1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 158 std::vector<Type*> TypeList; 159 BitcodeReaderValueList ValueList; 160 BitcodeReaderMDValueList MDValueList; 161 std::vector<Comdat *> ComdatList; 162 SmallVector<Instruction *, 64> InstructionList; 163 164 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 165 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 166 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 168 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 169 170 SmallVector<Instruction*, 64> InstsWithTBAATag; 171 172 /// The set of attributes by index. Index zero in the file is for null, and 173 /// is thus not represented here. As such all indices are off by one. 174 std::vector<AttributeSet> MAttributes; 175 176 /// The set of attribute groups. 177 std::map<unsigned, AttributeSet> MAttributeGroups; 178 179 /// While parsing a function body, this is a list of the basic blocks for the 180 /// function. 181 std::vector<BasicBlock*> FunctionBBs; 182 183 // When reading the module header, this list is populated with functions that 184 // have bodies later in the file. 185 std::vector<Function*> FunctionsWithBodies; 186 187 // When intrinsic functions are encountered which require upgrading they are 188 // stored here with their replacement function. 189 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 190 UpgradedIntrinsicMap UpgradedIntrinsics; 191 192 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 193 DenseMap<unsigned, unsigned> MDKindMap; 194 195 // Several operations happen after the module header has been read, but 196 // before function bodies are processed. This keeps track of whether 197 // we've done this yet. 198 bool SeenFirstFunctionBody = false; 199 200 /// When function bodies are initially scanned, this map contains info about 201 /// where to find deferred function body in the stream. 202 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 203 204 /// When Metadata block is initially scanned when parsing the module, we may 205 /// choose to defer parsing of the metadata. This vector contains info about 206 /// which Metadata blocks are deferred. 207 std::vector<uint64_t> DeferredMetadataInfo; 208 209 /// These are basic blocks forward-referenced by block addresses. They are 210 /// inserted lazily into functions when they're loaded. The basic block ID is 211 /// its index into the vector. 212 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 213 std::deque<Function *> BasicBlockFwdRefQueue; 214 215 /// Indicates that we are using a new encoding for instruction operands where 216 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 217 /// instruction number, for a more compact encoding. Some instruction 218 /// operands are not relative to the instruction ID: basic block numbers, and 219 /// types. Once the old style function blocks have been phased out, we would 220 /// not need this flag. 221 bool UseRelativeIDs = false; 222 223 /// True if all functions will be materialized, negating the need to process 224 /// (e.g.) blockaddress forward references. 225 bool WillMaterializeAllForwardRefs = false; 226 227 /// Functions that have block addresses taken. This is usually empty. 228 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 /// Functions that need to be matched with subprograms when upgrading old 236 /// metadata. 237 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 238 239 std::vector<std::string> BundleTags; 240 241 public: 242 std::error_code error(BitcodeError E, const Twine &Message); 243 std::error_code error(BitcodeError E); 244 std::error_code error(const Twine &Message); 245 246 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 247 DiagnosticHandlerFunction DiagnosticHandler); 248 BitcodeReader(LLVMContext &Context, 249 DiagnosticHandlerFunction DiagnosticHandler); 250 ~BitcodeReader() override { freeState(); } 251 252 std::error_code materializeForwardReferencedFunctions(); 253 254 void freeState(); 255 256 void releaseBuffer(); 257 258 bool isDematerializable(const GlobalValue *GV) const override; 259 std::error_code materialize(GlobalValue *GV) override; 260 std::error_code materializeModule(Module *M) override; 261 std::vector<StructType *> getIdentifiedStructTypes() const override; 262 void dematerialize(GlobalValue *GV) override; 263 264 /// \brief Main interface to parsing a bitcode buffer. 265 /// \returns true if an error occurred. 266 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 267 Module *M, 268 bool ShouldLazyLoadMetadata = false); 269 270 /// \brief Cheap mechanism to just extract module triple 271 /// \returns true if an error occurred. 272 ErrorOr<std::string> parseTriple(); 273 274 /// Cheap mechanism to just extract the identification block out of bitcode. 275 ErrorOr<std::string> parseIdentificationBlock(); 276 277 static uint64_t decodeSignRotatedValue(uint64_t V); 278 279 /// Materialize any deferred Metadata block. 280 std::error_code materializeMetadata() override; 281 282 void setStripDebugInfo() override; 283 284 private: 285 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 286 // ProducerIdentification data member, and do some basic enforcement on the 287 // "epoch" encoded in the bitcode. 288 std::error_code parseBitcodeVersion(); 289 290 std::vector<StructType *> IdentifiedStructTypes; 291 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 292 StructType *createIdentifiedStructType(LLVMContext &Context); 293 294 Type *getTypeByID(unsigned ID); 295 Value *getFnValueByID(unsigned ID, Type *Ty, 296 OperatorConstraint OC = OC_None) { 297 if (Ty && Ty->isMetadataTy()) 298 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 299 return ValueList.getValueFwdRef(ID, Ty, OC); 300 } 301 Metadata *getFnMetadataByID(unsigned ID) { 302 return MDValueList.getValueFwdRef(ID); 303 } 304 BasicBlock *getBasicBlock(unsigned ID) const { 305 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 306 return FunctionBBs[ID]; 307 } 308 AttributeSet getAttributes(unsigned i) const { 309 if (i-1 < MAttributes.size()) 310 return MAttributes[i-1]; 311 return AttributeSet(); 312 } 313 314 /// Read a value/type pair out of the specified record from slot 'Slot'. 315 /// Increment Slot past the number of slots used in the record. Return true on 316 /// failure. 317 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 318 unsigned InstNum, Value *&ResVal) { 319 if (Slot == Record.size()) return true; 320 unsigned ValNo = (unsigned)Record[Slot++]; 321 // Adjust the ValNo, if it was encoded relative to the InstNum. 322 if (UseRelativeIDs) 323 ValNo = InstNum - ValNo; 324 if (ValNo < InstNum) { 325 // If this is not a forward reference, just return the value we already 326 // have. 327 ResVal = getFnValueByID(ValNo, nullptr); 328 return ResVal == nullptr; 329 } 330 if (Slot == Record.size()) 331 return true; 332 333 unsigned TypeNo = (unsigned)Record[Slot++]; 334 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 335 return ResVal == nullptr; 336 } 337 338 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 339 /// past the number of slots used by the value in the record. Return true if 340 /// there is an error. 341 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 342 unsigned InstNum, Type *Ty, Value *&ResVal, 343 OperatorConstraint OC = OC_None) { 344 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 345 return true; 346 // All values currently take a single record slot. 347 ++Slot; 348 return false; 349 } 350 351 /// Like popValue, but does not increment the Slot number. 352 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 353 unsigned InstNum, Type *Ty, Value *&ResVal, 354 OperatorConstraint OC = OC_None) { 355 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 356 return ResVal == nullptr; 357 } 358 359 /// Version of getValue that returns ResVal directly, or 0 if there is an 360 /// error. 361 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 362 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 363 if (Slot == Record.size()) return nullptr; 364 unsigned ValNo = (unsigned)Record[Slot]; 365 // Adjust the ValNo, if it was encoded relative to the InstNum. 366 if (UseRelativeIDs) 367 ValNo = InstNum - ValNo; 368 return getFnValueByID(ValNo, Ty, OC); 369 } 370 371 /// Like getValue, but decodes signed VBRs. 372 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 373 unsigned InstNum, Type *Ty, 374 OperatorConstraint OC = OC_None) { 375 if (Slot == Record.size()) return nullptr; 376 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 377 // Adjust the ValNo, if it was encoded relative to the InstNum. 378 if (UseRelativeIDs) 379 ValNo = InstNum - ValNo; 380 return getFnValueByID(ValNo, Ty, OC); 381 } 382 383 /// Converts alignment exponent (i.e. power of two (or zero)) to the 384 /// corresponding alignment to use. If alignment is too large, returns 385 /// a corresponding error code. 386 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 387 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 388 std::error_code parseModule(uint64_t ResumeBit, 389 bool ShouldLazyLoadMetadata = false); 390 std::error_code parseAttributeBlock(); 391 std::error_code parseAttributeGroupBlock(); 392 std::error_code parseTypeTable(); 393 std::error_code parseTypeTableBody(); 394 std::error_code parseOperandBundleTags(); 395 396 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 397 unsigned NameIndex, Triple &TT); 398 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 399 std::error_code parseConstants(); 400 std::error_code rememberAndSkipFunctionBodies(); 401 std::error_code rememberAndSkipFunctionBody(); 402 /// Save the positions of the Metadata blocks and skip parsing the blocks. 403 std::error_code rememberAndSkipMetadata(); 404 std::error_code parseFunctionBody(Function *F); 405 std::error_code globalCleanup(); 406 std::error_code resolveGlobalAndAliasInits(); 407 std::error_code parseMetadata(); 408 std::error_code parseMetadataAttachment(Function &F); 409 ErrorOr<std::string> parseModuleTriple(); 410 std::error_code parseUseLists(); 411 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 412 std::error_code initStreamFromBuffer(); 413 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 414 std::error_code findFunctionInStream( 415 Function *F, 416 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 417 }; 418 419 /// Class to manage reading and parsing function summary index bitcode 420 /// files/sections. 421 class FunctionIndexBitcodeReader { 422 DiagnosticHandlerFunction DiagnosticHandler; 423 424 /// Eventually points to the function index built during parsing. 425 FunctionInfoIndex *TheIndex = nullptr; 426 427 std::unique_ptr<MemoryBuffer> Buffer; 428 std::unique_ptr<BitstreamReader> StreamFile; 429 BitstreamCursor Stream; 430 431 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 432 /// 433 /// If false, the summary section is fully parsed into the index during 434 /// the initial parse. Otherwise, if true, the caller is expected to 435 /// invoke \a readFunctionSummary for each summary needed, and the summary 436 /// section is thus parsed lazily. 437 bool IsLazy = false; 438 439 /// Used to indicate whether caller only wants to check for the presence 440 /// of the function summary bitcode section. All blocks are skipped, 441 /// but the SeenFuncSummary boolean is set. 442 bool CheckFuncSummaryPresenceOnly = false; 443 444 /// Indicates whether we have encountered a function summary section 445 /// yet during parsing, used when checking if file contains function 446 /// summary section. 447 bool SeenFuncSummary = false; 448 449 /// \brief Map populated during function summary section parsing, and 450 /// consumed during ValueSymbolTable parsing. 451 /// 452 /// Used to correlate summary records with VST entries. For the per-module 453 /// index this maps the ValueID to the parsed function summary, and 454 /// for the combined index this maps the summary record's bitcode 455 /// offset to the function summary (since in the combined index the 456 /// VST records do not hold value IDs but rather hold the function 457 /// summary record offset). 458 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 459 460 /// Map populated during module path string table parsing, from the 461 /// module ID to a string reference owned by the index's module 462 /// path string table, used to correlate with combined index function 463 /// summary records. 464 DenseMap<uint64_t, StringRef> ModuleIdMap; 465 466 public: 467 std::error_code error(BitcodeError E, const Twine &Message); 468 std::error_code error(BitcodeError E); 469 std::error_code error(const Twine &Message); 470 471 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 472 DiagnosticHandlerFunction DiagnosticHandler, 473 bool IsLazy = false, 474 bool CheckFuncSummaryPresenceOnly = false); 475 FunctionIndexBitcodeReader(LLVMContext &Context, 476 DiagnosticHandlerFunction DiagnosticHandler, 477 bool IsLazy = false, 478 bool CheckFuncSummaryPresenceOnly = false); 479 ~FunctionIndexBitcodeReader() { freeState(); } 480 481 void freeState(); 482 483 void releaseBuffer(); 484 485 /// Check if the parser has encountered a function summary section. 486 bool foundFuncSummary() { return SeenFuncSummary; } 487 488 /// \brief Main interface to parsing a bitcode buffer. 489 /// \returns true if an error occurred. 490 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 491 FunctionInfoIndex *I); 492 493 /// \brief Interface for parsing a function summary lazily. 494 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 495 FunctionInfoIndex *I, 496 size_t FunctionSummaryOffset); 497 498 private: 499 std::error_code parseModule(); 500 std::error_code parseValueSymbolTable(); 501 std::error_code parseEntireSummary(); 502 std::error_code parseModuleStringTable(); 503 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 504 std::error_code initStreamFromBuffer(); 505 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 506 }; 507 } // namespace 508 509 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 510 DiagnosticSeverity Severity, 511 const Twine &Msg) 512 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 513 514 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC, const Twine &Message) { 518 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 519 DiagnosticHandler(DI); 520 return EC; 521 } 522 523 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 524 std::error_code EC) { 525 return error(DiagnosticHandler, EC, EC.message()); 526 } 527 528 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 529 const Twine &Message) { 530 return error(DiagnosticHandler, 531 make_error_code(BitcodeError::CorruptedBitcode), Message); 532 } 533 534 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 535 if (!ProducerIdentification.empty()) { 536 return ::error(DiagnosticHandler, make_error_code(E), 537 Message + " (Producer: '" + ProducerIdentification + 538 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 539 } 540 return ::error(DiagnosticHandler, make_error_code(E), Message); 541 } 542 543 std::error_code BitcodeReader::error(const Twine &Message) { 544 if (!ProducerIdentification.empty()) { 545 return ::error(DiagnosticHandler, 546 make_error_code(BitcodeError::CorruptedBitcode), 547 Message + " (Producer: '" + ProducerIdentification + 548 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 549 } 550 return ::error(DiagnosticHandler, 551 make_error_code(BitcodeError::CorruptedBitcode), Message); 552 } 553 554 std::error_code BitcodeReader::error(BitcodeError E) { 555 return ::error(DiagnosticHandler, make_error_code(E)); 556 } 557 558 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 559 LLVMContext &C) { 560 if (F) 561 return F; 562 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 563 } 564 565 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 566 DiagnosticHandlerFunction DiagnosticHandler) 567 : Context(Context), 568 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 569 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 570 571 BitcodeReader::BitcodeReader(LLVMContext &Context, 572 DiagnosticHandlerFunction DiagnosticHandler) 573 : Context(Context), 574 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 575 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 576 577 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 578 if (WillMaterializeAllForwardRefs) 579 return std::error_code(); 580 581 // Prevent recursion. 582 WillMaterializeAllForwardRefs = true; 583 584 while (!BasicBlockFwdRefQueue.empty()) { 585 Function *F = BasicBlockFwdRefQueue.front(); 586 BasicBlockFwdRefQueue.pop_front(); 587 assert(F && "Expected valid function"); 588 if (!BasicBlockFwdRefs.count(F)) 589 // Already materialized. 590 continue; 591 592 // Check for a function that isn't materializable to prevent an infinite 593 // loop. When parsing a blockaddress stored in a global variable, there 594 // isn't a trivial way to check if a function will have a body without a 595 // linear search through FunctionsWithBodies, so just check it here. 596 if (!F->isMaterializable()) 597 return error("Never resolved function from blockaddress"); 598 599 // Try to materialize F. 600 if (std::error_code EC = materialize(F)) 601 return EC; 602 } 603 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 604 605 // Reset state. 606 WillMaterializeAllForwardRefs = false; 607 return std::error_code(); 608 } 609 610 void BitcodeReader::freeState() { 611 Buffer = nullptr; 612 std::vector<Type*>().swap(TypeList); 613 ValueList.clear(); 614 MDValueList.clear(); 615 std::vector<Comdat *>().swap(ComdatList); 616 617 std::vector<AttributeSet>().swap(MAttributes); 618 std::vector<BasicBlock*>().swap(FunctionBBs); 619 std::vector<Function*>().swap(FunctionsWithBodies); 620 DeferredFunctionInfo.clear(); 621 DeferredMetadataInfo.clear(); 622 MDKindMap.clear(); 623 624 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 625 BasicBlockFwdRefQueue.clear(); 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Helper functions to implement forward reference resolution, etc. 630 //===----------------------------------------------------------------------===// 631 632 /// Convert a string from a record into an std::string, return true on failure. 633 template <typename StrTy> 634 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 635 StrTy &Result) { 636 if (Idx > Record.size()) 637 return true; 638 639 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 640 Result += (char)Record[i]; 641 return false; 642 } 643 644 static bool hasImplicitComdat(size_t Val) { 645 switch (Val) { 646 default: 647 return false; 648 case 1: // Old WeakAnyLinkage 649 case 4: // Old LinkOnceAnyLinkage 650 case 10: // Old WeakODRLinkage 651 case 11: // Old LinkOnceODRLinkage 652 return true; 653 } 654 } 655 656 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 657 switch (Val) { 658 default: // Map unknown/new linkages to external 659 case 0: 660 return GlobalValue::ExternalLinkage; 661 case 2: 662 return GlobalValue::AppendingLinkage; 663 case 3: 664 return GlobalValue::InternalLinkage; 665 case 5: 666 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 667 case 6: 668 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 669 case 7: 670 return GlobalValue::ExternalWeakLinkage; 671 case 8: 672 return GlobalValue::CommonLinkage; 673 case 9: 674 return GlobalValue::PrivateLinkage; 675 case 12: 676 return GlobalValue::AvailableExternallyLinkage; 677 case 13: 678 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 679 case 14: 680 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 681 case 15: 682 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 683 case 1: // Old value with implicit comdat. 684 case 16: 685 return GlobalValue::WeakAnyLinkage; 686 case 10: // Old value with implicit comdat. 687 case 17: 688 return GlobalValue::WeakODRLinkage; 689 case 4: // Old value with implicit comdat. 690 case 18: 691 return GlobalValue::LinkOnceAnyLinkage; 692 case 11: // Old value with implicit comdat. 693 case 19: 694 return GlobalValue::LinkOnceODRLinkage; 695 } 696 } 697 698 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown visibilities to default. 701 case 0: return GlobalValue::DefaultVisibility; 702 case 1: return GlobalValue::HiddenVisibility; 703 case 2: return GlobalValue::ProtectedVisibility; 704 } 705 } 706 707 static GlobalValue::DLLStorageClassTypes 708 getDecodedDLLStorageClass(unsigned Val) { 709 switch (Val) { 710 default: // Map unknown values to default. 711 case 0: return GlobalValue::DefaultStorageClass; 712 case 1: return GlobalValue::DLLImportStorageClass; 713 case 2: return GlobalValue::DLLExportStorageClass; 714 } 715 } 716 717 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 718 switch (Val) { 719 case 0: return GlobalVariable::NotThreadLocal; 720 default: // Map unknown non-zero value to general dynamic. 721 case 1: return GlobalVariable::GeneralDynamicTLSModel; 722 case 2: return GlobalVariable::LocalDynamicTLSModel; 723 case 3: return GlobalVariable::InitialExecTLSModel; 724 case 4: return GlobalVariable::LocalExecTLSModel; 725 } 726 } 727 728 static int getDecodedCastOpcode(unsigned Val) { 729 switch (Val) { 730 default: return -1; 731 case bitc::CAST_TRUNC : return Instruction::Trunc; 732 case bitc::CAST_ZEXT : return Instruction::ZExt; 733 case bitc::CAST_SEXT : return Instruction::SExt; 734 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 735 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 736 case bitc::CAST_UITOFP : return Instruction::UIToFP; 737 case bitc::CAST_SITOFP : return Instruction::SIToFP; 738 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 739 case bitc::CAST_FPEXT : return Instruction::FPExt; 740 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 741 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 742 case bitc::CAST_BITCAST : return Instruction::BitCast; 743 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 744 } 745 } 746 747 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 748 bool IsFP = Ty->isFPOrFPVectorTy(); 749 // BinOps are only valid for int/fp or vector of int/fp types 750 if (!IsFP && !Ty->isIntOrIntVectorTy()) 751 return -1; 752 753 switch (Val) { 754 default: 755 return -1; 756 case bitc::BINOP_ADD: 757 return IsFP ? Instruction::FAdd : Instruction::Add; 758 case bitc::BINOP_SUB: 759 return IsFP ? Instruction::FSub : Instruction::Sub; 760 case bitc::BINOP_MUL: 761 return IsFP ? Instruction::FMul : Instruction::Mul; 762 case bitc::BINOP_UDIV: 763 return IsFP ? -1 : Instruction::UDiv; 764 case bitc::BINOP_SDIV: 765 return IsFP ? Instruction::FDiv : Instruction::SDiv; 766 case bitc::BINOP_UREM: 767 return IsFP ? -1 : Instruction::URem; 768 case bitc::BINOP_SREM: 769 return IsFP ? Instruction::FRem : Instruction::SRem; 770 case bitc::BINOP_SHL: 771 return IsFP ? -1 : Instruction::Shl; 772 case bitc::BINOP_LSHR: 773 return IsFP ? -1 : Instruction::LShr; 774 case bitc::BINOP_ASHR: 775 return IsFP ? -1 : Instruction::AShr; 776 case bitc::BINOP_AND: 777 return IsFP ? -1 : Instruction::And; 778 case bitc::BINOP_OR: 779 return IsFP ? -1 : Instruction::Or; 780 case bitc::BINOP_XOR: 781 return IsFP ? -1 : Instruction::Xor; 782 } 783 } 784 785 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 786 switch (Val) { 787 default: return AtomicRMWInst::BAD_BINOP; 788 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 789 case bitc::RMW_ADD: return AtomicRMWInst::Add; 790 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 791 case bitc::RMW_AND: return AtomicRMWInst::And; 792 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 793 case bitc::RMW_OR: return AtomicRMWInst::Or; 794 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 795 case bitc::RMW_MAX: return AtomicRMWInst::Max; 796 case bitc::RMW_MIN: return AtomicRMWInst::Min; 797 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 798 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 799 } 800 } 801 802 static AtomicOrdering getDecodedOrdering(unsigned Val) { 803 switch (Val) { 804 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 805 case bitc::ORDERING_UNORDERED: return Unordered; 806 case bitc::ORDERING_MONOTONIC: return Monotonic; 807 case bitc::ORDERING_ACQUIRE: return Acquire; 808 case bitc::ORDERING_RELEASE: return Release; 809 case bitc::ORDERING_ACQREL: return AcquireRelease; 810 default: // Map unknown orderings to sequentially-consistent. 811 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 812 } 813 } 814 815 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 816 switch (Val) { 817 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 818 default: // Map unknown scopes to cross-thread. 