OpNum = 0; 3552 Value *Agg; 3553 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3554 return error("Invalid record"); 3555 Value *Val; 3556 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3557 return error("Invalid record"); 3558 3559 unsigned RecSize = Record.size(); 3560 if (OpNum == RecSize) 3561 return error("INSERTVAL: Invalid instruction with 0 indices"); 3562 3563 SmallVector<unsigned, 4> INSERTVALIdx; 3564 Type *CurTy = Agg->getType(); 3565 for (; OpNum != RecSize; ++OpNum) { 3566 bool IsArray = CurTy->isArrayTy(); 3567 bool IsStruct = CurTy->isStructTy(); 3568 uint64_t Index = Record[OpNum]; 3569 3570 if (!IsStruct && !IsArray) 3571 return error("INSERTVAL: Invalid type"); 3572 if ((unsigned)Index != Index) 3573 return error("Invalid value"); 3574 if (IsStruct && Index >= CurTy->subtypes().size()) 3575 return error("INSERTVAL: Invalid struct index"); 3576 if (IsArray && Index >= CurTy->getArrayNumElements()) 3577 return error("INSERTVAL: Invalid array index"); 3578 3579 INSERTVALIdx.push_back((unsigned)Index); 3580 if (IsStruct) 3581 CurTy = CurTy->subtypes()[Index]; 3582 else 3583 CurTy = CurTy->subtypes()[0]; 3584 } 3585 3586 if (CurTy != Val->getType()) 3587 return error("Inserted value type doesn't match aggregate type"); 3588 3589 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3590 InstructionList.push_back(I); 3591 break; 3592 } 3593 3594 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3595 // obsolete form of select 3596 // handles select i1 ... in old bitcode 3597 unsigned OpNum = 0; 3598 Value *TrueVal, *FalseVal, *Cond; 3599 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3600 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3601 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3602 return error("Invalid record"); 3603 3604 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3605 InstructionList.push_back(I); 3606 break; 3607 } 3608 3609 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3610 // new form of select 3611 // handles select i1 or select [N x i1] 3612 unsigned OpNum = 0; 3613 Value *TrueVal, *FalseVal, *Cond; 3614 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3615 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3616 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3617 return error("Invalid record"); 3618 3619 // select condition can be either i1 or [N x i1] 3620 if (VectorType* vector_type = 3621 dyn_cast<VectorType>(Cond->getType())) { 3622 // expect <n x i1> 3623 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3624 return error("Invalid type for value"); 3625 } else { 3626 // expect i1 3627 if (Cond->getType() != Type::getInt1Ty(Context)) 3628 return error("Invalid type for value"); 3629 } 3630 3631 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3632 InstructionList.push_back(I); 3633 break; 3634 } 3635 3636 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3637 unsigned OpNum = 0; 3638 Value *Vec, *Idx; 3639 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3640 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3641 return error("Invalid record"); 3642 if (!Vec->getType()->isVectorTy()) 3643 return error("Invalid type for value"); 3644 I = ExtractElementInst::Create(Vec, Idx); 3645 InstructionList.push_back(I); 3646 break; 3647 } 3648 3649 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3650 unsigned OpNum = 0; 3651 Value *Vec, *Elt, *Idx; 3652 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3653 return error("Invalid record"); 3654 if (!Vec->getType()->isVectorTy()) 3655 return error("Invalid type for value"); 3656 if (popValue(Record, OpNum, NextValueNo, 3657 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3658 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3659 return error("Invalid record"); 3660 I = InsertElementInst::Create(Vec, Elt, Idx); 3661 InstructionList.push_back(I); 3662 break; 3663 } 3664 3665 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3666 unsigned OpNum = 0; 3667 Value *Vec1, *Vec2, *Mask; 3668 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3669 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3670 return error("Invalid record"); 3671 3672 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3673 return error("Invalid record"); 3674 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3675 return error("Invalid type for value"); 3676 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3677 InstructionList.push_back(I); 3678 break; 3679 } 3680 3681 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3682 // Old form of ICmp/FCmp returning bool 3683 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3684 // both legal on vectors but had different behaviour. 3685 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3686 // FCmp/ICmp returning bool or vector of bool 3687 3688 unsigned OpNum = 0; 3689 Value *LHS, *RHS; 3690 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3691 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3692 return error("Invalid record"); 3693 3694 unsigned PredVal = Record[OpNum]; 3695 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3696 FastMathFlags FMF; 3697 if (IsFP && Record.size() > OpNum+1) 3698 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3699 3700 if (OpNum+1 != Record.size()) 3701 return error("Invalid record"); 3702 3703 if (LHS->getType()->isFPOrFPVectorTy()) 3704 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3705 else 3706 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3707 3708 if (FMF.any()) 3709 I->setFastMathFlags(FMF); 3710 InstructionList.push_back(I); 3711 break; 3712 } 3713 3714 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3715 { 3716 unsigned Size = Record.size(); 3717 if (Size == 0) { 3718 I = ReturnInst::Create(Context); 3719 InstructionList.push_back(I); 3720 break; 3721 } 3722 3723 unsigned OpNum = 0; 3724 Value *Op = nullptr; 3725 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3726 return error("Invalid record"); 3727 if (OpNum != Record.size()) 3728 return error("Invalid record"); 3729 3730 I = ReturnInst::Create(Context, Op); 3731 InstructionList.push_back(I); 3732 break; 3733 } 3734 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3735 if (Record.size() != 1 && Record.size() != 3) 3736 return error("Invalid record"); 3737 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3738 if (!TrueDest) 3739 return error("Invalid record"); 3740 3741 if (Record.size() == 1) { 3742 I = BranchInst::Create(TrueDest); 3743 InstructionList.push_back(I); 3744 } 3745 else { 3746 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3747 Value *Cond = getValue(Record, 2, NextValueNo, 3748 Type::getInt1Ty(Context)); 3749 if (!FalseDest || !Cond) 3750 return error("Invalid record"); 3751 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3752 InstructionList.push_back(I); 3753 } 3754 break; 3755 } 3756 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3757 if (Record.size() != 1 && Record.size() != 2) 3758 return error("Invalid record"); 3759 unsigned Idx = 0; 3760 Value *CleanupPad = 3761 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3762 if (!CleanupPad) 3763 return error("Invalid record"); 3764 BasicBlock *UnwindDest = nullptr; 3765 if (Record.size() == 2) { 3766 UnwindDest = getBasicBlock(Record[Idx++]); 3767 if (!UnwindDest) 3768 return error("Invalid record"); 3769 } 3770 3771 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3772 InstructionList.push_back(I); 3773 break; 3774 } 3775 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3776 if (Record.size() != 2) 3777 return error("Invalid record"); 3778 unsigned Idx = 0; 3779 Value *CatchPad = 3780 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3781 if (!CatchPad) 3782 return error("Invalid record"); 3783 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3784 if (!BB) 3785 return error("Invalid record"); 3786 3787 I = CatchReturnInst::Create(CatchPad, BB); 3788 InstructionList.push_back(I); 3789 break; 3790 } 3791 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3792 // We must have, at minimum, the outer scope and the number of arguments. 3793 if (Record.size() < 2) 3794 return error("Invalid record"); 3795 3796 unsigned Idx = 0; 3797 3798 Value *ParentPad = 3799 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3800 3801 unsigned NumHandlers = Record[Idx++]; 3802 3803 SmallVector<BasicBlock *, 2> Handlers; 3804 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3805 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3806 if (!BB) 3807 return error("Invalid record"); 3808 Handlers.push_back(BB); 3809 } 3810 3811 BasicBlock *UnwindDest = nullptr; 3812 if (Idx + 1 == Record.size()) { 3813 UnwindDest = getBasicBlock(Record[Idx++]); 3814 if (!UnwindDest) 3815 return error("Invalid record"); 3816 } 3817 3818 if (Record.size() != Idx) 3819 return error("Invalid record"); 3820 3821 auto *CatchSwitch = 3822 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3823 for (BasicBlock *Handler : Handlers) 3824 CatchSwitch->addHandler(Handler); 3825 I = CatchSwitch; 3826 InstructionList.push_back(I); 3827 break; 3828 } 3829 case bitc::FUNC_CODE_INST_CATCHPAD: 3830 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3831 // We must have, at minimum, the outer scope and the number of arguments. 