1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GVMaterializer.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/ManagedStatic.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <set> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 } // end anonymous namespace 103 104 static Error error(const Twine &Message) { 105 return make_error<StringError>( 106 Message, make_error_code(BitcodeError::CorruptedBitcode)); 107 } 108 109 /// Helper to read the header common to all bitcode files. 110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 111 // Sniff for the signature. 112 if (!Stream.canSkipToPos(4) || 113 Stream.Read(8) != 'B' || 114 Stream.Read(8) != 'C' || 115 Stream.Read(4) != 0x0 || 116 Stream.Read(4) != 0xC || 117 Stream.Read(4) != 0xE || 118 Stream.Read(4) != 0xD) 119 return false; 120 return true; 121 } 122 123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 124 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 125 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 126 127 if (Buffer.getBufferSize() & 3) 128 return error("Invalid bitcode signature"); 129 130 // If we have a wrapper header, parse it and ignore the non-bc file contents. 131 // The magic number is 0x0B17C0DE stored in little endian. 132 if (isBitcodeWrapper(BufPtr, BufEnd)) 133 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 134 return error("Invalid bitcode wrapper header"); 135 136 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 137 if (!hasValidBitcodeHeader(Stream)) 138 return error("Invalid bitcode signature"); 139 140 return std::move(Stream); 141 } 142 143 /// Convert a string from a record into an std::string, return true on failure. 144 template <typename StrTy> 145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 146 StrTy &Result) { 147 if (Idx > Record.size()) 148 return true; 149 150 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 151 Result += (char)Record[i]; 152 return false; 153 } 154 155 // Strip all the TBAA attachment for the module. 156 static void stripTBAA(Module *M) { 157 for (auto &F : *M) { 158 if (F.isMaterializable()) 159 continue; 160 for (auto &I : instructions(F)) 161 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 162 } 163 } 164 165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 166 /// "epoch" encoded in the bitcode, and return the producer name if any. 167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 168 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 169 return error("Invalid record"); 170 171 // Read all the records. 172 SmallVector<uint64_t, 64> Record; 173 174 std::string ProducerIdentification; 175 176 while (true) { 177 BitstreamEntry Entry = Stream.advance(); 178 179 switch (Entry.Kind) { 180 default: 181 case BitstreamEntry::Error: 182 return error("Malformed block"); 183 case BitstreamEntry::EndBlock: 184 return ProducerIdentification; 185 case BitstreamEntry::Record: 186 // The interesting case. 187 break; 188 } 189 190 // Read a record. 191 Record.clear(); 192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 193 switch (BitCode) { 194 default: // Default behavior: reject 195 return error("Invalid value"); 196 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 197 convertToString(Record, 0, ProducerIdentification); 198 break; 199 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 200 unsigned epoch = (unsigned)Record[0]; 201 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 202 return error( 203 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 204 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 205 } 206 } 207 } 208 } 209 } 210 211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 212 // We expect a number of well-defined blocks, though we don't necessarily 213 // need to understand them all. 214 while (true) { 215 if (Stream.AtEndOfStream()) 216 return ""; 217 218 BitstreamEntry Entry = Stream.advance(); 219 switch (Entry.Kind) { 220 case BitstreamEntry::EndBlock: 221 case BitstreamEntry::Error: 222 return error("Malformed block"); 223 224 case BitstreamEntry::SubBlock: 225 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 226 return readIdentificationBlock(Stream); 227 228 // Ignore other sub-blocks. 229 if (Stream.SkipBlock()) 230 return error("Malformed block"); 231 continue; 232 case BitstreamEntry::Record: 233 Stream.skipRecord(Entry.ID); 234 continue; 235 } 236 } 237 } 238 239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 240 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 241 return error("Invalid record"); 242 243 SmallVector<uint64_t, 64> Record; 244 // Read all the records for this module. 245 246 while (true) { 247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 248 249 switch (Entry.Kind) { 250 case BitstreamEntry::SubBlock: // Handled for us already. 251 case BitstreamEntry::Error: 252 return error("Malformed block"); 253 case BitstreamEntry::EndBlock: 254 return false; 255 case BitstreamEntry::Record: 256 // The interesting case. 257 break; 258 } 259 260 // Read a record. 261 switch (Stream.readRecord(Entry.ID, Record)) { 262 default: 263 break; // Default behavior, ignore unknown content. 264 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 265 std::string S; 266 if (convertToString(Record, 0, S)) 267 return error("Invalid record"); 268 // Check for the i386 and other (x86_64, ARM) conventions 269 if (S.find("__DATA,__objc_catlist") != std::string::npos || 270 S.find("__OBJC,__category") != std::string::npos) 271 return true; 272 break; 273 } 274 } 275 Record.clear(); 276 } 277 llvm_unreachable("Exit infinite loop"); 278 } 279 280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 281 // We expect a number of well-defined blocks, though we don't necessarily 282 // need to understand them all. 283 while (true) { 284 BitstreamEntry Entry = Stream.advance(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 292 case BitstreamEntry::SubBlock: 293 if (Entry.ID == bitc::MODULE_BLOCK_ID) 294 return hasObjCCategoryInModule(Stream); 295 296 // Ignore other sub-blocks. 297 if (Stream.SkipBlock()) 298 return error("Malformed block"); 299 continue; 300 301 case BitstreamEntry::Record: 302 Stream.skipRecord(Entry.ID); 303 continue; 304 } 305 } 306 } 307 308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 309 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 310 return error("Invalid record"); 311 312 SmallVector<uint64_t, 64> Record; 313 314 std::string Triple; 315 316 // Read all the records for this module. 317 while (true) { 318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 319 320 switch (Entry.Kind) { 321 case BitstreamEntry::SubBlock: // Handled for us already. 322 case BitstreamEntry::Error: 323 return error("Malformed block"); 324 case BitstreamEntry::EndBlock: 325 return Triple; 326 case BitstreamEntry::Record: 327 // The interesting case. 328 break; 329 } 330 331 // Read a record. 332 switch (Stream.readRecord(Entry.ID, Record)) { 333 default: break; // Default behavior, ignore unknown content. 334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 335 std::string S; 336 if (convertToString(Record, 0, S)) 337 return error("Invalid record"); 338 Triple = S; 339 break; 340 } 341 } 342 Record.clear(); 343 } 344 llvm_unreachable("Exit infinite loop"); 345 } 346 347 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 348 // We expect a number of well-defined blocks, though we don't necessarily 349 // need to understand them all. 350 while (true) { 351 BitstreamEntry Entry = Stream.advance(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return ""; 358 359 case BitstreamEntry::SubBlock: 360 if (Entry.ID == bitc::MODULE_BLOCK_ID) 361 return readModuleTriple(Stream); 362 363 // Ignore other sub-blocks. 364 if (Stream.SkipBlock()) 365 return error("Malformed block"); 366 continue; 367 368 case BitstreamEntry::Record: 369 Stream.skipRecord(Entry.ID); 370 continue; 371 } 372 } 373 } 374 375 namespace { 376 377 class BitcodeReaderBase { 378 protected: 379 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 380 : Stream(std::move(Stream)), Strtab(Strtab) { 381 this->Stream.setBlockInfo(&BlockInfo); 382 } 383 384 BitstreamBlockInfo BlockInfo; 385 BitstreamCursor Stream; 386 StringRef Strtab; 387 388 /// In version 2 of the bitcode we store names of global values and comdats in 389 /// a string table rather than in the VST. 390 bool UseStrtab = false; 391 392 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 393 394 /// If this module uses a string table, pop the reference to the string table 395 /// and return the referenced string and the rest of the record. Otherwise 396 /// just return the record itself. 397 std::pair<StringRef, ArrayRef<uint64_t>> 398 readNameFromStrtab(ArrayRef<uint64_t> Record); 399 400 bool readBlockInfo(); 401 402 // Contains an arbitrary and optional string identifying the bitcode producer 403 std::string ProducerIdentification; 404 405 Error error(const Twine &Message); 406 }; 407 408 } // end anonymous namespace 409 410 Error BitcodeReaderBase::error(const Twine &Message) { 411 std::string FullMsg = Message.str(); 412 if (!ProducerIdentification.empty()) 413 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 414 LLVM_VERSION_STRING "')"; 415 return ::error(FullMsg); 416 } 417 418 Expected<unsigned> 419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 420 if (Record.empty()) 421 return error("Invalid record"); 422 unsigned ModuleVersion = Record[0]; 423 if (ModuleVersion > 2) 424 return error("Invalid value"); 425 UseStrtab = ModuleVersion >= 2; 426 return ModuleVersion; 427 } 428 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 431 if (!UseStrtab) 432 return {"", Record}; 433 // Invalid reference. Let the caller complain about the record being empty. 434 if (Record[0] + Record[1] > Strtab.size()) 435 return {"", {}}; 436 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 437 } 438 439 namespace { 440 441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 442 LLVMContext &Context; 443 Module *TheModule = nullptr; 444 // Next offset to start scanning for lazy parsing of function bodies. 445 uint64_t NextUnreadBit = 0; 446 // Last function offset found in the VST. 447 uint64_t LastFunctionBlockBit = 0; 448 bool SeenValueSymbolTable = false; 449 uint64_t VSTOffset = 0; 450 451 std::vector<std::string> SectionTable; 452 std::vector<std::string> GCTable; 453 454 std::vector<Type*> TypeList; 455 BitcodeReaderValueList ValueList; 456 Optional<MetadataLoader> MDLoader; 457 std::vector<Comdat *> ComdatList; 458 SmallVector<Instruction *, 64> InstructionList; 459 460 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 461 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 463 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 464 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 465 466 /// The set of attributes by index. Index zero in the file is for null, and 467 /// is thus not represented here. As such all indices are off by one. 468 std::vector<AttributeList> MAttributes; 469 470 /// The set of attribute groups. 471 std::map<unsigned, AttributeList> MAttributeGroups; 472 473 /// While parsing a function body, this is a list of the basic blocks for the 474 /// function. 475 std::vector<BasicBlock*> FunctionBBs; 476 477 // When reading the module header, this list is populated with functions that 478 // have bodies later in the file. 479 std::vector<Function*> FunctionsWithBodies; 480 481 // When intrinsic functions are encountered which require upgrading they are 482 // stored here with their replacement function. 483 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 484 UpdatedIntrinsicMap UpgradedIntrinsics; 485 // Intrinsics which were remangled because of types rename 486 UpdatedIntrinsicMap RemangledIntrinsics; 487 488 // Several operations happen after the module header has been read, but 489 // before function bodies are processed. This keeps track of whether 490 // we've done this yet. 491 bool SeenFirstFunctionBody = false; 492 493 /// When function bodies are initially scanned, this map contains info about 494 /// where to find deferred function body in the stream. 495 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 496 497 /// When Metadata block is initially scanned when parsing the module, we may 498 /// choose to defer parsing of the metadata. This vector contains info about 499 /// which Metadata blocks are deferred. 500 std::vector<uint64_t> DeferredMetadataInfo; 501 502 /// These are basic blocks forward-referenced by block addresses. They are 503 /// inserted lazily into functions when they're loaded. The basic block ID is 504 /// its index into the vector. 505 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 506 std::deque<Function *> BasicBlockFwdRefQueue; 507 508 /// Indicates that we are using a new encoding for instruction operands where 509 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 510 /// instruction number, for a more compact encoding. Some instruction 511 /// operands are not relative to the instruction ID: basic block numbers, and 512 /// types. Once the old style function blocks have been phased out, we would 513 /// not need this flag. 514 bool UseRelativeIDs = false; 515 516 /// True if all functions will be materialized, negating the need to process 517 /// (e.g.) blockaddress forward references. 518 bool WillMaterializeAllForwardRefs = false; 519 520 bool StripDebugInfo = false; 521 TBAAVerifier TBAAVerifyHelper; 522 523 std::vector<std::string> BundleTags; 524 SmallVector<SyncScope::ID, 8> SSIDs; 525 526 public: 527 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 528 StringRef ProducerIdentification, LLVMContext &Context); 529 530 Error materializeForwardReferencedFunctions(); 531 532 Error materialize(GlobalValue *GV) override; 533 Error materializeModule() override; 534 std::vector<StructType *> getIdentifiedStructTypes() const override; 535 536 /// Main interface to parsing a bitcode buffer. 537 /// \returns true if an error occurred. 538 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 539 bool IsImporting = false); 540 541 static uint64_t decodeSignRotatedValue(uint64_t V); 542 543 /// Materialize any deferred Metadata block. 544 Error materializeMetadata() override; 545 546 void setStripDebugInfo() override; 547 548 private: 549 std::vector<StructType *> IdentifiedStructTypes; 550 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 551 StructType *createIdentifiedStructType(LLVMContext &Context); 552 553 Type *getTypeByID(unsigned ID); 554 555 Value *getFnValueByID(unsigned ID, Type *Ty) { 556 if (Ty && Ty->isMetadataTy()) 557 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 558 return ValueList.getValueFwdRef(ID, Ty); 559 } 560 561 Metadata *getFnMetadataByID(unsigned ID) { 562 return MDLoader->getMetadataFwdRefOrLoad(ID); 563 } 564 565 BasicBlock *getBasicBlock(unsigned ID) const { 566 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 567 return FunctionBBs[ID]; 568 } 569 570 AttributeList getAttributes(unsigned i) const { 571 if (i-1 < MAttributes.size()) 572 return MAttributes[i-1]; 573 return AttributeList(); 574 } 575 576 /// Read a value/type pair out of the specified record from slot 'Slot'. 577 /// Increment Slot past the number of slots used in the record. Return true on 578 /// failure. 579 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 580 unsigned InstNum, Value *&ResVal) { 581 if (Slot == Record.size()) return true; 582 unsigned ValNo = (unsigned)Record[Slot++]; 583 // Adjust the ValNo, if it was encoded relative to the InstNum. 584 if (UseRelativeIDs) 585 ValNo = InstNum - ValNo; 586 if (ValNo < InstNum) { 587 // If this is not a forward reference, just return the value we already 588 // have. 589 ResVal = getFnValueByID(ValNo, nullptr); 590 return ResVal == nullptr; 591 } 592 if (Slot == Record.size()) 593 return true; 594 595 unsigned TypeNo = (unsigned)Record[Slot++]; 596 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 597 return ResVal == nullptr; 598 } 599 600 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 601 /// past the number of slots used by the value in the record. Return true if 602 /// there is an error. 603 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 604 unsigned InstNum, Type *Ty, Value *&ResVal) { 605 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 606 return true; 607 // All values currently take a single record slot. 608 ++Slot; 609 return false; 610 } 611 612 /// Like popValue, but does not increment the Slot number. 613 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty, Value *&ResVal) { 615 ResVal = getValue(Record, Slot, InstNum, Ty); 616 return ResVal == nullptr; 617 } 618 619 /// Version of getValue that returns ResVal directly, or 0 if there is an 620 /// error. 621 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 622 unsigned InstNum, Type *Ty) { 623 if (Slot == Record.size()) return nullptr; 624 unsigned ValNo = (unsigned)Record[Slot]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 return getFnValueByID(ValNo, Ty); 629 } 630 631 /// Like getValue, but decodes signed VBRs. 632 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 633 unsigned InstNum, Type *Ty) { 634 if (Slot == Record.size()) return nullptr; 635 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 636 // Adjust the ValNo, if it was encoded relative to the InstNum. 637 if (UseRelativeIDs) 638 ValNo = InstNum - ValNo; 639 return getFnValueByID(ValNo, Ty); 640 } 641 642 /// Converts alignment exponent (i.e. power of two (or zero)) to the 643 /// corresponding alignment to use. If alignment is too large, returns 644 /// a corresponding error code. 645 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 646 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 647 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 648 649 Error parseComdatRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 651 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 652 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 653 ArrayRef<uint64_t> Record); 654 655 Error parseAttributeBlock(); 656 Error parseAttributeGroupBlock(); 657 Error parseTypeTable(); 658 Error parseTypeTableBody(); 659 Error parseOperandBundleTags(); 660 Error parseSyncScopeNames(); 661 662 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 663 unsigned NameIndex, Triple &TT); 664 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 665 ArrayRef<uint64_t> Record); 666 Error parseValueSymbolTable(uint64_t Offset = 0); 667 Error parseGlobalValueSymbolTable(); 668 Error parseConstants(); 669 Error rememberAndSkipFunctionBodies(); 670 Error rememberAndSkipFunctionBody(); 671 /// Save the positions of the Metadata blocks and skip parsing the blocks. 672 Error rememberAndSkipMetadata(); 673 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 674 Error parseFunctionBody(Function *F); 675 Error globalCleanup(); 676 Error resolveGlobalAndIndirectSymbolInits(); 677 Error parseUseLists(); 678 Error findFunctionInStream( 679 Function *F, 680 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 681 682 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 683 }; 684 685 /// Class to manage reading and parsing function summary index bitcode 686 /// files/sections. 687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 688 /// The module index built during parsing. 689 ModuleSummaryIndex &TheIndex; 690 691 /// Indicates whether we have encountered a global value summary section 692 /// yet during parsing. 693 bool SeenGlobalValSummary = false; 694 695 /// Indicates whether we have already parsed the VST, used for error checking. 696 bool SeenValueSymbolTable = false; 697 698 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 699 /// Used to enable on-demand parsing of the VST. 700 uint64_t VSTOffset = 0; 701 702 // Map to save ValueId to ValueInfo association that was recorded in the 703 // ValueSymbolTable. It is used after the VST is parsed to convert 704 // call graph edges read from the function summary from referencing 705 // callees by their ValueId to using the ValueInfo instead, which is how 706 // they are recorded in the summary index being built. 707 // We save a GUID which refers to the same global as the ValueInfo, but 708 // ignoring the linkage, i.e. for values other than local linkage they are 709 // identical. 710 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 711 ValueIdToValueInfoMap; 712 713 /// Map populated during module path string table parsing, from the 714 /// module ID to a string reference owned by the index's module 715 /// path string table, used to correlate with combined index 716 /// summary records. 717 DenseMap<uint64_t, StringRef> ModuleIdMap; 718 719 /// Original source file name recorded in a bitcode record. 720 std::string SourceFileName; 721 722 /// The string identifier given to this module by the client, normally the 723 /// path to the bitcode file. 724 StringRef ModulePath; 725 726 /// For per-module summary indexes, the unique numerical identifier given to 727 /// this module by the client. 728 unsigned ModuleId; 729 730 public: 731 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 732 ModuleSummaryIndex &TheIndex, 733 StringRef ModulePath, unsigned ModuleId); 734 735 Error parseModule(); 736 737 private: 738 void setValueGUID(uint64_t ValueID, StringRef ValueName, 739 GlobalValue::LinkageTypes Linkage, 740 StringRef SourceFileName); 741 Error parseValueSymbolTable( 742 uint64_t Offset, 743 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 744 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 745 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 746 bool IsOldProfileFormat, 747 bool HasProfile, 748 bool HasRelBF); 749 Error parseEntireSummary(unsigned ID); 750 Error parseModuleStringTable(); 751 752 std::pair<ValueInfo, GlobalValue::GUID> 753 getValueInfoFromValueId(unsigned ValueId); 754 755 void addThisModule(); 756 ModuleSummaryIndex::ModuleInfo *getThisModule(); 757 }; 758 759 } // end anonymous namespace 760 761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 762 Error Err) { 763 if (Err) { 764 std::error_code EC; 765 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 766 EC = EIB.convertToErrorCode(); 767 Ctx.emitError(EIB.message()); 768 }); 769 return EC; 770 } 771 return std::error_code(); 772 } 773 774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 775 StringRef ProducerIdentification, 776 LLVMContext &Context) 777 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 778 ValueList(Context) { 779 this->ProducerIdentification = ProducerIdentification; 780 } 781 782 Error BitcodeReader::materializeForwardReferencedFunctions() { 783 if (WillMaterializeAllForwardRefs) 784 return Error::success(); 785 786 // Prevent recursion. 787 WillMaterializeAllForwardRefs = true; 788 789 while (!BasicBlockFwdRefQueue.empty()) { 790 Function *F = BasicBlockFwdRefQueue.front(); 791 BasicBlockFwdRefQueue.pop_front(); 792 assert(F && "Expected valid function"); 793 if (!BasicBlockFwdRefs.count(F)) 794 // Already materialized. 795 continue; 796 797 // Check for a function that isn't materializable to prevent an infinite 798 // loop. When parsing a blockaddress stored in a global variable, there 799 // isn't a trivial way to check if a function will have a body without a 800 // linear search through FunctionsWithBodies, so just check it here. 801 if (!F->isMaterializable()) 802 return error("Never resolved function from blockaddress"); 803 804 // Try to materialize F. 805 if (Error Err = materialize(F)) 806 return Err; 807 } 808 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 809 810 // Reset state. 811 WillMaterializeAllForwardRefs = false; 812 return Error::success(); 813 } 814 815 //===----------------------------------------------------------------------===// 816 // Helper functions to implement forward reference resolution, etc. 817 //===----------------------------------------------------------------------===// 818 819 static bool hasImplicitComdat(size_t Val) { 820 switch (Val) { 821 default: 822 return false; 823 case 1: // Old WeakAnyLinkage 824 case 4: // Old LinkOnceAnyLinkage 825 case 10: // Old WeakODRLinkage 826 case 11: // Old LinkOnceODRLinkage 827 return true; 828 } 829 } 830 831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 832 switch (Val) { 833 default: // Map unknown/new linkages to external 834 case 0: 835 return GlobalValue::ExternalLinkage; 836 case 2: 837 return GlobalValue::AppendingLinkage; 838 case 3: 839 return GlobalValue::InternalLinkage; 840 case 5: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 842 case 6: 843 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 844 case 7: 845 return GlobalValue::ExternalWeakLinkage; 846 case 8: 847 return GlobalValue::CommonLinkage; 848 case 9: 849 return GlobalValue::PrivateLinkage; 850 case 12: 851 return GlobalValue::AvailableExternallyLinkage; 852 case 13: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 854 case 14: 855 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 856 case 15: 857 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 858 case 1: // Old value with implicit comdat. 859 case 16: 860 return GlobalValue::WeakAnyLinkage; 861 case 10: // Old value with implicit comdat. 862 case 17: 863 return GlobalValue::WeakODRLinkage; 864 case 4: // Old value with implicit comdat. 865 case 18: 866 return GlobalValue::LinkOnceAnyLinkage; 867 case 11: // Old value with implicit comdat. 