1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "llvm/ADT/APFloat.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitstreamReader.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 Error error(const Twine &Message) { 232 return make_error<StringError>( 233 Message, make_error_code(BitcodeError::CorruptedBitcode)); 234 } 235 236 /// Helper to read the header common to all bitcode files. 237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 238 // Sniff for the signature. 239 if (!Stream.canSkipToPos(4) || 240 Stream.Read(8) != 'B' || 241 Stream.Read(8) != 'C' || 242 Stream.Read(4) != 0x0 || 243 Stream.Read(4) != 0xC || 244 Stream.Read(4) != 0xE || 245 Stream.Read(4) != 0xD) 246 return false; 247 return true; 248 } 249 250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 251 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 252 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 253 254 if (Buffer.getBufferSize() & 3) 255 return error("Invalid bitcode signature"); 256 257 // If we have a wrapper header, parse it and ignore the non-bc file contents. 258 // The magic number is 0x0B17C0DE stored in little endian. 259 if (isBitcodeWrapper(BufPtr, BufEnd)) 260 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 261 return error("Invalid bitcode wrapper header"); 262 263 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 264 if (!hasValidBitcodeHeader(Stream)) 265 return error("Invalid bitcode signature"); 266 267 return std::move(Stream); 268 } 269 270 class BitcodeReaderBase { 271 protected: 272 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 273 this->Stream.setBlockInfo(&BlockInfo); 274 } 275 276 BitstreamBlockInfo BlockInfo; 277 BitstreamCursor Stream; 278 279 bool readBlockInfo(); 280 281 // Contains an arbitrary and optional string identifying the bitcode producer 282 std::string ProducerIdentification; 283 284 Error error(const Twine &Message); 285 }; 286 287 Error BitcodeReaderBase::error(const Twine &Message) { 288 std::string FullMsg = Message.str(); 289 if (!ProducerIdentification.empty()) 290 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 291 LLVM_VERSION_STRING "')"; 292 return ::error(FullMsg); 293 } 294 295 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 296 LLVMContext &Context; 297 Module *TheModule = nullptr; 298 // Next offset to start scanning for lazy parsing of function bodies. 299 uint64_t NextUnreadBit = 0; 300 // Last function offset found in the VST. 301 uint64_t LastFunctionBlockBit = 0; 302 bool SeenValueSymbolTable = false; 303 uint64_t VSTOffset = 0; 304 305 std::vector<Type*> TypeList; 306 BitcodeReaderValueList ValueList; 307 BitcodeReaderMetadataList MetadataList; 308 std::vector<Comdat *> ComdatList; 309 SmallVector<Instruction *, 64> InstructionList; 310 311 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 312 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 313 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 314 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 315 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 316 317 bool HasSeenOldLoopTags = false; 318 319 /// The set of attributes by index. Index zero in the file is for null, and 320 /// is thus not represented here. As such all indices are off by one. 321 std::vector<AttributeSet> MAttributes; 322 323 /// The set of attribute groups. 324 std::map<unsigned, AttributeSet> MAttributeGroups; 325 326 /// While parsing a function body, this is a list of the basic blocks for the 327 /// function. 328 std::vector<BasicBlock*> FunctionBBs; 329 330 // When reading the module header, this list is populated with functions that 331 // have bodies later in the file. 332 std::vector<Function*> FunctionsWithBodies; 333 334 // When intrinsic functions are encountered which require upgrading they are 335 // stored here with their replacement function. 336 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 337 UpdatedIntrinsicMap UpgradedIntrinsics; 338 // Intrinsics which were remangled because of types rename 339 UpdatedIntrinsicMap RemangledIntrinsics; 340 341 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 342 DenseMap<unsigned, unsigned> MDKindMap; 343 344 // Several operations happen after the module header has been read, but 345 // before function bodies are processed. This keeps track of whether 346 // we've done this yet. 347 bool SeenFirstFunctionBody = false; 348 349 /// When function bodies are initially scanned, this map contains info about 350 /// where to find deferred function body in the stream. 351 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 352 353 /// When Metadata block is initially scanned when parsing the module, we may 354 /// choose to defer parsing of the metadata. This vector contains info about 355 /// which Metadata blocks are deferred. 356 std::vector<uint64_t> DeferredMetadataInfo; 357 358 /// These are basic blocks forward-referenced by block addresses. They are 359 /// inserted lazily into functions when they're loaded. The basic block ID is 360 /// its index into the vector. 361 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 362 std::deque<Function *> BasicBlockFwdRefQueue; 363 364 /// Indicates that we are using a new encoding for instruction operands where 365 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 366 /// instruction number, for a more compact encoding. Some instruction 367 /// operands are not relative to the instruction ID: basic block numbers, and 368 /// types. Once the old style function blocks have been phased out, we would 369 /// not need this flag. 370 bool UseRelativeIDs = false; 371 372 /// True if all functions will be materialized, negating the need to process 373 /// (e.g.) blockaddress forward references. 374 bool WillMaterializeAllForwardRefs = false; 375 376 /// True if any Metadata block has been materialized. 377 bool IsMetadataMaterialized = false; 378 379 bool StripDebugInfo = false; 380 381 /// Functions that need to be matched with subprograms when upgrading old 382 /// metadata. 383 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 384 385 std::vector<std::string> BundleTags; 386 387 public: 388 BitcodeReader(BitstreamCursor Stream, LLVMContext &Context); 389 390 Error materializeForwardReferencedFunctions(); 391 392 Error materialize(GlobalValue *GV) override; 393 Error materializeModule() override; 394 std::vector<StructType *> getIdentifiedStructTypes() const override; 395 396 /// \brief Main interface to parsing a bitcode buffer. 397 /// \returns true if an error occurred. 398 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false); 399 400 /// \brief Cheap mechanism to just extract module triple 401 /// \returns true if an error occurred. 402 Expected<std::string> parseTriple(); 403 404 /// Cheap mechanism to just extract the identification block out of bitcode. 405 Expected<std::string> parseIdentificationBlock(); 406 407 /// Peak at the module content and return true if any ObjC category or class 408 /// is found. 409 Expected<bool> hasObjCCategory(); 410 411 static uint64_t decodeSignRotatedValue(uint64_t V); 412 413 /// Materialize any deferred Metadata block. 414 Error materializeMetadata() override; 415 416 void setStripDebugInfo() override; 417 418 private: 419 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 420 // ProducerIdentification data member, and do some basic enforcement on the 421 // "epoch" encoded in the bitcode. 422 Error parseBitcodeVersion(); 423 424 std::vector<StructType *> IdentifiedStructTypes; 425 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 426 StructType *createIdentifiedStructType(LLVMContext &Context); 427 428 Type *getTypeByID(unsigned ID); 429 430 Value *getFnValueByID(unsigned ID, Type *Ty) { 431 if (Ty && Ty->isMetadataTy()) 432 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 433 return ValueList.getValueFwdRef(ID, Ty); 434 } 435 436 Metadata *getFnMetadataByID(unsigned ID) { 437 return MetadataList.getMetadataFwdRef(ID); 438 } 439 440 BasicBlock *getBasicBlock(unsigned ID) const { 441 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 442 return FunctionBBs[ID]; 443 } 444 445 AttributeSet getAttributes(unsigned i) const { 446 if (i-1 < MAttributes.size()) 447 return MAttributes[i-1]; 448 return AttributeSet(); 449 } 450 451 /// Read a value/type pair out of the specified record from slot 'Slot'. 452 /// Increment Slot past the number of slots used in the record. Return true on 453 /// failure. 454 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 455 unsigned InstNum, Value *&ResVal) { 456 if (Slot == Record.size()) return true; 457 unsigned ValNo = (unsigned)Record[Slot++]; 458 // Adjust the ValNo, if it was encoded relative to the InstNum. 459 if (UseRelativeIDs) 460 ValNo = InstNum - ValNo; 461 if (ValNo < InstNum) { 462 // If this is not a forward reference, just return the value we already 463 // have. 464 ResVal = getFnValueByID(ValNo, nullptr); 465 return ResVal == nullptr; 466 } 467 if (Slot == Record.size()) 468 return true; 469 470 unsigned TypeNo = (unsigned)Record[Slot++]; 471 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 472 return ResVal == nullptr; 473 } 474 475 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 476 /// past the number of slots used by the value in the record. Return true if 477 /// there is an error. 478 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 479 unsigned InstNum, Type *Ty, Value *&ResVal) { 480 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 481 return true; 482 // All values currently take a single record slot. 483 ++Slot; 484 return false; 485 } 486 487 /// Like popValue, but does not increment the Slot number. 488 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 489 unsigned InstNum, Type *Ty, Value *&ResVal) { 490 ResVal = getValue(Record, Slot, InstNum, Ty); 491 return ResVal == nullptr; 492 } 493 494 /// Version of getValue that returns ResVal directly, or 0 if there is an 495 /// error. 496 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 497 unsigned InstNum, Type *Ty) { 498 if (Slot == Record.size()) return nullptr; 499 unsigned ValNo = (unsigned)Record[Slot]; 500 // Adjust the ValNo, if it was encoded relative to the InstNum. 501 if (UseRelativeIDs) 502 ValNo = InstNum - ValNo; 503 return getFnValueByID(ValNo, Ty); 504 } 505 506 /// Like getValue, but decodes signed VBRs. 507 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 508 unsigned InstNum, Type *Ty) { 509 if (Slot == Record.size()) return nullptr; 510 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 511 // Adjust the ValNo, if it was encoded relative to the InstNum. 512 if (UseRelativeIDs) 513 ValNo = InstNum - ValNo; 514 return getFnValueByID(ValNo, Ty); 515 } 516 517 /// Converts alignment exponent (i.e. power of two (or zero)) to the 518 /// corresponding alignment to use. If alignment is too large, returns 519 /// a corresponding error code. 520 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 521 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 522 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 523 Error parseAttributeBlock(); 524 Error parseAttributeGroupBlock(); 525 Error parseTypeTable(); 526 Error parseTypeTableBody(); 527 Error parseOperandBundleTags(); 528 529 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 530 unsigned NameIndex, Triple &TT); 531 Error parseValueSymbolTable(uint64_t Offset = 0); 532 Error parseConstants(); 533 Error rememberAndSkipFunctionBodies(); 534 Error rememberAndSkipFunctionBody(); 535 /// Save the positions of the Metadata blocks and skip parsing the blocks. 536 Error rememberAndSkipMetadata(); 537 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 538 Error parseFunctionBody(Function *F); 539 Error globalCleanup(); 540 Error resolveGlobalAndIndirectSymbolInits(); 541 Error parseMetadata(bool ModuleLevel = false); 542 Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob, 543 unsigned &NextMetadataNo); 544 Error parseMetadataKinds(); 545 Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 546 Error parseGlobalObjectAttachment(GlobalObject &GO, 547 ArrayRef<uint64_t> Record); 548 Error parseMetadataAttachment(Function &F); 549 Expected<std::string> parseModuleTriple(); 550 Expected<bool> hasObjCCategoryInModule(); 551 Error parseUseLists(); 552 Error findFunctionInStream( 553 Function *F, 554 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 555 }; 556 557 /// Class to manage reading and parsing function summary index bitcode 558 /// files/sections. 559 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 560 /// Eventually points to the module index built during parsing. 561 ModuleSummaryIndex *TheIndex = nullptr; 562 563 /// Used to indicate whether caller only wants to check for the presence 564 /// of the global value summary bitcode section. All blocks are skipped, 565 /// but the SeenGlobalValSummary boolean is set. 566 bool CheckGlobalValSummaryPresenceOnly = false; 567 568 /// Indicates whether we have encountered a global value summary section 569 /// yet during parsing, used when checking if file contains global value 570 /// summary section. 571 bool SeenGlobalValSummary = false; 572 573 /// Indicates whether we have already parsed the VST, used for error checking. 574 bool SeenValueSymbolTable = false; 575 576 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 577 /// Used to enable on-demand parsing of the VST. 578 uint64_t VSTOffset = 0; 579 580 // Map to save ValueId to GUID association that was recorded in the 581 // ValueSymbolTable. It is used after the VST is parsed to convert 582 // call graph edges read from the function summary from referencing 583 // callees by their ValueId to using the GUID instead, which is how 584 // they are recorded in the summary index being built. 585 // We save a second GUID which is the same as the first one, but ignoring the 586 // linkage, i.e. for value other than local linkage they are identical. 587 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 588 ValueIdToCallGraphGUIDMap; 589 590 /// Map populated during module path string table parsing, from the 591 /// module ID to a string reference owned by the index's module 592 /// path string table, used to correlate with combined index 593 /// summary records. 594 DenseMap<uint64_t, StringRef> ModuleIdMap; 595 596 /// Original source file name recorded in a bitcode record. 597 std::string SourceFileName; 598 599 public: 600 ModuleSummaryIndexBitcodeReader( 601 BitstreamCursor Stream, bool CheckGlobalValSummaryPresenceOnly = false); 602 603 /// Check if the parser has encountered a summary section. 604 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 605 606 /// \brief Main interface to parsing a bitcode buffer. 607 /// \returns true if an error occurred. 608 Error parseSummaryIndexInto(ModuleSummaryIndex *I, StringRef ModulePath); 609 610 private: 611 Error parseModule(StringRef ModulePath); 612 Error parseValueSymbolTable( 613 uint64_t Offset, 614 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 615 Error parseEntireSummary(StringRef ModulePath); 616 Error parseModuleStringTable(); 617 std::pair<GlobalValue::GUID, GlobalValue::GUID> 618 619 getGUIDFromValueId(unsigned ValueId); 620 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 621 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 622 bool IsOldProfileFormat, bool HasProfile); 623 }; 624 625 std::error_code errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, Error Err) { 626 if (Err) { 627 std::error_code EC; 628 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 629 EC = EIB.convertToErrorCode(); 630 Ctx.emitError(EIB.message()); 631 }); 632 return EC; 633 } 634 return std::error_code(); 635 } 636 637 std::error_code 638 errorToErrorCodeAndEmitErrors(const DiagnosticHandlerFunction &DiagHandler, 639 Error Err) { 640 if (Err) { 641 std::error_code EC; 642 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 643 EC = EIB.convertToErrorCode(); 644 DiagHandler(DiagnosticInfoInlineAsm(EIB.message())); 645 }); 646 return EC; 647 } 648 return std::error_code(); 649 } 650 651 template <typename T> 652 ErrorOr<T> expectedToErrorOrAndEmitErrors(LLVMContext &Ctx, Expected<T> Val) { 653 if (!Val) 654 return errorToErrorCodeAndEmitErrors(Ctx, Val.takeError()); 655 return std::move(*Val); 656 } 657 658 template <typename T> 659 static ErrorOr<T> 660 expectedToErrorOrAndEmitErrors(const DiagnosticHandlerFunction &DiagHandler, 661 Expected<T> Val) { 662 if (!Val) 663 return errorToErrorCodeAndEmitErrors(DiagHandler, Val.takeError()); 664 return std::move(*Val); 665 } 666 667 } // end anonymous namespace 668 669 BitcodeReader::BitcodeReader(BitstreamCursor Stream, LLVMContext &Context) 670 : BitcodeReaderBase(std::move(Stream)), Context(Context), ValueList(Context), 671 MetadataList(Context) {} 672 673 Error BitcodeReader::materializeForwardReferencedFunctions() { 674 if (WillMaterializeAllForwardRefs) 675 return Error::success(); 676 677 // Prevent recursion. 678 WillMaterializeAllForwardRefs = true; 679 680 while (!BasicBlockFwdRefQueue.empty()) { 681 Function *F = BasicBlockFwdRefQueue.front(); 682 BasicBlockFwdRefQueue.pop_front(); 683 assert(F && "Expected valid function"); 684 if (!BasicBlockFwdRefs.count(F)) 685 // Already materialized. 686 continue; 687 688 // Check for a function that isn't materializable to prevent an infinite 689 // loop. When parsing a blockaddress stored in a global variable, there 690 // isn't a trivial way to check if a function will have a body without a 691 // linear search through FunctionsWithBodies, so just check it here. 692 if (!F->isMaterializable()) 693 return error("Never resolved function from blockaddress"); 694 695 // Try to materialize F. 696 if (Error Err = materialize(F)) 697 return Err; 698 } 699 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 700 701 // Reset state. 702 WillMaterializeAllForwardRefs = false; 703 return Error::success(); 704 } 705 706 //===----------------------------------------------------------------------===// 707 // Helper functions to implement forward reference resolution, etc. 708 //===----------------------------------------------------------------------===// 709 710 /// Convert a string from a record into an std::string, return true on failure. 711 template <typename StrTy> 712 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 713 StrTy &Result) { 714 if (Idx > Record.size()) 715 return true; 716 717 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 718 Result += (char)Record[i]; 719 return false; 720 } 721 722 static bool hasImplicitComdat(size_t Val) { 723 switch (Val) { 724 default: 725 return false; 726 case 1: // Old WeakAnyLinkage 727 case 4: // Old LinkOnceAnyLinkage 728 case 10: // Old WeakODRLinkage 729 case 11: // Old LinkOnceODRLinkage 730 return true; 731 } 732 } 733 734 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 735 switch (Val) { 736 default: // Map unknown/new linkages to external 737 case 0: 738 return GlobalValue::ExternalLinkage; 739 case 2: 740 return GlobalValue::AppendingLinkage; 741 case 3: 742 return GlobalValue::InternalLinkage; 743 case 5: 744 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 745 case 6: 746 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 747 case 7: 748 return GlobalValue::ExternalWeakLinkage; 749 case 8: 750 return GlobalValue::CommonLinkage; 751 case 9: 752 return GlobalValue::PrivateLinkage; 753 case 12: 754 return GlobalValue::AvailableExternallyLinkage; 755 case 13: 756 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 757 case 14: 758 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 759 case 15: 760 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 761 case 1: // Old value with implicit comdat. 762 case 16: 763 return GlobalValue::WeakAnyLinkage; 764 case 10: // Old value with implicit comdat. 765 case 17: 766 return GlobalValue::WeakODRLinkage; 767 case 4: // Old value with implicit comdat. 768 case 18: 769 return GlobalValue::LinkOnceAnyLinkage; 770 case 11: // Old value with implicit comdat. 771 case 19: 772 return GlobalValue::LinkOnceODRLinkage; 773 } 774 } 775 776 /// Decode the flags for GlobalValue in the summary. 777 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 778 uint64_t Version) { 779 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 780 // like getDecodedLinkage() above. Any future change to the linkage enum and 781 // to getDecodedLinkage() will need to be taken into account here as above. 782 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 783 RawFlags = RawFlags >> 4; 784 bool NoRename = RawFlags & 0x1; 785 bool IsNotViableToInline = RawFlags & 0x2; 786 return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline); 787 } 788 789 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 790 switch (Val) { 791 default: // Map unknown visibilities to default. 792 case 0: return GlobalValue::DefaultVisibility; 793 case 1: return GlobalValue::HiddenVisibility; 794 case 2: return GlobalValue::ProtectedVisibility; 795 } 796 } 797 798 static GlobalValue::DLLStorageClassTypes 799 getDecodedDLLStorageClass(unsigned Val) { 800 switch (Val) { 801 default: // Map unknown values to default. 802 case 0: return GlobalValue::DefaultStorageClass; 803 case 1: return GlobalValue::DLLImportStorageClass; 804 case 2: return GlobalValue::DLLExportStorageClass; 805 } 806 } 807 808 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 809 switch (Val) { 810 case 0: return GlobalVariable::NotThreadLocal; 811 default: // Map unknown non-zero value to general dynamic. 812 case 1: return GlobalVariable::GeneralDynamicTLSModel; 813 case 2: return GlobalVariable::LocalDynamicTLSModel; 814 case 3: return GlobalVariable::InitialExecTLSModel; 815 case 4: return GlobalVariable::LocalExecTLSModel; 816 } 817 } 818 819 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 820 switch (Val) { 821 default: // Map unknown to UnnamedAddr::None. 822 case 0: return GlobalVariable::UnnamedAddr::None; 823 case 1: return GlobalVariable::UnnamedAddr::Global; 824 case 2: return GlobalVariable::UnnamedAddr::Local; 825 } 826 } 827 828 static int getDecodedCastOpcode(unsigned Val) { 829 switch (Val) { 830 default: return -1; 831 case bitc::CAST_TRUNC : return Instruction::Trunc; 832 case bitc::CAST_ZEXT : return Instruction::ZExt; 833 case bitc::CAST_SEXT : return Instruction::SExt; 834 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 835 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 836 case bitc::CAST_UITOFP : return Instruction::UIToFP; 837 case bitc::CAST_SITOFP : return Instruction::SIToFP; 838 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 839 case bitc::CAST_FPEXT : return Instruction::FPExt; 840 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 841 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 842 case bitc::CAST_BITCAST : return Instruction::BitCast; 843 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 844 } 845 } 846 847 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 848 bool IsFP = Ty->isFPOrFPVectorTy(); 849 // BinOps are only valid for int/fp or vector of int/fp types 850 if (!IsFP && !Ty->isIntOrIntVectorTy()) 851 return -1; 852 853 switch (Val) { 854 default: 855 return -1; 856 case bitc::BINOP_ADD: 857 return IsFP ? Instruction::FAdd : Instruction::Add; 858 case bitc::BINOP_SUB: 859 return IsFP ? Instruction::FSub : Instruction::Sub; 860 case bitc::BINOP_MUL: 861 return IsFP ? Instruction::FMul : Instruction::Mul; 862 case bitc::BINOP_UDIV: 863 return IsFP ? -1 : Instruction::UDiv; 864 case bitc::BINOP_SDIV: 865 return IsFP ? Instruction::FDiv : Instruction::SDiv; 866 case bitc::BINOP_UREM: 867 return IsFP ? -1 : Instruction::URem; 868 case bitc::BINOP_SREM: 869 return IsFP ? Instruction::FRem : Instruction::SRem; 870 case bitc::BINOP_SHL: 871 return IsFP ? -1 : Instruction::Shl; 872 case bitc::BINOP_LSHR: 873 return IsFP ? -1 : Instruction::LShr; 874 case bitc::BINOP_ASHR: 875 return IsFP ? -1 : Instruction::AShr; 876 case bitc::BINOP_AND: 877 return IsFP ? -1 : Instruction::And; 878 case bitc::BINOP_OR: 879 return IsFP ? -1 : Instruction::Or; 880 case bitc::BINOP_XOR: 881 return IsFP ? -1 : Instruction::Xor; 882 } 883 } 884 885 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 886 switch (Val) { 887 default: return AtomicRMWInst::BAD_BINOP; 888 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 889 case bitc::RMW_ADD: return AtomicRMWInst::Add; 890 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 891 case bitc::RMW_AND: return AtomicRMWInst::And; 892 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 893 case bitc::RMW_OR: return AtomicRMWInst::Or; 894 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 895 case bitc::RMW_MAX: return AtomicRMWInst::Max; 896 case bitc::RMW_MIN: return AtomicRMWInst::Min; 897 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 898 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 899 } 900 } 901 902 static AtomicOrdering getDecodedOrdering(unsigned Val) { 903 switch (Val) { 904 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 905 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 906 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 907 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 908 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 909 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 910 default: // Map unknown orderings to sequentially-consistent. 911 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 912 } 913 } 914 915 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 916 switch (Val) { 917 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 918 default: // Map unknown scopes to cross-thread. 919 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 920 } 921 } 922 923 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 924 switch (Val) { 925 default: // Map unknown selection kinds to any. 926 case bitc::COMDAT_SELECTION_KIND_ANY: 927 return Comdat::Any; 928 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 929 return Comdat::ExactMatch; 930 case bitc::COMDAT_SELECTION_KIND_LARGEST: 931 return Comdat::Largest; 932 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 933 return Comdat::NoDuplicates; 934 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 935 return Comdat::SameSize; 936 } 937 } 938 939 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 940 FastMathFlags FMF; 941 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 942 FMF.setUnsafeAlgebra(); 943 if (0 != (Val & FastMathFlags::NoNaNs)) 944 FMF.setNoNaNs(); 945 if (0 != (Val & FastMathFlags::NoInfs)) 946 FMF.setNoInfs(); 947 if (0 != (Val & FastMathFlags::NoSignedZeros)) 948 FMF.setNoSignedZeros(); 949 if (0 != (Val & FastMathFlags::AllowReciprocal)) 950 FMF.setAllowReciprocal(); 951 return FMF; 952 } 953 954 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 955 switch (Val) { 956 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 957 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 958 } 959 } 960 961 namespace llvm { 962 namespace { 963 964 /// \brief A class for maintaining the slot number definition 965 /// as a placeholder for the actual definition for forward constants defs. 966 class ConstantPlaceHolder : public ConstantExpr { 967 void operator=(const ConstantPlaceHolder &) = delete; 968 969 public: 970 // allocate space for exactly one operand 971 void *operator new(size_t s) { return User::operator new(s, 1); } 972 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 973 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 974 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 975 } 976 977 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 978 static bool classof(const Value *V) { 979 return isa<ConstantExpr>(V) && 980 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 981 } 982 983 /// Provide fast operand accessors 984 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 985 }; 986 987 } // end anonymous namespace 988 989 // FIXME: can we inherit this from ConstantExpr? 