819 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 820 } 821 } 822 823 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 824 switch (Val) { 825 default: // Map unknown selection kinds to any. 826 case bitc::COMDAT_SELECTION_KIND_ANY: 827 return Comdat::Any; 828 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 829 return Comdat::ExactMatch; 830 case bitc::COMDAT_SELECTION_KIND_LARGEST: 831 return Comdat::Largest; 832 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 833 return Comdat::NoDuplicates; 834 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 835 return Comdat::SameSize; 836 } 837 } 838 839 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 840 FastMathFlags FMF; 841 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 842 FMF.setUnsafeAlgebra(); 843 if (0 != (Val & FastMathFlags::NoNaNs)) 844 FMF.setNoNaNs(); 845 if (0 != (Val & FastMathFlags::NoInfs)) 846 FMF.setNoInfs(); 847 if (0 != (Val & FastMathFlags::NoSignedZeros)) 848 FMF.setNoSignedZeros(); 849 if (0 != (Val & FastMathFlags::AllowReciprocal)) 850 FMF.setAllowReciprocal(); 851 return FMF; 852 } 853 854 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 855 switch (Val) { 856 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 857 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 858 } 859 } 860 861 namespace llvm { 862 namespace { 863 /// \brief A class for maintaining the slot number definition 864 /// as a placeholder for the actual definition for forward constants defs. 865 class ConstantPlaceHolder : public ConstantExpr { 866 void operator=(const ConstantPlaceHolder &) = delete; 867 868 public: 869 // allocate space for exactly one operand 870 void *operator new(size_t s) { return User::operator new(s, 1); } 871 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 872 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 873 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 874 } 875 876 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 877 static bool classof(const Value *V) { 878 return isa<ConstantExpr>(V) && 879 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 880 } 881 882 /// Provide fast operand accessors 883 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 884 }; 885 } 886 887 // FIXME: can we inherit this from ConstantExpr? 888 template <> 889 struct OperandTraits<ConstantPlaceHolder> : 890 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 891 }; 892 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 893 } 894 895 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 896 if (Idx == size()) { 897 push_back(V); 898 return false; 899 } 900 901 if (Idx >= size()) 902 resize(Idx+1); 903 904 WeakVH &OldV = ValuePtrs[Idx]; 905 if (!OldV) { 906 OldV = V; 907 return false; 908 } 909 910 // Handle constants and non-constants (e.g. instrs) differently for 911 // efficiency. 912 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 913 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 914 OldV = V; 915 } else { 916 // If there was a forward reference to this value, replace it. 917 Value *PrevVal = OldV; 918 // Check operator constraints. We only put cleanuppads or catchpads in 919 // the forward value map if the value is constrained to match. 920 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 921 if (!isa<CatchPadInst>(V)) 922 return true; 923 // Delete the dummy basic block that was created with the sentinel 924 // catchpad. 925 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 926 assert(DummyBlock == CatchPad->getNormalDest()); 927 CatchPad->dropAllReferences(); 928 delete DummyBlock; 929 } else if (isa<CleanupPadInst>(PrevVal)) { 930 if (!isa<CleanupPadInst>(V)) 931 return true; 932 } 933 OldV->replaceAllUsesWith(V); 934 delete PrevVal; 935 } 936 937 return false; 938 } 939 940 941 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 942 Type *Ty) { 943 if (Idx >= size()) 944 resize(Idx + 1); 945 946 if (Value *V = ValuePtrs[Idx]) { 947 if (Ty != V->getType()) 948 report_fatal_error("Type mismatch in constant table!"); 949 return cast<Constant>(V); 950 } 951 952 // Create and return a placeholder, which will later be RAUW'd. 953 Constant *C = new ConstantPlaceHolder(Ty, Context); 954 ValuePtrs[Idx] = C; 955 return C; 956 } 957 958 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 959 OperatorConstraint OC) { 960 // Bail out for a clearly invalid value. This would make us call resize(0) 961 if (Idx == UINT_MAX) 962 return nullptr; 963 964 if (Idx >= size()) 965 resize(Idx + 1); 966 967 if (Value *V = ValuePtrs[Idx]) { 968 // If the types don't match, it's invalid. 969 if (Ty && Ty != V->getType()) 970 return nullptr; 971 if (!OC) 972 return V; 973 // Use dyn_cast to enforce operator constraints 974 switch (OC) { 975 case OC_CatchPad: 976 return dyn_cast<CatchPadInst>(V); 977 case OC_CleanupPad: 978 return dyn_cast<CleanupPadInst>(V); 979 default: 980 llvm_unreachable("Unexpected operator constraint"); 981 } 982 } 983 984 // No type specified, must be invalid reference. 985 if (!Ty) return nullptr; 986 987 // Create and return a placeholder, which will later be RAUW'd. 988 Value *V; 989 switch (OC) { 990 case OC_None: 991 V = new Argument(Ty); 992 break; 993 case OC_CatchPad: { 994 BasicBlock *BB = BasicBlock::Create(Context); 995 V = CatchPadInst::Create(BB, BB, {}); 996 break; 997 } 998 default: 999 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 1000 V = CleanupPadInst::Create(Context, {}); 1001 break; 1002 } 1003 1004 ValuePtrs[Idx] = V; 1005 return V; 1006 } 1007 1008 /// Once all constants are read, this method bulk resolves any forward 1009 /// references. The idea behind this is that we sometimes get constants (such 1010 /// as large arrays) which reference *many* forward ref constants. Replacing 1011 /// each of these causes a lot of thrashing when building/reuniquing the 1012 /// constant. Instead of doing this, we look at all the uses and rewrite all 1013 /// the place holders at once for any constant that uses a placeholder. 1014 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1015 // Sort the values by-pointer so that they are efficient to look up with a 1016 // binary search. 1017 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1018 1019 SmallVector<Constant*, 64> NewOps; 1020 1021 while (!ResolveConstants.empty()) { 1022 Value *RealVal = operator[](ResolveConstants.back().second); 1023 Constant *Placeholder = ResolveConstants.back().first; 1024 ResolveConstants.pop_back(); 1025 1026 // Loop over all users of the placeholder, updating them to reference the 1027 // new value. If they reference more than one placeholder, update them all 1028 // at once. 1029 while (!Placeholder->use_empty()) { 1030 auto UI = Placeholder->user_begin(); 1031 User *U = *UI; 1032 1033 // If the using object isn't uniqued, just update the operands. This 1034 // handles instructions and initializers for global variables. 1035 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1036 UI.getUse().set(RealVal); 1037 continue; 1038 } 1039 1040 // Otherwise, we have a constant that uses the placeholder. Replace that 1041 // constant with a new constant that has *all* placeholder uses updated. 1042 Constant *UserC = cast<Constant>(U); 1043 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1044 I != E; ++I) { 1045 Value *NewOp; 1046 if (!isa<ConstantPlaceHolder>(*I)) { 1047 // Not a placeholder reference. 1048 NewOp = *I; 1049 } else if (*I == Placeholder) { 1050 // Common case is that it just references this one placeholder. 1051 NewOp = RealVal; 1052 } else { 1053 // Otherwise, look up the placeholder in ResolveConstants. 1054 ResolveConstantsTy::iterator It = 1055 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1056 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1057 0)); 1058 assert(It != ResolveConstants.end() && It->first == *I); 1059 NewOp = operator[](It->second); 1060 } 1061 1062 NewOps.push_back(cast<Constant>(NewOp)); 1063 } 1064 1065 // Make the new constant. 1066 Constant *NewC; 1067 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1068 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1069 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1070 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1071 } else if (isa<ConstantVector>(UserC)) { 1072 NewC = ConstantVector::get(NewOps); 1073 } else { 1074 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1075 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1076 } 1077 1078 UserC->replaceAllUsesWith(NewC); 1079 UserC->destroyConstant(); 1080 NewOps.clear(); 1081 } 1082 1083 // Update all ValueHandles, they should be the only users at this point. 1084 Placeholder->replaceAllUsesWith(RealVal); 1085 delete Placeholder; 1086 } 1087 } 1088 1089 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1090 if (Idx == size()) { 1091 push_back(MD); 1092 return; 1093 } 1094 1095 if (Idx >= size()) 1096 resize(Idx+1); 1097 1098 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1099 if (!OldMD) { 1100 OldMD.reset(MD); 1101 return; 1102 } 1103 1104 // If there was a forward reference to this value, replace it. 1105 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1106 PrevMD->replaceAllUsesWith(MD); 1107 --NumFwdRefs; 1108 } 1109 1110 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1111 if (Idx >= size()) 1112 resize(Idx + 1); 1113 1114 if (Metadata *MD = MDValuePtrs[Idx]) 1115 return MD; 1116 1117 // Track forward refs to be resolved later. 1118 if (AnyFwdRefs) { 1119 MinFwdRef = std::min(MinFwdRef, Idx); 1120 MaxFwdRef = std::max(MaxFwdRef, Idx); 1121 } else { 1122 AnyFwdRefs = true; 1123 MinFwdRef = MaxFwdRef = Idx; 1124 } 1125 ++NumFwdRefs; 1126 1127 // Create and return a placeholder, which will later be RAUW'd. 1128 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1129 MDValuePtrs[Idx].reset(MD); 1130 return MD; 1131 } 1132 1133 void BitcodeReaderMDValueList::tryToResolveCycles() { 1134 if (!AnyFwdRefs) 1135 // Nothing to do. 1136 return; 1137 1138 if (NumFwdRefs) 1139 // Still forward references... can't resolve cycles. 1140 return; 1141 1142 // Resolve any cycles. 1143 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1144 auto &MD = MDValuePtrs[I]; 1145 auto *N = dyn_cast_or_null<MDNode>(MD); 1146 if (!N) 1147 continue; 1148 1149 assert(!N->isTemporary() && "Unexpected forward reference"); 1150 N->resolveCycles(); 1151 } 1152 1153 // Make sure we return early again until there's another forward ref. 1154 AnyFwdRefs = false; 1155 } 1156 1157 Type *BitcodeReader::getTypeByID(unsigned ID) { 1158 // The type table size is always specified correctly. 1159 if (ID >= TypeList.size()) 1160 return nullptr; 1161 1162 if (Type *Ty = TypeList[ID]) 1163 return Ty; 1164 1165 // If we have a forward reference, the only possible case is when it is to a 1166 // named struct. Just create a placeholder for now. 1167 return TypeList[ID] = createIdentifiedStructType(Context); 1168 } 1169 1170 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1171 StringRef Name) { 1172 auto *Ret = StructType::create(Context, Name); 1173 IdentifiedStructTypes.push_back(Ret); 1174 return Ret; 1175 } 1176 1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1178 auto *Ret = StructType::create(Context); 1179 IdentifiedStructTypes.push_back(Ret); 1180 return Ret; 1181 } 1182 1183 1184 //===----------------------------------------------------------------------===// 1185 // Functions for parsing blocks from the bitcode file 1186 //===----------------------------------------------------------------------===// 1187 1188 1189 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1190 /// been decoded from the given integer. This function must stay in sync with 1191 /// 'encodeLLVMAttributesForBitcode'. 1192 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1193 uint64_t EncodedAttrs) { 1194 // FIXME: Remove in 4.0. 1195 1196 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1197 // the bits above 31 down by 11 bits. 1198 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1199 assert((!Alignment || isPowerOf2_32(Alignment)) && 1200 "Alignment must be a power of two."); 1201 1202 if (Alignment) 1203 B.addAlignmentAttr(Alignment); 1204 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1205 (EncodedAttrs & 0xffff)); 1206 } 1207 1208 std::error_code BitcodeReader::parseAttributeBlock() { 1209 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1210 return error("Invalid record"); 1211 1212 if (!MAttributes.empty()) 1213 return error("Invalid multiple blocks"); 1214 1215 SmallVector<uint64_t, 64> Record; 1216 1217 SmallVector<AttributeSet, 8> Attrs; 1218 1219 // Read all the records. 1220 while (1) { 1221 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1222 1223 switch (Entry.Kind) { 1224 case BitstreamEntry::SubBlock: // Handled for us already. 1225 case BitstreamEntry::Error: 1226 return error("Malformed block"); 1227 case BitstreamEntry::EndBlock: 1228 return std::error_code(); 1229 case BitstreamEntry::Record: 1230 // The interesting case. 1231 break; 1232 } 1233 1234 // Read a record. 1235 Record.clear(); 1236 switch (Stream.readRecord(Entry.ID, Record)) { 1237 default: // Default behavior: ignore. 1238 break; 1239 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1240 // FIXME: Remove in 4.0. 1241 if (Record.size() & 1) 1242 return error("Invalid record"); 1243 1244 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1245 AttrBuilder B; 1246 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1247 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1248 } 1249 1250 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1251 Attrs.clear(); 1252 break; 1253 } 1254 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1255 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1256 Attrs.push_back(MAttributeGroups[Record[i]]); 1257 1258 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1259 Attrs.clear(); 1260 break; 1261 } 1262 } 1263 } 1264 } 1265 1266 // Returns Attribute::None on unrecognized codes. 1267 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1268 switch (Code) { 1269 default: 1270 return Attribute::None; 1271 case bitc::ATTR_KIND_ALIGNMENT: 1272 return Attribute::Alignment; 1273 case bitc::ATTR_KIND_ALWAYS_INLINE: 1274 return Attribute::AlwaysInline; 1275 case bitc::ATTR_KIND_ARGMEMONLY: 1276 return Attribute::ArgMemOnly; 1277 case bitc::ATTR_KIND_BUILTIN: 1278 return Attribute::Builtin; 1279 case bitc::ATTR_KIND_BY_VAL: 1280 return Attribute::ByVal; 1281 case bitc::ATTR_KIND_IN_ALLOCA: 1282 return Attribute::InAlloca; 1283 case bitc::ATTR_KIND_COLD: 1284 return Attribute::Cold; 1285 case bitc::ATTR_KIND_CONVERGENT: 1286 return Attribute::Convergent; 1287 case bitc::ATTR_KIND_INLINE_HINT: 1288 return Attribute::InlineHint; 1289 case bitc::ATTR_KIND_IN_REG: 1290 return Attribute::InReg; 1291 case bitc::ATTR_KIND_JUMP_TABLE: 1292 return Attribute::JumpTable; 1293 case bitc::ATTR_KIND_MIN_SIZE: 1294 return Attribute::MinSize; 1295 case bitc::ATTR_KIND_NAKED: 1296 return Attribute::Naked; 1297 case bitc::ATTR_KIND_NEST: 1298 return Attribute::Nest; 1299 case bitc::ATTR_KIND_NO_ALIAS: 1300 return Attribute::NoAlias; 1301 case bitc::ATTR_KIND_NO_BUILTIN: 1302 return Attribute::NoBuiltin; 1303 case bitc::ATTR_KIND_NO_CAPTURE: 1304 return Attribute::NoCapture; 1305 case bitc::ATTR_KIND_NO_DUPLICATE: 1306 return Attribute::NoDuplicate; 1307 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1308 return Attribute::NoImplicitFloat; 1309 case bitc::ATTR_KIND_NO_INLINE: 1310 return Attribute::NoInline; 1311 case bitc::ATTR_KIND_NO_RECURSE: 1312 return Attribute::NoRecurse; 1313 case bitc::ATTR_KIND_NON_LAZY_BIND: 1314 return Attribute::NonLazyBind; 1315 case bitc::ATTR_KIND_NON_NULL: 1316 return Attribute::NonNull; 1317 case bitc::ATTR_KIND_DEREFERENCEABLE: 1318 return Attribute::Dereferenceable; 1319 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1320 return Attribute::DereferenceableOrNull; 1321 case bitc::ATTR_KIND_NO_RED_ZONE: 1322 return Attribute::NoRedZone; 1323 case bitc::ATTR_KIND_NO_RETURN: 1324 return Attribute::NoReturn; 1325 case bitc::ATTR_KIND_NO_UNWIND: 1326 return Attribute::NoUnwind; 1327 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1328 return Attribute::OptimizeForSize; 1329 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1330 return Attribute::OptimizeNone; 1331 case bitc::ATTR_KIND_READ_NONE: 1332 return Attribute::ReadNone; 1333 case bitc::ATTR_KIND_READ_ONLY: 1334 return Attribute::ReadOnly; 1335 case bitc::ATTR_KIND_RETURNED: 1336 return Attribute::Returned; 1337 case bitc::ATTR_KIND_RETURNS_TWICE: 1338 return Attribute::ReturnsTwice; 1339 case bitc::ATTR_KIND_S_EXT: 1340 return Attribute::SExt; 1341 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1342 return Attribute::StackAlignment; 1343 case bitc::ATTR_KIND_STACK_PROTECT: 1344 return Attribute::StackProtect; 1345 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1346 return Attribute::StackProtectReq; 1347 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1348 return Attribute::StackProtectStrong; 1349 case bitc::ATTR_KIND_SAFESTACK: 1350 return Attribute::SafeStack; 1351 case bitc::ATTR_KIND_STRUCT_RET: 1352 return Attribute::StructRet; 1353 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1354 return Attribute::SanitizeAddress; 1355 case bitc::ATTR_KIND_SANITIZE_THREAD: 1356 return Attribute::SanitizeThread; 1357 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1358 return Attribute::SanitizeMemory; 1359 case bitc::ATTR_KIND_UW_TABLE: 1360 return Attribute::UWTable; 1361 case bitc::ATTR_KIND_Z_EXT: 1362 return Attribute::ZExt; 1363 } 1364 } 1365 1366 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1367 unsigned &Alignment) { 1368 // Note: Alignment in bitcode files is incremented by 1, so that zero 1369 // can be used for default alignment. 1370 if (Exponent > Value::MaxAlignmentExponent + 1) 1371 return error("Invalid alignment value"); 1372 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1373 return std::error_code(); 1374 } 1375 1376 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1377 Attribute::AttrKind *Kind) { 1378 *Kind = getAttrFromCode(Code); 1379 if (*Kind == Attribute::None) 1380 return error(BitcodeError::CorruptedBitcode, 1381 "Unknown attribute kind (" + Twine(Code) + ")"); 1382 return std::error_code(); 1383 } 1384 1385 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1386 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1387 return error("Invalid record"); 1388 1389 if (!MAttributeGroups.empty()) 1390 return error("Invalid multiple blocks"); 1391 1392 SmallVector<uint64_t, 64> Record; 1393 1394 // Read all the records. 1395 while (1) { 1396 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1397 1398 switch (Entry.Kind) { 1399 case BitstreamEntry::SubBlock: // Handled for us already. 1400 case BitstreamEntry::Error: 1401 return error("Malformed block"); 1402 case BitstreamEntry::EndBlock: 1403 return std::error_code(); 1404 case BitstreamEntry::Record: 1405 // The interesting case. 1406 break; 1407 } 1408 1409 // Read a record. 1410 Record.clear(); 1411 switch (Stream.readRecord(Entry.ID, Record)) { 1412 default: // Default behavior: ignore. 1413 break; 1414 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1415 if (Record.size() < 3) 1416 return error("Invalid record"); 1417 1418 uint64_t GrpID = Record[0]; 1419 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1420 1421 AttrBuilder B; 1422 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1423 if (Record[i] == 0) { // Enum attribute 1424 Attribute::AttrKind Kind; 1425 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1426 return EC; 1427 1428 B.addAttribute(Kind); 1429 } else if (Record[i] == 1) { // Integer attribute 1430 Attribute::AttrKind Kind; 1431 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1432 return EC; 1433 if (Kind == Attribute::Alignment) 1434 B.addAlignmentAttr(Record[++i]); 1435 else if (Kind == Attribute::StackAlignment) 1436 B.addStackAlignmentAttr(Record[++i]); 1437 else if (Kind == Attribute::Dereferenceable) 1438 B.addDereferenceableAttr(Record[++i]); 1439 else if (Kind == Attribute::DereferenceableOrNull) 1440 B.addDereferenceableOrNullAttr(Record[++i]); 1441 } else { // String attribute 1442 assert((Record[i] == 3 || Record[i] == 4) && 1443 "Invalid attribute group entry"); 1444 bool HasValue = (Record[i++] == 4); 1445 SmallString<64> KindStr; 1446 SmallString<64> ValStr; 1447 1448 while (Record[i] != 0 && i != e) 1449 KindStr += Record[i++]; 1450 assert(Record[i] == 0 && "Kind string not null terminated"); 1451 1452 if (HasValue) { 1453 // Has a value associated with it. 1454 ++i; // Skip the '0' that terminates the "kind" string. 1455 while (Record[i] != 0 && i != e) 1456 ValStr += Record[i++]; 1457 assert(Record[i] == 0 && "Value string not null terminated"); 1458 } 1459 1460 B.addAttribute(KindStr.str(), ValStr.str()); 1461 } 1462 } 1463 1464 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1465 break; 1466 } 1467 } 1468 } 1469 } 1470 1471 std::error_code BitcodeReader::parseTypeTable() { 1472 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1473 return error("Invalid record"); 1474 1475 return parseTypeTableBody(); 1476 } 1477 1478 std::error_code BitcodeReader::parseTypeTableBody() { 1479 if (!TypeList.empty()) 1480 return error("Invalid multiple blocks"); 1481 1482 SmallVector<uint64_t, 64> Record; 1483 unsigned NumRecords = 0; 1484 1485 SmallString<64> TypeName; 1486 1487 // Read all the records for this type table. 1488 while (1) { 1489 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1490 1491 switch (Entry.Kind) { 1492 case BitstreamEntry::SubBlock: // Handled for us already. 1493 case BitstreamEntry::Error: 1494 return error("Malformed block"); 1495 case BitstreamEntry::EndBlock: 1496 if (NumRecords != TypeList.size()) 1497 return error("Malformed block"); 1498 return std::error_code(); 1499 case BitstreamEntry::Record: 1500 // The interesting case. 1501 break; 1502 } 1503 1504 // Read a record. 1505 Record.clear(); 1506 Type *ResultTy = nullptr; 1507 switch (Stream.readRecord(Entry.ID, Record)) { 1508 default: 1509 return error("Invalid value"); 1510 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1511 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1512 // type list. This allows us to reserve space. 1513 if (Record.size() < 1) 1514 return error("Invalid record"); 1515 TypeList.resize(Record[0]); 1516 continue; 1517 case bitc::TYPE_CODE_VOID: // VOID 1518 ResultTy = Type::getVoidTy(Context); 1519 break; 1520 case bitc::TYPE_CODE_HALF: // HALF 1521 ResultTy = Type::getHalfTy(Context); 1522 break; 1523 case bitc::TYPE_CODE_FLOAT: // FLOAT 1524 ResultTy = Type::getFloatTy(Context); 1525 break; 1526 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1527 ResultTy = Type::getDoubleTy(Context); 1528 break; 1529 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1530 ResultTy = Type::getX86_FP80Ty(Context); 1531 break; 1532 case bitc::TYPE_CODE_FP128: // FP128 1533 ResultTy = Type::getFP128Ty(Context); 1534 break; 1535 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1536 ResultTy = Type::getPPC_FP128Ty(Context); 1537 break; 1538 case bitc::TYPE_CODE_LABEL: // LABEL 1539 ResultTy = Type::getLabelTy(Context); 1540 break; 1541 case bitc::TYPE_CODE_METADATA: // METADATA 1542 ResultTy = Type::getMetadataTy(Context); 1543 break; 1544 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1545 ResultTy = Type::getX86_MMXTy(Context); 1546 break; 1547 case bitc::TYPE_CODE_TOKEN: // TOKEN 1548 ResultTy = Type::getTokenTy(Context); 1549 break; 1550 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1551 if (Record.size() < 1) 1552 return error("Invalid record"); 1553 1554 uint64_t NumBits = Record[0]; 1555 if (NumBits < IntegerType::MIN_INT_BITS || 1556 NumBits > IntegerType::MAX_INT_BITS) 1557 return error("Bitwidth for integer type out of range"); 1558 ResultTy = IntegerType::get(Context, NumBits); 1559 break; 1560 } 1561 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1562 // [pointee type, address space] 1563 if (Record.size() < 1) 1564 return error("Invalid record"); 1565 unsigned AddressSpace = 0; 1566 if (Record.size() == 2) 1567 AddressSpace = Record[1]; 1568 ResultTy = getTypeByID(Record[0]); 1569 if (!ResultTy || 1570 !PointerType::isValidElementType(ResultTy)) 1571 return error("Invalid type"); 1572 ResultTy = PointerType::get(ResultTy, AddressSpace); 1573 break; 1574 } 1575 case bitc::TYPE_CODE_FUNCTION_OLD: { 1576 // FIXME: attrid is dead, remove it in LLVM 4.0 1577 // FUNCTION: [vararg, attrid, retty, paramty x N] 1578 if (Record.size() < 3) 1579 return error("Invalid record"); 1580 SmallVector<Type*, 8> ArgTys; 1581 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1582 if (Type *T = getTypeByID(Record[i])) 1583 ArgTys.push_back(T); 1584 else 1585 break; 1586 } 1587 1588 ResultTy = getTypeByID(Record[2]); 1589 if (!ResultTy || ArgTys.size() < Record.size()-3) 1590 return error("Invalid type"); 1591 1592 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1593 break; 1594 } 1595 case bitc::TYPE_CODE_FUNCTION: { 1596 // FUNCTION: [vararg, retty, paramty x N] 1597 if (Record.size() < 2) 1598 return error("Invalid record"); 1599 SmallVector<Type*, 8> ArgTys; 1600 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1601 if (Type *T = getTypeByID(Record[i])) { 1602 if (!FunctionType::isValidArgumentType(T)) 1603 return error("Invalid function argument type"); 1604 ArgTys.push_back(T); 1605 } 1606 else 1607 break; 1608 } 1609 1610 ResultTy = getTypeByID(Record[1]); 1611 if (!ResultTy || ArgTys.size() < Record.size()-2) 1612 return error("Invalid type"); 1613 1614 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1615 break; 1616 } 1617 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1618 if (Record.size() < 1) 1619 return error("Invalid record"); 1620 SmallVector<Type*, 8> EltTys; 1621 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1622 if (Type *T = getTypeByID(Record[i])) 1623 EltTys.push_back(T); 1624 else 1625 break; 1626 } 1627 if (EltTys.size() != Record.size()-1) 1628 return error("Invalid type"); 1629 ResultTy = StructType::get(Context, EltTys, Record[0]); 1630 break; 1631 } 1632 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1633 if (convertToString(Record, 0, TypeName)) 1634 return error("Invalid record"); 1635 continue; 1636 1637 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1638 if (Record.size() < 1) 1639 return error("Invalid record"); 1640 1641 if (NumRecords >= TypeList.size()) 1642 return error("Invalid TYPE table"); 1643 1644 // Check to see if this was forward referenced, if so fill in the temp. 1645 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1646 if (Res) { 1647 Res->setName(TypeName); 1648 TypeList[NumRecords] = nullptr; 1649 } else // Otherwise, create a new struct. 