868 case 19: 869 return GlobalValue::LinkOnceODRLinkage; 870 } 871 } 872 873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 874 FunctionSummary::FFlags Flags; 875 Flags.ReadNone = RawFlags & 0x1; 876 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 877 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 878 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 879 Flags.NoInline = (RawFlags >> 4) & 0x1; 880 return Flags; 881 } 882 883 /// Decode the flags for GlobalValue in the summary. 884 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 885 uint64_t Version) { 886 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 887 // like getDecodedLinkage() above. Any future change to the linkage enum and 888 // to getDecodedLinkage() will need to be taken into account here as above. 889 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 890 RawFlags = RawFlags >> 4; 891 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 892 // The Live flag wasn't introduced until version 3. For dead stripping 893 // to work correctly on earlier versions, we must conservatively treat all 894 // values as live. 895 bool Live = (RawFlags & 0x2) || Version < 3; 896 bool Local = (RawFlags & 0x4); 897 898 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 899 } 900 901 // Decode the flags for GlobalVariable in the summary 902 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 903 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 904 } 905 906 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 907 switch (Val) { 908 default: // Map unknown visibilities to default. 909 case 0: return GlobalValue::DefaultVisibility; 910 case 1: return GlobalValue::HiddenVisibility; 911 case 2: return GlobalValue::ProtectedVisibility; 912 } 913 } 914 915 static GlobalValue::DLLStorageClassTypes 916 getDecodedDLLStorageClass(unsigned Val) { 917 switch (Val) { 918 default: // Map unknown values to default. 919 case 0: return GlobalValue::DefaultStorageClass; 920 case 1: return GlobalValue::DLLImportStorageClass; 921 case 2: return GlobalValue::DLLExportStorageClass; 922 } 923 } 924 925 static bool getDecodedDSOLocal(unsigned Val) { 926 switch(Val) { 927 default: // Map unknown values to preemptable. 928 case 0: return false; 929 case 1: return true; 930 } 931 } 932 933 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 934 switch (Val) { 935 case 0: return GlobalVariable::NotThreadLocal; 936 default: // Map unknown non-zero value to general dynamic. 937 case 1: return GlobalVariable::GeneralDynamicTLSModel; 938 case 2: return GlobalVariable::LocalDynamicTLSModel; 939 case 3: return GlobalVariable::InitialExecTLSModel; 940 case 4: return GlobalVariable::LocalExecTLSModel; 941 } 942 } 943 944 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 945 switch (Val) { 946 default: // Map unknown to UnnamedAddr::None. 947 case 0: return GlobalVariable::UnnamedAddr::None; 948 case 1: return GlobalVariable::UnnamedAddr::Global; 949 case 2: return GlobalVariable::UnnamedAddr::Local; 950 } 951 } 952 953 static int getDecodedCastOpcode(unsigned Val) { 954 switch (Val) { 955 default: return -1; 956 case bitc::CAST_TRUNC : return Instruction::Trunc; 957 case bitc::CAST_ZEXT : return Instruction::ZExt; 958 case bitc::CAST_SEXT : return Instruction::SExt; 959 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 960 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 961 case bitc::CAST_UITOFP : return Instruction::UIToFP; 962 case bitc::CAST_SITOFP : return Instruction::SIToFP; 963 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 964 case bitc::CAST_FPEXT : return Instruction::FPExt; 965 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 966 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 967 case bitc::CAST_BITCAST : return Instruction::BitCast; 968 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 969 } 970 } 971 972 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 973 bool IsFP = Ty->isFPOrFPVectorTy(); 974 // BinOps are only valid for int/fp or vector of int/fp types 975 if (!IsFP && !Ty->isIntOrIntVectorTy()) 976 return -1; 977 978 switch (Val) { 979 default: 980 return -1; 981 case bitc::BINOP_ADD: 982 return IsFP ? Instruction::FAdd : Instruction::Add; 983 case bitc::BINOP_SUB: 984 return IsFP ? Instruction::FSub : Instruction::Sub; 985 case bitc::BINOP_MUL: 986 return IsFP ? Instruction::FMul : Instruction::Mul; 987 case bitc::BINOP_UDIV: 988 return IsFP ? -1 : Instruction::UDiv; 989 case bitc::BINOP_SDIV: 990 return IsFP ? Instruction::FDiv : Instruction::SDiv; 991 case bitc::BINOP_UREM: 992 return IsFP ? -1 : Instruction::URem; 993 case bitc::BINOP_SREM: 994 return IsFP ? Instruction::FRem : Instruction::SRem; 995 case bitc::BINOP_SHL: 996 return IsFP ? -1 : Instruction::Shl; 997 case bitc::BINOP_LSHR: 998 return IsFP ? -1 : Instruction::LShr; 999 case bitc::BINOP_ASHR: 1000 return IsFP ? -1 : Instruction::AShr; 1001 case bitc::BINOP_AND: 1002 return IsFP ? -1 : Instruction::And; 1003 case bitc::BINOP_OR: 1004 return IsFP ? -1 : Instruction::Or; 1005 case bitc::BINOP_XOR: 1006 return IsFP ? -1 : Instruction::Xor; 1007 } 1008 } 1009 1010 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1011 switch (Val) { 1012 default: return AtomicRMWInst::BAD_BINOP; 1013 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1014 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1015 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1016 case bitc::RMW_AND: return AtomicRMWInst::And; 1017 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1018 case bitc::RMW_OR: return AtomicRMWInst::Or; 1019 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1020 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1021 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1022 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1023 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1024 } 1025 } 1026 1027 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1028 switch (Val) { 1029 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1030 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1031 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1032 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1033 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1034 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1035 default: // Map unknown orderings to sequentially-consistent. 1036 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1037 } 1038 } 1039 1040 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1041 switch (Val) { 1042 default: // Map unknown selection kinds to any. 1043 case bitc::COMDAT_SELECTION_KIND_ANY: 1044 return Comdat::Any; 1045 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1046 return Comdat::ExactMatch; 1047 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1048 return Comdat::Largest; 1049 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1050 return Comdat::NoDuplicates; 1051 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1052 return Comdat::SameSize; 1053 } 1054 } 1055 1056 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1057 FastMathFlags FMF; 1058 if (0 != (Val & bitc::UnsafeAlgebra)) 1059 FMF.setFast(); 1060 if (0 != (Val & bitc::AllowReassoc)) 1061 FMF.setAllowReassoc(); 1062 if (0 != (Val & bitc::NoNaNs)) 1063 FMF.setNoNaNs(); 1064 if (0 != (Val & bitc::NoInfs)) 1065 FMF.setNoInfs(); 1066 if (0 != (Val & bitc::NoSignedZeros)) 1067 FMF.setNoSignedZeros(); 1068 if (0 != (Val & bitc::AllowReciprocal)) 1069 FMF.setAllowReciprocal(); 1070 if (0 != (Val & bitc::AllowContract)) 1071 FMF.setAllowContract(true); 1072 if (0 != (Val & bitc::ApproxFunc)) 1073 FMF.setApproxFunc(); 1074 return FMF; 1075 } 1076 1077 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1078 switch (Val) { 1079 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1080 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1081 } 1082 } 1083 1084 Type *BitcodeReader::getTypeByID(unsigned ID) { 1085 // The type table size is always specified correctly. 1086 if (ID >= TypeList.size()) 1087 return nullptr; 1088 1089 if (Type *Ty = TypeList[ID]) 1090 return Ty; 1091 1092 // If we have a forward reference, the only possible case is when it is to a 1093 // named struct. Just create a placeholder for now. 1094 return TypeList[ID] = createIdentifiedStructType(Context); 1095 } 1096 1097 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1098 StringRef Name) { 1099 auto *Ret = StructType::create(Context, Name); 1100 IdentifiedStructTypes.push_back(Ret); 1101 return Ret; 1102 } 1103 1104 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1105 auto *Ret = StructType::create(Context); 1106 IdentifiedStructTypes.push_back(Ret); 1107 return Ret; 1108 } 1109 1110 //===----------------------------------------------------------------------===// 1111 // Functions for parsing blocks from the bitcode file 1112 //===----------------------------------------------------------------------===// 1113 1114 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1115 switch (Val) { 1116 case Attribute::EndAttrKinds: 1117 llvm_unreachable("Synthetic enumerators which should never get here"); 1118 1119 case Attribute::None: return 0; 1120 case Attribute::ZExt: return 1 << 0; 1121 case Attribute::SExt: return 1 << 1; 1122 case Attribute::NoReturn: return 1 << 2; 1123 case Attribute::InReg: return 1 << 3; 1124 case Attribute::StructRet: return 1 << 4; 1125 case Attribute::NoUnwind: return 1 << 5; 1126 case Attribute::NoAlias: return 1 << 6; 1127 case Attribute::ByVal: return 1 << 7; 1128 case Attribute::Nest: return 1 << 8; 1129 case Attribute::ReadNone: return 1 << 9; 1130 case Attribute::ReadOnly: return 1 << 10; 1131 case Attribute::NoInline: return 1 << 11; 1132 case Attribute::AlwaysInline: return 1 << 12; 1133 case Attribute::OptimizeForSize: return 1 << 13; 1134 case Attribute::StackProtect: return 1 << 14; 1135 case Attribute::StackProtectReq: return 1 << 15; 1136 case Attribute::Alignment: return 31 << 16; 1137 case Attribute::NoCapture: return 1 << 21; 1138 case Attribute::NoRedZone: return 1 << 22; 1139 case Attribute::NoImplicitFloat: return 1 << 23; 1140 case Attribute::Naked: return 1 << 24; 1141 case Attribute::InlineHint: return 1 << 25; 1142 case Attribute::StackAlignment: return 7 << 26; 1143 case Attribute::ReturnsTwice: return 1 << 29; 1144 case Attribute::UWTable: return 1 << 30; 1145 case Attribute::NonLazyBind: return 1U << 31; 1146 case Attribute::SanitizeAddress: return 1ULL << 32; 1147 case Attribute::MinSize: return 1ULL << 33; 1148 case Attribute::NoDuplicate: return 1ULL << 34; 1149 case Attribute::StackProtectStrong: return 1ULL << 35; 1150 case Attribute::SanitizeThread: return 1ULL << 36; 1151 case Attribute::SanitizeMemory: return 1ULL << 37; 1152 case Attribute::NoBuiltin: return 1ULL << 38; 1153 case Attribute::Returned: return 1ULL << 39; 1154 case Attribute::Cold: return 1ULL << 40; 1155 case Attribute::Builtin: return 1ULL << 41; 1156 case Attribute::OptimizeNone: return 1ULL << 42; 1157 case Attribute::InAlloca: return 1ULL << 43; 1158 case Attribute::NonNull: return 1ULL << 44; 1159 case Attribute::JumpTable: return 1ULL << 45; 1160 case Attribute::Convergent: return 1ULL << 46; 1161 case Attribute::SafeStack: return 1ULL << 47; 1162 case Attribute::NoRecurse: return 1ULL << 48; 1163 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1164 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1165 case Attribute::SwiftSelf: return 1ULL << 51; 1166 case Attribute::SwiftError: return 1ULL << 52; 1167 case Attribute::WriteOnly: return 1ULL << 53; 1168 case Attribute::Speculatable: return 1ULL << 54; 1169 case Attribute::StrictFP: return 1ULL << 55; 1170 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1171 case Attribute::NoCfCheck: return 1ULL << 57; 1172 case Attribute::OptForFuzzing: return 1ULL << 58; 1173 case Attribute::ShadowCallStack: return 1ULL << 59; 1174 case Attribute::SpeculativeLoadHardening: 1175 return 1ULL << 60; 1176 case Attribute::Dereferenceable: 1177 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1178 break; 1179 case Attribute::DereferenceableOrNull: 1180 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1181 "format"); 1182 break; 1183 case Attribute::ArgMemOnly: 1184 llvm_unreachable("argmemonly attribute not supported in raw format"); 1185 break; 1186 case Attribute::AllocSize: 1187 llvm_unreachable("allocsize not supported in raw format"); 1188 break; 1189 } 1190 llvm_unreachable("Unsupported attribute type"); 1191 } 1192 1193 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1194 if (!Val) return; 1195 1196 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1197 I = Attribute::AttrKind(I + 1)) { 1198 if (I == Attribute::Dereferenceable || 1199 I == Attribute::DereferenceableOrNull || 1200 I == Attribute::ArgMemOnly || 1201 I == Attribute::AllocSize) 1202 continue; 1203 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1204 if (I == Attribute::Alignment) 1205 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1206 else if (I == Attribute::StackAlignment) 1207 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1208 else 1209 B.addAttribute(I); 1210 } 1211 } 1212 } 1213 1214 /// This fills an AttrBuilder object with the LLVM attributes that have 1215 /// been decoded from the given integer. This function must stay in sync with 1216 /// 'encodeLLVMAttributesForBitcode'. 1217 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1218 uint64_t EncodedAttrs) { 1219 // FIXME: Remove in 4.0. 1220 1221 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1222 // the bits above 31 down by 11 bits. 1223 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1224 assert((!Alignment || isPowerOf2_32(Alignment)) && 1225 "Alignment must be a power of two."); 1226 1227 if (Alignment) 1228 B.addAlignmentAttr(Alignment); 1229 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1230 (EncodedAttrs & 0xffff)); 1231 } 1232 1233 Error BitcodeReader::parseAttributeBlock() { 1234 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1235 return error("Invalid record"); 1236 1237 if (!MAttributes.empty()) 1238 return error("Invalid multiple blocks"); 1239 1240 SmallVector<uint64_t, 64> Record; 1241 1242 SmallVector<AttributeList, 8> Attrs; 1243 1244 // Read all the records. 1245 while (true) { 1246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1247 1248 switch (Entry.Kind) { 1249 case BitstreamEntry::SubBlock: // Handled for us already. 1250 case BitstreamEntry::Error: 1251 return error("Malformed block"); 1252 case BitstreamEntry::EndBlock: 1253 return Error::success(); 1254 case BitstreamEntry::Record: 1255 // The interesting case. 1256 break; 1257 } 1258 1259 // Read a record. 1260 Record.clear(); 1261 switch (Stream.readRecord(Entry.ID, Record)) { 1262 default: // Default behavior: ignore. 1263 break; 1264 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1265 // FIXME: Remove in 4.0. 1266 if (Record.size() & 1) 1267 return error("Invalid record"); 1268 1269 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1270 AttrBuilder B; 1271 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1272 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1273 } 1274 1275 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1276 Attrs.clear(); 1277 break; 1278 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1279 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1280 Attrs.push_back(MAttributeGroups[Record[i]]); 1281 1282 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1283 Attrs.clear(); 1284 break; 1285 } 1286 } 1287 } 1288 1289 // Returns Attribute::None on unrecognized codes. 1290 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1291 switch (Code) { 1292 default: 1293 return Attribute::None; 1294 case bitc::ATTR_KIND_ALIGNMENT: 1295 return Attribute::Alignment; 1296 case bitc::ATTR_KIND_ALWAYS_INLINE: 1297 return Attribute::AlwaysInline; 1298 case bitc::ATTR_KIND_ARGMEMONLY: 1299 return Attribute::ArgMemOnly; 1300 case bitc::ATTR_KIND_BUILTIN: 1301 return Attribute::Builtin; 1302 case bitc::ATTR_KIND_BY_VAL: 1303 return Attribute::ByVal; 1304 case bitc::ATTR_KIND_IN_ALLOCA: 1305 return Attribute::InAlloca; 1306 case bitc::ATTR_KIND_COLD: 1307 return Attribute::Cold; 1308 case bitc::ATTR_KIND_CONVERGENT: 1309 return Attribute::Convergent; 1310 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1311 return Attribute::InaccessibleMemOnly; 1312 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1313 return Attribute::InaccessibleMemOrArgMemOnly; 1314 case bitc::ATTR_KIND_INLINE_HINT: 1315 return Attribute::InlineHint; 1316 case bitc::ATTR_KIND_IN_REG: 1317 return Attribute::InReg; 1318 case bitc::ATTR_KIND_JUMP_TABLE: 1319 return Attribute::JumpTable; 1320 case bitc::ATTR_KIND_MIN_SIZE: 1321 return Attribute::MinSize; 1322 case bitc::ATTR_KIND_NAKED: 1323 return Attribute::Naked; 1324 case bitc::ATTR_KIND_NEST: 1325 return Attribute::Nest; 1326 case bitc::ATTR_KIND_NO_ALIAS: 1327 return Attribute::NoAlias; 1328 case bitc::ATTR_KIND_NO_BUILTIN: 1329 return Attribute::NoBuiltin; 1330 case bitc::ATTR_KIND_NO_CAPTURE: 1331 return Attribute::NoCapture; 1332 case bitc::ATTR_KIND_NO_DUPLICATE: 1333 return Attribute::NoDuplicate; 1334 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1335 return Attribute::NoImplicitFloat; 1336 case bitc::ATTR_KIND_NO_INLINE: 1337 return Attribute::NoInline; 1338 case bitc::ATTR_KIND_NO_RECURSE: 1339 return Attribute::NoRecurse; 1340 case bitc::ATTR_KIND_NON_LAZY_BIND: 1341 return Attribute::NonLazyBind; 1342 case bitc::ATTR_KIND_NON_NULL: 1343 return Attribute::NonNull; 1344 case bitc::ATTR_KIND_DEREFERENCEABLE: 1345 return Attribute::Dereferenceable; 1346 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1347 return Attribute::DereferenceableOrNull; 1348 case bitc::ATTR_KIND_ALLOC_SIZE: 1349 return Attribute::AllocSize; 1350 case bitc::ATTR_KIND_NO_RED_ZONE: 1351 return Attribute::NoRedZone; 1352 case bitc::ATTR_KIND_NO_RETURN: 1353 return Attribute::NoReturn; 1354 case bitc::ATTR_KIND_NOCF_CHECK: 1355 return Attribute::NoCfCheck; 1356 case bitc::ATTR_KIND_NO_UNWIND: 1357 return Attribute::NoUnwind; 1358 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1359 return Attribute::OptForFuzzing; 1360 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1361 return Attribute::OptimizeForSize; 1362 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1363 return Attribute::OptimizeNone; 1364 case bitc::ATTR_KIND_READ_NONE: 1365 return Attribute::ReadNone; 1366 case bitc::ATTR_KIND_READ_ONLY: 1367 return Attribute::ReadOnly; 1368 case bitc::ATTR_KIND_RETURNED: 1369 return Attribute::Returned; 1370 case bitc::ATTR_KIND_RETURNS_TWICE: 1371 return Attribute::ReturnsTwice; 1372 case bitc::ATTR_KIND_S_EXT: 1373 return Attribute::SExt; 1374 case bitc::ATTR_KIND_SPECULATABLE: 1375 return Attribute::Speculatable; 1376 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1377 return Attribute::StackAlignment; 1378 case bitc::ATTR_KIND_STACK_PROTECT: 1379 return Attribute::StackProtect; 1380 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1381 return Attribute::StackProtectReq; 1382 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1383 return Attribute::StackProtectStrong; 1384 case bitc::ATTR_KIND_SAFESTACK: 1385 return Attribute::SafeStack; 1386 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1387 return Attribute::ShadowCallStack; 1388 case bitc::ATTR_KIND_STRICT_FP: 1389 return Attribute::StrictFP; 1390 case bitc::ATTR_KIND_STRUCT_RET: 1391 return Attribute::StructRet; 1392 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1393 return Attribute::SanitizeAddress; 1394 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1395 return Attribute::SanitizeHWAddress; 1396 case bitc::ATTR_KIND_SANITIZE_THREAD: 1397 return Attribute::SanitizeThread; 1398 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1399 return Attribute::SanitizeMemory; 1400 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1401 return Attribute::SpeculativeLoadHardening; 1402 case bitc::ATTR_KIND_SWIFT_ERROR: 1403 return Attribute::SwiftError; 1404 case bitc::ATTR_KIND_SWIFT_SELF: 1405 return Attribute::SwiftSelf; 1406 case bitc::ATTR_KIND_UW_TABLE: 1407 return Attribute::UWTable; 1408 case bitc::ATTR_KIND_WRITEONLY: 1409 return Attribute::WriteOnly; 1410 case bitc::ATTR_KIND_Z_EXT: 1411 return Attribute::ZExt; 1412 } 1413 } 1414 1415 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1416 unsigned &Alignment) { 1417 // Note: Alignment in bitcode files is incremented by 1, so that zero 1418 // can be used for default alignment. 1419 if (Exponent > Value::MaxAlignmentExponent + 1) 1420 return error("Invalid alignment value"); 1421 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1422 return Error::success(); 1423 } 1424 1425 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1426 *Kind = getAttrFromCode(Code); 1427 if (*Kind == Attribute::None) 1428 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1429 return Error::success(); 1430 } 1431 1432 Error BitcodeReader::parseAttributeGroupBlock() { 1433 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1434 return error("Invalid record"); 1435 1436 if (!MAttributeGroups.empty()) 1437 return error("Invalid multiple blocks"); 1438 1439 SmallVector<uint64_t, 64> Record; 1440 1441 // Read all the records. 1442 while (true) { 1443 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1444 1445 switch (Entry.Kind) { 1446 case BitstreamEntry::SubBlock: // Handled for us already. 1447 case BitstreamEntry::Error: 1448 return error("Malformed block"); 1449 case BitstreamEntry::EndBlock: 1450 return Error::success(); 1451 case BitstreamEntry::Record: 1452 // The interesting case. 1453 break; 1454 } 1455 1456 // Read a record. 1457 Record.clear(); 1458 switch (Stream.readRecord(Entry.ID, Record)) { 1459 default: // Default behavior: ignore. 1460 break; 1461 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1462 if (Record.size() < 3) 1463 return error("Invalid record"); 1464 1465 uint64_t GrpID = Record[0]; 1466 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1467 1468 AttrBuilder B; 1469 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1470 if (Record[i] == 0) { // Enum attribute 1471 Attribute::AttrKind Kind; 1472 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1473 return Err; 1474 1475 B.addAttribute(Kind); 1476 } else if (Record[i] == 1) { // Integer attribute 1477 Attribute::AttrKind Kind; 1478 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1479 return Err; 1480 if (Kind == Attribute::Alignment) 1481 B.addAlignmentAttr(Record[++i]); 1482 else if (Kind == Attribute::StackAlignment) 1483 B.addStackAlignmentAttr(Record[++i]); 1484 else if (Kind == Attribute::Dereferenceable) 1485 B.addDereferenceableAttr(Record[++i]); 1486 else if (Kind == Attribute::DereferenceableOrNull) 1487 B.addDereferenceableOrNullAttr(Record[++i]); 1488 else if (Kind == Attribute::AllocSize) 1489 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1490 } else { // String attribute 1491 assert((Record[i] == 3 || Record[i] == 4) && 1492 "Invalid attribute group entry"); 1493 bool HasValue = (Record[i++] == 4); 1494 SmallString<64> KindStr; 1495 SmallString<64> ValStr; 1496 1497 while (Record[i] != 0 && i != e) 1498 KindStr += Record[i++]; 1499 assert(Record[i] == 0 && "Kind string not null terminated"); 1500 1501 if (HasValue) { 1502 // Has a value associated with it. 1503 ++i; // Skip the '0' that terminates the "kind" string. 1504 while (Record[i] != 0 && i != e) 1505 ValStr += Record[i++]; 1506 assert(Record[i] == 0 && "Value string not null terminated"); 1507 } 1508 1509 B.addAttribute(KindStr.str(), ValStr.str()); 1510 } 1511 } 1512 1513 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1514 break; 1515 } 1516 } 1517 } 1518 } 1519 1520 Error BitcodeReader::parseTypeTable() { 1521 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1522 return error("Invalid record"); 1523 1524 return parseTypeTableBody(); 1525 } 1526 1527 Error BitcodeReader::parseTypeTableBody() { 1528 if (!TypeList.empty()) 1529 return error("Invalid multiple blocks"); 1530 1531 SmallVector<uint64_t, 64> Record; 1532 unsigned NumRecords = 0; 1533 1534 SmallString<64> TypeName; 1535 1536 // Read all the records for this type table. 1537 while (true) { 1538 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1539 1540 switch (Entry.Kind) { 1541 case BitstreamEntry::SubBlock: // Handled for us already. 1542 case BitstreamEntry::Error: 1543 return error("Malformed block"); 1544 case BitstreamEntry::EndBlock: 1545 if (NumRecords != TypeList.size()) 1546 return error("Malformed block"); 1547 return Error::success(); 1548 case BitstreamEntry::Record: 1549 // The interesting case. 1550 break; 1551 } 1552 1553 // Read a record. 1554 Record.clear(); 1555 Type *ResultTy = nullptr; 1556 switch (Stream.readRecord(Entry.ID, Record)) { 1557 default: 1558 return error("Invalid value"); 1559 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1560 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1561 // type list. This allows us to reserve space. 