1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "llvm/ADT/APFloat.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Bitcode/BitstreamReader.h"
23 #include "llvm/Bitcode/LLVMBitCodes.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ManagedStatic.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <deque>
75 #include <limits>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <system_error>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<bool> PrintSummaryGUIDs(
87     "print-summary-global-ids", cl::init(false), cl::Hidden,
88     cl::desc(
89         "Print the global id for each value when reading the module summary"));
90 
91 namespace {
92 
93 enum {
94   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
95 };
96 
97 class BitcodeReaderValueList {
98   std::vector<WeakVH> ValuePtrs;
99 
100   /// As we resolve forward-referenced constants, we add information about them
101   /// to this vector.  This allows us to resolve them in bulk instead of
102   /// resolving each reference at a time.  See the code in
103   /// ResolveConstantForwardRefs for more information about this.
104   ///
105   /// The key of this vector is the placeholder constant, the value is the slot
106   /// number that holds the resolved value.
107   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
108   ResolveConstantsTy ResolveConstants;
109   LLVMContext &Context;
110 
111 public:
112   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
113   ~BitcodeReaderValueList() {
114     assert(ResolveConstants.empty() && "Constants not resolved?");
115   }
116 
117   // vector compatibility methods
118   unsigned size() const { return ValuePtrs.size(); }
119   void resize(unsigned N) { ValuePtrs.resize(N); }
120   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
121 
122   void clear() {
123     assert(ResolveConstants.empty() && "Constants not resolved?");
124     ValuePtrs.clear();
125   }
126 
127   Value *operator[](unsigned i) const {
128     assert(i < ValuePtrs.size());
129     return ValuePtrs[i];
130   }
131 
132   Value *back() const { return ValuePtrs.back(); }
133   void pop_back() { ValuePtrs.pop_back(); }
134   bool empty() const { return ValuePtrs.empty(); }
135 
136   void shrinkTo(unsigned N) {
137     assert(N <= size() && "Invalid shrinkTo request!");
138     ValuePtrs.resize(N);
139   }
140 
141   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
142   Value *getValueFwdRef(unsigned Idx, Type *Ty);
143 
144   void assignValue(Value *V, unsigned Idx);
145 
146   /// Once all constants are read, this method bulk resolves any forward
147   /// references.
148   void resolveConstantForwardRefs();
149 };
150 
151 class BitcodeReaderMetadataList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   unsigned MinFwdRef;
155   unsigned MaxFwdRef;
156 
157   /// Array of metadata references.
158   ///
159   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
160   /// move) on resize, and TrackingMDRef is very expensive to copy.
161   SmallVector<TrackingMDRef, 1> MetadataPtrs;
162 
163   /// Structures for resolving old type refs.
164   struct {
165     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
166     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
167     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
168     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
169   } OldTypeRefs;
170 
171   LLVMContext &Context;
172 
173 public:
174   BitcodeReaderMetadataList(LLVMContext &C)
175       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
176 
177   // vector compatibility methods
178   unsigned size() const { return MetadataPtrs.size(); }
179   void resize(unsigned N) { MetadataPtrs.resize(N); }
180   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
181   void clear() { MetadataPtrs.clear(); }
182   Metadata *back() const { return MetadataPtrs.back(); }
183   void pop_back() { MetadataPtrs.pop_back(); }
184   bool empty() const { return MetadataPtrs.empty(); }
185 
186   Metadata *operator[](unsigned i) const {
187     assert(i < MetadataPtrs.size());
188     return MetadataPtrs[i];
189   }
190 
191   Metadata *lookup(unsigned I) const {
192     if (I < MetadataPtrs.size())
193       return MetadataPtrs[I];
194     return nullptr;
195   }
196 
197   void shrinkTo(unsigned N) {
198     assert(N <= size() && "Invalid shrinkTo request!");
199     assert(!AnyFwdRefs && "Unexpected forward refs");
200     MetadataPtrs.resize(N);
201   }
202 
203   /// Return the given metadata, creating a replaceable forward reference if
204   /// necessary.
205   Metadata *getMetadataFwdRef(unsigned Idx);
206 
207   /// Return the the given metadata only if it is fully resolved.
208   ///
209   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
210   /// would give \c false.
211   Metadata *getMetadataIfResolved(unsigned Idx);
212 
213   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
214   void assignValue(Metadata *MD, unsigned Idx);
215   void tryToResolveCycles();
216   bool hasFwdRefs() const { return AnyFwdRefs; }
217 
218   /// Upgrade a type that had an MDString reference.
219   void addTypeRef(MDString &UUID, DICompositeType &CT);
220 
221   /// Upgrade a type that had an MDString reference.
222   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
223 
224   /// Upgrade a type ref array that may have MDString references.
225   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
226 
227 private:
228   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
229 };
230 
231 Error error(const Twine &Message) {
232   return make_error<StringError>(
233       Message, make_error_code(BitcodeError::CorruptedBitcode));
234 }
235 
236 /// Helper to read the header common to all bitcode files.
237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
238   // Sniff for the signature.
239   if (!Stream.canSkipToPos(4) ||
240       Stream.Read(8) != 'B' ||
241       Stream.Read(8) != 'C' ||
242       Stream.Read(4) != 0x0 ||
243       Stream.Read(4) != 0xC ||
244       Stream.Read(4) != 0xE ||
245       Stream.Read(4) != 0xD)
246     return false;
247   return true;
248 }
249 
250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
251   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
252   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
253 
254   if (Buffer.getBufferSize() & 3)
255     return error("Invalid bitcode signature");
256 
257   // If we have a wrapper header, parse it and ignore the non-bc file contents.
258   // The magic number is 0x0B17C0DE stored in little endian.
259   if (isBitcodeWrapper(BufPtr, BufEnd))
260     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
261       return error("Invalid bitcode wrapper header");
262 
263   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
264   if (!hasValidBitcodeHeader(Stream))
265     return error("Invalid bitcode signature");
266 
267   return std::move(Stream);
268 }
269 
270 /// Convert a string from a record into an std::string, return true on failure.
271 template <typename StrTy>
272 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
273                             StrTy &Result) {
274   if (Idx > Record.size())
275     return true;
276 
277   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
278     Result += (char)Record[i];
279   return false;
280 }
281 
282 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
283 /// "epoch" encoded in the bitcode, and return the producer name if any.
284 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
285   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
286     return error("Invalid record");
287 
288   // Read all the records.
289   SmallVector<uint64_t, 64> Record;
290 
291   std::string ProducerIdentification;
292 
293   while (true) {
294     BitstreamEntry Entry = Stream.advance();
295 
296     switch (Entry.Kind) {
297     default:
298     case BitstreamEntry::Error:
299       return error("Malformed block");
300     case BitstreamEntry::EndBlock:
301       return ProducerIdentification;
302     case BitstreamEntry::Record:
303       // The interesting case.
304       break;
305     }
306 
307     // Read a record.
308     Record.clear();
309     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
310     switch (BitCode) {
311     default: // Default behavior: reject
312       return error("Invalid value");
313     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
314       convertToString(Record, 0, ProducerIdentification);
315       break;
316     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
317       unsigned epoch = (unsigned)Record[0];
318       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
319         return error(
320           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
321           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
322       }
323     }
324     }
325   }
326 }
327 
328 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
329   // We expect a number of well-defined blocks, though we don't necessarily
330   // need to understand them all.
331   while (true) {
332     if (Stream.AtEndOfStream())
333       return "";
334 
335     BitstreamEntry Entry = Stream.advance();
336     switch (Entry.Kind) {
337     case BitstreamEntry::EndBlock:
338     case BitstreamEntry::Error:
339       return error("Malformed block");
340 
341     case BitstreamEntry::SubBlock:
342       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
343         return readIdentificationBlock(Stream);
344 
345       // Ignore other sub-blocks.
346       if (Stream.SkipBlock())
347         return error("Malformed block");
348       continue;
349     case BitstreamEntry::Record:
350       Stream.skipRecord(Entry.ID);
351       continue;
352     }
353   }
354 }
355 
356 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
357   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
358     return error("Invalid record");
359 
360   SmallVector<uint64_t, 64> Record;
361   // Read all the records for this module.
362 
363   while (true) {
364     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
365 
366     switch (Entry.Kind) {
367     case BitstreamEntry::SubBlock: // Handled for us already.
368     case BitstreamEntry::Error:
369       return error("Malformed block");
370     case BitstreamEntry::EndBlock:
371       return false;
372     case BitstreamEntry::Record:
373       // The interesting case.
374       break;
375     }
376 
377     // Read a record.
378     switch (Stream.readRecord(Entry.ID, Record)) {
379     default:
380       break; // Default behavior, ignore unknown content.
381     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
382       std::string S;
383       if (convertToString(Record, 0, S))
384         return error("Invalid record");
385       // Check for the i386 and other (x86_64, ARM) conventions
386       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
387           S.find("__OBJC,__category") != std::string::npos)
388         return true;
389       break;
390     }
391     }
392     Record.clear();
393   }
394   llvm_unreachable("Exit infinite loop");
395 }
396 
397 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
398   // We expect a number of well-defined blocks, though we don't necessarily
399   // need to understand them all.
400   while (true) {
401     BitstreamEntry Entry = Stream.advance();
402 
403     switch (Entry.Kind) {
404     case BitstreamEntry::Error:
405       return error("Malformed block");
406     case BitstreamEntry::EndBlock:
407       return false;
408 
409     case BitstreamEntry::SubBlock:
410       if (Entry.ID == bitc::MODULE_BLOCK_ID)
411         return hasObjCCategoryInModule(Stream);
412 
413       // Ignore other sub-blocks.
414       if (Stream.SkipBlock())
415         return error("Malformed block");
416       continue;
417 
418     case BitstreamEntry::Record:
419       Stream.skipRecord(Entry.ID);
420       continue;
421     }
422   }
423 }
424 
425 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
426   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
427     return error("Invalid record");
428 
429   SmallVector<uint64_t, 64> Record;
430 
431   std::string Triple;
432 
433   // Read all the records for this module.
434   while (true) {
435     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
436 
437     switch (Entry.Kind) {
438     case BitstreamEntry::SubBlock: // Handled for us already.
439     case BitstreamEntry::Error:
440       return error("Malformed block");
441     case BitstreamEntry::EndBlock:
442       return Triple;
443     case BitstreamEntry::Record:
444       // The interesting case.
445       break;
446     }
447 
448     // Read a record.
449     switch (Stream.readRecord(Entry.ID, Record)) {
450     default: break;  // Default behavior, ignore unknown content.
451     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
452       std::string S;
453       if (convertToString(Record, 0, S))
454         return error("Invalid record");
455       Triple = S;
456       break;
457     }
458     }
459     Record.clear();
460   }
461   llvm_unreachable("Exit infinite loop");
462 }
463 
464 Expected<std::string> readTriple(BitstreamCursor &Stream) {
465   // We expect a number of well-defined blocks, though we don't necessarily
466   // need to understand them all.
467   while (true) {
468     BitstreamEntry Entry = Stream.advance();
469 
470     switch (Entry.Kind) {
471     case BitstreamEntry::Error:
472       return error("Malformed block");
473     case BitstreamEntry::EndBlock:
474       return "";
475 
476     case BitstreamEntry::SubBlock:
477       if (Entry.ID == bitc::MODULE_BLOCK_ID)
478         return readModuleTriple(Stream);
479 
480       // Ignore other sub-blocks.
481       if (Stream.SkipBlock())
482         return error("Malformed block");
483       continue;
484 
485     case BitstreamEntry::Record:
486       Stream.skipRecord(Entry.ID);
487       continue;
488     }
489   }
490 }
491 
492 class BitcodeReaderBase {
493 protected:
494   BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) {
495     this->Stream.setBlockInfo(&BlockInfo);
496   }
497 
498   BitstreamBlockInfo BlockInfo;
499   BitstreamCursor Stream;
500 
501   bool readBlockInfo();
502 
503   // Contains an arbitrary and optional string identifying the bitcode producer
504   std::string ProducerIdentification;
505 
506   Error error(const Twine &Message);
507 };
508 
509 Error BitcodeReaderBase::error(const Twine &Message) {
510   std::string FullMsg = Message.str();
511   if (!ProducerIdentification.empty())
512     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
513                LLVM_VERSION_STRING "')";
514   return ::error(FullMsg);
515 }
516 
517 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
518   LLVMContext &Context;
519   Module *TheModule = nullptr;
520   // Next offset to start scanning for lazy parsing of function bodies.
521   uint64_t NextUnreadBit = 0;
522   // Last function offset found in the VST.
523   uint64_t LastFunctionBlockBit = 0;
524   bool SeenValueSymbolTable = false;
525   uint64_t VSTOffset = 0;
526 
527   std::vector<Type*> TypeList;
528   BitcodeReaderValueList ValueList;
529   BitcodeReaderMetadataList MetadataList;
530   std::vector<Comdat *> ComdatList;
531   SmallVector<Instruction *, 64> InstructionList;
532 
533   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
534   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
535   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
536   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
537   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
538 
539   bool HasSeenOldLoopTags = false;
540 
541   /// The set of attributes by index.  Index zero in the file is for null, and
542   /// is thus not represented here.  As such all indices are off by one.
543   std::vector<AttributeSet> MAttributes;
544 
545   /// The set of attribute groups.
546   std::map<unsigned, AttributeSet> MAttributeGroups;
547 
548   /// While parsing a function body, this is a list of the basic blocks for the
549   /// function.
550   std::vector<BasicBlock*> FunctionBBs;
551 
552   // When reading the module header, this list is populated with functions that
553   // have bodies later in the file.
554   std::vector<Function*> FunctionsWithBodies;
555 
556   // When intrinsic functions are encountered which require upgrading they are
557   // stored here with their replacement function.
558   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
559   UpdatedIntrinsicMap UpgradedIntrinsics;
560   // Intrinsics which were remangled because of types rename
561   UpdatedIntrinsicMap RemangledIntrinsics;
562 
563   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
564   DenseMap<unsigned, unsigned> MDKindMap;
565 
566   // Several operations happen after the module header has been read, but
567   // before function bodies are processed. This keeps track of whether
568   // we've done this yet.
569   bool SeenFirstFunctionBody = false;
570 
571   /// When function bodies are initially scanned, this map contains info about
572   /// where to find deferred function body in the stream.
573   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
574 
575   /// When Metadata block is initially scanned when parsing the module, we may
576   /// choose to defer parsing of the metadata. This vector contains info about
577   /// which Metadata blocks are deferred.
578   std::vector<uint64_t> DeferredMetadataInfo;
579 
580   /// These are basic blocks forward-referenced by block addresses.  They are
581   /// inserted lazily into functions when they're loaded.  The basic block ID is
582   /// its index into the vector.
583   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
584   std::deque<Function *> BasicBlockFwdRefQueue;
585 
586   /// Indicates that we are using a new encoding for instruction operands where
587   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
588   /// instruction number, for a more compact encoding.  Some instruction
589   /// operands are not relative to the instruction ID: basic block numbers, and
590   /// types. Once the old style function blocks have been phased out, we would
591   /// not need this flag.
592   bool UseRelativeIDs = false;
593 
594   /// True if all functions will be materialized, negating the need to process
595   /// (e.g.) blockaddress forward references.
596   bool WillMaterializeAllForwardRefs = false;
597 
598   bool StripDebugInfo = false;
599 
600   /// Functions that need to be matched with subprograms when upgrading old
601   /// metadata.
602   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
603 
604   std::vector<std::string> BundleTags;
605 
606 public:
607   BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification,
608                 LLVMContext &Context);
609 
610   Error materializeForwardReferencedFunctions();
611 
612   Error materialize(GlobalValue *GV) override;
613   Error materializeModule() override;
614   std::vector<StructType *> getIdentifiedStructTypes() const override;
615 
616   /// \brief Main interface to parsing a bitcode buffer.
617   /// \returns true if an error occurred.
618   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false);
619 
620   static uint64_t decodeSignRotatedValue(uint64_t V);
621 
622   /// Materialize any deferred Metadata block.
623   Error materializeMetadata() override;
624 
625   void setStripDebugInfo() override;
626 
627 private:
628   std::vector<StructType *> IdentifiedStructTypes;
629   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
630   StructType *createIdentifiedStructType(LLVMContext &Context);
631 
632   Type *getTypeByID(unsigned ID);
633 
634   Value *getFnValueByID(unsigned ID, Type *Ty) {
635     if (Ty && Ty->isMetadataTy())
636       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
637     return ValueList.getValueFwdRef(ID, Ty);
638   }
639 
640   Metadata *getFnMetadataByID(unsigned ID) {
641     return MetadataList.getMetadataFwdRef(ID);
642   }
643 
644   BasicBlock *getBasicBlock(unsigned ID) const {
645     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
646     return FunctionBBs[ID];
647   }
648 
649   AttributeSet getAttributes(unsigned i) const {
650     if (i-1 < MAttributes.size())
651       return MAttributes[i-1];
652     return AttributeSet();
653   }
654 
655   /// Read a value/type pair out of the specified record from slot 'Slot'.
656   /// Increment Slot past the number of slots used in the record. Return true on
657   /// failure.
658   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
659                         unsigned InstNum, Value *&ResVal) {
660     if (Slot == Record.size()) return true;
661     unsigned ValNo = (unsigned)Record[Slot++];
662     // Adjust the ValNo, if it was encoded relative to the InstNum.
663     if (UseRelativeIDs)
664       ValNo = InstNum - ValNo;
665     if (ValNo < InstNum) {
666       // If this is not a forward reference, just return the value we already
667       // have.
668       ResVal = getFnValueByID(ValNo, nullptr);
669       return ResVal == nullptr;
670     }
671     if (Slot == Record.size())
672       return true;
673 
674     unsigned TypeNo = (unsigned)Record[Slot++];
675     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
676     return ResVal == nullptr;
677   }
678 
679   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
680   /// past the number of slots used by the value in the record. Return true if
681   /// there is an error.
682   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
683                 unsigned InstNum, Type *Ty, Value *&ResVal) {
684     if (getValue(Record, Slot, InstNum, Ty, ResVal))
685       return true;
686     // All values currently take a single record slot.
687     ++Slot;
688     return false;
689   }
690 
691   /// Like popValue, but does not increment the Slot number.
692   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
693                 unsigned InstNum, Type *Ty, Value *&ResVal) {
694     ResVal = getValue(Record, Slot, InstNum, Ty);
695     return ResVal == nullptr;
696   }
697 
698   /// Version of getValue that returns ResVal directly, or 0 if there is an
699   /// error.
700   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
701                   unsigned InstNum, Type *Ty) {
702     if (Slot == Record.size()) return nullptr;
703     unsigned ValNo = (unsigned)Record[Slot];
704     // Adjust the ValNo, if it was encoded relative to the InstNum.
705     if (UseRelativeIDs)
706       ValNo = InstNum - ValNo;
707     return getFnValueByID(ValNo, Ty);
708   }
709 
710   /// Like getValue, but decodes signed VBRs.
711   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
712                         unsigned InstNum, Type *Ty) {
713     if (Slot == Record.size()) return nullptr;
714     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
715     // Adjust the ValNo, if it was encoded relative to the InstNum.
716     if (UseRelativeIDs)
717       ValNo = InstNum - ValNo;
718     return getFnValueByID(ValNo, Ty);
719   }
720 
721   /// Converts alignment exponent (i.e. power of two (or zero)) to the
722   /// corresponding alignment to use. If alignment is too large, returns
723   /// a corresponding error code.
724   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
725   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
726   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
727   Error parseAttributeBlock();
728   Error parseAttributeGroupBlock();
729   Error parseTypeTable();
730   Error parseTypeTableBody();
731   Error parseOperandBundleTags();
732 
733   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
734                                 unsigned NameIndex, Triple &TT);
735   Error parseValueSymbolTable(uint64_t Offset = 0);
736   Error parseConstants();
737   Error rememberAndSkipFunctionBodies();
738   Error rememberAndSkipFunctionBody();
739   /// Save the positions of the Metadata blocks and skip parsing the blocks.
740   Error rememberAndSkipMetadata();
741   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
742   Error parseFunctionBody(Function *F);
743   Error globalCleanup();
744   Error resolveGlobalAndIndirectSymbolInits();
745   Error parseMetadata(bool ModuleLevel = false);
746   Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob,
747                              unsigned &NextMetadataNo);
748   Error parseMetadataKinds();
749   Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
750   Error parseGlobalObjectAttachment(GlobalObject &GO,
751                                     ArrayRef<uint64_t> Record);
752   Error parseMetadataAttachment(Function &F);
753   Error parseUseLists();
754   Error findFunctionInStream(
755       Function *F,
756       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
757 };
758 
759 /// Class to manage reading and parsing function summary index bitcode
760 /// files/sections.
761 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
762   /// The module index built during parsing.
763   ModuleSummaryIndex &TheIndex;
764 
765   /// Indicates whether we have encountered a global value summary section
766   /// yet during parsing.
767   bool SeenGlobalValSummary = false;
768 
769   /// Indicates whether we have already parsed the VST, used for error checking.
770   bool SeenValueSymbolTable = false;
771 
772   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
773   /// Used to enable on-demand parsing of the VST.
774   uint64_t VSTOffset = 0;
775 
776   // Map to save ValueId to GUID association that was recorded in the
777   // ValueSymbolTable. It is used after the VST is parsed to convert
778   // call graph edges read from the function summary from referencing
779   // callees by their ValueId to using the GUID instead, which is how
780   // they are recorded in the summary index being built.
781   // We save a second GUID which is the same as the first one, but ignoring the
782   // linkage, i.e. for value other than local linkage they are identical.
783   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
784       ValueIdToCallGraphGUIDMap;
785 
786   /// Map populated during module path string table parsing, from the
787   /// module ID to a string reference owned by the index's module
788   /// path string table, used to correlate with combined index
789   /// summary records.
790   DenseMap<uint64_t, StringRef> ModuleIdMap;
791 
792   /// Original source file name recorded in a bitcode record.
793   std::string SourceFileName;
794 
795 public:
796   ModuleSummaryIndexBitcodeReader(
797       BitstreamCursor Stream, ModuleSummaryIndex &TheIndex);
798 
799   Error parseModule(StringRef ModulePath);
800 
801 private:
802   Error parseValueSymbolTable(
803       uint64_t Offset,
804       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
805   Error parseEntireSummary(StringRef ModulePath);
806   Error parseModuleStringTable();
807   std::pair<GlobalValue::GUID, GlobalValue::GUID>
808 
809   getGUIDFromValueId(unsigned ValueId);
810   std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
811   readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I,
812                     bool IsOldProfileFormat, bool HasProfile);
813 };
814 
815 } // end anonymous namespace
816 
817 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
818                                                     Error Err) {
819   if (Err) {
820     std::error_code EC;
821     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
822       EC = EIB.convertToErrorCode();
823       Ctx.emitError(EIB.message());
824     });
825     return EC;
826   }
827   return std::error_code();
828 }
829 
830 BitcodeReader::BitcodeReader(BitstreamCursor Stream,
831                              StringRef ProducerIdentification,
832                              LLVMContext &Context)
833     : BitcodeReaderBase(std::move(Stream)), Context(Context),
834       ValueList(Context), MetadataList(Context) {
835   this->ProducerIdentification = ProducerIdentification;
836 }
837 
838 Error BitcodeReader::materializeForwardReferencedFunctions() {
839   if (WillMaterializeAllForwardRefs)
840     return Error::success();
841 
842   // Prevent recursion.
843   WillMaterializeAllForwardRefs = true;
844 
845   while (!BasicBlockFwdRefQueue.empty()) {
846     Function *F = BasicBlockFwdRefQueue.front();
847     BasicBlockFwdRefQueue.pop_front();
848     assert(F && "Expected valid function");
849     if (!BasicBlockFwdRefs.count(F))
850       // Already materialized.
851       continue;
852 
853     // Check for a function that isn't materializable to prevent an infinite
854     // loop.  When parsing a blockaddress stored in a global variable, there
855     // isn't a trivial way to check if a function will have a body without a
856     // linear search through FunctionsWithBodies, so just check it here.
857     if (!F->isMaterializable())
858       return error("Never resolved function from blockaddress");
859 
860     // Try to materialize F.
861     if (Error Err = materialize(F))
862       return Err;
863   }
864   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
865 
866   // Reset state.
867   WillMaterializeAllForwardRefs = false;
868   return Error::success();
869 }
870 
871 //===----------------------------------------------------------------------===//
872 //  Helper functions to implement forward reference resolution, etc.
873 //===----------------------------------------------------------------------===//
874 
875 static bool hasImplicitComdat(size_t Val) {
876   switch (Val) {
877   default:
878     return false;
879   case 1:  // Old WeakAnyLinkage
880   case 4:  // Old LinkOnceAnyLinkage
881   case 10: // Old WeakODRLinkage
882   case 11: // Old LinkOnceODRLinkage
883     return true;
884   }
885 }
886 
887 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
888   switch (Val) {
889   default: // Map unknown/new linkages to external
890   case 0:
891     return GlobalValue::ExternalLinkage;
892   case 2:
893     return GlobalValue::AppendingLinkage;
894   case 3:
895     return GlobalValue::InternalLinkage;
896   case 5:
897     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
898   case 6:
899     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
900   case 7:
901     return GlobalValue::ExternalWeakLinkage;
902   case 8:
903     return GlobalValue::CommonLinkage;
904   case 9:
905     return GlobalValue::PrivateLinkage;
906   case 12:
907     return GlobalValue::AvailableExternallyLinkage;
908   case 13:
909     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
910   case 14:
911     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
912   case 15:
913     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
914   case 1: // Old value with implicit comdat.
915   case 16:
916     return GlobalValue::WeakAnyLinkage;
917   case 10: // Old value with implicit comdat.
918   case 17:
919     return GlobalValue::WeakODRLinkage;
920   case 4: // Old value with implicit comdat.
921   case 18:
922     return GlobalValue::LinkOnceAnyLinkage;
923   case 11: // Old value with implicit comdat.
924   case 19:
925     return GlobalValue::LinkOnceODRLinkage;
926   }
927 }
928 
929 /// Decode the flags for GlobalValue in the summary.
930 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
931                                                             uint64_t Version) {
932   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
933   // like getDecodedLinkage() above. Any future change to the linkage enum and
934   // to getDecodedLinkage() will need to be taken into account here as above.
935   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
936   RawFlags = RawFlags >> 4;
937   bool NoRename = RawFlags & 0x1;
938   bool IsNotViableToInline = RawFlags & 0x2;
939   bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4;
940   return GlobalValueSummary::GVFlags(Linkage, NoRename,
941                                      HasInlineAsmMaybeReferencingInternal,
942                                      IsNotViableToInline);
943 }
944 
945 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
946   switch (Val) {
947   default: // Map unknown visibilities to default.
948   case 0: return GlobalValue::DefaultVisibility;
949   case 1: return GlobalValue::HiddenVisibility;
950   case 2: return GlobalValue::ProtectedVisibility;
951   }
952 }
953 
954 static GlobalValue::DLLStorageClassTypes
955 getDecodedDLLStorageClass(unsigned Val) {
956   switch (Val) {
957   default: // Map unknown values to default.