990 template <> 991 struct OperandTraits<ConstantPlaceHolder> : 992 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 993 }; 994 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 995 996 } // end namespace llvm 997 998 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 999 if (Idx == size()) { 1000 push_back(V); 1001 return; 1002 } 1003 1004 if (Idx >= size()) 1005 resize(Idx+1); 1006 1007 WeakVH &OldV = ValuePtrs[Idx]; 1008 if (!OldV) { 1009 OldV = V; 1010 return; 1011 } 1012 1013 // Handle constants and non-constants (e.g. instrs) differently for 1014 // efficiency. 1015 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1016 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1017 OldV = V; 1018 } else { 1019 // If there was a forward reference to this value, replace it. 1020 Value *PrevVal = OldV; 1021 OldV->replaceAllUsesWith(V); 1022 delete PrevVal; 1023 } 1024 } 1025 1026 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1027 Type *Ty) { 1028 if (Idx >= size()) 1029 resize(Idx + 1); 1030 1031 if (Value *V = ValuePtrs[Idx]) { 1032 if (Ty != V->getType()) 1033 report_fatal_error("Type mismatch in constant table!"); 1034 return cast<Constant>(V); 1035 } 1036 1037 // Create and return a placeholder, which will later be RAUW'd. 1038 Constant *C = new ConstantPlaceHolder(Ty, Context); 1039 ValuePtrs[Idx] = C; 1040 return C; 1041 } 1042 1043 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1044 // Bail out for a clearly invalid value. This would make us call resize(0) 1045 if (Idx == std::numeric_limits<unsigned>::max()) 1046 return nullptr; 1047 1048 if (Idx >= size()) 1049 resize(Idx + 1); 1050 1051 if (Value *V = ValuePtrs[Idx]) { 1052 // If the types don't match, it's invalid. 1053 if (Ty && Ty != V->getType()) 1054 return nullptr; 1055 return V; 1056 } 1057 1058 // No type specified, must be invalid reference. 1059 if (!Ty) return nullptr; 1060 1061 // Create and return a placeholder, which will later be RAUW'd. 1062 Value *V = new Argument(Ty); 1063 ValuePtrs[Idx] = V; 1064 return V; 1065 } 1066 1067 /// Once all constants are read, this method bulk resolves any forward 1068 /// references. The idea behind this is that we sometimes get constants (such 1069 /// as large arrays) which reference *many* forward ref constants. Replacing 1070 /// each of these causes a lot of thrashing when building/reuniquing the 1071 /// constant. Instead of doing this, we look at all the uses and rewrite all 1072 /// the place holders at once for any constant that uses a placeholder. 1073 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1074 // Sort the values by-pointer so that they are efficient to look up with a 1075 // binary search. 1076 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1077 1078 SmallVector<Constant*, 64> NewOps; 1079 1080 while (!ResolveConstants.empty()) { 1081 Value *RealVal = operator[](ResolveConstants.back().second); 1082 Constant *Placeholder = ResolveConstants.back().first; 1083 ResolveConstants.pop_back(); 1084 1085 // Loop over all users of the placeholder, updating them to reference the 1086 // new value. If they reference more than one placeholder, update them all 1087 // at once. 1088 while (!Placeholder->use_empty()) { 1089 auto UI = Placeholder->user_begin(); 1090 User *U = *UI; 1091 1092 // If the using object isn't uniqued, just update the operands. This 1093 // handles instructions and initializers for global variables. 1094 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1095 UI.getUse().set(RealVal); 1096 continue; 1097 } 1098 1099 // Otherwise, we have a constant that uses the placeholder. Replace that 1100 // constant with a new constant that has *all* placeholder uses updated. 1101 Constant *UserC = cast<Constant>(U); 1102 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1103 I != E; ++I) { 1104 Value *NewOp; 1105 if (!isa<ConstantPlaceHolder>(*I)) { 1106 // Not a placeholder reference. 1107 NewOp = *I; 1108 } else if (*I == Placeholder) { 1109 // Common case is that it just references this one placeholder. 1110 NewOp = RealVal; 1111 } else { 1112 // Otherwise, look up the placeholder in ResolveConstants. 1113 ResolveConstantsTy::iterator It = 1114 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1115 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1116 0)); 1117 assert(It != ResolveConstants.end() && It->first == *I); 1118 NewOp = operator[](It->second); 1119 } 1120 1121 NewOps.push_back(cast<Constant>(NewOp)); 1122 } 1123 1124 // Make the new constant. 1125 Constant *NewC; 1126 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1127 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1128 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1129 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1130 } else if (isa<ConstantVector>(UserC)) { 1131 NewC = ConstantVector::get(NewOps); 1132 } else { 1133 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1134 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1135 } 1136 1137 UserC->replaceAllUsesWith(NewC); 1138 UserC->destroyConstant(); 1139 NewOps.clear(); 1140 } 1141 1142 // Update all ValueHandles, they should be the only users at this point. 1143 Placeholder->replaceAllUsesWith(RealVal); 1144 delete Placeholder; 1145 } 1146 } 1147 1148 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1149 if (Idx == size()) { 1150 push_back(MD); 1151 return; 1152 } 1153 1154 if (Idx >= size()) 1155 resize(Idx+1); 1156 1157 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1158 if (!OldMD) { 1159 OldMD.reset(MD); 1160 return; 1161 } 1162 1163 // If there was a forward reference to this value, replace it. 1164 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1165 PrevMD->replaceAllUsesWith(MD); 1166 --NumFwdRefs; 1167 } 1168 1169 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1170 if (Idx >= size()) 1171 resize(Idx + 1); 1172 1173 if (Metadata *MD = MetadataPtrs[Idx]) 1174 return MD; 1175 1176 // Track forward refs to be resolved later. 1177 if (AnyFwdRefs) { 1178 MinFwdRef = std::min(MinFwdRef, Idx); 1179 MaxFwdRef = std::max(MaxFwdRef, Idx); 1180 } else { 1181 AnyFwdRefs = true; 1182 MinFwdRef = MaxFwdRef = Idx; 1183 } 1184 ++NumFwdRefs; 1185 1186 // Create and return a placeholder, which will later be RAUW'd. 1187 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1188 MetadataPtrs[Idx].reset(MD); 1189 return MD; 1190 } 1191 1192 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1193 Metadata *MD = lookup(Idx); 1194 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1195 if (!N->isResolved()) 1196 return nullptr; 1197 return MD; 1198 } 1199 1200 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1201 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1202 } 1203 1204 void BitcodeReaderMetadataList::tryToResolveCycles() { 1205 if (NumFwdRefs) 1206 // Still forward references... can't resolve cycles. 1207 return; 1208 1209 bool DidReplaceTypeRefs = false; 1210 1211 // Give up on finding a full definition for any forward decls that remain. 1212 for (const auto &Ref : OldTypeRefs.FwdDecls) 1213 OldTypeRefs.Final.insert(Ref); 1214 OldTypeRefs.FwdDecls.clear(); 1215 1216 // Upgrade from old type ref arrays. In strange cases, this could add to 1217 // OldTypeRefs.Unknown. 1218 for (const auto &Array : OldTypeRefs.Arrays) { 1219 DidReplaceTypeRefs = true; 1220 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1221 } 1222 OldTypeRefs.Arrays.clear(); 1223 1224 // Replace old string-based type refs with the resolved node, if possible. 1225 // If we haven't seen the node, leave it to the verifier to complain about 1226 // the invalid string reference. 1227 for (const auto &Ref : OldTypeRefs.Unknown) { 1228 DidReplaceTypeRefs = true; 1229 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1230 Ref.second->replaceAllUsesWith(CT); 1231 else 1232 Ref.second->replaceAllUsesWith(Ref.first); 1233 } 1234 OldTypeRefs.Unknown.clear(); 1235 1236 // Make sure all the upgraded types are resolved. 1237 if (DidReplaceTypeRefs) { 1238 AnyFwdRefs = true; 1239 MinFwdRef = 0; 1240 MaxFwdRef = MetadataPtrs.size() - 1; 1241 } 1242 1243 if (!AnyFwdRefs) 1244 // Nothing to do. 1245 return; 1246 1247 // Resolve any cycles. 1248 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1249 auto &MD = MetadataPtrs[I]; 1250 auto *N = dyn_cast_or_null<MDNode>(MD); 1251 if (!N) 1252 continue; 1253 1254 assert(!N->isTemporary() && "Unexpected forward reference"); 1255 N->resolveCycles(); 1256 } 1257 1258 // Make sure we return early again until there's another forward ref. 1259 AnyFwdRefs = false; 1260 } 1261 1262 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1263 DICompositeType &CT) { 1264 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1265 if (CT.isForwardDecl()) 1266 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1267 else 1268 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1269 } 1270 1271 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1272 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1273 if (LLVM_LIKELY(!UUID)) 1274 return MaybeUUID; 1275 1276 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1277 return CT; 1278 1279 auto &Ref = OldTypeRefs.Unknown[UUID]; 1280 if (!Ref) 1281 Ref = MDNode::getTemporary(Context, None); 1282 return Ref.get(); 1283 } 1284 1285 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1286 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1287 if (!Tuple || Tuple->isDistinct()) 1288 return MaybeTuple; 1289 1290 // Look through the array immediately if possible. 1291 if (!Tuple->isTemporary()) 1292 return resolveTypeRefArray(Tuple); 1293 1294 // Create and return a placeholder to use for now. Eventually 1295 // resolveTypeRefArrays() will be resolve this forward reference. 1296 OldTypeRefs.Arrays.emplace_back( 1297 std::piecewise_construct, std::forward_as_tuple(Tuple), 1298 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1299 return OldTypeRefs.Arrays.back().second.get(); 1300 } 1301 1302 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1303 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1304 if (!Tuple || Tuple->isDistinct()) 1305 return MaybeTuple; 1306 1307 // Look through the DITypeRefArray, upgrading each DITypeRef. 1308 SmallVector<Metadata *, 32> Ops; 1309 Ops.reserve(Tuple->getNumOperands()); 1310 for (Metadata *MD : Tuple->operands()) 1311 Ops.push_back(upgradeTypeRef(MD)); 1312 1313 return MDTuple::get(Context, Ops); 1314 } 1315 1316 Type *BitcodeReader::getTypeByID(unsigned ID) { 1317 // The type table size is always specified correctly. 1318 if (ID >= TypeList.size()) 1319 return nullptr; 1320 1321 if (Type *Ty = TypeList[ID]) 1322 return Ty; 1323 1324 // If we have a forward reference, the only possible case is when it is to a 1325 // named struct. Just create a placeholder for now. 1326 return TypeList[ID] = createIdentifiedStructType(Context); 1327 } 1328 1329 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1330 StringRef Name) { 1331 auto *Ret = StructType::create(Context, Name); 1332 IdentifiedStructTypes.push_back(Ret); 1333 return Ret; 1334 } 1335 1336 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1337 auto *Ret = StructType::create(Context); 1338 IdentifiedStructTypes.push_back(Ret); 1339 return Ret; 1340 } 1341 1342 //===----------------------------------------------------------------------===// 1343 // Functions for parsing blocks from the bitcode file 1344 //===----------------------------------------------------------------------===// 1345 1346 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1347 switch (Val) { 1348 case Attribute::EndAttrKinds: 1349 llvm_unreachable("Synthetic enumerators which should never get here"); 1350 1351 case Attribute::None: return 0; 1352 case Attribute::ZExt: return 1 << 0; 1353 case Attribute::SExt: return 1 << 1; 1354 case Attribute::NoReturn: return 1 << 2; 1355 case Attribute::InReg: return 1 << 3; 1356 case Attribute::StructRet: return 1 << 4; 1357 case Attribute::NoUnwind: return 1 << 5; 1358 case Attribute::NoAlias: return 1 << 6; 1359 case Attribute::ByVal: return 1 << 7; 1360 case Attribute::Nest: return 1 << 8; 1361 case Attribute::ReadNone: return 1 << 9; 1362 case Attribute::ReadOnly: return 1 << 10; 1363 case Attribute::NoInline: return 1 << 11; 1364 case Attribute::AlwaysInline: return 1 << 12; 1365 case Attribute::OptimizeForSize: return 1 << 13; 1366 case Attribute::StackProtect: return 1 << 14; 1367 case Attribute::StackProtectReq: return 1 << 15; 1368 case Attribute::Alignment: return 31 << 16; 1369 case Attribute::NoCapture: return 1 << 21; 1370 case Attribute::NoRedZone: return 1 << 22; 1371 case Attribute::NoImplicitFloat: return 1 << 23; 1372 case Attribute::Naked: return 1 << 24; 1373 case Attribute::InlineHint: return 1 << 25; 1374 case Attribute::StackAlignment: return 7 << 26; 1375 case Attribute::ReturnsTwice: return 1 << 29; 1376 case Attribute::UWTable: return 1 << 30; 1377 case Attribute::NonLazyBind: return 1U << 31; 1378 case Attribute::SanitizeAddress: return 1ULL << 32; 1379 case Attribute::MinSize: return 1ULL << 33; 1380 case Attribute::NoDuplicate: return 1ULL << 34; 1381 case Attribute::StackProtectStrong: return 1ULL << 35; 1382 case Attribute::SanitizeThread: return 1ULL << 36; 1383 case Attribute::SanitizeMemory: return 1ULL << 37; 1384 case Attribute::NoBuiltin: return 1ULL << 38; 1385 case Attribute::Returned: return 1ULL << 39; 1386 case Attribute::Cold: return 1ULL << 40; 1387 case Attribute::Builtin: return 1ULL << 41; 1388 case Attribute::OptimizeNone: return 1ULL << 42; 1389 case Attribute::InAlloca: return 1ULL << 43; 1390 case Attribute::NonNull: return 1ULL << 44; 1391 case Attribute::JumpTable: return 1ULL << 45; 1392 case Attribute::Convergent: return 1ULL << 46; 1393 case Attribute::SafeStack: return 1ULL << 47; 1394 case Attribute::NoRecurse: return 1ULL << 48; 1395 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1396 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1397 case Attribute::SwiftSelf: return 1ULL << 51; 1398 case Attribute::SwiftError: return 1ULL << 52; 1399 case Attribute::WriteOnly: return 1ULL << 53; 1400 case Attribute::Dereferenceable: 1401 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1402 break; 1403 case Attribute::DereferenceableOrNull: 1404 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1405 "format"); 1406 break; 1407 case Attribute::ArgMemOnly: 1408 llvm_unreachable("argmemonly attribute not supported in raw format"); 1409 break; 1410 case Attribute::AllocSize: 1411 llvm_unreachable("allocsize not supported in raw format"); 1412 break; 1413 } 1414 llvm_unreachable("Unsupported attribute type"); 1415 } 1416 1417 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1418 if (!Val) return; 1419 1420 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1421 I = Attribute::AttrKind(I + 1)) { 1422 if (I == Attribute::Dereferenceable || 1423 I == Attribute::DereferenceableOrNull || 1424 I == Attribute::ArgMemOnly || 1425 I == Attribute::AllocSize) 1426 continue; 1427 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1428 if (I == Attribute::Alignment) 1429 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1430 else if (I == Attribute::StackAlignment) 1431 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1432 else 1433 B.addAttribute(I); 1434 } 1435 } 1436 } 1437 1438 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1439 /// been decoded from the given integer. This function must stay in sync with 1440 /// 'encodeLLVMAttributesForBitcode'. 1441 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1442 uint64_t EncodedAttrs) { 1443 // FIXME: Remove in 4.0. 1444 1445 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1446 // the bits above 31 down by 11 bits. 1447 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1448 assert((!Alignment || isPowerOf2_32(Alignment)) && 1449 "Alignment must be a power of two."); 1450 1451 if (Alignment) 1452 B.addAlignmentAttr(Alignment); 1453 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1454 (EncodedAttrs & 0xffff)); 1455 } 1456 1457 Error BitcodeReader::parseAttributeBlock() { 1458 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1459 return error("Invalid record"); 1460 1461 if (!MAttributes.empty()) 1462 return error("Invalid multiple blocks"); 1463 1464 SmallVector<uint64_t, 64> Record; 1465 1466 SmallVector<AttributeSet, 8> Attrs; 1467 1468 // Read all the records. 1469 while (true) { 1470 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1471 1472 switch (Entry.Kind) { 1473 case BitstreamEntry::SubBlock: // Handled for us already. 1474 case BitstreamEntry::Error: 1475 return error("Malformed block"); 1476 case BitstreamEntry::EndBlock: 1477 return Error::success(); 1478 case BitstreamEntry::Record: 1479 // The interesting case. 1480 break; 1481 } 1482 1483 // Read a record. 1484 Record.clear(); 1485 switch (Stream.readRecord(Entry.ID, Record)) { 1486 default: // Default behavior: ignore. 1487 break; 1488 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1489 // FIXME: Remove in 4.0. 1490 if (Record.size() & 1) 1491 return error("Invalid record"); 1492 1493 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1494 AttrBuilder B; 1495 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1496 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1497 } 1498 1499 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1500 Attrs.clear(); 1501 break; 1502 } 1503 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1504 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1505 Attrs.push_back(MAttributeGroups[Record[i]]); 1506 1507 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1508 Attrs.clear(); 1509 break; 1510 } 1511 } 1512 } 1513 } 1514 1515 // Returns Attribute::None on unrecognized codes. 1516 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1517 switch (Code) { 1518 default: 1519 return Attribute::None; 1520 case bitc::ATTR_KIND_ALIGNMENT: 1521 return Attribute::Alignment; 1522 case bitc::ATTR_KIND_ALWAYS_INLINE: 1523 return Attribute::AlwaysInline; 1524 case bitc::ATTR_KIND_ARGMEMONLY: 1525 return Attribute::ArgMemOnly; 1526 case bitc::ATTR_KIND_BUILTIN: 1527 return Attribute::Builtin; 1528 case bitc::ATTR_KIND_BY_VAL: 1529 return Attribute::ByVal; 1530 case bitc::ATTR_KIND_IN_ALLOCA: 1531 return Attribute::InAlloca; 1532 case bitc::ATTR_KIND_COLD: 1533 return Attribute::Cold; 1534 case bitc::ATTR_KIND_CONVERGENT: 1535 return Attribute::Convergent; 1536 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1537 return Attribute::InaccessibleMemOnly; 1538 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1539 return Attribute::InaccessibleMemOrArgMemOnly; 1540 case bitc::ATTR_KIND_INLINE_HINT: 1541 return Attribute::InlineHint; 1542 case bitc::ATTR_KIND_IN_REG: 1543 return Attribute::InReg; 1544 case bitc::ATTR_KIND_JUMP_TABLE: 1545 return Attribute::JumpTable; 1546 case bitc::ATTR_KIND_MIN_SIZE: 1547 return Attribute::MinSize; 1548 case bitc::ATTR_KIND_NAKED: 1549 return Attribute::Naked; 1550 case bitc::ATTR_KIND_NEST: 1551 return Attribute::Nest; 1552 case bitc::ATTR_KIND_NO_ALIAS: 1553 return Attribute::NoAlias; 1554 case bitc::ATTR_KIND_NO_BUILTIN: 1555 return Attribute::NoBuiltin; 1556 case bitc::ATTR_KIND_NO_CAPTURE: 1557 return Attribute::NoCapture; 1558 case bitc::ATTR_KIND_NO_DUPLICATE: 1559 return Attribute::NoDuplicate; 1560 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1561 return Attribute::NoImplicitFloat; 1562 case bitc::ATTR_KIND_NO_INLINE: 1563 return Attribute::NoInline; 1564 case bitc::ATTR_KIND_NO_RECURSE: 1565 return Attribute::NoRecurse; 1566 case bitc::ATTR_KIND_NON_LAZY_BIND: 1567 return Attribute::NonLazyBind; 1568 case bitc::ATTR_KIND_NON_NULL: 1569 return Attribute::NonNull; 1570 case bitc::ATTR_KIND_DEREFERENCEABLE: 1571 return Attribute::Dereferenceable; 1572 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1573 return Attribute::DereferenceableOrNull; 1574 case bitc::ATTR_KIND_ALLOC_SIZE: 1575 return Attribute::AllocSize; 1576 case bitc::ATTR_KIND_NO_RED_ZONE: 1577 return Attribute::NoRedZone; 1578 case bitc::ATTR_KIND_NO_RETURN: 1579 return Attribute::NoReturn; 1580 case bitc::ATTR_KIND_NO_UNWIND: 1581 return Attribute::NoUnwind; 1582 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1583 return Attribute::OptimizeForSize; 1584 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1585 return Attribute::OptimizeNone; 1586 case bitc::ATTR_KIND_READ_NONE: 1587 return Attribute::ReadNone; 1588 case bitc::ATTR_KIND_READ_ONLY: 1589 return Attribute::ReadOnly; 1590 case bitc::ATTR_KIND_RETURNED: 1591 return Attribute::Returned; 1592 case bitc::ATTR_KIND_RETURNS_TWICE: 1593 return Attribute::ReturnsTwice; 1594 case bitc::ATTR_KIND_S_EXT: 1595 return Attribute::SExt; 1596 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1597 return Attribute::StackAlignment; 1598 case bitc::ATTR_KIND_STACK_PROTECT: 1599 return Attribute::StackProtect; 1600 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1601 return Attribute::StackProtectReq; 1602 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1603 return Attribute::StackProtectStrong; 1604 case bitc::ATTR_KIND_SAFESTACK: 1605 return Attribute::SafeStack; 1606 case bitc::ATTR_KIND_STRUCT_RET: 1607 return Attribute::StructRet; 1608 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1609 return Attribute::SanitizeAddress; 1610 case bitc::ATTR_KIND_SANITIZE_THREAD: 1611 return Attribute::SanitizeThread; 1612 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1613 return Attribute::SanitizeMemory; 1614 case bitc::ATTR_KIND_SWIFT_ERROR: 1615 return Attribute::SwiftError; 1616 case bitc::ATTR_KIND_SWIFT_SELF: 1617 return Attribute::SwiftSelf; 1618 case bitc::ATTR_KIND_UW_TABLE: 1619 return Attribute::UWTable; 1620 case bitc::ATTR_KIND_WRITEONLY: 1621 return Attribute::WriteOnly; 1622 case bitc::ATTR_KIND_Z_EXT: 1623 return Attribute::ZExt; 1624 } 1625 } 1626 1627 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1628 unsigned &Alignment) { 1629 // Note: Alignment in bitcode files is incremented by 1, so that zero 1630 // can be used for default alignment. 1631 if (Exponent > Value::MaxAlignmentExponent + 1) 1632 return error("Invalid alignment value"); 1633 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1634 return Error::success(); 1635 } 1636 1637 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1638 *Kind = getAttrFromCode(Code); 1639 if (*Kind == Attribute::None) 1640 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1641 return Error::success(); 1642 } 1643 1644 Error BitcodeReader::parseAttributeGroupBlock() { 1645 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1646 return error("Invalid record"); 1647 1648 if (!MAttributeGroups.empty()) 1649 return error("Invalid multiple blocks"); 1650 1651 SmallVector<uint64_t, 64> Record; 1652 1653 // Read all the records. 1654 while (true) { 1655 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1656 1657 switch (Entry.Kind) { 1658 case BitstreamEntry::SubBlock: // Handled for us already. 1659 case BitstreamEntry::Error: 1660 return error("Malformed block"); 1661 case BitstreamEntry::EndBlock: 1662 return Error::success(); 1663 case BitstreamEntry::Record: 1664 // The interesting case. 1665 break; 1666 } 1667 1668 // Read a record. 1669 Record.clear(); 1670 switch (Stream.readRecord(Entry.ID, Record)) { 1671 default: // Default behavior: ignore. 1672 break; 1673 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1674 if (Record.size() < 3) 1675 return error("Invalid record"); 1676 1677 uint64_t GrpID = Record[0]; 1678 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1679 1680 AttrBuilder B; 1681 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1682 if (Record[i] == 0) { // Enum attribute 1683 Attribute::AttrKind Kind; 1684 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1685 return Err; 1686 1687 B.addAttribute(Kind); 1688 } else if (Record[i] == 1) { // Integer attribute 1689 Attribute::AttrKind Kind; 1690 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1691 return Err; 1692 if (Kind == Attribute::Alignment) 1693 B.addAlignmentAttr(Record[++i]); 1694 else if (Kind == Attribute::StackAlignment) 1695 B.addStackAlignmentAttr(Record[++i]); 1696 else if (Kind == Attribute::Dereferenceable) 1697 B.addDereferenceableAttr(Record[++i]); 1698 else if (Kind == Attribute::DereferenceableOrNull) 1699 B.addDereferenceableOrNullAttr(Record[++i]); 1700 else if (Kind == Attribute::AllocSize) 1701 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1702 } else { // String attribute 1703 assert((Record[i] == 3 || Record[i] == 4) && 1704 "Invalid attribute group entry"); 1705 bool HasValue = (Record[i++] == 4); 1706 SmallString<64> KindStr; 1707 SmallString<64> ValStr; 1708 1709 while (Record[i] != 0 && i != e) 1710 KindStr += Record[i++]; 1711 assert(Record[i] == 0 && "Kind string not null terminated"); 1712 1713 if (HasValue) { 1714 // Has a value associated with it. 1715 ++i; // Skip the '0' that terminates the "kind" string. 1716 while (Record[i] != 0 && i != e) 1717 ValStr += Record[i++]; 1718 assert(Record[i] == 0 && "Value string not null terminated"); 1719 } 1720 1721 B.addAttribute(KindStr.str(), ValStr.str()); 1722 } 1723 } 1724 1725 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1726 break; 1727 } 1728 } 1729 } 1730 } 1731 1732 Error BitcodeReader::parseTypeTable() { 1733 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1734 return error("Invalid record"); 1735 1736 return parseTypeTableBody(); 1737 } 1738 1739 Error BitcodeReader::parseTypeTableBody() { 1740 if (!TypeList.empty()) 1741 return error("Invalid multiple blocks"); 1742 1743 SmallVector<uint64_t, 64> Record; 1744 unsigned NumRecords = 0; 1745 1746 SmallString<64> TypeName; 1747 1748 // Read all the records for this type table. 1749 while (true) { 1750 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1751 1752 switch (Entry.Kind) { 1753 case BitstreamEntry::SubBlock: // Handled for us already. 1754 case BitstreamEntry::Error: 1755 return error("Malformed block"); 1756 case BitstreamEntry::EndBlock: 1757 if (NumRecords != TypeList.size()) 1758 return error("Malformed block"); 1759 return Error::success(); 1760 case BitstreamEntry::Record: 1761 // The interesting case. 1762 break; 1763 } 1764 1765 // Read a record. 1766 Record.clear(); 1767 Type *ResultTy = nullptr; 1768 switch (Stream.readRecord(Entry.ID, Record)) { 1769 default: 1770 return error("Invalid value"); 1771 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1772 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1773 // type list. This allows us to reserve space. 