1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 using std::error_code; 30 31 enum { 32 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 33 }; 34 35 void BitcodeReader::materializeForwardReferencedFunctions() { 36 while (!BlockAddrFwdRefs.empty()) { 37 Function *F = BlockAddrFwdRefs.begin()->first; 38 F->Materialize(); 39 } 40 } 41 42 void BitcodeReader::FreeState() { 43 if (BufferOwned) 44 delete Buffer; 45 Buffer = nullptr; 46 std::vector<Type*>().swap(TypeList); 47 ValueList.clear(); 48 MDValueList.clear(); 49 50 std::vector<AttributeSet>().swap(MAttributes); 51 std::vector<BasicBlock*>().swap(FunctionBBs); 52 std::vector<Function*>().swap(FunctionsWithBodies); 53 DeferredFunctionInfo.clear(); 54 MDKindMap.clear(); 55 56 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 57 } 58 59 //===----------------------------------------------------------------------===// 60 // Helper functions to implement forward reference resolution, etc. 61 //===----------------------------------------------------------------------===// 62 63 /// ConvertToString - Convert a string from a record into an std::string, return 64 /// true on failure. 65 template<typename StrTy> 66 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 67 StrTy &Result) { 68 if (Idx > Record.size()) 69 return true; 70 71 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 72 Result += (char)Record[i]; 73 return false; 74 } 75 76 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 77 switch (Val) { 78 default: // Map unknown/new linkages to external 79 case 0: return GlobalValue::ExternalLinkage; 80 case 1: return GlobalValue::WeakAnyLinkage; 81 case 2: return GlobalValue::AppendingLinkage; 82 case 3: return GlobalValue::InternalLinkage; 83 case 4: return GlobalValue::LinkOnceAnyLinkage; 84 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 85 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 86 case 7: return GlobalValue::ExternalWeakLinkage; 87 case 8: return GlobalValue::CommonLinkage; 88 case 9: return GlobalValue::PrivateLinkage; 89 case 10: return GlobalValue::WeakODRLinkage; 90 case 11: return GlobalValue::LinkOnceODRLinkage; 91 case 12: return GlobalValue::AvailableExternallyLinkage; 92 case 13: 93 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 94 case 14: 95 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 96 } 97 } 98 99 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 100 switch (Val) { 101 default: // Map unknown visibilities to default. 102 case 0: return GlobalValue::DefaultVisibility; 103 case 1: return GlobalValue::HiddenVisibility; 104 case 2: return GlobalValue::ProtectedVisibility; 105 } 106 } 107 108 static GlobalValue::DLLStorageClassTypes 109 GetDecodedDLLStorageClass(unsigned Val) { 110 switch (Val) { 111 default: // Map unknown values to default. 112 case 0: return GlobalValue::DefaultStorageClass; 113 case 1: return GlobalValue::DLLImportStorageClass; 114 case 2: return GlobalValue::DLLExportStorageClass; 115 } 116 } 117 118 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 119 switch (Val) { 120 case 0: return GlobalVariable::NotThreadLocal; 121 default: // Map unknown non-zero value to general dynamic. 122 case 1: return GlobalVariable::GeneralDynamicTLSModel; 123 case 2: return GlobalVariable::LocalDynamicTLSModel; 124 case 3: return GlobalVariable::InitialExecTLSModel; 125 case 4: return GlobalVariable::LocalExecTLSModel; 126 } 127 } 128 129 static int GetDecodedCastOpcode(unsigned Val) { 130 switch (Val) { 131 default: return -1; 132 case bitc::CAST_TRUNC : return Instruction::Trunc; 133 case bitc::CAST_ZEXT : return Instruction::ZExt; 134 case bitc::CAST_SEXT : return Instruction::SExt; 135 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 136 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 137 case bitc::CAST_UITOFP : return Instruction::UIToFP; 138 case bitc::CAST_SITOFP : return Instruction::SIToFP; 139 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 140 case bitc::CAST_FPEXT : return Instruction::FPExt; 141 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 142 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 143 case bitc::CAST_BITCAST : return Instruction::BitCast; 144 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 145 } 146 } 147 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 148 switch (Val) { 149 default: return -1; 150 case bitc::BINOP_ADD: 151 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 152 case bitc::BINOP_SUB: 153 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 154 case bitc::BINOP_MUL: 155 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 156 case bitc::BINOP_UDIV: return Instruction::UDiv; 157 case bitc::BINOP_SDIV: 158 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 159 case bitc::BINOP_UREM: return Instruction::URem; 160 case bitc::BINOP_SREM: 161 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 162 case bitc::BINOP_SHL: return Instruction::Shl; 163 case bitc::BINOP_LSHR: return Instruction::LShr; 164 case bitc::BINOP_ASHR: return Instruction::AShr; 165 case bitc::BINOP_AND: return Instruction::And; 166 case bitc::BINOP_OR: return Instruction::Or; 167 case bitc::BINOP_XOR: return Instruction::Xor; 168 } 169 } 170 171 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 172 switch (Val) { 173 default: return AtomicRMWInst::BAD_BINOP; 174 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 175 case bitc::RMW_ADD: return AtomicRMWInst::Add; 176 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 177 case bitc::RMW_AND: return AtomicRMWInst::And; 178 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 179 case bitc::RMW_OR: return AtomicRMWInst::Or; 180 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 181 case bitc::RMW_MAX: return AtomicRMWInst::Max; 182 case bitc::RMW_MIN: return AtomicRMWInst::Min; 183 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 184 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 185 } 186 } 187 188 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 189 switch (Val) { 190 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 191 case bitc::ORDERING_UNORDERED: return Unordered; 192 case bitc::ORDERING_MONOTONIC: return Monotonic; 193 case bitc::ORDERING_ACQUIRE: return Acquire; 194 case bitc::ORDERING_RELEASE: return Release; 195 case bitc::ORDERING_ACQREL: return AcquireRelease; 196 default: // Map unknown orderings to sequentially-consistent. 197 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 198 } 199 } 200 201 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 202 switch (Val) { 203 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 204 default: // Map unknown scopes to cross-thread. 205 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 206 } 207 } 208 209 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 210 switch (Val) { 211 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 212 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 213 } 214 } 215 216 namespace llvm { 217 namespace { 218 /// @brief A class for maintaining the slot number definition 219 /// as a placeholder for the actual definition for forward constants defs. 220 class ConstantPlaceHolder : public ConstantExpr { 221 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 222 public: 223 // allocate space for exactly one operand 224 void *operator new(size_t s) { 225 return User::operator new(s, 1); 226 } 227 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 228 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 229 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 230 } 231 232 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 233 static bool classof(const Value *V) { 234 return isa<ConstantExpr>(V) && 235 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 236 } 237 238 239 /// Provide fast operand accessors 240 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 241 }; 242 } 243 244 // FIXME: can we inherit this from ConstantExpr? 245 template <> 246 struct OperandTraits<ConstantPlaceHolder> : 247 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 248 }; 249 } 250 251 252 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 253 if (Idx == size()) { 254 push_back(V); 255 return; 256 } 257 258 if (Idx >= size()) 259 resize(Idx+1); 260 261 WeakVH &OldV = ValuePtrs[Idx]; 262 if (!OldV) { 263 OldV = V; 264 return; 265 } 266 267 // Handle constants and non-constants (e.g. instrs) differently for 268 // efficiency. 269 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 270 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 271 OldV = V; 272 } else { 273 // If there was a forward reference to this value, replace it. 274 Value *PrevVal = OldV; 275 OldV->replaceAllUsesWith(V); 276 delete PrevVal; 277 } 278 } 279 280 281 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 282 Type *Ty) { 283 if (Idx >= size()) 284 resize(Idx + 1); 285 286 if (Value *V = ValuePtrs[Idx]) { 287 assert(Ty == V->getType() && "Type mismatch in constant table!"); 288 return cast<Constant>(V); 289 } 290 291 // Create and return a placeholder, which will later be RAUW'd. 292 Constant *C = new ConstantPlaceHolder(Ty, Context); 293 ValuePtrs[Idx] = C; 294 return C; 295 } 296 297 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 298 if (Idx >= size()) 299 resize(Idx + 1); 300 301 if (Value *V = ValuePtrs[Idx]) { 302 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 303 return V; 304 } 305 306 // No type specified, must be invalid reference. 307 if (!Ty) return nullptr; 308 309 // Create and return a placeholder, which will later be RAUW'd. 310 Value *V = new Argument(Ty); 311 ValuePtrs[Idx] = V; 312 return V; 313 } 314 315 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 316 /// resolves any forward references. The idea behind this is that we sometimes 317 /// get constants (such as large arrays) which reference *many* forward ref 318 /// constants. Replacing each of these causes a lot of thrashing when 319 /// building/reuniquing the constant. Instead of doing this, we look at all the 320 /// uses and rewrite all the place holders at once for any constant that uses 321 /// a placeholder. 322 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 323 // Sort the values by-pointer so that they are efficient to look up with a 324 // binary search. 325 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 326 327 SmallVector<Constant*, 64> NewOps; 328 329 while (!ResolveConstants.empty()) { 330 Value *RealVal = operator[](ResolveConstants.back().second); 331 Constant *Placeholder = ResolveConstants.back().first; 332 ResolveConstants.pop_back(); 333 334 // Loop over all users of the placeholder, updating them to reference the 335 // new value. If they reference more than one placeholder, update them all 336 // at once. 337 while (!Placeholder->use_empty()) { 338 auto UI = Placeholder->user_begin(); 339 User *U = *UI; 340 341 // If the using object isn't uniqued, just update the operands. This 342 // handles instructions and initializers for global variables. 343 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 344 UI.getUse().set(RealVal); 345 continue; 346 } 347 348 // Otherwise, we have a constant that uses the placeholder. Replace that 349 // constant with a new constant that has *all* placeholder uses updated. 350 Constant *UserC = cast<Constant>(U); 351 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 352 I != E; ++I) { 353 Value *NewOp; 354 if (!isa<ConstantPlaceHolder>(*I)) { 355 // Not a placeholder reference. 356 NewOp = *I; 357 } else if (*I == Placeholder) { 358 // Common case is that it just references this one placeholder. 359 NewOp = RealVal; 360 } else { 361 // Otherwise, look up the placeholder in ResolveConstants. 362 ResolveConstantsTy::iterator It = 363 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 364 std::pair<Constant*, unsigned>(cast<Constant>(*I), 365 0)); 366 assert(It != ResolveConstants.end() && It->first == *I); 367 NewOp = operator[](It->second); 368 } 369 370 NewOps.push_back(cast<Constant>(NewOp)); 371 } 372 373 // Make the new constant. 374 Constant *NewC; 375 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 376 NewC = ConstantArray::get(UserCA->getType(), NewOps); 377 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 378 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 379 } else if (isa<ConstantVector>(UserC)) { 380 NewC = ConstantVector::get(NewOps); 381 } else { 382 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 383 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 384 } 385 386 UserC->replaceAllUsesWith(NewC); 387 UserC->destroyConstant(); 388 NewOps.clear(); 389 } 390 391 // Update all ValueHandles, they should be the only users at this point. 392 Placeholder->replaceAllUsesWith(RealVal); 393 delete Placeholder; 394 } 395 } 396 397 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 398 if (Idx == size()) { 399 push_back(V); 400 return; 401 } 402 403 if (Idx >= size()) 404 resize(Idx+1); 405 406 WeakVH &OldV = MDValuePtrs[Idx]; 407 if (!OldV) { 408 OldV = V; 409 return; 410 } 411 412 // If there was a forward reference to this value, replace it. 413 MDNode *PrevVal = cast<MDNode>(OldV); 414 OldV->replaceAllUsesWith(V); 415 MDNode::deleteTemporary(PrevVal); 416 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 417 // value for Idx. 418 MDValuePtrs[Idx] = V; 419 } 420 421 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 422 if (Idx >= size()) 423 resize(Idx + 1); 424 425 if (Value *V = MDValuePtrs[Idx]) { 426 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 427 return V; 428 } 429 430 // Create and return a placeholder, which will later be RAUW'd. 431 Value *V = MDNode::getTemporary(Context, None); 432 MDValuePtrs[Idx] = V; 433 return V; 434 } 435 436 Type *BitcodeReader::getTypeByID(unsigned ID) { 437 // The type table size is always specified correctly. 