958   case 0: return GlobalValue::DefaultStorageClass;
959   case 1: return GlobalValue::DLLImportStorageClass;
960   case 2: return GlobalValue::DLLExportStorageClass;
961   }
962 }
963 
964 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
965   switch (Val) {
966     case 0: return GlobalVariable::NotThreadLocal;
967     default: // Map unknown non-zero value to general dynamic.
968     case 1: return GlobalVariable::GeneralDynamicTLSModel;
969     case 2: return GlobalVariable::LocalDynamicTLSModel;
970     case 3: return GlobalVariable::InitialExecTLSModel;
971     case 4: return GlobalVariable::LocalExecTLSModel;
972   }
973 }
974 
975 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
976   switch (Val) {
977     default: // Map unknown to UnnamedAddr::None.
978     case 0: return GlobalVariable::UnnamedAddr::None;
979     case 1: return GlobalVariable::UnnamedAddr::Global;
980     case 2: return GlobalVariable::UnnamedAddr::Local;
981   }
982 }
983 
984 static int getDecodedCastOpcode(unsigned Val) {
985   switch (Val) {
986   default: return -1;
987   case bitc::CAST_TRUNC   : return Instruction::Trunc;
988   case bitc::CAST_ZEXT    : return Instruction::ZExt;
989   case bitc::CAST_SEXT    : return Instruction::SExt;
990   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
991   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
992   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
993   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
994   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
995   case bitc::CAST_FPEXT   : return Instruction::FPExt;
996   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
997   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
998   case bitc::CAST_BITCAST : return Instruction::BitCast;
999   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1000   }
1001 }
1002 
1003 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1004   bool IsFP = Ty->isFPOrFPVectorTy();
1005   // BinOps are only valid for int/fp or vector of int/fp types
1006   if (!IsFP && !Ty->isIntOrIntVectorTy())
1007     return -1;
1008 
1009   switch (Val) {
1010   default:
1011     return -1;
1012   case bitc::BINOP_ADD:
1013     return IsFP ? Instruction::FAdd : Instruction::Add;
1014   case bitc::BINOP_SUB:
1015     return IsFP ? Instruction::FSub : Instruction::Sub;
1016   case bitc::BINOP_MUL:
1017     return IsFP ? Instruction::FMul : Instruction::Mul;
1018   case bitc::BINOP_UDIV:
1019     return IsFP ? -1 : Instruction::UDiv;
1020   case bitc::BINOP_SDIV:
1021     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1022   case bitc::BINOP_UREM:
1023     return IsFP ? -1 : Instruction::URem;
1024   case bitc::BINOP_SREM:
1025     return IsFP ? Instruction::FRem : Instruction::SRem;
1026   case bitc::BINOP_SHL:
1027     return IsFP ? -1 : Instruction::Shl;
1028   case bitc::BINOP_LSHR:
1029     return IsFP ? -1 : Instruction::LShr;
1030   case bitc::BINOP_ASHR:
1031     return IsFP ? -1 : Instruction::AShr;
1032   case bitc::BINOP_AND:
1033     return IsFP ? -1 : Instruction::And;
1034   case bitc::BINOP_OR:
1035     return IsFP ? -1 : Instruction::Or;
1036   case bitc::BINOP_XOR:
1037     return IsFP ? -1 : Instruction::Xor;
1038   }
1039 }
1040 
1041 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1042   switch (Val) {
1043   default: return AtomicRMWInst::BAD_BINOP;
1044   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1045   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1046   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1047   case bitc::RMW_AND: return AtomicRMWInst::And;
1048   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1049   case bitc::RMW_OR: return AtomicRMWInst::Or;
1050   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1051   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1052   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1053   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1054   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1055   }
1056 }
1057 
1058 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1059   switch (Val) {
1060   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1061   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1062   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1063   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1064   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1065   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1066   default: // Map unknown orderings to sequentially-consistent.
1067   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1068   }
1069 }
1070 
1071 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
1072   switch (Val) {
1073   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
1074   default: // Map unknown scopes to cross-thread.
1075   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
1076   }
1077 }
1078 
1079 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1080   switch (Val) {
1081   default: // Map unknown selection kinds to any.
1082   case bitc::COMDAT_SELECTION_KIND_ANY:
1083     return Comdat::Any;
1084   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1085     return Comdat::ExactMatch;
1086   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1087     return Comdat::Largest;
1088   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1089     return Comdat::NoDuplicates;
1090   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1091     return Comdat::SameSize;
1092   }
1093 }
1094 
1095 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1096   FastMathFlags FMF;
1097   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1098     FMF.setUnsafeAlgebra();
1099   if (0 != (Val & FastMathFlags::NoNaNs))
1100     FMF.setNoNaNs();
1101   if (0 != (Val & FastMathFlags::NoInfs))
1102     FMF.setNoInfs();
1103   if (0 != (Val & FastMathFlags::NoSignedZeros))
1104     FMF.setNoSignedZeros();
1105   if (0 != (Val & FastMathFlags::AllowReciprocal))
1106     FMF.setAllowReciprocal();
1107   return FMF;
1108 }
1109 
1110 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1111   switch (Val) {
1112   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1113   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1114   }
1115 }
1116 
1117 namespace llvm {
1118 namespace {
1119 
1120 /// \brief A class for maintaining the slot number definition
1121 /// as a placeholder for the actual definition for forward constants defs.
1122 class ConstantPlaceHolder : public ConstantExpr {
1123   void operator=(const ConstantPlaceHolder &) = delete;
1124 
1125 public:
1126   // allocate space for exactly one operand
1127   void *operator new(size_t s) { return User::operator new(s, 1); }
1128   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
1129       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
1130     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
1131   }
1132 
1133   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
1134   static bool classof(const Value *V) {
1135     return isa<ConstantExpr>(V) &&
1136            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
1137   }
1138 
1139   /// Provide fast operand accessors
1140   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1141 };
1142 
1143 } // end anonymous namespace
1144 
1145 // FIXME: can we inherit this from ConstantExpr?
1146 template <>
1147 struct OperandTraits<ConstantPlaceHolder> :
1148   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
1149 };
1150 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
1151 
1152 } // end namespace llvm
1153 
1154 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
1155   if (Idx == size()) {
1156     push_back(V);
1157     return;
1158   }
1159 
1160   if (Idx >= size())
1161     resize(Idx+1);
1162 
1163   WeakVH &OldV = ValuePtrs[Idx];
1164   if (!OldV) {
1165     OldV = V;
1166     return;
1167   }
1168 
1169   // Handle constants and non-constants (e.g. instrs) differently for
1170   // efficiency.
1171   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1172     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1173     OldV = V;
1174   } else {
1175     // If there was a forward reference to this value, replace it.
1176     Value *PrevVal = OldV;
1177     OldV->replaceAllUsesWith(V);
1178     delete PrevVal;
1179   }
1180 }
1181 
1182 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1183                                                     Type *Ty) {
1184   if (Idx >= size())
1185     resize(Idx + 1);
1186 
1187   if (Value *V = ValuePtrs[Idx]) {
1188     if (Ty != V->getType())
1189       report_fatal_error("Type mismatch in constant table!");
1190     return cast<Constant>(V);
1191   }
1192 
1193   // Create and return a placeholder, which will later be RAUW'd.
1194   Constant *C = new ConstantPlaceHolder(Ty, Context);
1195   ValuePtrs[Idx] = C;
1196   return C;
1197 }
1198 
1199 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1200   // Bail out for a clearly invalid value. This would make us call resize(0)
1201   if (Idx == std::numeric_limits<unsigned>::max())
1202     return nullptr;
1203 
1204   if (Idx >= size())
1205     resize(Idx + 1);
1206 
1207   if (Value *V = ValuePtrs[Idx]) {
1208     // If the types don't match, it's invalid.
1209     if (Ty && Ty != V->getType())
1210       return nullptr;
1211     return V;
1212   }
1213 
1214   // No type specified, must be invalid reference.
1215   if (!Ty) return nullptr;
1216 
1217   // Create and return a placeholder, which will later be RAUW'd.
1218   Value *V = new Argument(Ty);
1219   ValuePtrs[Idx] = V;
1220   return V;
1221 }
1222 
1223 /// Once all constants are read, this method bulk resolves any forward
1224 /// references.  The idea behind this is that we sometimes get constants (such
1225 /// as large arrays) which reference *many* forward ref constants.  Replacing
1226 /// each of these causes a lot of thrashing when building/reuniquing the
1227 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1228 /// the place holders at once for any constant that uses a placeholder.
1229 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1230   // Sort the values by-pointer so that they are efficient to look up with a
1231   // binary search.
1232   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1233 
1234   SmallVector<Constant*, 64> NewOps;
1235 
1236   while (!ResolveConstants.empty()) {
1237     Value *RealVal = operator[](ResolveConstants.back().second);
1238     Constant *Placeholder = ResolveConstants.back().first;
1239     ResolveConstants.pop_back();
1240 
1241     // Loop over all users of the placeholder, updating them to reference the
1242     // new value.  If they reference more than one placeholder, update them all
1243     // at once.
1244     while (!Placeholder->use_empty()) {
1245       auto UI = Placeholder->user_begin();
1246       User *U = *UI;
1247 
1248       // If the using object isn't uniqued, just update the operands.  This
1249       // handles instructions and initializers for global variables.
1250       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1251         UI.getUse().set(RealVal);
1252         continue;
1253       }
1254 
1255       // Otherwise, we have a constant that uses the placeholder.  Replace that
1256       // constant with a new constant that has *all* placeholder uses updated.
1257       Constant *UserC = cast<Constant>(U);
1258       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1259            I != E; ++I) {
1260         Value *NewOp;
1261         if (!isa<ConstantPlaceHolder>(*I)) {
1262           // Not a placeholder reference.
1263           NewOp = *I;
1264         } else if (*I == Placeholder) {
1265           // Common case is that it just references this one placeholder.
1266           NewOp = RealVal;
1267         } else {
1268           // Otherwise, look up the placeholder in ResolveConstants.
1269           ResolveConstantsTy::iterator It =
1270             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1271                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1272                                                             0));
1273           assert(It != ResolveConstants.end() && It->first == *I);
1274           NewOp = operator[](It->second);
1275         }
1276 
1277         NewOps.push_back(cast<Constant>(NewOp));
1278       }
1279 
1280       // Make the new constant.
1281       Constant *NewC;
1282       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1283         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1284       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1285         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1286       } else if (isa<ConstantVector>(UserC)) {
1287         NewC = ConstantVector::get(NewOps);
1288       } else {
1289         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1290         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1291       }
1292 
1293       UserC->replaceAllUsesWith(NewC);
1294       UserC->destroyConstant();
1295       NewOps.clear();
1296     }
1297 
1298     // Update all ValueHandles, they should be the only users at this point.
1299     Placeholder->replaceAllUsesWith(RealVal);
1300     delete Placeholder;
1301   }
1302 }
1303 
1304 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1305   if (Idx == size()) {
1306     push_back(MD);
1307     return;
1308   }
1309 
1310   if (Idx >= size())
1311     resize(Idx+1);
1312 
1313   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1314   if (!OldMD) {
1315     OldMD.reset(MD);
1316     return;
1317   }
1318 
1319   // If there was a forward reference to this value, replace it.
1320   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1321   PrevMD->replaceAllUsesWith(MD);
1322   --NumFwdRefs;
1323 }
1324 
1325 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1326   if (Idx >= size())
1327     resize(Idx + 1);
1328 
1329   if (Metadata *MD = MetadataPtrs[Idx])
1330     return MD;
1331 
1332   // Track forward refs to be resolved later.
1333   if (AnyFwdRefs) {
1334     MinFwdRef = std::min(MinFwdRef, Idx);
1335     MaxFwdRef = std::max(MaxFwdRef, Idx);
1336   } else {
1337     AnyFwdRefs = true;
1338     MinFwdRef = MaxFwdRef = Idx;
1339   }
1340   ++NumFwdRefs;
1341 
1342   // Create and return a placeholder, which will later be RAUW'd.
1343   Metadata *MD = MDNode::getTemporary(Context, None).release();
1344   MetadataPtrs[Idx].reset(MD);
1345   return MD;
1346 }
1347 
1348 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1349   Metadata *MD = lookup(Idx);
1350   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1351     if (!N->isResolved())
1352       return nullptr;
1353   return MD;
1354 }
1355 
1356 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1357   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1358 }
1359 
1360 void BitcodeReaderMetadataList::tryToResolveCycles() {
1361   if (NumFwdRefs)
1362     // Still forward references... can't resolve cycles.
1363     return;
1364 
1365   bool DidReplaceTypeRefs = false;
1366 
1367   // Give up on finding a full definition for any forward decls that remain.
1368   for (const auto &Ref : OldTypeRefs.FwdDecls)
1369     OldTypeRefs.Final.insert(Ref);
1370   OldTypeRefs.FwdDecls.clear();
1371 
1372   // Upgrade from old type ref arrays.  In strange cases, this could add to
1373   // OldTypeRefs.Unknown.
1374   for (const auto &Array : OldTypeRefs.Arrays) {
1375     DidReplaceTypeRefs = true;
1376     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1377   }
1378   OldTypeRefs.Arrays.clear();
1379 
1380   // Replace old string-based type refs with the resolved node, if possible.
1381   // If we haven't seen the node, leave it to the verifier to complain about
1382   // the invalid string reference.
1383   for (const auto &Ref : OldTypeRefs.Unknown) {
1384     DidReplaceTypeRefs = true;
1385     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1386       Ref.second->replaceAllUsesWith(CT);
1387     else
1388       Ref.second->replaceAllUsesWith(Ref.first);
1389   }
1390   OldTypeRefs.Unknown.clear();
1391 
1392   // Make sure all the upgraded types are resolved.
1393   if (DidReplaceTypeRefs) {
1394     AnyFwdRefs = true;
1395     MinFwdRef = 0;
1396     MaxFwdRef = MetadataPtrs.size() - 1;
1397   }
1398 
1399   if (!AnyFwdRefs)
1400     // Nothing to do.
1401     return;
1402 
1403   // Resolve any cycles.
1404   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1405     auto &MD = MetadataPtrs[I];
1406     auto *N = dyn_cast_or_null<MDNode>(MD);
1407     if (!N)
1408       continue;
1409 
1410     assert(!N->isTemporary() && "Unexpected forward reference");
1411     N->resolveCycles();
1412   }
1413 
1414   // Make sure we return early again until there's another forward ref.
1415   AnyFwdRefs = false;
1416 }
1417 
1418 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1419                                            DICompositeType &CT) {
1420   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1421   if (CT.isForwardDecl())
1422     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1423   else
1424     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1425 }
1426 
1427 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1428   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1429   if (LLVM_LIKELY(!UUID))
1430     return MaybeUUID;
1431 
1432   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1433     return CT;
1434 
1435   auto &Ref = OldTypeRefs.Unknown[UUID];
1436   if (!Ref)
1437     Ref = MDNode::getTemporary(Context, None);
1438   return Ref.get();
1439 }
1440 
1441 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1442   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1443   if (!Tuple || Tuple->isDistinct())
1444     return MaybeTuple;
1445 
1446   // Look through the array immediately if possible.
1447   if (!Tuple->isTemporary())
1448     return resolveTypeRefArray(Tuple);
1449 
1450   // Create and return a placeholder to use for now.  Eventually
1451   // resolveTypeRefArrays() will be resolve this forward reference.
1452   OldTypeRefs.Arrays.emplace_back(
1453       std::piecewise_construct, std::forward_as_tuple(Tuple),
1454       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1455   return OldTypeRefs.Arrays.back().second.get();
1456 }
1457 
1458 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1459   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1460   if (!Tuple || Tuple->isDistinct())
1461     return MaybeTuple;
1462 
1463   // Look through the DITypeRefArray, upgrading each DITypeRef.
1464   SmallVector<Metadata *, 32> Ops;
1465   Ops.reserve(Tuple->getNumOperands());
1466   for (Metadata *MD : Tuple->operands())
1467     Ops.push_back(upgradeTypeRef(MD));
1468 
1469   return MDTuple::get(Context, Ops);
1470 }
1471 
1472 Type *BitcodeReader::getTypeByID(unsigned ID) {
1473   // The type table size is always specified correctly.
1474   if (ID >= TypeList.size())
1475     return nullptr;
1476 
1477   if (Type *Ty = TypeList[ID])
1478     return Ty;
1479 
1480   // If we have a forward reference, the only possible case is when it is to a
1481   // named struct.  Just create a placeholder for now.
1482   return TypeList[ID] = createIdentifiedStructType(Context);
1483 }
1484 
1485 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1486                                                       StringRef Name) {
1487   auto *Ret = StructType::create(Context, Name);
1488   IdentifiedStructTypes.push_back(Ret);
1489   return Ret;
1490 }
1491 
1492 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1493   auto *Ret = StructType::create(Context);
1494   IdentifiedStructTypes.push_back(Ret);
1495   return Ret;
1496 }
1497 
1498 //===----------------------------------------------------------------------===//
1499 //  Functions for parsing blocks from the bitcode file
1500 //===----------------------------------------------------------------------===//
1501 
1502 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1503   switch (Val) {
1504   case Attribute::EndAttrKinds:
1505     llvm_unreachable("Synthetic enumerators which should never get here");
1506 
1507   case Attribute::None:            return 0;
1508   case Attribute::ZExt:            return 1 << 0;
1509   case Attribute::SExt:            return 1 << 1;
1510   case Attribute::NoReturn:        return 1 << 2;
1511   case Attribute::InReg:           return 1 << 3;
1512   case Attribute::StructRet:       return 1 << 4;
1513   case Attribute::NoUnwind:        return 1 << 5;
1514   case Attribute::NoAlias:         return 1 << 6;
1515   case Attribute::ByVal:           return 1 << 7;
1516   case Attribute::Nest:            return 1 << 8;
1517   case Attribute::ReadNone:        return 1 << 9;
1518   case Attribute::ReadOnly:        return 1 << 10;
1519   case Attribute::NoInline:        return 1 << 11;
1520   case Attribute::AlwaysInline:    return 1 << 12;
1521   case Attribute::OptimizeForSize: return 1 << 13;
1522   case Attribute::StackProtect:    return 1 << 14;
1523   case Attribute::StackProtectReq: return 1 << 15;
1524   case Attribute::Alignment:       return 31 << 16;
1525   case Attribute::NoCapture:       return 1 << 21;
1526   case Attribute::NoRedZone:       return 1 << 22;
1527   case Attribute::NoImplicitFloat: return 1 << 23;
1528   case Attribute::Naked:           return 1 << 24;
1529   case Attribute::InlineHint:      return 1 << 25;
1530   case Attribute::StackAlignment:  return 7 << 26;
1531   case Attribute::ReturnsTwice:    return 1 << 29;
1532   case Attribute::UWTable:         return 1 << 30;
1533   case Attribute::NonLazyBind:     return 1U << 31;
1534   case Attribute::SanitizeAddress: return 1ULL << 32;
1535   case Attribute::MinSize:         return 1ULL << 33;
1536   case Attribute::NoDuplicate:     return 1ULL << 34;
1537   case Attribute::StackProtectStrong: return 1ULL << 35;
1538   case Attribute::SanitizeThread:  return 1ULL << 36;
1539   case Attribute::SanitizeMemory:  return 1ULL << 37;
1540   case Attribute::NoBuiltin:       return 1ULL << 38;
1541   case Attribute::Returned:        return 1ULL << 39;
1542   case Attribute::Cold:            return 1ULL << 40;
1543   case Attribute::Builtin:         return 1ULL << 41;
1544   case Attribute::OptimizeNone:    return 1ULL << 42;
1545   case Attribute::InAlloca:        return 1ULL << 43;
1546   case Attribute::NonNull:         return 1ULL << 44;
1547   case Attribute::JumpTable:       return 1ULL << 45;
1548   case Attribute::Convergent:      return 1ULL << 46;
1549   case Attribute::SafeStack:       return 1ULL << 47;
1550   case Attribute::NoRecurse:       return 1ULL << 48;
1551   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1552   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1553   case Attribute::SwiftSelf:       return 1ULL << 51;
1554   case Attribute::SwiftError:      return 1ULL << 52;
1555   case Attribute::WriteOnly:       return 1ULL << 53;
1556   case Attribute::Dereferenceable:
1557     llvm_unreachable("dereferenceable attribute not supported in raw format");
1558     break;
1559   case Attribute::DereferenceableOrNull:
1560     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1561                      "format");
1562     break;
1563   case Attribute::ArgMemOnly:
1564     llvm_unreachable("argmemonly attribute not supported in raw format");
1565     break;
1566   case Attribute::AllocSize:
1567     llvm_unreachable("allocsize not supported in raw format");
1568     break;
1569   }
1570   llvm_unreachable("Unsupported attribute type");
1571 }
1572 
1573 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1574   if (!Val) return;
1575 
1576   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1577        I = Attribute::AttrKind(I + 1)) {
1578     if (I == Attribute::Dereferenceable ||
1579         I == Attribute::DereferenceableOrNull ||
1580         I == Attribute::ArgMemOnly ||
1581         I == Attribute::AllocSize)
1582       continue;
1583     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1584       if (I == Attribute::Alignment)
1585         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1586       else if (I == Attribute::StackAlignment)
1587         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1588       else
1589         B.addAttribute(I);
1590     }
1591   }
1592 }
1593 
1594 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1595 /// been decoded from the given integer. This function must stay in sync with
1596 /// 'encodeLLVMAttributesForBitcode'.
1597 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1598                                            uint64_t EncodedAttrs) {
1599   // FIXME: Remove in 4.0.
1600 
1601   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1602   // the bits above 31 down by 11 bits.
1603   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1604   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1605          "Alignment must be a power of two.");
1606 
1607   if (Alignment)
1608     B.addAlignmentAttr(Alignment);
1609   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1610                           (EncodedAttrs & 0xffff));
1611 }
1612 
1613 Error BitcodeReader::parseAttributeBlock() {
1614   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1615     return error("Invalid record");
1616 
1617   if (!MAttributes.empty())
1618     return error("Invalid multiple blocks");
1619 
1620   SmallVector<uint64_t, 64> Record;
1621 
1622   SmallVector<AttributeSet, 8> Attrs;
1623 
1624   // Read all the records.
1625   while (true) {
1626     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1627 
1628     switch (Entry.Kind) {
1629     case BitstreamEntry::SubBlock: // Handled for us already.
1630     case BitstreamEntry::Error:
1631       return error("Malformed block");
1632     case BitstreamEntry::EndBlock:
1633       return Error::success();
1634     case BitstreamEntry::Record:
1635       // The interesting case.
1636       break;
1637     }
1638 
1639     // Read a record.
1640     Record.clear();
1641     switch (Stream.readRecord(Entry.ID, Record)) {
1642     default:  // Default behavior: ignore.
1643       break;
1644     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1645       // FIXME: Remove in 4.0.
1646       if (Record.size() & 1)
1647         return error("Invalid record");
1648 
1649       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1650         AttrBuilder B;
1651         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1652         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1653       }
1654 
1655       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1656       Attrs.clear();
1657       break;
1658     }
1659     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1660       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1661         Attrs.push_back(MAttributeGroups[Record[i]]);
1662 
1663       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1664       Attrs.clear();
1665       break;
1666     }
1667     }
1668   }
1669 }
1670 
1671 // Returns Attribute::None on unrecognized codes.
1672 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1673   switch (Code) {
1674   default:
1675     return Attribute::None;
1676   case bitc::ATTR_KIND_ALIGNMENT:
1677     return Attribute::Alignment;
1678   case bitc::ATTR_KIND_ALWAYS_INLINE:
1679     return Attribute::AlwaysInline;
1680   case bitc::ATTR_KIND_ARGMEMONLY:
1681     return Attribute::ArgMemOnly;
1682   case bitc::ATTR_KIND_BUILTIN:
1683     return Attribute::Builtin;
1684   case bitc::ATTR_KIND_BY_VAL:
1685     return Attribute::ByVal;
1686   case bitc::ATTR_KIND_IN_ALLOCA:
1687     return Attribute::InAlloca;
1688   case bitc::ATTR_KIND_COLD:
1689     return Attribute::Cold;
1690   case bitc::ATTR_KIND_CONVERGENT:
1691     return Attribute::Convergent;
1692   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1693     return Attribute::InaccessibleMemOnly;
1694   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1695     return Attribute::InaccessibleMemOrArgMemOnly;
1696   case bitc::ATTR_KIND_INLINE_HINT:
1697     return Attribute::InlineHint;
1698   case bitc::ATTR_KIND_IN_REG:
1699     return Attribute::InReg;
1700   case bitc::ATTR_KIND_JUMP_TABLE:
1701     return Attribute::JumpTable;
1702   case bitc::ATTR_KIND_MIN_SIZE:
1703     return Attribute::MinSize;
1704   case bitc::ATTR_KIND_NAKED:
1705     return Attribute::Naked;
1706   case bitc::ATTR_KIND_NEST:
1707     return Attribute::Nest;
1708   case bitc::ATTR_KIND_NO_ALIAS:
1709     return Attribute::NoAlias;
1710   case bitc::ATTR_KIND_NO_BUILTIN:
1711     return Attribute::NoBuiltin;
1712   case bitc::ATTR_KIND_NO_CAPTURE:
1713     return Attribute::NoCapture;
1714   case bitc::ATTR_KIND_NO_DUPLICATE:
1715     return Attribute::NoDuplicate;
1716   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1717     return Attribute::NoImplicitFloat;
1718   case bitc::ATTR_KIND_NO_INLINE:
1719     return Attribute::NoInline;
1720   case bitc::ATTR_KIND_NO_RECURSE:
1721     return Attribute::NoRecurse;
1722   case bitc::ATTR_KIND_NON_LAZY_BIND:
1723     return Attribute::NonLazyBind;
1724   case bitc::ATTR_KIND_NON_NULL:
1725     return Attribute::NonNull;
1726   case bitc::ATTR_KIND_DEREFERENCEABLE:
1727     return Attribute::Dereferenceable;
1728   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1729     return Attribute::DereferenceableOrNull;
1730   case bitc::ATTR_KIND_ALLOC_SIZE:
1731     return Attribute::AllocSize;
1732   case bitc::ATTR_KIND_NO_RED_ZONE:
1733     return Attribute::NoRedZone;
1734   case bitc::ATTR_KIND_NO_RETURN:
1735     return Attribute::NoReturn;
1736   case bitc::ATTR_KIND_NO_UNWIND:
1737     return Attribute::NoUnwind;
1738   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1739     return Attribute::OptimizeForSize;
1740   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1741     return Attribute::OptimizeNone;
1742   case bitc::ATTR_KIND_READ_NONE:
1743     return Attribute::ReadNone;
1744   case bitc::ATTR_KIND_READ_ONLY:
1745     return Attribute::ReadOnly;
1746   case bitc::ATTR_KIND_RETURNED:
1747     return Attribute::Returned;
1748   case bitc::ATTR_KIND_RETURNS_TWICE:
1749     return Attribute::ReturnsTwice;
1750   case bitc::ATTR_KIND_S_EXT:
1751     return Attribute::SExt;
1752   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1753     return Attribute::StackAlignment;
1754   case bitc::ATTR_KIND_STACK_PROTECT:
1755     return Attribute::StackProtect;
1756   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1757     return Attribute::StackProtectReq;
1758   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1759     return Attribute::StackProtectStrong;
1760   case bitc::ATTR_KIND_SAFESTACK:
1761     return Attribute::SafeStack;
1762   case bitc::ATTR_KIND_STRUCT_RET:
1763     return Attribute::StructRet;
1764   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1765     return Attribute::SanitizeAddress;
1766   case bitc::ATTR_KIND_SANITIZE_THREAD:
1767     return Attribute::SanitizeThread;
1768   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1769     return Attribute::SanitizeMemory;
1770   case bitc::ATTR_KIND_SWIFT_ERROR:
1771     return Attribute::SwiftError;
1772   case bitc::ATTR_KIND_SWIFT_SELF:
1773     return Attribute::SwiftSelf;
1774   case bitc::ATTR_KIND_UW_TABLE:
1775     return Attribute::UWTable;
1776   case bitc::ATTR_KIND_WRITEONLY:
1777     return Attribute::WriteOnly;
1778   case bitc::ATTR_KIND_Z_EXT:
1779     return Attribute::ZExt;
1780   }
1781 }
1782 
1783 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1784                                          unsigned &Alignment) {
1785   // Note: Alignment in bitcode files is incremented by 1, so that zero
1786   // can be used for default alignment.