3832 if (Record.size() < 2) 3833 return error("Invalid record"); 3834 3835 unsigned Idx = 0; 3836 3837 Value *ParentPad = 3838 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3839 3840 unsigned NumArgOperands = Record[Idx++]; 3841 3842 SmallVector<Value *, 2> Args; 3843 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3844 Value *Val; 3845 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3846 return error("Invalid record"); 3847 Args.push_back(Val); 3848 } 3849 3850 if (Record.size() != Idx) 3851 return error("Invalid record"); 3852 3853 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3854 I = CleanupPadInst::Create(ParentPad, Args); 3855 else 3856 I = CatchPadInst::Create(ParentPad, Args); 3857 InstructionList.push_back(I); 3858 break; 3859 } 3860 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3861 // Check magic 3862 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3863 // "New" SwitchInst format with case ranges. The changes to write this 3864 // format were reverted but we still recognize bitcode that uses it. 3865 // Hopefully someday we will have support for case ranges and can use 3866 // this format again. 3867 3868 Type *OpTy = getTypeByID(Record[1]); 3869 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3870 3871 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3872 BasicBlock *Default = getBasicBlock(Record[3]); 3873 if (!OpTy || !Cond || !Default) 3874 return error("Invalid record"); 3875 3876 unsigned NumCases = Record[4]; 3877 3878 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3879 InstructionList.push_back(SI); 3880 3881 unsigned CurIdx = 5; 3882 for (unsigned i = 0; i != NumCases; ++i) { 3883 SmallVector<ConstantInt*, 1> CaseVals; 3884 unsigned NumItems = Record[CurIdx++]; 3885 for (unsigned ci = 0; ci != NumItems; ++ci) { 3886 bool isSingleNumber = Record[CurIdx++]; 3887 3888 APInt Low; 3889 unsigned ActiveWords = 1; 3890 if (ValueBitWidth > 64) 3891 ActiveWords = Record[CurIdx++]; 3892 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3893 ValueBitWidth); 3894 CurIdx += ActiveWords; 3895 3896 if (!isSingleNumber) { 3897 ActiveWords = 1; 3898 if (ValueBitWidth > 64) 3899 ActiveWords = Record[CurIdx++]; 3900 APInt High = readWideAPInt( 3901 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3902 CurIdx += ActiveWords; 3903 3904 // FIXME: It is not clear whether values in the range should be 3905 // compared as signed or unsigned values. The partially 3906 // implemented changes that used this format in the past used 3907 // unsigned comparisons. 3908 for ( ; Low.ule(High); ++Low) 3909 CaseVals.push_back(ConstantInt::get(Context, Low)); 3910 } else 3911 CaseVals.push_back(ConstantInt::get(Context, Low)); 3912 } 3913 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3914 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3915 cve = CaseVals.end(); cvi != cve; ++cvi) 3916 SI->addCase(*cvi, DestBB); 3917 } 3918 I = SI; 3919 break; 3920 } 3921 3922 // Old SwitchInst format without case ranges. 3923 3924 if (Record.size() < 3 || (Record.size() & 1) == 0) 3925 return error("Invalid record"); 3926 Type *OpTy = getTypeByID(Record[0]); 3927 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3928 BasicBlock *Default = getBasicBlock(Record[2]); 3929 if (!OpTy || !Cond || !Default) 3930 return error("Invalid record"); 3931 unsigned NumCases = (Record.size()-3)/2; 3932 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3933 InstructionList.push_back(SI); 3934 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3935 ConstantInt *CaseVal = 3936 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3937 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3938 if (!CaseVal || !DestBB) { 3939 delete SI; 3940 return error("Invalid record"); 3941 } 3942 SI->addCase(CaseVal, DestBB); 3943 } 3944 I = SI; 3945 break; 3946 } 3947 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3948 if (Record.size() < 2) 3949 return error("Invalid record"); 3950 Type *OpTy = getTypeByID(Record[0]); 3951 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3952 if (!OpTy || !Address) 3953 return error("Invalid record"); 3954 unsigned NumDests = Record.size()-2; 3955 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3956 InstructionList.push_back(IBI); 3957 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3958 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3959 IBI->addDestination(DestBB); 3960 } else { 3961 delete IBI; 3962 return error("Invalid record"); 3963 } 3964 } 3965 I = IBI; 3966 break; 3967 } 3968 3969 case bitc::FUNC_CODE_INST_INVOKE: { 3970 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3971 if (Record.size() < 4) 3972 return error("Invalid record"); 3973 unsigned OpNum = 0; 3974 AttributeList PAL = getAttributes(Record[OpNum++]); 3975 unsigned CCInfo = Record[OpNum++]; 3976 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3977 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3978 3979 FunctionType *FTy = nullptr; 3980 if (CCInfo >> 13 & 1 && 3981 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3982 return error("Explicit invoke type is not a function type"); 3983 3984 Value *Callee; 3985 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3986 return error("Invalid record"); 3987 3988 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3989 if (!CalleeTy) 3990 return error("Callee is not a pointer"); 3991 if (!FTy) { 3992 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3993 if (!FTy) 3994 return error("Callee is not of pointer to function type"); 3995 } else if (CalleeTy->getElementType() != FTy) 3996 return error("Explicit invoke type does not match pointee type of " 3997 "callee operand"); 3998 if (Record.size() < FTy->getNumParams() + OpNum) 3999 return error("Insufficient operands to call"); 4000 4001 SmallVector<Value*, 16> Ops; 4002 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4003 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4004 FTy->getParamType(i))); 4005 if (!Ops.back()) 4006 return error("Invalid record"); 4007 } 4008 4009 if (!FTy->isVarArg()) { 4010 if (Record.size() != OpNum) 4011 return error("Invalid record"); 4012 } else { 4013 // Read type/value pairs for varargs params. 4014 while (OpNum != Record.size()) { 4015 Value *Op; 4016 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4017 return error("Invalid record"); 4018 Ops.push_back(Op); 4019 } 4020 } 4021 4022 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4023 OperandBundles.clear(); 4024 InstructionList.push_back(I); 4025 cast<InvokeInst>(I)->setCallingConv( 4026 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4027 cast<InvokeInst>(I)->setAttributes(PAL); 4028 break; 4029 } 4030 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4031 unsigned Idx = 0; 4032 Value *Val = nullptr; 4033 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4034 return error("Invalid record"); 4035 I = ResumeInst::Create(Val); 4036 InstructionList.push_back(I); 4037 break; 4038 } 4039 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4040 I = new UnreachableInst(Context); 4041 InstructionList.push_back(I); 4042 break; 4043 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4044 if (Record.size() < 1 || ((Record.size()-1)&1)) 4045 return error("Invalid record"); 4046 Type *Ty = getTypeByID(Record[0]); 4047 if (!Ty) 4048 return error("Invalid record"); 4049 4050 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4051 InstructionList.push_back(PN); 4052 4053 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4054 Value *V; 4055 // With the new function encoding, it is possible that operands have 4056 // negative IDs (for forward references). Use a signed VBR 4057 // representation to keep the encoding small. 