1650 Res = createIdentifiedStructType(Context, TypeName); 1651 TypeName.clear(); 1652 1653 SmallVector<Type*, 8> EltTys; 1654 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1655 if (Type *T = getTypeByID(Record[i])) 1656 EltTys.push_back(T); 1657 else 1658 break; 1659 } 1660 if (EltTys.size() != Record.size()-1) 1661 return error("Invalid record"); 1662 Res->setBody(EltTys, Record[0]); 1663 ResultTy = Res; 1664 break; 1665 } 1666 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1667 if (Record.size() != 1) 1668 return error("Invalid record"); 1669 1670 if (NumRecords >= TypeList.size()) 1671 return error("Invalid TYPE table"); 1672 1673 // Check to see if this was forward referenced, if so fill in the temp. 1674 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1675 if (Res) { 1676 Res->setName(TypeName); 1677 TypeList[NumRecords] = nullptr; 1678 } else // Otherwise, create a new struct with no body. 1679 Res = createIdentifiedStructType(Context, TypeName); 1680 TypeName.clear(); 1681 ResultTy = Res; 1682 break; 1683 } 1684 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1685 if (Record.size() < 2) 1686 return error("Invalid record"); 1687 ResultTy = getTypeByID(Record[1]); 1688 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1689 return error("Invalid type"); 1690 ResultTy = ArrayType::get(ResultTy, Record[0]); 1691 break; 1692 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1693 if (Record.size() < 2) 1694 return error("Invalid record"); 1695 if (Record[0] == 0) 1696 return error("Invalid vector length"); 1697 ResultTy = getTypeByID(Record[1]); 1698 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1699 return error("Invalid type"); 1700 ResultTy = VectorType::get(ResultTy, Record[0]); 1701 break; 1702 } 1703 1704 if (NumRecords >= TypeList.size()) 1705 return error("Invalid TYPE table"); 1706 if (TypeList[NumRecords]) 1707 return error( 1708 "Invalid TYPE table: Only named structs can be forward referenced"); 1709 assert(ResultTy && "Didn't read a type?"); 1710 TypeList[NumRecords++] = ResultTy; 1711 } 1712 } 1713 1714 std::error_code BitcodeReader::parseOperandBundleTags() { 1715 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1716 return error("Invalid record"); 1717 1718 if (!BundleTags.empty()) 1719 return error("Invalid multiple blocks"); 1720 1721 SmallVector<uint64_t, 64> Record; 1722 1723 while (1) { 1724 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1725 1726 switch (Entry.Kind) { 1727 case BitstreamEntry::SubBlock: // Handled for us already. 1728 case BitstreamEntry::Error: 1729 return error("Malformed block"); 1730 case BitstreamEntry::EndBlock: 1731 return std::error_code(); 1732 case BitstreamEntry::Record: 1733 // The interesting case. 1734 break; 1735 } 1736 1737 // Tags are implicitly mapped to integers by their order. 1738 1739 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1740 return error("Invalid record"); 1741 1742 // OPERAND_BUNDLE_TAG: [strchr x N] 1743 BundleTags.emplace_back(); 1744 if (convertToString(Record, 0, BundleTags.back())) 1745 return error("Invalid record"); 1746 Record.clear(); 1747 } 1748 } 1749 1750 /// Associate a value with its name from the given index in the provided record. 1751 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1752 unsigned NameIndex, Triple &TT) { 1753 SmallString<128> ValueName; 1754 if (convertToString(Record, NameIndex, ValueName)) 1755 return error("Invalid record"); 1756 unsigned ValueID = Record[0]; 1757 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1758 return error("Invalid record"); 1759 Value *V = ValueList[ValueID]; 1760 1761 StringRef NameStr(ValueName.data(), ValueName.size()); 1762 if (NameStr.find_first_of(0) != StringRef::npos) 1763 return error("Invalid value name"); 1764 V->setName(NameStr); 1765 auto *GO = dyn_cast<GlobalObject>(V); 1766 if (GO) { 1767 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1768 if (TT.isOSBinFormatMachO()) 1769 GO->setComdat(nullptr); 1770 else 1771 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1772 } 1773 } 1774 return V; 1775 } 1776 1777 /// Parse the value symbol table at either the current parsing location or 1778 /// at the given bit offset if provided. 1779 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1780 uint64_t CurrentBit; 1781 // Pass in the Offset to distinguish between calling for the module-level 1782 // VST (where we want to jump to the VST offset) and the function-level 1783 // VST (where we don't). 1784 if (Offset > 0) { 1785 // Save the current parsing location so we can jump back at the end 1786 // of the VST read. 1787 CurrentBit = Stream.GetCurrentBitNo(); 1788 Stream.JumpToBit(Offset * 32); 1789 #ifndef NDEBUG 1790 // Do some checking if we are in debug mode. 1791 BitstreamEntry Entry = Stream.advance(); 1792 assert(Entry.Kind == BitstreamEntry::SubBlock); 1793 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1794 #else 1795 // In NDEBUG mode ignore the output so we don't get an unused variable 1796 // warning. 1797 Stream.advance(); 1798 #endif 1799 } 1800 1801 // Compute the delta between the bitcode indices in the VST (the word offset 1802 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1803 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1804 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1805 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1806 // just before entering the VST subblock because: 1) the EnterSubBlock 1807 // changes the AbbrevID width; 2) the VST block is nested within the same 1808 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1809 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1810 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1811 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1812 unsigned FuncBitcodeOffsetDelta = 1813 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1814 1815 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1816 return error("Invalid record"); 1817 1818 SmallVector<uint64_t, 64> Record; 1819 1820 Triple TT(TheModule->getTargetTriple()); 1821 1822 // Read all the records for this value table. 1823 SmallString<128> ValueName; 1824 while (1) { 1825 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1826 1827 switch (Entry.Kind) { 1828 case BitstreamEntry::SubBlock: // Handled for us already. 1829 case BitstreamEntry::Error: 1830 return error("Malformed block"); 1831 case BitstreamEntry::EndBlock: 1832 if (Offset > 0) 1833 Stream.JumpToBit(CurrentBit); 1834 return std::error_code(); 1835 case BitstreamEntry::Record: 1836 // The interesting case. 1837 break; 1838 } 1839 1840 // Read a record. 1841 Record.clear(); 1842 switch (Stream.readRecord(Entry.ID, Record)) { 1843 default: // Default behavior: unknown type. 1844 break; 1845 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1846 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1847 if (std::error_code EC = ValOrErr.getError()) 1848 return EC; 1849 ValOrErr.get(); 1850 break; 1851 } 1852 case bitc::VST_CODE_FNENTRY: { 1853 // VST_FNENTRY: [valueid, offset, namechar x N] 1854 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1855 if (std::error_code EC = ValOrErr.getError()) 1856 return EC; 1857 Value *V = ValOrErr.get(); 1858 1859 auto *GO = dyn_cast<GlobalObject>(V); 1860 if (!GO) { 1861 // If this is an alias, need to get the actual Function object 1862 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1863 auto *GA = dyn_cast<GlobalAlias>(V); 1864 if (GA) 1865 GO = GA->getBaseObject(); 1866 assert(GO); 1867 } 1868 1869 uint64_t FuncWordOffset = Record[1]; 1870 Function *F = dyn_cast<Function>(GO); 1871 assert(F); 1872 uint64_t FuncBitOffset = FuncWordOffset * 32; 1873 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1874 // Set the LastFunctionBlockBit to point to the last function block. 1875 // Later when parsing is resumed after function materialization, 1876 // we can simply skip that last function block. 1877 if (FuncBitOffset > LastFunctionBlockBit) 1878 LastFunctionBlockBit = FuncBitOffset; 1879 break; 1880 } 1881 case bitc::VST_CODE_BBENTRY: { 1882 if (convertToString(Record, 1, ValueName)) 1883 return error("Invalid record"); 1884 BasicBlock *BB = getBasicBlock(Record[0]); 1885 if (!BB) 1886 return error("Invalid record"); 1887 1888 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1889 ValueName.clear(); 1890 break; 1891 } 1892 } 1893 } 1894 } 1895 1896 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1897 1898 std::error_code BitcodeReader::parseMetadata() { 1899 IsMetadataMaterialized = true; 1900 unsigned NextMDValueNo = MDValueList.size(); 1901 1902 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1903 return error("Invalid record"); 1904 1905 SmallVector<uint64_t, 64> Record; 1906 1907 auto getMD = 1908 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1909 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1910 if (ID) 1911 return getMD(ID - 1); 1912 return nullptr; 1913 }; 1914 auto getMDString = [&](unsigned ID) -> MDString *{ 1915 // This requires that the ID is not really a forward reference. In 1916 // particular, the MDString must already have been resolved. 1917 return cast_or_null<MDString>(getMDOrNull(ID)); 1918 }; 1919 1920 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1921 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1922 1923 // Read all the records. 1924 while (1) { 1925 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1926 1927 switch (Entry.Kind) { 1928 case BitstreamEntry::SubBlock: // Handled for us already. 1929 case BitstreamEntry::Error: 1930 return error("Malformed block"); 1931 case BitstreamEntry::EndBlock: 1932 MDValueList.tryToResolveCycles(); 1933 return std::error_code(); 1934 case BitstreamEntry::Record: 1935 // The interesting case. 1936 break; 1937 } 1938 1939 // Read a record. 1940 Record.clear(); 1941 unsigned Code = Stream.readRecord(Entry.ID, Record); 1942 bool IsDistinct = false; 1943 switch (Code) { 1944 default: // Default behavior: ignore. 1945 break; 1946 case bitc::METADATA_NAME: { 1947 // Read name of the named metadata. 1948 SmallString<8> Name(Record.begin(), Record.end()); 1949 Record.clear(); 1950 Code = Stream.ReadCode(); 1951 1952 unsigned NextBitCode = Stream.readRecord(Code, Record); 1953 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1954 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1955 1956 // Read named metadata elements. 1957 unsigned Size = Record.size(); 1958 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1959 for (unsigned i = 0; i != Size; ++i) { 1960 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1961 if (!MD) 1962 return error("Invalid record"); 1963 NMD->addOperand(MD); 1964 } 1965 break; 1966 } 1967 case bitc::METADATA_OLD_FN_NODE: { 1968 // FIXME: Remove in 4.0. 1969 // This is a LocalAsMetadata record, the only type of function-local 1970 // metadata. 1971 if (Record.size() % 2 == 1) 1972 return error("Invalid record"); 1973 1974 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1975 // to be legal, but there's no upgrade path. 1976 auto dropRecord = [&] { 1977 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1978 }; 1979 if (Record.size() != 2) { 1980 dropRecord(); 1981 break; 1982 } 1983 1984 Type *Ty = getTypeByID(Record[0]); 1985 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1986 dropRecord(); 1987 break; 1988 } 1989 1990 MDValueList.assignValue( 1991 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1992 NextMDValueNo++); 1993 break; 1994 } 1995 case bitc::METADATA_OLD_NODE: { 1996 // FIXME: Remove in 4.0. 1997 if (Record.size() % 2 == 1) 1998 return error("Invalid record"); 1999 2000 unsigned Size = Record.size(); 2001 SmallVector<Metadata *, 8> Elts; 2002 for (unsigned i = 0; i != Size; i += 2) { 2003 Type *Ty = getTypeByID(Record[i]); 2004 if (!Ty) 2005 return error("Invalid record"); 2006 if (Ty->isMetadataTy()) 2007 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 2008 else if (!Ty->isVoidTy()) { 2009 auto *MD = 2010 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2011 assert(isa<ConstantAsMetadata>(MD) && 2012 "Expected non-function-local metadata"); 2013 Elts.push_back(MD); 2014 } else 2015 Elts.push_back(nullptr); 2016 } 2017 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2018 break; 2019 } 2020 case bitc::METADATA_VALUE: { 2021 if (Record.size() != 2) 2022 return error("Invalid record"); 2023 2024 Type *Ty = getTypeByID(Record[0]); 2025 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2026 return error("Invalid record"); 2027 2028 MDValueList.assignValue( 2029 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2030 NextMDValueNo++); 2031 break; 2032 } 2033 case bitc::METADATA_DISTINCT_NODE: 2034 IsDistinct = true; 2035 // fallthrough... 2036 case bitc::METADATA_NODE: { 2037 SmallVector<Metadata *, 8> Elts; 2038 Elts.reserve(Record.size()); 2039 for (unsigned ID : Record) 2040 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2041 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2042 : MDNode::get(Context, Elts), 2043 NextMDValueNo++); 2044 break; 2045 } 2046 case bitc::METADATA_LOCATION: { 2047 if (Record.size() != 5) 2048 return error("Invalid record"); 2049 2050 unsigned Line = Record[1]; 2051 unsigned Column = Record[2]; 2052 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2053 Metadata *InlinedAt = 2054 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2055 MDValueList.assignValue( 2056 GET_OR_DISTINCT(DILocation, Record[0], 2057 (Context, Line, Column, Scope, InlinedAt)), 2058 NextMDValueNo++); 2059 break; 2060 } 2061 case bitc::METADATA_GENERIC_DEBUG: { 2062 if (Record.size() < 4) 2063 return error("Invalid record"); 2064 2065 unsigned Tag = Record[1]; 2066 unsigned Version = Record[2]; 2067 2068 if (Tag >= 1u << 16 || Version != 0) 2069 return error("Invalid record"); 2070 2071 auto *Header = getMDString(Record[3]); 2072 SmallVector<Metadata *, 8> DwarfOps; 2073 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2074 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2075 : nullptr); 2076 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2077 (Context, Tag, Header, DwarfOps)), 2078 NextMDValueNo++); 2079 break; 2080 } 2081 case bitc::METADATA_SUBRANGE: { 2082 if (Record.size() != 3) 2083 return error("Invalid record"); 2084 2085 MDValueList.assignValue( 2086 GET_OR_DISTINCT(DISubrange, Record[0], 2087 (Context, Record[1], unrotateSign(Record[2]))), 2088 NextMDValueNo++); 2089 break; 2090 } 2091 case bitc::METADATA_ENUMERATOR: { 2092 if (Record.size() != 3) 2093 return error("Invalid record"); 2094 2095 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2096 (Context, unrotateSign(Record[1]), 2097 getMDString(Record[2]))), 2098 NextMDValueNo++); 2099 break; 2100 } 2101 case bitc::METADATA_BASIC_TYPE: { 2102 if (Record.size() != 6) 2103 return error("Invalid record"); 2104 2105 MDValueList.assignValue( 2106 GET_OR_DISTINCT(DIBasicType, Record[0], 2107 (Context, Record[1], getMDString(Record[2]), 2108 Record[3], Record[4], Record[5])), 2109 NextMDValueNo++); 2110 break; 2111 } 2112 case bitc::METADATA_DERIVED_TYPE: { 2113 if (Record.size() != 12) 2114 return error("Invalid record"); 2115 2116 MDValueList.assignValue( 2117 GET_OR_DISTINCT(DIDerivedType, Record[0], 2118 (Context, Record[1], getMDString(Record[2]), 2119 getMDOrNull(Record[3]), Record[4], 2120 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2121 Record[7], Record[8], Record[9], Record[10], 2122 getMDOrNull(Record[11]))), 2123 NextMDValueNo++); 2124 break; 2125 } 2126 case bitc::METADATA_COMPOSITE_TYPE: { 2127 if (Record.size() != 16) 2128 return error("Invalid record"); 2129 2130 MDValueList.assignValue( 2131 GET_OR_DISTINCT(DICompositeType, Record[0], 2132 (Context, Record[1], getMDString(Record[2]), 2133 getMDOrNull(Record[3]), Record[4], 2134 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2135 Record[7], Record[8], Record[9], Record[10], 2136 getMDOrNull(Record[11]), Record[12], 2137 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2138 getMDString(Record[15]))), 2139 NextMDValueNo++); 2140 break; 2141 } 2142 case bitc::METADATA_SUBROUTINE_TYPE: { 2143 if (Record.size() != 3) 2144 return error("Invalid record"); 2145 2146 MDValueList.assignValue( 2147 GET_OR_DISTINCT(DISubroutineType, Record[0], 2148 (Context, Record[1], getMDOrNull(Record[2]))), 2149 NextMDValueNo++); 2150 break; 2151 } 2152 2153 case bitc::METADATA_MODULE: { 2154 if (Record.size() != 6) 2155 return error("Invalid record"); 2156 2157 MDValueList.assignValue( 2158 GET_OR_DISTINCT(DIModule, Record[0], 2159 (Context, getMDOrNull(Record[1]), 2160 getMDString(Record[2]), getMDString(Record[3]), 2161 getMDString(Record[4]), getMDString(Record[5]))), 2162 NextMDValueNo++); 2163 break; 2164 } 2165 2166 case bitc::METADATA_FILE: { 2167 if (Record.size() != 3) 2168 return error("Invalid record"); 2169 2170 MDValueList.assignValue( 2171 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2172 getMDString(Record[2]))), 2173 NextMDValueNo++); 2174 break; 2175 } 2176 case bitc::METADATA_COMPILE_UNIT: { 2177 if (Record.size() < 14 || Record.size() > 15) 2178 return error("Invalid record"); 2179 2180 // Ignore Record[1], which indicates whether this compile unit is 2181 // distinct. It's always distinct. 2182 MDValueList.assignValue( 2183 DICompileUnit::getDistinct( 2184 Context, Record[1], getMDOrNull(Record[2]), 2185 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2186 Record[6], getMDString(Record[7]), Record[8], 2187 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2188 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2189 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2190 NextMDValueNo++); 2191 break; 2192 } 2193 case bitc::METADATA_SUBPROGRAM: { 2194 if (Record.size() != 18 && Record.size() != 19) 2195 return error("Invalid record"); 2196 2197 bool HasFn = Record.size() == 19; 2198 DISubprogram *SP = GET_OR_DISTINCT( 2199 DISubprogram, 2200 Record[0] || Record[8], // All definitions should be distinct. 2201 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2202 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2203 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2204 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2205 Record[14], getMDOrNull(Record[15 + HasFn]), 2206 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2207 MDValueList.assignValue(SP, NextMDValueNo++); 2208 2209 // Upgrade sp->function mapping to function->sp mapping. 2210 if (HasFn && Record[15]) { 2211 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2212 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2213 if (F->isMaterializable()) 2214 // Defer until materialized; unmaterialized functions may not have 2215 // metadata. 2216 FunctionsWithSPs[F] = SP; 2217 else if (!F->empty()) 2218 F->setSubprogram(SP); 2219 } 2220 } 2221 break; 2222 } 2223 case bitc::METADATA_LEXICAL_BLOCK: { 2224 if (Record.size() != 5) 2225 return error("Invalid record"); 2226 2227 MDValueList.assignValue( 2228 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2229 (Context, getMDOrNull(Record[1]), 2230 getMDOrNull(Record[2]), Record[3], Record[4])), 2231 NextMDValueNo++); 2232 break; 2233 } 2234 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2235 if (Record.size() != 4) 2236 return error("Invalid record"); 2237 2238 MDValueList.assignValue( 2239 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2240 (Context, getMDOrNull(Record[1]), 2241 getMDOrNull(Record[2]), Record[3])), 2242 NextMDValueNo++); 2243 break; 2244 } 2245 case bitc::METADATA_NAMESPACE: { 2246 if (Record.size() != 5) 2247 return error("Invalid record"); 2248 2249 MDValueList.assignValue( 2250 GET_OR_DISTINCT(DINamespace, Record[0], 2251 (Context, getMDOrNull(Record[1]), 2252 getMDOrNull(Record[2]), getMDString(Record[3]), 2253 Record[4])), 2254 NextMDValueNo++); 2255 break; 2256 } 2257 case bitc::METADATA_TEMPLATE_TYPE: { 2258 if (Record.size() != 3) 2259 return error("Invalid record"); 2260 2261 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2262 Record[0], 2263 (Context, getMDString(Record[1]), 2264 getMDOrNull(Record[2]))), 2265 NextMDValueNo++); 2266 break; 2267 } 2268 case bitc::METADATA_TEMPLATE_VALUE: { 2269 if (Record.size() != 5) 2270 return error("Invalid record"); 2271 2272 MDValueList.assignValue( 2273 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2274 (Context, Record[1], getMDString(Record[2]), 2275 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2276 NextMDValueNo++); 2277 break; 2278 } 2279 case bitc::METADATA_GLOBAL_VAR: { 2280 if (Record.size() != 11) 2281 return error("Invalid record"); 2282 2283 MDValueList.assignValue( 2284 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2285 (Context, getMDOrNull(Record[1]), 2286 getMDString(Record[2]), getMDString(Record[3]), 2287 getMDOrNull(Record[4]), Record[5], 2288 getMDOrNull(Record[6]), Record[7], Record[8], 2289 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2290 NextMDValueNo++); 2291 break; 2292 } 2293 case bitc::METADATA_LOCAL_VAR: { 2294 // 10th field is for the obseleted 'inlinedAt:' field. 2295 if (Record.size() < 8 || Record.size() > 10) 2296 return error("Invalid record"); 2297 2298 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2299 // DW_TAG_arg_variable. 2300 bool HasTag = Record.size() > 8; 2301 MDValueList.assignValue( 2302 GET_OR_DISTINCT(DILocalVariable, Record[0], 2303 (Context, getMDOrNull(Record[1 + HasTag]), 2304 getMDString(Record[2 + HasTag]), 2305 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2306 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2307 Record[7 + HasTag])), 2308 NextMDValueNo++); 2309 break; 2310 } 2311 case bitc::METADATA_EXPRESSION: { 2312 if (Record.size() < 1) 2313 return error("Invalid record"); 2314 2315 MDValueList.assignValue( 2316 GET_OR_DISTINCT(DIExpression, Record[0], 2317 (Context, makeArrayRef(Record).slice(1))), 2318 NextMDValueNo++); 2319 break; 2320 } 2321 case bitc::METADATA_OBJC_PROPERTY: { 2322 if (Record.size() != 8) 2323 return error("Invalid record"); 2324 2325 MDValueList.assignValue( 2326 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2327 (Context, getMDString(Record[1]), 2328 getMDOrNull(Record[2]), Record[3], 2329 getMDString(Record[4]), getMDString(Record[5]), 2330 Record[6], getMDOrNull(Record[7]))), 2331 NextMDValueNo++); 2332 break; 2333 } 2334 case bitc::METADATA_IMPORTED_ENTITY: { 2335 if (Record.size() != 6) 2336 return error("Invalid record"); 2337 2338 MDValueList.assignValue( 2339 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2340 (Context, Record[1], getMDOrNull(Record[2]), 2341 getMDOrNull(Record[3]), Record[4], 2342 getMDString(Record[5]))), 2343 NextMDValueNo++); 2344 break; 2345 } 2346 case bitc::METADATA_STRING: { 2347 std::string String(Record.begin(), Record.end()); 2348 llvm::UpgradeMDStringConstant(String); 2349 Metadata *MD = MDString::get(Context, String); 2350 MDValueList.assignValue(MD, NextMDValueNo++); 2351 break; 2352 } 2353 case bitc::METADATA_KIND: { 2354 if (Record.size() < 2) 2355 return error("Invalid record"); 2356 2357 unsigned Kind = Record[0]; 2358 SmallString<8> Name(Record.begin()+1, Record.end()); 2359 2360 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2361 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2362 return error("Conflicting METADATA_KIND records"); 2363 break; 2364 } 2365 } 2366 } 2367 #undef GET_OR_DISTINCT 2368 } 2369 2370 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2371 /// encoding. 