1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "llvm/ADT/APFloat.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Bitcode/BitstreamReader.h"
23 #include "llvm/Bitcode/LLVMBitCodes.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ManagedStatic.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <deque>
75 #include <limits>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <system_error>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<bool> PrintSummaryGUIDs(
87     "print-summary-global-ids", cl::init(false), cl::Hidden,
88     cl::desc(
89         "Print the global id for each value when reading the module summary"));
90 
91 namespace {
92 
93 enum {
94   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
95 };
96 
97 class BitcodeReaderValueList {
98   std::vector<WeakVH> ValuePtrs;
99 
100   /// As we resolve forward-referenced constants, we add information about them
101   /// to this vector.  This allows us to resolve them in bulk instead of
102   /// resolving each reference at a time.  See the code in
103   /// ResolveConstantForwardRefs for more information about this.
104   ///
105   /// The key of this vector is the placeholder constant, the value is the slot
106   /// number that holds the resolved value.
107   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
108   ResolveConstantsTy ResolveConstants;
109   LLVMContext &Context;
110 
111 public:
112   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
113   ~BitcodeReaderValueList() {
114     assert(ResolveConstants.empty() && "Constants not resolved?");
115   }
116 
117   // vector compatibility methods
118   unsigned size() const { return ValuePtrs.size(); }
119   void resize(unsigned N) { ValuePtrs.resize(N); }
120   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
121 
122   void clear() {
123     assert(ResolveConstants.empty() && "Constants not resolved?");
124     ValuePtrs.clear();
125   }
126 
127   Value *operator[](unsigned i) const {
128     assert(i < ValuePtrs.size());
129     return ValuePtrs[i];
130   }
131 
132   Value *back() const { return ValuePtrs.back(); }
133   void pop_back() { ValuePtrs.pop_back(); }
134   bool empty() const { return ValuePtrs.empty(); }
135 
136   void shrinkTo(unsigned N) {
137     assert(N <= size() && "Invalid shrinkTo request!");
138     ValuePtrs.resize(N);
139   }
140 
141   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
142   Value *getValueFwdRef(unsigned Idx, Type *Ty);
143 
144   void assignValue(Value *V, unsigned Idx);
145 
146   /// Once all constants are read, this method bulk resolves any forward
147   /// references.
148   void resolveConstantForwardRefs();
149 };
150 
151 class BitcodeReaderMetadataList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   unsigned MinFwdRef;
155   unsigned MaxFwdRef;
156 
157   /// Array of metadata references.
158   ///
159   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
160   /// move) on resize, and TrackingMDRef is very expensive to copy.
161   SmallVector<TrackingMDRef, 1> MetadataPtrs;
162 
163   /// Structures for resolving old type refs.
164   struct {
165     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
166     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
167     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
168     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
169   } OldTypeRefs;
170 
171   LLVMContext &Context;
172 
173 public:
174   BitcodeReaderMetadataList(LLVMContext &C)
175       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
176 
177   // vector compatibility methods
178   unsigned size() const { return MetadataPtrs.size(); }
179   void resize(unsigned N) { MetadataPtrs.resize(N); }
180   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
181   void clear() { MetadataPtrs.clear(); }
182   Metadata *back() const { return MetadataPtrs.back(); }
183   void pop_back() { MetadataPtrs.pop_back(); }
184   bool empty() const { return MetadataPtrs.empty(); }
185 
186   Metadata *operator[](unsigned i) const {
187     assert(i < MetadataPtrs.size());
188     return MetadataPtrs[i];
189   }
190 
191   Metadata *lookup(unsigned I) const {
192     if (I < MetadataPtrs.size())
193       return MetadataPtrs[I];
194     return nullptr;
195   }
196 
197   void shrinkTo(unsigned N) {
198     assert(N <= size() && "Invalid shrinkTo request!");
199     assert(!AnyFwdRefs && "Unexpected forward refs");
200     MetadataPtrs.resize(N);
201   }
202 
203   /// Return the given metadata, creating a replaceable forward reference if
204   /// necessary.
205   Metadata *getMetadataFwdRef(unsigned Idx);
206 
207   /// Return the the given metadata only if it is fully resolved.
208   ///
209   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
210   /// would give \c false.
211   Metadata *getMetadataIfResolved(unsigned Idx);
212 
213   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
214   void assignValue(Metadata *MD, unsigned Idx);
215   void tryToResolveCycles();
216   bool hasFwdRefs() const { return AnyFwdRefs; }
217 
218   /// Upgrade a type that had an MDString reference.
219   void addTypeRef(MDString &UUID, DICompositeType &CT);
220 
221   /// Upgrade a type that had an MDString reference.
222   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
223 
224   /// Upgrade a type ref array that may have MDString references.
225   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
226 
227 private:
228   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
229 };
230 
231 Error error(const Twine &Message) {
232   return make_error<StringError>(
233       Message, make_error_code(BitcodeError::CorruptedBitcode));
234 }
235 
236 /// Helper to read the header common to all bitcode files.
237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
238   // Sniff for the signature.
239   if (!Stream.canSkipToPos(4) ||
240       Stream.Read(8) != 'B' ||
241       Stream.Read(8) != 'C' ||
242       Stream.Read(4) != 0x0 ||
243       Stream.Read(4) != 0xC ||
244       Stream.Read(4) != 0xE ||
245       Stream.Read(4) != 0xD)
246     return false;
247   return true;
248 }
249 
250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
251   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
252   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
253 
254   if (Buffer.getBufferSize() & 3)
255     return error("Invalid bitcode signature");
256 
257   // If we have a wrapper header, parse it and ignore the non-bc file contents.
258   // The magic number is 0x0B17C0DE stored in little endian.
259   if (isBitcodeWrapper(BufPtr, BufEnd))
260     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
261       return error("Invalid bitcode wrapper header");
262 
263   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
264   if (!hasValidBitcodeHeader(Stream))
265     return error("Invalid bitcode signature");
266 
267   return std::move(Stream);
268 }
269 
270 /// Convert a string from a record into an std::string, return true on failure.
271 template <typename StrTy>
272 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
273                             StrTy &Result) {
274   if (Idx > Record.size())
275     return true;
276 
277   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
278     Result += (char)Record[i];
279   return false;
280 }
281 
282 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
283 /// "epoch" encoded in the bitcode, and return the producer name if any.
284 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
285   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
286     return error("Invalid record");
287 
288   // Read all the records.
289   SmallVector<uint64_t, 64> Record;
290 
291   std::string ProducerIdentification;
292 
293   while (true) {
294     BitstreamEntry Entry = Stream.advance();
295 
296     switch (Entry.Kind) {
297     default:
298     case BitstreamEntry::Error:
299       return error("Malformed block");
300     case BitstreamEntry::EndBlock:
301       return ProducerIdentification;
302     case BitstreamEntry::Record:
303       // The interesting case.
304       break;
305     }
306 
307     // Read a record.
308     Record.clear();
309     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
310     switch (BitCode) {
311     default: // Default behavior: reject
312       return error("Invalid value");
313     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
314       convertToString(Record, 0, ProducerIdentification);
315       break;
316     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
317       unsigned epoch = (unsigned)Record[0];
318       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
319         return error(
320           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
321           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
322       }
323     }
324     }
325   }
326 }
327 
328 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
329   // We expect a number of well-defined blocks, though we don't necessarily
330   // need to understand them all.
331   while (true) {
332     if (Stream.AtEndOfStream())
333       return "";
334 
335     BitstreamEntry Entry = Stream.advance();
336     switch (Entry.Kind) {
337     case BitstreamEntry::EndBlock:
338     case BitstreamEntry::Error:
339       return error("Malformed block");
340 
341     case BitstreamEntry::SubBlock:
342       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
343         return readIdentificationBlock(Stream);
344 
345       // Ignore other sub-blocks.
346       if (Stream.SkipBlock())
347         return error("Malformed block");
348       continue;
349     case BitstreamEntry::Record:
350       Stream.skipRecord(Entry.ID);
351       continue;
352     }
353   }
354 }
355 
356 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
357   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
358     return error("Invalid record");
359 
360   SmallVector<uint64_t, 64> Record;
361   // Read all the records for this module.
362 
363   while (true) {
364     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
365 
366     switch (Entry.Kind) {
367     case BitstreamEntry::SubBlock: // Handled for us already.
368     case BitstreamEntry::Error:
369       return error("Malformed block");
370     case BitstreamEntry::EndBlock:
371       return false;
372     case BitstreamEntry::Record:
373       // The interesting case.
374       break;
375     }
376 
377     // Read a record.
378     switch (Stream.readRecord(Entry.ID, Record)) {
379     default:
380       break; // Default behavior, ignore unknown content.
381     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
382       std::string S;
383       if (convertToString(Record, 0, S))
384         return error("Invalid record");
385       // Check for the i386 and other (x86_64, ARM) conventions
386       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
387           S.find("__OBJC,__category") != std::string::npos)
388         return true;
389       break;
390     }
391     }
392     Record.clear();
393   }
394   llvm_unreachable("Exit infinite loop");
395 }
396 
397 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
398   // We expect a number of well-defined blocks, though we don't necessarily
399   // need to understand them all.
400   while (true) {
401     BitstreamEntry Entry = Stream.advance();
402 
403     switch (Entry.Kind) {
404     case BitstreamEntry::Error:
405       return error("Malformed block");
406     case BitstreamEntry::EndBlock:
407       return false;
408 
409     case BitstreamEntry::SubBlock:
410       if (Entry.ID == bitc::MODULE_BLOCK_ID)
411         return hasObjCCategoryInModule(Stream);
412 
413       // Ignore other sub-blocks.
414       if (Stream.SkipBlock())
415         return error("Malformed block");
416       continue;
417 
418     case BitstreamEntry::Record:
419       Stream.skipRecord(Entry.ID);
420       continue;
421     }
422   }
423 }
424 
425 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
426   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
427     return error("Invalid record");
428 
429   SmallVector<uint64_t, 64> Record;
430 
431   std::string Triple;
432 
433   // Read all the records for this module.
434   while (true) {
435     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
436 
437     switch (Entry.Kind) {
438     case BitstreamEntry::SubBlock: // Handled for us already.
439     case BitstreamEntry::Error:
440       return error("Malformed block");
441     case BitstreamEntry::EndBlock:
442       return Triple;
443     case BitstreamEntry::Record:
444       // The interesting case.
445       break;
446     }
447 
448     // Read a record.
449     switch (Stream.readRecord(Entry.ID, Record)) {
450     default: break;  // Default behavior, ignore unknown content.
451     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
452       std::string S;
453       if (convertToString(Record, 0, S))
454         return error("Invalid record");
455       Triple = S;
456       break;
457     }
458     }
459     Record.clear();
460   }
461   llvm_unreachable("Exit infinite loop");
462 }
463 
464 Expected<std::string> readTriple(BitstreamCursor &Stream) {
465   // We expect a number of well-defined blocks, though we don't necessarily
466   // need to understand them all.
467   while (true) {
468     BitstreamEntry Entry = Stream.advance();
469 
470     switch (Entry.Kind) {
471     case BitstreamEntry::Error:
472       return error("Malformed block");
473     case BitstreamEntry::EndBlock:
474       return "";
475 
476     case BitstreamEntry::SubBlock:
477       if (Entry.ID == bitc::MODULE_BLOCK_ID)
478         return readModuleTriple(Stream);
479 
480       // Ignore other sub-blocks.
481       if (Stream.SkipBlock())
482         return error("Malformed block");
483       continue;
484 
485     case BitstreamEntry::Record:
486       Stream.skipRecord(Entry.ID);
487       continue;
488     }
489   }
490 }
491 
492 class BitcodeReaderBase {
493 protected:
494   BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) {
495     this->Stream.setBlockInfo(&BlockInfo);
496   }
497 
498   BitstreamBlockInfo BlockInfo;
499   BitstreamCursor Stream;
500 
501   bool readBlockInfo();
502 
503   // Contains an arbitrary and optional string identifying the bitcode producer
504   std::string ProducerIdentification;
505 
506   Error error(const Twine &Message);
507 };
508 
509 Error BitcodeReaderBase::error(const Twine &Message) {
510   std::string FullMsg = Message.str();
511   if (!ProducerIdentification.empty())
512     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
513                LLVM_VERSION_STRING "')";
514   return ::error(FullMsg);
515 }
516 
517 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
518   LLVMContext &Context;
519   Module *TheModule = nullptr;
520   // Next offset to start scanning for lazy parsing of function bodies.
521   uint64_t NextUnreadBit = 0;
522   // Last function offset found in the VST.
523   uint64_t LastFunctionBlockBit = 0;
524   bool SeenValueSymbolTable = false;
525   uint64_t VSTOffset = 0;
526 
527   std::vector<Type*> TypeList;
528   BitcodeReaderValueList ValueList;
529   BitcodeReaderMetadataList MetadataList;
530   std::vector<Comdat *> ComdatList;
531   SmallVector<Instruction *, 64> InstructionList;
532 
533   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
534   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
535   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
536   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
537   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
538 
539   bool HasSeenOldLoopTags = false;
540 
541   /// The set of attributes by index.  Index zero in the file is for null, and
542   /// is thus not represented here.  As such all indices are off by one.
543   std::vector<AttributeSet> MAttributes;
544 
545   /// The set of attribute groups.
546   std::map<unsigned, AttributeSet> MAttributeGroups;
547 
548   /// While parsing a function body, this is a list of the basic blocks for the
549   /// function.
550   std::vector<BasicBlock*> FunctionBBs;
551 
552   // When reading the module header, this list is populated with functions that
553   // have bodies later in the file.
554   std::vector<Function*> FunctionsWithBodies;
555 
556   // When intrinsic functions are encountered which require upgrading they are
557   // stored here with their replacement function.
558   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
559   UpdatedIntrinsicMap UpgradedIntrinsics;
560   // Intrinsics which were remangled because of types rename
561   UpdatedIntrinsicMap RemangledIntrinsics;
562 
563   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
564   DenseMap<unsigned, unsigned> MDKindMap;
565 
566   // Several operations happen after the module header has been read, but
567   // before function bodies are processed. This keeps track of whether
568   // we've done this yet.
569   bool SeenFirstFunctionBody = false;
570 
571   /// When function bodies are initially scanned, this map contains info about
572   /// where to find deferred function body in the stream.
573   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
574 
575   /// When Metadata block is initially scanned when parsing the module, we may
576   /// choose to defer parsing of the metadata. This vector contains info about
577   /// which Metadata blocks are deferred.
578   std::vector<uint64_t> DeferredMetadataInfo;
579 
580   /// These are basic blocks forward-referenced by block addresses.  They are
581   /// inserted lazily into functions when they're loaded.  The basic block ID is
582   /// its index into the vector.
583   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
584   std::deque<Function *> BasicBlockFwdRefQueue;
585 
586   /// Indicates that we are using a new encoding for instruction operands where
587   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
588   /// instruction number, for a more compact encoding.  Some instruction
589   /// operands are not relative to the instruction ID: basic block numbers, and
590   /// types. Once the old style function blocks have been phased out, we would
591   /// not need this flag.
592   bool UseRelativeIDs = false;
593 
594   /// True if all functions will be materialized, negating the need to process
595   /// (e.g.) blockaddress forward references.
596   bool WillMaterializeAllForwardRefs = false;
597 
598   /// True if any Metadata block has been materialized.
599   bool IsMetadataMaterialized = false;
600 
601   bool StripDebugInfo = false;
602 
603   /// Functions that need to be matched with subprograms when upgrading old
604   /// metadata.
605   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
606 
607   std::vector<std::string> BundleTags;
608 
609 public:
610   BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification,
611                 LLVMContext &Context);
612 
613   Error materializeForwardReferencedFunctions();
614 
615   Error materialize(GlobalValue *GV) override;
616   Error materializeModule() override;
617   std::vector<StructType *> getIdentifiedStructTypes() const override;
618 
619   /// \brief Main interface to parsing a bitcode buffer.
620   /// \returns true if an error occurred.
621   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false);
622 
623   static uint64_t decodeSignRotatedValue(uint64_t V);
624 
625   /// Materialize any deferred Metadata block.
626   Error materializeMetadata() override;
627 
628   void setStripDebugInfo() override;
629 
630 private:
631   std::vector<StructType *> IdentifiedStructTypes;
632   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
633   StructType *createIdentifiedStructType(LLVMContext &Context);
634 
635   Type *getTypeByID(unsigned ID);
636 
637   Value *getFnValueByID(unsigned ID, Type *Ty) {
638     if (Ty && Ty->isMetadataTy())
639       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
640     return ValueList.getValueFwdRef(ID, Ty);
641   }
642 
643   Metadata *getFnMetadataByID(unsigned ID) {
644     return MetadataList.getMetadataFwdRef(ID);
645   }
646 
647   BasicBlock *getBasicBlock(unsigned ID) const {
648     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
649     return FunctionBBs[ID];
650   }
651 
652   AttributeSet getAttributes(unsigned i) const {
653     if (i-1 < MAttributes.size())
654       return MAttributes[i-1];
655     return AttributeSet();
656   }
657 
658   /// Read a value/type pair out of the specified record from slot 'Slot'.
659   /// Increment Slot past the number of slots used in the record. Return true on
660   /// failure.
661   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
662                         unsigned InstNum, Value *&ResVal) {
663     if (Slot == Record.size()) return true;
664     unsigned ValNo = (unsigned)Record[Slot++];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     if (ValNo < InstNum) {
669       // If this is not a forward reference, just return the value we already
670       // have.
671       ResVal = getFnValueByID(ValNo, nullptr);
672       return ResVal == nullptr;
673     }
674     if (Slot == Record.size())
675       return true;
676 
677     unsigned TypeNo = (unsigned)Record[Slot++];
678     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
679     return ResVal == nullptr;
680   }
681 
682   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
683   /// past the number of slots used by the value in the record. Return true if
684   /// there is an error.
685   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
686                 unsigned InstNum, Type *Ty, Value *&ResVal) {
687     if (getValue(Record, Slot, InstNum, Ty, ResVal))
688       return true;
689     // All values currently take a single record slot.
690     ++Slot;
691     return false;
692   }
693 
694   /// Like popValue, but does not increment the Slot number.
695   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
696                 unsigned InstNum, Type *Ty, Value *&ResVal) {
697     ResVal = getValue(Record, Slot, InstNum, Ty);
698     return ResVal == nullptr;
699   }
700 
701   /// Version of getValue that returns ResVal directly, or 0 if there is an
702   /// error.
703   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
704                   unsigned InstNum, Type *Ty) {
705     if (Slot == Record.size()) return nullptr;
706     unsigned ValNo = (unsigned)Record[Slot];
707     // Adjust the ValNo, if it was encoded relative to the InstNum.
708     if (UseRelativeIDs)
709       ValNo = InstNum - ValNo;
710     return getFnValueByID(ValNo, Ty);
711   }
712 
713   /// Like getValue, but decodes signed VBRs.
714   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
715                         unsigned InstNum, Type *Ty) {
716     if (Slot == Record.size()) return nullptr;
717     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
718     // Adjust the ValNo, if it was encoded relative to the InstNum.
719     if (UseRelativeIDs)
720       ValNo = InstNum - ValNo;
721     return getFnValueByID(ValNo, Ty);
722   }
723 
724   /// Converts alignment exponent (i.e. power of two (or zero)) to the
725   /// corresponding alignment to use. If alignment is too large, returns
726   /// a corresponding error code.
727   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
728   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
729   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
730   Error parseAttributeBlock();
731   Error parseAttributeGroupBlock();
732   Error parseTypeTable();
733   Error parseTypeTableBody();
734   Error parseOperandBundleTags();
735 
736   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
737                                 unsigned NameIndex, Triple &TT);
738   Error parseValueSymbolTable(uint64_t Offset = 0);
739   Error parseConstants();
740   Error rememberAndSkipFunctionBodies();
741   Error rememberAndSkipFunctionBody();
742   /// Save the positions of the Metadata blocks and skip parsing the blocks.
743   Error rememberAndSkipMetadata();
744   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
745   Error parseFunctionBody(Function *F);
746   Error globalCleanup();
747   Error resolveGlobalAndIndirectSymbolInits();
748   Error parseMetadata(bool ModuleLevel = false);
749   Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob,
750                              unsigned &NextMetadataNo);
751   Error parseMetadataKinds();
752   Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
753   Error parseGlobalObjectAttachment(GlobalObject &GO,
754                                     ArrayRef<uint64_t> Record);
755   Error parseMetadataAttachment(Function &F);
756   Error parseUseLists();
757   Error findFunctionInStream(
758       Function *F,
759       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
760 };
761 
762 /// Class to manage reading and parsing function summary index bitcode
763 /// files/sections.
764 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
765   /// Eventually points to the module index built during parsing.
766   ModuleSummaryIndex *TheIndex = nullptr;
767 
768   /// Used to indicate whether caller only wants to check for the presence
769   /// of the global value summary bitcode section. All blocks are skipped,
770   /// but the SeenGlobalValSummary boolean is set.
771   bool CheckGlobalValSummaryPresenceOnly = false;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing, used when checking if file contains global value
775   /// summary section.
776   bool SeenGlobalValSummary = false;
777 
778   /// Indicates whether we have already parsed the VST, used for error checking.
779   bool SeenValueSymbolTable = false;
780 
781   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
782   /// Used to enable on-demand parsing of the VST.
783   uint64_t VSTOffset = 0;
784 
785   // Map to save ValueId to GUID association that was recorded in the
786   // ValueSymbolTable. It is used after the VST is parsed to convert
787   // call graph edges read from the function summary from referencing
788   // callees by their ValueId to using the GUID instead, which is how
789   // they are recorded in the summary index being built.
790   // We save a second GUID which is the same as the first one, but ignoring the
791   // linkage, i.e. for value other than local linkage they are identical.
792   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
793       ValueIdToCallGraphGUIDMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804 public:
805   ModuleSummaryIndexBitcodeReader(
806       BitstreamCursor Stream, bool CheckGlobalValSummaryPresenceOnly = false);
807 
808   /// Check if the parser has encountered a summary section.
809   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
810 
811   /// \brief Main interface to parsing a bitcode buffer.
812   /// \returns true if an error occurred.
813   Error parseSummaryIndexInto(ModuleSummaryIndex *I, StringRef ModulePath);
814 
815 private:
816   Error parseModule(StringRef ModulePath);
817   Error parseValueSymbolTable(
818       uint64_t Offset,
819       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
820   Error parseEntireSummary(StringRef ModulePath);
821   Error parseModuleStringTable();
822   std::pair<GlobalValue::GUID, GlobalValue::GUID>
823 
824   getGUIDFromValueId(unsigned ValueId);
825   std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
826   readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I,
827                     bool IsOldProfileFormat, bool HasProfile);
828 };
829 
830 } // end anonymous namespace
831 
832 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
833                                                     Error Err) {
834   if (Err) {
835     std::error_code EC;
836     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
837       EC = EIB.convertToErrorCode();
838       Ctx.emitError(EIB.message());
839     });
840     return EC;
841   }
842   return std::error_code();
843 }
844 
845 BitcodeReader::BitcodeReader(BitstreamCursor Stream,
846                              StringRef ProducerIdentification,
847                              LLVMContext &Context)
848     : BitcodeReaderBase(std::move(Stream)), Context(Context),
849       ValueList(Context), MetadataList(Context) {
850   this->ProducerIdentification = ProducerIdentification;
851 }
852 
853 Error BitcodeReader::materializeForwardReferencedFunctions() {
854   if (WillMaterializeAllForwardRefs)
855     return Error::success();
856 
857   // Prevent recursion.
858   WillMaterializeAllForwardRefs = true;
859 
860   while (!BasicBlockFwdRefQueue.empty()) {
861     Function *F = BasicBlockFwdRefQueue.front();
862     BasicBlockFwdRefQueue.pop_front();
863     assert(F && "Expected valid function");
864     if (!BasicBlockFwdRefs.count(F))
865       // Already materialized.
866       continue;
867 
868     // Check for a function that isn't materializable to prevent an infinite
869     // loop.  When parsing a blockaddress stored in a global variable, there
870     // isn't a trivial way to check if a function will have a body without a
871     // linear search through FunctionsWithBodies, so just check it here.
872     if (!F->isMaterializable())
873       return error("Never resolved function from blockaddress");
874 
875     // Try to materialize F.
876     if (Error Err = materialize(F))
877       return Err;
878   }
879   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
880 
881   // Reset state.
882   WillMaterializeAllForwardRefs = false;
883   return Error::success();
884 }
885 
886 //===----------------------------------------------------------------------===//
887 //  Helper functions to implement forward reference resolution, etc.
888 //===----------------------------------------------------------------------===//
889 
890 static bool hasImplicitComdat(size_t Val) {
891   switch (Val) {
892   default:
893     return false;
894   case 1:  // Old WeakAnyLinkage
895   case 4:  // Old LinkOnceAnyLinkage
896   case 10: // Old WeakODRLinkage
897   case 11: // Old LinkOnceODRLinkage
898     return true;
899   }
900 }
901 
902 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
903   switch (Val) {
904   default: // Map unknown/new linkages to external
905   case 0:
906     return GlobalValue::ExternalLinkage;
907   case 2:
908     return GlobalValue::AppendingLinkage;
909   case 3:
910     return GlobalValue::InternalLinkage;
911   case 5:
912     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
913   case 6:
914     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
915   case 7:
916     return GlobalValue::ExternalWeakLinkage;
917   case 8:
918     return GlobalValue::CommonLinkage;
919   case 9:
920     return GlobalValue::PrivateLinkage;
921   case 12:
922     return GlobalValue::AvailableExternallyLinkage;
923   case 13:
924     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
925   case 14:
926     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
927   case 15:
928     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
929   case 1: // Old value with implicit comdat.
930   case 16:
931     return GlobalValue::WeakAnyLinkage;
932   case 10: // Old value with implicit comdat.
933   case 17:
934     return GlobalValue::WeakODRLinkage;
935   case 4: // Old value with implicit comdat.
936   case 18:
937     return GlobalValue::LinkOnceAnyLinkage;
938   case 11: // Old value with implicit comdat.
939   case 19:
940     return GlobalValue::LinkOnceODRLinkage;
941   }
942 }
943 
944 /// Decode the flags for GlobalValue in the summary.
945 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
946                                                             uint64_t Version) {
947   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
948   // like getDecodedLinkage() above. Any future change to the linkage enum and
949   // to getDecodedLinkage() will need to be taken into account here as above.
950   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
951   RawFlags = RawFlags >> 4;
952   bool NoRename = RawFlags & 0x1;
953   bool IsNotViableToInline = RawFlags & 0x2;
954   bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4;
955   return GlobalValueSummary::GVFlags(Linkage, NoRename,
956                                      HasInlineAsmMaybeReferencingInternal,
957                                      IsNotViableToInline);
958 }
959 
960 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
961   switch (Val) {
962   default: // Map unknown visibilities to default.
963   case 0: return GlobalValue::DefaultVisibility;
964   case 1: return GlobalValue::HiddenVisibility;
965   case 2: return GlobalValue::ProtectedVisibility;
966   }
967 }
968 
969 static GlobalValue::DLLStorageClassTypes
970 getDecodedDLLStorageClass(unsigned Val) {
971   switch (Val) {
972   default: // Map unknown values to default.