438 if (ID >= TypeList.size()) 439 return nullptr; 440 441 if (Type *Ty = TypeList[ID]) 442 return Ty; 443 444 // If we have a forward reference, the only possible case is when it is to a 445 // named struct. Just create a placeholder for now. 446 return TypeList[ID] = StructType::create(Context); 447 } 448 449 450 //===----------------------------------------------------------------------===// 451 // Functions for parsing blocks from the bitcode file 452 //===----------------------------------------------------------------------===// 453 454 455 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 456 /// been decoded from the given integer. This function must stay in sync with 457 /// 'encodeLLVMAttributesForBitcode'. 458 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 459 uint64_t EncodedAttrs) { 460 // FIXME: Remove in 4.0. 461 462 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 463 // the bits above 31 down by 11 bits. 464 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 465 assert((!Alignment || isPowerOf2_32(Alignment)) && 466 "Alignment must be a power of two."); 467 468 if (Alignment) 469 B.addAlignmentAttr(Alignment); 470 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 471 (EncodedAttrs & 0xffff)); 472 } 473 474 error_code BitcodeReader::ParseAttributeBlock() { 475 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 476 return Error(InvalidRecord); 477 478 if (!MAttributes.empty()) 479 return Error(InvalidMultipleBlocks); 480 481 SmallVector<uint64_t, 64> Record; 482 483 SmallVector<AttributeSet, 8> Attrs; 484 485 // Read all the records. 486 while (1) { 487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 488 489 switch (Entry.Kind) { 490 case BitstreamEntry::SubBlock: // Handled for us already. 491 case BitstreamEntry::Error: 492 return Error(MalformedBlock); 493 case BitstreamEntry::EndBlock: 494 return error_code(); 495 case BitstreamEntry::Record: 496 // The interesting case. 497 break; 498 } 499 500 // Read a record. 501 Record.clear(); 502 switch (Stream.readRecord(Entry.ID, Record)) { 503 default: // Default behavior: ignore. 504 break; 505 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 506 // FIXME: Remove in 4.0. 507 if (Record.size() & 1) 508 return Error(InvalidRecord); 509 510 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 511 AttrBuilder B; 512 decodeLLVMAttributesForBitcode(B, Record[i+1]); 513 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 514 } 515 516 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 517 Attrs.clear(); 518 break; 519 } 520 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 521 for (unsigned i = 0, e = Record.size(); i != e; ++i) 522 Attrs.push_back(MAttributeGroups[Record[i]]); 523 524 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 525 Attrs.clear(); 526 break; 527 } 528 } 529 } 530 } 531 532 // Returns Attribute::None on unrecognized codes. 533 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 534 switch (Code) { 535 default: 536 return Attribute::None; 537 case bitc::ATTR_KIND_ALIGNMENT: 538 return Attribute::Alignment; 539 case bitc::ATTR_KIND_ALWAYS_INLINE: 540 return Attribute::AlwaysInline; 541 case bitc::ATTR_KIND_BUILTIN: 542 return Attribute::Builtin; 543 case bitc::ATTR_KIND_BY_VAL: 544 return Attribute::ByVal; 545 case bitc::ATTR_KIND_IN_ALLOCA: 546 return Attribute::InAlloca; 547 case bitc::ATTR_KIND_COLD: 548 return Attribute::Cold; 549 case bitc::ATTR_KIND_INLINE_HINT: 550 return Attribute::InlineHint; 551 case bitc::ATTR_KIND_IN_REG: 552 return Attribute::InReg; 553 case bitc::ATTR_KIND_JUMP_TABLE: 554 return Attribute::JumpTable; 555 case bitc::ATTR_KIND_MIN_SIZE: 556 return Attribute::MinSize; 557 case bitc::ATTR_KIND_NAKED: 558 return Attribute::Naked; 559 case bitc::ATTR_KIND_NEST: 560 return Attribute::Nest; 561 case bitc::ATTR_KIND_NO_ALIAS: 562 return Attribute::NoAlias; 563 case bitc::ATTR_KIND_NO_BUILTIN: 564 return Attribute::NoBuiltin; 565 case bitc::ATTR_KIND_NO_CAPTURE: 566 return Attribute::NoCapture; 567 case bitc::ATTR_KIND_NO_DUPLICATE: 568 return Attribute::NoDuplicate; 569 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 570 return Attribute::NoImplicitFloat; 571 case bitc::ATTR_KIND_NO_INLINE: 572 return Attribute::NoInline; 573 case bitc::ATTR_KIND_NON_LAZY_BIND: 574 return Attribute::NonLazyBind; 575 case bitc::ATTR_KIND_NON_NULL: 576 return Attribute::NonNull; 577 case bitc::ATTR_KIND_NO_RED_ZONE: 578 return Attribute::NoRedZone; 579 case bitc::ATTR_KIND_NO_RETURN: 580 return Attribute::NoReturn; 581 case bitc::ATTR_KIND_NO_UNWIND: 582 return Attribute::NoUnwind; 583 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 584 return Attribute::OptimizeForSize; 585 case bitc::ATTR_KIND_OPTIMIZE_NONE: 586 return Attribute::OptimizeNone; 587 case bitc::ATTR_KIND_READ_NONE: 588 return Attribute::ReadNone; 589 case bitc::ATTR_KIND_READ_ONLY: 590 return Attribute::ReadOnly; 591 case bitc::ATTR_KIND_RETURNED: 592 return Attribute::Returned; 593 case bitc::ATTR_KIND_RETURNS_TWICE: 594 return Attribute::ReturnsTwice; 595 case bitc::ATTR_KIND_S_EXT: 596 return Attribute::SExt; 597 case bitc::ATTR_KIND_STACK_ALIGNMENT: 598 return Attribute::StackAlignment; 599 case bitc::ATTR_KIND_STACK_PROTECT: 600 return Attribute::StackProtect; 601 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 602 return Attribute::StackProtectReq; 603 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 604 return Attribute::StackProtectStrong; 605 case bitc::ATTR_KIND_STRUCT_RET: 606 return Attribute::StructRet; 607 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 608 return Attribute::SanitizeAddress; 609 case bitc::ATTR_KIND_SANITIZE_THREAD: 610 return Attribute::SanitizeThread; 611 case bitc::ATTR_KIND_SANITIZE_MEMORY: 612 return Attribute::SanitizeMemory; 613 case bitc::ATTR_KIND_UW_TABLE: 614 return Attribute::UWTable; 615 case bitc::ATTR_KIND_Z_EXT: 616 return Attribute::ZExt; 617 } 618 } 619 620 error_code BitcodeReader::ParseAttrKind(uint64_t Code, 621 Attribute::AttrKind *Kind) { 622 *Kind = GetAttrFromCode(Code); 623 if (*Kind == Attribute::None) 624 return Error(InvalidValue); 625 return error_code(); 626 } 627 628 error_code BitcodeReader::ParseAttributeGroupBlock() { 629 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 630 return Error(InvalidRecord); 631 632 if (!MAttributeGroups.empty()) 633 return Error(InvalidMultipleBlocks); 634 635 SmallVector<uint64_t, 64> Record; 636 637 // Read all the records. 638 while (1) { 639 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 640 641 switch (Entry.Kind) { 642 case BitstreamEntry::SubBlock: // Handled for us already. 643 case BitstreamEntry::Error: 644 return Error(MalformedBlock); 645 case BitstreamEntry::EndBlock: 646 return error_code(); 647 case BitstreamEntry::Record: 648 // The interesting case. 649 break; 650 } 651 652 // Read a record. 653 Record.clear(); 654 switch (Stream.readRecord(Entry.ID, Record)) { 655 default: // Default behavior: ignore. 656 break; 657 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 658 if (Record.size() < 3) 659 return Error(InvalidRecord); 660 661 uint64_t GrpID = Record[0]; 662 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 663 664 AttrBuilder B; 665 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 666 if (Record[i] == 0) { // Enum attribute 667 Attribute::AttrKind Kind; 668 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 669 return EC; 670 671 B.addAttribute(Kind); 672 } else if (Record[i] == 1) { // Align attribute 673 Attribute::AttrKind Kind; 674 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 675 return EC; 676 if (Kind == Attribute::Alignment) 677 B.addAlignmentAttr(Record[++i]); 678 else 679 B.addStackAlignmentAttr(Record[++i]); 680 } else { // String attribute 681 assert((Record[i] == 3 || Record[i] == 4) && 682 "Invalid attribute group entry"); 683 bool HasValue = (Record[i++] == 4); 684 SmallString<64> KindStr; 685 SmallString<64> ValStr; 686 687 while (Record[i] != 0 && i != e) 688 KindStr += Record[i++]; 689 assert(Record[i] == 0 && "Kind string not null terminated"); 690 691 if (HasValue) { 692 // Has a value associated with it. 693 ++i; // Skip the '0' that terminates the "kind" string. 694 while (Record[i] != 0 && i != e) 695 ValStr += Record[i++]; 696 assert(Record[i] == 0 && "Value string not null terminated"); 697 } 698 699 B.addAttribute(KindStr.str(), ValStr.str()); 700 } 701 } 702 703 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 704 break; 705 } 706 } 707 } 708 } 709 710 error_code BitcodeReader::ParseTypeTable() { 711 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 712 return Error(InvalidRecord); 713 714 return ParseTypeTableBody(); 715 } 716 717 error_code BitcodeReader::ParseTypeTableBody() { 718 if (!TypeList.empty()) 719 return Error(InvalidMultipleBlocks); 720 721 SmallVector<uint64_t, 64> Record; 722 unsigned NumRecords = 0; 723 724 SmallString<64> TypeName; 725 726 // Read all the records for this type table. 727 while (1) { 728 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 729 730 switch (Entry.Kind) { 731 case BitstreamEntry::SubBlock: // Handled for us already. 732 case BitstreamEntry::Error: 733 return Error(MalformedBlock); 734 case BitstreamEntry::EndBlock: 735 if (NumRecords != TypeList.size()) 736 return Error(MalformedBlock); 737 return error_code(); 738 case BitstreamEntry::Record: 739 // The interesting case. 740 break; 741 } 742 743 // Read a record. 744 Record.clear(); 745 Type *ResultTy = nullptr; 746 switch (Stream.readRecord(Entry.ID, Record)) { 747 default: 748 return Error(InvalidValue); 749 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 750 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 751 // type list. This allows us to reserve space. 752 if (Record.size() < 1) 753 return Error(InvalidRecord); 754 TypeList.resize(Record[0]); 755 continue; 756 case bitc::TYPE_CODE_VOID: // VOID 757 ResultTy = Type::getVoidTy(Context); 758 break; 759 case bitc::TYPE_CODE_HALF: // HALF 760 ResultTy = Type::getHalfTy(Context); 761 break; 762 case bitc::TYPE_CODE_FLOAT: // FLOAT 763 ResultTy = Type::getFloatTy(Context); 764 break; 765 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 766 ResultTy = Type::getDoubleTy(Context); 767 break; 768 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 769 ResultTy = Type::getX86_FP80Ty(Context); 770 break; 771 case bitc::TYPE_CODE_FP128: // FP128 772 ResultTy = Type::getFP128Ty(Context); 773 break; 774 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 775 ResultTy = Type::getPPC_FP128Ty(Context); 776 break; 777 case bitc::TYPE_CODE_LABEL: // LABEL 778 ResultTy = Type::getLabelTy(Context); 779 break; 780 case bitc::TYPE_CODE_METADATA: // METADATA 781 ResultTy = Type::getMetadataTy(Context); 782 break; 783 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 784 ResultTy = Type::getX86_MMXTy(Context); 785 break; 786 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 787 if (Record.size() < 1) 788 return Error(InvalidRecord); 789 790 ResultTy = IntegerType::get(Context, Record[0]); 791 break; 792 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 793 // [pointee type, address space] 794 if (Record.size() < 1) 795 return Error(InvalidRecord); 796 unsigned AddressSpace = 0; 797 if (Record.size() == 2) 798 AddressSpace = Record[1]; 799 ResultTy = getTypeByID(Record[0]); 800 if (!ResultTy) 801 return Error(InvalidType); 802 ResultTy = PointerType::get(ResultTy, AddressSpace); 803 break; 804 } 805 case bitc::TYPE_CODE_FUNCTION_OLD: { 806 // FIXME: attrid is dead, remove it in LLVM 4.0 807 // FUNCTION: [vararg, attrid, retty, paramty x N] 808 if (Record.size() < 3) 809 return Error(InvalidRecord); 810 SmallVector<Type*, 8> ArgTys; 811 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 812 if (Type *T = getTypeByID(Record[i])) 813 ArgTys.push_back(T); 814 else 815 break; 816 } 817 818 ResultTy = getTypeByID(Record[2]); 819 if (!ResultTy || ArgTys.size() < Record.size()-3) 820 return Error(InvalidType); 821 822 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 823 break; 824 } 825 case bitc::TYPE_CODE_FUNCTION: { 826 // FUNCTION: [vararg, retty, paramty x N] 827 if (Record.size() < 2) 828 return Error(InvalidRecord); 829 SmallVector<Type*, 8> ArgTys; 830 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 831 if (Type *T = getTypeByID(Record[i])) 832 ArgTys.push_back(T); 833 else 834 break; 835 } 836 837 ResultTy = getTypeByID(Record[1]); 838 if (!ResultTy || ArgTys.size() < Record.size()-2) 839 return Error(InvalidType); 840 841 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 842 break; 843 } 844 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 845 if (Record.size() < 1) 846 return Error(InvalidRecord); 847 SmallVector<Type*, 8> EltTys; 848 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 849 if (Type *T = getTypeByID(Record[i])) 850 EltTys.push_back(T); 851 else 852 break; 853 } 854 if (EltTys.size() != Record.size()-1) 855 return Error(InvalidType); 856 ResultTy = StructType::get(Context, EltTys, Record[0]); 857 break; 858 } 859 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 860 if (ConvertToString(Record, 0, TypeName)) 861 return Error(InvalidRecord); 862 continue; 863 864 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 865 if (Record.size() < 1) 866 return Error(InvalidRecord); 867 868 if (NumRecords >= TypeList.size()) 869 return Error(InvalidTYPETable); 870 871 // Check to see if this was forward referenced, if so fill in the temp. 872 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 873 if (Res) { 874 Res->setName(TypeName); 875 TypeList[NumRecords] = nullptr; 876 } else // Otherwise, create a new struct. 