1774 if (Record.size() < 1) 1775 return error("Invalid record"); 1776 TypeList.resize(Record[0]); 1777 continue; 1778 case bitc::TYPE_CODE_VOID: // VOID 1779 ResultTy = Type::getVoidTy(Context); 1780 break; 1781 case bitc::TYPE_CODE_HALF: // HALF 1782 ResultTy = Type::getHalfTy(Context); 1783 break; 1784 case bitc::TYPE_CODE_FLOAT: // FLOAT 1785 ResultTy = Type::getFloatTy(Context); 1786 break; 1787 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1788 ResultTy = Type::getDoubleTy(Context); 1789 break; 1790 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1791 ResultTy = Type::getX86_FP80Ty(Context); 1792 break; 1793 case bitc::TYPE_CODE_FP128: // FP128 1794 ResultTy = Type::getFP128Ty(Context); 1795 break; 1796 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1797 ResultTy = Type::getPPC_FP128Ty(Context); 1798 break; 1799 case bitc::TYPE_CODE_LABEL: // LABEL 1800 ResultTy = Type::getLabelTy(Context); 1801 break; 1802 case bitc::TYPE_CODE_METADATA: // METADATA 1803 ResultTy = Type::getMetadataTy(Context); 1804 break; 1805 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1806 ResultTy = Type::getX86_MMXTy(Context); 1807 break; 1808 case bitc::TYPE_CODE_TOKEN: // TOKEN 1809 ResultTy = Type::getTokenTy(Context); 1810 break; 1811 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1812 if (Record.size() < 1) 1813 return error("Invalid record"); 1814 1815 uint64_t NumBits = Record[0]; 1816 if (NumBits < IntegerType::MIN_INT_BITS || 1817 NumBits > IntegerType::MAX_INT_BITS) 1818 return error("Bitwidth for integer type out of range"); 1819 ResultTy = IntegerType::get(Context, NumBits); 1820 break; 1821 } 1822 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1823 // [pointee type, address space] 1824 if (Record.size() < 1) 1825 return error("Invalid record"); 1826 unsigned AddressSpace = 0; 1827 if (Record.size() == 2) 1828 AddressSpace = Record[1]; 1829 ResultTy = getTypeByID(Record[0]); 1830 if (!ResultTy || 1831 !PointerType::isValidElementType(ResultTy)) 1832 return error("Invalid type"); 1833 ResultTy = PointerType::get(ResultTy, AddressSpace); 1834 break; 1835 } 1836 case bitc::TYPE_CODE_FUNCTION_OLD: { 1837 // FIXME: attrid is dead, remove it in LLVM 4.0 1838 // FUNCTION: [vararg, attrid, retty, paramty x N] 1839 if (Record.size() < 3) 1840 return error("Invalid record"); 1841 SmallVector<Type*, 8> ArgTys; 1842 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1843 if (Type *T = getTypeByID(Record[i])) 1844 ArgTys.push_back(T); 1845 else 1846 break; 1847 } 1848 1849 ResultTy = getTypeByID(Record[2]); 1850 if (!ResultTy || ArgTys.size() < Record.size()-3) 1851 return error("Invalid type"); 1852 1853 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1854 break; 1855 } 1856 case bitc::TYPE_CODE_FUNCTION: { 1857 // FUNCTION: [vararg, retty, paramty x N] 1858 if (Record.size() < 2) 1859 return error("Invalid record"); 1860 SmallVector<Type*, 8> ArgTys; 1861 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1862 if (Type *T = getTypeByID(Record[i])) { 1863 if (!FunctionType::isValidArgumentType(T)) 1864 return error("Invalid function argument type"); 1865 ArgTys.push_back(T); 1866 } 1867 else 1868 break; 1869 } 1870 1871 ResultTy = getTypeByID(Record[1]); 1872 if (!ResultTy || ArgTys.size() < Record.size()-2) 1873 return error("Invalid type"); 1874 1875 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1876 break; 1877 } 1878 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1879 if (Record.size() < 1) 1880 return error("Invalid record"); 1881 SmallVector<Type*, 8> EltTys; 1882 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1883 if (Type *T = getTypeByID(Record[i])) 1884 EltTys.push_back(T); 1885 else 1886 break; 1887 } 1888 if (EltTys.size() != Record.size()-1) 1889 return error("Invalid type"); 1890 ResultTy = StructType::get(Context, EltTys, Record[0]); 1891 break; 1892 } 1893 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1894 if (convertToString(Record, 0, TypeName)) 1895 return error("Invalid record"); 1896 continue; 1897 1898 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1899 if (Record.size() < 1) 1900 return error("Invalid record"); 1901 1902 if (NumRecords >= TypeList.size()) 1903 return error("Invalid TYPE table"); 1904 1905 // Check to see if this was forward referenced, if so fill in the temp. 1906 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1907 if (Res) { 1908 Res->setName(TypeName); 1909 TypeList[NumRecords] = nullptr; 1910 } else // Otherwise, create a new struct. 1911 Res = createIdentifiedStructType(Context, TypeName); 1912 TypeName.clear(); 1913 1914 SmallVector<Type*, 8> EltTys; 1915 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1916 if (Type *T = getTypeByID(Record[i])) 1917 EltTys.push_back(T); 1918 else 1919 break; 1920 } 1921 if (EltTys.size() != Record.size()-1) 1922 return error("Invalid record"); 1923 Res->setBody(EltTys, Record[0]); 1924 ResultTy = Res; 1925 break; 1926 } 1927 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1928 if (Record.size() != 1) 1929 return error("Invalid record"); 1930 1931 if (NumRecords >= TypeList.size()) 1932 return error("Invalid TYPE table"); 1933 1934 // Check to see if this was forward referenced, if so fill in the temp. 1935 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1936 if (Res) { 1937 Res->setName(TypeName); 1938 TypeList[NumRecords] = nullptr; 1939 } else // Otherwise, create a new struct with no body. 1940 Res = createIdentifiedStructType(Context, TypeName); 1941 TypeName.clear(); 1942 ResultTy = Res; 1943 break; 1944 } 1945 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1946 if (Record.size() < 2) 1947 return error("Invalid record"); 1948 ResultTy = getTypeByID(Record[1]); 1949 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1950 return error("Invalid type"); 1951 ResultTy = ArrayType::get(ResultTy, Record[0]); 1952 break; 1953 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1954 if (Record.size() < 2) 1955 return error("Invalid record"); 1956 if (Record[0] == 0) 1957 return error("Invalid vector length"); 1958 ResultTy = getTypeByID(Record[1]); 1959 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1960 return error("Invalid type"); 1961 ResultTy = VectorType::get(ResultTy, Record[0]); 1962 break; 1963 } 1964 1965 if (NumRecords >= TypeList.size()) 1966 return error("Invalid TYPE table"); 1967 if (TypeList[NumRecords]) 1968 return error( 1969 "Invalid TYPE table: Only named structs can be forward referenced"); 1970 assert(ResultTy && "Didn't read a type?"); 1971 TypeList[NumRecords++] = ResultTy; 1972 } 1973 } 1974 1975 Error BitcodeReader::parseOperandBundleTags() { 1976 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1977 return error("Invalid record"); 1978 1979 if (!BundleTags.empty()) 1980 return error("Invalid multiple blocks"); 1981 1982 SmallVector<uint64_t, 64> Record; 1983 1984 while (true) { 1985 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1986 1987 switch (Entry.Kind) { 1988 case BitstreamEntry::SubBlock: // Handled for us already. 1989 case BitstreamEntry::Error: 1990 return error("Malformed block"); 1991 case BitstreamEntry::EndBlock: 1992 return Error::success(); 1993 case BitstreamEntry::Record: 1994 // The interesting case. 1995 break; 1996 } 1997 1998 // Tags are implicitly mapped to integers by their order. 1999 2000 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 2001 return error("Invalid record"); 2002 2003 // OPERAND_BUNDLE_TAG: [strchr x N] 2004 BundleTags.emplace_back(); 2005 if (convertToString(Record, 0, BundleTags.back())) 2006 return error("Invalid record"); 2007 Record.clear(); 2008 } 2009 } 2010 2011 /// Associate a value with its name from the given index in the provided record. 2012 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2013 unsigned NameIndex, Triple &TT) { 2014 SmallString<128> ValueName; 2015 if (convertToString(Record, NameIndex, ValueName)) 2016 return error("Invalid record"); 2017 unsigned ValueID = Record[0]; 2018 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2019 return error("Invalid record"); 2020 Value *V = ValueList[ValueID]; 2021 2022 StringRef NameStr(ValueName.data(), ValueName.size()); 2023 if (NameStr.find_first_of(0) != StringRef::npos) 2024 return error("Invalid value name"); 2025 V->setName(NameStr); 2026 auto *GO = dyn_cast<GlobalObject>(V); 2027 if (GO) { 2028 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2029 if (TT.isOSBinFormatMachO()) 2030 GO->setComdat(nullptr); 2031 else 2032 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2033 } 2034 } 2035 return V; 2036 } 2037 2038 /// Helper to note and return the current location, and jump to the given 2039 /// offset. 2040 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2041 BitstreamCursor &Stream) { 2042 // Save the current parsing location so we can jump back at the end 2043 // of the VST read. 2044 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2045 Stream.JumpToBit(Offset * 32); 2046 #ifndef NDEBUG 2047 // Do some checking if we are in debug mode. 2048 BitstreamEntry Entry = Stream.advance(); 2049 assert(Entry.Kind == BitstreamEntry::SubBlock); 2050 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2051 #else 2052 // In NDEBUG mode ignore the output so we don't get an unused variable 2053 // warning. 2054 Stream.advance(); 2055 #endif 2056 return CurrentBit; 2057 } 2058 2059 /// Parse the value symbol table at either the current parsing location or 2060 /// at the given bit offset if provided. 2061 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2062 uint64_t CurrentBit; 2063 // Pass in the Offset to distinguish between calling for the module-level 2064 // VST (where we want to jump to the VST offset) and the function-level 2065 // VST (where we don't). 2066 if (Offset > 0) 2067 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2068 2069 // Compute the delta between the bitcode indices in the VST (the word offset 2070 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2071 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2072 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2073 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2074 // just before entering the VST subblock because: 1) the EnterSubBlock 2075 // changes the AbbrevID width; 2) the VST block is nested within the same 2076 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2077 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2078 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2079 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2080 unsigned FuncBitcodeOffsetDelta = 2081 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2082 2083 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2084 return error("Invalid record"); 2085 2086 SmallVector<uint64_t, 64> Record; 2087 2088 Triple TT(TheModule->getTargetTriple()); 2089 2090 // Read all the records for this value table. 2091 SmallString<128> ValueName; 2092 2093 while (true) { 2094 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2095 2096 switch (Entry.Kind) { 2097 case BitstreamEntry::SubBlock: // Handled for us already. 2098 case BitstreamEntry::Error: 2099 return error("Malformed block"); 2100 case BitstreamEntry::EndBlock: 2101 if (Offset > 0) 2102 Stream.JumpToBit(CurrentBit); 2103 return Error::success(); 2104 case BitstreamEntry::Record: 2105 // The interesting case. 2106 break; 2107 } 2108 2109 // Read a record. 2110 Record.clear(); 2111 switch (Stream.readRecord(Entry.ID, Record)) { 2112 default: // Default behavior: unknown type. 2113 break; 2114 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2115 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2116 if (Error Err = ValOrErr.takeError()) 2117 return Err; 2118 ValOrErr.get(); 2119 break; 2120 } 2121 case bitc::VST_CODE_FNENTRY: { 2122 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2123 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2124 if (Error Err = ValOrErr.takeError()) 2125 return Err; 2126 Value *V = ValOrErr.get(); 2127 2128 auto *GO = dyn_cast<GlobalObject>(V); 2129 if (!GO) { 2130 // If this is an alias, need to get the actual Function object 2131 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2132 auto *GA = dyn_cast<GlobalAlias>(V); 2133 if (GA) 2134 GO = GA->getBaseObject(); 2135 assert(GO); 2136 } 2137 2138 uint64_t FuncWordOffset = Record[1]; 2139 Function *F = dyn_cast<Function>(GO); 2140 assert(F); 2141 uint64_t FuncBitOffset = FuncWordOffset * 32; 2142 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2143 // Set the LastFunctionBlockBit to point to the last function block. 2144 // Later when parsing is resumed after function materialization, 2145 // we can simply skip that last function block. 2146 if (FuncBitOffset > LastFunctionBlockBit) 2147 LastFunctionBlockBit = FuncBitOffset; 2148 break; 2149 } 2150 case bitc::VST_CODE_BBENTRY: { 2151 if (convertToString(Record, 1, ValueName)) 2152 return error("Invalid record"); 2153 BasicBlock *BB = getBasicBlock(Record[0]); 2154 if (!BB) 2155 return error("Invalid record"); 2156 2157 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2158 ValueName.clear(); 2159 break; 2160 } 2161 } 2162 } 2163 } 2164 2165 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2166 Error BitcodeReader::parseMetadataKindRecord( 2167 SmallVectorImpl<uint64_t> &Record) { 2168 if (Record.size() < 2) 2169 return error("Invalid record"); 2170 2171 unsigned Kind = Record[0]; 2172 SmallString<8> Name(Record.begin() + 1, Record.end()); 2173 2174 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2175 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2176 return error("Conflicting METADATA_KIND records"); 2177 return Error::success(); 2178 } 2179 2180 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2181 2182 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2183 StringRef Blob, 2184 unsigned &NextMetadataNo) { 2185 // All the MDStrings in the block are emitted together in a single 2186 // record. The strings are concatenated and stored in a blob along with 2187 // their sizes. 2188 if (Record.size() != 2) 2189 return error("Invalid record: metadata strings layout"); 2190 2191 unsigned NumStrings = Record[0]; 2192 unsigned StringsOffset = Record[1]; 2193 if (!NumStrings) 2194 return error("Invalid record: metadata strings with no strings"); 2195 if (StringsOffset > Blob.size()) 2196 return error("Invalid record: metadata strings corrupt offset"); 2197 2198 StringRef Lengths = Blob.slice(0, StringsOffset); 2199 SimpleBitstreamCursor R(Lengths); 2200 2201 StringRef Strings = Blob.drop_front(StringsOffset); 2202 do { 2203 if (R.AtEndOfStream()) 2204 return error("Invalid record: metadata strings bad length"); 2205 2206 unsigned Size = R.ReadVBR(6); 2207 if (Strings.size() < Size) 2208 return error("Invalid record: metadata strings truncated chars"); 2209 2210 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2211 NextMetadataNo++); 2212 Strings = Strings.drop_front(Size); 2213 } while (--NumStrings); 2214 2215 return Error::success(); 2216 } 2217 2218 namespace { 2219 2220 class PlaceholderQueue { 2221 // Placeholders would thrash around when moved, so store in a std::deque 2222 // instead of some sort of vector. 2223 std::deque<DistinctMDOperandPlaceholder> PHs; 2224 2225 public: 2226 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2227 void flush(BitcodeReaderMetadataList &MetadataList); 2228 }; 2229 2230 } // end anonymous namespace 2231 2232 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2233 PHs.emplace_back(ID); 2234 return PHs.back(); 2235 } 2236 2237 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2238 while (!PHs.empty()) { 2239 PHs.front().replaceUseWith( 2240 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2241 PHs.pop_front(); 2242 } 2243 } 2244 2245 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2246 /// module level metadata. 2247 Error BitcodeReader::parseMetadata(bool ModuleLevel) { 2248 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2249 "Must read all module-level metadata before function-level"); 2250 2251 IsMetadataMaterialized = true; 2252 unsigned NextMetadataNo = MetadataList.size(); 2253 2254 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2255 return error("Invalid metadata: fwd refs into function blocks"); 2256 2257 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2258 return error("Invalid record"); 2259 2260 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2261 SmallVector<uint64_t, 64> Record; 2262 2263 PlaceholderQueue Placeholders; 2264 bool IsDistinct; 2265 auto getMD = [&](unsigned ID) -> Metadata * { 2266 if (!IsDistinct) 2267 return MetadataList.getMetadataFwdRef(ID); 2268 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2269 return MD; 2270 return &Placeholders.getPlaceholderOp(ID); 2271 }; 2272 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2273 if (ID) 2274 return getMD(ID - 1); 2275 return nullptr; 2276 }; 2277 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2278 if (ID) 2279 return MetadataList.getMetadataFwdRef(ID - 1); 2280 return nullptr; 2281 }; 2282 auto getMDString = [&](unsigned ID) -> MDString *{ 2283 // This requires that the ID is not really a forward reference. In 2284 // particular, the MDString must already have been resolved. 2285 return cast_or_null<MDString>(getMDOrNull(ID)); 2286 }; 2287 2288 // Support for old type refs. 2289 auto getDITypeRefOrNull = [&](unsigned ID) { 2290 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2291 }; 2292 2293 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2294 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2295 2296 // Read all the records. 2297 while (true) { 2298 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2299 2300 switch (Entry.Kind) { 2301 case BitstreamEntry::SubBlock: // Handled for us already. 2302 case BitstreamEntry::Error: 2303 return error("Malformed block"); 2304 case BitstreamEntry::EndBlock: 2305 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2306 for (auto CU_SP : CUSubprograms) 2307 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2308 for (auto &Op : SPs->operands()) 2309 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2310 SP->replaceOperandWith(7, CU_SP.first); 2311 2312 MetadataList.tryToResolveCycles(); 2313 Placeholders.flush(MetadataList); 2314 return Error::success(); 2315 case BitstreamEntry::Record: 2316 // The interesting case. 2317 break; 2318 } 2319 2320 // Read a record. 2321 Record.clear(); 2322 StringRef Blob; 2323 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2324 IsDistinct = false; 2325 switch (Code) { 2326 default: // Default behavior: ignore. 2327 break; 2328 case bitc::METADATA_NAME: { 2329 // Read name of the named metadata. 2330 SmallString<8> Name(Record.begin(), Record.end()); 2331 Record.clear(); 2332 Code = Stream.ReadCode(); 2333 2334 unsigned NextBitCode = Stream.readRecord(Code, Record); 2335 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2336 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2337 2338 // Read named metadata elements. 2339 unsigned Size = Record.size(); 2340 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2341 for (unsigned i = 0; i != Size; ++i) { 2342 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2343 if (!MD) 2344 return error("Invalid record"); 2345 NMD->addOperand(MD); 2346 } 2347 break; 2348 } 2349 case bitc::METADATA_OLD_FN_NODE: { 2350 // FIXME: Remove in 4.0. 2351 // This is a LocalAsMetadata record, the only type of function-local 2352 // metadata. 2353 if (Record.size() % 2 == 1) 2354 return error("Invalid record"); 2355 2356 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2357 // to be legal, but there's no upgrade path. 2358 auto dropRecord = [&] { 2359 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2360 }; 2361 if (Record.size() != 2) { 2362 dropRecord(); 2363 break; 2364 } 2365 2366 Type *Ty = getTypeByID(Record[0]); 2367 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2368 dropRecord(); 2369 break; 2370 } 2371 2372 MetadataList.assignValue( 2373 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2374 NextMetadataNo++); 2375 break; 2376 } 2377 case bitc::METADATA_OLD_NODE: { 2378 // FIXME: Remove in 4.0. 2379 if (Record.size() % 2 == 1) 2380 return error("Invalid record"); 2381 2382 unsigned Size = Record.size(); 2383 SmallVector<Metadata *, 8> Elts; 2384 for (unsigned i = 0; i != Size; i += 2) { 2385 Type *Ty = getTypeByID(Record[i]); 2386 if (!Ty) 2387 return error("Invalid record"); 2388 if (Ty->isMetadataTy()) 2389 Elts.push_back(getMD(Record[i + 1])); 2390 else if (!Ty->isVoidTy()) { 2391 auto *MD = 2392 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2393 assert(isa<ConstantAsMetadata>(MD) && 2394 "Expected non-function-local metadata"); 2395 Elts.push_back(MD); 2396 } else 2397 Elts.push_back(nullptr); 2398 } 2399 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2400 break; 2401 } 2402 case bitc::METADATA_VALUE: { 2403 if (Record.size() != 2) 2404 return error("Invalid record"); 2405 2406 Type *Ty = getTypeByID(Record[0]); 2407 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2408 return error("Invalid record"); 2409 2410 MetadataList.assignValue( 2411 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2412 NextMetadataNo++); 2413 break; 2414 } 2415 case bitc::METADATA_DISTINCT_NODE: 2416 IsDistinct = true; 2417 LLVM_FALLTHROUGH; 2418 case bitc::METADATA_NODE: { 2419 SmallVector<Metadata *, 8> Elts; 2420 Elts.reserve(Record.size()); 2421 for (unsigned ID : Record) 2422 Elts.push_back(getMDOrNull(ID)); 2423 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2424 : MDNode::get(Context, Elts), 2425 NextMetadataNo++); 2426 break; 2427 } 2428 case bitc::METADATA_LOCATION: { 2429 if (Record.size() != 5) 2430 return error("Invalid record"); 2431 2432 IsDistinct = Record[0]; 2433 unsigned Line = Record[1]; 2434 unsigned Column = Record[2]; 2435 Metadata *Scope = getMD(Record[3]); 2436 Metadata *InlinedAt = getMDOrNull(Record[4]); 2437 MetadataList.assignValue( 2438 GET_OR_DISTINCT(DILocation, 2439 (Context, Line, Column, Scope, InlinedAt)), 2440 NextMetadataNo++); 2441 break; 2442 } 2443 case bitc::METADATA_GENERIC_DEBUG: { 2444 if (Record.size() < 4) 2445 return error("Invalid record"); 2446 2447 IsDistinct = Record[0]; 2448 unsigned Tag = Record[1]; 2449 unsigned Version = Record[2]; 2450 2451 if (Tag >= 1u << 16 || Version != 0) 2452 return error("Invalid record"); 2453 2454 auto *Header = getMDString(Record[3]); 2455 SmallVector<Metadata *, 8> DwarfOps; 2456 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2457 DwarfOps.push_back(getMDOrNull(Record[I])); 2458 MetadataList.assignValue( 2459 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2460 NextMetadataNo++); 2461 break; 2462 } 2463 case bitc::METADATA_SUBRANGE: { 2464 if (Record.size() != 3) 2465 return error("Invalid record"); 2466 2467 IsDistinct = Record[0]; 2468 MetadataList.assignValue( 2469 GET_OR_DISTINCT(DISubrange, 2470 (Context, Record[1], unrotateSign(Record[2]))), 2471 NextMetadataNo++); 2472 break; 2473 } 2474 case bitc::METADATA_ENUMERATOR: { 2475 if (Record.size() != 3) 2476 return error("Invalid record"); 2477 2478 IsDistinct = Record[0]; 2479 MetadataList.assignValue( 2480 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2481 getMDString(Record[2]))), 2482 NextMetadataNo++); 2483 break; 2484 } 2485 case bitc::METADATA_BASIC_TYPE: { 2486 if (Record.size() != 6) 2487 return error("Invalid record"); 2488 2489 IsDistinct = Record[0]; 2490 MetadataList.assignValue( 2491 GET_OR_DISTINCT(DIBasicType, 2492 (Context, Record[1], getMDString(Record[2]), 2493 Record[3], Record[4], Record[5])), 2494 NextMetadataNo++); 2495 break; 2496 } 2497 case bitc::METADATA_DERIVED_TYPE: { 2498 if (Record.size() != 12) 2499 return error("Invalid record"); 2500 2501 IsDistinct = Record[0]; 2502 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2503 MetadataList.assignValue( 2504 GET_OR_DISTINCT(DIDerivedType, 2505 (Context, Record[1], getMDString(Record[2]), 2506 getMDOrNull(Record[3]), Record[4], 2507 getDITypeRefOrNull(Record[5]), 2508 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2509 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2510 NextMetadataNo++); 2511 break; 2512 } 2513 case bitc::METADATA_COMPOSITE_TYPE: { 2514 if (Record.size() != 16) 2515 return error("Invalid record"); 2516 2517 // If we have a UUID and this is not a forward declaration, lookup the 2518 // mapping. 2519 IsDistinct = Record[0] & 0x1; 2520 bool IsNotUsedInTypeRef = Record[0] >= 2; 2521 unsigned Tag = Record[1]; 2522 MDString *Name = getMDString(Record[2]); 2523 Metadata *File = getMDOrNull(Record[3]); 2524 unsigned Line = Record[4]; 2525 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2526 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2527 uint64_t SizeInBits = Record[7]; 2528 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2529 return error("Alignment value is too large"); 2530 uint32_t AlignInBits = Record[8]; 2531 uint64_t OffsetInBits = Record[9]; 2532 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2533 Metadata *Elements = getMDOrNull(Record[11]); 2534 unsigned RuntimeLang = Record[12]; 2535 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2536 Metadata *TemplateParams = getMDOrNull(Record[14]); 2537 auto *Identifier = getMDString(Record[15]); 2538 DICompositeType *CT = nullptr; 2539 if (Identifier) 2540 CT = DICompositeType::buildODRType( 2541 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2542 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2543 VTableHolder, TemplateParams); 2544 2545 // Create a node if we didn't get a lazy ODR type. 2546 if (!CT) 2547 CT = GET_OR_DISTINCT(DICompositeType, 2548 (Context, Tag, Name, File, Line, Scope, BaseType, 2549 SizeInBits, AlignInBits, OffsetInBits, Flags, 2550 Elements, RuntimeLang, VTableHolder, 2551 TemplateParams, Identifier)); 2552 if (!IsNotUsedInTypeRef && Identifier) 2553 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2554 2555 MetadataList.assignValue(CT, NextMetadataNo++); 2556 break; 2557 } 2558 case bitc::METADATA_SUBROUTINE_TYPE: { 2559 if (Record.size() < 3 || Record.size() > 4) 2560 return error("Invalid record"); 2561 bool IsOldTypeRefArray = Record[0] < 2; 2562 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2563 2564 IsDistinct = Record[0] & 0x1; 2565 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2566 Metadata *Types = getMDOrNull(Record[2]); 2567 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2568 Types = MetadataList.upgradeTypeRefArray(Types); 2569 2570 MetadataList.assignValue( 2571 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2572 NextMetadataNo++); 2573 break; 2574 } 2575 2576 case bitc::METADATA_MODULE: { 2577 if (Record.size() != 6) 2578 return error("Invalid record"); 2579 2580 IsDistinct = Record[0]; 2581 MetadataList.assignValue( 2582 GET_OR_DISTINCT(DIModule, 2583 (Context, getMDOrNull(Record[1]), 2584 getMDString(Record[2]), getMDString(Record[3]), 2585 getMDString(Record[4]), getMDString(Record[5]))), 2586 NextMetadataNo++); 2587 break; 2588 } 2589 2590 case bitc::METADATA_FILE: { 2591 if (Record.size() != 3) 2592 return error("Invalid record"); 2593 2594 IsDistinct = Record[0]; 2595 MetadataList.assignValue( 2596 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2597 getMDString(Record[2]))), 2598 NextMetadataNo++); 2599 break; 2600 } 2601 case bitc::METADATA_COMPILE_UNIT: { 2602 if (Record.size() < 14 || Record.size() > 17) 2603 return error("Invalid record"); 2604 2605 // Ignore Record[0], which indicates whether this compile unit is 2606 // distinct. It's always distinct. 2607 IsDistinct = true; 2608 auto *CU = DICompileUnit::getDistinct( 2609 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2610 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2611 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2612 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2613 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2614 Record.size() <= 14 ? 0 : Record[14], 2615 Record.size() <= 16 ? true : Record[16]); 2616 2617 MetadataList.assignValue(CU, NextMetadataNo++); 2618 2619 // Move the Upgrade the list of subprograms. 2620 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2621 CUSubprograms.push_back({CU, SPs}); 2622 break; 2623 } 2624 case bitc::METADATA_SUBPROGRAM: { 2625 if (Record.size() < 18 || Record.size() > 20) 2626 return error("Invalid record"); 2627 2628 IsDistinct = 2629 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2630 // Version 1 has a Function as Record[15]. 2631 // Version 2 has removed Record[15]. 2632 // Version 3 has the Unit as Record[15]. 2633 // Version 4 added thisAdjustment. 2634 bool HasUnit = Record[0] >= 2; 2635 if (HasUnit && Record.size() < 19) 2636 return error("Invalid record"); 2637 Metadata *CUorFn = getMDOrNull(Record[15]); 2638 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2639 bool HasFn = Offset && !HasUnit; 2640 bool HasThisAdj = Record.size() >= 20; 2641 DISubprogram *SP = GET_OR_DISTINCT( 2642 DISubprogram, (Context, 2643 getDITypeRefOrNull(Record[1]), // scope 2644 getMDString(Record[2]), // name 2645 getMDString(Record[3]), // linkageName 2646 getMDOrNull(Record[4]), // file 2647 Record[5], // line 2648 getMDOrNull(Record[6]), // type 2649 Record[7], // isLocal 2650 Record[8], // isDefinition 2651 Record[9], // scopeLine 2652 getDITypeRefOrNull(Record[10]), // containingType 2653 Record[11], // virtuality 2654 Record[12], // virtualIndex 2655 HasThisAdj ? Record[19] : 0, // thisAdjustment 2656 static_cast<DINode::DIFlags>(Record[13] // flags 2657 ), 2658 Record[14], // isOptimized 2659 HasUnit ? CUorFn : nullptr, // unit 2660 getMDOrNull(Record[15 + Offset]), // templateParams 2661 getMDOrNull(Record[16 + Offset]), // declaration 2662 getMDOrNull(Record[17 + Offset]) // variables 2663 )); 2664 MetadataList.assignValue(SP, NextMetadataNo++); 2665 2666 // Upgrade sp->function mapping to function->sp mapping. 