1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 30 using namespace llvm; 31 32 enum { 33 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 34 }; 35 36 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 37 if (WillMaterializeAllForwardRefs) 38 return std::error_code(); 39 40 // Prevent recursion. 41 WillMaterializeAllForwardRefs = true; 42 43 while (!BasicBlockFwdRefQueue.empty()) { 44 Function *F = BasicBlockFwdRefQueue.front(); 45 BasicBlockFwdRefQueue.pop_front(); 46 assert(F && "Expected valid function"); 47 if (!BasicBlockFwdRefs.count(F)) 48 // Already materialized. 49 continue; 50 51 // Check for a function that isn't materializable to prevent an infinite 52 // loop. When parsing a blockaddress stored in a global variable, there 53 // isn't a trivial way to check if a function will have a body without a 54 // linear search through FunctionsWithBodies, so just check it here. 55 if (!F->isMaterializable()) 56 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 57 58 // Try to materialize F. 59 if (std::error_code EC = materialize(F)) 60 return EC; 61 } 62 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 63 64 // Reset state. 65 WillMaterializeAllForwardRefs = false; 66 return std::error_code(); 67 } 68 69 void BitcodeReader::FreeState() { 70 Buffer = nullptr; 71 std::vector<Type*>().swap(TypeList); 72 ValueList.clear(); 73 MDValueList.clear(); 74 std::vector<Comdat *>().swap(ComdatList); 75 76 std::vector<AttributeSet>().swap(MAttributes); 77 std::vector<BasicBlock*>().swap(FunctionBBs); 78 std::vector<Function*>().swap(FunctionsWithBodies); 79 DeferredFunctionInfo.clear(); 80 MDKindMap.clear(); 81 82 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 83 BasicBlockFwdRefQueue.clear(); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Helper functions to implement forward reference resolution, etc. 88 //===----------------------------------------------------------------------===// 89 90 /// ConvertToString - Convert a string from a record into an std::string, return 91 /// true on failure. 92 template<typename StrTy> 93 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 94 StrTy &Result) { 95 if (Idx > Record.size()) 96 return true; 97 98 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 99 Result += (char)Record[i]; 100 return false; 101 } 102 103 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 104 switch (Val) { 105 default: // Map unknown/new linkages to external 106 case 0: 107 return GlobalValue::ExternalLinkage; 108 case 1: 109 return GlobalValue::WeakAnyLinkage; 110 case 2: 111 return GlobalValue::AppendingLinkage; 112 case 3: 113 return GlobalValue::InternalLinkage; 114 case 4: 115 return GlobalValue::LinkOnceAnyLinkage; 116 case 5: 117 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 118 case 6: 119 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 120 case 7: 121 return GlobalValue::ExternalWeakLinkage; 122 case 8: 123 return GlobalValue::CommonLinkage; 124 case 9: 125 return GlobalValue::PrivateLinkage; 126 case 10: 127 return GlobalValue::WeakODRLinkage; 128 case 11: 129 return GlobalValue::LinkOnceODRLinkage; 130 case 12: 131 return GlobalValue::AvailableExternallyLinkage; 132 case 13: 133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 134 case 14: 135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 136 case 15: 137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 138 } 139 } 140 141 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 142 switch (Val) { 143 default: // Map unknown visibilities to default. 144 case 0: return GlobalValue::DefaultVisibility; 145 case 1: return GlobalValue::HiddenVisibility; 146 case 2: return GlobalValue::ProtectedVisibility; 147 } 148 } 149 150 static GlobalValue::DLLStorageClassTypes 151 GetDecodedDLLStorageClass(unsigned Val) { 152 switch (Val) { 153 default: // Map unknown values to default. 154 case 0: return GlobalValue::DefaultStorageClass; 155 case 1: return GlobalValue::DLLImportStorageClass; 156 case 2: return GlobalValue::DLLExportStorageClass; 157 } 158 } 159 160 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 161 switch (Val) { 162 case 0: return GlobalVariable::NotThreadLocal; 163 default: // Map unknown non-zero value to general dynamic. 164 case 1: return GlobalVariable::GeneralDynamicTLSModel; 165 case 2: return GlobalVariable::LocalDynamicTLSModel; 166 case 3: return GlobalVariable::InitialExecTLSModel; 167 case 4: return GlobalVariable::LocalExecTLSModel; 168 } 169 } 170 171 static int GetDecodedCastOpcode(unsigned Val) { 172 switch (Val) { 173 default: return -1; 174 case bitc::CAST_TRUNC : return Instruction::Trunc; 175 case bitc::CAST_ZEXT : return Instruction::ZExt; 176 case bitc::CAST_SEXT : return Instruction::SExt; 177 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 178 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 179 case bitc::CAST_UITOFP : return Instruction::UIToFP; 180 case bitc::CAST_SITOFP : return Instruction::SIToFP; 181 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 182 case bitc::CAST_FPEXT : return Instruction::FPExt; 183 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 184 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 185 case bitc::CAST_BITCAST : return Instruction::BitCast; 186 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 187 } 188 } 189 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 190 switch (Val) { 191 default: return -1; 192 case bitc::BINOP_ADD: 193 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 194 case bitc::BINOP_SUB: 195 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 196 case bitc::BINOP_MUL: 197 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 198 case bitc::BINOP_UDIV: return Instruction::UDiv; 199 case bitc::BINOP_SDIV: 200 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 201 case bitc::BINOP_UREM: return Instruction::URem; 202 case bitc::BINOP_SREM: 203 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 204 case bitc::BINOP_SHL: return Instruction::Shl; 205 case bitc::BINOP_LSHR: return Instruction::LShr; 206 case bitc::BINOP_ASHR: return Instruction::AShr; 207 case bitc::BINOP_AND: return Instruction::And; 208 case bitc::BINOP_OR: return Instruction::Or; 209 case bitc::BINOP_XOR: return Instruction::Xor; 210 } 211 } 212 213 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 214 switch (Val) { 215 default: return AtomicRMWInst::BAD_BINOP; 216 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 217 case bitc::RMW_ADD: return AtomicRMWInst::Add; 218 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 219 case bitc::RMW_AND: return AtomicRMWInst::And; 220 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 221 case bitc::RMW_OR: return AtomicRMWInst::Or; 222 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 223 case bitc::RMW_MAX: return AtomicRMWInst::Max; 224 case bitc::RMW_MIN: return AtomicRMWInst::Min; 225 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 226 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 227 } 228 } 229 230 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 231 switch (Val) { 232 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 233 case bitc::ORDERING_UNORDERED: return Unordered; 234 case bitc::ORDERING_MONOTONIC: return Monotonic; 235 case bitc::ORDERING_ACQUIRE: return Acquire; 236 case bitc::ORDERING_RELEASE: return Release; 237 case bitc::ORDERING_ACQREL: return AcquireRelease; 238 default: // Map unknown orderings to sequentially-consistent. 239 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 240 } 241 } 242 243 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 244 switch (Val) { 245 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 246 default: // Map unknown scopes to cross-thread. 247 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 248 } 249 } 250 251 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 252 switch (Val) { 253 default: // Map unknown selection kinds to any. 254 case bitc::COMDAT_SELECTION_KIND_ANY: 255 return Comdat::Any; 256 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 257 return Comdat::ExactMatch; 258 case bitc::COMDAT_SELECTION_KIND_LARGEST: 259 return Comdat::Largest; 260 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 261 return Comdat::NoDuplicates; 262 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 263 return Comdat::SameSize; 264 } 265 } 266 267 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 268 switch (Val) { 269 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 270 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 271 } 272 } 273 274 namespace llvm { 275 namespace { 276 /// @brief A class for maintaining the slot number definition 277 /// as a placeholder for the actual definition for forward constants defs. 278 class ConstantPlaceHolder : public ConstantExpr { 279 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 280 public: 281 // allocate space for exactly one operand 282 void *operator new(size_t s) { 283 return User::operator new(s, 1); 284 } 285 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 286 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 287 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 288 } 289 290 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 291 static bool classof(const Value *V) { 292 return isa<ConstantExpr>(V) && 293 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 294 } 295 296 297 /// Provide fast operand accessors 298 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 299 }; 300 } 301 302 // FIXME: can we inherit this from ConstantExpr? 303 template <> 304 struct OperandTraits<ConstantPlaceHolder> : 305 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 306 }; 307 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 308 } 309 310 311 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 312 if (Idx == size()) { 313 push_back(V); 314 return; 315 } 316 317 if (Idx >= size()) 318 resize(Idx+1); 319 320 WeakVH &OldV = ValuePtrs[Idx]; 321 if (!OldV) { 322 OldV = V; 323 return; 324 } 325 326 // Handle constants and non-constants (e.g. instrs) differently for 327 // efficiency. 328 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 329 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 330 OldV = V; 331 } else { 332 // If there was a forward reference to this value, replace it. 333 Value *PrevVal = OldV; 334 OldV->replaceAllUsesWith(V); 335 delete PrevVal; 336 } 337 } 338 339 340 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 341 Type *Ty) { 342 if (Idx >= size()) 343 resize(Idx + 1); 344 345 if (Value *V = ValuePtrs[Idx]) { 346 assert(Ty == V->getType() && "Type mismatch in constant table!"); 347 return cast<Constant>(V); 348 } 349 350 // Create and return a placeholder, which will later be RAUW'd. 351 Constant *C = new ConstantPlaceHolder(Ty, Context); 352 ValuePtrs[Idx] = C; 353 return C; 354 } 355 356 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 357 if (Idx >= size()) 358 resize(Idx + 1); 359 360 if (Value *V = ValuePtrs[Idx]) { 361 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 362 return V; 363 } 364 365 // No type specified, must be invalid reference. 366 if (!Ty) return nullptr; 367 368 // Create and return a placeholder, which will later be RAUW'd. 369 Value *V = new Argument(Ty); 370 ValuePtrs[Idx] = V; 371 return V; 372 } 373 374 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 375 /// resolves any forward references. The idea behind this is that we sometimes 376 /// get constants (such as large arrays) which reference *many* forward ref 377 /// constants. Replacing each of these causes a lot of thrashing when 378 /// building/reuniquing the constant. Instead of doing this, we look at all the 379 /// uses and rewrite all the place holders at once for any constant that uses 380 /// a placeholder. 381 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 382 // Sort the values by-pointer so that they are efficient to look up with a 383 // binary search. 384 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 385 386 SmallVector<Constant*, 64> NewOps; 387 388 while (!ResolveConstants.empty()) { 389 Value *RealVal = operator[](ResolveConstants.back().second); 390 Constant *Placeholder = ResolveConstants.back().first; 391 ResolveConstants.pop_back(); 392 393 // Loop over all users of the placeholder, updating them to reference the 394 // new value. If they reference more than one placeholder, update them all 395 // at once. 396 while (!Placeholder->use_empty()) { 397 auto UI = Placeholder->user_begin(); 398 User *U = *UI; 399 400 // If the using object isn't uniqued, just update the operands. This 401 // handles instructions and initializers for global variables. 402 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 403 UI.getUse().set(RealVal); 404 continue; 405 } 406 407 // Otherwise, we have a constant that uses the placeholder. Replace that 408 // constant with a new constant that has *all* placeholder uses updated. 409 Constant *UserC = cast<Constant>(U); 410 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 411 I != E; ++I) { 412 Value *NewOp; 413 if (!isa<ConstantPlaceHolder>(*I)) { 414 // Not a placeholder reference. 415 NewOp = *I; 416 } else if (*I == Placeholder) { 417 // Common case is that it just references this one placeholder. 418 NewOp = RealVal; 419 } else { 420 // Otherwise, look up the placeholder in ResolveConstants. 421 ResolveConstantsTy::iterator It = 422 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 423 std::pair<Constant*, unsigned>(cast<Constant>(*I), 424 0)); 425 assert(It != ResolveConstants.end() && It->first == *I); 426 NewOp = operator[](It->second); 427 } 428 429 NewOps.push_back(cast<Constant>(NewOp)); 430 } 431 432 // Make the new constant. 433 Constant *NewC; 434 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 435 NewC = ConstantArray::get(UserCA->getType(), NewOps); 436 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 437 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 438 } else if (isa<ConstantVector>(UserC)) { 439 NewC = ConstantVector::get(NewOps); 440 } else { 441 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 442 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 443 } 444 445 UserC->replaceAllUsesWith(NewC); 446 UserC->destroyConstant(); 447 NewOps.clear(); 448 } 449 450 // Update all ValueHandles, they should be the only users at this point. 451 Placeholder->replaceAllUsesWith(RealVal); 452 delete Placeholder; 453 } 454 } 455 456 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 457 if (Idx == size()) { 458 push_back(MD); 459 return; 460 } 461 462 if (Idx >= size()) 463 resize(Idx+1); 464 465 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 466 if (!OldMD) { 467 OldMD.reset(MD); 468 return; 469 } 470 471 // If there was a forward reference to this value, replace it. 472 MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get()); 473 PrevMD->replaceAllUsesWith(MD); 474 MDNode::deleteTemporary(PrevMD); 475 --NumFwdRefs; 476 } 477 478 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 479 if (Idx >= size()) 480 resize(Idx + 1); 481 482 if (Metadata *MD = MDValuePtrs[Idx]) 483 return MD; 484 485 // Create and return a placeholder, which will later be RAUW'd. 486 AnyFwdRefs = true; 487 ++NumFwdRefs; 488 Metadata *MD = MDNode::getTemporary(Context, None); 489 MDValuePtrs[Idx].reset(MD); 490 return MD; 491 } 492 493 void BitcodeReaderMDValueList::tryToResolveCycles() { 494 if (!AnyFwdRefs) 495 // Nothing to do. 496 return; 497 498 if (NumFwdRefs) 499 // Still forward references... can't resolve cycles. 500 return; 501 502 // Resolve any cycles. 