877 Res = StructType::create(Context, TypeName); 878 TypeName.clear(); 879 880 SmallVector<Type*, 8> EltTys; 881 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 882 if (Type *T = getTypeByID(Record[i])) 883 EltTys.push_back(T); 884 else 885 break; 886 } 887 if (EltTys.size() != Record.size()-1) 888 return Error(InvalidRecord); 889 Res->setBody(EltTys, Record[0]); 890 ResultTy = Res; 891 break; 892 } 893 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 894 if (Record.size() != 1) 895 return Error(InvalidRecord); 896 897 if (NumRecords >= TypeList.size()) 898 return Error(InvalidTYPETable); 899 900 // Check to see if this was forward referenced, if so fill in the temp. 901 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 902 if (Res) { 903 Res->setName(TypeName); 904 TypeList[NumRecords] = nullptr; 905 } else // Otherwise, create a new struct with no body. 906 Res = StructType::create(Context, TypeName); 907 TypeName.clear(); 908 ResultTy = Res; 909 break; 910 } 911 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 912 if (Record.size() < 2) 913 return Error(InvalidRecord); 914 if ((ResultTy = getTypeByID(Record[1]))) 915 ResultTy = ArrayType::get(ResultTy, Record[0]); 916 else 917 return Error(InvalidType); 918 break; 919 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 920 if (Record.size() < 2) 921 return Error(InvalidRecord); 922 if ((ResultTy = getTypeByID(Record[1]))) 923 ResultTy = VectorType::get(ResultTy, Record[0]); 924 else 925 return Error(InvalidType); 926 break; 927 } 928 929 if (NumRecords >= TypeList.size()) 930 return Error(InvalidTYPETable); 931 assert(ResultTy && "Didn't read a type?"); 932 assert(!TypeList[NumRecords] && "Already read type?"); 933 TypeList[NumRecords++] = ResultTy; 934 } 935 } 936 937 error_code BitcodeReader::ParseValueSymbolTable() { 938 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 939 return Error(InvalidRecord); 940 941 SmallVector<uint64_t, 64> Record; 942 943 // Read all the records for this value table. 944 SmallString<128> ValueName; 945 while (1) { 946 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 947 948 switch (Entry.Kind) { 949 case BitstreamEntry::SubBlock: // Handled for us already. 950 case BitstreamEntry::Error: 951 return Error(MalformedBlock); 952 case BitstreamEntry::EndBlock: 953 return error_code(); 954 case BitstreamEntry::Record: 955 // The interesting case. 956 break; 957 } 958 959 // Read a record. 960 Record.clear(); 961 switch (Stream.readRecord(Entry.ID, Record)) { 962 default: // Default behavior: unknown type. 963 break; 964 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 965 if (ConvertToString(Record, 1, ValueName)) 966 return Error(InvalidRecord); 967 unsigned ValueID = Record[0]; 968 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 969 return Error(InvalidRecord); 970 Value *V = ValueList[ValueID]; 971 972 V->setName(StringRef(ValueName.data(), ValueName.size())); 973 ValueName.clear(); 974 break; 975 } 976 case bitc::VST_CODE_BBENTRY: { 977 if (ConvertToString(Record, 1, ValueName)) 978 return Error(InvalidRecord); 979 BasicBlock *BB = getBasicBlock(Record[0]); 980 if (!BB) 981 return Error(InvalidRecord); 982 983 BB->setName(StringRef(ValueName.data(), ValueName.size())); 984 ValueName.clear(); 985 break; 986 } 987 } 988 } 989 } 990 991 error_code BitcodeReader::ParseMetadata() { 992 unsigned NextMDValueNo = MDValueList.size(); 993 994 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 995 return Error(InvalidRecord); 996 997 SmallVector<uint64_t, 64> Record; 998 999 // Read all the records. 1000 while (1) { 1001 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1002 1003 switch (Entry.Kind) { 1004 case BitstreamEntry::SubBlock: // Handled for us already. 1005 case BitstreamEntry::Error: 1006 return Error(MalformedBlock); 1007 case BitstreamEntry::EndBlock: 1008 return error_code(); 1009 case BitstreamEntry::Record: 1010 // The interesting case. 1011 break; 1012 } 1013 1014 bool IsFunctionLocal = false; 1015 // Read a record. 1016 Record.clear(); 1017 unsigned Code = Stream.readRecord(Entry.ID, Record); 1018 switch (Code) { 1019 default: // Default behavior: ignore. 1020 break; 1021 case bitc::METADATA_NAME: { 1022 // Read name of the named metadata. 1023 SmallString<8> Name(Record.begin(), Record.end()); 1024 Record.clear(); 1025 Code = Stream.ReadCode(); 1026 1027 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1028 unsigned NextBitCode = Stream.readRecord(Code, Record); 1029 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1030 1031 // Read named metadata elements. 1032 unsigned Size = Record.size(); 1033 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1034 for (unsigned i = 0; i != Size; ++i) { 1035 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1036 if (!MD) 1037 return Error(InvalidRecord); 1038 NMD->addOperand(MD); 1039 } 1040 break; 1041 } 1042 case bitc::METADATA_FN_NODE: 1043 IsFunctionLocal = true; 1044 // fall-through 1045 case bitc::METADATA_NODE: { 1046 if (Record.size() % 2 == 1) 1047 return Error(InvalidRecord); 1048 1049 unsigned Size = Record.size(); 1050 SmallVector<Value*, 8> Elts; 1051 for (unsigned i = 0; i != Size; i += 2) { 1052 Type *Ty = getTypeByID(Record[i]); 1053 if (!Ty) 1054 return Error(InvalidRecord); 1055 if (Ty->isMetadataTy()) 1056 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1057 else if (!Ty->isVoidTy()) 1058 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1059 else 1060 Elts.push_back(nullptr); 1061 } 1062 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1063 IsFunctionLocal = false; 1064 MDValueList.AssignValue(V, NextMDValueNo++); 1065 break; 1066 } 1067 case bitc::METADATA_STRING: { 1068 SmallString<8> String(Record.begin(), Record.end()); 1069 Value *V = MDString::get(Context, String); 1070 MDValueList.AssignValue(V, NextMDValueNo++); 1071 break; 1072 } 1073 case bitc::METADATA_KIND: { 1074 if (Record.size() < 2) 1075 return Error(InvalidRecord); 1076 1077 unsigned Kind = Record[0]; 1078 SmallString<8> Name(Record.begin()+1, Record.end()); 1079 1080 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1081 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1082 return Error(ConflictingMETADATA_KINDRecords); 1083 break; 1084 } 1085 } 1086 } 1087 } 1088 1089 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1090 /// the LSB for dense VBR encoding. 1091 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1092 if ((V & 1) == 0) 1093 return V >> 1; 1094 if (V != 1) 1095 return -(V >> 1); 1096 // There is no such thing as -0 with integers. "-0" really means MININT. 1097 return 1ULL << 63; 1098 } 1099 1100 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1101 /// values and aliases that we can. 1102 error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1103 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1104 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1105 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1106 1107 GlobalInitWorklist.swap(GlobalInits); 1108 AliasInitWorklist.swap(AliasInits); 1109 FunctionPrefixWorklist.swap(FunctionPrefixes); 1110 1111 while (!GlobalInitWorklist.empty()) { 1112 unsigned ValID = GlobalInitWorklist.back().second; 1113 if (ValID >= ValueList.size()) { 1114 // Not ready to resolve this yet, it requires something later in the file. 1115 GlobalInits.push_back(GlobalInitWorklist.back()); 1116 } else { 1117 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1118 GlobalInitWorklist.back().first->setInitializer(C); 1119 else 1120 return Error(ExpectedConstant); 1121 } 1122 GlobalInitWorklist.pop_back(); 1123 } 1124 1125 while (!AliasInitWorklist.empty()) { 1126 unsigned ValID = AliasInitWorklist.back().second; 1127 if (ValID >= ValueList.size()) { 1128 AliasInits.push_back(AliasInitWorklist.back()); 1129 } else { 1130 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1131 AliasInitWorklist.back().first->setAliasee(C); 1132 else 1133 return Error(ExpectedConstant); 1134 } 1135 AliasInitWorklist.pop_back(); 1136 } 1137 1138 while (!FunctionPrefixWorklist.empty()) { 1139 unsigned ValID = FunctionPrefixWorklist.back().second; 1140 if (ValID >= ValueList.size()) { 1141 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1142 } else { 1143 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1144 FunctionPrefixWorklist.back().first->setPrefixData(C); 1145 else 1146 return Error(ExpectedConstant); 1147 } 1148 FunctionPrefixWorklist.pop_back(); 1149 } 1150 1151 return error_code(); 1152 } 1153 1154 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1155 SmallVector<uint64_t, 8> Words(Vals.size()); 1156 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1157 BitcodeReader::decodeSignRotatedValue); 1158 1159 return APInt(TypeBits, Words); 1160 } 1161 1162 error_code BitcodeReader::ParseConstants() { 1163 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1164 return Error(InvalidRecord); 1165 1166 SmallVector<uint64_t, 64> Record; 1167 1168 // Read all the records for this value table. 1169 Type *CurTy = Type::getInt32Ty(Context); 1170 unsigned NextCstNo = ValueList.size(); 1171 while (1) { 1172 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1173 1174 switch (Entry.Kind) { 1175 case BitstreamEntry::SubBlock: // Handled for us already. 1176 case BitstreamEntry::Error: 1177 return Error(MalformedBlock); 1178 case BitstreamEntry::EndBlock: 1179 if (NextCstNo != ValueList.size()) 1180 return Error(InvalidConstantReference); 1181 1182 // Once all the constants have been read, go through and resolve forward 1183 // references. 1184 ValueList.ResolveConstantForwardRefs(); 1185 return error_code(); 1186 case BitstreamEntry::Record: 1187 // The interesting case. 1188 break; 1189 } 1190 1191 // Read a record. 1192 Record.clear(); 1193 Value *V = nullptr; 1194 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1195 switch (BitCode) { 1196 default: // Default behavior: unknown constant 1197 case bitc::CST_CODE_UNDEF: // UNDEF 1198 V = UndefValue::get(CurTy); 1199 break; 1200 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1201 if (Record.empty()) 1202 return Error(InvalidRecord); 1203 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1204 return Error(InvalidRecord); 1205 CurTy = TypeList[Record[0]]; 1206 continue; // Skip the ValueList manipulation. 1207 case bitc::CST_CODE_NULL: // NULL 1208 V = Constant::getNullValue(CurTy); 1209 break; 1210 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1211 if (!CurTy->isIntegerTy() || Record.empty()) 1212 return Error(InvalidRecord); 1213 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1214 break; 1215 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1216 if (!CurTy->isIntegerTy() || Record.empty()) 1217 return Error(InvalidRecord); 1218 1219 APInt VInt = ReadWideAPInt(Record, 1220 cast<IntegerType>(CurTy)->getBitWidth()); 1221 V = ConstantInt::get(Context, VInt); 1222 1223 break; 1224 } 1225 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1226 if (Record.empty()) 1227 return Error(InvalidRecord); 1228 if (CurTy->isHalfTy()) 1229 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1230 APInt(16, (uint16_t)Record[0]))); 1231 else if (CurTy->isFloatTy()) 1232 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1233 APInt(32, (uint32_t)Record[0]))); 1234 else if (CurTy->isDoubleTy()) 1235 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1236 APInt(64, Record[0]))); 1237 else if (CurTy->isX86_FP80Ty()) { 1238 // Bits are not stored the same way as a normal i80 APInt, compensate. 1239 uint64_t Rearrange[2]; 1240 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1241 Rearrange[1] = Record[0] >> 48; 1242 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1243 APInt(80, Rearrange))); 1244 } else if (CurTy->isFP128Ty()) 1245 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1246 APInt(128, Record))); 1247 else if (CurTy->isPPC_FP128Ty()) 1248 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1249 APInt(128, Record))); 1250 else 1251 V = UndefValue::get(CurTy); 1252 break; 1253 } 1254 1255 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1256 if (Record.empty()) 1257 return Error(InvalidRecord); 1258 1259 unsigned Size = Record.size(); 1260 SmallVector<Constant*, 16> Elts; 1261 1262 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1263 for (unsigned i = 0; i != Size; ++i) 1264 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1265 STy->getElementType(i))); 1266 V = ConstantStruct::get(STy, Elts); 1267 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1268 Type *EltTy = ATy->getElementType(); 1269 for (unsigned i = 0; i != Size; ++i) 1270 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1271 V = ConstantArray::get(ATy, Elts); 1272 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1273 Type *EltTy = VTy->getElementType(); 1274 for (unsigned i = 0; i != Size; ++i) 1275 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1276 V = ConstantVector::get(Elts); 1277 } else { 1278 V = UndefValue::get(CurTy); 1279 } 1280 break; 1281 } 1282 case bitc::CST_CODE_STRING: // STRING: [values] 1283 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1284 if (Record.empty()) 1285 return Error(InvalidRecord); 1286 1287 SmallString<16> Elts(Record.begin(), Record.end()); 1288 V = ConstantDataArray::getString(Context, Elts, 1289 BitCode == bitc::CST_CODE_CSTRING); 1290 break; 1291 } 1292 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1293 if (Record.empty()) 1294 return Error(InvalidRecord); 1295 1296 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1297 unsigned Size = Record.size(); 1298 1299 if (EltTy->isIntegerTy(8)) { 1300 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1301 if (isa<VectorType>(CurTy)) 1302 V = ConstantDataVector::get(Context, Elts); 1303 else 1304 V = ConstantDataArray::get(Context, Elts); 1305 } else if (EltTy->isIntegerTy(16)) { 1306 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1307 if (isa<VectorType>(CurTy)) 1308 V = ConstantDataVector::get(Context, Elts); 1309 else 1310 V = ConstantDataArray::get(Context, Elts); 1311 } else if (EltTy->isIntegerTy(32)) { 1312 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1313 if (isa<VectorType>(CurTy)) 1314 V = ConstantDataVector::get(Context, Elts); 1315 else 1316 V = ConstantDataArray::get(Context, Elts); 1317 } else if (EltTy->isIntegerTy(64)) { 1318 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1319 if (isa<VectorType>(CurTy)) 1320 V = ConstantDataVector::get(Context, Elts); 1321 else 1322 V = ConstantDataArray::get(Context, Elts); 1323 } else if (EltTy->isFloatTy()) { 1324 SmallVector<float, 16> Elts(Size); 1325 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1326 if (isa<VectorType>(CurTy)) 1327 V = ConstantDataVector::get(Context, Elts); 1328 else 1329 V = ConstantDataArray::get(Context, Elts); 1330 } else if (EltTy->isDoubleTy()) { 1331 SmallVector<double, 16> Elts(Size); 1332 std::transform(Record.begin(), Record.end(), Elts.begin(), 1333 BitsToDouble); 1334 if (isa<VectorType>(CurTy)) 1335 V = ConstantDataVector::get(Context, Elts); 1336 else 1337 V = ConstantDataArray::get(Context, Elts); 1338 } else { 1339 return Error(InvalidTypeForValue); 1340 } 1341 break; 1342 } 1343 1344 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1345 if (Record.size() < 3) 1346 return Error(InvalidRecord); 1347 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1348 if (Opc < 0) { 1349 V = UndefValue::get(CurTy); // Unknown binop. 