973   case 0: return GlobalValue::DefaultStorageClass;
974   case 1: return GlobalValue::DLLImportStorageClass;
975   case 2: return GlobalValue::DLLExportStorageClass;
976   }
977 }
978 
979 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
980   switch (Val) {
981     case 0: return GlobalVariable::NotThreadLocal;
982     default: // Map unknown non-zero value to general dynamic.
983     case 1: return GlobalVariable::GeneralDynamicTLSModel;
984     case 2: return GlobalVariable::LocalDynamicTLSModel;
985     case 3: return GlobalVariable::InitialExecTLSModel;
986     case 4: return GlobalVariable::LocalExecTLSModel;
987   }
988 }
989 
990 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
991   switch (Val) {
992     default: // Map unknown to UnnamedAddr::None.
993     case 0: return GlobalVariable::UnnamedAddr::None;
994     case 1: return GlobalVariable::UnnamedAddr::Global;
995     case 2: return GlobalVariable::UnnamedAddr::Local;
996   }
997 }
998 
999 static int getDecodedCastOpcode(unsigned Val) {
1000   switch (Val) {
1001   default: return -1;
1002   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1003   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1004   case bitc::CAST_SEXT    : return Instruction::SExt;
1005   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1006   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1007   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1008   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1009   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1010   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1011   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1012   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1013   case bitc::CAST_BITCAST : return Instruction::BitCast;
1014   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1015   }
1016 }
1017 
1018 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1019   bool IsFP = Ty->isFPOrFPVectorTy();
1020   // BinOps are only valid for int/fp or vector of int/fp types
1021   if (!IsFP && !Ty->isIntOrIntVectorTy())
1022     return -1;
1023 
1024   switch (Val) {
1025   default:
1026     return -1;
1027   case bitc::BINOP_ADD:
1028     return IsFP ? Instruction::FAdd : Instruction::Add;
1029   case bitc::BINOP_SUB:
1030     return IsFP ? Instruction::FSub : Instruction::Sub;
1031   case bitc::BINOP_MUL:
1032     return IsFP ? Instruction::FMul : Instruction::Mul;
1033   case bitc::BINOP_UDIV:
1034     return IsFP ? -1 : Instruction::UDiv;
1035   case bitc::BINOP_SDIV:
1036     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1037   case bitc::BINOP_UREM:
1038     return IsFP ? -1 : Instruction::URem;
1039   case bitc::BINOP_SREM:
1040     return IsFP ? Instruction::FRem : Instruction::SRem;
1041   case bitc::BINOP_SHL:
1042     return IsFP ? -1 : Instruction::Shl;
1043   case bitc::BINOP_LSHR:
1044     return IsFP ? -1 : Instruction::LShr;
1045   case bitc::BINOP_ASHR:
1046     return IsFP ? -1 : Instruction::AShr;
1047   case bitc::BINOP_AND:
1048     return IsFP ? -1 : Instruction::And;
1049   case bitc::BINOP_OR:
1050     return IsFP ? -1 : Instruction::Or;
1051   case bitc::BINOP_XOR:
1052     return IsFP ? -1 : Instruction::Xor;
1053   }
1054 }
1055 
1056 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1057   switch (Val) {
1058   default: return AtomicRMWInst::BAD_BINOP;
1059   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1060   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1061   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1062   case bitc::RMW_AND: return AtomicRMWInst::And;
1063   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1064   case bitc::RMW_OR: return AtomicRMWInst::Or;
1065   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1066   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1067   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1068   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1069   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1070   }
1071 }
1072 
1073 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1074   switch (Val) {
1075   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1076   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1077   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1078   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1079   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1080   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1081   default: // Map unknown orderings to sequentially-consistent.
1082   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1083   }
1084 }
1085 
1086 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
1087   switch (Val) {
1088   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
1089   default: // Map unknown scopes to cross-thread.
1090   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
1091   }
1092 }
1093 
1094 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1095   switch (Val) {
1096   default: // Map unknown selection kinds to any.
1097   case bitc::COMDAT_SELECTION_KIND_ANY:
1098     return Comdat::Any;
1099   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1100     return Comdat::ExactMatch;
1101   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1102     return Comdat::Largest;
1103   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1104     return Comdat::NoDuplicates;
1105   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1106     return Comdat::SameSize;
1107   }
1108 }
1109 
1110 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1111   FastMathFlags FMF;
1112   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1113     FMF.setUnsafeAlgebra();
1114   if (0 != (Val & FastMathFlags::NoNaNs))
1115     FMF.setNoNaNs();
1116   if (0 != (Val & FastMathFlags::NoInfs))
1117     FMF.setNoInfs();
1118   if (0 != (Val & FastMathFlags::NoSignedZeros))
1119     FMF.setNoSignedZeros();
1120   if (0 != (Val & FastMathFlags::AllowReciprocal))
1121     FMF.setAllowReciprocal();
1122   return FMF;
1123 }
1124 
1125 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1126   switch (Val) {
1127   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1128   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1129   }
1130 }
1131 
1132 namespace llvm {
1133 namespace {
1134 
1135 /// \brief A class for maintaining the slot number definition
1136 /// as a placeholder for the actual definition for forward constants defs.
1137 class ConstantPlaceHolder : public ConstantExpr {
1138   void operator=(const ConstantPlaceHolder &) = delete;
1139 
1140 public:
1141   // allocate space for exactly one operand
1142   void *operator new(size_t s) { return User::operator new(s, 1); }
1143   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
1144       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
1145     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
1146   }
1147 
1148   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
1149   static bool classof(const Value *V) {
1150     return isa<ConstantExpr>(V) &&
1151            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
1152   }
1153 
1154   /// Provide fast operand accessors
1155   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1156 };
1157 
1158 } // end anonymous namespace
1159 
1160 // FIXME: can we inherit this from ConstantExpr?
1161 template <>
1162 struct OperandTraits<ConstantPlaceHolder> :
1163   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
1164 };
1165 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
1166 
1167 } // end namespace llvm
1168 
1169 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
1170   if (Idx == size()) {
1171     push_back(V);
1172     return;
1173   }
1174 
1175   if (Idx >= size())
1176     resize(Idx+1);
1177 
1178   WeakVH &OldV = ValuePtrs[Idx];
1179   if (!OldV) {
1180     OldV = V;
1181     return;
1182   }
1183 
1184   // Handle constants and non-constants (e.g. instrs) differently for
1185   // efficiency.
1186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1188     OldV = V;
1189   } else {
1190     // If there was a forward reference to this value, replace it.
1191     Value *PrevVal = OldV;
1192     OldV->replaceAllUsesWith(V);
1193     delete PrevVal;
1194   }
1195 }
1196 
1197 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1198                                                     Type *Ty) {
1199   if (Idx >= size())
1200     resize(Idx + 1);
1201 
1202   if (Value *V = ValuePtrs[Idx]) {
1203     if (Ty != V->getType())
1204       report_fatal_error("Type mismatch in constant table!");
1205     return cast<Constant>(V);
1206   }
1207 
1208   // Create and return a placeholder, which will later be RAUW'd.
1209   Constant *C = new ConstantPlaceHolder(Ty, Context);
1210   ValuePtrs[Idx] = C;
1211   return C;
1212 }
1213 
1214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1215   // Bail out for a clearly invalid value. This would make us call resize(0)
1216   if (Idx == std::numeric_limits<unsigned>::max())
1217     return nullptr;
1218 
1219   if (Idx >= size())
1220     resize(Idx + 1);
1221 
1222   if (Value *V = ValuePtrs[Idx]) {
1223     // If the types don't match, it's invalid.
1224     if (Ty && Ty != V->getType())
1225       return nullptr;
1226     return V;
1227   }
1228 
1229   // No type specified, must be invalid reference.
1230   if (!Ty) return nullptr;
1231 
1232   // Create and return a placeholder, which will later be RAUW'd.
1233   Value *V = new Argument(Ty);
1234   ValuePtrs[Idx] = V;
1235   return V;
1236 }
1237 
1238 /// Once all constants are read, this method bulk resolves any forward
1239 /// references.  The idea behind this is that we sometimes get constants (such
1240 /// as large arrays) which reference *many* forward ref constants.  Replacing
1241 /// each of these causes a lot of thrashing when building/reuniquing the
1242 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1243 /// the place holders at once for any constant that uses a placeholder.
1244 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1245   // Sort the values by-pointer so that they are efficient to look up with a
1246   // binary search.
1247   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1248 
1249   SmallVector<Constant*, 64> NewOps;
1250 
1251   while (!ResolveConstants.empty()) {
1252     Value *RealVal = operator[](ResolveConstants.back().second);
1253     Constant *Placeholder = ResolveConstants.back().first;
1254     ResolveConstants.pop_back();
1255 
1256     // Loop over all users of the placeholder, updating them to reference the
1257     // new value.  If they reference more than one placeholder, update them all
1258     // at once.
1259     while (!Placeholder->use_empty()) {
1260       auto UI = Placeholder->user_begin();
1261       User *U = *UI;
1262 
1263       // If the using object isn't uniqued, just update the operands.  This
1264       // handles instructions and initializers for global variables.
1265       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1266         UI.getUse().set(RealVal);
1267         continue;
1268       }
1269 
1270       // Otherwise, we have a constant that uses the placeholder.  Replace that
1271       // constant with a new constant that has *all* placeholder uses updated.
1272       Constant *UserC = cast<Constant>(U);
1273       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1274            I != E; ++I) {
1275         Value *NewOp;
1276         if (!isa<ConstantPlaceHolder>(*I)) {
1277           // Not a placeholder reference.
1278           NewOp = *I;
1279         } else if (*I == Placeholder) {
1280           // Common case is that it just references this one placeholder.
1281           NewOp = RealVal;
1282         } else {
1283           // Otherwise, look up the placeholder in ResolveConstants.
1284           ResolveConstantsTy::iterator It =
1285             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1286                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1287                                                             0));
1288           assert(It != ResolveConstants.end() && It->first == *I);
1289           NewOp = operator[](It->second);
1290         }
1291 
1292         NewOps.push_back(cast<Constant>(NewOp));
1293       }
1294 
1295       // Make the new constant.
1296       Constant *NewC;
1297       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1298         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1299       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1300         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1301       } else if (isa<ConstantVector>(UserC)) {
1302         NewC = ConstantVector::get(NewOps);
1303       } else {
1304         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1305         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1306       }
1307 
1308       UserC->replaceAllUsesWith(NewC);
1309       UserC->destroyConstant();
1310       NewOps.clear();
1311     }
1312 
1313     // Update all ValueHandles, they should be the only users at this point.
1314     Placeholder->replaceAllUsesWith(RealVal);
1315     delete Placeholder;
1316   }
1317 }
1318 
1319 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1320   if (Idx == size()) {
1321     push_back(MD);
1322     return;
1323   }
1324 
1325   if (Idx >= size())
1326     resize(Idx+1);
1327 
1328   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1329   if (!OldMD) {
1330     OldMD.reset(MD);
1331     return;
1332   }
1333 
1334   // If there was a forward reference to this value, replace it.
1335   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1336   PrevMD->replaceAllUsesWith(MD);
1337   --NumFwdRefs;
1338 }
1339 
1340 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1341   if (Idx >= size())
1342     resize(Idx + 1);
1343 
1344   if (Metadata *MD = MetadataPtrs[Idx])
1345     return MD;
1346 
1347   // Track forward refs to be resolved later.
1348   if (AnyFwdRefs) {
1349     MinFwdRef = std::min(MinFwdRef, Idx);
1350     MaxFwdRef = std::max(MaxFwdRef, Idx);
1351   } else {
1352     AnyFwdRefs = true;
1353     MinFwdRef = MaxFwdRef = Idx;
1354   }
1355   ++NumFwdRefs;
1356 
1357   // Create and return a placeholder, which will later be RAUW'd.
1358   Metadata *MD = MDNode::getTemporary(Context, None).release();
1359   MetadataPtrs[Idx].reset(MD);
1360   return MD;
1361 }
1362 
1363 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1364   Metadata *MD = lookup(Idx);
1365   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1366     if (!N->isResolved())
1367       return nullptr;
1368   return MD;
1369 }
1370 
1371 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1372   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1373 }
1374 
1375 void BitcodeReaderMetadataList::tryToResolveCycles() {
1376   if (NumFwdRefs)
1377     // Still forward references... can't resolve cycles.
1378     return;
1379 
1380   bool DidReplaceTypeRefs = false;
1381 
1382   // Give up on finding a full definition for any forward decls that remain.
1383   for (const auto &Ref : OldTypeRefs.FwdDecls)
1384     OldTypeRefs.Final.insert(Ref);
1385   OldTypeRefs.FwdDecls.clear();
1386 
1387   // Upgrade from old type ref arrays.  In strange cases, this could add to
1388   // OldTypeRefs.Unknown.
1389   for (const auto &Array : OldTypeRefs.Arrays) {
1390     DidReplaceTypeRefs = true;
1391     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1392   }
1393   OldTypeRefs.Arrays.clear();
1394 
1395   // Replace old string-based type refs with the resolved node, if possible.
1396   // If we haven't seen the node, leave it to the verifier to complain about
1397   // the invalid string reference.
1398   for (const auto &Ref : OldTypeRefs.Unknown) {
1399     DidReplaceTypeRefs = true;
1400     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1401       Ref.second->replaceAllUsesWith(CT);
1402     else
1403       Ref.second->replaceAllUsesWith(Ref.first);
1404   }
1405   OldTypeRefs.Unknown.clear();
1406 
1407   // Make sure all the upgraded types are resolved.
1408   if (DidReplaceTypeRefs) {
1409     AnyFwdRefs = true;
1410     MinFwdRef = 0;
1411     MaxFwdRef = MetadataPtrs.size() - 1;
1412   }
1413 
1414   if (!AnyFwdRefs)
1415     // Nothing to do.
1416     return;
1417 
1418   // Resolve any cycles.
1419   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1420     auto &MD = MetadataPtrs[I];
1421     auto *N = dyn_cast_or_null<MDNode>(MD);
1422     if (!N)
1423       continue;
1424 
1425     assert(!N->isTemporary() && "Unexpected forward reference");
1426     N->resolveCycles();
1427   }
1428 
1429   // Make sure we return early again until there's another forward ref.
1430   AnyFwdRefs = false;
1431 }
1432 
1433 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1434                                            DICompositeType &CT) {
1435   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1436   if (CT.isForwardDecl())
1437     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1438   else
1439     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1440 }
1441 
1442 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1443   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1444   if (LLVM_LIKELY(!UUID))
1445     return MaybeUUID;
1446 
1447   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1448     return CT;
1449 
1450   auto &Ref = OldTypeRefs.Unknown[UUID];
1451   if (!Ref)
1452     Ref = MDNode::getTemporary(Context, None);
1453   return Ref.get();
1454 }
1455 
1456 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1457   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1458   if (!Tuple || Tuple->isDistinct())
1459     return MaybeTuple;
1460 
1461   // Look through the array immediately if possible.
1462   if (!Tuple->isTemporary())
1463     return resolveTypeRefArray(Tuple);
1464 
1465   // Create and return a placeholder to use for now.  Eventually
1466   // resolveTypeRefArrays() will be resolve this forward reference.
1467   OldTypeRefs.Arrays.emplace_back(
1468       std::piecewise_construct, std::forward_as_tuple(Tuple),
1469       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1470   return OldTypeRefs.Arrays.back().second.get();
1471 }
1472 
1473 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1474   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1475   if (!Tuple || Tuple->isDistinct())
1476     return MaybeTuple;
1477 
1478   // Look through the DITypeRefArray, upgrading each DITypeRef.
1479   SmallVector<Metadata *, 32> Ops;
1480   Ops.reserve(Tuple->getNumOperands());
1481   for (Metadata *MD : Tuple->operands())
1482     Ops.push_back(upgradeTypeRef(MD));
1483 
1484   return MDTuple::get(Context, Ops);
1485 }
1486 
1487 Type *BitcodeReader::getTypeByID(unsigned ID) {
1488   // The type table size is always specified correctly.
1489   if (ID >= TypeList.size())
1490     return nullptr;
1491 
1492   if (Type *Ty = TypeList[ID])
1493     return Ty;
1494 
1495   // If we have a forward reference, the only possible case is when it is to a
1496   // named struct.  Just create a placeholder for now.
1497   return TypeList[ID] = createIdentifiedStructType(Context);
1498 }
1499 
1500 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1501                                                       StringRef Name) {
1502   auto *Ret = StructType::create(Context, Name);
1503   IdentifiedStructTypes.push_back(Ret);
1504   return Ret;
1505 }
1506 
1507 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1508   auto *Ret = StructType::create(Context);
1509   IdentifiedStructTypes.push_back(Ret);
1510   return Ret;
1511 }
1512 
1513 //===----------------------------------------------------------------------===//
1514 //  Functions for parsing blocks from the bitcode file
1515 //===----------------------------------------------------------------------===//
1516 
1517 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1518   switch (Val) {
1519   case Attribute::EndAttrKinds:
1520     llvm_unreachable("Synthetic enumerators which should never get here");
1521 
1522   case Attribute::None:            return 0;
1523   case Attribute::ZExt:            return 1 << 0;
1524   case Attribute::SExt:            return 1 << 1;
1525   case Attribute::NoReturn:        return 1 << 2;
1526   case Attribute::InReg:           return 1 << 3;
1527   case Attribute::StructRet:       return 1 << 4;
1528   case Attribute::NoUnwind:        return 1 << 5;
1529   case Attribute::NoAlias:         return 1 << 6;
1530   case Attribute::ByVal:           return 1 << 7;
1531   case Attribute::Nest:            return 1 << 8;
1532   case Attribute::ReadNone:        return 1 << 9;
1533   case Attribute::ReadOnly:        return 1 << 10;
1534   case Attribute::NoInline:        return 1 << 11;
1535   case Attribute::AlwaysInline:    return 1 << 12;
1536   case Attribute::OptimizeForSize: return 1 << 13;
1537   case Attribute::StackProtect:    return 1 << 14;
1538   case Attribute::StackProtectReq: return 1 << 15;
1539   case Attribute::Alignment:       return 31 << 16;
1540   case Attribute::NoCapture:       return 1 << 21;
1541   case Attribute::NoRedZone:       return 1 << 22;
1542   case Attribute::NoImplicitFloat: return 1 << 23;
1543   case Attribute::Naked:           return 1 << 24;
1544   case Attribute::InlineHint:      return 1 << 25;
1545   case Attribute::StackAlignment:  return 7 << 26;
1546   case Attribute::ReturnsTwice:    return 1 << 29;
1547   case Attribute::UWTable:         return 1 << 30;
1548   case Attribute::NonLazyBind:     return 1U << 31;
1549   case Attribute::SanitizeAddress: return 1ULL << 32;
1550   case Attribute::MinSize:         return 1ULL << 33;
1551   case Attribute::NoDuplicate:     return 1ULL << 34;
1552   case Attribute::StackProtectStrong: return 1ULL << 35;
1553   case Attribute::SanitizeThread:  return 1ULL << 36;
1554   case Attribute::SanitizeMemory:  return 1ULL << 37;
1555   case Attribute::NoBuiltin:       return 1ULL << 38;
1556   case Attribute::Returned:        return 1ULL << 39;
1557   case Attribute::Cold:            return 1ULL << 40;
1558   case Attribute::Builtin:         return 1ULL << 41;
1559   case Attribute::OptimizeNone:    return 1ULL << 42;
1560   case Attribute::InAlloca:        return 1ULL << 43;
1561   case Attribute::NonNull:         return 1ULL << 44;
1562   case Attribute::JumpTable:       return 1ULL << 45;
1563   case Attribute::Convergent:      return 1ULL << 46;
1564   case Attribute::SafeStack:       return 1ULL << 47;
1565   case Attribute::NoRecurse:       return 1ULL << 48;
1566   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1567   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1568   case Attribute::SwiftSelf:       return 1ULL << 51;
1569   case Attribute::SwiftError:      return 1ULL << 52;
1570   case Attribute::WriteOnly:       return 1ULL << 53;
1571   case Attribute::Dereferenceable:
1572     llvm_unreachable("dereferenceable attribute not supported in raw format");
1573     break;
1574   case Attribute::DereferenceableOrNull:
1575     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1576                      "format");
1577     break;
1578   case Attribute::ArgMemOnly:
1579     llvm_unreachable("argmemonly attribute not supported in raw format");
1580     break;
1581   case Attribute::AllocSize:
1582     llvm_unreachable("allocsize not supported in raw format");
1583     break;
1584   }
1585   llvm_unreachable("Unsupported attribute type");
1586 }
1587 
1588 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1589   if (!Val) return;
1590 
1591   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1592        I = Attribute::AttrKind(I + 1)) {
1593     if (I == Attribute::Dereferenceable ||
1594         I == Attribute::DereferenceableOrNull ||
1595         I == Attribute::ArgMemOnly ||
1596         I == Attribute::AllocSize)
1597       continue;
1598     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1599       if (I == Attribute::Alignment)
1600         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1601       else if (I == Attribute::StackAlignment)
1602         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1603       else
1604         B.addAttribute(I);
1605     }
1606   }
1607 }
1608 
1609 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1610 /// been decoded from the given integer. This function must stay in sync with
1611 /// 'encodeLLVMAttributesForBitcode'.
1612 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1613                                            uint64_t EncodedAttrs) {
1614   // FIXME: Remove in 4.0.
1615 
1616   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1617   // the bits above 31 down by 11 bits.
1618   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1619   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1620          "Alignment must be a power of two.");
1621 
1622   if (Alignment)
1623     B.addAlignmentAttr(Alignment);
1624   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1625                           (EncodedAttrs & 0xffff));
1626 }
1627 
1628 Error BitcodeReader::parseAttributeBlock() {
1629   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1630     return error("Invalid record");
1631 
1632   if (!MAttributes.empty())
1633     return error("Invalid multiple blocks");
1634 
1635   SmallVector<uint64_t, 64> Record;
1636 
1637   SmallVector<AttributeSet, 8> Attrs;
1638 
1639   // Read all the records.
1640   while (true) {
1641     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1642 
1643     switch (Entry.Kind) {
1644     case BitstreamEntry::SubBlock: // Handled for us already.
1645     case BitstreamEntry::Error:
1646       return error("Malformed block");
1647     case BitstreamEntry::EndBlock:
1648       return Error::success();
1649     case BitstreamEntry::Record:
1650       // The interesting case.
1651       break;
1652     }
1653 
1654     // Read a record.
1655     Record.clear();
1656     switch (Stream.readRecord(Entry.ID, Record)) {
1657     default:  // Default behavior: ignore.
1658       break;
1659     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1660       // FIXME: Remove in 4.0.
1661       if (Record.size() & 1)
1662         return error("Invalid record");
1663 
1664       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1665         AttrBuilder B;
1666         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1667         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1668       }
1669 
1670       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1671       Attrs.clear();
1672       break;
1673     }
1674     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1675       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1676         Attrs.push_back(MAttributeGroups[Record[i]]);
1677 
1678       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1679       Attrs.clear();
1680       break;
1681     }
1682     }
1683   }
1684 }
1685 
1686 // Returns Attribute::None on unrecognized codes.
1687 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1688   switch (Code) {
1689   default:
1690     return Attribute::None;
1691   case bitc::ATTR_KIND_ALIGNMENT:
1692     return Attribute::Alignment;
1693   case bitc::ATTR_KIND_ALWAYS_INLINE:
1694     return Attribute::AlwaysInline;
1695   case bitc::ATTR_KIND_ARGMEMONLY:
1696     return Attribute::ArgMemOnly;
1697   case bitc::ATTR_KIND_BUILTIN:
1698     return Attribute::Builtin;
1699   case bitc::ATTR_KIND_BY_VAL:
1700     return Attribute::ByVal;
1701   case bitc::ATTR_KIND_IN_ALLOCA:
1702     return Attribute::InAlloca;
1703   case bitc::ATTR_KIND_COLD:
1704     return Attribute::Cold;
1705   case bitc::ATTR_KIND_CONVERGENT:
1706     return Attribute::Convergent;
1707   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1708     return Attribute::InaccessibleMemOnly;
1709   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1710     return Attribute::InaccessibleMemOrArgMemOnly;
1711   case bitc::ATTR_KIND_INLINE_HINT:
1712     return Attribute::InlineHint;
1713   case bitc::ATTR_KIND_IN_REG:
1714     return Attribute::InReg;
1715   case bitc::ATTR_KIND_JUMP_TABLE:
1716     return Attribute::JumpTable;
1717   case bitc::ATTR_KIND_MIN_SIZE:
1718     return Attribute::MinSize;
1719   case bitc::ATTR_KIND_NAKED:
1720     return Attribute::Naked;
1721   case bitc::ATTR_KIND_NEST:
1722     return Attribute::Nest;
1723   case bitc::ATTR_KIND_NO_ALIAS:
1724     return Attribute::NoAlias;
1725   case bitc::ATTR_KIND_NO_BUILTIN:
1726     return Attribute::NoBuiltin;
1727   case bitc::ATTR_KIND_NO_CAPTURE:
1728     return Attribute::NoCapture;
1729   case bitc::ATTR_KIND_NO_DUPLICATE:
1730     return Attribute::NoDuplicate;
1731   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1732     return Attribute::NoImplicitFloat;
1733   case bitc::ATTR_KIND_NO_INLINE:
1734     return Attribute::NoInline;
1735   case bitc::ATTR_KIND_NO_RECURSE:
1736     return Attribute::NoRecurse;
1737   case bitc::ATTR_KIND_NON_LAZY_BIND:
1738     return Attribute::NonLazyBind;
1739   case bitc::ATTR_KIND_NON_NULL:
1740     return Attribute::NonNull;
1741   case bitc::ATTR_KIND_DEREFERENCEABLE:
1742     return Attribute::Dereferenceable;
1743   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1744     return Attribute::DereferenceableOrNull;
1745   case bitc::ATTR_KIND_ALLOC_SIZE:
1746     return Attribute::AllocSize;
1747   case bitc::ATTR_KIND_NO_RED_ZONE:
1748     return Attribute::NoRedZone;
1749   case bitc::ATTR_KIND_NO_RETURN:
1750     return Attribute::NoReturn;
1751   case bitc::ATTR_KIND_NO_UNWIND:
1752     return Attribute::NoUnwind;
1753   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1754     return Attribute::OptimizeForSize;
1755   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1756     return Attribute::OptimizeNone;
1757   case bitc::ATTR_KIND_READ_NONE:
1758     return Attribute::ReadNone;
1759   case bitc::ATTR_KIND_READ_ONLY:
1760     return Attribute::ReadOnly;
1761   case bitc::ATTR_KIND_RETURNED:
1762     return Attribute::Returned;
1763   case bitc::ATTR_KIND_RETURNS_TWICE:
1764     return Attribute::ReturnsTwice;
1765   case bitc::ATTR_KIND_S_EXT:
1766     return Attribute::SExt;
1767   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1768     return Attribute::StackAlignment;
1769   case bitc::ATTR_KIND_STACK_PROTECT:
1770     return Attribute::StackProtect;
1771   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1772     return Attribute::StackProtectReq;
1773   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1774     return Attribute::StackProtectStrong;
1775   case bitc::ATTR_KIND_SAFESTACK:
1776     return Attribute::SafeStack;
1777   case bitc::ATTR_KIND_STRUCT_RET:
1778     return Attribute::StructRet;
1779   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1780     return Attribute::SanitizeAddress;
1781   case bitc::ATTR_KIND_SANITIZE_THREAD:
1782     return Attribute::SanitizeThread;
1783   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1784     return Attribute::SanitizeMemory;
1785   case bitc::ATTR_KIND_SWIFT_ERROR:
1786     return Attribute::SwiftError;
1787   case bitc::ATTR_KIND_SWIFT_SELF:
1788     return Attribute::SwiftSelf;
1789   case bitc::ATTR_KIND_UW_TABLE:
1790     return Attribute::UWTable;
1791   case bitc::ATTR_KIND_WRITEONLY:
1792     return Attribute::WriteOnly;
1793   case bitc::ATTR_KIND_Z_EXT:
1794     return Attribute::ZExt;
1795   }
1796 }
1797 
1798 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1799                                          unsigned &Alignment) {
1800   // Note: Alignment in bitcode files is incremented by 1, so that zero
1801   // can be used for default alignment.
