1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 598 Value *getFnValueByID(unsigned ID, Type *Ty) { 599 if (Ty && Ty->isMetadataTy()) 600 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 601 return ValueList.getValueFwdRef(ID, Ty); 602 } 603 604 Metadata *getFnMetadataByID(unsigned ID) { 605 return MDLoader->getMetadataFwdRefOrLoad(ID); 606 } 607 608 BasicBlock *getBasicBlock(unsigned ID) const { 609 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 610 return FunctionBBs[ID]; 611 } 612 613 AttributeList getAttributes(unsigned i) const { 614 if (i-1 < MAttributes.size()) 615 return MAttributes[i-1]; 616 return AttributeList(); 617 } 618 619 /// Read a value/type pair out of the specified record from slot 'Slot'. 620 /// Increment Slot past the number of slots used in the record. Return true on 621 /// failure. 622 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 623 unsigned InstNum, Value *&ResVal) { 624 if (Slot == Record.size()) return true; 625 unsigned ValNo = (unsigned)Record[Slot++]; 626 // Adjust the ValNo, if it was encoded relative to the InstNum. 627 if (UseRelativeIDs) 628 ValNo = InstNum - ValNo; 629 if (ValNo < InstNum) { 630 // If this is not a forward reference, just return the value we already 631 // have. 632 ResVal = getFnValueByID(ValNo, nullptr); 633 return ResVal == nullptr; 634 } 635 if (Slot == Record.size()) 636 return true; 637 638 unsigned TypeNo = (unsigned)Record[Slot++]; 639 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 640 return ResVal == nullptr; 641 } 642 643 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 644 /// past the number of slots used by the value in the record. Return true if 645 /// there is an error. 646 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 647 unsigned InstNum, Type *Ty, Value *&ResVal) { 648 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 649 return true; 650 // All values currently take a single record slot. 651 ++Slot; 652 return false; 653 } 654 655 /// Like popValue, but does not increment the Slot number. 656 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 657 unsigned InstNum, Type *Ty, Value *&ResVal) { 658 ResVal = getValue(Record, Slot, InstNum, Ty); 659 return ResVal == nullptr; 660 } 661 662 /// Version of getValue that returns ResVal directly, or 0 if there is an 663 /// error. 664 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty) { 666 if (Slot == Record.size()) return nullptr; 667 unsigned ValNo = (unsigned)Record[Slot]; 668 // Adjust the ValNo, if it was encoded relative to the InstNum. 669 if (UseRelativeIDs) 670 ValNo = InstNum - ValNo; 671 return getFnValueByID(ValNo, Ty); 672 } 673 674 /// Like getValue, but decodes signed VBRs. 675 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 676 unsigned InstNum, Type *Ty) { 677 if (Slot == Record.size()) return nullptr; 678 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 679 // Adjust the ValNo, if it was encoded relative to the InstNum. 680 if (UseRelativeIDs) 681 ValNo = InstNum - ValNo; 682 return getFnValueByID(ValNo, Ty); 683 } 684 685 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 686 /// corresponding argument's pointee type. Also upgrades intrinsics that now 687 /// require an elementtype attribute. 688 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 689 690 /// Converts alignment exponent (i.e. power of two (or zero)) to the 691 /// corresponding alignment to use. If alignment is too large, returns 692 /// a corresponding error code. 693 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 694 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 695 Error parseModule( 696 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 697 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 698 699 Error parseComdatRecord(ArrayRef<uint64_t> Record); 700 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 701 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 702 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 703 ArrayRef<uint64_t> Record); 704 705 Error parseAttributeBlock(); 706 Error parseAttributeGroupBlock(); 707 Error parseTypeTable(); 708 Error parseTypeTableBody(); 709 Error parseOperandBundleTags(); 710 Error parseSyncScopeNames(); 711 712 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 713 unsigned NameIndex, Triple &TT); 714 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 715 ArrayRef<uint64_t> Record); 716 Error parseValueSymbolTable(uint64_t Offset = 0); 717 Error parseGlobalValueSymbolTable(); 718 Error parseConstants(); 719 Error rememberAndSkipFunctionBodies(); 720 Error rememberAndSkipFunctionBody(); 721 /// Save the positions of the Metadata blocks and skip parsing the blocks. 722 Error rememberAndSkipMetadata(); 723 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 724 Error parseFunctionBody(Function *F); 725 Error globalCleanup(); 726 Error resolveGlobalAndIndirectSymbolInits(); 727 Error parseUseLists(); 728 Error findFunctionInStream( 729 Function *F, 730 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 731 732 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 733 }; 734 735 /// Class to manage reading and parsing function summary index bitcode 736 /// files/sections. 737 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 738 /// The module index built during parsing. 739 ModuleSummaryIndex &TheIndex; 740 741 /// Indicates whether we have encountered a global value summary section 742 /// yet during parsing. 743 bool SeenGlobalValSummary = false; 744 745 /// Indicates whether we have already parsed the VST, used for error checking. 746 bool SeenValueSymbolTable = false; 747 748 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 749 /// Used to enable on-demand parsing of the VST. 750 uint64_t VSTOffset = 0; 751 752 // Map to save ValueId to ValueInfo association that was recorded in the 753 // ValueSymbolTable. It is used after the VST is parsed to convert 754 // call graph edges read from the function summary from referencing 755 // callees by their ValueId to using the ValueInfo instead, which is how 756 // they are recorded in the summary index being built. 757 // We save a GUID which refers to the same global as the ValueInfo, but 758 // ignoring the linkage, i.e. for values other than local linkage they are 759 // identical. 760 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 761 ValueIdToValueInfoMap; 762 763 /// Map populated during module path string table parsing, from the 764 /// module ID to a string reference owned by the index's module 765 /// path string table, used to correlate with combined index 766 /// summary records. 767 DenseMap<uint64_t, StringRef> ModuleIdMap; 768 769 /// Original source file name recorded in a bitcode record. 770 std::string SourceFileName; 771 772 /// The string identifier given to this module by the client, normally the 773 /// path to the bitcode file. 774 StringRef ModulePath; 775 776 /// For per-module summary indexes, the unique numerical identifier given to 777 /// this module by the client. 778 unsigned ModuleId; 779 780 public: 781 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 782 ModuleSummaryIndex &TheIndex, 783 StringRef ModulePath, unsigned ModuleId); 784 785 Error parseModule(); 786 787 private: 788 void setValueGUID(uint64_t ValueID, StringRef ValueName, 789 GlobalValue::LinkageTypes Linkage, 790 StringRef SourceFileName); 791 Error parseValueSymbolTable( 792 uint64_t Offset, 793 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 794 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 795 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 796 bool IsOldProfileFormat, 797 bool HasProfile, 798 bool HasRelBF); 799 Error parseEntireSummary(unsigned ID); 800 Error parseModuleStringTable(); 801 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 802 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 803 TypeIdCompatibleVtableInfo &TypeId); 804 std::vector<FunctionSummary::ParamAccess> 805 parseParamAccesses(ArrayRef<uint64_t> Record); 806 807 std::pair<ValueInfo, GlobalValue::GUID> 808 getValueInfoFromValueId(unsigned ValueId); 809 810 void addThisModule(); 811 ModuleSummaryIndex::ModuleInfo *getThisModule(); 812 }; 813 814 } // end anonymous namespace 815 816 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 817 Error Err) { 818 if (Err) { 819 std::error_code EC; 820 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 821 EC = EIB.convertToErrorCode(); 822 Ctx.emitError(EIB.message()); 823 }); 824 return EC; 825 } 826 return std::error_code(); 827 } 828 829 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 830 StringRef ProducerIdentification, 831 LLVMContext &Context) 832 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 833 ValueList(Context, Stream.SizeInBytes()) { 834 this->ProducerIdentification = std::string(ProducerIdentification); 835 } 836 837 Error BitcodeReader::materializeForwardReferencedFunctions() { 838 if (WillMaterializeAllForwardRefs) 839 return Error::success(); 840 841 // Prevent recursion. 842 WillMaterializeAllForwardRefs = true; 843 844 while (!BasicBlockFwdRefQueue.empty()) { 845 Function *F = BasicBlockFwdRefQueue.front(); 846 BasicBlockFwdRefQueue.pop_front(); 847 assert(F && "Expected valid function"); 848 if (!BasicBlockFwdRefs.count(F)) 849 // Already materialized. 850 continue; 851 852 // Check for a function that isn't materializable to prevent an infinite 853 // loop. When parsing a blockaddress stored in a global variable, there 854 // isn't a trivial way to check if a function will have a body without a 855 // linear search through FunctionsWithBodies, so just check it here. 856 if (!F->isMaterializable()) 857 return error("Never resolved function from blockaddress"); 858 859 // Try to materialize F. 860 if (Error Err = materialize(F)) 861 return Err; 862 } 863 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 864 865 // Reset state. 866 WillMaterializeAllForwardRefs = false; 867 return Error::success(); 868 } 869 870 //===----------------------------------------------------------------------===// 871 // Helper functions to implement forward reference resolution, etc. 872 //===----------------------------------------------------------------------===// 873 874 static bool hasImplicitComdat(size_t Val) { 875 switch (Val) { 876 default: 877 return false; 878 case 1: // Old WeakAnyLinkage 879 case 4: // Old LinkOnceAnyLinkage 880 case 10: // Old WeakODRLinkage 881 case 11: // Old LinkOnceODRLinkage 882 return true; 883 } 884 } 885 886 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 887 switch (Val) { 888 default: // Map unknown/new linkages to external 889 case 0: 890 return GlobalValue::ExternalLinkage; 891 case 2: 892 return GlobalValue::AppendingLinkage; 893 case 3: 894 return GlobalValue::InternalLinkage; 895 case 5: 896 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 897 case 6: 898 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 899 case 7: 900 return GlobalValue::ExternalWeakLinkage; 901 case 8: 902 return GlobalValue::CommonLinkage; 903 case 9: 904 return GlobalValue::PrivateLinkage; 905 case 12: 906 return GlobalValue::AvailableExternallyLinkage; 907 case 13: 908 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 909 case 14: 910 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 911 case 15: 912 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 913 case 1: // Old value with implicit comdat. 