2667 if (HasFn) { 2668 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2669 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2670 if (F->isMaterializable()) 2671 // Defer until materialized; unmaterialized functions may not have 2672 // metadata. 2673 FunctionsWithSPs[F] = SP; 2674 else if (!F->empty()) 2675 F->setSubprogram(SP); 2676 } 2677 } 2678 break; 2679 } 2680 case bitc::METADATA_LEXICAL_BLOCK: { 2681 if (Record.size() != 5) 2682 return error("Invalid record"); 2683 2684 IsDistinct = Record[0]; 2685 MetadataList.assignValue( 2686 GET_OR_DISTINCT(DILexicalBlock, 2687 (Context, getMDOrNull(Record[1]), 2688 getMDOrNull(Record[2]), Record[3], Record[4])), 2689 NextMetadataNo++); 2690 break; 2691 } 2692 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2693 if (Record.size() != 4) 2694 return error("Invalid record"); 2695 2696 IsDistinct = Record[0]; 2697 MetadataList.assignValue( 2698 GET_OR_DISTINCT(DILexicalBlockFile, 2699 (Context, getMDOrNull(Record[1]), 2700 getMDOrNull(Record[2]), Record[3])), 2701 NextMetadataNo++); 2702 break; 2703 } 2704 case bitc::METADATA_NAMESPACE: { 2705 if (Record.size() != 5) 2706 return error("Invalid record"); 2707 2708 IsDistinct = Record[0] & 1; 2709 bool ExportSymbols = Record[0] & 2; 2710 MetadataList.assignValue( 2711 GET_OR_DISTINCT(DINamespace, 2712 (Context, getMDOrNull(Record[1]), 2713 getMDOrNull(Record[2]), getMDString(Record[3]), 2714 Record[4], ExportSymbols)), 2715 NextMetadataNo++); 2716 break; 2717 } 2718 case bitc::METADATA_MACRO: { 2719 if (Record.size() != 5) 2720 return error("Invalid record"); 2721 2722 IsDistinct = Record[0]; 2723 MetadataList.assignValue( 2724 GET_OR_DISTINCT(DIMacro, 2725 (Context, Record[1], Record[2], 2726 getMDString(Record[3]), getMDString(Record[4]))), 2727 NextMetadataNo++); 2728 break; 2729 } 2730 case bitc::METADATA_MACRO_FILE: { 2731 if (Record.size() != 5) 2732 return error("Invalid record"); 2733 2734 IsDistinct = Record[0]; 2735 MetadataList.assignValue( 2736 GET_OR_DISTINCT(DIMacroFile, 2737 (Context, Record[1], Record[2], 2738 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2739 NextMetadataNo++); 2740 break; 2741 } 2742 case bitc::METADATA_TEMPLATE_TYPE: { 2743 if (Record.size() != 3) 2744 return error("Invalid record"); 2745 2746 IsDistinct = Record[0]; 2747 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2748 (Context, getMDString(Record[1]), 2749 getDITypeRefOrNull(Record[2]))), 2750 NextMetadataNo++); 2751 break; 2752 } 2753 case bitc::METADATA_TEMPLATE_VALUE: { 2754 if (Record.size() != 5) 2755 return error("Invalid record"); 2756 2757 IsDistinct = Record[0]; 2758 MetadataList.assignValue( 2759 GET_OR_DISTINCT(DITemplateValueParameter, 2760 (Context, Record[1], getMDString(Record[2]), 2761 getDITypeRefOrNull(Record[3]), 2762 getMDOrNull(Record[4]))), 2763 NextMetadataNo++); 2764 break; 2765 } 2766 case bitc::METADATA_GLOBAL_VAR: { 2767 if (Record.size() < 11 || Record.size() > 12) 2768 return error("Invalid record"); 2769 2770 IsDistinct = Record[0]; 2771 2772 // Upgrade old metadata, which stored a global variable reference or a 2773 // ConstantInt here. 2774 Metadata *Expr = getMDOrNull(Record[9]); 2775 uint32_t AlignInBits = 0; 2776 if (Record.size() > 11) { 2777 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2778 return error("Alignment value is too large"); 2779 AlignInBits = Record[11]; 2780 } 2781 GlobalVariable *Attach = nullptr; 2782 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2783 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2784 Attach = GV; 2785 Expr = nullptr; 2786 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2787 Expr = DIExpression::get(Context, 2788 {dwarf::DW_OP_constu, CI->getZExtValue(), 2789 dwarf::DW_OP_stack_value}); 2790 } else { 2791 Expr = nullptr; 2792 } 2793 } 2794 2795 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2796 DIGlobalVariable, 2797 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2798 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2799 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2800 getMDOrNull(Record[10]), AlignInBits)); 2801 MetadataList.assignValue(DGV, NextMetadataNo++); 2802 2803 if (Attach) 2804 Attach->addDebugInfo(DGV); 2805 2806 break; 2807 } 2808 case bitc::METADATA_LOCAL_VAR: { 2809 // 10th field is for the obseleted 'inlinedAt:' field. 2810 if (Record.size() < 8 || Record.size() > 10) 2811 return error("Invalid record"); 2812 2813 IsDistinct = Record[0] & 1; 2814 bool HasAlignment = Record[0] & 2; 2815 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2816 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2817 // this is newer version of record which doesn't have artifical tag. 2818 bool HasTag = !HasAlignment && Record.size() > 8; 2819 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2820 uint32_t AlignInBits = 0; 2821 if (HasAlignment) { 2822 if (Record[8 + HasTag] > 2823 (uint64_t)std::numeric_limits<uint32_t>::max()) 2824 return error("Alignment value is too large"); 2825 AlignInBits = Record[8 + HasTag]; 2826 } 2827 MetadataList.assignValue( 2828 GET_OR_DISTINCT(DILocalVariable, 2829 (Context, getMDOrNull(Record[1 + HasTag]), 2830 getMDString(Record[2 + HasTag]), 2831 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2832 getDITypeRefOrNull(Record[5 + HasTag]), 2833 Record[6 + HasTag], Flags, AlignInBits)), 2834 NextMetadataNo++); 2835 break; 2836 } 2837 case bitc::METADATA_EXPRESSION: { 2838 if (Record.size() < 1) 2839 return error("Invalid record"); 2840 2841 IsDistinct = Record[0]; 2842 MetadataList.assignValue( 2843 GET_OR_DISTINCT(DIExpression, 2844 (Context, makeArrayRef(Record).slice(1))), 2845 NextMetadataNo++); 2846 break; 2847 } 2848 case bitc::METADATA_OBJC_PROPERTY: { 2849 if (Record.size() != 8) 2850 return error("Invalid record"); 2851 2852 IsDistinct = Record[0]; 2853 MetadataList.assignValue( 2854 GET_OR_DISTINCT(DIObjCProperty, 2855 (Context, getMDString(Record[1]), 2856 getMDOrNull(Record[2]), Record[3], 2857 getMDString(Record[4]), getMDString(Record[5]), 2858 Record[6], getDITypeRefOrNull(Record[7]))), 2859 NextMetadataNo++); 2860 break; 2861 } 2862 case bitc::METADATA_IMPORTED_ENTITY: { 2863 if (Record.size() != 6) 2864 return error("Invalid record"); 2865 2866 IsDistinct = Record[0]; 2867 MetadataList.assignValue( 2868 GET_OR_DISTINCT(DIImportedEntity, 2869 (Context, Record[1], getMDOrNull(Record[2]), 2870 getDITypeRefOrNull(Record[3]), Record[4], 2871 getMDString(Record[5]))), 2872 NextMetadataNo++); 2873 break; 2874 } 2875 case bitc::METADATA_STRING_OLD: { 2876 std::string String(Record.begin(), Record.end()); 2877 2878 // Test for upgrading !llvm.loop. 2879 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2880 2881 Metadata *MD = MDString::get(Context, String); 2882 MetadataList.assignValue(MD, NextMetadataNo++); 2883 break; 2884 } 2885 case bitc::METADATA_STRINGS: 2886 if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo)) 2887 return Err; 2888 break; 2889 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2890 if (Record.size() % 2 == 0) 2891 return error("Invalid record"); 2892 unsigned ValueID = Record[0]; 2893 if (ValueID >= ValueList.size()) 2894 return error("Invalid record"); 2895 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2896 if (Error Err = parseGlobalObjectAttachment( 2897 *GO, ArrayRef<uint64_t>(Record).slice(1))) 2898 return Err; 2899 break; 2900 } 2901 case bitc::METADATA_KIND: { 2902 // Support older bitcode files that had METADATA_KIND records in a 2903 // block with METADATA_BLOCK_ID. 2904 if (Error Err = parseMetadataKindRecord(Record)) 2905 return Err; 2906 break; 2907 } 2908 } 2909 } 2910 2911 #undef GET_OR_DISTINCT 2912 } 2913 2914 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2915 Error BitcodeReader::parseMetadataKinds() { 2916 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2917 return error("Invalid record"); 2918 2919 SmallVector<uint64_t, 64> Record; 2920 2921 // Read all the records. 2922 while (true) { 2923 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2924 2925 switch (Entry.Kind) { 2926 case BitstreamEntry::SubBlock: // Handled for us already. 2927 case BitstreamEntry::Error: 2928 return error("Malformed block"); 2929 case BitstreamEntry::EndBlock: 2930 return Error::success(); 2931 case BitstreamEntry::Record: 2932 // The interesting case. 2933 break; 2934 } 2935 2936 // Read a record. 2937 Record.clear(); 2938 unsigned Code = Stream.readRecord(Entry.ID, Record); 2939 switch (Code) { 2940 default: // Default behavior: ignore. 2941 break; 2942 case bitc::METADATA_KIND: { 2943 if (Error Err = parseMetadataKindRecord(Record)) 2944 return Err; 2945 break; 2946 } 2947 } 2948 } 2949 } 2950 2951 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2952 /// encoding. 2953 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2954 if ((V & 1) == 0) 2955 return V >> 1; 2956 if (V != 1) 2957 return -(V >> 1); 2958 // There is no such thing as -0 with integers. "-0" really means MININT. 2959 return 1ULL << 63; 2960 } 2961 2962 /// Resolve all of the initializers for global values and aliases that we can. 2963 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2964 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2965 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2966 IndirectSymbolInitWorklist; 2967 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2968 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2969 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2970 2971 GlobalInitWorklist.swap(GlobalInits); 2972 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2973 FunctionPrefixWorklist.swap(FunctionPrefixes); 2974 FunctionPrologueWorklist.swap(FunctionPrologues); 2975 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2976 2977 while (!GlobalInitWorklist.empty()) { 2978 unsigned ValID = GlobalInitWorklist.back().second; 2979 if (ValID >= ValueList.size()) { 2980 // Not ready to resolve this yet, it requires something later in the file. 2981 GlobalInits.push_back(GlobalInitWorklist.back()); 2982 } else { 2983 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2984 GlobalInitWorklist.back().first->setInitializer(C); 2985 else 2986 return error("Expected a constant"); 2987 } 2988 GlobalInitWorklist.pop_back(); 2989 } 2990 2991 while (!IndirectSymbolInitWorklist.empty()) { 2992 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2993 if (ValID >= ValueList.size()) { 2994 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2995 } else { 2996 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2997 if (!C) 2998 return error("Expected a constant"); 2999 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 3000 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 3001 return error("Alias and aliasee types don't match"); 3002 GIS->setIndirectSymbol(C); 3003 } 3004 IndirectSymbolInitWorklist.pop_back(); 3005 } 3006 3007 while (!FunctionPrefixWorklist.empty()) { 3008 unsigned ValID = FunctionPrefixWorklist.back().second; 3009 if (ValID >= ValueList.size()) { 3010 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 3011 } else { 3012 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3013 FunctionPrefixWorklist.back().first->setPrefixData(C); 3014 else 3015 return error("Expected a constant"); 3016 } 3017 FunctionPrefixWorklist.pop_back(); 3018 } 3019 3020 while (!FunctionPrologueWorklist.empty()) { 3021 unsigned ValID = FunctionPrologueWorklist.back().second; 3022 if (ValID >= ValueList.size()) { 3023 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 3024 } else { 3025 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3026 FunctionPrologueWorklist.back().first->setPrologueData(C); 3027 else 3028 return error("Expected a constant"); 3029 } 3030 FunctionPrologueWorklist.pop_back(); 3031 } 3032 3033 while (!FunctionPersonalityFnWorklist.empty()) { 3034 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 3035 if (ValID >= ValueList.size()) { 3036 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 3037 } else { 3038 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3039 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 3040 else 3041 return error("Expected a constant"); 3042 } 3043 FunctionPersonalityFnWorklist.pop_back(); 3044 } 3045 3046 return Error::success(); 3047 } 3048 3049 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3050 SmallVector<uint64_t, 8> Words(Vals.size()); 3051 transform(Vals, Words.begin(), 3052 BitcodeReader::decodeSignRotatedValue); 3053 3054 return APInt(TypeBits, Words); 3055 } 3056 3057 Error BitcodeReader::parseConstants() { 3058 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3059 return error("Invalid record"); 3060 3061 SmallVector<uint64_t, 64> Record; 3062 3063 // Read all the records for this value table. 3064 Type *CurTy = Type::getInt32Ty(Context); 3065 unsigned NextCstNo = ValueList.size(); 3066 3067 while (true) { 3068 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3069 3070 switch (Entry.Kind) { 3071 case BitstreamEntry::SubBlock: // Handled for us already. 3072 case BitstreamEntry::Error: 3073 return error("Malformed block"); 3074 case BitstreamEntry::EndBlock: 3075 if (NextCstNo != ValueList.size()) 3076 return error("Invalid constant reference"); 3077 3078 // Once all the constants have been read, go through and resolve forward 3079 // references. 3080 ValueList.resolveConstantForwardRefs(); 3081 return Error::success(); 3082 case BitstreamEntry::Record: 3083 // The interesting case. 3084 break; 3085 } 3086 3087 // Read a record. 3088 Record.clear(); 3089 Type *VoidType = Type::getVoidTy(Context); 3090 Value *V = nullptr; 3091 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3092 switch (BitCode) { 3093 default: // Default behavior: unknown constant 3094 case bitc::CST_CODE_UNDEF: // UNDEF 3095 V = UndefValue::get(CurTy); 3096 break; 3097 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3098 if (Record.empty()) 3099 return error("Invalid record"); 3100 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3101 return error("Invalid record"); 3102 if (TypeList[Record[0]] == VoidType) 3103 return error("Invalid constant type"); 3104 CurTy = TypeList[Record[0]]; 3105 continue; // Skip the ValueList manipulation. 3106 case bitc::CST_CODE_NULL: // NULL 3107 V = Constant::getNullValue(CurTy); 3108 break; 3109 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3110 if (!CurTy->isIntegerTy() || Record.empty()) 3111 return error("Invalid record"); 3112 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3113 break; 3114 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3115 if (!CurTy->isIntegerTy() || Record.empty()) 3116 return error("Invalid record"); 3117 3118 APInt VInt = 3119 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3120 V = ConstantInt::get(Context, VInt); 3121 3122 break; 3123 } 3124 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3125 if (Record.empty()) 3126 return error("Invalid record"); 3127 if (CurTy->isHalfTy()) 3128 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3129 APInt(16, (uint16_t)Record[0]))); 3130 else if (CurTy->isFloatTy()) 3131 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3132 APInt(32, (uint32_t)Record[0]))); 3133 else if (CurTy->isDoubleTy()) 3134 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3135 APInt(64, Record[0]))); 3136 else if (CurTy->isX86_FP80Ty()) { 3137 // Bits are not stored the same way as a normal i80 APInt, compensate. 3138 uint64_t Rearrange[2]; 3139 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3140 Rearrange[1] = Record[0] >> 48; 3141 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3142 APInt(80, Rearrange))); 3143 } else if (CurTy->isFP128Ty()) 3144 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3145 APInt(128, Record))); 3146 else if (CurTy->isPPC_FP128Ty()) 3147 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3148 APInt(128, Record))); 3149 else 3150 V = UndefValue::get(CurTy); 3151 break; 3152 } 3153 3154 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3155 if (Record.empty()) 3156 return error("Invalid record"); 3157 3158 unsigned Size = Record.size(); 3159 SmallVector<Constant*, 16> Elts; 3160 3161 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3162 for (unsigned i = 0; i != Size; ++i) 3163 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3164 STy->getElementType(i))); 3165 V = ConstantStruct::get(STy, Elts); 3166 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3167 Type *EltTy = ATy->getElementType(); 3168 for (unsigned i = 0; i != Size; ++i) 3169 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3170 V = ConstantArray::get(ATy, Elts); 3171 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3172 Type *EltTy = VTy->getElementType(); 3173 for (unsigned i = 0; i != Size; ++i) 3174 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3175 V = ConstantVector::get(Elts); 3176 } else { 3177 V = UndefValue::get(CurTy); 3178 } 3179 break; 3180 } 3181 case bitc::CST_CODE_STRING: // STRING: [values] 3182 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3183 if (Record.empty()) 3184 return error("Invalid record"); 3185 3186 SmallString<16> Elts(Record.begin(), Record.end()); 3187 V = ConstantDataArray::getString(Context, Elts, 3188 BitCode == bitc::CST_CODE_CSTRING); 3189 break; 3190 } 3191 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3192 if (Record.empty()) 3193 return error("Invalid record"); 3194 3195 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3196 if (EltTy->isIntegerTy(8)) { 3197 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3198 if (isa<VectorType>(CurTy)) 3199 V = ConstantDataVector::get(Context, Elts); 3200 else 3201 V = ConstantDataArray::get(Context, Elts); 3202 } else if (EltTy->isIntegerTy(16)) { 3203 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3204 if (isa<VectorType>(CurTy)) 3205 V = ConstantDataVector::get(Context, Elts); 3206 else 3207 V = ConstantDataArray::get(Context, Elts); 3208 } else if (EltTy->isIntegerTy(32)) { 3209 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3210 if (isa<VectorType>(CurTy)) 3211 V = ConstantDataVector::get(Context, Elts); 3212 else 3213 V = ConstantDataArray::get(Context, Elts); 3214 } else if (EltTy->isIntegerTy(64)) { 3215 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3216 if (isa<VectorType>(CurTy)) 3217 V = ConstantDataVector::get(Context, Elts); 3218 else 3219 V = ConstantDataArray::get(Context, Elts); 3220 } else if (EltTy->isHalfTy()) { 3221 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3222 if (isa<VectorType>(CurTy)) 3223 V = ConstantDataVector::getFP(Context, Elts); 3224 else 3225 V = ConstantDataArray::getFP(Context, Elts); 3226 } else if (EltTy->isFloatTy()) { 3227 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3228 if (isa<VectorType>(CurTy)) 3229 V = ConstantDataVector::getFP(Context, Elts); 3230 else 3231 V = ConstantDataArray::getFP(Context, Elts); 3232 } else if (EltTy->isDoubleTy()) { 3233 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3234 if (isa<VectorType>(CurTy)) 3235 V = ConstantDataVector::getFP(Context, Elts); 3236 else 3237 V = ConstantDataArray::getFP(Context, Elts); 3238 } else { 3239 return error("Invalid type for value"); 3240 } 3241 break; 3242 } 3243 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3244 if (Record.size() < 3) 3245 return error("Invalid record"); 3246 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3247 if (Opc < 0) { 3248 V = UndefValue::get(CurTy); // Unknown binop. 3249 } else { 3250 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3251 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3252 unsigned Flags = 0; 3253 if (Record.size() >= 4) { 3254 if (Opc == Instruction::Add || 3255 Opc == Instruction::Sub || 3256 Opc == Instruction::Mul || 3257 Opc == Instruction::Shl) { 3258 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3259 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3260 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3261 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3262 } else if (Opc == Instruction::SDiv || 3263 Opc == Instruction::UDiv || 3264 Opc == Instruction::LShr || 3265 Opc == Instruction::AShr) { 3266 if (Record[3] & (1 << bitc::PEO_EXACT)) 3267 Flags |= SDivOperator::IsExact; 3268 } 3269 } 3270 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3271 } 3272 break; 3273 } 3274 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3275 if (Record.size() < 3) 3276 return error("Invalid record"); 3277 int Opc = getDecodedCastOpcode(Record[0]); 3278 if (Opc < 0) { 3279 V = UndefValue::get(CurTy); // Unknown cast. 3280 } else { 3281 Type *OpTy = getTypeByID(Record[1]); 3282 if (!OpTy) 3283 return error("Invalid record"); 3284 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3285 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3286 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3287 } 3288 break; 3289 } 3290 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3291 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3292 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3293 // operands] 3294 unsigned OpNum = 0; 3295 Type *PointeeType = nullptr; 3296 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3297 Record.size() % 2) 3298 PointeeType = getTypeByID(Record[OpNum++]); 3299 3300 bool InBounds = false; 3301 Optional<unsigned> InRangeIndex; 3302 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3303 uint64_t Op = Record[OpNum++]; 3304 InBounds = Op & 1; 3305 InRangeIndex = Op >> 1; 3306 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3307 InBounds = true; 3308 3309 SmallVector<Constant*, 16> Elts; 3310 while (OpNum != Record.size()) { 3311 Type *ElTy = getTypeByID(Record[OpNum++]); 3312 if (!ElTy) 3313 return error("Invalid record"); 3314 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3315 } 3316 3317 if (PointeeType && 3318 PointeeType != 3319 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3320 ->getElementType()) 3321 return error("Explicit gep operator type does not match pointee type " 3322 "of pointer operand"); 3323 3324 if (Elts.size() < 1) 3325 return error("Invalid gep with no operands"); 3326 3327 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3328 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3329 InBounds, InRangeIndex); 3330 break; 3331 } 3332 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3333 if (Record.size() < 3) 3334 return error("Invalid record"); 3335 3336 Type *SelectorTy = Type::getInt1Ty(Context); 3337 3338 // The selector might be an i1 or an <n x i1> 3339 // Get the type from the ValueList before getting a forward ref. 3340 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3341 if (Value *V = ValueList[Record[0]]) 3342 if (SelectorTy != V->getType()) 3343 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3344 3345 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3346 SelectorTy), 3347 ValueList.getConstantFwdRef(Record[1],CurTy), 3348 ValueList.getConstantFwdRef(Record[2],CurTy)); 3349 break; 3350 } 3351 case bitc::CST_CODE_CE_EXTRACTELT 3352 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3353 if (Record.size() < 3) 3354 return error("Invalid record"); 3355 VectorType *OpTy = 3356 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3357 if (!OpTy) 3358 return error("Invalid record"); 3359 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3360 Constant *Op1 = nullptr; 3361 if (Record.size() == 4) { 3362 Type *IdxTy = getTypeByID(Record[2]); 3363 if (!IdxTy) 3364 return error("Invalid record"); 3365 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3366 } else // TODO: Remove with llvm 4.0 3367 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3368 if (!Op1) 3369 return error("Invalid record"); 3370 V = ConstantExpr::getExtractElement(Op0, Op1); 3371 break; 3372 } 3373 case bitc::CST_CODE_CE_INSERTELT 3374 : { // CE_INSERTELT: [opval, opval, opty, opval] 3375 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3376 if (Record.size() < 3 || !OpTy) 3377 return error("Invalid record"); 3378 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3379 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3380 OpTy->getElementType()); 3381 Constant *Op2 = nullptr; 3382 if (Record.size() == 4) { 3383 Type *IdxTy = getTypeByID(Record[2]); 3384 if (!IdxTy) 3385 return error("Invalid record"); 3386 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3387 } else // TODO: Remove with llvm 4.0 3388 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3389 if (!Op2) 3390 return error("Invalid record"); 3391 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3392 break; 3393 } 3394 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3395 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3396 if (Record.size() < 3 || !OpTy) 3397 return error("Invalid record"); 3398 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3399 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3400 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3401 OpTy->getNumElements()); 3402 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3403 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3404 break; 3405 } 3406 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3407 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3408 VectorType *OpTy = 3409 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3410 if (Record.size() < 4 || !RTy || !OpTy) 3411 return error("Invalid record"); 3412 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3413 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3414 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3415 RTy->getNumElements()); 3416 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3417 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3418 break; 3419 } 3420 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3421 if (Record.size() < 4) 3422 return error("Invalid record"); 3423 Type *OpTy = getTypeByID(Record[0]); 3424 if (!OpTy) 3425 return error("Invalid record"); 3426 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3427 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3428 3429 if (OpTy->isFPOrFPVectorTy()) 3430 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3431 else 3432 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3433 break; 3434 } 3435 // This maintains backward compatibility, pre-asm dialect keywords. 3436 // FIXME: Remove with the 4.0 release. 3437 case bitc::CST_CODE_INLINEASM_OLD: { 3438 if (Record.size() < 2) 3439 return error("Invalid record"); 3440 std::string AsmStr, ConstrStr; 3441 bool HasSideEffects = Record[0] & 1; 3442 bool IsAlignStack = Record[0] >> 1; 3443 unsigned AsmStrSize = Record[1]; 3444 if (2+AsmStrSize >= Record.size()) 3445 return error("Invalid record"); 3446 unsigned ConstStrSize = Record[2+AsmStrSize]; 3447 if (3+AsmStrSize+ConstStrSize > Record.size()) 3448 return error("Invalid record"); 3449 3450 for (unsigned i = 0; i != AsmStrSize; ++i) 3451 AsmStr += (char)Record[2+i]; 3452 for (unsigned i = 0; i != ConstStrSize; ++i) 3453 ConstrStr += (char)Record[3+AsmStrSize+i]; 3454 PointerType *PTy = cast<PointerType>(CurTy); 3455 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3456 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3457 break; 3458 } 3459 // This version adds support for the asm dialect keywords (e.g., 3460 // inteldialect). 3461 case bitc::CST_CODE_INLINEASM: { 3462 if (Record.size() < 2) 3463 return error("Invalid record"); 3464 std::string AsmStr, ConstrStr; 3465 bool HasSideEffects = Record[0] & 1; 3466 bool IsAlignStack = (Record[0] >> 1) & 1; 3467 unsigned AsmDialect = Record[0] >> 2; 3468 unsigned AsmStrSize = Record[1]; 3469 if (2+AsmStrSize >= Record.size()) 3470 return error("Invalid record"); 3471 unsigned ConstStrSize = Record[2+AsmStrSize]; 3472 if (3+AsmStrSize+ConstStrSize > Record.size()) 3473 return error("Invalid record"); 3474 3475 for (unsigned i = 0; i != AsmStrSize; ++i) 3476 AsmStr += (char)Record[2+i]; 3477 for (unsigned i = 0; i != ConstStrSize; ++i) 3478 ConstrStr += (char)Record[3+AsmStrSize+i]; 3479 PointerType *PTy = cast<PointerType>(CurTy); 3480 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3481 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3482 InlineAsm::AsmDialect(AsmDialect)); 3483 break; 3484 } 3485 case bitc::CST_CODE_BLOCKADDRESS:{ 3486 if (Record.size() < 3) 3487 return error("Invalid record"); 3488 Type *FnTy = getTypeByID(Record[0]); 3489 if (!FnTy) 3490 return error("Invalid record"); 3491 Function *Fn = 3492 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3493 if (!Fn) 3494 return error("Invalid record"); 3495 3496 // If the function is already parsed we can insert the block address right 3497 // away. 3498 BasicBlock *BB; 3499 unsigned BBID = Record[2]; 3500 if (!BBID) 3501 // Invalid reference to entry block. 