1802   if (Exponent > Value::MaxAlignmentExponent + 1)
1803     return error("Invalid alignment value");
1804   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1805   return Error::success();
1806 }
1807 
1808 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1809   *Kind = getAttrFromCode(Code);
1810   if (*Kind == Attribute::None)
1811     return error("Unknown attribute kind (" + Twine(Code) + ")");
1812   return Error::success();
1813 }
1814 
1815 Error BitcodeReader::parseAttributeGroupBlock() {
1816   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1817     return error("Invalid record");
1818 
1819   if (!MAttributeGroups.empty())
1820     return error("Invalid multiple blocks");
1821 
1822   SmallVector<uint64_t, 64> Record;
1823 
1824   // Read all the records.
1825   while (true) {
1826     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1827 
1828     switch (Entry.Kind) {
1829     case BitstreamEntry::SubBlock: // Handled for us already.
1830     case BitstreamEntry::Error:
1831       return error("Malformed block");
1832     case BitstreamEntry::EndBlock:
1833       return Error::success();
1834     case BitstreamEntry::Record:
1835       // The interesting case.
1836       break;
1837     }
1838 
1839     // Read a record.
1840     Record.clear();
1841     switch (Stream.readRecord(Entry.ID, Record)) {
1842     default:  // Default behavior: ignore.
1843       break;
1844     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1845       if (Record.size() < 3)
1846         return error("Invalid record");
1847 
1848       uint64_t GrpID = Record[0];
1849       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1850 
1851       AttrBuilder B;
1852       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1853         if (Record[i] == 0) {        // Enum attribute
1854           Attribute::AttrKind Kind;
1855           if (Error Err = parseAttrKind(Record[++i], &Kind))
1856             return Err;
1857 
1858           B.addAttribute(Kind);
1859         } else if (Record[i] == 1) { // Integer attribute
1860           Attribute::AttrKind Kind;
1861           if (Error Err = parseAttrKind(Record[++i], &Kind))
1862             return Err;
1863           if (Kind == Attribute::Alignment)
1864             B.addAlignmentAttr(Record[++i]);
1865           else if (Kind == Attribute::StackAlignment)
1866             B.addStackAlignmentAttr(Record[++i]);
1867           else if (Kind == Attribute::Dereferenceable)
1868             B.addDereferenceableAttr(Record[++i]);
1869           else if (Kind == Attribute::DereferenceableOrNull)
1870             B.addDereferenceableOrNullAttr(Record[++i]);
1871           else if (Kind == Attribute::AllocSize)
1872             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1873         } else {                     // String attribute
1874           assert((Record[i] == 3 || Record[i] == 4) &&
1875                  "Invalid attribute group entry");
1876           bool HasValue = (Record[i++] == 4);
1877           SmallString<64> KindStr;
1878           SmallString<64> ValStr;
1879 
1880           while (Record[i] != 0 && i != e)
1881             KindStr += Record[i++];
1882           assert(Record[i] == 0 && "Kind string not null terminated");
1883 
1884           if (HasValue) {
1885             // Has a value associated with it.
1886             ++i; // Skip the '0' that terminates the "kind" string.
1887             while (Record[i] != 0 && i != e)
1888               ValStr += Record[i++];
1889             assert(Record[i] == 0 && "Value string not null terminated");
1890           }
1891 
1892           B.addAttribute(KindStr.str(), ValStr.str());
1893         }
1894       }
1895 
1896       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1897       break;
1898     }
1899     }
1900   }
1901 }
1902 
1903 Error BitcodeReader::parseTypeTable() {
1904   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1905     return error("Invalid record");
1906 
1907   return parseTypeTableBody();
1908 }
1909 
1910 Error BitcodeReader::parseTypeTableBody() {
1911   if (!TypeList.empty())
1912     return error("Invalid multiple blocks");
1913 
1914   SmallVector<uint64_t, 64> Record;
1915   unsigned NumRecords = 0;
1916 
1917   SmallString<64> TypeName;
1918 
1919   // Read all the records for this type table.
1920   while (true) {
1921     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1922 
1923     switch (Entry.Kind) {
1924     case BitstreamEntry::SubBlock: // Handled for us already.
1925     case BitstreamEntry::Error:
1926       return error("Malformed block");
1927     case BitstreamEntry::EndBlock:
1928       if (NumRecords != TypeList.size())
1929         return error("Malformed block");
1930       return Error::success();
1931     case BitstreamEntry::Record:
1932       // The interesting case.
1933       break;
1934     }
1935 
1936     // Read a record.
1937     Record.clear();
1938     Type *ResultTy = nullptr;
1939     switch (Stream.readRecord(Entry.ID, Record)) {
1940     default:
1941       return error("Invalid value");
1942     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1943       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1944       // type list.  This allows us to reserve space.
1945       if (Record.size() < 1)
1946         return error("Invalid record");
1947       TypeList.resize(Record[0]);
1948       continue;
1949     case bitc::TYPE_CODE_VOID:      // VOID
1950       ResultTy = Type::getVoidTy(Context);
1951       break;
1952     case bitc::TYPE_CODE_HALF:     // HALF
1953       ResultTy = Type::getHalfTy(Context);
1954       break;
1955     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1956       ResultTy = Type::getFloatTy(Context);
1957       break;
1958     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1959       ResultTy = Type::getDoubleTy(Context);
1960       break;
1961     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1962       ResultTy = Type::getX86_FP80Ty(Context);
1963       break;
1964     case bitc::TYPE_CODE_FP128:     // FP128
1965       ResultTy = Type::getFP128Ty(Context);
1966       break;
1967     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1968       ResultTy = Type::getPPC_FP128Ty(Context);
1969       break;
1970     case bitc::TYPE_CODE_LABEL:     // LABEL
1971       ResultTy = Type::getLabelTy(Context);
1972       break;
1973     case bitc::TYPE_CODE_METADATA:  // METADATA
1974       ResultTy = Type::getMetadataTy(Context);
1975       break;
1976     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1977       ResultTy = Type::getX86_MMXTy(Context);
1978       break;
1979     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1980       ResultTy = Type::getTokenTy(Context);
1981       break;
1982     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1983       if (Record.size() < 1)
1984         return error("Invalid record");
1985 
1986       uint64_t NumBits = Record[0];
1987       if (NumBits < IntegerType::MIN_INT_BITS ||
1988           NumBits > IntegerType::MAX_INT_BITS)
1989         return error("Bitwidth for integer type out of range");
1990       ResultTy = IntegerType::get(Context, NumBits);
1991       break;
1992     }
1993     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1994                                     //          [pointee type, address space]
1995       if (Record.size() < 1)
1996         return error("Invalid record");
1997       unsigned AddressSpace = 0;
1998       if (Record.size() == 2)
1999         AddressSpace = Record[1];
2000       ResultTy = getTypeByID(Record[0]);
2001       if (!ResultTy ||
2002           !PointerType::isValidElementType(ResultTy))
2003         return error("Invalid type");
2004       ResultTy = PointerType::get(ResultTy, AddressSpace);
2005       break;
2006     }
2007     case bitc::TYPE_CODE_FUNCTION_OLD: {
2008       // FIXME: attrid is dead, remove it in LLVM 4.0
2009       // FUNCTION: [vararg, attrid, retty, paramty x N]
2010       if (Record.size() < 3)
2011         return error("Invalid record");
2012       SmallVector<Type*, 8> ArgTys;
2013       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2014         if (Type *T = getTypeByID(Record[i]))
2015           ArgTys.push_back(T);
2016         else
2017           break;
2018       }
2019 
2020       ResultTy = getTypeByID(Record[2]);
2021       if (!ResultTy || ArgTys.size() < Record.size()-3)
2022         return error("Invalid type");
2023 
2024       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2025       break;
2026     }
2027     case bitc::TYPE_CODE_FUNCTION: {
2028       // FUNCTION: [vararg, retty, paramty x N]
2029       if (Record.size() < 2)
2030         return error("Invalid record");
2031       SmallVector<Type*, 8> ArgTys;
2032       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2033         if (Type *T = getTypeByID(Record[i])) {
2034           if (!FunctionType::isValidArgumentType(T))
2035             return error("Invalid function argument type");
2036           ArgTys.push_back(T);
2037         }
2038         else
2039           break;
2040       }
2041 
2042       ResultTy = getTypeByID(Record[1]);
2043       if (!ResultTy || ArgTys.size() < Record.size()-2)
2044         return error("Invalid type");
2045 
2046       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2047       break;
2048     }
2049     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2050       if (Record.size() < 1)
2051         return error("Invalid record");
2052       SmallVector<Type*, 8> EltTys;
2053       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2054         if (Type *T = getTypeByID(Record[i]))
2055           EltTys.push_back(T);
2056         else
2057           break;
2058       }
2059       if (EltTys.size() != Record.size()-1)
2060         return error("Invalid type");
2061       ResultTy = StructType::get(Context, EltTys, Record[0]);
2062       break;
2063     }
2064     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2065       if (convertToString(Record, 0, TypeName))
2066         return error("Invalid record");
2067       continue;
2068 
2069     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2070       if (Record.size() < 1)
2071         return error("Invalid record");
2072 
2073       if (NumRecords >= TypeList.size())
2074         return error("Invalid TYPE table");
2075 
2076       // Check to see if this was forward referenced, if so fill in the temp.
2077       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2078       if (Res) {
2079         Res->setName(TypeName);
2080         TypeList[NumRecords] = nullptr;
2081       } else  // Otherwise, create a new struct.
2082         Res = createIdentifiedStructType(Context, TypeName);
2083       TypeName.clear();
2084 
2085       SmallVector<Type*, 8> EltTys;
2086       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2087         if (Type *T = getTypeByID(Record[i]))
2088           EltTys.push_back(T);
2089         else
2090           break;
2091       }
2092       if (EltTys.size() != Record.size()-1)
2093         return error("Invalid record");
2094       Res->setBody(EltTys, Record[0]);
2095       ResultTy = Res;
2096       break;
2097     }
2098     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2099       if (Record.size() != 1)
2100         return error("Invalid record");
2101 
2102       if (NumRecords >= TypeList.size())
2103         return error("Invalid TYPE table");
2104 
2105       // Check to see if this was forward referenced, if so fill in the temp.
2106       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2107       if (Res) {
2108         Res->setName(TypeName);
2109         TypeList[NumRecords] = nullptr;
2110       } else  // Otherwise, create a new struct with no body.
2111         Res = createIdentifiedStructType(Context, TypeName);
2112       TypeName.clear();
2113       ResultTy = Res;
2114       break;
2115     }
2116     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2117       if (Record.size() < 2)
2118         return error("Invalid record");
2119       ResultTy = getTypeByID(Record[1]);
2120       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2121         return error("Invalid type");
2122       ResultTy = ArrayType::get(ResultTy, Record[0]);
2123       break;
2124     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
2125       if (Record.size() < 2)
2126         return error("Invalid record");
2127       if (Record[0] == 0)
2128         return error("Invalid vector length");
2129       ResultTy = getTypeByID(Record[1]);
2130       if (!ResultTy || !StructType::isValidElementType(ResultTy))
2131         return error("Invalid type");
2132       ResultTy = VectorType::get(ResultTy, Record[0]);
2133       break;
2134     }
2135 
2136     if (NumRecords >= TypeList.size())
2137       return error("Invalid TYPE table");
2138     if (TypeList[NumRecords])
2139       return error(
2140           "Invalid TYPE table: Only named structs can be forward referenced");
2141     assert(ResultTy && "Didn't read a type?");
2142     TypeList[NumRecords++] = ResultTy;
2143   }
2144 }
2145 
2146 Error BitcodeReader::parseOperandBundleTags() {
2147   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2148     return error("Invalid record");
2149 
2150   if (!BundleTags.empty())
2151     return error("Invalid multiple blocks");
2152 
2153   SmallVector<uint64_t, 64> Record;
2154 
2155   while (true) {
2156     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2157 
2158     switch (Entry.Kind) {
2159     case BitstreamEntry::SubBlock: // Handled for us already.
2160     case BitstreamEntry::Error:
2161       return error("Malformed block");
2162     case BitstreamEntry::EndBlock:
2163       return Error::success();
2164     case BitstreamEntry::Record:
2165       // The interesting case.
2166       break;
2167     }
2168 
2169     // Tags are implicitly mapped to integers by their order.
2170 
2171     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
2172       return error("Invalid record");
2173 
2174     // OPERAND_BUNDLE_TAG: [strchr x N]
2175     BundleTags.emplace_back();
2176     if (convertToString(Record, 0, BundleTags.back()))
2177       return error("Invalid record");
2178     Record.clear();
2179   }
2180 }
2181 
2182 /// Associate a value with its name from the given index in the provided record.
2183 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2184                                              unsigned NameIndex, Triple &TT) {
2185   SmallString<128> ValueName;
2186   if (convertToString(Record, NameIndex, ValueName))
2187     return error("Invalid record");
2188   unsigned ValueID = Record[0];
2189   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2190     return error("Invalid record");
2191   Value *V = ValueList[ValueID];
2192 
2193   StringRef NameStr(ValueName.data(), ValueName.size());
2194   if (NameStr.find_first_of(0) != StringRef::npos)
2195     return error("Invalid value name");
2196   V->setName(NameStr);
2197   auto *GO = dyn_cast<GlobalObject>(V);
2198   if (GO) {
2199     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2200       if (TT.isOSBinFormatMachO())
2201         GO->setComdat(nullptr);
2202       else
2203         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2204     }
2205   }
2206   return V;
2207 }
2208 
2209 /// Helper to note and return the current location, and jump to the given
2210 /// offset.
2211 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
2212                                        BitstreamCursor &Stream) {
2213   // Save the current parsing location so we can jump back at the end
2214   // of the VST read.
2215   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2216   Stream.JumpToBit(Offset * 32);
2217 #ifndef NDEBUG
2218   // Do some checking if we are in debug mode.
2219   BitstreamEntry Entry = Stream.advance();
2220   assert(Entry.Kind == BitstreamEntry::SubBlock);
2221   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2222 #else
2223   // In NDEBUG mode ignore the output so we don't get an unused variable
2224   // warning.
2225   Stream.advance();
2226 #endif
2227   return CurrentBit;
2228 }
2229 
2230 /// Parse the value symbol table at either the current parsing location or
2231 /// at the given bit offset if provided.
2232 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2233   uint64_t CurrentBit;
2234   // Pass in the Offset to distinguish between calling for the module-level
2235   // VST (where we want to jump to the VST offset) and the function-level
2236   // VST (where we don't).
2237   if (Offset > 0)
2238     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
2239 
2240   // Compute the delta between the bitcode indices in the VST (the word offset
2241   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2242   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2243   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2244   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2245   // just before entering the VST subblock because: 1) the EnterSubBlock
2246   // changes the AbbrevID width; 2) the VST block is nested within the same
2247   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2248   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2249   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2250   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2251   unsigned FuncBitcodeOffsetDelta =
2252       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2253 
2254   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2255     return error("Invalid record");
2256 
2257   SmallVector<uint64_t, 64> Record;
2258 
2259   Triple TT(TheModule->getTargetTriple());
2260 
2261   // Read all the records for this value table.
2262   SmallString<128> ValueName;
2263 
2264   while (true) {
2265     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2266 
2267     switch (Entry.Kind) {
2268     case BitstreamEntry::SubBlock: // Handled for us already.
2269     case BitstreamEntry::Error:
2270       return error("Malformed block");
2271     case BitstreamEntry::EndBlock:
2272       if (Offset > 0)
2273         Stream.JumpToBit(CurrentBit);
2274       return Error::success();
2275     case BitstreamEntry::Record:
2276       // The interesting case.
2277       break;
2278     }
2279 
2280     // Read a record.
2281     Record.clear();
2282     switch (Stream.readRecord(Entry.ID, Record)) {
2283     default:  // Default behavior: unknown type.
2284       break;
2285     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2286       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2287       if (Error Err = ValOrErr.takeError())
2288         return Err;
2289       ValOrErr.get();
2290       break;
2291     }
2292     case bitc::VST_CODE_FNENTRY: {
2293       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2294       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2295       if (Error Err = ValOrErr.takeError())
2296         return Err;
2297       Value *V = ValOrErr.get();
2298 
2299       auto *GO = dyn_cast<GlobalObject>(V);
2300       if (!GO) {
2301         // If this is an alias, need to get the actual Function object
2302         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2303         auto *GA = dyn_cast<GlobalAlias>(V);
2304         if (GA)
2305           GO = GA->getBaseObject();
2306         assert(GO);
2307       }
2308 
2309       // Note that we subtract 1 here because the offset is relative to one word
2310       // before the start of the identification or module block, which was
2311       // historically always the start of the regular bitcode header.
2312       uint64_t FuncWordOffset = Record[1] - 1;
2313       Function *F = dyn_cast<Function>(GO);
2314       assert(F);
2315       uint64_t FuncBitOffset = FuncWordOffset * 32;
2316       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2317       // Set the LastFunctionBlockBit to point to the last function block.
2318       // Later when parsing is resumed after function materialization,
2319       // we can simply skip that last function block.
2320       if (FuncBitOffset > LastFunctionBlockBit)
2321         LastFunctionBlockBit = FuncBitOffset;
2322       break;
2323     }
2324     case bitc::VST_CODE_BBENTRY: {
2325       if (convertToString(Record, 1, ValueName))
2326         return error("Invalid record");
2327       BasicBlock *BB = getBasicBlock(Record[0]);
2328       if (!BB)
2329         return error("Invalid record");
2330 
2331       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2332       ValueName.clear();
2333       break;
2334     }
2335     }
2336   }
2337 }
2338 
2339 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2340 Error BitcodeReader::parseMetadataKindRecord(
2341     SmallVectorImpl<uint64_t> &Record) {
2342   if (Record.size() < 2)
2343     return error("Invalid record");
2344 
2345   unsigned Kind = Record[0];
2346   SmallString<8> Name(Record.begin() + 1, Record.end());
2347 
2348   unsigned NewKind = TheModule->getMDKindID(Name.str());
2349   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2350     return error("Conflicting METADATA_KIND records");
2351   return Error::success();
2352 }
2353 
2354 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2355 
2356 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2357                                           StringRef Blob,
2358                                           unsigned &NextMetadataNo) {
2359   // All the MDStrings in the block are emitted together in a single
2360   // record.  The strings are concatenated and stored in a blob along with
2361   // their sizes.
2362   if (Record.size() != 2)
2363     return error("Invalid record: metadata strings layout");
2364 
2365   unsigned NumStrings = Record[0];
2366   unsigned StringsOffset = Record[1];
2367   if (!NumStrings)
2368     return error("Invalid record: metadata strings with no strings");
2369   if (StringsOffset > Blob.size())
2370     return error("Invalid record: metadata strings corrupt offset");
2371 
2372   StringRef Lengths = Blob.slice(0, StringsOffset);
2373   SimpleBitstreamCursor R(Lengths);
2374 
2375   StringRef Strings = Blob.drop_front(StringsOffset);
2376   do {
2377     if (R.AtEndOfStream())
2378       return error("Invalid record: metadata strings bad length");
2379 
2380     unsigned Size = R.ReadVBR(6);
2381     if (Strings.size() < Size)
2382       return error("Invalid record: metadata strings truncated chars");
2383 
2384     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2385                              NextMetadataNo++);
2386     Strings = Strings.drop_front(Size);
2387   } while (--NumStrings);
2388 
2389   return Error::success();
2390 }
2391 
2392 namespace {
2393 
2394 class PlaceholderQueue {
2395   // Placeholders would thrash around when moved, so store in a std::deque
2396   // instead of some sort of vector.
2397   std::deque<DistinctMDOperandPlaceholder> PHs;
2398 
2399 public:
2400   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2401   void flush(BitcodeReaderMetadataList &MetadataList);
2402 };
2403 
2404 } // end anonymous namespace
2405 
2406 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2407   PHs.emplace_back(ID);
2408   return PHs.back();
2409 }
2410 
2411 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2412   while (!PHs.empty()) {
2413     PHs.front().replaceUseWith(
2414         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2415     PHs.pop_front();
2416   }
2417 }
2418 
2419 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2420 /// module level metadata.
2421 Error BitcodeReader::parseMetadata(bool ModuleLevel) {
2422   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2423          "Must read all module-level metadata before function-level");
2424 
2425   IsMetadataMaterialized = true;
2426   unsigned NextMetadataNo = MetadataList.size();
2427 
2428   if (!ModuleLevel && MetadataList.hasFwdRefs())
2429     return error("Invalid metadata: fwd refs into function blocks");
2430 
2431   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2432     return error("Invalid record");
2433 
2434   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2435   SmallVector<uint64_t, 64> Record;
2436 
2437   PlaceholderQueue Placeholders;
2438   bool IsDistinct;
2439   auto getMD = [&](unsigned ID) -> Metadata * {
2440     if (!IsDistinct)
2441       return MetadataList.getMetadataFwdRef(ID);
2442     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2443       return MD;
2444     return &Placeholders.getPlaceholderOp(ID);
2445   };
2446   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2447     if (ID)
2448       return getMD(ID - 1);
2449     return nullptr;
2450   };
2451   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2452     if (ID)
2453       return MetadataList.getMetadataFwdRef(ID - 1);
2454     return nullptr;
2455   };
2456   auto getMDString = [&](unsigned ID) -> MDString *{
2457     // This requires that the ID is not really a forward reference.  In
2458     // particular, the MDString must already have been resolved.
2459     return cast_or_null<MDString>(getMDOrNull(ID));
2460   };
2461 
2462   // Support for old type refs.
2463   auto getDITypeRefOrNull = [&](unsigned ID) {
2464     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2465   };
2466 
2467 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2468   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2469 
2470   // Read all the records.
2471   while (true) {
2472     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2473 
2474     switch (Entry.Kind) {
2475     case BitstreamEntry::SubBlock: // Handled for us already.
2476     case BitstreamEntry::Error:
2477       return error("Malformed block");
2478     case BitstreamEntry::EndBlock:
2479       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2480       for (auto CU_SP : CUSubprograms)
2481         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2482           for (auto &Op : SPs->operands())
2483             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2484               SP->replaceOperandWith(7, CU_SP.first);
2485 
2486       MetadataList.tryToResolveCycles();
2487       Placeholders.flush(MetadataList);
2488       return Error::success();
2489     case BitstreamEntry::Record:
2490       // The interesting case.
2491       break;
2492     }
2493 
2494     // Read a record.
2495     Record.clear();
2496     StringRef Blob;
2497     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2498     IsDistinct = false;
2499     switch (Code) {
2500     default:  // Default behavior: ignore.
2501       break;
2502     case bitc::METADATA_NAME: {
2503       // Read name of the named metadata.
2504       SmallString<8> Name(Record.begin(), Record.end());
2505       Record.clear();
2506       Code = Stream.ReadCode();
2507 
2508       unsigned NextBitCode = Stream.readRecord(Code, Record);
2509       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2510         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2511 
2512       // Read named metadata elements.
2513       unsigned Size = Record.size();
2514       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2515       for (unsigned i = 0; i != Size; ++i) {
2516         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2517         if (!MD)
2518           return error("Invalid record");
2519         NMD->addOperand(MD);
2520       }
2521       break;
2522     }
2523     case bitc::METADATA_OLD_FN_NODE: {
2524       // FIXME: Remove in 4.0.
2525       // This is a LocalAsMetadata record, the only type of function-local
2526       // metadata.
2527       if (Record.size() % 2 == 1)
2528         return error("Invalid record");
2529 
2530       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2531       // to be legal, but there's no upgrade path.
2532       auto dropRecord = [&] {
2533         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2534       };
2535       if (Record.size() != 2) {
2536         dropRecord();
2537         break;
2538       }
2539 
2540       Type *Ty = getTypeByID(Record[0]);
2541       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2542         dropRecord();
2543         break;
2544       }
2545 
2546       MetadataList.assignValue(
2547           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2548           NextMetadataNo++);
2549       break;
2550     }
2551     case bitc::METADATA_OLD_NODE: {
2552       // FIXME: Remove in 4.0.