1562 if (Record.size() < 1) 1563 return error("Invalid record"); 1564 TypeList.resize(Record[0]); 1565 continue; 1566 case bitc::TYPE_CODE_VOID: // VOID 1567 ResultTy = Type::getVoidTy(Context); 1568 break; 1569 case bitc::TYPE_CODE_HALF: // HALF 1570 ResultTy = Type::getHalfTy(Context); 1571 break; 1572 case bitc::TYPE_CODE_FLOAT: // FLOAT 1573 ResultTy = Type::getFloatTy(Context); 1574 break; 1575 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1576 ResultTy = Type::getDoubleTy(Context); 1577 break; 1578 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1579 ResultTy = Type::getX86_FP80Ty(Context); 1580 break; 1581 case bitc::TYPE_CODE_FP128: // FP128 1582 ResultTy = Type::getFP128Ty(Context); 1583 break; 1584 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1585 ResultTy = Type::getPPC_FP128Ty(Context); 1586 break; 1587 case bitc::TYPE_CODE_LABEL: // LABEL 1588 ResultTy = Type::getLabelTy(Context); 1589 break; 1590 case bitc::TYPE_CODE_METADATA: // METADATA 1591 ResultTy = Type::getMetadataTy(Context); 1592 break; 1593 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1594 ResultTy = Type::getX86_MMXTy(Context); 1595 break; 1596 case bitc::TYPE_CODE_TOKEN: // TOKEN 1597 ResultTy = Type::getTokenTy(Context); 1598 break; 1599 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1600 if (Record.size() < 1) 1601 return error("Invalid record"); 1602 1603 uint64_t NumBits = Record[0]; 1604 if (NumBits < IntegerType::MIN_INT_BITS || 1605 NumBits > IntegerType::MAX_INT_BITS) 1606 return error("Bitwidth for integer type out of range"); 1607 ResultTy = IntegerType::get(Context, NumBits); 1608 break; 1609 } 1610 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1611 // [pointee type, address space] 1612 if (Record.size() < 1) 1613 return error("Invalid record"); 1614 unsigned AddressSpace = 0; 1615 if (Record.size() == 2) 1616 AddressSpace = Record[1]; 1617 ResultTy = getTypeByID(Record[0]); 1618 if (!ResultTy || 1619 !PointerType::isValidElementType(ResultTy)) 1620 return error("Invalid type"); 1621 ResultTy = PointerType::get(ResultTy, AddressSpace); 1622 break; 1623 } 1624 case bitc::TYPE_CODE_FUNCTION_OLD: { 1625 // FIXME: attrid is dead, remove it in LLVM 4.0 1626 // FUNCTION: [vararg, attrid, retty, paramty x N] 1627 if (Record.size() < 3) 1628 return error("Invalid record"); 1629 SmallVector<Type*, 8> ArgTys; 1630 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1631 if (Type *T = getTypeByID(Record[i])) 1632 ArgTys.push_back(T); 1633 else 1634 break; 1635 } 1636 1637 ResultTy = getTypeByID(Record[2]); 1638 if (!ResultTy || ArgTys.size() < Record.size()-3) 1639 return error("Invalid type"); 1640 1641 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1642 break; 1643 } 1644 case bitc::TYPE_CODE_FUNCTION: { 1645 // FUNCTION: [vararg, retty, paramty x N] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 SmallVector<Type*, 8> ArgTys; 1649 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1650 if (Type *T = getTypeByID(Record[i])) { 1651 if (!FunctionType::isValidArgumentType(T)) 1652 return error("Invalid function argument type"); 1653 ArgTys.push_back(T); 1654 } 1655 else 1656 break; 1657 } 1658 1659 ResultTy = getTypeByID(Record[1]); 1660 if (!ResultTy || ArgTys.size() < Record.size()-2) 1661 return error("Invalid type"); 1662 1663 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1664 break; 1665 } 1666 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1667 if (Record.size() < 1) 1668 return error("Invalid record"); 1669 SmallVector<Type*, 8> EltTys; 1670 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1671 if (Type *T = getTypeByID(Record[i])) 1672 EltTys.push_back(T); 1673 else 1674 break; 1675 } 1676 if (EltTys.size() != Record.size()-1) 1677 return error("Invalid type"); 1678 ResultTy = StructType::get(Context, EltTys, Record[0]); 1679 break; 1680 } 1681 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1682 if (convertToString(Record, 0, TypeName)) 1683 return error("Invalid record"); 1684 continue; 1685 1686 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1687 if (Record.size() < 1) 1688 return error("Invalid record"); 1689 1690 if (NumRecords >= TypeList.size()) 1691 return error("Invalid TYPE table"); 1692 1693 // Check to see if this was forward referenced, if so fill in the temp. 1694 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1695 if (Res) { 1696 Res->setName(TypeName); 1697 TypeList[NumRecords] = nullptr; 1698 } else // Otherwise, create a new struct. 1699 Res = createIdentifiedStructType(Context, TypeName); 1700 TypeName.clear(); 1701 1702 SmallVector<Type*, 8> EltTys; 1703 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1704 if (Type *T = getTypeByID(Record[i])) 1705 EltTys.push_back(T); 1706 else 1707 break; 1708 } 1709 if (EltTys.size() != Record.size()-1) 1710 return error("Invalid record"); 1711 Res->setBody(EltTys, Record[0]); 1712 ResultTy = Res; 1713 break; 1714 } 1715 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1716 if (Record.size() != 1) 1717 return error("Invalid record"); 1718 1719 if (NumRecords >= TypeList.size()) 1720 return error("Invalid TYPE table"); 1721 1722 // Check to see if this was forward referenced, if so fill in the temp. 1723 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1724 if (Res) { 1725 Res->setName(TypeName); 1726 TypeList[NumRecords] = nullptr; 1727 } else // Otherwise, create a new struct with no body. 1728 Res = createIdentifiedStructType(Context, TypeName); 1729 TypeName.clear(); 1730 ResultTy = Res; 1731 break; 1732 } 1733 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1734 if (Record.size() < 2) 1735 return error("Invalid record"); 1736 ResultTy = getTypeByID(Record[1]); 1737 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1738 return error("Invalid type"); 1739 ResultTy = ArrayType::get(ResultTy, Record[0]); 1740 break; 1741 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1742 if (Record.size() < 2) 1743 return error("Invalid record"); 1744 if (Record[0] == 0) 1745 return error("Invalid vector length"); 1746 ResultTy = getTypeByID(Record[1]); 1747 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1748 return error("Invalid type"); 1749 ResultTy = VectorType::get(ResultTy, Record[0]); 1750 break; 1751 } 1752 1753 if (NumRecords >= TypeList.size()) 1754 return error("Invalid TYPE table"); 1755 if (TypeList[NumRecords]) 1756 return error( 1757 "Invalid TYPE table: Only named structs can be forward referenced"); 1758 assert(ResultTy && "Didn't read a type?"); 1759 TypeList[NumRecords++] = ResultTy; 1760 } 1761 } 1762 1763 Error BitcodeReader::parseOperandBundleTags() { 1764 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1765 return error("Invalid record"); 1766 1767 if (!BundleTags.empty()) 1768 return error("Invalid multiple blocks"); 1769 1770 SmallVector<uint64_t, 64> Record; 1771 1772 while (true) { 1773 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1774 1775 switch (Entry.Kind) { 1776 case BitstreamEntry::SubBlock: // Handled for us already. 1777 case BitstreamEntry::Error: 1778 return error("Malformed block"); 1779 case BitstreamEntry::EndBlock: 1780 return Error::success(); 1781 case BitstreamEntry::Record: 1782 // The interesting case. 1783 break; 1784 } 1785 1786 // Tags are implicitly mapped to integers by their order. 1787 1788 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1789 return error("Invalid record"); 1790 1791 // OPERAND_BUNDLE_TAG: [strchr x N] 1792 BundleTags.emplace_back(); 1793 if (convertToString(Record, 0, BundleTags.back())) 1794 return error("Invalid record"); 1795 Record.clear(); 1796 } 1797 } 1798 1799 Error BitcodeReader::parseSyncScopeNames() { 1800 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1801 return error("Invalid record"); 1802 1803 if (!SSIDs.empty()) 1804 return error("Invalid multiple synchronization scope names blocks"); 1805 1806 SmallVector<uint64_t, 64> Record; 1807 while (true) { 1808 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1809 switch (Entry.Kind) { 1810 case BitstreamEntry::SubBlock: // Handled for us already. 1811 case BitstreamEntry::Error: 1812 return error("Malformed block"); 1813 case BitstreamEntry::EndBlock: 1814 if (SSIDs.empty()) 1815 return error("Invalid empty synchronization scope names block"); 1816 return Error::success(); 1817 case BitstreamEntry::Record: 1818 // The interesting case. 1819 break; 1820 } 1821 1822 // Synchronization scope names are implicitly mapped to synchronization 1823 // scope IDs by their order. 1824 1825 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1826 return error("Invalid record"); 1827 1828 SmallString<16> SSN; 1829 if (convertToString(Record, 0, SSN)) 1830 return error("Invalid record"); 1831 1832 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1833 Record.clear(); 1834 } 1835 } 1836 1837 /// Associate a value with its name from the given index in the provided record. 1838 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1839 unsigned NameIndex, Triple &TT) { 1840 SmallString<128> ValueName; 1841 if (convertToString(Record, NameIndex, ValueName)) 1842 return error("Invalid record"); 1843 unsigned ValueID = Record[0]; 1844 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1845 return error("Invalid record"); 1846 Value *V = ValueList[ValueID]; 1847 1848 StringRef NameStr(ValueName.data(), ValueName.size()); 1849 if (NameStr.find_first_of(0) != StringRef::npos) 1850 return error("Invalid value name"); 1851 V->setName(NameStr); 1852 auto *GO = dyn_cast<GlobalObject>(V); 1853 if (GO) { 1854 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1855 if (TT.supportsCOMDAT()) 1856 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1857 else 1858 GO->setComdat(nullptr); 1859 } 1860 } 1861 return V; 1862 } 1863 1864 /// Helper to note and return the current location, and jump to the given 1865 /// offset. 1866 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1867 BitstreamCursor &Stream) { 1868 // Save the current parsing location so we can jump back at the end 1869 // of the VST read. 1870 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1871 Stream.JumpToBit(Offset * 32); 1872 #ifndef NDEBUG 1873 // Do some checking if we are in debug mode. 1874 BitstreamEntry Entry = Stream.advance(); 1875 assert(Entry.Kind == BitstreamEntry::SubBlock); 1876 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1877 #else 1878 // In NDEBUG mode ignore the output so we don't get an unused variable 1879 // warning. 1880 Stream.advance(); 1881 #endif 1882 return CurrentBit; 1883 } 1884 1885 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1886 Function *F, 1887 ArrayRef<uint64_t> Record) { 1888 // Note that we subtract 1 here because the offset is relative to one word 1889 // before the start of the identification or module block, which was 1890 // historically always the start of the regular bitcode header. 1891 uint64_t FuncWordOffset = Record[1] - 1; 1892 uint64_t FuncBitOffset = FuncWordOffset * 32; 1893 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1894 // Set the LastFunctionBlockBit to point to the last function block. 1895 // Later when parsing is resumed after function materialization, 1896 // we can simply skip that last function block. 1897 if (FuncBitOffset > LastFunctionBlockBit) 1898 LastFunctionBlockBit = FuncBitOffset; 1899 } 1900 1901 /// Read a new-style GlobalValue symbol table. 1902 Error BitcodeReader::parseGlobalValueSymbolTable() { 1903 unsigned FuncBitcodeOffsetDelta = 1904 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1905 1906 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1907 return error("Invalid record"); 1908 1909 SmallVector<uint64_t, 64> Record; 1910 while (true) { 1911 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1912 1913 switch (Entry.Kind) { 1914 case BitstreamEntry::SubBlock: 1915 case BitstreamEntry::Error: 1916 return error("Malformed block"); 1917 case BitstreamEntry::EndBlock: 1918 return Error::success(); 1919 case BitstreamEntry::Record: 1920 break; 1921 } 1922 1923 Record.clear(); 1924 switch (Stream.readRecord(Entry.ID, Record)) { 1925 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1926 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1927 cast<Function>(ValueList[Record[0]]), Record); 1928 break; 1929 } 1930 } 1931 } 1932 1933 /// Parse the value symbol table at either the current parsing location or 1934 /// at the given bit offset if provided. 1935 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1936 uint64_t CurrentBit; 1937 // Pass in the Offset to distinguish between calling for the module-level 1938 // VST (where we want to jump to the VST offset) and the function-level 1939 // VST (where we don't). 1940 if (Offset > 0) { 1941 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1942 // If this module uses a string table, read this as a module-level VST. 1943 if (UseStrtab) { 1944 if (Error Err = parseGlobalValueSymbolTable()) 1945 return Err; 1946 Stream.JumpToBit(CurrentBit); 1947 return Error::success(); 1948 } 1949 // Otherwise, the VST will be in a similar format to a function-level VST, 1950 // and will contain symbol names. 1951 } 1952 1953 // Compute the delta between the bitcode indices in the VST (the word offset 1954 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1955 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1956 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1957 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1958 // just before entering the VST subblock because: 1) the EnterSubBlock 1959 // changes the AbbrevID width; 2) the VST block is nested within the same 1960 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1961 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1962 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1963 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1964 unsigned FuncBitcodeOffsetDelta = 1965 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1966 1967 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1968 return error("Invalid record"); 1969 1970 SmallVector<uint64_t, 64> Record; 1971 1972 Triple TT(TheModule->getTargetTriple()); 1973 1974 // Read all the records for this value table. 1975 SmallString<128> ValueName; 1976 1977 while (true) { 1978 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1979 1980 switch (Entry.Kind) { 1981 case BitstreamEntry::SubBlock: // Handled for us already. 1982 case BitstreamEntry::Error: 1983 return error("Malformed block"); 1984 case BitstreamEntry::EndBlock: 1985 if (Offset > 0) 1986 Stream.JumpToBit(CurrentBit); 1987 return Error::success(); 1988 case BitstreamEntry::Record: 1989 // The interesting case. 1990 break; 1991 } 1992 1993 // Read a record. 1994 Record.clear(); 1995 switch (Stream.readRecord(Entry.ID, Record)) { 1996 default: // Default behavior: unknown type. 1997 break; 1998 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1999 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2000 if (Error Err = ValOrErr.takeError()) 2001 return Err; 2002 ValOrErr.get(); 2003 break; 2004 } 2005 case bitc::VST_CODE_FNENTRY: { 2006 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2007 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2008 if (Error Err = ValOrErr.takeError()) 2009 return Err; 2010 Value *V = ValOrErr.get(); 2011 2012 // Ignore function offsets emitted for aliases of functions in older 2013 // versions of LLVM. 2014 if (auto *F = dyn_cast<Function>(V)) 2015 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2016 break; 2017 } 2018 case bitc::VST_CODE_BBENTRY: { 2019 if (convertToString(Record, 1, ValueName)) 2020 return error("Invalid record"); 2021 BasicBlock *BB = getBasicBlock(Record[0]); 2022 if (!BB) 2023 return error("Invalid record"); 2024 2025 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2026 ValueName.clear(); 2027 break; 2028 } 2029 } 2030 } 2031 } 2032 2033 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2034 /// encoding. 2035 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2036 if ((V & 1) == 0) 2037 return V >> 1; 2038 if (V != 1) 2039 return -(V >> 1); 2040 // There is no such thing as -0 with integers. "-0" really means MININT. 2041 return 1ULL << 63; 2042 } 2043 2044 /// Resolve all of the initializers for global values and aliases that we can. 2045 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2046 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2047 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2048 IndirectSymbolInitWorklist; 2049 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2050 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2051 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2052 2053 GlobalInitWorklist.swap(GlobalInits); 2054 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2055 FunctionPrefixWorklist.swap(FunctionPrefixes); 2056 FunctionPrologueWorklist.swap(FunctionPrologues); 2057 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2058 2059 while (!GlobalInitWorklist.empty()) { 2060 unsigned ValID = GlobalInitWorklist.back().second; 2061 if (ValID >= ValueList.size()) { 2062 // Not ready to resolve this yet, it requires something later in the file. 2063 GlobalInits.push_back(GlobalInitWorklist.back()); 2064 } else { 2065 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2066 GlobalInitWorklist.back().first->setInitializer(C); 2067 else 2068 return error("Expected a constant"); 2069 } 2070 GlobalInitWorklist.pop_back(); 2071 } 2072 2073 while (!IndirectSymbolInitWorklist.empty()) { 2074 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2075 if (ValID >= ValueList.size()) { 2076 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2077 } else { 2078 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2079 if (!C) 2080 return error("Expected a constant"); 2081 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2082 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2083 return error("Alias and aliasee types don't match"); 2084 GIS->setIndirectSymbol(C); 2085 } 2086 IndirectSymbolInitWorklist.pop_back(); 2087 } 2088 2089 while (!FunctionPrefixWorklist.empty()) { 2090 unsigned ValID = FunctionPrefixWorklist.back().second; 2091 if (ValID >= ValueList.size()) { 2092 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2093 } else { 2094 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2095 FunctionPrefixWorklist.back().first->setPrefixData(C); 2096 else 2097 return error("Expected a constant"); 2098 } 2099 FunctionPrefixWorklist.pop_back(); 2100 } 2101 2102 while (!FunctionPrologueWorklist.empty()) { 2103 unsigned ValID = FunctionPrologueWorklist.back().second; 2104 if (ValID >= ValueList.size()) { 2105 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2106 } else { 2107 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2108 FunctionPrologueWorklist.back().first->setPrologueData(C); 2109 else 2110 return error("Expected a constant"); 2111 } 2112 FunctionPrologueWorklist.pop_back(); 2113 } 2114 2115 while (!FunctionPersonalityFnWorklist.empty()) { 2116 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2117 if (ValID >= ValueList.size()) { 2118 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2119 } else { 2120 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2121 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2122 else 2123 return error("Expected a constant"); 2124 } 2125 FunctionPersonalityFnWorklist.pop_back(); 2126 } 2127 2128 return Error::success(); 2129 } 2130 2131 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2132 SmallVector<uint64_t, 8> Words(Vals.size()); 2133 transform(Vals, Words.begin(), 2134 BitcodeReader::decodeSignRotatedValue); 2135 2136 return APInt(TypeBits, Words); 2137 } 2138 2139 Error BitcodeReader::parseConstants() { 2140 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2141 return error("Invalid record"); 2142 2143 SmallVector<uint64_t, 64> Record; 2144 2145 // Read all the records for this value table. 2146 Type *CurTy = Type::getInt32Ty(Context); 2147 unsigned NextCstNo = ValueList.size(); 2148 2149 while (true) { 2150 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2151 2152 switch (Entry.Kind) { 2153 case BitstreamEntry::SubBlock: // Handled for us already. 2154 case BitstreamEntry::Error: 2155 return error("Malformed block"); 2156 case BitstreamEntry::EndBlock: 2157 if (NextCstNo != ValueList.size()) 2158 return error("Invalid constant reference"); 2159 2160 // Once all the constants have been read, go through and resolve forward 2161 // references. 2162 ValueList.resolveConstantForwardRefs(); 2163 return Error::success(); 2164 case BitstreamEntry::Record: 2165 // The interesting case. 2166 break; 2167 } 2168 2169 // Read a record. 2170 Record.clear(); 2171 Type *VoidType = Type::getVoidTy(Context); 2172 Value *V = nullptr; 2173 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2174 switch (BitCode) { 2175 default: // Default behavior: unknown constant 2176 case bitc::CST_CODE_UNDEF: // UNDEF 2177 V = UndefValue::get(CurTy); 2178 break; 2179 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2180 if (Record.empty()) 2181 return error("Invalid record"); 2182 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2183 return error("Invalid record"); 2184 if (TypeList[Record[0]] == VoidType) 2185 return error("Invalid constant type"); 2186 CurTy = TypeList[Record[0]]; 2187 continue; // Skip the ValueList manipulation. 2188 case bitc::CST_CODE_NULL: // NULL 2189 V = Constant::getNullValue(CurTy); 2190 break; 2191 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2192 if (!CurTy->isIntegerTy() || Record.empty()) 2193 return error("Invalid record"); 2194 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2195 break; 2196 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2197 if (!CurTy->isIntegerTy() || Record.empty()) 2198 return error("Invalid record"); 2199 2200 APInt VInt = 2201 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2202 V = ConstantInt::get(Context, VInt); 2203 2204 break; 2205 } 2206 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2207 if (Record.empty()) 2208 return error("Invalid record"); 2209 if (CurTy->isHalfTy()) 2210 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2211 APInt(16, (uint16_t)Record[0]))); 2212 else if (CurTy->isFloatTy()) 2213 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2214 APInt(32, (uint32_t)Record[0]))); 2215 else if (CurTy->isDoubleTy()) 2216 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2217 APInt(64, Record[0]))); 2218 else if (CurTy->isX86_FP80Ty()) { 2219 // Bits are not stored the same way as a normal i80 APInt, compensate. 2220 uint64_t Rearrange[2]; 2221 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2222 Rearrange[1] = Record[0] >> 48; 2223 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2224 APInt(80, Rearrange))); 2225 } else if (CurTy->isFP128Ty()) 2226 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2227 APInt(128, Record))); 2228 else if (CurTy->isPPC_FP128Ty()) 2229 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2230 APInt(128, Record))); 2231 else 2232 V = UndefValue::get(CurTy); 2233 break; 2234 } 2235 2236 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2237 if (Record.empty()) 2238 return error("Invalid record"); 2239 2240 unsigned Size = Record.size(); 2241 SmallVector<Constant*, 16> Elts; 2242 2243 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2244 for (unsigned i = 0; i != Size; ++i) 2245 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2246 STy->getElementType(i))); 2247 V = ConstantStruct::get(STy, Elts); 2248 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2249 Type *EltTy = ATy->getElementType(); 2250 for (unsigned i = 0; i != Size; ++i) 2251 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2252 V = ConstantArray::get(ATy, Elts); 2253 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2254 Type *EltTy = VTy->getElementType(); 2255 for (unsigned i = 0; i != Size; ++i) 2256 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2257 V = ConstantVector::get(Elts); 2258 } else { 2259 V = UndefValue::get(CurTy); 2260 } 2261 break; 2262 } 2263 case bitc::CST_CODE_STRING: // STRING: [values] 2264 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2265 if (Record.empty()) 2266 return error("Invalid record"); 2267 2268 SmallString<16> Elts(Record.begin(), Record.end()); 2269 V = ConstantDataArray::getString(Context, Elts, 2270 BitCode == bitc::CST_CODE_CSTRING); 2271 break; 2272 } 2273 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2274 if (Record.empty()) 2275 return error("Invalid record"); 2276 2277 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2278 if (EltTy->isIntegerTy(8)) { 2279 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::get(Context, Elts); 2282 else 2283 V = ConstantDataArray::get(Context, Elts); 2284 } else if (EltTy->isIntegerTy(16)) { 2285 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2286 if (isa<VectorType>(CurTy)) 2287 V = ConstantDataVector::get(Context, Elts); 2288 else 2289 V = ConstantDataArray::get(Context, Elts); 2290 } else if (EltTy->isIntegerTy(32)) { 2291 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2292 if (isa<VectorType>(CurTy)) 2293 V = ConstantDataVector::get(Context, Elts); 2294 else 2295 V = ConstantDataArray::get(Context, Elts); 2296 } else if (EltTy->isIntegerTy(64)) { 2297 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2298 if (isa<VectorType>(CurTy)) 2299 V = ConstantDataVector::get(Context, Elts); 2300 else 2301 V = ConstantDataArray::get(Context, Elts); 2302 } else if (EltTy->isHalfTy()) { 2303 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2304 if (isa<VectorType>(CurTy)) 2305 V = ConstantDataVector::getFP(Context, Elts); 2306 else 2307 V = ConstantDataArray::getFP(Context, Elts); 2308 } else if (EltTy->isFloatTy()) { 2309 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2310 if (isa<VectorType>(CurTy)) 2311 V = ConstantDataVector::getFP(Context, Elts); 2312 else 2313 V = ConstantDataArray::getFP(Context, Elts); 2314 } else if (EltTy->isDoubleTy()) { 2315 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2316 if (isa<VectorType>(CurTy)) 2317 V = ConstantDataVector::getFP(Context, Elts); 2318 else 2319 V = ConstantDataArray::getFP(Context, Elts); 2320 } else { 2321 return error("Invalid type for value"); 2322 } 2323 break; 2324 } 2325 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2326 if (Record.size() < 3) 2327 return error("Invalid record"); 2328 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2329 if (Opc < 0) { 2330 V = UndefValue::get(CurTy); // Unknown binop. 