3502 return error("Invalid ID"); 3503 if (!Fn->empty()) { 3504 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3505 for (size_t I = 0, E = BBID; I != E; ++I) { 3506 if (BBI == BBE) 3507 return error("Invalid ID"); 3508 ++BBI; 3509 } 3510 BB = &*BBI; 3511 } else { 3512 // Otherwise insert a placeholder and remember it so it can be inserted 3513 // when the function is parsed. 3514 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3515 if (FwdBBs.empty()) 3516 BasicBlockFwdRefQueue.push_back(Fn); 3517 if (FwdBBs.size() < BBID + 1) 3518 FwdBBs.resize(BBID + 1); 3519 if (!FwdBBs[BBID]) 3520 FwdBBs[BBID] = BasicBlock::Create(Context); 3521 BB = FwdBBs[BBID]; 3522 } 3523 V = BlockAddress::get(Fn, BB); 3524 break; 3525 } 3526 } 3527 3528 ValueList.assignValue(V, NextCstNo); 3529 ++NextCstNo; 3530 } 3531 } 3532 3533 Error BitcodeReader::parseUseLists() { 3534 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3535 return error("Invalid record"); 3536 3537 // Read all the records. 3538 SmallVector<uint64_t, 64> Record; 3539 3540 while (true) { 3541 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3542 3543 switch (Entry.Kind) { 3544 case BitstreamEntry::SubBlock: // Handled for us already. 3545 case BitstreamEntry::Error: 3546 return error("Malformed block"); 3547 case BitstreamEntry::EndBlock: 3548 return Error::success(); 3549 case BitstreamEntry::Record: 3550 // The interesting case. 3551 break; 3552 } 3553 3554 // Read a use list record. 3555 Record.clear(); 3556 bool IsBB = false; 3557 switch (Stream.readRecord(Entry.ID, Record)) { 3558 default: // Default behavior: unknown type. 3559 break; 3560 case bitc::USELIST_CODE_BB: 3561 IsBB = true; 3562 LLVM_FALLTHROUGH; 3563 case bitc::USELIST_CODE_DEFAULT: { 3564 unsigned RecordLength = Record.size(); 3565 if (RecordLength < 3) 3566 // Records should have at least an ID and two indexes. 3567 return error("Invalid record"); 3568 unsigned ID = Record.back(); 3569 Record.pop_back(); 3570 3571 Value *V; 3572 if (IsBB) { 3573 assert(ID < FunctionBBs.size() && "Basic block not found"); 3574 V = FunctionBBs[ID]; 3575 } else 3576 V = ValueList[ID]; 3577 unsigned NumUses = 0; 3578 SmallDenseMap<const Use *, unsigned, 16> Order; 3579 for (const Use &U : V->materialized_uses()) { 3580 if (++NumUses > Record.size()) 3581 break; 3582 Order[&U] = Record[NumUses - 1]; 3583 } 3584 if (Order.size() != Record.size() || NumUses > Record.size()) 3585 // Mismatches can happen if the functions are being materialized lazily 3586 // (out-of-order), or a value has been upgraded. 3587 break; 3588 3589 V->sortUseList([&](const Use &L, const Use &R) { 3590 return Order.lookup(&L) < Order.lookup(&R); 3591 }); 3592 break; 3593 } 3594 } 3595 } 3596 } 3597 3598 /// When we see the block for metadata, remember where it is and then skip it. 3599 /// This lets us lazily deserialize the metadata. 3600 Error BitcodeReader::rememberAndSkipMetadata() { 3601 // Save the current stream state. 3602 uint64_t CurBit = Stream.GetCurrentBitNo(); 3603 DeferredMetadataInfo.push_back(CurBit); 3604 3605 // Skip over the block for now. 3606 if (Stream.SkipBlock()) 3607 return error("Invalid record"); 3608 return Error::success(); 3609 } 3610 3611 Error BitcodeReader::materializeMetadata() { 3612 for (uint64_t BitPos : DeferredMetadataInfo) { 3613 // Move the bit stream to the saved position. 3614 Stream.JumpToBit(BitPos); 3615 if (Error Err = parseMetadata(true)) 3616 return Err; 3617 } 3618 DeferredMetadataInfo.clear(); 3619 return Error::success(); 3620 } 3621 3622 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3623 3624 /// When we see the block for a function body, remember where it is and then 3625 /// skip it. This lets us lazily deserialize the functions. 3626 Error BitcodeReader::rememberAndSkipFunctionBody() { 3627 // Get the function we are talking about. 3628 if (FunctionsWithBodies.empty()) 3629 return error("Insufficient function protos"); 3630 3631 Function *Fn = FunctionsWithBodies.back(); 3632 FunctionsWithBodies.pop_back(); 3633 3634 // Save the current stream state. 3635 uint64_t CurBit = Stream.GetCurrentBitNo(); 3636 assert( 3637 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3638 "Mismatch between VST and scanned function offsets"); 3639 DeferredFunctionInfo[Fn] = CurBit; 3640 3641 // Skip over the function block for now. 3642 if (Stream.SkipBlock()) 3643 return error("Invalid record"); 3644 return Error::success(); 3645 } 3646 3647 Error BitcodeReader::globalCleanup() { 3648 // Patch the initializers for globals and aliases up. 3649 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3650 return Err; 3651 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3652 return error("Malformed global initializer set"); 3653 3654 // Look for intrinsic functions which need to be upgraded at some point 3655 for (Function &F : *TheModule) { 3656 Function *NewFn; 3657 if (UpgradeIntrinsicFunction(&F, NewFn)) 3658 UpgradedIntrinsics[&F] = NewFn; 3659 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3660 // Some types could be renamed during loading if several modules are 3661 // loaded in the same LLVMContext (LTO scenario). In this case we should 3662 // remangle intrinsics names as well. 3663 RemangledIntrinsics[&F] = Remangled.getValue(); 3664 } 3665 3666 // Look for global variables which need to be renamed. 3667 for (GlobalVariable &GV : TheModule->globals()) 3668 UpgradeGlobalVariable(&GV); 3669 3670 // Force deallocation of memory for these vectors to favor the client that 3671 // want lazy deserialization. 3672 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3673 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3674 IndirectSymbolInits); 3675 return Error::success(); 3676 } 3677 3678 /// Support for lazy parsing of function bodies. This is required if we 3679 /// either have an old bitcode file without a VST forward declaration record, 3680 /// or if we have an anonymous function being materialized, since anonymous 3681 /// functions do not have a name and are therefore not in the VST. 3682 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3683 Stream.JumpToBit(NextUnreadBit); 3684 3685 if (Stream.AtEndOfStream()) 3686 return error("Could not find function in stream"); 3687 3688 if (!SeenFirstFunctionBody) 3689 return error("Trying to materialize functions before seeing function blocks"); 3690 3691 // An old bitcode file with the symbol table at the end would have 3692 // finished the parse greedily. 3693 assert(SeenValueSymbolTable); 3694 3695 SmallVector<uint64_t, 64> Record; 3696 3697 while (true) { 3698 BitstreamEntry Entry = Stream.advance(); 3699 switch (Entry.Kind) { 3700 default: 3701 return error("Expect SubBlock"); 3702 case BitstreamEntry::SubBlock: 3703 switch (Entry.ID) { 3704 default: 3705 return error("Expect function block"); 3706 case bitc::FUNCTION_BLOCK_ID: 3707 if (Error Err = rememberAndSkipFunctionBody()) 3708 return Err; 3709 NextUnreadBit = Stream.GetCurrentBitNo(); 3710 return Error::success(); 3711 } 3712 } 3713 } 3714 } 3715 3716 Error BitcodeReader::parseBitcodeVersion() { 3717 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3718 return error("Invalid record"); 3719 3720 // Read all the records. 3721 SmallVector<uint64_t, 64> Record; 3722 3723 while (true) { 3724 BitstreamEntry Entry = Stream.advance(); 3725 3726 switch (Entry.Kind) { 3727 default: 3728 case BitstreamEntry::Error: 3729 return error("Malformed block"); 3730 case BitstreamEntry::EndBlock: 3731 return Error::success(); 3732 case BitstreamEntry::Record: 3733 // The interesting case. 3734 break; 3735 } 3736 3737 // Read a record. 3738 Record.clear(); 3739 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3740 switch (BitCode) { 3741 default: // Default behavior: reject 3742 return error("Invalid value"); 3743 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3744 // N] 3745 convertToString(Record, 0, ProducerIdentification); 3746 break; 3747 } 3748 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3749 unsigned epoch = (unsigned)Record[0]; 3750 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3751 return error( 3752 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3753 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3754 } 3755 } 3756 } 3757 } 3758 } 3759 3760 bool BitcodeReaderBase::readBlockInfo() { 3761 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 3762 if (!NewBlockInfo) 3763 return true; 3764 BlockInfo = std::move(*NewBlockInfo); 3765 return false; 3766 } 3767 3768 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3769 bool ShouldLazyLoadMetadata) { 3770 if (ResumeBit) 3771 Stream.JumpToBit(ResumeBit); 3772 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3773 return error("Invalid record"); 3774 3775 SmallVector<uint64_t, 64> Record; 3776 std::vector<std::string> SectionTable; 3777 std::vector<std::string> GCTable; 3778 3779 // Read all the records for this module. 3780 while (true) { 3781 BitstreamEntry Entry = Stream.advance(); 3782 3783 switch (Entry.Kind) { 3784 case BitstreamEntry::Error: 3785 return error("Malformed block"); 3786 case BitstreamEntry::EndBlock: 3787 return globalCleanup(); 3788 3789 case BitstreamEntry::SubBlock: 3790 switch (Entry.ID) { 3791 default: // Skip unknown content. 3792 if (Stream.SkipBlock()) 3793 return error("Invalid record"); 3794 break; 3795 case bitc::BLOCKINFO_BLOCK_ID: 3796 if (readBlockInfo()) 3797 return error("Malformed block"); 3798 break; 3799 case bitc::PARAMATTR_BLOCK_ID: 3800 if (Error Err = parseAttributeBlock()) 3801 return Err; 3802 break; 3803 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3804 if (Error Err = parseAttributeGroupBlock()) 3805 return Err; 3806 break; 3807 case bitc::TYPE_BLOCK_ID_NEW: 3808 if (Error Err = parseTypeTable()) 3809 return Err; 3810 break; 3811 case bitc::VALUE_SYMTAB_BLOCK_ID: 3812 if (!SeenValueSymbolTable) { 3813 // Either this is an old form VST without function index and an 3814 // associated VST forward declaration record (which would have caused 3815 // the VST to be jumped to and parsed before it was encountered 3816 // normally in the stream), or there were no function blocks to 3817 // trigger an earlier parsing of the VST. 3818 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3819 if (Error Err = parseValueSymbolTable()) 3820 return Err; 3821 SeenValueSymbolTable = true; 3822 } else { 3823 // We must have had a VST forward declaration record, which caused 3824 // the parser to jump to and parse the VST earlier. 3825 assert(VSTOffset > 0); 3826 if (Stream.SkipBlock()) 3827 return error("Invalid record"); 3828 } 3829 break; 3830 case bitc::CONSTANTS_BLOCK_ID: 3831 if (Error Err = parseConstants()) 3832 return Err; 3833 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3834 return Err; 3835 break; 3836 case bitc::METADATA_BLOCK_ID: 3837 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3838 if (Error Err = rememberAndSkipMetadata()) 3839 return Err; 3840 break; 3841 } 3842 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3843 if (Error Err = parseMetadata(true)) 3844 return Err; 3845 break; 3846 case bitc::METADATA_KIND_BLOCK_ID: 3847 if (Error Err = parseMetadataKinds()) 3848 return Err; 3849 break; 3850 case bitc::FUNCTION_BLOCK_ID: 3851 // If this is the first function body we've seen, reverse the 3852 // FunctionsWithBodies list. 3853 if (!SeenFirstFunctionBody) { 3854 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3855 if (Error Err = globalCleanup()) 3856 return Err; 3857 SeenFirstFunctionBody = true; 3858 } 3859 3860 if (VSTOffset > 0) { 3861 // If we have a VST forward declaration record, make sure we 3862 // parse the VST now if we haven't already. It is needed to 3863 // set up the DeferredFunctionInfo vector for lazy reading. 3864 if (!SeenValueSymbolTable) { 3865 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3866 return Err; 3867 SeenValueSymbolTable = true; 3868 // Fall through so that we record the NextUnreadBit below. 3869 // This is necessary in case we have an anonymous function that 3870 // is later materialized. Since it will not have a VST entry we 3871 // need to fall back to the lazy parse to find its offset. 3872 } else { 3873 // If we have a VST forward declaration record, but have already 3874 // parsed the VST (just above, when the first function body was 3875 // encountered here), then we are resuming the parse after 3876 // materializing functions. The ResumeBit points to the 3877 // start of the last function block recorded in the 3878 // DeferredFunctionInfo map. Skip it. 3879 if (Stream.SkipBlock()) 3880 return error("Invalid record"); 3881 continue; 3882 } 3883 } 3884 3885 // Support older bitcode files that did not have the function 3886 // index in the VST, nor a VST forward declaration record, as 3887 // well as anonymous functions that do not have VST entries. 3888 // Build the DeferredFunctionInfo vector on the fly. 3889 if (Error Err = rememberAndSkipFunctionBody()) 3890 return Err; 3891 3892 // Suspend parsing when we reach the function bodies. Subsequent 3893 // materialization calls will resume it when necessary. If the bitcode 3894 // file is old, the symbol table will be at the end instead and will not 3895 // have been seen yet. In this case, just finish the parse now. 3896 if (SeenValueSymbolTable) { 3897 NextUnreadBit = Stream.GetCurrentBitNo(); 3898 // After the VST has been parsed, we need to make sure intrinsic name 3899 // are auto-upgraded. 3900 return globalCleanup(); 3901 } 3902 break; 3903 case bitc::USELIST_BLOCK_ID: 3904 if (Error Err = parseUseLists()) 3905 return Err; 3906 break; 3907 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3908 if (Error Err = parseOperandBundleTags()) 3909 return Err; 3910 break; 3911 } 3912 continue; 3913 3914 case BitstreamEntry::Record: 3915 // The interesting case. 3916 break; 3917 } 3918 3919 // Read a record. 3920 auto BitCode = Stream.readRecord(Entry.ID, Record); 3921 switch (BitCode) { 3922 default: break; // Default behavior, ignore unknown content. 3923 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3924 if (Record.size() < 1) 3925 return error("Invalid record"); 3926 // Only version #0 and #1 are supported so far. 3927 unsigned module_version = Record[0]; 3928 switch (module_version) { 3929 default: 3930 return error("Invalid value"); 3931 case 0: 3932 UseRelativeIDs = false; 3933 break; 3934 case 1: 3935 UseRelativeIDs = true; 3936 break; 3937 } 3938 break; 3939 } 3940 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3941 std::string S; 3942 if (convertToString(Record, 0, S)) 3943 return error("Invalid record"); 3944 TheModule->setTargetTriple(S); 3945 break; 3946 } 3947 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3948 std::string S; 3949 if (convertToString(Record, 0, S)) 3950 return error("Invalid record"); 3951 TheModule->setDataLayout(S); 3952 break; 3953 } 3954 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3955 std::string S; 3956 if (convertToString(Record, 0, S)) 3957 return error("Invalid record"); 3958 TheModule->setModuleInlineAsm(S); 3959 break; 3960 } 3961 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3962 // FIXME: Remove in 4.0. 3963 std::string S; 3964 if (convertToString(Record, 0, S)) 3965 return error("Invalid record"); 3966 // Ignore value. 3967 break; 3968 } 3969 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3970 std::string S; 3971 if (convertToString(Record, 0, S)) 3972 return error("Invalid record"); 3973 SectionTable.push_back(S); 3974 break; 3975 } 3976 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3977 std::string S; 3978 if (convertToString(Record, 0, S)) 3979 return error("Invalid record"); 3980 GCTable.push_back(S); 3981 break; 3982 } 3983 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3984 if (Record.size() < 2) 3985 return error("Invalid record"); 3986 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3987 unsigned ComdatNameSize = Record[1]; 3988 std::string ComdatName; 3989 ComdatName.reserve(ComdatNameSize); 3990 for (unsigned i = 0; i != ComdatNameSize; ++i) 3991 ComdatName += (char)Record[2 + i]; 3992 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3993 C->setSelectionKind(SK); 3994 ComdatList.push_back(C); 3995 break; 3996 } 3997 // GLOBALVAR: [pointer type, isconst, initid, 3998 // linkage, alignment, section, visibility, threadlocal, 3999 // unnamed_addr, externally_initialized, dllstorageclass, 4000 // comdat] 4001 case bitc::MODULE_CODE_GLOBALVAR: { 4002 if (Record.size() < 6) 4003 return error("Invalid record"); 4004 Type *Ty = getTypeByID(Record[0]); 4005 if (!Ty) 4006 return error("Invalid record"); 4007 bool isConstant = Record[1] & 1; 4008 bool explicitType = Record[1] & 2; 4009 unsigned AddressSpace; 4010 if (explicitType) { 4011 AddressSpace = Record[1] >> 2; 4012 } else { 4013 if (!Ty->isPointerTy()) 4014 return error("Invalid type for value"); 4015 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4016 Ty = cast<PointerType>(Ty)->getElementType(); 4017 } 4018 4019 uint64_t RawLinkage = Record[3]; 4020 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4021 unsigned Alignment; 4022 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4023 return Err; 4024 std::string Section; 4025 if (Record[5]) { 4026 if (Record[5]-1 >= SectionTable.size()) 4027 return error("Invalid ID"); 4028 Section = SectionTable[Record[5]-1]; 4029 } 4030 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4031 // Local linkage must have default visibility. 4032 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4033 // FIXME: Change to an error if non-default in 4.0. 4034 Visibility = getDecodedVisibility(Record[6]); 4035 4036 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4037 if (Record.size() > 7) 4038 TLM = getDecodedThreadLocalMode(Record[7]); 4039 4040 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4041 if (Record.size() > 8) 4042 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4043 4044 bool ExternallyInitialized = false; 4045 if (Record.size() > 9) 4046 ExternallyInitialized = Record[9]; 4047 4048 GlobalVariable *NewGV = 4049 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 4050 TLM, AddressSpace, ExternallyInitialized); 4051 NewGV->setAlignment(Alignment); 4052 if (!Section.empty()) 4053 NewGV->setSection(Section); 4054 NewGV->setVisibility(Visibility); 4055 NewGV->setUnnamedAddr(UnnamedAddr); 4056 4057 if (Record.size() > 10) 4058 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4059 else 4060 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4061 4062 ValueList.push_back(NewGV); 4063 4064 // Remember which value to use for the global initializer. 4065 if (unsigned InitID = Record[2]) 4066 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 4067 4068 if (Record.size() > 11) { 4069 if (unsigned ComdatID = Record[11]) { 4070 if (ComdatID > ComdatList.size()) 4071 return error("Invalid global variable comdat ID"); 4072 NewGV->setComdat(ComdatList[ComdatID - 1]); 4073 } 4074 } else if (hasImplicitComdat(RawLinkage)) { 4075 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4076 } 4077 4078 break; 4079 } 4080 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4081 // alignment, section, visibility, gc, unnamed_addr, 4082 // prologuedata, dllstorageclass, comdat, prefixdata] 4083 case bitc::MODULE_CODE_FUNCTION: { 4084 if (Record.size() < 8) 4085 return error("Invalid record"); 4086 Type *Ty = getTypeByID(Record[0]); 4087 if (!Ty) 4088 return error("Invalid record"); 4089 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4090 Ty = PTy->getElementType(); 4091 auto *FTy = dyn_cast<FunctionType>(Ty); 4092 if (!FTy) 4093 return error("Invalid type for value"); 4094 auto CC = static_cast<CallingConv::ID>(Record[1]); 4095 if (CC & ~CallingConv::MaxID) 4096 return error("Invalid calling convention ID"); 4097 4098 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4099 "", TheModule); 4100 4101 Func->setCallingConv(CC); 4102 bool isProto = Record[2]; 4103 uint64_t RawLinkage = Record[3]; 4104 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4105 Func->setAttributes(getAttributes(Record[4])); 4106 4107 unsigned Alignment; 4108 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4109 return Err; 4110 Func->setAlignment(Alignment); 4111 if (Record[6]) { 4112 if (Record[6]-1 >= SectionTable.size()) 4113 return error("Invalid ID"); 4114 Func->setSection(SectionTable[Record[6]-1]); 4115 } 4116 // Local linkage must have default visibility. 4117 if (!Func->hasLocalLinkage()) 4118 // FIXME: Change to an error if non-default in 4.0. 4119 Func->setVisibility(getDecodedVisibility(Record[7])); 4120 if (Record.size() > 8 && Record[8]) { 4121 if (Record[8]-1 >= GCTable.size()) 4122 return error("Invalid ID"); 4123 Func->setGC(GCTable[Record[8] - 1]); 4124 } 4125 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4126 if (Record.size() > 9) 4127 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4128 Func->setUnnamedAddr(UnnamedAddr); 4129 if (Record.size() > 10 && Record[10] != 0) 4130 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4131 4132 if (Record.size() > 11) 4133 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4134 else 4135 upgradeDLLImportExportLinkage(Func, RawLinkage); 4136 4137 if (Record.size() > 12) { 4138 if (unsigned ComdatID = Record[12]) { 4139 if (ComdatID > ComdatList.size()) 4140 return error("Invalid function comdat ID"); 4141 Func->setComdat(ComdatList[ComdatID - 1]); 4142 } 4143 } else if (hasImplicitComdat(RawLinkage)) { 4144 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4145 } 4146 4147 if (Record.size() > 13 && Record[13] != 0) 4148 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4149 4150 if (Record.size() > 14 && Record[14] != 0) 4151 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4152 4153 ValueList.push_back(Func); 4154 4155 // If this is a function with a body, remember the prototype we are 4156 // creating now, so that we can match up the body with them later. 4157 if (!isProto) { 4158 Func->setIsMaterializable(true); 4159 FunctionsWithBodies.push_back(Func); 4160 DeferredFunctionInfo[Func] = 0; 4161 } 4162 break; 4163 } 4164 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4165 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4166 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4167 case bitc::MODULE_CODE_IFUNC: 4168 case bitc::MODULE_CODE_ALIAS: 4169 case bitc::MODULE_CODE_ALIAS_OLD: { 4170 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4171 if (Record.size() < (3 + (unsigned)NewRecord)) 4172 return error("Invalid record"); 4173 unsigned OpNum = 0; 4174 Type *Ty = getTypeByID(Record[OpNum++]); 4175 if (!Ty) 4176 return error("Invalid record"); 4177 4178 unsigned AddrSpace; 4179 if (!NewRecord) { 4180 auto *PTy = dyn_cast<PointerType>(Ty); 4181 if (!PTy) 4182 return error("Invalid type for value"); 4183 Ty = PTy->getElementType(); 4184 AddrSpace = PTy->getAddressSpace(); 4185 } else { 4186 AddrSpace = Record[OpNum++]; 4187 } 4188 4189 auto Val = Record[OpNum++]; 4190 auto Linkage = Record[OpNum++]; 4191 GlobalIndirectSymbol *NewGA; 4192 if (BitCode == bitc::MODULE_CODE_ALIAS || 4193 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4194 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4195 "", TheModule); 4196 else 4197 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4198 "", nullptr, TheModule); 4199 // Old bitcode files didn't have visibility field. 4200 // Local linkage must have default visibility. 4201 if (OpNum != Record.size()) { 4202 auto VisInd = OpNum++; 4203 if (!NewGA->hasLocalLinkage()) 4204 // FIXME: Change to an error if non-default in 4.0. 4205 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4206 } 4207 if (OpNum != Record.size()) 4208 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4209 else 4210 upgradeDLLImportExportLinkage(NewGA, Linkage); 4211 if (OpNum != Record.size()) 4212 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4213 if (OpNum != Record.size()) 4214 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4215 ValueList.push_back(NewGA); 4216 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4217 break; 4218 } 4219 /// MODULE_CODE_PURGEVALS: [numvals] 4220 case bitc::MODULE_CODE_PURGEVALS: 4221 // Trim down the value list to the specified size. 4222 if (Record.size() < 1 || Record[0] > ValueList.size()) 4223 return error("Invalid record"); 4224 ValueList.shrinkTo(Record[0]); 4225 break; 4226 /// MODULE_CODE_VSTOFFSET: [offset] 4227 case bitc::MODULE_CODE_VSTOFFSET: 4228 if (Record.size() < 1) 4229 return error("Invalid record"); 4230 VSTOffset = Record[0]; 4231 break; 4232 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4233 case bitc::MODULE_CODE_SOURCE_FILENAME: 4234 SmallString<128> ValueName; 4235 if (convertToString(Record, 0, ValueName)) 4236 return error("Invalid record"); 4237 TheModule->setSourceFileName(ValueName); 4238 break; 4239 } 4240 Record.clear(); 4241 } 4242 } 4243 4244 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) { 4245 TheModule = M; 4246 4247 // We expect a number of well-defined blocks, though we don't necessarily 4248 // need to understand them all. 4249 while (true) { 4250 if (Stream.AtEndOfStream()) { 4251 // We didn't really read a proper Module. 4252 return error("Malformed IR file"); 4253 } 4254 4255 BitstreamEntry Entry = 4256 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4257 4258 if (Entry.Kind != BitstreamEntry::SubBlock) 4259 return error("Malformed block"); 4260 4261 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4262 if (Error Err = parseBitcodeVersion()) 4263 return Err; 4264 continue; 4265 } 4266 4267 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4268 return parseModule(0, ShouldLazyLoadMetadata); 4269 4270 if (Stream.SkipBlock()) 4271 return error("Invalid record"); 4272 } 4273 } 4274 4275 Expected<std::string> BitcodeReader::parseModuleTriple() { 4276 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4277 return error("Invalid record"); 4278 4279 SmallVector<uint64_t, 64> Record; 4280 4281 std::string Triple; 4282 4283 // Read all the records for this module. 4284 while (true) { 4285 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4286 4287 switch (Entry.Kind) { 4288 case BitstreamEntry::SubBlock: // Handled for us already. 4289 case BitstreamEntry::Error: 4290 return error("Malformed block"); 4291 case BitstreamEntry::EndBlock: 4292 return Triple; 4293 case BitstreamEntry::Record: 4294 // The interesting case. 4295 break; 4296 } 4297 4298 // Read a record. 4299 switch (Stream.readRecord(Entry.ID, Record)) { 4300 default: break; // Default behavior, ignore unknown content. 4301 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4302 std::string S; 4303 if (convertToString(Record, 0, S)) 4304 return error("Invalid record"); 4305 Triple = S; 4306 break; 4307 } 4308 } 4309 Record.clear(); 4310 } 4311 llvm_unreachable("Exit infinite loop"); 4312 } 4313 4314 Expected<std::string> BitcodeReader::parseTriple() { 4315 // We expect a number of well-defined blocks, though we don't necessarily 4316 // need to understand them all. 4317 while (true) { 4318 BitstreamEntry Entry = Stream.advance(); 4319 4320 switch (Entry.Kind) { 4321 case BitstreamEntry::Error: 4322 return error("Malformed block"); 4323 case BitstreamEntry::EndBlock: 4324 return ""; 4325 4326 case BitstreamEntry::SubBlock: 4327 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4328 return parseModuleTriple(); 4329 4330 // Ignore other sub-blocks. 