503 for (auto &MD : MDValuePtrs) { 504 assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference"); 505 if (auto *G = dyn_cast_or_null<GenericMDNode>(MD)) 506 G->resolveCycles(); 507 } 508 } 509 510 Type *BitcodeReader::getTypeByID(unsigned ID) { 511 // The type table size is always specified correctly. 512 if (ID >= TypeList.size()) 513 return nullptr; 514 515 if (Type *Ty = TypeList[ID]) 516 return Ty; 517 518 // If we have a forward reference, the only possible case is when it is to a 519 // named struct. Just create a placeholder for now. 520 return TypeList[ID] = createIdentifiedStructType(Context); 521 } 522 523 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 524 StringRef Name) { 525 auto *Ret = StructType::create(Context, Name); 526 IdentifiedStructTypes.push_back(Ret); 527 return Ret; 528 } 529 530 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 531 auto *Ret = StructType::create(Context); 532 IdentifiedStructTypes.push_back(Ret); 533 return Ret; 534 } 535 536 537 //===----------------------------------------------------------------------===// 538 // Functions for parsing blocks from the bitcode file 539 //===----------------------------------------------------------------------===// 540 541 542 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 543 /// been decoded from the given integer. This function must stay in sync with 544 /// 'encodeLLVMAttributesForBitcode'. 545 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 546 uint64_t EncodedAttrs) { 547 // FIXME: Remove in 4.0. 548 549 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 550 // the bits above 31 down by 11 bits. 551 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 552 assert((!Alignment || isPowerOf2_32(Alignment)) && 553 "Alignment must be a power of two."); 554 555 if (Alignment) 556 B.addAlignmentAttr(Alignment); 557 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 558 (EncodedAttrs & 0xffff)); 559 } 560 561 std::error_code BitcodeReader::ParseAttributeBlock() { 562 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 563 return Error(BitcodeError::InvalidRecord); 564 565 if (!MAttributes.empty()) 566 return Error(BitcodeError::InvalidMultipleBlocks); 567 568 SmallVector<uint64_t, 64> Record; 569 570 SmallVector<AttributeSet, 8> Attrs; 571 572 // Read all the records. 573 while (1) { 574 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 575 576 switch (Entry.Kind) { 577 case BitstreamEntry::SubBlock: // Handled for us already. 578 case BitstreamEntry::Error: 579 return Error(BitcodeError::MalformedBlock); 580 case BitstreamEntry::EndBlock: 581 return std::error_code(); 582 case BitstreamEntry::Record: 583 // The interesting case. 584 break; 585 } 586 587 // Read a record. 588 Record.clear(); 589 switch (Stream.readRecord(Entry.ID, Record)) { 590 default: // Default behavior: ignore. 591 break; 592 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 593 // FIXME: Remove in 4.0. 594 if (Record.size() & 1) 595 return Error(BitcodeError::InvalidRecord); 596 597 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 598 AttrBuilder B; 599 decodeLLVMAttributesForBitcode(B, Record[i+1]); 600 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 601 } 602 603 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 604 Attrs.clear(); 605 break; 606 } 607 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 608 for (unsigned i = 0, e = Record.size(); i != e; ++i) 609 Attrs.push_back(MAttributeGroups[Record[i]]); 610 611 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 612 Attrs.clear(); 613 break; 614 } 615 } 616 } 617 } 618 619 // Returns Attribute::None on unrecognized codes. 620 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 621 switch (Code) { 622 default: 623 return Attribute::None; 624 case bitc::ATTR_KIND_ALIGNMENT: 625 return Attribute::Alignment; 626 case bitc::ATTR_KIND_ALWAYS_INLINE: 627 return Attribute::AlwaysInline; 628 case bitc::ATTR_KIND_BUILTIN: 629 return Attribute::Builtin; 630 case bitc::ATTR_KIND_BY_VAL: 631 return Attribute::ByVal; 632 case bitc::ATTR_KIND_IN_ALLOCA: 633 return Attribute::InAlloca; 634 case bitc::ATTR_KIND_COLD: 635 return Attribute::Cold; 636 case bitc::ATTR_KIND_INLINE_HINT: 637 return Attribute::InlineHint; 638 case bitc::ATTR_KIND_IN_REG: 639 return Attribute::InReg; 640 case bitc::ATTR_KIND_JUMP_TABLE: 641 return Attribute::JumpTable; 642 case bitc::ATTR_KIND_MIN_SIZE: 643 return Attribute::MinSize; 644 case bitc::ATTR_KIND_NAKED: 645 return Attribute::Naked; 646 case bitc::ATTR_KIND_NEST: 647 return Attribute::Nest; 648 case bitc::ATTR_KIND_NO_ALIAS: 649 return Attribute::NoAlias; 650 case bitc::ATTR_KIND_NO_BUILTIN: 651 return Attribute::NoBuiltin; 652 case bitc::ATTR_KIND_NO_CAPTURE: 653 return Attribute::NoCapture; 654 case bitc::ATTR_KIND_NO_DUPLICATE: 655 return Attribute::NoDuplicate; 656 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 657 return Attribute::NoImplicitFloat; 658 case bitc::ATTR_KIND_NO_INLINE: 659 return Attribute::NoInline; 660 case bitc::ATTR_KIND_NON_LAZY_BIND: 661 return Attribute::NonLazyBind; 662 case bitc::ATTR_KIND_NON_NULL: 663 return Attribute::NonNull; 664 case bitc::ATTR_KIND_DEREFERENCEABLE: 665 return Attribute::Dereferenceable; 666 case bitc::ATTR_KIND_NO_RED_ZONE: 667 return Attribute::NoRedZone; 668 case bitc::ATTR_KIND_NO_RETURN: 669 return Attribute::NoReturn; 670 case bitc::ATTR_KIND_NO_UNWIND: 671 return Attribute::NoUnwind; 672 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 673 return Attribute::OptimizeForSize; 674 case bitc::ATTR_KIND_OPTIMIZE_NONE: 675 return Attribute::OptimizeNone; 676 case bitc::ATTR_KIND_READ_NONE: 677 return Attribute::ReadNone; 678 case bitc::ATTR_KIND_READ_ONLY: 679 return Attribute::ReadOnly; 680 case bitc::ATTR_KIND_RETURNED: 681 return Attribute::Returned; 682 case bitc::ATTR_KIND_RETURNS_TWICE: 683 return Attribute::ReturnsTwice; 684 case bitc::ATTR_KIND_S_EXT: 685 return Attribute::SExt; 686 case bitc::ATTR_KIND_STACK_ALIGNMENT: 687 return Attribute::StackAlignment; 688 case bitc::ATTR_KIND_STACK_PROTECT: 689 return Attribute::StackProtect; 690 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 691 return Attribute::StackProtectReq; 692 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 693 return Attribute::StackProtectStrong; 694 case bitc::ATTR_KIND_STRUCT_RET: 695 return Attribute::StructRet; 696 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 697 return Attribute::SanitizeAddress; 698 case bitc::ATTR_KIND_SANITIZE_THREAD: 699 return Attribute::SanitizeThread; 700 case bitc::ATTR_KIND_SANITIZE_MEMORY: 701 return Attribute::SanitizeMemory; 702 case bitc::ATTR_KIND_UW_TABLE: 703 return Attribute::UWTable; 704 case bitc::ATTR_KIND_Z_EXT: 705 return Attribute::ZExt; 706 } 707 } 708 709 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 710 Attribute::AttrKind *Kind) { 711 *Kind = GetAttrFromCode(Code); 712 if (*Kind == Attribute::None) 713 return Error(BitcodeError::InvalidValue); 714 return std::error_code(); 715 } 716 717 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 718 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 719 return Error(BitcodeError::InvalidRecord); 720 721 if (!MAttributeGroups.empty()) 722 return Error(BitcodeError::InvalidMultipleBlocks); 723 724 SmallVector<uint64_t, 64> Record; 725 726 // Read all the records. 727 while (1) { 728 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 729 730 switch (Entry.Kind) { 731 case BitstreamEntry::SubBlock: // Handled for us already. 732 case BitstreamEntry::Error: 733 return Error(BitcodeError::MalformedBlock); 734 case BitstreamEntry::EndBlock: 735 return std::error_code(); 736 case BitstreamEntry::Record: 737 // The interesting case. 738 break; 739 } 740 741 // Read a record. 742 Record.clear(); 743 switch (Stream.readRecord(Entry.ID, Record)) { 744 default: // Default behavior: ignore. 745 break; 746 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 747 if (Record.size() < 3) 748 return Error(BitcodeError::InvalidRecord); 749 750 uint64_t GrpID = Record[0]; 751 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 752 753 AttrBuilder B; 754 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 755 if (Record[i] == 0) { // Enum attribute 756 Attribute::AttrKind Kind; 757 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 758 return EC; 759 760 B.addAttribute(Kind); 761 } else if (Record[i] == 1) { // Integer attribute 762 Attribute::AttrKind Kind; 763 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 764 return EC; 765 if (Kind == Attribute::Alignment) 766 B.addAlignmentAttr(Record[++i]); 767 else if (Kind == Attribute::StackAlignment) 768 B.addStackAlignmentAttr(Record[++i]); 769 else if (Kind == Attribute::Dereferenceable) 770 B.addDereferenceableAttr(Record[++i]); 771 } else { // String attribute 772 assert((Record[i] == 3 || Record[i] == 4) && 773 "Invalid attribute group entry"); 774 bool HasValue = (Record[i++] == 4); 775 SmallString<64> KindStr; 776 SmallString<64> ValStr; 777 778 while (Record[i] != 0 && i != e) 779 KindStr += Record[i++]; 780 assert(Record[i] == 0 && "Kind string not null terminated"); 781 782 if (HasValue) { 783 // Has a value associated with it. 784 ++i; // Skip the '0' that terminates the "kind" string. 785 while (Record[i] != 0 && i != e) 786 ValStr += Record[i++]; 787 assert(Record[i] == 0 && "Value string not null terminated"); 788 } 789 790 B.addAttribute(KindStr.str(), ValStr.str()); 791 } 792 } 793 794 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 795 break; 796 } 797 } 798 } 799 } 800 801 std::error_code BitcodeReader::ParseTypeTable() { 802 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 803 return Error(BitcodeError::InvalidRecord); 804 805 return ParseTypeTableBody(); 806 } 807 808 std::error_code BitcodeReader::ParseTypeTableBody() { 809 if (!TypeList.empty()) 810 return Error(BitcodeError::InvalidMultipleBlocks); 811 812 SmallVector<uint64_t, 64> Record; 813 unsigned NumRecords = 0; 814 815 SmallString<64> TypeName; 816 817 // Read all the records for this type table. 818 while (1) { 819 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 820 821 switch (Entry.Kind) { 822 case BitstreamEntry::SubBlock: // Handled for us already. 823 case BitstreamEntry::Error: 824 return Error(BitcodeError::MalformedBlock); 825 case BitstreamEntry::EndBlock: 826 if (NumRecords != TypeList.size()) 827 return Error(BitcodeError::MalformedBlock); 828 return std::error_code(); 829 case BitstreamEntry::Record: 830 // The interesting case. 831 break; 832 } 833 834 // Read a record. 835 Record.clear(); 836 Type *ResultTy = nullptr; 837 switch (Stream.readRecord(Entry.ID, Record)) { 838 default: 839 return Error(BitcodeError::InvalidValue); 840 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 841 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 842 // type list. This allows us to reserve space. 843 if (Record.size() < 1) 844 return Error(BitcodeError::InvalidRecord); 845 TypeList.resize(Record[0]); 846 continue; 847 case bitc::TYPE_CODE_VOID: // VOID 848 ResultTy = Type::getVoidTy(Context); 849 break; 850 case bitc::TYPE_CODE_HALF: // HALF 851 ResultTy = Type::getHalfTy(Context); 852 break; 853 case bitc::TYPE_CODE_FLOAT: // FLOAT 854 ResultTy = Type::getFloatTy(Context); 855 break; 856 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 857 ResultTy = Type::getDoubleTy(Context); 858 break; 859 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 860 ResultTy = Type::getX86_FP80Ty(Context); 861 break; 862 case bitc::TYPE_CODE_FP128: // FP128 863 ResultTy = Type::getFP128Ty(Context); 864 break; 865 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 866 ResultTy = Type::getPPC_FP128Ty(Context); 867 break; 868 case bitc::TYPE_CODE_LABEL: // LABEL 869 ResultTy = Type::getLabelTy(Context); 870 break; 871 case bitc::TYPE_CODE_METADATA: // METADATA 872 ResultTy = Type::getMetadataTy(Context); 873 break; 874 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 875 ResultTy = Type::getX86_MMXTy(Context); 876 break; 877 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 878 if (Record.size() < 1) 879 return Error(BitcodeError::InvalidRecord); 880 881 ResultTy = IntegerType::get(Context, Record[0]); 882 break; 883 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 884 // [pointee type, address space] 885 if (Record.size() < 1) 886 return Error(BitcodeError::InvalidRecord); 887 unsigned AddressSpace = 0; 888 if (Record.size() == 2) 889 AddressSpace = Record[1]; 890 ResultTy = getTypeByID(Record[0]); 891 if (!ResultTy) 892 return Error(BitcodeError::InvalidType); 893 ResultTy = PointerType::get(ResultTy, AddressSpace); 894 break; 895 } 896 case bitc::TYPE_CODE_FUNCTION_OLD: { 897 // FIXME: attrid is dead, remove it in LLVM 4.0 898 // FUNCTION: [vararg, attrid, retty, paramty x N] 899 if (Record.size() < 3) 900 return Error(BitcodeError::InvalidRecord); 901 SmallVector<Type*, 8> ArgTys; 902 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 903 if (Type *T = getTypeByID(Record[i])) 904 ArgTys.push_back(T); 905 else 906 break; 907 } 908 909 ResultTy = getTypeByID(Record[2]); 910 if (!ResultTy || ArgTys.size() < Record.size()-3) 911 return Error(BitcodeError::InvalidType); 912 913 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 914 break; 915 } 916 case bitc::TYPE_CODE_FUNCTION: { 917 // FUNCTION: [vararg, retty, paramty x N] 918 if (Record.size() < 2) 919 return Error(BitcodeError::InvalidRecord); 920 SmallVector<Type*, 8> ArgTys; 921 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 922 if (Type *T = getTypeByID(Record[i])) 923 ArgTys.push_back(T); 924 else 925 break; 926 } 927 928 ResultTy = getTypeByID(Record[1]); 929 if (!ResultTy || ArgTys.size() < Record.size()-2) 930 return Error(BitcodeError::InvalidType); 931 932 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 933 break; 934 } 935 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 936 if (Record.size() < 1) 937 return Error(BitcodeError::InvalidRecord); 938 SmallVector<Type*, 8> EltTys; 939 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 940 if (Type *T = getTypeByID(Record[i])) 941 EltTys.push_back(T); 942 else 943 break; 944 } 945 if (EltTys.size() != Record.size()-1) 946 return Error(BitcodeError::InvalidType); 947 ResultTy = StructType::get(Context, EltTys, Record[0]); 948 break; 949 } 950 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 951 if (ConvertToString(Record, 0, TypeName)) 952 return Error(BitcodeError::InvalidRecord); 953 continue; 954 955 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 956 if (Record.size() < 1) 957 return Error(BitcodeError::InvalidRecord); 958 959 if (NumRecords >= TypeList.size()) 960 return Error(BitcodeError::InvalidTYPETable); 961 962 // Check to see if this was forward referenced, if so fill in the temp. 963 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 964 if (Res) { 965 Res->setName(TypeName); 966 TypeList[NumRecords] = nullptr; 967 } else // Otherwise, create a new struct. 