914 case 16: 915 return GlobalValue::WeakAnyLinkage; 916 case 10: // Old value with implicit comdat. 917 case 17: 918 return GlobalValue::WeakODRLinkage; 919 case 4: // Old value with implicit comdat. 920 case 18: 921 return GlobalValue::LinkOnceAnyLinkage; 922 case 11: // Old value with implicit comdat. 923 case 19: 924 return GlobalValue::LinkOnceODRLinkage; 925 } 926 } 927 928 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 929 FunctionSummary::FFlags Flags; 930 Flags.ReadNone = RawFlags & 0x1; 931 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 932 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 933 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 934 Flags.NoInline = (RawFlags >> 4) & 0x1; 935 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 936 return Flags; 937 } 938 939 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 940 // 941 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 942 // visibility: [8, 10). 943 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 944 uint64_t Version) { 945 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 946 // like getDecodedLinkage() above. Any future change to the linkage enum and 947 // to getDecodedLinkage() will need to be taken into account here as above. 948 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 949 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 950 RawFlags = RawFlags >> 4; 951 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 952 // The Live flag wasn't introduced until version 3. For dead stripping 953 // to work correctly on earlier versions, we must conservatively treat all 954 // values as live. 955 bool Live = (RawFlags & 0x2) || Version < 3; 956 bool Local = (RawFlags & 0x4); 957 bool AutoHide = (RawFlags & 0x8); 958 959 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 960 Live, Local, AutoHide); 961 } 962 963 // Decode the flags for GlobalVariable in the summary 964 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 965 return GlobalVarSummary::GVarFlags( 966 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 967 (RawFlags & 0x4) ? true : false, 968 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 969 } 970 971 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 972 switch (Val) { 973 default: // Map unknown visibilities to default. 974 case 0: return GlobalValue::DefaultVisibility; 975 case 1: return GlobalValue::HiddenVisibility; 976 case 2: return GlobalValue::ProtectedVisibility; 977 } 978 } 979 980 static GlobalValue::DLLStorageClassTypes 981 getDecodedDLLStorageClass(unsigned Val) { 982 switch (Val) { 983 default: // Map unknown values to default. 984 case 0: return GlobalValue::DefaultStorageClass; 985 case 1: return GlobalValue::DLLImportStorageClass; 986 case 2: return GlobalValue::DLLExportStorageClass; 987 } 988 } 989 990 static bool getDecodedDSOLocal(unsigned Val) { 991 switch(Val) { 992 default: // Map unknown values to preemptable. 993 case 0: return false; 994 case 1: return true; 995 } 996 } 997 998 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 999 switch (Val) { 1000 case 0: return GlobalVariable::NotThreadLocal; 1001 default: // Map unknown non-zero value to general dynamic. 1002 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1003 case 2: return GlobalVariable::LocalDynamicTLSModel; 1004 case 3: return GlobalVariable::InitialExecTLSModel; 1005 case 4: return GlobalVariable::LocalExecTLSModel; 1006 } 1007 } 1008 1009 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1010 switch (Val) { 1011 default: // Map unknown to UnnamedAddr::None. 1012 case 0: return GlobalVariable::UnnamedAddr::None; 1013 case 1: return GlobalVariable::UnnamedAddr::Global; 1014 case 2: return GlobalVariable::UnnamedAddr::Local; 1015 } 1016 } 1017 1018 static int getDecodedCastOpcode(unsigned Val) { 1019 switch (Val) { 1020 default: return -1; 1021 case bitc::CAST_TRUNC : return Instruction::Trunc; 1022 case bitc::CAST_ZEXT : return Instruction::ZExt; 1023 case bitc::CAST_SEXT : return Instruction::SExt; 1024 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1025 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1026 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1027 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1028 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1029 case bitc::CAST_FPEXT : return Instruction::FPExt; 1030 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1031 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1032 case bitc::CAST_BITCAST : return Instruction::BitCast; 1033 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1034 } 1035 } 1036 1037 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1038 bool IsFP = Ty->isFPOrFPVectorTy(); 1039 // UnOps are only valid for int/fp or vector of int/fp types 1040 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1041 return -1; 1042 1043 switch (Val) { 1044 default: 1045 return -1; 1046 case bitc::UNOP_FNEG: 1047 return IsFP ? Instruction::FNeg : -1; 1048 } 1049 } 1050 1051 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1052 bool IsFP = Ty->isFPOrFPVectorTy(); 1053 // BinOps are only valid for int/fp or vector of int/fp types 1054 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1055 return -1; 1056 1057 switch (Val) { 1058 default: 1059 return -1; 1060 case bitc::BINOP_ADD: 1061 return IsFP ? Instruction::FAdd : Instruction::Add; 1062 case bitc::BINOP_SUB: 1063 return IsFP ? Instruction::FSub : Instruction::Sub; 1064 case bitc::BINOP_MUL: 1065 return IsFP ? Instruction::FMul : Instruction::Mul; 1066 case bitc::BINOP_UDIV: 1067 return IsFP ? -1 : Instruction::UDiv; 1068 case bitc::BINOP_SDIV: 1069 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1070 case bitc::BINOP_UREM: 1071 return IsFP ? -1 : Instruction::URem; 1072 case bitc::BINOP_SREM: 1073 return IsFP ? Instruction::FRem : Instruction::SRem; 1074 case bitc::BINOP_SHL: 1075 return IsFP ? -1 : Instruction::Shl; 1076 case bitc::BINOP_LSHR: 1077 return IsFP ? -1 : Instruction::LShr; 1078 case bitc::BINOP_ASHR: 1079 return IsFP ? -1 : Instruction::AShr; 1080 case bitc::BINOP_AND: 1081 return IsFP ? -1 : Instruction::And; 1082 case bitc::BINOP_OR: 1083 return IsFP ? -1 : Instruction::Or; 1084 case bitc::BINOP_XOR: 1085 return IsFP ? -1 : Instruction::Xor; 1086 } 1087 } 1088 1089 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1090 switch (Val) { 1091 default: return AtomicRMWInst::BAD_BINOP; 1092 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1093 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1094 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1095 case bitc::RMW_AND: return AtomicRMWInst::And; 1096 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1097 case bitc::RMW_OR: return AtomicRMWInst::Or; 1098 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1099 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1100 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1101 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1102 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1103 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1104 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1105 } 1106 } 1107 1108 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1109 switch (Val) { 1110 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1111 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1112 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1113 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1114 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1115 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1116 default: // Map unknown orderings to sequentially-consistent. 1117 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1118 } 1119 } 1120 1121 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1122 switch (Val) { 1123 default: // Map unknown selection kinds to any. 1124 case bitc::COMDAT_SELECTION_KIND_ANY: 1125 return Comdat::Any; 1126 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1127 return Comdat::ExactMatch; 1128 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1129 return Comdat::Largest; 1130 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1131 return Comdat::NoDuplicates; 1132 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1133 return Comdat::SameSize; 1134 } 1135 } 1136 1137 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1138 FastMathFlags FMF; 1139 if (0 != (Val & bitc::UnsafeAlgebra)) 1140 FMF.setFast(); 1141 if (0 != (Val & bitc::AllowReassoc)) 1142 FMF.setAllowReassoc(); 1143 if (0 != (Val & bitc::NoNaNs)) 1144 FMF.setNoNaNs(); 1145 if (0 != (Val & bitc::NoInfs)) 1146 FMF.setNoInfs(); 1147 if (0 != (Val & bitc::NoSignedZeros)) 1148 FMF.setNoSignedZeros(); 1149 if (0 != (Val & bitc::AllowReciprocal)) 1150 FMF.setAllowReciprocal(); 1151 if (0 != (Val & bitc::AllowContract)) 1152 FMF.setAllowContract(true); 1153 if (0 != (Val & bitc::ApproxFunc)) 1154 FMF.setApproxFunc(); 1155 return FMF; 1156 } 1157 1158 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1159 switch (Val) { 1160 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1161 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1162 } 1163 } 1164 1165 Type *BitcodeReader::getTypeByID(unsigned ID) { 1166 // The type table size is always specified correctly. 