4331 if (Stream.SkipBlock()) 4332 return error("Malformed block"); 4333 continue; 4334 4335 case BitstreamEntry::Record: 4336 Stream.skipRecord(Entry.ID); 4337 continue; 4338 } 4339 } 4340 } 4341 4342 Expected<std::string> BitcodeReader::parseIdentificationBlock() { 4343 // We expect a number of well-defined blocks, though we don't necessarily 4344 // need to understand them all. 4345 while (true) { 4346 // This loop iterates at the top-level: since there is no enclosing block 4347 // we need to make sure we aren't at the end of the stream before calling 4348 // advance, otherwise we'll get an error. 4349 if (Stream.AtEndOfStream()) 4350 return ""; 4351 4352 BitstreamEntry Entry = Stream.advance(); 4353 switch (Entry.Kind) { 4354 case BitstreamEntry::Error: 4355 return error("Malformed block"); 4356 case BitstreamEntry::EndBlock: 4357 return ""; 4358 4359 case BitstreamEntry::SubBlock: 4360 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4361 if (Error Err = parseBitcodeVersion()) 4362 return std::move(Err); 4363 return ProducerIdentification; 4364 } 4365 // Ignore other sub-blocks. 4366 if (Stream.SkipBlock()) 4367 return error("Malformed block"); 4368 continue; 4369 case BitstreamEntry::Record: 4370 Stream.skipRecord(Entry.ID); 4371 continue; 4372 } 4373 } 4374 } 4375 4376 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO, 4377 ArrayRef<uint64_t> Record) { 4378 assert(Record.size() % 2 == 0); 4379 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4380 auto K = MDKindMap.find(Record[I]); 4381 if (K == MDKindMap.end()) 4382 return error("Invalid ID"); 4383 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4384 if (!MD) 4385 return error("Invalid metadata attachment"); 4386 GO.addMetadata(K->second, *MD); 4387 } 4388 return Error::success(); 4389 } 4390 4391 Expected<bool> BitcodeReader::hasObjCCategory() { 4392 // We expect a number of well-defined blocks, though we don't necessarily 4393 // need to understand them all. 4394 while (true) { 4395 BitstreamEntry Entry = Stream.advance(); 4396 4397 switch (Entry.Kind) { 4398 case BitstreamEntry::Error: 4399 return error("Malformed block"); 4400 case BitstreamEntry::EndBlock: 4401 return false; 4402 4403 case BitstreamEntry::SubBlock: 4404 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4405 return hasObjCCategoryInModule(); 4406 4407 // Ignore other sub-blocks. 4408 if (Stream.SkipBlock()) 4409 return error("Malformed block"); 4410 continue; 4411 4412 case BitstreamEntry::Record: 4413 Stream.skipRecord(Entry.ID); 4414 continue; 4415 } 4416 } 4417 } 4418 4419 Expected<bool> BitcodeReader::hasObjCCategoryInModule() { 4420 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4421 return error("Invalid record"); 4422 4423 SmallVector<uint64_t, 64> Record; 4424 // Read all the records for this module. 4425 4426 while (true) { 4427 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4428 4429 switch (Entry.Kind) { 4430 case BitstreamEntry::SubBlock: // Handled for us already. 4431 case BitstreamEntry::Error: 4432 return error("Malformed block"); 4433 case BitstreamEntry::EndBlock: 4434 return false; 4435 case BitstreamEntry::Record: 4436 // The interesting case. 4437 break; 4438 } 4439 4440 // Read a record. 4441 switch (Stream.readRecord(Entry.ID, Record)) { 4442 default: 4443 break; // Default behavior, ignore unknown content. 4444 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4445 std::string S; 4446 if (convertToString(Record, 0, S)) 4447 return error("Invalid record"); 4448 // Check for the i386 and other (x86_64, ARM) conventions 4449 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4450 S.find("__OBJC,__category") != std::string::npos) 4451 return true; 4452 break; 4453 } 4454 } 4455 Record.clear(); 4456 } 4457 llvm_unreachable("Exit infinite loop"); 4458 } 4459 4460 /// Parse metadata attachments. 4461 Error BitcodeReader::parseMetadataAttachment(Function &F) { 4462 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4463 return error("Invalid record"); 4464 4465 SmallVector<uint64_t, 64> Record; 4466 4467 while (true) { 4468 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4469 4470 switch (Entry.Kind) { 4471 case BitstreamEntry::SubBlock: // Handled for us already. 4472 case BitstreamEntry::Error: 4473 return error("Malformed block"); 4474 case BitstreamEntry::EndBlock: 4475 return Error::success(); 4476 case BitstreamEntry::Record: 4477 // The interesting case. 4478 break; 4479 } 4480 4481 // Read a metadata attachment record. 4482 Record.clear(); 4483 switch (Stream.readRecord(Entry.ID, Record)) { 4484 default: // Default behavior: ignore. 4485 break; 4486 case bitc::METADATA_ATTACHMENT: { 4487 unsigned RecordLength = Record.size(); 4488 if (Record.empty()) 4489 return error("Invalid record"); 4490 if (RecordLength % 2 == 0) { 4491 // A function attachment. 4492 if (Error Err = parseGlobalObjectAttachment(F, Record)) 4493 return Err; 4494 continue; 4495 } 4496 4497 // An instruction attachment. 4498 Instruction *Inst = InstructionList[Record[0]]; 4499 for (unsigned i = 1; i != RecordLength; i = i+2) { 4500 unsigned Kind = Record[i]; 4501 DenseMap<unsigned, unsigned>::iterator I = 4502 MDKindMap.find(Kind); 4503 if (I == MDKindMap.end()) 4504 return error("Invalid ID"); 4505 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4506 if (isa<LocalAsMetadata>(Node)) 4507 // Drop the attachment. This used to be legal, but there's no 4508 // upgrade path. 4509 break; 4510 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4511 if (!MD) 4512 return error("Invalid metadata attachment"); 4513 4514 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4515 MD = upgradeInstructionLoopAttachment(*MD); 4516 4517 if (I->second == LLVMContext::MD_tbaa) { 4518 assert(!MD->isTemporary() && "should load MDs before attachments"); 4519 MD = UpgradeTBAANode(*MD); 4520 } 4521 Inst->setMetadata(I->second, MD); 4522 } 4523 break; 4524 } 4525 } 4526 } 4527 } 4528 4529 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4530 if (!isa<PointerType>(PtrType)) 4531 return error("Load/Store operand is not a pointer type"); 4532 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4533 4534 if (ValType && ValType != ElemType) 4535 return error("Explicit load/store type does not match pointee " 4536 "type of pointer operand"); 4537 if (!PointerType::isLoadableOrStorableType(ElemType)) 4538 return error("Cannot load/store from pointer"); 4539 return Error::success(); 4540 } 4541 4542 /// Lazily parse the specified function body block. 4543 Error BitcodeReader::parseFunctionBody(Function *F) { 4544 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4545 return error("Invalid record"); 4546 4547 // Unexpected unresolved metadata when parsing function. 4548 if (MetadataList.hasFwdRefs()) 4549 return error("Invalid function metadata: incoming forward references"); 4550 4551 InstructionList.clear(); 4552 unsigned ModuleValueListSize = ValueList.size(); 4553 unsigned ModuleMetadataListSize = MetadataList.size(); 4554 4555 // Add all the function arguments to the value table. 4556 for (Argument &I : F->args()) 4557 ValueList.push_back(&I); 4558 4559 unsigned NextValueNo = ValueList.size(); 4560 BasicBlock *CurBB = nullptr; 4561 unsigned CurBBNo = 0; 4562 4563 DebugLoc LastLoc; 4564 auto getLastInstruction = [&]() -> Instruction * { 4565 if (CurBB && !CurBB->empty()) 4566 return &CurBB->back(); 4567 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4568 !FunctionBBs[CurBBNo - 1]->empty()) 4569 return &FunctionBBs[CurBBNo - 1]->back(); 4570 return nullptr; 4571 }; 4572 4573 std::vector<OperandBundleDef> OperandBundles; 4574 4575 // Read all the records. 4576 SmallVector<uint64_t, 64> Record; 4577 4578 while (true) { 4579 BitstreamEntry Entry = Stream.advance(); 4580 4581 switch (Entry.Kind) { 4582 case BitstreamEntry::Error: 4583 return error("Malformed block"); 4584 case BitstreamEntry::EndBlock: 4585 goto OutOfRecordLoop; 4586 4587 case BitstreamEntry::SubBlock: 4588 switch (Entry.ID) { 4589 default: // Skip unknown content. 4590 if (Stream.SkipBlock()) 4591 return error("Invalid record"); 4592 break; 4593 case bitc::CONSTANTS_BLOCK_ID: 4594 if (Error Err = parseConstants()) 4595 return Err; 4596 NextValueNo = ValueList.size(); 4597 break; 4598 case bitc::VALUE_SYMTAB_BLOCK_ID: 4599 if (Error Err = parseValueSymbolTable()) 4600 return Err; 4601 break; 4602 case bitc::METADATA_ATTACHMENT_ID: 4603 if (Error Err = parseMetadataAttachment(*F)) 4604 return Err; 4605 break; 4606 case bitc::METADATA_BLOCK_ID: 4607 if (Error Err = parseMetadata()) 4608 return Err; 4609 break; 4610 case bitc::USELIST_BLOCK_ID: 4611 if (Error Err = parseUseLists()) 4612 return Err; 4613 break; 4614 } 4615 continue; 4616 4617 case BitstreamEntry::Record: 4618 // The interesting case. 4619 break; 4620 } 4621 4622 // Read a record. 4623 Record.clear(); 4624 Instruction *I = nullptr; 4625 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4626 switch (BitCode) { 4627 default: // Default behavior: reject 4628 return error("Invalid value"); 4629 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4630 if (Record.size() < 1 || Record[0] == 0) 4631 return error("Invalid record"); 4632 // Create all the basic blocks for the function. 4633 FunctionBBs.resize(Record[0]); 4634 4635 // See if anything took the address of blocks in this function. 4636 auto BBFRI = BasicBlockFwdRefs.find(F); 4637 if (BBFRI == BasicBlockFwdRefs.end()) { 4638 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4639 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4640 } else { 4641 auto &BBRefs = BBFRI->second; 4642 // Check for invalid basic block references. 4643 if (BBRefs.size() > FunctionBBs.size()) 4644 return error("Invalid ID"); 4645 assert(!BBRefs.empty() && "Unexpected empty array"); 4646 assert(!BBRefs.front() && "Invalid reference to entry block"); 4647 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4648 ++I) 4649 if (I < RE && BBRefs[I]) { 4650 BBRefs[I]->insertInto(F); 4651 FunctionBBs[I] = BBRefs[I]; 4652 } else { 4653 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4654 } 4655 4656 // Erase from the table. 4657 BasicBlockFwdRefs.erase(BBFRI); 4658 } 4659 4660 CurBB = FunctionBBs[0]; 4661 continue; 4662 } 4663 4664 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4665 // This record indicates that the last instruction is at the same 4666 // location as the previous instruction with a location. 4667 I = getLastInstruction(); 4668 4669 if (!I) 4670 return error("Invalid record"); 4671 I->setDebugLoc(LastLoc); 4672 I = nullptr; 4673 continue; 4674 4675 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4676 I = getLastInstruction(); 4677 if (!I || Record.size() < 4) 4678 return error("Invalid record"); 4679 4680 unsigned Line = Record[0], Col = Record[1]; 4681 unsigned ScopeID = Record[2], IAID = Record[3]; 4682 4683 MDNode *Scope = nullptr, *IA = nullptr; 4684 if (ScopeID) { 4685 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4686 if (!Scope) 4687 return error("Invalid record"); 4688 } 4689 if (IAID) { 4690 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4691 if (!IA) 4692 return error("Invalid record"); 4693 } 4694 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4695 I->setDebugLoc(LastLoc); 4696 I = nullptr; 4697 continue; 4698 } 4699 4700 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4701 unsigned OpNum = 0; 4702 Value *LHS, *RHS; 4703 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4704 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4705 OpNum+1 > Record.size()) 4706 return error("Invalid record"); 4707 4708 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4709 if (Opc == -1) 4710 return error("Invalid record"); 4711 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4712 InstructionList.push_back(I); 4713 if (OpNum < Record.size()) { 4714 if (Opc == Instruction::Add || 4715 Opc == Instruction::Sub || 4716 Opc == Instruction::Mul || 4717 Opc == Instruction::Shl) { 4718 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4719 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4720 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4721 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4722 } else if (Opc == Instruction::SDiv || 4723 Opc == Instruction::UDiv || 4724 Opc == Instruction::LShr || 4725 Opc == Instruction::AShr) { 4726 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4727 cast<BinaryOperator>(I)->setIsExact(true); 4728 } else if (isa<FPMathOperator>(I)) { 4729 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4730 if (FMF.any()) 4731 I->setFastMathFlags(FMF); 4732 } 4733 4734 } 4735 break; 4736 } 4737 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4738 unsigned OpNum = 0; 4739 Value *Op; 4740 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4741 OpNum+2 != Record.size()) 4742 return error("Invalid record"); 4743 4744 Type *ResTy = getTypeByID(Record[OpNum]); 4745 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4746 if (Opc == -1 || !ResTy) 4747 return error("Invalid record"); 4748 Instruction *Temp = nullptr; 4749 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4750 if (Temp) { 4751 InstructionList.push_back(Temp); 4752 CurBB->getInstList().push_back(Temp); 4753 } 4754 } else { 4755 auto CastOp = (Instruction::CastOps)Opc; 4756 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4757 return error("Invalid cast"); 4758 I = CastInst::Create(CastOp, Op, ResTy); 4759 } 4760 InstructionList.push_back(I); 4761 break; 4762 } 4763 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4764 case bitc::FUNC_CODE_INST_GEP_OLD: 4765 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4766 unsigned OpNum = 0; 4767 4768 Type *Ty; 4769 bool InBounds; 4770 4771 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4772 InBounds = Record[OpNum++]; 4773 Ty = getTypeByID(Record[OpNum++]); 4774 } else { 4775 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4776 Ty = nullptr; 4777 } 4778 4779 Value *BasePtr; 4780 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4781 return error("Invalid record"); 4782 4783 if (!Ty) 4784 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4785 ->getElementType(); 4786 else if (Ty != 4787 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4788 ->getElementType()) 4789 return error( 4790 "Explicit gep type does not match pointee type of pointer operand"); 4791 4792 SmallVector<Value*, 16> GEPIdx; 4793 while (OpNum != Record.size()) { 4794 Value *Op; 4795 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4796 return error("Invalid record"); 4797 GEPIdx.push_back(Op); 4798 } 4799 4800 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4801 4802 InstructionList.push_back(I); 4803 if (InBounds) 4804 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4805 break; 4806 } 4807 4808 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4809 // EXTRACTVAL: [opty, opval, n x indices] 4810 unsigned OpNum = 0; 4811 Value *Agg; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4813 return error("Invalid record"); 4814 4815 unsigned RecSize = Record.size(); 4816 if (OpNum == RecSize) 4817 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4818 4819 SmallVector<unsigned, 4> EXTRACTVALIdx; 4820 Type *CurTy = Agg->getType(); 4821 for (; OpNum != RecSize; ++OpNum) { 4822 bool IsArray = CurTy->isArrayTy(); 4823 bool IsStruct = CurTy->isStructTy(); 4824 uint64_t Index = Record[OpNum]; 4825 4826 if (!IsStruct && !IsArray) 4827 return error("EXTRACTVAL: Invalid type"); 4828 if ((unsigned)Index != Index) 4829 return error("Invalid value"); 4830 if (IsStruct && Index >= CurTy->subtypes().size()) 4831 return error("EXTRACTVAL: Invalid struct index"); 4832 if (IsArray && Index >= CurTy->getArrayNumElements()) 4833 return error("EXTRACTVAL: Invalid array index"); 4834 EXTRACTVALIdx.push_back((unsigned)Index); 4835 4836 if (IsStruct) 4837 CurTy = CurTy->subtypes()[Index]; 4838 else 4839 CurTy = CurTy->subtypes()[0]; 4840 } 4841 4842 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4843 InstructionList.push_back(I); 4844 break; 4845 } 4846 4847 case bitc::FUNC_CODE_INST_INSERTVAL: { 4848 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4849 unsigned OpNum = 0; 4850 Value *Agg; 4851 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4852 return error("Invalid record"); 4853 Value *Val; 4854 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4855 return error("Invalid record"); 4856 4857 unsigned RecSize = Record.size(); 4858 if (OpNum == RecSize) 4859 return error("INSERTVAL: Invalid instruction with 0 indices"); 4860 4861 SmallVector<unsigned, 4> INSERTVALIdx; 4862 Type *CurTy = Agg->getType(); 4863 for (; OpNum != RecSize; ++OpNum) { 4864 bool IsArray = CurTy->isArrayTy(); 4865 bool IsStruct = CurTy->isStructTy(); 4866 uint64_t Index = Record[OpNum]; 4867 4868 if (!IsStruct && !IsArray) 4869 return error("INSERTVAL: Invalid type"); 4870 if ((unsigned)Index != Index) 4871 return error("Invalid value"); 4872 if (IsStruct && Index >= CurTy->subtypes().size()) 4873 return error("INSERTVAL: Invalid struct index"); 4874 if (IsArray && Index >= CurTy->getArrayNumElements()) 4875 return error("INSERTVAL: Invalid array index"); 4876 4877 INSERTVALIdx.push_back((unsigned)Index); 4878 if (IsStruct) 4879 CurTy = CurTy->subtypes()[Index]; 4880 else 4881 CurTy = CurTy->subtypes()[0]; 4882 } 4883 4884 if (CurTy != Val->getType()) 4885 return error("Inserted value type doesn't match aggregate type"); 4886 4887 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4888 InstructionList.push_back(I); 4889 break; 4890 } 4891 4892 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4893 // obsolete form of select 4894 // handles select i1 ... in old bitcode 4895 unsigned OpNum = 0; 4896 Value *TrueVal, *FalseVal, *Cond; 4897 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4898 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4899 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4900 return error("Invalid record"); 4901 4902 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4903 InstructionList.push_back(I); 4904 break; 4905 } 4906 4907 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4908 // new form of select 4909 // handles select i1 or select [N x i1] 4910 unsigned OpNum = 0; 4911 Value *TrueVal, *FalseVal, *Cond; 4912 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4913 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4914 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4915 return error("Invalid record"); 4916 4917 // select condition can be either i1 or [N x i1] 4918 if (VectorType* vector_type = 4919 dyn_cast<VectorType>(Cond->getType())) { 4920 // expect <n x i1> 4921 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4922 return error("Invalid type for value"); 4923 } else { 4924 // expect i1 4925 if (Cond->getType() != Type::getInt1Ty(Context)) 4926 return error("Invalid type for value"); 4927 } 4928 4929 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4930 InstructionList.push_back(I); 4931 break; 4932 } 4933 4934 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4935 unsigned OpNum = 0; 4936 Value *Vec, *Idx; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4938 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4939 return error("Invalid record"); 4940 if (!Vec->getType()->isVectorTy()) 4941 return error("Invalid type for value"); 4942 I = ExtractElementInst::Create(Vec, Idx); 4943 InstructionList.push_back(I); 4944 break; 4945 } 4946 4947 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4948 unsigned OpNum = 0; 4949 Value *Vec, *Elt, *Idx; 4950 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4951 return error("Invalid record"); 4952 if (!Vec->getType()->isVectorTy()) 4953 return error("Invalid type for value"); 4954 if (popValue(Record, OpNum, NextValueNo, 4955 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4956 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4957 return error("Invalid record"); 4958 I = InsertElementInst::Create(Vec, Elt, Idx); 4959 InstructionList.push_back(I); 4960 break; 4961 } 4962 4963 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4964 unsigned OpNum = 0; 4965 Value *Vec1, *Vec2, *Mask; 4966 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4967 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4968 return error("Invalid record"); 4969 4970 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4971 return error("Invalid record"); 4972 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4973 return error("Invalid type for value"); 4974 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4975 InstructionList.push_back(I); 4976 break; 4977 } 4978 4979 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4980 // Old form of ICmp/FCmp returning bool 4981 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4982 // both legal on vectors but had different behaviour. 4983 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4984 // FCmp/ICmp returning bool or vector of bool 4985 4986 unsigned OpNum = 0; 4987 Value *LHS, *RHS; 4988 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4989 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4990 return error("Invalid record"); 4991 4992 unsigned PredVal = Record[OpNum]; 4993 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4994 FastMathFlags FMF; 4995 if (IsFP && Record.size() > OpNum+1) 4996 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4997 4998 if (OpNum+1 != Record.size()) 4999 return error("Invalid record"); 5000 5001 if (LHS->getType()->isFPOrFPVectorTy()) 5002 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5003 else 5004 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5005 5006 if (FMF.any()) 5007 I->setFastMathFlags(FMF); 5008 InstructionList.push_back(I); 5009 break; 5010 } 5011 5012 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5013 { 5014 unsigned Size = Record.size(); 5015 if (Size == 0) { 5016 I = ReturnInst::Create(Context); 5017 InstructionList.push_back(I); 5018 break; 5019 } 5020 5021 unsigned OpNum = 0; 5022 Value *Op = nullptr; 5023 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5024 return error("Invalid record"); 5025 if (OpNum != Record.size()) 5026 return error("Invalid record"); 5027 5028 I = ReturnInst::Create(Context, Op); 5029 InstructionList.push_back(I); 5030 break; 5031 } 5032 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5033 if (Record.size() != 1 && Record.size() != 3) 5034 return error("Invalid record"); 5035 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5036 if (!TrueDest) 5037 return error("Invalid record"); 5038 5039 if (Record.size() == 1) { 5040 I = BranchInst::Create(TrueDest); 5041 InstructionList.push_back(I); 5042 } 5043 else { 5044 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5045 Value *Cond = getValue(Record, 2, NextValueNo, 5046 Type::getInt1Ty(Context)); 5047 if (!FalseDest || !Cond) 5048 return error("Invalid record"); 5049 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5050 InstructionList.push_back(I); 5051 } 5052 break; 5053 } 5054 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5055 if (Record.size() != 1 && Record.size() != 2) 5056 return error("Invalid record"); 5057 unsigned Idx = 0; 5058 Value *CleanupPad = 5059 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5060 if (!CleanupPad) 5061 return error("Invalid record"); 5062 BasicBlock *UnwindDest = nullptr; 5063 if (Record.size() == 2) { 5064 UnwindDest = getBasicBlock(Record[Idx++]); 5065 if (!UnwindDest) 5066 return error("Invalid record"); 5067 } 5068 5069 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5070 InstructionList.push_back(I); 5071 break; 5072 } 5073 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5074 if (Record.size() != 2) 5075 return error("Invalid record"); 5076 unsigned Idx = 0; 5077 Value *CatchPad = 5078 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5079 if (!CatchPad) 5080 return error("Invalid record"); 5081 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5082 if (!BB) 5083 return error("Invalid record"); 5084 5085 I = CatchReturnInst::Create(CatchPad, BB); 5086 InstructionList.push_back(I); 5087 break; 5088 } 5089 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5090 // We must have, at minimum, the outer scope and the number of arguments. 5091 if (Record.size() < 2) 5092 return error("Invalid record"); 5093 5094 unsigned Idx = 0; 5095 5096 Value *ParentPad = 5097 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5098 5099 unsigned NumHandlers = Record[Idx++]; 5100 5101 SmallVector<BasicBlock *, 2> Handlers; 5102 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5103 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5104 if (!BB) 5105 return error("Invalid record"); 5106 Handlers.push_back(BB); 5107 } 5108 5109 BasicBlock *UnwindDest = nullptr; 5110 if (Idx + 1 == Record.size()) { 5111 UnwindDest = getBasicBlock(Record[Idx++]); 5112 if (!UnwindDest) 5113 return error("Invalid record"); 5114 } 5115 5116 if (Record.size() != Idx) 5117 return error("Invalid record"); 5118 5119 auto *CatchSwitch = 5120 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5121 for (BasicBlock *Handler : Handlers) 5122 CatchSwitch->addHandler(Handler); 5123 I = CatchSwitch; 5124 InstructionList.push_back(I); 5125 break; 5126 } 5127 case bitc::FUNC_CODE_INST_CATCHPAD: 5128 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5129 // We must have, at minimum, the outer scope and the number of arguments. 5130 if (Record.size() < 2) 5131 return error("Invalid record"); 5132 5133 unsigned Idx = 0; 5134 5135 Value *ParentPad = 5136 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5137 5138 unsigned NumArgOperands = Record[Idx++]; 5139 5140 SmallVector<Value *, 2> Args; 5141 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5142 Value *Val; 5143 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5144 return error("Invalid record"); 5145 Args.push_back(Val); 5146 } 5147 5148 if (Record.size() != Idx) 5149 return error("Invalid record"); 5150 5151 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5152 I = CleanupPadInst::Create(ParentPad, Args); 5153 else 5154 I = CatchPadInst::Create(ParentPad, Args); 5155 InstructionList.push_back(I); 5156 break; 5157 } 5158 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5159 // Check magic 5160 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5161 // "New" SwitchInst format with case ranges. The changes to write this 5162 // format were reverted but we still recognize bitcode that uses it. 5163 // Hopefully someday we will have support for case ranges and can use 5164 // this format again. 5165 5166 Type *OpTy = getTypeByID(Record[1]); 5167 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5168 5169 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5170 BasicBlock *Default = getBasicBlock(Record[3]); 5171 if (!OpTy || !Cond || !Default) 5172 return error("Invalid record"); 5173 5174 unsigned NumCases = Record[4]; 5175 5176 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5177 InstructionList.push_back(SI); 5178 5179 unsigned CurIdx = 5; 5180 for (unsigned i = 0; i != NumCases; ++i) { 5181 SmallVector<ConstantInt*, 1> CaseVals; 5182 unsigned NumItems = Record[CurIdx++]; 5183 for (unsigned ci = 0; ci != NumItems; ++ci) { 5184 bool isSingleNumber = Record[CurIdx++]; 5185 5186 APInt Low; 5187 unsigned ActiveWords = 1; 5188 if (ValueBitWidth > 64) 5189 ActiveWords = Record[CurIdx++]; 5190 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5191 ValueBitWidth); 5192 CurIdx += ActiveWords; 5193 5194 if (!isSingleNumber) { 5195 ActiveWords = 1; 5196 if (ValueBitWidth > 64) 5197 ActiveWords = Record[CurIdx++]; 5198 APInt High = readWideAPInt( 5199 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5200 CurIdx += ActiveWords; 5201 5202 // FIXME: It is not clear whether values in the range should be 5203 // compared as signed or unsigned values. The partially 5204 // implemented changes that used this format in the past used 5205 // unsigned comparisons. 5206 for ( ; Low.ule(High); ++Low) 5207 CaseVals.push_back(ConstantInt::get(Context, Low)); 5208 } else 5209 CaseVals.push_back(ConstantInt::get(Context, Low)); 5210 } 5211 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5212 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5213 cve = CaseVals.end(); cvi != cve; ++cvi) 5214 SI->addCase(*cvi, DestBB); 5215 } 5216 I = SI; 5217 break; 5218 } 5219 5220 // Old SwitchInst format without case ranges. 