4058 if (UseRelativeIDs) 4059 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4060 else 4061 V = getValue(Record, 1+i, NextValueNo, Ty); 4062 BasicBlock *BB = getBasicBlock(Record[2+i]); 4063 if (!V || !BB) 4064 return error("Invalid record"); 4065 PN->addIncoming(V, BB); 4066 } 4067 I = PN; 4068 break; 4069 } 4070 4071 case bitc::FUNC_CODE_INST_LANDINGPAD: 4072 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4073 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4074 unsigned Idx = 0; 4075 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4076 if (Record.size() < 3) 4077 return error("Invalid record"); 4078 } else { 4079 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4080 if (Record.size() < 4) 4081 return error("Invalid record"); 4082 } 4083 Type *Ty = getTypeByID(Record[Idx++]); 4084 if (!Ty) 4085 return error("Invalid record"); 4086 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4087 Value *PersFn = nullptr; 4088 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4089 return error("Invalid record"); 4090 4091 if (!F->hasPersonalityFn()) 4092 F->setPersonalityFn(cast<Constant>(PersFn)); 4093 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4094 return error("Personality function mismatch"); 4095 } 4096 4097 bool IsCleanup = !!Record[Idx++]; 4098 unsigned NumClauses = Record[Idx++]; 4099 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4100 LP->setCleanup(IsCleanup); 4101 for (unsigned J = 0; J != NumClauses; ++J) { 4102 LandingPadInst::ClauseType CT = 4103 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4104 Value *Val; 4105 4106 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4107 delete LP; 4108 return error("Invalid record"); 4109 } 4110 4111 assert((CT != LandingPadInst::Catch || 4112 !isa<ArrayType>(Val->getType())) && 4113 "Catch clause has a invalid type!"); 4114 assert((CT != LandingPadInst::Filter || 4115 isa<ArrayType>(Val->getType())) && 4116 "Filter clause has invalid type!"); 4117 LP->addClause(cast<Constant>(Val)); 4118 } 4119 4120 I = LP; 4121 InstructionList.push_back(I); 4122 break; 4123 } 4124 4125 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4126 if (Record.size() != 4) 4127 return error("Invalid record"); 4128 uint64_t AlignRecord = Record[3]; 4129 const uint64_t InAllocaMask = uint64_t(1) << 5; 4130 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4131 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4132 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4133 SwiftErrorMask; 4134 bool InAlloca = AlignRecord & InAllocaMask; 4135 bool SwiftError = AlignRecord & SwiftErrorMask; 4136 Type *Ty = getTypeByID(Record[0]); 4137 if ((AlignRecord & ExplicitTypeMask) == 0) { 4138 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4139 if (!PTy) 4140 return error("Old-style alloca with a non-pointer type"); 4141 Ty = PTy->getElementType(); 4142 } 4143 Type *OpTy = getTypeByID(Record[1]); 4144 Value *Size = getFnValueByID(Record[2], OpTy); 4145 unsigned Align; 4146 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4147 return Err; 4148 } 4149 if (!Ty || !Size) 4150 return error("Invalid record"); 4151 4152 // FIXME: Make this an optional field. 4153 const DataLayout &DL = TheModule->getDataLayout(); 4154 unsigned AS = DL.getAllocaAddrSpace(); 4155 4156 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4157 AI->setUsedWithInAlloca(InAlloca); 4158 AI->setSwiftError(SwiftError); 4159 I = AI; 4160 InstructionList.push_back(I); 4161 break; 4162 } 4163 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4164 unsigned OpNum = 0; 4165 Value *Op; 4166 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4167 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4168 return error("Invalid record"); 4169 4170 Type *Ty = nullptr; 4171 if (OpNum + 3 == Record.size()) 4172 Ty = getTypeByID(Record[OpNum++]); 4173 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4174 return Err; 4175 if (!Ty) 4176 Ty = cast<PointerType>(Op->getType())->getElementType(); 4177 4178 unsigned Align; 4179 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4180 return Err; 4181 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4182 4183 InstructionList.push_back(I); 4184 break; 4185 } 4186 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4187 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4188 unsigned OpNum = 0; 4189 Value *Op; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4191 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4192 return error("Invalid record"); 4193 4194 Type *Ty = nullptr; 4195 if (OpNum + 5 == Record.size()) 4196 Ty = getTypeByID(Record[OpNum++]); 4197 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4198 return Err; 4199 if (!Ty) 4200 Ty = cast<PointerType>(Op->getType())->getElementType(); 4201 4202 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4203 if (Ordering == AtomicOrdering::NotAtomic || 4204 Ordering == AtomicOrdering::Release || 4205 Ordering == AtomicOrdering::AcquireRelease) 4206 return error("Invalid record"); 4207 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4208 return error("Invalid record"); 4209 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4210 4211 unsigned Align; 4212 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4213 return Err; 4214 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4215 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 case bitc::FUNC_CODE_INST_STORE: 4220 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4221 unsigned OpNum = 0; 4222 Value *Val, *Ptr; 4223 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4224 (BitCode == bitc::FUNC_CODE_INST_STORE 4225 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4226 : popValue(Record, OpNum, NextValueNo, 4227 cast<PointerType>(Ptr->getType())->getElementType(), 4228 Val)) || 4229 OpNum + 2 != Record.size()) 4230 return error("Invalid record"); 4231 4232 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4233 return Err; 4234 unsigned Align; 4235 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4236 return Err; 4237 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4238 InstructionList.push_back(I); 4239 break; 4240 } 4241 case bitc::FUNC_CODE_INST_STOREATOMIC: 4242 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4243 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4244 unsigned OpNum = 0; 4245 Value *Val, *Ptr; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4247 !isa<PointerType>(Ptr->getType()) || 4248 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4249 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4250 : popValue(Record, OpNum, NextValueNo, 4251 cast<PointerType>(Ptr->getType())->getElementType(), 4252 Val)) || 4253 OpNum + 4 != Record.size()) 4254 return error("Invalid record"); 4255 4256 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4257 return Err; 4258 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4259 if (Ordering == AtomicOrdering::NotAtomic || 4260 Ordering == AtomicOrdering::Acquire || 4261 Ordering == AtomicOrdering::AcquireRelease) 4262 return error("Invalid record"); 4263 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4264 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4265 return error("Invalid record"); 4266 4267 unsigned Align; 4268 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4269 return Err; 4270 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4271 InstructionList.push_back(I); 4272 break; 4273 } 4274 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4275 case bitc::FUNC_CODE_INST_CMPXCHG: { 4276 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4277 // failureordering?, isweak?] 4278 unsigned OpNum = 0; 4279 Value *Ptr, *Cmp, *New; 4280 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4281 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4282 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4283 : popValue(Record, OpNum, NextValueNo, 4284 cast<PointerType>(Ptr->getType())->getElementType(), 4285 Cmp)) || 4286 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4287 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4288 return error("Invalid record"); 4289 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4290 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4291 SuccessOrdering == AtomicOrdering::Unordered) 4292 return error("Invalid record"); 4293 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4294 4295 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4296 return Err; 4297 AtomicOrdering FailureOrdering; 4298 if (Record.size() < 7) 4299 FailureOrdering = 4300 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4301 else 4302 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4303 4304 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4305 SynchScope); 4306 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4307 4308 if (Record.size() < 8) { 4309 // Before weak cmpxchgs existed, the instruction simply returned the 4310 // value loaded from memory, so bitcode files from that era will be 4311 // expecting the first component of a modern cmpxchg. 4312 CurBB->getInstList().push_back(I); 4313 I = ExtractValueInst::Create(I, 0); 4314 } else { 4315 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4316 } 4317 4318 InstructionList.push_back(I); 4319 break; 4320 } 4321 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4322 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4323 unsigned OpNum = 0; 4324 Value *Ptr, *Val; 4325 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4326 !isa<PointerType>(Ptr->getType()) || 4327 popValue(Record, OpNum, NextValueNo, 4328 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4329 OpNum+4 != Record.size()) 4330 return error("Invalid record"); 4331 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4332 if (Operation < AtomicRMWInst::FIRST_BINOP || 4333 Operation > AtomicRMWInst::LAST_BINOP) 4334 return error("Invalid record"); 4335 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4336 if (Ordering == AtomicOrdering::NotAtomic || 4337 Ordering == AtomicOrdering::Unordered) 4338 return error("Invalid record"); 4339 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4340 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4341 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4342 InstructionList.push_back(I); 4343 break; 4344 } 4345 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4346 if (2 != Record.size()) 4347 return error("Invalid record"); 4348 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4349 