2553       if (Record.size() % 2 == 1)
2554         return error("Invalid record");
2555 
2556       unsigned Size = Record.size();
2557       SmallVector<Metadata *, 8> Elts;
2558       for (unsigned i = 0; i != Size; i += 2) {
2559         Type *Ty = getTypeByID(Record[i]);
2560         if (!Ty)
2561           return error("Invalid record");
2562         if (Ty->isMetadataTy())
2563           Elts.push_back(getMD(Record[i + 1]));
2564         else if (!Ty->isVoidTy()) {
2565           auto *MD =
2566               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2567           assert(isa<ConstantAsMetadata>(MD) &&
2568                  "Expected non-function-local metadata");
2569           Elts.push_back(MD);
2570         } else
2571           Elts.push_back(nullptr);
2572       }
2573       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2574       break;
2575     }
2576     case bitc::METADATA_VALUE: {
2577       if (Record.size() != 2)
2578         return error("Invalid record");
2579 
2580       Type *Ty = getTypeByID(Record[0]);
2581       if (Ty->isMetadataTy() || Ty->isVoidTy())
2582         return error("Invalid record");
2583 
2584       MetadataList.assignValue(
2585           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2586           NextMetadataNo++);
2587       break;
2588     }
2589     case bitc::METADATA_DISTINCT_NODE:
2590       IsDistinct = true;
2591       LLVM_FALLTHROUGH;
2592     case bitc::METADATA_NODE: {
2593       SmallVector<Metadata *, 8> Elts;
2594       Elts.reserve(Record.size());
2595       for (unsigned ID : Record)
2596         Elts.push_back(getMDOrNull(ID));
2597       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2598                                           : MDNode::get(Context, Elts),
2599                                NextMetadataNo++);
2600       break;
2601     }
2602     case bitc::METADATA_LOCATION: {
2603       if (Record.size() != 5)
2604         return error("Invalid record");
2605 
2606       IsDistinct = Record[0];
2607       unsigned Line = Record[1];
2608       unsigned Column = Record[2];
2609       Metadata *Scope = getMD(Record[3]);
2610       Metadata *InlinedAt = getMDOrNull(Record[4]);
2611       MetadataList.assignValue(
2612           GET_OR_DISTINCT(DILocation,
2613                           (Context, Line, Column, Scope, InlinedAt)),
2614           NextMetadataNo++);
2615       break;
2616     }
2617     case bitc::METADATA_GENERIC_DEBUG: {
2618       if (Record.size() < 4)
2619         return error("Invalid record");
2620 
2621       IsDistinct = Record[0];
2622       unsigned Tag = Record[1];
2623       unsigned Version = Record[2];
2624 
2625       if (Tag >= 1u << 16 || Version != 0)
2626         return error("Invalid record");
2627 
2628       auto *Header = getMDString(Record[3]);
2629       SmallVector<Metadata *, 8> DwarfOps;
2630       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2631         DwarfOps.push_back(getMDOrNull(Record[I]));
2632       MetadataList.assignValue(
2633           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2634           NextMetadataNo++);
2635       break;
2636     }
2637     case bitc::METADATA_SUBRANGE: {
2638       if (Record.size() != 3)
2639         return error("Invalid record");
2640 
2641       IsDistinct = Record[0];
2642       MetadataList.assignValue(
2643           GET_OR_DISTINCT(DISubrange,
2644                           (Context, Record[1], unrotateSign(Record[2]))),
2645           NextMetadataNo++);
2646       break;
2647     }
2648     case bitc::METADATA_ENUMERATOR: {
2649       if (Record.size() != 3)
2650         return error("Invalid record");
2651 
2652       IsDistinct = Record[0];
2653       MetadataList.assignValue(
2654           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2655                                          getMDString(Record[2]))),
2656           NextMetadataNo++);
2657       break;
2658     }
2659     case bitc::METADATA_BASIC_TYPE: {
2660       if (Record.size() != 6)
2661         return error("Invalid record");
2662 
2663       IsDistinct = Record[0];
2664       MetadataList.assignValue(
2665           GET_OR_DISTINCT(DIBasicType,
2666                           (Context, Record[1], getMDString(Record[2]),
2667                            Record[3], Record[4], Record[5])),
2668           NextMetadataNo++);
2669       break;
2670     }
2671     case bitc::METADATA_DERIVED_TYPE: {
2672       if (Record.size() != 12)
2673         return error("Invalid record");
2674 
2675       IsDistinct = Record[0];
2676       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2677       MetadataList.assignValue(
2678           GET_OR_DISTINCT(DIDerivedType,
2679                           (Context, Record[1], getMDString(Record[2]),
2680                            getMDOrNull(Record[3]), Record[4],
2681                            getDITypeRefOrNull(Record[5]),
2682                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2683                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2684           NextMetadataNo++);
2685       break;
2686     }
2687     case bitc::METADATA_COMPOSITE_TYPE: {
2688       if (Record.size() != 16)
2689         return error("Invalid record");
2690 
2691       // If we have a UUID and this is not a forward declaration, lookup the
2692       // mapping.
2693       IsDistinct = Record[0] & 0x1;
2694       bool IsNotUsedInTypeRef = Record[0] >= 2;
2695       unsigned Tag = Record[1];
2696       MDString *Name = getMDString(Record[2]);
2697       Metadata *File = getMDOrNull(Record[3]);
2698       unsigned Line = Record[4];
2699       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2700       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2701       uint64_t SizeInBits = Record[7];
2702       if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
2703         return error("Alignment value is too large");
2704       uint32_t AlignInBits = Record[8];
2705       uint64_t OffsetInBits = Record[9];
2706       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2707       Metadata *Elements = getMDOrNull(Record[11]);
2708       unsigned RuntimeLang = Record[12];
2709       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2710       Metadata *TemplateParams = getMDOrNull(Record[14]);
2711       auto *Identifier = getMDString(Record[15]);
2712       DICompositeType *CT = nullptr;
2713       if (Identifier)
2714         CT = DICompositeType::buildODRType(
2715             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2716             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2717             VTableHolder, TemplateParams);
2718 
2719       // Create a node if we didn't get a lazy ODR type.
2720       if (!CT)
2721         CT = GET_OR_DISTINCT(DICompositeType,
2722                              (Context, Tag, Name, File, Line, Scope, BaseType,
2723                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2724                               Elements, RuntimeLang, VTableHolder,
2725                               TemplateParams, Identifier));
2726       if (!IsNotUsedInTypeRef && Identifier)
2727         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2728 
2729       MetadataList.assignValue(CT, NextMetadataNo++);
2730       break;
2731     }
2732     case bitc::METADATA_SUBROUTINE_TYPE: {
2733       if (Record.size() < 3 || Record.size() > 4)
2734         return error("Invalid record");
2735       bool IsOldTypeRefArray = Record[0] < 2;
2736       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2737 
2738       IsDistinct = Record[0] & 0x1;
2739       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2740       Metadata *Types = getMDOrNull(Record[2]);
2741       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2742         Types = MetadataList.upgradeTypeRefArray(Types);
2743 
2744       MetadataList.assignValue(
2745           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2746           NextMetadataNo++);
2747       break;
2748     }
2749 
2750     case bitc::METADATA_MODULE: {
2751       if (Record.size() != 6)
2752         return error("Invalid record");
2753 
2754       IsDistinct = Record[0];
2755       MetadataList.assignValue(
2756           GET_OR_DISTINCT(DIModule,
2757                           (Context, getMDOrNull(Record[1]),
2758                            getMDString(Record[2]), getMDString(Record[3]),
2759                            getMDString(Record[4]), getMDString(Record[5]))),
2760           NextMetadataNo++);
2761       break;
2762     }
2763 
2764     case bitc::METADATA_FILE: {
2765       if (Record.size() != 3)
2766         return error("Invalid record");
2767 
2768       IsDistinct = Record[0];
2769       MetadataList.assignValue(
2770           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2771                                    getMDString(Record[2]))),
2772           NextMetadataNo++);
2773       break;
2774     }
2775     case bitc::METADATA_COMPILE_UNIT: {
2776       if (Record.size() < 14 || Record.size() > 17)
2777         return error("Invalid record");
2778 
2779       // Ignore Record[0], which indicates whether this compile unit is
2780       // distinct.  It's always distinct.
2781       IsDistinct = true;
2782       auto *CU = DICompileUnit::getDistinct(
2783           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2784           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2785           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2786           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2787           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2788           Record.size() <= 14 ? 0 : Record[14],
2789           Record.size() <= 16 ? true : Record[16]);
2790 
2791       MetadataList.assignValue(CU, NextMetadataNo++);
2792 
2793       // Move the Upgrade the list of subprograms.
2794       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2795         CUSubprograms.push_back({CU, SPs});
2796       break;
2797     }
2798     case bitc::METADATA_SUBPROGRAM: {
2799       if (Record.size() < 18 || Record.size() > 20)
2800         return error("Invalid record");
2801 
2802       IsDistinct =
2803           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2804       // Version 1 has a Function as Record[15].
2805       // Version 2 has removed Record[15].
2806       // Version 3 has the Unit as Record[15].
2807       // Version 4 added thisAdjustment.
2808       bool HasUnit = Record[0] >= 2;
2809       if (HasUnit && Record.size() < 19)
2810         return error("Invalid record");
2811       Metadata *CUorFn = getMDOrNull(Record[15]);
2812       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2813       bool HasFn = Offset && !HasUnit;
2814       bool HasThisAdj = Record.size() >= 20;
2815       DISubprogram *SP = GET_OR_DISTINCT(
2816           DISubprogram, (Context,
2817                          getDITypeRefOrNull(Record[1]),  // scope
2818                          getMDString(Record[2]),         // name
2819                          getMDString(Record[3]),         // linkageName
2820                          getMDOrNull(Record[4]),         // file
2821                          Record[5],                      // line
2822                          getMDOrNull(Record[6]),         // type
2823                          Record[7],                      // isLocal
2824                          Record[8],                      // isDefinition
2825                          Record[9],                      // scopeLine
2826                          getDITypeRefOrNull(Record[10]), // containingType
2827                          Record[11],                     // virtuality
2828                          Record[12],                     // virtualIndex
2829                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2830                          static_cast<DINode::DIFlags>(Record[13] // flags
2831                                                       ),
2832                          Record[14],                       // isOptimized
2833                          HasUnit ? CUorFn : nullptr,       // unit
2834                          getMDOrNull(Record[15 + Offset]), // templateParams
2835                          getMDOrNull(Record[16 + Offset]), // declaration
2836                          getMDOrNull(Record[17 + Offset])  // variables
2837                          ));
2838       MetadataList.assignValue(SP, NextMetadataNo++);
2839 
2840       // Upgrade sp->function mapping to function->sp mapping.
2841       if (HasFn) {
2842         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2843           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2844             if (F->isMaterializable())
2845               // Defer until materialized; unmaterialized functions may not have
2846               // metadata.
2847               FunctionsWithSPs[F] = SP;
2848             else if (!F->empty())
2849               F->setSubprogram(SP);
2850           }
2851       }
2852       break;
2853     }
2854     case bitc::METADATA_LEXICAL_BLOCK: {
2855       if (Record.size() != 5)
2856         return error("Invalid record");
2857 
2858       IsDistinct = Record[0];
2859       MetadataList.assignValue(
2860           GET_OR_DISTINCT(DILexicalBlock,
2861                           (Context, getMDOrNull(Record[1]),
2862                            getMDOrNull(Record[2]), Record[3], Record[4])),
2863           NextMetadataNo++);
2864       break;
2865     }
2866     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2867       if (Record.size() != 4)
2868         return error("Invalid record");
2869 
2870       IsDistinct = Record[0];
2871       MetadataList.assignValue(
2872           GET_OR_DISTINCT(DILexicalBlockFile,
2873                           (Context, getMDOrNull(Record[1]),
2874                            getMDOrNull(Record[2]), Record[3])),
2875           NextMetadataNo++);
2876       break;
2877     }
2878     case bitc::METADATA_NAMESPACE: {
2879       if (Record.size() != 5)
2880         return error("Invalid record");
2881 
2882       IsDistinct = Record[0] & 1;
2883       bool ExportSymbols = Record[0] & 2;
2884       MetadataList.assignValue(
2885           GET_OR_DISTINCT(DINamespace,
2886                           (Context, getMDOrNull(Record[1]),
2887                            getMDOrNull(Record[2]), getMDString(Record[3]),
2888                            Record[4], ExportSymbols)),
2889           NextMetadataNo++);
2890       break;
2891     }
2892     case bitc::METADATA_MACRO: {
2893       if (Record.size() != 5)
2894         return error("Invalid record");
2895 
2896       IsDistinct = Record[0];
2897       MetadataList.assignValue(
2898           GET_OR_DISTINCT(DIMacro,
2899                           (Context, Record[1], Record[2],
2900                            getMDString(Record[3]), getMDString(Record[4]))),
2901           NextMetadataNo++);
2902       break;
2903     }
2904     case bitc::METADATA_MACRO_FILE: {
2905       if (Record.size() != 5)
2906         return error("Invalid record");
2907 
2908       IsDistinct = Record[0];
2909       MetadataList.assignValue(
2910           GET_OR_DISTINCT(DIMacroFile,
2911                           (Context, Record[1], Record[2],
2912                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2913           NextMetadataNo++);
2914       break;
2915     }
2916     case bitc::METADATA_TEMPLATE_TYPE: {
2917       if (Record.size() != 3)
2918         return error("Invalid record");
2919 
2920       IsDistinct = Record[0];
2921       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2922                                                (Context, getMDString(Record[1]),
2923                                                 getDITypeRefOrNull(Record[2]))),
2924                                NextMetadataNo++);
2925       break;
2926     }
2927     case bitc::METADATA_TEMPLATE_VALUE: {
2928       if (Record.size() != 5)
2929         return error("Invalid record");
2930 
2931       IsDistinct = Record[0];
2932       MetadataList.assignValue(
2933           GET_OR_DISTINCT(DITemplateValueParameter,
2934                           (Context, Record[1], getMDString(Record[2]),
2935                            getDITypeRefOrNull(Record[3]),
2936                            getMDOrNull(Record[4]))),
2937           NextMetadataNo++);
2938       break;
2939     }
2940     case bitc::METADATA_GLOBAL_VAR: {
2941       if (Record.size() < 11 || Record.size() > 12)
2942         return error("Invalid record");
2943 
2944       IsDistinct = Record[0];
2945 
2946       // Upgrade old metadata, which stored a global variable reference or a
2947       // ConstantInt here.
2948       Metadata *Expr = getMDOrNull(Record[9]);
2949       uint32_t AlignInBits = 0;
2950       if (Record.size() > 11) {
2951         if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
2952           return error("Alignment value is too large");
2953         AlignInBits = Record[11];
2954       }
2955       GlobalVariable *Attach = nullptr;
2956       if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
2957         if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
2958           Attach = GV;
2959           Expr = nullptr;
2960         } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
2961           Expr = DIExpression::get(Context,
2962                                    {dwarf::DW_OP_constu, CI->getZExtValue(),
2963                                     dwarf::DW_OP_stack_value});
2964         } else {
2965           Expr = nullptr;
2966         }
2967       }
2968 
2969       DIGlobalVariable *DGV = GET_OR_DISTINCT(
2970           DIGlobalVariable,
2971           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2972            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2973            getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr,
2974            getMDOrNull(Record[10]), AlignInBits));
2975       MetadataList.assignValue(DGV, NextMetadataNo++);
2976 
2977       if (Attach)
2978         Attach->addDebugInfo(DGV);
2979 
2980       break;
2981     }
2982     case bitc::METADATA_LOCAL_VAR: {
2983       // 10th field is for the obseleted 'inlinedAt:' field.
2984       if (Record.size() < 8 || Record.size() > 10)
2985         return error("Invalid record");
2986 
2987       IsDistinct = Record[0] & 1;
2988       bool HasAlignment = Record[0] & 2;
2989       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2990       // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
2991       // this is newer version of record which doesn't have artifical tag.
2992       bool HasTag = !HasAlignment && Record.size() > 8;
2993       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2994       uint32_t AlignInBits = 0;
2995       if (HasAlignment) {
2996         if (Record[8 + HasTag] >
2997             (uint64_t)std::numeric_limits<uint32_t>::max())
2998           return error("Alignment value is too large");
2999         AlignInBits = Record[8 + HasTag];
3000       }
3001       MetadataList.assignValue(
3002           GET_OR_DISTINCT(DILocalVariable,
3003                           (Context, getMDOrNull(Record[1 + HasTag]),
3004                            getMDString(Record[2 + HasTag]),
3005                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
3006                            getDITypeRefOrNull(Record[5 + HasTag]),
3007                            Record[6 + HasTag], Flags, AlignInBits)),
3008           NextMetadataNo++);
3009       break;
3010     }
3011     case bitc::METADATA_EXPRESSION: {
3012       if (Record.size() < 1)
3013         return error("Invalid record");
3014 
3015       IsDistinct = Record[0];
3016       MetadataList.assignValue(
3017           GET_OR_DISTINCT(DIExpression,
3018                           (Context, makeArrayRef(Record).slice(1))),
3019           NextMetadataNo++);
3020       break;
3021     }
3022     case bitc::METADATA_OBJC_PROPERTY: {
3023       if (Record.size() != 8)
3024         return error("Invalid record");
3025 
3026       IsDistinct = Record[0];
3027       MetadataList.assignValue(
3028           GET_OR_DISTINCT(DIObjCProperty,
3029                           (Context, getMDString(Record[1]),
3030                            getMDOrNull(Record[2]), Record[3],
3031                            getMDString(Record[4]), getMDString(Record[5]),
3032                            Record[6], getDITypeRefOrNull(Record[7]))),
3033           NextMetadataNo++);
3034       break;
3035     }
3036     case bitc::METADATA_IMPORTED_ENTITY: {
3037       if (Record.size() != 6)
3038         return error("Invalid record");
3039 
3040       IsDistinct = Record[0];
3041       MetadataList.assignValue(
3042           GET_OR_DISTINCT(DIImportedEntity,
3043                           (Context, Record[1], getMDOrNull(Record[2]),
3044                            getDITypeRefOrNull(Record[3]), Record[4],
3045                            getMDString(Record[5]))),
3046           NextMetadataNo++);
3047       break;
3048     }
3049     case bitc::METADATA_STRING_OLD: {
3050       std::string String(Record.begin(), Record.end());
3051 
3052       // Test for upgrading !llvm.loop.
3053       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
3054 
3055       Metadata *MD = MDString::get(Context, String);
3056       MetadataList.assignValue(MD, NextMetadataNo++);
3057       break;
3058     }
3059     case bitc::METADATA_STRINGS:
3060       if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo))
3061         return Err;
3062       break;
3063     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
3064       if (Record.size() % 2 == 0)
3065         return error("Invalid record");
3066       unsigned ValueID = Record[0];
3067       if (ValueID >= ValueList.size())
3068         return error("Invalid record");
3069       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
3070         if (Error Err = parseGlobalObjectAttachment(
3071                 *GO, ArrayRef<uint64_t>(Record).slice(1)))
3072           return Err;
3073       break;
3074     }
3075     case bitc::METADATA_KIND: {
3076       // Support older bitcode files that had METADATA_KIND records in a
3077       // block with METADATA_BLOCK_ID.
3078       if (Error Err = parseMetadataKindRecord(Record))
3079         return Err;
3080       break;
3081     }
3082     }
3083   }
3084 
3085 #undef GET_OR_DISTINCT
3086 }
3087 
3088 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
3089 Error BitcodeReader::parseMetadataKinds() {
3090   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
3091     return error("Invalid record");
3092 
3093   SmallVector<uint64_t, 64> Record;
3094 
3095   // Read all the records.
3096   while (true) {
3097     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3098 
3099     switch (Entry.Kind) {
3100     case BitstreamEntry::SubBlock: // Handled for us already.
3101     case BitstreamEntry::Error:
3102       return error("Malformed block");
3103     case BitstreamEntry::EndBlock:
3104       return Error::success();
3105     case BitstreamEntry::Record:
3106       // The interesting case.
3107       break;
3108     }
3109 
3110     // Read a record.
3111     Record.clear();
3112     unsigned Code = Stream.readRecord(Entry.ID, Record);
3113     switch (Code) {
3114     default: // Default behavior: ignore.
3115       break;
3116     case bitc::METADATA_KIND: {
3117       if (Error Err = parseMetadataKindRecord(Record))
3118         return Err;
3119       break;
3120     }
3121     }
3122   }
3123 }
3124 
3125 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3126 /// encoding.
3127 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3128   if ((V & 1) == 0)
3129     return V >> 1;
3130   if (V != 1)
3131     return -(V >> 1);
3132   // There is no such thing as -0 with integers.  "-0" really means MININT.
3133   return 1ULL << 63;
3134 }
3135 
3136 /// Resolve all of the initializers for global values and aliases that we can.
3137 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3138   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
3139   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
3140       IndirectSymbolInitWorklist;
3141   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
3142   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
3143   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
3144 
3145   GlobalInitWorklist.swap(GlobalInits);
3146   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3147   FunctionPrefixWorklist.swap(FunctionPrefixes);
3148   FunctionPrologueWorklist.swap(FunctionPrologues);
3149   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
3150 
3151   while (!GlobalInitWorklist.empty()) {
3152     unsigned ValID = GlobalInitWorklist.back().second;
3153     if (ValID >= ValueList.size()) {
3154       // Not ready to resolve this yet, it requires something later in the file.
3155       GlobalInits.push_back(GlobalInitWorklist.back());
3156     } else {
3157       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3158         GlobalInitWorklist.back().first->setInitializer(C);
3159       else
3160         return error("Expected a constant");
3161     }
3162     GlobalInitWorklist.pop_back();
3163   }
3164 
3165   while (!IndirectSymbolInitWorklist.empty()) {
3166     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3167     if (ValID >= ValueList.size()) {
3168       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3169     } else {
3170       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
3171       if (!C)
3172         return error("Expected a constant");
3173       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
3174       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
3175         return error("Alias and aliasee types don't match");
3176       GIS->setIndirectSymbol(C);
3177     }
3178     IndirectSymbolInitWorklist.pop_back();
3179   }
3180 
3181   while (!FunctionPrefixWorklist.empty()) {
3182     unsigned ValID = FunctionPrefixWorklist.back().second;
3183     if (ValID >= ValueList.size()) {
3184       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
3185     } else {
3186       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3187         FunctionPrefixWorklist.back().first->setPrefixData(C);
3188       else
3189         return error("Expected a constant");
3190     }
3191     FunctionPrefixWorklist.pop_back();
3192   }
3193 
3194   while (!FunctionPrologueWorklist.empty()) {
3195     unsigned ValID = FunctionPrologueWorklist.back().second;
3196     if (ValID >= ValueList.size()) {
3197       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
3198     } else {
3199       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3200         FunctionPrologueWorklist.back().first->setPrologueData(C);
3201       else
3202         return error("Expected a constant");
3203     }
3204     FunctionPrologueWorklist.pop_back();
3205   }
3206 
3207   while (!FunctionPersonalityFnWorklist.empty()) {
3208     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
3209     if (ValID >= ValueList.size()) {
3210       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
3211     } else {
3212       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3213         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
3214       else
3215         return error("Expected a constant");
3216     }
3217     FunctionPersonalityFnWorklist.pop_back();
3218   }
3219 
3220   return Error::success();
3221 }
3222 
3223 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3224   SmallVector<uint64_t, 8> Words(Vals.size());
3225   transform(Vals, Words.begin(),
3226                  BitcodeReader::decodeSignRotatedValue);
3227 
3228   return APInt(TypeBits, Words);
3229 }
3230 
3231 Error BitcodeReader::parseConstants() {
3232   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3233     return error("Invalid record");
3234 
3235   SmallVector<uint64_t, 64> Record;
3236 
3237   // Read all the records for this value table.
3238   Type *CurTy = Type::getInt32Ty(Context);
3239   unsigned NextCstNo = ValueList.size();
3240 
3241   while (true) {
3242     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3243 
3244     switch (Entry.Kind) {
3245     case BitstreamEntry::SubBlock: // Handled for us already.
3246     case BitstreamEntry::Error:
3247       return error("Malformed block");
3248     case BitstreamEntry::EndBlock:
3249       if (NextCstNo != ValueList.size())
3250         return error("Invalid constant reference");
3251 
3252       // Once all the constants have been read, go through and resolve forward
3253       // references.
3254       ValueList.resolveConstantForwardRefs();
3255       return Error::success();
3256     case BitstreamEntry::Record:
3257       // The interesting case.
3258       break;
3259     }
3260 
3261     // Read a record.
3262     Record.clear();
3263     Type *VoidType = Type::getVoidTy(Context);
3264     Value *V = nullptr;
3265     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3266     switch (BitCode) {
3267     default:  // Default behavior: unknown constant
3268     case bitc::CST_CODE_UNDEF:     // UNDEF
3269       V = UndefValue::get(CurTy);
3270       break;
3271     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3272       if (Record.empty())
3273         return error("Invalid record");
3274       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3275         return error("Invalid record");
3276       if (TypeList[Record[0]] == VoidType)
3277         return error("Invalid constant type");
3278       CurTy = TypeList[Record[0]];
3279       continue;  // Skip the ValueList manipulation.
3280     case bitc::CST_CODE_NULL:      // NULL
3281       V = Constant::getNullValue(CurTy);
3282       break;
3283     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3284       if (!CurTy->isIntegerTy() || Record.empty())
3285         return error("Invalid record");
3286       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3287       break;
3288     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3289       if (!CurTy->isIntegerTy() || Record.empty())
3290         return error("Invalid record");
3291 
3292       APInt VInt =
3293           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3294       V = ConstantInt::get(Context, VInt);
3295 
3296       break;
3297     }
3298     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3299       if (Record.empty())
3300         return error("Invalid record");
3301       if (CurTy->isHalfTy())
3302         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3303                                              APInt(16, (uint16_t)Record[0])));
3304       else if (CurTy->isFloatTy())
3305         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3306                                              APInt(32, (uint32_t)Record[0])));
3307       else if (CurTy->isDoubleTy())
3308         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3309                                              APInt(64, Record[0])));
3310       else if (CurTy->isX86_FP80Ty()) {
3311         // Bits are not stored the same way as a normal i80 APInt, compensate.