1167 if (ID >= TypeList.size()) 1168 return nullptr; 1169 1170 if (Type *Ty = TypeList[ID]) 1171 return Ty; 1172 1173 // If we have a forward reference, the only possible case is when it is to a 1174 // named struct. Just create a placeholder for now. 1175 return TypeList[ID] = createIdentifiedStructType(Context); 1176 } 1177 1178 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1179 StringRef Name) { 1180 auto *Ret = StructType::create(Context, Name); 1181 IdentifiedStructTypes.push_back(Ret); 1182 return Ret; 1183 } 1184 1185 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1186 auto *Ret = StructType::create(Context); 1187 IdentifiedStructTypes.push_back(Ret); 1188 return Ret; 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // Functions for parsing blocks from the bitcode file 1193 //===----------------------------------------------------------------------===// 1194 1195 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1196 switch (Val) { 1197 case Attribute::EndAttrKinds: 1198 case Attribute::EmptyKey: 1199 case Attribute::TombstoneKey: 1200 llvm_unreachable("Synthetic enumerators which should never get here"); 1201 1202 case Attribute::None: return 0; 1203 case Attribute::ZExt: return 1 << 0; 1204 case Attribute::SExt: return 1 << 1; 1205 case Attribute::NoReturn: return 1 << 2; 1206 case Attribute::InReg: return 1 << 3; 1207 case Attribute::StructRet: return 1 << 4; 1208 case Attribute::NoUnwind: return 1 << 5; 1209 case Attribute::NoAlias: return 1 << 6; 1210 case Attribute::ByVal: return 1 << 7; 1211 case Attribute::Nest: return 1 << 8; 1212 case Attribute::ReadNone: return 1 << 9; 1213 case Attribute::ReadOnly: return 1 << 10; 1214 case Attribute::NoInline: return 1 << 11; 1215 case Attribute::AlwaysInline: return 1 << 12; 1216 case Attribute::OptimizeForSize: return 1 << 13; 1217 case Attribute::StackProtect: return 1 << 14; 1218 case Attribute::StackProtectReq: return 1 << 15; 1219 case Attribute::Alignment: return 31 << 16; 1220 case Attribute::NoCapture: return 1 << 21; 1221 case Attribute::NoRedZone: return 1 << 22; 1222 case Attribute::NoImplicitFloat: return 1 << 23; 1223 case Attribute::Naked: return 1 << 24; 1224 case Attribute::InlineHint: return 1 << 25; 1225 case Attribute::StackAlignment: return 7 << 26; 1226 case Attribute::ReturnsTwice: return 1 << 29; 1227 case Attribute::UWTable: return 1 << 30; 1228 case Attribute::NonLazyBind: return 1U << 31; 1229 case Attribute::SanitizeAddress: return 1ULL << 32; 1230 case Attribute::MinSize: return 1ULL << 33; 1231 case Attribute::NoDuplicate: return 1ULL << 34; 1232 case Attribute::StackProtectStrong: return 1ULL << 35; 1233 case Attribute::SanitizeThread: return 1ULL << 36; 1234 case Attribute::SanitizeMemory: return 1ULL << 37; 1235 case Attribute::NoBuiltin: return 1ULL << 38; 1236 case Attribute::Returned: return 1ULL << 39; 1237 case Attribute::Cold: return 1ULL << 40; 1238 case Attribute::Builtin: return 1ULL << 41; 1239 case Attribute::OptimizeNone: return 1ULL << 42; 1240 case Attribute::InAlloca: return 1ULL << 43; 1241 case Attribute::NonNull: return 1ULL << 44; 1242 case Attribute::JumpTable: return 1ULL << 45; 1243 case Attribute::Convergent: return 1ULL << 46; 1244 case Attribute::SafeStack: return 1ULL << 47; 1245 case Attribute::NoRecurse: return 1ULL << 48; 1246 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1247 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1248 case Attribute::SwiftSelf: return 1ULL << 51; 1249 case Attribute::SwiftError: return 1ULL << 52; 1250 case Attribute::WriteOnly: return 1ULL << 53; 1251 case Attribute::Speculatable: return 1ULL << 54; 1252 case Attribute::StrictFP: return 1ULL << 55; 1253 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1254 case Attribute::NoCfCheck: return 1ULL << 57; 1255 case Attribute::OptForFuzzing: return 1ULL << 58; 1256 case Attribute::ShadowCallStack: return 1ULL << 59; 1257 case Attribute::SpeculativeLoadHardening: 1258 return 1ULL << 60; 1259 case Attribute::ImmArg: 1260 return 1ULL << 61; 1261 case Attribute::WillReturn: 1262 return 1ULL << 62; 1263 case Attribute::NoFree: 1264 return 1ULL << 63; 1265 default: 1266 // Other attributes are not supported in the raw format, 1267 // as we ran out of space. 1268 return 0; 1269 } 1270 llvm_unreachable("Unsupported attribute type"); 1271 } 1272 1273 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1274 if (!Val) return; 1275 1276 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1277 I = Attribute::AttrKind(I + 1)) { 1278 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1279 if (I == Attribute::Alignment) 1280 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1281 else if (I == Attribute::StackAlignment) 1282 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1283 else 1284 B.addAttribute(I); 1285 } 1286 } 1287 } 1288 1289 /// This fills an AttrBuilder object with the LLVM attributes that have 1290 /// been decoded from the given integer. This function must stay in sync with 1291 /// 'encodeLLVMAttributesForBitcode'. 1292 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1293 uint64_t EncodedAttrs) { 1294 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1295 // the bits above 31 down by 11 bits. 1296 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1297 assert((!Alignment || isPowerOf2_32(Alignment)) && 1298 "Alignment must be a power of two."); 1299 1300 if (Alignment) 1301 B.addAlignmentAttr(Alignment); 1302 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1303 (EncodedAttrs & 0xffff)); 1304 } 1305 1306 Error BitcodeReader::parseAttributeBlock() { 1307 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1308 return Err; 1309 1310 if (!MAttributes.empty()) 1311 return error("Invalid multiple blocks"); 1312 1313 SmallVector<uint64_t, 64> Record; 1314 1315 SmallVector<AttributeList, 8> Attrs; 1316 1317 // Read all the records. 1318 while (true) { 1319 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1320 if (!MaybeEntry) 1321 return MaybeEntry.takeError(); 1322 BitstreamEntry Entry = MaybeEntry.get(); 1323 1324 switch (Entry.Kind) { 1325 case BitstreamEntry::SubBlock: // Handled for us already. 1326 case BitstreamEntry::Error: 1327 return error("Malformed block"); 1328 case BitstreamEntry::EndBlock: 1329 return Error::success(); 1330 case BitstreamEntry::Record: 1331 // The interesting case. 1332 break; 1333 } 1334 1335 // Read a record. 1336 Record.clear(); 1337 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1338 if (!MaybeRecord) 1339 return MaybeRecord.takeError(); 1340 switch (MaybeRecord.get()) { 1341 default: // Default behavior: ignore. 1342 break; 1343 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1344 // Deprecated, but still needed to read old bitcode files. 1345 if (Record.size() & 1) 1346 return error("Invalid record"); 1347 1348 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1349 AttrBuilder B; 1350 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1351 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1352 } 1353 1354 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1355 Attrs.clear(); 1356 break; 1357 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1358 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1359 Attrs.push_back(MAttributeGroups[Record[i]]); 1360 1361 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1362 Attrs.clear(); 1363 break; 1364 } 1365 } 1366 } 1367 1368 // Returns Attribute::None on unrecognized codes. 1369 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1370 switch (Code) { 1371 default: 1372 return Attribute::None; 1373 case bitc::ATTR_KIND_ALIGNMENT: 1374 return Attribute::Alignment; 1375 case bitc::ATTR_KIND_ALWAYS_INLINE: 1376 return Attribute::AlwaysInline; 1377 case bitc::ATTR_KIND_ARGMEMONLY: 1378 return Attribute::ArgMemOnly; 1379 case bitc::ATTR_KIND_BUILTIN: 1380 return Attribute::Builtin; 1381 case bitc::ATTR_KIND_BY_VAL: 1382 return Attribute::ByVal; 1383 case bitc::ATTR_KIND_IN_ALLOCA: 1384 return Attribute::InAlloca; 1385 case bitc::ATTR_KIND_COLD: 1386 return Attribute::Cold; 1387 case bitc::ATTR_KIND_CONVERGENT: 1388 return Attribute::Convergent; 1389 case bitc::ATTR_KIND_ELEMENTTYPE: 1390 return Attribute::ElementType; 1391 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1392 return Attribute::InaccessibleMemOnly; 1393 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1394 return Attribute::InaccessibleMemOrArgMemOnly; 1395 case bitc::ATTR_KIND_INLINE_HINT: 1396 return Attribute::InlineHint; 1397 case bitc::ATTR_KIND_IN_REG: 1398 return Attribute::InReg; 1399 case bitc::ATTR_KIND_JUMP_TABLE: 1400 return Attribute::JumpTable; 1401 case bitc::ATTR_KIND_MIN_SIZE: 1402 return Attribute::MinSize; 1403 case bitc::ATTR_KIND_NAKED: 1404 return Attribute::Naked; 1405 case bitc::ATTR_KIND_NEST: 1406 return Attribute::Nest; 1407 case bitc::ATTR_KIND_NO_ALIAS: 1408 return Attribute::NoAlias; 1409 case bitc::ATTR_KIND_NO_BUILTIN: 1410 return Attribute::NoBuiltin; 1411 case bitc::ATTR_KIND_NO_CALLBACK: 1412 return Attribute::NoCallback; 1413 case bitc::ATTR_KIND_NO_CAPTURE: 1414 return Attribute::NoCapture; 1415 case bitc::ATTR_KIND_NO_DUPLICATE: 1416 return Attribute::NoDuplicate; 1417 case bitc::ATTR_KIND_NOFREE: 1418 return Attribute::NoFree; 1419 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1420 return Attribute::NoImplicitFloat; 1421 case bitc::ATTR_KIND_NO_INLINE: 1422 return Attribute::NoInline; 1423 case bitc::ATTR_KIND_NO_RECURSE: 1424 return Attribute::NoRecurse; 1425 case bitc::ATTR_KIND_NO_MERGE: 1426 return Attribute::NoMerge; 1427 case bitc::ATTR_KIND_NON_LAZY_BIND: 1428 return Attribute::NonLazyBind; 1429 case bitc::ATTR_KIND_NON_NULL: 1430 return Attribute::NonNull; 1431 case bitc::ATTR_KIND_DEREFERENCEABLE: 1432 return Attribute::Dereferenceable; 1433 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1434 return Attribute::DereferenceableOrNull; 1435 case bitc::ATTR_KIND_ALLOC_SIZE: 1436 return Attribute::AllocSize; 1437 case bitc::ATTR_KIND_NO_RED_ZONE: 1438 return Attribute::NoRedZone; 1439 case bitc::ATTR_KIND_NO_RETURN: 1440 return Attribute::NoReturn; 1441 case bitc::ATTR_KIND_NOSYNC: 1442 return Attribute::NoSync; 1443 case bitc::ATTR_KIND_NOCF_CHECK: 1444 return Attribute::NoCfCheck; 1445 case bitc::ATTR_KIND_NO_PROFILE: 1446 return Attribute::NoProfile; 1447 case bitc::ATTR_KIND_NO_UNWIND: 1448 return Attribute::NoUnwind; 1449 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1450 return Attribute::NoSanitizeCoverage; 1451 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1452 return Attribute::NullPointerIsValid; 1453 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1454 return Attribute::OptForFuzzing; 1455 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1456 return Attribute::OptimizeForSize; 1457 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1458 return Attribute::OptimizeNone; 1459 case bitc::ATTR_KIND_READ_NONE: 1460 return Attribute::ReadNone; 1461 case bitc::ATTR_KIND_READ_ONLY: 1462 return Attribute::ReadOnly; 1463 case bitc::ATTR_KIND_RETURNED: 1464 return Attribute::Returned; 1465 case bitc::ATTR_KIND_RETURNS_TWICE: 1466 return Attribute::ReturnsTwice; 1467 case bitc::ATTR_KIND_S_EXT: 1468 return Attribute::SExt; 1469 case bitc::ATTR_KIND_SPECULATABLE: 1470 return Attribute::Speculatable; 1471 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1472 return Attribute::StackAlignment; 1473 case bitc::ATTR_KIND_STACK_PROTECT: 1474 return Attribute::StackProtect; 1475 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1476 return Attribute::StackProtectReq; 1477 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1478 return Attribute::StackProtectStrong; 1479 case bitc::ATTR_KIND_SAFESTACK: 1480 return Attribute::SafeStack; 1481 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1482 return Attribute::ShadowCallStack; 1483 case bitc::ATTR_KIND_STRICT_FP: 1484 return Attribute::StrictFP; 1485 case bitc::ATTR_KIND_STRUCT_RET: 1486 return Attribute::StructRet; 1487 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1488 return Attribute::SanitizeAddress; 1489 