2331 } else { 2332 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2333 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2334 unsigned Flags = 0; 2335 if (Record.size() >= 4) { 2336 if (Opc == Instruction::Add || 2337 Opc == Instruction::Sub || 2338 Opc == Instruction::Mul || 2339 Opc == Instruction::Shl) { 2340 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2341 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2342 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2343 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2344 } else if (Opc == Instruction::SDiv || 2345 Opc == Instruction::UDiv || 2346 Opc == Instruction::LShr || 2347 Opc == Instruction::AShr) { 2348 if (Record[3] & (1 << bitc::PEO_EXACT)) 2349 Flags |= SDivOperator::IsExact; 2350 } 2351 } 2352 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2353 } 2354 break; 2355 } 2356 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2357 if (Record.size() < 3) 2358 return error("Invalid record"); 2359 int Opc = getDecodedCastOpcode(Record[0]); 2360 if (Opc < 0) { 2361 V = UndefValue::get(CurTy); // Unknown cast. 2362 } else { 2363 Type *OpTy = getTypeByID(Record[1]); 2364 if (!OpTy) 2365 return error("Invalid record"); 2366 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2367 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2368 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2369 } 2370 break; 2371 } 2372 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2373 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2374 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2375 // operands] 2376 unsigned OpNum = 0; 2377 Type *PointeeType = nullptr; 2378 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2379 Record.size() % 2) 2380 PointeeType = getTypeByID(Record[OpNum++]); 2381 2382 bool InBounds = false; 2383 Optional<unsigned> InRangeIndex; 2384 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2385 uint64_t Op = Record[OpNum++]; 2386 InBounds = Op & 1; 2387 InRangeIndex = Op >> 1; 2388 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2389 InBounds = true; 2390 2391 SmallVector<Constant*, 16> Elts; 2392 while (OpNum != Record.size()) { 2393 Type *ElTy = getTypeByID(Record[OpNum++]); 2394 if (!ElTy) 2395 return error("Invalid record"); 2396 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2397 } 2398 2399 if (PointeeType && 2400 PointeeType != 2401 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2402 ->getElementType()) 2403 return error("Explicit gep operator type does not match pointee type " 2404 "of pointer operand"); 2405 2406 if (Elts.size() < 1) 2407 return error("Invalid gep with no operands"); 2408 2409 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2410 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2411 InBounds, InRangeIndex); 2412 break; 2413 } 2414 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2415 if (Record.size() < 3) 2416 return error("Invalid record"); 2417 2418 Type *SelectorTy = Type::getInt1Ty(Context); 2419 2420 // The selector might be an i1 or an <n x i1> 2421 // Get the type from the ValueList before getting a forward ref. 2422 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2423 if (Value *V = ValueList[Record[0]]) 2424 if (SelectorTy != V->getType()) 2425 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2426 2427 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2428 SelectorTy), 2429 ValueList.getConstantFwdRef(Record[1],CurTy), 2430 ValueList.getConstantFwdRef(Record[2],CurTy)); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_EXTRACTELT 2434 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2435 if (Record.size() < 3) 2436 return error("Invalid record"); 2437 VectorType *OpTy = 2438 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2439 if (!OpTy) 2440 return error("Invalid record"); 2441 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2442 Constant *Op1 = nullptr; 2443 if (Record.size() == 4) { 2444 Type *IdxTy = getTypeByID(Record[2]); 2445 if (!IdxTy) 2446 return error("Invalid record"); 2447 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2448 } else // TODO: Remove with llvm 4.0 2449 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2450 if (!Op1) 2451 return error("Invalid record"); 2452 V = ConstantExpr::getExtractElement(Op0, Op1); 2453 break; 2454 } 2455 case bitc::CST_CODE_CE_INSERTELT 2456 : { // CE_INSERTELT: [opval, opval, opty, opval] 2457 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2458 if (Record.size() < 3 || !OpTy) 2459 return error("Invalid record"); 2460 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2461 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2462 OpTy->getElementType()); 2463 Constant *Op2 = nullptr; 2464 if (Record.size() == 4) { 2465 Type *IdxTy = getTypeByID(Record[2]); 2466 if (!IdxTy) 2467 return error("Invalid record"); 2468 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2469 } else // TODO: Remove with llvm 4.0 2470 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2471 if (!Op2) 2472 return error("Invalid record"); 2473 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2474 break; 2475 } 2476 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2477 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2478 if (Record.size() < 3 || !OpTy) 2479 return error("Invalid record"); 2480 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2481 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2482 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2483 OpTy->getNumElements()); 2484 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2485 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2486 break; 2487 } 2488 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2489 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2490 VectorType *OpTy = 2491 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2492 if (Record.size() < 4 || !RTy || !OpTy) 2493 return error("Invalid record"); 2494 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2495 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2496 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2497 RTy->getNumElements()); 2498 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2499 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2500 break; 2501 } 2502 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2503 if (Record.size() < 4) 2504 return error("Invalid record"); 2505 Type *OpTy = getTypeByID(Record[0]); 2506 if (!OpTy) 2507 return error("Invalid record"); 2508 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2509 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2510 2511 if (OpTy->isFPOrFPVectorTy()) 2512 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2513 else 2514 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2515 break; 2516 } 2517 // This maintains backward compatibility, pre-asm dialect keywords. 2518 // FIXME: Remove with the 4.0 release. 2519 case bitc::CST_CODE_INLINEASM_OLD: { 2520 if (Record.size() < 2) 2521 return error("Invalid record"); 2522 std::string AsmStr, ConstrStr; 2523 bool HasSideEffects = Record[0] & 1; 2524 bool IsAlignStack = Record[0] >> 1; 2525 unsigned AsmStrSize = Record[1]; 2526 if (2+AsmStrSize >= Record.size()) 2527 return error("Invalid record"); 2528 unsigned ConstStrSize = Record[2+AsmStrSize]; 2529 if (3+AsmStrSize+ConstStrSize > Record.size()) 2530 return error("Invalid record"); 2531 2532 for (unsigned i = 0; i != AsmStrSize; ++i) 2533 AsmStr += (char)Record[2+i]; 2534 for (unsigned i = 0; i != ConstStrSize; ++i) 2535 ConstrStr += (char)Record[3+AsmStrSize+i]; 2536 PointerType *PTy = cast<PointerType>(CurTy); 2537 UpgradeInlineAsmString(&AsmStr); 2538 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2539 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2540 break; 2541 } 2542 // This version adds support for the asm dialect keywords (e.g., 2543 // inteldialect). 2544 case bitc::CST_CODE_INLINEASM: { 2545 if (Record.size() < 2) 2546 return error("Invalid record"); 2547 std::string AsmStr, ConstrStr; 2548 bool HasSideEffects = Record[0] & 1; 2549 bool IsAlignStack = (Record[0] >> 1) & 1; 2550 unsigned AsmDialect = Record[0] >> 2; 2551 unsigned AsmStrSize = Record[1]; 2552 if (2+AsmStrSize >= Record.size()) 2553 return error("Invalid record"); 2554 unsigned ConstStrSize = Record[2+AsmStrSize]; 2555 if (3+AsmStrSize+ConstStrSize > Record.size()) 2556 return error("Invalid record"); 2557 2558 for (unsigned i = 0; i != AsmStrSize; ++i) 2559 AsmStr += (char)Record[2+i]; 2560 for (unsigned i = 0; i != ConstStrSize; ++i) 2561 ConstrStr += (char)Record[3+AsmStrSize+i]; 2562 PointerType *PTy = cast<PointerType>(CurTy); 2563 UpgradeInlineAsmString(&AsmStr); 2564 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2565 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2566 InlineAsm::AsmDialect(AsmDialect)); 2567 break; 2568 } 2569 case bitc::CST_CODE_BLOCKADDRESS:{ 2570 if (Record.size() < 3) 2571 return error("Invalid record"); 2572 Type *FnTy = getTypeByID(Record[0]); 2573 if (!FnTy) 2574 return error("Invalid record"); 2575 Function *Fn = 2576 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2577 if (!Fn) 2578 return error("Invalid record"); 2579 2580 // If the function is already parsed we can insert the block address right 2581 // away. 2582 BasicBlock *BB; 2583 unsigned BBID = Record[2]; 2584 if (!BBID) 2585 // Invalid reference to entry block. 2586 return error("Invalid ID"); 2587 if (!Fn->empty()) { 2588 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2589 for (size_t I = 0, E = BBID; I != E; ++I) { 2590 if (BBI == BBE) 2591 return error("Invalid ID"); 2592 ++BBI; 2593 } 2594 BB = &*BBI; 2595 } else { 2596 // Otherwise insert a placeholder and remember it so it can be inserted 2597 // when the function is parsed. 2598 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2599 if (FwdBBs.empty()) 2600 BasicBlockFwdRefQueue.push_back(Fn); 2601 if (FwdBBs.size() < BBID + 1) 2602 FwdBBs.resize(BBID + 1); 2603 if (!FwdBBs[BBID]) 2604 FwdBBs[BBID] = BasicBlock::Create(Context); 2605 BB = FwdBBs[BBID]; 2606 } 2607 V = BlockAddress::get(Fn, BB); 2608 break; 2609 } 2610 } 2611 2612 ValueList.assignValue(V, NextCstNo); 2613 ++NextCstNo; 2614 } 2615 } 2616 2617 Error BitcodeReader::parseUseLists() { 2618 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2619 return error("Invalid record"); 2620 2621 // Read all the records. 2622 SmallVector<uint64_t, 64> Record; 2623 2624 while (true) { 2625 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2626 2627 switch (Entry.Kind) { 2628 case BitstreamEntry::SubBlock: // Handled for us already. 2629 case BitstreamEntry::Error: 2630 return error("Malformed block"); 2631 case BitstreamEntry::EndBlock: 2632 return Error::success(); 2633 case BitstreamEntry::Record: 2634 // The interesting case. 2635 break; 2636 } 2637 2638 // Read a use list record. 2639 Record.clear(); 2640 bool IsBB = false; 2641 switch (Stream.readRecord(Entry.ID, Record)) { 2642 default: // Default behavior: unknown type. 2643 break; 2644 case bitc::USELIST_CODE_BB: 2645 IsBB = true; 2646 LLVM_FALLTHROUGH; 2647 case bitc::USELIST_CODE_DEFAULT: { 2648 unsigned RecordLength = Record.size(); 2649 if (RecordLength < 3) 2650 // Records should have at least an ID and two indexes. 2651 return error("Invalid record"); 2652 unsigned ID = Record.back(); 2653 Record.pop_back(); 2654 2655 Value *V; 2656 if (IsBB) { 2657 assert(ID < FunctionBBs.size() && "Basic block not found"); 2658 V = FunctionBBs[ID]; 2659 } else 2660 V = ValueList[ID]; 2661 unsigned NumUses = 0; 2662 SmallDenseMap<const Use *, unsigned, 16> Order; 2663 for (const Use &U : V->materialized_uses()) { 2664 if (++NumUses > Record.size()) 2665 break; 2666 Order[&U] = Record[NumUses - 1]; 2667 } 2668 if (Order.size() != Record.size() || NumUses > Record.size()) 2669 // Mismatches can happen if the functions are being materialized lazily 2670 // (out-of-order), or a value has been upgraded. 2671 break; 2672 2673 V->sortUseList([&](const Use &L, const Use &R) { 2674 return Order.lookup(&L) < Order.lookup(&R); 2675 }); 2676 break; 2677 } 2678 } 2679 } 2680 } 2681 2682 /// When we see the block for metadata, remember where it is and then skip it. 2683 /// This lets us lazily deserialize the metadata. 2684 Error BitcodeReader::rememberAndSkipMetadata() { 2685 // Save the current stream state. 2686 uint64_t CurBit = Stream.GetCurrentBitNo(); 2687 DeferredMetadataInfo.push_back(CurBit); 2688 2689 // Skip over the block for now. 2690 if (Stream.SkipBlock()) 2691 return error("Invalid record"); 2692 return Error::success(); 2693 } 2694 2695 Error BitcodeReader::materializeMetadata() { 2696 for (uint64_t BitPos : DeferredMetadataInfo) { 2697 // Move the bit stream to the saved position. 2698 Stream.JumpToBit(BitPos); 2699 if (Error Err = MDLoader->parseModuleMetadata()) 2700 return Err; 2701 } 2702 2703 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2704 // metadata. 2705 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2706 NamedMDNode *LinkerOpts = 2707 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2708 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2709 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2710 } 2711 2712 DeferredMetadataInfo.clear(); 2713 return Error::success(); 2714 } 2715 2716 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2717 2718 /// When we see the block for a function body, remember where it is and then 2719 /// skip it. This lets us lazily deserialize the functions. 2720 Error BitcodeReader::rememberAndSkipFunctionBody() { 2721 // Get the function we are talking about. 2722 if (FunctionsWithBodies.empty()) 2723 return error("Insufficient function protos"); 2724 2725 Function *Fn = FunctionsWithBodies.back(); 2726 FunctionsWithBodies.pop_back(); 2727 2728 // Save the current stream state. 2729 uint64_t CurBit = Stream.GetCurrentBitNo(); 2730 assert( 2731 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2732 "Mismatch between VST and scanned function offsets"); 2733 DeferredFunctionInfo[Fn] = CurBit; 2734 2735 // Skip over the function block for now. 2736 if (Stream.SkipBlock()) 2737 return error("Invalid record"); 2738 return Error::success(); 2739 } 2740 2741 Error BitcodeReader::globalCleanup() { 2742 // Patch the initializers for globals and aliases up. 2743 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2744 return Err; 2745 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2746 return error("Malformed global initializer set"); 2747 2748 // Look for intrinsic functions which need to be upgraded at some point 2749 for (Function &F : *TheModule) { 2750 MDLoader->upgradeDebugIntrinsics(F); 2751 Function *NewFn; 2752 if (UpgradeIntrinsicFunction(&F, NewFn)) 2753 UpgradedIntrinsics[&F] = NewFn; 2754 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2755 // Some types could be renamed during loading if several modules are 2756 // loaded in the same LLVMContext (LTO scenario). In this case we should 2757 // remangle intrinsics names as well. 2758 RemangledIntrinsics[&F] = Remangled.getValue(); 2759 } 2760 2761 // Look for global variables which need to be renamed. 2762 for (GlobalVariable &GV : TheModule->globals()) 2763 UpgradeGlobalVariable(&GV); 2764 2765 // Force deallocation of memory for these vectors to favor the client that 2766 // want lazy deserialization. 2767 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2768 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2769 IndirectSymbolInits); 2770 return Error::success(); 2771 } 2772 2773 /// Support for lazy parsing of function bodies. This is required if we 2774 /// either have an old bitcode file without a VST forward declaration record, 2775 /// or if we have an anonymous function being materialized, since anonymous 2776 /// functions do not have a name and are therefore not in the VST. 2777 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2778 Stream.JumpToBit(NextUnreadBit); 2779 2780 if (Stream.AtEndOfStream()) 2781 return error("Could not find function in stream"); 2782 2783 if (!SeenFirstFunctionBody) 2784 return error("Trying to materialize functions before seeing function blocks"); 2785 2786 // An old bitcode file with the symbol table at the end would have 2787 // finished the parse greedily. 2788 assert(SeenValueSymbolTable); 2789 2790 SmallVector<uint64_t, 64> Record; 2791 2792 while (true) { 2793 BitstreamEntry Entry = Stream.advance(); 2794 switch (Entry.Kind) { 2795 default: 2796 return error("Expect SubBlock"); 2797 case BitstreamEntry::SubBlock: 2798 switch (Entry.ID) { 2799 default: 2800 return error("Expect function block"); 2801 case bitc::FUNCTION_BLOCK_ID: 2802 if (Error Err = rememberAndSkipFunctionBody()) 2803 return Err; 2804 NextUnreadBit = Stream.GetCurrentBitNo(); 2805 return Error::success(); 2806 } 2807 } 2808 } 2809 } 2810 2811 bool BitcodeReaderBase::readBlockInfo() { 2812 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2813 if (!NewBlockInfo) 2814 return true; 2815 BlockInfo = std::move(*NewBlockInfo); 2816 return false; 2817 } 2818 2819 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2820 // v1: [selection_kind, name] 2821 // v2: [strtab_offset, strtab_size, selection_kind] 2822 StringRef Name; 2823 std::tie(Name, Record) = readNameFromStrtab(Record); 2824 2825 if (Record.empty()) 2826 return error("Invalid record"); 2827 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2828 std::string OldFormatName; 2829 if (!UseStrtab) { 2830 if (Record.size() < 2) 2831 return error("Invalid record"); 2832 unsigned ComdatNameSize = Record[1]; 2833 OldFormatName.reserve(ComdatNameSize); 2834 for (unsigned i = 0; i != ComdatNameSize; ++i) 2835 OldFormatName += (char)Record[2 + i]; 2836 Name = OldFormatName; 2837 } 2838 Comdat *C = TheModule->getOrInsertComdat(Name); 2839 C->setSelectionKind(SK); 2840 ComdatList.push_back(C); 2841 return Error::success(); 2842 } 2843 2844 static void inferDSOLocal(GlobalValue *GV) { 2845 // infer dso_local from linkage and visibility if it is not encoded. 2846 if (GV->hasLocalLinkage() || 2847 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2848 GV->setDSOLocal(true); 2849 } 2850 2851 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2852 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2853 // visibility, threadlocal, unnamed_addr, externally_initialized, 2854 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2855 // v2: [strtab_offset, strtab_size, v1] 2856 StringRef Name; 2857 std::tie(Name, Record) = readNameFromStrtab(Record); 2858 2859 if (Record.size() < 6) 2860 return error("Invalid record"); 2861 Type *Ty = getTypeByID(Record[0]); 2862 if (!Ty) 2863 return error("Invalid record"); 2864 bool isConstant = Record[1] & 1; 2865 bool explicitType = Record[1] & 2; 2866 unsigned AddressSpace; 2867 if (explicitType) { 2868 AddressSpace = Record[1] >> 2; 2869 } else { 2870 if (!Ty->isPointerTy()) 2871 return error("Invalid type for value"); 2872 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2873 Ty = cast<PointerType>(Ty)->getElementType(); 2874 } 2875 2876 uint64_t RawLinkage = Record[3]; 2877 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2878 unsigned Alignment; 2879 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2880 return Err; 2881 std::string Section; 2882 if (Record[5]) { 2883 if (Record[5] - 1 >= SectionTable.size()) 2884 return error("Invalid ID"); 2885 Section = SectionTable[Record[5] - 1]; 2886 } 2887 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2888 // Local linkage must have default visibility. 2889 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2890 // FIXME: Change to an error if non-default in 4.0. 2891 Visibility = getDecodedVisibility(Record[6]); 2892 2893 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2894 if (Record.size() > 7) 2895 TLM = getDecodedThreadLocalMode(Record[7]); 2896 2897 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2898 if (Record.size() > 8) 2899 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2900 2901 bool ExternallyInitialized = false; 2902 if (Record.size() > 9) 2903 ExternallyInitialized = Record[9]; 2904 2905 GlobalVariable *NewGV = 2906 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2907 nullptr, TLM, AddressSpace, ExternallyInitialized); 2908 NewGV->setAlignment(Alignment); 2909 if (!Section.empty()) 2910 NewGV->setSection(Section); 2911 NewGV->setVisibility(Visibility); 2912 NewGV->setUnnamedAddr(UnnamedAddr); 2913 2914 if (Record.size() > 10) 2915 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2916 else 2917 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2918 2919 ValueList.push_back(NewGV); 2920 2921 // Remember which value to use for the global initializer. 2922 if (unsigned InitID = Record[2]) 2923 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2924 2925 if (Record.size() > 11) { 2926 if (unsigned ComdatID = Record[11]) { 2927 if (ComdatID > ComdatList.size()) 2928 return error("Invalid global variable comdat ID"); 2929 NewGV->setComdat(ComdatList[ComdatID - 1]); 2930 } 2931 } else if (hasImplicitComdat(RawLinkage)) { 2932 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2933 } 2934 2935 if (Record.size() > 12) { 2936 auto AS = getAttributes(Record[12]).getFnAttributes(); 2937 NewGV->setAttributes(AS); 2938 } 2939 2940 if (Record.size() > 13) { 2941 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2942 } 2943 inferDSOLocal(NewGV); 2944 2945 return Error::success(); 2946 } 2947 2948 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2949 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2950 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2951 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2952 // v2: [strtab_offset, strtab_size, v1] 2953 StringRef Name; 2954 std::tie(Name, Record) = readNameFromStrtab(Record); 2955 2956 if (Record.size() < 8) 2957 return error("Invalid record"); 2958 Type *Ty = getTypeByID(Record[0]); 2959 if (!Ty) 2960 return error("Invalid record"); 2961 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2962 Ty = PTy->getElementType(); 2963 auto *FTy = dyn_cast<FunctionType>(Ty); 2964 if (!FTy) 2965 return error("Invalid type for value"); 2966 auto CC = static_cast<CallingConv::ID>(Record[1]); 2967 if (CC & ~CallingConv::MaxID) 2968 return error("Invalid calling convention ID"); 2969 2970 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 2971 if (Record.size() > 16) 2972 AddrSpace = Record[16]; 2973 2974 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2975 AddrSpace, Name, TheModule); 2976 2977 Func->setCallingConv(CC); 2978 bool isProto = Record[2]; 2979 uint64_t RawLinkage = Record[3]; 2980 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2981 Func->setAttributes(getAttributes(Record[4])); 2982 2983 unsigned Alignment; 2984 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2985 return Err; 2986 Func->setAlignment(Alignment); 2987 if (Record[6]) { 2988 if (Record[6] - 1 >= SectionTable.size()) 2989 return error("Invalid ID"); 2990 Func->setSection(SectionTable[Record[6] - 1]); 2991 } 2992 // Local linkage must have default visibility. 2993 if (!Func->hasLocalLinkage()) 2994 // FIXME: Change to an error if non-default in 4.0. 2995 Func->setVisibility(getDecodedVisibility(Record[7])); 2996 if (Record.size() > 8 && Record[8]) { 2997 if (Record[8] - 1 >= GCTable.size()) 2998 return error("Invalid ID"); 2999 Func->setGC(GCTable[Record[8] - 1]); 3000 } 3001 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3002 if (Record.size() > 9) 3003 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3004 Func->setUnnamedAddr(UnnamedAddr); 3005 if (Record.size() > 10 && Record[10] != 0) 3006 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3007 3008 if (Record.size() > 11) 3009 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3010 else 3011 upgradeDLLImportExportLinkage(Func, RawLinkage); 3012 3013 if (Record.size() > 12) { 3014 if (unsigned ComdatID = Record[12]) { 3015 if (ComdatID > ComdatList.size()) 3016 return error("Invalid function comdat ID"); 3017 Func->setComdat(ComdatList[ComdatID - 1]); 3018 } 3019 } else if (hasImplicitComdat(RawLinkage)) { 3020 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3021 } 3022 3023 if (Record.size() > 13 && Record[13] != 0) 3024 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3025 3026 if (Record.size() > 14 && Record[14] != 0) 3027 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3028 3029 if (Record.size() > 15) { 3030 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3031 } 3032 inferDSOLocal(Func); 3033 3034 ValueList.push_back(Func); 3035 3036 // If this is a function with a body, remember the prototype we are 3037 // creating now, so that we can match up the body with them later. 