968 Res = createIdentifiedStructType(Context, TypeName); 969 TypeName.clear(); 970 971 SmallVector<Type*, 8> EltTys; 972 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 973 if (Type *T = getTypeByID(Record[i])) 974 EltTys.push_back(T); 975 else 976 break; 977 } 978 if (EltTys.size() != Record.size()-1) 979 return Error(BitcodeError::InvalidRecord); 980 Res->setBody(EltTys, Record[0]); 981 ResultTy = Res; 982 break; 983 } 984 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 985 if (Record.size() != 1) 986 return Error(BitcodeError::InvalidRecord); 987 988 if (NumRecords >= TypeList.size()) 989 return Error(BitcodeError::InvalidTYPETable); 990 991 // Check to see if this was forward referenced, if so fill in the temp. 992 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 993 if (Res) { 994 Res->setName(TypeName); 995 TypeList[NumRecords] = nullptr; 996 } else // Otherwise, create a new struct with no body. 997 Res = createIdentifiedStructType(Context, TypeName); 998 TypeName.clear(); 999 ResultTy = Res; 1000 break; 1001 } 1002 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1003 if (Record.size() < 2) 1004 return Error(BitcodeError::InvalidRecord); 1005 if ((ResultTy = getTypeByID(Record[1]))) 1006 ResultTy = ArrayType::get(ResultTy, Record[0]); 1007 else 1008 return Error(BitcodeError::InvalidType); 1009 break; 1010 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1011 if (Record.size() < 2) 1012 return Error(BitcodeError::InvalidRecord); 1013 if ((ResultTy = getTypeByID(Record[1]))) 1014 ResultTy = VectorType::get(ResultTy, Record[0]); 1015 else 1016 return Error(BitcodeError::InvalidType); 1017 break; 1018 } 1019 1020 if (NumRecords >= TypeList.size()) 1021 return Error(BitcodeError::InvalidTYPETable); 1022 assert(ResultTy && "Didn't read a type?"); 1023 assert(!TypeList[NumRecords] && "Already read type?"); 1024 TypeList[NumRecords++] = ResultTy; 1025 } 1026 } 1027 1028 std::error_code BitcodeReader::ParseValueSymbolTable() { 1029 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1030 return Error(BitcodeError::InvalidRecord); 1031 1032 SmallVector<uint64_t, 64> Record; 1033 1034 // Read all the records for this value table. 1035 SmallString<128> ValueName; 1036 while (1) { 1037 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1038 1039 switch (Entry.Kind) { 1040 case BitstreamEntry::SubBlock: // Handled for us already. 1041 case BitstreamEntry::Error: 1042 return Error(BitcodeError::MalformedBlock); 1043 case BitstreamEntry::EndBlock: 1044 return std::error_code(); 1045 case BitstreamEntry::Record: 1046 // The interesting case. 1047 break; 1048 } 1049 1050 // Read a record. 1051 Record.clear(); 1052 switch (Stream.readRecord(Entry.ID, Record)) { 1053 default: // Default behavior: unknown type. 1054 break; 1055 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1056 if (ConvertToString(Record, 1, ValueName)) 1057 return Error(BitcodeError::InvalidRecord); 1058 unsigned ValueID = Record[0]; 1059 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1060 return Error(BitcodeError::InvalidRecord); 1061 Value *V = ValueList[ValueID]; 1062 1063 V->setName(StringRef(ValueName.data(), ValueName.size())); 1064 ValueName.clear(); 1065 break; 1066 } 1067 case bitc::VST_CODE_BBENTRY: { 1068 if (ConvertToString(Record, 1, ValueName)) 1069 return Error(BitcodeError::InvalidRecord); 1070 BasicBlock *BB = getBasicBlock(Record[0]); 1071 if (!BB) 1072 return Error(BitcodeError::InvalidRecord); 1073 1074 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1075 ValueName.clear(); 1076 break; 1077 } 1078 } 1079 } 1080 } 1081 1082 std::error_code BitcodeReader::ParseMetadata() { 1083 unsigned NextMDValueNo = MDValueList.size(); 1084 1085 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1086 return Error(BitcodeError::InvalidRecord); 1087 1088 SmallVector<uint64_t, 64> Record; 1089 1090 // Read all the records. 1091 while (1) { 1092 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1093 1094 switch (Entry.Kind) { 1095 case BitstreamEntry::SubBlock: // Handled for us already. 1096 case BitstreamEntry::Error: 1097 return Error(BitcodeError::MalformedBlock); 1098 case BitstreamEntry::EndBlock: 1099 MDValueList.tryToResolveCycles(); 1100 return std::error_code(); 1101 case BitstreamEntry::Record: 1102 // The interesting case. 1103 break; 1104 } 1105 1106 // Read a record. 1107 Record.clear(); 1108 unsigned Code = Stream.readRecord(Entry.ID, Record); 1109 switch (Code) { 1110 default: // Default behavior: ignore. 1111 break; 1112 case bitc::METADATA_NAME: { 1113 // Read name of the named metadata. 1114 SmallString<8> Name(Record.begin(), Record.end()); 1115 Record.clear(); 1116 Code = Stream.ReadCode(); 1117 1118 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1119 unsigned NextBitCode = Stream.readRecord(Code, Record); 1120 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1121 1122 // Read named metadata elements. 1123 unsigned Size = Record.size(); 1124 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1125 for (unsigned i = 0; i != Size; ++i) { 1126 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1127 if (!MD) 1128 return Error(BitcodeError::InvalidRecord); 1129 NMD->addOperand(MD); 1130 } 1131 break; 1132 } 1133 case bitc::METADATA_OLD_FN_NODE: { 1134 // FIXME: Remove in 4.0. 1135 // This is a LocalAsMetadata record, the only type of function-local 1136 // metadata. 1137 if (Record.size() % 2 == 1) 1138 return Error(BitcodeError::InvalidRecord); 1139 1140 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1141 // to be legal, but there's no upgrade path. 1142 auto dropRecord = [&] { 1143 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1144 }; 1145 if (Record.size() != 2) { 1146 dropRecord(); 1147 break; 1148 } 1149 1150 Type *Ty = getTypeByID(Record[0]); 1151 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1152 dropRecord(); 1153 break; 1154 } 1155 1156 MDValueList.AssignValue( 1157 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1158 NextMDValueNo++); 1159 break; 1160 } 1161 case bitc::METADATA_OLD_NODE: { 1162 // FIXME: Remove in 4.0. 1163 if (Record.size() % 2 == 1) 1164 return Error(BitcodeError::InvalidRecord); 1165 1166 unsigned Size = Record.size(); 1167 SmallVector<Metadata *, 8> Elts; 1168 for (unsigned i = 0; i != Size; i += 2) { 1169 Type *Ty = getTypeByID(Record[i]); 1170 if (!Ty) 1171 return Error(BitcodeError::InvalidRecord); 1172 if (Ty->isMetadataTy()) 1173 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1174 else if (!Ty->isVoidTy()) { 1175 auto *MD = 1176 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1177 assert(isa<ConstantAsMetadata>(MD) && 1178 "Expected non-function-local metadata"); 1179 Elts.push_back(MD); 1180 } else 1181 Elts.push_back(nullptr); 1182 } 1183 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1184 break; 1185 } 1186 case bitc::METADATA_VALUE: { 1187 if (Record.size() != 2) 1188 return Error(BitcodeError::InvalidRecord); 1189 1190 Type *Ty = getTypeByID(Record[0]); 1191 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1192 return Error(BitcodeError::InvalidRecord); 1193 1194 MDValueList.AssignValue( 1195 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1196 NextMDValueNo++); 1197 break; 1198 } 1199 case bitc::METADATA_NODE: { 1200 SmallVector<Metadata *, 8> Elts; 1201 Elts.reserve(Record.size()); 1202 for (unsigned ID : Record) 1203 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1204 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1205 break; 1206 } 1207 case bitc::METADATA_STRING: { 1208 std::string String(Record.begin(), Record.end()); 1209 llvm::UpgradeMDStringConstant(String); 1210 Metadata *MD = MDString::get(Context, String); 1211 MDValueList.AssignValue(MD, NextMDValueNo++); 1212 break; 1213 } 1214 case bitc::METADATA_KIND: { 1215 if (Record.size() < 2) 1216 return Error(BitcodeError::InvalidRecord); 1217 1218 unsigned Kind = Record[0]; 1219 SmallString<8> Name(Record.begin()+1, Record.end()); 1220 1221 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1222 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1223 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1224 break; 1225 } 1226 } 1227 } 1228 } 1229 1230 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1231 /// the LSB for dense VBR encoding. 1232 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1233 if ((V & 1) == 0) 1234 return V >> 1; 1235 if (V != 1) 1236 return -(V >> 1); 1237 // There is no such thing as -0 with integers. "-0" really means MININT. 1238 return 1ULL << 63; 1239 } 1240 1241 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1242 /// values and aliases that we can. 1243 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1244 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1245 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1246 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1247 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1248 1249 GlobalInitWorklist.swap(GlobalInits); 1250 AliasInitWorklist.swap(AliasInits); 1251 FunctionPrefixWorklist.swap(FunctionPrefixes); 1252 FunctionPrologueWorklist.swap(FunctionPrologues); 1253 1254 while (!GlobalInitWorklist.empty()) { 1255 unsigned ValID = GlobalInitWorklist.back().second; 1256 if (ValID >= ValueList.size()) { 1257 // Not ready to resolve this yet, it requires something later in the file. 1258 GlobalInits.push_back(GlobalInitWorklist.back()); 1259 } else { 1260 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1261 GlobalInitWorklist.back().first->setInitializer(C); 1262 else 1263 return Error(BitcodeError::ExpectedConstant); 1264 } 1265 GlobalInitWorklist.pop_back(); 1266 } 1267 1268 while (!AliasInitWorklist.empty()) { 1269 unsigned ValID = AliasInitWorklist.back().second; 1270 if (ValID >= ValueList.size()) { 1271 AliasInits.push_back(AliasInitWorklist.back()); 1272 } else { 1273 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1274 AliasInitWorklist.back().first->setAliasee(C); 1275 else 1276 return Error(BitcodeError::ExpectedConstant); 1277 } 1278 AliasInitWorklist.pop_back(); 1279 } 1280 1281 while (!FunctionPrefixWorklist.empty()) { 1282 unsigned ValID = FunctionPrefixWorklist.back().second; 1283 if (ValID >= ValueList.size()) { 1284 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1285 } else { 1286 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1287 FunctionPrefixWorklist.back().first->setPrefixData(C); 1288 else 1289 return Error(BitcodeError::ExpectedConstant); 1290 } 1291 FunctionPrefixWorklist.pop_back(); 1292 } 1293 1294 while (!FunctionPrologueWorklist.empty()) { 1295 unsigned ValID = FunctionPrologueWorklist.back().second; 1296 if (ValID >= ValueList.size()) { 1297 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1298 } else { 1299 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1300 FunctionPrologueWorklist.back().first->setPrologueData(C); 1301 else 1302 return Error(BitcodeError::ExpectedConstant); 1303 } 1304 FunctionPrologueWorklist.pop_back(); 1305 } 1306 1307 return std::error_code(); 1308 } 1309 1310 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1311 SmallVector<uint64_t, 8> Words(Vals.size()); 1312 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1313 BitcodeReader::decodeSignRotatedValue); 1314 1315 return APInt(TypeBits, Words); 1316 } 1317 1318 std::error_code BitcodeReader::ParseConstants() { 1319 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1320 return Error(BitcodeError::InvalidRecord); 1321 1322 SmallVector<uint64_t, 64> Record; 1323 1324 // Read all the records for this value table. 1325 Type *CurTy = Type::getInt32Ty(Context); 1326 unsigned NextCstNo = ValueList.size(); 1327 while (1) { 1328 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1329 1330 switch (Entry.Kind) { 1331 case BitstreamEntry::SubBlock: // Handled for us already. 1332 case BitstreamEntry::Error: 1333 return Error(BitcodeError::MalformedBlock); 1334 case BitstreamEntry::EndBlock: 1335 if (NextCstNo != ValueList.size()) 1336 return Error(BitcodeError::InvalidConstantReference); 1337 1338 // Once all the constants have been read, go through and resolve forward 1339 // references. 1340 ValueList.ResolveConstantForwardRefs(); 1341 return std::error_code(); 1342 case BitstreamEntry::Record: 1343 // The interesting case. 1344 break; 1345 } 1346 1347 // Read a record. 1348 Record.clear(); 1349 Value *V = nullptr; 1350 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1351 switch (BitCode) { 1352 default: // Default behavior: unknown constant 1353 case bitc::CST_CODE_UNDEF: // UNDEF 1354 V = UndefValue::get(CurTy); 1355 break; 1356 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1357 if (Record.empty()) 1358 return Error(BitcodeError::InvalidRecord); 1359 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1360 return Error(BitcodeError::InvalidRecord); 1361 CurTy = TypeList[Record[0]]; 1362 continue; // Skip the ValueList manipulation. 1363 case bitc::CST_CODE_NULL: // NULL 1364 V = Constant::getNullValue(CurTy); 1365 break; 1366 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1367 if (!CurTy->isIntegerTy() || Record.empty()) 1368 return Error(BitcodeError::InvalidRecord); 1369 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1370 break; 1371 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1372 if (!CurTy->isIntegerTy() || Record.empty()) 1373 return Error(BitcodeError::InvalidRecord); 1374 1375 APInt VInt = ReadWideAPInt(Record, 1376 cast<IntegerType>(CurTy)->getBitWidth()); 1377 V = ConstantInt::get(Context, VInt); 1378 1379 break; 1380 } 1381 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1382 if (Record.empty()) 1383 return Error(BitcodeError::InvalidRecord); 1384 if (CurTy->isHalfTy()) 1385 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1386 APInt(16, (uint16_t)Record[0]))); 1387 else if (CurTy->isFloatTy()) 1388 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1389 APInt(32, (uint32_t)Record[0]))); 1390 else if (CurTy->isDoubleTy()) 1391 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1392 APInt(64, Record[0]))); 1393 else if (CurTy->isX86_FP80Ty()) { 1394 // Bits are not stored the same way as a normal i80 APInt, compensate. 1395 uint64_t Rearrange[2]; 1396 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1397 Rearrange[1] = Record[0] >> 48; 1398 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1399 APInt(80, Rearrange))); 1400 } else if (CurTy->isFP128Ty()) 1401 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1402 APInt(128, Record))); 1403 else if (CurTy->isPPC_FP128Ty()) 1404 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1405 APInt(128, Record))); 1406 else 1407 V = UndefValue::get(CurTy); 1408 break; 1409 } 1410 1411 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1412 if (Record.empty()) 1413 return Error(BitcodeError::InvalidRecord); 1414 1415 unsigned Size = Record.size(); 1416 SmallVector<Constant*, 16> Elts; 1417 1418 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1419 for (unsigned i = 0; i != Size; ++i) 1420 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1421 STy->getElementType(i))); 1422 V = ConstantStruct::get(STy, Elts); 1423 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1424 Type *EltTy = ATy->getElementType(); 1425 for (unsigned i = 0; i != Size; ++i) 1426 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1427 V = ConstantArray::get(ATy, Elts); 1428 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1429 Type *EltTy = VTy->getElementType(); 1430 for (unsigned i = 0; i != Size; ++i) 1431 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1432 V = ConstantVector::get(Elts); 1433 } else { 1434 V = UndefValue::get(CurTy); 1435 } 1436 break; 1437 } 1438 case bitc::CST_CODE_STRING: // STRING: [values] 1439 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1440 if (Record.empty()) 1441 return Error(BitcodeError::InvalidRecord); 1442 1443 SmallString<16> Elts(Record.begin(), Record.end()); 1444 V = ConstantDataArray::getString(Context, Elts, 1445 BitCode == bitc::CST_CODE_CSTRING); 1446 break; 1447 } 1448 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1449 if (Record.empty()) 1450 return Error(BitcodeError::InvalidRecord); 1451 1452 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1453 unsigned Size = Record.size(); 1454 1455 if (EltTy->isIntegerTy(8)) { 1456 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1457 if (isa<VectorType>(CurTy)) 1458 V = ConstantDataVector::get(Context, Elts); 1459 else 1460 V = ConstantDataArray::get(Context, Elts); 1461 } else if (EltTy->isIntegerTy(16)) { 1462 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1463 if (isa<VectorType>(CurTy)) 1464 V = ConstantDataVector::get(Context, Elts); 1465 else 1466 V = ConstantDataArray::get(Context, Elts); 1467 } else if (EltTy->isIntegerTy(32)) { 1468 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1469 if (isa<VectorType>(CurTy)) 1470 V = ConstantDataVector::get(Context, Elts); 1471 else 1472 V = ConstantDataArray::get(Context, Elts); 1473 } else if (EltTy->isIntegerTy(64)) { 1474 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1475 if (isa<VectorType>(CurTy)) 1476 V = ConstantDataVector::get(Context, Elts); 1477 else 1478 V = ConstantDataArray::get(Context, Elts); 1479 } else if (EltTy->isFloatTy()) { 1480 SmallVector<float, 16> Elts(Size); 1481 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1482 if (isa<VectorType>(CurTy)) 1483 V = ConstantDataVector::get(Context, Elts); 1484 else 1485 V = ConstantDataArray::get(Context, Elts); 1486 } else if (EltTy->isDoubleTy()) { 1487 SmallVector<double, 16> Elts(Size); 1488 std::transform(Record.begin(), Record.end(), Elts.begin(), 1489 BitsToDouble); 1490 if (isa<VectorType>(CurTy)) 1491 V = ConstantDataVector::get(Context, Elts); 1492 else 1493 V = ConstantDataArray::get(Context, Elts); 1494 } else { 1495 return Error(BitcodeError::InvalidTypeForValue); 1496 } 1497 break; 1498 } 1499 1500 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1501 if (Record.size() < 3) 1502 return Error(BitcodeError::InvalidRecord); 1503 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1504 if (Opc < 0) { 1505 V = UndefValue::get(CurTy); // Unknown binop. 