5221 5222 if (Record.size() < 3 || (Record.size() & 1) == 0) 5223 return error("Invalid record"); 5224 Type *OpTy = getTypeByID(Record[0]); 5225 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5226 BasicBlock *Default = getBasicBlock(Record[2]); 5227 if (!OpTy || !Cond || !Default) 5228 return error("Invalid record"); 5229 unsigned NumCases = (Record.size()-3)/2; 5230 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5231 InstructionList.push_back(SI); 5232 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5233 ConstantInt *CaseVal = 5234 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5235 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5236 if (!CaseVal || !DestBB) { 5237 delete SI; 5238 return error("Invalid record"); 5239 } 5240 SI->addCase(CaseVal, DestBB); 5241 } 5242 I = SI; 5243 break; 5244 } 5245 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5246 if (Record.size() < 2) 5247 return error("Invalid record"); 5248 Type *OpTy = getTypeByID(Record[0]); 5249 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5250 if (!OpTy || !Address) 5251 return error("Invalid record"); 5252 unsigned NumDests = Record.size()-2; 5253 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5254 InstructionList.push_back(IBI); 5255 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5256 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5257 IBI->addDestination(DestBB); 5258 } else { 5259 delete IBI; 5260 return error("Invalid record"); 5261 } 5262 } 5263 I = IBI; 5264 break; 5265 } 5266 5267 case bitc::FUNC_CODE_INST_INVOKE: { 5268 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5269 if (Record.size() < 4) 5270 return error("Invalid record"); 5271 unsigned OpNum = 0; 5272 AttributeSet PAL = getAttributes(Record[OpNum++]); 5273 unsigned CCInfo = Record[OpNum++]; 5274 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5275 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5276 5277 FunctionType *FTy = nullptr; 5278 if (CCInfo >> 13 & 1 && 5279 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5280 return error("Explicit invoke type is not a function type"); 5281 5282 Value *Callee; 5283 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5284 return error("Invalid record"); 5285 5286 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5287 if (!CalleeTy) 5288 return error("Callee is not a pointer"); 5289 if (!FTy) { 5290 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5291 if (!FTy) 5292 return error("Callee is not of pointer to function type"); 5293 } else if (CalleeTy->getElementType() != FTy) 5294 return error("Explicit invoke type does not match pointee type of " 5295 "callee operand"); 5296 if (Record.size() < FTy->getNumParams() + OpNum) 5297 return error("Insufficient operands to call"); 5298 5299 SmallVector<Value*, 16> Ops; 5300 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5301 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5302 FTy->getParamType(i))); 5303 if (!Ops.back()) 5304 return error("Invalid record"); 5305 } 5306 5307 if (!FTy->isVarArg()) { 5308 if (Record.size() != OpNum) 5309 return error("Invalid record"); 5310 } else { 5311 // Read type/value pairs for varargs params. 5312 while (OpNum != Record.size()) { 5313 Value *Op; 5314 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5315 return error("Invalid record"); 5316 Ops.push_back(Op); 5317 } 5318 } 5319 5320 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5321 OperandBundles.clear(); 5322 InstructionList.push_back(I); 5323 cast<InvokeInst>(I)->setCallingConv( 5324 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5325 cast<InvokeInst>(I)->setAttributes(PAL); 5326 break; 5327 } 5328 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5329 unsigned Idx = 0; 5330 Value *Val = nullptr; 5331 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5332 return error("Invalid record"); 5333 I = ResumeInst::Create(Val); 5334 InstructionList.push_back(I); 5335 break; 5336 } 5337 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5338 I = new UnreachableInst(Context); 5339 InstructionList.push_back(I); 5340 break; 5341 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5342 if (Record.size() < 1 || ((Record.size()-1)&1)) 5343 return error("Invalid record"); 5344 Type *Ty = getTypeByID(Record[0]); 5345 if (!Ty) 5346 return error("Invalid record"); 5347 5348 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5349 InstructionList.push_back(PN); 5350 5351 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5352 Value *V; 5353 // With the new function encoding, it is possible that operands have 5354 // negative IDs (for forward references). Use a signed VBR 5355 // representation to keep the encoding small. 5356 if (UseRelativeIDs) 5357 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5358 else 5359 V = getValue(Record, 1+i, NextValueNo, Ty); 5360 BasicBlock *BB = getBasicBlock(Record[2+i]); 5361 if (!V || !BB) 5362 return error("Invalid record"); 5363 PN->addIncoming(V, BB); 5364 } 5365 I = PN; 5366 break; 5367 } 5368 5369 case bitc::FUNC_CODE_INST_LANDINGPAD: 5370 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5371 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5372 unsigned Idx = 0; 5373 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5374 if (Record.size() < 3) 5375 return error("Invalid record"); 5376 } else { 5377 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5378 if (Record.size() < 4) 5379 return error("Invalid record"); 5380 } 5381 Type *Ty = getTypeByID(Record[Idx++]); 5382 if (!Ty) 5383 return error("Invalid record"); 5384 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5385 Value *PersFn = nullptr; 5386 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5387 return error("Invalid record"); 5388 5389 if (!F->hasPersonalityFn()) 5390 F->setPersonalityFn(cast<Constant>(PersFn)); 5391 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5392 return error("Personality function mismatch"); 5393 } 5394 5395 bool IsCleanup = !!Record[Idx++]; 5396 unsigned NumClauses = Record[Idx++]; 5397 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5398 LP->setCleanup(IsCleanup); 5399 for (unsigned J = 0; J != NumClauses; ++J) { 5400 LandingPadInst::ClauseType CT = 5401 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5402 Value *Val; 5403 5404 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5405 delete LP; 5406 return error("Invalid record"); 5407 } 5408 5409 assert((CT != LandingPadInst::Catch || 5410 !isa<ArrayType>(Val->getType())) && 5411 "Catch clause has a invalid type!"); 5412 assert((CT != LandingPadInst::Filter || 5413 isa<ArrayType>(Val->getType())) && 5414 "Filter clause has invalid type!"); 5415 LP->addClause(cast<Constant>(Val)); 5416 } 5417 5418 I = LP; 5419 InstructionList.push_back(I); 5420 break; 5421 } 5422 5423 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5424 if (Record.size() != 4) 5425 return error("Invalid record"); 5426 uint64_t AlignRecord = Record[3]; 5427 const uint64_t InAllocaMask = uint64_t(1) << 5; 5428 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5429 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5430 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5431 SwiftErrorMask; 5432 bool InAlloca = AlignRecord & InAllocaMask; 5433 bool SwiftError = AlignRecord & SwiftErrorMask; 5434 Type *Ty = getTypeByID(Record[0]); 5435 if ((AlignRecord & ExplicitTypeMask) == 0) { 5436 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5437 if (!PTy) 5438 return error("Old-style alloca with a non-pointer type"); 5439 Ty = PTy->getElementType(); 5440 } 5441 Type *OpTy = getTypeByID(Record[1]); 5442 Value *Size = getFnValueByID(Record[2], OpTy); 5443 unsigned Align; 5444 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5445 return Err; 5446 } 5447 if (!Ty || !Size) 5448 return error("Invalid record"); 5449 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5450 AI->setUsedWithInAlloca(InAlloca); 5451 AI->setSwiftError(SwiftError); 5452 I = AI; 5453 InstructionList.push_back(I); 5454 break; 5455 } 5456 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5457 unsigned OpNum = 0; 5458 Value *Op; 5459 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5460 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5461 return error("Invalid record"); 5462 5463 Type *Ty = nullptr; 5464 if (OpNum + 3 == Record.size()) 5465 Ty = getTypeByID(Record[OpNum++]); 5466 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5467 return Err; 5468 if (!Ty) 5469 Ty = cast<PointerType>(Op->getType())->getElementType(); 5470 5471 unsigned Align; 5472 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5473 return Err; 5474 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5475 5476 InstructionList.push_back(I); 5477 break; 5478 } 5479 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5480 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5481 unsigned OpNum = 0; 5482 Value *Op; 5483 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5484 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5485 return error("Invalid record"); 5486 5487 Type *Ty = nullptr; 5488 if (OpNum + 5 == Record.size()) 5489 Ty = getTypeByID(Record[OpNum++]); 5490 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5491 return Err; 5492 if (!Ty) 5493 Ty = cast<PointerType>(Op->getType())->getElementType(); 5494 5495 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5496 if (Ordering == AtomicOrdering::NotAtomic || 5497 Ordering == AtomicOrdering::Release || 5498 Ordering == AtomicOrdering::AcquireRelease) 5499 return error("Invalid record"); 5500 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5501 return error("Invalid record"); 5502 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5503 5504 unsigned Align; 5505 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5506 return Err; 5507 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5508 5509 InstructionList.push_back(I); 5510 break; 5511 } 5512 case bitc::FUNC_CODE_INST_STORE: 5513 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5514 unsigned OpNum = 0; 5515 Value *Val, *Ptr; 5516 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5517 (BitCode == bitc::FUNC_CODE_INST_STORE 5518 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5519 : popValue(Record, OpNum, NextValueNo, 5520 cast<PointerType>(Ptr->getType())->getElementType(), 5521 Val)) || 5522 OpNum + 2 != Record.size()) 5523 return error("Invalid record"); 5524 5525 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5526 return Err; 5527 unsigned Align; 5528 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5529 return Err; 5530 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5531 InstructionList.push_back(I); 5532 break; 5533 } 5534 case bitc::FUNC_CODE_INST_STOREATOMIC: 5535 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5536 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5537 unsigned OpNum = 0; 5538 Value *Val, *Ptr; 5539 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5540 !isa<PointerType>(Ptr->getType()) || 5541 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5542 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5543 : popValue(Record, OpNum, NextValueNo, 5544 cast<PointerType>(Ptr->getType())->getElementType(), 5545 Val)) || 5546 OpNum + 4 != Record.size()) 5547 return error("Invalid record"); 5548 5549 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5550 return Err; 5551 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5552 if (Ordering == AtomicOrdering::NotAtomic || 5553 Ordering == AtomicOrdering::Acquire || 5554 Ordering == AtomicOrdering::AcquireRelease) 5555 return error("Invalid record"); 5556 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5557 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5558 return error("Invalid record"); 5559 5560 unsigned Align; 5561 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5562 return Err; 5563 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5564 InstructionList.push_back(I); 5565 break; 5566 } 5567 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5568 case bitc::FUNC_CODE_INST_CMPXCHG: { 5569 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5570 // failureordering?, isweak?] 5571 unsigned OpNum = 0; 5572 Value *Ptr, *Cmp, *New; 5573 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5574 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5575 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5576 : popValue(Record, OpNum, NextValueNo, 5577 cast<PointerType>(Ptr->getType())->getElementType(), 5578 Cmp)) || 5579 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5580 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5581 return error("Invalid record"); 5582 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5583 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5584 SuccessOrdering == AtomicOrdering::Unordered) 5585 return error("Invalid record"); 5586 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5587 5588 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5589 return Err; 5590 AtomicOrdering FailureOrdering; 5591 if (Record.size() < 7) 5592 FailureOrdering = 5593 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5594 else 5595 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5596 5597 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5598 SynchScope); 5599 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5600 5601 if (Record.size() < 8) { 5602 // Before weak cmpxchgs existed, the instruction simply returned the 5603 // value loaded from memory, so bitcode files from that era will be 5604 // expecting the first component of a modern cmpxchg. 5605 CurBB->getInstList().push_back(I); 5606 I = ExtractValueInst::Create(I, 0); 5607 } else { 5608 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5609 } 5610 5611 InstructionList.push_back(I); 5612 break; 5613 } 5614 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5615 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5616 unsigned OpNum = 0; 5617 Value *Ptr, *Val; 5618 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5619 !isa<PointerType>(Ptr->getType()) || 5620 popValue(Record, OpNum, NextValueNo, 5621 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5622 OpNum+4 != Record.size()) 5623 return error("Invalid record"); 5624 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5625 if (Operation < AtomicRMWInst::FIRST_BINOP || 5626 Operation > AtomicRMWInst::LAST_BINOP) 5627 return error("Invalid record"); 5628 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5629 if (Ordering == AtomicOrdering::NotAtomic || 5630 Ordering == AtomicOrdering::Unordered) 5631 return error("Invalid record"); 5632 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5633 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5634 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5635 InstructionList.push_back(I); 5636 break; 5637 } 5638 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5639 if (2 != Record.size()) 5640 return error("Invalid record"); 5641 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5642 if (Ordering == AtomicOrdering::NotAtomic || 5643 Ordering == AtomicOrdering::Unordered || 5644 Ordering == AtomicOrdering::Monotonic) 5645 return error("Invalid record"); 5646 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5647 I = new FenceInst(Context, Ordering, SynchScope); 5648 InstructionList.push_back(I); 5649 break; 5650 } 5651 case bitc::FUNC_CODE_INST_CALL: { 5652 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5653 if (Record.size() < 3) 5654 return error("Invalid record"); 5655 5656 unsigned OpNum = 0; 5657 AttributeSet PAL = getAttributes(Record[OpNum++]); 5658 unsigned CCInfo = Record[OpNum++]; 5659 5660 FastMathFlags FMF; 5661 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5662 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5663 if (!FMF.any()) 5664 return error("Fast math flags indicator set for call with no FMF"); 5665 } 5666 5667 FunctionType *FTy = nullptr; 5668 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5669 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5670 return error("Explicit call type is not a function type"); 5671 5672 Value *Callee; 5673 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5674 return error("Invalid record"); 5675 5676 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5677 if (!OpTy) 5678 return error("Callee is not a pointer type"); 5679 if (!FTy) { 5680 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5681 if (!FTy) 5682 return error("Callee is not of pointer to function type"); 5683 } else if (OpTy->getElementType() != FTy) 5684 return error("Explicit call type does not match pointee type of " 5685 "callee operand"); 5686 if (Record.size() < FTy->getNumParams() + OpNum) 5687 return error("Insufficient operands to call"); 5688 5689 SmallVector<Value*, 16> Args; 5690 // Read the fixed params. 5691 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5692 if (FTy->getParamType(i)->isLabelTy()) 5693 Args.push_back(getBasicBlock(Record[OpNum])); 5694 else 5695 Args.push_back(getValue(Record, OpNum, NextValueNo, 5696 FTy->getParamType(i))); 5697 if (!Args.back()) 5698 return error("Invalid record"); 5699 } 5700 5701 // Read type/value pairs for varargs params. 5702 if (!FTy->isVarArg()) { 5703 if (OpNum != Record.size()) 5704 return error("Invalid record"); 5705 } else { 5706 while (OpNum != Record.size()) { 5707 Value *Op; 5708 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5709 return error("Invalid record"); 5710 Args.push_back(Op); 5711 } 5712 } 5713 5714 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5715 OperandBundles.clear(); 5716 InstructionList.push_back(I); 5717 cast<CallInst>(I)->setCallingConv( 5718 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5719 CallInst::TailCallKind TCK = CallInst::TCK_None; 5720 if (CCInfo & 1 << bitc::CALL_TAIL) 5721 TCK = CallInst::TCK_Tail; 5722 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5723 TCK = CallInst::TCK_MustTail; 5724 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5725 TCK = CallInst::TCK_NoTail; 5726 cast<CallInst>(I)->setTailCallKind(TCK); 5727 cast<CallInst>(I)->setAttributes(PAL); 5728 if (FMF.any()) { 5729 if (!isa<FPMathOperator>(I)) 5730 return error("Fast-math-flags specified for call without " 5731 "floating-point scalar or vector return type"); 5732 I->setFastMathFlags(FMF); 5733 } 5734 break; 5735 } 5736 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5737 if (Record.size() < 3) 5738 return error("Invalid record"); 5739 Type *OpTy = getTypeByID(Record[0]); 5740 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5741 Type *ResTy = getTypeByID(Record[2]); 5742 if (!OpTy || !Op || !ResTy) 5743 return error("Invalid record"); 5744 I = new VAArgInst(Op, ResTy); 5745 InstructionList.push_back(I); 5746 break; 5747 } 5748 5749 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5750 // A call or an invoke can be optionally prefixed with some variable 5751 // number of operand bundle blocks. These blocks are read into 5752 // OperandBundles and consumed at the next call or invoke instruction. 5753 5754 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5755 return error("Invalid record"); 5756 5757 std::vector<Value *> Inputs; 5758 5759 unsigned OpNum = 1; 5760 while (OpNum != Record.size()) { 5761 Value *Op; 5762 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5763 return error("Invalid record"); 5764 Inputs.push_back(Op); 5765 } 5766 5767 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5768 continue; 5769 } 5770 } 5771 5772 // Add instruction to end of current BB. If there is no current BB, reject 5773 // this file. 5774 if (!CurBB) { 5775 delete I; 5776 return error("Invalid instruction with no BB"); 5777 } 5778 if (!OperandBundles.empty()) { 5779 delete I; 5780 return error("Operand bundles found with no consumer"); 5781 } 5782 CurBB->getInstList().push_back(I); 5783 5784 // If this was a terminator instruction, move to the next block. 5785 if (isa<TerminatorInst>(I)) { 5786 ++CurBBNo; 5787 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5788 } 5789 5790 // Non-void values get registered in the value table for future use. 5791 if (I && !I->getType()->isVoidTy()) 5792 ValueList.assignValue(I, NextValueNo++); 5793 } 5794 5795 OutOfRecordLoop: 5796 5797 if (!OperandBundles.empty()) 5798 return error("Operand bundles found with no consumer"); 5799 5800 // Check the function list for unresolved values. 5801 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5802 if (!A->getParent()) { 5803 // We found at least one unresolved value. Nuke them all to avoid leaks. 5804 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5805 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5806 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5807 delete A; 5808 } 5809 } 5810 return error("Never resolved value found in function"); 5811 } 5812 } 5813 5814 // Unexpected unresolved metadata about to be dropped. 5815 if (MetadataList.hasFwdRefs()) 5816 return error("Invalid function metadata: outgoing forward refs"); 5817 5818 // Trim the value list down to the size it was before we parsed this function. 5819 ValueList.shrinkTo(ModuleValueListSize); 5820 MetadataList.shrinkTo(ModuleMetadataListSize); 5821 std::vector<BasicBlock*>().swap(FunctionBBs); 5822 return Error::success(); 5823 } 5824 5825 /// Find the function body in the bitcode stream 5826 Error BitcodeReader::findFunctionInStream( 5827 Function *F, 5828 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5829 while (DeferredFunctionInfoIterator->second == 0) { 5830 // This is the fallback handling for the old format bitcode that 5831 // didn't contain the function index in the VST, or when we have 5832 // an anonymous function which would not have a VST entry. 5833 // Assert that we have one of those two cases. 5834 assert(VSTOffset == 0 || !F->hasName()); 5835 // Parse the next body in the stream and set its position in the 5836 // DeferredFunctionInfo map. 5837 if (Error Err = rememberAndSkipFunctionBodies()) 5838 return Err; 5839 } 5840 return Error::success(); 5841 } 5842 5843 //===----------------------------------------------------------------------===// 5844 // GVMaterializer implementation 5845 //===----------------------------------------------------------------------===// 5846 5847 Error BitcodeReader::materialize(GlobalValue *GV) { 5848 Function *F = dyn_cast<Function>(GV); 5849 // If it's not a function or is already material, ignore the request. 5850 if (!F || !F->isMaterializable()) 5851 return Error::success(); 5852 5853 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5854 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5855 // If its position is recorded as 0, its body is somewhere in the stream 5856 // but we haven't seen it yet. 5857 if (DFII->second == 0) 5858 if (Error Err = findFunctionInStream(F, DFII)) 5859 return Err; 5860 5861 // Materialize metadata before parsing any function bodies. 5862 if (Error Err = materializeMetadata()) 5863 return Err; 5864 5865 // Move the bit stream to the saved position of the deferred function body. 5866 Stream.JumpToBit(DFII->second); 5867 5868 if (Error Err = parseFunctionBody(F)) 5869 return Err; 5870 F->setIsMaterializable(false); 5871 5872 if (StripDebugInfo) 5873 stripDebugInfo(*F); 5874 5875 // Upgrade any old intrinsic calls in the function. 5876 for (auto &I : UpgradedIntrinsics) { 5877 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5878 UI != UE;) { 5879 User *U = *UI; 5880 ++UI; 5881 if (CallInst *CI = dyn_cast<CallInst>(U)) 5882 UpgradeIntrinsicCall(CI, I.second); 5883 } 5884 } 5885 5886 // Update calls to the remangled intrinsics 5887 for (auto &I : RemangledIntrinsics) 5888 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5889 UI != UE;) 5890 // Don't expect any other users than call sites 5891 CallSite(*UI++).setCalledFunction(I.second); 5892 5893 // Finish fn->subprogram upgrade for materialized functions. 5894 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5895 F->setSubprogram(SP); 5896 5897 // Bring in any functions that this function forward-referenced via 5898 // blockaddresses. 5899 return materializeForwardReferencedFunctions(); 5900 } 5901 5902 Error BitcodeReader::materializeModule() { 5903 if (Error Err = materializeMetadata()) 5904 return Err; 5905 5906 // Promise to materialize all forward references. 5907 WillMaterializeAllForwardRefs = true; 5908 5909 // Iterate over the module, deserializing any functions that are still on 5910 // disk. 5911 for (Function &F : *TheModule) { 5912 if (Error Err = materialize(&F)) 5913 return Err; 5914 } 5915 // At this point, if there are any function bodies, parse the rest of 5916 // the bits in the module past the last function block we have recorded 5917 // through either lazy scanning or the VST. 5918 if (LastFunctionBlockBit || NextUnreadBit) 5919 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5920 ? LastFunctionBlockBit 5921 : NextUnreadBit)) 5922 return Err; 5923 5924 // Check that all block address forward references got resolved (as we 5925 // promised above). 5926 if (!BasicBlockFwdRefs.empty()) 5927 return error("Never resolved function from blockaddress"); 5928 5929 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5930 // delete the old functions to clean up. We can't do this unless the entire 5931 // module is materialized because there could always be another function body 5932 // with calls to the old function. 5933 for (auto &I : UpgradedIntrinsics) { 5934 for (auto *U : I.first->users()) { 5935 if (CallInst *CI = dyn_cast<CallInst>(U)) 5936 UpgradeIntrinsicCall(CI, I.second); 5937 } 5938 if (!I.first->use_empty()) 5939 I.first->replaceAllUsesWith(I.second); 5940 I.first->eraseFromParent(); 5941 } 5942 UpgradedIntrinsics.clear(); 5943 // Do the same for remangled intrinsics 5944 for (auto &I : RemangledIntrinsics) { 5945 I.first->replaceAllUsesWith(I.second); 5946 I.first->eraseFromParent(); 5947 } 5948 RemangledIntrinsics.clear(); 5949 5950 UpgradeDebugInfo(*TheModule); 5951 5952 UpgradeModuleFlags(*TheModule); 5953 return Error::success(); 5954 } 5955 5956 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5957 return IdentifiedStructTypes; 5958 } 5959 5960 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5961 BitstreamCursor Cursor, bool CheckGlobalValSummaryPresenceOnly) 5962 : BitcodeReaderBase(std::move(Cursor)), 5963 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5964 5965 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5966 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5967 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5968 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5969 return VGI->second; 5970 } 5971 5972 // Specialized value symbol table parser used when reading module index 5973 // blocks where we don't actually create global values. The parsed information 5974 // is saved in the bitcode reader for use when later parsing summaries. 5975 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5976 uint64_t Offset, 5977 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5978 assert(Offset > 0 && "Expected non-zero VST offset"); 5979 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5980 5981 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5982 return error("Invalid record"); 5983 5984 SmallVector<uint64_t, 64> Record; 5985 5986 // Read all the records for this value table. 5987 SmallString<128> ValueName; 5988 5989 while (true) { 5990 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5991 5992 switch (Entry.Kind) { 5993 case BitstreamEntry::SubBlock: // Handled for us already. 5994 case BitstreamEntry::Error: 5995 return error("Malformed block"); 5996 case BitstreamEntry::EndBlock: 5997 // Done parsing VST, jump back to wherever we came from. 5998 Stream.JumpToBit(CurrentBit); 5999 return Error::success(); 6000 case BitstreamEntry::Record: 6001 // The interesting case. 6002 break; 6003 } 6004 6005 // Read a record. 