if (Ordering == AtomicOrdering::NotAtomic || 4350 Ordering == AtomicOrdering::Unordered || 4351 Ordering == AtomicOrdering::Monotonic) 4352 return error("Invalid record"); 4353 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4354 I = new FenceInst(Context, Ordering, SynchScope); 4355 InstructionList.push_back(I); 4356 break; 4357 } 4358 case bitc::FUNC_CODE_INST_CALL: { 4359 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4360 if (Record.size() < 3) 4361 return error("Invalid record"); 4362 4363 unsigned OpNum = 0; 4364 AttributeList PAL = getAttributes(Record[OpNum++]); 4365 unsigned CCInfo = Record[OpNum++]; 4366 4367 FastMathFlags FMF; 4368 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4369 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4370 if (!FMF.any()) 4371 return error("Fast math flags indicator set for call with no FMF"); 4372 } 4373 4374 FunctionType *FTy = nullptr; 4375 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4376 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4377 return error("Explicit call type is not a function type"); 4378 4379 Value *Callee; 4380 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4381 return error("Invalid record"); 4382 4383 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4384 if (!OpTy) 4385 return error("Callee is not a pointer type"); 4386 if (!FTy) { 4387 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4388 if (!FTy) 4389 return error("Callee is not of pointer to function type"); 4390 } else if (OpTy->getElementType() != FTy) 4391 return error("Explicit call type does not match pointee type of " 4392 "callee operand"); 4393 if (Record.size() < FTy->getNumParams() + OpNum) 4394 return error("Insufficient operands to call"); 4395 4396 SmallVector<Value*, 16> Args; 4397 // Read the fixed params. 4398 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4399 if (FTy->getParamType(i)->isLabelTy()) 4400 Args.push_back(getBasicBlock(Record[OpNum])); 4401 else 4402 Args.push_back(getValue(Record, OpNum, NextValueNo, 4403 FTy->getParamType(i))); 4404 if (!Args.back()) 4405 return error("Invalid record"); 4406 } 4407 4408 // Read type/value pairs for varargs params. 4409 if (!FTy->isVarArg()) { 4410 if (OpNum != Record.size()) 4411 return error("Invalid record"); 4412 } else { 4413 while (OpNum != Record.size()) { 4414 Value *Op; 4415 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4416 return error("Invalid record"); 4417 Args.push_back(Op); 4418 } 4419 } 4420 4421 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4422 OperandBundles.clear(); 4423 InstructionList.push_back(I); 4424 cast<CallInst>(I)->setCallingConv( 4425 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4426 CallInst::TailCallKind TCK = CallInst::TCK_None; 4427 if (CCInfo & 1 << bitc::CALL_TAIL) 4428 TCK = CallInst::TCK_Tail; 4429 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4430 TCK = CallInst::TCK_MustTail; 4431 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4432 TCK = CallInst::TCK_NoTail; 4433 cast<CallInst>(I)->setTailCallKind(TCK); 4434 cast<CallInst>(I)->setAttributes(PAL); 4435 if (FMF.any()) { 4436 if (!isa<FPMathOperator>(I)) 4437 return error("Fast-math-flags specified for call without " 4438 "floating-point scalar or vector return type"); 4439 I->setFastMathFlags(FMF); 4440 } 4441 break; 4442 } 4443 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4444 if (Record.size() < 3) 4445 return error("Invalid record"); 4446 Type *OpTy = getTypeByID(Record[0]); 4447 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4448 Type *ResTy = getTypeByID(Record[2]); 4449 if (!OpTy || !Op || !ResTy) 4450 return error("Invalid record"); 4451 I = new VAArgInst(Op, ResTy); 4452 InstructionList.push_back(I); 4453 break; 4454 } 4455 4456 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4457 // A call or an invoke can be optionally prefixed with some variable 4458 // number of operand bundle blocks. These blocks are read into 4459 // OperandBundles and consumed at the next call or invoke instruction. 4460 4461 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4462 return error("Invalid record"); 4463 4464 std::vector<Value *> Inputs; 4465 4466 unsigned OpNum = 1; 4467 while (OpNum != Record.size()) { 4468 Value *Op; 4469 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4470 return error("Invalid record"); 4471 Inputs.push_back(Op); 4472 } 4473 4474 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4475 continue; 4476 } 4477 } 4478 4479 // Add instruction to end of current BB. If there is no current BB, reject 4480 // this file. 4481 if (!CurBB) { 4482 delete I; 4483 return error("Invalid instruction with no BB"); 4484 } 4485 if (!OperandBundles.empty()) { 4486 delete I; 4487 return error("Operand bundles found with no consumer"); 4488 } 4489 CurBB->getInstList().push_back(I); 4490 4491 // If this was a terminator instruction, move to the next block. 4492 if (isa<TerminatorInst>(I)) { 4493 ++CurBBNo; 4494 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4495 } 4496 4497 // Non-void values get registered in the value table for future use. 4498 if (I && !I->getType()->isVoidTy()) 4499 ValueList.assignValue(I, NextValueNo++); 4500 } 4501 4502 OutOfRecordLoop: 4503 4504 if (!OperandBundles.empty()) 4505 return error("Operand bundles found with no consumer"); 4506 4507 // Check the function list for unresolved values. 4508 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4509 if (!A->getParent()) { 4510 // We found at least one unresolved value. Nuke them all to avoid leaks. 4511 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4512 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4513 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4514 delete A; 4515 } 4516 } 4517 return error("Never resolved value found in function"); 4518 } 4519 } 4520 4521 // Unexpected unresolved metadata about to be dropped. 4522 if (MDLoader->hasFwdRefs()) 4523 return error("Invalid function metadata: outgoing forward refs"); 4524 4525 // Trim the value list down to the size it was before we parsed this function. 4526 ValueList.shrinkTo(ModuleValueListSize); 4527 MDLoader->shrinkTo(ModuleMDLoaderSize); 4528 std::vector<BasicBlock*>().swap(FunctionBBs); 4529 return Error::success(); 4530 } 4531 4532 /// Find the function body in the bitcode stream 4533 Error BitcodeReader::findFunctionInStream( 4534 Function *F, 4535 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4536 while (DeferredFunctionInfoIterator->second == 0) { 4537 // This is the fallback handling for the old format bitcode that 4538 // didn't contain the function index in the VST, or when we have 4539 // an anonymous function which would not have a VST entry. 4540 // Assert that we have one of those two cases. 4541 assert(VSTOffset == 0 || !F->hasName()); 4542 // Parse the next body in the stream and set its position in the 4543 // DeferredFunctionInfo map. 4544 if (Error Err = rememberAndSkipFunctionBodies()) 4545 return Err; 4546 } 4547 return Error::success(); 4548 } 4549 4550 //===----------------------------------------------------------------------===// 4551 // GVMaterializer implementation 4552 //===----------------------------------------------------------------------===// 4553 4554 Error BitcodeReader::materialize(GlobalValue *GV) { 4555 Function *F = dyn_cast<Function>(GV); 4556 // If it's not a function or is already material, ignore the request. 4557 if (!F || !F->isMaterializable()) 4558 return Error::success(); 4559 4560 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4561 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4562 // If its position is recorded as 0, its body is somewhere in the stream 4563 // but we haven't seen it yet. 4564 if (DFII->second == 0) 4565 if (Error Err = findFunctionInStream(F, DFII)) 4566 return Err; 4567 4568 // Materialize metadata before parsing any function bodies. 4569 if (Error Err = materializeMetadata()) 4570 return Err; 4571 4572 // Move the bit stream to the saved position of the deferred function body. 4573 Stream.JumpToBit(DFII->second); 4574 4575 if (Error Err = parseFunctionBody(F)) 4576 return Err; 4577 F->setIsMaterializable(false); 4578 4579 if (StripDebugInfo) 4580 stripDebugInfo(*F); 4581 4582 // Upgrade any old intrinsic calls in the function. 4583 for (auto &I : UpgradedIntrinsics) { 4584 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4585 UI != UE;) { 4586 User *U = *UI; 4587 ++UI; 4588 if (CallInst *CI = dyn_cast<CallInst>(U)) 4589 UpgradeIntrinsicCall(CI, I.second); 4590 } 4591 } 4592 4593 // Update calls to the remangled intrinsics 4594 for (auto &I : RemangledIntrinsics) 4595 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4596 UI != UE;) 4597 // Don't expect any other users than call sites 4598 CallSite(*UI++).setCalledFunction(I.second); 4599 4600 // Finish fn->subprogram upgrade for materialized functions. 4601 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4602 F->setSubprogram(SP); 4603 4604 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4605 if (!MDLoader->isStrippingTBAA()) { 4606 for (auto &I : instructions(F)) { 4607 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4608 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4609 continue; 4610 MDLoader->setStripTBAA(true); 4611 stripTBAA(F->getParent()); 4612 } 4613 } 4614 4615 // Bring in any functions that this function forward-referenced via 4616 // blockaddresses. 