3312         uint64_t Rearrange[2];
3313         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3314         Rearrange[1] = Record[0] >> 48;
3315         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3316                                              APInt(80, Rearrange)));
3317       } else if (CurTy->isFP128Ty())
3318         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3319                                              APInt(128, Record)));
3320       else if (CurTy->isPPC_FP128Ty())
3321         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3322                                              APInt(128, Record)));
3323       else
3324         V = UndefValue::get(CurTy);
3325       break;
3326     }
3327 
3328     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3329       if (Record.empty())
3330         return error("Invalid record");
3331 
3332       unsigned Size = Record.size();
3333       SmallVector<Constant*, 16> Elts;
3334 
3335       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3336         for (unsigned i = 0; i != Size; ++i)
3337           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3338                                                      STy->getElementType(i)));
3339         V = ConstantStruct::get(STy, Elts);
3340       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3341         Type *EltTy = ATy->getElementType();
3342         for (unsigned i = 0; i != Size; ++i)
3343           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3344         V = ConstantArray::get(ATy, Elts);
3345       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3346         Type *EltTy = VTy->getElementType();
3347         for (unsigned i = 0; i != Size; ++i)
3348           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3349         V = ConstantVector::get(Elts);
3350       } else {
3351         V = UndefValue::get(CurTy);
3352       }
3353       break;
3354     }
3355     case bitc::CST_CODE_STRING:    // STRING: [values]
3356     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3357       if (Record.empty())
3358         return error("Invalid record");
3359 
3360       SmallString<16> Elts(Record.begin(), Record.end());
3361       V = ConstantDataArray::getString(Context, Elts,
3362                                        BitCode == bitc::CST_CODE_CSTRING);
3363       break;
3364     }
3365     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3366       if (Record.empty())
3367         return error("Invalid record");
3368 
3369       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3370       if (EltTy->isIntegerTy(8)) {
3371         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3372         if (isa<VectorType>(CurTy))
3373           V = ConstantDataVector::get(Context, Elts);
3374         else
3375           V = ConstantDataArray::get(Context, Elts);
3376       } else if (EltTy->isIntegerTy(16)) {
3377         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3378         if (isa<VectorType>(CurTy))
3379           V = ConstantDataVector::get(Context, Elts);
3380         else
3381           V = ConstantDataArray::get(Context, Elts);
3382       } else if (EltTy->isIntegerTy(32)) {
3383         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3384         if (isa<VectorType>(CurTy))
3385           V = ConstantDataVector::get(Context, Elts);
3386         else
3387           V = ConstantDataArray::get(Context, Elts);
3388       } else if (EltTy->isIntegerTy(64)) {
3389         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3390         if (isa<VectorType>(CurTy))
3391           V = ConstantDataVector::get(Context, Elts);
3392         else
3393           V = ConstantDataArray::get(Context, Elts);
3394       } else if (EltTy->isHalfTy()) {
3395         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3396         if (isa<VectorType>(CurTy))
3397           V = ConstantDataVector::getFP(Context, Elts);
3398         else
3399           V = ConstantDataArray::getFP(Context, Elts);
3400       } else if (EltTy->isFloatTy()) {
3401         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3402         if (isa<VectorType>(CurTy))
3403           V = ConstantDataVector::getFP(Context, Elts);
3404         else
3405           V = ConstantDataArray::getFP(Context, Elts);
3406       } else if (EltTy->isDoubleTy()) {
3407         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3408         if (isa<VectorType>(CurTy))
3409           V = ConstantDataVector::getFP(Context, Elts);
3410         else
3411           V = ConstantDataArray::getFP(Context, Elts);
3412       } else {
3413         return error("Invalid type for value");
3414       }
3415       break;
3416     }
3417     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3418       if (Record.size() < 3)
3419         return error("Invalid record");
3420       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3421       if (Opc < 0) {
3422         V = UndefValue::get(CurTy);  // Unknown binop.
3423       } else {
3424         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3425         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3426         unsigned Flags = 0;
3427         if (Record.size() >= 4) {
3428           if (Opc == Instruction::Add ||
3429               Opc == Instruction::Sub ||
3430               Opc == Instruction::Mul ||
3431               Opc == Instruction::Shl) {
3432             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3433               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3434             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3435               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3436           } else if (Opc == Instruction::SDiv ||
3437                      Opc == Instruction::UDiv ||
3438                      Opc == Instruction::LShr ||
3439                      Opc == Instruction::AShr) {
3440             if (Record[3] & (1 << bitc::PEO_EXACT))
3441               Flags |= SDivOperator::IsExact;
3442           }
3443         }
3444         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3445       }
3446       break;
3447     }
3448     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3449       if (Record.size() < 3)
3450         return error("Invalid record");
3451       int Opc = getDecodedCastOpcode(Record[0]);
3452       if (Opc < 0) {
3453         V = UndefValue::get(CurTy);  // Unknown cast.
3454       } else {
3455         Type *OpTy = getTypeByID(Record[1]);
3456         if (!OpTy)
3457           return error("Invalid record");
3458         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3459         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3460         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3461       }
3462       break;
3463     }
3464     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3465     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3466     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3467                                                      // operands]
3468       unsigned OpNum = 0;
3469       Type *PointeeType = nullptr;
3470       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3471           Record.size() % 2)
3472         PointeeType = getTypeByID(Record[OpNum++]);
3473 
3474       bool InBounds = false;
3475       Optional<unsigned> InRangeIndex;
3476       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3477         uint64_t Op = Record[OpNum++];
3478         InBounds = Op & 1;
3479         InRangeIndex = Op >> 1;
3480       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3481         InBounds = true;
3482 
3483       SmallVector<Constant*, 16> Elts;
3484       while (OpNum != Record.size()) {
3485         Type *ElTy = getTypeByID(Record[OpNum++]);
3486         if (!ElTy)
3487           return error("Invalid record");
3488         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3489       }
3490 
3491       if (PointeeType &&
3492           PointeeType !=
3493               cast<PointerType>(Elts[0]->getType()->getScalarType())
3494                   ->getElementType())
3495         return error("Explicit gep operator type does not match pointee type "
3496                      "of pointer operand");
3497 
3498       if (Elts.size() < 1)
3499         return error("Invalid gep with no operands");
3500 
3501       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3502       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3503                                          InBounds, InRangeIndex);
3504       break;
3505     }
3506     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3507       if (Record.size() < 3)
3508         return error("Invalid record");
3509 
3510       Type *SelectorTy = Type::getInt1Ty(Context);
3511 
3512       // The selector might be an i1 or an <n x i1>
3513       // Get the type from the ValueList before getting a forward ref.
3514       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3515         if (Value *V = ValueList[Record[0]])
3516           if (SelectorTy != V->getType())
3517             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3518 
3519       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3520                                                               SelectorTy),
3521                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3522                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3523       break;
3524     }
3525     case bitc::CST_CODE_CE_EXTRACTELT
3526         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3527       if (Record.size() < 3)
3528         return error("Invalid record");
3529       VectorType *OpTy =
3530         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3531       if (!OpTy)
3532         return error("Invalid record");
3533       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3534       Constant *Op1 = nullptr;
3535       if (Record.size() == 4) {
3536         Type *IdxTy = getTypeByID(Record[2]);
3537         if (!IdxTy)
3538           return error("Invalid record");
3539         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3540       } else // TODO: Remove with llvm 4.0
3541         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3542       if (!Op1)
3543         return error("Invalid record");
3544       V = ConstantExpr::getExtractElement(Op0, Op1);
3545       break;
3546     }
3547     case bitc::CST_CODE_CE_INSERTELT
3548         : { // CE_INSERTELT: [opval, opval, opty, opval]
3549       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3550       if (Record.size() < 3 || !OpTy)
3551         return error("Invalid record");
3552       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3553       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3554                                                   OpTy->getElementType());
3555       Constant *Op2 = nullptr;
3556       if (Record.size() == 4) {
3557         Type *IdxTy = getTypeByID(Record[2]);
3558         if (!IdxTy)
3559           return error("Invalid record");
3560         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3561       } else // TODO: Remove with llvm 4.0
3562         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3563       if (!Op2)
3564         return error("Invalid record");
3565       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3566       break;
3567     }
3568     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3569       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3570       if (Record.size() < 3 || !OpTy)
3571         return error("Invalid record");
3572       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3573       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3574       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3575                                                  OpTy->getNumElements());
3576       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3577       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3578       break;
3579     }
3580     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3581       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3582       VectorType *OpTy =
3583         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3584       if (Record.size() < 4 || !RTy || !OpTy)
3585         return error("Invalid record");
3586       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3587       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3588       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3589                                                  RTy->getNumElements());
3590       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3591       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3592       break;
3593     }
3594     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3595       if (Record.size() < 4)
3596         return error("Invalid record");
3597       Type *OpTy = getTypeByID(Record[0]);
3598       if (!OpTy)
3599         return error("Invalid record");
3600       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3601       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3602 
3603       if (OpTy->isFPOrFPVectorTy())
3604         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3605       else
3606         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3607       break;
3608     }
3609     // This maintains backward compatibility, pre-asm dialect keywords.
3610     // FIXME: Remove with the 4.0 release.
3611     case bitc::CST_CODE_INLINEASM_OLD: {
3612       if (Record.size() < 2)
3613         return error("Invalid record");
3614       std::string AsmStr, ConstrStr;
3615       bool HasSideEffects = Record[0] & 1;
3616       bool IsAlignStack = Record[0] >> 1;
3617       unsigned AsmStrSize = Record[1];
3618       if (2+AsmStrSize >= Record.size())
3619         return error("Invalid record");
3620       unsigned ConstStrSize = Record[2+AsmStrSize];
3621       if (3+AsmStrSize+ConstStrSize > Record.size())
3622         return error("Invalid record");
3623 
3624       for (unsigned i = 0; i != AsmStrSize; ++i)
3625         AsmStr += (char)Record[2+i];
3626       for (unsigned i = 0; i != ConstStrSize; ++i)
3627         ConstrStr += (char)Record[3+AsmStrSize+i];
3628       PointerType *PTy = cast<PointerType>(CurTy);
3629       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3630                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3631       break;
3632     }
3633     // This version adds support for the asm dialect keywords (e.g.,
3634     // inteldialect).
3635     case bitc::CST_CODE_INLINEASM: {
3636       if (Record.size() < 2)
3637         return error("Invalid record");
3638       std::string AsmStr, ConstrStr;
3639       bool HasSideEffects = Record[0] & 1;
3640       bool IsAlignStack = (Record[0] >> 1) & 1;
3641       unsigned AsmDialect = Record[0] >> 2;
3642       unsigned AsmStrSize = Record[1];
3643       if (2+AsmStrSize >= Record.size())
3644         return error("Invalid record");
3645       unsigned ConstStrSize = Record[2+AsmStrSize];
3646       if (3+AsmStrSize+ConstStrSize > Record.size())
3647         return error("Invalid record");
3648 
3649       for (unsigned i = 0; i != AsmStrSize; ++i)
3650         AsmStr += (char)Record[2+i];
3651       for (unsigned i = 0; i != ConstStrSize; ++i)
3652         ConstrStr += (char)Record[3+AsmStrSize+i];
3653       PointerType *PTy = cast<PointerType>(CurTy);
3654       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3655                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3656                          InlineAsm::AsmDialect(AsmDialect));
3657       break;
3658     }
3659     case bitc::CST_CODE_BLOCKADDRESS:{
3660       if (Record.size() < 3)
3661         return error("Invalid record");
3662       Type *FnTy = getTypeByID(Record[0]);
3663       if (!FnTy)
3664         return error("Invalid record");
3665       Function *Fn =
3666         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3667       if (!Fn)
3668         return error("Invalid record");
3669 
3670       // If the function is already parsed we can insert the block address right
3671       // away.
3672       BasicBlock *BB;
3673       unsigned BBID = Record[2];
3674       if (!BBID)
3675         // Invalid reference to entry block.
3676         return error("Invalid ID");
3677       if (!Fn->empty()) {
3678         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3679         for (size_t I = 0, E = BBID; I != E; ++I) {
3680           if (BBI == BBE)
3681             return error("Invalid ID");
3682           ++BBI;
3683         }
3684         BB = &*BBI;
3685       } else {
3686         // Otherwise insert a placeholder and remember it so it can be inserted
3687         // when the function is parsed.
3688         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3689         if (FwdBBs.empty())
3690           BasicBlockFwdRefQueue.push_back(Fn);
3691         if (FwdBBs.size() < BBID + 1)
3692           FwdBBs.resize(BBID + 1);
3693         if (!FwdBBs[BBID])
3694           FwdBBs[BBID] = BasicBlock::Create(Context);
3695         BB = FwdBBs[BBID];
3696       }
3697       V = BlockAddress::get(Fn, BB);
3698       break;
3699     }
3700     }
3701 
3702     ValueList.assignValue(V, NextCstNo);
3703     ++NextCstNo;
3704   }
3705 }
3706 
3707 Error BitcodeReader::parseUseLists() {
3708   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3709     return error("Invalid record");
3710 
3711   // Read all the records.
3712   SmallVector<uint64_t, 64> Record;
3713 
3714   while (true) {
3715     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3716 
3717     switch (Entry.Kind) {
3718     case BitstreamEntry::SubBlock: // Handled for us already.
3719     case BitstreamEntry::Error:
3720       return error("Malformed block");
3721     case BitstreamEntry::EndBlock:
3722       return Error::success();
3723     case BitstreamEntry::Record:
3724       // The interesting case.
3725       break;
3726     }
3727 
3728     // Read a use list record.
3729     Record.clear();
3730     bool IsBB = false;
3731     switch (Stream.readRecord(Entry.ID, Record)) {
3732     default:  // Default behavior: unknown type.
3733       break;
3734     case bitc::USELIST_CODE_BB:
3735       IsBB = true;
3736       LLVM_FALLTHROUGH;
3737     case bitc::USELIST_CODE_DEFAULT: {
3738       unsigned RecordLength = Record.size();
3739       if (RecordLength < 3)
3740         // Records should have at least an ID and two indexes.
3741         return error("Invalid record");
3742       unsigned ID = Record.back();
3743       Record.pop_back();
3744 
3745       Value *V;
3746       if (IsBB) {
3747         assert(ID < FunctionBBs.size() && "Basic block not found");
3748         V = FunctionBBs[ID];
3749       } else
3750         V = ValueList[ID];
3751       unsigned NumUses = 0;
3752       SmallDenseMap<const Use *, unsigned, 16> Order;
3753       for (const Use &U : V->materialized_uses()) {
3754         if (++NumUses > Record.size())
3755           break;
3756         Order[&U] = Record[NumUses - 1];
3757       }
3758       if (Order.size() != Record.size() || NumUses > Record.size())
3759         // Mismatches can happen if the functions are being materialized lazily
3760         // (out-of-order), or a value has been upgraded.
3761         break;
3762 
3763       V->sortUseList([&](const Use &L, const Use &R) {
3764         return Order.lookup(&L) < Order.lookup(&R);
3765       });
3766       break;
3767     }
3768     }
3769   }
3770 }
3771 
3772 /// When we see the block for metadata, remember where it is and then skip it.
3773 /// This lets us lazily deserialize the metadata.
3774 Error BitcodeReader::rememberAndSkipMetadata() {
3775   // Save the current stream state.
3776   uint64_t CurBit = Stream.GetCurrentBitNo();
3777   DeferredMetadataInfo.push_back(CurBit);
3778 
3779   // Skip over the block for now.
3780   if (Stream.SkipBlock())
3781     return error("Invalid record");
3782   return Error::success();
3783 }
3784 
3785 Error BitcodeReader::materializeMetadata() {
3786   for (uint64_t BitPos : DeferredMetadataInfo) {
3787     // Move the bit stream to the saved position.
3788     Stream.JumpToBit(BitPos);
3789     if (Error Err = parseMetadata(true))
3790       return Err;
3791   }
3792   DeferredMetadataInfo.clear();
3793   return Error::success();
3794 }
3795 
3796 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3797 
3798 /// When we see the block for a function body, remember where it is and then
3799 /// skip it.  This lets us lazily deserialize the functions.
3800 Error BitcodeReader::rememberAndSkipFunctionBody() {
3801   // Get the function we are talking about.
3802   if (FunctionsWithBodies.empty())
3803     return error("Insufficient function protos");
3804 
3805   Function *Fn = FunctionsWithBodies.back();
3806   FunctionsWithBodies.pop_back();
3807 
3808   // Save the current stream state.
3809   uint64_t CurBit = Stream.GetCurrentBitNo();
3810   assert(
3811       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3812       "Mismatch between VST and scanned function offsets");
3813   DeferredFunctionInfo[Fn] = CurBit;
3814 
3815   // Skip over the function block for now.
3816   if (Stream.SkipBlock())
3817     return error("Invalid record");
3818   return Error::success();
3819 }
3820 
3821 Error BitcodeReader::globalCleanup() {
3822   // Patch the initializers for globals and aliases up.
3823   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3824     return Err;
3825   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3826     return error("Malformed global initializer set");
3827 
3828   // Look for intrinsic functions which need to be upgraded at some point
3829   for (Function &F : *TheModule) {
3830     Function *NewFn;
3831     if (UpgradeIntrinsicFunction(&F, NewFn))
3832       UpgradedIntrinsics[&F] = NewFn;
3833     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3834       // Some types could be renamed during loading if several modules are
3835       // loaded in the same LLVMContext (LTO scenario). In this case we should
3836       // remangle intrinsics names as well.
3837       RemangledIntrinsics[&F] = Remangled.getValue();
3838   }
3839 
3840   // Look for global variables which need to be renamed.
3841   for (GlobalVariable &GV : TheModule->globals())
3842     UpgradeGlobalVariable(&GV);
3843 
3844   // Force deallocation of memory for these vectors to favor the client that
3845   // want lazy deserialization.
3846   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3847   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3848       IndirectSymbolInits);
3849   return Error::success();
3850 }
3851 
3852 /// Support for lazy parsing of function bodies. This is required if we
3853 /// either have an old bitcode file without a VST forward declaration record,
3854 /// or if we have an anonymous function being materialized, since anonymous
3855 /// functions do not have a name and are therefore not in the VST.
3856 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3857   Stream.JumpToBit(NextUnreadBit);
3858 
3859   if (Stream.AtEndOfStream())
3860     return error("Could not find function in stream");
3861 
3862   if (!SeenFirstFunctionBody)
3863     return error("Trying to materialize functions before seeing function blocks");
3864 
3865   // An old bitcode file with the symbol table at the end would have
3866   // finished the parse greedily.
3867   assert(SeenValueSymbolTable);
3868 
3869   SmallVector<uint64_t, 64> Record;
3870 
3871   while (true) {
3872     BitstreamEntry Entry = Stream.advance();
3873     switch (Entry.Kind) {
3874     default:
3875       return error("Expect SubBlock");
3876     case BitstreamEntry::SubBlock:
3877       switch (Entry.ID) {
3878       default:
3879         return error("Expect function block");
3880       case bitc::FUNCTION_BLOCK_ID:
3881         if (Error Err = rememberAndSkipFunctionBody())
3882           return Err;
3883         NextUnreadBit = Stream.GetCurrentBitNo();
3884         return Error::success();
3885       }
3886     }
3887   }
3888 }
3889 
3890 bool BitcodeReaderBase::readBlockInfo() {
3891   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
3892   if (!NewBlockInfo)
3893     return true;
3894   BlockInfo = std::move(*NewBlockInfo);
3895   return false;
3896 }
3897 
3898 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3899                                  bool ShouldLazyLoadMetadata) {
3900   if (ResumeBit)
3901     Stream.JumpToBit(ResumeBit);
3902   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3903     return error("Invalid record");
3904 
3905   SmallVector<uint64_t, 64> Record;
3906   std::vector<std::string> SectionTable;
3907   std::vector<std::string> GCTable;
3908 
3909   // Read all the records for this module.
3910   while (true) {
3911     BitstreamEntry Entry = Stream.advance();
3912 
3913     switch (Entry.Kind) {
3914     case BitstreamEntry::Error:
3915       return error("Malformed block");
3916     case BitstreamEntry::EndBlock:
3917       return globalCleanup();
3918 
3919     case BitstreamEntry::SubBlock:
3920       switch (Entry.ID) {
3921       default:  // Skip unknown content.
3922         if (Stream.SkipBlock())
3923           return error("Invalid record");
3924         break;
3925       case bitc::BLOCKINFO_BLOCK_ID:
3926         if (readBlockInfo())
3927           return error("Malformed block");
3928         break;
3929       case bitc::PARAMATTR_BLOCK_ID:
3930         if (Error Err = parseAttributeBlock())
3931           return Err;
3932         break;
3933       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3934         if (Error Err = parseAttributeGroupBlock())
3935           return Err;
3936         break;
3937       case bitc::TYPE_BLOCK_ID_NEW:
3938         if (Error Err = parseTypeTable())
3939           return Err;
3940         break;
3941       case bitc::VALUE_SYMTAB_BLOCK_ID:
3942         if (!SeenValueSymbolTable) {
3943           // Either this is an old form VST without function index and an
3944           // associated VST forward declaration record (which would have caused
3945           // the VST to be jumped to and parsed before it was encountered
3946           // normally in the stream), or there were no function blocks to
3947           // trigger an earlier parsing of the VST.
3948           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3949           if (Error Err = parseValueSymbolTable())
3950             return Err;
3951           SeenValueSymbolTable = true;
3952         } else {
3953           // We must have had a VST forward declaration record, which caused
3954           // the parser to jump to and parse the VST earlier.
3955           assert(VSTOffset > 0);
3956           if (Stream.SkipBlock())
3957             return error("Invalid record");
3958         }
3959         break;
3960       case bitc::CONSTANTS_BLOCK_ID:
3961         if (Error Err = parseConstants())
3962           return Err;
3963         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3964           return Err;
3965         break;
3966       case bitc::METADATA_BLOCK_ID:
3967         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3968           if (Error Err = rememberAndSkipMetadata())
3969             return Err;
3970           break;
3971         }
3972         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3973         if (Error Err = parseMetadata(true))
3974           return Err;
3975         break;
3976       case bitc::METADATA_KIND_BLOCK_ID:
3977         if (Error Err = parseMetadataKinds())
3978           return Err;
3979         break;
3980       case bitc::FUNCTION_BLOCK_ID:
3981         // If this is the first function body we've seen, reverse the
3982         // FunctionsWithBodies list.
3983         if (!SeenFirstFunctionBody) {
3984           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3985           if (Error Err = globalCleanup())
3986             return Err;
3987           SeenFirstFunctionBody = true;
3988         }
3989 
3990         if (VSTOffset > 0) {
3991           // If we have a VST forward declaration record, make sure we
3992           // parse the VST now if we haven't already. It is needed to
3993           // set up the DeferredFunctionInfo vector for lazy reading.
3994           if (!SeenValueSymbolTable) {
3995             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3996               return Err;
3997             SeenValueSymbolTable = true;
3998             // Fall through so that we record the NextUnreadBit below.
3999             // This is necessary in case we have an anonymous function that
4000             // is later materialized. Since it will not have a VST entry we
4001             // need to fall back to the lazy parse to find its offset.
4002           } else {
4003             // If we have a VST forward declaration record, but have already
4004             // parsed the VST (just above, when the first function body was
4005             // encountered here), then we are resuming the parse after
4006             // materializing functions. The ResumeBit points to the
4007             // start of the last function block recorded in the
4008             // DeferredFunctionInfo map. Skip it.
4009             if (Stream.SkipBlock())
4010               return error("Invalid record");
4011             continue;
4012           }
4013         }
4014 
4015         // Support older bitcode files that did not have the function
4016         // index in the VST, nor a VST forward declaration record, as
4017         // well as anonymous functions that do not have VST entries.
4018         // Build the DeferredFunctionInfo vector on the fly.
4019         if (Error Err = rememberAndSkipFunctionBody())
4020           return Err;
4021 
4022         // Suspend parsing when we reach the function bodies. Subsequent
4023         // materialization calls will resume it when necessary. If the bitcode
4024         // file is old, the symbol table will be at the end instead and will not
4025         // have been seen yet. In this case, just finish the parse now.
4026         if (SeenValueSymbolTable) {
4027           NextUnreadBit = Stream.GetCurrentBitNo();
4028           // After the VST has been parsed, we need to make sure intrinsic name
4029           // are auto-upgraded.
4030           return globalCleanup();
4031         }
4032         break;
4033       case bitc::USELIST_BLOCK_ID:
4034         if (Error Err = parseUseLists())
4035           return Err;
4036         break;
4037       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4038         if (Error Err = parseOperandBundleTags())
4039           return Err;
4040         break;
4041       }
4042       continue;
4043 
4044     case BitstreamEntry::Record:
4045       // The interesting case.
4046       break;
4047     }
4048 
4049     // Read a record.
4050     auto BitCode = Stream.readRecord(Entry.ID, Record);
4051     switch (BitCode) {
4052     default: break;  // Default behavior, ignore unknown content.
4053     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
4054       if (Record.size() < 1)
4055         return error("Invalid record");
4056       // Only version #0 and #1 are supported so far.
4057       unsigned module_version = Record[0];
4058       switch (module_version) {
4059         default:
4060           return error("Invalid value");
4061         case 0:
4062           UseRelativeIDs = false;
4063           break;
4064         case 1:
4065           UseRelativeIDs = true;
4066           break;
4067       }
4068       break;
4069     }
4070     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4071       std::string S;
4072       if (convertToString(Record, 0, S))
4073         return error("Invalid record");
4074       TheModule->setTargetTriple(S);
4075       break;
4076     }
4077     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4078       std::string S;
4079       if (convertToString(Record, 0, S))
4080         return error("Invalid record");
4081       TheModule->setDataLayout(S);
4082       break;
4083     }
4084     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4085       std::string S;
4086       if (convertToString(Record, 0, S))
4087         return error("Invalid record");
4088       TheModule->setModuleInlineAsm(S);
4089       break;
4090     }
4091     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4092       // FIXME: Remove in 4.0.
4093       std::string S;
4094       if (convertToString(Record, 0, S))
4095         return error("Invalid record");
4096       // Ignore value.
4097       break;
4098     }
4099     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4100       std::string S;
4101       if (convertToString(Record, 0, S))
4102         return error("Invalid record");
4103       SectionTable.push_back(S);
4104       break;
4105     }
4106     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4107       std::string S;
4108       if (convertToString(Record, 0, S))
4109         return error("Invalid record");
4110       GCTable.push_back(S);
4111       break;
4112     }
4113     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
4114       if (Record.size() < 2)
4115         return error("Invalid record");
4116       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
4117       unsigned ComdatNameSize = Record[1];
4118       std::string ComdatName;
4119       ComdatName.reserve(ComdatNameSize);
4120       for (unsigned i = 0; i != ComdatNameSize; ++i)
4121         ComdatName += (char)Record[2 + i];
4122       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
4123       C->setSelectionKind(SK);
4124       ComdatList.push_back(C);
4125       break;
4126     }
4127     // GLOBALVAR: [pointer type, isconst, initid,
4128     //             linkage, alignment, section, visibility, threadlocal,
4129     //             unnamed_addr, externally_initialized, dllstorageclass,
4130     //             comdat]
4131     case bitc::MODULE_CODE_GLOBALVAR: {
4132       if (Record.size() < 6)
4133         return error("Invalid record");
4134       Type *Ty = getTypeByID(Record[0]);
4135       if (!Ty)
4136         return error("Invalid record");
4137       bool isConstant = Record[1] & 1;
4138       bool explicitType = Record[1] & 2;
4139       unsigned AddressSpace;
4140       if (explicitType) {
4141         AddressSpace = Record[1] >> 2;
4142       } else {
4143         if (!Ty->isPointerTy())
4144           return error("Invalid type for value");
4145         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4146         Ty = cast<PointerType>(Ty)->getElementType();
4147       }
4148 
4149       uint64_t RawLinkage = Record[3];
4150       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4151       unsigned Alignment;
4152       if (Error Err = parseAlignmentValue(Record[4], Alignment))
4153         return Err;
4154       std::string Section;
4155       if (Record[5]) {
4156         if (Record[5]-1 >= SectionTable.size())
4157           return error("Invalid ID");
4158         Section = SectionTable[Record[5]-1];
4159       }
4160       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4161       // Local linkage must have default visibility.
4162       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4163         // FIXME: Change to an error if non-default in 4.0.
4164         Visibility = getDecodedVisibility(Record[6]);
4165 
4166       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4167       if (Record.size() > 7)
4168         TLM = getDecodedThreadLocalMode(Record[7]);
4169 
4170       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4171       if (Record.size() > 8)
4172         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4173 
4174       bool ExternallyInitialized = false;
4175       if (Record.size() > 9)
4176         ExternallyInitialized = Record[9];
4177 
4178       GlobalVariable *NewGV =
4179         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
4180                            TLM, AddressSpace, ExternallyInitialized);
4181       NewGV->setAlignment(Alignment);
4182       if (!Section.empty())
4183         NewGV->setSection(Section);
4184       NewGV->setVisibility(Visibility);
4185       NewGV->setUnnamedAddr(UnnamedAddr);
4186 
4187       if (Record.size() > 10)
4188         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4189       else
4190         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4191 
4192       ValueList.push_back(NewGV);
4193 
4194       // Remember which value to use for the global initializer.