1506 } else { 1507 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1508 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1509 unsigned Flags = 0; 1510 if (Record.size() >= 4) { 1511 if (Opc == Instruction::Add || 1512 Opc == Instruction::Sub || 1513 Opc == Instruction::Mul || 1514 Opc == Instruction::Shl) { 1515 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1516 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1517 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1518 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1519 } else if (Opc == Instruction::SDiv || 1520 Opc == Instruction::UDiv || 1521 Opc == Instruction::LShr || 1522 Opc == Instruction::AShr) { 1523 if (Record[3] & (1 << bitc::PEO_EXACT)) 1524 Flags |= SDivOperator::IsExact; 1525 } 1526 } 1527 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1528 } 1529 break; 1530 } 1531 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1532 if (Record.size() < 3) 1533 return Error(BitcodeError::InvalidRecord); 1534 int Opc = GetDecodedCastOpcode(Record[0]); 1535 if (Opc < 0) { 1536 V = UndefValue::get(CurTy); // Unknown cast. 1537 } else { 1538 Type *OpTy = getTypeByID(Record[1]); 1539 if (!OpTy) 1540 return Error(BitcodeError::InvalidRecord); 1541 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1542 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1543 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1544 } 1545 break; 1546 } 1547 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1548 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1549 if (Record.size() & 1) 1550 return Error(BitcodeError::InvalidRecord); 1551 SmallVector<Constant*, 16> Elts; 1552 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1553 Type *ElTy = getTypeByID(Record[i]); 1554 if (!ElTy) 1555 return Error(BitcodeError::InvalidRecord); 1556 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1557 } 1558 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1559 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1560 BitCode == 1561 bitc::CST_CODE_CE_INBOUNDS_GEP); 1562 break; 1563 } 1564 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1565 if (Record.size() < 3) 1566 return Error(BitcodeError::InvalidRecord); 1567 1568 Type *SelectorTy = Type::getInt1Ty(Context); 1569 1570 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1571 // vector. Otherwise, it must be a single bit. 1572 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1573 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1574 VTy->getNumElements()); 1575 1576 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1577 SelectorTy), 1578 ValueList.getConstantFwdRef(Record[1],CurTy), 1579 ValueList.getConstantFwdRef(Record[2],CurTy)); 1580 break; 1581 } 1582 case bitc::CST_CODE_CE_EXTRACTELT 1583 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1584 if (Record.size() < 3) 1585 return Error(BitcodeError::InvalidRecord); 1586 VectorType *OpTy = 1587 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1588 if (!OpTy) 1589 return Error(BitcodeError::InvalidRecord); 1590 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1591 Constant *Op1 = nullptr; 1592 if (Record.size() == 4) { 1593 Type *IdxTy = getTypeByID(Record[2]); 1594 if (!IdxTy) 1595 return Error(BitcodeError::InvalidRecord); 1596 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1597 } else // TODO: Remove with llvm 4.0 1598 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1599 if (!Op1) 1600 return Error(BitcodeError::InvalidRecord); 1601 V = ConstantExpr::getExtractElement(Op0, Op1); 1602 break; 1603 } 1604 case bitc::CST_CODE_CE_INSERTELT 1605 : { // CE_INSERTELT: [opval, opval, opty, opval] 1606 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1607 if (Record.size() < 3 || !OpTy) 1608 return Error(BitcodeError::InvalidRecord); 1609 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1610 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1611 OpTy->getElementType()); 1612 Constant *Op2 = nullptr; 1613 if (Record.size() == 4) { 1614 Type *IdxTy = getTypeByID(Record[2]); 1615 if (!IdxTy) 1616 return Error(BitcodeError::InvalidRecord); 1617 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1618 } else // TODO: Remove with llvm 4.0 1619 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1620 if (!Op2) 1621 return Error(BitcodeError::InvalidRecord); 1622 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1623 break; 1624 } 1625 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1626 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1627 if (Record.size() < 3 || !OpTy) 1628 return Error(BitcodeError::InvalidRecord); 1629 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1630 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1631 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1632 OpTy->getNumElements()); 1633 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1634 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1635 break; 1636 } 1637 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1638 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1639 VectorType *OpTy = 1640 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1641 if (Record.size() < 4 || !RTy || !OpTy) 1642 return Error(BitcodeError::InvalidRecord); 1643 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1644 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1645 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1646 RTy->getNumElements()); 1647 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1648 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1649 break; 1650 } 1651 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1652 if (Record.size() < 4) 1653 return Error(BitcodeError::InvalidRecord); 1654 Type *OpTy = getTypeByID(Record[0]); 1655 if (!OpTy) 1656 return Error(BitcodeError::InvalidRecord); 1657 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1658 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1659 1660 if (OpTy->isFPOrFPVectorTy()) 1661 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1662 else 1663 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1664 break; 1665 } 1666 // This maintains backward compatibility, pre-asm dialect keywords. 1667 // FIXME: Remove with the 4.0 release. 1668 case bitc::CST_CODE_INLINEASM_OLD: { 1669 if (Record.size() < 2) 1670 return Error(BitcodeError::InvalidRecord); 1671 std::string AsmStr, ConstrStr; 1672 bool HasSideEffects = Record[0] & 1; 1673 bool IsAlignStack = Record[0] >> 1; 1674 unsigned AsmStrSize = Record[1]; 1675 if (2+AsmStrSize >= Record.size()) 1676 return Error(BitcodeError::InvalidRecord); 1677 unsigned ConstStrSize = Record[2+AsmStrSize]; 1678 if (3+AsmStrSize+ConstStrSize > Record.size()) 1679 return Error(BitcodeError::InvalidRecord); 1680 1681 for (unsigned i = 0; i != AsmStrSize; ++i) 1682 AsmStr += (char)Record[2+i]; 1683 for (unsigned i = 0; i != ConstStrSize; ++i) 1684 ConstrStr += (char)Record[3+AsmStrSize+i]; 1685 PointerType *PTy = cast<PointerType>(CurTy); 1686 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1687 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1688 break; 1689 } 1690 // This version adds support for the asm dialect keywords (e.g., 1691 // inteldialect). 1692 case bitc::CST_CODE_INLINEASM: { 1693 if (Record.size() < 2) 1694 return Error(BitcodeError::InvalidRecord); 1695 std::string AsmStr, ConstrStr; 1696 bool HasSideEffects = Record[0] & 1; 1697 bool IsAlignStack = (Record[0] >> 1) & 1; 1698 unsigned AsmDialect = Record[0] >> 2; 1699 unsigned AsmStrSize = Record[1]; 1700 if (2+AsmStrSize >= Record.size()) 1701 return Error(BitcodeError::InvalidRecord); 1702 unsigned ConstStrSize = Record[2+AsmStrSize]; 1703 if (3+AsmStrSize+ConstStrSize > Record.size()) 1704 return Error(BitcodeError::InvalidRecord); 1705 1706 for (unsigned i = 0; i != AsmStrSize; ++i) 1707 AsmStr += (char)Record[2+i]; 1708 for (unsigned i = 0; i != ConstStrSize; ++i) 1709 ConstrStr += (char)Record[3+AsmStrSize+i]; 1710 PointerType *PTy = cast<PointerType>(CurTy); 1711 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1712 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1713 InlineAsm::AsmDialect(AsmDialect)); 1714 break; 1715 } 1716 case bitc::CST_CODE_BLOCKADDRESS:{ 1717 if (Record.size() < 3) 1718 return Error(BitcodeError::InvalidRecord); 1719 Type *FnTy = getTypeByID(Record[0]); 1720 if (!FnTy) 1721 return Error(BitcodeError::InvalidRecord); 1722 Function *Fn = 1723 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1724 if (!Fn) 1725 return Error(BitcodeError::InvalidRecord); 1726 1727 // Don't let Fn get dematerialized. 1728 BlockAddressesTaken.insert(Fn); 1729 1730 // If the function is already parsed we can insert the block address right 1731 // away. 1732 BasicBlock *BB; 1733 unsigned BBID = Record[2]; 1734 if (!BBID) 1735 // Invalid reference to entry block. 1736 return Error(BitcodeError::InvalidID); 1737 if (!Fn->empty()) { 1738 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1739 for (size_t I = 0, E = BBID; I != E; ++I) { 1740 if (BBI == BBE) 1741 return Error(BitcodeError::InvalidID); 1742 ++BBI; 1743 } 1744 BB = BBI; 1745 } else { 1746 // Otherwise insert a placeholder and remember it so it can be inserted 1747 // when the function is parsed. 1748 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1749 if (FwdBBs.empty()) 1750 BasicBlockFwdRefQueue.push_back(Fn); 1751 if (FwdBBs.size() < BBID + 1) 1752 FwdBBs.resize(BBID + 1); 1753 if (!FwdBBs[BBID]) 1754 FwdBBs[BBID] = BasicBlock::Create(Context); 1755 BB = FwdBBs[BBID]; 1756 } 1757 V = BlockAddress::get(Fn, BB); 1758 break; 1759 } 1760 } 1761 1762 ValueList.AssignValue(V, NextCstNo); 1763 ++NextCstNo; 1764 } 1765 } 1766 1767 std::error_code BitcodeReader::ParseUseLists() { 1768 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1769 return Error(BitcodeError::InvalidRecord); 1770 1771 // Read all the records. 1772 SmallVector<uint64_t, 64> Record; 1773 while (1) { 1774 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1775 1776 switch (Entry.Kind) { 1777 case BitstreamEntry::SubBlock: // Handled for us already. 1778 case BitstreamEntry::Error: 1779 return Error(BitcodeError::MalformedBlock); 1780 case BitstreamEntry::EndBlock: 1781 return std::error_code(); 1782 case BitstreamEntry::Record: 1783 // The interesting case. 1784 break; 1785 } 1786 1787 // Read a use list record. 1788 Record.clear(); 1789 bool IsBB = false; 1790 switch (Stream.readRecord(Entry.ID, Record)) { 1791 default: // Default behavior: unknown type. 1792 break; 1793 case bitc::USELIST_CODE_BB: 1794 IsBB = true; 1795 // fallthrough 1796 case bitc::USELIST_CODE_DEFAULT: { 1797 unsigned RecordLength = Record.size(); 1798 if (RecordLength < 3) 1799 // Records should have at least an ID and two indexes. 1800 return Error(BitcodeError::InvalidRecord); 1801 unsigned ID = Record.back(); 1802 Record.pop_back(); 1803 1804 Value *V; 1805 if (IsBB) { 1806 assert(ID < FunctionBBs.size() && "Basic block not found"); 1807 V = FunctionBBs[ID]; 1808 } else 1809 V = ValueList[ID]; 1810 unsigned NumUses = 0; 1811 SmallDenseMap<const Use *, unsigned, 16> Order; 1812 for (const Use &U : V->uses()) { 1813 if (++NumUses > Record.size()) 1814 break; 1815 Order[&U] = Record[NumUses - 1]; 1816 } 1817 if (Order.size() != Record.size() || NumUses > Record.size()) 1818 // Mismatches can happen if the functions are being materialized lazily 1819 // (out-of-order), or a value has been upgraded. 1820 break; 1821 1822 V->sortUseList([&](const Use &L, const Use &R) { 1823 return Order.lookup(&L) < Order.lookup(&R); 1824 }); 1825 break; 1826 } 1827 } 1828 } 1829 } 1830 1831 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1832 /// remember where it is and then skip it. This lets us lazily deserialize the 1833 /// functions. 1834 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1835 // Get the function we are talking about. 1836 if (FunctionsWithBodies.empty()) 1837 return Error(BitcodeError::InsufficientFunctionProtos); 1838 1839 Function *Fn = FunctionsWithBodies.back(); 1840 FunctionsWithBodies.pop_back(); 1841 1842 // Save the current stream state. 1843 uint64_t CurBit = Stream.GetCurrentBitNo(); 1844 DeferredFunctionInfo[Fn] = CurBit; 1845 1846 // Skip over the function block for now. 1847 if (Stream.SkipBlock()) 1848 return Error(BitcodeError::InvalidRecord); 1849 return std::error_code(); 1850 } 1851 1852 std::error_code BitcodeReader::GlobalCleanup() { 1853 // Patch the initializers for globals and aliases up. 1854 ResolveGlobalAndAliasInits(); 1855 if (!GlobalInits.empty() || !AliasInits.empty()) 1856 return Error(BitcodeError::MalformedGlobalInitializerSet); 1857 1858 // Look for intrinsic functions which need to be upgraded at some point 1859 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1860 FI != FE; ++FI) { 1861 Function *NewFn; 1862 if (UpgradeIntrinsicFunction(FI, NewFn)) 1863 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1864 } 1865 1866 // Look for global variables which need to be renamed. 1867 for (Module::global_iterator 1868 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1869 GI != GE;) { 1870 GlobalVariable *GV = GI++; 1871 UpgradeGlobalVariable(GV); 1872 } 1873 1874 // Force deallocation of memory for these vectors to favor the client that 1875 // want lazy deserialization. 1876 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1877 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1878 return std::error_code(); 1879 } 1880 1881 std::error_code BitcodeReader::ParseModule(bool Resume) { 1882 if (Resume) 1883 Stream.JumpToBit(NextUnreadBit); 1884 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1885 return Error(BitcodeError::InvalidRecord); 1886 1887 SmallVector<uint64_t, 64> Record; 1888 std::vector<std::string> SectionTable; 1889 std::vector<std::string> GCTable; 1890 1891 // Read all the records for this module. 