4617 return materializeForwardReferencedFunctions(); 4618 } 4619 4620 Error BitcodeReader::materializeModule() { 4621 if (Error Err = materializeMetadata()) 4622 return Err; 4623 4624 // Promise to materialize all forward references. 4625 WillMaterializeAllForwardRefs = true; 4626 4627 // Iterate over the module, deserializing any functions that are still on 4628 // disk. 4629 for (Function &F : *TheModule) { 4630 if (Error Err = materialize(&F)) 4631 return Err; 4632 } 4633 // At this point, if there are any function bodies, parse the rest of 4634 // the bits in the module past the last function block we have recorded 4635 // through either lazy scanning or the VST. 4636 if (LastFunctionBlockBit || NextUnreadBit) 4637 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4638 ? LastFunctionBlockBit 4639 : NextUnreadBit)) 4640 return Err; 4641 4642 // Check that all block address forward references got resolved (as we 4643 // promised above). 4644 if (!BasicBlockFwdRefs.empty()) 4645 return error("Never resolved function from blockaddress"); 4646 4647 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4648 // delete the old functions to clean up. We can't do this unless the entire 4649 // module is materialized because there could always be another function body 4650 // with calls to the old function. 4651 for (auto &I : UpgradedIntrinsics) { 4652 for (auto *U : I.first->users()) { 4653 if (CallInst *CI = dyn_cast<CallInst>(U)) 4654 UpgradeIntrinsicCall(CI, I.second); 4655 } 4656 if (!I.first->use_empty()) 4657 I.first->replaceAllUsesWith(I.second); 4658 I.first->eraseFromParent(); 4659 } 4660 UpgradedIntrinsics.clear(); 4661 // Do the same for remangled intrinsics 4662 for (auto &I : RemangledIntrinsics) { 4663 I.first->replaceAllUsesWith(I.second); 4664 I.first->eraseFromParent(); 4665 } 4666 RemangledIntrinsics.clear(); 4667 4668 UpgradeDebugInfo(*TheModule); 4669 4670 UpgradeModuleFlags(*TheModule); 4671 return Error::success(); 4672 } 4673 4674 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4675 return IdentifiedStructTypes; 4676 } 4677 4678 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4679 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex) 4680 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex) {} 4681 4682 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4683 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4684 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4685 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4686 return VGI->second; 4687 } 4688 4689 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4690 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4691 StringRef SourceFileName) { 4692 std::string GlobalId = 4693 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4694 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4695 auto OriginalNameID = ValueGUID; 4696 if (GlobalValue::isLocalLinkage(Linkage)) 4697 OriginalNameID = GlobalValue::getGUID(ValueName); 4698 if (PrintSummaryGUIDs) 4699 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4700 << ValueName << "\n"; 4701 ValueIdToCallGraphGUIDMap[ValueID] = 4702 std::make_pair(ValueGUID, OriginalNameID); 4703 } 4704 4705 // Specialized value symbol table parser used when reading module index 4706 // blocks where we don't actually create global values. The parsed information 4707 // is saved in the bitcode reader for use when later parsing summaries. 4708 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4709 uint64_t Offset, 4710 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4711 // With a strtab the VST is not required to parse the summary. 4712 if (UseStrtab) 4713 return Error::success(); 4714 4715 assert(Offset > 0 && "Expected non-zero VST offset"); 4716 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4717 4718 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4719 return error("Invalid record"); 4720 4721 SmallVector<uint64_t, 64> Record; 4722 4723 // Read all the records for this value table. 4724 SmallString<128> ValueName; 4725 4726 while (true) { 4727 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4728 4729 switch (Entry.Kind) { 4730 case BitstreamEntry::SubBlock: // Handled for us already. 4731 case BitstreamEntry::Error: 4732 return error("Malformed block"); 4733 case BitstreamEntry::EndBlock: 4734 // Done parsing VST, jump back to wherever we came from. 4735 Stream.JumpToBit(CurrentBit); 4736 return Error::success(); 4737 case BitstreamEntry::Record: 4738 // The interesting case. 4739 break; 4740 } 4741 4742 // Read a record. 4743 Record.clear(); 4744 switch (Stream.readRecord(Entry.ID, Record)) { 4745 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4746 break; 4747 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4748 if (convertToString(Record, 1, ValueName)) 4749 return error("Invalid record"); 4750 unsigned ValueID = Record[0]; 4751 assert(!SourceFileName.empty()); 4752 auto VLI = ValueIdToLinkageMap.find(ValueID); 4753 assert(VLI != ValueIdToLinkageMap.end() && 4754 "No linkage found for VST entry?"); 4755 auto Linkage = VLI->second; 4756 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4757 ValueName.clear(); 4758 break; 4759 } 4760 case bitc::VST_CODE_FNENTRY: { 4761 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4762 if (convertToString(Record, 2, ValueName)) 4763 return error("Invalid record"); 4764 unsigned ValueID = Record[0]; 4765 assert(!SourceFileName.empty()); 4766 auto VLI = ValueIdToLinkageMap.find(ValueID); 4767 assert(VLI != ValueIdToLinkageMap.end() && 4768 "No linkage found for VST entry?"); 4769 auto Linkage = VLI->second; 4770 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4771 ValueName.clear(); 4772 break; 4773 } 4774 case bitc::VST_CODE_COMBINED_ENTRY: { 4775 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4776 unsigned ValueID = Record[0]; 4777 GlobalValue::GUID RefGUID = Record[1]; 4778 // The "original name", which is the second value of the pair will be 4779 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4780 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4781 break; 4782 } 4783 } 4784 } 4785 } 4786 4787 // Parse just the blocks needed for building the index out of the module. 4788 // At the end of this routine the module Index is populated with a map 4789 // from global value id to GlobalValueSummary objects. 4790 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4791 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4792 return error("Invalid record"); 4793 4794 SmallVector<uint64_t, 64> Record; 4795 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4796 unsigned ValueId = 0; 4797 4798 // Read the index for this module. 4799 while (true) { 4800 BitstreamEntry Entry = Stream.advance(); 4801 4802 switch (Entry.Kind) { 4803 case BitstreamEntry::Error: 4804 return error("Malformed block"); 4805 case BitstreamEntry::EndBlock: 4806 return Error::success(); 4807 4808 case BitstreamEntry::SubBlock: 4809 switch (Entry.ID) { 4810 default: // Skip unknown content. 4811 if (Stream.SkipBlock()) 4812 return error("Invalid record"); 4813 break; 4814 case bitc::BLOCKINFO_BLOCK_ID: 4815 // Need to parse these to get abbrev ids (e.g. for VST) 4816 if (readBlockInfo()) 4817 return error("Malformed block"); 4818 break; 4819 case bitc::VALUE_SYMTAB_BLOCK_ID: 4820 // Should have been parsed earlier via VSTOffset, unless there 4821 // is no summary section. 4822 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4823 !SeenGlobalValSummary) && 4824 "Expected early VST parse via VSTOffset record"); 4825 if (Stream.SkipBlock()) 4826 return error("Invalid record"); 4827 break; 4828 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4829 assert(!SeenValueSymbolTable && 4830 "Already read VST when parsing summary block?"); 4831 // We might not have a VST if there were no values in the 4832 // summary. An empty summary block generated when we are 4833 // performing ThinLTO compiles so we don't later invoke 4834 // the regular LTO process on them. 4835 if (VSTOffset > 0) { 4836 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4837 return Err; 4838 SeenValueSymbolTable = true; 4839 } 4840 SeenGlobalValSummary = true; 4841 if (Error Err = parseEntireSummary(ModulePath)) 4842 return Err; 4843 break; 4844 case bitc::MODULE_STRTAB_BLOCK_ID: 4845 if (Error Err = parseModuleStringTable()) 4846 return Err; 4847 break; 4848 } 4849 continue; 4850 4851 case BitstreamEntry::Record: { 4852 Record.clear(); 4853 auto BitCode = Stream.readRecord(Entry.ID, Record); 4854 switch (BitCode) { 4855 default: 4856 break; // Default behavior, ignore unknown content. 