4195       if (unsigned InitID = Record[2])
4196         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
4197 
4198       if (Record.size() > 11) {
4199         if (unsigned ComdatID = Record[11]) {
4200           if (ComdatID > ComdatList.size())
4201             return error("Invalid global variable comdat ID");
4202           NewGV->setComdat(ComdatList[ComdatID - 1]);
4203         }
4204       } else if (hasImplicitComdat(RawLinkage)) {
4205         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
4206       }
4207 
4208       break;
4209     }
4210     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4211     //             alignment, section, visibility, gc, unnamed_addr,
4212     //             prologuedata, dllstorageclass, comdat, prefixdata]
4213     case bitc::MODULE_CODE_FUNCTION: {
4214       if (Record.size() < 8)
4215         return error("Invalid record");
4216       Type *Ty = getTypeByID(Record[0]);
4217       if (!Ty)
4218         return error("Invalid record");
4219       if (auto *PTy = dyn_cast<PointerType>(Ty))
4220         Ty = PTy->getElementType();
4221       auto *FTy = dyn_cast<FunctionType>(Ty);
4222       if (!FTy)
4223         return error("Invalid type for value");
4224       auto CC = static_cast<CallingConv::ID>(Record[1]);
4225       if (CC & ~CallingConv::MaxID)
4226         return error("Invalid calling convention ID");
4227 
4228       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
4229                                         "", TheModule);
4230 
4231       Func->setCallingConv(CC);
4232       bool isProto = Record[2];
4233       uint64_t RawLinkage = Record[3];
4234       Func->setLinkage(getDecodedLinkage(RawLinkage));
4235       Func->setAttributes(getAttributes(Record[4]));
4236 
4237       unsigned Alignment;
4238       if (Error Err = parseAlignmentValue(Record[5], Alignment))
4239         return Err;
4240       Func->setAlignment(Alignment);
4241       if (Record[6]) {
4242         if (Record[6]-1 >= SectionTable.size())
4243           return error("Invalid ID");
4244         Func->setSection(SectionTable[Record[6]-1]);
4245       }
4246       // Local linkage must have default visibility.
4247       if (!Func->hasLocalLinkage())
4248         // FIXME: Change to an error if non-default in 4.0.
4249         Func->setVisibility(getDecodedVisibility(Record[7]));
4250       if (Record.size() > 8 && Record[8]) {
4251         if (Record[8]-1 >= GCTable.size())
4252           return error("Invalid ID");
4253         Func->setGC(GCTable[Record[8] - 1]);
4254       }
4255       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4256       if (Record.size() > 9)
4257         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4258       Func->setUnnamedAddr(UnnamedAddr);
4259       if (Record.size() > 10 && Record[10] != 0)
4260         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
4261 
4262       if (Record.size() > 11)
4263         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4264       else
4265         upgradeDLLImportExportLinkage(Func, RawLinkage);
4266 
4267       if (Record.size() > 12) {
4268         if (unsigned ComdatID = Record[12]) {
4269           if (ComdatID > ComdatList.size())
4270             return error("Invalid function comdat ID");
4271           Func->setComdat(ComdatList[ComdatID - 1]);
4272         }
4273       } else if (hasImplicitComdat(RawLinkage)) {
4274         Func->setComdat(reinterpret_cast<Comdat *>(1));
4275       }
4276 
4277       if (Record.size() > 13 && Record[13] != 0)
4278         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4279 
4280       if (Record.size() > 14 && Record[14] != 0)
4281         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4282 
4283       ValueList.push_back(Func);
4284 
4285       // If this is a function with a body, remember the prototype we are
4286       // creating now, so that we can match up the body with them later.
4287       if (!isProto) {
4288         Func->setIsMaterializable(true);
4289         FunctionsWithBodies.push_back(Func);
4290         DeferredFunctionInfo[Func] = 0;
4291       }
4292       break;
4293     }
4294     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4295     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4296     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4297     case bitc::MODULE_CODE_IFUNC:
4298     case bitc::MODULE_CODE_ALIAS:
4299     case bitc::MODULE_CODE_ALIAS_OLD: {
4300       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4301       if (Record.size() < (3 + (unsigned)NewRecord))
4302         return error("Invalid record");
4303       unsigned OpNum = 0;
4304       Type *Ty = getTypeByID(Record[OpNum++]);
4305       if (!Ty)
4306         return error("Invalid record");
4307 
4308       unsigned AddrSpace;
4309       if (!NewRecord) {
4310         auto *PTy = dyn_cast<PointerType>(Ty);
4311         if (!PTy)
4312           return error("Invalid type for value");
4313         Ty = PTy->getElementType();
4314         AddrSpace = PTy->getAddressSpace();
4315       } else {
4316         AddrSpace = Record[OpNum++];
4317       }
4318 
4319       auto Val = Record[OpNum++];
4320       auto Linkage = Record[OpNum++];
4321       GlobalIndirectSymbol *NewGA;
4322       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4323           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4324         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4325                                     "", TheModule);
4326       else
4327         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4328                                     "", nullptr, TheModule);
4329       // Old bitcode files didn't have visibility field.
4330       // Local linkage must have default visibility.
4331       if (OpNum != Record.size()) {
4332         auto VisInd = OpNum++;
4333         if (!NewGA->hasLocalLinkage())
4334           // FIXME: Change to an error if non-default in 4.0.
4335           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4336       }
4337       if (OpNum != Record.size())
4338         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4339       else
4340         upgradeDLLImportExportLinkage(NewGA, Linkage);
4341       if (OpNum != Record.size())
4342         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4343       if (OpNum != Record.size())
4344         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4345       ValueList.push_back(NewGA);
4346       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4347       break;
4348     }
4349     /// MODULE_CODE_PURGEVALS: [numvals]
4350     case bitc::MODULE_CODE_PURGEVALS:
4351       // Trim down the value list to the specified size.
4352       if (Record.size() < 1 || Record[0] > ValueList.size())
4353         return error("Invalid record");
4354       ValueList.shrinkTo(Record[0]);
4355       break;
4356     /// MODULE_CODE_VSTOFFSET: [offset]
4357     case bitc::MODULE_CODE_VSTOFFSET:
4358       if (Record.size() < 1)
4359         return error("Invalid record");
4360       // Note that we subtract 1 here because the offset is relative to one word
4361       // before the start of the identification or module block, which was
4362       // historically always the start of the regular bitcode header.
4363       VSTOffset = Record[0] - 1;
4364       break;
4365     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4366     case bitc::MODULE_CODE_SOURCE_FILENAME:
4367       SmallString<128> ValueName;
4368       if (convertToString(Record, 0, ValueName))
4369         return error("Invalid record");
4370       TheModule->setSourceFileName(ValueName);
4371       break;
4372     }
4373     Record.clear();
4374   }
4375 }
4376 
4377 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) {
4378   TheModule = M;
4379   return parseModule(0, ShouldLazyLoadMetadata);
4380 }
4381 
4382 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO,
4383                                                  ArrayRef<uint64_t> Record) {
4384   assert(Record.size() % 2 == 0);
4385   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4386     auto K = MDKindMap.find(Record[I]);
4387     if (K == MDKindMap.end())
4388       return error("Invalid ID");
4389     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4390     if (!MD)
4391       return error("Invalid metadata attachment");
4392     GO.addMetadata(K->second, *MD);
4393   }
4394   return Error::success();
4395 }
4396 
4397 /// Parse metadata attachments.
4398 Error BitcodeReader::parseMetadataAttachment(Function &F) {
4399   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4400     return error("Invalid record");
4401 
4402   SmallVector<uint64_t, 64> Record;
4403 
4404   while (true) {
4405     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4406 
4407     switch (Entry.Kind) {
4408     case BitstreamEntry::SubBlock: // Handled for us already.
4409     case BitstreamEntry::Error:
4410       return error("Malformed block");
4411     case BitstreamEntry::EndBlock:
4412       return Error::success();
4413     case BitstreamEntry::Record:
4414       // The interesting case.
4415       break;
4416     }
4417 
4418     // Read a metadata attachment record.
4419     Record.clear();
4420     switch (Stream.readRecord(Entry.ID, Record)) {
4421     default:  // Default behavior: ignore.
4422       break;
4423     case bitc::METADATA_ATTACHMENT: {
4424       unsigned RecordLength = Record.size();
4425       if (Record.empty())
4426         return error("Invalid record");
4427       if (RecordLength % 2 == 0) {
4428         // A function attachment.
4429         if (Error Err = parseGlobalObjectAttachment(F, Record))
4430           return Err;
4431         continue;
4432       }
4433 
4434       // An instruction attachment.
4435       Instruction *Inst = InstructionList[Record[0]];
4436       for (unsigned i = 1; i != RecordLength; i = i+2) {
4437         unsigned Kind = Record[i];
4438         DenseMap<unsigned, unsigned>::iterator I =
4439           MDKindMap.find(Kind);
4440         if (I == MDKindMap.end())
4441           return error("Invalid ID");
4442         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4443         if (isa<LocalAsMetadata>(Node))
4444           // Drop the attachment.  This used to be legal, but there's no
4445           // upgrade path.
4446           break;
4447         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4448         if (!MD)
4449           return error("Invalid metadata attachment");
4450 
4451         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4452           MD = upgradeInstructionLoopAttachment(*MD);
4453 
4454         if (I->second == LLVMContext::MD_tbaa) {
4455           assert(!MD->isTemporary() && "should load MDs before attachments");
4456           MD = UpgradeTBAANode(*MD);
4457         }
4458         Inst->setMetadata(I->second, MD);
4459       }
4460       break;
4461     }
4462     }
4463   }
4464 }
4465 
4466 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4467   if (!isa<PointerType>(PtrType))
4468     return error("Load/Store operand is not a pointer type");
4469   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4470 
4471   if (ValType && ValType != ElemType)
4472     return error("Explicit load/store type does not match pointee "
4473                  "type of pointer operand");
4474   if (!PointerType::isLoadableOrStorableType(ElemType))
4475     return error("Cannot load/store from pointer");
4476   return Error::success();
4477 }
4478 
4479 /// Lazily parse the specified function body block.
4480 Error BitcodeReader::parseFunctionBody(Function *F) {
4481   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4482     return error("Invalid record");
4483 
4484   // Unexpected unresolved metadata when parsing function.
4485   if (MetadataList.hasFwdRefs())
4486     return error("Invalid function metadata: incoming forward references");
4487 
4488   InstructionList.clear();
4489   unsigned ModuleValueListSize = ValueList.size();
4490   unsigned ModuleMetadataListSize = MetadataList.size();
4491 
4492   // Add all the function arguments to the value table.
4493   for (Argument &I : F->args())
4494     ValueList.push_back(&I);
4495 
4496   unsigned NextValueNo = ValueList.size();
4497   BasicBlock *CurBB = nullptr;
4498   unsigned CurBBNo = 0;
4499 
4500   DebugLoc LastLoc;
4501   auto getLastInstruction = [&]() -> Instruction * {
4502     if (CurBB && !CurBB->empty())
4503       return &CurBB->back();
4504     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4505              !FunctionBBs[CurBBNo - 1]->empty())
4506       return &FunctionBBs[CurBBNo - 1]->back();
4507     return nullptr;
4508   };
4509 
4510   std::vector<OperandBundleDef> OperandBundles;
4511 
4512   // Read all the records.
4513   SmallVector<uint64_t, 64> Record;
4514 
4515   while (true) {
4516     BitstreamEntry Entry = Stream.advance();
4517 
4518     switch (Entry.Kind) {
4519     case BitstreamEntry::Error:
4520       return error("Malformed block");
4521     case BitstreamEntry::EndBlock:
4522       goto OutOfRecordLoop;
4523 
4524     case BitstreamEntry::SubBlock:
4525       switch (Entry.ID) {
4526       default:  // Skip unknown content.
4527         if (Stream.SkipBlock())
4528           return error("Invalid record");
4529         break;
4530       case bitc::CONSTANTS_BLOCK_ID:
4531         if (Error Err = parseConstants())
4532           return Err;
4533         NextValueNo = ValueList.size();
4534         break;
4535       case bitc::VALUE_SYMTAB_BLOCK_ID:
4536         if (Error Err = parseValueSymbolTable())
4537           return Err;
4538         break;
4539       case bitc::METADATA_ATTACHMENT_ID:
4540         if (Error Err = parseMetadataAttachment(*F))
4541           return Err;
4542         break;
4543       case bitc::METADATA_BLOCK_ID:
4544         if (Error Err = parseMetadata())
4545           return Err;
4546         break;
4547       case bitc::USELIST_BLOCK_ID:
4548         if (Error Err = parseUseLists())
4549           return Err;
4550         break;
4551       }
4552       continue;
4553 
4554     case BitstreamEntry::Record:
4555       // The interesting case.
4556       break;
4557     }
4558 
4559     // Read a record.
4560     Record.clear();
4561     Instruction *I = nullptr;
4562     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4563     switch (BitCode) {
4564     default: // Default behavior: reject
4565       return error("Invalid value");
4566     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4567       if (Record.size() < 1 || Record[0] == 0)
4568         return error("Invalid record");
4569       // Create all the basic blocks for the function.
4570       FunctionBBs.resize(Record[0]);
4571 
4572       // See if anything took the address of blocks in this function.
4573       auto BBFRI = BasicBlockFwdRefs.find(F);
4574       if (BBFRI == BasicBlockFwdRefs.end()) {
4575         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4576           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4577       } else {
4578         auto &BBRefs = BBFRI->second;
4579         // Check for invalid basic block references.
4580         if (BBRefs.size() > FunctionBBs.size())
4581           return error("Invalid ID");
4582         assert(!BBRefs.empty() && "Unexpected empty array");
4583         assert(!BBRefs.front() && "Invalid reference to entry block");
4584         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4585              ++I)
4586           if (I < RE && BBRefs[I]) {
4587             BBRefs[I]->insertInto(F);
4588             FunctionBBs[I] = BBRefs[I];
4589           } else {
4590             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4591           }
4592 
4593         // Erase from the table.
4594         BasicBlockFwdRefs.erase(BBFRI);
4595       }
4596 
4597       CurBB = FunctionBBs[0];
4598       continue;
4599     }
4600 
4601     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4602       // This record indicates that the last instruction is at the same
4603       // location as the previous instruction with a location.
4604       I = getLastInstruction();
4605 
4606       if (!I)
4607         return error("Invalid record");
4608       I->setDebugLoc(LastLoc);
4609       I = nullptr;
4610       continue;
4611 
4612     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4613       I = getLastInstruction();
4614       if (!I || Record.size() < 4)
4615         return error("Invalid record");
4616 
4617       unsigned Line = Record[0], Col = Record[1];
4618       unsigned ScopeID = Record[2], IAID = Record[3];
4619 
4620       MDNode *Scope = nullptr, *IA = nullptr;
4621       if (ScopeID) {
4622         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4623         if (!Scope)
4624           return error("Invalid record");
4625       }
4626       if (IAID) {
4627         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4628         if (!IA)
4629           return error("Invalid record");
4630       }
4631       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4632       I->setDebugLoc(LastLoc);
4633       I = nullptr;
4634       continue;
4635     }
4636 
4637     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4638       unsigned OpNum = 0;
4639       Value *LHS, *RHS;
4640       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4641           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4642           OpNum+1 > Record.size())
4643         return error("Invalid record");
4644 
4645       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4646       if (Opc == -1)
4647         return error("Invalid record");
4648       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4649       InstructionList.push_back(I);
4650       if (OpNum < Record.size()) {
4651         if (Opc == Instruction::Add ||
4652             Opc == Instruction::Sub ||
4653             Opc == Instruction::Mul ||
4654             Opc == Instruction::Shl) {
4655           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4656             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4657           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4658             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4659         } else if (Opc == Instruction::SDiv ||
4660                    Opc == Instruction::UDiv ||
4661                    Opc == Instruction::LShr ||
4662                    Opc == Instruction::AShr) {
4663           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4664             cast<BinaryOperator>(I)->setIsExact(true);
4665         } else if (isa<FPMathOperator>(I)) {
4666           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4667           if (FMF.any())
4668             I->setFastMathFlags(FMF);
4669         }
4670 
4671       }
4672       break;
4673     }
4674     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4675       unsigned OpNum = 0;
4676       Value *Op;
4677       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4678           OpNum+2 != Record.size())
4679         return error("Invalid record");
4680 
4681       Type *ResTy = getTypeByID(Record[OpNum]);
4682       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4683       if (Opc == -1 || !ResTy)
4684         return error("Invalid record");
4685       Instruction *Temp = nullptr;
4686       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4687         if (Temp) {
4688           InstructionList.push_back(Temp);
4689           CurBB->getInstList().push_back(Temp);
4690         }
4691       } else {
4692         auto CastOp = (Instruction::CastOps)Opc;
4693         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4694           return error("Invalid cast");
4695         I = CastInst::Create(CastOp, Op, ResTy);
4696       }
4697       InstructionList.push_back(I);
4698       break;
4699     }
4700     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4701     case bitc::FUNC_CODE_INST_GEP_OLD:
4702     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4703       unsigned OpNum = 0;
4704 
4705       Type *Ty;
4706       bool InBounds;
4707 
4708       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4709         InBounds = Record[OpNum++];
4710         Ty = getTypeByID(Record[OpNum++]);
4711       } else {
4712         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4713         Ty = nullptr;
4714       }
4715 
4716       Value *BasePtr;
4717       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4718         return error("Invalid record");
4719 
4720       if (!Ty)
4721         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4722                  ->getElementType();
4723       else if (Ty !=
4724                cast<PointerType>(BasePtr->getType()->getScalarType())
4725                    ->getElementType())
4726         return error(
4727             "Explicit gep type does not match pointee type of pointer operand");
4728 
4729       SmallVector<Value*, 16> GEPIdx;
4730       while (OpNum != Record.size()) {
4731         Value *Op;
4732         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4733           return error("Invalid record");
4734         GEPIdx.push_back(Op);
4735       }
4736 
4737       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4738 
4739       InstructionList.push_back(I);
4740       if (InBounds)
4741         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4742       break;
4743     }
4744 
4745     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4746                                        // EXTRACTVAL: [opty, opval, n x indices]
4747       unsigned OpNum = 0;
4748       Value *Agg;
4749       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4750         return error("Invalid record");
4751 
4752       unsigned RecSize = Record.size();
4753       if (OpNum == RecSize)
4754         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4755 
4756       SmallVector<unsigned, 4> EXTRACTVALIdx;
4757       Type *CurTy = Agg->getType();
4758       for (; OpNum != RecSize; ++OpNum) {
4759         bool IsArray = CurTy->isArrayTy();
4760         bool IsStruct = CurTy->isStructTy();
4761         uint64_t Index = Record[OpNum];
4762 
4763         if (!IsStruct && !IsArray)
4764           return error("EXTRACTVAL: Invalid type");
4765         if ((unsigned)Index != Index)
4766           return error("Invalid value");
4767         if (IsStruct && Index >= CurTy->subtypes().size())
4768           return error("EXTRACTVAL: Invalid struct index");
4769         if (IsArray && Index >= CurTy->getArrayNumElements())
4770           return error("EXTRACTVAL: Invalid array index");
4771         EXTRACTVALIdx.push_back((unsigned)Index);
4772 
4773         if (IsStruct)
4774           CurTy = CurTy->subtypes()[Index];
4775         else
4776           CurTy = CurTy->subtypes()[0];
4777       }
4778 
4779       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4780       InstructionList.push_back(I);
4781       break;
4782     }
4783 
4784     case bitc::FUNC_CODE_INST_INSERTVAL: {
4785                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4786       unsigned OpNum = 0;
4787       Value *Agg;
4788       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4789         return error("Invalid record");
4790       Value *Val;
4791       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4792         return error("Invalid record");
4793 
4794       unsigned RecSize = Record.size();
4795       if (OpNum == RecSize)
4796         return error("INSERTVAL: Invalid instruction with 0 indices");
4797 
4798       SmallVector<unsigned, 4> INSERTVALIdx;
4799       Type *CurTy = Agg->getType();
4800       for (; OpNum != RecSize; ++OpNum) {
4801         bool IsArray = CurTy->isArrayTy();
4802         bool IsStruct = CurTy->isStructTy();
4803         uint64_t Index = Record[OpNum];
4804 
4805         if (!IsStruct && !IsArray)
4806           return error("INSERTVAL: Invalid type");
4807         if ((unsigned)Index != Index)
4808           return error("Invalid value");
4809         if (IsStruct && Index >= CurTy->subtypes().size())
4810           return error("INSERTVAL: Invalid struct index");
4811         if (IsArray && Index >= CurTy->getArrayNumElements())
4812           return error("INSERTVAL: Invalid array index");
4813 
4814         INSERTVALIdx.push_back((unsigned)Index);
4815         if (IsStruct)
4816           CurTy = CurTy->subtypes()[Index];
4817         else
4818           CurTy = CurTy->subtypes()[0];
4819       }
4820 
4821       if (CurTy != Val->getType())
4822         return error("Inserted value type doesn't match aggregate type");
4823 
4824       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4825       InstructionList.push_back(I);
4826       break;
4827     }
4828 
4829     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4830       // obsolete form of select
4831       // handles select i1 ... in old bitcode
4832       unsigned OpNum = 0;
4833       Value *TrueVal, *FalseVal, *Cond;
4834       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4835           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4836           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4837         return error("Invalid record");
4838 
4839       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4840       InstructionList.push_back(I);
4841       break;
4842     }
4843 
4844     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4845       // new form of select
4846       // handles select i1 or select [N x i1]
4847       unsigned OpNum = 0;
4848       Value *TrueVal, *FalseVal, *Cond;
4849       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4850           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4851           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4852         return error("Invalid record");
4853 
4854       // select condition can be either i1 or [N x i1]
4855       if (VectorType* vector_type =
4856           dyn_cast<VectorType>(Cond->getType())) {
4857         // expect <n x i1>
4858         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4859           return error("Invalid type for value");
4860       } else {
4861         // expect i1
4862         if (Cond->getType() != Type::getInt1Ty(Context))
4863           return error("Invalid type for value");
4864       }
4865 
4866       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4867       InstructionList.push_back(I);
4868       break;
4869     }
4870 
4871     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4872       unsigned OpNum = 0;
4873       Value *Vec, *Idx;
4874       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4875           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4876         return error("Invalid record");
4877       if (!Vec->getType()->isVectorTy())
4878         return error("Invalid type for value");
4879       I = ExtractElementInst::Create(Vec, Idx);
4880       InstructionList.push_back(I);
4881       break;
4882     }
4883 
4884     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4885       unsigned OpNum = 0;
4886       Value *Vec, *Elt, *Idx;
4887       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4888         return error("Invalid record");
4889       if (!Vec->getType()->isVectorTy())
4890         return error("Invalid type for value");
4891       if (popValue(Record, OpNum, NextValueNo,
4892                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4893           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4894         return error("Invalid record");
4895       I = InsertElementInst::Create(Vec, Elt, Idx);
4896       InstructionList.push_back(I);
4897       break;
4898     }
4899 
4900     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4901       unsigned OpNum = 0;
4902       Value *Vec1, *Vec2, *Mask;
4903       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4904           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4905         return error("Invalid record");
4906 
4907       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4908         return error("Invalid record");
4909       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4910         return error("Invalid type for value");
4911       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4912       InstructionList.push_back(I);
4913       break;
4914     }
4915 
4916     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4917       // Old form of ICmp/FCmp returning bool
4918       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4919       // both legal on vectors but had different behaviour.
4920     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4921       // FCmp/ICmp returning bool or vector of bool
4922 
4923       unsigned OpNum = 0;
4924       Value *LHS, *RHS;
4925       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4926           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4927         return error("Invalid record");
4928 
4929       unsigned PredVal = Record[OpNum];
4930       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4931       FastMathFlags FMF;
4932       if (IsFP && Record.size() > OpNum+1)
4933         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4934 
4935       if (OpNum+1 != Record.size())
4936         return error("Invalid record");
4937 
4938       if (LHS->getType()->isFPOrFPVectorTy())
4939         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4940       else
4941         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4942 
4943       if (FMF.any())
4944         I->setFastMathFlags(FMF);
4945       InstructionList.push_back(I);
4946       break;
4947     }
4948 
4949     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4950       {
4951         unsigned Size = Record.size();
4952         if (Size == 0) {
4953           I = ReturnInst::Create(Context);
4954           InstructionList.push_back(I);
4955           break;
4956         }
4957 
4958         unsigned OpNum = 0;
4959         Value *Op = nullptr;
4960         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4961           return error("Invalid record");
4962         if (OpNum != Record.size())
4963           return error("Invalid record");
4964 
4965         I = ReturnInst::Create(Context, Op);
4966         InstructionList.push_back(I);
4967         break;
4968       }
4969     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4970       if (Record.size() != 1 && Record.size() != 3)
4971         return error("Invalid record");
4972       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4973       if (!TrueDest)
4974         return error("Invalid record");
4975 
4976       if (Record.size() == 1) {
4977         I = BranchInst::Create(TrueDest);
4978         InstructionList.push_back(I);
4979       }
4980       else {
4981         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4982         Value *Cond = getValue(Record, 2, NextValueNo,
4983                                Type::getInt1Ty(Context));
4984         if (!FalseDest || !Cond)
4985           return error("Invalid record");
4986         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4987         InstructionList.push_back(I);
4988       }
4989       break;
4990     }
4991     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4992       if (Record.size() != 1 && Record.size() != 2)
4993         return error("Invalid record");
4994       unsigned Idx = 0;
4995       Value *CleanupPad =
4996           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4997       if (!CleanupPad)
4998         return error("Invalid record");
4999       BasicBlock *UnwindDest = nullptr;
5000       if (Record.size() == 2) {
5001         UnwindDest = getBasicBlock(Record[Idx++]);
5002         if (!UnwindDest)
5003           return error("Invalid record");
5004       }
5005 
5006       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5007       InstructionList.push_back(I);
5008       break;
5009     }
5010     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5011       if (Record.size() != 2)
5012         return error("Invalid record");
5013       unsigned Idx = 0;
5014       Value *CatchPad =
5015           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5016       if (!CatchPad)
5017         return error("Invalid record");
5018       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5019       if (!BB)
5020         return error("Invalid record");
5021 
5022       I = CatchReturnInst::Create(CatchPad, BB);
5023       InstructionList.push_back(I);
5024       break;
5025     }
5026     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5027       // We must have, at minimum, the outer scope and the number of arguments.
5028       if (Record.size() < 2)
5029         return error("Invalid record");
5030 
5031       unsigned Idx = 0;
5032 
5033       Value *ParentPad =
5034           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5035 
5036       unsigned NumHandlers = Record[Idx++];
5037 
5038       SmallVector<BasicBlock *, 2> Handlers;
5039       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5040         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5041         if (!BB)
5042           return error("Invalid record");
5043         Handlers.push_back(BB);
5044       }
5045 
5046       BasicBlock *UnwindDest = nullptr;
5047       if (Idx + 1 == Record.size()) {
5048         UnwindDest = getBasicBlock(Record[Idx++]);
5049         if (!UnwindDest)
5050           return error("Invalid record");
5051       }
5052 
5053       if (Record.size() != Idx)
5054         return error("Invalid record");
5055 
5056       auto *CatchSwitch =
5057           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5058       for (BasicBlock *Handler : Handlers)
5059         CatchSwitch->addHandler(Handler);
5060       I = CatchSwitch;
5061       InstructionList.push_back(I);
5062       break;
5063     }
5064     case bitc::FUNC_CODE_INST_CATCHPAD:
5065     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5066       // We must have, at minimum, the outer scope and the number of arguments.