1892 while (1) { 1893 BitstreamEntry Entry = Stream.advance(); 1894 1895 switch (Entry.Kind) { 1896 case BitstreamEntry::Error: 1897 return Error(BitcodeError::MalformedBlock); 1898 case BitstreamEntry::EndBlock: 1899 return GlobalCleanup(); 1900 1901 case BitstreamEntry::SubBlock: 1902 switch (Entry.ID) { 1903 default: // Skip unknown content. 1904 if (Stream.SkipBlock()) 1905 return Error(BitcodeError::InvalidRecord); 1906 break; 1907 case bitc::BLOCKINFO_BLOCK_ID: 1908 if (Stream.ReadBlockInfoBlock()) 1909 return Error(BitcodeError::MalformedBlock); 1910 break; 1911 case bitc::PARAMATTR_BLOCK_ID: 1912 if (std::error_code EC = ParseAttributeBlock()) 1913 return EC; 1914 break; 1915 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1916 if (std::error_code EC = ParseAttributeGroupBlock()) 1917 return EC; 1918 break; 1919 case bitc::TYPE_BLOCK_ID_NEW: 1920 if (std::error_code EC = ParseTypeTable()) 1921 return EC; 1922 break; 1923 case bitc::VALUE_SYMTAB_BLOCK_ID: 1924 if (std::error_code EC = ParseValueSymbolTable()) 1925 return EC; 1926 SeenValueSymbolTable = true; 1927 break; 1928 case bitc::CONSTANTS_BLOCK_ID: 1929 if (std::error_code EC = ParseConstants()) 1930 return EC; 1931 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1932 return EC; 1933 break; 1934 case bitc::METADATA_BLOCK_ID: 1935 if (std::error_code EC = ParseMetadata()) 1936 return EC; 1937 break; 1938 case bitc::FUNCTION_BLOCK_ID: 1939 // If this is the first function body we've seen, reverse the 1940 // FunctionsWithBodies list. 1941 if (!SeenFirstFunctionBody) { 1942 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1943 if (std::error_code EC = GlobalCleanup()) 1944 return EC; 1945 SeenFirstFunctionBody = true; 1946 } 1947 1948 if (std::error_code EC = RememberAndSkipFunctionBody()) 1949 return EC; 1950 // For streaming bitcode, suspend parsing when we reach the function 1951 // bodies. Subsequent materialization calls will resume it when 1952 // necessary. For streaming, the function bodies must be at the end of 1953 // the bitcode. If the bitcode file is old, the symbol table will be 1954 // at the end instead and will not have been seen yet. In this case, 1955 // just finish the parse now. 1956 if (LazyStreamer && SeenValueSymbolTable) { 1957 NextUnreadBit = Stream.GetCurrentBitNo(); 1958 return std::error_code(); 1959 } 1960 break; 1961 case bitc::USELIST_BLOCK_ID: 1962 if (std::error_code EC = ParseUseLists()) 1963 return EC; 1964 break; 1965 } 1966 continue; 1967 1968 case BitstreamEntry::Record: 1969 // The interesting case. 1970 break; 1971 } 1972 1973 1974 // Read a record. 1975 switch (Stream.readRecord(Entry.ID, Record)) { 1976 default: break; // Default behavior, ignore unknown content. 1977 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1978 if (Record.size() < 1) 1979 return Error(BitcodeError::InvalidRecord); 1980 // Only version #0 and #1 are supported so far. 1981 unsigned module_version = Record[0]; 1982 switch (module_version) { 1983 default: 1984 return Error(BitcodeError::InvalidValue); 1985 case 0: 1986 UseRelativeIDs = false; 1987 break; 1988 case 1: 1989 UseRelativeIDs = true; 1990 break; 1991 } 1992 break; 1993 } 1994 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1995 std::string S; 1996 if (ConvertToString(Record, 0, S)) 1997 return Error(BitcodeError::InvalidRecord); 1998 TheModule->setTargetTriple(S); 1999 break; 2000 } 2001 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2002 std::string S; 2003 if (ConvertToString(Record, 0, S)) 2004 return Error(BitcodeError::InvalidRecord); 2005 TheModule->setDataLayout(S); 2006 break; 2007 } 2008 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2009 std::string S; 2010 if (ConvertToString(Record, 0, S)) 2011 return Error(BitcodeError::InvalidRecord); 2012 TheModule->setModuleInlineAsm(S); 2013 break; 2014 } 2015 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2016 // FIXME: Remove in 4.0. 2017 std::string S; 2018 if (ConvertToString(Record, 0, S)) 2019 return Error(BitcodeError::InvalidRecord); 2020 // Ignore value. 2021 break; 2022 } 2023 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2024 std::string S; 2025 if (ConvertToString(Record, 0, S)) 2026 return Error(BitcodeError::InvalidRecord); 2027 SectionTable.push_back(S); 2028 break; 2029 } 2030 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2031 std::string S; 2032 if (ConvertToString(Record, 0, S)) 2033 return Error(BitcodeError::InvalidRecord); 2034 GCTable.push_back(S); 2035 break; 2036 } 2037 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2038 if (Record.size() < 2) 2039 return Error(BitcodeError::InvalidRecord); 2040 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2041 unsigned ComdatNameSize = Record[1]; 2042 std::string ComdatName; 2043 ComdatName.reserve(ComdatNameSize); 2044 for (unsigned i = 0; i != ComdatNameSize; ++i) 2045 ComdatName += (char)Record[2 + i]; 2046 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2047 C->setSelectionKind(SK); 2048 ComdatList.push_back(C); 2049 break; 2050 } 2051 // GLOBALVAR: [pointer type, isconst, initid, 2052 // linkage, alignment, section, visibility, threadlocal, 2053 // unnamed_addr, dllstorageclass] 2054 case bitc::MODULE_CODE_GLOBALVAR: { 2055 if (Record.size() < 6) 2056 return Error(BitcodeError::InvalidRecord); 2057 Type *Ty = getTypeByID(Record[0]); 2058 if (!Ty) 2059 return Error(BitcodeError::InvalidRecord); 2060 if (!Ty->isPointerTy()) 2061 return Error(BitcodeError::InvalidTypeForValue); 2062 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2063 Ty = cast<PointerType>(Ty)->getElementType(); 2064 2065 bool isConstant = Record[1]; 2066 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Record[3]); 2067 unsigned Alignment = (1 << Record[4]) >> 1; 2068 std::string Section; 2069 if (Record[5]) { 2070 if (Record[5]-1 >= SectionTable.size()) 2071 return Error(BitcodeError::InvalidID); 2072 Section = SectionTable[Record[5]-1]; 2073 } 2074 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2075 // Local linkage must have default visibility. 2076 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2077 // FIXME: Change to an error if non-default in 4.0. 2078 Visibility = GetDecodedVisibility(Record[6]); 2079 2080 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2081 if (Record.size() > 7) 2082 TLM = GetDecodedThreadLocalMode(Record[7]); 2083 2084 bool UnnamedAddr = false; 2085 if (Record.size() > 8) 2086 UnnamedAddr = Record[8]; 2087 2088 bool ExternallyInitialized = false; 2089 if (Record.size() > 9) 2090 ExternallyInitialized = Record[9]; 2091 2092 GlobalVariable *NewGV = 2093 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2094 TLM, AddressSpace, ExternallyInitialized); 2095 NewGV->setAlignment(Alignment); 2096 if (!Section.empty()) 2097 NewGV->setSection(Section); 2098 NewGV->setVisibility(Visibility); 2099 NewGV->setUnnamedAddr(UnnamedAddr); 2100 2101 if (Record.size() > 10) 2102 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2103 else 2104 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 2105 2106 ValueList.push_back(NewGV); 2107 2108 // Remember which value to use for the global initializer. 2109 if (unsigned InitID = Record[2]) 2110 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2111 2112 if (Record.size() > 11) 2113 if (unsigned ComdatID = Record[11]) { 2114 assert(ComdatID <= ComdatList.size()); 2115 NewGV->setComdat(ComdatList[ComdatID - 1]); 2116 } 2117 break; 2118 } 2119 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2120 // alignment, section, visibility, gc, unnamed_addr, 2121 // prologuedata, dllstorageclass, comdat, prefixdata] 2122 case bitc::MODULE_CODE_FUNCTION: { 2123 if (Record.size() < 8) 2124 return Error(BitcodeError::InvalidRecord); 2125 Type *Ty = getTypeByID(Record[0]); 2126 if (!Ty) 2127 return Error(BitcodeError::InvalidRecord); 2128 if (!Ty->isPointerTy()) 2129 return Error(BitcodeError::InvalidTypeForValue); 2130 FunctionType *FTy = 2131 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2132 if (!FTy) 2133 return Error(BitcodeError::InvalidTypeForValue); 2134 2135 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2136 "", TheModule); 2137 2138 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2139 bool isProto = Record[2]; 2140 Func->setLinkage(getDecodedLinkage(Record[3])); 2141 Func->setAttributes(getAttributes(Record[4])); 2142 2143 Func->setAlignment((1 << Record[5]) >> 1); 2144 if (Record[6]) { 2145 if (Record[6]-1 >= SectionTable.size()) 2146 return Error(BitcodeError::InvalidID); 2147 Func->setSection(SectionTable[Record[6]-1]); 2148 } 2149 // Local linkage must have default visibility. 2150 if (!Func->hasLocalLinkage()) 2151 // FIXME: Change to an error if non-default in 4.0. 2152 Func->setVisibility(GetDecodedVisibility(Record[7])); 2153 if (Record.size() > 8 && Record[8]) { 2154 if (Record[8]-1 > GCTable.size()) 2155 return Error(BitcodeError::InvalidID); 2156 Func->setGC(GCTable[Record[8]-1].c_str()); 2157 } 2158 bool UnnamedAddr = false; 2159 if (Record.size() > 9) 2160 UnnamedAddr = Record[9]; 2161 Func->setUnnamedAddr(UnnamedAddr); 2162 if (Record.size() > 10 && Record[10] != 0) 2163 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2164 2165 if (Record.size() > 11) 2166 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2167 else 2168 UpgradeDLLImportExportLinkage(Func, Record[3]); 2169 2170 if (Record.size() > 12) 2171 if (unsigned ComdatID = Record[12]) { 2172 assert(ComdatID <= ComdatList.size()); 2173 Func->setComdat(ComdatList[ComdatID - 1]); 2174 } 2175 2176 if (Record.size() > 13 && Record[13] != 0) 2177 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2178 2179 ValueList.push_back(Func); 2180 2181 // If this is a function with a body, remember the prototype we are 2182 // creating now, so that we can match up the body with them later. 2183 if (!isProto) { 2184 Func->setIsMaterializable(true); 2185 FunctionsWithBodies.push_back(Func); 2186 if (LazyStreamer) 2187 DeferredFunctionInfo[Func] = 0; 2188 } 2189 break; 2190 } 2191 // ALIAS: [alias type, aliasee val#, linkage] 2192 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2193 case bitc::MODULE_CODE_ALIAS: { 2194 if (Record.size() < 3) 2195 return Error(BitcodeError::InvalidRecord); 2196 Type *Ty = getTypeByID(Record[0]); 2197 if (!Ty) 2198 return Error(BitcodeError::InvalidRecord); 2199 auto *PTy = dyn_cast<PointerType>(Ty); 2200 if (!PTy) 2201 return Error(BitcodeError::InvalidTypeForValue); 2202 2203 auto *NewGA = 2204 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2205 getDecodedLinkage(Record[2]), "", TheModule); 2206 // Old bitcode files didn't have visibility field. 2207 // Local linkage must have default visibility. 2208 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2209 // FIXME: Change to an error if non-default in 4.0. 2210 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2211 if (Record.size() > 4) 2212 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2213 else 2214 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2215 if (Record.size() > 5) 2216 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2217 if (Record.size() > 6) 2218 NewGA->setUnnamedAddr(Record[6]); 2219 ValueList.push_back(NewGA); 2220 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2221 break; 2222 } 2223 /// MODULE_CODE_PURGEVALS: [numvals] 2224 case bitc::MODULE_CODE_PURGEVALS: 2225 // Trim down the value list to the specified size. 2226 if (Record.size() < 1 || Record[0] > ValueList.size()) 2227 return Error(BitcodeError::InvalidRecord); 2228 ValueList.shrinkTo(Record[0]); 2229 break; 2230 } 2231 Record.clear(); 2232 } 2233 } 2234 2235 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2236 TheModule = nullptr; 2237 2238 if (std::error_code EC = InitStream()) 2239 return EC; 2240 2241 // Sniff for the signature. 2242 if (Stream.Read(8) != 'B' || 2243 Stream.Read(8) != 'C' || 2244 Stream.Read(4) != 0x0 || 2245 Stream.Read(4) != 0xC || 2246 Stream.Read(4) != 0xE || 2247 Stream.Read(4) != 0xD) 2248 return Error(BitcodeError::InvalidBitcodeSignature); 2249 2250 // We expect a number of well-defined blocks, though we don't necessarily 2251 // need to understand them all. 2252 while (1) { 2253 if (Stream.AtEndOfStream()) 2254 return std::error_code(); 2255 2256 BitstreamEntry Entry = 2257 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2258 2259 switch (Entry.Kind) { 2260 case BitstreamEntry::Error: 2261 return Error(BitcodeError::MalformedBlock); 2262 case BitstreamEntry::EndBlock: 2263 return std::error_code(); 2264 2265 case BitstreamEntry::SubBlock: 2266 switch (Entry.ID) { 2267 case bitc::BLOCKINFO_BLOCK_ID: 2268 if (Stream.ReadBlockInfoBlock()) 2269 return Error(BitcodeError::MalformedBlock); 2270 break; 2271 case bitc::MODULE_BLOCK_ID: 2272 // Reject multiple MODULE_BLOCK's in a single bitstream. 2273 if (TheModule) 2274 return Error(BitcodeError::InvalidMultipleBlocks); 2275 TheModule = M; 2276 if (std::error_code EC = ParseModule(false)) 2277 return EC; 2278 if (LazyStreamer) 2279 return std::error_code(); 2280 break; 2281 default: 2282 if (Stream.SkipBlock()) 2283 return Error(BitcodeError::InvalidRecord); 2284 break; 2285 } 2286 continue; 2287 case BitstreamEntry::Record: 2288 // There should be no records in the top-level of blocks. 2289 2290 // The ranlib in Xcode 4 will align archive members by appending newlines 2291 // to the end of them. If this file size is a multiple of 4 but not 8, we 2292 // have to read and ignore these final 4 bytes :-( 2293 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2294 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2295 Stream.AtEndOfStream()) 2296 return std::error_code(); 2297 2298 return Error(BitcodeError::InvalidRecord); 2299 } 2300 } 2301 } 2302 2303 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2304 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2305 return Error(BitcodeError::InvalidRecord); 2306 2307 SmallVector<uint64_t, 64> Record; 2308 2309 std::string Triple; 2310 // Read all the records for this module. 2311 while (1) { 2312 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2313 2314 switch (Entry.Kind) { 2315 case BitstreamEntry::SubBlock: // Handled for us already. 2316 case BitstreamEntry::Error: 2317 return Error(BitcodeError::MalformedBlock); 2318 case BitstreamEntry::EndBlock: 2319 return Triple; 2320 case BitstreamEntry::Record: 2321 // The interesting case. 2322 break; 2323 } 2324 2325 // Read a record. 2326 switch (Stream.readRecord(Entry.ID, Record)) { 2327 default: break; // Default behavior, ignore unknown content. 2328 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2329 std::string S; 2330 if (ConvertToString(Record, 0, S)) 2331 return Error(BitcodeError::InvalidRecord); 2332 Triple = S; 2333 break; 2334 } 2335 } 2336 Record.clear(); 2337 } 2338 llvm_unreachable("Exit infinite loop"); 2339 } 2340 2341 ErrorOr<std::string> BitcodeReader::parseTriple() { 2342 if (std::error_code EC = InitStream()) 2343 return EC; 2344 2345 // Sniff for the signature. 2346 if (Stream.Read(8) != 'B' || 2347 Stream.Read(8) != 'C' || 2348 Stream.Read(4) != 0x0 || 2349 Stream.Read(4) != 0xC || 2350 Stream.Read(4) != 0xE || 2351 Stream.Read(4) != 0xD) 2352 return Error(BitcodeError::InvalidBitcodeSignature); 2353 2354 // We expect a number of well-defined blocks, though we don't necessarily 2355 // need to understand them all. 2356 while (1) { 2357 BitstreamEntry Entry = Stream.advance(); 2358 2359 switch (Entry.Kind) { 2360 case BitstreamEntry::Error: 2361 return Error(BitcodeError::MalformedBlock); 2362 case BitstreamEntry::EndBlock: 2363 return std::error_code(); 2364 2365 case BitstreamEntry::SubBlock: 2366 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2367 return parseModuleTriple(); 2368 2369 // Ignore other sub-blocks. 