1787   if (Exponent > Value::MaxAlignmentExponent + 1)
1788     return error("Invalid alignment value");
1789   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1790   return Error::success();
1791 }
1792 
1793 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1794   *Kind = getAttrFromCode(Code);
1795   if (*Kind == Attribute::None)
1796     return error("Unknown attribute kind (" + Twine(Code) + ")");
1797   return Error::success();
1798 }
1799 
1800 Error BitcodeReader::parseAttributeGroupBlock() {
1801   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1802     return error("Invalid record");
1803 
1804   if (!MAttributeGroups.empty())
1805     return error("Invalid multiple blocks");
1806 
1807   SmallVector<uint64_t, 64> Record;
1808 
1809   // Read all the records.
1810   while (true) {
1811     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1812 
1813     switch (Entry.Kind) {
1814     case BitstreamEntry::SubBlock: // Handled for us already.
1815     case BitstreamEntry::Error:
1816       return error("Malformed block");
1817     case BitstreamEntry::EndBlock:
1818       return Error::success();
1819     case BitstreamEntry::Record:
1820       // The interesting case.
1821       break;
1822     }
1823 
1824     // Read a record.
1825     Record.clear();
1826     switch (Stream.readRecord(Entry.ID, Record)) {
1827     default:  // Default behavior: ignore.
1828       break;
1829     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1830       if (Record.size() < 3)
1831         return error("Invalid record");
1832 
1833       uint64_t GrpID = Record[0];
1834       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1835 
1836       AttrBuilder B;
1837       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1838         if (Record[i] == 0) {        // Enum attribute
1839           Attribute::AttrKind Kind;
1840           if (Error Err = parseAttrKind(Record[++i], &Kind))
1841             return Err;
1842 
1843           B.addAttribute(Kind);
1844         } else if (Record[i] == 1) { // Integer attribute
1845           Attribute::AttrKind Kind;
1846           if (Error Err = parseAttrKind(Record[++i], &Kind))
1847             return Err;
1848           if (Kind == Attribute::Alignment)
1849             B.addAlignmentAttr(Record[++i]);
1850           else if (Kind == Attribute::StackAlignment)
1851             B.addStackAlignmentAttr(Record[++i]);
1852           else if (Kind == Attribute::Dereferenceable)
1853             B.addDereferenceableAttr(Record[++i]);
1854           else if (Kind == Attribute::DereferenceableOrNull)
1855             B.addDereferenceableOrNullAttr(Record[++i]);
1856           else if (Kind == Attribute::AllocSize)
1857             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1858         } else {                     // String attribute
1859           assert((Record[i] == 3 || Record[i] == 4) &&
1860                  "Invalid attribute group entry");
1861           bool HasValue = (Record[i++] == 4);
1862           SmallString<64> KindStr;
1863           SmallString<64> ValStr;
1864 
1865           while (Record[i] != 0 && i != e)
1866             KindStr += Record[i++];
1867           assert(Record[i] == 0 && "Kind string not null terminated");
1868 
1869           if (HasValue) {
1870             // Has a value associated with it.
1871             ++i; // Skip the '0' that terminates the "kind" string.
1872             while (Record[i] != 0 && i != e)
1873               ValStr += Record[i++];
1874             assert(Record[i] == 0 && "Value string not null terminated");
1875           }
1876 
1877           B.addAttribute(KindStr.str(), ValStr.str());
1878         }
1879       }
1880 
1881       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1882       break;
1883     }
1884     }
1885   }
1886 }
1887 
1888 Error BitcodeReader::parseTypeTable() {
1889   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1890     return error("Invalid record");
1891 
1892   return parseTypeTableBody();
1893 }
1894 
1895 Error BitcodeReader::parseTypeTableBody() {
1896   if (!TypeList.empty())
1897     return error("Invalid multiple blocks");
1898 
1899   SmallVector<uint64_t, 64> Record;
1900   unsigned NumRecords = 0;
1901 
1902   SmallString<64> TypeName;
1903 
1904   // Read all the records for this type table.
1905   while (true) {
1906     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1907 
1908     switch (Entry.Kind) {
1909     case BitstreamEntry::SubBlock: // Handled for us already.
1910     case BitstreamEntry::Error:
1911       return error("Malformed block");
1912     case BitstreamEntry::EndBlock:
1913       if (NumRecords != TypeList.size())
1914         return error("Malformed block");
1915       return Error::success();
1916     case BitstreamEntry::Record:
1917       // The interesting case.
1918       break;
1919     }
1920 
1921     // Read a record.
1922     Record.clear();
1923     Type *ResultTy = nullptr;
1924     switch (Stream.readRecord(Entry.ID, Record)) {
1925     default:
1926       return error("Invalid value");
1927     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1928       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1929       // type list.  This allows us to reserve space.
1930       if (Record.size() < 1)
1931         return error("Invalid record");
1932       TypeList.resize(Record[0]);
1933       continue;
1934     case bitc::TYPE_CODE_VOID:      // VOID
1935       ResultTy = Type::getVoidTy(Context);
1936       break;
1937     case bitc::TYPE_CODE_HALF:     // HALF
1938       ResultTy = Type::getHalfTy(Context);
1939       break;
1940     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1941       ResultTy = Type::getFloatTy(Context);
1942       break;
1943     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1944       ResultTy = Type::getDoubleTy(Context);
1945       break;
1946     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1947       ResultTy = Type::getX86_FP80Ty(Context);
1948       break;
1949     case bitc::TYPE_CODE_FP128:     // FP128
1950       ResultTy = Type::getFP128Ty(Context);
1951       break;
1952     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1953       ResultTy = Type::getPPC_FP128Ty(Context);
1954       break;
1955     case bitc::TYPE_CODE_LABEL:     // LABEL
1956       ResultTy = Type::getLabelTy(Context);
1957       break;
1958     case bitc::TYPE_CODE_METADATA:  // METADATA
1959       ResultTy = Type::getMetadataTy(Context);
1960       break;
1961     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1962       ResultTy = Type::getX86_MMXTy(Context);
1963       break;
1964     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1965       ResultTy = Type::getTokenTy(Context);
1966       break;
1967     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1968       if (Record.size() < 1)
1969         return error("Invalid record");
1970 
1971       uint64_t NumBits = Record[0];
1972       if (NumBits < IntegerType::MIN_INT_BITS ||
1973           NumBits > IntegerType::MAX_INT_BITS)
1974         return error("Bitwidth for integer type out of range");
1975       ResultTy = IntegerType::get(Context, NumBits);
1976       break;
1977     }
1978     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1979                                     //          [pointee type, address space]
1980       if (Record.size() < 1)
1981         return error("Invalid record");
1982       unsigned AddressSpace = 0;
1983       if (Record.size() == 2)
1984         AddressSpace = Record[1];
1985       ResultTy = getTypeByID(Record[0]);
1986       if (!ResultTy ||
1987           !PointerType::isValidElementType(ResultTy))
1988         return error("Invalid type");
1989       ResultTy = PointerType::get(ResultTy, AddressSpace);
1990       break;
1991     }
1992     case bitc::TYPE_CODE_FUNCTION_OLD: {
1993       // FIXME: attrid is dead, remove it in LLVM 4.0
1994       // FUNCTION: [vararg, attrid, retty, paramty x N]
1995       if (Record.size() < 3)
1996         return error("Invalid record");
1997       SmallVector<Type*, 8> ArgTys;
1998       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1999         if (Type *T = getTypeByID(Record[i]))
2000           ArgTys.push_back(T);
2001         else
2002           break;
2003       }
2004 
2005       ResultTy = getTypeByID(Record[2]);
2006       if (!ResultTy || ArgTys.size() < Record.size()-3)
2007         return error("Invalid type");
2008 
2009       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2010       break;
2011     }
2012     case bitc::TYPE_CODE_FUNCTION: {
2013       // FUNCTION: [vararg, retty, paramty x N]
2014       if (Record.size() < 2)
2015         return error("Invalid record");
2016       SmallVector<Type*, 8> ArgTys;
2017       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2018         if (Type *T = getTypeByID(Record[i])) {
2019           if (!FunctionType::isValidArgumentType(T))
2020             return error("Invalid function argument type");
2021           ArgTys.push_back(T);
2022         }
2023         else
2024           break;
2025       }
2026 
2027       ResultTy = getTypeByID(Record[1]);
2028       if (!ResultTy || ArgTys.size() < Record.size()-2)
2029         return error("Invalid type");
2030 
2031       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2032       break;
2033     }
2034     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2035       if (Record.size() < 1)
2036         return error("Invalid record");
2037       SmallVector<Type*, 8> EltTys;
2038       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2039         if (Type *T = getTypeByID(Record[i]))
2040           EltTys.push_back(T);
2041         else
2042           break;
2043       }
2044       if (EltTys.size() != Record.size()-1)
2045         return error("Invalid type");
2046       ResultTy = StructType::get(Context, EltTys, Record[0]);
2047       break;
2048     }
2049     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2050       if (convertToString(Record, 0, TypeName))
2051         return error("Invalid record");
2052       continue;
2053 
2054     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2055       if (Record.size() < 1)
2056         return error("Invalid record");
2057 
2058       if (NumRecords >= TypeList.size())
2059         return error("Invalid TYPE table");
2060 
2061       // Check to see if this was forward referenced, if so fill in the temp.
2062       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2063       if (Res) {
2064         Res->setName(TypeName);
2065         TypeList[NumRecords] = nullptr;
2066       } else  // Otherwise, create a new struct.
2067         Res = createIdentifiedStructType(Context, TypeName);
2068       TypeName.clear();
2069 
2070       SmallVector<Type*, 8> EltTys;
2071       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2072         if (Type *T = getTypeByID(Record[i]))
2073           EltTys.push_back(T);
2074         else
2075           break;
2076       }
2077       if (EltTys.size() != Record.size()-1)
2078         return error("Invalid record");
2079       Res->setBody(EltTys, Record[0]);
2080       ResultTy = Res;
2081       break;
2082     }
2083     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2084       if (Record.size() != 1)
2085         return error("Invalid record");
2086 
2087       if (NumRecords >= TypeList.size())
2088         return error("Invalid TYPE table");
2089 
2090       // Check to see if this was forward referenced, if so fill in the temp.
2091       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2092       if (Res) {
2093         Res->setName(TypeName);
2094         TypeList[NumRecords] = nullptr;
2095       } else  // Otherwise, create a new struct with no body.
2096         Res = createIdentifiedStructType(Context, TypeName);
2097       TypeName.clear();
2098       ResultTy = Res;
2099       break;
2100     }
2101     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2102       if (Record.size() < 2)
2103         return error("Invalid record");
2104       ResultTy = getTypeByID(Record[1]);
2105       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2106         return error("Invalid type");
2107       ResultTy = ArrayType::get(ResultTy, Record[0]);
2108       break;
2109     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
2110       if (Record.size() < 2)
2111         return error("Invalid record");
2112       if (Record[0] == 0)
2113         return error("Invalid vector length");
2114       ResultTy = getTypeByID(Record[1]);
2115       if (!ResultTy || !StructType::isValidElementType(ResultTy))
2116         return error("Invalid type");
2117       ResultTy = VectorType::get(ResultTy, Record[0]);
2118       break;
2119     }
2120 
2121     if (NumRecords >= TypeList.size())
2122       return error("Invalid TYPE table");
2123     if (TypeList[NumRecords])
2124       return error(
2125           "Invalid TYPE table: Only named structs can be forward referenced");
2126     assert(ResultTy && "Didn't read a type?");
2127     TypeList[NumRecords++] = ResultTy;
2128   }
2129 }
2130 
2131 Error BitcodeReader::parseOperandBundleTags() {
2132   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2133     return error("Invalid record");
2134 
2135   if (!BundleTags.empty())
2136     return error("Invalid multiple blocks");
2137 
2138   SmallVector<uint64_t, 64> Record;
2139 
2140   while (true) {
2141     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2142 
2143     switch (Entry.Kind) {
2144     case BitstreamEntry::SubBlock: // Handled for us already.
2145     case BitstreamEntry::Error:
2146       return error("Malformed block");
2147     case BitstreamEntry::EndBlock:
2148       return Error::success();
2149     case BitstreamEntry::Record:
2150       // The interesting case.
2151       break;
2152     }
2153 
2154     // Tags are implicitly mapped to integers by their order.
2155 
2156     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
2157       return error("Invalid record");
2158 
2159     // OPERAND_BUNDLE_TAG: [strchr x N]
2160     BundleTags.emplace_back();
2161     if (convertToString(Record, 0, BundleTags.back()))
2162       return error("Invalid record");
2163     Record.clear();
2164   }
2165 }
2166 
2167 /// Associate a value with its name from the given index in the provided record.
2168 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2169                                              unsigned NameIndex, Triple &TT) {
2170   SmallString<128> ValueName;
2171   if (convertToString(Record, NameIndex, ValueName))
2172     return error("Invalid record");
2173   unsigned ValueID = Record[0];
2174   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2175     return error("Invalid record");
2176   Value *V = ValueList[ValueID];
2177 
2178   StringRef NameStr(ValueName.data(), ValueName.size());
2179   if (NameStr.find_first_of(0) != StringRef::npos)
2180     return error("Invalid value name");
2181   V->setName(NameStr);
2182   auto *GO = dyn_cast<GlobalObject>(V);
2183   if (GO) {
2184     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2185       if (TT.isOSBinFormatMachO())
2186         GO->setComdat(nullptr);
2187       else
2188         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2189     }
2190   }
2191   return V;
2192 }
2193 
2194 /// Helper to note and return the current location, and jump to the given
2195 /// offset.
2196 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
2197                                        BitstreamCursor &Stream) {
2198   // Save the current parsing location so we can jump back at the end
2199   // of the VST read.
2200   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2201   Stream.JumpToBit(Offset * 32);
2202 #ifndef NDEBUG
2203   // Do some checking if we are in debug mode.
2204   BitstreamEntry Entry = Stream.advance();
2205   assert(Entry.Kind == BitstreamEntry::SubBlock);
2206   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2207 #else
2208   // In NDEBUG mode ignore the output so we don't get an unused variable
2209   // warning.
2210   Stream.advance();
2211 #endif
2212   return CurrentBit;
2213 }
2214 
2215 /// Parse the value symbol table at either the current parsing location or
2216 /// at the given bit offset if provided.
2217 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2218   uint64_t CurrentBit;
2219   // Pass in the Offset to distinguish between calling for the module-level
2220   // VST (where we want to jump to the VST offset) and the function-level
2221   // VST (where we don't).
2222   if (Offset > 0)
2223     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
2224 
2225   // Compute the delta between the bitcode indices in the VST (the word offset
2226   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2227   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2228   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2229   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2230   // just before entering the VST subblock because: 1) the EnterSubBlock
2231   // changes the AbbrevID width; 2) the VST block is nested within the same
2232   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2233   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2234   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2235   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2236   unsigned FuncBitcodeOffsetDelta =
2237       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2238 
2239   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2240     return error("Invalid record");
2241 
2242   SmallVector<uint64_t, 64> Record;
2243 
2244   Triple TT(TheModule->getTargetTriple());
2245 
2246   // Read all the records for this value table.
2247   SmallString<128> ValueName;
2248 
2249   while (true) {
2250     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2251 
2252     switch (Entry.Kind) {
2253     case BitstreamEntry::SubBlock: // Handled for us already.
2254     case BitstreamEntry::Error:
2255       return error("Malformed block");
2256     case BitstreamEntry::EndBlock:
2257       if (Offset > 0)
2258         Stream.JumpToBit(CurrentBit);
2259       return Error::success();
2260     case BitstreamEntry::Record:
2261       // The interesting case.
2262       break;
2263     }
2264 
2265     // Read a record.
2266     Record.clear();
2267     switch (Stream.readRecord(Entry.ID, Record)) {
2268     default:  // Default behavior: unknown type.
2269       break;
2270     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2271       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2272       if (Error Err = ValOrErr.takeError())
2273         return Err;
2274       ValOrErr.get();
2275       break;
2276     }
2277     case bitc::VST_CODE_FNENTRY: {
2278       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2279       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2280       if (Error Err = ValOrErr.takeError())
2281         return Err;
2282       Value *V = ValOrErr.get();
2283 
2284       auto *GO = dyn_cast<GlobalObject>(V);
2285       if (!GO) {
2286         // If this is an alias, need to get the actual Function object
2287         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2288         auto *GA = dyn_cast<GlobalAlias>(V);
2289         if (GA)
2290           GO = GA->getBaseObject();
2291         assert(GO);
2292       }
2293 
2294       // Note that we subtract 1 here because the offset is relative to one word
2295       // before the start of the identification or module block, which was
2296       // historically always the start of the regular bitcode header.
2297       uint64_t FuncWordOffset = Record[1] - 1;
2298       Function *F = dyn_cast<Function>(GO);
2299       assert(F);
2300       uint64_t FuncBitOffset = FuncWordOffset * 32;
2301       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2302       // Set the LastFunctionBlockBit to point to the last function block.
2303       // Later when parsing is resumed after function materialization,
2304       // we can simply skip that last function block.
2305       if (FuncBitOffset > LastFunctionBlockBit)
2306         LastFunctionBlockBit = FuncBitOffset;
2307       break;
2308     }
2309     case bitc::VST_CODE_BBENTRY: {
2310       if (convertToString(Record, 1, ValueName))
2311         return error("Invalid record");
2312       BasicBlock *BB = getBasicBlock(Record[0]);
2313       if (!BB)
2314         return error("Invalid record");
2315 
2316       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2317       ValueName.clear();
2318       break;
2319     }
2320     }
2321   }
2322 }
2323 
2324 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2325 Error BitcodeReader::parseMetadataKindRecord(
2326     SmallVectorImpl<uint64_t> &Record) {
2327   if (Record.size() < 2)
2328     return error("Invalid record");
2329 
2330   unsigned Kind = Record[0];
2331   SmallString<8> Name(Record.begin() + 1, Record.end());
2332 
2333   unsigned NewKind = TheModule->getMDKindID(Name.str());
2334   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2335     return error("Conflicting METADATA_KIND records");
2336   return Error::success();
2337 }
2338 
2339 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2340 
2341 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2342                                           StringRef Blob,
2343                                           unsigned &NextMetadataNo) {
2344   // All the MDStrings in the block are emitted together in a single
2345   // record.  The strings are concatenated and stored in a blob along with
2346   // their sizes.
2347   if (Record.size() != 2)
2348     return error("Invalid record: metadata strings layout");
2349 
2350   unsigned NumStrings = Record[0];
2351   unsigned StringsOffset = Record[1];
2352   if (!NumStrings)
2353     return error("Invalid record: metadata strings with no strings");
2354   if (StringsOffset > Blob.size())
2355     return error("Invalid record: metadata strings corrupt offset");
2356 
2357   StringRef Lengths = Blob.slice(0, StringsOffset);
2358   SimpleBitstreamCursor R(Lengths);
2359 
2360   StringRef Strings = Blob.drop_front(StringsOffset);
2361   do {
2362     if (R.AtEndOfStream())
2363       return error("Invalid record: metadata strings bad length");
2364 
2365     unsigned Size = R.ReadVBR(6);
2366     if (Strings.size() < Size)
2367       return error("Invalid record: metadata strings truncated chars");
2368 
2369     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2370                              NextMetadataNo++);
2371     Strings = Strings.drop_front(Size);
2372   } while (--NumStrings);
2373 
2374   return Error::success();
2375 }
2376 
2377 namespace {
2378 
2379 class PlaceholderQueue {
2380   // Placeholders would thrash around when moved, so store in a std::deque
2381   // instead of some sort of vector.
2382   std::deque<DistinctMDOperandPlaceholder> PHs;
2383 
2384 public:
2385   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2386   void flush(BitcodeReaderMetadataList &MetadataList);
2387 };
2388 
2389 } // end anonymous namespace
2390 
2391 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2392   PHs.emplace_back(ID);
2393   return PHs.back();
2394 }
2395 
2396 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2397   while (!PHs.empty()) {
2398     PHs.front().replaceUseWith(
2399         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2400     PHs.pop_front();
2401   }
2402 }
2403 
2404 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2405 /// module level metadata.
2406 Error BitcodeReader::parseMetadata(bool ModuleLevel) {
2407   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2408          "Must read all module-level metadata before function-level");
2409 
2410   unsigned NextMetadataNo = MetadataList.size();
2411 
2412   if (!ModuleLevel && MetadataList.hasFwdRefs())
2413     return error("Invalid metadata: fwd refs into function blocks");
2414 
2415   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2416     return error("Invalid record");
2417 
2418   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2419   SmallVector<uint64_t, 64> Record;
2420 
2421   PlaceholderQueue Placeholders;
2422   bool IsDistinct;
2423   auto getMD = [&](unsigned ID) -> Metadata * {
2424     if (!IsDistinct)
2425       return MetadataList.getMetadataFwdRef(ID);
2426     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2427       return MD;
2428     return &Placeholders.getPlaceholderOp(ID);
2429   };
2430   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2431     if (ID)
2432       return getMD(ID - 1);
2433     return nullptr;
2434   };
2435   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2436     if (ID)
2437       return MetadataList.getMetadataFwdRef(ID - 1);
2438     return nullptr;
2439   };
2440   auto getMDString = [&](unsigned ID) -> MDString *{
2441     // This requires that the ID is not really a forward reference.  In
2442     // particular, the MDString must already have been resolved.
2443     return cast_or_null<MDString>(getMDOrNull(ID));
2444   };
2445 
2446   // Support for old type refs.
2447   auto getDITypeRefOrNull = [&](unsigned ID) {
2448     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2449   };
2450 
2451 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2452   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2453 
2454   // Read all the records.
2455   while (true) {
2456     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2457 
2458     switch (Entry.Kind) {
2459     case BitstreamEntry::SubBlock: // Handled for us already.
2460     case BitstreamEntry::Error:
2461       return error("Malformed block");
2462     case BitstreamEntry::EndBlock:
2463       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2464       for (auto CU_SP : CUSubprograms)
2465         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2466           for (auto &Op : SPs->operands())
2467             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2468               SP->replaceOperandWith(7, CU_SP.first);
2469 
2470       MetadataList.tryToResolveCycles();
2471       Placeholders.flush(MetadataList);
2472       return Error::success();
2473     case BitstreamEntry::Record:
2474       // The interesting case.
2475       break;
2476     }
2477 
2478     // Read a record.
2479     Record.clear();
2480     StringRef Blob;
2481     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2482     IsDistinct = false;
2483     switch (Code) {
2484     default:  // Default behavior: ignore.
2485       break;
2486     case bitc::METADATA_NAME: {
2487       // Read name of the named metadata.
2488       SmallString<8> Name(Record.begin(), Record.end());
2489       Record.clear();
2490       Code = Stream.ReadCode();
2491 
2492       unsigned NextBitCode = Stream.readRecord(Code, Record);
2493       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2494         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2495 
2496       // Read named metadata elements.
2497       unsigned Size = Record.size();
2498       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2499       for (unsigned i = 0; i != Size; ++i) {
2500         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2501         if (!MD)
2502           return error("Invalid record");
2503         NMD->addOperand(MD);
2504       }
2505       break;
2506     }
2507     case bitc::METADATA_OLD_FN_NODE: {
2508       // FIXME: Remove in 4.0.
2509       // This is a LocalAsMetadata record, the only type of function-local
2510       // metadata.
2511       if (Record.size() % 2 == 1)
2512         return error("Invalid record");
2513 
2514       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2515       // to be legal, but there's no upgrade path.
2516       auto dropRecord = [&] {
2517         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2518       };
2519       if (Record.size() != 2) {
2520         dropRecord();
2521         break;
2522       }
2523 
2524       Type *Ty = getTypeByID(Record[0]);
2525       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2526         dropRecord();
2527         break;
2528       }
2529 
2530       MetadataList.assignValue(
2531           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2532           NextMetadataNo++);
2533       break;
2534     }
2535     case bitc::METADATA_OLD_NODE: {
2536       // FIXME: Remove in 4.0.