5067       if (Record.size() < 2)
5068         return error("Invalid record");
5069 
5070       unsigned Idx = 0;
5071 
5072       Value *ParentPad =
5073           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5074 
5075       unsigned NumArgOperands = Record[Idx++];
5076 
5077       SmallVector<Value *, 2> Args;
5078       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5079         Value *Val;
5080         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5081           return error("Invalid record");
5082         Args.push_back(Val);
5083       }
5084 
5085       if (Record.size() != Idx)
5086         return error("Invalid record");
5087 
5088       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5089         I = CleanupPadInst::Create(ParentPad, Args);
5090       else
5091         I = CatchPadInst::Create(ParentPad, Args);
5092       InstructionList.push_back(I);
5093       break;
5094     }
5095     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5096       // Check magic
5097       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5098         // "New" SwitchInst format with case ranges. The changes to write this
5099         // format were reverted but we still recognize bitcode that uses it.
5100         // Hopefully someday we will have support for case ranges and can use
5101         // this format again.
5102 
5103         Type *OpTy = getTypeByID(Record[1]);
5104         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5105 
5106         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5107         BasicBlock *Default = getBasicBlock(Record[3]);
5108         if (!OpTy || !Cond || !Default)
5109           return error("Invalid record");
5110 
5111         unsigned NumCases = Record[4];
5112 
5113         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5114         InstructionList.push_back(SI);
5115 
5116         unsigned CurIdx = 5;
5117         for (unsigned i = 0; i != NumCases; ++i) {
5118           SmallVector<ConstantInt*, 1> CaseVals;
5119           unsigned NumItems = Record[CurIdx++];
5120           for (unsigned ci = 0; ci != NumItems; ++ci) {
5121             bool isSingleNumber = Record[CurIdx++];
5122 
5123             APInt Low;
5124             unsigned ActiveWords = 1;
5125             if (ValueBitWidth > 64)
5126               ActiveWords = Record[CurIdx++];
5127             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5128                                 ValueBitWidth);
5129             CurIdx += ActiveWords;
5130 
5131             if (!isSingleNumber) {
5132               ActiveWords = 1;
5133               if (ValueBitWidth > 64)
5134                 ActiveWords = Record[CurIdx++];
5135               APInt High = readWideAPInt(
5136                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5137               CurIdx += ActiveWords;
5138 
5139               // FIXME: It is not clear whether values in the range should be
5140               // compared as signed or unsigned values. The partially
5141               // implemented changes that used this format in the past used
5142               // unsigned comparisons.
5143               for ( ; Low.ule(High); ++Low)
5144                 CaseVals.push_back(ConstantInt::get(Context, Low));
5145             } else
5146               CaseVals.push_back(ConstantInt::get(Context, Low));
5147           }
5148           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5149           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5150                  cve = CaseVals.end(); cvi != cve; ++cvi)
5151             SI->addCase(*cvi, DestBB);
5152         }
5153         I = SI;
5154         break;
5155       }
5156 
5157       // Old SwitchInst format without case ranges.
5158 
5159       if (Record.size() < 3 || (Record.size() & 1) == 0)
5160         return error("Invalid record");
5161       Type *OpTy = getTypeByID(Record[0]);
5162       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5163       BasicBlock *Default = getBasicBlock(Record[2]);
5164       if (!OpTy || !Cond || !Default)
5165         return error("Invalid record");
5166       unsigned NumCases = (Record.size()-3)/2;
5167       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5168       InstructionList.push_back(SI);
5169       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5170         ConstantInt *CaseVal =
5171           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5172         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5173         if (!CaseVal || !DestBB) {
5174           delete SI;
5175           return error("Invalid record");
5176         }
5177         SI->addCase(CaseVal, DestBB);
5178       }
5179       I = SI;
5180       break;
5181     }
5182     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5183       if (Record.size() < 2)
5184         return error("Invalid record");
5185       Type *OpTy = getTypeByID(Record[0]);
5186       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5187       if (!OpTy || !Address)
5188         return error("Invalid record");
5189       unsigned NumDests = Record.size()-2;
5190       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5191       InstructionList.push_back(IBI);
5192       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5193         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5194           IBI->addDestination(DestBB);
5195         } else {
5196           delete IBI;
5197           return error("Invalid record");
5198         }
5199       }
5200       I = IBI;
5201       break;
5202     }
5203 
5204     case bitc::FUNC_CODE_INST_INVOKE: {
5205       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5206       if (Record.size() < 4)
5207         return error("Invalid record");
5208       unsigned OpNum = 0;
5209       AttributeSet PAL = getAttributes(Record[OpNum++]);
5210       unsigned CCInfo = Record[OpNum++];
5211       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5212       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5213 
5214       FunctionType *FTy = nullptr;
5215       if (CCInfo >> 13 & 1 &&
5216           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5217         return error("Explicit invoke type is not a function type");
5218 
5219       Value *Callee;
5220       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5221         return error("Invalid record");
5222 
5223       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5224       if (!CalleeTy)
5225         return error("Callee is not a pointer");
5226       if (!FTy) {
5227         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5228         if (!FTy)
5229           return error("Callee is not of pointer to function type");
5230       } else if (CalleeTy->getElementType() != FTy)
5231         return error("Explicit invoke type does not match pointee type of "
5232                      "callee operand");
5233       if (Record.size() < FTy->getNumParams() + OpNum)
5234         return error("Insufficient operands to call");
5235 
5236       SmallVector<Value*, 16> Ops;
5237       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5238         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5239                                FTy->getParamType(i)));
5240         if (!Ops.back())
5241           return error("Invalid record");
5242       }
5243 
5244       if (!FTy->isVarArg()) {
5245         if (Record.size() != OpNum)
5246           return error("Invalid record");
5247       } else {
5248         // Read type/value pairs for varargs params.
5249         while (OpNum != Record.size()) {
5250           Value *Op;
5251           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5252             return error("Invalid record");
5253           Ops.push_back(Op);
5254         }
5255       }
5256 
5257       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5258       OperandBundles.clear();
5259       InstructionList.push_back(I);
5260       cast<InvokeInst>(I)->setCallingConv(
5261           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5262       cast<InvokeInst>(I)->setAttributes(PAL);
5263       break;
5264     }
5265     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5266       unsigned Idx = 0;
5267       Value *Val = nullptr;
5268       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5269         return error("Invalid record");
5270       I = ResumeInst::Create(Val);
5271       InstructionList.push_back(I);
5272       break;
5273     }
5274     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5275       I = new UnreachableInst(Context);
5276       InstructionList.push_back(I);
5277       break;
5278     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5279       if (Record.size() < 1 || ((Record.size()-1)&1))
5280         return error("Invalid record");
5281       Type *Ty = getTypeByID(Record[0]);
5282       if (!Ty)
5283         return error("Invalid record");
5284 
5285       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5286       InstructionList.push_back(PN);
5287 
5288       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5289         Value *V;
5290         // With the new function encoding, it is possible that operands have
5291         // negative IDs (for forward references).  Use a signed VBR
5292         // representation to keep the encoding small.
5293         if (UseRelativeIDs)
5294           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5295         else
5296           V = getValue(Record, 1+i, NextValueNo, Ty);
5297         BasicBlock *BB = getBasicBlock(Record[2+i]);
5298         if (!V || !BB)
5299           return error("Invalid record");
5300         PN->addIncoming(V, BB);
5301       }
5302       I = PN;
5303       break;
5304     }
5305 
5306     case bitc::FUNC_CODE_INST_LANDINGPAD:
5307     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5308       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5309       unsigned Idx = 0;
5310       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5311         if (Record.size() < 3)
5312           return error("Invalid record");
5313       } else {
5314         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5315         if (Record.size() < 4)
5316           return error("Invalid record");
5317       }
5318       Type *Ty = getTypeByID(Record[Idx++]);
5319       if (!Ty)
5320         return error("Invalid record");
5321       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5322         Value *PersFn = nullptr;
5323         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5324           return error("Invalid record");
5325 
5326         if (!F->hasPersonalityFn())
5327           F->setPersonalityFn(cast<Constant>(PersFn));
5328         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5329           return error("Personality function mismatch");
5330       }
5331 
5332       bool IsCleanup = !!Record[Idx++];
5333       unsigned NumClauses = Record[Idx++];
5334       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5335       LP->setCleanup(IsCleanup);
5336       for (unsigned J = 0; J != NumClauses; ++J) {
5337         LandingPadInst::ClauseType CT =
5338           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5339         Value *Val;
5340 
5341         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5342           delete LP;
5343           return error("Invalid record");
5344         }
5345 
5346         assert((CT != LandingPadInst::Catch ||
5347                 !isa<ArrayType>(Val->getType())) &&
5348                "Catch clause has a invalid type!");
5349         assert((CT != LandingPadInst::Filter ||
5350                 isa<ArrayType>(Val->getType())) &&
5351                "Filter clause has invalid type!");
5352         LP->addClause(cast<Constant>(Val));
5353       }
5354 
5355       I = LP;
5356       InstructionList.push_back(I);
5357       break;
5358     }
5359 
5360     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5361       if (Record.size() != 4)
5362         return error("Invalid record");
5363       uint64_t AlignRecord = Record[3];
5364       const uint64_t InAllocaMask = uint64_t(1) << 5;
5365       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5366       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5367       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5368                                 SwiftErrorMask;
5369       bool InAlloca = AlignRecord & InAllocaMask;
5370       bool SwiftError = AlignRecord & SwiftErrorMask;
5371       Type *Ty = getTypeByID(Record[0]);
5372       if ((AlignRecord & ExplicitTypeMask) == 0) {
5373         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5374         if (!PTy)
5375           return error("Old-style alloca with a non-pointer type");
5376         Ty = PTy->getElementType();
5377       }
5378       Type *OpTy = getTypeByID(Record[1]);
5379       Value *Size = getFnValueByID(Record[2], OpTy);
5380       unsigned Align;
5381       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5382         return Err;
5383       }
5384       if (!Ty || !Size)
5385         return error("Invalid record");
5386       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5387       AI->setUsedWithInAlloca(InAlloca);
5388       AI->setSwiftError(SwiftError);
5389       I = AI;
5390       InstructionList.push_back(I);
5391       break;
5392     }
5393     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5394       unsigned OpNum = 0;
5395       Value *Op;
5396       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5397           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5398         return error("Invalid record");
5399 
5400       Type *Ty = nullptr;
5401       if (OpNum + 3 == Record.size())
5402         Ty = getTypeByID(Record[OpNum++]);
5403       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5404         return Err;
5405       if (!Ty)
5406         Ty = cast<PointerType>(Op->getType())->getElementType();
5407 
5408       unsigned Align;
5409       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5410         return Err;
5411       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5412 
5413       InstructionList.push_back(I);
5414       break;
5415     }
5416     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5417        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5418       unsigned OpNum = 0;
5419       Value *Op;
5420       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5421           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5422         return error("Invalid record");
5423 
5424       Type *Ty = nullptr;
5425       if (OpNum + 5 == Record.size())
5426         Ty = getTypeByID(Record[OpNum++]);
5427       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5428         return Err;
5429       if (!Ty)
5430         Ty = cast<PointerType>(Op->getType())->getElementType();
5431 
5432       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5433       if (Ordering == AtomicOrdering::NotAtomic ||
5434           Ordering == AtomicOrdering::Release ||
5435           Ordering == AtomicOrdering::AcquireRelease)
5436         return error("Invalid record");
5437       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5438         return error("Invalid record");
5439       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5440 
5441       unsigned Align;
5442       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5443         return Err;
5444       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5445 
5446       InstructionList.push_back(I);
5447       break;
5448     }
5449     case bitc::FUNC_CODE_INST_STORE:
5450     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5451       unsigned OpNum = 0;
5452       Value *Val, *Ptr;
5453       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5454           (BitCode == bitc::FUNC_CODE_INST_STORE
5455                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5456                : popValue(Record, OpNum, NextValueNo,
5457                           cast<PointerType>(Ptr->getType())->getElementType(),
5458                           Val)) ||
5459           OpNum + 2 != Record.size())
5460         return error("Invalid record");
5461 
5462       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5463         return Err;
5464       unsigned Align;
5465       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5466         return Err;
5467       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5468       InstructionList.push_back(I);
5469       break;
5470     }
5471     case bitc::FUNC_CODE_INST_STOREATOMIC:
5472     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5473       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5474       unsigned OpNum = 0;
5475       Value *Val, *Ptr;
5476       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5477           !isa<PointerType>(Ptr->getType()) ||
5478           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5479                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5480                : popValue(Record, OpNum, NextValueNo,
5481                           cast<PointerType>(Ptr->getType())->getElementType(),
5482                           Val)) ||
5483           OpNum + 4 != Record.size())
5484         return error("Invalid record");
5485 
5486       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5487         return Err;
5488       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5489       if (Ordering == AtomicOrdering::NotAtomic ||
5490           Ordering == AtomicOrdering::Acquire ||
5491           Ordering == AtomicOrdering::AcquireRelease)
5492         return error("Invalid record");
5493       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5494       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5495         return error("Invalid record");
5496 
5497       unsigned Align;
5498       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5499         return Err;
5500       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5501       InstructionList.push_back(I);
5502       break;
5503     }
5504     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5505     case bitc::FUNC_CODE_INST_CMPXCHG: {
5506       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5507       //          failureordering?, isweak?]
5508       unsigned OpNum = 0;
5509       Value *Ptr, *Cmp, *New;
5510       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5511           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5512                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5513                : popValue(Record, OpNum, NextValueNo,
5514                           cast<PointerType>(Ptr->getType())->getElementType(),
5515                           Cmp)) ||
5516           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5517           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5518         return error("Invalid record");
5519       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5520       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5521           SuccessOrdering == AtomicOrdering::Unordered)
5522         return error("Invalid record");
5523       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5524 
5525       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5526         return Err;
5527       AtomicOrdering FailureOrdering;
5528       if (Record.size() < 7)
5529         FailureOrdering =
5530             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5531       else
5532         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5533 
5534       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5535                                 SynchScope);
5536       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5537 
5538       if (Record.size() < 8) {
5539         // Before weak cmpxchgs existed, the instruction simply returned the
5540         // value loaded from memory, so bitcode files from that era will be
5541         // expecting the first component of a modern cmpxchg.
5542         CurBB->getInstList().push_back(I);
5543         I = ExtractValueInst::Create(I, 0);
5544       } else {
5545         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5546       }
5547 
5548       InstructionList.push_back(I);
5549       break;
5550     }
5551     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5552       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5553       unsigned OpNum = 0;
5554       Value *Ptr, *Val;
5555       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5556           !isa<PointerType>(Ptr->getType()) ||
5557           popValue(Record, OpNum, NextValueNo,
5558                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5559           OpNum+4 != Record.size())
5560         return error("Invalid record");
5561       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5562       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5563           Operation > AtomicRMWInst::LAST_BINOP)
5564         return error("Invalid record");
5565       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5566       if (Ordering == AtomicOrdering::NotAtomic ||
5567           Ordering == AtomicOrdering::Unordered)
5568         return error("Invalid record");
5569       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5570       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5571       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5572       InstructionList.push_back(I);
5573       break;
5574     }
5575     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5576       if (2 != Record.size())
5577         return error("Invalid record");
5578       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5579       if (Ordering == AtomicOrdering::NotAtomic ||
5580           Ordering == AtomicOrdering::Unordered ||
5581           Ordering == AtomicOrdering::Monotonic)
5582         return error("Invalid record");
5583       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5584       I = new FenceInst(Context, Ordering, SynchScope);
5585       InstructionList.push_back(I);
5586       break;
5587     }
5588     case bitc::FUNC_CODE_INST_CALL: {
5589       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5590       if (Record.size() < 3)
5591         return error("Invalid record");
5592 
5593       unsigned OpNum = 0;
5594       AttributeSet PAL = getAttributes(Record[OpNum++]);
5595       unsigned CCInfo = Record[OpNum++];
5596 
5597       FastMathFlags FMF;
5598       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5599         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5600         if (!FMF.any())
5601           return error("Fast math flags indicator set for call with no FMF");
5602       }
5603 
5604       FunctionType *FTy = nullptr;
5605       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5606           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5607         return error("Explicit call type is not a function type");
5608 
5609       Value *Callee;
5610       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5611         return error("Invalid record");
5612 
5613       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5614       if (!OpTy)
5615         return error("Callee is not a pointer type");
5616       if (!FTy) {
5617         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5618         if (!FTy)
5619           return error("Callee is not of pointer to function type");
5620       } else if (OpTy->getElementType() != FTy)
5621         return error("Explicit call type does not match pointee type of "
5622                      "callee operand");
5623       if (Record.size() < FTy->getNumParams() + OpNum)
5624         return error("Insufficient operands to call");
5625 
5626       SmallVector<Value*, 16> Args;
5627       // Read the fixed params.
5628       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5629         if (FTy->getParamType(i)->isLabelTy())
5630           Args.push_back(getBasicBlock(Record[OpNum]));
5631         else
5632           Args.push_back(getValue(Record, OpNum, NextValueNo,
5633                                   FTy->getParamType(i)));
5634         if (!Args.back())
5635           return error("Invalid record");
5636       }
5637 
5638       // Read type/value pairs for varargs params.
5639       if (!FTy->isVarArg()) {
5640         if (OpNum != Record.size())
5641           return error("Invalid record");
5642       } else {
5643         while (OpNum != Record.size()) {
5644           Value *Op;
5645           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5646             return error("Invalid record");
5647           Args.push_back(Op);
5648         }
5649       }
5650 
5651       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5652       OperandBundles.clear();
5653       InstructionList.push_back(I);
5654       cast<CallInst>(I)->setCallingConv(
5655           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5656       CallInst::TailCallKind TCK = CallInst::TCK_None;
5657       if (CCInfo & 1 << bitc::CALL_TAIL)
5658         TCK = CallInst::TCK_Tail;
5659       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5660         TCK = CallInst::TCK_MustTail;
5661       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5662         TCK = CallInst::TCK_NoTail;
5663       cast<CallInst>(I)->setTailCallKind(TCK);
5664       cast<CallInst>(I)->setAttributes(PAL);
5665       if (FMF.any()) {
5666         if (!isa<FPMathOperator>(I))
5667           return error("Fast-math-flags specified for call without "
5668                        "floating-point scalar or vector return type");
5669         I->setFastMathFlags(FMF);
5670       }
5671       break;
5672     }
5673     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5674       if (Record.size() < 3)
5675         return error("Invalid record");
5676       Type *OpTy = getTypeByID(Record[0]);
5677       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5678       Type *ResTy = getTypeByID(Record[2]);
5679       if (!OpTy || !Op || !ResTy)
5680         return error("Invalid record");
5681       I = new VAArgInst(Op, ResTy);
5682       InstructionList.push_back(I);
5683       break;
5684     }
5685 
5686     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5687       // A call or an invoke can be optionally prefixed with some variable
5688       // number of operand bundle blocks.  These blocks are read into
5689       // OperandBundles and consumed at the next call or invoke instruction.
5690 
5691       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5692         return error("Invalid record");
5693 
5694       std::vector<Value *> Inputs;
5695 
5696       unsigned OpNum = 1;
5697       while (OpNum != Record.size()) {
5698         Value *Op;
5699         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5700           return error("Invalid record");
5701         Inputs.push_back(Op);
5702       }
5703 
5704       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5705       continue;
5706     }
5707     }
5708 
5709     // Add instruction to end of current BB.  If there is no current BB, reject
5710     // this file.
5711     if (!CurBB) {
5712       delete I;
5713       return error("Invalid instruction with no BB");
5714     }
5715     if (!OperandBundles.empty()) {
5716       delete I;
5717       return error("Operand bundles found with no consumer");
5718     }
5719     CurBB->getInstList().push_back(I);
5720 
5721     // If this was a terminator instruction, move to the next block.
5722     if (isa<TerminatorInst>(I)) {
5723       ++CurBBNo;
5724       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5725     }
5726 
5727     // Non-void values get registered in the value table for future use.
5728     if (I && !I->getType()->isVoidTy())
5729       ValueList.assignValue(I, NextValueNo++);
5730   }
5731 
5732 OutOfRecordLoop:
5733 
5734   if (!OperandBundles.empty())
5735     return error("Operand bundles found with no consumer");
5736 
5737   // Check the function list for unresolved values.
5738   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5739     if (!A->getParent()) {
5740       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5741       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5742         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5743           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5744           delete A;
5745         }
5746       }
5747       return error("Never resolved value found in function");
5748     }
5749   }
5750 
5751   // Unexpected unresolved metadata about to be dropped.
5752   if (MetadataList.hasFwdRefs())
5753     return error("Invalid function metadata: outgoing forward refs");
5754 
5755   // Trim the value list down to the size it was before we parsed this function.
5756   ValueList.shrinkTo(ModuleValueListSize);
5757   MetadataList.shrinkTo(ModuleMetadataListSize);
5758   std::vector<BasicBlock*>().swap(FunctionBBs);
5759   return Error::success();
5760 }
5761 
5762 /// Find the function body in the bitcode stream
5763 Error BitcodeReader::findFunctionInStream(
5764     Function *F,
5765     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5766   while (DeferredFunctionInfoIterator->second == 0) {
5767     // This is the fallback handling for the old format bitcode that
5768     // didn't contain the function index in the VST, or when we have
5769     // an anonymous function which would not have a VST entry.
5770     // Assert that we have one of those two cases.
5771     assert(VSTOffset == 0 || !F->hasName());
5772     // Parse the next body in the stream and set its position in the
5773     // DeferredFunctionInfo map.
5774     if (Error Err = rememberAndSkipFunctionBodies())
5775       return Err;
5776   }
5777   return Error::success();
5778 }
5779 
5780 //===----------------------------------------------------------------------===//
5781 // GVMaterializer implementation
5782 //===----------------------------------------------------------------------===//
5783 
5784 Error BitcodeReader::materialize(GlobalValue *GV) {
5785   Function *F = dyn_cast<Function>(GV);
5786   // If it's not a function or is already material, ignore the request.
5787   if (!F || !F->isMaterializable())
5788     return Error::success();
5789 
5790   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5791   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5792   // If its position is recorded as 0, its body is somewhere in the stream
5793   // but we haven't seen it yet.
5794   if (DFII->second == 0)
5795     if (Error Err = findFunctionInStream(F, DFII))
5796       return Err;
5797 
5798   // Materialize metadata before parsing any function bodies.
5799   if (Error Err = materializeMetadata())
5800     return Err;
5801 
5802   // Move the bit stream to the saved position of the deferred function body.
5803   Stream.JumpToBit(DFII->second);
5804 
5805   if (Error Err = parseFunctionBody(F))
5806     return Err;
5807   F->setIsMaterializable(false);
5808 
5809   if (StripDebugInfo)
5810     stripDebugInfo(*F);
5811 
5812   // Upgrade any old intrinsic calls in the function.
5813   for (auto &I : UpgradedIntrinsics) {
5814     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5815          UI != UE;) {
5816       User *U = *UI;
5817       ++UI;
5818       if (CallInst *CI = dyn_cast<CallInst>(U))
5819         UpgradeIntrinsicCall(CI, I.second);
5820     }
5821   }
5822 
5823   // Update calls to the remangled intrinsics
5824   for (auto &I : RemangledIntrinsics)
5825     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5826          UI != UE;)
5827       // Don't expect any other users than call sites
5828       CallSite(*UI++).setCalledFunction(I.second);
5829 
5830   // Finish fn->subprogram upgrade for materialized functions.
5831   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5832     F->setSubprogram(SP);
5833 
5834   // Bring in any functions that this function forward-referenced via
5835   // blockaddresses.
5836   return materializeForwardReferencedFunctions();
5837 }
5838 
5839 Error BitcodeReader::materializeModule() {
5840   if (Error Err = materializeMetadata())
5841     return Err;
5842 
5843   // Promise to materialize all forward references.
5844   WillMaterializeAllForwardRefs = true;
5845 
5846   // Iterate over the module, deserializing any functions that are still on
5847   // disk.
5848   for (Function &F : *TheModule) {
5849     if (Error Err = materialize(&F))
5850       return Err;
5851   }
5852   // At this point, if there are any function bodies, parse the rest of
5853   // the bits in the module past the last function block we have recorded
5854   // through either lazy scanning or the VST.
5855   if (LastFunctionBlockBit || NextUnreadBit)
5856     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5857                                     ? LastFunctionBlockBit
5858                                     : NextUnreadBit))
5859       return Err;
5860 
5861   // Check that all block address forward references got resolved (as we
5862   // promised above).
5863   if (!BasicBlockFwdRefs.empty())
5864     return error("Never resolved function from blockaddress");
5865 
5866   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5867   // delete the old functions to clean up. We can't do this unless the entire
5868   // module is materialized because there could always be another function body
5869   // with calls to the old function.
5870   for (auto &I : UpgradedIntrinsics) {
5871     for (auto *U : I.first->users()) {
5872       if (CallInst *CI = dyn_cast<CallInst>(U))
5873         UpgradeIntrinsicCall(CI, I.second);
5874     }
5875     if (!I.first->use_empty())
5876       I.first->replaceAllUsesWith(I.second);
5877     I.first->eraseFromParent();
5878   }
5879   UpgradedIntrinsics.clear();
5880   // Do the same for remangled intrinsics
5881   for (auto &I : RemangledIntrinsics) {
5882     I.first->replaceAllUsesWith(I.second);
5883     I.first->eraseFromParent();
5884   }
5885   RemangledIntrinsics.clear();
5886 
5887   UpgradeDebugInfo(*TheModule);
5888 
5889   UpgradeModuleFlags(*TheModule);
5890   return Error::success();
5891 }
5892 
5893 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5894   return IdentifiedStructTypes;
5895 }
5896 
5897 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5898     BitstreamCursor Cursor, bool CheckGlobalValSummaryPresenceOnly)
5899     : BitcodeReaderBase(std::move(Cursor)),
5900       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5901 
5902 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5903 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5904   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5905   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5906   return VGI->second;
5907 }
5908 
5909 // Specialized value symbol table parser used when reading module index
5910 // blocks where we don't actually create global values. The parsed information
5911 // is saved in the bitcode reader for use when later parsing summaries.
5912 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5913     uint64_t Offset,
5914     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5915   assert(Offset > 0 && "Expected non-zero VST offset");
5916   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5917 
5918   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5919     return error("Invalid record");
5920 
5921   SmallVector<uint64_t, 64> Record;
5922 
5923   // Read all the records for this value table.
5924   SmallString<128> ValueName;
5925 
5926   while (true) {
5927     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5928 
5929     switch (Entry.Kind) {
5930     case BitstreamEntry::SubBlock: // Handled for us already.
5931     case BitstreamEntry::Error:
5932       return error("Malformed block");
5933     case BitstreamEntry::EndBlock:
5934       // Done parsing VST, jump back to wherever we came from.
5935       Stream.JumpToBit(CurrentBit);
5936       return Error::success();
5937     case BitstreamEntry::Record:
5938       // The interesting case.
5939       break;
5940     }
5941 
5942     // Read a record.