4857 case bitc::MODULE_CODE_VERSION: { 4858 if (Error Err = parseVersionRecord(Record).takeError()) 4859 return Err; 4860 break; 4861 } 4862 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4863 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4864 SmallString<128> ValueName; 4865 if (convertToString(Record, 0, ValueName)) 4866 return error("Invalid record"); 4867 SourceFileName = ValueName.c_str(); 4868 break; 4869 } 4870 /// MODULE_CODE_HASH: [5*i32] 4871 case bitc::MODULE_CODE_HASH: { 4872 if (Record.size() != 5) 4873 return error("Invalid hash length " + Twine(Record.size()).str()); 4874 if (TheIndex.modulePaths().empty()) 4875 // We always seed the index with the module. 4876 TheIndex.addModulePath(ModulePath, 0); 4877 if (TheIndex.modulePaths().size() != 1) 4878 return error("Don't expect multiple modules defined?"); 4879 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4880 int Pos = 0; 4881 for (auto &Val : Record) { 4882 assert(!(Val >> 32) && "Unexpected high bits set"); 4883 Hash[Pos++] = Val; 4884 } 4885 break; 4886 } 4887 /// MODULE_CODE_VSTOFFSET: [offset] 4888 case bitc::MODULE_CODE_VSTOFFSET: 4889 if (Record.size() < 1) 4890 return error("Invalid record"); 4891 // Note that we subtract 1 here because the offset is relative to one 4892 // word before the start of the identification or module block, which 4893 // was historically always the start of the regular bitcode header. 4894 VSTOffset = Record[0] - 1; 4895 break; 4896 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4897 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4898 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4899 // v2: [strtab offset, strtab size, v1] 4900 case bitc::MODULE_CODE_GLOBALVAR: 4901 case bitc::MODULE_CODE_FUNCTION: 4902 case bitc::MODULE_CODE_ALIAS: { 4903 StringRef Name; 4904 ArrayRef<uint64_t> GVRecord; 4905 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4906 if (GVRecord.size() <= 3) 4907 return error("Invalid record"); 4908 uint64_t RawLinkage = GVRecord[3]; 4909 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4910 if (!UseStrtab) { 4911 ValueIdToLinkageMap[ValueId++] = Linkage; 4912 break; 4913 } 4914 4915 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4916 break; 4917 } 4918 } 4919 } 4920 continue; 4921 } 4922 } 4923 } 4924 4925 std::vector<ValueInfo> 4926 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4927 std::vector<ValueInfo> Ret; 4928 Ret.reserve(Record.size()); 4929 for (uint64_t RefValueId : Record) 4930 Ret.push_back(getGUIDFromValueId(RefValueId).first); 4931 return Ret; 4932 } 4933 4934 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4935 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4936 std::vector<FunctionSummary::EdgeTy> Ret; 4937 Ret.reserve(Record.size()); 4938 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4939 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4940 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first; 4941 if (IsOldProfileFormat) { 4942 I += 1; // Skip old callsitecount field 4943 if (HasProfile) 4944 I += 1; // Skip old profilecount field 4945 } else if (HasProfile) 4946 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4947 Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}}); 4948 } 4949 return Ret; 4950 } 4951 4952 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4953 // objects in the index. 4954 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4955 StringRef ModulePath) { 4956 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4957 return error("Invalid record"); 4958 SmallVector<uint64_t, 64> Record; 4959 4960 // Parse version 4961 { 4962 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4963 if (Entry.Kind != BitstreamEntry::Record) 4964 return error("Invalid Summary Block: record for version expected"); 4965 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4966 return error("Invalid Summary Block: version expected"); 4967 } 4968 const uint64_t Version = Record[0]; 4969 const bool IsOldProfileFormat = Version == 1; 4970 if (Version < 1 || Version > 3) 4971 return error("Invalid summary version " + Twine(Version) + 4972 ", 1, 2 or 3 expected"); 4973 Record.clear(); 4974 4975 // Keep around the last seen summary to be used when we see an optional 4976 // "OriginalName" attachement. 4977 GlobalValueSummary *LastSeenSummary = nullptr; 4978 GlobalValue::GUID LastSeenGUID = 0; 4979 4980 // We can expect to see any number of type ID information records before 4981 // each function summary records; these variables store the information 4982 // collected so far so that it can be used to create the summary object. 4983 std::vector<GlobalValue::GUID> PendingTypeTests; 4984 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 4985 PendingTypeCheckedLoadVCalls; 4986 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 4987 PendingTypeCheckedLoadConstVCalls; 4988 4989 while (true) { 4990 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4991 4992 switch (Entry.Kind) { 4993 case BitstreamEntry::SubBlock: // Handled for us already. 4994 case BitstreamEntry::Error: 4995 return error("Malformed block"); 4996 case BitstreamEntry::EndBlock: 4997 return Error::success(); 4998 case BitstreamEntry::Record: 4999 // The interesting case. 5000 break; 5001 } 5002 5003 // Read a record. The record format depends on whether this 5004 // is a per-module index or a combined index file. In the per-module 5005 // case the records contain the associated value's ID for correlation 5006 // with VST entries. In the combined index the correlation is done 5007 // via the bitcode offset of the summary records (which were saved 5008 // in the combined index VST entries). The records also contain 5009 // information used for ThinLTO renaming and importing. 5010 Record.clear(); 5011 auto BitCode = Stream.readRecord(Entry.ID, Record); 5012 switch (BitCode) { 5013 default: // Default behavior: ignore. 5014 break; 5015 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5016 uint64_t ValueID = Record[0]; 5017 GlobalValue::GUID RefGUID = Record[1]; 5018 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5019 break; 5020 } 5021 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 5022 // n x (valueid)] 5023 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 5024 // numrefs x valueid, 5025 // n x (valueid, hotness)] 5026 case bitc::FS_PERMODULE: 5027 case bitc::FS_PERMODULE_PROFILE: { 5028 unsigned ValueID = Record[0]; 5029 uint64_t RawFlags = Record[1]; 5030 unsigned InstCount = Record[2]; 5031 unsigned NumRefs = Record[3]; 5032 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5033 // The module path string ref set in the summary must be owned by the 5034 // index's module string table. Since we don't have a module path 5035 // string table section in the per-module index, we create a single 5036 // module path string table entry with an empty (0) ID to take 5037 // ownership. 5038 static int RefListStartIndex = 4; 5039 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5040 assert(Record.size() >= RefListStartIndex + NumRefs && 5041 "Record size inconsistent with number of references"); 5042 std::vector<ValueInfo> Refs = makeRefList( 5043 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5044 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5045 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5046 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5047 IsOldProfileFormat, HasProfile); 5048 auto FS = llvm::make_unique<FunctionSummary>( 5049 Flags, InstCount, std::move(Refs), std::move(Calls), 5050 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5051 std::move(PendingTypeCheckedLoadVCalls), 5052 std::move(PendingTypeTestAssumeConstVCalls), 5053 std::move(PendingTypeCheckedLoadConstVCalls)); 5054 PendingTypeTests.clear(); 5055 PendingTypeTestAssumeVCalls.clear(); 5056 PendingTypeCheckedLoadVCalls.clear(); 5057 PendingTypeTestAssumeConstVCalls.clear(); 5058 PendingTypeCheckedLoadConstVCalls.clear(); 5059 auto GUID = getGUIDFromValueId(ValueID); 5060 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 5061 FS->setOriginalName(GUID.second); 5062 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5063 break; 5064 } 5065 // FS_ALIAS: [valueid, flags, valueid] 5066 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5067 // they expect all aliasee summaries to be available. 5068 case bitc::FS_ALIAS: { 5069 unsigned ValueID = Record[0]; 5070 uint64_t RawFlags = Record[1]; 5071 unsigned AliaseeID = Record[2]; 5072 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5073 auto AS = 5074 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5075 // The module path string ref set in the summary must be owned by the 5076 // index's module string table. Since we don't have a module path 5077 // string table section in the per-module index, we create a single 5078 // module path string table entry with an empty (0) ID to take 5079 // ownership. 