1350 } else { 1351 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1352 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1353 unsigned Flags = 0; 1354 if (Record.size() >= 4) { 1355 if (Opc == Instruction::Add || 1356 Opc == Instruction::Sub || 1357 Opc == Instruction::Mul || 1358 Opc == Instruction::Shl) { 1359 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1360 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1361 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1362 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1363 } else if (Opc == Instruction::SDiv || 1364 Opc == Instruction::UDiv || 1365 Opc == Instruction::LShr || 1366 Opc == Instruction::AShr) { 1367 if (Record[3] & (1 << bitc::PEO_EXACT)) 1368 Flags |= SDivOperator::IsExact; 1369 } 1370 } 1371 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1372 } 1373 break; 1374 } 1375 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1376 if (Record.size() < 3) 1377 return Error(InvalidRecord); 1378 int Opc = GetDecodedCastOpcode(Record[0]); 1379 if (Opc < 0) { 1380 V = UndefValue::get(CurTy); // Unknown cast. 1381 } else { 1382 Type *OpTy = getTypeByID(Record[1]); 1383 if (!OpTy) 1384 return Error(InvalidRecord); 1385 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1386 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1387 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1388 } 1389 break; 1390 } 1391 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1392 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1393 if (Record.size() & 1) 1394 return Error(InvalidRecord); 1395 SmallVector<Constant*, 16> Elts; 1396 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1397 Type *ElTy = getTypeByID(Record[i]); 1398 if (!ElTy) 1399 return Error(InvalidRecord); 1400 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1401 } 1402 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1403 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1404 BitCode == 1405 bitc::CST_CODE_CE_INBOUNDS_GEP); 1406 break; 1407 } 1408 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1409 if (Record.size() < 3) 1410 return Error(InvalidRecord); 1411 1412 Type *SelectorTy = Type::getInt1Ty(Context); 1413 1414 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1415 // vector. Otherwise, it must be a single bit. 1416 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1417 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1418 VTy->getNumElements()); 1419 1420 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1421 SelectorTy), 1422 ValueList.getConstantFwdRef(Record[1],CurTy), 1423 ValueList.getConstantFwdRef(Record[2],CurTy)); 1424 break; 1425 } 1426 case bitc::CST_CODE_CE_EXTRACTELT 1427 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1428 if (Record.size() < 3) 1429 return Error(InvalidRecord); 1430 VectorType *OpTy = 1431 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1432 if (!OpTy) 1433 return Error(InvalidRecord); 1434 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1435 Constant *Op1 = nullptr; 1436 if (Record.size() == 4) { 1437 Type *IdxTy = getTypeByID(Record[2]); 1438 if (!IdxTy) 1439 return Error(InvalidRecord); 1440 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1441 } else // TODO: Remove with llvm 4.0 1442 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1443 if (!Op1) 1444 return Error(InvalidRecord); 1445 V = ConstantExpr::getExtractElement(Op0, Op1); 1446 break; 1447 } 1448 case bitc::CST_CODE_CE_INSERTELT 1449 : { // CE_INSERTELT: [opval, opval, opty, opval] 1450 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1451 if (Record.size() < 3 || !OpTy) 1452 return Error(InvalidRecord); 1453 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1454 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1455 OpTy->getElementType()); 1456 Constant *Op2 = nullptr; 1457 if (Record.size() == 4) { 1458 Type *IdxTy = getTypeByID(Record[2]); 1459 if (!IdxTy) 1460 return Error(InvalidRecord); 1461 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1462 } else // TODO: Remove with llvm 4.0 1463 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1464 if (!Op2) 1465 return Error(InvalidRecord); 1466 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1467 break; 1468 } 1469 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1470 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1471 if (Record.size() < 3 || !OpTy) 1472 return Error(InvalidRecord); 1473 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1474 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1475 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1476 OpTy->getNumElements()); 1477 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1478 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1479 break; 1480 } 1481 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1482 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1483 VectorType *OpTy = 1484 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1485 if (Record.size() < 4 || !RTy || !OpTy) 1486 return Error(InvalidRecord); 1487 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1488 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1489 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1490 RTy->getNumElements()); 1491 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1492 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1493 break; 1494 } 1495 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1496 if (Record.size() < 4) 1497 return Error(InvalidRecord); 1498 Type *OpTy = getTypeByID(Record[0]); 1499 if (!OpTy) 1500 return Error(InvalidRecord); 1501 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1502 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1503 1504 if (OpTy->isFPOrFPVectorTy()) 1505 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1506 else 1507 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1508 break; 1509 } 1510 // This maintains backward compatibility, pre-asm dialect keywords. 1511 // FIXME: Remove with the 4.0 release. 1512 case bitc::CST_CODE_INLINEASM_OLD: { 1513 if (Record.size() < 2) 1514 return Error(InvalidRecord); 1515 std::string AsmStr, ConstrStr; 1516 bool HasSideEffects = Record[0] & 1; 1517 bool IsAlignStack = Record[0] >> 1; 1518 unsigned AsmStrSize = Record[1]; 1519 if (2+AsmStrSize >= Record.size()) 1520 return Error(InvalidRecord); 1521 unsigned ConstStrSize = Record[2+AsmStrSize]; 1522 if (3+AsmStrSize+ConstStrSize > Record.size()) 1523 return Error(InvalidRecord); 1524 1525 for (unsigned i = 0; i != AsmStrSize; ++i) 1526 AsmStr += (char)Record[2+i]; 1527 for (unsigned i = 0; i != ConstStrSize; ++i) 1528 ConstrStr += (char)Record[3+AsmStrSize+i]; 1529 PointerType *PTy = cast<PointerType>(CurTy); 1530 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1531 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1532 break; 1533 } 1534 // This version adds support for the asm dialect keywords (e.g., 1535 // inteldialect). 1536 case bitc::CST_CODE_INLINEASM: { 1537 if (Record.size() < 2) 1538 return Error(InvalidRecord); 1539 std::string AsmStr, ConstrStr; 1540 bool HasSideEffects = Record[0] & 1; 1541 bool IsAlignStack = (Record[0] >> 1) & 1; 1542 unsigned AsmDialect = Record[0] >> 2; 1543 unsigned AsmStrSize = Record[1]; 1544 if (2+AsmStrSize >= Record.size()) 1545 return Error(InvalidRecord); 1546 unsigned ConstStrSize = Record[2+AsmStrSize]; 1547 if (3+AsmStrSize+ConstStrSize > Record.size()) 1548 return Error(InvalidRecord); 1549 1550 for (unsigned i = 0; i != AsmStrSize; ++i) 1551 AsmStr += (char)Record[2+i]; 1552 for (unsigned i = 0; i != ConstStrSize; ++i) 1553 ConstrStr += (char)Record[3+AsmStrSize+i]; 1554 PointerType *PTy = cast<PointerType>(CurTy); 1555 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1556 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1557 InlineAsm::AsmDialect(AsmDialect)); 1558 break; 1559 } 1560 case bitc::CST_CODE_BLOCKADDRESS:{ 1561 if (Record.size() < 3) 1562 return Error(InvalidRecord); 1563 Type *FnTy = getTypeByID(Record[0]); 1564 if (!FnTy) 1565 return Error(InvalidRecord); 1566 Function *Fn = 1567 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1568 if (!Fn) 1569 return Error(InvalidRecord); 1570 1571 // If the function is already parsed we can insert the block address right 1572 // away. 1573 if (!Fn->empty()) { 1574 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1575 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1576 if (BBI == BBE) 1577 return Error(InvalidID); 1578 ++BBI; 1579 } 1580 V = BlockAddress::get(Fn, BBI); 1581 } else { 1582 // Otherwise insert a placeholder and remember it so it can be inserted 1583 // when the function is parsed. 1584 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1585 Type::getInt8Ty(Context), 1586 false, GlobalValue::InternalLinkage, 1587 nullptr, ""); 1588 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1589 V = FwdRef; 1590 } 1591 break; 1592 } 1593 } 1594 1595 ValueList.AssignValue(V, NextCstNo); 1596 ++NextCstNo; 1597 } 1598 } 1599 1600 error_code BitcodeReader::ParseUseLists() { 1601 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1602 return Error(InvalidRecord); 1603 1604 SmallVector<uint64_t, 64> Record; 1605 1606 // Read all the records. 1607 while (1) { 1608 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1609 1610 switch (Entry.Kind) { 1611 case BitstreamEntry::SubBlock: // Handled for us already. 1612 case BitstreamEntry::Error: 1613 return Error(MalformedBlock); 1614 case BitstreamEntry::EndBlock: 1615 return error_code(); 1616 case BitstreamEntry::Record: 1617 // The interesting case. 1618 break; 1619 } 1620 1621 // Read a use list record. 1622 Record.clear(); 1623 switch (Stream.readRecord(Entry.ID, Record)) { 1624 default: // Default behavior: unknown type. 1625 break; 1626 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1627 unsigned RecordLength = Record.size(); 1628 if (RecordLength < 1) 1629 return Error(InvalidRecord); 1630 UseListRecords.push_back(Record); 1631 break; 1632 } 1633 } 1634 } 1635 } 1636 1637 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1638 /// remember where it is and then skip it. This lets us lazily deserialize the 1639 /// functions. 1640 error_code BitcodeReader::RememberAndSkipFunctionBody() { 1641 // Get the function we are talking about. 1642 if (FunctionsWithBodies.empty()) 1643 return Error(InsufficientFunctionProtos); 1644 1645 Function *Fn = FunctionsWithBodies.back(); 1646 FunctionsWithBodies.pop_back(); 1647 1648 // Save the current stream state. 1649 uint64_t CurBit = Stream.GetCurrentBitNo(); 1650 DeferredFunctionInfo[Fn] = CurBit; 1651 1652 // Skip over the function block for now. 1653 if (Stream.SkipBlock()) 1654 return Error(InvalidRecord); 1655 return error_code(); 1656 } 1657 1658 error_code BitcodeReader::GlobalCleanup() { 1659 // Patch the initializers for globals and aliases up. 1660 ResolveGlobalAndAliasInits(); 1661 if (!GlobalInits.empty() || !AliasInits.empty()) 1662 return Error(MalformedGlobalInitializerSet); 1663 1664 // Look for intrinsic functions which need to be upgraded at some point 1665 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1666 FI != FE; ++FI) { 1667 Function *NewFn; 1668 if (UpgradeIntrinsicFunction(FI, NewFn)) 1669 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1670 } 1671 1672 // Look for global variables which need to be renamed. 1673 for (Module::global_iterator 1674 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1675 GI != GE;) { 1676 GlobalVariable *GV = GI++; 1677 UpgradeGlobalVariable(GV); 1678 } 1679 1680 // Force deallocation of memory for these vectors to favor the client that 1681 // want lazy deserialization. 1682 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1683 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1684 return error_code(); 1685 } 1686 1687 error_code BitcodeReader::ParseModule(bool Resume) { 1688 if (Resume) 1689 Stream.JumpToBit(NextUnreadBit); 1690 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1691 return Error(InvalidRecord); 1692 1693 SmallVector<uint64_t, 64> Record; 1694 std::vector<std::string> SectionTable; 1695 std::vector<std::string> GCTable; 1696 1697 // Read all the records for this module. 1698 while (1) { 1699 BitstreamEntry Entry = Stream.advance(); 1700 1701 switch (Entry.Kind) { 1702 case BitstreamEntry::Error: 1703 return Error(MalformedBlock); 1704 case BitstreamEntry::EndBlock: 1705 return GlobalCleanup(); 1706 1707 case BitstreamEntry::SubBlock: 1708 switch (Entry.ID) { 1709 default: // Skip unknown content. 