3038 if (!isProto) { 3039 Func->setIsMaterializable(true); 3040 FunctionsWithBodies.push_back(Func); 3041 DeferredFunctionInfo[Func] = 0; 3042 } 3043 return Error::success(); 3044 } 3045 3046 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3047 unsigned BitCode, ArrayRef<uint64_t> Record) { 3048 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3049 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3050 // dllstorageclass, threadlocal, unnamed_addr, 3051 // preemption specifier] (name in VST) 3052 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3053 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3054 // preemption specifier] (name in VST) 3055 // v2: [strtab_offset, strtab_size, v1] 3056 StringRef Name; 3057 std::tie(Name, Record) = readNameFromStrtab(Record); 3058 3059 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3060 if (Record.size() < (3 + (unsigned)NewRecord)) 3061 return error("Invalid record"); 3062 unsigned OpNum = 0; 3063 Type *Ty = getTypeByID(Record[OpNum++]); 3064 if (!Ty) 3065 return error("Invalid record"); 3066 3067 unsigned AddrSpace; 3068 if (!NewRecord) { 3069 auto *PTy = dyn_cast<PointerType>(Ty); 3070 if (!PTy) 3071 return error("Invalid type for value"); 3072 Ty = PTy->getElementType(); 3073 AddrSpace = PTy->getAddressSpace(); 3074 } else { 3075 AddrSpace = Record[OpNum++]; 3076 } 3077 3078 auto Val = Record[OpNum++]; 3079 auto Linkage = Record[OpNum++]; 3080 GlobalIndirectSymbol *NewGA; 3081 if (BitCode == bitc::MODULE_CODE_ALIAS || 3082 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3083 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3084 TheModule); 3085 else 3086 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3087 nullptr, TheModule); 3088 // Old bitcode files didn't have visibility field. 3089 // Local linkage must have default visibility. 3090 if (OpNum != Record.size()) { 3091 auto VisInd = OpNum++; 3092 if (!NewGA->hasLocalLinkage()) 3093 // FIXME: Change to an error if non-default in 4.0. 3094 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3095 } 3096 if (BitCode == bitc::MODULE_CODE_ALIAS || 3097 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3098 if (OpNum != Record.size()) 3099 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3100 else 3101 upgradeDLLImportExportLinkage(NewGA, Linkage); 3102 if (OpNum != Record.size()) 3103 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3104 if (OpNum != Record.size()) 3105 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3106 } 3107 if (OpNum != Record.size()) 3108 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3109 inferDSOLocal(NewGA); 3110 3111 ValueList.push_back(NewGA); 3112 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3113 return Error::success(); 3114 } 3115 3116 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3117 bool ShouldLazyLoadMetadata) { 3118 if (ResumeBit) 3119 Stream.JumpToBit(ResumeBit); 3120 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3121 return error("Invalid record"); 3122 3123 SmallVector<uint64_t, 64> Record; 3124 3125 // Read all the records for this module. 3126 while (true) { 3127 BitstreamEntry Entry = Stream.advance(); 3128 3129 switch (Entry.Kind) { 3130 case BitstreamEntry::Error: 3131 return error("Malformed block"); 3132 case BitstreamEntry::EndBlock: 3133 return globalCleanup(); 3134 3135 case BitstreamEntry::SubBlock: 3136 switch (Entry.ID) { 3137 default: // Skip unknown content. 3138 if (Stream.SkipBlock()) 3139 return error("Invalid record"); 3140 break; 3141 case bitc::BLOCKINFO_BLOCK_ID: 3142 if (readBlockInfo()) 3143 return error("Malformed block"); 3144 break; 3145 case bitc::PARAMATTR_BLOCK_ID: 3146 if (Error Err = parseAttributeBlock()) 3147 return Err; 3148 break; 3149 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3150 if (Error Err = parseAttributeGroupBlock()) 3151 return Err; 3152 break; 3153 case bitc::TYPE_BLOCK_ID_NEW: 3154 if (Error Err = parseTypeTable()) 3155 return Err; 3156 break; 3157 case bitc::VALUE_SYMTAB_BLOCK_ID: 3158 if (!SeenValueSymbolTable) { 3159 // Either this is an old form VST without function index and an 3160 // associated VST forward declaration record (which would have caused 3161 // the VST to be jumped to and parsed before it was encountered 3162 // normally in the stream), or there were no function blocks to 3163 // trigger an earlier parsing of the VST. 3164 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3165 if (Error Err = parseValueSymbolTable()) 3166 return Err; 3167 SeenValueSymbolTable = true; 3168 } else { 3169 // We must have had a VST forward declaration record, which caused 3170 // the parser to jump to and parse the VST earlier. 3171 assert(VSTOffset > 0); 3172 if (Stream.SkipBlock()) 3173 return error("Invalid record"); 3174 } 3175 break; 3176 case bitc::CONSTANTS_BLOCK_ID: 3177 if (Error Err = parseConstants()) 3178 return Err; 3179 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3180 return Err; 3181 break; 3182 case bitc::METADATA_BLOCK_ID: 3183 if (ShouldLazyLoadMetadata) { 3184 if (Error Err = rememberAndSkipMetadata()) 3185 return Err; 3186 break; 3187 } 3188 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3189 if (Error Err = MDLoader->parseModuleMetadata()) 3190 return Err; 3191 break; 3192 case bitc::METADATA_KIND_BLOCK_ID: 3193 if (Error Err = MDLoader->parseMetadataKinds()) 3194 return Err; 3195 break; 3196 case bitc::FUNCTION_BLOCK_ID: 3197 // If this is the first function body we've seen, reverse the 3198 // FunctionsWithBodies list. 3199 if (!SeenFirstFunctionBody) { 3200 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3201 if (Error Err = globalCleanup()) 3202 return Err; 3203 SeenFirstFunctionBody = true; 3204 } 3205 3206 if (VSTOffset > 0) { 3207 // If we have a VST forward declaration record, make sure we 3208 // parse the VST now if we haven't already. It is needed to 3209 // set up the DeferredFunctionInfo vector for lazy reading. 3210 if (!SeenValueSymbolTable) { 3211 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3212 return Err; 3213 SeenValueSymbolTable = true; 3214 // Fall through so that we record the NextUnreadBit below. 3215 // This is necessary in case we have an anonymous function that 3216 // is later materialized. Since it will not have a VST entry we 3217 // need to fall back to the lazy parse to find its offset. 3218 } else { 3219 // If we have a VST forward declaration record, but have already 3220 // parsed the VST (just above, when the first function body was 3221 // encountered here), then we are resuming the parse after 3222 // materializing functions. The ResumeBit points to the 3223 // start of the last function block recorded in the 3224 // DeferredFunctionInfo map. Skip it. 3225 if (Stream.SkipBlock()) 3226 return error("Invalid record"); 3227 continue; 3228 } 3229 } 3230 3231 // Support older bitcode files that did not have the function 3232 // index in the VST, nor a VST forward declaration record, as 3233 // well as anonymous functions that do not have VST entries. 3234 // Build the DeferredFunctionInfo vector on the fly. 3235 if (Error Err = rememberAndSkipFunctionBody()) 3236 return Err; 3237 3238 // Suspend parsing when we reach the function bodies. Subsequent 3239 // materialization calls will resume it when necessary. If the bitcode 3240 // file is old, the symbol table will be at the end instead and will not 3241 // have been seen yet. In this case, just finish the parse now. 3242 if (SeenValueSymbolTable) { 3243 NextUnreadBit = Stream.GetCurrentBitNo(); 3244 // After the VST has been parsed, we need to make sure intrinsic name 3245 // are auto-upgraded. 3246 return globalCleanup(); 3247 } 3248 break; 3249 case bitc::USELIST_BLOCK_ID: 3250 if (Error Err = parseUseLists()) 3251 return Err; 3252 break; 3253 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3254 if (Error Err = parseOperandBundleTags()) 3255 return Err; 3256 break; 3257 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3258 if (Error Err = parseSyncScopeNames()) 3259 return Err; 3260 break; 3261 } 3262 continue; 3263 3264 case BitstreamEntry::Record: 3265 // The interesting case. 3266 break; 3267 } 3268 3269 // Read a record. 3270 auto BitCode = Stream.readRecord(Entry.ID, Record); 3271 switch (BitCode) { 3272 default: break; // Default behavior, ignore unknown content. 3273 case bitc::MODULE_CODE_VERSION: { 3274 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3275 if (!VersionOrErr) 3276 return VersionOrErr.takeError(); 3277 UseRelativeIDs = *VersionOrErr >= 1; 3278 break; 3279 } 3280 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3281 std::string S; 3282 if (convertToString(Record, 0, S)) 3283 return error("Invalid record"); 3284 TheModule->setTargetTriple(S); 3285 break; 3286 } 3287 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3288 std::string S; 3289 if (convertToString(Record, 0, S)) 3290 return error("Invalid record"); 3291 TheModule->setDataLayout(S); 3292 break; 3293 } 3294 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3295 std::string S; 3296 if (convertToString(Record, 0, S)) 3297 return error("Invalid record"); 3298 TheModule->setModuleInlineAsm(S); 3299 break; 3300 } 3301 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3302 // FIXME: Remove in 4.0. 3303 std::string S; 3304 if (convertToString(Record, 0, S)) 3305 return error("Invalid record"); 3306 // Ignore value. 3307 break; 3308 } 3309 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3310 std::string S; 3311 if (convertToString(Record, 0, S)) 3312 return error("Invalid record"); 3313 SectionTable.push_back(S); 3314 break; 3315 } 3316 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3317 std::string S; 3318 if (convertToString(Record, 0, S)) 3319 return error("Invalid record"); 3320 GCTable.push_back(S); 3321 break; 3322 } 3323 case bitc::MODULE_CODE_COMDAT: 3324 if (Error Err = parseComdatRecord(Record)) 3325 return Err; 3326 break; 3327 case bitc::MODULE_CODE_GLOBALVAR: 3328 if (Error Err = parseGlobalVarRecord(Record)) 3329 return Err; 3330 break; 3331 case bitc::MODULE_CODE_FUNCTION: 3332 if (Error Err = parseFunctionRecord(Record)) 3333 return Err; 3334 break; 3335 case bitc::MODULE_CODE_IFUNC: 3336 case bitc::MODULE_CODE_ALIAS: 3337 case bitc::MODULE_CODE_ALIAS_OLD: 3338 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3339 return Err; 3340 break; 3341 /// MODULE_CODE_VSTOFFSET: [offset] 3342 case bitc::MODULE_CODE_VSTOFFSET: 3343 if (Record.size() < 1) 3344 return error("Invalid record"); 3345 // Note that we subtract 1 here because the offset is relative to one word 3346 // before the start of the identification or module block, which was 3347 // historically always the start of the regular bitcode header. 3348 VSTOffset = Record[0] - 1; 3349 break; 3350 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3351 case bitc::MODULE_CODE_SOURCE_FILENAME: 3352 SmallString<128> ValueName; 3353 if (convertToString(Record, 0, ValueName)) 3354 return error("Invalid record"); 3355 TheModule->setSourceFileName(ValueName); 3356 break; 3357 } 3358 Record.clear(); 3359 } 3360 } 3361 3362 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3363 bool IsImporting) { 3364 TheModule = M; 3365 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3366 [&](unsigned ID) { return getTypeByID(ID); }); 3367 return parseModule(0, ShouldLazyLoadMetadata); 3368 } 3369 3370 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3371 if (!isa<PointerType>(PtrType)) 3372 return error("Load/Store operand is not a pointer type"); 3373 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3374 3375 if (ValType && ValType != ElemType) 3376 return error("Explicit load/store type does not match pointee " 3377 "type of pointer operand"); 3378 if (!PointerType::isLoadableOrStorableType(ElemType)) 3379 return error("Cannot load/store from pointer"); 3380 return Error::success(); 3381 } 3382 3383 /// Lazily parse the specified function body block. 3384 Error BitcodeReader::parseFunctionBody(Function *F) { 3385 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3386 return error("Invalid record"); 3387 3388 // Unexpected unresolved metadata when parsing function. 3389 if (MDLoader->hasFwdRefs()) 3390 return error("Invalid function metadata: incoming forward references"); 3391 3392 InstructionList.clear(); 3393 unsigned ModuleValueListSize = ValueList.size(); 3394 unsigned ModuleMDLoaderSize = MDLoader->size(); 3395 3396 // Add all the function arguments to the value table. 3397 for (Argument &I : F->args()) 3398 ValueList.push_back(&I); 3399 3400 unsigned NextValueNo = ValueList.size(); 3401 BasicBlock *CurBB = nullptr; 3402 unsigned CurBBNo = 0; 3403 3404 DebugLoc LastLoc; 3405 auto getLastInstruction = [&]() -> Instruction * { 3406 if (CurBB && !CurBB->empty()) 3407 return &CurBB->back(); 3408 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3409 !FunctionBBs[CurBBNo - 1]->empty()) 3410 return &FunctionBBs[CurBBNo - 1]->back(); 3411 return nullptr; 3412 }; 3413 3414 std::vector<OperandBundleDef> OperandBundles; 3415 3416 // Read all the records. 3417 SmallVector<uint64_t, 64> Record; 3418 3419 while (true) { 3420 BitstreamEntry Entry = Stream.advance(); 3421 3422 switch (Entry.Kind) { 3423 case BitstreamEntry::Error: 3424 return error("Malformed block"); 3425 case BitstreamEntry::EndBlock: 3426 goto OutOfRecordLoop; 3427 3428 case BitstreamEntry::SubBlock: 3429 switch (Entry.ID) { 3430 default: // Skip unknown content. 3431 if (Stream.SkipBlock()) 3432 return error("Invalid record"); 3433 break; 3434 case bitc::CONSTANTS_BLOCK_ID: 3435 if (Error Err = parseConstants()) 3436 return Err; 3437 NextValueNo = ValueList.size(); 3438 break; 3439 case bitc::VALUE_SYMTAB_BLOCK_ID: 3440 if (Error Err = parseValueSymbolTable()) 3441 return Err; 3442 break; 3443 case bitc::METADATA_ATTACHMENT_ID: 3444 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3445 return Err; 3446 break; 3447 case bitc::METADATA_BLOCK_ID: 3448 assert(DeferredMetadataInfo.empty() && 3449 "Must read all module-level metadata before function-level"); 3450 if (Error Err = MDLoader->parseFunctionMetadata()) 3451 return Err; 3452 break; 3453 case bitc::USELIST_BLOCK_ID: 3454 if (Error Err = parseUseLists()) 3455 return Err; 3456 break; 3457 } 3458 continue; 3459 3460 case BitstreamEntry::Record: 3461 // The interesting case. 3462 break; 3463 } 3464 3465 // Read a record. 3466 Record.clear(); 3467 Instruction *I = nullptr; 3468 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3469 switch (BitCode) { 3470 default: // Default behavior: reject 3471 return error("Invalid value"); 3472 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3473 if (Record.size() < 1 || Record[0] == 0) 3474 return error("Invalid record"); 3475 // Create all the basic blocks for the function. 3476 FunctionBBs.resize(Record[0]); 3477 3478 // See if anything took the address of blocks in this function. 3479 auto BBFRI = BasicBlockFwdRefs.find(F); 3480 if (BBFRI == BasicBlockFwdRefs.end()) { 3481 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3482 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3483 } else { 3484 auto &BBRefs = BBFRI->second; 3485 // Check for invalid basic block references. 3486 if (BBRefs.size() > FunctionBBs.size()) 3487 return error("Invalid ID"); 3488 assert(!BBRefs.empty() && "Unexpected empty array"); 3489 assert(!BBRefs.front() && "Invalid reference to entry block"); 3490 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3491 ++I) 3492 if (I < RE && BBRefs[I]) { 3493 BBRefs[I]->insertInto(F); 3494 FunctionBBs[I] = BBRefs[I]; 3495 } else { 3496 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3497 } 3498 3499 // Erase from the table. 3500 BasicBlockFwdRefs.erase(BBFRI); 3501 } 3502 3503 CurBB = FunctionBBs[0]; 3504 continue; 3505 } 3506 3507 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3508 // This record indicates that the last instruction is at the same 3509 // location as the previous instruction with a location. 3510 I = getLastInstruction(); 3511 3512 if (!I) 3513 return error("Invalid record"); 3514 I->setDebugLoc(LastLoc); 3515 I = nullptr; 3516 continue; 3517 3518 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3519 I = getLastInstruction(); 3520 if (!I || Record.size() < 4) 3521 return error("Invalid record"); 3522 3523 unsigned Line = Record[0], Col = Record[1]; 3524 unsigned ScopeID = Record[2], IAID = Record[3]; 3525 bool isImplicitCode = Record.size() == 5 && Record[4]; 3526 3527 MDNode *Scope = nullptr, *IA = nullptr; 3528 if (ScopeID) { 3529 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3530 if (!Scope) 3531 return error("Invalid record"); 3532 } 3533 if (IAID) { 3534 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3535 if (!IA) 3536 return error("Invalid record"); 3537 } 3538 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3539 I->setDebugLoc(LastLoc); 3540 I = nullptr; 3541 continue; 3542 } 3543 3544 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3545 unsigned OpNum = 0; 3546 Value *LHS, *RHS; 3547 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3548 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3549 OpNum+1 > Record.size()) 3550 return error("Invalid record"); 3551 3552 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3553 if (Opc == -1) 3554 return error("Invalid record"); 3555 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3556 InstructionList.push_back(I); 3557 if (OpNum < Record.size()) { 3558 if (Opc == Instruction::Add || 3559 Opc == Instruction::Sub || 3560 Opc == Instruction::Mul || 3561 Opc == Instruction::Shl) { 3562 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3563 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3564 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3565 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3566 } else if (Opc == Instruction::SDiv || 3567 Opc == Instruction::UDiv || 3568 Opc == Instruction::LShr || 3569 Opc == Instruction::AShr) { 3570 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3571 cast<BinaryOperator>(I)->setIsExact(true); 3572 } else if (isa<FPMathOperator>(I)) { 3573 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3574 if (FMF.any()) 3575 I->setFastMathFlags(FMF); 3576 } 3577 3578 } 3579 break; 3580 } 3581 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3582 unsigned OpNum = 0; 3583 Value *Op; 3584 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3585 OpNum+2 != Record.size()) 3586 return error("Invalid record"); 3587 3588 Type *ResTy = getTypeByID(Record[OpNum]); 3589 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3590 if (Opc == -1 || !ResTy) 3591 return error("Invalid record"); 3592 Instruction *Temp = nullptr; 3593 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3594 if (Temp) { 3595 InstructionList.push_back(Temp); 3596 CurBB->getInstList().push_back(Temp); 3597 } 3598 } else { 3599 auto CastOp = (Instruction::CastOps)Opc; 3600 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3601 return error("Invalid cast"); 3602 I = CastInst::Create(CastOp, Op, ResTy); 3603 } 3604 InstructionList.push_back(I); 3605 break; 3606 } 3607 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3608 case bitc::FUNC_CODE_INST_GEP_OLD: 3609 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3610 unsigned OpNum = 0; 3611 3612 Type *Ty; 3613 bool InBounds; 3614 3615 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3616 InBounds = Record[OpNum++]; 3617 Ty = getTypeByID(Record[OpNum++]); 3618 } else { 3619 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3620 Ty = nullptr; 3621 } 3622 3623 Value *BasePtr; 3624 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3625 return error("Invalid record"); 3626 3627 if (!Ty) 3628 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3629 ->getElementType(); 3630 else if (Ty != 3631 cast<PointerType>(BasePtr->getType()->getScalarType()) 3632 ->getElementType()) 3633 return error( 3634 "Explicit gep type does not match pointee type of pointer operand"); 3635 3636 SmallVector<Value*, 16> GEPIdx; 3637 while (OpNum != Record.size()) { 3638 Value *Op; 3639 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3640 return error("Invalid record"); 3641 GEPIdx.push_back(Op); 3642 } 3643 3644 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3645 3646 InstructionList.push_back(I); 3647 if (InBounds) 3648 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3649 break; 3650 } 3651 3652 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3653 // EXTRACTVAL: [opty, opval, n x indices] 3654 unsigned OpNum = 0; 3655 Value *Agg; 3656 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3657 return error("Invalid record"); 3658 3659 unsigned RecSize = Record.size(); 3660 if (OpNum == RecSize) 3661 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3662 3663 SmallVector<unsigned, 4> EXTRACTVALIdx; 3664 Type *CurTy = Agg->getType(); 3665 for (; OpNum != RecSize; ++OpNum) { 3666 bool IsArray = CurTy->isArrayTy(); 3667 bool IsStruct = CurTy->isStructTy(); 3668 uint64_t Index = Record[OpNum]; 3669 3670 if (!IsStruct && !IsArray) 3671 return error("EXTRACTVAL: Invalid type"); 3672 if ((unsigned)Index != Index) 3673 return error("Invalid value"); 3674 if (IsStruct && Index >= CurTy->subtypes().size()) 3675 return error("EXTRACTVAL: Invalid struct index"); 3676 if (IsArray && Index >= CurTy->getArrayNumElements()) 3677 return error("EXTRACTVAL: Invalid array index"); 3678 EXTRACTVALIdx.push_back((unsigned)Index); 3679 3680 if (IsStruct) 3681 CurTy = CurTy->subtypes()[Index]; 3682 else 3683 CurTy = CurTy->subtypes()[0]; 3684 } 3685 3686 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 3691 case bitc::FUNC_CODE_INST_INSERTVAL: { 3692 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3693 unsigned OpNum = 0; 3694 Value *Agg; 3695 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3696 return error("Invalid record"); 3697 Value *Val; 3698 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3699 return error("Invalid record"); 3700 3701 unsigned RecSize = Record.size(); 3702 if (OpNum == RecSize) 3703 return error("INSERTVAL: Invalid instruction with 0 indices"); 3704 3705 SmallVector<unsigned, 4> INSERTVALIdx; 3706 Type *CurTy = Agg->getType(); 3707 for (; OpNum != RecSize; ++OpNum) { 3708 bool IsArray = CurTy->isArrayTy(); 3709 bool IsStruct = CurTy->isStructTy(); 3710 uint64_t Index = Record[OpNum]; 3711 3712 if (!IsStruct && !IsArray) 3713 return error("INSERTVAL: Invalid type"); 3714 if ((unsigned)Index != Index) 3715 return error("Invalid value"); 3716 if (IsStruct && Index >= CurTy->subtypes().size()) 3717 return error("INSERTVAL: Invalid struct index"); 3718 if (IsArray && Index >= CurTy->getArrayNumElements()) 3719 return error("INSERTVAL: Invalid array index"); 3720 3721 INSERTVALIdx.push_back((unsigned)Index); 3722 if (IsStruct) 3723 CurTy = CurTy->subtypes()[Index]; 3724 else 3725 CurTy = CurTy->subtypes()[0]; 3726 } 3727 3728 if (CurTy != Val->getType()) 3729 return error("Inserted value type doesn't match aggregate type"); 3730 3731 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3732 InstructionList.push_back(I); 3733 break; 3734 } 3735 3736 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3737 // obsolete form of select 3738 // handles select i1 ... in old bitcode 3739 unsigned OpNum = 0; 3740 Value *TrueVal, *FalseVal, *Cond; 3741 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3742 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3743 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3744 return error("Invalid record"); 3745 3746 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3747 InstructionList.push_back(I); 3748 break; 3749 } 3750 3751 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3752 // new form of select 3753 // handles select i1 or select [N x i1] 3754 unsigned OpNum = 0; 3755 Value *TrueVal, *FalseVal, *Cond; 3756 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3757 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3758 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3759 return error("Invalid record"); 3760 3761 // select condition can be either i1 or [N x i1] 3762 if (VectorType* vector_type = 3763 dyn_cast<VectorType>(Cond->getType())) { 3764 // expect <n x i1> 3765 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3766 return error("Invalid type for value"); 3767 } else { 3768 // expect i1 3769 if (Cond->getType() != Type::getInt1Ty(Context)) 3770 return error("Invalid type for value"); 3771 } 3772 3773 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3774 InstructionList.push_back(I); 3775 break; 3776 } 3777 3778 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3779 unsigned OpNum = 0; 3780 Value *Vec, *Idx; 3781 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3782 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3783 return error("Invalid record"); 3784 if (!Vec->getType()->isVectorTy()) 3785 return error("Invalid type for value"); 3786 I = ExtractElementInst::Create(Vec, Idx); 3787 InstructionList.push_back(I); 3788 break; 3789 } 3790 3791 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3792 unsigned OpNum = 0; 3793 Value *Vec, *Elt, *Idx; 3794 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3795 return error("Invalid record"); 3796 if (!Vec->getType()->isVectorTy()) 3797 return error("Invalid type for value"); 3798 if (popValue(Record, OpNum, NextValueNo, 3799 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3800 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3801 return error("Invalid record"); 3802 I = InsertElementInst::Create(Vec, Elt, Idx); 3803 InstructionList.push_back(I); 3804 break; 3805 } 3806 3807 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3808 unsigned OpNum = 0; 3809 Value *Vec1, *Vec2, *Mask; 3810 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3811 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3812 return error("Invalid record"); 3813 3814 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3815 return error("Invalid record"); 3816 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3817 return error("Invalid type for value"); 3818 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3819 InstructionList.push_back(I); 3820 break; 3821 } 3822 3823 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3824 // Old form of ICmp/FCmp returning bool 3825 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3826 // both legal on vectors but had different behaviour. 