5080 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 5081 5082 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 5083 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 5084 if (!AliaseeSummary) 5085 return error("Alias expects aliasee summary to be parsed"); 5086 AS->setAliasee(AliaseeSummary); 5087 5088 auto GUID = getGUIDFromValueId(ValueID); 5089 AS->setOriginalName(GUID.second); 5090 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5091 break; 5092 } 5093 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5094 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5095 unsigned ValueID = Record[0]; 5096 uint64_t RawFlags = Record[1]; 5097 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5098 std::vector<ValueInfo> Refs = 5099 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5100 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5101 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 5102 auto GUID = getGUIDFromValueId(ValueID); 5103 FS->setOriginalName(GUID.second); 5104 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5105 break; 5106 } 5107 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 5108 // numrefs x valueid, n x (valueid)] 5109 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 5110 // numrefs x valueid, n x (valueid, hotness)] 5111 case bitc::FS_COMBINED: 5112 case bitc::FS_COMBINED_PROFILE: { 5113 unsigned ValueID = Record[0]; 5114 uint64_t ModuleId = Record[1]; 5115 uint64_t RawFlags = Record[2]; 5116 unsigned InstCount = Record[3]; 5117 unsigned NumRefs = Record[4]; 5118 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5119 static int RefListStartIndex = 5; 5120 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5121 assert(Record.size() >= RefListStartIndex + NumRefs && 5122 "Record size inconsistent with number of references"); 5123 std::vector<ValueInfo> Refs = makeRefList( 5124 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5125 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5126 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5127 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5128 IsOldProfileFormat, HasProfile); 5129 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5130 auto FS = llvm::make_unique<FunctionSummary>( 5131 Flags, InstCount, std::move(Refs), std::move(Edges), 5132 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5133 std::move(PendingTypeCheckedLoadVCalls), 5134 std::move(PendingTypeTestAssumeConstVCalls), 5135 std::move(PendingTypeCheckedLoadConstVCalls)); 5136 PendingTypeTests.clear(); 5137 PendingTypeTestAssumeVCalls.clear(); 5138 PendingTypeCheckedLoadVCalls.clear(); 5139 PendingTypeTestAssumeConstVCalls.clear(); 5140 PendingTypeCheckedLoadConstVCalls.clear(); 5141 LastSeenSummary = FS.get(); 5142 LastSeenGUID = GUID; 5143 FS->setModulePath(ModuleIdMap[ModuleId]); 5144 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5145 break; 5146 } 5147 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5148 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5149 // they expect all aliasee summaries to be available. 5150 case bitc::FS_COMBINED_ALIAS: { 5151 unsigned ValueID = Record[0]; 5152 uint64_t ModuleId = Record[1]; 5153 uint64_t RawFlags = Record[2]; 5154 unsigned AliaseeValueId = Record[3]; 5155 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5156 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5157 LastSeenSummary = AS.get(); 5158 AS->setModulePath(ModuleIdMap[ModuleId]); 5159 5160 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 5161 auto AliaseeInModule = 5162 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5163 if (!AliaseeInModule) 5164 return error("Alias expects aliasee summary to be parsed"); 5165 AS->setAliasee(AliaseeInModule); 5166 5167 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5168 LastSeenGUID = GUID; 5169 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5170 break; 5171 } 5172 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5173 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5174 unsigned ValueID = Record[0]; 5175 uint64_t ModuleId = Record[1]; 5176 uint64_t RawFlags = Record[2]; 5177 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5178 std::vector<ValueInfo> Refs = 5179 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5180 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5181 LastSeenSummary = FS.get(); 5182 FS->setModulePath(ModuleIdMap[ModuleId]); 5183 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5184 LastSeenGUID = GUID; 5185 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5186 break; 5187 } 5188 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5189 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5190 uint64_t OriginalName = Record[0]; 5191 if (!LastSeenSummary) 5192 return error("Name attachment that does not follow a combined record"); 5193 LastSeenSummary->setOriginalName(OriginalName); 5194 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5195 // Reset the LastSeenSummary 5196 LastSeenSummary = nullptr; 5197 LastSeenGUID = 0; 5198 break; 5199 } 5200 case bitc::FS_TYPE_TESTS: { 5201 assert(PendingTypeTests.empty()); 5202 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5203 Record.end()); 5204 break; 5205 } 5206 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5207 assert(PendingTypeTestAssumeVCalls.empty()); 5208 for (unsigned I = 0; I != Record.size(); I += 2) 5209 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5210 break; 5211 } 5212 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5213 assert(PendingTypeCheckedLoadVCalls.empty()); 5214 for (unsigned I = 0; I != Record.size(); I += 2) 5215 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5216 break; 5217 } 5218 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5219 PendingTypeTestAssumeConstVCalls.push_back( 5220 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5221 break; 5222 } 5223 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5224 PendingTypeCheckedLoadConstVCalls.push_back( 5225 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5226 break; 5227 } 5228 } 5229 } 5230 llvm_unreachable("Exit infinite loop"); 5231 } 5232 5233 // Parse the module string table block into the Index. 5234 // This populates the ModulePathStringTable map in the index. 5235 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5236 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5237 return error("Invalid record"); 5238 5239 SmallVector<uint64_t, 64> Record; 5240 5241 SmallString<128> ModulePath; 5242 ModulePathStringTableTy::iterator LastSeenModulePath; 5243 5244 while (true) { 5245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5246 5247 switch (Entry.Kind) { 5248 case BitstreamEntry::SubBlock: // Handled for us already. 5249 case BitstreamEntry::Error: 5250 return error("Malformed block"); 5251 case BitstreamEntry::EndBlock: 5252 return Error::success(); 5253 case BitstreamEntry::Record: 5254 // The interesting case. 5255 break; 5256 } 5257 5258 Record.clear(); 5259 switch (Stream.readRecord(Entry.ID, Record)) { 5260 default: // Default behavior: ignore. 5261 break; 5262 case bitc::MST_CODE_ENTRY: { 5263 // MST_ENTRY: [modid, namechar x N] 5264 uint64_t ModuleId = Record[0]; 5265 5266 if (convertToString(Record, 1, ModulePath)) 5267 return error("Invalid record"); 5268 5269 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5270 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5271 5272 ModulePath.clear(); 5273 break; 5274 } 5275 /// MST_CODE_HASH: [5*i32] 5276 case bitc::MST_CODE_HASH: { 5277 if (Record.size() != 5) 5278 return error("Invalid hash length " + Twine(Record.size()).str()); 5279 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5280 return error("Invalid hash that does not follow a module path"); 5281 int Pos = 0; 5282 for (auto &Val : Record) { 5283 assert(!(Val >> 32) && "Unexpected high bits set"); 5284 LastSeenModulePath->second.second[Pos++] = Val; 5285 } 5286 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5287 LastSeenModulePath = TheIndex.modulePaths().end(); 5288 break; 5289 } 5290 } 5291 } 5292 llvm_unreachable("Exit infinite loop"); 5293 } 5294 5295 namespace { 5296 5297 // FIXME: This class is only here to support the transition to llvm::Error. It 5298 // will be removed once this transition is complete. Clients should prefer to 5299 // deal with the Error value directly, rather than converting to error_code. 5300 class BitcodeErrorCategoryType : public std::error_category { 5301 const char *name() const noexcept override { 5302 return "llvm.bitcode"; 5303 } 5304 std::string message(int IE) const override { 5305 BitcodeError E = static_cast<BitcodeError>(IE); 5306 switch (E) { 5307 case BitcodeError::CorruptedBitcode: 5308 return "Corrupted bitcode"; 5309 } 5310 llvm_unreachable("Unknown error type!"); 5311 } 5312 }; 5313 5314 } // end anonymous namespace 5315 5316 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5317 5318 const std::error_category &llvm::BitcodeErrorCategory() { 5319 return *ErrorCategory; 5320 } 5321 5322 static Expected<StringRef> readStrtab(BitstreamCursor &Stream) { 5323 if (Stream.EnterSubBlock(bitc::STRTAB_BLOCK_ID)) 5324 return error("Invalid record"); 5325 5326 StringRef Strtab; 5327 while (1) { 5328 BitstreamEntry Entry = Stream.advance(); 5329 switch (Entry.Kind) { 5330 case BitstreamEntry::EndBlock: 5331 return Strtab; 5332 5333 case BitstreamEntry::Error: 5334 return error("Malformed block"); 5335 5336 case BitstreamEntry::SubBlock: 5337 if (Stream.SkipBlock()) 5338 return error("Malformed block"); 5339 break; 5340 5341 case BitstreamEntry::Record: 5342 StringRef Blob; 5343 SmallVector<uint64_t, 1> Record; 5344 if (Stream.readRecord(Entry.ID, Record, &Blob) == bitc::STRTAB_BLOB) 5345 Strtab = Blob; 5346 break; 5347 } 5348 } 5349 } 5350 5351 //===----------------------------------------------------------------------===// 5352 // External interface 5353 //===----------------------------------------------------------------------===// 5354 5355 Expected<std::vector<BitcodeModule>> 5356 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5357 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5358 if (!StreamOrErr) 5359 return StreamOrErr.takeError(); 5360 BitstreamCursor &Stream = *StreamOrErr; 5361 5362 std::vector<BitcodeModule> Modules; 5363 while (true) { 5364 uint64_t BCBegin = Stream.getCurrentByteNo(); 5365 5366 // We may be consuming bitcode from a client that leaves garbage at the end 5367 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5368 // the end that there cannot possibly be another module, stop looking. 