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1490 return Attribute::SanitizeHWAddress; 1491 case bitc::ATTR_KIND_SANITIZE_THREAD: 1492 return Attribute::SanitizeThread; 1493 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1494 return Attribute::SanitizeMemory; 1495 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1496 return Attribute::SpeculativeLoadHardening; 1497 case bitc::ATTR_KIND_SWIFT_ERROR: 1498 return Attribute::SwiftError; 1499 case bitc::ATTR_KIND_SWIFT_SELF: 1500 return Attribute::SwiftSelf; 1501 case bitc::ATTR_KIND_SWIFT_ASYNC: 1502 return Attribute::SwiftAsync; 1503 case bitc::ATTR_KIND_UW_TABLE: 1504 return Attribute::UWTable; 1505 case bitc::ATTR_KIND_VSCALE_RANGE: 1506 return Attribute::VScaleRange; 1507 case bitc::ATTR_KIND_WILLRETURN: 1508 return Attribute::WillReturn; 1509 case bitc::ATTR_KIND_WRITEONLY: 1510 return Attribute::WriteOnly; 1511 case bitc::ATTR_KIND_Z_EXT: 1512 return Attribute::ZExt; 1513 case bitc::ATTR_KIND_IMMARG: 1514 return Attribute::ImmArg; 1515 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1516 return Attribute::SanitizeMemTag; 1517 case bitc::ATTR_KIND_PREALLOCATED: 1518 return Attribute::Preallocated; 1519 case bitc::ATTR_KIND_NOUNDEF: 1520 return Attribute::NoUndef; 1521 case bitc::ATTR_KIND_BYREF: 1522 return Attribute::ByRef; 1523 case bitc::ATTR_KIND_MUSTPROGRESS: 1524 return Attribute::MustProgress; 1525 case bitc::ATTR_KIND_HOT: 1526 return Attribute::Hot; 1527 } 1528 } 1529 1530 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1531 MaybeAlign &Alignment) { 1532 // Note: Alignment in bitcode files is incremented by 1, so that zero 1533 // can be used for default alignment. 1534 if (Exponent > Value::MaxAlignmentExponent + 1) 1535 return error("Invalid alignment value"); 1536 Alignment = decodeMaybeAlign(Exponent); 1537 return Error::success(); 1538 } 1539 1540 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1541 *Kind = getAttrFromCode(Code); 1542 if (*Kind == Attribute::None) 1543 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1544 return Error::success(); 1545 } 1546 1547 Error BitcodeReader::parseAttributeGroupBlock() { 1548 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1549 return Err; 1550 1551 if (!MAttributeGroups.empty()) 1552 return error("Invalid multiple blocks"); 1553 1554 SmallVector<uint64_t, 64> Record; 1555 1556 // Read all the records. 1557 while (true) { 1558 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1559 if (!MaybeEntry) 1560 return MaybeEntry.takeError(); 1561 BitstreamEntry Entry = MaybeEntry.get(); 1562 1563 switch (Entry.Kind) { 1564 case BitstreamEntry::SubBlock: // Handled for us already. 1565 case BitstreamEntry::Error: 1566 return error("Malformed block"); 1567 case BitstreamEntry::EndBlock: 1568 return Error::success(); 1569 case BitstreamEntry::Record: 1570 // The interesting case. 1571 break; 1572 } 1573 1574 // Read a record. 1575 Record.clear(); 1576 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1577 if (!MaybeRecord) 1578 return MaybeRecord.takeError(); 1579 switch (MaybeRecord.get()) { 1580 default: // Default behavior: ignore. 1581 break; 1582 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1583 if (Record.size() < 3) 1584 return error("Invalid record"); 1585 1586 uint64_t GrpID = Record[0]; 1587 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1588 1589 AttrBuilder B; 1590 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1591 if (Record[i] == 0) { // Enum attribute 1592 Attribute::AttrKind Kind; 1593 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1594 return Err; 1595 1596 // Upgrade old-style byval attribute to one with a type, even if it's 1597 // nullptr. We will have to insert the real type when we associate 1598 // this AttributeList with a function. 1599 if (Kind == Attribute::ByVal) 1600 B.addByValAttr(nullptr); 1601 else if (Kind == Attribute::StructRet) 1602 B.addStructRetAttr(nullptr); 1603 else if (Kind == Attribute::InAlloca) 1604 B.addInAllocaAttr(nullptr); 1605 else if (Attribute::isEnumAttrKind(Kind)) 1606 B.addAttribute(Kind); 1607 else 1608 return error("Not an enum attribute"); 1609 } else if (Record[i] == 1) { // Integer attribute 1610 Attribute::AttrKind Kind; 1611 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1612 return Err; 1613 if (!Attribute::isIntAttrKind(Kind)) 1614 return error("Not an int attribute"); 1615 if (Kind == Attribute::Alignment) 1616 B.addAlignmentAttr(Record[++i]); 1617 else if (Kind == Attribute::StackAlignment) 1618 B.addStackAlignmentAttr(Record[++i]); 1619 else if (Kind == Attribute::Dereferenceable) 1620 B.addDereferenceableAttr(Record[++i]); 1621 else if (Kind == Attribute::DereferenceableOrNull) 1622 B.addDereferenceableOrNullAttr(Record[++i]); 1623 else if (Kind == Attribute::AllocSize) 1624 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1625 else if (Kind == Attribute::VScaleRange) 1626 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1627 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1628 bool HasValue = (Record[i++] == 4); 1629 SmallString<64> KindStr; 1630 SmallString<64> ValStr; 1631 1632 while (Record[i] != 0 && i != e) 1633 KindStr += Record[i++]; 1634 assert(Record[i] == 0 && "Kind string not null terminated"); 1635 1636 if (HasValue) { 1637 // Has a value associated with it. 1638 ++i; // Skip the '0' that terminates the "kind" string. 1639 while (Record[i] != 0 && i != e) 1640 ValStr += Record[i++]; 1641 assert(Record[i] == 0 && "Value string not null terminated"); 1642 } 1643 1644 B.addAttribute(KindStr.str(), ValStr.str()); 1645 } else { 1646 assert((Record[i] == 5 || Record[i] == 6) && 1647 "Invalid attribute group entry"); 1648 bool HasType = Record[i] == 6; 1649 Attribute::AttrKind Kind; 1650 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1651 return Err; 1652 if (!Attribute::isTypeAttrKind(Kind)) 1653 return error("Not a type attribute"); 1654 1655 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1656 } 1657 } 1658 1659 UpgradeAttributes(B); 1660 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1661 break; 1662 } 1663 } 1664 } 1665 } 1666 1667 Error BitcodeReader::parseTypeTable() { 1668 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1669 return Err; 1670 1671 return parseTypeTableBody(); 1672 } 1673 1674 Error BitcodeReader::parseTypeTableBody() { 1675 if (!TypeList.empty()) 1676 return error("Invalid multiple blocks"); 1677 1678 SmallVector<uint64_t, 64> Record; 1679 unsigned NumRecords = 0; 1680 1681 SmallString<64> TypeName; 1682 1683 // Read all the records for this type table. 1684 while (true) { 1685 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1686 if (!MaybeEntry) 1687 return MaybeEntry.takeError(); 1688 BitstreamEntry Entry = MaybeEntry.get(); 1689 1690 switch (Entry.Kind) { 1691 case BitstreamEntry::SubBlock: // Handled for us already. 1692 case BitstreamEntry::Error: 1693 return error("Malformed block"); 1694 case BitstreamEntry::EndBlock: 1695 if (NumRecords != TypeList.size()) 1696 return error("Malformed block"); 1697 return Error::success(); 1698 case BitstreamEntry::Record: 1699 // The interesting case. 1700 break; 1701 } 1702 1703 // Read a record. 1704 Record.clear(); 1705 Type *ResultTy = nullptr; 1706 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1707 if (!MaybeRecord) 1708 return MaybeRecord.takeError(); 1709 switch (MaybeRecord.get()) { 1710 default: 1711 return error("Invalid value"); 1712 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1713 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1714 // type list. This allows us to reserve space. 1715 if (Record.empty()) 1716 return error("Invalid record"); 1717 TypeList.resize(Record[0]); 1718 continue; 1719 case bitc::TYPE_CODE_VOID: // VOID 1720 ResultTy = Type::getVoidTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_HALF: // HALF 1723 ResultTy = Type::getHalfTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1726 ResultTy = Type::getBFloatTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_FLOAT: // FLOAT 1729 ResultTy = Type::getFloatTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1732 ResultTy = Type::getDoubleTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1735 ResultTy = Type::getX86_FP80Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_FP128: // FP128 1738 ResultTy = Type::getFP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1741 ResultTy = Type::getPPC_FP128Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_LABEL: // LABEL 1744 ResultTy = Type::getLabelTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_METADATA: // METADATA 1747 ResultTy = Type::getMetadataTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1750 ResultTy = Type::getX86_MMXTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1753 ResultTy = Type::getX86_AMXTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_TOKEN: // TOKEN 1756 ResultTy = Type::getTokenTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1759 if (Record.empty()) 1760 return error("Invalid record"); 1761 1762 uint64_t NumBits = Record[0]; 1763 if (NumBits < IntegerType::MIN_INT_BITS || 1764 NumBits > IntegerType::MAX_INT_BITS) 1765 return error("Bitwidth for integer type out of range"); 1766 ResultTy = IntegerType::get(Context, NumBits); 1767 break; 1768 } 1769 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1770 // [pointee type, address space] 1771 if (Record.empty()) 1772 return error("Invalid record"); 1773 unsigned AddressSpace = 0; 1774 if (Record.size() == 2) 1775 AddressSpace = Record[1]; 1776 ResultTy = getTypeByID(Record[0]); 1777 if (!ResultTy || 1778 !PointerType::isValidElementType(ResultTy)) 1779 return error("Invalid type"); 1780 ResultTy = PointerType::get(ResultTy, AddressSpace); 1781 break; 1782 } 1783 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1784 if (Record.size() != 1) 1785 return error("Invalid record"); 1786 unsigned AddressSpace = Record[0]; 1787 ResultTy = PointerType::get(Context, AddressSpace); 1788 break; 1789 } 1790 case bitc::TYPE_CODE_FUNCTION_OLD: { 1791 // Deprecated, but still needed to read old bitcode files. 