3827 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3828 // FCmp/ICmp returning bool or vector of bool 3829 3830 unsigned OpNum = 0; 3831 Value *LHS, *RHS; 3832 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3833 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3834 return error("Invalid record"); 3835 3836 unsigned PredVal = Record[OpNum]; 3837 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3838 FastMathFlags FMF; 3839 if (IsFP && Record.size() > OpNum+1) 3840 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3841 3842 if (OpNum+1 != Record.size()) 3843 return error("Invalid record"); 3844 3845 if (LHS->getType()->isFPOrFPVectorTy()) 3846 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3847 else 3848 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3849 3850 if (FMF.any()) 3851 I->setFastMathFlags(FMF); 3852 InstructionList.push_back(I); 3853 break; 3854 } 3855 3856 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3857 { 3858 unsigned Size = Record.size(); 3859 if (Size == 0) { 3860 I = ReturnInst::Create(Context); 3861 InstructionList.push_back(I); 3862 break; 3863 } 3864 3865 unsigned OpNum = 0; 3866 Value *Op = nullptr; 3867 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3868 return error("Invalid record"); 3869 if (OpNum != Record.size()) 3870 return error("Invalid record"); 3871 3872 I = ReturnInst::Create(Context, Op); 3873 InstructionList.push_back(I); 3874 break; 3875 } 3876 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3877 if (Record.size() != 1 && Record.size() != 3) 3878 return error("Invalid record"); 3879 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3880 if (!TrueDest) 3881 return error("Invalid record"); 3882 3883 if (Record.size() == 1) { 3884 I = BranchInst::Create(TrueDest); 3885 InstructionList.push_back(I); 3886 } 3887 else { 3888 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3889 Value *Cond = getValue(Record, 2, NextValueNo, 3890 Type::getInt1Ty(Context)); 3891 if (!FalseDest || !Cond) 3892 return error("Invalid record"); 3893 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3894 InstructionList.push_back(I); 3895 } 3896 break; 3897 } 3898 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3899 if (Record.size() != 1 && Record.size() != 2) 3900 return error("Invalid record"); 3901 unsigned Idx = 0; 3902 Value *CleanupPad = 3903 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3904 if (!CleanupPad) 3905 return error("Invalid record"); 3906 BasicBlock *UnwindDest = nullptr; 3907 if (Record.size() == 2) { 3908 UnwindDest = getBasicBlock(Record[Idx++]); 3909 if (!UnwindDest) 3910 return error("Invalid record"); 3911 } 3912 3913 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3914 InstructionList.push_back(I); 3915 break; 3916 } 3917 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3918 if (Record.size() != 2) 3919 return error("Invalid record"); 3920 unsigned Idx = 0; 3921 Value *CatchPad = 3922 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3923 if (!CatchPad) 3924 return error("Invalid record"); 3925 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3926 if (!BB) 3927 return error("Invalid record"); 3928 3929 I = CatchReturnInst::Create(CatchPad, BB); 3930 InstructionList.push_back(I); 3931 break; 3932 } 3933 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3934 // We must have, at minimum, the outer scope and the number of arguments. 3935 if (Record.size() < 2) 3936 return error("Invalid record"); 3937 3938 unsigned Idx = 0; 3939 3940 Value *ParentPad = 3941 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3942 3943 unsigned NumHandlers = Record[Idx++]; 3944 3945 SmallVector<BasicBlock *, 2> Handlers; 3946 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3947 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3948 if (!BB) 3949 return error("Invalid record"); 3950 Handlers.push_back(BB); 3951 } 3952 3953 BasicBlock *UnwindDest = nullptr; 3954 if (Idx + 1 == Record.size()) { 3955 UnwindDest = getBasicBlock(Record[Idx++]); 3956 if (!UnwindDest) 3957 return error("Invalid record"); 3958 } 3959 3960 if (Record.size() != Idx) 3961 return error("Invalid record"); 3962 3963 auto *CatchSwitch = 3964 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3965 for (BasicBlock *Handler : Handlers) 3966 CatchSwitch->addHandler(Handler); 3967 I = CatchSwitch; 3968 InstructionList.push_back(I); 3969 break; 3970 } 3971 case bitc::FUNC_CODE_INST_CATCHPAD: 3972 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3973 // We must have, at minimum, the outer scope and the number of arguments. 3974 if (Record.size() < 2) 3975 return error("Invalid record"); 3976 3977 unsigned Idx = 0; 3978 3979 Value *ParentPad = 3980 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3981 3982 unsigned NumArgOperands = Record[Idx++]; 3983 3984 SmallVector<Value *, 2> Args; 3985 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3986 Value *Val; 3987 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3988 return error("Invalid record"); 3989 Args.push_back(Val); 3990 } 3991 3992 if (Record.size() != Idx) 3993 return error("Invalid record"); 3994 3995 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3996 I = CleanupPadInst::Create(ParentPad, Args); 3997 else 3998 I = CatchPadInst::Create(ParentPad, Args); 3999 InstructionList.push_back(I); 4000 break; 4001 } 4002 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4003 // Check magic 4004 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4005 // "New" SwitchInst format with case ranges. The changes to write this 4006 // format were reverted but we still recognize bitcode that uses it. 4007 // Hopefully someday we will have support for case ranges and can use 4008 // this format again. 4009 4010 Type *OpTy = getTypeByID(Record[1]); 4011 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4012 4013 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4014 BasicBlock *Default = getBasicBlock(Record[3]); 4015 if (!OpTy || !Cond || !Default) 4016 return error("Invalid record"); 4017 4018 unsigned NumCases = Record[4]; 4019 4020 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4021 InstructionList.push_back(SI); 4022 4023 unsigned CurIdx = 5; 4024 for (unsigned i = 0; i != NumCases; ++i) { 4025 SmallVector<ConstantInt*, 1> CaseVals; 4026 unsigned NumItems = Record[CurIdx++]; 4027 for (unsigned ci = 0; ci != NumItems; ++ci) { 4028 bool isSingleNumber = Record[CurIdx++]; 4029 4030 APInt Low; 4031 unsigned ActiveWords = 1; 4032 if (ValueBitWidth > 64) 4033 ActiveWords = Record[CurIdx++]; 4034 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4035 ValueBitWidth); 4036 CurIdx += ActiveWords; 4037 4038 if (!isSingleNumber) { 4039 ActiveWords = 1; 4040 if (ValueBitWidth > 64) 4041 ActiveWords = Record[CurIdx++]; 4042 APInt High = readWideAPInt( 4043 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4044 CurIdx += ActiveWords; 4045 4046 // FIXME: It is not clear whether values in the range should be 4047 // compared as signed or unsigned values. The partially 4048 // implemented changes that used this format in the past used 4049 // unsigned comparisons. 4050 for ( ; Low.ule(High); ++Low) 4051 CaseVals.push_back(ConstantInt::get(Context, Low)); 4052 } else 4053 CaseVals.push_back(ConstantInt::get(Context, Low)); 4054 } 4055 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4056 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4057 cve = CaseVals.end(); cvi != cve; ++cvi) 4058 SI->addCase(*cvi, DestBB); 4059 } 4060 I = SI; 4061 break; 4062 } 4063 4064 // Old SwitchInst format without case ranges. 4065 4066 if (Record.size() < 3 || (Record.size() & 1) == 0) 4067 return error("Invalid record"); 4068 Type *OpTy = getTypeByID(Record[0]); 4069 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4070 BasicBlock *Default = getBasicBlock(Record[2]); 4071 if (!OpTy || !Cond || !Default) 4072 return error("Invalid record"); 4073 unsigned NumCases = (Record.size()-3)/2; 4074 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4075 InstructionList.push_back(SI); 4076 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4077 ConstantInt *CaseVal = 4078 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4079 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4080 if (!CaseVal || !DestBB) { 4081 delete SI; 4082 return error("Invalid record"); 4083 } 4084 SI->addCase(CaseVal, DestBB); 4085 } 4086 I = SI; 4087 break; 4088 } 4089 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4090 if (Record.size() < 2) 4091 return error("Invalid record"); 4092 Type *OpTy = getTypeByID(Record[0]); 4093 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4094 if (!OpTy || !Address) 4095 return error("Invalid record"); 4096 unsigned NumDests = Record.size()-2; 4097 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4098 InstructionList.push_back(IBI); 4099 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4100 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4101 IBI->addDestination(DestBB); 4102 } else { 4103 delete IBI; 4104 return error("Invalid record"); 4105 } 4106 } 4107 I = IBI; 4108 break; 4109 } 4110 4111 case bitc::FUNC_CODE_INST_INVOKE: { 4112 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4113 if (Record.size() < 4) 4114 return error("Invalid record"); 4115 unsigned OpNum = 0; 4116 AttributeList PAL = getAttributes(Record[OpNum++]); 4117 unsigned CCInfo = Record[OpNum++]; 4118 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4119 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4120 4121 FunctionType *FTy = nullptr; 4122 if (CCInfo >> 13 & 1 && 4123 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4124 return error("Explicit invoke type is not a function type"); 4125 4126 Value *Callee; 4127 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4128 return error("Invalid record"); 4129 4130 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4131 if (!CalleeTy) 4132 return error("Callee is not a pointer"); 4133 if (!FTy) { 4134 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4135 if (!FTy) 4136 return error("Callee is not of pointer to function type"); 4137 } else if (CalleeTy->getElementType() != FTy) 4138 return error("Explicit invoke type does not match pointee type of " 4139 "callee operand"); 4140 if (Record.size() < FTy->getNumParams() + OpNum) 4141 return error("Insufficient operands to call"); 4142 4143 SmallVector<Value*, 16> Ops; 4144 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4145 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4146 FTy->getParamType(i))); 4147 if (!Ops.back()) 4148 return error("Invalid record"); 4149 } 4150 4151 if (!FTy->isVarArg()) { 4152 if (Record.size() != OpNum) 4153 return error("Invalid record"); 4154 } else { 4155 // Read type/value pairs for varargs params. 4156 while (OpNum != Record.size()) { 4157 Value *Op; 4158 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4159 return error("Invalid record"); 4160 Ops.push_back(Op); 4161 } 4162 } 4163 4164 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4165 OperandBundles.clear(); 4166 InstructionList.push_back(I); 4167 cast<InvokeInst>(I)->setCallingConv( 4168 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4169 cast<InvokeInst>(I)->setAttributes(PAL); 4170 break; 4171 } 4172 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4173 unsigned Idx = 0; 4174 Value *Val = nullptr; 4175 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4176 return error("Invalid record"); 4177 I = ResumeInst::Create(Val); 4178 InstructionList.push_back(I); 4179 break; 4180 } 4181 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4182 I = new UnreachableInst(Context); 4183 InstructionList.push_back(I); 4184 break; 4185 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4186 if (Record.size() < 1 || ((Record.size()-1)&1)) 4187 return error("Invalid record"); 4188 Type *Ty = getTypeByID(Record[0]); 4189 if (!Ty) 4190 return error("Invalid record"); 4191 4192 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4193 InstructionList.push_back(PN); 4194 4195 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4196 Value *V; 4197 // With the new function encoding, it is possible that operands have 4198 // negative IDs (for forward references). Use a signed VBR 4199 // representation to keep the encoding small. 4200 if (UseRelativeIDs) 4201 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4202 else 4203 V = getValue(Record, 1+i, NextValueNo, Ty); 4204 BasicBlock *BB = getBasicBlock(Record[2+i]); 4205 if (!V || !BB) 4206 return error("Invalid record"); 4207 PN->addIncoming(V, BB); 4208 } 4209 I = PN; 4210 break; 4211 } 4212 4213 case bitc::FUNC_CODE_INST_LANDINGPAD: 4214 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4215 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4216 unsigned Idx = 0; 4217 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4218 if (Record.size() < 3) 4219 return error("Invalid record"); 4220 } else { 4221 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4222 if (Record.size() < 4) 4223 return error("Invalid record"); 4224 } 4225 Type *Ty = getTypeByID(Record[Idx++]); 4226 if (!Ty) 4227 return error("Invalid record"); 4228 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4229 Value *PersFn = nullptr; 4230 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4231 return error("Invalid record"); 4232 4233 if (!F->hasPersonalityFn()) 4234 F->setPersonalityFn(cast<Constant>(PersFn)); 4235 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4236 return error("Personality function mismatch"); 4237 } 4238 4239 bool IsCleanup = !!Record[Idx++]; 4240 unsigned NumClauses = Record[Idx++]; 4241 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4242 LP->setCleanup(IsCleanup); 4243 for (unsigned J = 0; J != NumClauses; ++J) { 4244 LandingPadInst::ClauseType CT = 4245 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4246 Value *Val; 4247 4248 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4249 delete LP; 4250 return error("Invalid record"); 4251 } 4252 4253 assert((CT != LandingPadInst::Catch || 4254 !isa<ArrayType>(Val->getType())) && 4255 "Catch clause has a invalid type!"); 4256 assert((CT != LandingPadInst::Filter || 4257 isa<ArrayType>(Val->getType())) && 4258 "Filter clause has invalid type!"); 4259 LP->addClause(cast<Constant>(Val)); 4260 } 4261 4262 I = LP; 4263 InstructionList.push_back(I); 4264 break; 4265 } 4266 4267 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4268 if (Record.size() != 4) 4269 return error("Invalid record"); 4270 uint64_t AlignRecord = Record[3]; 4271 const uint64_t InAllocaMask = uint64_t(1) << 5; 4272 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4273 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4274 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4275 SwiftErrorMask; 4276 bool InAlloca = AlignRecord & InAllocaMask; 4277 bool SwiftError = AlignRecord & SwiftErrorMask; 4278 Type *Ty = getTypeByID(Record[0]); 4279 if ((AlignRecord & ExplicitTypeMask) == 0) { 4280 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4281 if (!PTy) 4282 return error("Old-style alloca with a non-pointer type"); 4283 Ty = PTy->getElementType(); 4284 } 4285 Type *OpTy = getTypeByID(Record[1]); 4286 Value *Size = getFnValueByID(Record[2], OpTy); 4287 unsigned Align; 4288 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4289 return Err; 4290 } 4291 if (!Ty || !Size) 4292 return error("Invalid record"); 4293 4294 // FIXME: Make this an optional field. 4295 const DataLayout &DL = TheModule->getDataLayout(); 4296 unsigned AS = DL.getAllocaAddrSpace(); 4297 4298 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4299 AI->setUsedWithInAlloca(InAlloca); 4300 AI->setSwiftError(SwiftError); 4301 I = AI; 4302 InstructionList.push_back(I); 4303 break; 4304 } 4305 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4306 unsigned OpNum = 0; 4307 Value *Op; 4308 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4309 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4310 return error("Invalid record"); 4311 4312 Type *Ty = nullptr; 4313 if (OpNum + 3 == Record.size()) 4314 Ty = getTypeByID(Record[OpNum++]); 4315 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4316 return Err; 4317 if (!Ty) 4318 Ty = cast<PointerType>(Op->getType())->getElementType(); 4319 4320 unsigned Align; 4321 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4322 return Err; 4323 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4324 4325 InstructionList.push_back(I); 4326 break; 4327 } 4328 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4329 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4330 unsigned OpNum = 0; 4331 Value *Op; 4332 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4333 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4334 return error("Invalid record"); 4335 4336 Type *Ty = nullptr; 4337 if (OpNum + 5 == Record.size()) 4338 Ty = getTypeByID(Record[OpNum++]); 4339 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4340 return Err; 4341 if (!Ty) 4342 Ty = cast<PointerType>(Op->getType())->getElementType(); 4343 4344 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4345 if (Ordering == AtomicOrdering::NotAtomic || 4346 Ordering == AtomicOrdering::Release || 4347 Ordering == AtomicOrdering::AcquireRelease) 4348 return error("Invalid record"); 4349 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4350 return error("Invalid record"); 4351 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4352 4353 unsigned Align; 4354 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4355 return Err; 4356 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4357 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 case bitc::FUNC_CODE_INST_STORE: 4362 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4363 unsigned OpNum = 0; 4364 Value *Val, *Ptr; 4365 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4366 (BitCode == bitc::FUNC_CODE_INST_STORE 4367 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4368 : popValue(Record, OpNum, NextValueNo, 4369 cast<PointerType>(Ptr->getType())->getElementType(), 4370 Val)) || 4371 OpNum + 2 != Record.size()) 4372 return error("Invalid record"); 4373 4374 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4375 return Err; 4376 unsigned Align; 4377 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4378 return Err; 4379 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4380 InstructionList.push_back(I); 4381 break; 4382 } 4383 case bitc::FUNC_CODE_INST_STOREATOMIC: 4384 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4385 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4386 unsigned OpNum = 0; 4387 Value *Val, *Ptr; 4388 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4389 !isa<PointerType>(Ptr->getType()) || 4390 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4391 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4392 : popValue(Record, OpNum, NextValueNo, 4393 cast<PointerType>(Ptr->getType())->getElementType(), 4394 Val)) || 4395 OpNum + 4 != Record.size()) 4396 return error("Invalid record"); 4397 4398 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4399 return Err; 4400 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4401 if (Ordering == AtomicOrdering::NotAtomic || 4402 Ordering == AtomicOrdering::Acquire || 4403 Ordering == AtomicOrdering::AcquireRelease) 4404 return error("Invalid record"); 4405 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4406 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4407 return error("Invalid record"); 4408 4409 unsigned Align; 4410 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4411 return Err; 4412 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4413 InstructionList.push_back(I); 4414 break; 4415 } 4416 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4417 case bitc::FUNC_CODE_INST_CMPXCHG: { 4418 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4419 // failureordering?, isweak?] 4420 unsigned OpNum = 0; 4421 Value *Ptr, *Cmp, *New; 4422 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4423 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4424 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4425 : popValue(Record, OpNum, NextValueNo, 4426 cast<PointerType>(Ptr->getType())->getElementType(), 4427 Cmp)) || 4428 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4429 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4430 return error("Invalid record"); 4431 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4432 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4433 SuccessOrdering == AtomicOrdering::Unordered) 4434 return error("Invalid record"); 4435 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4436 4437 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4438 return Err; 4439 AtomicOrdering FailureOrdering; 4440 if (Record.size() < 7) 4441 FailureOrdering = 4442 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4443 else 4444 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4445 4446 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4447 SSID); 4448 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4449 4450 if (Record.size() < 8) { 4451 // Before weak cmpxchgs existed, the instruction simply returned the 4452 // value loaded from memory, so bitcode files from that era will be 4453 // expecting the first component of a modern cmpxchg. 4454 CurBB->getInstList().push_back(I); 4455 I = ExtractValueInst::Create(I, 0); 4456 } else { 4457 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4458 } 4459 4460 InstructionList.push_back(I); 4461 break; 4462 } 4463 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4464 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4465 unsigned OpNum = 0; 4466 Value *Ptr, *Val; 4467 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4468 !isa<PointerType>(Ptr->getType()) || 4469 popValue(Record, OpNum, NextValueNo, 4470 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4471 OpNum+4 != Record.size()) 4472 return error("Invalid record"); 4473 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4474 if (Operation < AtomicRMWInst::FIRST_BINOP || 4475 Operation > AtomicRMWInst::LAST_BINOP) 4476 return error("Invalid record"); 4477 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4478 if (Ordering == AtomicOrdering::NotAtomic || 4479 Ordering == AtomicOrdering::Unordered) 4480 return error("Invalid record"); 4481 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4482 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4483 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4484 InstructionList.push_back(I); 4485 break; 4486 } 4487 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4488 if (2 != Record.size()) 4489 return error("Invalid record"); 4490 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4491 if (Ordering == AtomicOrdering::NotAtomic || 4492 Ordering == AtomicOrdering::Unordered || 4493 Ordering == AtomicOrdering::Monotonic) 4494 return error("Invalid record"); 4495 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4496 I = new FenceInst(Context, Ordering, SSID); 4497 InstructionList.push_back(I); 4498 break; 4499 } 4500 case bitc::FUNC_CODE_INST_CALL: { 4501 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4502 if (Record.size() < 3) 4503 return error("Invalid record"); 4504 4505 unsigned OpNum = 0; 4506 AttributeList PAL = getAttributes(Record[OpNum++]); 4507 unsigned CCInfo = Record[OpNum++]; 4508 4509 FastMathFlags FMF; 4510 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4511 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4512 if (!FMF.any()) 4513 return error("Fast math flags indicator set for call with no FMF"); 4514 } 4515 4516 FunctionType *FTy = nullptr; 4517 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4518 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4519 return error("Explicit call type is not a function type"); 4520 4521 Value *Callee; 4522 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4523 return error("Invalid record"); 4524 4525 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4526 if (!OpTy) 4527 return error("Callee is not a pointer type"); 4528 if (!FTy) { 4529 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4530 if (!FTy) 4531 return error("Callee is not of pointer to function type"); 4532 } else if (OpTy->getElementType() != FTy) 4533 return error("Explicit call type does not match pointee type of " 4534 "callee operand"); 4535 if (Record.size() < FTy->getNumParams() + OpNum) 4536 return error("Insufficient operands to call"); 4537 4538 SmallVector<Value*, 16> Args; 4539 // Read the fixed params. 4540 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4541 if (FTy->getParamType(i)->isLabelTy()) 4542 Args.push_back(getBasicBlock(Record[OpNum])); 4543 else 4544 Args.push_back(getValue(Record, OpNum, NextValueNo, 4545 FTy->getParamType(i))); 4546 if (!Args.back()) 4547 return error("Invalid record"); 4548 } 4549 4550 // Read type/value pairs for varargs params. 