2537       if (Record.size() % 2 == 1)
2538         return error("Invalid record");
2539 
2540       unsigned Size = Record.size();
2541       SmallVector<Metadata *, 8> Elts;
2542       for (unsigned i = 0; i != Size; i += 2) {
2543         Type *Ty = getTypeByID(Record[i]);
2544         if (!Ty)
2545           return error("Invalid record");
2546         if (Ty->isMetadataTy())
2547           Elts.push_back(getMD(Record[i + 1]));
2548         else if (!Ty->isVoidTy()) {
2549           auto *MD =
2550               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2551           assert(isa<ConstantAsMetadata>(MD) &&
2552                  "Expected non-function-local metadata");
2553           Elts.push_back(MD);
2554         } else
2555           Elts.push_back(nullptr);
2556       }
2557       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2558       break;
2559     }
2560     case bitc::METADATA_VALUE: {
2561       if (Record.size() != 2)
2562         return error("Invalid record");
2563 
2564       Type *Ty = getTypeByID(Record[0]);
2565       if (Ty->isMetadataTy() || Ty->isVoidTy())
2566         return error("Invalid record");
2567 
2568       MetadataList.assignValue(
2569           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2570           NextMetadataNo++);
2571       break;
2572     }
2573     case bitc::METADATA_DISTINCT_NODE:
2574       IsDistinct = true;
2575       LLVM_FALLTHROUGH;
2576     case bitc::METADATA_NODE: {
2577       SmallVector<Metadata *, 8> Elts;
2578       Elts.reserve(Record.size());
2579       for (unsigned ID : Record)
2580         Elts.push_back(getMDOrNull(ID));
2581       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2582                                           : MDNode::get(Context, Elts),
2583                                NextMetadataNo++);
2584       break;
2585     }
2586     case bitc::METADATA_LOCATION: {
2587       if (Record.size() != 5)
2588         return error("Invalid record");
2589 
2590       IsDistinct = Record[0];
2591       unsigned Line = Record[1];
2592       unsigned Column = Record[2];
2593       Metadata *Scope = getMD(Record[3]);
2594       Metadata *InlinedAt = getMDOrNull(Record[4]);
2595       MetadataList.assignValue(
2596           GET_OR_DISTINCT(DILocation,
2597                           (Context, Line, Column, Scope, InlinedAt)),
2598           NextMetadataNo++);
2599       break;
2600     }
2601     case bitc::METADATA_GENERIC_DEBUG: {
2602       if (Record.size() < 4)
2603         return error("Invalid record");
2604 
2605       IsDistinct = Record[0];
2606       unsigned Tag = Record[1];
2607       unsigned Version = Record[2];
2608 
2609       if (Tag >= 1u << 16 || Version != 0)
2610         return error("Invalid record");
2611 
2612       auto *Header = getMDString(Record[3]);
2613       SmallVector<Metadata *, 8> DwarfOps;
2614       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2615         DwarfOps.push_back(getMDOrNull(Record[I]));
2616       MetadataList.assignValue(
2617           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2618           NextMetadataNo++);
2619       break;
2620     }
2621     case bitc::METADATA_SUBRANGE: {
2622       if (Record.size() != 3)
2623         return error("Invalid record");
2624 
2625       IsDistinct = Record[0];
2626       MetadataList.assignValue(
2627           GET_OR_DISTINCT(DISubrange,
2628                           (Context, Record[1], unrotateSign(Record[2]))),
2629           NextMetadataNo++);
2630       break;
2631     }
2632     case bitc::METADATA_ENUMERATOR: {
2633       if (Record.size() != 3)
2634         return error("Invalid record");
2635 
2636       IsDistinct = Record[0];
2637       MetadataList.assignValue(
2638           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2639                                          getMDString(Record[2]))),
2640           NextMetadataNo++);
2641       break;
2642     }
2643     case bitc::METADATA_BASIC_TYPE: {
2644       if (Record.size() != 6)
2645         return error("Invalid record");
2646 
2647       IsDistinct = Record[0];
2648       MetadataList.assignValue(
2649           GET_OR_DISTINCT(DIBasicType,
2650                           (Context, Record[1], getMDString(Record[2]),
2651                            Record[3], Record[4], Record[5])),
2652           NextMetadataNo++);
2653       break;
2654     }
2655     case bitc::METADATA_DERIVED_TYPE: {
2656       if (Record.size() != 12)
2657         return error("Invalid record");
2658 
2659       IsDistinct = Record[0];
2660       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2661       MetadataList.assignValue(
2662           GET_OR_DISTINCT(DIDerivedType,
2663                           (Context, Record[1], getMDString(Record[2]),
2664                            getMDOrNull(Record[3]), Record[4],
2665                            getDITypeRefOrNull(Record[5]),
2666                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2667                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2668           NextMetadataNo++);
2669       break;
2670     }
2671     case bitc::METADATA_COMPOSITE_TYPE: {
2672       if (Record.size() != 16)
2673         return error("Invalid record");
2674 
2675       // If we have a UUID and this is not a forward declaration, lookup the
2676       // mapping.
2677       IsDistinct = Record[0] & 0x1;
2678       bool IsNotUsedInTypeRef = Record[0] >= 2;
2679       unsigned Tag = Record[1];
2680       MDString *Name = getMDString(Record[2]);
2681       Metadata *File = getMDOrNull(Record[3]);
2682       unsigned Line = Record[4];
2683       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2684       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2685       uint64_t SizeInBits = Record[7];
2686       if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
2687         return error("Alignment value is too large");
2688       uint32_t AlignInBits = Record[8];
2689       uint64_t OffsetInBits = Record[9];
2690       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2691       Metadata *Elements = getMDOrNull(Record[11]);
2692       unsigned RuntimeLang = Record[12];
2693       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2694       Metadata *TemplateParams = getMDOrNull(Record[14]);
2695       auto *Identifier = getMDString(Record[15]);
2696       DICompositeType *CT = nullptr;
2697       if (Identifier)
2698         CT = DICompositeType::buildODRType(
2699             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2700             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2701             VTableHolder, TemplateParams);
2702 
2703       // Create a node if we didn't get a lazy ODR type.
2704       if (!CT)
2705         CT = GET_OR_DISTINCT(DICompositeType,
2706                              (Context, Tag, Name, File, Line, Scope, BaseType,
2707                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2708                               Elements, RuntimeLang, VTableHolder,
2709                               TemplateParams, Identifier));
2710       if (!IsNotUsedInTypeRef && Identifier)
2711         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2712 
2713       MetadataList.assignValue(CT, NextMetadataNo++);
2714       break;
2715     }
2716     case bitc::METADATA_SUBROUTINE_TYPE: {
2717       if (Record.size() < 3 || Record.size() > 4)
2718         return error("Invalid record");
2719       bool IsOldTypeRefArray = Record[0] < 2;
2720       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2721 
2722       IsDistinct = Record[0] & 0x1;
2723       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2724       Metadata *Types = getMDOrNull(Record[2]);
2725       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2726         Types = MetadataList.upgradeTypeRefArray(Types);
2727 
2728       MetadataList.assignValue(
2729           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2730           NextMetadataNo++);
2731       break;
2732     }
2733 
2734     case bitc::METADATA_MODULE: {
2735       if (Record.size() != 6)
2736         return error("Invalid record");
2737 
2738       IsDistinct = Record[0];
2739       MetadataList.assignValue(
2740           GET_OR_DISTINCT(DIModule,
2741                           (Context, getMDOrNull(Record[1]),
2742                            getMDString(Record[2]), getMDString(Record[3]),
2743                            getMDString(Record[4]), getMDString(Record[5]))),
2744           NextMetadataNo++);
2745       break;
2746     }
2747 
2748     case bitc::METADATA_FILE: {
2749       if (Record.size() != 3)
2750         return error("Invalid record");
2751 
2752       IsDistinct = Record[0];
2753       MetadataList.assignValue(
2754           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2755                                    getMDString(Record[2]))),
2756           NextMetadataNo++);
2757       break;
2758     }
2759     case bitc::METADATA_COMPILE_UNIT: {
2760       if (Record.size() < 14 || Record.size() > 17)
2761         return error("Invalid record");
2762 
2763       // Ignore Record[0], which indicates whether this compile unit is
2764       // distinct.  It's always distinct.
2765       IsDistinct = true;
2766       auto *CU = DICompileUnit::getDistinct(
2767           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2768           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2769           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2770           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2771           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2772           Record.size() <= 14 ? 0 : Record[14],
2773           Record.size() <= 16 ? true : Record[16]);
2774 
2775       MetadataList.assignValue(CU, NextMetadataNo++);
2776 
2777       // Move the Upgrade the list of subprograms.
2778       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2779         CUSubprograms.push_back({CU, SPs});
2780       break;
2781     }
2782     case bitc::METADATA_SUBPROGRAM: {
2783       if (Record.size() < 18 || Record.size() > 20)
2784         return error("Invalid record");
2785 
2786       IsDistinct =
2787           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2788       // Version 1 has a Function as Record[15].
2789       // Version 2 has removed Record[15].
2790       // Version 3 has the Unit as Record[15].
2791       // Version 4 added thisAdjustment.
2792       bool HasUnit = Record[0] >= 2;
2793       if (HasUnit && Record.size() < 19)
2794         return error("Invalid record");
2795       Metadata *CUorFn = getMDOrNull(Record[15]);
2796       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2797       bool HasFn = Offset && !HasUnit;
2798       bool HasThisAdj = Record.size() >= 20;
2799       DISubprogram *SP = GET_OR_DISTINCT(
2800           DISubprogram, (Context,
2801                          getDITypeRefOrNull(Record[1]),  // scope
2802                          getMDString(Record[2]),         // name
2803                          getMDString(Record[3]),         // linkageName
2804                          getMDOrNull(Record[4]),         // file
2805                          Record[5],                      // line
2806                          getMDOrNull(Record[6]),         // type
2807                          Record[7],                      // isLocal
2808                          Record[8],                      // isDefinition
2809                          Record[9],                      // scopeLine
2810                          getDITypeRefOrNull(Record[10]), // containingType
2811                          Record[11],                     // virtuality
2812                          Record[12],                     // virtualIndex
2813                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2814                          static_cast<DINode::DIFlags>(Record[13] // flags
2815                                                       ),
2816                          Record[14],                       // isOptimized
2817                          HasUnit ? CUorFn : nullptr,       // unit
2818                          getMDOrNull(Record[15 + Offset]), // templateParams
2819                          getMDOrNull(Record[16 + Offset]), // declaration
2820                          getMDOrNull(Record[17 + Offset])  // variables
2821                          ));
2822       MetadataList.assignValue(SP, NextMetadataNo++);
2823 
2824       // Upgrade sp->function mapping to function->sp mapping.
2825       if (HasFn) {
2826         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2827           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2828             if (F->isMaterializable())
2829               // Defer until materialized; unmaterialized functions may not have
2830               // metadata.
2831               FunctionsWithSPs[F] = SP;
2832             else if (!F->empty())
2833               F->setSubprogram(SP);
2834           }
2835       }
2836       break;
2837     }
2838     case bitc::METADATA_LEXICAL_BLOCK: {
2839       if (Record.size() != 5)
2840         return error("Invalid record");
2841 
2842       IsDistinct = Record[0];
2843       MetadataList.assignValue(
2844           GET_OR_DISTINCT(DILexicalBlock,
2845                           (Context, getMDOrNull(Record[1]),
2846                            getMDOrNull(Record[2]), Record[3], Record[4])),
2847           NextMetadataNo++);
2848       break;
2849     }
2850     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2851       if (Record.size() != 4)
2852         return error("Invalid record");
2853 
2854       IsDistinct = Record[0];
2855       MetadataList.assignValue(
2856           GET_OR_DISTINCT(DILexicalBlockFile,
2857                           (Context, getMDOrNull(Record[1]),
2858                            getMDOrNull(Record[2]), Record[3])),
2859           NextMetadataNo++);
2860       break;
2861     }
2862     case bitc::METADATA_NAMESPACE: {
2863       if (Record.size() != 5)
2864         return error("Invalid record");
2865 
2866       IsDistinct = Record[0] & 1;
2867       bool ExportSymbols = Record[0] & 2;
2868       MetadataList.assignValue(
2869           GET_OR_DISTINCT(DINamespace,
2870                           (Context, getMDOrNull(Record[1]),
2871                            getMDOrNull(Record[2]), getMDString(Record[3]),
2872                            Record[4], ExportSymbols)),
2873           NextMetadataNo++);
2874       break;
2875     }
2876     case bitc::METADATA_MACRO: {
2877       if (Record.size() != 5)
2878         return error("Invalid record");
2879 
2880       IsDistinct = Record[0];
2881       MetadataList.assignValue(
2882           GET_OR_DISTINCT(DIMacro,
2883                           (Context, Record[1], Record[2],
2884                            getMDString(Record[3]), getMDString(Record[4]))),
2885           NextMetadataNo++);
2886       break;
2887     }
2888     case bitc::METADATA_MACRO_FILE: {
2889       if (Record.size() != 5)
2890         return error("Invalid record");
2891 
2892       IsDistinct = Record[0];
2893       MetadataList.assignValue(
2894           GET_OR_DISTINCT(DIMacroFile,
2895                           (Context, Record[1], Record[2],
2896                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2897           NextMetadataNo++);
2898       break;
2899     }
2900     case bitc::METADATA_TEMPLATE_TYPE: {
2901       if (Record.size() != 3)
2902         return error("Invalid record");
2903 
2904       IsDistinct = Record[0];
2905       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2906                                                (Context, getMDString(Record[1]),
2907                                                 getDITypeRefOrNull(Record[2]))),
2908                                NextMetadataNo++);
2909       break;
2910     }
2911     case bitc::METADATA_TEMPLATE_VALUE: {
2912       if (Record.size() != 5)
2913         return error("Invalid record");
2914 
2915       IsDistinct = Record[0];
2916       MetadataList.assignValue(
2917           GET_OR_DISTINCT(DITemplateValueParameter,
2918                           (Context, Record[1], getMDString(Record[2]),
2919                            getDITypeRefOrNull(Record[3]),
2920                            getMDOrNull(Record[4]))),
2921           NextMetadataNo++);
2922       break;
2923     }
2924     case bitc::METADATA_GLOBAL_VAR: {
2925       if (Record.size() < 11 || Record.size() > 12)
2926         return error("Invalid record");
2927 
2928       IsDistinct = Record[0];
2929 
2930       // Upgrade old metadata, which stored a global variable reference or a
2931       // ConstantInt here.
2932       Metadata *Expr = getMDOrNull(Record[9]);
2933       uint32_t AlignInBits = 0;
2934       if (Record.size() > 11) {
2935         if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
2936           return error("Alignment value is too large");
2937         AlignInBits = Record[11];
2938       }
2939       GlobalVariable *Attach = nullptr;
2940       if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
2941         if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
2942           Attach = GV;
2943           Expr = nullptr;
2944         } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
2945           Expr = DIExpression::get(Context,
2946                                    {dwarf::DW_OP_constu, CI->getZExtValue(),
2947                                     dwarf::DW_OP_stack_value});
2948         } else {
2949           Expr = nullptr;
2950         }
2951       }
2952 
2953       DIGlobalVariable *DGV = GET_OR_DISTINCT(
2954           DIGlobalVariable,
2955           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2956            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2957            getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr,
2958            getMDOrNull(Record[10]), AlignInBits));
2959       MetadataList.assignValue(DGV, NextMetadataNo++);
2960 
2961       if (Attach)
2962         Attach->addDebugInfo(DGV);
2963 
2964       break;
2965     }
2966     case bitc::METADATA_LOCAL_VAR: {
2967       // 10th field is for the obseleted 'inlinedAt:' field.
2968       if (Record.size() < 8 || Record.size() > 10)
2969         return error("Invalid record");
2970 
2971       IsDistinct = Record[0] & 1;
2972       bool HasAlignment = Record[0] & 2;
2973       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2974       // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
2975       // this is newer version of record which doesn't have artifical tag.
2976       bool HasTag = !HasAlignment && Record.size() > 8;
2977       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2978       uint32_t AlignInBits = 0;
2979       if (HasAlignment) {
2980         if (Record[8 + HasTag] >
2981             (uint64_t)std::numeric_limits<uint32_t>::max())
2982           return error("Alignment value is too large");
2983         AlignInBits = Record[8 + HasTag];
2984       }
2985       MetadataList.assignValue(
2986           GET_OR_DISTINCT(DILocalVariable,
2987                           (Context, getMDOrNull(Record[1 + HasTag]),
2988                            getMDString(Record[2 + HasTag]),
2989                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2990                            getDITypeRefOrNull(Record[5 + HasTag]),
2991                            Record[6 + HasTag], Flags, AlignInBits)),
2992           NextMetadataNo++);
2993       break;
2994     }
2995     case bitc::METADATA_EXPRESSION: {
2996       if (Record.size() < 1)
2997         return error("Invalid record");
2998 
2999       IsDistinct = Record[0] & 1;
3000       bool HasOpFragment = Record[0] & 2;
3001       auto Elts = MutableArrayRef<uint64_t>(Record).slice(1);
3002       if (!HasOpFragment)
3003         if (unsigned N = Elts.size())
3004           if (N >= 3 && Elts[N - 3] == dwarf::DW_OP_bit_piece)
3005             Elts[N-3] = dwarf::DW_OP_LLVM_fragment;
3006 
3007       MetadataList.assignValue(
3008           GET_OR_DISTINCT(DIExpression,
3009                           (Context, makeArrayRef(Record).slice(1))),
3010           NextMetadataNo++);
3011       break;
3012     }
3013     case bitc::METADATA_OBJC_PROPERTY: {
3014       if (Record.size() != 8)
3015         return error("Invalid record");
3016 
3017       IsDistinct = Record[0];
3018       MetadataList.assignValue(
3019           GET_OR_DISTINCT(DIObjCProperty,
3020                           (Context, getMDString(Record[1]),
3021                            getMDOrNull(Record[2]), Record[3],
3022                            getMDString(Record[4]), getMDString(Record[5]),
3023                            Record[6], getDITypeRefOrNull(Record[7]))),
3024           NextMetadataNo++);
3025       break;
3026     }
3027     case bitc::METADATA_IMPORTED_ENTITY: {
3028       if (Record.size() != 6)
3029         return error("Invalid record");
3030 
3031       IsDistinct = Record[0];
3032       MetadataList.assignValue(
3033           GET_OR_DISTINCT(DIImportedEntity,
3034                           (Context, Record[1], getMDOrNull(Record[2]),
3035                            getDITypeRefOrNull(Record[3]), Record[4],
3036                            getMDString(Record[5]))),
3037           NextMetadataNo++);
3038       break;
3039     }
3040     case bitc::METADATA_STRING_OLD: {
3041       std::string String(Record.begin(), Record.end());
3042 
3043       // Test for upgrading !llvm.loop.
3044       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
3045 
3046       Metadata *MD = MDString::get(Context, String);
3047       MetadataList.assignValue(MD, NextMetadataNo++);
3048       break;
3049     }
3050     case bitc::METADATA_STRINGS:
3051       if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo))
3052         return Err;
3053       break;
3054     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
3055       if (Record.size() % 2 == 0)
3056         return error("Invalid record");
3057       unsigned ValueID = Record[0];
3058       if (ValueID >= ValueList.size())
3059         return error("Invalid record");
3060       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
3061         if (Error Err = parseGlobalObjectAttachment(
3062                 *GO, ArrayRef<uint64_t>(Record).slice(1)))
3063           return Err;
3064       break;
3065     }
3066     case bitc::METADATA_KIND: {
3067       // Support older bitcode files that had METADATA_KIND records in a
3068       // block with METADATA_BLOCK_ID.
3069       if (Error Err = parseMetadataKindRecord(Record))
3070         return Err;
3071       break;
3072     }
3073     }
3074   }
3075 
3076 #undef GET_OR_DISTINCT
3077 }
3078 
3079 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
3080 Error BitcodeReader::parseMetadataKinds() {
3081   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
3082     return error("Invalid record");
3083 
3084   SmallVector<uint64_t, 64> Record;
3085 
3086   // Read all the records.
3087   while (true) {
3088     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3089 
3090     switch (Entry.Kind) {
3091     case BitstreamEntry::SubBlock: // Handled for us already.
3092     case BitstreamEntry::Error:
3093       return error("Malformed block");
3094     case BitstreamEntry::EndBlock:
3095       return Error::success();
3096     case BitstreamEntry::Record:
3097       // The interesting case.
3098       break;
3099     }
3100 
3101     // Read a record.
3102     Record.clear();
3103     unsigned Code = Stream.readRecord(Entry.ID, Record);
3104     switch (Code) {
3105     default: // Default behavior: ignore.
3106       break;
3107     case bitc::METADATA_KIND: {
3108       if (Error Err = parseMetadataKindRecord(Record))
3109         return Err;
3110       break;
3111     }
3112     }
3113   }
3114 }
3115 
3116 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3117 /// encoding.
3118 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3119   if ((V & 1) == 0)
3120     return V >> 1;
3121   if (V != 1)
3122     return -(V >> 1);
3123   // There is no such thing as -0 with integers.  "-0" really means MININT.
3124   return 1ULL << 63;
3125 }
3126 
3127 /// Resolve all of the initializers for global values and aliases that we can.
3128 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3129   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
3130   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
3131       IndirectSymbolInitWorklist;
3132   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
3133   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
3134   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
3135 
3136   GlobalInitWorklist.swap(GlobalInits);
3137   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3138   FunctionPrefixWorklist.swap(FunctionPrefixes);
3139   FunctionPrologueWorklist.swap(FunctionPrologues);
3140   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
3141 
3142   while (!GlobalInitWorklist.empty()) {
3143     unsigned ValID = GlobalInitWorklist.back().second;
3144     if (ValID >= ValueList.size()) {
3145       // Not ready to resolve this yet, it requires something later in the file.
3146       GlobalInits.push_back(GlobalInitWorklist.back());
3147     } else {
3148       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3149         GlobalInitWorklist.back().first->setInitializer(C);
3150       else
3151         return error("Expected a constant");
3152     }
3153     GlobalInitWorklist.pop_back();
3154   }
3155 
3156   while (!IndirectSymbolInitWorklist.empty()) {
3157     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3158     if (ValID >= ValueList.size()) {
3159       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3160     } else {
3161       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
3162       if (!C)
3163         return error("Expected a constant");
3164       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
3165       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
3166         return error("Alias and aliasee types don't match");
3167       GIS->setIndirectSymbol(C);
3168     }
3169     IndirectSymbolInitWorklist.pop_back();
3170   }
3171 
3172   while (!FunctionPrefixWorklist.empty()) {
3173     unsigned ValID = FunctionPrefixWorklist.back().second;
3174     if (ValID >= ValueList.size()) {
3175       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
3176     } else {
3177       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3178         FunctionPrefixWorklist.back().first->setPrefixData(C);
3179       else
3180         return error("Expected a constant");
3181     }
3182     FunctionPrefixWorklist.pop_back();
3183   }
3184 
3185   while (!FunctionPrologueWorklist.empty()) {
3186     unsigned ValID = FunctionPrologueWorklist.back().second;
3187     if (ValID >= ValueList.size()) {
3188       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
3189     } else {
3190       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3191         FunctionPrologueWorklist.back().first->setPrologueData(C);
3192       else
3193         return error("Expected a constant");
3194     }
3195     FunctionPrologueWorklist.pop_back();
3196   }
3197 
3198   while (!FunctionPersonalityFnWorklist.empty()) {
3199     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
3200     if (ValID >= ValueList.size()) {
3201       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
3202     } else {
3203       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3204         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
3205       else
3206         return error("Expected a constant");
3207     }
3208     FunctionPersonalityFnWorklist.pop_back();
3209   }
3210 
3211   return Error::success();
3212 }
3213 
3214 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3215   SmallVector<uint64_t, 8> Words(Vals.size());
3216   transform(Vals, Words.begin(),
3217                  BitcodeReader::decodeSignRotatedValue);
3218 
3219   return APInt(TypeBits, Words);
3220 }
3221 
3222 Error BitcodeReader::parseConstants() {
3223   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3224     return error("Invalid record");
3225 
3226   SmallVector<uint64_t, 64> Record;
3227 
3228   // Read all the records for this value table.
3229   Type *CurTy = Type::getInt32Ty(Context);
3230   unsigned NextCstNo = ValueList.size();
3231 
3232   while (true) {
3233     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3234 
3235     switch (Entry.Kind) {
3236     case BitstreamEntry::SubBlock: // Handled for us already.
3237     case BitstreamEntry::Error:
3238       return error("Malformed block");
3239     case BitstreamEntry::EndBlock:
3240       if (NextCstNo != ValueList.size())
3241         return error("Invalid constant reference");
3242 
3243       // Once all the constants have been read, go through and resolve forward
3244       // references.
3245       ValueList.resolveConstantForwardRefs();
3246       return Error::success();
3247     case BitstreamEntry::Record:
3248       // The interesting case.
3249       break;
3250     }
3251 
3252     // Read a record.
3253     Record.clear();
3254     Type *VoidType = Type::getVoidTy(Context);
3255     Value *V = nullptr;
3256     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3257     switch (BitCode) {
3258     default:  // Default behavior: unknown constant
3259     case bitc::CST_CODE_UNDEF:     // UNDEF
3260       V = UndefValue::get(CurTy);
3261       break;
3262     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3263       if (Record.empty())
3264         return error("Invalid record");
3265       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3266         return error("Invalid record");
3267       if (TypeList[Record[0]] == VoidType)
3268         return error("Invalid constant type");
3269       CurTy = TypeList[Record[0]];
3270       continue;  // Skip the ValueList manipulation.
3271     case bitc::CST_CODE_NULL:      // NULL
3272       V = Constant::getNullValue(CurTy);
3273       break;
3274     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3275       if (!CurTy->isIntegerTy() || Record.empty())
3276         return error("Invalid record");
3277       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3278       break;
3279     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3280       if (!CurTy->isIntegerTy() || Record.empty())
3281         return error("Invalid record");
3282 
3283       APInt VInt =
3284           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3285       V = ConstantInt::get(Context, VInt);
3286 
3287       break;
3288     }
3289     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3290       if (Record.empty())
3291         return error("Invalid record");
3292       if (CurTy->isHalfTy())
3293         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3294                                              APInt(16, (uint16_t)Record[0])));
3295       else if (CurTy->isFloatTy())
3296         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3297                                              APInt(32, (uint32_t)Record[0])));
3298       else if (CurTy->isDoubleTy())
3299         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3300                                              APInt(64, Record[0])));
3301       else if (CurTy->isX86_FP80Ty()) {
3302         // Bits are not stored the same way as a normal i80 APInt, compensate.