1710 if (Stream.SkipBlock()) 1711 return Error(InvalidRecord); 1712 break; 1713 case bitc::BLOCKINFO_BLOCK_ID: 1714 if (Stream.ReadBlockInfoBlock()) 1715 return Error(MalformedBlock); 1716 break; 1717 case bitc::PARAMATTR_BLOCK_ID: 1718 if (error_code EC = ParseAttributeBlock()) 1719 return EC; 1720 break; 1721 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1722 if (error_code EC = ParseAttributeGroupBlock()) 1723 return EC; 1724 break; 1725 case bitc::TYPE_BLOCK_ID_NEW: 1726 if (error_code EC = ParseTypeTable()) 1727 return EC; 1728 break; 1729 case bitc::VALUE_SYMTAB_BLOCK_ID: 1730 if (error_code EC = ParseValueSymbolTable()) 1731 return EC; 1732 SeenValueSymbolTable = true; 1733 break; 1734 case bitc::CONSTANTS_BLOCK_ID: 1735 if (error_code EC = ParseConstants()) 1736 return EC; 1737 if (error_code EC = ResolveGlobalAndAliasInits()) 1738 return EC; 1739 break; 1740 case bitc::METADATA_BLOCK_ID: 1741 if (error_code EC = ParseMetadata()) 1742 return EC; 1743 break; 1744 case bitc::FUNCTION_BLOCK_ID: 1745 // If this is the first function body we've seen, reverse the 1746 // FunctionsWithBodies list. 1747 if (!SeenFirstFunctionBody) { 1748 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1749 if (error_code EC = GlobalCleanup()) 1750 return EC; 1751 SeenFirstFunctionBody = true; 1752 } 1753 1754 if (error_code EC = RememberAndSkipFunctionBody()) 1755 return EC; 1756 // For streaming bitcode, suspend parsing when we reach the function 1757 // bodies. Subsequent materialization calls will resume it when 1758 // necessary. For streaming, the function bodies must be at the end of 1759 // the bitcode. If the bitcode file is old, the symbol table will be 1760 // at the end instead and will not have been seen yet. In this case, 1761 // just finish the parse now. 1762 if (LazyStreamer && SeenValueSymbolTable) { 1763 NextUnreadBit = Stream.GetCurrentBitNo(); 1764 return error_code(); 1765 } 1766 break; 1767 case bitc::USELIST_BLOCK_ID: 1768 if (error_code EC = ParseUseLists()) 1769 return EC; 1770 break; 1771 } 1772 continue; 1773 1774 case BitstreamEntry::Record: 1775 // The interesting case. 1776 break; 1777 } 1778 1779 1780 // Read a record. 1781 switch (Stream.readRecord(Entry.ID, Record)) { 1782 default: break; // Default behavior, ignore unknown content. 1783 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1784 if (Record.size() < 1) 1785 return Error(InvalidRecord); 1786 // Only version #0 and #1 are supported so far. 1787 unsigned module_version = Record[0]; 1788 switch (module_version) { 1789 default: 1790 return Error(InvalidValue); 1791 case 0: 1792 UseRelativeIDs = false; 1793 break; 1794 case 1: 1795 UseRelativeIDs = true; 1796 break; 1797 } 1798 break; 1799 } 1800 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1801 std::string S; 1802 if (ConvertToString(Record, 0, S)) 1803 return Error(InvalidRecord); 1804 TheModule->setTargetTriple(S); 1805 break; 1806 } 1807 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1808 std::string S; 1809 if (ConvertToString(Record, 0, S)) 1810 return Error(InvalidRecord); 1811 TheModule->setDataLayout(S); 1812 break; 1813 } 1814 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1815 std::string S; 1816 if (ConvertToString(Record, 0, S)) 1817 return Error(InvalidRecord); 1818 TheModule->setModuleInlineAsm(S); 1819 break; 1820 } 1821 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1822 // FIXME: Remove in 4.0. 1823 std::string S; 1824 if (ConvertToString(Record, 0, S)) 1825 return Error(InvalidRecord); 1826 // Ignore value. 1827 break; 1828 } 1829 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1830 std::string S; 1831 if (ConvertToString(Record, 0, S)) 1832 return Error(InvalidRecord); 1833 SectionTable.push_back(S); 1834 break; 1835 } 1836 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1837 std::string S; 1838 if (ConvertToString(Record, 0, S)) 1839 return Error(InvalidRecord); 1840 GCTable.push_back(S); 1841 break; 1842 } 1843 // GLOBALVAR: [pointer type, isconst, initid, 1844 // linkage, alignment, section, visibility, threadlocal, 1845 // unnamed_addr, dllstorageclass] 1846 case bitc::MODULE_CODE_GLOBALVAR: { 1847 if (Record.size() < 6) 1848 return Error(InvalidRecord); 1849 Type *Ty = getTypeByID(Record[0]); 1850 if (!Ty) 1851 return Error(InvalidRecord); 1852 if (!Ty->isPointerTy()) 1853 return Error(InvalidTypeForValue); 1854 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1855 Ty = cast<PointerType>(Ty)->getElementType(); 1856 1857 bool isConstant = Record[1]; 1858 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1859 unsigned Alignment = (1 << Record[4]) >> 1; 1860 std::string Section; 1861 if (Record[5]) { 1862 if (Record[5]-1 >= SectionTable.size()) 1863 return Error(InvalidID); 1864 Section = SectionTable[Record[5]-1]; 1865 } 1866 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1867 // Local linkage must have default visibility. 1868 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1869 // FIXME: Change to an error if non-default in 4.0. 1870 Visibility = GetDecodedVisibility(Record[6]); 1871 1872 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1873 if (Record.size() > 7) 1874 TLM = GetDecodedThreadLocalMode(Record[7]); 1875 1876 bool UnnamedAddr = false; 1877 if (Record.size() > 8) 1878 UnnamedAddr = Record[8]; 1879 1880 bool ExternallyInitialized = false; 1881 if (Record.size() > 9) 1882 ExternallyInitialized = Record[9]; 1883 1884 GlobalVariable *NewGV = 1885 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1886 TLM, AddressSpace, ExternallyInitialized); 1887 NewGV->setAlignment(Alignment); 1888 if (!Section.empty()) 1889 NewGV->setSection(Section); 1890 NewGV->setVisibility(Visibility); 1891 NewGV->setUnnamedAddr(UnnamedAddr); 1892 1893 if (Record.size() > 10) 1894 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1895 else 1896 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1897 1898 ValueList.push_back(NewGV); 1899 1900 // Remember which value to use for the global initializer. 1901 if (unsigned InitID = Record[2]) 1902 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1903 break; 1904 } 1905 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1906 // alignment, section, visibility, gc, unnamed_addr, 1907 // dllstorageclass] 1908 case bitc::MODULE_CODE_FUNCTION: { 1909 if (Record.size() < 8) 1910 return Error(InvalidRecord); 1911 Type *Ty = getTypeByID(Record[0]); 1912 if (!Ty) 1913 return Error(InvalidRecord); 1914 if (!Ty->isPointerTy()) 1915 return Error(InvalidTypeForValue); 1916 FunctionType *FTy = 1917 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1918 if (!FTy) 1919 return Error(InvalidTypeForValue); 1920 1921 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1922 "", TheModule); 1923 1924 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1925 bool isProto = Record[2]; 1926 Func->setLinkage(GetDecodedLinkage(Record[3])); 1927 Func->setAttributes(getAttributes(Record[4])); 1928 1929 Func->setAlignment((1 << Record[5]) >> 1); 1930 if (Record[6]) { 1931 if (Record[6]-1 >= SectionTable.size()) 1932 return Error(InvalidID); 1933 Func->setSection(SectionTable[Record[6]-1]); 1934 } 1935 // Local linkage must have default visibility. 1936 if (!Func->hasLocalLinkage()) 1937 // FIXME: Change to an error if non-default in 4.0. 1938 Func->setVisibility(GetDecodedVisibility(Record[7])); 1939 if (Record.size() > 8 && Record[8]) { 1940 if (Record[8]-1 > GCTable.size()) 1941 return Error(InvalidID); 1942 Func->setGC(GCTable[Record[8]-1].c_str()); 1943 } 1944 bool UnnamedAddr = false; 1945 if (Record.size() > 9) 1946 UnnamedAddr = Record[9]; 1947 Func->setUnnamedAddr(UnnamedAddr); 1948 if (Record.size() > 10 && Record[10] != 0) 1949 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1950 1951 if (Record.size() > 11) 1952 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 1953 else 1954 UpgradeDLLImportExportLinkage(Func, Record[3]); 1955 1956 ValueList.push_back(Func); 1957 1958 // If this is a function with a body, remember the prototype we are 1959 // creating now, so that we can match up the body with them later. 1960 if (!isProto) { 1961 FunctionsWithBodies.push_back(Func); 1962 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1963 } 1964 break; 1965 } 1966 // ALIAS: [alias type, aliasee val#, linkage] 1967 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 1968 case bitc::MODULE_CODE_ALIAS: { 1969 if (Record.size() < 3) 1970 return Error(InvalidRecord); 1971 Type *Ty = getTypeByID(Record[0]); 1972 if (!Ty) 1973 return Error(InvalidRecord); 1974 auto *PTy = dyn_cast<PointerType>(Ty); 1975 if (!PTy) 1976 return Error(InvalidTypeForValue); 1977 1978 auto *NewGA = 1979 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 1980 GetDecodedLinkage(Record[2]), "", TheModule); 1981 // Old bitcode files didn't have visibility field. 1982 // Local linkage must have default visibility. 1983 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 1984 // FIXME: Change to an error if non-default in 4.0. 1985 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1986 if (Record.size() > 4) 1987 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 1988 else 1989 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 1990 if (Record.size() > 5) 1991 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 1992 if (Record.size() > 6) 1993 NewGA->setUnnamedAddr(Record[6]); 1994 ValueList.push_back(NewGA); 1995 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1996 break; 1997 } 1998 /// MODULE_CODE_PURGEVALS: [numvals] 1999 case bitc::MODULE_CODE_PURGEVALS: 2000 // Trim down the value list to the specified size. 2001 if (Record.size() < 1 || Record[0] > ValueList.size()) 2002 return Error(InvalidRecord); 2003 ValueList.shrinkTo(Record[0]); 2004 break; 2005 } 2006 Record.clear(); 2007 } 2008 } 2009 2010 error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2011 TheModule = nullptr; 2012 2013 if (error_code EC = InitStream()) 2014 return EC; 2015 2016 // Sniff for the signature. 2017 if (Stream.Read(8) != 'B' || 2018 Stream.Read(8) != 'C' || 2019 Stream.Read(4) != 0x0 || 2020 Stream.Read(4) != 0xC || 2021 Stream.Read(4) != 0xE || 2022 Stream.Read(4) != 0xD) 2023 return Error(InvalidBitcodeSignature); 2024 2025 // We expect a number of well-defined blocks, though we don't necessarily 2026 // need to understand them all. 2027 while (1) { 2028 if (Stream.AtEndOfStream()) 2029 return error_code(); 2030 2031 BitstreamEntry Entry = 2032 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2033 2034 switch (Entry.Kind) { 2035 case BitstreamEntry::Error: 2036 return Error(MalformedBlock); 2037 case BitstreamEntry::EndBlock: 2038 return error_code(); 2039 2040 case BitstreamEntry::SubBlock: 2041 switch (Entry.ID) { 2042 case bitc::BLOCKINFO_BLOCK_ID: 2043 if (Stream.ReadBlockInfoBlock()) 2044 return Error(MalformedBlock); 2045 break; 2046 case bitc::MODULE_BLOCK_ID: 2047 // Reject multiple MODULE_BLOCK's in a single bitstream. 2048 if (TheModule) 2049 return Error(InvalidMultipleBlocks); 2050 TheModule = M; 2051 if (error_code EC = ParseModule(false)) 2052 return EC; 2053 if (LazyStreamer) 2054 return error_code(); 2055 break; 2056 default: 2057 if (Stream.SkipBlock()) 2058 return Error(InvalidRecord); 2059 break; 2060 } 2061 continue; 2062 case BitstreamEntry::Record: 2063 // There should be no records in the top-level of blocks. 2064 2065 // The ranlib in Xcode 4 will align archive members by appending newlines 2066 // to the end of them. If this file size is a multiple of 4 but not 8, we 2067 // have to read and ignore these final 4 bytes :-( 2068 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2069 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2070 Stream.AtEndOfStream()) 2071 return error_code(); 2072 2073 return Error(InvalidRecord); 2074 } 2075 } 2076 } 2077 2078 error_code BitcodeReader::ParseModuleTriple(std::string &Triple) { 2079 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2080 return Error(InvalidRecord); 2081 2082 SmallVector<uint64_t, 64> Record; 2083 2084 // Read all the records for this module. 2085 while (1) { 2086 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2087 2088 switch (Entry.Kind) { 2089 case BitstreamEntry::SubBlock: // Handled for us already. 2090 case BitstreamEntry::Error: 2091 return Error(MalformedBlock); 2092 case BitstreamEntry::EndBlock: 2093 return error_code(); 2094 case BitstreamEntry::Record: 2095 // The interesting case. 2096 break; 2097 } 2098 2099 // Read a record. 2100 switch (Stream.readRecord(Entry.ID, Record)) { 2101 default: break; // Default behavior, ignore unknown content. 2102 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2103 std::string S; 2104 if (ConvertToString(Record, 0, S)) 2105 return Error(InvalidRecord); 2106 Triple = S; 2107 break; 2108 } 2109 } 2110 Record.clear(); 2111 } 2112 } 2113 2114 error_code BitcodeReader::ParseTriple(std::string &Triple) { 2115 if (error_code EC = InitStream()) 2116 return EC; 2117 2118 // Sniff for the signature. 2119 if (Stream.Read(8) != 'B' || 2120 Stream.Read(8) != 'C' || 2121 Stream.Read(4) != 0x0 || 2122 Stream.Read(4) != 0xC || 2123 Stream.Read(4) != 0xE || 2124 Stream.Read(4) != 0xD) 2125 return Error(InvalidBitcodeSignature); 2126 2127 // We expect a number of well-defined blocks, though we don't necessarily 2128 // need to understand them all. 2129 while (1) { 2130 BitstreamEntry Entry = Stream.advance(); 2131 2132 switch (Entry.Kind) { 2133 case BitstreamEntry::Error: 2134 return Error(MalformedBlock); 2135 case BitstreamEntry::EndBlock: 2136 return error_code(); 2137 2138 case BitstreamEntry::SubBlock: 2139 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2140 return ParseModuleTriple(Triple); 2141 2142 // Ignore other sub-blocks. 2143 if (Stream.SkipBlock()) 2144 return Error(MalformedBlock); 2145 continue; 2146 2147 case BitstreamEntry::Record: 2148 Stream.skipRecord(Entry.ID); 2149 continue; 2150 } 2151 } 2152 } 2153 2154 /// ParseMetadataAttachment - Parse metadata attachments. 2155 error_code BitcodeReader::ParseMetadataAttachment() { 2156 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2157 return Error(InvalidRecord); 2158 2159 SmallVector<uint64_t, 64> Record; 2160 while (1) { 2161 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2162 2163 switch (Entry.Kind) { 2164 case BitstreamEntry::SubBlock: // Handled for us already. 2165 case BitstreamEntry::Error: 2166 return Error(MalformedBlock); 2167 case BitstreamEntry::EndBlock: 2168 return error_code(); 2169 case BitstreamEntry::Record: 2170 // The interesting case. 2171 break; 2172 } 2173 2174 // Read a metadata attachment record. 2175 Record.clear(); 2176 switch (Stream.readRecord(Entry.ID, Record)) { 2177 default: // Default behavior: ignore. 