1792 // FUNCTION: [vararg, attrid, retty, paramty x N] 1793 if (Record.size() < 3) 1794 return error("Invalid record"); 1795 SmallVector<Type*, 8> ArgTys; 1796 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1797 if (Type *T = getTypeByID(Record[i])) 1798 ArgTys.push_back(T); 1799 else 1800 break; 1801 } 1802 1803 ResultTy = getTypeByID(Record[2]); 1804 if (!ResultTy || ArgTys.size() < Record.size()-3) 1805 return error("Invalid type"); 1806 1807 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1808 break; 1809 } 1810 case bitc::TYPE_CODE_FUNCTION: { 1811 // FUNCTION: [vararg, retty, paramty x N] 1812 if (Record.size() < 2) 1813 return error("Invalid record"); 1814 SmallVector<Type*, 8> ArgTys; 1815 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1816 if (Type *T = getTypeByID(Record[i])) { 1817 if (!FunctionType::isValidArgumentType(T)) 1818 return error("Invalid function argument type"); 1819 ArgTys.push_back(T); 1820 } 1821 else 1822 break; 1823 } 1824 1825 ResultTy = getTypeByID(Record[1]); 1826 if (!ResultTy || ArgTys.size() < Record.size()-2) 1827 return error("Invalid type"); 1828 1829 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1830 break; 1831 } 1832 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1833 if (Record.empty()) 1834 return error("Invalid record"); 1835 SmallVector<Type*, 8> EltTys; 1836 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1837 if (Type *T = getTypeByID(Record[i])) 1838 EltTys.push_back(T); 1839 else 1840 break; 1841 } 1842 if (EltTys.size() != Record.size()-1) 1843 return error("Invalid type"); 1844 ResultTy = StructType::get(Context, EltTys, Record[0]); 1845 break; 1846 } 1847 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1848 if (convertToString(Record, 0, TypeName)) 1849 return error("Invalid record"); 1850 continue; 1851 1852 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1853 if (Record.empty()) 1854 return error("Invalid record"); 1855 1856 if (NumRecords >= TypeList.size()) 1857 return error("Invalid TYPE table"); 1858 1859 // Check to see if this was forward referenced, if so fill in the temp. 1860 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1861 if (Res) { 1862 Res->setName(TypeName); 1863 TypeList[NumRecords] = nullptr; 1864 } else // Otherwise, create a new struct. 1865 Res = createIdentifiedStructType(Context, TypeName); 1866 TypeName.clear(); 1867 1868 SmallVector<Type*, 8> EltTys; 1869 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1870 if (Type *T = getTypeByID(Record[i])) 1871 EltTys.push_back(T); 1872 else 1873 break; 1874 } 1875 if (EltTys.size() != Record.size()-1) 1876 return error("Invalid record"); 1877 Res->setBody(EltTys, Record[0]); 1878 ResultTy = Res; 1879 break; 1880 } 1881 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1882 if (Record.size() != 1) 1883 return error("Invalid record"); 1884 1885 if (NumRecords >= TypeList.size()) 1886 return error("Invalid TYPE table"); 1887 1888 // Check to see if this was forward referenced, if so fill in the temp. 1889 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1890 if (Res) { 1891 Res->setName(TypeName); 1892 TypeList[NumRecords] = nullptr; 1893 } else // Otherwise, create a new struct with no body. 1894 Res = createIdentifiedStructType(Context, TypeName); 1895 TypeName.clear(); 1896 ResultTy = Res; 1897 break; 1898 } 1899 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1900 if (Record.size() < 2) 1901 return error("Invalid record"); 1902 ResultTy = getTypeByID(Record[1]); 1903 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1904 return error("Invalid type"); 1905 ResultTy = ArrayType::get(ResultTy, Record[0]); 1906 break; 1907 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1908 // [numelts, eltty, scalable] 1909 if (Record.size() < 2) 1910 return error("Invalid record"); 1911 if (Record[0] == 0) 1912 return error("Invalid vector length"); 1913 ResultTy = getTypeByID(Record[1]); 1914 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1915 return error("Invalid type"); 1916 bool Scalable = Record.size() > 2 ? Record[2] : false; 1917 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1918 break; 1919 } 1920 1921 if (NumRecords >= TypeList.size()) 1922 return error("Invalid TYPE table"); 1923 if (TypeList[NumRecords]) 1924 return error( 1925 "Invalid TYPE table: Only named structs can be forward referenced"); 1926 assert(ResultTy && "Didn't read a type?"); 1927 TypeList[NumRecords++] = ResultTy; 1928 } 1929 } 1930 1931 Error BitcodeReader::parseOperandBundleTags() { 1932 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1933 return Err; 1934 1935 if (!BundleTags.empty()) 1936 return error("Invalid multiple blocks"); 1937 1938 SmallVector<uint64_t, 64> Record; 1939 1940 while (true) { 1941 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1942 if (!MaybeEntry) 1943 return MaybeEntry.takeError(); 1944 BitstreamEntry Entry = MaybeEntry.get(); 1945 1946 switch (Entry.Kind) { 1947 case BitstreamEntry::SubBlock: // Handled for us already. 1948 case BitstreamEntry::Error: 1949 return error("Malformed block"); 1950 case BitstreamEntry::EndBlock: 1951 return Error::success(); 1952 case BitstreamEntry::Record: 1953 // The interesting case. 1954 break; 1955 } 1956 1957 // Tags are implicitly mapped to integers by their order. 1958 1959 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1960 if (!MaybeRecord) 1961 return MaybeRecord.takeError(); 1962 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1963 return error("Invalid record"); 1964 1965 // OPERAND_BUNDLE_TAG: [strchr x N] 1966 BundleTags.emplace_back(); 1967 if (convertToString(Record, 0, BundleTags.back())) 1968 return error("Invalid record"); 1969 Record.clear(); 1970 } 1971 } 1972 1973 Error BitcodeReader::parseSyncScopeNames() { 1974 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1975 return Err; 1976 1977 if (!SSIDs.empty()) 1978 return error("Invalid multiple synchronization scope names blocks"); 1979 1980 SmallVector<uint64_t, 64> Record; 1981 while (true) { 1982 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1983 if (!MaybeEntry) 1984 return MaybeEntry.takeError(); 1985 BitstreamEntry Entry = MaybeEntry.get(); 1986 1987 switch (Entry.Kind) { 1988 case BitstreamEntry::SubBlock: // Handled for us already. 1989 case BitstreamEntry::Error: 1990 return error("Malformed block"); 1991 case BitstreamEntry::EndBlock: 1992 if (SSIDs.empty()) 1993 return error("Invalid empty synchronization scope names block"); 1994 return Error::success(); 1995 case BitstreamEntry::Record: 1996 // The interesting case. 1997 break; 1998 } 1999 2000 // Synchronization scope names are implicitly mapped to synchronization 2001 // scope IDs by their order. 2002 2003 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2004 if (!MaybeRecord) 2005 return MaybeRecord.takeError(); 2006 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2007 return error("Invalid record"); 2008 2009 SmallString<16> SSN; 2010 if (convertToString(Record, 0, SSN)) 2011 return error("Invalid record"); 2012 2013 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2014 Record.clear(); 2015 } 2016 } 2017 2018 /// Associate a value with its name from the given index in the provided record. 2019 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2020 unsigned NameIndex, Triple &TT) { 2021 SmallString<128> ValueName; 2022 if (convertToString(Record, NameIndex, ValueName)) 2023 return error("Invalid record"); 2024 unsigned ValueID = Record[0]; 2025 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2026 return error("Invalid record"); 2027 Value *V = ValueList[ValueID]; 2028 2029 StringRef NameStr(ValueName.data(), ValueName.size()); 2030 if (NameStr.find_first_of(0) != StringRef::npos) 2031 return error("Invalid value name"); 2032 V->setName(NameStr); 2033 auto *GO = dyn_cast<GlobalObject>(V); 2034 if (GO) { 2035 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2036 if (TT.supportsCOMDAT()) 2037 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2038 else 2039 GO->setComdat(nullptr); 2040 } 2041 } 2042 return V; 2043 } 2044 2045 /// Helper to note and return the current location, and jump to the given 2046 /// offset. 2047 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2048 BitstreamCursor &Stream) { 2049 // Save the current parsing location so we can jump back at the end 2050 // of the VST read. 2051 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2052 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2053 return std::move(JumpFailed); 2054 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2055 if (!MaybeEntry) 2056 return MaybeEntry.takeError(); 2057 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2058 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2059 return CurrentBit; 2060 } 2061 2062 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2063 Function *F, 2064 ArrayRef<uint64_t> Record) { 2065 // Note that we subtract 1 here because the offset is relative to one word 2066 // before the start of the identification or module block, which was 2067 // historically always the start of the regular bitcode header. 2068 uint64_t FuncWordOffset = Record[1] - 1; 2069 uint64_t FuncBitOffset = FuncWordOffset * 32; 2070 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2071 // Set the LastFunctionBlockBit to point to the last function block. 2072 // Later when parsing is resumed after function materialization, 2073 // we can simply skip that last function block. 2074 if (FuncBitOffset > LastFunctionBlockBit) 2075 LastFunctionBlockBit = FuncBitOffset; 2076 } 2077 2078 /// Read a new-style GlobalValue symbol table. 2079 Error BitcodeReader::parseGlobalValueSymbolTable() { 2080 unsigned FuncBitcodeOffsetDelta = 2081 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2082 2083 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2084 return Err; 2085 2086 SmallVector<uint64_t, 64> Record; 2087 while (true) { 2088 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2089 if (!MaybeEntry) 2090 return MaybeEntry.takeError(); 2091 BitstreamEntry Entry = MaybeEntry.get(); 2092 2093 switch (Entry.Kind) { 2094 case BitstreamEntry::SubBlock: 2095 case BitstreamEntry::Error: 2096 return error("Malformed block"); 2097 case BitstreamEntry::EndBlock: 2098 return Error::success(); 2099 case BitstreamEntry::Record: 2100 break; 2101 } 2102 2103 Record.clear(); 2104 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2105 if (!MaybeRecord) 2106 return MaybeRecord.takeError(); 2107 switch (MaybeRecord.get()) { 2108 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2109 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2110 cast<Function>(ValueList[Record[0]]), Record); 2111 break; 2112 } 2113 } 2114 } 2115 2116 /// Parse the value symbol table at either the current parsing location or 2117 /// at the given bit offset if provided. 2118 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2119 uint64_t CurrentBit; 2120 // Pass in the Offset to distinguish between calling for the module-level 2121 // VST (where we want to jump to the VST offset) and the function-level 2122 // VST (where we don't). 2123 if (Offset > 0) { 2124 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2125 if (!MaybeCurrentBit) 2126 return MaybeCurrentBit.takeError(); 2127 CurrentBit = MaybeCurrentBit.get(); 2128 // If this module uses a string table, read this as a module-level VST. 2129 if (UseStrtab) { 2130 if (Error Err = parseGlobalValueSymbolTable()) 2131 return Err; 2132 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2133 return JumpFailed; 2134 return Error::success(); 2135 } 2136 // Otherwise, the VST will be in a similar format to a function-level VST, 2137 // and will contain symbol names. 