3303         uint64_t Rearrange[2];
3304         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3305         Rearrange[1] = Record[0] >> 48;
3306         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3307                                              APInt(80, Rearrange)));
3308       } else if (CurTy->isFP128Ty())
3309         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3310                                              APInt(128, Record)));
3311       else if (CurTy->isPPC_FP128Ty())
3312         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3313                                              APInt(128, Record)));
3314       else
3315         V = UndefValue::get(CurTy);
3316       break;
3317     }
3318 
3319     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3320       if (Record.empty())
3321         return error("Invalid record");
3322 
3323       unsigned Size = Record.size();
3324       SmallVector<Constant*, 16> Elts;
3325 
3326       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3327         for (unsigned i = 0; i != Size; ++i)
3328           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3329                                                      STy->getElementType(i)));
3330         V = ConstantStruct::get(STy, Elts);
3331       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3332         Type *EltTy = ATy->getElementType();
3333         for (unsigned i = 0; i != Size; ++i)
3334           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3335         V = ConstantArray::get(ATy, Elts);
3336       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3337         Type *EltTy = VTy->getElementType();
3338         for (unsigned i = 0; i != Size; ++i)
3339           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3340         V = ConstantVector::get(Elts);
3341       } else {
3342         V = UndefValue::get(CurTy);
3343       }
3344       break;
3345     }
3346     case bitc::CST_CODE_STRING:    // STRING: [values]
3347     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3348       if (Record.empty())
3349         return error("Invalid record");
3350 
3351       SmallString<16> Elts(Record.begin(), Record.end());
3352       V = ConstantDataArray::getString(Context, Elts,
3353                                        BitCode == bitc::CST_CODE_CSTRING);
3354       break;
3355     }
3356     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3357       if (Record.empty())
3358         return error("Invalid record");
3359 
3360       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3361       if (EltTy->isIntegerTy(8)) {
3362         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3363         if (isa<VectorType>(CurTy))
3364           V = ConstantDataVector::get(Context, Elts);
3365         else
3366           V = ConstantDataArray::get(Context, Elts);
3367       } else if (EltTy->isIntegerTy(16)) {
3368         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3369         if (isa<VectorType>(CurTy))
3370           V = ConstantDataVector::get(Context, Elts);
3371         else
3372           V = ConstantDataArray::get(Context, Elts);
3373       } else if (EltTy->isIntegerTy(32)) {
3374         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3375         if (isa<VectorType>(CurTy))
3376           V = ConstantDataVector::get(Context, Elts);
3377         else
3378           V = ConstantDataArray::get(Context, Elts);
3379       } else if (EltTy->isIntegerTy(64)) {
3380         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3381         if (isa<VectorType>(CurTy))
3382           V = ConstantDataVector::get(Context, Elts);
3383         else
3384           V = ConstantDataArray::get(Context, Elts);
3385       } else if (EltTy->isHalfTy()) {
3386         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3387         if (isa<VectorType>(CurTy))
3388           V = ConstantDataVector::getFP(Context, Elts);
3389         else
3390           V = ConstantDataArray::getFP(Context, Elts);
3391       } else if (EltTy->isFloatTy()) {
3392         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3393         if (isa<VectorType>(CurTy))
3394           V = ConstantDataVector::getFP(Context, Elts);
3395         else
3396           V = ConstantDataArray::getFP(Context, Elts);
3397       } else if (EltTy->isDoubleTy()) {
3398         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3399         if (isa<VectorType>(CurTy))
3400           V = ConstantDataVector::getFP(Context, Elts);
3401         else
3402           V = ConstantDataArray::getFP(Context, Elts);
3403       } else {
3404         return error("Invalid type for value");
3405       }
3406       break;
3407     }
3408     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3409       if (Record.size() < 3)
3410         return error("Invalid record");
3411       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3412       if (Opc < 0) {
3413         V = UndefValue::get(CurTy);  // Unknown binop.
3414       } else {
3415         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3416         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3417         unsigned Flags = 0;
3418         if (Record.size() >= 4) {
3419           if (Opc == Instruction::Add ||
3420               Opc == Instruction::Sub ||
3421               Opc == Instruction::Mul ||
3422               Opc == Instruction::Shl) {
3423             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3424               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3425             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3426               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3427           } else if (Opc == Instruction::SDiv ||
3428                      Opc == Instruction::UDiv ||
3429                      Opc == Instruction::LShr ||
3430                      Opc == Instruction::AShr) {
3431             if (Record[3] & (1 << bitc::PEO_EXACT))
3432               Flags |= SDivOperator::IsExact;
3433           }
3434         }
3435         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3436       }
3437       break;
3438     }
3439     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3440       if (Record.size() < 3)
3441         return error("Invalid record");
3442       int Opc = getDecodedCastOpcode(Record[0]);
3443       if (Opc < 0) {
3444         V = UndefValue::get(CurTy);  // Unknown cast.
3445       } else {
3446         Type *OpTy = getTypeByID(Record[1]);
3447         if (!OpTy)
3448           return error("Invalid record");
3449         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3450         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3451         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3452       }
3453       break;
3454     }
3455     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3456     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3457     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3458                                                      // operands]
3459       unsigned OpNum = 0;
3460       Type *PointeeType = nullptr;
3461       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3462           Record.size() % 2)
3463         PointeeType = getTypeByID(Record[OpNum++]);
3464 
3465       bool InBounds = false;
3466       Optional<unsigned> InRangeIndex;
3467       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3468         uint64_t Op = Record[OpNum++];
3469         InBounds = Op & 1;
3470         InRangeIndex = Op >> 1;
3471       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3472         InBounds = true;
3473 
3474       SmallVector<Constant*, 16> Elts;
3475       while (OpNum != Record.size()) {
3476         Type *ElTy = getTypeByID(Record[OpNum++]);
3477         if (!ElTy)
3478           return error("Invalid record");
3479         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3480       }
3481 
3482       if (PointeeType &&
3483           PointeeType !=
3484               cast<PointerType>(Elts[0]->getType()->getScalarType())
3485                   ->getElementType())
3486         return error("Explicit gep operator type does not match pointee type "
3487                      "of pointer operand");
3488 
3489       if (Elts.size() < 1)
3490         return error("Invalid gep with no operands");
3491 
3492       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3493       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3494                                          InBounds, InRangeIndex);
3495       break;
3496     }
3497     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3498       if (Record.size() < 3)
3499         return error("Invalid record");
3500 
3501       Type *SelectorTy = Type::getInt1Ty(Context);
3502 
3503       // The selector might be an i1 or an <n x i1>
3504       // Get the type from the ValueList before getting a forward ref.
3505       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3506         if (Value *V = ValueList[Record[0]])
3507           if (SelectorTy != V->getType())
3508             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3509 
3510       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3511                                                               SelectorTy),
3512                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3513                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3514       break;
3515     }
3516     case bitc::CST_CODE_CE_EXTRACTELT
3517         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3518       if (Record.size() < 3)
3519         return error("Invalid record");
3520       VectorType *OpTy =
3521         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3522       if (!OpTy)
3523         return error("Invalid record");
3524       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3525       Constant *Op1 = nullptr;
3526       if (Record.size() == 4) {
3527         Type *IdxTy = getTypeByID(Record[2]);
3528         if (!IdxTy)
3529           return error("Invalid record");
3530         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3531       } else // TODO: Remove with llvm 4.0
3532         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3533       if (!Op1)
3534         return error("Invalid record");
3535       V = ConstantExpr::getExtractElement(Op0, Op1);
3536       break;
3537     }
3538     case bitc::CST_CODE_CE_INSERTELT
3539         : { // CE_INSERTELT: [opval, opval, opty, opval]
3540       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3541       if (Record.size() < 3 || !OpTy)
3542         return error("Invalid record");
3543       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3544       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3545                                                   OpTy->getElementType());
3546       Constant *Op2 = nullptr;
3547       if (Record.size() == 4) {
3548         Type *IdxTy = getTypeByID(Record[2]);
3549         if (!IdxTy)
3550           return error("Invalid record");
3551         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3552       } else // TODO: Remove with llvm 4.0
3553         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3554       if (!Op2)
3555         return error("Invalid record");
3556       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3557       break;
3558     }
3559     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3560       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3561       if (Record.size() < 3 || !OpTy)
3562         return error("Invalid record");
3563       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3564       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3565       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3566                                                  OpTy->getNumElements());
3567       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3568       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3569       break;
3570     }
3571     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3572       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3573       VectorType *OpTy =
3574         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3575       if (Record.size() < 4 || !RTy || !OpTy)
3576         return error("Invalid record");
3577       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3578       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3579       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3580                                                  RTy->getNumElements());
3581       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3582       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3583       break;
3584     }
3585     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3586       if (Record.size() < 4)
3587         return error("Invalid record");
3588       Type *OpTy = getTypeByID(Record[0]);
3589       if (!OpTy)
3590         return error("Invalid record");
3591       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3592       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3593 
3594       if (OpTy->isFPOrFPVectorTy())
3595         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3596       else
3597         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3598       break;
3599     }
3600     // This maintains backward compatibility, pre-asm dialect keywords.
3601     // FIXME: Remove with the 4.0 release.
3602     case bitc::CST_CODE_INLINEASM_OLD: {
3603       if (Record.size() < 2)
3604         return error("Invalid record");
3605       std::string AsmStr, ConstrStr;
3606       bool HasSideEffects = Record[0] & 1;
3607       bool IsAlignStack = Record[0] >> 1;
3608       unsigned AsmStrSize = Record[1];
3609       if (2+AsmStrSize >= Record.size())
3610         return error("Invalid record");
3611       unsigned ConstStrSize = Record[2+AsmStrSize];
3612       if (3+AsmStrSize+ConstStrSize > Record.size())
3613         return error("Invalid record");
3614 
3615       for (unsigned i = 0; i != AsmStrSize; ++i)
3616         AsmStr += (char)Record[2+i];
3617       for (unsigned i = 0; i != ConstStrSize; ++i)
3618         ConstrStr += (char)Record[3+AsmStrSize+i];
3619       PointerType *PTy = cast<PointerType>(CurTy);
3620       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3621                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3622       break;
3623     }
3624     // This version adds support for the asm dialect keywords (e.g.,
3625     // inteldialect).
3626     case bitc::CST_CODE_INLINEASM: {
3627       if (Record.size() < 2)
3628         return error("Invalid record");
3629       std::string AsmStr, ConstrStr;
3630       bool HasSideEffects = Record[0] & 1;
3631       bool IsAlignStack = (Record[0] >> 1) & 1;
3632       unsigned AsmDialect = Record[0] >> 2;
3633       unsigned AsmStrSize = Record[1];
3634       if (2+AsmStrSize >= Record.size())
3635         return error("Invalid record");
3636       unsigned ConstStrSize = Record[2+AsmStrSize];
3637       if (3+AsmStrSize+ConstStrSize > Record.size())
3638         return error("Invalid record");
3639 
3640       for (unsigned i = 0; i != AsmStrSize; ++i)
3641         AsmStr += (char)Record[2+i];
3642       for (unsigned i = 0; i != ConstStrSize; ++i)
3643         ConstrStr += (char)Record[3+AsmStrSize+i];
3644       PointerType *PTy = cast<PointerType>(CurTy);
3645       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3646                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3647                          InlineAsm::AsmDialect(AsmDialect));
3648       break;
3649     }
3650     case bitc::CST_CODE_BLOCKADDRESS:{
3651       if (Record.size() < 3)
3652         return error("Invalid record");
3653       Type *FnTy = getTypeByID(Record[0]);
3654       if (!FnTy)
3655         return error("Invalid record");
3656       Function *Fn =
3657         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3658       if (!Fn)
3659         return error("Invalid record");
3660 
3661       // If the function is already parsed we can insert the block address right
3662       // away.
3663       BasicBlock *BB;
3664       unsigned BBID = Record[2];
3665       if (!BBID)
3666         // Invalid reference to entry block.
3667         return error("Invalid ID");
3668       if (!Fn->empty()) {
3669         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3670         for (size_t I = 0, E = BBID; I != E; ++I) {
3671           if (BBI == BBE)
3672             return error("Invalid ID");
3673           ++BBI;
3674         }
3675         BB = &*BBI;
3676       } else {
3677         // Otherwise insert a placeholder and remember it so it can be inserted
3678         // when the function is parsed.
3679         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3680         if (FwdBBs.empty())
3681           BasicBlockFwdRefQueue.push_back(Fn);
3682         if (FwdBBs.size() < BBID + 1)
3683           FwdBBs.resize(BBID + 1);
3684         if (!FwdBBs[BBID])
3685           FwdBBs[BBID] = BasicBlock::Create(Context);
3686         BB = FwdBBs[BBID];
3687       }
3688       V = BlockAddress::get(Fn, BB);
3689       break;
3690     }
3691     }
3692 
3693     ValueList.assignValue(V, NextCstNo);
3694     ++NextCstNo;
3695   }
3696 }
3697 
3698 Error BitcodeReader::parseUseLists() {
3699   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3700     return error("Invalid record");
3701 
3702   // Read all the records.
3703   SmallVector<uint64_t, 64> Record;
3704 
3705   while (true) {
3706     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3707 
3708     switch (Entry.Kind) {
3709     case BitstreamEntry::SubBlock: // Handled for us already.
3710     case BitstreamEntry::Error:
3711       return error("Malformed block");
3712     case BitstreamEntry::EndBlock:
3713       return Error::success();
3714     case BitstreamEntry::Record:
3715       // The interesting case.
3716       break;
3717     }
3718 
3719     // Read a use list record.
3720     Record.clear();
3721     bool IsBB = false;
3722     switch (Stream.readRecord(Entry.ID, Record)) {
3723     default:  // Default behavior: unknown type.
3724       break;
3725     case bitc::USELIST_CODE_BB:
3726       IsBB = true;
3727       LLVM_FALLTHROUGH;
3728     case bitc::USELIST_CODE_DEFAULT: {
3729       unsigned RecordLength = Record.size();
3730       if (RecordLength < 3)
3731         // Records should have at least an ID and two indexes.
3732         return error("Invalid record");
3733       unsigned ID = Record.back();
3734       Record.pop_back();
3735 
3736       Value *V;
3737       if (IsBB) {
3738         assert(ID < FunctionBBs.size() && "Basic block not found");
3739         V = FunctionBBs[ID];
3740       } else
3741         V = ValueList[ID];
3742       unsigned NumUses = 0;
3743       SmallDenseMap<const Use *, unsigned, 16> Order;
3744       for (const Use &U : V->materialized_uses()) {
3745         if (++NumUses > Record.size())
3746           break;
3747         Order[&U] = Record[NumUses - 1];
3748       }
3749       if (Order.size() != Record.size() || NumUses > Record.size())
3750         // Mismatches can happen if the functions are being materialized lazily
3751         // (out-of-order), or a value has been upgraded.
3752         break;
3753 
3754       V->sortUseList([&](const Use &L, const Use &R) {
3755         return Order.lookup(&L) < Order.lookup(&R);
3756       });
3757       break;
3758     }
3759     }
3760   }
3761 }
3762 
3763 /// When we see the block for metadata, remember where it is and then skip it.
3764 /// This lets us lazily deserialize the metadata.
3765 Error BitcodeReader::rememberAndSkipMetadata() {
3766   // Save the current stream state.
3767   uint64_t CurBit = Stream.GetCurrentBitNo();
3768   DeferredMetadataInfo.push_back(CurBit);
3769 
3770   // Skip over the block for now.
3771   if (Stream.SkipBlock())
3772     return error("Invalid record");
3773   return Error::success();
3774 }
3775 
3776 Error BitcodeReader::materializeMetadata() {
3777   for (uint64_t BitPos : DeferredMetadataInfo) {
3778     // Move the bit stream to the saved position.
3779     Stream.JumpToBit(BitPos);
3780     if (Error Err = parseMetadata(true))
3781       return Err;
3782   }
3783   DeferredMetadataInfo.clear();
3784   return Error::success();
3785 }
3786 
3787 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3788 
3789 /// When we see the block for a function body, remember where it is and then
3790 /// skip it.  This lets us lazily deserialize the functions.
3791 Error BitcodeReader::rememberAndSkipFunctionBody() {
3792   // Get the function we are talking about.
3793   if (FunctionsWithBodies.empty())
3794     return error("Insufficient function protos");
3795 
3796   Function *Fn = FunctionsWithBodies.back();
3797   FunctionsWithBodies.pop_back();
3798 
3799   // Save the current stream state.
3800   uint64_t CurBit = Stream.GetCurrentBitNo();
3801   assert(
3802       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3803       "Mismatch between VST and scanned function offsets");
3804   DeferredFunctionInfo[Fn] = CurBit;
3805 
3806   // Skip over the function block for now.
3807   if (Stream.SkipBlock())
3808     return error("Invalid record");
3809   return Error::success();
3810 }
3811 
3812 Error BitcodeReader::globalCleanup() {
3813   // Patch the initializers for globals and aliases up.
3814   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3815     return Err;
3816   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3817     return error("Malformed global initializer set");
3818 
3819   // Look for intrinsic functions which need to be upgraded at some point
3820   for (Function &F : *TheModule) {
3821     Function *NewFn;
3822     if (UpgradeIntrinsicFunction(&F, NewFn))
3823       UpgradedIntrinsics[&F] = NewFn;
3824     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3825       // Some types could be renamed during loading if several modules are
3826       // loaded in the same LLVMContext (LTO scenario). In this case we should
3827       // remangle intrinsics names as well.
3828       RemangledIntrinsics[&F] = Remangled.getValue();
3829   }
3830 
3831   // Look for global variables which need to be renamed.
3832   for (GlobalVariable &GV : TheModule->globals())
3833     UpgradeGlobalVariable(&GV);
3834 
3835   // Force deallocation of memory for these vectors to favor the client that
3836   // want lazy deserialization.
3837   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3838   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3839       IndirectSymbolInits);
3840   return Error::success();
3841 }
3842 
3843 /// Support for lazy parsing of function bodies. This is required if we
3844 /// either have an old bitcode file without a VST forward declaration record,
3845 /// or if we have an anonymous function being materialized, since anonymous
3846 /// functions do not have a name and are therefore not in the VST.
3847 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3848   Stream.JumpToBit(NextUnreadBit);
3849 
3850   if (Stream.AtEndOfStream())
3851     return error("Could not find function in stream");
3852 
3853   if (!SeenFirstFunctionBody)
3854     return error("Trying to materialize functions before seeing function blocks");
3855 
3856   // An old bitcode file with the symbol table at the end would have
3857   // finished the parse greedily.
3858   assert(SeenValueSymbolTable);
3859 
3860   SmallVector<uint64_t, 64> Record;
3861 
3862   while (true) {
3863     BitstreamEntry Entry = Stream.advance();
3864     switch (Entry.Kind) {
3865     default:
3866       return error("Expect SubBlock");
3867     case BitstreamEntry::SubBlock:
3868       switch (Entry.ID) {
3869       default:
3870         return error("Expect function block");
3871       case bitc::FUNCTION_BLOCK_ID:
3872         if (Error Err = rememberAndSkipFunctionBody())
3873           return Err;
3874         NextUnreadBit = Stream.GetCurrentBitNo();
3875         return Error::success();
3876       }
3877     }
3878   }
3879 }
3880 
3881 bool BitcodeReaderBase::readBlockInfo() {
3882   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
3883   if (!NewBlockInfo)
3884     return true;
3885   BlockInfo = std::move(*NewBlockInfo);
3886   return false;
3887 }
3888 
3889 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3890                                  bool ShouldLazyLoadMetadata) {
3891   if (ResumeBit)
3892     Stream.JumpToBit(ResumeBit);
3893   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3894     return error("Invalid record");
3895 
3896   SmallVector<uint64_t, 64> Record;
3897   std::vector<std::string> SectionTable;
3898   std::vector<std::string> GCTable;
3899 
3900   // Read all the records for this module.
3901   while (true) {
3902     BitstreamEntry Entry = Stream.advance();
3903 
3904     switch (Entry.Kind) {
3905     case BitstreamEntry::Error:
3906       return error("Malformed block");
3907     case BitstreamEntry::EndBlock:
3908       return globalCleanup();
3909 
3910     case BitstreamEntry::SubBlock:
3911       switch (Entry.ID) {
3912       default:  // Skip unknown content.
3913         if (Stream.SkipBlock())
3914           return error("Invalid record");
3915         break;
3916       case bitc::BLOCKINFO_BLOCK_ID:
3917         if (readBlockInfo())
3918           return error("Malformed block");
3919         break;
3920       case bitc::PARAMATTR_BLOCK_ID:
3921         if (Error Err = parseAttributeBlock())
3922           return Err;
3923         break;
3924       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3925         if (Error Err = parseAttributeGroupBlock())
3926           return Err;
3927         break;
3928       case bitc::TYPE_BLOCK_ID_NEW:
3929         if (Error Err = parseTypeTable())
3930           return Err;
3931         break;
3932       case bitc::VALUE_SYMTAB_BLOCK_ID:
3933         if (!SeenValueSymbolTable) {
3934           // Either this is an old form VST without function index and an
3935           // associated VST forward declaration record (which would have caused
3936           // the VST to be jumped to and parsed before it was encountered
3937           // normally in the stream), or there were no function blocks to
3938           // trigger an earlier parsing of the VST.
3939           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3940           if (Error Err = parseValueSymbolTable())
3941             return Err;
3942           SeenValueSymbolTable = true;
3943         } else {
3944           // We must have had a VST forward declaration record, which caused
3945           // the parser to jump to and parse the VST earlier.
3946           assert(VSTOffset > 0);
3947           if (Stream.SkipBlock())
3948             return error("Invalid record");
3949         }
3950         break;
3951       case bitc::CONSTANTS_BLOCK_ID:
3952         if (Error Err = parseConstants())
3953           return Err;
3954         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3955           return Err;
3956         break;
3957       case bitc::METADATA_BLOCK_ID:
3958         if (ShouldLazyLoadMetadata) {
3959           if (Error Err = rememberAndSkipMetadata())
3960             return Err;
3961           break;
3962         }
3963         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3964         if (Error Err = parseMetadata(true))
3965           return Err;
3966         break;
3967       case bitc::METADATA_KIND_BLOCK_ID:
3968         if (Error Err = parseMetadataKinds())
3969           return Err;
3970         break;
3971       case bitc::FUNCTION_BLOCK_ID:
3972         // If this is the first function body we've seen, reverse the
3973         // FunctionsWithBodies list.
3974         if (!SeenFirstFunctionBody) {
3975           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3976           if (Error Err = globalCleanup())
3977             return Err;
3978           SeenFirstFunctionBody = true;
3979         }
3980 
3981         if (VSTOffset > 0) {
3982           // If we have a VST forward declaration record, make sure we
3983           // parse the VST now if we haven't already. It is needed to
3984           // set up the DeferredFunctionInfo vector for lazy reading.
3985           if (!SeenValueSymbolTable) {
3986             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3987               return Err;
3988             SeenValueSymbolTable = true;
3989             // Fall through so that we record the NextUnreadBit below.
3990             // This is necessary in case we have an anonymous function that
3991             // is later materialized. Since it will not have a VST entry we
3992             // need to fall back to the lazy parse to find its offset.
3993           } else {
3994             // If we have a VST forward declaration record, but have already
3995             // parsed the VST (just above, when the first function body was
3996             // encountered here), then we are resuming the parse after
3997             // materializing functions. The ResumeBit points to the
3998             // start of the last function block recorded in the
3999             // DeferredFunctionInfo map. Skip it.
4000             if (Stream.SkipBlock())
4001               return error("Invalid record");
4002             continue;
4003           }
4004         }
4005 
4006         // Support older bitcode files that did not have the function
4007         // index in the VST, nor a VST forward declaration record, as
4008         // well as anonymous functions that do not have VST entries.
4009         // Build the DeferredFunctionInfo vector on the fly.
4010         if (Error Err = rememberAndSkipFunctionBody())
4011           return Err;
4012 
4013         // Suspend parsing when we reach the function bodies. Subsequent
4014         // materialization calls will resume it when necessary. If the bitcode
4015         // file is old, the symbol table will be at the end instead and will not
4016         // have been seen yet. In this case, just finish the parse now.
4017         if (SeenValueSymbolTable) {
4018           NextUnreadBit = Stream.GetCurrentBitNo();
4019           // After the VST has been parsed, we need to make sure intrinsic name
4020           // are auto-upgraded.
4021           return globalCleanup();
4022         }
4023         break;
4024       case bitc::USELIST_BLOCK_ID:
4025         if (Error Err = parseUseLists())
4026           return Err;
4027         break;
4028       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4029         if (Error Err = parseOperandBundleTags())
4030           return Err;
4031         break;
4032       }
4033       continue;
4034 
4035     case BitstreamEntry::Record:
4036       // The interesting case.
4037       break;
4038     }
4039 
4040     // Read a record.
4041     auto BitCode = Stream.readRecord(Entry.ID, Record);
4042     switch (BitCode) {
4043     default: break;  // Default behavior, ignore unknown content.
4044     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
4045       if (Record.size() < 1)
4046         return error("Invalid record");
4047       // Only version #0 and #1 are supported so far.
4048       unsigned module_version = Record[0];
4049       switch (module_version) {
4050         default:
4051           return error("Invalid value");
4052         case 0:
4053           UseRelativeIDs = false;
4054           break;
4055         case 1:
4056           UseRelativeIDs = true;
4057           break;
4058       }
4059       break;
4060     }
4061     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4062       std::string S;
4063       if (convertToString(Record, 0, S))
4064         return error("Invalid record");
4065       TheModule->setTargetTriple(S);
4066       break;
4067     }
4068     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4069       std::string S;
4070       if (convertToString(Record, 0, S))
4071         return error("Invalid record");
4072       TheModule->setDataLayout(S);
4073       break;
4074     }
4075     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4076       std::string S;
4077       if (convertToString(Record, 0, S))
4078         return error("Invalid record");
4079       TheModule->setModuleInlineAsm(S);
4080       break;
4081     }
4082     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4083       // FIXME: Remove in 4.0.
4084       std::string S;
4085       if (convertToString(Record, 0, S))
4086         return error("Invalid record");
4087       // Ignore value.
4088       break;
4089     }
4090     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4091       std::string S;
4092       if (convertToString(Record, 0, S))
4093         return error("Invalid record");
4094       SectionTable.push_back(S);
4095       break;
4096     }
4097     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4098       std::string S;
4099       if (convertToString(Record, 0, S))
4100         return error("Invalid record");
4101       GCTable.push_back(S);
4102       break;
4103     }
4104     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
4105       if (Record.size() < 2)
4106         return error("Invalid record");
4107       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
4108       unsigned ComdatNameSize = Record[1];
4109       std::string ComdatName;
4110       ComdatName.reserve(ComdatNameSize);
4111       for (unsigned i = 0; i != ComdatNameSize; ++i)
4112         ComdatName += (char)Record[2 + i];
4113       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
4114       C->setSelectionKind(SK);
4115       ComdatList.push_back(C);
4116       break;
4117     }
4118     // GLOBALVAR: [pointer type, isconst, initid,
4119     //             linkage, alignment, section, visibility, threadlocal,
4120     //             unnamed_addr, externally_initialized, dllstorageclass,
4121     //             comdat]
4122     case bitc::MODULE_CODE_GLOBALVAR: {
4123       if (Record.size() < 6)
4124         return error("Invalid record");
4125       Type *Ty = getTypeByID(Record[0]);
4126       if (!Ty)
4127         return error("Invalid record");
4128       bool isConstant = Record[1] & 1;
4129       bool explicitType = Record[1] & 2;
4130       unsigned AddressSpace;
4131       if (explicitType) {
4132         AddressSpace = Record[1] >> 2;
4133       } else {
4134         if (!Ty->isPointerTy())
4135           return error("Invalid type for value");
4136         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4137         Ty = cast<PointerType>(Ty)->getElementType();
4138       }
4139 
4140       uint64_t RawLinkage = Record[3];
4141       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4142       unsigned Alignment;
4143       if (Error Err = parseAlignmentValue(Record[4], Alignment))
4144         return Err;
4145       std::string Section;
4146       if (Record[5]) {
4147         if (Record[5]-1 >= SectionTable.size())
4148           return error("Invalid ID");
4149         Section = SectionTable[Record[5]-1];
4150       }
4151       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4152       // Local linkage must have default visibility.
4153       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4154         // FIXME: Change to an error if non-default in 4.0.
4155         Visibility = getDecodedVisibility(Record[6]);
4156 
4157       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4158       if (Record.size() > 7)
4159         TLM = getDecodedThreadLocalMode(Record[7]);
4160 
4161       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4162       if (Record.size() > 8)
4163         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4164 
4165       bool ExternallyInitialized = false;
4166       if (Record.size() > 9)
4167         ExternallyInitialized = Record[9];
4168 
4169       GlobalVariable *NewGV =
4170         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
4171                            TLM, AddressSpace, ExternallyInitialized);
4172       NewGV->setAlignment(Alignment);
4173       if (!Section.empty())
4174         NewGV->setSection(Section);
4175       NewGV->setVisibility(Visibility);
4176       NewGV->setUnnamedAddr(UnnamedAddr);
4177 
4178       if (Record.size() > 10)
4179         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4180       else
4181         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4182 
4183       ValueList.push_back(NewGV);
4184 
4185       // Remember which value to use for the global initializer.