2370 if (Stream.SkipBlock()) 2371 return Error(BitcodeError::MalformedBlock); 2372 continue; 2373 2374 case BitstreamEntry::Record: 2375 Stream.skipRecord(Entry.ID); 2376 continue; 2377 } 2378 } 2379 } 2380 2381 /// ParseMetadataAttachment - Parse metadata attachments. 2382 std::error_code BitcodeReader::ParseMetadataAttachment() { 2383 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2384 return Error(BitcodeError::InvalidRecord); 2385 2386 SmallVector<uint64_t, 64> Record; 2387 while (1) { 2388 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2389 2390 switch (Entry.Kind) { 2391 case BitstreamEntry::SubBlock: // Handled for us already. 2392 case BitstreamEntry::Error: 2393 return Error(BitcodeError::MalformedBlock); 2394 case BitstreamEntry::EndBlock: 2395 return std::error_code(); 2396 case BitstreamEntry::Record: 2397 // The interesting case. 2398 break; 2399 } 2400 2401 // Read a metadata attachment record. 2402 Record.clear(); 2403 switch (Stream.readRecord(Entry.ID, Record)) { 2404 default: // Default behavior: ignore. 2405 break; 2406 case bitc::METADATA_ATTACHMENT: { 2407 unsigned RecordLength = Record.size(); 2408 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2409 return Error(BitcodeError::InvalidRecord); 2410 Instruction *Inst = InstructionList[Record[0]]; 2411 for (unsigned i = 1; i != RecordLength; i = i+2) { 2412 unsigned Kind = Record[i]; 2413 DenseMap<unsigned, unsigned>::iterator I = 2414 MDKindMap.find(Kind); 2415 if (I == MDKindMap.end()) 2416 return Error(BitcodeError::InvalidID); 2417 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2418 if (isa<LocalAsMetadata>(Node)) 2419 // Drop the attachment. This used to be legal, but there's no 2420 // upgrade path. 2421 break; 2422 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2423 if (I->second == LLVMContext::MD_tbaa) 2424 InstsWithTBAATag.push_back(Inst); 2425 } 2426 break; 2427 } 2428 } 2429 } 2430 } 2431 2432 /// ParseFunctionBody - Lazily parse the specified function body block. 2433 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2434 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2435 return Error(BitcodeError::InvalidRecord); 2436 2437 InstructionList.clear(); 2438 unsigned ModuleValueListSize = ValueList.size(); 2439 unsigned ModuleMDValueListSize = MDValueList.size(); 2440 2441 // Add all the function arguments to the value table. 2442 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2443 ValueList.push_back(I); 2444 2445 unsigned NextValueNo = ValueList.size(); 2446 BasicBlock *CurBB = nullptr; 2447 unsigned CurBBNo = 0; 2448 2449 DebugLoc LastLoc; 2450 2451 // Read all the records. 2452 SmallVector<uint64_t, 64> Record; 2453 while (1) { 2454 BitstreamEntry Entry = Stream.advance(); 2455 2456 switch (Entry.Kind) { 2457 case BitstreamEntry::Error: 2458 return Error(BitcodeError::MalformedBlock); 2459 case BitstreamEntry::EndBlock: 2460 goto OutOfRecordLoop; 2461 2462 case BitstreamEntry::SubBlock: 2463 switch (Entry.ID) { 2464 default: // Skip unknown content. 2465 if (Stream.SkipBlock()) 2466 return Error(BitcodeError::InvalidRecord); 2467 break; 2468 case bitc::CONSTANTS_BLOCK_ID: 2469 if (std::error_code EC = ParseConstants()) 2470 return EC; 2471 NextValueNo = ValueList.size(); 2472 break; 2473 case bitc::VALUE_SYMTAB_BLOCK_ID: 2474 if (std::error_code EC = ParseValueSymbolTable()) 2475 return EC; 2476 break; 2477 case bitc::METADATA_ATTACHMENT_ID: 2478 if (std::error_code EC = ParseMetadataAttachment()) 2479 return EC; 2480 break; 2481 case bitc::METADATA_BLOCK_ID: 2482 if (std::error_code EC = ParseMetadata()) 2483 return EC; 2484 break; 2485 case bitc::USELIST_BLOCK_ID: 2486 if (std::error_code EC = ParseUseLists()) 2487 return EC; 2488 break; 2489 } 2490 continue; 2491 2492 case BitstreamEntry::Record: 2493 // The interesting case. 2494 break; 2495 } 2496 2497 // Read a record. 2498 Record.clear(); 2499 Instruction *I = nullptr; 2500 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2501 switch (BitCode) { 2502 default: // Default behavior: reject 2503 return Error(BitcodeError::InvalidValue); 2504 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2505 if (Record.size() < 1 || Record[0] == 0) 2506 return Error(BitcodeError::InvalidRecord); 2507 // Create all the basic blocks for the function. 2508 FunctionBBs.resize(Record[0]); 2509 2510 // See if anything took the address of blocks in this function. 2511 auto BBFRI = BasicBlockFwdRefs.find(F); 2512 if (BBFRI == BasicBlockFwdRefs.end()) { 2513 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2514 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2515 } else { 2516 auto &BBRefs = BBFRI->second; 2517 // Check for invalid basic block references. 2518 if (BBRefs.size() > FunctionBBs.size()) 2519 return Error(BitcodeError::InvalidID); 2520 assert(!BBRefs.empty() && "Unexpected empty array"); 2521 assert(!BBRefs.front() && "Invalid reference to entry block"); 2522 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2523 ++I) 2524 if (I < RE && BBRefs[I]) { 2525 BBRefs[I]->insertInto(F); 2526 FunctionBBs[I] = BBRefs[I]; 2527 } else { 2528 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2529 } 2530 2531 // Erase from the table. 2532 BasicBlockFwdRefs.erase(BBFRI); 2533 } 2534 2535 CurBB = FunctionBBs[0]; 2536 continue; 2537 } 2538 2539 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2540 // This record indicates that the last instruction is at the same 2541 // location as the previous instruction with a location. 2542 I = nullptr; 2543 2544 // Get the last instruction emitted. 2545 if (CurBB && !CurBB->empty()) 2546 I = &CurBB->back(); 2547 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2548 !FunctionBBs[CurBBNo-1]->empty()) 2549 I = &FunctionBBs[CurBBNo-1]->back(); 2550 2551 if (!I) 2552 return Error(BitcodeError::InvalidRecord); 2553 I->setDebugLoc(LastLoc); 2554 I = nullptr; 2555 continue; 2556 2557 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2558 I = nullptr; // Get the last instruction emitted. 2559 if (CurBB && !CurBB->empty()) 2560 I = &CurBB->back(); 2561 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2562 !FunctionBBs[CurBBNo-1]->empty()) 2563 I = &FunctionBBs[CurBBNo-1]->back(); 2564 if (!I || Record.size() < 4) 2565 return Error(BitcodeError::InvalidRecord); 2566 2567 unsigned Line = Record[0], Col = Record[1]; 2568 unsigned ScopeID = Record[2], IAID = Record[3]; 2569 2570 MDNode *Scope = nullptr, *IA = nullptr; 2571 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2572 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2573 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2574 I->setDebugLoc(LastLoc); 2575 I = nullptr; 2576 continue; 2577 } 2578 2579 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2580 unsigned OpNum = 0; 2581 Value *LHS, *RHS; 2582 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2583 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2584 OpNum+1 > Record.size()) 2585 return Error(BitcodeError::InvalidRecord); 2586 2587 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2588 if (Opc == -1) 2589 return Error(BitcodeError::InvalidRecord); 2590 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2591 InstructionList.push_back(I); 2592 if (OpNum < Record.size()) { 2593 if (Opc == Instruction::Add || 2594 Opc == Instruction::Sub || 2595 Opc == Instruction::Mul || 2596 Opc == Instruction::Shl) { 2597 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2598 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2599 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2600 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2601 } else if (Opc == Instruction::SDiv || 2602 Opc == Instruction::UDiv || 2603 Opc == Instruction::LShr || 2604 Opc == Instruction::AShr) { 2605 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2606 cast<BinaryOperator>(I)->setIsExact(true); 2607 } else if (isa<FPMathOperator>(I)) { 2608 FastMathFlags FMF; 2609 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2610 FMF.setUnsafeAlgebra(); 2611 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2612 FMF.setNoNaNs(); 2613 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2614 FMF.setNoInfs(); 2615 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2616 FMF.setNoSignedZeros(); 2617 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2618 FMF.setAllowReciprocal(); 2619 if (FMF.any()) 2620 I->setFastMathFlags(FMF); 2621 } 2622 2623 } 2624 break; 2625 } 2626 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2627 unsigned OpNum = 0; 2628 Value *Op; 2629 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2630 OpNum+2 != Record.size()) 2631 return Error(BitcodeError::InvalidRecord); 2632 2633 Type *ResTy = getTypeByID(Record[OpNum]); 2634 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2635 if (Opc == -1 || !ResTy) 2636 return Error(BitcodeError::InvalidRecord); 2637 Instruction *Temp = nullptr; 2638 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2639 if (Temp) { 2640 InstructionList.push_back(Temp); 2641 CurBB->getInstList().push_back(Temp); 2642 } 2643 } else { 2644 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2645 } 2646 InstructionList.push_back(I); 2647 break; 2648 } 2649 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2650 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2651 unsigned OpNum = 0; 2652 Value *BasePtr; 2653 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2654 return Error(BitcodeError::InvalidRecord); 2655 2656 SmallVector<Value*, 16> GEPIdx; 2657 while (OpNum != Record.size()) { 2658 Value *Op; 2659 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2660 return Error(BitcodeError::InvalidRecord); 2661 GEPIdx.push_back(Op); 2662 } 2663 2664 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2665 InstructionList.push_back(I); 2666 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2667 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2668 break; 2669 } 2670 2671 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2672 // EXTRACTVAL: [opty, opval, n x indices] 2673 unsigned OpNum = 0; 2674 Value *Agg; 2675 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2676 return Error(BitcodeError::InvalidRecord); 2677 2678 SmallVector<unsigned, 4> EXTRACTVALIdx; 2679 for (unsigned RecSize = Record.size(); 2680 OpNum != RecSize; ++OpNum) { 2681 uint64_t Index = Record[OpNum]; 2682 if ((unsigned)Index != Index) 2683 return Error(BitcodeError::InvalidValue); 2684 EXTRACTVALIdx.push_back((unsigned)Index); 2685 } 2686 2687 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2688 InstructionList.push_back(I); 2689 break; 2690 } 2691 2692 case bitc::FUNC_CODE_INST_INSERTVAL: { 2693 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2694 unsigned OpNum = 0; 2695 Value *Agg; 2696 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2697 return Error(BitcodeError::InvalidRecord); 2698 Value *Val; 2699 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2700 return Error(BitcodeError::InvalidRecord); 2701 2702 SmallVector<unsigned, 4> INSERTVALIdx; 2703 for (unsigned RecSize = Record.size(); 2704 OpNum != RecSize; ++OpNum) { 2705 uint64_t Index = Record[OpNum]; 2706 if ((unsigned)Index != Index) 2707 return Error(BitcodeError::InvalidValue); 2708 INSERTVALIdx.push_back((unsigned)Index); 2709 } 2710 2711 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2712 InstructionList.push_back(I); 2713 break; 2714 } 2715 2716 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2717 // obsolete form of select 2718 // handles select i1 ... in old bitcode 2719 unsigned OpNum = 0; 2720 Value *TrueVal, *FalseVal, *Cond; 2721 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2722 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2723 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2724 return Error(BitcodeError::InvalidRecord); 2725 2726 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2727 InstructionList.push_back(I); 2728 break; 2729 } 2730 2731 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2732 // new form of select 2733 // handles select i1 or select [N x i1] 2734 unsigned OpNum = 0; 2735 Value *TrueVal, *FalseVal, *Cond; 2736 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2737 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2738 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2739 return Error(BitcodeError::InvalidRecord); 2740 2741 // select condition can be either i1 or [N x i1] 2742 if (VectorType* vector_type = 2743 dyn_cast<VectorType>(Cond->getType())) { 2744 // expect <n x i1> 2745 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2746 return Error(BitcodeError::InvalidTypeForValue); 2747 } else { 2748 // expect i1 2749 if (Cond->getType() != Type::getInt1Ty(Context)) 2750 return Error(BitcodeError::InvalidTypeForValue); 2751 } 2752 2753 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2754 InstructionList.push_back(I); 2755 break; 2756 } 2757 2758 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2759 unsigned OpNum = 0; 2760 Value *Vec, *Idx; 2761 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2762 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2763 return Error(BitcodeError::InvalidRecord); 2764 I = ExtractElementInst::Create(Vec, Idx); 2765 InstructionList.push_back(I); 2766 break; 2767 } 2768 2769 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2770 unsigned OpNum = 0; 2771 Value *Vec, *Elt, *Idx; 2772 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2773 popValue(Record, OpNum, NextValueNo, 2774 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2775 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2776 return Error(BitcodeError::InvalidRecord); 2777 I = InsertElementInst::Create(Vec, Elt, Idx); 2778 InstructionList.push_back(I); 2779 break; 2780 } 2781 2782 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2783 unsigned OpNum = 0; 2784 Value *Vec1, *Vec2, *Mask; 2785 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2786 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2787 return Error(BitcodeError::InvalidRecord); 2788 2789 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2790 return Error(BitcodeError::InvalidRecord); 2791 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2792 InstructionList.push_back(I); 2793 break; 2794 } 2795 2796 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2797 // Old form of ICmp/FCmp returning bool 2798 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2799 // both legal on vectors but had different behaviour. 2800 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2801 // FCmp/ICmp returning bool or vector of bool 2802 2803 unsigned OpNum = 0; 2804 Value *LHS, *RHS; 2805 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2806 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2807 OpNum+1 != Record.size()) 2808 return Error(BitcodeError::InvalidRecord); 2809 2810 if (LHS->getType()->isFPOrFPVectorTy()) 2811 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2812 else 2813 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2814 InstructionList.push_back(I); 2815 break; 2816 } 2817 2818 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2819 { 2820 unsigned Size = Record.size(); 2821 if (Size == 0) { 2822 I = ReturnInst::Create(Context); 2823 InstructionList.push_back(I); 2824 break; 2825 } 2826 2827 unsigned OpNum = 0; 2828 Value *Op = nullptr; 2829 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2830 return Error(BitcodeError::InvalidRecord); 2831 if (OpNum != Record.size()) 2832 return Error(BitcodeError::InvalidRecord); 2833 2834 I = ReturnInst::Create(Context, Op); 2835 InstructionList.push_back(I); 2836 break; 2837 } 2838 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2839 if (Record.size() != 1 && Record.size() != 3) 2840 return Error(BitcodeError::InvalidRecord); 2841 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2842 if (!TrueDest) 2843 return Error(BitcodeError::InvalidRecord); 2844 2845 if (Record.size() == 1) { 2846 I = BranchInst::Create(TrueDest); 2847 InstructionList.push_back(I); 2848 } 2849 else { 2850 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2851 Value *Cond = getValue(Record, 2, NextValueNo, 2852 Type::getInt1Ty(Context)); 2853 if (!FalseDest || !Cond) 2854 return Error(BitcodeError::InvalidRecord); 2855 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2856 InstructionList.push_back(I); 2857 } 2858 break; 2859 } 2860 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2861 // Check magic 2862 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2863 // "New" SwitchInst format with case ranges. The changes to write this 2864 // format were reverted but we still recognize bitcode that uses it. 2865 // Hopefully someday we will have support for case ranges and can use 2866 // this format again. 