2372 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2373 if ((V & 1) == 0) 2374 return V >> 1; 2375 if (V != 1) 2376 return -(V >> 1); 2377 // There is no such thing as -0 with integers. "-0" really means MININT. 2378 return 1ULL << 63; 2379 } 2380 2381 /// Resolve all of the initializers for global values and aliases that we can. 2382 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2383 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2384 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2385 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2386 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2387 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2388 2389 GlobalInitWorklist.swap(GlobalInits); 2390 AliasInitWorklist.swap(AliasInits); 2391 FunctionPrefixWorklist.swap(FunctionPrefixes); 2392 FunctionPrologueWorklist.swap(FunctionPrologues); 2393 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2394 2395 while (!GlobalInitWorklist.empty()) { 2396 unsigned ValID = GlobalInitWorklist.back().second; 2397 if (ValID >= ValueList.size()) { 2398 // Not ready to resolve this yet, it requires something later in the file. 2399 GlobalInits.push_back(GlobalInitWorklist.back()); 2400 } else { 2401 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2402 GlobalInitWorklist.back().first->setInitializer(C); 2403 else 2404 return error("Expected a constant"); 2405 } 2406 GlobalInitWorklist.pop_back(); 2407 } 2408 2409 while (!AliasInitWorklist.empty()) { 2410 unsigned ValID = AliasInitWorklist.back().second; 2411 if (ValID >= ValueList.size()) { 2412 AliasInits.push_back(AliasInitWorklist.back()); 2413 } else { 2414 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2415 if (!C) 2416 return error("Expected a constant"); 2417 GlobalAlias *Alias = AliasInitWorklist.back().first; 2418 if (C->getType() != Alias->getType()) 2419 return error("Alias and aliasee types don't match"); 2420 Alias->setAliasee(C); 2421 } 2422 AliasInitWorklist.pop_back(); 2423 } 2424 2425 while (!FunctionPrefixWorklist.empty()) { 2426 unsigned ValID = FunctionPrefixWorklist.back().second; 2427 if (ValID >= ValueList.size()) { 2428 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2429 } else { 2430 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2431 FunctionPrefixWorklist.back().first->setPrefixData(C); 2432 else 2433 return error("Expected a constant"); 2434 } 2435 FunctionPrefixWorklist.pop_back(); 2436 } 2437 2438 while (!FunctionPrologueWorklist.empty()) { 2439 unsigned ValID = FunctionPrologueWorklist.back().second; 2440 if (ValID >= ValueList.size()) { 2441 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2442 } else { 2443 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2444 FunctionPrologueWorklist.back().first->setPrologueData(C); 2445 else 2446 return error("Expected a constant"); 2447 } 2448 FunctionPrologueWorklist.pop_back(); 2449 } 2450 2451 while (!FunctionPersonalityFnWorklist.empty()) { 2452 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2453 if (ValID >= ValueList.size()) { 2454 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2455 } else { 2456 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2457 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2458 else 2459 return error("Expected a constant"); 2460 } 2461 FunctionPersonalityFnWorklist.pop_back(); 2462 } 2463 2464 return std::error_code(); 2465 } 2466 2467 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2468 SmallVector<uint64_t, 8> Words(Vals.size()); 2469 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2470 BitcodeReader::decodeSignRotatedValue); 2471 2472 return APInt(TypeBits, Words); 2473 } 2474 2475 std::error_code BitcodeReader::parseConstants() { 2476 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2477 return error("Invalid record"); 2478 2479 SmallVector<uint64_t, 64> Record; 2480 2481 // Read all the records for this value table. 2482 Type *CurTy = Type::getInt32Ty(Context); 2483 unsigned NextCstNo = ValueList.size(); 2484 while (1) { 2485 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2486 2487 switch (Entry.Kind) { 2488 case BitstreamEntry::SubBlock: // Handled for us already. 2489 case BitstreamEntry::Error: 2490 return error("Malformed block"); 2491 case BitstreamEntry::EndBlock: 2492 if (NextCstNo != ValueList.size()) 2493 return error("Invalid ronstant reference"); 2494 2495 // Once all the constants have been read, go through and resolve forward 2496 // references. 2497 ValueList.resolveConstantForwardRefs(); 2498 return std::error_code(); 2499 case BitstreamEntry::Record: 2500 // The interesting case. 2501 break; 2502 } 2503 2504 // Read a record. 2505 Record.clear(); 2506 Value *V = nullptr; 2507 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2508 switch (BitCode) { 2509 default: // Default behavior: unknown constant 2510 case bitc::CST_CODE_UNDEF: // UNDEF 2511 V = UndefValue::get(CurTy); 2512 break; 2513 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2514 if (Record.empty()) 2515 return error("Invalid record"); 2516 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2517 return error("Invalid record"); 2518 CurTy = TypeList[Record[0]]; 2519 continue; // Skip the ValueList manipulation. 2520 case bitc::CST_CODE_NULL: // NULL 2521 V = Constant::getNullValue(CurTy); 2522 break; 2523 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2524 if (!CurTy->isIntegerTy() || Record.empty()) 2525 return error("Invalid record"); 2526 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2527 break; 2528 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2529 if (!CurTy->isIntegerTy() || Record.empty()) 2530 return error("Invalid record"); 2531 2532 APInt VInt = 2533 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2534 V = ConstantInt::get(Context, VInt); 2535 2536 break; 2537 } 2538 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2539 if (Record.empty()) 2540 return error("Invalid record"); 2541 if (CurTy->isHalfTy()) 2542 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2543 APInt(16, (uint16_t)Record[0]))); 2544 else if (CurTy->isFloatTy()) 2545 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2546 APInt(32, (uint32_t)Record[0]))); 2547 else if (CurTy->isDoubleTy()) 2548 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2549 APInt(64, Record[0]))); 2550 else if (CurTy->isX86_FP80Ty()) { 2551 // Bits are not stored the same way as a normal i80 APInt, compensate. 2552 uint64_t Rearrange[2]; 2553 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2554 Rearrange[1] = Record[0] >> 48; 2555 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2556 APInt(80, Rearrange))); 2557 } else if (CurTy->isFP128Ty()) 2558 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2559 APInt(128, Record))); 2560 else if (CurTy->isPPC_FP128Ty()) 2561 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2562 APInt(128, Record))); 2563 else 2564 V = UndefValue::get(CurTy); 2565 break; 2566 } 2567 2568 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2569 if (Record.empty()) 2570 return error("Invalid record"); 2571 2572 unsigned Size = Record.size(); 2573 SmallVector<Constant*, 16> Elts; 2574 2575 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2576 for (unsigned i = 0; i != Size; ++i) 2577 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2578 STy->getElementType(i))); 2579 V = ConstantStruct::get(STy, Elts); 2580 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2581 Type *EltTy = ATy->getElementType(); 2582 for (unsigned i = 0; i != Size; ++i) 2583 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2584 V = ConstantArray::get(ATy, Elts); 2585 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2586 Type *EltTy = VTy->getElementType(); 2587 for (unsigned i = 0; i != Size; ++i) 2588 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2589 V = ConstantVector::get(Elts); 2590 } else { 2591 V = UndefValue::get(CurTy); 2592 } 2593 break; 2594 } 2595 case bitc::CST_CODE_STRING: // STRING: [values] 2596 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2597 if (Record.empty()) 2598 return error("Invalid record"); 2599 2600 SmallString<16> Elts(Record.begin(), Record.end()); 2601 V = ConstantDataArray::getString(Context, Elts, 2602 BitCode == bitc::CST_CODE_CSTRING); 2603 break; 2604 } 2605 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2606 if (Record.empty()) 2607 return error("Invalid record"); 2608 2609 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2610 unsigned Size = Record.size(); 2611 2612 if (EltTy->isIntegerTy(8)) { 2613 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2614 if (isa<VectorType>(CurTy)) 2615 V = ConstantDataVector::get(Context, Elts); 2616 else 2617 V = ConstantDataArray::get(Context, Elts); 2618 } else if (EltTy->isIntegerTy(16)) { 2619 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2620 if (isa<VectorType>(CurTy)) 2621 V = ConstantDataVector::get(Context, Elts); 2622 else 2623 V = ConstantDataArray::get(Context, Elts); 2624 } else if (EltTy->isIntegerTy(32)) { 2625 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2626 if (isa<VectorType>(CurTy)) 2627 V = ConstantDataVector::get(Context, Elts); 2628 else 2629 V = ConstantDataArray::get(Context, Elts); 2630 } else if (EltTy->isIntegerTy(64)) { 2631 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2632 if (isa<VectorType>(CurTy)) 2633 V = ConstantDataVector::get(Context, Elts); 2634 else 2635 V = ConstantDataArray::get(Context, Elts); 2636 } else if (EltTy->isFloatTy()) { 2637 SmallVector<float, 16> Elts(Size); 2638 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2639 if (isa<VectorType>(CurTy)) 2640 V = ConstantDataVector::get(Context, Elts); 2641 else 2642 V = ConstantDataArray::get(Context, Elts); 2643 } else if (EltTy->isDoubleTy()) { 2644 SmallVector<double, 16> Elts(Size); 2645 std::transform(Record.begin(), Record.end(), Elts.begin(), 2646 BitsToDouble); 2647 if (isa<VectorType>(CurTy)) 2648 V = ConstantDataVector::get(Context, Elts); 2649 else 2650 V = ConstantDataArray::get(Context, Elts); 2651 } else { 2652 return error("Invalid type for value"); 2653 } 2654 break; 2655 } 2656 2657 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2658 if (Record.size() < 3) 2659 return error("Invalid record"); 2660 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2661 if (Opc < 0) { 2662 V = UndefValue::get(CurTy); // Unknown binop. 2663 } else { 2664 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2665 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2666 unsigned Flags = 0; 2667 if (Record.size() >= 4) { 2668 if (Opc == Instruction::Add || 2669 Opc == Instruction::Sub || 2670 Opc == Instruction::Mul || 2671 Opc == Instruction::Shl) { 2672 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2673 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2674 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2675 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2676 } else if (Opc == Instruction::SDiv || 2677 Opc == Instruction::UDiv || 2678 Opc == Instruction::LShr || 2679 Opc == Instruction::AShr) { 2680 if (Record[3] & (1 << bitc::PEO_EXACT)) 2681 Flags |= SDivOperator::IsExact; 2682 } 2683 } 2684 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2685 } 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2689 if (Record.size() < 3) 2690 return error("Invalid record"); 2691 int Opc = getDecodedCastOpcode(Record[0]); 2692 if (Opc < 0) { 2693 V = UndefValue::get(CurTy); // Unknown cast. 2694 } else { 2695 Type *OpTy = getTypeByID(Record[1]); 2696 if (!OpTy) 2697 return error("Invalid record"); 2698 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2699 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2700 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2701 } 2702 break; 2703 } 2704 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2705 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2706 unsigned OpNum = 0; 2707 Type *PointeeType = nullptr; 2708 if (Record.size() % 2) 2709 PointeeType = getTypeByID(Record[OpNum++]); 2710 SmallVector<Constant*, 16> Elts; 2711 while (OpNum != Record.size()) { 2712 Type *ElTy = getTypeByID(Record[OpNum++]); 2713 if (!ElTy) 2714 return error("Invalid record"); 2715 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2716 } 2717 2718 if (PointeeType && 2719 PointeeType != 2720 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2721 ->getElementType()) 2722 return error("Explicit gep operator type does not match pointee type " 2723 "of pointer operand"); 2724 2725 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2726 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2727 BitCode == 2728 bitc::CST_CODE_CE_INBOUNDS_GEP); 2729 break; 2730 } 2731 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2732 if (Record.size() < 3) 2733 return error("Invalid record"); 2734 2735 Type *SelectorTy = Type::getInt1Ty(Context); 2736 2737 // The selector might be an i1 or an <n x i1> 2738 // Get the type from the ValueList before getting a forward ref. 2739 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2740 if (Value *V = ValueList[Record[0]]) 2741 if (SelectorTy != V->getType()) 2742 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2743 2744 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2745 SelectorTy), 2746 ValueList.getConstantFwdRef(Record[1],CurTy), 2747 ValueList.getConstantFwdRef(Record[2],CurTy)); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_EXTRACTELT 2751 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2752 if (Record.size() < 3) 2753 return error("Invalid record"); 2754 VectorType *OpTy = 2755 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2756 if (!OpTy) 2757 return error("Invalid record"); 2758 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2759 Constant *Op1 = nullptr; 2760 if (Record.size() == 4) { 2761 Type *IdxTy = getTypeByID(Record[2]); 2762 if (!IdxTy) 2763 return error("Invalid record"); 2764 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2765 } else // TODO: Remove with llvm 4.0 2766 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2767 if (!Op1) 2768 return error("Invalid record"); 2769 V = ConstantExpr::getExtractElement(Op0, Op1); 2770 break; 2771 } 2772 case bitc::CST_CODE_CE_INSERTELT 2773 : { // CE_INSERTELT: [opval, opval, opty, opval] 2774 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2775 if (Record.size() < 3 || !OpTy) 2776 return error("Invalid record"); 2777 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2778 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2779 OpTy->getElementType()); 2780 Constant *Op2 = nullptr; 2781 if (Record.size() == 4) { 2782 Type *IdxTy = getTypeByID(Record[2]); 2783 if (!IdxTy) 2784 return error("Invalid record"); 2785 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2786 } else // TODO: Remove with llvm 4.0 2787 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2788 if (!Op2) 2789 return error("Invalid record"); 2790 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2791 break; 2792 } 2793 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2794 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2795 if (Record.size() < 3 || !OpTy) 2796 return error("Invalid record"); 2797 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2798 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2799 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2800 OpTy->getNumElements()); 2801 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2802 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2803 break; 2804 } 2805 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2806 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2807 VectorType *OpTy = 2808 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2809 if (Record.size() < 4 || !RTy || !OpTy) 2810 return error("Invalid record"); 2811 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2812 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2813 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2814 RTy->getNumElements()); 2815 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2816 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2817 break; 2818 } 2819 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2820 if (Record.size() < 4) 2821 return error("Invalid record"); 2822 Type *OpTy = getTypeByID(Record[0]); 2823 if (!OpTy) 2824 return error("Invalid record"); 2825 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2826 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2827 2828 if (OpTy->isFPOrFPVectorTy()) 2829 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2830 else 2831 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2832 break; 2833 } 2834 // This maintains backward compatibility, pre-asm dialect keywords. 2835 // FIXME: Remove with the 4.0 release. 2836 case bitc::CST_CODE_INLINEASM_OLD: { 2837 if (Record.size() < 2) 2838 return error("Invalid record"); 2839 std::string AsmStr, ConstrStr; 2840 bool HasSideEffects = Record[0] & 1; 2841 bool IsAlignStack = Record[0] >> 1; 2842 unsigned AsmStrSize = Record[1]; 2843 if (2+AsmStrSize >= Record.size()) 2844 return error("Invalid record"); 2845 unsigned ConstStrSize = Record[2+AsmStrSize]; 2846 if (3+AsmStrSize+ConstStrSize > Record.size()) 2847 return error("Invalid record"); 2848 2849 for (unsigned i = 0; i != AsmStrSize; ++i) 2850 AsmStr += (char)Record[2+i]; 2851 for (unsigned i = 0; i != ConstStrSize; ++i) 2852 ConstrStr += (char)Record[3+AsmStrSize+i]; 2853 PointerType *PTy = cast<PointerType>(CurTy); 2854 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2855 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2856 break; 2857 } 2858 // This version adds support for the asm dialect keywords (e.g., 2859 // inteldialect). 2860 case bitc::CST_CODE_INLINEASM: { 2861 if (Record.size() < 2) 2862 return error("Invalid record"); 2863 std::string AsmStr, ConstrStr; 2864 bool HasSideEffects = Record[0] & 1; 2865 bool IsAlignStack = (Record[0] >> 1) & 1; 2866 unsigned AsmDialect = Record[0] >> 2; 2867 unsigned AsmStrSize = Record[1]; 2868 if (2+AsmStrSize >= Record.size()) 2869 return error("Invalid record"); 2870 unsigned ConstStrSize = Record[2+AsmStrSize]; 2871 if (3+AsmStrSize+ConstStrSize > Record.size()) 2872 return error("Invalid record"); 2873 2874 for (unsigned i = 0; i != AsmStrSize; ++i) 2875 AsmStr += (char)Record[2+i]; 2876 for (unsigned i = 0; i != ConstStrSize; ++i) 2877 ConstrStr += (char)Record[3+AsmStrSize+i]; 2878 PointerType *PTy = cast<PointerType>(CurTy); 2879 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2880 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2881 InlineAsm::AsmDialect(AsmDialect)); 2882 break; 2883 } 2884 case bitc::CST_CODE_BLOCKADDRESS:{ 2885 if (Record.size() < 3) 2886 return error("Invalid record"); 2887 Type *FnTy = getTypeByID(Record[0]); 2888 if (!FnTy) 2889 return error("Invalid record"); 2890 Function *Fn = 2891 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2892 if (!Fn) 2893 return error("Invalid record"); 2894 2895 // Don't let Fn get dematerialized. 2896 BlockAddressesTaken.insert(Fn); 2897 2898 // If the function is already parsed we can insert the block address right 2899 // away. 2900 BasicBlock *BB; 2901 unsigned BBID = Record[2]; 2902 if (!BBID) 2903 // Invalid reference to entry block. 2904 return error("Invalid ID"); 2905 if (!Fn->empty()) { 2906 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2907 for (size_t I = 0, E = BBID; I != E; ++I) { 2908 if (BBI == BBE) 2909 return error("Invalid ID"); 2910 ++BBI; 2911 } 2912 BB = &*BBI; 2913 } else { 2914 // Otherwise insert a placeholder and remember it so it can be inserted 2915 // when the function is parsed. 2916 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2917 if (FwdBBs.empty()) 2918 BasicBlockFwdRefQueue.push_back(Fn); 2919 if (FwdBBs.size() < BBID + 1) 2920 FwdBBs.resize(BBID + 1); 2921 if (!FwdBBs[BBID]) 2922 FwdBBs[BBID] = BasicBlock::Create(Context); 2923 BB = FwdBBs[BBID]; 2924 } 2925 V = BlockAddress::get(Fn, BB); 2926 break; 2927 } 2928 } 2929 2930 if (ValueList.assignValue(V, NextCstNo)) 2931 return error("Invalid forward reference"); 2932 ++NextCstNo; 2933 } 2934 } 2935 2936 std::error_code BitcodeReader::parseUseLists() { 2937 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2938 return error("Invalid record"); 2939 2940 // Read all the records. 2941 SmallVector<uint64_t, 64> Record; 2942 while (1) { 2943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2944 2945 switch (Entry.Kind) { 2946 case BitstreamEntry::SubBlock: // Handled for us already. 2947 case BitstreamEntry::Error: 2948 return error("Malformed block"); 2949 case BitstreamEntry::EndBlock: 2950 return std::error_code(); 2951 case BitstreamEntry::Record: 2952 // The interesting case. 2953 break; 2954 } 2955 2956 // Read a use list record. 2957 Record.clear(); 2958 bool IsBB = false; 2959 switch (Stream.readRecord(Entry.ID, Record)) { 2960 default: // Default behavior: unknown type. 2961 break; 2962 case bitc::USELIST_CODE_BB: 2963 IsBB = true; 2964 // fallthrough 2965 case bitc::USELIST_CODE_DEFAULT: { 2966 unsigned RecordLength = Record.size(); 2967 if (RecordLength < 3) 2968 // Records should have at least an ID and two indexes. 2969 return error("Invalid record"); 2970 unsigned ID = Record.back(); 2971 Record.pop_back(); 2972 2973 Value *V; 2974 if (IsBB) { 2975 assert(ID < FunctionBBs.size() && "Basic block not found"); 2976 V = FunctionBBs[ID]; 2977 } else 2978 V = ValueList[ID]; 2979 unsigned NumUses = 0; 2980 SmallDenseMap<const Use *, unsigned, 16> Order; 2981 for (const Use &U : V->uses()) { 2982 if (++NumUses > Record.size()) 2983 break; 2984 Order[&U] = Record[NumUses - 1]; 2985 } 2986 if (Order.size() != Record.size() || NumUses > Record.size()) 2987 // Mismatches can happen if the functions are being materialized lazily 2988 // (out-of-order), or a value has been upgraded. 2989 break; 2990 2991 V->sortUseList([&](const Use &L, const Use &R) { 2992 return Order.lookup(&L) < Order.lookup(&R); 2993 }); 2994 break; 2995 } 2996 } 2997 } 2998 } 2999 3000 /// When we see the block for metadata, remember where it is and then skip it. 3001 /// This lets us lazily deserialize the metadata. 3002 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3003 // Save the current stream state. 3004 uint64_t CurBit = Stream.GetCurrentBitNo(); 3005 DeferredMetadataInfo.push_back(CurBit); 3006 3007 // Skip over the block for now. 3008 if (Stream.SkipBlock()) 3009 return error("Invalid record"); 3010 return std::error_code(); 3011 } 3012 3013 std::error_code BitcodeReader::materializeMetadata() { 3014 for (uint64_t BitPos : DeferredMetadataInfo) { 3015 // Move the bit stream to the saved position. 3016 Stream.JumpToBit(BitPos); 3017 if (std::error_code EC = parseMetadata()) 3018 return EC; 3019 } 3020 DeferredMetadataInfo.clear(); 3021 return std::error_code(); 3022 } 3023 3024 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3025 3026 /// When we see the block for a function body, remember where it is and then 3027 /// skip it. This lets us lazily deserialize the functions. 3028 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3029 // Get the function we are talking about. 3030 if (FunctionsWithBodies.empty()) 3031 return error("Insufficient function protos"); 3032 3033 Function *Fn = FunctionsWithBodies.back(); 3034 FunctionsWithBodies.pop_back(); 3035 3036 // Save the current stream state. 3037 uint64_t CurBit = Stream.GetCurrentBitNo(); 3038 assert( 3039 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3040 "Mismatch between VST and scanned function offsets"); 3041 DeferredFunctionInfo[Fn] = CurBit; 3042 3043 // Skip over the function block for now. 3044 if (Stream.SkipBlock()) 3045 return error("Invalid record"); 3046 return std::error_code(); 3047 } 3048 3049 std::error_code BitcodeReader::globalCleanup() { 3050 // Patch the initializers for globals and aliases up. 3051 resolveGlobalAndAliasInits(); 3052 if (!GlobalInits.empty() || !AliasInits.empty()) 3053 return error("Malformed global initializer set"); 3054 3055 // Look for intrinsic functions which need to be upgraded at some point 3056 for (Function &F : *TheModule) { 3057 Function *NewFn; 3058 if (UpgradeIntrinsicFunction(&F, NewFn)) 3059 UpgradedIntrinsics[&F] = NewFn; 3060 } 3061 3062 // Look for global variables which need to be renamed. 