4186       if (unsigned InitID = Record[2])
4187         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
4188 
4189       if (Record.size() > 11) {
4190         if (unsigned ComdatID = Record[11]) {
4191           if (ComdatID > ComdatList.size())
4192             return error("Invalid global variable comdat ID");
4193           NewGV->setComdat(ComdatList[ComdatID - 1]);
4194         }
4195       } else if (hasImplicitComdat(RawLinkage)) {
4196         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
4197       }
4198 
4199       break;
4200     }
4201     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4202     //             alignment, section, visibility, gc, unnamed_addr,
4203     //             prologuedata, dllstorageclass, comdat, prefixdata]
4204     case bitc::MODULE_CODE_FUNCTION: {
4205       if (Record.size() < 8)
4206         return error("Invalid record");
4207       Type *Ty = getTypeByID(Record[0]);
4208       if (!Ty)
4209         return error("Invalid record");
4210       if (auto *PTy = dyn_cast<PointerType>(Ty))
4211         Ty = PTy->getElementType();
4212       auto *FTy = dyn_cast<FunctionType>(Ty);
4213       if (!FTy)
4214         return error("Invalid type for value");
4215       auto CC = static_cast<CallingConv::ID>(Record[1]);
4216       if (CC & ~CallingConv::MaxID)
4217         return error("Invalid calling convention ID");
4218 
4219       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
4220                                         "", TheModule);
4221 
4222       Func->setCallingConv(CC);
4223       bool isProto = Record[2];
4224       uint64_t RawLinkage = Record[3];
4225       Func->setLinkage(getDecodedLinkage(RawLinkage));
4226       Func->setAttributes(getAttributes(Record[4]));
4227 
4228       unsigned Alignment;
4229       if (Error Err = parseAlignmentValue(Record[5], Alignment))
4230         return Err;
4231       Func->setAlignment(Alignment);
4232       if (Record[6]) {
4233         if (Record[6]-1 >= SectionTable.size())
4234           return error("Invalid ID");
4235         Func->setSection(SectionTable[Record[6]-1]);
4236       }
4237       // Local linkage must have default visibility.
4238       if (!Func->hasLocalLinkage())
4239         // FIXME: Change to an error if non-default in 4.0.
4240         Func->setVisibility(getDecodedVisibility(Record[7]));
4241       if (Record.size() > 8 && Record[8]) {
4242         if (Record[8]-1 >= GCTable.size())
4243           return error("Invalid ID");
4244         Func->setGC(GCTable[Record[8] - 1]);
4245       }
4246       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4247       if (Record.size() > 9)
4248         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4249       Func->setUnnamedAddr(UnnamedAddr);
4250       if (Record.size() > 10 && Record[10] != 0)
4251         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
4252 
4253       if (Record.size() > 11)
4254         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4255       else
4256         upgradeDLLImportExportLinkage(Func, RawLinkage);
4257 
4258       if (Record.size() > 12) {
4259         if (unsigned ComdatID = Record[12]) {
4260           if (ComdatID > ComdatList.size())
4261             return error("Invalid function comdat ID");
4262           Func->setComdat(ComdatList[ComdatID - 1]);
4263         }
4264       } else if (hasImplicitComdat(RawLinkage)) {
4265         Func->setComdat(reinterpret_cast<Comdat *>(1));
4266       }
4267 
4268       if (Record.size() > 13 && Record[13] != 0)
4269         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4270 
4271       if (Record.size() > 14 && Record[14] != 0)
4272         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4273 
4274       ValueList.push_back(Func);
4275 
4276       // If this is a function with a body, remember the prototype we are
4277       // creating now, so that we can match up the body with them later.
4278       if (!isProto) {
4279         Func->setIsMaterializable(true);
4280         FunctionsWithBodies.push_back(Func);
4281         DeferredFunctionInfo[Func] = 0;
4282       }
4283       break;
4284     }
4285     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4286     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4287     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4288     case bitc::MODULE_CODE_IFUNC:
4289     case bitc::MODULE_CODE_ALIAS:
4290     case bitc::MODULE_CODE_ALIAS_OLD: {
4291       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4292       if (Record.size() < (3 + (unsigned)NewRecord))
4293         return error("Invalid record");
4294       unsigned OpNum = 0;
4295       Type *Ty = getTypeByID(Record[OpNum++]);
4296       if (!Ty)
4297         return error("Invalid record");
4298 
4299       unsigned AddrSpace;
4300       if (!NewRecord) {
4301         auto *PTy = dyn_cast<PointerType>(Ty);
4302         if (!PTy)
4303           return error("Invalid type for value");
4304         Ty = PTy->getElementType();
4305         AddrSpace = PTy->getAddressSpace();
4306       } else {
4307         AddrSpace = Record[OpNum++];
4308       }
4309 
4310       auto Val = Record[OpNum++];
4311       auto Linkage = Record[OpNum++];
4312       GlobalIndirectSymbol *NewGA;
4313       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4314           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4315         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4316                                     "", TheModule);
4317       else
4318         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4319                                     "", nullptr, TheModule);
4320       // Old bitcode files didn't have visibility field.
4321       // Local linkage must have default visibility.
4322       if (OpNum != Record.size()) {
4323         auto VisInd = OpNum++;
4324         if (!NewGA->hasLocalLinkage())
4325           // FIXME: Change to an error if non-default in 4.0.
4326           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4327       }
4328       if (OpNum != Record.size())
4329         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4330       else
4331         upgradeDLLImportExportLinkage(NewGA, Linkage);
4332       if (OpNum != Record.size())
4333         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4334       if (OpNum != Record.size())
4335         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4336       ValueList.push_back(NewGA);
4337       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4338       break;
4339     }
4340     /// MODULE_CODE_PURGEVALS: [numvals]
4341     case bitc::MODULE_CODE_PURGEVALS:
4342       // Trim down the value list to the specified size.
4343       if (Record.size() < 1 || Record[0] > ValueList.size())
4344         return error("Invalid record");
4345       ValueList.shrinkTo(Record[0]);
4346       break;
4347     /// MODULE_CODE_VSTOFFSET: [offset]
4348     case bitc::MODULE_CODE_VSTOFFSET:
4349       if (Record.size() < 1)
4350         return error("Invalid record");
4351       // Note that we subtract 1 here because the offset is relative to one word
4352       // before the start of the identification or module block, which was
4353       // historically always the start of the regular bitcode header.
4354       VSTOffset = Record[0] - 1;
4355       break;
4356     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4357     case bitc::MODULE_CODE_SOURCE_FILENAME:
4358       SmallString<128> ValueName;
4359       if (convertToString(Record, 0, ValueName))
4360         return error("Invalid record");
4361       TheModule->setSourceFileName(ValueName);
4362       break;
4363     }
4364     Record.clear();
4365   }
4366 }
4367 
4368 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) {
4369   TheModule = M;
4370   return parseModule(0, ShouldLazyLoadMetadata);
4371 }
4372 
4373 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO,
4374                                                  ArrayRef<uint64_t> Record) {
4375   assert(Record.size() % 2 == 0);
4376   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4377     auto K = MDKindMap.find(Record[I]);
4378     if (K == MDKindMap.end())
4379       return error("Invalid ID");
4380     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4381     if (!MD)
4382       return error("Invalid metadata attachment");
4383     GO.addMetadata(K->second, *MD);
4384   }
4385   return Error::success();
4386 }
4387 
4388 /// Parse metadata attachments.
4389 Error BitcodeReader::parseMetadataAttachment(Function &F) {
4390   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4391     return error("Invalid record");
4392 
4393   SmallVector<uint64_t, 64> Record;
4394 
4395   while (true) {
4396     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4397 
4398     switch (Entry.Kind) {
4399     case BitstreamEntry::SubBlock: // Handled for us already.
4400     case BitstreamEntry::Error:
4401       return error("Malformed block");
4402     case BitstreamEntry::EndBlock:
4403       return Error::success();
4404     case BitstreamEntry::Record:
4405       // The interesting case.
4406       break;
4407     }
4408 
4409     // Read a metadata attachment record.
4410     Record.clear();
4411     switch (Stream.readRecord(Entry.ID, Record)) {
4412     default:  // Default behavior: ignore.
4413       break;
4414     case bitc::METADATA_ATTACHMENT: {
4415       unsigned RecordLength = Record.size();
4416       if (Record.empty())
4417         return error("Invalid record");
4418       if (RecordLength % 2 == 0) {
4419         // A function attachment.
4420         if (Error Err = parseGlobalObjectAttachment(F, Record))
4421           return Err;
4422         continue;
4423       }
4424 
4425       // An instruction attachment.
4426       Instruction *Inst = InstructionList[Record[0]];
4427       for (unsigned i = 1; i != RecordLength; i = i+2) {
4428         unsigned Kind = Record[i];
4429         DenseMap<unsigned, unsigned>::iterator I =
4430           MDKindMap.find(Kind);
4431         if (I == MDKindMap.end())
4432           return error("Invalid ID");
4433         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4434         if (isa<LocalAsMetadata>(Node))
4435           // Drop the attachment.  This used to be legal, but there's no
4436           // upgrade path.
4437           break;
4438         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4439         if (!MD)
4440           return error("Invalid metadata attachment");
4441 
4442         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4443           MD = upgradeInstructionLoopAttachment(*MD);
4444 
4445         if (I->second == LLVMContext::MD_tbaa) {
4446           assert(!MD->isTemporary() && "should load MDs before attachments");
4447           MD = UpgradeTBAANode(*MD);
4448         }
4449         Inst->setMetadata(I->second, MD);
4450       }
4451       break;
4452     }
4453     }
4454   }
4455 }
4456 
4457 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4458   if (!isa<PointerType>(PtrType))
4459     return error("Load/Store operand is not a pointer type");
4460   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4461 
4462   if (ValType && ValType != ElemType)
4463     return error("Explicit load/store type does not match pointee "
4464                  "type of pointer operand");
4465   if (!PointerType::isLoadableOrStorableType(ElemType))
4466     return error("Cannot load/store from pointer");
4467   return Error::success();
4468 }
4469 
4470 /// Lazily parse the specified function body block.
4471 Error BitcodeReader::parseFunctionBody(Function *F) {
4472   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4473     return error("Invalid record");
4474 
4475   // Unexpected unresolved metadata when parsing function.
4476   if (MetadataList.hasFwdRefs())
4477     return error("Invalid function metadata: incoming forward references");
4478 
4479   InstructionList.clear();
4480   unsigned ModuleValueListSize = ValueList.size();
4481   unsigned ModuleMetadataListSize = MetadataList.size();
4482 
4483   // Add all the function arguments to the value table.
4484   for (Argument &I : F->args())
4485     ValueList.push_back(&I);
4486 
4487   unsigned NextValueNo = ValueList.size();
4488   BasicBlock *CurBB = nullptr;
4489   unsigned CurBBNo = 0;
4490 
4491   DebugLoc LastLoc;
4492   auto getLastInstruction = [&]() -> Instruction * {
4493     if (CurBB && !CurBB->empty())
4494       return &CurBB->back();
4495     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4496              !FunctionBBs[CurBBNo - 1]->empty())
4497       return &FunctionBBs[CurBBNo - 1]->back();
4498     return nullptr;
4499   };
4500 
4501   std::vector<OperandBundleDef> OperandBundles;
4502 
4503   // Read all the records.
4504   SmallVector<uint64_t, 64> Record;
4505 
4506   while (true) {
4507     BitstreamEntry Entry = Stream.advance();
4508 
4509     switch (Entry.Kind) {
4510     case BitstreamEntry::Error:
4511       return error("Malformed block");
4512     case BitstreamEntry::EndBlock:
4513       goto OutOfRecordLoop;
4514 
4515     case BitstreamEntry::SubBlock:
4516       switch (Entry.ID) {
4517       default:  // Skip unknown content.
4518         if (Stream.SkipBlock())
4519           return error("Invalid record");
4520         break;
4521       case bitc::CONSTANTS_BLOCK_ID:
4522         if (Error Err = parseConstants())
4523           return Err;
4524         NextValueNo = ValueList.size();
4525         break;
4526       case bitc::VALUE_SYMTAB_BLOCK_ID:
4527         if (Error Err = parseValueSymbolTable())
4528           return Err;
4529         break;
4530       case bitc::METADATA_ATTACHMENT_ID:
4531         if (Error Err = parseMetadataAttachment(*F))
4532           return Err;
4533         break;
4534       case bitc::METADATA_BLOCK_ID:
4535         if (Error Err = parseMetadata())
4536           return Err;
4537         break;
4538       case bitc::USELIST_BLOCK_ID:
4539         if (Error Err = parseUseLists())
4540           return Err;
4541         break;
4542       }
4543       continue;
4544 
4545     case BitstreamEntry::Record:
4546       // The interesting case.
4547       break;
4548     }
4549 
4550     // Read a record.
4551     Record.clear();
4552     Instruction *I = nullptr;
4553     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4554     switch (BitCode) {
4555     default: // Default behavior: reject
4556       return error("Invalid value");
4557     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4558       if (Record.size() < 1 || Record[0] == 0)
4559         return error("Invalid record");
4560       // Create all the basic blocks for the function.
4561       FunctionBBs.resize(Record[0]);
4562 
4563       // See if anything took the address of blocks in this function.
4564       auto BBFRI = BasicBlockFwdRefs.find(F);
4565       if (BBFRI == BasicBlockFwdRefs.end()) {
4566         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4567           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4568       } else {
4569         auto &BBRefs = BBFRI->second;
4570         // Check for invalid basic block references.
4571         if (BBRefs.size() > FunctionBBs.size())
4572           return error("Invalid ID");
4573         assert(!BBRefs.empty() && "Unexpected empty array");
4574         assert(!BBRefs.front() && "Invalid reference to entry block");
4575         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4576              ++I)
4577           if (I < RE && BBRefs[I]) {
4578             BBRefs[I]->insertInto(F);
4579             FunctionBBs[I] = BBRefs[I];
4580           } else {
4581             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4582           }
4583 
4584         // Erase from the table.
4585         BasicBlockFwdRefs.erase(BBFRI);
4586       }
4587 
4588       CurBB = FunctionBBs[0];
4589       continue;
4590     }
4591 
4592     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4593       // This record indicates that the last instruction is at the same
4594       // location as the previous instruction with a location.
4595       I = getLastInstruction();
4596 
4597       if (!I)
4598         return error("Invalid record");
4599       I->setDebugLoc(LastLoc);
4600       I = nullptr;
4601       continue;
4602 
4603     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4604       I = getLastInstruction();
4605       if (!I || Record.size() < 4)
4606         return error("Invalid record");
4607 
4608       unsigned Line = Record[0], Col = Record[1];
4609       unsigned ScopeID = Record[2], IAID = Record[3];
4610 
4611       MDNode *Scope = nullptr, *IA = nullptr;
4612       if (ScopeID) {
4613         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4614         if (!Scope)
4615           return error("Invalid record");
4616       }
4617       if (IAID) {
4618         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4619         if (!IA)
4620           return error("Invalid record");
4621       }
4622       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4623       I->setDebugLoc(LastLoc);
4624       I = nullptr;
4625       continue;
4626     }
4627 
4628     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4629       unsigned OpNum = 0;
4630       Value *LHS, *RHS;
4631       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4632           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4633           OpNum+1 > Record.size())
4634         return error("Invalid record");
4635 
4636       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4637       if (Opc == -1)
4638         return error("Invalid record");
4639       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4640       InstructionList.push_back(I);
4641       if (OpNum < Record.size()) {
4642         if (Opc == Instruction::Add ||
4643             Opc == Instruction::Sub ||
4644             Opc == Instruction::Mul ||
4645             Opc == Instruction::Shl) {
4646           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4647             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4648           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4649             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4650         } else if (Opc == Instruction::SDiv ||
4651                    Opc == Instruction::UDiv ||
4652                    Opc == Instruction::LShr ||
4653                    Opc == Instruction::AShr) {
4654           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4655             cast<BinaryOperator>(I)->setIsExact(true);
4656         } else if (isa<FPMathOperator>(I)) {
4657           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4658           if (FMF.any())
4659             I->setFastMathFlags(FMF);
4660         }
4661 
4662       }
4663       break;
4664     }
4665     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4666       unsigned OpNum = 0;
4667       Value *Op;
4668       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4669           OpNum+2 != Record.size())
4670         return error("Invalid record");
4671 
4672       Type *ResTy = getTypeByID(Record[OpNum]);
4673       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4674       if (Opc == -1 || !ResTy)
4675         return error("Invalid record");
4676       Instruction *Temp = nullptr;
4677       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4678         if (Temp) {
4679           InstructionList.push_back(Temp);
4680           CurBB->getInstList().push_back(Temp);
4681         }
4682       } else {
4683         auto CastOp = (Instruction::CastOps)Opc;
4684         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4685           return error("Invalid cast");
4686         I = CastInst::Create(CastOp, Op, ResTy);
4687       }
4688       InstructionList.push_back(I);
4689       break;
4690     }
4691     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4692     case bitc::FUNC_CODE_INST_GEP_OLD:
4693     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4694       unsigned OpNum = 0;
4695 
4696       Type *Ty;
4697       bool InBounds;
4698 
4699       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4700         InBounds = Record[OpNum++];
4701         Ty = getTypeByID(Record[OpNum++]);
4702       } else {
4703         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4704         Ty = nullptr;
4705       }
4706 
4707       Value *BasePtr;
4708       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4709         return error("Invalid record");
4710 
4711       if (!Ty)
4712         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4713                  ->getElementType();
4714       else if (Ty !=
4715                cast<PointerType>(BasePtr->getType()->getScalarType())
4716                    ->getElementType())
4717         return error(
4718             "Explicit gep type does not match pointee type of pointer operand");
4719 
4720       SmallVector<Value*, 16> GEPIdx;
4721       while (OpNum != Record.size()) {
4722         Value *Op;
4723         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4724           return error("Invalid record");
4725         GEPIdx.push_back(Op);
4726       }
4727 
4728       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4729 
4730       InstructionList.push_back(I);
4731       if (InBounds)
4732         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4733       break;
4734     }
4735 
4736     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4737                                        // EXTRACTVAL: [opty, opval, n x indices]
4738       unsigned OpNum = 0;
4739       Value *Agg;
4740       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4741         return error("Invalid record");
4742 
4743       unsigned RecSize = Record.size();
4744       if (OpNum == RecSize)
4745         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4746 
4747       SmallVector<unsigned, 4> EXTRACTVALIdx;
4748       Type *CurTy = Agg->getType();
4749       for (; OpNum != RecSize; ++OpNum) {
4750         bool IsArray = CurTy->isArrayTy();
4751         bool IsStruct = CurTy->isStructTy();
4752         uint64_t Index = Record[OpNum];
4753 
4754         if (!IsStruct && !IsArray)
4755           return error("EXTRACTVAL: Invalid type");
4756         if ((unsigned)Index != Index)
4757           return error("Invalid value");
4758         if (IsStruct && Index >= CurTy->subtypes().size())
4759           return error("EXTRACTVAL: Invalid struct index");
4760         if (IsArray && Index >= CurTy->getArrayNumElements())
4761           return error("EXTRACTVAL: Invalid array index");
4762         EXTRACTVALIdx.push_back((unsigned)Index);
4763 
4764         if (IsStruct)
4765           CurTy = CurTy->subtypes()[Index];
4766         else
4767           CurTy = CurTy->subtypes()[0];
4768       }
4769 
4770       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4771       InstructionList.push_back(I);
4772       break;
4773     }
4774 
4775     case bitc::FUNC_CODE_INST_INSERTVAL: {
4776                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4777       unsigned OpNum = 0;
4778       Value *Agg;
4779       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4780         return error("Invalid record");
4781       Value *Val;
4782       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4783         return error("Invalid record");
4784 
4785       unsigned RecSize = Record.size();
4786       if (OpNum == RecSize)
4787         return error("INSERTVAL: Invalid instruction with 0 indices");
4788 
4789       SmallVector<unsigned, 4> INSERTVALIdx;
4790       Type *CurTy = Agg->getType();
4791       for (; OpNum != RecSize; ++OpNum) {
4792         bool IsArray = CurTy->isArrayTy();
4793         bool IsStruct = CurTy->isStructTy();
4794         uint64_t Index = Record[OpNum];
4795 
4796         if (!IsStruct && !IsArray)
4797           return error("INSERTVAL: Invalid type");
4798         if ((unsigned)Index != Index)
4799           return error("Invalid value");
4800         if (IsStruct && Index >= CurTy->subtypes().size())
4801           return error("INSERTVAL: Invalid struct index");
4802         if (IsArray && Index >= CurTy->getArrayNumElements())
4803           return error("INSERTVAL: Invalid array index");
4804 
4805         INSERTVALIdx.push_back((unsigned)Index);
4806         if (IsStruct)
4807           CurTy = CurTy->subtypes()[Index];
4808         else
4809           CurTy = CurTy->subtypes()[0];
4810       }
4811 
4812       if (CurTy != Val->getType())
4813         return error("Inserted value type doesn't match aggregate type");
4814 
4815       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4816       InstructionList.push_back(I);
4817       break;
4818     }
4819 
4820     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4821       // obsolete form of select
4822       // handles select i1 ... in old bitcode
4823       unsigned OpNum = 0;
4824       Value *TrueVal, *FalseVal, *Cond;
4825       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4826           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4827           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4828         return error("Invalid record");
4829 
4830       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4831       InstructionList.push_back(I);
4832       break;
4833     }
4834 
4835     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4836       // new form of select
4837       // handles select i1 or select [N x i1]
4838       unsigned OpNum = 0;
4839       Value *TrueVal, *FalseVal, *Cond;
4840       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4841           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4842           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4843         return error("Invalid record");
4844 
4845       // select condition can be either i1 or [N x i1]
4846       if (VectorType* vector_type =
4847           dyn_cast<VectorType>(Cond->getType())) {
4848         // expect <n x i1>
4849         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4850           return error("Invalid type for value");
4851       } else {
4852         // expect i1
4853         if (Cond->getType() != Type::getInt1Ty(Context))
4854           return error("Invalid type for value");
4855       }
4856 
4857       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4858       InstructionList.push_back(I);
4859       break;
4860     }
4861 
4862     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4863       unsigned OpNum = 0;
4864       Value *Vec, *Idx;
4865       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4866           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4867         return error("Invalid record");
4868       if (!Vec->getType()->isVectorTy())
4869         return error("Invalid type for value");
4870       I = ExtractElementInst::Create(Vec, Idx);
4871       InstructionList.push_back(I);
4872       break;
4873     }
4874 
4875     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4876       unsigned OpNum = 0;
4877       Value *Vec, *Elt, *Idx;
4878       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4879         return error("Invalid record");
4880       if (!Vec->getType()->isVectorTy())
4881         return error("Invalid type for value");
4882       if (popValue(Record, OpNum, NextValueNo,
4883                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4884           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4885         return error("Invalid record");
4886       I = InsertElementInst::Create(Vec, Elt, Idx);
4887       InstructionList.push_back(I);
4888       break;
4889     }
4890 
4891     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4892       unsigned OpNum = 0;
4893       Value *Vec1, *Vec2, *Mask;
4894       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4895           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4896         return error("Invalid record");
4897 
4898       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4899         return error("Invalid record");
4900       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4901         return error("Invalid type for value");
4902       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4903       InstructionList.push_back(I);
4904       break;
4905     }
4906 
4907     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4908       // Old form of ICmp/FCmp returning bool
4909       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4910       // both legal on vectors but had different behaviour.
4911     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4912       // FCmp/ICmp returning bool or vector of bool
4913 
4914       unsigned OpNum = 0;
4915       Value *LHS, *RHS;
4916       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4917           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4918         return error("Invalid record");
4919 
4920       unsigned PredVal = Record[OpNum];
4921       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4922       FastMathFlags FMF;
4923       if (IsFP && Record.size() > OpNum+1)
4924         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4925 
4926       if (OpNum+1 != Record.size())
4927         return error("Invalid record");
4928 
4929       if (LHS->getType()->isFPOrFPVectorTy())
4930         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4931       else
4932         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4933 
4934       if (FMF.any())
4935         I->setFastMathFlags(FMF);
4936       InstructionList.push_back(I);
4937       break;
4938     }
4939 
4940     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4941       {
4942         unsigned Size = Record.size();
4943         if (Size == 0) {
4944           I = ReturnInst::Create(Context);
4945           InstructionList.push_back(I);
4946           break;
4947         }
4948 
4949         unsigned OpNum = 0;
4950         Value *Op = nullptr;
4951         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4952           return error("Invalid record");
4953         if (OpNum != Record.size())
4954           return error("Invalid record");
4955 
4956         I = ReturnInst::Create(Context, Op);
4957         InstructionList.push_back(I);
4958         break;
4959       }
4960     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4961       if (Record.size() != 1 && Record.size() != 3)
4962         return error("Invalid record");
4963       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4964       if (!TrueDest)
4965         return error("Invalid record");
4966 
4967       if (Record.size() == 1) {
4968         I = BranchInst::Create(TrueDest);
4969         InstructionList.push_back(I);
4970       }
4971       else {
4972         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4973         Value *Cond = getValue(Record, 2, NextValueNo,
4974                                Type::getInt1Ty(Context));
4975         if (!FalseDest || !Cond)
4976           return error("Invalid record");
4977         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4978         InstructionList.push_back(I);
4979       }
4980       break;
4981     }
4982     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4983       if (Record.size() != 1 && Record.size() != 2)
4984         return error("Invalid record");
4985       unsigned Idx = 0;
4986       Value *CleanupPad =
4987           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4988       if (!CleanupPad)
4989         return error("Invalid record");
4990       BasicBlock *UnwindDest = nullptr;
4991       if (Record.size() == 2) {
4992         UnwindDest = getBasicBlock(Record[Idx++]);
4993         if (!UnwindDest)
4994           return error("Invalid record");
4995       }
4996 
4997       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4998       InstructionList.push_back(I);
4999       break;
5000     }
5001     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5002       if (Record.size() != 2)
5003         return error("Invalid record");
5004       unsigned Idx = 0;
5005       Value *CatchPad =
5006           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5007       if (!CatchPad)
5008         return error("Invalid record");
5009       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5010       if (!BB)
5011         return error("Invalid record");
5012 
5013       I = CatchReturnInst::Create(CatchPad, BB);
5014       InstructionList.push_back(I);
5015       break;
5016     }
5017     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5018       // We must have, at minimum, the outer scope and the number of arguments.
5019       if (Record.size() < 2)
5020         return error("Invalid record");
5021 
5022       unsigned Idx = 0;
5023 
5024       Value *ParentPad =
5025           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5026 
5027       unsigned NumHandlers = Record[Idx++];
5028 
5029       SmallVector<BasicBlock *, 2> Handlers;
5030       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5031         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5032         if (!BB)
5033           return error("Invalid record");
5034         Handlers.push_back(BB);
5035       }
5036 
5037       BasicBlock *UnwindDest = nullptr;
5038       if (Idx + 1 == Record.size()) {
5039         UnwindDest = getBasicBlock(Record[Idx++]);
5040         if (!UnwindDest)
5041           return error("Invalid record");
5042       }
5043 
5044       if (Record.size() != Idx)
5045         return error("Invalid record");
5046 
5047       auto *CatchSwitch =
5048           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5049       for (BasicBlock *Handler : Handlers)
5050         CatchSwitch->addHandler(Handler);
5051       I = CatchSwitch;
5052       InstructionList.push_back(I);
5053       break;
5054     }
5055     case bitc::FUNC_CODE_INST_CATCHPAD:
5056     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5057       // We must have, at minimum, the outer scope and the number of arguments.