4551 if (!FTy->isVarArg()) { 4552 if (OpNum != Record.size()) 4553 return error("Invalid record"); 4554 } else { 4555 while (OpNum != Record.size()) { 4556 Value *Op; 4557 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4558 return error("Invalid record"); 4559 Args.push_back(Op); 4560 } 4561 } 4562 4563 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4564 OperandBundles.clear(); 4565 InstructionList.push_back(I); 4566 cast<CallInst>(I)->setCallingConv( 4567 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4568 CallInst::TailCallKind TCK = CallInst::TCK_None; 4569 if (CCInfo & 1 << bitc::CALL_TAIL) 4570 TCK = CallInst::TCK_Tail; 4571 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4572 TCK = CallInst::TCK_MustTail; 4573 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4574 TCK = CallInst::TCK_NoTail; 4575 cast<CallInst>(I)->setTailCallKind(TCK); 4576 cast<CallInst>(I)->setAttributes(PAL); 4577 if (FMF.any()) { 4578 if (!isa<FPMathOperator>(I)) 4579 return error("Fast-math-flags specified for call without " 4580 "floating-point scalar or vector return type"); 4581 I->setFastMathFlags(FMF); 4582 } 4583 break; 4584 } 4585 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4586 if (Record.size() < 3) 4587 return error("Invalid record"); 4588 Type *OpTy = getTypeByID(Record[0]); 4589 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4590 Type *ResTy = getTypeByID(Record[2]); 4591 if (!OpTy || !Op || !ResTy) 4592 return error("Invalid record"); 4593 I = new VAArgInst(Op, ResTy); 4594 InstructionList.push_back(I); 4595 break; 4596 } 4597 4598 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4599 // A call or an invoke can be optionally prefixed with some variable 4600 // number of operand bundle blocks. These blocks are read into 4601 // OperandBundles and consumed at the next call or invoke instruction. 4602 4603 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4604 return error("Invalid record"); 4605 4606 std::vector<Value *> Inputs; 4607 4608 unsigned OpNum = 1; 4609 while (OpNum != Record.size()) { 4610 Value *Op; 4611 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4612 return error("Invalid record"); 4613 Inputs.push_back(Op); 4614 } 4615 4616 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4617 continue; 4618 } 4619 } 4620 4621 // Add instruction to end of current BB. If there is no current BB, reject 4622 // this file. 4623 if (!CurBB) { 4624 I->deleteValue(); 4625 return error("Invalid instruction with no BB"); 4626 } 4627 if (!OperandBundles.empty()) { 4628 I->deleteValue(); 4629 return error("Operand bundles found with no consumer"); 4630 } 4631 CurBB->getInstList().push_back(I); 4632 4633 // If this was a terminator instruction, move to the next block. 4634 if (I->isTerminator()) { 4635 ++CurBBNo; 4636 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4637 } 4638 4639 // Non-void values get registered in the value table for future use. 4640 if (I && !I->getType()->isVoidTy()) 4641 ValueList.assignValue(I, NextValueNo++); 4642 } 4643 4644 OutOfRecordLoop: 4645 4646 if (!OperandBundles.empty()) 4647 return error("Operand bundles found with no consumer"); 4648 4649 // Check the function list for unresolved values. 4650 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4651 if (!A->getParent()) { 4652 // We found at least one unresolved value. Nuke them all to avoid leaks. 4653 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4654 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4655 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4656 delete A; 4657 } 4658 } 4659 return error("Never resolved value found in function"); 4660 } 4661 } 4662 4663 // Unexpected unresolved metadata about to be dropped. 4664 if (MDLoader->hasFwdRefs()) 4665 return error("Invalid function metadata: outgoing forward refs"); 4666 4667 // Trim the value list down to the size it was before we parsed this function. 4668 ValueList.shrinkTo(ModuleValueListSize); 4669 MDLoader->shrinkTo(ModuleMDLoaderSize); 4670 std::vector<BasicBlock*>().swap(FunctionBBs); 4671 return Error::success(); 4672 } 4673 4674 /// Find the function body in the bitcode stream 4675 Error BitcodeReader::findFunctionInStream( 4676 Function *F, 4677 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4678 while (DeferredFunctionInfoIterator->second == 0) { 4679 // This is the fallback handling for the old format bitcode that 4680 // didn't contain the function index in the VST, or when we have 4681 // an anonymous function which would not have a VST entry. 4682 // Assert that we have one of those two cases. 4683 assert(VSTOffset == 0 || !F->hasName()); 4684 // Parse the next body in the stream and set its position in the 4685 // DeferredFunctionInfo map. 4686 if (Error Err = rememberAndSkipFunctionBodies()) 4687 return Err; 4688 } 4689 return Error::success(); 4690 } 4691 4692 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4693 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4694 return SyncScope::ID(Val); 4695 if (Val >= SSIDs.size()) 4696 return SyncScope::System; // Map unknown synchronization scopes to system. 4697 return SSIDs[Val]; 4698 } 4699 4700 //===----------------------------------------------------------------------===// 4701 // GVMaterializer implementation 4702 //===----------------------------------------------------------------------===// 4703 4704 Error BitcodeReader::materialize(GlobalValue *GV) { 4705 Function *F = dyn_cast<Function>(GV); 4706 // If it's not a function or is already material, ignore the request. 4707 if (!F || !F->isMaterializable()) 4708 return Error::success(); 4709 4710 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4711 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4712 // If its position is recorded as 0, its body is somewhere in the stream 4713 // but we haven't seen it yet. 4714 if (DFII->second == 0) 4715 if (Error Err = findFunctionInStream(F, DFII)) 4716 return Err; 4717 4718 // Materialize metadata before parsing any function bodies. 4719 if (Error Err = materializeMetadata()) 4720 return Err; 4721 4722 // Move the bit stream to the saved position of the deferred function body. 4723 Stream.JumpToBit(DFII->second); 4724 4725 if (Error Err = parseFunctionBody(F)) 4726 return Err; 4727 F->setIsMaterializable(false); 4728 4729 if (StripDebugInfo) 4730 stripDebugInfo(*F); 4731 4732 // Upgrade any old intrinsic calls in the function. 4733 for (auto &I : UpgradedIntrinsics) { 4734 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4735 UI != UE;) { 4736 User *U = *UI; 4737 ++UI; 4738 if (CallInst *CI = dyn_cast<CallInst>(U)) 4739 UpgradeIntrinsicCall(CI, I.second); 4740 } 4741 } 4742 4743 // Update calls to the remangled intrinsics 4744 for (auto &I : RemangledIntrinsics) 4745 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4746 UI != UE;) 4747 // Don't expect any other users than call sites 4748 CallSite(*UI++).setCalledFunction(I.second); 4749 4750 // Finish fn->subprogram upgrade for materialized functions. 4751 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4752 F->setSubprogram(SP); 4753 4754 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4755 if (!MDLoader->isStrippingTBAA()) { 4756 for (auto &I : instructions(F)) { 4757 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4758 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4759 continue; 4760 MDLoader->setStripTBAA(true); 4761 stripTBAA(F->getParent()); 4762 } 4763 } 4764 4765 // Bring in any functions that this function forward-referenced via 4766 // blockaddresses. 4767 return materializeForwardReferencedFunctions(); 4768 } 4769 4770 Error BitcodeReader::materializeModule() { 4771 if (Error Err = materializeMetadata()) 4772 return Err; 4773 4774 // Promise to materialize all forward references. 4775 WillMaterializeAllForwardRefs = true; 4776 4777 // Iterate over the module, deserializing any functions that are still on 4778 // disk. 4779 for (Function &F : *TheModule) { 4780 if (Error Err = materialize(&F)) 4781 return Err; 4782 } 4783 // At this point, if there are any function bodies, parse the rest of 4784 // the bits in the module past the last function block we have recorded 4785 // through either lazy scanning or the VST. 4786 if (LastFunctionBlockBit || NextUnreadBit) 4787 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4788 ? LastFunctionBlockBit 4789 : NextUnreadBit)) 4790 return Err; 4791 4792 // Check that all block address forward references got resolved (as we 4793 // promised above). 4794 if (!BasicBlockFwdRefs.empty()) 4795 return error("Never resolved function from blockaddress"); 4796 4797 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4798 // delete the old functions to clean up. We can't do this unless the entire 4799 // module is materialized because there could always be another function body 4800 // with calls to the old function. 4801 for (auto &I : UpgradedIntrinsics) { 4802 for (auto *U : I.first->users()) { 4803 if (CallInst *CI = dyn_cast<CallInst>(U)) 4804 UpgradeIntrinsicCall(CI, I.second); 4805 } 4806 if (!I.first->use_empty()) 4807 I.first->replaceAllUsesWith(I.second); 4808 I.first->eraseFromParent(); 4809 } 4810 UpgradedIntrinsics.clear(); 4811 // Do the same for remangled intrinsics 4812 for (auto &I : RemangledIntrinsics) { 4813 I.first->replaceAllUsesWith(I.second); 4814 I.first->eraseFromParent(); 4815 } 4816 RemangledIntrinsics.clear(); 4817 4818 UpgradeDebugInfo(*TheModule); 4819 4820 UpgradeModuleFlags(*TheModule); 4821 4822 UpgradeRetainReleaseMarker(*TheModule); 4823 4824 return Error::success(); 4825 } 4826 4827 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4828 return IdentifiedStructTypes; 4829 } 4830 4831 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4832 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4833 StringRef ModulePath, unsigned ModuleId) 4834 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4835 ModulePath(ModulePath), ModuleId(ModuleId) {} 4836 4837 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4838 TheIndex.addModule(ModulePath, ModuleId); 4839 } 4840 4841 ModuleSummaryIndex::ModuleInfo * 4842 ModuleSummaryIndexBitcodeReader::getThisModule() { 4843 return TheIndex.getModule(ModulePath); 4844 } 4845 4846 std::pair<ValueInfo, GlobalValue::GUID> 4847 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4848 auto VGI = ValueIdToValueInfoMap[ValueId]; 4849 assert(VGI.first); 4850 return VGI; 4851 } 4852 4853 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4854 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4855 StringRef SourceFileName) { 4856 std::string GlobalId = 4857 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4858 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4859 auto OriginalNameID = ValueGUID; 4860 if (GlobalValue::isLocalLinkage(Linkage)) 4861 OriginalNameID = GlobalValue::getGUID(ValueName); 4862 if (PrintSummaryGUIDs) 4863 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4864 << ValueName << "\n"; 4865 4866 // UseStrtab is false for legacy summary formats and value names are 4867 // created on stack. In that case we save the name in a string saver in 4868 // the index so that the value name can be recorded. 4869 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4870 TheIndex.getOrInsertValueInfo( 4871 ValueGUID, 4872 UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())), 4873 OriginalNameID); 4874 } 4875 4876 // Specialized value symbol table parser used when reading module index 4877 // blocks where we don't actually create global values. The parsed information 4878 // is saved in the bitcode reader for use when later parsing summaries. 4879 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4880 uint64_t Offset, 4881 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4882 // With a strtab the VST is not required to parse the summary. 4883 if (UseStrtab) 4884 return Error::success(); 4885 4886 assert(Offset > 0 && "Expected non-zero VST offset"); 4887 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4888 4889 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4890 return error("Invalid record"); 4891 4892 SmallVector<uint64_t, 64> Record; 4893 4894 // Read all the records for this value table. 4895 SmallString<128> ValueName; 4896 4897 while (true) { 4898 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4899 4900 switch (Entry.Kind) { 4901 case BitstreamEntry::SubBlock: // Handled for us already. 4902 case BitstreamEntry::Error: 4903 return error("Malformed block"); 4904 case BitstreamEntry::EndBlock: 4905 // Done parsing VST, jump back to wherever we came from. 4906 Stream.JumpToBit(CurrentBit); 4907 return Error::success(); 4908 case BitstreamEntry::Record: 4909 // The interesting case. 4910 break; 4911 } 4912 4913 // Read a record. 4914 Record.clear(); 4915 switch (Stream.readRecord(Entry.ID, Record)) { 4916 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4917 break; 4918 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4919 if (convertToString(Record, 1, ValueName)) 4920 return error("Invalid record"); 4921 unsigned ValueID = Record[0]; 4922 assert(!SourceFileName.empty()); 4923 auto VLI = ValueIdToLinkageMap.find(ValueID); 4924 assert(VLI != ValueIdToLinkageMap.end() && 4925 "No linkage found for VST entry?"); 4926 auto Linkage = VLI->second; 4927 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4928 ValueName.clear(); 4929 break; 4930 } 4931 case bitc::VST_CODE_FNENTRY: { 4932 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4933 if (convertToString(Record, 2, ValueName)) 4934 return error("Invalid record"); 4935 unsigned ValueID = Record[0]; 4936 assert(!SourceFileName.empty()); 4937 auto VLI = ValueIdToLinkageMap.find(ValueID); 4938 assert(VLI != ValueIdToLinkageMap.end() && 4939 "No linkage found for VST entry?"); 4940 auto Linkage = VLI->second; 4941 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4942 ValueName.clear(); 4943 break; 4944 } 4945 case bitc::VST_CODE_COMBINED_ENTRY: { 4946 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4947 unsigned ValueID = Record[0]; 4948 GlobalValue::GUID RefGUID = Record[1]; 4949 // The "original name", which is the second value of the pair will be 4950 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4951 ValueIdToValueInfoMap[ValueID] = 4952 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4953 break; 4954 } 4955 } 4956 } 4957 } 4958 4959 // Parse just the blocks needed for building the index out of the module. 4960 // At the end of this routine the module Index is populated with a map 4961 // from global value id to GlobalValueSummary objects. 4962 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4963 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4964 return error("Invalid record"); 4965 4966 SmallVector<uint64_t, 64> Record; 4967 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4968 unsigned ValueId = 0; 4969 4970 // Read the index for this module. 4971 while (true) { 4972 BitstreamEntry Entry = Stream.advance(); 4973 4974 switch (Entry.Kind) { 4975 case BitstreamEntry::Error: 4976 return error("Malformed block"); 4977 case BitstreamEntry::EndBlock: 4978 return Error::success(); 4979 4980 case BitstreamEntry::SubBlock: 4981 switch (Entry.ID) { 4982 default: // Skip unknown content. 4983 if (Stream.SkipBlock()) 4984 return error("Invalid record"); 4985 break; 4986 case bitc::BLOCKINFO_BLOCK_ID: 4987 // Need to parse these to get abbrev ids (e.g. for VST) 4988 if (readBlockInfo()) 4989 return error("Malformed block"); 4990 break; 4991 case bitc::VALUE_SYMTAB_BLOCK_ID: 4992 // Should have been parsed earlier via VSTOffset, unless there 4993 // is no summary section. 4994 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4995 !SeenGlobalValSummary) && 4996 "Expected early VST parse via VSTOffset record"); 4997 if (Stream.SkipBlock()) 4998 return error("Invalid record"); 4999 break; 5000 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5001 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5002 // Add the module if it is a per-module index (has a source file name). 5003 if (!SourceFileName.empty()) 5004 addThisModule(); 5005 assert(!SeenValueSymbolTable && 5006 "Already read VST when parsing summary block?"); 5007 // We might not have a VST if there were no values in the 5008 // summary. An empty summary block generated when we are 5009 // performing ThinLTO compiles so we don't later invoke 5010 // the regular LTO process on them. 5011 if (VSTOffset > 0) { 5012 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5013 return Err; 5014 SeenValueSymbolTable = true; 5015 } 5016 SeenGlobalValSummary = true; 5017 if (Error Err = parseEntireSummary(Entry.ID)) 5018 return Err; 5019 break; 5020 case bitc::MODULE_STRTAB_BLOCK_ID: 5021 if (Error Err = parseModuleStringTable()) 5022 return Err; 5023 break; 5024 } 5025 continue; 5026 5027 case BitstreamEntry::Record: { 5028 Record.clear(); 5029 auto BitCode = Stream.readRecord(Entry.ID, Record); 5030 switch (BitCode) { 5031 default: 5032 break; // Default behavior, ignore unknown content. 5033 case bitc::MODULE_CODE_VERSION: { 5034 if (Error Err = parseVersionRecord(Record).takeError()) 5035 return Err; 5036 break; 5037 } 5038 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5039 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5040 SmallString<128> ValueName; 5041 if (convertToString(Record, 0, ValueName)) 5042 return error("Invalid record"); 5043 SourceFileName = ValueName.c_str(); 5044 break; 5045 } 5046 /// MODULE_CODE_HASH: [5*i32] 5047 case bitc::MODULE_CODE_HASH: { 5048 if (Record.size() != 5) 5049 return error("Invalid hash length " + Twine(Record.size()).str()); 5050 auto &Hash = getThisModule()->second.second; 5051 int Pos = 0; 5052 for (auto &Val : Record) { 5053 assert(!(Val >> 32) && "Unexpected high bits set"); 5054 Hash[Pos++] = Val; 5055 } 5056 break; 5057 } 5058 /// MODULE_CODE_VSTOFFSET: [offset] 5059 case bitc::MODULE_CODE_VSTOFFSET: 5060 if (Record.size() < 1) 5061 return error("Invalid record"); 5062 // Note that we subtract 1 here because the offset is relative to one 5063 // word before the start of the identification or module block, which 5064 // was historically always the start of the regular bitcode header. 5065 VSTOffset = Record[0] - 1; 5066 break; 5067 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5068 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5069 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5070 // v2: [strtab offset, strtab size, v1] 5071 case bitc::MODULE_CODE_GLOBALVAR: 5072 case bitc::MODULE_CODE_FUNCTION: 5073 case bitc::MODULE_CODE_ALIAS: { 5074 StringRef Name; 5075 ArrayRef<uint64_t> GVRecord; 5076 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5077 if (GVRecord.size() <= 3) 5078 return error("Invalid record"); 5079 uint64_t RawLinkage = GVRecord[3]; 5080 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5081 if (!UseStrtab) { 5082 ValueIdToLinkageMap[ValueId++] = Linkage; 5083 break; 5084 } 5085 5086 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5087 break; 5088 } 5089 } 5090 } 5091 continue; 5092 } 5093 } 5094 } 5095 5096 std::vector<ValueInfo> 5097 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5098 std::vector<ValueInfo> Ret; 5099 Ret.reserve(Record.size()); 5100 for (uint64_t RefValueId : Record) 5101 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5102 return Ret; 5103 } 5104 5105 std::vector<FunctionSummary::EdgeTy> 5106 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5107 bool IsOldProfileFormat, 5108 bool HasProfile, bool HasRelBF) { 5109 std::vector<FunctionSummary::EdgeTy> Ret; 5110 Ret.reserve(Record.size()); 5111 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5112 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5113 uint64_t RelBF = 0; 5114 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5115 if (IsOldProfileFormat) { 5116 I += 1; // Skip old callsitecount field 5117 if (HasProfile) 5118 I += 1; // Skip old profilecount field 5119 } else if (HasProfile) 5120 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5121 else if (HasRelBF) 5122 RelBF = Record[++I]; 5123 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5124 } 5125 return Ret; 5126 } 5127 5128 static void 5129 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5130 WholeProgramDevirtResolution &Wpd) { 5131 uint64_t ArgNum = Record[Slot++]; 5132 WholeProgramDevirtResolution::ByArg &B = 5133 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5134 Slot += ArgNum; 5135 5136 B.TheKind = 5137 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5138 B.Info = Record[Slot++]; 5139 B.Byte = Record[Slot++]; 5140 B.Bit = Record[Slot++]; 5141 } 5142 5143 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5144 StringRef Strtab, size_t &Slot, 5145 TypeIdSummary &TypeId) { 5146 uint64_t Id = Record[Slot++]; 5147 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5148 5149 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5150 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5151 static_cast<size_t>(Record[Slot + 1])}; 5152 Slot += 2; 5153 5154 uint64_t ResByArgNum = Record[Slot++]; 5155 for (uint64_t I = 0; I != ResByArgNum; ++I) 5156 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5157 } 5158 5159 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5160 StringRef Strtab, 5161 ModuleSummaryIndex &TheIndex) { 5162 size_t Slot = 0; 5163 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5164 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5165 Slot += 2; 5166 5167 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5168 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5169 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5170 TypeId.TTRes.SizeM1 = Record[Slot++]; 5171 TypeId.TTRes.BitMask = Record[Slot++]; 5172 TypeId.TTRes.InlineBits = Record[Slot++]; 5173 5174 while (Slot < Record.size()) 5175 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5176 } 5177 5178 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5179 // Read-only refs are in the end of the refs list. 5180 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5181 Refs[RefNo].setReadOnly(); 5182 } 5183 5184 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5185 // objects in the index. 5186 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5187 if (Stream.EnterSubBlock(ID)) 5188 return error("Invalid record"); 5189 SmallVector<uint64_t, 64> Record; 5190 5191 // Parse version 5192 { 5193 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5194 if (Entry.Kind != BitstreamEntry::Record) 5195 return error("Invalid Summary Block: record for version expected"); 5196 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5197 return error("Invalid Summary Block: version expected"); 5198 } 5199 const uint64_t Version = Record[0]; 5200 const bool IsOldProfileFormat = Version == 1; 5201 if (Version < 1 || Version > 5) 5202 return error("Invalid summary version " + Twine(Version) + 5203 ", 1, 2, 3, 4 or 5 expected"); 5204 Record.clear(); 5205 5206 // Keep around the last seen summary to be used when we see an optional 5207 // "OriginalName" attachement. 5208 GlobalValueSummary *LastSeenSummary = nullptr; 5209 GlobalValue::GUID LastSeenGUID = 0; 5210 5211 // We can expect to see any number of type ID information records before 5212 // each function summary records; these variables store the information 5213 // collected so far so that it can be used to create the summary object. 5214 std::vector<GlobalValue::GUID> PendingTypeTests; 5215 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5216 PendingTypeCheckedLoadVCalls; 5217 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5218 PendingTypeCheckedLoadConstVCalls; 5219 5220 while (true) { 5221 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5222 5223 switch (Entry.Kind) { 5224 case BitstreamEntry::SubBlock: // Handled for us already. 5225 case BitstreamEntry::Error: 5226 return error("Malformed block"); 5227 case BitstreamEntry::EndBlock: 5228 return Error::success(); 5229 case BitstreamEntry::Record: 5230 // The interesting case. 5231 break; 5232 } 5233 5234 // Read a record. The record format depends on whether this 5235 // is a per-module index or a combined index file. In the per-module 5236 // case the records contain the associated value's ID for correlation 5237 // with VST entries. In the combined index the correlation is done 5238 // via the bitcode offset of the summary records (which were saved 5239 // in the combined index VST entries). The records also contain 5240 // information used for ThinLTO renaming and importing. 5241 Record.clear(); 5242 auto BitCode = Stream.readRecord(Entry.ID, Record); 5243 switch (BitCode) { 5244 default: // Default behavior: ignore. 5245 break; 5246 case bitc::FS_FLAGS: { // [flags] 5247 uint64_t Flags = Record[0]; 5248 // Scan flags (set only on the combined index). 5249 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5250 5251 // 1 bit: WithGlobalValueDeadStripping flag. 5252 if (Flags & 0x1) 5253 TheIndex.setWithGlobalValueDeadStripping(); 5254 // 1 bit: SkipModuleByDistributedBackend flag. 5255 if (Flags & 0x2) 5256 TheIndex.setSkipModuleByDistributedBackend(); 5257 break; 5258 } 5259 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5260 uint64_t ValueID = Record[0]; 5261 GlobalValue::GUID RefGUID = Record[1]; 5262 ValueIdToValueInfoMap[ValueID] = 5263 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5264 break; 5265 } 5266 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5267 // numrefs x valueid, n x (valueid)] 5268 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5269 // numrefs x valueid, 5270 // n x (valueid, hotness)] 5271 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5272 // numrefs x valueid, 5273 // n x (valueid, relblockfreq)] 5274 case bitc::FS_PERMODULE: 5275 case bitc::FS_PERMODULE_RELBF: 5276 case bitc::FS_PERMODULE_PROFILE: { 5277 unsigned ValueID = Record[0]; 5278 uint64_t RawFlags = Record[1]; 5279 unsigned InstCount = Record[2]; 5280 uint64_t RawFunFlags = 0; 5281 unsigned NumRefs = Record[3]; 5282 unsigned NumImmutableRefs = 0; 5283 int RefListStartIndex = 4; 5284 if (Version >= 4) { 5285 RawFunFlags = Record[3]; 5286 NumRefs = Record[4]; 5287 RefListStartIndex = 5; 5288 if (Version >= 5) { 5289 NumImmutableRefs = Record[5]; 5290 RefListStartIndex = 6; 5291 } 5292 } 5293 5294 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5295 // The module path string ref set in the summary must be owned by the 5296 // index's module string table. Since we don't have a module path 5297 // string table section in the per-module index, we create a single 5298 // module path string table entry with an empty (0) ID to take 5299 // ownership. 