3063 for (GlobalVariable &GV : TheModule->globals()) 3064 UpgradeGlobalVariable(&GV); 3065 3066 // Force deallocation of memory for these vectors to favor the client that 3067 // want lazy deserialization. 3068 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3069 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3070 return std::error_code(); 3071 } 3072 3073 /// Support for lazy parsing of function bodies. This is required if we 3074 /// either have an old bitcode file without a VST forward declaration record, 3075 /// or if we have an anonymous function being materialized, since anonymous 3076 /// functions do not have a name and are therefore not in the VST. 3077 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3078 Stream.JumpToBit(NextUnreadBit); 3079 3080 if (Stream.AtEndOfStream()) 3081 return error("Could not find function in stream"); 3082 3083 if (!SeenFirstFunctionBody) 3084 return error("Trying to materialize functions before seeing function blocks"); 3085 3086 // An old bitcode file with the symbol table at the end would have 3087 // finished the parse greedily. 3088 assert(SeenValueSymbolTable); 3089 3090 SmallVector<uint64_t, 64> Record; 3091 3092 while (1) { 3093 BitstreamEntry Entry = Stream.advance(); 3094 switch (Entry.Kind) { 3095 default: 3096 return error("Expect SubBlock"); 3097 case BitstreamEntry::SubBlock: 3098 switch (Entry.ID) { 3099 default: 3100 return error("Expect function block"); 3101 case bitc::FUNCTION_BLOCK_ID: 3102 if (std::error_code EC = rememberAndSkipFunctionBody()) 3103 return EC; 3104 NextUnreadBit = Stream.GetCurrentBitNo(); 3105 return std::error_code(); 3106 } 3107 } 3108 } 3109 } 3110 3111 std::error_code BitcodeReader::parseBitcodeVersion() { 3112 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3113 return error("Invalid record"); 3114 3115 // Read all the records. 3116 SmallVector<uint64_t, 64> Record; 3117 while (1) { 3118 BitstreamEntry Entry = Stream.advance(); 3119 3120 switch (Entry.Kind) { 3121 default: 3122 case BitstreamEntry::Error: 3123 return error("Malformed block"); 3124 case BitstreamEntry::EndBlock: 3125 return std::error_code(); 3126 case BitstreamEntry::Record: 3127 // The interesting case. 3128 break; 3129 } 3130 3131 // Read a record. 3132 Record.clear(); 3133 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3134 switch (BitCode) { 3135 default: // Default behavior: reject 3136 return error("Invalid value"); 3137 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3138 // N] 3139 convertToString(Record, 0, ProducerIdentification); 3140 break; 3141 } 3142 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3143 unsigned epoch = (unsigned)Record[0]; 3144 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3145 return error( 3146 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3147 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3148 } 3149 } 3150 } 3151 } 3152 } 3153 3154 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3155 bool ShouldLazyLoadMetadata) { 3156 if (ResumeBit) 3157 Stream.JumpToBit(ResumeBit); 3158 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3159 return error("Invalid record"); 3160 3161 SmallVector<uint64_t, 64> Record; 3162 std::vector<std::string> SectionTable; 3163 std::vector<std::string> GCTable; 3164 3165 // Read all the records for this module. 3166 while (1) { 3167 BitstreamEntry Entry = Stream.advance(); 3168 3169 switch (Entry.Kind) { 3170 case BitstreamEntry::Error: 3171 return error("Malformed block"); 3172 case BitstreamEntry::EndBlock: 3173 return globalCleanup(); 3174 3175 case BitstreamEntry::SubBlock: 3176 switch (Entry.ID) { 3177 default: // Skip unknown content. 3178 if (Stream.SkipBlock()) 3179 return error("Invalid record"); 3180 break; 3181 case bitc::BLOCKINFO_BLOCK_ID: 3182 if (Stream.ReadBlockInfoBlock()) 3183 return error("Malformed block"); 3184 break; 3185 case bitc::PARAMATTR_BLOCK_ID: 3186 if (std::error_code EC = parseAttributeBlock()) 3187 return EC; 3188 break; 3189 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3190 if (std::error_code EC = parseAttributeGroupBlock()) 3191 return EC; 3192 break; 3193 case bitc::TYPE_BLOCK_ID_NEW: 3194 if (std::error_code EC = parseTypeTable()) 3195 return EC; 3196 break; 3197 case bitc::VALUE_SYMTAB_BLOCK_ID: 3198 if (!SeenValueSymbolTable) { 3199 // Either this is an old form VST without function index and an 3200 // associated VST forward declaration record (which would have caused 3201 // the VST to be jumped to and parsed before it was encountered 3202 // normally in the stream), or there were no function blocks to 3203 // trigger an earlier parsing of the VST. 3204 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3205 if (std::error_code EC = parseValueSymbolTable()) 3206 return EC; 3207 SeenValueSymbolTable = true; 3208 } else { 3209 // We must have had a VST forward declaration record, which caused 3210 // the parser to jump to and parse the VST earlier. 3211 assert(VSTOffset > 0); 3212 if (Stream.SkipBlock()) 3213 return error("Invalid record"); 3214 } 3215 break; 3216 case bitc::CONSTANTS_BLOCK_ID: 3217 if (std::error_code EC = parseConstants()) 3218 return EC; 3219 if (std::error_code EC = resolveGlobalAndAliasInits()) 3220 return EC; 3221 break; 3222 case bitc::METADATA_BLOCK_ID: 3223 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3224 if (std::error_code EC = rememberAndSkipMetadata()) 3225 return EC; 3226 break; 3227 } 3228 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3229 if (std::error_code EC = parseMetadata()) 3230 return EC; 3231 break; 3232 case bitc::FUNCTION_BLOCK_ID: 3233 // If this is the first function body we've seen, reverse the 3234 // FunctionsWithBodies list. 3235 if (!SeenFirstFunctionBody) { 3236 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3237 if (std::error_code EC = globalCleanup()) 3238 return EC; 3239 SeenFirstFunctionBody = true; 3240 } 3241 3242 if (VSTOffset > 0) { 3243 // If we have a VST forward declaration record, make sure we 3244 // parse the VST now if we haven't already. It is needed to 3245 // set up the DeferredFunctionInfo vector for lazy reading. 3246 if (!SeenValueSymbolTable) { 3247 if (std::error_code EC = 3248 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3249 return EC; 3250 SeenValueSymbolTable = true; 3251 // Fall through so that we record the NextUnreadBit below. 3252 // This is necessary in case we have an anonymous function that 3253 // is later materialized. Since it will not have a VST entry we 3254 // need to fall back to the lazy parse to find its offset. 3255 } else { 3256 // If we have a VST forward declaration record, but have already 3257 // parsed the VST (just above, when the first function body was 3258 // encountered here), then we are resuming the parse after 3259 // materializing functions. The ResumeBit points to the 3260 // start of the last function block recorded in the 3261 // DeferredFunctionInfo map. Skip it. 3262 if (Stream.SkipBlock()) 3263 return error("Invalid record"); 3264 continue; 3265 } 3266 } 3267 3268 // Support older bitcode files that did not have the function 3269 // index in the VST, nor a VST forward declaration record, as 3270 // well as anonymous functions that do not have VST entries. 3271 // Build the DeferredFunctionInfo vector on the fly. 3272 if (std::error_code EC = rememberAndSkipFunctionBody()) 3273 return EC; 3274 3275 // Suspend parsing when we reach the function bodies. Subsequent 3276 // materialization calls will resume it when necessary. If the bitcode 3277 // file is old, the symbol table will be at the end instead and will not 3278 // have been seen yet. In this case, just finish the parse now. 3279 if (SeenValueSymbolTable) { 3280 NextUnreadBit = Stream.GetCurrentBitNo(); 3281 return std::error_code(); 3282 } 3283 break; 3284 case bitc::USELIST_BLOCK_ID: 3285 if (std::error_code EC = parseUseLists()) 3286 return EC; 3287 break; 3288 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3289 if (std::error_code EC = parseOperandBundleTags()) 3290 return EC; 3291 break; 3292 } 3293 continue; 3294 3295 case BitstreamEntry::Record: 3296 // The interesting case. 3297 break; 3298 } 3299 3300 3301 // Read a record. 3302 auto BitCode = Stream.readRecord(Entry.ID, Record); 3303 switch (BitCode) { 3304 default: break; // Default behavior, ignore unknown content. 3305 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3306 if (Record.size() < 1) 3307 return error("Invalid record"); 3308 // Only version #0 and #1 are supported so far. 3309 unsigned module_version = Record[0]; 3310 switch (module_version) { 3311 default: 3312 return error("Invalid value"); 3313 case 0: 3314 UseRelativeIDs = false; 3315 break; 3316 case 1: 3317 UseRelativeIDs = true; 3318 break; 3319 } 3320 break; 3321 } 3322 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3323 std::string S; 3324 if (convertToString(Record, 0, S)) 3325 return error("Invalid record"); 3326 TheModule->setTargetTriple(S); 3327 break; 3328 } 3329 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3330 std::string S; 3331 if (convertToString(Record, 0, S)) 3332 return error("Invalid record"); 3333 TheModule->setDataLayout(S); 3334 break; 3335 } 3336 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3337 std::string S; 3338 if (convertToString(Record, 0, S)) 3339 return error("Invalid record"); 3340 TheModule->setModuleInlineAsm(S); 3341 break; 3342 } 3343 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3344 // FIXME: Remove in 4.0. 3345 std::string S; 3346 if (convertToString(Record, 0, S)) 3347 return error("Invalid record"); 3348 // Ignore value. 3349 break; 3350 } 3351 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3352 std::string S; 3353 if (convertToString(Record, 0, S)) 3354 return error("Invalid record"); 3355 SectionTable.push_back(S); 3356 break; 3357 } 3358 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3359 std::string S; 3360 if (convertToString(Record, 0, S)) 3361 return error("Invalid record"); 3362 GCTable.push_back(S); 3363 break; 3364 } 3365 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3366 if (Record.size() < 2) 3367 return error("Invalid record"); 3368 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3369 unsigned ComdatNameSize = Record[1]; 3370 std::string ComdatName; 3371 ComdatName.reserve(ComdatNameSize); 3372 for (unsigned i = 0; i != ComdatNameSize; ++i) 3373 ComdatName += (char)Record[2 + i]; 3374 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3375 C->setSelectionKind(SK); 3376 ComdatList.push_back(C); 3377 break; 3378 } 3379 // GLOBALVAR: [pointer type, isconst, initid, 3380 // linkage, alignment, section, visibility, threadlocal, 3381 // unnamed_addr, externally_initialized, dllstorageclass, 3382 // comdat] 3383 case bitc::MODULE_CODE_GLOBALVAR: { 3384 if (Record.size() < 6) 3385 return error("Invalid record"); 3386 Type *Ty = getTypeByID(Record[0]); 3387 if (!Ty) 3388 return error("Invalid record"); 3389 bool isConstant = Record[1] & 1; 3390 bool explicitType = Record[1] & 2; 3391 unsigned AddressSpace; 3392 if (explicitType) { 3393 AddressSpace = Record[1] >> 2; 3394 } else { 3395 if (!Ty->isPointerTy()) 3396 return error("Invalid type for value"); 3397 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3398 Ty = cast<PointerType>(Ty)->getElementType(); 3399 } 3400 3401 uint64_t RawLinkage = Record[3]; 3402 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3403 unsigned Alignment; 3404 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3405 return EC; 3406 std::string Section; 3407 if (Record[5]) { 3408 if (Record[5]-1 >= SectionTable.size()) 3409 return error("Invalid ID"); 3410 Section = SectionTable[Record[5]-1]; 3411 } 3412 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3413 // Local linkage must have default visibility. 3414 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3415 // FIXME: Change to an error if non-default in 4.0. 3416 Visibility = getDecodedVisibility(Record[6]); 3417 3418 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3419 if (Record.size() > 7) 3420 TLM = getDecodedThreadLocalMode(Record[7]); 3421 3422 bool UnnamedAddr = false; 3423 if (Record.size() > 8) 3424 UnnamedAddr = Record[8]; 3425 3426 bool ExternallyInitialized = false; 3427 if (Record.size() > 9) 3428 ExternallyInitialized = Record[9]; 3429 3430 GlobalVariable *NewGV = 3431 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3432 TLM, AddressSpace, ExternallyInitialized); 3433 NewGV->setAlignment(Alignment); 3434 if (!Section.empty()) 3435 NewGV->setSection(Section); 3436 NewGV->setVisibility(Visibility); 3437 NewGV->setUnnamedAddr(UnnamedAddr); 3438 3439 if (Record.size() > 10) 3440 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3441 else 3442 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3443 3444 ValueList.push_back(NewGV); 3445 3446 // Remember which value to use for the global initializer. 3447 if (unsigned InitID = Record[2]) 3448 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3449 3450 if (Record.size() > 11) { 3451 if (unsigned ComdatID = Record[11]) { 3452 if (ComdatID > ComdatList.size()) 3453 return error("Invalid global variable comdat ID"); 3454 NewGV->setComdat(ComdatList[ComdatID - 1]); 3455 } 3456 } else if (hasImplicitComdat(RawLinkage)) { 3457 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3458 } 3459 break; 3460 } 3461 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3462 // alignment, section, visibility, gc, unnamed_addr, 3463 // prologuedata, dllstorageclass, comdat, prefixdata] 3464 case bitc::MODULE_CODE_FUNCTION: { 3465 if (Record.size() < 8) 3466 return error("Invalid record"); 3467 Type *Ty = getTypeByID(Record[0]); 3468 if (!Ty) 3469 return error("Invalid record"); 3470 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3471 Ty = PTy->getElementType(); 3472 auto *FTy = dyn_cast<FunctionType>(Ty); 3473 if (!FTy) 3474 return error("Invalid type for value"); 3475 auto CC = static_cast<CallingConv::ID>(Record[1]); 3476 if (CC & ~CallingConv::MaxID) 3477 return error("Invalid calling convention ID"); 3478 3479 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3480 "", TheModule); 3481 3482 Func->setCallingConv(CC); 3483 bool isProto = Record[2]; 3484 uint64_t RawLinkage = Record[3]; 3485 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3486 Func->setAttributes(getAttributes(Record[4])); 3487 3488 unsigned Alignment; 3489 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3490 return EC; 3491 Func->setAlignment(Alignment); 3492 if (Record[6]) { 3493 if (Record[6]-1 >= SectionTable.size()) 3494 return error("Invalid ID"); 3495 Func->setSection(SectionTable[Record[6]-1]); 3496 } 3497 // Local linkage must have default visibility. 3498 if (!Func->hasLocalLinkage()) 3499 // FIXME: Change to an error if non-default in 4.0. 3500 Func->setVisibility(getDecodedVisibility(Record[7])); 3501 if (Record.size() > 8 && Record[8]) { 3502 if (Record[8]-1 >= GCTable.size()) 3503 return error("Invalid ID"); 3504 Func->setGC(GCTable[Record[8]-1].c_str()); 3505 } 3506 bool UnnamedAddr = false; 3507 if (Record.size() > 9) 3508 UnnamedAddr = Record[9]; 3509 Func->setUnnamedAddr(UnnamedAddr); 3510 if (Record.size() > 10 && Record[10] != 0) 3511 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3512 3513 if (Record.size() > 11) 3514 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3515 else 3516 upgradeDLLImportExportLinkage(Func, RawLinkage); 3517 3518 if (Record.size() > 12) { 3519 if (unsigned ComdatID = Record[12]) { 3520 if (ComdatID > ComdatList.size()) 3521 return error("Invalid function comdat ID"); 3522 Func->setComdat(ComdatList[ComdatID - 1]); 3523 } 3524 } else if (hasImplicitComdat(RawLinkage)) { 3525 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3526 } 3527 3528 if (Record.size() > 13 && Record[13] != 0) 3529 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3530 3531 if (Record.size() > 14 && Record[14] != 0) 3532 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3533 3534 ValueList.push_back(Func); 3535 3536 // If this is a function with a body, remember the prototype we are 3537 // creating now, so that we can match up the body with them later. 3538 if (!isProto) { 3539 Func->setIsMaterializable(true); 3540 FunctionsWithBodies.push_back(Func); 3541 DeferredFunctionInfo[Func] = 0; 3542 } 3543 break; 3544 } 3545 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3546 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3547 case bitc::MODULE_CODE_ALIAS: 3548 case bitc::MODULE_CODE_ALIAS_OLD: { 3549 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3550 if (Record.size() < (3 + (unsigned)NewRecord)) 3551 return error("Invalid record"); 3552 unsigned OpNum = 0; 3553 Type *Ty = getTypeByID(Record[OpNum++]); 3554 if (!Ty) 3555 return error("Invalid record"); 3556 3557 unsigned AddrSpace; 3558 if (!NewRecord) { 3559 auto *PTy = dyn_cast<PointerType>(Ty); 3560 if (!PTy) 3561 return error("Invalid type for value"); 3562 Ty = PTy->getElementType(); 3563 AddrSpace = PTy->getAddressSpace(); 3564 } else { 3565 AddrSpace = Record[OpNum++]; 3566 } 3567 3568 auto Val = Record[OpNum++]; 3569 auto Linkage = Record[OpNum++]; 3570 auto *NewGA = GlobalAlias::create( 3571 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3572 // Old bitcode files didn't have visibility field. 3573 // Local linkage must have default visibility. 3574 if (OpNum != Record.size()) { 3575 auto VisInd = OpNum++; 3576 if (!NewGA->hasLocalLinkage()) 3577 // FIXME: Change to an error if non-default in 4.0. 3578 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3579 } 3580 if (OpNum != Record.size()) 3581 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3582 else 3583 upgradeDLLImportExportLinkage(NewGA, Linkage); 3584 if (OpNum != Record.size()) 3585 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3586 if (OpNum != Record.size()) 3587 NewGA->setUnnamedAddr(Record[OpNum++]); 3588 ValueList.push_back(NewGA); 3589 AliasInits.push_back(std::make_pair(NewGA, Val)); 3590 break; 3591 } 3592 /// MODULE_CODE_PURGEVALS: [numvals] 3593 case bitc::MODULE_CODE_PURGEVALS: 3594 // Trim down the value list to the specified size. 3595 if (Record.size() < 1 || Record[0] > ValueList.size()) 3596 return error("Invalid record"); 3597 ValueList.shrinkTo(Record[0]); 3598 break; 3599 /// MODULE_CODE_VSTOFFSET: [offset] 3600 case bitc::MODULE_CODE_VSTOFFSET: 3601 if (Record.size() < 1) 3602 return error("Invalid record"); 3603 VSTOffset = Record[0]; 3604 break; 3605 } 3606 Record.clear(); 3607 } 3608 } 3609 3610 /// Helper to read the header common to all bitcode files. 3611 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3612 // Sniff for the signature. 3613 if (Stream.Read(8) != 'B' || 3614 Stream.Read(8) != 'C' || 3615 Stream.Read(4) != 0x0 || 3616 Stream.Read(4) != 0xC || 3617 Stream.Read(4) != 0xE || 3618 Stream.Read(4) != 0xD) 3619 return false; 3620 return true; 3621 } 3622 3623 std::error_code 3624 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3625 Module *M, bool ShouldLazyLoadMetadata) { 3626 TheModule = M; 3627 3628 if (std::error_code EC = initStream(std::move(Streamer))) 3629 return EC; 3630 3631 // Sniff for the signature. 3632 if (!hasValidBitcodeHeader(Stream)) 3633 return error("Invalid bitcode signature"); 3634 3635 // We expect a number of well-defined blocks, though we don't necessarily 3636 // need to understand them all. 3637 while (1) { 3638 if (Stream.AtEndOfStream()) { 3639 // We didn't really read a proper Module. 3640 return error("Malformed IR file"); 3641 } 3642 3643 BitstreamEntry Entry = 3644 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3645 3646 if (Entry.Kind != BitstreamEntry::SubBlock) 3647 return error("Malformed block"); 3648 3649 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3650 parseBitcodeVersion(); 3651 continue; 3652 } 3653 3654 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3655 return parseModule(0, ShouldLazyLoadMetadata); 3656 3657 if (Stream.SkipBlock()) 3658 return error("Invalid record"); 3659 } 3660 } 3661 3662 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3663 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3664 return error("Invalid record"); 3665 3666 SmallVector<uint64_t, 64> Record; 3667 3668 std::string Triple; 3669 // Read all the records for this module. 3670 while (1) { 3671 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3672 3673 switch (Entry.Kind) { 3674 case BitstreamEntry::SubBlock: // Handled for us already. 3675 case BitstreamEntry::Error: 3676 return error("Malformed block"); 3677 case BitstreamEntry::EndBlock: 3678 return Triple; 3679 case BitstreamEntry::Record: 3680 // The interesting case. 3681 break; 3682 } 3683 3684 // Read a record. 3685 switch (Stream.readRecord(Entry.ID, Record)) { 3686 default: break; // Default behavior, ignore unknown content. 3687 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3688 std::string S; 3689 if (convertToString(Record, 0, S)) 3690 return error("Invalid record"); 3691 Triple = S; 3692 break; 3693 } 3694 } 3695 Record.clear(); 3696 } 3697 llvm_unreachable("Exit infinite loop"); 3698 } 3699 3700 ErrorOr<std::string> BitcodeReader::parseTriple() { 3701 if (std::error_code EC = initStream(nullptr)) 3702 return EC; 3703 3704 // Sniff for the signature. 3705 if (!hasValidBitcodeHeader(Stream)) 3706 return error("Invalid bitcode signature"); 3707 3708 // We expect a number of well-defined blocks, though we don't necessarily 3709 // need to understand them all. 3710 while (1) { 3711 BitstreamEntry Entry = Stream.advance(); 3712 3713 switch (Entry.Kind) { 3714 case BitstreamEntry::Error: 3715 return error("Malformed block"); 3716 case BitstreamEntry::EndBlock: 3717 return std::error_code(); 3718 3719 case BitstreamEntry::SubBlock: 3720 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3721 return parseModuleTriple(); 3722 3723 // Ignore other sub-blocks. 3724 if (Stream.SkipBlock()) 3725 return error("Malformed block"); 3726 continue; 3727 3728 case BitstreamEntry::Record: 3729 Stream.skipRecord(Entry.ID); 3730 continue; 3731 } 3732 } 3733 } 3734 3735 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3736 if (std::error_code EC = initStream(nullptr)) 3737 return EC; 3738 3739 // Sniff for the signature. 3740 if (!hasValidBitcodeHeader(Stream)) 3741 return error("Invalid bitcode signature"); 3742 3743 // We expect a number of well-defined blocks, though we don't necessarily 3744 // need to understand them all. 3745 while (1) { 3746 BitstreamEntry Entry = Stream.advance(); 3747 switch (Entry.Kind) { 3748 case BitstreamEntry::Error: 3749 return error("Malformed block"); 3750 case BitstreamEntry::EndBlock: 3751 return std::error_code(); 3752 3753 case BitstreamEntry::SubBlock: 3754 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3755 if (std::error_code EC = parseBitcodeVersion()) 3756 return EC; 3757 return ProducerIdentification; 3758 } 3759 // Ignore other sub-blocks. 3760 if (Stream.SkipBlock()) 3761 return error("Malformed block"); 3762 continue; 3763 case BitstreamEntry::Record: 3764 Stream.skipRecord(Entry.ID); 3765 continue; 3766 } 3767 } 3768 } 3769 3770 /// Parse metadata attachments. 3771 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3772 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3773 return error("Invalid record"); 3774 3775 SmallVector<uint64_t, 64> Record; 3776 while (1) { 3777 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3778 3779 switch (Entry.Kind) { 3780 case BitstreamEntry::SubBlock: // Handled for us already. 3781 case BitstreamEntry::Error: 3782 return error("Malformed block"); 3783 case BitstreamEntry::EndBlock: 3784 return std::error_code(); 3785 case BitstreamEntry::Record: 3786 // The interesting case. 3787 break; 3788 } 3789 3790 // Read a metadata attachment record. 3791 Record.clear(); 3792 switch (Stream.readRecord(Entry.ID, Record)) { 3793 default: // Default behavior: ignore. 3794 break; 3795 case bitc::METADATA_ATTACHMENT: { 3796 unsigned RecordLength = Record.size(); 3797 if (Record.empty()) 3798 return error("Invalid record"); 3799 if (RecordLength % 2 == 0) { 3800 // A function attachment. 3801 for (unsigned I = 0; I != RecordLength; I += 2) { 3802 auto K = MDKindMap.find(Record[I]); 3803 if (K == MDKindMap.end()) 3804 return error("Invalid ID"); 3805 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3806 F.setMetadata(K->second, cast<MDNode>(MD)); 3807 } 3808 continue; 3809 } 3810 3811 // An instruction attachment. 