2178 break; 2179 case bitc::METADATA_ATTACHMENT: { 2180 unsigned RecordLength = Record.size(); 2181 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2182 return Error(InvalidRecord); 2183 Instruction *Inst = InstructionList[Record[0]]; 2184 for (unsigned i = 1; i != RecordLength; i = i+2) { 2185 unsigned Kind = Record[i]; 2186 DenseMap<unsigned, unsigned>::iterator I = 2187 MDKindMap.find(Kind); 2188 if (I == MDKindMap.end()) 2189 return Error(InvalidID); 2190 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2191 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2192 if (I->second == LLVMContext::MD_tbaa) 2193 InstsWithTBAATag.push_back(Inst); 2194 } 2195 break; 2196 } 2197 } 2198 } 2199 } 2200 2201 /// ParseFunctionBody - Lazily parse the specified function body block. 2202 error_code BitcodeReader::ParseFunctionBody(Function *F) { 2203 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2204 return Error(InvalidRecord); 2205 2206 InstructionList.clear(); 2207 unsigned ModuleValueListSize = ValueList.size(); 2208 unsigned ModuleMDValueListSize = MDValueList.size(); 2209 2210 // Add all the function arguments to the value table. 2211 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2212 ValueList.push_back(I); 2213 2214 unsigned NextValueNo = ValueList.size(); 2215 BasicBlock *CurBB = nullptr; 2216 unsigned CurBBNo = 0; 2217 2218 DebugLoc LastLoc; 2219 2220 // Read all the records. 2221 SmallVector<uint64_t, 64> Record; 2222 while (1) { 2223 BitstreamEntry Entry = Stream.advance(); 2224 2225 switch (Entry.Kind) { 2226 case BitstreamEntry::Error: 2227 return Error(MalformedBlock); 2228 case BitstreamEntry::EndBlock: 2229 goto OutOfRecordLoop; 2230 2231 case BitstreamEntry::SubBlock: 2232 switch (Entry.ID) { 2233 default: // Skip unknown content. 2234 if (Stream.SkipBlock()) 2235 return Error(InvalidRecord); 2236 break; 2237 case bitc::CONSTANTS_BLOCK_ID: 2238 if (error_code EC = ParseConstants()) 2239 return EC; 2240 NextValueNo = ValueList.size(); 2241 break; 2242 case bitc::VALUE_SYMTAB_BLOCK_ID: 2243 if (error_code EC = ParseValueSymbolTable()) 2244 return EC; 2245 break; 2246 case bitc::METADATA_ATTACHMENT_ID: 2247 if (error_code EC = ParseMetadataAttachment()) 2248 return EC; 2249 break; 2250 case bitc::METADATA_BLOCK_ID: 2251 if (error_code EC = ParseMetadata()) 2252 return EC; 2253 break; 2254 } 2255 continue; 2256 2257 case BitstreamEntry::Record: 2258 // The interesting case. 2259 break; 2260 } 2261 2262 // Read a record. 2263 Record.clear(); 2264 Instruction *I = nullptr; 2265 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2266 switch (BitCode) { 2267 default: // Default behavior: reject 2268 return Error(InvalidValue); 2269 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2270 if (Record.size() < 1 || Record[0] == 0) 2271 return Error(InvalidRecord); 2272 // Create all the basic blocks for the function. 2273 FunctionBBs.resize(Record[0]); 2274 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2275 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2276 CurBB = FunctionBBs[0]; 2277 continue; 2278 2279 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2280 // This record indicates that the last instruction is at the same 2281 // location as the previous instruction with a location. 2282 I = nullptr; 2283 2284 // Get the last instruction emitted. 2285 if (CurBB && !CurBB->empty()) 2286 I = &CurBB->back(); 2287 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2288 !FunctionBBs[CurBBNo-1]->empty()) 2289 I = &FunctionBBs[CurBBNo-1]->back(); 2290 2291 if (!I) 2292 return Error(InvalidRecord); 2293 I->setDebugLoc(LastLoc); 2294 I = nullptr; 2295 continue; 2296 2297 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2298 I = nullptr; // Get the last instruction emitted. 2299 if (CurBB && !CurBB->empty()) 2300 I = &CurBB->back(); 2301 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2302 !FunctionBBs[CurBBNo-1]->empty()) 2303 I = &FunctionBBs[CurBBNo-1]->back(); 2304 if (!I || Record.size() < 4) 2305 return Error(InvalidRecord); 2306 2307 unsigned Line = Record[0], Col = Record[1]; 2308 unsigned ScopeID = Record[2], IAID = Record[3]; 2309 2310 MDNode *Scope = nullptr, *IA = nullptr; 2311 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2312 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2313 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2314 I->setDebugLoc(LastLoc); 2315 I = nullptr; 2316 continue; 2317 } 2318 2319 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2320 unsigned OpNum = 0; 2321 Value *LHS, *RHS; 2322 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2323 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2324 OpNum+1 > Record.size()) 2325 return Error(InvalidRecord); 2326 2327 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2328 if (Opc == -1) 2329 return Error(InvalidRecord); 2330 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2331 InstructionList.push_back(I); 2332 if (OpNum < Record.size()) { 2333 if (Opc == Instruction::Add || 2334 Opc == Instruction::Sub || 2335 Opc == Instruction::Mul || 2336 Opc == Instruction::Shl) { 2337 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2338 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2339 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2340 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2341 } else if (Opc == Instruction::SDiv || 2342 Opc == Instruction::UDiv || 2343 Opc == Instruction::LShr || 2344 Opc == Instruction::AShr) { 2345 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2346 cast<BinaryOperator>(I)->setIsExact(true); 2347 } else if (isa<FPMathOperator>(I)) { 2348 FastMathFlags FMF; 2349 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2350 FMF.setUnsafeAlgebra(); 2351 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2352 FMF.setNoNaNs(); 2353 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2354 FMF.setNoInfs(); 2355 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2356 FMF.setNoSignedZeros(); 2357 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2358 FMF.setAllowReciprocal(); 2359 if (FMF.any()) 2360 I->setFastMathFlags(FMF); 2361 } 2362 2363 } 2364 break; 2365 } 2366 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2367 unsigned OpNum = 0; 2368 Value *Op; 2369 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2370 OpNum+2 != Record.size()) 2371 return Error(InvalidRecord); 2372 2373 Type *ResTy = getTypeByID(Record[OpNum]); 2374 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2375 if (Opc == -1 || !ResTy) 2376 return Error(InvalidRecord); 2377 Instruction *Temp = nullptr; 2378 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2379 if (Temp) { 2380 InstructionList.push_back(Temp); 2381 CurBB->getInstList().push_back(Temp); 2382 } 2383 } else { 2384 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2385 } 2386 InstructionList.push_back(I); 2387 break; 2388 } 2389 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2390 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2391 unsigned OpNum = 0; 2392 Value *BasePtr; 2393 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2394 return Error(InvalidRecord); 2395 2396 SmallVector<Value*, 16> GEPIdx; 2397 while (OpNum != Record.size()) { 2398 Value *Op; 2399 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2400 return Error(InvalidRecord); 2401 GEPIdx.push_back(Op); 2402 } 2403 2404 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2405 InstructionList.push_back(I); 2406 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2407 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2408 break; 2409 } 2410 2411 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2412 // EXTRACTVAL: [opty, opval, n x indices] 2413 unsigned OpNum = 0; 2414 Value *Agg; 2415 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2416 return Error(InvalidRecord); 2417 2418 SmallVector<unsigned, 4> EXTRACTVALIdx; 2419 for (unsigned RecSize = Record.size(); 2420 OpNum != RecSize; ++OpNum) { 2421 uint64_t Index = Record[OpNum]; 2422 if ((unsigned)Index != Index) 2423 return Error(InvalidValue); 2424 EXTRACTVALIdx.push_back((unsigned)Index); 2425 } 2426 2427 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2428 InstructionList.push_back(I); 2429 break; 2430 } 2431 2432 case bitc::FUNC_CODE_INST_INSERTVAL: { 2433 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2434 unsigned OpNum = 0; 2435 Value *Agg; 2436 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2437 return Error(InvalidRecord); 2438 Value *Val; 2439 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2440 return Error(InvalidRecord); 2441 2442 SmallVector<unsigned, 4> INSERTVALIdx; 2443 for (unsigned RecSize = Record.size(); 2444 OpNum != RecSize; ++OpNum) { 2445 uint64_t Index = Record[OpNum]; 2446 if ((unsigned)Index != Index) 2447 return Error(InvalidValue); 2448 INSERTVALIdx.push_back((unsigned)Index); 2449 } 2450 2451 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2452 InstructionList.push_back(I); 2453 break; 2454 } 2455 2456 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2457 // obsolete form of select 2458 // handles select i1 ... in old bitcode 2459 unsigned OpNum = 0; 2460 Value *TrueVal, *FalseVal, *Cond; 2461 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2462 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2463 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2464 return Error(InvalidRecord); 2465 2466 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2467 InstructionList.push_back(I); 2468 break; 2469 } 2470 2471 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2472 // new form of select 2473 // handles select i1 or select [N x i1] 2474 unsigned OpNum = 0; 2475 Value *TrueVal, *FalseVal, *Cond; 2476 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2477 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2478 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2479 return Error(InvalidRecord); 2480 2481 // select condition can be either i1 or [N x i1] 2482 if (VectorType* vector_type = 2483 dyn_cast<VectorType>(Cond->getType())) { 2484 // expect <n x i1> 2485 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2486 return Error(InvalidTypeForValue); 2487 } else { 2488 // expect i1 2489 if (Cond->getType() != Type::getInt1Ty(Context)) 2490 return Error(InvalidTypeForValue); 2491 } 2492 2493 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2494 InstructionList.push_back(I); 2495 break; 2496 } 2497 2498 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2499 unsigned OpNum = 0; 2500 Value *Vec, *Idx; 2501 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2502 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2503 return Error(InvalidRecord); 2504 I = ExtractElementInst::Create(Vec, Idx); 2505 InstructionList.push_back(I); 2506 break; 2507 } 2508 2509 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2510 unsigned OpNum = 0; 2511 Value *Vec, *Elt, *Idx; 2512 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2513 popValue(Record, OpNum, NextValueNo, 2514 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2515 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2516 return Error(InvalidRecord); 2517 I = InsertElementInst::Create(Vec, Elt, Idx); 2518 InstructionList.push_back(I); 2519 break; 2520 } 2521 2522 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2523 unsigned OpNum = 0; 2524 Value *Vec1, *Vec2, *Mask; 2525 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2526 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2527 return Error(InvalidRecord); 2528 2529 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2530 return Error(InvalidRecord); 2531 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2532 InstructionList.push_back(I); 2533 break; 2534 } 2535 2536 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2537 // Old form of ICmp/FCmp returning bool 2538 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2539 // both legal on vectors but had different behaviour. 2540 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2541 // FCmp/ICmp returning bool or vector of bool 2542 2543 unsigned OpNum = 0; 2544 Value *LHS, *RHS; 2545 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2546 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2547 OpNum+1 != Record.size()) 2548 return Error(InvalidRecord); 2549 2550 if (LHS->getType()->isFPOrFPVectorTy()) 2551 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2552 else 2553 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2554 InstructionList.push_back(I); 2555 break; 2556 } 2557 2558 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2559 { 2560 unsigned Size = Record.size(); 2561 if (Size == 0) { 2562 I = ReturnInst::Create(Context); 2563 InstructionList.push_back(I); 2564 break; 2565 } 2566 2567 unsigned OpNum = 0; 2568 Value *Op = nullptr; 2569 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2570 return Error(InvalidRecord); 2571 if (OpNum != Record.size()) 2572 return Error(InvalidRecord); 2573 2574 I = ReturnInst::Create(Context, Op); 2575 InstructionList.push_back(I); 2576 break; 2577 } 2578 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2579 if (Record.size() != 1 && Record.size() != 3) 2580 return Error(InvalidRecord); 2581 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2582 if (!TrueDest) 2583 return Error(InvalidRecord); 2584 2585 if (Record.size() == 1) { 2586 I = BranchInst::Create(TrueDest); 2587 InstructionList.push_back(I); 2588 } 2589 else { 2590 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2591 Value *Cond = getValue(Record, 2, NextValueNo, 2592 Type::getInt1Ty(Context)); 2593 if (!FalseDest || !Cond) 2594 return Error(InvalidRecord); 2595 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2596 InstructionList.push_back(I); 2597 } 2598 break; 2599 } 2600 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2601 // Check magic 2602 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2603 // "New" SwitchInst format with case ranges. The changes to write this 2604 // format were reverted but we still recognize bitcode that uses it. 2605 // Hopefully someday we will have support for case ranges and can use 2606 // this format again. 