5058       if (Record.size() < 2)
5059         return error("Invalid record");
5060 
5061       unsigned Idx = 0;
5062 
5063       Value *ParentPad =
5064           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5065 
5066       unsigned NumArgOperands = Record[Idx++];
5067 
5068       SmallVector<Value *, 2> Args;
5069       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5070         Value *Val;
5071         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5072           return error("Invalid record");
5073         Args.push_back(Val);
5074       }
5075 
5076       if (Record.size() != Idx)
5077         return error("Invalid record");
5078 
5079       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5080         I = CleanupPadInst::Create(ParentPad, Args);
5081       else
5082         I = CatchPadInst::Create(ParentPad, Args);
5083       InstructionList.push_back(I);
5084       break;
5085     }
5086     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5087       // Check magic
5088       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5089         // "New" SwitchInst format with case ranges. The changes to write this
5090         // format were reverted but we still recognize bitcode that uses it.
5091         // Hopefully someday we will have support for case ranges and can use
5092         // this format again.
5093 
5094         Type *OpTy = getTypeByID(Record[1]);
5095         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5096 
5097         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5098         BasicBlock *Default = getBasicBlock(Record[3]);
5099         if (!OpTy || !Cond || !Default)
5100           return error("Invalid record");
5101 
5102         unsigned NumCases = Record[4];
5103 
5104         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5105         InstructionList.push_back(SI);
5106 
5107         unsigned CurIdx = 5;
5108         for (unsigned i = 0; i != NumCases; ++i) {
5109           SmallVector<ConstantInt*, 1> CaseVals;
5110           unsigned NumItems = Record[CurIdx++];
5111           for (unsigned ci = 0; ci != NumItems; ++ci) {
5112             bool isSingleNumber = Record[CurIdx++];
5113 
5114             APInt Low;
5115             unsigned ActiveWords = 1;
5116             if (ValueBitWidth > 64)
5117               ActiveWords = Record[CurIdx++];
5118             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5119                                 ValueBitWidth);
5120             CurIdx += ActiveWords;
5121 
5122             if (!isSingleNumber) {
5123               ActiveWords = 1;
5124               if (ValueBitWidth > 64)
5125                 ActiveWords = Record[CurIdx++];
5126               APInt High = readWideAPInt(
5127                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5128               CurIdx += ActiveWords;
5129 
5130               // FIXME: It is not clear whether values in the range should be
5131               // compared as signed or unsigned values. The partially
5132               // implemented changes that used this format in the past used
5133               // unsigned comparisons.
5134               for ( ; Low.ule(High); ++Low)
5135                 CaseVals.push_back(ConstantInt::get(Context, Low));
5136             } else
5137               CaseVals.push_back(ConstantInt::get(Context, Low));
5138           }
5139           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5140           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5141                  cve = CaseVals.end(); cvi != cve; ++cvi)
5142             SI->addCase(*cvi, DestBB);
5143         }
5144         I = SI;
5145         break;
5146       }
5147 
5148       // Old SwitchInst format without case ranges.
5149 
5150       if (Record.size() < 3 || (Record.size() & 1) == 0)
5151         return error("Invalid record");
5152       Type *OpTy = getTypeByID(Record[0]);
5153       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5154       BasicBlock *Default = getBasicBlock(Record[2]);
5155       if (!OpTy || !Cond || !Default)
5156         return error("Invalid record");
5157       unsigned NumCases = (Record.size()-3)/2;
5158       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5159       InstructionList.push_back(SI);
5160       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5161         ConstantInt *CaseVal =
5162           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5163         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5164         if (!CaseVal || !DestBB) {
5165           delete SI;
5166           return error("Invalid record");
5167         }
5168         SI->addCase(CaseVal, DestBB);
5169       }
5170       I = SI;
5171       break;
5172     }
5173     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5174       if (Record.size() < 2)
5175         return error("Invalid record");
5176       Type *OpTy = getTypeByID(Record[0]);
5177       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5178       if (!OpTy || !Address)
5179         return error("Invalid record");
5180       unsigned NumDests = Record.size()-2;
5181       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5182       InstructionList.push_back(IBI);
5183       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5184         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5185           IBI->addDestination(DestBB);
5186         } else {
5187           delete IBI;
5188           return error("Invalid record");
5189         }
5190       }
5191       I = IBI;
5192       break;
5193     }
5194 
5195     case bitc::FUNC_CODE_INST_INVOKE: {
5196       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5197       if (Record.size() < 4)
5198         return error("Invalid record");
5199       unsigned OpNum = 0;
5200       AttributeSet PAL = getAttributes(Record[OpNum++]);
5201       unsigned CCInfo = Record[OpNum++];
5202       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5203       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5204 
5205       FunctionType *FTy = nullptr;
5206       if (CCInfo >> 13 & 1 &&
5207           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5208         return error("Explicit invoke type is not a function type");
5209 
5210       Value *Callee;
5211       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5212         return error("Invalid record");
5213 
5214       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5215       if (!CalleeTy)
5216         return error("Callee is not a pointer");
5217       if (!FTy) {
5218         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5219         if (!FTy)
5220           return error("Callee is not of pointer to function type");
5221       } else if (CalleeTy->getElementType() != FTy)
5222         return error("Explicit invoke type does not match pointee type of "
5223                      "callee operand");
5224       if (Record.size() < FTy->getNumParams() + OpNum)
5225         return error("Insufficient operands to call");
5226 
5227       SmallVector<Value*, 16> Ops;
5228       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5229         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5230                                FTy->getParamType(i)));
5231         if (!Ops.back())
5232           return error("Invalid record");
5233       }
5234 
5235       if (!FTy->isVarArg()) {
5236         if (Record.size() != OpNum)
5237           return error("Invalid record");
5238       } else {
5239         // Read type/value pairs for varargs params.
5240         while (OpNum != Record.size()) {
5241           Value *Op;
5242           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5243             return error("Invalid record");
5244           Ops.push_back(Op);
5245         }
5246       }
5247 
5248       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5249       OperandBundles.clear();
5250       InstructionList.push_back(I);
5251       cast<InvokeInst>(I)->setCallingConv(
5252           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5253       cast<InvokeInst>(I)->setAttributes(PAL);
5254       break;
5255     }
5256     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5257       unsigned Idx = 0;
5258       Value *Val = nullptr;
5259       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5260         return error("Invalid record");
5261       I = ResumeInst::Create(Val);
5262       InstructionList.push_back(I);
5263       break;
5264     }
5265     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5266       I = new UnreachableInst(Context);
5267       InstructionList.push_back(I);
5268       break;
5269     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5270       if (Record.size() < 1 || ((Record.size()-1)&1))
5271         return error("Invalid record");
5272       Type *Ty = getTypeByID(Record[0]);
5273       if (!Ty)
5274         return error("Invalid record");
5275 
5276       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5277       InstructionList.push_back(PN);
5278 
5279       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5280         Value *V;
5281         // With the new function encoding, it is possible that operands have
5282         // negative IDs (for forward references).  Use a signed VBR
5283         // representation to keep the encoding small.
5284         if (UseRelativeIDs)
5285           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5286         else
5287           V = getValue(Record, 1+i, NextValueNo, Ty);
5288         BasicBlock *BB = getBasicBlock(Record[2+i]);
5289         if (!V || !BB)
5290           return error("Invalid record");
5291         PN->addIncoming(V, BB);
5292       }
5293       I = PN;
5294       break;
5295     }
5296 
5297     case bitc::FUNC_CODE_INST_LANDINGPAD:
5298     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5299       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5300       unsigned Idx = 0;
5301       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5302         if (Record.size() < 3)
5303           return error("Invalid record");
5304       } else {
5305         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5306         if (Record.size() < 4)
5307           return error("Invalid record");
5308       }
5309       Type *Ty = getTypeByID(Record[Idx++]);
5310       if (!Ty)
5311         return error("Invalid record");
5312       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5313         Value *PersFn = nullptr;
5314         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5315           return error("Invalid record");
5316 
5317         if (!F->hasPersonalityFn())
5318           F->setPersonalityFn(cast<Constant>(PersFn));
5319         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5320           return error("Personality function mismatch");
5321       }
5322 
5323       bool IsCleanup = !!Record[Idx++];
5324       unsigned NumClauses = Record[Idx++];
5325       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5326       LP->setCleanup(IsCleanup);
5327       for (unsigned J = 0; J != NumClauses; ++J) {
5328         LandingPadInst::ClauseType CT =
5329           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5330         Value *Val;
5331 
5332         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5333           delete LP;
5334           return error("Invalid record");
5335         }
5336 
5337         assert((CT != LandingPadInst::Catch ||
5338                 !isa<ArrayType>(Val->getType())) &&
5339                "Catch clause has a invalid type!");
5340         assert((CT != LandingPadInst::Filter ||
5341                 isa<ArrayType>(Val->getType())) &&
5342                "Filter clause has invalid type!");
5343         LP->addClause(cast<Constant>(Val));
5344       }
5345 
5346       I = LP;
5347       InstructionList.push_back(I);
5348       break;
5349     }
5350 
5351     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5352       if (Record.size() != 4)
5353         return error("Invalid record");
5354       uint64_t AlignRecord = Record[3];
5355       const uint64_t InAllocaMask = uint64_t(1) << 5;
5356       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5357       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5358       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5359                                 SwiftErrorMask;
5360       bool InAlloca = AlignRecord & InAllocaMask;
5361       bool SwiftError = AlignRecord & SwiftErrorMask;
5362       Type *Ty = getTypeByID(Record[0]);
5363       if ((AlignRecord & ExplicitTypeMask) == 0) {
5364         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5365         if (!PTy)
5366           return error("Old-style alloca with a non-pointer type");
5367         Ty = PTy->getElementType();
5368       }
5369       Type *OpTy = getTypeByID(Record[1]);
5370       Value *Size = getFnValueByID(Record[2], OpTy);
5371       unsigned Align;
5372       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5373         return Err;
5374       }
5375       if (!Ty || !Size)
5376         return error("Invalid record");
5377       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5378       AI->setUsedWithInAlloca(InAlloca);
5379       AI->setSwiftError(SwiftError);
5380       I = AI;
5381       InstructionList.push_back(I);
5382       break;
5383     }
5384     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5385       unsigned OpNum = 0;
5386       Value *Op;
5387       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5388           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5389         return error("Invalid record");
5390 
5391       Type *Ty = nullptr;
5392       if (OpNum + 3 == Record.size())
5393         Ty = getTypeByID(Record[OpNum++]);
5394       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5395         return Err;
5396       if (!Ty)
5397         Ty = cast<PointerType>(Op->getType())->getElementType();
5398 
5399       unsigned Align;
5400       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5401         return Err;
5402       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5403 
5404       InstructionList.push_back(I);
5405       break;
5406     }
5407     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5408        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5409       unsigned OpNum = 0;
5410       Value *Op;
5411       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5412           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5413         return error("Invalid record");
5414 
5415       Type *Ty = nullptr;
5416       if (OpNum + 5 == Record.size())
5417         Ty = getTypeByID(Record[OpNum++]);
5418       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5419         return Err;
5420       if (!Ty)
5421         Ty = cast<PointerType>(Op->getType())->getElementType();
5422 
5423       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5424       if (Ordering == AtomicOrdering::NotAtomic ||
5425           Ordering == AtomicOrdering::Release ||
5426           Ordering == AtomicOrdering::AcquireRelease)
5427         return error("Invalid record");
5428       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5429         return error("Invalid record");
5430       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5431 
5432       unsigned Align;
5433       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5434         return Err;
5435       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5436 
5437       InstructionList.push_back(I);
5438       break;
5439     }
5440     case bitc::FUNC_CODE_INST_STORE:
5441     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5442       unsigned OpNum = 0;
5443       Value *Val, *Ptr;
5444       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5445           (BitCode == bitc::FUNC_CODE_INST_STORE
5446                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5447                : popValue(Record, OpNum, NextValueNo,
5448                           cast<PointerType>(Ptr->getType())->getElementType(),
5449                           Val)) ||
5450           OpNum + 2 != Record.size())
5451         return error("Invalid record");
5452 
5453       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5454         return Err;
5455       unsigned Align;
5456       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5457         return Err;
5458       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5459       InstructionList.push_back(I);
5460       break;
5461     }
5462     case bitc::FUNC_CODE_INST_STOREATOMIC:
5463     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5464       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5465       unsigned OpNum = 0;
5466       Value *Val, *Ptr;
5467       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5468           !isa<PointerType>(Ptr->getType()) ||
5469           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5470                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5471                : popValue(Record, OpNum, NextValueNo,
5472                           cast<PointerType>(Ptr->getType())->getElementType(),
5473                           Val)) ||
5474           OpNum + 4 != Record.size())
5475         return error("Invalid record");
5476 
5477       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5478         return Err;
5479       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5480       if (Ordering == AtomicOrdering::NotAtomic ||
5481           Ordering == AtomicOrdering::Acquire ||
5482           Ordering == AtomicOrdering::AcquireRelease)
5483         return error("Invalid record");
5484       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5485       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5486         return error("Invalid record");
5487 
5488       unsigned Align;
5489       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5490         return Err;
5491       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5492       InstructionList.push_back(I);
5493       break;
5494     }
5495     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5496     case bitc::FUNC_CODE_INST_CMPXCHG: {
5497       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5498       //          failureordering?, isweak?]
5499       unsigned OpNum = 0;
5500       Value *Ptr, *Cmp, *New;
5501       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5502           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5503                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5504                : popValue(Record, OpNum, NextValueNo,
5505                           cast<PointerType>(Ptr->getType())->getElementType(),
5506                           Cmp)) ||
5507           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5508           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5509         return error("Invalid record");
5510       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5511       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5512           SuccessOrdering == AtomicOrdering::Unordered)
5513         return error("Invalid record");
5514       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5515 
5516       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5517         return Err;
5518       AtomicOrdering FailureOrdering;
5519       if (Record.size() < 7)
5520         FailureOrdering =
5521             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5522       else
5523         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5524 
5525       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5526                                 SynchScope);
5527       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5528 
5529       if (Record.size() < 8) {
5530         // Before weak cmpxchgs existed, the instruction simply returned the
5531         // value loaded from memory, so bitcode files from that era will be
5532         // expecting the first component of a modern cmpxchg.
5533         CurBB->getInstList().push_back(I);
5534         I = ExtractValueInst::Create(I, 0);
5535       } else {
5536         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5537       }
5538 
5539       InstructionList.push_back(I);
5540       break;
5541     }
5542     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5543       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5544       unsigned OpNum = 0;
5545       Value *Ptr, *Val;
5546       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5547           !isa<PointerType>(Ptr->getType()) ||
5548           popValue(Record, OpNum, NextValueNo,
5549                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5550           OpNum+4 != Record.size())
5551         return error("Invalid record");
5552       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5553       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5554           Operation > AtomicRMWInst::LAST_BINOP)
5555         return error("Invalid record");
5556       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5557       if (Ordering == AtomicOrdering::NotAtomic ||
5558           Ordering == AtomicOrdering::Unordered)
5559         return error("Invalid record");
5560       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5561       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5562       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5563       InstructionList.push_back(I);
5564       break;
5565     }
5566     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5567       if (2 != Record.size())
5568         return error("Invalid record");
5569       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5570       if (Ordering == AtomicOrdering::NotAtomic ||
5571           Ordering == AtomicOrdering::Unordered ||
5572           Ordering == AtomicOrdering::Monotonic)
5573         return error("Invalid record");
5574       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5575       I = new FenceInst(Context, Ordering, SynchScope);
5576       InstructionList.push_back(I);
5577       break;
5578     }
5579     case bitc::FUNC_CODE_INST_CALL: {
5580       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5581       if (Record.size() < 3)
5582         return error("Invalid record");
5583 
5584       unsigned OpNum = 0;
5585       AttributeSet PAL = getAttributes(Record[OpNum++]);
5586       unsigned CCInfo = Record[OpNum++];
5587 
5588       FastMathFlags FMF;
5589       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5590         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5591         if (!FMF.any())
5592           return error("Fast math flags indicator set for call with no FMF");
5593       }
5594 
5595       FunctionType *FTy = nullptr;
5596       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5597           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5598         return error("Explicit call type is not a function type");
5599 
5600       Value *Callee;
5601       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5602         return error("Invalid record");
5603 
5604       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5605       if (!OpTy)
5606         return error("Callee is not a pointer type");
5607       if (!FTy) {
5608         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5609         if (!FTy)
5610           return error("Callee is not of pointer to function type");
5611       } else if (OpTy->getElementType() != FTy)
5612         return error("Explicit call type does not match pointee type of "
5613                      "callee operand");
5614       if (Record.size() < FTy->getNumParams() + OpNum)
5615         return error("Insufficient operands to call");
5616 
5617       SmallVector<Value*, 16> Args;
5618       // Read the fixed params.
5619       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5620         if (FTy->getParamType(i)->isLabelTy())
5621           Args.push_back(getBasicBlock(Record[OpNum]));
5622         else
5623           Args.push_back(getValue(Record, OpNum, NextValueNo,
5624                                   FTy->getParamType(i)));
5625         if (!Args.back())
5626           return error("Invalid record");
5627       }
5628 
5629       // Read type/value pairs for varargs params.
5630       if (!FTy->isVarArg()) {
5631         if (OpNum != Record.size())
5632           return error("Invalid record");
5633       } else {
5634         while (OpNum != Record.size()) {
5635           Value *Op;
5636           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5637             return error("Invalid record");
5638           Args.push_back(Op);
5639         }
5640       }
5641 
5642       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5643       OperandBundles.clear();
5644       InstructionList.push_back(I);
5645       cast<CallInst>(I)->setCallingConv(
5646           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5647       CallInst::TailCallKind TCK = CallInst::TCK_None;
5648       if (CCInfo & 1 << bitc::CALL_TAIL)
5649         TCK = CallInst::TCK_Tail;
5650       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5651         TCK = CallInst::TCK_MustTail;
5652       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5653         TCK = CallInst::TCK_NoTail;
5654       cast<CallInst>(I)->setTailCallKind(TCK);
5655       cast<CallInst>(I)->setAttributes(PAL);
5656       if (FMF.any()) {
5657         if (!isa<FPMathOperator>(I))
5658           return error("Fast-math-flags specified for call without "
5659                        "floating-point scalar or vector return type");
5660         I->setFastMathFlags(FMF);
5661       }
5662       break;
5663     }
5664     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5665       if (Record.size() < 3)
5666         return error("Invalid record");
5667       Type *OpTy = getTypeByID(Record[0]);
5668       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5669       Type *ResTy = getTypeByID(Record[2]);
5670       if (!OpTy || !Op || !ResTy)
5671         return error("Invalid record");
5672       I = new VAArgInst(Op, ResTy);
5673       InstructionList.push_back(I);
5674       break;
5675     }
5676 
5677     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5678       // A call or an invoke can be optionally prefixed with some variable
5679       // number of operand bundle blocks.  These blocks are read into
5680       // OperandBundles and consumed at the next call or invoke instruction.
5681 
5682       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5683         return error("Invalid record");
5684 
5685       std::vector<Value *> Inputs;
5686 
5687       unsigned OpNum = 1;
5688       while (OpNum != Record.size()) {
5689         Value *Op;
5690         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5691           return error("Invalid record");
5692         Inputs.push_back(Op);
5693       }
5694 
5695       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5696       continue;
5697     }
5698     }
5699 
5700     // Add instruction to end of current BB.  If there is no current BB, reject
5701     // this file.
5702     if (!CurBB) {
5703       delete I;
5704       return error("Invalid instruction with no BB");
5705     }
5706     if (!OperandBundles.empty()) {
5707       delete I;
5708       return error("Operand bundles found with no consumer");
5709     }
5710     CurBB->getInstList().push_back(I);
5711 
5712     // If this was a terminator instruction, move to the next block.
5713     if (isa<TerminatorInst>(I)) {
5714       ++CurBBNo;
5715       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5716     }
5717 
5718     // Non-void values get registered in the value table for future use.
5719     if (I && !I->getType()->isVoidTy())
5720       ValueList.assignValue(I, NextValueNo++);
5721   }
5722 
5723 OutOfRecordLoop:
5724 
5725   if (!OperandBundles.empty())
5726     return error("Operand bundles found with no consumer");
5727 
5728   // Check the function list for unresolved values.
5729   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5730     if (!A->getParent()) {
5731       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5732       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5733         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5734           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5735           delete A;
5736         }
5737       }
5738       return error("Never resolved value found in function");
5739     }
5740   }
5741 
5742   // Unexpected unresolved metadata about to be dropped.
5743   if (MetadataList.hasFwdRefs())
5744     return error("Invalid function metadata: outgoing forward refs");
5745 
5746   // Trim the value list down to the size it was before we parsed this function.
5747   ValueList.shrinkTo(ModuleValueListSize);
5748   MetadataList.shrinkTo(ModuleMetadataListSize);
5749   std::vector<BasicBlock*>().swap(FunctionBBs);
5750   return Error::success();
5751 }
5752 
5753 /// Find the function body in the bitcode stream
5754 Error BitcodeReader::findFunctionInStream(
5755     Function *F,
5756     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5757   while (DeferredFunctionInfoIterator->second == 0) {
5758     // This is the fallback handling for the old format bitcode that
5759     // didn't contain the function index in the VST, or when we have
5760     // an anonymous function which would not have a VST entry.
5761     // Assert that we have one of those two cases.
5762     assert(VSTOffset == 0 || !F->hasName());
5763     // Parse the next body in the stream and set its position in the
5764     // DeferredFunctionInfo map.
5765     if (Error Err = rememberAndSkipFunctionBodies())
5766       return Err;
5767   }
5768   return Error::success();
5769 }
5770 
5771 //===----------------------------------------------------------------------===//
5772 // GVMaterializer implementation
5773 //===----------------------------------------------------------------------===//
5774 
5775 Error BitcodeReader::materialize(GlobalValue *GV) {
5776   Function *F = dyn_cast<Function>(GV);
5777   // If it's not a function or is already material, ignore the request.
5778   if (!F || !F->isMaterializable())
5779     return Error::success();
5780 
5781   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5782   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5783   // If its position is recorded as 0, its body is somewhere in the stream
5784   // but we haven't seen it yet.
5785   if (DFII->second == 0)
5786     if (Error Err = findFunctionInStream(F, DFII))
5787       return Err;
5788 
5789   // Materialize metadata before parsing any function bodies.
5790   if (Error Err = materializeMetadata())
5791     return Err;
5792 
5793   // Move the bit stream to the saved position of the deferred function body.
5794   Stream.JumpToBit(DFII->second);
5795 
5796   if (Error Err = parseFunctionBody(F))
5797     return Err;
5798   F->setIsMaterializable(false);
5799 
5800   if (StripDebugInfo)
5801     stripDebugInfo(*F);
5802 
5803   // Upgrade any old intrinsic calls in the function.
5804   for (auto &I : UpgradedIntrinsics) {
5805     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5806          UI != UE;) {
5807       User *U = *UI;
5808       ++UI;
5809       if (CallInst *CI = dyn_cast<CallInst>(U))
5810         UpgradeIntrinsicCall(CI, I.second);
5811     }
5812   }
5813 
5814   // Update calls to the remangled intrinsics
5815   for (auto &I : RemangledIntrinsics)
5816     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5817          UI != UE;)
5818       // Don't expect any other users than call sites
5819       CallSite(*UI++).setCalledFunction(I.second);
5820 
5821   // Finish fn->subprogram upgrade for materialized functions.
5822   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5823     F->setSubprogram(SP);
5824 
5825   // Bring in any functions that this function forward-referenced via
5826   // blockaddresses.
5827   return materializeForwardReferencedFunctions();
5828 }
5829 
5830 Error BitcodeReader::materializeModule() {
5831   if (Error Err = materializeMetadata())
5832     return Err;
5833 
5834   // Promise to materialize all forward references.
5835   WillMaterializeAllForwardRefs = true;
5836 
5837   // Iterate over the module, deserializing any functions that are still on
5838   // disk.
5839   for (Function &F : *TheModule) {
5840     if (Error Err = materialize(&F))
5841       return Err;
5842   }
5843   // At this point, if there are any function bodies, parse the rest of
5844   // the bits in the module past the last function block we have recorded
5845   // through either lazy scanning or the VST.
5846   if (LastFunctionBlockBit || NextUnreadBit)
5847     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5848                                     ? LastFunctionBlockBit
5849                                     : NextUnreadBit))
5850       return Err;
5851 
5852   // Check that all block address forward references got resolved (as we
5853   // promised above).
5854   if (!BasicBlockFwdRefs.empty())
5855     return error("Never resolved function from blockaddress");
5856 
5857   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5858   // delete the old functions to clean up. We can't do this unless the entire
5859   // module is materialized because there could always be another function body
5860   // with calls to the old function.
5861   for (auto &I : UpgradedIntrinsics) {
5862     for (auto *U : I.first->users()) {
5863       if (CallInst *CI = dyn_cast<CallInst>(U))
5864         UpgradeIntrinsicCall(CI, I.second);
5865     }
5866     if (!I.first->use_empty())
5867       I.first->replaceAllUsesWith(I.second);
5868     I.first->eraseFromParent();
5869   }
5870   UpgradedIntrinsics.clear();
5871   // Do the same for remangled intrinsics
5872   for (auto &I : RemangledIntrinsics) {
5873     I.first->replaceAllUsesWith(I.second);
5874     I.first->eraseFromParent();
5875   }
5876   RemangledIntrinsics.clear();
5877 
5878   UpgradeDebugInfo(*TheModule);
5879 
5880   UpgradeModuleFlags(*TheModule);
5881   return Error::success();
5882 }
5883 
5884 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5885   return IdentifiedStructTypes;
5886 }
5887 
5888 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5889     BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex)
5890     : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {}
5891 
5892 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5893 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5894   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5895   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5896   return VGI->second;
5897 }
5898 
5899 // Specialized value symbol table parser used when reading module index
5900 // blocks where we don't actually create global values. The parsed information
5901 // is saved in the bitcode reader for use when later parsing summaries.
5902 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5903     uint64_t Offset,
5904     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5905   assert(Offset > 0 && "Expected non-zero VST offset");
5906   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5907 
5908   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5909     return error("Invalid record");
5910 
5911   SmallVector<uint64_t, 64> Record;
5912 
5913   // Read all the records for this value table.
5914   SmallString<128> ValueName;
5915 
5916   while (true) {
5917     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5918 
5919     switch (Entry.Kind) {
5920     case BitstreamEntry::SubBlock: // Handled for us already.
5921     case BitstreamEntry::Error:
5922       return error("Malformed block");
5923     case BitstreamEntry::EndBlock:
5924       // Done parsing VST, jump back to wherever we came from.
5925       Stream.JumpToBit(CurrentBit);
5926       return Error::success();
5927     case BitstreamEntry::Record:
5928       // The interesting case.
5929       break;
5930     }
5931 
5932     // Read a record.