3812 Instruction *Inst = InstructionList[Record[0]]; 3813 for (unsigned i = 1; i != RecordLength; i = i+2) { 3814 unsigned Kind = Record[i]; 3815 DenseMap<unsigned, unsigned>::iterator I = 3816 MDKindMap.find(Kind); 3817 if (I == MDKindMap.end()) 3818 return error("Invalid ID"); 3819 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3820 if (isa<LocalAsMetadata>(Node)) 3821 // Drop the attachment. This used to be legal, but there's no 3822 // upgrade path. 3823 break; 3824 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3825 if (I->second == LLVMContext::MD_tbaa) 3826 InstsWithTBAATag.push_back(Inst); 3827 } 3828 break; 3829 } 3830 } 3831 } 3832 } 3833 3834 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3835 Type *ValType, Type *PtrType) { 3836 if (!isa<PointerType>(PtrType)) 3837 return error(DH, "Load/Store operand is not a pointer type"); 3838 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3839 3840 if (ValType && ValType != ElemType) 3841 return error(DH, "Explicit load/store type does not match pointee type of " 3842 "pointer operand"); 3843 if (!PointerType::isLoadableOrStorableType(ElemType)) 3844 return error(DH, "Cannot load/store from pointer"); 3845 return std::error_code(); 3846 } 3847 3848 /// Lazily parse the specified function body block. 3849 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3850 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3851 return error("Invalid record"); 3852 3853 InstructionList.clear(); 3854 unsigned ModuleValueListSize = ValueList.size(); 3855 unsigned ModuleMDValueListSize = MDValueList.size(); 3856 3857 // Add all the function arguments to the value table. 3858 for (Argument &I : F->args()) 3859 ValueList.push_back(&I); 3860 3861 unsigned NextValueNo = ValueList.size(); 3862 BasicBlock *CurBB = nullptr; 3863 unsigned CurBBNo = 0; 3864 3865 DebugLoc LastLoc; 3866 auto getLastInstruction = [&]() -> Instruction * { 3867 if (CurBB && !CurBB->empty()) 3868 return &CurBB->back(); 3869 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3870 !FunctionBBs[CurBBNo - 1]->empty()) 3871 return &FunctionBBs[CurBBNo - 1]->back(); 3872 return nullptr; 3873 }; 3874 3875 std::vector<OperandBundleDef> OperandBundles; 3876 3877 // Read all the records. 3878 SmallVector<uint64_t, 64> Record; 3879 while (1) { 3880 BitstreamEntry Entry = Stream.advance(); 3881 3882 switch (Entry.Kind) { 3883 case BitstreamEntry::Error: 3884 return error("Malformed block"); 3885 case BitstreamEntry::EndBlock: 3886 goto OutOfRecordLoop; 3887 3888 case BitstreamEntry::SubBlock: 3889 switch (Entry.ID) { 3890 default: // Skip unknown content. 3891 if (Stream.SkipBlock()) 3892 return error("Invalid record"); 3893 break; 3894 case bitc::CONSTANTS_BLOCK_ID: 3895 if (std::error_code EC = parseConstants()) 3896 return EC; 3897 NextValueNo = ValueList.size(); 3898 break; 3899 case bitc::VALUE_SYMTAB_BLOCK_ID: 3900 if (std::error_code EC = parseValueSymbolTable()) 3901 return EC; 3902 break; 3903 case bitc::METADATA_ATTACHMENT_ID: 3904 if (std::error_code EC = parseMetadataAttachment(*F)) 3905 return EC; 3906 break; 3907 case bitc::METADATA_BLOCK_ID: 3908 if (std::error_code EC = parseMetadata()) 3909 return EC; 3910 break; 3911 case bitc::USELIST_BLOCK_ID: 3912 if (std::error_code EC = parseUseLists()) 3913 return EC; 3914 break; 3915 } 3916 continue; 3917 3918 case BitstreamEntry::Record: 3919 // The interesting case. 3920 break; 3921 } 3922 3923 // Read a record. 3924 Record.clear(); 3925 Instruction *I = nullptr; 3926 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3927 switch (BitCode) { 3928 default: // Default behavior: reject 3929 return error("Invalid value"); 3930 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3931 if (Record.size() < 1 || Record[0] == 0) 3932 return error("Invalid record"); 3933 // Create all the basic blocks for the function. 3934 FunctionBBs.resize(Record[0]); 3935 3936 // See if anything took the address of blocks in this function. 3937 auto BBFRI = BasicBlockFwdRefs.find(F); 3938 if (BBFRI == BasicBlockFwdRefs.end()) { 3939 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3940 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3941 } else { 3942 auto &BBRefs = BBFRI->second; 3943 // Check for invalid basic block references. 3944 if (BBRefs.size() > FunctionBBs.size()) 3945 return error("Invalid ID"); 3946 assert(!BBRefs.empty() && "Unexpected empty array"); 3947 assert(!BBRefs.front() && "Invalid reference to entry block"); 3948 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3949 ++I) 3950 if (I < RE && BBRefs[I]) { 3951 BBRefs[I]->insertInto(F); 3952 FunctionBBs[I] = BBRefs[I]; 3953 } else { 3954 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3955 } 3956 3957 // Erase from the table. 3958 BasicBlockFwdRefs.erase(BBFRI); 3959 } 3960 3961 CurBB = FunctionBBs[0]; 3962 continue; 3963 } 3964 3965 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3966 // This record indicates that the last instruction is at the same 3967 // location as the previous instruction with a location. 3968 I = getLastInstruction(); 3969 3970 if (!I) 3971 return error("Invalid record"); 3972 I->setDebugLoc(LastLoc); 3973 I = nullptr; 3974 continue; 3975 3976 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3977 I = getLastInstruction(); 3978 if (!I || Record.size() < 4) 3979 return error("Invalid record"); 3980 3981 unsigned Line = Record[0], Col = Record[1]; 3982 unsigned ScopeID = Record[2], IAID = Record[3]; 3983 3984 MDNode *Scope = nullptr, *IA = nullptr; 3985 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3986 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3987 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3988 I->setDebugLoc(LastLoc); 3989 I = nullptr; 3990 continue; 3991 } 3992 3993 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3994 unsigned OpNum = 0; 3995 Value *LHS, *RHS; 3996 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3997 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3998 OpNum+1 > Record.size()) 3999 return error("Invalid record"); 4000 4001 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4002 if (Opc == -1) 4003 return error("Invalid record"); 4004 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4005 InstructionList.push_back(I); 4006 if (OpNum < Record.size()) { 4007 if (Opc == Instruction::Add || 4008 Opc == Instruction::Sub || 4009 Opc == Instruction::Mul || 4010 Opc == Instruction::Shl) { 4011 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4012 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4013 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4014 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4015 } else if (Opc == Instruction::SDiv || 4016 Opc == Instruction::UDiv || 4017 Opc == Instruction::LShr || 4018 Opc == Instruction::AShr) { 4019 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4020 cast<BinaryOperator>(I)->setIsExact(true); 4021 } else if (isa<FPMathOperator>(I)) { 4022 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4023 if (FMF.any()) 4024 I->setFastMathFlags(FMF); 4025 } 4026 4027 } 4028 break; 4029 } 4030 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4031 unsigned OpNum = 0; 4032 Value *Op; 4033 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4034 OpNum+2 != Record.size()) 4035 return error("Invalid record"); 4036 4037 Type *ResTy = getTypeByID(Record[OpNum]); 4038 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4039 if (Opc == -1 || !ResTy) 4040 return error("Invalid record"); 4041 Instruction *Temp = nullptr; 4042 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4043 if (Temp) { 4044 InstructionList.push_back(Temp); 4045 CurBB->getInstList().push_back(Temp); 4046 } 4047 } else { 4048 auto CastOp = (Instruction::CastOps)Opc; 4049 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4050 return error("Invalid cast"); 4051 I = CastInst::Create(CastOp, Op, ResTy); 4052 } 4053 InstructionList.push_back(I); 4054 break; 4055 } 4056 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4057 case bitc::FUNC_CODE_INST_GEP_OLD: 4058 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4059 unsigned OpNum = 0; 4060 4061 Type *Ty; 4062 bool InBounds; 4063 4064 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4065 InBounds = Record[OpNum++]; 4066 Ty = getTypeByID(Record[OpNum++]); 4067 } else { 4068 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4069 Ty = nullptr; 4070 } 4071 4072 Value *BasePtr; 4073 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4074 return error("Invalid record"); 4075 4076 if (!Ty) 4077 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4078 ->getElementType(); 4079 else if (Ty != 4080 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4081 ->getElementType()) 4082 return error( 4083 "Explicit gep type does not match pointee type of pointer operand"); 4084 4085 SmallVector<Value*, 16> GEPIdx; 4086 while (OpNum != Record.size()) { 4087 Value *Op; 4088 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4089 return error("Invalid record"); 4090 GEPIdx.push_back(Op); 4091 } 4092 4093 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4094 4095 InstructionList.push_back(I); 4096 if (InBounds) 4097 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4098 break; 4099 } 4100 4101 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4102 // EXTRACTVAL: [opty, opval, n x indices] 4103 unsigned OpNum = 0; 4104 Value *Agg; 4105 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4106 return error("Invalid record"); 4107 4108 unsigned RecSize = Record.size(); 4109 if (OpNum == RecSize) 4110 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4111 4112 SmallVector<unsigned, 4> EXTRACTVALIdx; 4113 Type *CurTy = Agg->getType(); 4114 for (; OpNum != RecSize; ++OpNum) { 4115 bool IsArray = CurTy->isArrayTy(); 4116 bool IsStruct = CurTy->isStructTy(); 4117 uint64_t Index = Record[OpNum]; 4118 4119 if (!IsStruct && !IsArray) 4120 return error("EXTRACTVAL: Invalid type"); 4121 if ((unsigned)Index != Index) 4122 return error("Invalid value"); 4123 if (IsStruct && Index >= CurTy->subtypes().size()) 4124 return error("EXTRACTVAL: Invalid struct index"); 4125 if (IsArray && Index >= CurTy->getArrayNumElements()) 4126 return error("EXTRACTVAL: Invalid array index"); 4127 EXTRACTVALIdx.push_back((unsigned)Index); 4128 4129 if (IsStruct) 4130 CurTy = CurTy->subtypes()[Index]; 4131 else 4132 CurTy = CurTy->subtypes()[0]; 4133 } 4134 4135 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4136 InstructionList.push_back(I); 4137 break; 4138 } 4139 4140 case bitc::FUNC_CODE_INST_INSERTVAL: { 4141 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4142 unsigned OpNum = 0; 4143 Value *Agg; 4144 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4145 return error("Invalid record"); 4146 Value *Val; 4147 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4148 return error("Invalid record"); 4149 4150 unsigned RecSize = Record.size(); 4151 if (OpNum == RecSize) 4152 return error("INSERTVAL: Invalid instruction with 0 indices"); 4153 4154 SmallVector<unsigned, 4> INSERTVALIdx; 4155 Type *CurTy = Agg->getType(); 4156 for (; OpNum != RecSize; ++OpNum) { 4157 bool IsArray = CurTy->isArrayTy(); 4158 bool IsStruct = CurTy->isStructTy(); 4159 uint64_t Index = Record[OpNum]; 4160 4161 if (!IsStruct && !IsArray) 4162 return error("INSERTVAL: Invalid type"); 4163 if ((unsigned)Index != Index) 4164 return error("Invalid value"); 4165 if (IsStruct && Index >= CurTy->subtypes().size()) 4166 return error("INSERTVAL: Invalid struct index"); 4167 if (IsArray && Index >= CurTy->getArrayNumElements()) 4168 return error("INSERTVAL: Invalid array index"); 4169 4170 INSERTVALIdx.push_back((unsigned)Index); 4171 if (IsStruct) 4172 CurTy = CurTy->subtypes()[Index]; 4173 else 4174 CurTy = CurTy->subtypes()[0]; 4175 } 4176 4177 if (CurTy != Val->getType()) 4178 return error("Inserted value type doesn't match aggregate type"); 4179 4180 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4181 InstructionList.push_back(I); 4182 break; 4183 } 4184 4185 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4186 // obsolete form of select 4187 // handles select i1 ... in old bitcode 4188 unsigned OpNum = 0; 4189 Value *TrueVal, *FalseVal, *Cond; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4191 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4192 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4193 return error("Invalid record"); 4194 4195 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4196 InstructionList.push_back(I); 4197 break; 4198 } 4199 4200 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4201 // new form of select 4202 // handles select i1 or select [N x i1] 4203 unsigned OpNum = 0; 4204 Value *TrueVal, *FalseVal, *Cond; 4205 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4206 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4207 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4208 return error("Invalid record"); 4209 4210 // select condition can be either i1 or [N x i1] 4211 if (VectorType* vector_type = 4212 dyn_cast<VectorType>(Cond->getType())) { 4213 // expect <n x i1> 4214 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4215 return error("Invalid type for value"); 4216 } else { 4217 // expect i1 4218 if (Cond->getType() != Type::getInt1Ty(Context)) 4219 return error("Invalid type for value"); 4220 } 4221 4222 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4223 InstructionList.push_back(I); 4224 break; 4225 } 4226 4227 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4228 unsigned OpNum = 0; 4229 Value *Vec, *Idx; 4230 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4231 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4232 return error("Invalid record"); 4233 if (!Vec->getType()->isVectorTy()) 4234 return error("Invalid type for value"); 4235 I = ExtractElementInst::Create(Vec, Idx); 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 4240 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4241 unsigned OpNum = 0; 4242 Value *Vec, *Elt, *Idx; 4243 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4244 return error("Invalid record"); 4245 if (!Vec->getType()->isVectorTy()) 4246 return error("Invalid type for value"); 4247 if (popValue(Record, OpNum, NextValueNo, 4248 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4249 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4250 return error("Invalid record"); 4251 I = InsertElementInst::Create(Vec, Elt, Idx); 4252 InstructionList.push_back(I); 4253 break; 4254 } 4255 4256 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4257 unsigned OpNum = 0; 4258 Value *Vec1, *Vec2, *Mask; 4259 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4260 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4261 return error("Invalid record"); 4262 4263 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4264 return error("Invalid record"); 4265 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4266 return error("Invalid type for value"); 4267 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4268 InstructionList.push_back(I); 4269 break; 4270 } 4271 4272 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4273 // Old form of ICmp/FCmp returning bool 4274 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4275 // both legal on vectors but had different behaviour. 4276 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4277 // FCmp/ICmp returning bool or vector of bool 4278 4279 unsigned OpNum = 0; 4280 Value *LHS, *RHS; 4281 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4282 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4283 return error("Invalid record"); 4284 4285 unsigned PredVal = Record[OpNum]; 4286 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4287 FastMathFlags FMF; 4288 if (IsFP && Record.size() > OpNum+1) 4289 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4290 4291 if (OpNum+1 != Record.size()) 4292 return error("Invalid record"); 4293 4294 if (LHS->getType()->isFPOrFPVectorTy()) 4295 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4296 else 4297 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4298 4299 if (FMF.any()) 4300 I->setFastMathFlags(FMF); 4301 InstructionList.push_back(I); 4302 break; 4303 } 4304 4305 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4306 { 4307 unsigned Size = Record.size(); 4308 if (Size == 0) { 4309 I = ReturnInst::Create(Context); 4310 InstructionList.push_back(I); 4311 break; 4312 } 4313 4314 unsigned OpNum = 0; 4315 Value *Op = nullptr; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4317 return error("Invalid record"); 4318 if (OpNum != Record.size()) 4319 return error("Invalid record"); 4320 4321 I = ReturnInst::Create(Context, Op); 4322 InstructionList.push_back(I); 4323 break; 4324 } 4325 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4326 if (Record.size() != 1 && Record.size() != 3) 4327 return error("Invalid record"); 4328 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4329 if (!TrueDest) 4330 return error("Invalid record"); 4331 4332 if (Record.size() == 1) { 4333 I = BranchInst::Create(TrueDest); 4334 InstructionList.push_back(I); 4335 } 4336 else { 4337 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4338 Value *Cond = getValue(Record, 2, NextValueNo, 4339 Type::getInt1Ty(Context)); 4340 if (!FalseDest || !Cond) 4341 return error("Invalid record"); 4342 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4343 InstructionList.push_back(I); 4344 } 4345 break; 4346 } 4347 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4348 if (Record.size() != 1 && Record.size() != 2) 4349 return error("Invalid record"); 4350 unsigned Idx = 0; 4351 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4352 Type::getTokenTy(Context), OC_CleanupPad); 4353 if (!CleanupPad) 4354 return error("Invalid record"); 4355 BasicBlock *UnwindDest = nullptr; 4356 if (Record.size() == 2) { 4357 UnwindDest = getBasicBlock(Record[Idx++]); 4358 if (!UnwindDest) 4359 return error("Invalid record"); 4360 } 4361 4362 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4363 UnwindDest); 4364 InstructionList.push_back(I); 4365 break; 4366 } 4367 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4368 if (Record.size() != 2) 4369 return error("Invalid record"); 4370 unsigned Idx = 0; 4371 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4372 Type::getTokenTy(Context), OC_CatchPad); 4373 if (!CatchPad) 4374 return error("Invalid record"); 4375 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4376 if (!BB) 4377 return error("Invalid record"); 4378 4379 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4380 InstructionList.push_back(I); 4381 break; 4382 } 4383 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4384 if (Record.size() < 3) 4385 return error("Invalid record"); 4386 unsigned Idx = 0; 4387 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4388 if (!NormalBB) 4389 return error("Invalid record"); 4390 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4391 if (!UnwindBB) 4392 return error("Invalid record"); 4393 unsigned NumArgOperands = Record[Idx++]; 4394 SmallVector<Value *, 2> Args; 4395 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4396 Value *Val; 4397 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4398 return error("Invalid record"); 4399 Args.push_back(Val); 4400 } 4401 if (Record.size() != Idx) 4402 return error("Invalid record"); 4403 4404 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4405 InstructionList.push_back(I); 4406 break; 4407 } 4408 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4409 if (Record.size() < 1) 4410 return error("Invalid record"); 4411 unsigned Idx = 0; 4412 bool HasUnwindDest = !!Record[Idx++]; 4413 BasicBlock *UnwindDest = nullptr; 4414 if (HasUnwindDest) { 4415 if (Idx == Record.size()) 4416 return error("Invalid record"); 4417 UnwindDest = getBasicBlock(Record[Idx++]); 4418 if (!UnwindDest) 4419 return error("Invalid record"); 4420 } 4421 unsigned NumArgOperands = Record[Idx++]; 4422 SmallVector<Value *, 2> Args; 4423 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4424 Value *Val; 4425 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4426 return error("Invalid record"); 4427 Args.push_back(Val); 4428 } 4429 if (Record.size() != Idx) 4430 return error("Invalid record"); 4431 4432 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4437 if (Record.size() < 1) 4438 return error("Invalid record"); 4439 unsigned Idx = 0; 4440 unsigned NumArgOperands = Record[Idx++]; 4441 SmallVector<Value *, 2> Args; 4442 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4443 Value *Val; 4444 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4445 return error("Invalid record"); 4446 Args.push_back(Val); 4447 } 4448 if (Record.size() != Idx) 4449 return error("Invalid record"); 4450 4451 I = CleanupPadInst::Create(Context, Args); 4452 InstructionList.push_back(I); 4453 break; 4454 } 4455 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4456 if (Record.size() > 1) 4457 return error("Invalid record"); 4458 BasicBlock *BB = nullptr; 4459 if (Record.size() == 1) { 4460 BB = getBasicBlock(Record[0]); 4461 if (!BB) 4462 return error("Invalid record"); 4463 } 4464 I = CatchEndPadInst::Create(Context, BB); 4465 InstructionList.push_back(I); 4466 break; 4467 } 4468 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4469 if (Record.size() != 1 && Record.size() != 2) 4470 return error("Invalid record"); 4471 unsigned Idx = 0; 4472 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4473 Type::getTokenTy(Context), OC_CleanupPad); 4474 if (!CleanupPad) 4475 return error("Invalid record"); 4476 4477 BasicBlock *BB = nullptr; 4478 if (Record.size() == 2) { 4479 BB = getBasicBlock(Record[Idx++]); 4480 if (!BB) 4481 return error("Invalid record"); 4482 } 4483 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4484 InstructionList.push_back(I); 4485 break; 4486 } 4487 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4488 // Check magic 4489 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4490 // "New" SwitchInst format with case ranges. The changes to write this 4491 // format were reverted but we still recognize bitcode that uses it. 4492 // Hopefully someday we will have support for case ranges and can use 4493 // this format again. 4494 4495 Type *OpTy = getTypeByID(Record[1]); 4496 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4497 4498 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4499 BasicBlock *Default = getBasicBlock(Record[3]); 4500 if (!OpTy || !Cond || !Default) 4501 return error("Invalid record"); 4502 4503 unsigned NumCases = Record[4]; 4504 4505 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4506 InstructionList.push_back(SI); 4507 4508 unsigned CurIdx = 5; 4509 for (unsigned i = 0; i != NumCases; ++i) { 4510 SmallVector<ConstantInt*, 1> CaseVals; 4511 unsigned NumItems = Record[CurIdx++]; 4512 for (unsigned ci = 0; ci != NumItems; ++ci) { 4513 bool isSingleNumber = Record[CurIdx++]; 4514 4515 APInt Low; 4516 unsigned ActiveWords = 1; 4517 if (ValueBitWidth > 64) 4518 ActiveWords = Record[CurIdx++]; 4519 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4520 ValueBitWidth); 4521 CurIdx += ActiveWords; 4522 4523 if (!isSingleNumber) { 4524 ActiveWords = 1; 4525 if (ValueBitWidth > 64) 4526 ActiveWords = Record[CurIdx++]; 4527 APInt High = readWideAPInt( 4528 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4529 CurIdx += ActiveWords; 4530 4531 // FIXME: It is not clear whether values in the range should be 4532 // compared as signed or unsigned values. The partially 4533 // implemented changes that used this format in the past used 4534 // unsigned comparisons. 4535 for ( ; Low.ule(High); ++Low) 4536 CaseVals.push_back(ConstantInt::get(Context, Low)); 4537 } else 4538 CaseVals.push_back(ConstantInt::get(Context, Low)); 4539 } 4540 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4541 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4542 cve = CaseVals.end(); cvi != cve; ++cvi) 4543 SI->addCase(*cvi, DestBB); 4544 } 4545 I = SI; 4546 break; 4547 } 4548 4549 // Old SwitchInst format without case ranges. 