6006 Record.clear(); 6007 switch (Stream.readRecord(Entry.ID, Record)) { 6008 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6009 break; 6010 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6011 if (convertToString(Record, 1, ValueName)) 6012 return error("Invalid record"); 6013 unsigned ValueID = Record[0]; 6014 assert(!SourceFileName.empty()); 6015 auto VLI = ValueIdToLinkageMap.find(ValueID); 6016 assert(VLI != ValueIdToLinkageMap.end() && 6017 "No linkage found for VST entry?"); 6018 auto Linkage = VLI->second; 6019 std::string GlobalId = 6020 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6021 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6022 auto OriginalNameID = ValueGUID; 6023 if (GlobalValue::isLocalLinkage(Linkage)) 6024 OriginalNameID = GlobalValue::getGUID(ValueName); 6025 if (PrintSummaryGUIDs) 6026 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6027 << ValueName << "\n"; 6028 ValueIdToCallGraphGUIDMap[ValueID] = 6029 std::make_pair(ValueGUID, OriginalNameID); 6030 ValueName.clear(); 6031 break; 6032 } 6033 case bitc::VST_CODE_FNENTRY: { 6034 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6035 if (convertToString(Record, 2, ValueName)) 6036 return error("Invalid record"); 6037 unsigned ValueID = Record[0]; 6038 assert(!SourceFileName.empty()); 6039 auto VLI = ValueIdToLinkageMap.find(ValueID); 6040 assert(VLI != ValueIdToLinkageMap.end() && 6041 "No linkage found for VST entry?"); 6042 auto Linkage = VLI->second; 6043 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6044 ValueName, VLI->second, SourceFileName); 6045 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6046 auto OriginalNameID = FunctionGUID; 6047 if (GlobalValue::isLocalLinkage(Linkage)) 6048 OriginalNameID = GlobalValue::getGUID(ValueName); 6049 if (PrintSummaryGUIDs) 6050 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6051 << ValueName << "\n"; 6052 ValueIdToCallGraphGUIDMap[ValueID] = 6053 std::make_pair(FunctionGUID, OriginalNameID); 6054 6055 ValueName.clear(); 6056 break; 6057 } 6058 case bitc::VST_CODE_COMBINED_ENTRY: { 6059 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6060 unsigned ValueID = Record[0]; 6061 GlobalValue::GUID RefGUID = Record[1]; 6062 // The "original name", which is the second value of the pair will be 6063 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6064 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6065 break; 6066 } 6067 } 6068 } 6069 } 6070 6071 // Parse just the blocks needed for building the index out of the module. 6072 // At the end of this routine the module Index is populated with a map 6073 // from global value id to GlobalValueSummary objects. 6074 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 6075 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6076 return error("Invalid record"); 6077 6078 SmallVector<uint64_t, 64> Record; 6079 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6080 unsigned ValueId = 0; 6081 6082 // Read the index for this module. 6083 while (true) { 6084 BitstreamEntry Entry = Stream.advance(); 6085 6086 switch (Entry.Kind) { 6087 case BitstreamEntry::Error: 6088 return error("Malformed block"); 6089 case BitstreamEntry::EndBlock: 6090 return Error::success(); 6091 6092 case BitstreamEntry::SubBlock: 6093 if (CheckGlobalValSummaryPresenceOnly) { 6094 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6095 SeenGlobalValSummary = true; 6096 // No need to parse the rest since we found the summary. 6097 return Error::success(); 6098 } 6099 if (Stream.SkipBlock()) 6100 return error("Invalid record"); 6101 continue; 6102 } 6103 switch (Entry.ID) { 6104 default: // Skip unknown content. 6105 if (Stream.SkipBlock()) 6106 return error("Invalid record"); 6107 break; 6108 case bitc::BLOCKINFO_BLOCK_ID: 6109 // Need to parse these to get abbrev ids (e.g. for VST) 6110 if (readBlockInfo()) 6111 return error("Malformed block"); 6112 break; 6113 case bitc::VALUE_SYMTAB_BLOCK_ID: 6114 // Should have been parsed earlier via VSTOffset, unless there 6115 // is no summary section. 6116 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6117 !SeenGlobalValSummary) && 6118 "Expected early VST parse via VSTOffset record"); 6119 if (Stream.SkipBlock()) 6120 return error("Invalid record"); 6121 break; 6122 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6123 assert(!SeenValueSymbolTable && 6124 "Already read VST when parsing summary block?"); 6125 // We might not have a VST if there were no values in the 6126 // summary. An empty summary block generated when we are 6127 // performing ThinLTO compiles so we don't later invoke 6128 // the regular LTO process on them. 6129 if (VSTOffset > 0) { 6130 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6131 return Err; 6132 SeenValueSymbolTable = true; 6133 } 6134 SeenGlobalValSummary = true; 6135 if (Error Err = parseEntireSummary(ModulePath)) 6136 return Err; 6137 break; 6138 case bitc::MODULE_STRTAB_BLOCK_ID: 6139 if (Error Err = parseModuleStringTable()) 6140 return Err; 6141 break; 6142 } 6143 continue; 6144 6145 case BitstreamEntry::Record: { 6146 Record.clear(); 6147 auto BitCode = Stream.readRecord(Entry.ID, Record); 6148 switch (BitCode) { 6149 default: 6150 break; // Default behavior, ignore unknown content. 6151 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6152 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6153 SmallString<128> ValueName; 6154 if (convertToString(Record, 0, ValueName)) 6155 return error("Invalid record"); 6156 SourceFileName = ValueName.c_str(); 6157 break; 6158 } 6159 /// MODULE_CODE_HASH: [5*i32] 6160 case bitc::MODULE_CODE_HASH: { 6161 if (Record.size() != 5) 6162 return error("Invalid hash length " + Twine(Record.size()).str()); 6163 if (!TheIndex) 6164 break; 6165 if (TheIndex->modulePaths().empty()) 6166 // We always seed the index with the module. 6167 TheIndex->addModulePath(ModulePath, 0); 6168 if (TheIndex->modulePaths().size() != 1) 6169 return error("Don't expect multiple modules defined?"); 6170 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6171 int Pos = 0; 6172 for (auto &Val : Record) { 6173 assert(!(Val >> 32) && "Unexpected high bits set"); 6174 Hash[Pos++] = Val; 6175 } 6176 break; 6177 } 6178 /// MODULE_CODE_VSTOFFSET: [offset] 6179 case bitc::MODULE_CODE_VSTOFFSET: 6180 if (Record.size() < 1) 6181 return error("Invalid record"); 6182 VSTOffset = Record[0]; 6183 break; 6184 // GLOBALVAR: [pointer type, isconst, initid, 6185 // linkage, alignment, section, visibility, threadlocal, 6186 // unnamed_addr, externally_initialized, dllstorageclass, 6187 // comdat] 6188 case bitc::MODULE_CODE_GLOBALVAR: { 6189 if (Record.size() < 6) 6190 return error("Invalid record"); 6191 uint64_t RawLinkage = Record[3]; 6192 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6193 ValueIdToLinkageMap[ValueId++] = Linkage; 6194 break; 6195 } 6196 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6197 // alignment, section, visibility, gc, unnamed_addr, 6198 // prologuedata, dllstorageclass, comdat, prefixdata] 6199 case bitc::MODULE_CODE_FUNCTION: { 6200 if (Record.size() < 8) 6201 return error("Invalid record"); 6202 uint64_t RawLinkage = Record[3]; 6203 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6204 ValueIdToLinkageMap[ValueId++] = Linkage; 6205 break; 6206 } 6207 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6208 // dllstorageclass] 6209 case bitc::MODULE_CODE_ALIAS: { 6210 if (Record.size() < 6) 6211 return error("Invalid record"); 6212 uint64_t RawLinkage = Record[3]; 6213 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6214 ValueIdToLinkageMap[ValueId++] = Linkage; 6215 break; 6216 } 6217 } 6218 } 6219 continue; 6220 } 6221 } 6222 } 6223 6224 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6225 // objects in the index. 6226 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 6227 StringRef ModulePath) { 6228 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6229 return error("Invalid record"); 6230 SmallVector<uint64_t, 64> Record; 6231 6232 // Parse version 6233 { 6234 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6235 if (Entry.Kind != BitstreamEntry::Record) 6236 return error("Invalid Summary Block: record for version expected"); 6237 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6238 return error("Invalid Summary Block: version expected"); 6239 } 6240 const uint64_t Version = Record[0]; 6241 const bool IsOldProfileFormat = Version == 1; 6242 if (!IsOldProfileFormat && Version != 2) 6243 return error("Invalid summary version " + Twine(Version) + 6244 ", 1 or 2 expected"); 6245 Record.clear(); 6246 6247 // Keep around the last seen summary to be used when we see an optional 6248 // "OriginalName" attachement. 6249 GlobalValueSummary *LastSeenSummary = nullptr; 6250 bool Combined = false; 6251 6252 while (true) { 6253 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6254 6255 switch (Entry.Kind) { 6256 case BitstreamEntry::SubBlock: // Handled for us already. 6257 case BitstreamEntry::Error: 6258 return error("Malformed block"); 6259 case BitstreamEntry::EndBlock: 6260 // For a per-module index, remove any entries that still have empty 6261 // summaries. The VST parsing creates entries eagerly for all symbols, 6262 // but not all have associated summaries (e.g. it doesn't know how to 6263 // distinguish between VST_CODE_ENTRY for function declarations vs global 6264 // variables with initializers that end up with a summary). Remove those 6265 // entries now so that we don't need to rely on the combined index merger 6266 // to clean them up (especially since that may not run for the first 6267 // module's index if we merge into that). 6268 if (!Combined) 6269 TheIndex->removeEmptySummaryEntries(); 6270 return Error::success(); 6271 case BitstreamEntry::Record: 6272 // The interesting case. 6273 break; 6274 } 6275 6276 // Read a record. The record format depends on whether this 6277 // is a per-module index or a combined index file. In the per-module 6278 // case the records contain the associated value's ID for correlation 6279 // with VST entries. In the combined index the correlation is done 6280 // via the bitcode offset of the summary records (which were saved 6281 // in the combined index VST entries). The records also contain 6282 // information used for ThinLTO renaming and importing. 6283 Record.clear(); 6284 auto BitCode = Stream.readRecord(Entry.ID, Record); 6285 switch (BitCode) { 6286 default: // Default behavior: ignore. 6287 break; 6288 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6289 // n x (valueid)] 6290 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6291 // numrefs x valueid, 6292 // n x (valueid, hotness)] 6293 case bitc::FS_PERMODULE: 6294 case bitc::FS_PERMODULE_PROFILE: { 6295 unsigned ValueID = Record[0]; 6296 uint64_t RawFlags = Record[1]; 6297 unsigned InstCount = Record[2]; 6298 unsigned NumRefs = Record[3]; 6299 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6300 std::unique_ptr<FunctionSummary> FS = 6301 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6302 // The module path string ref set in the summary must be owned by the 6303 // index's module string table. Since we don't have a module path 6304 // string table section in the per-module index, we create a single 6305 // module path string table entry with an empty (0) ID to take 6306 // ownership. 6307 FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6308 static int RefListStartIndex = 4; 6309 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6310 assert(Record.size() >= RefListStartIndex + NumRefs && 6311 "Record size inconsistent with number of references"); 6312 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6313 unsigned RefValueId = Record[I]; 6314 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6315 FS->addRefEdge(RefGUID); 6316 } 6317 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6318 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6319 ++I) { 6320 CalleeInfo::HotnessType Hotness; 6321 GlobalValue::GUID CalleeGUID; 6322 std::tie(CalleeGUID, Hotness) = 6323 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6324 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6325 } 6326 auto GUID = getGUIDFromValueId(ValueID); 6327 FS->setOriginalName(GUID.second); 6328 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6329 break; 6330 } 6331 // FS_ALIAS: [valueid, flags, valueid] 6332 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6333 // they expect all aliasee summaries to be available. 6334 case bitc::FS_ALIAS: { 6335 unsigned ValueID = Record[0]; 6336 uint64_t RawFlags = Record[1]; 6337 unsigned AliaseeID = Record[2]; 6338 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6339 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6340 // The module path string ref set in the summary must be owned by the 6341 // index's module string table. Since we don't have a module path 6342 // string table section in the per-module index, we create a single 6343 // module path string table entry with an empty (0) ID to take 6344 // ownership. 6345 AS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6346 6347 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6348 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6349 if (!AliaseeSummary) 6350 return error("Alias expects aliasee summary to be parsed"); 6351 AS->setAliasee(AliaseeSummary); 6352 6353 auto GUID = getGUIDFromValueId(ValueID); 6354 AS->setOriginalName(GUID.second); 6355 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6356 break; 6357 } 6358 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6359 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6360 unsigned ValueID = Record[0]; 6361 uint64_t RawFlags = Record[1]; 6362 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6363 std::unique_ptr<GlobalVarSummary> FS = 6364 llvm::make_unique<GlobalVarSummary>(Flags); 6365 FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6366 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6367 unsigned RefValueId = Record[I]; 6368 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6369 FS->addRefEdge(RefGUID); 6370 } 6371 auto GUID = getGUIDFromValueId(ValueID); 6372 FS->setOriginalName(GUID.second); 6373 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6374 break; 6375 } 6376 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6377 // numrefs x valueid, n x (valueid)] 6378 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6379 // numrefs x valueid, n x (valueid, hotness)] 6380 case bitc::FS_COMBINED: 6381 case bitc::FS_COMBINED_PROFILE: { 6382 unsigned ValueID = Record[0]; 6383 uint64_t ModuleId = Record[1]; 6384 uint64_t RawFlags = Record[2]; 6385 unsigned InstCount = Record[3]; 6386 unsigned NumRefs = Record[4]; 6387 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6388 std::unique_ptr<FunctionSummary> FS = 6389 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6390 LastSeenSummary = FS.get(); 6391 FS->setModulePath(ModuleIdMap[ModuleId]); 6392 static int RefListStartIndex = 5; 6393 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6394 assert(Record.size() >= RefListStartIndex + NumRefs && 6395 "Record size inconsistent with number of references"); 6396 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6397 ++I) { 6398 unsigned RefValueId = Record[I]; 6399 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6400 FS->addRefEdge(RefGUID); 6401 } 6402 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6403 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6404 ++I) { 6405 CalleeInfo::HotnessType Hotness; 6406 GlobalValue::GUID CalleeGUID; 6407 std::tie(CalleeGUID, Hotness) = 6408 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6409 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6410 } 6411 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6412 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6413 Combined = true; 6414 break; 6415 } 6416 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6417 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6418 // they expect all aliasee summaries to be available. 6419 case bitc::FS_COMBINED_ALIAS: { 6420 unsigned ValueID = Record[0]; 6421 uint64_t ModuleId = Record[1]; 6422 uint64_t RawFlags = Record[2]; 6423 unsigned AliaseeValueId = Record[3]; 6424 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6425 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6426 LastSeenSummary = AS.get(); 6427 AS->setModulePath(ModuleIdMap[ModuleId]); 6428 6429 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6430 auto AliaseeInModule = 6431 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6432 if (!AliaseeInModule) 6433 return error("Alias expects aliasee summary to be parsed"); 6434 AS->setAliasee(AliaseeInModule); 6435 6436 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6437 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6438 Combined = true; 6439 break; 6440 } 6441 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6442 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6443 unsigned ValueID = Record[0]; 6444 uint64_t ModuleId = Record[1]; 6445 uint64_t RawFlags = Record[2]; 6446 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6447 std::unique_ptr<GlobalVarSummary> FS = 6448 llvm::make_unique<GlobalVarSummary>(Flags); 6449 LastSeenSummary = FS.get(); 6450 FS->setModulePath(ModuleIdMap[ModuleId]); 6451 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6452 unsigned RefValueId = Record[I]; 6453 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6454 FS->addRefEdge(RefGUID); 6455 } 6456 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6457 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6458 Combined = true; 6459 break; 6460 } 6461 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6462 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6463 uint64_t OriginalName = Record[0]; 6464 if (!LastSeenSummary) 6465 return error("Name attachment that does not follow a combined record"); 6466 LastSeenSummary->setOriginalName(OriginalName); 6467 // Reset the LastSeenSummary 6468 LastSeenSummary = nullptr; 6469 } 6470 } 6471 } 6472 llvm_unreachable("Exit infinite loop"); 6473 } 6474 6475 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6476 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6477 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6478 const bool IsOldProfileFormat, const bool HasProfile) { 6479 6480 auto Hotness = CalleeInfo::HotnessType::Unknown; 6481 unsigned CalleeValueId = Record[I]; 6482 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6483 if (IsOldProfileFormat) { 6484 I += 1; // Skip old callsitecount field 6485 if (HasProfile) 6486 I += 1; // Skip old profilecount field 6487 } else if (HasProfile) 6488 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6489 return {CalleeGUID, Hotness}; 6490 } 6491 6492 // Parse the module string table block into the Index. 6493 // This populates the ModulePathStringTable map in the index. 6494 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6495 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6496 return error("Invalid record"); 6497 6498 SmallVector<uint64_t, 64> Record; 6499 6500 SmallString<128> ModulePath; 6501 ModulePathStringTableTy::iterator LastSeenModulePath; 6502 6503 while (true) { 6504 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6505 6506 switch (Entry.Kind) { 6507 case BitstreamEntry::SubBlock: // Handled for us already. 6508 case BitstreamEntry::Error: 6509 return error("Malformed block"); 6510 case BitstreamEntry::EndBlock: 6511 return Error::success(); 6512 case BitstreamEntry::Record: 6513 // The interesting case. 6514 break; 6515 } 6516 6517 Record.clear(); 6518 switch (Stream.readRecord(Entry.ID, Record)) { 6519 default: // Default behavior: ignore. 6520 break; 6521 case bitc::MST_CODE_ENTRY: { 6522 // MST_ENTRY: [modid, namechar x N] 6523 uint64_t ModuleId = Record[0]; 6524 6525 if (convertToString(Record, 1, ModulePath)) 6526 return error("Invalid record"); 6527 6528 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6529 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6530 6531 ModulePath.clear(); 6532 break; 6533 } 6534 /// MST_CODE_HASH: [5*i32] 6535 case bitc::MST_CODE_HASH: { 6536 if (Record.size() != 5) 6537 return error("Invalid hash length " + Twine(Record.size()).str()); 6538 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6539 return error("Invalid hash that does not follow a module path"); 6540 int Pos = 0; 6541 for (auto &Val : Record) { 6542 assert(!(Val >> 32) && "Unexpected high bits set"); 6543 LastSeenModulePath->second.second[Pos++] = Val; 6544 } 6545 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6546 LastSeenModulePath = TheIndex->modulePaths().end(); 6547 break; 6548 } 6549 } 6550 } 6551 llvm_unreachable("Exit infinite loop"); 6552 } 6553 6554 // Parse the function info index from the bitcode streamer into the given index. 6555 Error ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6556 ModuleSummaryIndex *I, StringRef ModulePath) { 6557 TheIndex = I; 6558 6559 // We expect a number of well-defined blocks, though we don't necessarily 6560 // need to understand them all. 6561 while (true) { 6562 if (Stream.AtEndOfStream()) { 6563 // We didn't really read a proper Module block. 6564 return error("Malformed block"); 6565 } 6566 6567 BitstreamEntry Entry = 6568 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6569 6570 if (Entry.Kind != BitstreamEntry::SubBlock) 6571 return error("Malformed block"); 6572 6573 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6574 // building the function summary index. 6575 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6576 return parseModule(ModulePath); 6577 6578 if (Stream.SkipBlock()) 6579 return error("Invalid record"); 6580 } 6581 } 6582 6583 namespace { 6584 6585 // FIXME: This class is only here to support the transition to llvm::Error. It 6586 // will be removed once this transition is complete. Clients should prefer to 6587 // deal with the Error value directly, rather than converting to error_code. 6588 class BitcodeErrorCategoryType : public std::error_category { 6589 const char *name() const noexcept override { 6590 return "llvm.bitcode"; 6591 } 6592 std::string message(int IE) const override { 6593 BitcodeError E = static_cast<BitcodeError>(IE); 6594 switch (E) { 6595 case BitcodeError::CorruptedBitcode: 6596 return "Corrupted bitcode"; 6597 } 6598 llvm_unreachable("Unknown error type!"); 6599 } 6600 }; 6601 6602 } // end anonymous namespace 6603 6604 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6605 6606 const std::error_category &llvm::BitcodeErrorCategory() { 6607 return *ErrorCategory; 6608 } 6609 6610 //===----------------------------------------------------------------------===// 6611 // External interface 6612 //===----------------------------------------------------------------------===// 6613 6614 /// \brief Get a lazy one-at-time loading module from bitcode. 6615 /// 6616 /// This isn't always used in a lazy context. In particular, it's also used by 6617 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6618 /// in forward-referenced functions from block address references. 6619 /// 6620 /// \param[in] MaterializeAll Set to \c true if we should materialize 6621 /// everything. 6622 static ErrorOr<std::unique_ptr<Module>> 6623 getLazyBitcodeModuleImpl(MemoryBufferRef Buffer, LLVMContext &Context, 6624 bool MaterializeAll, 6625 bool ShouldLazyLoadMetadata = false) { 6626 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6627 if (!StreamOrErr) 6628 return errorToErrorCodeAndEmitErrors(Context, StreamOrErr.takeError()); 6629 6630 BitcodeReader *R = new BitcodeReader(std::move(*StreamOrErr), Context); 6631 6632 std::unique_ptr<Module> M = 6633 llvm::make_unique<Module>(Buffer.getBufferIdentifier(), Context); 6634 M->setMaterializer(R); 6635 6636 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6637 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6638 return errorToErrorCodeAndEmitErrors(Context, std::move(Err)); 6639 6640 if (MaterializeAll) { 6641 // Read in the entire module, and destroy the BitcodeReader. 6642 if (Error Err = M->materializeAll()) 6643 return errorToErrorCodeAndEmitErrors(Context, std::move(Err)); 6644 } else { 6645 // Resolve forward references from blockaddresses. 6646 if (Error Err = R->materializeForwardReferencedFunctions()) 6647 return errorToErrorCodeAndEmitErrors(Context, std::move(Err)); 6648 } 6649 return std::move(M); 6650 } 6651 6652 ErrorOr<std::unique_ptr<Module>> 6653 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 6654 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6655 return getLazyBitcodeModuleImpl(Buffer, Context, false, 6656 ShouldLazyLoadMetadata); 6657 } 6658 6659 ErrorOr<std::unique_ptr<Module>> 6660 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6661 LLVMContext &Context, 6662 bool ShouldLazyLoadMetadata) { 6663 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 6664 if (MOrErr) 6665 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6666 return MOrErr; 6667 } 6668 6669 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6670 LLVMContext &Context) { 6671 return getLazyBitcodeModuleImpl(Buffer, Context, true); 6672 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6673 // written. We must defer until the Module has been fully materialized. 6674 } 6675 6676 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6677 LLVMContext &Context) { 6678 ErrorOr<BitstreamCursor> StreamOrErr = 6679 expectedToErrorOrAndEmitErrors(Context, initStream(Buffer)); 6680 if (!StreamOrErr) 6681 return ""; 6682 6683 BitcodeReader R(std::move(*StreamOrErr), Context); 6684 ErrorOr<std::string> Triple = 6685 expectedToErrorOrAndEmitErrors(Context, R.parseTriple()); 6686 if (Triple.getError()) 6687 return ""; 6688 return Triple.get(); 6689 } 6690 6691 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6692 LLVMContext &Context) { 6693 ErrorOr<BitstreamCursor> StreamOrErr = 6694 expectedToErrorOrAndEmitErrors(Context, initStream(Buffer)); 6695 if (!StreamOrErr) 6696 return false; 6697 6698 BitcodeReader R(std::move(*StreamOrErr), Context); 6699 ErrorOr<bool> hasObjCCategory = 6700 expectedToErrorOrAndEmitErrors(Context, R.hasObjCCategory()); 6701 if (hasObjCCategory.getError()) 6702 return false; 6703 return hasObjCCategory.get(); 6704 } 6705 6706 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6707 LLVMContext &Context) { 6708 ErrorOr<BitstreamCursor> StreamOrErr = 6709 expectedToErrorOrAndEmitErrors(Context, initStream(Buffer)); 6710 if (!StreamOrErr) 6711 return ""; 6712 6713 BitcodeReader R(std::move(*StreamOrErr), Context); 6714 ErrorOr<std::string> ProducerString = 6715 expectedToErrorOrAndEmitErrors(Context, R.parseIdentificationBlock()); 6716 if (ProducerString.getError()) 6717 return ""; 6718 return ProducerString.get(); 6719 } 6720 6721 // Parse the specified bitcode buffer, returning the function info index. 6722 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6723 MemoryBufferRef Buffer, 6724 const DiagnosticHandlerFunction &DiagnosticHandler) { 6725 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6726 if (!StreamOrErr) 6727 return errorToErrorCodeAndEmitErrors(DiagnosticHandler, 6728 StreamOrErr.takeError()); 6729 6730 ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr)); 6731 6732 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6733 6734 if (std::error_code EC = errorToErrorCodeAndEmitErrors( 6735 DiagnosticHandler, 6736 R.parseSummaryIndexInto(Index.get(), Buffer.getBufferIdentifier()))) 6737 return EC; 6738 6739 return std::move(Index); 6740 } 6741 6742 // Check if the given bitcode buffer contains a global value summary block. 6743 bool llvm::hasGlobalValueSummary( 6744 MemoryBufferRef Buffer, 6745 const DiagnosticHandlerFunction &DiagnosticHandler) { 6746 ErrorOr<BitstreamCursor> StreamOrErr = expectedToErrorOrAndEmitErrors( 6747 DiagnosticHandler, initStream(Buffer)); 6748 if (!StreamOrErr) 6749 return false; 6750 6751 ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr), true); 6752 if (errorToErrorCodeAndEmitErrors( 6753 DiagnosticHandler, 6754 R.parseSummaryIndexInto(nullptr, Buffer.getBufferIdentifier()))) 6755 return false; 6756 6757 return R.foundGlobalValSummary(); 6758 } 6759