5943     Record.clear();
5944     switch (Stream.readRecord(Entry.ID, Record)) {
5945     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5946       break;
5947     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5948       if (convertToString(Record, 1, ValueName))
5949         return error("Invalid record");
5950       unsigned ValueID = Record[0];
5951       assert(!SourceFileName.empty());
5952       auto VLI = ValueIdToLinkageMap.find(ValueID);
5953       assert(VLI != ValueIdToLinkageMap.end() &&
5954              "No linkage found for VST entry?");
5955       auto Linkage = VLI->second;
5956       std::string GlobalId =
5957           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5958       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5959       auto OriginalNameID = ValueGUID;
5960       if (GlobalValue::isLocalLinkage(Linkage))
5961         OriginalNameID = GlobalValue::getGUID(ValueName);
5962       if (PrintSummaryGUIDs)
5963         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5964                << ValueName << "\n";
5965       ValueIdToCallGraphGUIDMap[ValueID] =
5966           std::make_pair(ValueGUID, OriginalNameID);
5967       ValueName.clear();
5968       break;
5969     }
5970     case bitc::VST_CODE_FNENTRY: {
5971       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5972       if (convertToString(Record, 2, ValueName))
5973         return error("Invalid record");
5974       unsigned ValueID = Record[0];
5975       assert(!SourceFileName.empty());
5976       auto VLI = ValueIdToLinkageMap.find(ValueID);
5977       assert(VLI != ValueIdToLinkageMap.end() &&
5978              "No linkage found for VST entry?");
5979       auto Linkage = VLI->second;
5980       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5981           ValueName, VLI->second, SourceFileName);
5982       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5983       auto OriginalNameID = FunctionGUID;
5984       if (GlobalValue::isLocalLinkage(Linkage))
5985         OriginalNameID = GlobalValue::getGUID(ValueName);
5986       if (PrintSummaryGUIDs)
5987         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5988                << ValueName << "\n";
5989       ValueIdToCallGraphGUIDMap[ValueID] =
5990           std::make_pair(FunctionGUID, OriginalNameID);
5991 
5992       ValueName.clear();
5993       break;
5994     }
5995     case bitc::VST_CODE_COMBINED_ENTRY: {
5996       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5997       unsigned ValueID = Record[0];
5998       GlobalValue::GUID RefGUID = Record[1];
5999       // The "original name", which is the second value of the pair will be
6000       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6001       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
6002       break;
6003     }
6004     }
6005   }
6006 }
6007 
6008 // Parse just the blocks needed for building the index out of the module.
6009 // At the end of this routine the module Index is populated with a map
6010 // from global value id to GlobalValueSummary objects.
6011 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) {
6012   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6013     return error("Invalid record");
6014 
6015   SmallVector<uint64_t, 64> Record;
6016   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6017   unsigned ValueId = 0;
6018 
6019   // Read the index for this module.
6020   while (true) {
6021     BitstreamEntry Entry = Stream.advance();
6022 
6023     switch (Entry.Kind) {
6024     case BitstreamEntry::Error:
6025       return error("Malformed block");
6026     case BitstreamEntry::EndBlock:
6027       return Error::success();
6028 
6029     case BitstreamEntry::SubBlock:
6030       if (CheckGlobalValSummaryPresenceOnly) {
6031         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6032           SeenGlobalValSummary = true;
6033           // No need to parse the rest since we found the summary.
6034           return Error::success();
6035         }
6036         if (Stream.SkipBlock())
6037           return error("Invalid record");
6038         continue;
6039       }
6040       switch (Entry.ID) {
6041       default: // Skip unknown content.
6042         if (Stream.SkipBlock())
6043           return error("Invalid record");
6044         break;
6045       case bitc::BLOCKINFO_BLOCK_ID:
6046         // Need to parse these to get abbrev ids (e.g. for VST)
6047         if (readBlockInfo())
6048           return error("Malformed block");
6049         break;
6050       case bitc::VALUE_SYMTAB_BLOCK_ID:
6051         // Should have been parsed earlier via VSTOffset, unless there
6052         // is no summary section.
6053         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6054                 !SeenGlobalValSummary) &&
6055                "Expected early VST parse via VSTOffset record");
6056         if (Stream.SkipBlock())
6057           return error("Invalid record");
6058         break;
6059       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6060         assert(!SeenValueSymbolTable &&
6061                "Already read VST when parsing summary block?");
6062         // We might not have a VST if there were no values in the
6063         // summary. An empty summary block generated when we are
6064         // performing ThinLTO compiles so we don't later invoke
6065         // the regular LTO process on them.
6066         if (VSTOffset > 0) {
6067           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6068             return Err;
6069           SeenValueSymbolTable = true;
6070         }
6071         SeenGlobalValSummary = true;
6072         if (Error Err = parseEntireSummary(ModulePath))
6073           return Err;
6074         break;
6075       case bitc::MODULE_STRTAB_BLOCK_ID:
6076         if (Error Err = parseModuleStringTable())
6077           return Err;
6078         break;
6079       }
6080       continue;
6081 
6082     case BitstreamEntry::Record: {
6083         Record.clear();
6084         auto BitCode = Stream.readRecord(Entry.ID, Record);
6085         switch (BitCode) {
6086         default:
6087           break; // Default behavior, ignore unknown content.
6088         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6089         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6090           SmallString<128> ValueName;
6091           if (convertToString(Record, 0, ValueName))
6092             return error("Invalid record");
6093           SourceFileName = ValueName.c_str();
6094           break;
6095         }
6096         /// MODULE_CODE_HASH: [5*i32]
6097         case bitc::MODULE_CODE_HASH: {
6098           if (Record.size() != 5)
6099             return error("Invalid hash length " + Twine(Record.size()).str());
6100           if (!TheIndex)
6101             break;
6102           if (TheIndex->modulePaths().empty())
6103             // We always seed the index with the module.
6104             TheIndex->addModulePath(ModulePath, 0);
6105           if (TheIndex->modulePaths().size() != 1)
6106             return error("Don't expect multiple modules defined?");
6107           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6108           int Pos = 0;
6109           for (auto &Val : Record) {
6110             assert(!(Val >> 32) && "Unexpected high bits set");
6111             Hash[Pos++] = Val;
6112           }
6113           break;
6114         }
6115         /// MODULE_CODE_VSTOFFSET: [offset]
6116         case bitc::MODULE_CODE_VSTOFFSET:
6117           if (Record.size() < 1)
6118             return error("Invalid record");
6119           VSTOffset = Record[0];
6120           break;
6121         // GLOBALVAR: [pointer type, isconst, initid,
6122         //             linkage, alignment, section, visibility, threadlocal,
6123         //             unnamed_addr, externally_initialized, dllstorageclass,
6124         //             comdat]
6125         case bitc::MODULE_CODE_GLOBALVAR: {
6126           if (Record.size() < 6)
6127             return error("Invalid record");
6128           uint64_t RawLinkage = Record[3];
6129           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6130           ValueIdToLinkageMap[ValueId++] = Linkage;
6131           break;
6132         }
6133         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6134         //             alignment, section, visibility, gc, unnamed_addr,
6135         //             prologuedata, dllstorageclass, comdat, prefixdata]
6136         case bitc::MODULE_CODE_FUNCTION: {
6137           if (Record.size() < 8)
6138             return error("Invalid record");
6139           uint64_t RawLinkage = Record[3];
6140           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6141           ValueIdToLinkageMap[ValueId++] = Linkage;
6142           break;
6143         }
6144         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6145         // dllstorageclass]
6146         case bitc::MODULE_CODE_ALIAS: {
6147           if (Record.size() < 6)
6148             return error("Invalid record");
6149           uint64_t RawLinkage = Record[3];
6150           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6151           ValueIdToLinkageMap[ValueId++] = Linkage;
6152           break;
6153         }
6154         }
6155       }
6156       continue;
6157     }
6158   }
6159 }
6160 
6161 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6162 // objects in the index.
6163 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(
6164     StringRef ModulePath) {
6165   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6166     return error("Invalid record");
6167   SmallVector<uint64_t, 64> Record;
6168 
6169   // Parse version
6170   {
6171     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6172     if (Entry.Kind != BitstreamEntry::Record)
6173       return error("Invalid Summary Block: record for version expected");
6174     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6175       return error("Invalid Summary Block: version expected");
6176   }
6177   const uint64_t Version = Record[0];
6178   const bool IsOldProfileFormat = Version == 1;
6179   if (!IsOldProfileFormat && Version != 2)
6180     return error("Invalid summary version " + Twine(Version) +
6181                  ", 1 or 2 expected");
6182   Record.clear();
6183 
6184   // Keep around the last seen summary to be used when we see an optional
6185   // "OriginalName" attachement.
6186   GlobalValueSummary *LastSeenSummary = nullptr;
6187   bool Combined = false;
6188 
6189   while (true) {
6190     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6191 
6192     switch (Entry.Kind) {
6193     case BitstreamEntry::SubBlock: // Handled for us already.
6194     case BitstreamEntry::Error:
6195       return error("Malformed block");
6196     case BitstreamEntry::EndBlock:
6197       // For a per-module index, remove any entries that still have empty
6198       // summaries. The VST parsing creates entries eagerly for all symbols,
6199       // but not all have associated summaries (e.g. it doesn't know how to
6200       // distinguish between VST_CODE_ENTRY for function declarations vs global
6201       // variables with initializers that end up with a summary). Remove those
6202       // entries now so that we don't need to rely on the combined index merger
6203       // to clean them up (especially since that may not run for the first
6204       // module's index if we merge into that).
6205       if (!Combined)
6206         TheIndex->removeEmptySummaryEntries();
6207       return Error::success();
6208     case BitstreamEntry::Record:
6209       // The interesting case.
6210       break;
6211     }
6212 
6213     // Read a record. The record format depends on whether this
6214     // is a per-module index or a combined index file. In the per-module
6215     // case the records contain the associated value's ID for correlation
6216     // with VST entries. In the combined index the correlation is done
6217     // via the bitcode offset of the summary records (which were saved
6218     // in the combined index VST entries). The records also contain
6219     // information used for ThinLTO renaming and importing.
6220     Record.clear();
6221     auto BitCode = Stream.readRecord(Entry.ID, Record);
6222     switch (BitCode) {
6223     default: // Default behavior: ignore.
6224       break;
6225     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6226     //                n x (valueid)]
6227     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6228     //                        numrefs x valueid,
6229     //                        n x (valueid, hotness)]
6230     case bitc::FS_PERMODULE:
6231     case bitc::FS_PERMODULE_PROFILE: {
6232       unsigned ValueID = Record[0];
6233       uint64_t RawFlags = Record[1];
6234       unsigned InstCount = Record[2];
6235       unsigned NumRefs = Record[3];
6236       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6237       std::unique_ptr<FunctionSummary> FS =
6238           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6239       // The module path string ref set in the summary must be owned by the
6240       // index's module string table. Since we don't have a module path
6241       // string table section in the per-module index, we create a single
6242       // module path string table entry with an empty (0) ID to take
6243       // ownership.
6244       FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first());
6245       static int RefListStartIndex = 4;
6246       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6247       assert(Record.size() >= RefListStartIndex + NumRefs &&
6248              "Record size inconsistent with number of references");
6249       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6250         unsigned RefValueId = Record[I];
6251         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6252         FS->addRefEdge(RefGUID);
6253       }
6254       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6255       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6256            ++I) {
6257         CalleeInfo::HotnessType Hotness;
6258         GlobalValue::GUID CalleeGUID;
6259         std::tie(CalleeGUID, Hotness) =
6260             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6261         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6262       }
6263       auto GUID = getGUIDFromValueId(ValueID);
6264       FS->setOriginalName(GUID.second);
6265       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6266       break;
6267     }
6268     // FS_ALIAS: [valueid, flags, valueid]
6269     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6270     // they expect all aliasee summaries to be available.
6271     case bitc::FS_ALIAS: {
6272       unsigned ValueID = Record[0];
6273       uint64_t RawFlags = Record[1];
6274       unsigned AliaseeID = Record[2];
6275       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6276       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6277       // The module path string ref set in the summary must be owned by the
6278       // index's module string table. Since we don't have a module path
6279       // string table section in the per-module index, we create a single
6280       // module path string table entry with an empty (0) ID to take
6281       // ownership.
6282       AS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first());
6283 
6284       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6285       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6286       if (!AliaseeSummary)
6287         return error("Alias expects aliasee summary to be parsed");
6288       AS->setAliasee(AliaseeSummary);
6289 
6290       auto GUID = getGUIDFromValueId(ValueID);
6291       AS->setOriginalName(GUID.second);
6292       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6293       break;
6294     }
6295     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6296     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6297       unsigned ValueID = Record[0];
6298       uint64_t RawFlags = Record[1];
6299       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6300       std::unique_ptr<GlobalVarSummary> FS =
6301           llvm::make_unique<GlobalVarSummary>(Flags);
6302       FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first());
6303       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6304         unsigned RefValueId = Record[I];
6305         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6306         FS->addRefEdge(RefGUID);
6307       }
6308       auto GUID = getGUIDFromValueId(ValueID);
6309       FS->setOriginalName(GUID.second);
6310       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6311       break;
6312     }
6313     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6314     //               numrefs x valueid, n x (valueid)]
6315     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6316     //                       numrefs x valueid, n x (valueid, hotness)]
6317     case bitc::FS_COMBINED:
6318     case bitc::FS_COMBINED_PROFILE: {
6319       unsigned ValueID = Record[0];
6320       uint64_t ModuleId = Record[1];
6321       uint64_t RawFlags = Record[2];
6322       unsigned InstCount = Record[3];
6323       unsigned NumRefs = Record[4];
6324       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6325       std::unique_ptr<FunctionSummary> FS =
6326           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6327       LastSeenSummary = FS.get();
6328       FS->setModulePath(ModuleIdMap[ModuleId]);
6329       static int RefListStartIndex = 5;
6330       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6331       assert(Record.size() >= RefListStartIndex + NumRefs &&
6332              "Record size inconsistent with number of references");
6333       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6334            ++I) {
6335         unsigned RefValueId = Record[I];
6336         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6337         FS->addRefEdge(RefGUID);
6338       }
6339       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6340       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6341            ++I) {
6342         CalleeInfo::HotnessType Hotness;
6343         GlobalValue::GUID CalleeGUID;
6344         std::tie(CalleeGUID, Hotness) =
6345             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6346         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6347       }
6348       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6349       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6350       Combined = true;
6351       break;
6352     }
6353     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6354     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6355     // they expect all aliasee summaries to be available.
6356     case bitc::FS_COMBINED_ALIAS: {
6357       unsigned ValueID = Record[0];
6358       uint64_t ModuleId = Record[1];
6359       uint64_t RawFlags = Record[2];
6360       unsigned AliaseeValueId = Record[3];
6361       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6362       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6363       LastSeenSummary = AS.get();
6364       AS->setModulePath(ModuleIdMap[ModuleId]);
6365 
6366       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6367       auto AliaseeInModule =
6368           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6369       if (!AliaseeInModule)
6370         return error("Alias expects aliasee summary to be parsed");
6371       AS->setAliasee(AliaseeInModule);
6372 
6373       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6374       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6375       Combined = true;
6376       break;
6377     }
6378     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6379     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6380       unsigned ValueID = Record[0];
6381       uint64_t ModuleId = Record[1];
6382       uint64_t RawFlags = Record[2];
6383       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6384       std::unique_ptr<GlobalVarSummary> FS =
6385           llvm::make_unique<GlobalVarSummary>(Flags);
6386       LastSeenSummary = FS.get();
6387       FS->setModulePath(ModuleIdMap[ModuleId]);
6388       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6389         unsigned RefValueId = Record[I];
6390         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6391         FS->addRefEdge(RefGUID);
6392       }
6393       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6394       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6395       Combined = true;
6396       break;
6397     }
6398     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6399     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6400       uint64_t OriginalName = Record[0];
6401       if (!LastSeenSummary)
6402         return error("Name attachment that does not follow a combined record");
6403       LastSeenSummary->setOriginalName(OriginalName);
6404       // Reset the LastSeenSummary
6405       LastSeenSummary = nullptr;
6406     }
6407     }
6408   }
6409   llvm_unreachable("Exit infinite loop");
6410 }
6411 
6412 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
6413 ModuleSummaryIndexBitcodeReader::readCallGraphEdge(
6414     const SmallVector<uint64_t, 64> &Record, unsigned int &I,
6415     const bool IsOldProfileFormat, const bool HasProfile) {
6416 
6417   auto Hotness = CalleeInfo::HotnessType::Unknown;
6418   unsigned CalleeValueId = Record[I];
6419   GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6420   if (IsOldProfileFormat) {
6421     I += 1; // Skip old callsitecount field
6422     if (HasProfile)
6423       I += 1; // Skip old profilecount field
6424   } else if (HasProfile)
6425     Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6426   return {CalleeGUID, Hotness};
6427 }
6428 
6429 // Parse the  module string table block into the Index.
6430 // This populates the ModulePathStringTable map in the index.
6431 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6432   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6433     return error("Invalid record");
6434 
6435   SmallVector<uint64_t, 64> Record;
6436 
6437   SmallString<128> ModulePath;
6438   ModulePathStringTableTy::iterator LastSeenModulePath;
6439 
6440   while (true) {
6441     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6442 
6443     switch (Entry.Kind) {
6444     case BitstreamEntry::SubBlock: // Handled for us already.
6445     case BitstreamEntry::Error:
6446       return error("Malformed block");
6447     case BitstreamEntry::EndBlock:
6448       return Error::success();
6449     case BitstreamEntry::Record:
6450       // The interesting case.
6451       break;
6452     }
6453 
6454     Record.clear();
6455     switch (Stream.readRecord(Entry.ID, Record)) {
6456     default: // Default behavior: ignore.
6457       break;
6458     case bitc::MST_CODE_ENTRY: {
6459       // MST_ENTRY: [modid, namechar x N]
6460       uint64_t ModuleId = Record[0];
6461 
6462       if (convertToString(Record, 1, ModulePath))
6463         return error("Invalid record");
6464 
6465       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6466       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6467 
6468       ModulePath.clear();
6469       break;
6470     }
6471     /// MST_CODE_HASH: [5*i32]
6472     case bitc::MST_CODE_HASH: {
6473       if (Record.size() != 5)
6474         return error("Invalid hash length " + Twine(Record.size()).str());
6475       if (LastSeenModulePath == TheIndex->modulePaths().end())
6476         return error("Invalid hash that does not follow a module path");
6477       int Pos = 0;
6478       for (auto &Val : Record) {
6479         assert(!(Val >> 32) && "Unexpected high bits set");
6480         LastSeenModulePath->second.second[Pos++] = Val;
6481       }
6482       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6483       LastSeenModulePath = TheIndex->modulePaths().end();
6484       break;
6485     }
6486     }
6487   }
6488   llvm_unreachable("Exit infinite loop");
6489 }
6490 
6491 // Parse the function info index from the bitcode streamer into the given index.
6492 Error ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6493     ModuleSummaryIndex *I, StringRef ModulePath) {
6494   TheIndex = I;
6495 
6496   // We expect a number of well-defined blocks, though we don't necessarily
6497   // need to understand them all.
6498   while (true) {
6499     if (Stream.AtEndOfStream()) {
6500       // We didn't really read a proper Module block.
6501       return error("Malformed block");
6502     }
6503 
6504     BitstreamEntry Entry =
6505         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6506 
6507     if (Entry.Kind != BitstreamEntry::SubBlock)
6508       return error("Malformed block");
6509 
6510     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6511     // building the function summary index.
6512     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6513       return parseModule(ModulePath);
6514 
6515     if (Stream.SkipBlock())
6516       return error("Invalid record");
6517   }
6518 }
6519 
6520 namespace {
6521 
6522 // FIXME: This class is only here to support the transition to llvm::Error. It
6523 // will be removed once this transition is complete. Clients should prefer to
6524 // deal with the Error value directly, rather than converting to error_code.
6525 class BitcodeErrorCategoryType : public std::error_category {
6526   const char *name() const noexcept override {
6527     return "llvm.bitcode";
6528   }
6529   std::string message(int IE) const override {
6530     BitcodeError E = static_cast<BitcodeError>(IE);
6531     switch (E) {
6532     case BitcodeError::CorruptedBitcode:
6533       return "Corrupted bitcode";
6534     }
6535     llvm_unreachable("Unknown error type!");
6536   }
6537 };
6538 
6539 } // end anonymous namespace
6540 
6541 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6542 
6543 const std::error_category &llvm::BitcodeErrorCategory() {
6544   return *ErrorCategory;
6545 }
6546 
6547 //===----------------------------------------------------------------------===//
6548 // External interface
6549 //===----------------------------------------------------------------------===//
6550 
6551 Expected<std::vector<BitcodeModule>>
6552 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6553   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6554   if (!StreamOrErr)
6555     return StreamOrErr.takeError();
6556   BitstreamCursor &Stream = *StreamOrErr;
6557 
6558   std::vector<BitcodeModule> Modules;
6559   while (true) {
6560     uint64_t BCBegin = Stream.getCurrentByteNo();
6561 
6562     // We may be consuming bitcode from a client that leaves garbage at the end
6563     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6564     // the end that there cannot possibly be another module, stop looking.
6565     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6566       return Modules;
6567 
6568     BitstreamEntry Entry = Stream.advance();
6569     switch (Entry.Kind) {
6570     case BitstreamEntry::EndBlock:
6571     case BitstreamEntry::Error:
6572       return error("Malformed block");
6573 
6574     case BitstreamEntry::SubBlock: {
6575       uint64_t IdentificationBit = -1ull;
6576       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6577         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6578         if (Stream.SkipBlock())
6579           return error("Malformed block");
6580 
6581         Entry = Stream.advance();
6582         if (Entry.Kind != BitstreamEntry::SubBlock ||
6583             Entry.ID != bitc::MODULE_BLOCK_ID)
6584           return error("Malformed block");
6585       }
6586 
6587       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6588         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6589         if (Stream.SkipBlock())
6590           return error("Malformed block");
6591 
6592         Modules.push_back({Stream.getBitcodeBytes().slice(
6593                                BCBegin, Stream.getCurrentByteNo() - BCBegin),
6594                            Buffer.getBufferIdentifier(), IdentificationBit,
6595                            ModuleBit});
6596         continue;
6597       }
6598 
6599       if (Stream.SkipBlock())
6600         return error("Malformed block");
6601       continue;
6602     }
6603     case BitstreamEntry::Record:
6604       Stream.skipRecord(Entry.ID);
6605       continue;
6606     }
6607   }
6608 }
6609 
6610 /// \brief Get a lazy one-at-time loading module from bitcode.
6611 ///
6612 /// This isn't always used in a lazy context.  In particular, it's also used by
6613 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6614 /// in forward-referenced functions from block address references.
6615 ///
6616 /// \param[in] MaterializeAll Set to \c true if we should materialize
6617 /// everything.
6618 Expected<std::unique_ptr<Module>>
6619 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6620                              bool ShouldLazyLoadMetadata) {
6621   BitstreamCursor Stream(Buffer);
6622 
6623   std::string ProducerIdentification;
6624   if (IdentificationBit != -1ull) {
6625     Stream.JumpToBit(IdentificationBit);
6626     Expected<std::string> ProducerIdentificationOrErr =
6627         readIdentificationBlock(Stream);
6628     if (!ProducerIdentificationOrErr)
6629       return ProducerIdentificationOrErr.takeError();
6630 
6631     ProducerIdentification = *ProducerIdentificationOrErr;
6632   }
6633 
6634   Stream.JumpToBit(ModuleBit);
6635   auto *R =
6636       new BitcodeReader(std::move(Stream), ProducerIdentification, Context);
6637 
6638   std::unique_ptr<Module> M =
6639       llvm::make_unique<Module>(ModuleIdentifier, Context);
6640   M->setMaterializer(R);
6641 
6642   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6643   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata))
6644     return std::move(Err);
6645 
6646   if (MaterializeAll) {
6647     // Read in the entire module, and destroy the BitcodeReader.
6648     if (Error Err = M->materializeAll())
6649       return std::move(Err);
6650   } else {
6651     // Resolve forward references from blockaddresses.
6652     if (Error Err = R->materializeForwardReferencedFunctions())
6653       return std::move(Err);
6654   }
6655   return std::move(M);
6656 }
6657 
6658 Expected<std::unique_ptr<Module>>
6659 BitcodeModule::getLazyModule(LLVMContext &Context,
6660                              bool ShouldLazyLoadMetadata) {
6661   return getModuleImpl(Context, false, ShouldLazyLoadMetadata);
6662 }
6663 
6664 Expected<std::unique_ptr<Module>>
6665 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer,
6666                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6667   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6668   if (!MsOrErr)
6669     return MsOrErr.takeError();
6670 
6671   if (MsOrErr->size() != 1)
6672     return error("Expected a single module");
6673 
6674   return (*MsOrErr)[0].getLazyModule(Context, ShouldLazyLoadMetadata);
6675 }
6676 
6677 Expected<std::unique_ptr<Module>>
6678 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6679                                  LLVMContext &Context,
6680                                  bool ShouldLazyLoadMetadata) {
6681   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata);
6682   if (MOrErr)
6683     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6684   return MOrErr;
6685 }
6686 
6687 Expected<std::unique_ptr<Module>>
6688 BitcodeModule::parseModule(LLVMContext &Context) {
6689   return getModuleImpl(Context, true, false);
6690   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6691   // written.  We must defer until the Module has been fully materialized.
6692 }
6693 
6694 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6695                                                          LLVMContext &Context) {
6696   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6697   if (!MsOrErr)
6698     return MsOrErr.takeError();
6699 
6700   if (MsOrErr->size() != 1)
6701     return error("Expected a single module");
6702 
6703   return (*MsOrErr)[0].parseModule(Context);
6704 }
6705 
6706 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6707   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6708   if (!StreamOrErr)
6709     return StreamOrErr.takeError();
6710 
6711   return readTriple(*StreamOrErr);
6712 }
6713 
6714 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6715   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6716   if (!StreamOrErr)
6717     return StreamOrErr.takeError();
6718 
6719   return hasObjCCategory(*StreamOrErr);
6720 }
6721 
6722 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6723   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6724   if (!StreamOrErr)
6725     return StreamOrErr.takeError();
6726 
6727   return readIdentificationCode(*StreamOrErr);
6728 }
6729 
6730 // Parse the specified bitcode buffer, returning the function info index.
6731 Expected<std::unique_ptr<ModuleSummaryIndex>>
6732 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6733   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6734   if (!StreamOrErr)
6735     return StreamOrErr.takeError();
6736 
6737   ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr));
6738 
6739   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6740 
6741   if (Error Err =
6742           R.parseSummaryIndexInto(Index.get(), Buffer.getBufferIdentifier()))
6743     return std::move(Err);
6744 
6745   return std::move(Index);
6746 }
6747 
6748 // Check if the given bitcode buffer contains a global value summary block.
6749 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) {
6750   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6751   if (!StreamOrErr)
6752     return StreamOrErr.takeError();
6753 
6754   ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr), true);
6755 
6756   if (Error Err =
6757           R.parseSummaryIndexInto(nullptr, Buffer.getBufferIdentifier()))
6758     return std::move(Err);
6759 
6760   return R.foundGlobalValSummary();
6761 }
6762