2138 } 2139 2140 // Compute the delta between the bitcode indices in the VST (the word offset 2141 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2142 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2143 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2144 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2145 // just before entering the VST subblock because: 1) the EnterSubBlock 2146 // changes the AbbrevID width; 2) the VST block is nested within the same 2147 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2148 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2149 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2150 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2151 unsigned FuncBitcodeOffsetDelta = 2152 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2153 2154 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2155 return Err; 2156 2157 SmallVector<uint64_t, 64> Record; 2158 2159 Triple TT(TheModule->getTargetTriple()); 2160 2161 // Read all the records for this value table. 2162 SmallString<128> ValueName; 2163 2164 while (true) { 2165 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2166 if (!MaybeEntry) 2167 return MaybeEntry.takeError(); 2168 BitstreamEntry Entry = MaybeEntry.get(); 2169 2170 switch (Entry.Kind) { 2171 case BitstreamEntry::SubBlock: // Handled for us already. 2172 case BitstreamEntry::Error: 2173 return error("Malformed block"); 2174 case BitstreamEntry::EndBlock: 2175 if (Offset > 0) 2176 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2177 return JumpFailed; 2178 return Error::success(); 2179 case BitstreamEntry::Record: 2180 // The interesting case. 2181 break; 2182 } 2183 2184 // Read a record. 2185 Record.clear(); 2186 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2187 if (!MaybeRecord) 2188 return MaybeRecord.takeError(); 2189 switch (MaybeRecord.get()) { 2190 default: // Default behavior: unknown type. 2191 break; 2192 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2193 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2194 if (Error Err = ValOrErr.takeError()) 2195 return Err; 2196 ValOrErr.get(); 2197 break; 2198 } 2199 case bitc::VST_CODE_FNENTRY: { 2200 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2201 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2202 if (Error Err = ValOrErr.takeError()) 2203 return Err; 2204 Value *V = ValOrErr.get(); 2205 2206 // Ignore function offsets emitted for aliases of functions in older 2207 // versions of LLVM. 2208 if (auto *F = dyn_cast<Function>(V)) 2209 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2210 break; 2211 } 2212 case bitc::VST_CODE_BBENTRY: { 2213 if (convertToString(Record, 1, ValueName)) 2214 return error("Invalid record"); 2215 BasicBlock *BB = getBasicBlock(Record[0]); 2216 if (!BB) 2217 return error("Invalid record"); 2218 2219 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2220 ValueName.clear(); 2221 break; 2222 } 2223 } 2224 } 2225 } 2226 2227 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2228 /// encoding. 2229 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2230 if ((V & 1) == 0) 2231 return V >> 1; 2232 if (V != 1) 2233 return -(V >> 1); 2234 // There is no such thing as -0 with integers. "-0" really means MININT. 2235 return 1ULL << 63; 2236 } 2237 2238 /// Resolve all of the initializers for global values and aliases that we can. 2239 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2240 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2241 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2242 IndirectSymbolInitWorklist; 2243 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2244 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2245 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2246 2247 GlobalInitWorklist.swap(GlobalInits); 2248 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2249 FunctionPrefixWorklist.swap(FunctionPrefixes); 2250 FunctionPrologueWorklist.swap(FunctionPrologues); 2251 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2252 2253 while (!GlobalInitWorklist.empty()) { 2254 unsigned ValID = GlobalInitWorklist.back().second; 2255 if (ValID >= ValueList.size()) { 2256 // Not ready to resolve this yet, it requires something later in the file. 2257 GlobalInits.push_back(GlobalInitWorklist.back()); 2258 } else { 2259 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2260 GlobalInitWorklist.back().first->setInitializer(C); 2261 else 2262 return error("Expected a constant"); 2263 } 2264 GlobalInitWorklist.pop_back(); 2265 } 2266 2267 while (!IndirectSymbolInitWorklist.empty()) { 2268 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2269 if (ValID >= ValueList.size()) { 2270 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2271 } else { 2272 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2273 if (!C) 2274 return error("Expected a constant"); 2275 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2276 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2277 return error("Alias and aliasee types don't match"); 2278 GIS->setIndirectSymbol(C); 2279 } 2280 IndirectSymbolInitWorklist.pop_back(); 2281 } 2282 2283 while (!FunctionPrefixWorklist.empty()) { 2284 unsigned ValID = FunctionPrefixWorklist.back().second; 2285 if (ValID >= ValueList.size()) { 2286 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2287 } else { 2288 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2289 FunctionPrefixWorklist.back().first->setPrefixData(C); 2290 else 2291 return error("Expected a constant"); 2292 } 2293 FunctionPrefixWorklist.pop_back(); 2294 } 2295 2296 while (!FunctionPrologueWorklist.empty()) { 2297 unsigned ValID = FunctionPrologueWorklist.back().second; 2298 if (ValID >= ValueList.size()) { 2299 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2300 } else { 2301 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2302 FunctionPrologueWorklist.back().first->setPrologueData(C); 2303 else 2304 return error("Expected a constant"); 2305 } 2306 FunctionPrologueWorklist.pop_back(); 2307 } 2308 2309 while (!FunctionPersonalityFnWorklist.empty()) { 2310 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2311 if (ValID >= ValueList.size()) { 2312 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2313 } else { 2314 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2315 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2316 else 2317 return error("Expected a constant"); 2318 } 2319 FunctionPersonalityFnWorklist.pop_back(); 2320 } 2321 2322 return Error::success(); 2323 } 2324 2325 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2326 SmallVector<uint64_t, 8> Words(Vals.size()); 2327 transform(Vals, Words.begin(), 2328 BitcodeReader::decodeSignRotatedValue); 2329 2330 return APInt(TypeBits, Words); 2331 } 2332 2333 Error BitcodeReader::parseConstants() { 2334 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2335 return Err; 2336 2337 SmallVector<uint64_t, 64> Record; 2338 2339 // Read all the records for this value table. 2340 Type *CurTy = Type::getInt32Ty(Context); 2341 unsigned NextCstNo = ValueList.size(); 2342 2343 struct DelayedShufTy { 2344 VectorType *OpTy; 2345 VectorType *RTy; 2346 uint64_t Op0Idx; 2347 uint64_t Op1Idx; 2348 uint64_t Op2Idx; 2349 unsigned CstNo; 2350 }; 2351 std::vector<DelayedShufTy> DelayedShuffles; 2352 while (true) { 2353 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2354 if (!MaybeEntry) 2355 return MaybeEntry.takeError(); 2356 BitstreamEntry Entry = MaybeEntry.get(); 2357 2358 switch (Entry.Kind) { 2359 case BitstreamEntry::SubBlock: // Handled for us already. 2360 case BitstreamEntry::Error: 2361 return error("Malformed block"); 2362 case BitstreamEntry::EndBlock: 2363 // Once all the constants have been read, go through and resolve forward 2364 // references. 2365 // 2366 // We have to treat shuffles specially because they don't have three 2367 // operands anymore. We need to convert the shuffle mask into an array, 2368 // and we can't convert a forward reference. 2369 for (auto &DelayedShuffle : DelayedShuffles) { 2370 VectorType *OpTy = DelayedShuffle.OpTy; 2371 VectorType *RTy = DelayedShuffle.RTy; 2372 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2373 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2374 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2375 uint64_t CstNo = DelayedShuffle.CstNo; 2376 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2377 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2378 Type *ShufTy = 2379 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2380 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2381 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2382 return error("Invalid shufflevector operands"); 2383 SmallVector<int, 16> Mask; 2384 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2385 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2386 ValueList.assignValue(V, CstNo); 2387 } 2388 2389 if (NextCstNo != ValueList.size()) 2390 return error("Invalid constant reference"); 2391 2392 ValueList.resolveConstantForwardRefs(); 2393 return Error::success(); 2394 case BitstreamEntry::Record: 2395 // The interesting case. 2396 break; 2397 } 2398 2399 // Read a record. 2400 Record.clear(); 2401 Type *VoidType = Type::getVoidTy(Context); 2402 Value *V = nullptr; 2403 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2404 if (!MaybeBitCode) 2405 return MaybeBitCode.takeError(); 2406 switch (unsigned BitCode = MaybeBitCode.get()) { 2407 default: // Default behavior: unknown constant 2408 case bitc::CST_CODE_UNDEF: // UNDEF 2409 V = UndefValue::get(CurTy); 2410 break; 2411 case bitc::CST_CODE_POISON: // POISON 2412 V = PoisonValue::get(CurTy); 2413 break; 2414 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2415 if (Record.empty()) 2416 return error("Invalid record"); 2417 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2418 return error("Invalid record"); 2419 if (TypeList[Record[0]] == VoidType) 2420 return error("Invalid constant type"); 2421 CurTy = TypeList[Record[0]]; 2422 continue; // Skip the ValueList manipulation. 2423 case bitc::CST_CODE_NULL: // NULL 2424 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2425 return error("Invalid type for a constant null value"); 2426 V = Constant::getNullValue(CurTy); 2427 break; 2428 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2429 if (!CurTy->isIntegerTy() || Record.empty()) 2430 return error("Invalid record"); 2431 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2432 break; 2433 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2434 if (!CurTy->isIntegerTy() || Record.empty()) 2435 return error("Invalid record"); 2436 2437 APInt VInt = 2438 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2439 V = ConstantInt::get(Context, VInt); 2440 2441 break; 2442 } 2443 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2444 if (Record.empty()) 2445 return error("Invalid record"); 2446 if (CurTy->isHalfTy()) 2447 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2448 APInt(16, (uint16_t)Record[0]))); 2449 else if (CurTy->isBFloatTy()) 2450 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2451 APInt(16, (uint32_t)Record[0]))); 2452 else if (CurTy->isFloatTy()) 2453 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2454 APInt(32, (uint32_t)Record[0]))); 2455 else if (CurTy->isDoubleTy()) 2456 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2457 APInt(64, Record[0]))); 2458 else if (CurTy->isX86_FP80Ty()) { 2459 // Bits are not stored the same way as a normal i80 APInt, compensate. 