2867 2868 Type *OpTy = getTypeByID(Record[1]); 2869 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2870 2871 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2872 BasicBlock *Default = getBasicBlock(Record[3]); 2873 if (!OpTy || !Cond || !Default) 2874 return Error(BitcodeError::InvalidRecord); 2875 2876 unsigned NumCases = Record[4]; 2877 2878 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2879 InstructionList.push_back(SI); 2880 2881 unsigned CurIdx = 5; 2882 for (unsigned i = 0; i != NumCases; ++i) { 2883 SmallVector<ConstantInt*, 1> CaseVals; 2884 unsigned NumItems = Record[CurIdx++]; 2885 for (unsigned ci = 0; ci != NumItems; ++ci) { 2886 bool isSingleNumber = Record[CurIdx++]; 2887 2888 APInt Low; 2889 unsigned ActiveWords = 1; 2890 if (ValueBitWidth > 64) 2891 ActiveWords = Record[CurIdx++]; 2892 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2893 ValueBitWidth); 2894 CurIdx += ActiveWords; 2895 2896 if (!isSingleNumber) { 2897 ActiveWords = 1; 2898 if (ValueBitWidth > 64) 2899 ActiveWords = Record[CurIdx++]; 2900 APInt High = 2901 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2902 ValueBitWidth); 2903 CurIdx += ActiveWords; 2904 2905 // FIXME: It is not clear whether values in the range should be 2906 // compared as signed or unsigned values. The partially 2907 // implemented changes that used this format in the past used 2908 // unsigned comparisons. 2909 for ( ; Low.ule(High); ++Low) 2910 CaseVals.push_back(ConstantInt::get(Context, Low)); 2911 } else 2912 CaseVals.push_back(ConstantInt::get(Context, Low)); 2913 } 2914 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2915 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2916 cve = CaseVals.end(); cvi != cve; ++cvi) 2917 SI->addCase(*cvi, DestBB); 2918 } 2919 I = SI; 2920 break; 2921 } 2922 2923 // Old SwitchInst format without case ranges. 2924 2925 if (Record.size() < 3 || (Record.size() & 1) == 0) 2926 return Error(BitcodeError::InvalidRecord); 2927 Type *OpTy = getTypeByID(Record[0]); 2928 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2929 BasicBlock *Default = getBasicBlock(Record[2]); 2930 if (!OpTy || !Cond || !Default) 2931 return Error(BitcodeError::InvalidRecord); 2932 unsigned NumCases = (Record.size()-3)/2; 2933 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2934 InstructionList.push_back(SI); 2935 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2936 ConstantInt *CaseVal = 2937 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2938 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2939 if (!CaseVal || !DestBB) { 2940 delete SI; 2941 return Error(BitcodeError::InvalidRecord); 2942 } 2943 SI->addCase(CaseVal, DestBB); 2944 } 2945 I = SI; 2946 break; 2947 } 2948 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2949 if (Record.size() < 2) 2950 return Error(BitcodeError::InvalidRecord); 2951 Type *OpTy = getTypeByID(Record[0]); 2952 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2953 if (!OpTy || !Address) 2954 return Error(BitcodeError::InvalidRecord); 2955 unsigned NumDests = Record.size()-2; 2956 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2957 InstructionList.push_back(IBI); 2958 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2959 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2960 IBI->addDestination(DestBB); 2961 } else { 2962 delete IBI; 2963 return Error(BitcodeError::InvalidRecord); 2964 } 2965 } 2966 I = IBI; 2967 break; 2968 } 2969 2970 case bitc::FUNC_CODE_INST_INVOKE: { 2971 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2972 if (Record.size() < 4) 2973 return Error(BitcodeError::InvalidRecord); 2974 AttributeSet PAL = getAttributes(Record[0]); 2975 unsigned CCInfo = Record[1]; 2976 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2977 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2978 2979 unsigned OpNum = 4; 2980 Value *Callee; 2981 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2982 return Error(BitcodeError::InvalidRecord); 2983 2984 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2985 FunctionType *FTy = !CalleeTy ? nullptr : 2986 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2987 2988 // Check that the right number of fixed parameters are here. 2989 if (!FTy || !NormalBB || !UnwindBB || 2990 Record.size() < OpNum+FTy->getNumParams()) 2991 return Error(BitcodeError::InvalidRecord); 2992 2993 SmallVector<Value*, 16> Ops; 2994 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2995 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2996 FTy->getParamType(i))); 2997 if (!Ops.back()) 2998 return Error(BitcodeError::InvalidRecord); 2999 } 3000 3001 if (!FTy->isVarArg()) { 3002 if (Record.size() != OpNum) 3003 return Error(BitcodeError::InvalidRecord); 3004 } else { 3005 // Read type/value pairs for varargs params. 3006 while (OpNum != Record.size()) { 3007 Value *Op; 3008 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3009 return Error(BitcodeError::InvalidRecord); 3010 Ops.push_back(Op); 3011 } 3012 } 3013 3014 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3015 InstructionList.push_back(I); 3016 cast<InvokeInst>(I)->setCallingConv( 3017 static_cast<CallingConv::ID>(CCInfo)); 3018 cast<InvokeInst>(I)->setAttributes(PAL); 3019 break; 3020 } 3021 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3022 unsigned Idx = 0; 3023 Value *Val = nullptr; 3024 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3025 return Error(BitcodeError::InvalidRecord); 3026 I = ResumeInst::Create(Val); 3027 InstructionList.push_back(I); 3028 break; 3029 } 3030 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3031 I = new UnreachableInst(Context); 3032 InstructionList.push_back(I); 3033 break; 3034 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3035 if (Record.size() < 1 || ((Record.size()-1)&1)) 3036 return Error(BitcodeError::InvalidRecord); 3037 Type *Ty = getTypeByID(Record[0]); 3038 if (!Ty) 3039 return Error(BitcodeError::InvalidRecord); 3040 3041 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3042 InstructionList.push_back(PN); 3043 3044 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3045 Value *V; 3046 // With the new function encoding, it is possible that operands have 3047 // negative IDs (for forward references). Use a signed VBR 3048 // representation to keep the encoding small. 3049 if (UseRelativeIDs) 3050 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3051 else 3052 V = getValue(Record, 1+i, NextValueNo, Ty); 3053 BasicBlock *BB = getBasicBlock(Record[2+i]); 3054 if (!V || !BB) 3055 return Error(BitcodeError::InvalidRecord); 3056 PN->addIncoming(V, BB); 3057 } 3058 I = PN; 3059 break; 3060 } 3061 3062 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3063 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3064 unsigned Idx = 0; 3065 if (Record.size() < 4) 3066 return Error(BitcodeError::InvalidRecord); 3067 Type *Ty = getTypeByID(Record[Idx++]); 3068 if (!Ty) 3069 return Error(BitcodeError::InvalidRecord); 3070 Value *PersFn = nullptr; 3071 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3072 return Error(BitcodeError::InvalidRecord); 3073 3074 bool IsCleanup = !!Record[Idx++]; 3075 unsigned NumClauses = Record[Idx++]; 3076 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3077 LP->setCleanup(IsCleanup); 3078 for (unsigned J = 0; J != NumClauses; ++J) { 3079 LandingPadInst::ClauseType CT = 3080 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3081 Value *Val; 3082 3083 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3084 delete LP; 3085 return Error(BitcodeError::InvalidRecord); 3086 } 3087 3088 assert((CT != LandingPadInst::Catch || 3089 !isa<ArrayType>(Val->getType())) && 3090 "Catch clause has a invalid type!"); 3091 assert((CT != LandingPadInst::Filter || 3092 isa<ArrayType>(Val->getType())) && 3093 "Filter clause has invalid type!"); 3094 LP->addClause(cast<Constant>(Val)); 3095 } 3096 3097 I = LP; 3098 InstructionList.push_back(I); 3099 break; 3100 } 3101 3102 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3103 if (Record.size() != 4) 3104 return Error(BitcodeError::InvalidRecord); 3105 PointerType *Ty = 3106 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3107 Type *OpTy = getTypeByID(Record[1]); 3108 Value *Size = getFnValueByID(Record[2], OpTy); 3109 unsigned AlignRecord = Record[3]; 3110 bool InAlloca = AlignRecord & (1 << 5); 3111 unsigned Align = AlignRecord & ((1 << 5) - 1); 3112 if (!Ty || !Size) 3113 return Error(BitcodeError::InvalidRecord); 3114 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3115 AI->setUsedWithInAlloca(InAlloca); 3116 I = AI; 3117 InstructionList.push_back(I); 3118 break; 3119 } 3120 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3121 unsigned OpNum = 0; 3122 Value *Op; 3123 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3124 OpNum+2 != Record.size()) 3125 return Error(BitcodeError::InvalidRecord); 3126 3127 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3128 InstructionList.push_back(I); 3129 break; 3130 } 3131 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3132 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3133 unsigned OpNum = 0; 3134 Value *Op; 3135 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3136 OpNum+4 != Record.size()) 3137 return Error(BitcodeError::InvalidRecord); 3138 3139 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3140 if (Ordering == NotAtomic || Ordering == Release || 3141 Ordering == AcquireRelease) 3142 return Error(BitcodeError::InvalidRecord); 3143 if (Ordering != NotAtomic && Record[OpNum] == 0) 3144 return Error(BitcodeError::InvalidRecord); 3145 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3146 3147 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3148 Ordering, SynchScope); 3149 InstructionList.push_back(I); 3150 break; 3151 } 3152 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3153 unsigned OpNum = 0; 3154 Value *Val, *Ptr; 3155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3156 popValue(Record, OpNum, NextValueNo, 3157 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3158 OpNum+2 != Record.size()) 3159 return Error(BitcodeError::InvalidRecord); 3160 3161 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3162 InstructionList.push_back(I); 3163 break; 3164 } 3165 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3166 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3167 unsigned OpNum = 0; 3168 Value *Val, *Ptr; 3169 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3170 popValue(Record, OpNum, NextValueNo, 3171 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3172 OpNum+4 != Record.size()) 3173 return Error(BitcodeError::InvalidRecord); 3174 3175 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3176 if (Ordering == NotAtomic || Ordering == Acquire || 3177 Ordering == AcquireRelease) 3178 return Error(BitcodeError::InvalidRecord); 3179 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3180 if (Ordering != NotAtomic && Record[OpNum] == 0) 3181 return Error(BitcodeError::InvalidRecord); 3182 3183 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3184 Ordering, SynchScope); 3185 InstructionList.push_back(I); 3186 break; 3187 } 3188 case bitc::FUNC_CODE_INST_CMPXCHG: { 3189 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3190 // failureordering?, isweak?] 3191 unsigned OpNum = 0; 3192 Value *Ptr, *Cmp, *New; 3193 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3194 popValue(Record, OpNum, NextValueNo, 3195 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3196 popValue(Record, OpNum, NextValueNo, 3197 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3198 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3199 return Error(BitcodeError::InvalidRecord); 3200 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3201 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3202 return Error(BitcodeError::InvalidRecord); 3203 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3204 3205 AtomicOrdering FailureOrdering; 3206 if (Record.size() < 7) 3207 FailureOrdering = 3208 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3209 else 3210 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3211 3212 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3213 SynchScope); 3214 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3215 3216 if (Record.size() < 8) { 3217 // Before weak cmpxchgs existed, the instruction simply returned the 3218 // value loaded from memory, so bitcode files from that era will be 3219 // expecting the first component of a modern cmpxchg. 3220 CurBB->getInstList().push_back(I); 3221 I = ExtractValueInst::Create(I, 0); 3222 } else { 3223 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3224 } 3225 3226 InstructionList.push_back(I); 3227 break; 3228 } 3229 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3230 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3231 unsigned OpNum = 0; 3232 Value *Ptr, *Val; 3233 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3234 popValue(Record, OpNum, NextValueNo, 3235 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3236 OpNum+4 != Record.size()) 3237 return Error(BitcodeError::InvalidRecord); 3238 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3239 if (Operation < AtomicRMWInst::FIRST_BINOP || 3240 Operation > AtomicRMWInst::LAST_BINOP) 3241 return Error(BitcodeError::InvalidRecord); 3242 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3243 if (Ordering == NotAtomic || Ordering == Unordered) 3244 return Error(BitcodeError::InvalidRecord); 3245 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3246 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3247 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3248 InstructionList.push_back(I); 3249 break; 3250 } 3251 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3252 if (2 != Record.size()) 3253 return Error(BitcodeError::InvalidRecord); 3254 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3255 if (Ordering == NotAtomic || Ordering == Unordered || 3256 Ordering == Monotonic) 3257 return Error(BitcodeError::InvalidRecord); 3258 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3259 I = new FenceInst(Context, Ordering, SynchScope); 3260 InstructionList.push_back(I); 3261 break; 3262 } 3263 case bitc::FUNC_CODE_INST_CALL: { 3264 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3265 if (Record.size() < 3) 3266 return Error(BitcodeError::InvalidRecord); 3267 3268 AttributeSet PAL = getAttributes(Record[0]); 3269 unsigned CCInfo = Record[1]; 3270 3271 unsigned OpNum = 2; 3272 Value *Callee; 3273 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3274 return Error(BitcodeError::InvalidRecord); 3275 3276 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3277 FunctionType *FTy = nullptr; 3278 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3279 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3280 return Error(BitcodeError::InvalidRecord); 3281 3282 SmallVector<Value*, 16> Args; 3283 // Read the fixed params. 