2607 2608 Type *OpTy = getTypeByID(Record[1]); 2609 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2610 2611 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2612 BasicBlock *Default = getBasicBlock(Record[3]); 2613 if (!OpTy || !Cond || !Default) 2614 return Error(InvalidRecord); 2615 2616 unsigned NumCases = Record[4]; 2617 2618 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2619 InstructionList.push_back(SI); 2620 2621 unsigned CurIdx = 5; 2622 for (unsigned i = 0; i != NumCases; ++i) { 2623 SmallVector<ConstantInt*, 1> CaseVals; 2624 unsigned NumItems = Record[CurIdx++]; 2625 for (unsigned ci = 0; ci != NumItems; ++ci) { 2626 bool isSingleNumber = Record[CurIdx++]; 2627 2628 APInt Low; 2629 unsigned ActiveWords = 1; 2630 if (ValueBitWidth > 64) 2631 ActiveWords = Record[CurIdx++]; 2632 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2633 ValueBitWidth); 2634 CurIdx += ActiveWords; 2635 2636 if (!isSingleNumber) { 2637 ActiveWords = 1; 2638 if (ValueBitWidth > 64) 2639 ActiveWords = Record[CurIdx++]; 2640 APInt High = 2641 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2642 ValueBitWidth); 2643 CurIdx += ActiveWords; 2644 2645 // FIXME: It is not clear whether values in the range should be 2646 // compared as signed or unsigned values. The partially 2647 // implemented changes that used this format in the past used 2648 // unsigned comparisons. 2649 for ( ; Low.ule(High); ++Low) 2650 CaseVals.push_back(ConstantInt::get(Context, Low)); 2651 } else 2652 CaseVals.push_back(ConstantInt::get(Context, Low)); 2653 } 2654 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2655 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2656 cve = CaseVals.end(); cvi != cve; ++cvi) 2657 SI->addCase(*cvi, DestBB); 2658 } 2659 I = SI; 2660 break; 2661 } 2662 2663 // Old SwitchInst format without case ranges. 2664 2665 if (Record.size() < 3 || (Record.size() & 1) == 0) 2666 return Error(InvalidRecord); 2667 Type *OpTy = getTypeByID(Record[0]); 2668 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2669 BasicBlock *Default = getBasicBlock(Record[2]); 2670 if (!OpTy || !Cond || !Default) 2671 return Error(InvalidRecord); 2672 unsigned NumCases = (Record.size()-3)/2; 2673 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2674 InstructionList.push_back(SI); 2675 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2676 ConstantInt *CaseVal = 2677 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2678 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2679 if (!CaseVal || !DestBB) { 2680 delete SI; 2681 return Error(InvalidRecord); 2682 } 2683 SI->addCase(CaseVal, DestBB); 2684 } 2685 I = SI; 2686 break; 2687 } 2688 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2689 if (Record.size() < 2) 2690 return Error(InvalidRecord); 2691 Type *OpTy = getTypeByID(Record[0]); 2692 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2693 if (!OpTy || !Address) 2694 return Error(InvalidRecord); 2695 unsigned NumDests = Record.size()-2; 2696 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2697 InstructionList.push_back(IBI); 2698 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2699 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2700 IBI->addDestination(DestBB); 2701 } else { 2702 delete IBI; 2703 return Error(InvalidRecord); 2704 } 2705 } 2706 I = IBI; 2707 break; 2708 } 2709 2710 case bitc::FUNC_CODE_INST_INVOKE: { 2711 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2712 if (Record.size() < 4) 2713 return Error(InvalidRecord); 2714 AttributeSet PAL = getAttributes(Record[0]); 2715 unsigned CCInfo = Record[1]; 2716 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2717 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2718 2719 unsigned OpNum = 4; 2720 Value *Callee; 2721 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2722 return Error(InvalidRecord); 2723 2724 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2725 FunctionType *FTy = !CalleeTy ? nullptr : 2726 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2727 2728 // Check that the right number of fixed parameters are here. 2729 if (!FTy || !NormalBB || !UnwindBB || 2730 Record.size() < OpNum+FTy->getNumParams()) 2731 return Error(InvalidRecord); 2732 2733 SmallVector<Value*, 16> Ops; 2734 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2735 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2736 FTy->getParamType(i))); 2737 if (!Ops.back()) 2738 return Error(InvalidRecord); 2739 } 2740 2741 if (!FTy->isVarArg()) { 2742 if (Record.size() != OpNum) 2743 return Error(InvalidRecord); 2744 } else { 2745 // Read type/value pairs for varargs params. 2746 while (OpNum != Record.size()) { 2747 Value *Op; 2748 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2749 return Error(InvalidRecord); 2750 Ops.push_back(Op); 2751 } 2752 } 2753 2754 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2755 InstructionList.push_back(I); 2756 cast<InvokeInst>(I)->setCallingConv( 2757 static_cast<CallingConv::ID>(CCInfo)); 2758 cast<InvokeInst>(I)->setAttributes(PAL); 2759 break; 2760 } 2761 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2762 unsigned Idx = 0; 2763 Value *Val = nullptr; 2764 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2765 return Error(InvalidRecord); 2766 I = ResumeInst::Create(Val); 2767 InstructionList.push_back(I); 2768 break; 2769 } 2770 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2771 I = new UnreachableInst(Context); 2772 InstructionList.push_back(I); 2773 break; 2774 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2775 if (Record.size() < 1 || ((Record.size()-1)&1)) 2776 return Error(InvalidRecord); 2777 Type *Ty = getTypeByID(Record[0]); 2778 if (!Ty) 2779 return Error(InvalidRecord); 2780 2781 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2782 InstructionList.push_back(PN); 2783 2784 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2785 Value *V; 2786 // With the new function encoding, it is possible that operands have 2787 // negative IDs (for forward references). Use a signed VBR 2788 // representation to keep the encoding small. 2789 if (UseRelativeIDs) 2790 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2791 else 2792 V = getValue(Record, 1+i, NextValueNo, Ty); 2793 BasicBlock *BB = getBasicBlock(Record[2+i]); 2794 if (!V || !BB) 2795 return Error(InvalidRecord); 2796 PN->addIncoming(V, BB); 2797 } 2798 I = PN; 2799 break; 2800 } 2801 2802 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2803 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2804 unsigned Idx = 0; 2805 if (Record.size() < 4) 2806 return Error(InvalidRecord); 2807 Type *Ty = getTypeByID(Record[Idx++]); 2808 if (!Ty) 2809 return Error(InvalidRecord); 2810 Value *PersFn = nullptr; 2811 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2812 return Error(InvalidRecord); 2813 2814 bool IsCleanup = !!Record[Idx++]; 2815 unsigned NumClauses = Record[Idx++]; 2816 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2817 LP->setCleanup(IsCleanup); 2818 for (unsigned J = 0; J != NumClauses; ++J) { 2819 LandingPadInst::ClauseType CT = 2820 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2821 Value *Val; 2822 2823 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2824 delete LP; 2825 return Error(InvalidRecord); 2826 } 2827 2828 assert((CT != LandingPadInst::Catch || 2829 !isa<ArrayType>(Val->getType())) && 2830 "Catch clause has a invalid type!"); 2831 assert((CT != LandingPadInst::Filter || 2832 isa<ArrayType>(Val->getType())) && 2833 "Filter clause has invalid type!"); 2834 LP->addClause(cast<Constant>(Val)); 2835 } 2836 2837 I = LP; 2838 InstructionList.push_back(I); 2839 break; 2840 } 2841 2842 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2843 if (Record.size() != 4) 2844 return Error(InvalidRecord); 2845 PointerType *Ty = 2846 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2847 Type *OpTy = getTypeByID(Record[1]); 2848 Value *Size = getFnValueByID(Record[2], OpTy); 2849 unsigned Align = Record[3]; 2850 if (!Ty || !Size) 2851 return Error(InvalidRecord); 2852 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2853 InstructionList.push_back(I); 2854 break; 2855 } 2856 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2857 unsigned OpNum = 0; 2858 Value *Op; 2859 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2860 OpNum+2 != Record.size()) 2861 return Error(InvalidRecord); 2862 2863 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2864 InstructionList.push_back(I); 2865 break; 2866 } 2867 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2868 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2869 unsigned OpNum = 0; 2870 Value *Op; 2871 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2872 OpNum+4 != Record.size()) 2873 return Error(InvalidRecord); 2874 2875 2876 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2877 if (Ordering == NotAtomic || Ordering == Release || 2878 Ordering == AcquireRelease) 2879 return Error(InvalidRecord); 2880 if (Ordering != NotAtomic && Record[OpNum] == 0) 2881 return Error(InvalidRecord); 2882 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2883 2884 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2885 Ordering, SynchScope); 2886 InstructionList.push_back(I); 2887 break; 2888 } 2889 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2890 unsigned OpNum = 0; 2891 Value *Val, *Ptr; 2892 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2893 popValue(Record, OpNum, NextValueNo, 2894 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2895 OpNum+2 != Record.size()) 2896 return Error(InvalidRecord); 2897 2898 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2899 InstructionList.push_back(I); 2900 break; 2901 } 2902 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2903 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2904 unsigned OpNum = 0; 2905 Value *Val, *Ptr; 2906 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2907 popValue(Record, OpNum, NextValueNo, 2908 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2909 OpNum+4 != Record.size()) 2910 return Error(InvalidRecord); 2911 2912 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2913 if (Ordering == NotAtomic || Ordering == Acquire || 2914 Ordering == AcquireRelease) 2915 return Error(InvalidRecord); 2916 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2917 if (Ordering != NotAtomic && Record[OpNum] == 0) 2918 return Error(InvalidRecord); 2919 2920 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2921 Ordering, SynchScope); 2922 InstructionList.push_back(I); 2923 break; 2924 } 2925 case bitc::FUNC_CODE_INST_CMPXCHG: { 2926 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 2927 // failureordering] 2928 unsigned OpNum = 0; 2929 Value *Ptr, *Cmp, *New; 2930 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2931 popValue(Record, OpNum, NextValueNo, 2932 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2933 popValue(Record, OpNum, NextValueNo, 2934 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2935 (OpNum + 3 != Record.size() && OpNum + 4 != Record.size())) 2936 return Error(InvalidRecord); 2937 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 2938 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 2939 return Error(InvalidRecord); 2940 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2941 2942 AtomicOrdering FailureOrdering; 2943 if (Record.size() < 7) 2944 FailureOrdering = 2945 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 2946 else 2947 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 2948 2949 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 2950 SynchScope); 2951 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2952 InstructionList.push_back(I); 2953 break; 2954 } 2955 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2956 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2957 unsigned OpNum = 0; 2958 Value *Ptr, *Val; 2959 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2960 popValue(Record, OpNum, NextValueNo, 2961 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2962 OpNum+4 != Record.size()) 2963 return Error(InvalidRecord); 2964 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2965 if (Operation < AtomicRMWInst::FIRST_BINOP || 2966 Operation > AtomicRMWInst::LAST_BINOP) 2967 return Error(InvalidRecord); 2968 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2969 if (Ordering == NotAtomic || Ordering == Unordered) 2970 return Error(InvalidRecord); 2971 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2972 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2973 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2974 InstructionList.push_back(I); 2975 break; 2976 } 2977 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2978 if (2 != Record.size()) 2979 return Error(InvalidRecord); 2980 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2981 if (Ordering == NotAtomic || Ordering == Unordered || 2982 Ordering == Monotonic) 2983 return Error(InvalidRecord); 2984 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2985 I = new FenceInst(Context, Ordering, SynchScope); 2986 InstructionList.push_back(I); 2987 break; 2988 } 2989 case bitc::FUNC_CODE_INST_CALL: { 2990 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2991 if (Record.size() < 3) 2992 return Error(InvalidRecord); 2993 2994 AttributeSet PAL = getAttributes(Record[0]); 2995 unsigned CCInfo = Record[1]; 2996 2997 unsigned OpNum = 2; 2998 Value *Callee; 2999 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3000 return Error(InvalidRecord); 3001 3002 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3003 FunctionType *FTy = nullptr; 3004 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3005 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3006 return Error(InvalidRecord); 3007 3008 SmallVector<Value*, 16> Args; 3009 // Read the fixed params. 3010 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3011 if (FTy->getParamType(i)->isLabelTy()) 3012 Args.push_back(getBasicBlock(Record[OpNum])); 3013 else 3014 Args.push_back(getValue(Record, OpNum, NextValueNo, 3015 FTy->getParamType(i))); 3016 if (!Args.back()) 3017 return Error(InvalidRecord); 3018 } 3019 3020 // Read type/value pairs for varargs params. 