2460 uint64_t Rearrange[2]; 2461 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2462 Rearrange[1] = Record[0] >> 48; 2463 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2464 APInt(80, Rearrange))); 2465 } else if (CurTy->isFP128Ty()) 2466 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2467 APInt(128, Record))); 2468 else if (CurTy->isPPC_FP128Ty()) 2469 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2470 APInt(128, Record))); 2471 else 2472 V = UndefValue::get(CurTy); 2473 break; 2474 } 2475 2476 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2477 if (Record.empty()) 2478 return error("Invalid record"); 2479 2480 unsigned Size = Record.size(); 2481 SmallVector<Constant*, 16> Elts; 2482 2483 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2484 for (unsigned i = 0; i != Size; ++i) 2485 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2486 STy->getElementType(i))); 2487 V = ConstantStruct::get(STy, Elts); 2488 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2489 Type *EltTy = ATy->getElementType(); 2490 for (unsigned i = 0; i != Size; ++i) 2491 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2492 V = ConstantArray::get(ATy, Elts); 2493 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2494 Type *EltTy = VTy->getElementType(); 2495 for (unsigned i = 0; i != Size; ++i) 2496 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2497 V = ConstantVector::get(Elts); 2498 } else { 2499 V = UndefValue::get(CurTy); 2500 } 2501 break; 2502 } 2503 case bitc::CST_CODE_STRING: // STRING: [values] 2504 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2505 if (Record.empty()) 2506 return error("Invalid record"); 2507 2508 SmallString<16> Elts(Record.begin(), Record.end()); 2509 V = ConstantDataArray::getString(Context, Elts, 2510 BitCode == bitc::CST_CODE_CSTRING); 2511 break; 2512 } 2513 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2514 if (Record.empty()) 2515 return error("Invalid record"); 2516 2517 Type *EltTy; 2518 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2519 EltTy = Array->getElementType(); 2520 else 2521 EltTy = cast<VectorType>(CurTy)->getElementType(); 2522 if (EltTy->isIntegerTy(8)) { 2523 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2524 if (isa<VectorType>(CurTy)) 2525 V = ConstantDataVector::get(Context, Elts); 2526 else 2527 V = ConstantDataArray::get(Context, Elts); 2528 } else if (EltTy->isIntegerTy(16)) { 2529 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2530 if (isa<VectorType>(CurTy)) 2531 V = ConstantDataVector::get(Context, Elts); 2532 else 2533 V = ConstantDataArray::get(Context, Elts); 2534 } else if (EltTy->isIntegerTy(32)) { 2535 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2536 if (isa<VectorType>(CurTy)) 2537 V = ConstantDataVector::get(Context, Elts); 2538 else 2539 V = ConstantDataArray::get(Context, Elts); 2540 } else if (EltTy->isIntegerTy(64)) { 2541 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2542 if (isa<VectorType>(CurTy)) 2543 V = ConstantDataVector::get(Context, Elts); 2544 else 2545 V = ConstantDataArray::get(Context, Elts); 2546 } else if (EltTy->isHalfTy()) { 2547 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2548 if (isa<VectorType>(CurTy)) 2549 V = ConstantDataVector::getFP(EltTy, Elts); 2550 else 2551 V = ConstantDataArray::getFP(EltTy, Elts); 2552 } else if (EltTy->isBFloatTy()) { 2553 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2554 if (isa<VectorType>(CurTy)) 2555 V = ConstantDataVector::getFP(EltTy, Elts); 2556 else 2557 V = ConstantDataArray::getFP(EltTy, Elts); 2558 } else if (EltTy->isFloatTy()) { 2559 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2560 if (isa<VectorType>(CurTy)) 2561 V = ConstantDataVector::getFP(EltTy, Elts); 2562 else 2563 V = ConstantDataArray::getFP(EltTy, Elts); 2564 } else if (EltTy->isDoubleTy()) { 2565 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2566 if (isa<VectorType>(CurTy)) 2567 V = ConstantDataVector::getFP(EltTy, Elts); 2568 else 2569 V = ConstantDataArray::getFP(EltTy, Elts); 2570 } else { 2571 return error("Invalid type for value"); 2572 } 2573 break; 2574 } 2575 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2576 if (Record.size() < 2) 2577 return error("Invalid record"); 2578 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2579 if (Opc < 0) { 2580 V = UndefValue::get(CurTy); // Unknown unop. 2581 } else { 2582 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2583 unsigned Flags = 0; 2584 V = ConstantExpr::get(Opc, LHS, Flags); 2585 } 2586 break; 2587 } 2588 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2589 if (Record.size() < 3) 2590 return error("Invalid record"); 2591 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2592 if (Opc < 0) { 2593 V = UndefValue::get(CurTy); // Unknown binop. 2594 } else { 2595 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2596 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2597 unsigned Flags = 0; 2598 if (Record.size() >= 4) { 2599 if (Opc == Instruction::Add || 2600 Opc == Instruction::Sub || 2601 Opc == Instruction::Mul || 2602 Opc == Instruction::Shl) { 2603 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2604 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2605 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2606 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2607 } else if (Opc == Instruction::SDiv || 2608 Opc == Instruction::UDiv || 2609 Opc == Instruction::LShr || 2610 Opc == Instruction::AShr) { 2611 if (Record[3] & (1 << bitc::PEO_EXACT)) 2612 Flags |= SDivOperator::IsExact; 2613 } 2614 } 2615 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2616 } 2617 break; 2618 } 2619 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2620 if (Record.size() < 3) 2621 return error("Invalid record"); 2622 int Opc = getDecodedCastOpcode(Record[0]); 2623 if (Opc < 0) { 2624 V = UndefValue::get(CurTy); // Unknown cast. 2625 } else { 2626 Type *OpTy = getTypeByID(Record[1]); 2627 if (!OpTy) 2628 return error("Invalid record"); 2629 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2630 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2631 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2632 } 2633 break; 2634 } 2635 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2636 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2637 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2638 // operands] 2639 unsigned OpNum = 0; 2640 Type *PointeeType = nullptr; 2641 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2642 Record.size() % 2) 2643 PointeeType = getTypeByID(Record[OpNum++]); 2644 2645 bool InBounds = false; 2646 Optional<unsigned> InRangeIndex; 2647 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2648 uint64_t Op = Record[OpNum++]; 2649 InBounds = Op & 1; 2650 InRangeIndex = Op >> 1; 2651 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2652 InBounds = true; 2653 2654 SmallVector<Constant*, 16> Elts; 2655 Type *Elt0FullTy = nullptr; 2656 while (OpNum != Record.size()) { 2657 if (!Elt0FullTy) 2658 Elt0FullTy = getTypeByID(Record[OpNum]); 2659 Type *ElTy = getTypeByID(Record[OpNum++]); 2660 if (!ElTy) 2661 return error("Invalid record"); 2662 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2663 } 2664 2665 if (Elts.size() < 1) 2666 return error("Invalid gep with no operands"); 2667 2668 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2669 if (!PointeeType) 2670 PointeeType = OrigPtrTy->getElementType(); 2671 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2672 return error("Explicit gep operator type does not match pointee type " 2673 "of pointer operand"); 2674 2675 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2676 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2677 InBounds, InRangeIndex); 2678 break; 2679 } 2680 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2681 if (Record.size() < 3) 2682 return error("Invalid record"); 2683 2684 Type *SelectorTy = Type::getInt1Ty(Context); 2685 2686 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2687 // Get the type from the ValueList before getting a forward ref. 2688 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2689 if (Value *V = ValueList[Record[0]]) 2690 if (SelectorTy != V->getType()) 2691 SelectorTy = VectorType::get(SelectorTy, 2692 VTy->getElementCount()); 2693 2694 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2695 SelectorTy), 2696 ValueList.getConstantFwdRef(Record[1],CurTy), 2697 ValueList.getConstantFwdRef(Record[2],CurTy)); 2698 break; 2699 } 2700 case bitc::CST_CODE_CE_EXTRACTELT 2701 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2702 if (Record.size() < 3) 2703 return error("Invalid record"); 2704 VectorType *OpTy = 2705 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2706 if (!OpTy) 2707 return error("Invalid record"); 2708 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2709 Constant *Op1 = nullptr; 2710 if (Record.size() == 4) { 2711 Type *IdxTy = getTypeByID(Record[2]); 2712 if (!IdxTy) 2713 return error("Invalid record"); 2714 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2715 } else { 2716 // Deprecated, but still needed to read old bitcode files. 2717 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2718 } 2719 if (!Op1) 2720 return error("Invalid record"); 2721 V = ConstantExpr::getExtractElement(Op0, Op1); 2722 break; 2723 } 2724 case bitc::CST_CODE_CE_INSERTELT 2725 : { // CE_INSERTELT: [opval, opval, opty, opval] 2726 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2727 if (Record.size() < 3 || !OpTy) 2728 return error("Invalid record"); 2729 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2730 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2731 OpTy->getElementType()); 2732 Constant *Op2 = nullptr; 2733 if (Record.size() == 4) { 2734 Type *IdxTy = getTypeByID(Record[2]); 2735 if (!IdxTy) 2736 return error("Invalid record"); 2737 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2738 } else { 2739 // Deprecated, but still needed to read old bitcode files. 