5300 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5301 assert(Record.size() >= RefListStartIndex + NumRefs && 5302 "Record size inconsistent with number of references"); 5303 std::vector<ValueInfo> Refs = makeRefList( 5304 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5305 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5306 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5307 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5308 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5309 IsOldProfileFormat, HasProfile, HasRelBF); 5310 setImmutableRefs(Refs, NumImmutableRefs); 5311 auto FS = llvm::make_unique<FunctionSummary>( 5312 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5313 std::move(Calls), std::move(PendingTypeTests), 5314 std::move(PendingTypeTestAssumeVCalls), 5315 std::move(PendingTypeCheckedLoadVCalls), 5316 std::move(PendingTypeTestAssumeConstVCalls), 5317 std::move(PendingTypeCheckedLoadConstVCalls)); 5318 PendingTypeTests.clear(); 5319 PendingTypeTestAssumeVCalls.clear(); 5320 PendingTypeCheckedLoadVCalls.clear(); 5321 PendingTypeTestAssumeConstVCalls.clear(); 5322 PendingTypeCheckedLoadConstVCalls.clear(); 5323 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5324 FS->setModulePath(getThisModule()->first()); 5325 FS->setOriginalName(VIAndOriginalGUID.second); 5326 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5327 break; 5328 } 5329 // FS_ALIAS: [valueid, flags, valueid] 5330 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5331 // they expect all aliasee summaries to be available. 5332 case bitc::FS_ALIAS: { 5333 unsigned ValueID = Record[0]; 5334 uint64_t RawFlags = Record[1]; 5335 unsigned AliaseeID = Record[2]; 5336 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5337 auto AS = llvm::make_unique<AliasSummary>(Flags); 5338 // The module path string ref set in the summary must be owned by the 5339 // index's module string table. Since we don't have a module path 5340 // string table section in the per-module index, we create a single 5341 // module path string table entry with an empty (0) ID to take 5342 // ownership. 5343 AS->setModulePath(getThisModule()->first()); 5344 5345 GlobalValue::GUID AliaseeGUID = 5346 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5347 auto AliaseeInModule = 5348 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5349 if (!AliaseeInModule) 5350 return error("Alias expects aliasee summary to be parsed"); 5351 AS->setAliasee(AliaseeInModule); 5352 AS->setAliaseeGUID(AliaseeGUID); 5353 5354 auto GUID = getValueInfoFromValueId(ValueID); 5355 AS->setOriginalName(GUID.second); 5356 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5357 break; 5358 } 5359 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5360 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5361 unsigned ValueID = Record[0]; 5362 uint64_t RawFlags = Record[1]; 5363 unsigned RefArrayStart = 2; 5364 GlobalVarSummary::GVarFlags GVF; 5365 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5366 if (Version >= 5) { 5367 GVF = getDecodedGVarFlags(Record[2]); 5368 RefArrayStart = 3; 5369 } 5370 std::vector<ValueInfo> Refs = 5371 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5372 auto FS = 5373 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5374 FS->setModulePath(getThisModule()->first()); 5375 auto GUID = getValueInfoFromValueId(ValueID); 5376 FS->setOriginalName(GUID.second); 5377 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5378 break; 5379 } 5380 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5381 // numrefs x valueid, n x (valueid)] 5382 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5383 // numrefs x valueid, n x (valueid, hotness)] 5384 case bitc::FS_COMBINED: 5385 case bitc::FS_COMBINED_PROFILE: { 5386 unsigned ValueID = Record[0]; 5387 uint64_t ModuleId = Record[1]; 5388 uint64_t RawFlags = Record[2]; 5389 unsigned InstCount = Record[3]; 5390 uint64_t RawFunFlags = 0; 5391 unsigned NumRefs = Record[4]; 5392 unsigned NumImmutableRefs = 0; 5393 int RefListStartIndex = 5; 5394 5395 if (Version >= 4) { 5396 RawFunFlags = Record[4]; 5397 NumRefs = Record[5]; 5398 RefListStartIndex = 6; 5399 if (Version >= 5) { 5400 NumImmutableRefs = Record[6]; 5401 RefListStartIndex = 7; 5402 } 5403 } 5404 5405 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5406 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5407 assert(Record.size() >= RefListStartIndex + NumRefs && 5408 "Record size inconsistent with number of references"); 5409 std::vector<ValueInfo> Refs = makeRefList( 5410 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5411 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5412 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5413 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5414 IsOldProfileFormat, HasProfile, false); 5415 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5416 setImmutableRefs(Refs, NumImmutableRefs); 5417 auto FS = llvm::make_unique<FunctionSummary>( 5418 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5419 std::move(Edges), std::move(PendingTypeTests), 5420 std::move(PendingTypeTestAssumeVCalls), 5421 std::move(PendingTypeCheckedLoadVCalls), 5422 std::move(PendingTypeTestAssumeConstVCalls), 5423 std::move(PendingTypeCheckedLoadConstVCalls)); 5424 PendingTypeTests.clear(); 5425 PendingTypeTestAssumeVCalls.clear(); 5426 PendingTypeCheckedLoadVCalls.clear(); 5427 PendingTypeTestAssumeConstVCalls.clear(); 5428 PendingTypeCheckedLoadConstVCalls.clear(); 5429 LastSeenSummary = FS.get(); 5430 LastSeenGUID = VI.getGUID(); 5431 FS->setModulePath(ModuleIdMap[ModuleId]); 5432 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5433 break; 5434 } 5435 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5436 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5437 // they expect all aliasee summaries to be available. 5438 case bitc::FS_COMBINED_ALIAS: { 5439 unsigned ValueID = Record[0]; 5440 uint64_t ModuleId = Record[1]; 5441 uint64_t RawFlags = Record[2]; 5442 unsigned AliaseeValueId = Record[3]; 5443 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5444 auto AS = llvm::make_unique<AliasSummary>(Flags); 5445 LastSeenSummary = AS.get(); 5446 AS->setModulePath(ModuleIdMap[ModuleId]); 5447 5448 auto AliaseeGUID = 5449 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5450 auto AliaseeInModule = 5451 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5452 AS->setAliasee(AliaseeInModule); 5453 AS->setAliaseeGUID(AliaseeGUID); 5454 5455 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5456 LastSeenGUID = VI.getGUID(); 5457 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5458 break; 5459 } 5460 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5461 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5462 unsigned ValueID = Record[0]; 5463 uint64_t ModuleId = Record[1]; 5464 uint64_t RawFlags = Record[2]; 5465 unsigned RefArrayStart = 3; 5466 GlobalVarSummary::GVarFlags GVF; 5467 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5468 if (Version >= 5) { 5469 GVF = getDecodedGVarFlags(Record[3]); 5470 RefArrayStart = 4; 5471 } 5472 std::vector<ValueInfo> Refs = 5473 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5474 auto FS = 5475 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5476 LastSeenSummary = FS.get(); 5477 FS->setModulePath(ModuleIdMap[ModuleId]); 5478 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5479 LastSeenGUID = VI.getGUID(); 5480 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5481 break; 5482 } 5483 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5484 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5485 uint64_t OriginalName = Record[0]; 5486 if (!LastSeenSummary) 5487 return error("Name attachment that does not follow a combined record"); 5488 LastSeenSummary->setOriginalName(OriginalName); 5489 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5490 // Reset the LastSeenSummary 5491 LastSeenSummary = nullptr; 5492 LastSeenGUID = 0; 5493 break; 5494 } 5495 case bitc::FS_TYPE_TESTS: 5496 assert(PendingTypeTests.empty()); 5497 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5498 Record.end()); 5499 break; 5500 5501 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5502 assert(PendingTypeTestAssumeVCalls.empty()); 5503 for (unsigned I = 0; I != Record.size(); I += 2) 5504 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5505 break; 5506 5507 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5508 assert(PendingTypeCheckedLoadVCalls.empty()); 5509 for (unsigned I = 0; I != Record.size(); I += 2) 5510 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5511 break; 5512 5513 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5514 PendingTypeTestAssumeConstVCalls.push_back( 5515 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5516 break; 5517 5518 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5519 PendingTypeCheckedLoadConstVCalls.push_back( 5520 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5521 break; 5522 5523 case bitc::FS_CFI_FUNCTION_DEFS: { 5524 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5525 for (unsigned I = 0; I != Record.size(); I += 2) 5526 CfiFunctionDefs.insert( 5527 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5528 break; 5529 } 5530 5531 case bitc::FS_CFI_FUNCTION_DECLS: { 5532 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5533 for (unsigned I = 0; I != Record.size(); I += 2) 5534 CfiFunctionDecls.insert( 5535 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5536 break; 5537 } 5538 5539 case bitc::FS_TYPE_ID: 5540 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5541 break; 5542 } 5543 } 5544 llvm_unreachable("Exit infinite loop"); 5545 } 5546 5547 // Parse the module string table block into the Index. 5548 // This populates the ModulePathStringTable map in the index. 5549 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5550 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5551 return error("Invalid record"); 5552 5553 SmallVector<uint64_t, 64> Record; 5554 5555 SmallString<128> ModulePath; 5556 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5557 5558 while (true) { 5559 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5560 5561 switch (Entry.Kind) { 5562 case BitstreamEntry::SubBlock: // Handled for us already. 5563 case BitstreamEntry::Error: 5564 return error("Malformed block"); 5565 case BitstreamEntry::EndBlock: 5566 return Error::success(); 5567 case BitstreamEntry::Record: 5568 // The interesting case. 5569 break; 5570 } 5571 5572 Record.clear(); 5573 switch (Stream.readRecord(Entry.ID, Record)) { 5574 default: // Default behavior: ignore. 5575 break; 5576 case bitc::MST_CODE_ENTRY: { 5577 // MST_ENTRY: [modid, namechar x N] 5578 uint64_t ModuleId = Record[0]; 5579 5580 if (convertToString(Record, 1, ModulePath)) 5581 return error("Invalid record"); 5582 5583 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5584 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5585 5586 ModulePath.clear(); 5587 break; 5588 } 5589 /// MST_CODE_HASH: [5*i32] 5590 case bitc::MST_CODE_HASH: { 5591 if (Record.size() != 5) 5592 return error("Invalid hash length " + Twine(Record.size()).str()); 5593 if (!LastSeenModule) 5594 return error("Invalid hash that does not follow a module path"); 5595 int Pos = 0; 5596 for (auto &Val : Record) { 5597 assert(!(Val >> 32) && "Unexpected high bits set"); 5598 LastSeenModule->second.second[Pos++] = Val; 5599 } 5600 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5601 LastSeenModule = nullptr; 5602 break; 5603 } 5604 } 5605 } 5606 llvm_unreachable("Exit infinite loop"); 5607 } 5608 5609 namespace { 5610 5611 // FIXME: This class is only here to support the transition to llvm::Error. It 5612 // will be removed once this transition is complete. Clients should prefer to 5613 // deal with the Error value directly, rather than converting to error_code. 5614 class BitcodeErrorCategoryType : public std::error_category { 5615 const char *name() const noexcept override { 5616 return "llvm.bitcode"; 5617 } 5618 5619 std::string message(int IE) const override { 5620 BitcodeError E = static_cast<BitcodeError>(IE); 5621 switch (E) { 5622 case BitcodeError::CorruptedBitcode: 5623 return "Corrupted bitcode"; 5624 } 5625 llvm_unreachable("Unknown error type!"); 5626 } 5627 }; 5628 5629 } // end anonymous namespace 5630 5631 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5632 5633 const std::error_category &llvm::BitcodeErrorCategory() { 5634 return *ErrorCategory; 5635 } 5636 5637 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5638 unsigned Block, unsigned RecordID) { 5639 if (Stream.EnterSubBlock(Block)) 5640 return error("Invalid record"); 5641 5642 StringRef Strtab; 5643 while (true) { 5644 BitstreamEntry Entry = Stream.advance(); 5645 switch (Entry.Kind) { 5646 case BitstreamEntry::EndBlock: 5647 return Strtab; 5648 5649 case BitstreamEntry::Error: 5650 return error("Malformed block"); 5651 5652 case BitstreamEntry::SubBlock: 5653 if (Stream.SkipBlock()) 5654 return error("Malformed block"); 5655 break; 5656 5657 case BitstreamEntry::Record: 5658 StringRef Blob; 5659 SmallVector<uint64_t, 1> Record; 5660 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5661 Strtab = Blob; 5662 break; 5663 } 5664 } 5665 } 5666 5667 //===----------------------------------------------------------------------===// 5668 // External interface 5669 //===----------------------------------------------------------------------===// 5670 5671 Expected<std::vector<BitcodeModule>> 5672 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5673 auto FOrErr = getBitcodeFileContents(Buffer); 5674 if (!FOrErr) 5675 return FOrErr.takeError(); 5676 return std::move(FOrErr->Mods); 5677 } 5678 5679 Expected<BitcodeFileContents> 5680 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5681 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5682 if (!StreamOrErr) 5683 return StreamOrErr.takeError(); 5684 BitstreamCursor &Stream = *StreamOrErr; 5685 5686 BitcodeFileContents F; 5687 while (true) { 5688 uint64_t BCBegin = Stream.getCurrentByteNo(); 5689 5690 // We may be consuming bitcode from a client that leaves garbage at the end 5691 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5692 // the end that there cannot possibly be another module, stop looking. 5693 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5694 return F; 5695 5696 BitstreamEntry Entry = Stream.advance(); 5697 switch (Entry.Kind) { 5698 case BitstreamEntry::EndBlock: 5699 case BitstreamEntry::Error: 5700 return error("Malformed block"); 5701 5702 case BitstreamEntry::SubBlock: { 5703 uint64_t IdentificationBit = -1ull; 5704 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5705 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5706 if (Stream.SkipBlock()) 5707 return error("Malformed block"); 5708 5709 Entry = Stream.advance(); 5710 if (Entry.Kind != BitstreamEntry::SubBlock || 5711 Entry.ID != bitc::MODULE_BLOCK_ID) 5712 return error("Malformed block"); 5713 } 5714 5715 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5716 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5717 if (Stream.SkipBlock()) 5718 return error("Malformed block"); 5719 5720 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5721 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5722 Buffer.getBufferIdentifier(), IdentificationBit, 5723 ModuleBit}); 5724 continue; 5725 } 5726 5727 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5728 Expected<StringRef> Strtab = 5729 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5730 if (!Strtab) 5731 return Strtab.takeError(); 5732 // This string table is used by every preceding bitcode module that does 5733 // not have its own string table. A bitcode file may have multiple 5734 // string tables if it was created by binary concatenation, for example 5735 // with "llvm-cat -b". 5736 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5737 if (!I->Strtab.empty()) 5738 break; 5739 I->Strtab = *Strtab; 5740 } 5741 // Similarly, the string table is used by every preceding symbol table; 5742 // normally there will be just one unless the bitcode file was created 5743 // by binary concatenation. 5744 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5745 F.StrtabForSymtab = *Strtab; 5746 continue; 5747 } 5748 5749 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5750 Expected<StringRef> SymtabOrErr = 5751 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5752 if (!SymtabOrErr) 5753 return SymtabOrErr.takeError(); 5754 5755 // We can expect the bitcode file to have multiple symbol tables if it 5756 // was created by binary concatenation. In that case we silently 5757 // ignore any subsequent symbol tables, which is fine because this is a 5758 // low level function. The client is expected to notice that the number 5759 // of modules in the symbol table does not match the number of modules 5760 // in the input file and regenerate the symbol table. 5761 if (F.Symtab.empty()) 5762 F.Symtab = *SymtabOrErr; 5763 continue; 5764 } 5765 5766 if (Stream.SkipBlock()) 5767 return error("Malformed block"); 5768 continue; 5769 } 5770 case BitstreamEntry::Record: 5771 Stream.skipRecord(Entry.ID); 5772 continue; 5773 } 5774 } 5775 } 5776 5777 /// Get a lazy one-at-time loading module from bitcode. 5778 /// 5779 /// This isn't always used in a lazy context. In particular, it's also used by 5780 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5781 /// in forward-referenced functions from block address references. 5782 /// 5783 /// \param[in] MaterializeAll Set to \c true if we should materialize 5784 /// everything. 5785 Expected<std::unique_ptr<Module>> 5786 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5787 bool ShouldLazyLoadMetadata, bool IsImporting) { 5788 BitstreamCursor Stream(Buffer); 5789 5790 std::string ProducerIdentification; 5791 if (IdentificationBit != -1ull) { 5792 Stream.JumpToBit(IdentificationBit); 5793 Expected<std::string> ProducerIdentificationOrErr = 5794 readIdentificationBlock(Stream); 5795 if (!ProducerIdentificationOrErr) 5796 return ProducerIdentificationOrErr.takeError(); 5797 5798 ProducerIdentification = *ProducerIdentificationOrErr; 5799 } 5800 5801 Stream.JumpToBit(ModuleBit); 5802 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5803 Context); 5804 5805 std::unique_ptr<Module> M = 5806 llvm::make_unique<Module>(ModuleIdentifier, Context); 5807 M->setMaterializer(R); 5808 5809 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5810 if (Error Err = 5811 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5812 return std::move(Err); 5813 5814 if (MaterializeAll) { 5815 // Read in the entire module, and destroy the BitcodeReader. 5816 if (Error Err = M->materializeAll()) 5817 return std::move(Err); 5818 } else { 5819 // Resolve forward references from blockaddresses. 5820 if (Error Err = R->materializeForwardReferencedFunctions()) 5821 return std::move(Err); 5822 } 5823 return std::move(M); 5824 } 5825 5826 Expected<std::unique_ptr<Module>> 5827 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5828 bool IsImporting) { 5829 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5830 } 5831 5832 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5833 // We don't use ModuleIdentifier here because the client may need to control the 5834 // module path used in the combined summary (e.g. when reading summaries for 5835 // regular LTO modules). 5836 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5837 StringRef ModulePath, uint64_t ModuleId) { 5838 BitstreamCursor Stream(Buffer); 5839 Stream.JumpToBit(ModuleBit); 5840 5841 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5842 ModulePath, ModuleId); 5843 return R.parseModule(); 5844 } 5845 5846 // Parse the specified bitcode buffer, returning the function info index. 5847 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5848 BitstreamCursor Stream(Buffer); 5849 Stream.JumpToBit(ModuleBit); 5850 5851 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5852 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5853 ModuleIdentifier, 0); 5854 5855 if (Error Err = R.parseModule()) 5856 return std::move(Err); 5857 5858 return std::move(Index); 5859 } 5860 5861 // Check if the given bitcode buffer contains a global value summary block. 5862 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5863 BitstreamCursor Stream(Buffer); 5864 Stream.JumpToBit(ModuleBit); 5865 5866 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5867 return error("Invalid record"); 5868 5869 while (true) { 5870 BitstreamEntry Entry = Stream.advance(); 5871 5872 switch (Entry.Kind) { 5873 case BitstreamEntry::Error: 5874 return error("Malformed block"); 5875 case BitstreamEntry::EndBlock: 5876 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5877 5878 case BitstreamEntry::SubBlock: 5879 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5880 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5881 5882 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5883 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5884 5885 // Ignore other sub-blocks. 5886 if (Stream.SkipBlock()) 5887 return error("Malformed block"); 5888 continue; 5889 5890 case BitstreamEntry::Record: 5891 Stream.skipRecord(Entry.ID); 5892 continue; 5893 } 5894 } 5895 } 5896 5897 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5898 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5899 if (!MsOrErr) 5900 return MsOrErr.takeError(); 5901 5902 if (MsOrErr->size() != 1) 5903 return error("Expected a single module"); 5904 5905 return (*MsOrErr)[0]; 5906 } 5907 5908 Expected<std::unique_ptr<Module>> 5909 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5910 bool ShouldLazyLoadMetadata, bool IsImporting) { 5911 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5912 if (!BM) 5913 return BM.takeError(); 5914 5915 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5916 } 5917 5918 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5919 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5920 bool ShouldLazyLoadMetadata, bool IsImporting) { 5921 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5922 IsImporting); 5923 if (MOrErr) 5924 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5925 return MOrErr; 5926 } 5927 5928 Expected<std::unique_ptr<Module>> 5929 BitcodeModule::parseModule(LLVMContext &Context) { 5930 return getModuleImpl(Context, true, false, false); 5931 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5932 // written. We must defer until the Module has been fully materialized. 5933 } 5934 5935 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5936 LLVMContext &Context) { 5937 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5938 if (!BM) 5939 return BM.takeError(); 5940 5941 return BM->parseModule(Context); 5942 } 5943 5944 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5945 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5946 if (!StreamOrErr) 5947 return StreamOrErr.takeError(); 5948 5949 return readTriple(*StreamOrErr); 5950 } 5951 5952 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5953 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5954 if (!StreamOrErr) 5955 return StreamOrErr.takeError(); 5956 5957 return hasObjCCategory(*StreamOrErr); 5958 } 5959 5960 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5961 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5962 if (!StreamOrErr) 5963 return StreamOrErr.takeError(); 5964 5965 return readIdentificationCode(*StreamOrErr); 5966 } 5967 5968 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5969 ModuleSummaryIndex &CombinedIndex, 5970 uint64_t ModuleId) { 5971 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5972 if (!BM) 5973 return BM.takeError(); 5974 5975 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5976 } 5977 5978 Expected<std::unique_ptr<ModuleSummaryIndex>> 5979 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5980 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5981 if (!BM) 5982 return BM.takeError(); 5983 5984 return BM->getSummary(); 5985 } 5986 5987 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5988 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5989 if (!BM) 5990 return BM.takeError(); 5991 5992 return BM->getLTOInfo(); 5993 } 5994 5995 Expected<std::unique_ptr<ModuleSummaryIndex>> 5996 llvm::getModuleSummaryIndexForFile(StringRef Path, 5997 bool IgnoreEmptyThinLTOIndexFile) { 5998 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5999 MemoryBuffer::getFileOrSTDIN(Path); 6000 if (!FileOrErr) 6001 return errorCodeToError(FileOrErr.getError()); 6002 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6003 return nullptr; 6004 return getModuleSummaryIndex(**FileOrErr); 6005 } 6006