3021 if (!FTy->isVarArg()) { 3022 if (OpNum != Record.size()) 3023 return Error(InvalidRecord); 3024 } else { 3025 while (OpNum != Record.size()) { 3026 Value *Op; 3027 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3028 return Error(InvalidRecord); 3029 Args.push_back(Op); 3030 } 3031 } 3032 3033 I = CallInst::Create(Callee, Args); 3034 InstructionList.push_back(I); 3035 cast<CallInst>(I)->setCallingConv( 3036 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3037 CallInst::TailCallKind TCK = CallInst::TCK_None; 3038 if (CCInfo & 1) 3039 TCK = CallInst::TCK_Tail; 3040 if (CCInfo & (1 << 14)) 3041 TCK = CallInst::TCK_MustTail; 3042 cast<CallInst>(I)->setTailCallKind(TCK); 3043 cast<CallInst>(I)->setAttributes(PAL); 3044 break; 3045 } 3046 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3047 if (Record.size() < 3) 3048 return Error(InvalidRecord); 3049 Type *OpTy = getTypeByID(Record[0]); 3050 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3051 Type *ResTy = getTypeByID(Record[2]); 3052 if (!OpTy || !Op || !ResTy) 3053 return Error(InvalidRecord); 3054 I = new VAArgInst(Op, ResTy); 3055 InstructionList.push_back(I); 3056 break; 3057 } 3058 } 3059 3060 // Add instruction to end of current BB. If there is no current BB, reject 3061 // this file. 3062 if (!CurBB) { 3063 delete I; 3064 return Error(InvalidInstructionWithNoBB); 3065 } 3066 CurBB->getInstList().push_back(I); 3067 3068 // If this was a terminator instruction, move to the next block. 3069 if (isa<TerminatorInst>(I)) { 3070 ++CurBBNo; 3071 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3072 } 3073 3074 // Non-void values get registered in the value table for future use. 3075 if (I && !I->getType()->isVoidTy()) 3076 ValueList.AssignValue(I, NextValueNo++); 3077 } 3078 3079 OutOfRecordLoop: 3080 3081 // Check the function list for unresolved values. 3082 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3083 if (!A->getParent()) { 3084 // We found at least one unresolved value. Nuke them all to avoid leaks. 3085 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3086 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3087 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3088 delete A; 3089 } 3090 } 3091 return Error(NeverResolvedValueFoundInFunction); 3092 } 3093 } 3094 3095 // FIXME: Check for unresolved forward-declared metadata references 3096 // and clean up leaks. 3097 3098 // See if anything took the address of blocks in this function. If so, 3099 // resolve them now. 3100 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 3101 BlockAddrFwdRefs.find(F); 3102 if (BAFRI != BlockAddrFwdRefs.end()) { 3103 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 3104 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3105 unsigned BlockIdx = RefList[i].first; 3106 if (BlockIdx >= FunctionBBs.size()) 3107 return Error(InvalidID); 3108 3109 GlobalVariable *FwdRef = RefList[i].second; 3110 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3111 FwdRef->eraseFromParent(); 3112 } 3113 3114 BlockAddrFwdRefs.erase(BAFRI); 3115 } 3116 3117 // Trim the value list down to the size it was before we parsed this function. 3118 ValueList.shrinkTo(ModuleValueListSize); 3119 MDValueList.shrinkTo(ModuleMDValueListSize); 3120 std::vector<BasicBlock*>().swap(FunctionBBs); 3121 return error_code(); 3122 } 3123 3124 /// Find the function body in the bitcode stream 3125 error_code BitcodeReader::FindFunctionInStream(Function *F, 3126 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { 3127 while (DeferredFunctionInfoIterator->second == 0) { 3128 if (Stream.AtEndOfStream()) 3129 return Error(CouldNotFindFunctionInStream); 3130 // ParseModule will parse the next body in the stream and set its 3131 // position in the DeferredFunctionInfo map. 3132 if (error_code EC = ParseModule(true)) 3133 return EC; 3134 } 3135 return error_code(); 3136 } 3137 3138 //===----------------------------------------------------------------------===// 3139 // GVMaterializer implementation 3140 //===----------------------------------------------------------------------===// 3141 3142 3143 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3144 if (const Function *F = dyn_cast<Function>(GV)) { 3145 return F->isDeclaration() && 3146 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3147 } 3148 return false; 3149 } 3150 3151 error_code BitcodeReader::Materialize(GlobalValue *GV) { 3152 Function *F = dyn_cast<Function>(GV); 3153 // If it's not a function or is already material, ignore the request. 3154 if (!F || !F->isMaterializable()) 3155 return error_code(); 3156 3157 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3158 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3159 // If its position is recorded as 0, its body is somewhere in the stream 3160 // but we haven't seen it yet. 3161 if (DFII->second == 0 && LazyStreamer) 3162 if (error_code EC = FindFunctionInStream(F, DFII)) 3163 return EC; 3164 3165 // Move the bit stream to the saved position of the deferred function body. 3166 Stream.JumpToBit(DFII->second); 3167 3168 if (error_code EC = ParseFunctionBody(F)) 3169 return EC; 3170 3171 // Upgrade any old intrinsic calls in the function. 3172 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3173 E = UpgradedIntrinsics.end(); I != E; ++I) { 3174 if (I->first != I->second) { 3175 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3176 UI != UE;) { 3177 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3178 UpgradeIntrinsicCall(CI, I->second); 3179 } 3180 } 3181 } 3182 3183 return error_code(); 3184 } 3185 3186 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3187 const Function *F = dyn_cast<Function>(GV); 3188 if (!F || F->isDeclaration()) 3189 return false; 3190 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3191 } 3192 3193 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3194 Function *F = dyn_cast<Function>(GV); 3195 // If this function isn't dematerializable, this is a noop. 3196 if (!F || !isDematerializable(F)) 3197 return; 3198 3199 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3200 3201 // Just forget the function body, we can remat it later. 3202 F->deleteBody(); 3203 } 3204 3205 3206 error_code BitcodeReader::MaterializeModule(Module *M) { 3207 assert(M == TheModule && 3208 "Can only Materialize the Module this BitcodeReader is attached to."); 3209 // Iterate over the module, deserializing any functions that are still on 3210 // disk. 3211 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3212 F != E; ++F) { 3213 if (F->isMaterializable()) { 3214 if (error_code EC = Materialize(F)) 3215 return EC; 3216 } 3217 } 3218 // At this point, if there are any function bodies, the current bit is 3219 // pointing to the END_BLOCK record after them. Now make sure the rest 3220 // of the bits in the module have been read. 3221 if (NextUnreadBit) 3222 ParseModule(true); 3223 3224 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3225 // delete the old functions to clean up. We can't do this unless the entire 3226 // module is materialized because there could always be another function body 3227 // with calls to the old function. 3228 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3229 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3230 if (I->first != I->second) { 3231 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3232 UI != UE;) { 3233 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3234 UpgradeIntrinsicCall(CI, I->second); 3235 } 3236 if (!I->first->use_empty()) 3237 I->first->replaceAllUsesWith(I->second); 3238 I->first->eraseFromParent(); 3239 } 3240 } 3241 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3242 3243 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3244 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3245 3246 UpgradeDebugInfo(*M); 3247 return error_code(); 3248 } 3249 3250 error_code BitcodeReader::InitStream() { 3251 if (LazyStreamer) 3252 return InitLazyStream(); 3253 return InitStreamFromBuffer(); 3254 } 3255 3256 error_code BitcodeReader::InitStreamFromBuffer() { 3257 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3258 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3259 3260 if (Buffer->getBufferSize() & 3) { 3261 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3262 return Error(InvalidBitcodeSignature); 3263 else 3264 return Error(BitcodeStreamInvalidSize); 3265 } 3266 3267 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3268 // The magic number is 0x0B17C0DE stored in little endian. 3269 if (isBitcodeWrapper(BufPtr, BufEnd)) 3270 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3271 return Error(InvalidBitcodeWrapperHeader); 3272 3273 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3274 Stream.init(*StreamFile); 3275 3276 return error_code(); 3277 } 3278 3279 error_code BitcodeReader::InitLazyStream() { 3280 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3281 // see it. 3282 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3283 StreamFile.reset(new BitstreamReader(Bytes)); 3284 Stream.init(*StreamFile); 3285 3286 unsigned char buf[16]; 3287 if (Bytes->readBytes(0, 16, buf) == -1) 3288 return Error(BitcodeStreamInvalidSize); 3289 3290 if (!isBitcode(buf, buf + 16)) 3291 return Error(InvalidBitcodeSignature); 3292 3293 if (isBitcodeWrapper(buf, buf + 4)) { 3294 const unsigned char *bitcodeStart = buf; 3295 const unsigned char *bitcodeEnd = buf + 16; 3296 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3297 Bytes->dropLeadingBytes(bitcodeStart - buf); 3298 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3299 } 3300 return error_code(); 3301 } 3302 3303 namespace { 3304 class BitcodeErrorCategoryType : public std::error_category { 3305 const char *name() const LLVM_NOEXCEPT override { 3306 return "llvm.bitcode"; 3307 } 3308 std::string message(int IE) const override { 3309 BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); 3310 switch (E) { 3311 case BitcodeReader::BitcodeStreamInvalidSize: 3312 return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; 3313 case BitcodeReader::ConflictingMETADATA_KINDRecords: 3314 return "Conflicting METADATA_KIND records"; 3315 case BitcodeReader::CouldNotFindFunctionInStream: 3316 return "Could not find function in stream"; 3317 case BitcodeReader::ExpectedConstant: 3318 return "Expected a constant"; 3319 case BitcodeReader::InsufficientFunctionProtos: 3320 return "Insufficient function protos"; 3321 case BitcodeReader::InvalidBitcodeSignature: 3322 return "Invalid bitcode signature"; 3323 case BitcodeReader::InvalidBitcodeWrapperHeader: 3324 return "Invalid bitcode wrapper header"; 3325 case BitcodeReader::InvalidConstantReference: 3326 return "Invalid ronstant reference"; 3327 case BitcodeReader::InvalidID: 3328 return "Invalid ID"; 3329 case BitcodeReader::InvalidInstructionWithNoBB: 3330 return "Invalid instruction with no BB"; 3331 case BitcodeReader::InvalidRecord: 3332 return "Invalid record"; 3333 case BitcodeReader::InvalidTypeForValue: 3334 return "Invalid type for value"; 3335 case BitcodeReader::InvalidTYPETable: 3336 return "Invalid TYPE table"; 3337 case BitcodeReader::InvalidType: 3338 return "Invalid type"; 3339 case BitcodeReader::MalformedBlock: 3340 return "Malformed block"; 3341 case BitcodeReader::MalformedGlobalInitializerSet: 3342 return "Malformed global initializer set"; 3343 case BitcodeReader::InvalidMultipleBlocks: 3344 return "Invalid multiple blocks"; 3345 case BitcodeReader::NeverResolvedValueFoundInFunction: 3346 return "Never resolved value found in function"; 3347 case BitcodeReader::InvalidValue: 3348 return "Invalid value"; 3349 } 3350 llvm_unreachable("Unknown error type!"); 3351 } 3352 }; 3353 } 3354 3355 const std::error_category &BitcodeReader::BitcodeErrorCategory() { 3356 static BitcodeErrorCategoryType O; 3357 return O; 3358 } 3359 3360 //===----------------------------------------------------------------------===// 3361 // External interface 3362 //===----------------------------------------------------------------------===// 3363 3364 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3365 /// 3366 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3367 LLVMContext &Context) { 3368 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3369 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3370 M->setMaterializer(R); 3371 if (error_code EC = R->ParseBitcodeInto(M)) { 3372 delete M; // Also deletes R. 3373 return EC; 3374 } 3375 // Have the BitcodeReader dtor delete 'Buffer'. 3376 R->setBufferOwned(true); 3377 3378 R->materializeForwardReferencedFunctions(); 3379 3380 return M; 3381 } 3382 3383 3384 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3385 DataStreamer *streamer, 3386 LLVMContext &Context, 3387 std::string *ErrMsg) { 3388 Module *M = new Module(name, Context); 3389 BitcodeReader *R = new BitcodeReader(streamer, Context); 3390 M->setMaterializer(R); 3391 if (error_code EC = R->ParseBitcodeInto(M)) { 3392 if (ErrMsg) 3393 *ErrMsg = EC.message(); 3394 delete M; // Also deletes R. 3395 return nullptr; 3396 } 3397 R->setBufferOwned(false); // no buffer to delete 3398 return M; 3399 } 3400 3401 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer, 3402 LLVMContext &Context) { 3403 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context); 3404 if (!ModuleOrErr) 3405 return ModuleOrErr; 3406 Module *M = ModuleOrErr.get(); 3407 3408 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 3409 // there was an error. 3410 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 3411 3412 // Read in the entire module, and destroy the BitcodeReader. 3413 if (error_code EC = M->materializeAllPermanently()) { 3414 delete M; 3415 return EC; 3416 } 3417 3418 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3419 // written. We must defer until the Module has been fully materialized. 3420 3421 return M; 3422 } 3423 3424 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3425 LLVMContext& Context, 3426 std::string *ErrMsg) { 3427 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3428 // Don't let the BitcodeReader dtor delete 'Buffer'. 3429 R->setBufferOwned(false); 3430 3431 std::string Triple(""); 3432 if (error_code EC = R->ParseTriple(Triple)) 3433 if (ErrMsg) 3434 *ErrMsg = EC.message(); 3435 3436 delete R; 3437 return Triple; 3438 } 3439