4550 4551 if (Record.size() < 3 || (Record.size() & 1) == 0) 4552 return error("Invalid record"); 4553 Type *OpTy = getTypeByID(Record[0]); 4554 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4555 BasicBlock *Default = getBasicBlock(Record[2]); 4556 if (!OpTy || !Cond || !Default) 4557 return error("Invalid record"); 4558 unsigned NumCases = (Record.size()-3)/2; 4559 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4560 InstructionList.push_back(SI); 4561 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4562 ConstantInt *CaseVal = 4563 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4564 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4565 if (!CaseVal || !DestBB) { 4566 delete SI; 4567 return error("Invalid record"); 4568 } 4569 SI->addCase(CaseVal, DestBB); 4570 } 4571 I = SI; 4572 break; 4573 } 4574 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4575 if (Record.size() < 2) 4576 return error("Invalid record"); 4577 Type *OpTy = getTypeByID(Record[0]); 4578 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4579 if (!OpTy || !Address) 4580 return error("Invalid record"); 4581 unsigned NumDests = Record.size()-2; 4582 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4583 InstructionList.push_back(IBI); 4584 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4585 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4586 IBI->addDestination(DestBB); 4587 } else { 4588 delete IBI; 4589 return error("Invalid record"); 4590 } 4591 } 4592 I = IBI; 4593 break; 4594 } 4595 4596 case bitc::FUNC_CODE_INST_INVOKE: { 4597 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4598 if (Record.size() < 4) 4599 return error("Invalid record"); 4600 unsigned OpNum = 0; 4601 AttributeSet PAL = getAttributes(Record[OpNum++]); 4602 unsigned CCInfo = Record[OpNum++]; 4603 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4604 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4605 4606 FunctionType *FTy = nullptr; 4607 if (CCInfo >> 13 & 1 && 4608 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4609 return error("Explicit invoke type is not a function type"); 4610 4611 Value *Callee; 4612 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4613 return error("Invalid record"); 4614 4615 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4616 if (!CalleeTy) 4617 return error("Callee is not a pointer"); 4618 if (!FTy) { 4619 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4620 if (!FTy) 4621 return error("Callee is not of pointer to function type"); 4622 } else if (CalleeTy->getElementType() != FTy) 4623 return error("Explicit invoke type does not match pointee type of " 4624 "callee operand"); 4625 if (Record.size() < FTy->getNumParams() + OpNum) 4626 return error("Insufficient operands to call"); 4627 4628 SmallVector<Value*, 16> Ops; 4629 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4630 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4631 FTy->getParamType(i))); 4632 if (!Ops.back()) 4633 return error("Invalid record"); 4634 } 4635 4636 if (!FTy->isVarArg()) { 4637 if (Record.size() != OpNum) 4638 return error("Invalid record"); 4639 } else { 4640 // Read type/value pairs for varargs params. 4641 while (OpNum != Record.size()) { 4642 Value *Op; 4643 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4644 return error("Invalid record"); 4645 Ops.push_back(Op); 4646 } 4647 } 4648 4649 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4650 OperandBundles.clear(); 4651 InstructionList.push_back(I); 4652 cast<InvokeInst>(I)->setCallingConv( 4653 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4654 cast<InvokeInst>(I)->setAttributes(PAL); 4655 break; 4656 } 4657 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4658 unsigned Idx = 0; 4659 Value *Val = nullptr; 4660 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4661 return error("Invalid record"); 4662 I = ResumeInst::Create(Val); 4663 InstructionList.push_back(I); 4664 break; 4665 } 4666 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4667 I = new UnreachableInst(Context); 4668 InstructionList.push_back(I); 4669 break; 4670 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4671 if (Record.size() < 1 || ((Record.size()-1)&1)) 4672 return error("Invalid record"); 4673 Type *Ty = getTypeByID(Record[0]); 4674 if (!Ty) 4675 return error("Invalid record"); 4676 4677 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4678 InstructionList.push_back(PN); 4679 4680 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4681 Value *V; 4682 // With the new function encoding, it is possible that operands have 4683 // negative IDs (for forward references). Use a signed VBR 4684 // representation to keep the encoding small. 4685 if (UseRelativeIDs) 4686 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4687 else 4688 V = getValue(Record, 1+i, NextValueNo, Ty); 4689 BasicBlock *BB = getBasicBlock(Record[2+i]); 4690 if (!V || !BB) 4691 return error("Invalid record"); 4692 PN->addIncoming(V, BB); 4693 } 4694 I = PN; 4695 break; 4696 } 4697 4698 case bitc::FUNC_CODE_INST_LANDINGPAD: 4699 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4700 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4701 unsigned Idx = 0; 4702 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4703 if (Record.size() < 3) 4704 return error("Invalid record"); 4705 } else { 4706 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4707 if (Record.size() < 4) 4708 return error("Invalid record"); 4709 } 4710 Type *Ty = getTypeByID(Record[Idx++]); 4711 if (!Ty) 4712 return error("Invalid record"); 4713 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4714 Value *PersFn = nullptr; 4715 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4716 return error("Invalid record"); 4717 4718 if (!F->hasPersonalityFn()) 4719 F->setPersonalityFn(cast<Constant>(PersFn)); 4720 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4721 return error("Personality function mismatch"); 4722 } 4723 4724 bool IsCleanup = !!Record[Idx++]; 4725 unsigned NumClauses = Record[Idx++]; 4726 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4727 LP->setCleanup(IsCleanup); 4728 for (unsigned J = 0; J != NumClauses; ++J) { 4729 LandingPadInst::ClauseType CT = 4730 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4731 Value *Val; 4732 4733 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4734 delete LP; 4735 return error("Invalid record"); 4736 } 4737 4738 assert((CT != LandingPadInst::Catch || 4739 !isa<ArrayType>(Val->getType())) && 4740 "Catch clause has a invalid type!"); 4741 assert((CT != LandingPadInst::Filter || 4742 isa<ArrayType>(Val->getType())) && 4743 "Filter clause has invalid type!"); 4744 LP->addClause(cast<Constant>(Val)); 4745 } 4746 4747 I = LP; 4748 InstructionList.push_back(I); 4749 break; 4750 } 4751 4752 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4753 if (Record.size() != 4) 4754 return error("Invalid record"); 4755 uint64_t AlignRecord = Record[3]; 4756 const uint64_t InAllocaMask = uint64_t(1) << 5; 4757 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4758 // Reserve bit 7 for SwiftError flag. 4759 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4760 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4761 bool InAlloca = AlignRecord & InAllocaMask; 4762 Type *Ty = getTypeByID(Record[0]); 4763 if ((AlignRecord & ExplicitTypeMask) == 0) { 4764 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4765 if (!PTy) 4766 return error("Old-style alloca with a non-pointer type"); 4767 Ty = PTy->getElementType(); 4768 } 4769 Type *OpTy = getTypeByID(Record[1]); 4770 Value *Size = getFnValueByID(Record[2], OpTy); 4771 unsigned Align; 4772 if (std::error_code EC = 4773 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4774 return EC; 4775 } 4776 if (!Ty || !Size) 4777 return error("Invalid record"); 4778 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4779 AI->setUsedWithInAlloca(InAlloca); 4780 I = AI; 4781 InstructionList.push_back(I); 4782 break; 4783 } 4784 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4785 unsigned OpNum = 0; 4786 Value *Op; 4787 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4788 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4789 return error("Invalid record"); 4790 4791 Type *Ty = nullptr; 4792 if (OpNum + 3 == Record.size()) 4793 Ty = getTypeByID(Record[OpNum++]); 4794 if (std::error_code EC = 4795 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4796 return EC; 4797 if (!Ty) 4798 Ty = cast<PointerType>(Op->getType())->getElementType(); 4799 4800 unsigned Align; 4801 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4802 return EC; 4803 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4804 4805 InstructionList.push_back(I); 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4809 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4810 unsigned OpNum = 0; 4811 Value *Op; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4813 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4814 return error("Invalid record"); 4815 4816 Type *Ty = nullptr; 4817 if (OpNum + 5 == Record.size()) 4818 Ty = getTypeByID(Record[OpNum++]); 4819 if (std::error_code EC = 4820 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4821 return EC; 4822 if (!Ty) 4823 Ty = cast<PointerType>(Op->getType())->getElementType(); 4824 4825 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4826 if (Ordering == NotAtomic || Ordering == Release || 4827 Ordering == AcquireRelease) 4828 return error("Invalid record"); 4829 if (Ordering != NotAtomic && Record[OpNum] == 0) 4830 return error("Invalid record"); 4831 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4832 4833 unsigned Align; 4834 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4835 return EC; 4836 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4837 4838 InstructionList.push_back(I); 4839 break; 4840 } 4841 case bitc::FUNC_CODE_INST_STORE: 4842 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4843 unsigned OpNum = 0; 4844 Value *Val, *Ptr; 4845 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4846 (BitCode == bitc::FUNC_CODE_INST_STORE 4847 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4848 : popValue(Record, OpNum, NextValueNo, 4849 cast<PointerType>(Ptr->getType())->getElementType(), 4850 Val)) || 4851 OpNum + 2 != Record.size()) 4852 return error("Invalid record"); 4853 4854 if (std::error_code EC = typeCheckLoadStoreInst( 4855 DiagnosticHandler, Val->getType(), Ptr->getType())) 4856 return EC; 4857 unsigned Align; 4858 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4859 return EC; 4860 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4861 InstructionList.push_back(I); 4862 break; 4863 } 4864 case bitc::FUNC_CODE_INST_STOREATOMIC: 4865 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4866 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4867 unsigned OpNum = 0; 4868 Value *Val, *Ptr; 4869 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4870 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4871 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4872 : popValue(Record, OpNum, NextValueNo, 4873 cast<PointerType>(Ptr->getType())->getElementType(), 4874 Val)) || 4875 OpNum + 4 != Record.size()) 4876 return error("Invalid record"); 4877 4878 if (std::error_code EC = typeCheckLoadStoreInst( 4879 DiagnosticHandler, Val->getType(), Ptr->getType())) 4880 return EC; 4881 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4882 if (Ordering == NotAtomic || Ordering == Acquire || 4883 Ordering == AcquireRelease) 4884 return error("Invalid record"); 4885 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4886 if (Ordering != NotAtomic && Record[OpNum] == 0) 4887 return error("Invalid record"); 4888 4889 unsigned Align; 4890 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4891 return EC; 4892 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4893 InstructionList.push_back(I); 4894 break; 4895 } 4896 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4897 case bitc::FUNC_CODE_INST_CMPXCHG: { 4898 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4899 // failureordering?, isweak?] 4900 unsigned OpNum = 0; 4901 Value *Ptr, *Cmp, *New; 4902 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4903 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4904 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4905 : popValue(Record, OpNum, NextValueNo, 4906 cast<PointerType>(Ptr->getType())->getElementType(), 4907 Cmp)) || 4908 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4909 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4910 return error("Invalid record"); 4911 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4912 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4913 return error("Invalid record"); 4914 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4915 4916 if (std::error_code EC = typeCheckLoadStoreInst( 4917 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4918 return EC; 4919 AtomicOrdering FailureOrdering; 4920 if (Record.size() < 7) 4921 FailureOrdering = 4922 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4923 else 4924 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4925 4926 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4927 SynchScope); 4928 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4929 4930 if (Record.size() < 8) { 4931 // Before weak cmpxchgs existed, the instruction simply returned the 4932 // value loaded from memory, so bitcode files from that era will be 4933 // expecting the first component of a modern cmpxchg. 4934 CurBB->getInstList().push_back(I); 4935 I = ExtractValueInst::Create(I, 0); 4936 } else { 4937 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4938 } 4939 4940 InstructionList.push_back(I); 4941 break; 4942 } 4943 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4944 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4945 unsigned OpNum = 0; 4946 Value *Ptr, *Val; 4947 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4948 popValue(Record, OpNum, NextValueNo, 4949 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4950 OpNum+4 != Record.size()) 4951 return error("Invalid record"); 4952 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4953 if (Operation < AtomicRMWInst::FIRST_BINOP || 4954 Operation > AtomicRMWInst::LAST_BINOP) 4955 return error("Invalid record"); 4956 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4957 if (Ordering == NotAtomic || Ordering == Unordered) 4958 return error("Invalid record"); 4959 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4960 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4961 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4962 InstructionList.push_back(I); 4963 break; 4964 } 4965 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4966 if (2 != Record.size()) 4967 return error("Invalid record"); 4968 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4969 if (Ordering == NotAtomic || Ordering == Unordered || 4970 Ordering == Monotonic) 4971 return error("Invalid record"); 4972 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4973 I = new FenceInst(Context, Ordering, SynchScope); 4974 InstructionList.push_back(I); 4975 break; 4976 } 4977 case bitc::FUNC_CODE_INST_CALL: { 4978 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4979 if (Record.size() < 3) 4980 return error("Invalid record"); 4981 4982 unsigned OpNum = 0; 4983 AttributeSet PAL = getAttributes(Record[OpNum++]); 4984 unsigned CCInfo = Record[OpNum++]; 4985 4986 FunctionType *FTy = nullptr; 4987 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4988 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4989 return error("Explicit call type is not a function type"); 4990 4991 Value *Callee; 4992 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4993 return error("Invalid record"); 4994 4995 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4996 if (!OpTy) 4997 return error("Callee is not a pointer type"); 4998 if (!FTy) { 4999 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5000 if (!FTy) 5001 return error("Callee is not of pointer to function type"); 5002 } else if (OpTy->getElementType() != FTy) 5003 return error("Explicit call type does not match pointee type of " 5004 "callee operand"); 5005 if (Record.size() < FTy->getNumParams() + OpNum) 5006 return error("Insufficient operands to call"); 5007 5008 SmallVector<Value*, 16> Args; 5009 // Read the fixed params. 5010 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5011 if (FTy->getParamType(i)->isLabelTy()) 5012 Args.push_back(getBasicBlock(Record[OpNum])); 5013 else 5014 Args.push_back(getValue(Record, OpNum, NextValueNo, 5015 FTy->getParamType(i))); 5016 if (!Args.back()) 5017 return error("Invalid record"); 5018 } 5019 5020 // Read type/value pairs for varargs params. 5021 if (!FTy->isVarArg()) { 5022 if (OpNum != Record.size()) 5023 return error("Invalid record"); 5024 } else { 5025 while (OpNum != Record.size()) { 5026 Value *Op; 5027 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5028 return error("Invalid record"); 5029 Args.push_back(Op); 5030 } 5031 } 5032 5033 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5034 OperandBundles.clear(); 5035 InstructionList.push_back(I); 5036 cast<CallInst>(I)->setCallingConv( 5037 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5038 CallInst::TailCallKind TCK = CallInst::TCK_None; 5039 if (CCInfo & 1 << bitc::CALL_TAIL) 5040 TCK = CallInst::TCK_Tail; 5041 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5042 TCK = CallInst::TCK_MustTail; 5043 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5044 TCK = CallInst::TCK_NoTail; 5045 cast<CallInst>(I)->setTailCallKind(TCK); 5046 cast<CallInst>(I)->setAttributes(PAL); 5047 break; 5048 } 5049 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5050 if (Record.size() < 3) 5051 return error("Invalid record"); 5052 Type *OpTy = getTypeByID(Record[0]); 5053 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5054 Type *ResTy = getTypeByID(Record[2]); 5055 if (!OpTy || !Op || !ResTy) 5056 return error("Invalid record"); 5057 I = new VAArgInst(Op, ResTy); 5058 InstructionList.push_back(I); 5059 break; 5060 } 5061 5062 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5063 // A call or an invoke can be optionally prefixed with some variable 5064 // number of operand bundle blocks. These blocks are read into 5065 // OperandBundles and consumed at the next call or invoke instruction. 5066 5067 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5068 return error("Invalid record"); 5069 5070 OperandBundles.emplace_back(); 5071 OperandBundles.back().Tag = BundleTags[Record[0]]; 5072 5073 std::vector<Value *> &Inputs = OperandBundles.back().Inputs; 5074 5075 unsigned OpNum = 1; 5076 while (OpNum != Record.size()) { 5077 Value *Op; 5078 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5079 return error("Invalid record"); 5080 Inputs.push_back(Op); 5081 } 5082 5083 continue; 5084 } 5085 } 5086 5087 // Add instruction to end of current BB. If there is no current BB, reject 5088 // this file. 5089 if (!CurBB) { 5090 delete I; 5091 return error("Invalid instruction with no BB"); 5092 } 5093 if (!OperandBundles.empty()) { 5094 delete I; 5095 return error("Operand bundles found with no consumer"); 5096 } 5097 CurBB->getInstList().push_back(I); 5098 5099 // If this was a terminator instruction, move to the next block. 5100 if (isa<TerminatorInst>(I)) { 5101 ++CurBBNo; 5102 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5103 } 5104 5105 // Non-void values get registered in the value table for future use. 5106 if (I && !I->getType()->isVoidTy()) 5107 if (ValueList.assignValue(I, NextValueNo++)) 5108 return error("Invalid forward reference"); 5109 } 5110 5111 OutOfRecordLoop: 5112 5113 if (!OperandBundles.empty()) 5114 return error("Operand bundles found with no consumer"); 5115 5116 // Check the function list for unresolved values. 5117 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5118 if (!A->getParent()) { 5119 // We found at least one unresolved value. Nuke them all to avoid leaks. 5120 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5121 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5122 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5123 delete A; 5124 } 5125 } 5126 return error("Never resolved value found in function"); 5127 } 5128 } 5129 5130 // FIXME: Check for unresolved forward-declared metadata references 5131 // and clean up leaks. 5132 5133 // Trim the value list down to the size it was before we parsed this function. 5134 ValueList.shrinkTo(ModuleValueListSize); 5135 MDValueList.shrinkTo(ModuleMDValueListSize); 5136 std::vector<BasicBlock*>().swap(FunctionBBs); 5137 return std::error_code(); 5138 } 5139 5140 /// Find the function body in the bitcode stream 5141 std::error_code BitcodeReader::findFunctionInStream( 5142 Function *F, 5143 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5144 while (DeferredFunctionInfoIterator->second == 0) { 5145 // This is the fallback handling for the old format bitcode that 5146 // didn't contain the function index in the VST, or when we have 5147 // an anonymous function which would not have a VST entry. 5148 // Assert that we have one of those two cases. 5149 assert(VSTOffset == 0 || !F->hasName()); 5150 // Parse the next body in the stream and set its position in the 5151 // DeferredFunctionInfo map. 5152 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5153 return EC; 5154 } 5155 return std::error_code(); 5156 } 5157 5158 //===----------------------------------------------------------------------===// 5159 // GVMaterializer implementation 5160 //===----------------------------------------------------------------------===// 5161 5162 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5163 5164 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5165 if (std::error_code EC = materializeMetadata()) 5166 return EC; 5167 5168 Function *F = dyn_cast<Function>(GV); 5169 // If it's not a function or is already material, ignore the request. 5170 if (!F || !F->isMaterializable()) 5171 return std::error_code(); 5172 5173 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5174 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5175 // If its position is recorded as 0, its body is somewhere in the stream 5176 // but we haven't seen it yet. 5177 if (DFII->second == 0) 5178 if (std::error_code EC = findFunctionInStream(F, DFII)) 5179 return EC; 5180 5181 // Move the bit stream to the saved position of the deferred function body. 5182 Stream.JumpToBit(DFII->second); 5183 5184 if (std::error_code EC = parseFunctionBody(F)) 5185 return EC; 5186 F->setIsMaterializable(false); 5187 5188 if (StripDebugInfo) 5189 stripDebugInfo(*F); 5190 5191 // Upgrade any old intrinsic calls in the function. 5192 for (auto &I : UpgradedIntrinsics) { 5193 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5194 User *U = *UI; 5195 ++UI; 5196 if (CallInst *CI = dyn_cast<CallInst>(U)) 5197 UpgradeIntrinsicCall(CI, I.second); 5198 } 5199 } 5200 5201 // Finish fn->subprogram upgrade for materialized functions. 5202 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5203 F->setSubprogram(SP); 5204 5205 // Bring in any functions that this function forward-referenced via 5206 // blockaddresses. 5207 return materializeForwardReferencedFunctions(); 5208 } 5209 5210 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5211 const Function *F = dyn_cast<Function>(GV); 5212 if (!F || F->isDeclaration()) 5213 return false; 5214 5215 // Dematerializing F would leave dangling references that wouldn't be 5216 // reconnected on re-materialization. 5217 if (BlockAddressesTaken.count(F)) 5218 return false; 5219 5220 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5221 } 5222 5223 void BitcodeReader::dematerialize(GlobalValue *GV) { 5224 Function *F = dyn_cast<Function>(GV); 5225 // If this function isn't dematerializable, this is a noop. 5226 if (!F || !isDematerializable(F)) 5227 return; 5228 5229 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5230 5231 // Just forget the function body, we can remat it later. 5232 F->dropAllReferences(); 5233 F->setIsMaterializable(true); 5234 } 5235 5236 std::error_code BitcodeReader::materializeModule(Module *M) { 5237 assert(M == TheModule && 5238 "Can only Materialize the Module this BitcodeReader is attached to."); 5239 5240 if (std::error_code EC = materializeMetadata()) 5241 return EC; 5242 5243 // Promise to materialize all forward references. 5244 WillMaterializeAllForwardRefs = true; 5245 5246 // Iterate over the module, deserializing any functions that are still on 5247 // disk. 5248 for (Function &F : *TheModule) { 5249 if (std::error_code EC = materialize(&F)) 5250 return EC; 5251 } 5252 // At this point, if there are any function bodies, parse the rest of 5253 // the bits in the module past the last function block we have recorded 5254 // through either lazy scanning or the VST. 5255 if (LastFunctionBlockBit || NextUnreadBit) 5256 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5257 : NextUnreadBit); 5258 5259 // Check that all block address forward references got resolved (as we 5260 // promised above). 5261 if (!BasicBlockFwdRefs.empty()) 5262 return error("Never resolved function from blockaddress"); 5263 5264 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5265 // delete the old functions to clean up. We can't do this unless the entire 5266 // module is materialized because there could always be another function body 5267 // with calls to the old function. 