3284 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3285 if (FTy->getParamType(i)->isLabelTy()) 3286 Args.push_back(getBasicBlock(Record[OpNum])); 3287 else 3288 Args.push_back(getValue(Record, OpNum, NextValueNo, 3289 FTy->getParamType(i))); 3290 if (!Args.back()) 3291 return Error(BitcodeError::InvalidRecord); 3292 } 3293 3294 // Read type/value pairs for varargs params. 3295 if (!FTy->isVarArg()) { 3296 if (OpNum != Record.size()) 3297 return Error(BitcodeError::InvalidRecord); 3298 } else { 3299 while (OpNum != Record.size()) { 3300 Value *Op; 3301 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3302 return Error(BitcodeError::InvalidRecord); 3303 Args.push_back(Op); 3304 } 3305 } 3306 3307 I = CallInst::Create(Callee, Args); 3308 InstructionList.push_back(I); 3309 cast<CallInst>(I)->setCallingConv( 3310 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3311 CallInst::TailCallKind TCK = CallInst::TCK_None; 3312 if (CCInfo & 1) 3313 TCK = CallInst::TCK_Tail; 3314 if (CCInfo & (1 << 14)) 3315 TCK = CallInst::TCK_MustTail; 3316 cast<CallInst>(I)->setTailCallKind(TCK); 3317 cast<CallInst>(I)->setAttributes(PAL); 3318 break; 3319 } 3320 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3321 if (Record.size() < 3) 3322 return Error(BitcodeError::InvalidRecord); 3323 Type *OpTy = getTypeByID(Record[0]); 3324 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3325 Type *ResTy = getTypeByID(Record[2]); 3326 if (!OpTy || !Op || !ResTy) 3327 return Error(BitcodeError::InvalidRecord); 3328 I = new VAArgInst(Op, ResTy); 3329 InstructionList.push_back(I); 3330 break; 3331 } 3332 } 3333 3334 // Add instruction to end of current BB. If there is no current BB, reject 3335 // this file. 3336 if (!CurBB) { 3337 delete I; 3338 return Error(BitcodeError::InvalidInstructionWithNoBB); 3339 } 3340 CurBB->getInstList().push_back(I); 3341 3342 // If this was a terminator instruction, move to the next block. 3343 if (isa<TerminatorInst>(I)) { 3344 ++CurBBNo; 3345 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3346 } 3347 3348 // Non-void values get registered in the value table for future use. 3349 if (I && !I->getType()->isVoidTy()) 3350 ValueList.AssignValue(I, NextValueNo++); 3351 } 3352 3353 OutOfRecordLoop: 3354 3355 // Check the function list for unresolved values. 3356 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3357 if (!A->getParent()) { 3358 // We found at least one unresolved value. Nuke them all to avoid leaks. 3359 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3360 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3361 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3362 delete A; 3363 } 3364 } 3365 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3366 } 3367 } 3368 3369 // FIXME: Check for unresolved forward-declared metadata references 3370 // and clean up leaks. 3371 3372 // Trim the value list down to the size it was before we parsed this function. 3373 ValueList.shrinkTo(ModuleValueListSize); 3374 MDValueList.shrinkTo(ModuleMDValueListSize); 3375 std::vector<BasicBlock*>().swap(FunctionBBs); 3376 return std::error_code(); 3377 } 3378 3379 /// Find the function body in the bitcode stream 3380 std::error_code BitcodeReader::FindFunctionInStream( 3381 Function *F, 3382 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3383 while (DeferredFunctionInfoIterator->second == 0) { 3384 if (Stream.AtEndOfStream()) 3385 return Error(BitcodeError::CouldNotFindFunctionInStream); 3386 // ParseModule will parse the next body in the stream and set its 3387 // position in the DeferredFunctionInfo map. 3388 if (std::error_code EC = ParseModule(true)) 3389 return EC; 3390 } 3391 return std::error_code(); 3392 } 3393 3394 //===----------------------------------------------------------------------===// 3395 // GVMaterializer implementation 3396 //===----------------------------------------------------------------------===// 3397 3398 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3399 3400 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3401 Function *F = dyn_cast<Function>(GV); 3402 // If it's not a function or is already material, ignore the request. 3403 if (!F || !F->isMaterializable()) 3404 return std::error_code(); 3405 3406 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3407 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3408 // If its position is recorded as 0, its body is somewhere in the stream 3409 // but we haven't seen it yet. 3410 if (DFII->second == 0 && LazyStreamer) 3411 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3412 return EC; 3413 3414 // Move the bit stream to the saved position of the deferred function body. 3415 Stream.JumpToBit(DFII->second); 3416 3417 if (std::error_code EC = ParseFunctionBody(F)) 3418 return EC; 3419 F->setIsMaterializable(false); 3420 3421 // Upgrade any old intrinsic calls in the function. 3422 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3423 E = UpgradedIntrinsics.end(); I != E; ++I) { 3424 if (I->first != I->second) { 3425 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3426 UI != UE;) { 3427 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3428 UpgradeIntrinsicCall(CI, I->second); 3429 } 3430 } 3431 } 3432 3433 // Bring in any functions that this function forward-referenced via 3434 // blockaddresses. 3435 return materializeForwardReferencedFunctions(); 3436 } 3437 3438 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3439 const Function *F = dyn_cast<Function>(GV); 3440 if (!F || F->isDeclaration()) 3441 return false; 3442 3443 // Dematerializing F would leave dangling references that wouldn't be 3444 // reconnected on re-materialization. 3445 if (BlockAddressesTaken.count(F)) 3446 return false; 3447 3448 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3449 } 3450 3451 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3452 Function *F = dyn_cast<Function>(GV); 3453 // If this function isn't dematerializable, this is a noop. 3454 if (!F || !isDematerializable(F)) 3455 return; 3456 3457 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3458 3459 // Just forget the function body, we can remat it later. 3460 F->dropAllReferences(); 3461 F->setIsMaterializable(true); 3462 } 3463 3464 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3465 assert(M == TheModule && 3466 "Can only Materialize the Module this BitcodeReader is attached to."); 3467 3468 // Promise to materialize all forward references. 3469 WillMaterializeAllForwardRefs = true; 3470 3471 // Iterate over the module, deserializing any functions that are still on 3472 // disk. 3473 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3474 F != E; ++F) { 3475 if (std::error_code EC = materialize(F)) 3476 return EC; 3477 } 3478 // At this point, if there are any function bodies, the current bit is 3479 // pointing to the END_BLOCK record after them. Now make sure the rest 3480 // of the bits in the module have been read. 3481 if (NextUnreadBit) 3482 ParseModule(true); 3483 3484 // Check that all block address forward references got resolved (as we 3485 // promised above). 3486 if (!BasicBlockFwdRefs.empty()) 3487 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3488 3489 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3490 // delete the old functions to clean up. We can't do this unless the entire 3491 // module is materialized because there could always be another function body 3492 // with calls to the old function. 3493 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3494 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3495 if (I->first != I->second) { 3496 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3497 UI != UE;) { 3498 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3499 UpgradeIntrinsicCall(CI, I->second); 3500 } 3501 if (!I->first->use_empty()) 3502 I->first->replaceAllUsesWith(I->second); 3503 I->first->eraseFromParent(); 3504 } 3505 } 3506 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3507 3508 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3509 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3510 3511 UpgradeDebugInfo(*M); 3512 return std::error_code(); 3513 } 3514 3515 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3516 return IdentifiedStructTypes; 3517 } 3518 3519 std::error_code BitcodeReader::InitStream() { 3520 if (LazyStreamer) 3521 return InitLazyStream(); 3522 return InitStreamFromBuffer(); 3523 } 3524 3525 std::error_code BitcodeReader::InitStreamFromBuffer() { 3526 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3527 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3528 3529 if (Buffer->getBufferSize() & 3) 3530 return Error(BitcodeError::InvalidBitcodeSignature); 3531 3532 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3533 // The magic number is 0x0B17C0DE stored in little endian. 3534 if (isBitcodeWrapper(BufPtr, BufEnd)) 3535 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3536 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3537 3538 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3539 Stream.init(&*StreamFile); 3540 3541 return std::error_code(); 3542 } 3543 3544 std::error_code BitcodeReader::InitLazyStream() { 3545 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3546 // see it. 3547 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3548 StreamingMemoryObject &Bytes = *OwnedBytes; 3549 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3550 Stream.init(&*StreamFile); 3551 3552 unsigned char buf[16]; 3553 if (Bytes.readBytes(buf, 16, 0) != 16) 3554 return Error(BitcodeError::InvalidBitcodeSignature); 3555 3556 if (!isBitcode(buf, buf + 16)) 3557 return Error(BitcodeError::InvalidBitcodeSignature); 3558 3559 if (isBitcodeWrapper(buf, buf + 4)) { 3560 const unsigned char *bitcodeStart = buf; 3561 const unsigned char *bitcodeEnd = buf + 16; 3562 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3563 Bytes.dropLeadingBytes(bitcodeStart - buf); 3564 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3565 } 3566 return std::error_code(); 3567 } 3568 3569 namespace { 3570 class BitcodeErrorCategoryType : public std::error_category { 3571 const char *name() const LLVM_NOEXCEPT override { 3572 return "llvm.bitcode"; 3573 } 3574 std::string message(int IE) const override { 3575 BitcodeError E = static_cast<BitcodeError>(IE); 3576 switch (E) { 3577 case BitcodeError::ConflictingMETADATA_KINDRecords: 3578 return "Conflicting METADATA_KIND records"; 3579 case BitcodeError::CouldNotFindFunctionInStream: 3580 return "Could not find function in stream"; 3581 case BitcodeError::ExpectedConstant: 3582 return "Expected a constant"; 3583 case BitcodeError::InsufficientFunctionProtos: 3584 return "Insufficient function protos"; 3585 case BitcodeError::InvalidBitcodeSignature: 3586 return "Invalid bitcode signature"; 3587 case BitcodeError::InvalidBitcodeWrapperHeader: 3588 return "Invalid bitcode wrapper header"; 3589 case BitcodeError::InvalidConstantReference: 3590 return "Invalid ronstant reference"; 3591 case BitcodeError::InvalidID: 3592 return "Invalid ID"; 3593 case BitcodeError::InvalidInstructionWithNoBB: 3594 return "Invalid instruction with no BB"; 3595 case BitcodeError::InvalidRecord: 3596 return "Invalid record"; 3597 case BitcodeError::InvalidTypeForValue: 3598 return "Invalid type for value"; 3599 case BitcodeError::InvalidTYPETable: 3600 return "Invalid TYPE table"; 3601 case BitcodeError::InvalidType: 3602 return "Invalid type"; 3603 case BitcodeError::MalformedBlock: 3604 return "Malformed block"; 3605 case BitcodeError::MalformedGlobalInitializerSet: 3606 return "Malformed global initializer set"; 3607 case BitcodeError::InvalidMultipleBlocks: 3608 return "Invalid multiple blocks"; 3609 case BitcodeError::NeverResolvedValueFoundInFunction: 3610 return "Never resolved value found in function"; 3611 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3612 return "Never resolved function from blockaddress"; 3613 case BitcodeError::InvalidValue: 3614 return "Invalid value"; 3615 } 3616 llvm_unreachable("Unknown error type!"); 3617 } 3618 }; 3619 } 3620 3621 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3622 3623 const std::error_category &llvm::BitcodeErrorCategory() { 3624 return *ErrorCategory; 3625 } 3626 3627 //===----------------------------------------------------------------------===// 3628 // External interface 3629 //===----------------------------------------------------------------------===// 3630 3631 /// \brief Get a lazy one-at-time loading module from bitcode. 3632 /// 3633 /// This isn't always used in a lazy context. In particular, it's also used by 3634 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3635 /// in forward-referenced functions from block address references. 3636 /// 3637 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3638 /// materialize everything -- in particular, if this isn't truly lazy. 3639 static ErrorOr<Module *> 3640 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3641 LLVMContext &Context, bool WillMaterializeAll) { 3642 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3643 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 3644 M->setMaterializer(R); 3645 3646 auto cleanupOnError = [&](std::error_code EC) { 3647 R->releaseBuffer(); // Never take ownership on error. 3648 delete M; // Also deletes R. 3649 return EC; 3650 }; 3651 3652 if (std::error_code EC = R->ParseBitcodeInto(M)) 3653 return cleanupOnError(EC); 3654 3655 if (!WillMaterializeAll) 3656 // Resolve forward references from blockaddresses. 3657 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3658 return cleanupOnError(EC); 3659 3660 Buffer.release(); // The BitcodeReader owns it now. 3661 return M; 3662 } 3663 3664 ErrorOr<Module *> 3665 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3666 LLVMContext &Context) { 3667 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false); 3668 } 3669 3670 ErrorOr<std::unique_ptr<Module>> 3671 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3672 LLVMContext &Context) { 3673 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3674 BitcodeReader *R = new BitcodeReader(Streamer, Context); 3675 M->setMaterializer(R); 3676 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3677 return EC; 3678 return std::move(M); 3679 } 3680 3681 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 3682 LLVMContext &Context) { 3683 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3684 ErrorOr<Module *> ModuleOrErr = 3685 getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 3686 if (!ModuleOrErr) 3687 return ModuleOrErr; 3688 Module *M = ModuleOrErr.get(); 3689 // Read in the entire module, and destroy the BitcodeReader. 3690 if (std::error_code EC = M->materializeAllPermanently()) { 3691 delete M; 3692 return EC; 3693 } 3694 3695 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3696 // written. We must defer until the Module has been fully materialized. 3697 3698 return M; 3699 } 3700 3701 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 3702 LLVMContext &Context) { 3703 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3704 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 3705 ErrorOr<std::string> Triple = R->parseTriple(); 3706 if (Triple.getError()) 3707 return ""; 3708 return Triple.get(); 3709 } 3710