5933     Record.clear();
5934     switch (Stream.readRecord(Entry.ID, Record)) {
5935     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5936       break;
5937     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5938       if (convertToString(Record, 1, ValueName))
5939         return error("Invalid record");
5940       unsigned ValueID = Record[0];
5941       assert(!SourceFileName.empty());
5942       auto VLI = ValueIdToLinkageMap.find(ValueID);
5943       assert(VLI != ValueIdToLinkageMap.end() &&
5944              "No linkage found for VST entry?");
5945       auto Linkage = VLI->second;
5946       std::string GlobalId =
5947           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5948       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5949       auto OriginalNameID = ValueGUID;
5950       if (GlobalValue::isLocalLinkage(Linkage))
5951         OriginalNameID = GlobalValue::getGUID(ValueName);
5952       if (PrintSummaryGUIDs)
5953         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5954                << ValueName << "\n";
5955       ValueIdToCallGraphGUIDMap[ValueID] =
5956           std::make_pair(ValueGUID, OriginalNameID);
5957       ValueName.clear();
5958       break;
5959     }
5960     case bitc::VST_CODE_FNENTRY: {
5961       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5962       if (convertToString(Record, 2, ValueName))
5963         return error("Invalid record");
5964       unsigned ValueID = Record[0];
5965       assert(!SourceFileName.empty());
5966       auto VLI = ValueIdToLinkageMap.find(ValueID);
5967       assert(VLI != ValueIdToLinkageMap.end() &&
5968              "No linkage found for VST entry?");
5969       auto Linkage = VLI->second;
5970       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5971           ValueName, VLI->second, SourceFileName);
5972       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5973       auto OriginalNameID = FunctionGUID;
5974       if (GlobalValue::isLocalLinkage(Linkage))
5975         OriginalNameID = GlobalValue::getGUID(ValueName);
5976       if (PrintSummaryGUIDs)
5977         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5978                << ValueName << "\n";
5979       ValueIdToCallGraphGUIDMap[ValueID] =
5980           std::make_pair(FunctionGUID, OriginalNameID);
5981 
5982       ValueName.clear();
5983       break;
5984     }
5985     case bitc::VST_CODE_COMBINED_ENTRY: {
5986       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5987       unsigned ValueID = Record[0];
5988       GlobalValue::GUID RefGUID = Record[1];
5989       // The "original name", which is the second value of the pair will be
5990       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5991       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5992       break;
5993     }
5994     }
5995   }
5996 }
5997 
5998 // Parse just the blocks needed for building the index out of the module.
5999 // At the end of this routine the module Index is populated with a map
6000 // from global value id to GlobalValueSummary objects.
6001 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) {
6002   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6003     return error("Invalid record");
6004 
6005   SmallVector<uint64_t, 64> Record;
6006   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6007   unsigned ValueId = 0;
6008 
6009   // Read the index for this module.
6010   while (true) {
6011     BitstreamEntry Entry = Stream.advance();
6012 
6013     switch (Entry.Kind) {
6014     case BitstreamEntry::Error:
6015       return error("Malformed block");
6016     case BitstreamEntry::EndBlock:
6017       return Error::success();
6018 
6019     case BitstreamEntry::SubBlock:
6020       switch (Entry.ID) {
6021       default: // Skip unknown content.
6022         if (Stream.SkipBlock())
6023           return error("Invalid record");
6024         break;
6025       case bitc::BLOCKINFO_BLOCK_ID:
6026         // Need to parse these to get abbrev ids (e.g. for VST)
6027         if (readBlockInfo())
6028           return error("Malformed block");
6029         break;
6030       case bitc::VALUE_SYMTAB_BLOCK_ID:
6031         // Should have been parsed earlier via VSTOffset, unless there
6032         // is no summary section.
6033         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6034                 !SeenGlobalValSummary) &&
6035                "Expected early VST parse via VSTOffset record");
6036         if (Stream.SkipBlock())
6037           return error("Invalid record");
6038         break;
6039       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6040         assert(!SeenValueSymbolTable &&
6041                "Already read VST when parsing summary block?");
6042         // We might not have a VST if there were no values in the
6043         // summary. An empty summary block generated when we are
6044         // performing ThinLTO compiles so we don't later invoke
6045         // the regular LTO process on them.
6046         if (VSTOffset > 0) {
6047           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6048             return Err;
6049           SeenValueSymbolTable = true;
6050         }
6051         SeenGlobalValSummary = true;
6052         if (Error Err = parseEntireSummary(ModulePath))
6053           return Err;
6054         break;
6055       case bitc::MODULE_STRTAB_BLOCK_ID:
6056         if (Error Err = parseModuleStringTable())
6057           return Err;
6058         break;
6059       }
6060       continue;
6061 
6062     case BitstreamEntry::Record: {
6063         Record.clear();
6064         auto BitCode = Stream.readRecord(Entry.ID, Record);
6065         switch (BitCode) {
6066         default:
6067           break; // Default behavior, ignore unknown content.
6068         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6069         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6070           SmallString<128> ValueName;
6071           if (convertToString(Record, 0, ValueName))
6072             return error("Invalid record");
6073           SourceFileName = ValueName.c_str();
6074           break;
6075         }
6076         /// MODULE_CODE_HASH: [5*i32]
6077         case bitc::MODULE_CODE_HASH: {
6078           if (Record.size() != 5)
6079             return error("Invalid hash length " + Twine(Record.size()).str());
6080           if (TheIndex.modulePaths().empty())
6081             // We always seed the index with the module.
6082             TheIndex.addModulePath(ModulePath, 0);
6083           if (TheIndex.modulePaths().size() != 1)
6084             return error("Don't expect multiple modules defined?");
6085           auto &Hash = TheIndex.modulePaths().begin()->second.second;
6086           int Pos = 0;
6087           for (auto &Val : Record) {
6088             assert(!(Val >> 32) && "Unexpected high bits set");
6089             Hash[Pos++] = Val;
6090           }
6091           break;
6092         }
6093         /// MODULE_CODE_VSTOFFSET: [offset]
6094         case bitc::MODULE_CODE_VSTOFFSET:
6095           if (Record.size() < 1)
6096             return error("Invalid record");
6097           // Note that we subtract 1 here because the offset is relative to one
6098           // word before the start of the identification or module block, which
6099           // was historically always the start of the regular bitcode header.
6100           VSTOffset = Record[0] - 1;
6101           break;
6102         // GLOBALVAR: [pointer type, isconst, initid,
6103         //             linkage, alignment, section, visibility, threadlocal,
6104         //             unnamed_addr, externally_initialized, dllstorageclass,
6105         //             comdat]
6106         case bitc::MODULE_CODE_GLOBALVAR: {
6107           if (Record.size() < 6)
6108             return error("Invalid record");
6109           uint64_t RawLinkage = Record[3];
6110           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6111           ValueIdToLinkageMap[ValueId++] = Linkage;
6112           break;
6113         }
6114         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6115         //             alignment, section, visibility, gc, unnamed_addr,
6116         //             prologuedata, dllstorageclass, comdat, prefixdata]
6117         case bitc::MODULE_CODE_FUNCTION: {
6118           if (Record.size() < 8)
6119             return error("Invalid record");
6120           uint64_t RawLinkage = Record[3];
6121           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6122           ValueIdToLinkageMap[ValueId++] = Linkage;
6123           break;
6124         }
6125         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6126         // dllstorageclass]
6127         case bitc::MODULE_CODE_ALIAS: {
6128           if (Record.size() < 6)
6129             return error("Invalid record");
6130           uint64_t RawLinkage = Record[3];
6131           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6132           ValueIdToLinkageMap[ValueId++] = Linkage;
6133           break;
6134         }
6135         }
6136       }
6137       continue;
6138     }
6139   }
6140 }
6141 
6142 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6143 // objects in the index.
6144 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(
6145     StringRef ModulePath) {
6146   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6147     return error("Invalid record");
6148   SmallVector<uint64_t, 64> Record;
6149 
6150   // Parse version
6151   {
6152     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6153     if (Entry.Kind != BitstreamEntry::Record)
6154       return error("Invalid Summary Block: record for version expected");
6155     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6156       return error("Invalid Summary Block: version expected");
6157   }
6158   const uint64_t Version = Record[0];
6159   const bool IsOldProfileFormat = Version == 1;
6160   if (!IsOldProfileFormat && Version != 2)
6161     return error("Invalid summary version " + Twine(Version) +
6162                  ", 1 or 2 expected");
6163   Record.clear();
6164 
6165   // Keep around the last seen summary to be used when we see an optional
6166   // "OriginalName" attachement.
6167   GlobalValueSummary *LastSeenSummary = nullptr;
6168   bool Combined = false;
6169 
6170   while (true) {
6171     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6172 
6173     switch (Entry.Kind) {
6174     case BitstreamEntry::SubBlock: // Handled for us already.
6175     case BitstreamEntry::Error:
6176       return error("Malformed block");
6177     case BitstreamEntry::EndBlock:
6178       // For a per-module index, remove any entries that still have empty
6179       // summaries. The VST parsing creates entries eagerly for all symbols,
6180       // but not all have associated summaries (e.g. it doesn't know how to
6181       // distinguish between VST_CODE_ENTRY for function declarations vs global
6182       // variables with initializers that end up with a summary). Remove those
6183       // entries now so that we don't need to rely on the combined index merger
6184       // to clean them up (especially since that may not run for the first
6185       // module's index if we merge into that).
6186       if (!Combined)
6187         TheIndex.removeEmptySummaryEntries();
6188       return Error::success();
6189     case BitstreamEntry::Record:
6190       // The interesting case.
6191       break;
6192     }
6193 
6194     // Read a record. The record format depends on whether this
6195     // is a per-module index or a combined index file. In the per-module
6196     // case the records contain the associated value's ID for correlation
6197     // with VST entries. In the combined index the correlation is done
6198     // via the bitcode offset of the summary records (which were saved
6199     // in the combined index VST entries). The records also contain
6200     // information used for ThinLTO renaming and importing.
6201     Record.clear();
6202     auto BitCode = Stream.readRecord(Entry.ID, Record);
6203     switch (BitCode) {
6204     default: // Default behavior: ignore.
6205       break;
6206     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6207     //                n x (valueid)]
6208     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6209     //                        numrefs x valueid,
6210     //                        n x (valueid, hotness)]
6211     case bitc::FS_PERMODULE:
6212     case bitc::FS_PERMODULE_PROFILE: {
6213       unsigned ValueID = Record[0];
6214       uint64_t RawFlags = Record[1];
6215       unsigned InstCount = Record[2];
6216       unsigned NumRefs = Record[3];
6217       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6218       std::unique_ptr<FunctionSummary> FS =
6219           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6220       // The module path string ref set in the summary must be owned by the
6221       // index's module string table. Since we don't have a module path
6222       // string table section in the per-module index, we create a single
6223       // module path string table entry with an empty (0) ID to take
6224       // ownership.
6225       FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first());
6226       static int RefListStartIndex = 4;
6227       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6228       assert(Record.size() >= RefListStartIndex + NumRefs &&
6229              "Record size inconsistent with number of references");
6230       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6231         unsigned RefValueId = Record[I];
6232         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6233         FS->addRefEdge(RefGUID);
6234       }
6235       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6236       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6237            ++I) {
6238         CalleeInfo::HotnessType Hotness;
6239         GlobalValue::GUID CalleeGUID;
6240         std::tie(CalleeGUID, Hotness) =
6241             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6242         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6243       }
6244       auto GUID = getGUIDFromValueId(ValueID);
6245       FS->setOriginalName(GUID.second);
6246       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6247       break;
6248     }
6249     // FS_ALIAS: [valueid, flags, valueid]
6250     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6251     // they expect all aliasee summaries to be available.
6252     case bitc::FS_ALIAS: {
6253       unsigned ValueID = Record[0];
6254       uint64_t RawFlags = Record[1];
6255       unsigned AliaseeID = Record[2];
6256       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6257       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6258       // The module path string ref set in the summary must be owned by the
6259       // index's module string table. Since we don't have a module path
6260       // string table section in the per-module index, we create a single
6261       // module path string table entry with an empty (0) ID to take
6262       // ownership.
6263       AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first());
6264 
6265       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6266       auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID);
6267       if (!AliaseeSummary)
6268         return error("Alias expects aliasee summary to be parsed");
6269       AS->setAliasee(AliaseeSummary);
6270 
6271       auto GUID = getGUIDFromValueId(ValueID);
6272       AS->setOriginalName(GUID.second);
6273       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6274       break;
6275     }
6276     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6277     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6278       unsigned ValueID = Record[0];
6279       uint64_t RawFlags = Record[1];
6280       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6281       std::unique_ptr<GlobalVarSummary> FS =
6282           llvm::make_unique<GlobalVarSummary>(Flags);
6283       FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first());
6284       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6285         unsigned RefValueId = Record[I];
6286         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6287         FS->addRefEdge(RefGUID);
6288       }
6289       auto GUID = getGUIDFromValueId(ValueID);
6290       FS->setOriginalName(GUID.second);
6291       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6292       break;
6293     }
6294     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6295     //               numrefs x valueid, n x (valueid)]
6296     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6297     //                       numrefs x valueid, n x (valueid, hotness)]
6298     case bitc::FS_COMBINED:
6299     case bitc::FS_COMBINED_PROFILE: {
6300       unsigned ValueID = Record[0];
6301       uint64_t ModuleId = Record[1];
6302       uint64_t RawFlags = Record[2];
6303       unsigned InstCount = Record[3];
6304       unsigned NumRefs = Record[4];
6305       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6306       std::unique_ptr<FunctionSummary> FS =
6307           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6308       LastSeenSummary = FS.get();
6309       FS->setModulePath(ModuleIdMap[ModuleId]);
6310       static int RefListStartIndex = 5;
6311       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6312       assert(Record.size() >= RefListStartIndex + NumRefs &&
6313              "Record size inconsistent with number of references");
6314       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6315            ++I) {
6316         unsigned RefValueId = Record[I];
6317         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6318         FS->addRefEdge(RefGUID);
6319       }
6320       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6321       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6322            ++I) {
6323         CalleeInfo::HotnessType Hotness;
6324         GlobalValue::GUID CalleeGUID;
6325         std::tie(CalleeGUID, Hotness) =
6326             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6327         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6328       }
6329       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6330       TheIndex.addGlobalValueSummary(GUID, std::move(FS));
6331       Combined = true;
6332       break;
6333     }
6334     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6335     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6336     // they expect all aliasee summaries to be available.
6337     case bitc::FS_COMBINED_ALIAS: {
6338       unsigned ValueID = Record[0];
6339       uint64_t ModuleId = Record[1];
6340       uint64_t RawFlags = Record[2];
6341       unsigned AliaseeValueId = Record[3];
6342       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6343       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6344       LastSeenSummary = AS.get();
6345       AS->setModulePath(ModuleIdMap[ModuleId]);
6346 
6347       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6348       auto AliaseeInModule =
6349           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
6350       if (!AliaseeInModule)
6351         return error("Alias expects aliasee summary to be parsed");
6352       AS->setAliasee(AliaseeInModule);
6353 
6354       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6355       TheIndex.addGlobalValueSummary(GUID, std::move(AS));
6356       Combined = true;
6357       break;
6358     }
6359     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6360     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6361       unsigned ValueID = Record[0];
6362       uint64_t ModuleId = Record[1];
6363       uint64_t RawFlags = Record[2];
6364       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6365       std::unique_ptr<GlobalVarSummary> FS =
6366           llvm::make_unique<GlobalVarSummary>(Flags);
6367       LastSeenSummary = FS.get();
6368       FS->setModulePath(ModuleIdMap[ModuleId]);
6369       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6370         unsigned RefValueId = Record[I];
6371         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6372         FS->addRefEdge(RefGUID);
6373       }
6374       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6375       TheIndex.addGlobalValueSummary(GUID, std::move(FS));
6376       Combined = true;
6377       break;
6378     }
6379     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6380     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6381       uint64_t OriginalName = Record[0];
6382       if (!LastSeenSummary)
6383         return error("Name attachment that does not follow a combined record");
6384       LastSeenSummary->setOriginalName(OriginalName);
6385       // Reset the LastSeenSummary
6386       LastSeenSummary = nullptr;
6387     }
6388     }
6389   }
6390   llvm_unreachable("Exit infinite loop");
6391 }
6392 
6393 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
6394 ModuleSummaryIndexBitcodeReader::readCallGraphEdge(
6395     const SmallVector<uint64_t, 64> &Record, unsigned int &I,
6396     const bool IsOldProfileFormat, const bool HasProfile) {
6397 
6398   auto Hotness = CalleeInfo::HotnessType::Unknown;
6399   unsigned CalleeValueId = Record[I];
6400   GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6401   if (IsOldProfileFormat) {
6402     I += 1; // Skip old callsitecount field
6403     if (HasProfile)
6404       I += 1; // Skip old profilecount field
6405   } else if (HasProfile)
6406     Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6407   return {CalleeGUID, Hotness};
6408 }
6409 
6410 // Parse the  module string table block into the Index.
6411 // This populates the ModulePathStringTable map in the index.
6412 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6413   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6414     return error("Invalid record");
6415 
6416   SmallVector<uint64_t, 64> Record;
6417 
6418   SmallString<128> ModulePath;
6419   ModulePathStringTableTy::iterator LastSeenModulePath;
6420 
6421   while (true) {
6422     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6423 
6424     switch (Entry.Kind) {
6425     case BitstreamEntry::SubBlock: // Handled for us already.
6426     case BitstreamEntry::Error:
6427       return error("Malformed block");
6428     case BitstreamEntry::EndBlock:
6429       return Error::success();
6430     case BitstreamEntry::Record:
6431       // The interesting case.
6432       break;
6433     }
6434 
6435     Record.clear();
6436     switch (Stream.readRecord(Entry.ID, Record)) {
6437     default: // Default behavior: ignore.
6438       break;
6439     case bitc::MST_CODE_ENTRY: {
6440       // MST_ENTRY: [modid, namechar x N]
6441       uint64_t ModuleId = Record[0];
6442 
6443       if (convertToString(Record, 1, ModulePath))
6444         return error("Invalid record");
6445 
6446       LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId);
6447       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6448 
6449       ModulePath.clear();
6450       break;
6451     }
6452     /// MST_CODE_HASH: [5*i32]
6453     case bitc::MST_CODE_HASH: {
6454       if (Record.size() != 5)
6455         return error("Invalid hash length " + Twine(Record.size()).str());
6456       if (LastSeenModulePath == TheIndex.modulePaths().end())
6457         return error("Invalid hash that does not follow a module path");
6458       int Pos = 0;
6459       for (auto &Val : Record) {
6460         assert(!(Val >> 32) && "Unexpected high bits set");
6461         LastSeenModulePath->second.second[Pos++] = Val;
6462       }
6463       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6464       LastSeenModulePath = TheIndex.modulePaths().end();
6465       break;
6466     }
6467     }
6468   }
6469   llvm_unreachable("Exit infinite loop");
6470 }
6471 
6472 namespace {
6473 
6474 // FIXME: This class is only here to support the transition to llvm::Error. It
6475 // will be removed once this transition is complete. Clients should prefer to
6476 // deal with the Error value directly, rather than converting to error_code.
6477 class BitcodeErrorCategoryType : public std::error_category {
6478   const char *name() const noexcept override {
6479     return "llvm.bitcode";
6480   }
6481   std::string message(int IE) const override {
6482     BitcodeError E = static_cast<BitcodeError>(IE);
6483     switch (E) {
6484     case BitcodeError::CorruptedBitcode:
6485       return "Corrupted bitcode";
6486     }
6487     llvm_unreachable("Unknown error type!");
6488   }
6489 };
6490 
6491 } // end anonymous namespace
6492 
6493 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6494 
6495 const std::error_category &llvm::BitcodeErrorCategory() {
6496   return *ErrorCategory;
6497 }
6498 
6499 //===----------------------------------------------------------------------===//
6500 // External interface
6501 //===----------------------------------------------------------------------===//
6502 
6503 Expected<std::vector<BitcodeModule>>
6504 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6505   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6506   if (!StreamOrErr)
6507     return StreamOrErr.takeError();
6508   BitstreamCursor &Stream = *StreamOrErr;
6509 
6510   std::vector<BitcodeModule> Modules;
6511   while (true) {
6512     uint64_t BCBegin = Stream.getCurrentByteNo();
6513 
6514     // We may be consuming bitcode from a client that leaves garbage at the end
6515     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6516     // the end that there cannot possibly be another module, stop looking.
6517     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6518       return Modules;
6519 
6520     BitstreamEntry Entry = Stream.advance();
6521     switch (Entry.Kind) {
6522     case BitstreamEntry::EndBlock:
6523     case BitstreamEntry::Error:
6524       return error("Malformed block");
6525 
6526     case BitstreamEntry::SubBlock: {
6527       uint64_t IdentificationBit = -1ull;
6528       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6529         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6530         if (Stream.SkipBlock())
6531           return error("Malformed block");
6532 
6533         Entry = Stream.advance();
6534         if (Entry.Kind != BitstreamEntry::SubBlock ||
6535             Entry.ID != bitc::MODULE_BLOCK_ID)
6536           return error("Malformed block");
6537       }
6538 
6539       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6540         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6541         if (Stream.SkipBlock())
6542           return error("Malformed block");
6543 
6544         Modules.push_back({Stream.getBitcodeBytes().slice(
6545                                BCBegin, Stream.getCurrentByteNo() - BCBegin),
6546                            Buffer.getBufferIdentifier(), IdentificationBit,
6547                            ModuleBit});
6548         continue;
6549       }
6550 
6551       if (Stream.SkipBlock())
6552         return error("Malformed block");
6553       continue;
6554     }
6555     case BitstreamEntry::Record:
6556       Stream.skipRecord(Entry.ID);
6557       continue;
6558     }
6559   }
6560 }
6561 
6562 /// \brief Get a lazy one-at-time loading module from bitcode.
6563 ///
6564 /// This isn't always used in a lazy context.  In particular, it's also used by
6565 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6566 /// in forward-referenced functions from block address references.
6567 ///
6568 /// \param[in] MaterializeAll Set to \c true if we should materialize
6569 /// everything.
6570 Expected<std::unique_ptr<Module>>
6571 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6572                              bool ShouldLazyLoadMetadata) {
6573   BitstreamCursor Stream(Buffer);
6574 
6575   std::string ProducerIdentification;
6576   if (IdentificationBit != -1ull) {
6577     Stream.JumpToBit(IdentificationBit);
6578     Expected<std::string> ProducerIdentificationOrErr =
6579         readIdentificationBlock(Stream);
6580     if (!ProducerIdentificationOrErr)
6581       return ProducerIdentificationOrErr.takeError();
6582 
6583     ProducerIdentification = *ProducerIdentificationOrErr;
6584   }
6585 
6586   Stream.JumpToBit(ModuleBit);
6587   auto *R =
6588       new BitcodeReader(std::move(Stream), ProducerIdentification, Context);
6589 
6590   std::unique_ptr<Module> M =
6591       llvm::make_unique<Module>(ModuleIdentifier, Context);
6592   M->setMaterializer(R);
6593 
6594   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6595   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata))
6596     return std::move(Err);
6597 
6598   if (MaterializeAll) {
6599     // Read in the entire module, and destroy the BitcodeReader.
6600     if (Error Err = M->materializeAll())
6601       return std::move(Err);
6602   } else {
6603     // Resolve forward references from blockaddresses.
6604     if (Error Err = R->materializeForwardReferencedFunctions())
6605       return std::move(Err);
6606   }
6607   return std::move(M);
6608 }
6609 
6610 Expected<std::unique_ptr<Module>>
6611 BitcodeModule::getLazyModule(LLVMContext &Context,
6612                              bool ShouldLazyLoadMetadata) {
6613   return getModuleImpl(Context, false, ShouldLazyLoadMetadata);
6614 }
6615 
6616 // Parse the specified bitcode buffer, returning the function info index.
6617 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6618   BitstreamCursor Stream(Buffer);
6619   Stream.JumpToBit(ModuleBit);
6620 
6621   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6622   ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index);
6623 
6624   if (Error Err = R.parseModule(ModuleIdentifier))
6625     return std::move(Err);
6626 
6627   return std::move(Index);
6628 }
6629 
6630 // Check if the given bitcode buffer contains a global value summary block.
6631 Expected<bool> BitcodeModule::hasSummary() {
6632   BitstreamCursor Stream(Buffer);
6633   Stream.JumpToBit(ModuleBit);
6634 
6635   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6636     return error("Invalid record");
6637 
6638   while (true) {
6639     BitstreamEntry Entry = Stream.advance();
6640 
6641     switch (Entry.Kind) {
6642     case BitstreamEntry::Error:
6643       return error("Malformed block");
6644     case BitstreamEntry::EndBlock:
6645       return false;
6646 
6647     case BitstreamEntry::SubBlock:
6648       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
6649         return true;
6650 
6651       // Ignore other sub-blocks.
6652       if (Stream.SkipBlock())
6653         return error("Malformed block");
6654       continue;
6655 
6656     case BitstreamEntry::Record:
6657       Stream.skipRecord(Entry.ID);
6658       continue;
6659     }
6660   }
6661 }
6662 
6663 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6664   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6665   if (!MsOrErr)
6666     return MsOrErr.takeError();
6667 
6668   if (MsOrErr->size() != 1)
6669     return error("Expected a single module");
6670 
6671   return (*MsOrErr)[0];
6672 }
6673 
6674 Expected<std::unique_ptr<Module>>
6675 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer,
6676                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6677   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6678   if (!BM)
6679     return BM.takeError();
6680 
6681   return BM->getLazyModule(Context, ShouldLazyLoadMetadata);
6682 }
6683 
6684 Expected<std::unique_ptr<Module>>
6685 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6686                                  LLVMContext &Context,
6687                                  bool ShouldLazyLoadMetadata) {
6688   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata);
6689   if (MOrErr)
6690     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6691   return MOrErr;
6692 }
6693 
6694 Expected<std::unique_ptr<Module>>
6695 BitcodeModule::parseModule(LLVMContext &Context) {
6696   return getModuleImpl(Context, true, false);
6697   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6698   // written.  We must defer until the Module has been fully materialized.
6699 }
6700 
6701 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6702                                                          LLVMContext &Context) {
6703   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6704   if (!BM)
6705     return BM.takeError();
6706 
6707   return BM->parseModule(Context);
6708 }
6709 
6710 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6711   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6712   if (!StreamOrErr)
6713     return StreamOrErr.takeError();
6714 
6715   return readTriple(*StreamOrErr);
6716 }
6717 
6718 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6719   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6720   if (!StreamOrErr)
6721     return StreamOrErr.takeError();
6722 
6723   return hasObjCCategory(*StreamOrErr);
6724 }
6725 
6726 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6727   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6728   if (!StreamOrErr)
6729     return StreamOrErr.takeError();
6730 
6731   return readIdentificationCode(*StreamOrErr);
6732 }
6733 
6734 Expected<std::unique_ptr<ModuleSummaryIndex>>
6735 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6736   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6737   if (!BM)
6738     return BM.takeError();
6739 
6740   return BM->getSummary();
6741 }
6742 
6743 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) {
6744   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6745   if (!BM)
6746     return BM.takeError();
6747 
6748   return BM->hasSummary();
6749 }
6750