5268 for (auto &I : UpgradedIntrinsics) { 5269 for (auto *U : I.first->users()) { 5270 if (CallInst *CI = dyn_cast<CallInst>(U)) 5271 UpgradeIntrinsicCall(CI, I.second); 5272 } 5273 if (!I.first->use_empty()) 5274 I.first->replaceAllUsesWith(I.second); 5275 I.first->eraseFromParent(); 5276 } 5277 UpgradedIntrinsics.clear(); 5278 5279 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5280 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5281 5282 UpgradeDebugInfo(*M); 5283 return std::error_code(); 5284 } 5285 5286 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5287 return IdentifiedStructTypes; 5288 } 5289 5290 std::error_code 5291 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5292 if (Streamer) 5293 return initLazyStream(std::move(Streamer)); 5294 return initStreamFromBuffer(); 5295 } 5296 5297 std::error_code BitcodeReader::initStreamFromBuffer() { 5298 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5299 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5300 5301 if (Buffer->getBufferSize() & 3) 5302 return error("Invalid bitcode signature"); 5303 5304 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5305 // The magic number is 0x0B17C0DE stored in little endian. 5306 if (isBitcodeWrapper(BufPtr, BufEnd)) 5307 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5308 return error("Invalid bitcode wrapper header"); 5309 5310 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5311 Stream.init(&*StreamFile); 5312 5313 return std::error_code(); 5314 } 5315 5316 std::error_code 5317 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5318 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5319 // see it. 5320 auto OwnedBytes = 5321 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5322 StreamingMemoryObject &Bytes = *OwnedBytes; 5323 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5324 Stream.init(&*StreamFile); 5325 5326 unsigned char buf[16]; 5327 if (Bytes.readBytes(buf, 16, 0) != 16) 5328 return error("Invalid bitcode signature"); 5329 5330 if (!isBitcode(buf, buf + 16)) 5331 return error("Invalid bitcode signature"); 5332 5333 if (isBitcodeWrapper(buf, buf + 4)) { 5334 const unsigned char *bitcodeStart = buf; 5335 const unsigned char *bitcodeEnd = buf + 16; 5336 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5337 Bytes.dropLeadingBytes(bitcodeStart - buf); 5338 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5339 } 5340 return std::error_code(); 5341 } 5342 5343 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5344 const Twine &Message) { 5345 return ::error(DiagnosticHandler, make_error_code(E), Message); 5346 } 5347 5348 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5349 return ::error(DiagnosticHandler, 5350 make_error_code(BitcodeError::CorruptedBitcode), Message); 5351 } 5352 5353 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5354 return ::error(DiagnosticHandler, make_error_code(E)); 5355 } 5356 5357 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5358 MemoryBuffer *Buffer, LLVMContext &Context, 5359 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5360 bool CheckFuncSummaryPresenceOnly) 5361 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5362 Buffer(Buffer), IsLazy(IsLazy), 5363 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5364 5365 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5366 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler, 5367 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5368 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5369 Buffer(nullptr), IsLazy(IsLazy), 5370 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5371 5372 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5373 5374 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5375 5376 // Specialized value symbol table parser used when reading function index 5377 // blocks where we don't actually create global values. 5378 // At the end of this routine the function index is populated with a map 5379 // from function name to FunctionInfo. The function info contains 5380 // the function block's bitcode offset as well as the offset into the 5381 // function summary section. 5382 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5383 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5384 return error("Invalid record"); 5385 5386 SmallVector<uint64_t, 64> Record; 5387 5388 // Read all the records for this value table. 5389 SmallString<128> ValueName; 5390 while (1) { 5391 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5392 5393 switch (Entry.Kind) { 5394 case BitstreamEntry::SubBlock: // Handled for us already. 5395 case BitstreamEntry::Error: 5396 return error("Malformed block"); 5397 case BitstreamEntry::EndBlock: 5398 return std::error_code(); 5399 case BitstreamEntry::Record: 5400 // The interesting case. 5401 break; 5402 } 5403 5404 // Read a record. 5405 Record.clear(); 5406 switch (Stream.readRecord(Entry.ID, Record)) { 5407 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5408 break; 5409 case bitc::VST_CODE_FNENTRY: { 5410 // VST_FNENTRY: [valueid, offset, namechar x N] 5411 if (convertToString(Record, 2, ValueName)) 5412 return error("Invalid record"); 5413 unsigned ValueID = Record[0]; 5414 uint64_t FuncOffset = Record[1]; 5415 std::unique_ptr<FunctionInfo> FuncInfo = 5416 llvm::make_unique<FunctionInfo>(FuncOffset); 5417 if (foundFuncSummary() && !IsLazy) { 5418 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5419 SummaryMap.find(ValueID); 5420 assert(SMI != SummaryMap.end() && "Summary info not found"); 5421 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5422 } 5423 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5424 5425 ValueName.clear(); 5426 break; 5427 } 5428 case bitc::VST_CODE_COMBINED_FNENTRY: { 5429 // VST_FNENTRY: [offset, namechar x N] 5430 if (convertToString(Record, 1, ValueName)) 5431 return error("Invalid record"); 5432 uint64_t FuncSummaryOffset = Record[0]; 5433 std::unique_ptr<FunctionInfo> FuncInfo = 5434 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5435 if (foundFuncSummary() && !IsLazy) { 5436 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5437 SummaryMap.find(FuncSummaryOffset); 5438 assert(SMI != SummaryMap.end() && "Summary info not found"); 5439 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5440 } 5441 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5442 5443 ValueName.clear(); 5444 break; 5445 } 5446 } 5447 } 5448 } 5449 5450 // Parse just the blocks needed for function index building out of the module. 5451 // At the end of this routine the function Index is populated with a map 5452 // from function name to FunctionInfo. The function info contains 5453 // either the parsed function summary information (when parsing summaries 5454 // eagerly), or just to the function summary record's offset 5455 // if parsing lazily (IsLazy). 5456 std::error_code FunctionIndexBitcodeReader::parseModule() { 5457 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5458 return error("Invalid record"); 5459 5460 // Read the function index for this module. 5461 while (1) { 5462 BitstreamEntry Entry = Stream.advance(); 5463 5464 switch (Entry.Kind) { 5465 case BitstreamEntry::Error: 5466 return error("Malformed block"); 5467 case BitstreamEntry::EndBlock: 5468 return std::error_code(); 5469 5470 case BitstreamEntry::SubBlock: 5471 if (CheckFuncSummaryPresenceOnly) { 5472 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5473 SeenFuncSummary = true; 5474 if (Stream.SkipBlock()) 5475 return error("Invalid record"); 5476 // No need to parse the rest since we found the summary. 5477 return std::error_code(); 5478 } 5479 switch (Entry.ID) { 5480 default: // Skip unknown content. 5481 if (Stream.SkipBlock()) 5482 return error("Invalid record"); 5483 break; 5484 case bitc::BLOCKINFO_BLOCK_ID: 5485 // Need to parse these to get abbrev ids (e.g. for VST) 5486 if (Stream.ReadBlockInfoBlock()) 5487 return error("Malformed block"); 5488 break; 5489 case bitc::VALUE_SYMTAB_BLOCK_ID: 5490 if (std::error_code EC = parseValueSymbolTable()) 5491 return EC; 5492 break; 5493 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5494 SeenFuncSummary = true; 5495 if (IsLazy) { 5496 // Lazy parsing of summary info, skip it. 5497 if (Stream.SkipBlock()) 5498 return error("Invalid record"); 5499 } else if (std::error_code EC = parseEntireSummary()) 5500 return EC; 5501 break; 5502 case bitc::MODULE_STRTAB_BLOCK_ID: 5503 if (std::error_code EC = parseModuleStringTable()) 5504 return EC; 5505 break; 5506 } 5507 continue; 5508 5509 case BitstreamEntry::Record: 5510 Stream.skipRecord(Entry.ID); 5511 continue; 5512 } 5513 } 5514 } 5515 5516 // Eagerly parse the entire function summary block (i.e. for all functions 5517 // in the index). This populates the FunctionSummary objects in 5518 // the index. 5519 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5520 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5521 return error("Invalid record"); 5522 5523 SmallVector<uint64_t, 64> Record; 5524 5525 while (1) { 5526 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5527 5528 switch (Entry.Kind) { 5529 case BitstreamEntry::SubBlock: // Handled for us already. 5530 case BitstreamEntry::Error: 5531 return error("Malformed block"); 5532 case BitstreamEntry::EndBlock: 5533 return std::error_code(); 5534 case BitstreamEntry::Record: 5535 // The interesting case. 5536 break; 5537 } 5538 5539 // Read a record. The record format depends on whether this 5540 // is a per-module index or a combined index file. In the per-module 5541 // case the records contain the associated value's ID for correlation 5542 // with VST entries. In the combined index the correlation is done 5543 // via the bitcode offset of the summary records (which were saved 5544 // in the combined index VST entries). The records also contain 5545 // information used for ThinLTO renaming and importing. 5546 Record.clear(); 5547 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5548 switch (Stream.readRecord(Entry.ID, Record)) { 5549 default: // Default behavior: ignore. 5550 break; 5551 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5552 case bitc::FS_CODE_PERMODULE_ENTRY: { 5553 unsigned ValueID = Record[0]; 5554 bool IsLocal = Record[1]; 5555 unsigned InstCount = Record[2]; 5556 std::unique_ptr<FunctionSummary> FS = 5557 llvm::make_unique<FunctionSummary>(InstCount); 5558 FS->setLocalFunction(IsLocal); 5559 // The module path string ref set in the summary must be owned by the 5560 // index's module string table. Since we don't have a module path 5561 // string table section in the per-module index, we create a single 5562 // module path string table entry with an empty (0) ID to take 5563 // ownership. 5564 FS->setModulePath( 5565 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5566 SummaryMap[ValueID] = std::move(FS); 5567 } 5568 // FS_COMBINED_ENTRY: [modid, instcount] 5569 case bitc::FS_CODE_COMBINED_ENTRY: { 5570 uint64_t ModuleId = Record[0]; 5571 unsigned InstCount = Record[1]; 5572 std::unique_ptr<FunctionSummary> FS = 5573 llvm::make_unique<FunctionSummary>(InstCount); 5574 FS->setModulePath(ModuleIdMap[ModuleId]); 5575 SummaryMap[CurRecordBit] = std::move(FS); 5576 } 5577 } 5578 } 5579 llvm_unreachable("Exit infinite loop"); 5580 } 5581 5582 // Parse the module string table block into the Index. 5583 // This populates the ModulePathStringTable map in the index. 5584 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5585 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5586 return error("Invalid record"); 5587 5588 SmallVector<uint64_t, 64> Record; 5589 5590 SmallString<128> ModulePath; 5591 while (1) { 5592 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5593 5594 switch (Entry.Kind) { 5595 case BitstreamEntry::SubBlock: // Handled for us already. 5596 case BitstreamEntry::Error: 5597 return error("Malformed block"); 5598 case BitstreamEntry::EndBlock: 5599 return std::error_code(); 5600 case BitstreamEntry::Record: 5601 // The interesting case. 5602 break; 5603 } 5604 5605 Record.clear(); 5606 switch (Stream.readRecord(Entry.ID, Record)) { 5607 default: // Default behavior: ignore. 5608 break; 5609 case bitc::MST_CODE_ENTRY: { 5610 // MST_ENTRY: [modid, namechar x N] 5611 if (convertToString(Record, 1, ModulePath)) 5612 return error("Invalid record"); 5613 uint64_t ModuleId = Record[0]; 5614 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5615 ModuleIdMap[ModuleId] = ModulePathInMap; 5616 ModulePath.clear(); 5617 break; 5618 } 5619 } 5620 } 5621 llvm_unreachable("Exit infinite loop"); 5622 } 5623 5624 // Parse the function info index from the bitcode streamer into the given index. 5625 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5626 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5627 TheIndex = I; 5628 5629 if (std::error_code EC = initStream(std::move(Streamer))) 5630 return EC; 5631 5632 // Sniff for the signature. 5633 if (!hasValidBitcodeHeader(Stream)) 5634 return error("Invalid bitcode signature"); 5635 5636 // We expect a number of well-defined blocks, though we don't necessarily 5637 // need to understand them all. 5638 while (1) { 5639 if (Stream.AtEndOfStream()) { 5640 // We didn't really read a proper Module block. 5641 return error("Malformed block"); 5642 } 5643 5644 BitstreamEntry Entry = 5645 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5646 5647 if (Entry.Kind != BitstreamEntry::SubBlock) 5648 return error("Malformed block"); 5649 5650 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5651 // building the function summary index. 5652 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5653 return parseModule(); 5654 5655 if (Stream.SkipBlock()) 5656 return error("Invalid record"); 5657 } 5658 } 5659 5660 // Parse the function information at the given offset in the buffer into 5661 // the index. Used to support lazy parsing of function summaries from the 5662 // combined index during importing. 5663 // TODO: This function is not yet complete as it won't have a consumer 5664 // until ThinLTO function importing is added. 5665 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5666 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5667 size_t FunctionSummaryOffset) { 5668 TheIndex = I; 5669 5670 if (std::error_code EC = initStream(std::move(Streamer))) 5671 return EC; 5672 5673 // Sniff for the signature. 5674 if (!hasValidBitcodeHeader(Stream)) 5675 return error("Invalid bitcode signature"); 5676 5677 Stream.JumpToBit(FunctionSummaryOffset); 5678 5679 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5680 5681 switch (Entry.Kind) { 5682 default: 5683 return error("Malformed block"); 5684 case BitstreamEntry::Record: 5685 // The expected case. 5686 break; 5687 } 5688 5689 // TODO: Read a record. This interface will be completed when ThinLTO 5690 // importing is added so that it can be tested. 5691 SmallVector<uint64_t, 64> Record; 5692 switch (Stream.readRecord(Entry.ID, Record)) { 5693 case bitc::FS_CODE_COMBINED_ENTRY: 5694 default: 5695 return error("Invalid record"); 5696 } 5697 5698 return std::error_code(); 5699 } 5700 5701 std::error_code 5702 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5703 if (Streamer) 5704 return initLazyStream(std::move(Streamer)); 5705 return initStreamFromBuffer(); 5706 } 5707 5708 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5709 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5710 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5711 5712 if (Buffer->getBufferSize() & 3) 5713 return error("Invalid bitcode signature"); 5714 5715 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5716 // The magic number is 0x0B17C0DE stored in little endian. 5717 if (isBitcodeWrapper(BufPtr, BufEnd)) 5718 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5719 return error("Invalid bitcode wrapper header"); 5720 5721 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5722 Stream.init(&*StreamFile); 5723 5724 return std::error_code(); 5725 } 5726 5727 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5728 std::unique_ptr<DataStreamer> Streamer) { 5729 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5730 // see it. 5731 auto OwnedBytes = 5732 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5733 StreamingMemoryObject &Bytes = *OwnedBytes; 5734 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5735 Stream.init(&*StreamFile); 5736 5737 unsigned char buf[16]; 5738 if (Bytes.readBytes(buf, 16, 0) != 16) 5739 return error("Invalid bitcode signature"); 5740 5741 if (!isBitcode(buf, buf + 16)) 5742 return error("Invalid bitcode signature"); 5743 5744 if (isBitcodeWrapper(buf, buf + 4)) { 5745 const unsigned char *bitcodeStart = buf; 5746 const unsigned char *bitcodeEnd = buf + 16; 5747 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5748 Bytes.dropLeadingBytes(bitcodeStart - buf); 5749 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5750 } 5751 return std::error_code(); 5752 } 5753 5754 namespace { 5755 class BitcodeErrorCategoryType : public std::error_category { 5756 const char *name() const LLVM_NOEXCEPT override { 5757 return "llvm.bitcode"; 5758 } 5759 std::string message(int IE) const override { 5760 BitcodeError E = static_cast<BitcodeError>(IE); 5761 switch (E) { 5762 case BitcodeError::InvalidBitcodeSignature: 5763 return "Invalid bitcode signature"; 5764 case BitcodeError::CorruptedBitcode: 5765 return "Corrupted bitcode"; 5766 } 5767 llvm_unreachable("Unknown error type!"); 5768 } 5769 }; 5770 } 5771 5772 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5773 5774 const std::error_category &llvm::BitcodeErrorCategory() { 5775 return *ErrorCategory; 5776 } 5777 5778 //===----------------------------------------------------------------------===// 5779 // External interface 5780 //===----------------------------------------------------------------------===// 5781 5782 static ErrorOr<std::unique_ptr<Module>> 5783 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5784 BitcodeReader *R, LLVMContext &Context, 5785 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5786 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5787 M->setMaterializer(R); 5788 5789 auto cleanupOnError = [&](std::error_code EC) { 5790 R->releaseBuffer(); // Never take ownership on error. 5791 return EC; 5792 }; 5793 5794 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5795 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5796 ShouldLazyLoadMetadata)) 5797 return cleanupOnError(EC); 5798 5799 if (MaterializeAll) { 5800 // Read in the entire module, and destroy the BitcodeReader. 5801 if (std::error_code EC = M->materializeAllPermanently()) 5802 return cleanupOnError(EC); 5803 } else { 5804 // Resolve forward references from blockaddresses. 5805 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5806 return cleanupOnError(EC); 5807 } 5808 return std::move(M); 5809 } 5810 5811 /// \brief Get a lazy one-at-time loading module from bitcode. 5812 /// 5813 /// This isn't always used in a lazy context. In particular, it's also used by 5814 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5815 /// in forward-referenced functions from block address references. 5816 /// 5817 /// \param[in] MaterializeAll Set to \c true if we should materialize 5818 /// everything. 5819 static ErrorOr<std::unique_ptr<Module>> 5820 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5821 LLVMContext &Context, bool MaterializeAll, 5822 DiagnosticHandlerFunction DiagnosticHandler, 5823 bool ShouldLazyLoadMetadata = false) { 5824 BitcodeReader *R = 5825 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5826 5827 ErrorOr<std::unique_ptr<Module>> Ret = 5828 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5829 MaterializeAll, ShouldLazyLoadMetadata); 5830 if (!Ret) 5831 return Ret; 5832 5833 Buffer.release(); // The BitcodeReader owns it now. 5834 return Ret; 5835 } 5836 5837 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5838 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5839 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5840 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5841 DiagnosticHandler, ShouldLazyLoadMetadata); 5842 } 5843 5844 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5845 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5846 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5847 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5848 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5849 5850 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5851 false); 5852 } 5853 5854 ErrorOr<std::unique_ptr<Module>> 5855 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5856 DiagnosticHandlerFunction DiagnosticHandler) { 5857 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5858 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5859 DiagnosticHandler); 5860 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5861 // written. We must defer until the Module has been fully materialized. 5862 } 5863 5864 std::string 5865 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5866 DiagnosticHandlerFunction DiagnosticHandler) { 5867 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5868 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5869 DiagnosticHandler); 5870 ErrorOr<std::string> Triple = R->parseTriple(); 5871 if (Triple.getError()) 5872 return ""; 5873 return Triple.get(); 5874 } 5875 5876 std::string 5877 llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context, 5878 DiagnosticHandlerFunction DiagnosticHandler) { 5879 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5880 BitcodeReader R(Buf.release(), Context, DiagnosticHandler); 5881 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5882 if (ProducerString.getError()) 5883 return ""; 5884 return ProducerString.get(); 5885 } 5886 5887 // Parse the specified bitcode buffer, returning the function info index. 5888 // If IsLazy is false, parse the entire function summary into 5889 // the index. Otherwise skip the function summary section, and only create 5890 // an index object with a map from function name to function summary offset. 5891 // The index is used to perform lazy function summary reading later. 5892 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5893 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, LLVMContext &Context, 5894 DiagnosticHandlerFunction DiagnosticHandler, 5895 const Module *ExportingModule, bool IsLazy) { 5896 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5897 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy); 5898 5899 std::unique_ptr<FunctionInfoIndex> Index = 5900 llvm::make_unique<FunctionInfoIndex>(ExportingModule); 5901 5902 auto cleanupOnError = [&](std::error_code EC) { 5903 R.releaseBuffer(); // Never take ownership on error. 5904 return EC; 5905 }; 5906 5907 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5908 return cleanupOnError(EC); 5909 5910 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5911 return std::move(Index); 5912 } 5913 5914 // Check if the given bitcode buffer contains a function summary block. 5915 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5916 DiagnosticHandlerFunction DiagnosticHandler) { 5917 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5918 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false, 5919 true); 5920 5921 auto cleanupOnError = [&](std::error_code EC) { 5922 R.releaseBuffer(); // Never take ownership on error. 5923 return false; 5924 }; 5925 5926 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5927 return cleanupOnError(EC); 5928 5929 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5930 return R.foundFuncSummary(); 5931 } 5932 5933 // This method supports lazy reading of function summary data from the combined 5934 // index during ThinLTO function importing. When reading the combined index 5935 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5936 // Then this method is called for each function considered for importing, 5937 // to parse the summary information for the given function name into 5938 // the index. 5939 std::error_code 5940 llvm::readFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5941 DiagnosticHandlerFunction DiagnosticHandler, 5942 StringRef FunctionName, 5943 std::unique_ptr<FunctionInfoIndex> Index) { 5944 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5945 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler); 5946 5947 auto cleanupOnError = [&](std::error_code EC) { 5948 R.releaseBuffer(); // Never take ownership on error. 5949 return EC; 5950 }; 5951 5952 // Lookup the given function name in the FunctionMap, which may 5953 // contain a list of function infos in the case of a COMDAT. Walk through 5954 // and parse each function summary info at the function summary offset 5955 // recorded when parsing the value symbol table. 5956 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5957 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5958 if (std::error_code EC = 5959 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5960 return cleanupOnError(EC); 5961 } 5962 5963 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5964 return std::error_code(); 5965 } 5966