5369 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5370 return Modules; 5371 5372 BitstreamEntry Entry = Stream.advance(); 5373 switch (Entry.Kind) { 5374 case BitstreamEntry::EndBlock: 5375 case BitstreamEntry::Error: 5376 return error("Malformed block"); 5377 5378 case BitstreamEntry::SubBlock: { 5379 uint64_t IdentificationBit = -1ull; 5380 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5381 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5382 if (Stream.SkipBlock()) 5383 return error("Malformed block"); 5384 5385 Entry = Stream.advance(); 5386 if (Entry.Kind != BitstreamEntry::SubBlock || 5387 Entry.ID != bitc::MODULE_BLOCK_ID) 5388 return error("Malformed block"); 5389 } 5390 5391 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5392 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5393 if (Stream.SkipBlock()) 5394 return error("Malformed block"); 5395 5396 Modules.push_back({Stream.getBitcodeBytes().slice( 5397 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5398 Buffer.getBufferIdentifier(), IdentificationBit, 5399 ModuleBit}); 5400 continue; 5401 } 5402 5403 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5404 Expected<StringRef> Strtab = readStrtab(Stream); 5405 if (!Strtab) 5406 return Strtab.takeError(); 5407 // This string table is used by every preceding bitcode module that does 5408 // not have its own string table. A bitcode file may have multiple 5409 // string tables if it was created by binary concatenation, for example 5410 // with "llvm-cat -b". 5411 for (auto I = Modules.rbegin(), E = Modules.rend(); I != E; ++I) { 5412 if (!I->Strtab.empty()) 5413 break; 5414 I->Strtab = *Strtab; 5415 } 5416 continue; 5417 } 5418 5419 if (Stream.SkipBlock()) 5420 return error("Malformed block"); 5421 continue; 5422 } 5423 case BitstreamEntry::Record: 5424 Stream.skipRecord(Entry.ID); 5425 continue; 5426 } 5427 } 5428 } 5429 5430 /// \brief Get a lazy one-at-time loading module from bitcode. 5431 /// 5432 /// This isn't always used in a lazy context. In particular, it's also used by 5433 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5434 /// in forward-referenced functions from block address references. 5435 /// 5436 /// \param[in] MaterializeAll Set to \c true if we should materialize 5437 /// everything. 5438 Expected<std::unique_ptr<Module>> 5439 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5440 bool ShouldLazyLoadMetadata, bool IsImporting) { 5441 BitstreamCursor Stream(Buffer); 5442 5443 std::string ProducerIdentification; 5444 if (IdentificationBit != -1ull) { 5445 Stream.JumpToBit(IdentificationBit); 5446 Expected<std::string> ProducerIdentificationOrErr = 5447 readIdentificationBlock(Stream); 5448 if (!ProducerIdentificationOrErr) 5449 return ProducerIdentificationOrErr.takeError(); 5450 5451 ProducerIdentification = *ProducerIdentificationOrErr; 5452 } 5453 5454 Stream.JumpToBit(ModuleBit); 5455 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5456 Context); 5457 5458 std::unique_ptr<Module> M = 5459 llvm::make_unique<Module>(ModuleIdentifier, Context); 5460 M->setMaterializer(R); 5461 5462 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5463 if (Error Err = 5464 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5465 return std::move(Err); 5466 5467 if (MaterializeAll) { 5468 // Read in the entire module, and destroy the BitcodeReader. 5469 if (Error Err = M->materializeAll()) 5470 return std::move(Err); 5471 } else { 5472 // Resolve forward references from blockaddresses. 5473 if (Error Err = R->materializeForwardReferencedFunctions()) 5474 return std::move(Err); 5475 } 5476 return std::move(M); 5477 } 5478 5479 Expected<std::unique_ptr<Module>> 5480 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5481 bool IsImporting) { 5482 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5483 } 5484 5485 // Parse the specified bitcode buffer, returning the function info index. 5486 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5487 BitstreamCursor Stream(Buffer); 5488 Stream.JumpToBit(ModuleBit); 5489 5490 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5491 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index); 5492 5493 if (Error Err = R.parseModule(ModuleIdentifier)) 5494 return std::move(Err); 5495 5496 return std::move(Index); 5497 } 5498 5499 // Check if the given bitcode buffer contains a global value summary block. 5500 Expected<bool> BitcodeModule::hasSummary() { 5501 BitstreamCursor Stream(Buffer); 5502 Stream.JumpToBit(ModuleBit); 5503 5504 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5505 return error("Invalid record"); 5506 5507 while (true) { 5508 BitstreamEntry Entry = Stream.advance(); 5509 5510 switch (Entry.Kind) { 5511 case BitstreamEntry::Error: 5512 return error("Malformed block"); 5513 case BitstreamEntry::EndBlock: 5514 return false; 5515 5516 case BitstreamEntry::SubBlock: 5517 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5518 return true; 5519 5520 // Ignore other sub-blocks. 5521 if (Stream.SkipBlock()) 5522 return error("Malformed block"); 5523 continue; 5524 5525 case BitstreamEntry::Record: 5526 Stream.skipRecord(Entry.ID); 5527 continue; 5528 } 5529 } 5530 } 5531 5532 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5533 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5534 if (!MsOrErr) 5535 return MsOrErr.takeError(); 5536 5537 if (MsOrErr->size() != 1) 5538 return error("Expected a single module"); 5539 5540 return (*MsOrErr)[0]; 5541 } 5542 5543 Expected<std::unique_ptr<Module>> 5544 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5545 bool ShouldLazyLoadMetadata, bool IsImporting) { 5546 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5547 if (!BM) 5548 return BM.takeError(); 5549 5550 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5551 } 5552 5553 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5554 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5555 bool ShouldLazyLoadMetadata, bool IsImporting) { 5556 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5557 IsImporting); 5558 if (MOrErr) 5559 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5560 return MOrErr; 5561 } 5562 5563 Expected<std::unique_ptr<Module>> 5564 BitcodeModule::parseModule(LLVMContext &Context) { 5565 return getModuleImpl(Context, true, false, false); 5566 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5567 // written. We must defer until the Module has been fully materialized. 5568 } 5569 5570 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5571 LLVMContext &Context) { 5572 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5573 if (!BM) 5574 return BM.takeError(); 5575 5576 return BM->parseModule(Context); 5577 } 5578 5579 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5580 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5581 if (!StreamOrErr) 5582 return StreamOrErr.takeError(); 5583 5584 return readTriple(*StreamOrErr); 5585 } 5586 5587 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5588 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5589 if (!StreamOrErr) 5590 return StreamOrErr.takeError(); 5591 5592 return hasObjCCategory(*StreamOrErr); 5593 } 5594 5595 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5596 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5597 if (!StreamOrErr) 5598 return StreamOrErr.takeError(); 5599 5600 return readIdentificationCode(*StreamOrErr); 5601 } 5602 5603 Expected<std::unique_ptr<ModuleSummaryIndex>> 5604 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5605 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5606 if (!BM) 5607 return BM.takeError(); 5608 5609 return BM->getSummary(); 5610 } 5611 5612 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5613 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5614 if (!BM) 5615 return BM.takeError(); 5616 5617 return BM->hasSummary(); 5618 } 5619 5620 Expected<std::unique_ptr<ModuleSummaryIndex>> 5621 llvm::getModuleSummaryIndexForFile(StringRef Path) { 5622 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5623 MemoryBuffer::getFileOrSTDIN(Path); 5624 if (!FileOrErr) 5625 return errorCodeToError(FileOrErr.getError()); 5626 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5627 return nullptr; 5628 return getModuleSummaryIndex(**FileOrErr); 5629 } 5630