2740 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2741 } 2742 if (!Op2) 2743 return error("Invalid record"); 2744 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2745 break; 2746 } 2747 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2748 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2749 if (Record.size() < 3 || !OpTy) 2750 return error("Invalid record"); 2751 DelayedShuffles.push_back( 2752 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2753 ++NextCstNo; 2754 continue; 2755 } 2756 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2757 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2758 VectorType *OpTy = 2759 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2760 if (Record.size() < 4 || !RTy || !OpTy) 2761 return error("Invalid record"); 2762 DelayedShuffles.push_back( 2763 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2764 ++NextCstNo; 2765 continue; 2766 } 2767 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2768 if (Record.size() < 4) 2769 return error("Invalid record"); 2770 Type *OpTy = getTypeByID(Record[0]); 2771 if (!OpTy) 2772 return error("Invalid record"); 2773 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2774 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2775 2776 if (OpTy->isFPOrFPVectorTy()) 2777 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2778 else 2779 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2780 break; 2781 } 2782 // This maintains backward compatibility, pre-asm dialect keywords. 2783 // Deprecated, but still needed to read old bitcode files. 2784 case bitc::CST_CODE_INLINEASM_OLD: { 2785 if (Record.size() < 2) 2786 return error("Invalid record"); 2787 std::string AsmStr, ConstrStr; 2788 bool HasSideEffects = Record[0] & 1; 2789 bool IsAlignStack = Record[0] >> 1; 2790 unsigned AsmStrSize = Record[1]; 2791 if (2+AsmStrSize >= Record.size()) 2792 return error("Invalid record"); 2793 unsigned ConstStrSize = Record[2+AsmStrSize]; 2794 if (3+AsmStrSize+ConstStrSize > Record.size()) 2795 return error("Invalid record"); 2796 2797 for (unsigned i = 0; i != AsmStrSize; ++i) 2798 AsmStr += (char)Record[2+i]; 2799 for (unsigned i = 0; i != ConstStrSize; ++i) 2800 ConstrStr += (char)Record[3+AsmStrSize+i]; 2801 UpgradeInlineAsmString(&AsmStr); 2802 V = InlineAsm::get( 2803 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2804 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2805 break; 2806 } 2807 // This version adds support for the asm dialect keywords (e.g., 2808 // inteldialect). 2809 case bitc::CST_CODE_INLINEASM_OLD2: { 2810 if (Record.size() < 2) 2811 return error("Invalid record"); 2812 std::string AsmStr, ConstrStr; 2813 bool HasSideEffects = Record[0] & 1; 2814 bool IsAlignStack = (Record[0] >> 1) & 1; 2815 unsigned AsmDialect = Record[0] >> 2; 2816 unsigned AsmStrSize = Record[1]; 2817 if (2+AsmStrSize >= Record.size()) 2818 return error("Invalid record"); 2819 unsigned ConstStrSize = Record[2+AsmStrSize]; 2820 if (3+AsmStrSize+ConstStrSize > Record.size()) 2821 return error("Invalid record"); 2822 2823 for (unsigned i = 0; i != AsmStrSize; ++i) 2824 AsmStr += (char)Record[2+i]; 2825 for (unsigned i = 0; i != ConstStrSize; ++i) 2826 ConstrStr += (char)Record[3+AsmStrSize+i]; 2827 UpgradeInlineAsmString(&AsmStr); 2828 V = InlineAsm::get( 2829 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2830 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2831 InlineAsm::AsmDialect(AsmDialect)); 2832 break; 2833 } 2834 // This version adds support for the unwind keyword. 2835 case bitc::CST_CODE_INLINEASM: { 2836 if (Record.size() < 2) 2837 return error("Invalid record"); 2838 std::string AsmStr, ConstrStr; 2839 bool HasSideEffects = Record[0] & 1; 2840 bool IsAlignStack = (Record[0] >> 1) & 1; 2841 unsigned AsmDialect = (Record[0] >> 2) & 1; 2842 bool CanThrow = (Record[0] >> 3) & 1; 2843 unsigned AsmStrSize = Record[1]; 2844 if (2 + AsmStrSize >= Record.size()) 2845 return error("Invalid record"); 2846 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2847 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2848 return error("Invalid record"); 2849 2850 for (unsigned i = 0; i != AsmStrSize; ++i) 2851 AsmStr += (char)Record[2 + i]; 2852 for (unsigned i = 0; i != ConstStrSize; ++i) 2853 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2854 UpgradeInlineAsmString(&AsmStr); 2855 V = InlineAsm::get( 2856 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2857 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2858 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2859 break; 2860 } 2861 case bitc::CST_CODE_BLOCKADDRESS:{ 2862 if (Record.size() < 3) 2863 return error("Invalid record"); 2864 Type *FnTy = getTypeByID(Record[0]); 2865 if (!FnTy) 2866 return error("Invalid record"); 2867 Function *Fn = 2868 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2869 if (!Fn) 2870 return error("Invalid record"); 2871 2872 // If the function is already parsed we can insert the block address right 2873 // away. 2874 BasicBlock *BB; 2875 unsigned BBID = Record[2]; 2876 if (!BBID) 2877 // Invalid reference to entry block. 2878 return error("Invalid ID"); 2879 if (!Fn->empty()) { 2880 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2881 for (size_t I = 0, E = BBID; I != E; ++I) { 2882 if (BBI == BBE) 2883 return error("Invalid ID"); 2884 ++BBI; 2885 } 2886 BB = &*BBI; 2887 } else { 2888 // Otherwise insert a placeholder and remember it so it can be inserted 2889 // when the function is parsed. 2890 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2891 if (FwdBBs.empty()) 2892 BasicBlockFwdRefQueue.push_back(Fn); 2893 if (FwdBBs.size() < BBID + 1) 2894 FwdBBs.resize(BBID + 1); 2895 if (!FwdBBs[BBID]) 2896 FwdBBs[BBID] = BasicBlock::Create(Context); 2897 BB = FwdBBs[BBID]; 2898 } 2899 V = BlockAddress::get(Fn, BB); 2900 break; 2901 } 2902 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2903 if (Record.size() < 2) 2904 return error("Invalid record"); 2905 Type *GVTy = getTypeByID(Record[0]); 2906 if (!GVTy) 2907 return error("Invalid record"); 2908 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2909 ValueList.getConstantFwdRef(Record[1], GVTy)); 2910 if (!GV) 2911 return error("Invalid record"); 2912 2913 V = DSOLocalEquivalent::get(GV); 2914 break; 2915 } 2916 } 2917 2918 ValueList.assignValue(V, NextCstNo); 2919 ++NextCstNo; 2920 } 2921 } 2922 2923 Error BitcodeReader::parseUseLists() { 2924 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2925 return Err; 2926 2927 // Read all the records. 2928 SmallVector<uint64_t, 64> Record; 2929 2930 while (true) { 2931 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2932 if (!MaybeEntry) 2933 return MaybeEntry.takeError(); 2934 BitstreamEntry Entry = MaybeEntry.get(); 2935 2936 switch (Entry.Kind) { 2937 case BitstreamEntry::SubBlock: // Handled for us already. 2938 case BitstreamEntry::Error: 2939 return error("Malformed block"); 2940 case BitstreamEntry::EndBlock: 2941 return Error::success(); 2942 case BitstreamEntry::Record: 2943 // The interesting case. 2944 break; 2945 } 2946 2947 // Read a use list record. 2948 Record.clear(); 2949 bool IsBB = false; 2950 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2951 if (!MaybeRecord) 2952 return MaybeRecord.takeError(); 2953 switch (MaybeRecord.get()) { 2954 default: // Default behavior: unknown type. 2955 break; 2956 case bitc::USELIST_CODE_BB: 2957 IsBB = true; 2958 LLVM_FALLTHROUGH; 2959 case bitc::USELIST_CODE_DEFAULT: { 2960 unsigned RecordLength = Record.size(); 2961 if (RecordLength < 3) 2962 // Records should have at least an ID and two indexes. 2963 return error("Invalid record"); 2964 unsigned ID = Record.pop_back_val(); 2965 2966 Value *V; 2967 if (IsBB) { 2968 assert(ID < FunctionBBs.size() && "Basic block not found"); 2969 V = FunctionBBs[ID]; 2970 } else 2971 V = ValueList[ID]; 2972 unsigned NumUses = 0; 2973 SmallDenseMap<const Use *, unsigned, 16> Order; 2974 for (const Use &U : V->materialized_uses()) { 2975 if (++NumUses > Record.size()) 2976 break; 2977 Order[&U] = Record[NumUses - 1]; 2978 } 2979 if (Order.size() != Record.size() || NumUses > Record.size()) 2980 // Mismatches can happen if the functions are being materialized lazily 2981 // (out-of-order), or a value has been upgraded. 2982 break; 2983 2984 V->sortUseList([&](const Use &L, const Use &R) { 2985 return Order.lookup(&L) < Order.lookup(&R); 2986 }); 2987 break; 2988 } 2989 } 2990 } 2991 } 2992 2993 /// When we see the block for metadata, remember where it is and then skip it. 2994 /// This lets us lazily deserialize the metadata. 2995 Error BitcodeReader::rememberAndSkipMetadata() { 2996 // Save the current stream state. 2997 uint64_t CurBit = Stream.GetCurrentBitNo(); 2998 DeferredMetadataInfo.push_back(CurBit); 2999 3000 // Skip over the block for now. 3001 if (Error Err = Stream.SkipBlock()) 3002 return Err; 3003 return Error::success(); 3004 } 3005 3006 Error BitcodeReader::materializeMetadata() { 3007 for (uint64_t BitPos : DeferredMetadataInfo) { 3008 // Move the bit stream to the saved position. 3009 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3010 return JumpFailed; 3011 if (Error Err = MDLoader->parseModuleMetadata()) 3012 return Err; 3013 } 3014 3015 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3016 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3017 // multiple times. 3018 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3019 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3020 NamedMDNode *LinkerOpts = 3021 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3022 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3023 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3024 } 3025 } 3026 3027 DeferredMetadataInfo.clear(); 3028 return Error::success(); 3029 } 3030 3031 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3032 3033 /// When we see the block for a function body, remember where it is and then 3034 /// skip it. This lets us lazily deserialize the functions. 3035 Error BitcodeReader::rememberAndSkipFunctionBody() { 3036 // Get the function we are talking about. 3037 if (FunctionsWithBodies.empty()) 3038 return error("Insufficient function protos"); 3039 3040 Function *Fn = FunctionsWithBodies.back(); 3041 FunctionsWithBodies.pop_back(); 3042 3043 // Save the current stream state. 3044 uint64_t CurBit = Stream.GetCurrentBitNo(); 3045 assert( 3046 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3047 "Mismatch between VST and scanned function offsets"); 3048 DeferredFunctionInfo[Fn] = CurBit; 3049 3050 // Skip over the function block for now. 3051 if (Error Err = Stream.SkipBlock()) 3052 return Err; 3053 return Error::success(); 3054 } 3055 3056 Error BitcodeReader::globalCleanup() { 3057 // Patch the initializers for globals and aliases up. 3058 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3059 return Err; 3060 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3061 return error("Malformed global initializer set"); 3062 3063 // Look for intrinsic functions which need to be upgraded at some point 3064 // and functions that need to have their function attributes upgraded. 3065 for (Function &F : *TheModule) { 3066 MDLoader->upgradeDebugIntrinsics(F); 3067 Function *NewFn; 3068 if (UpgradeIntrinsicFunction(&F, NewFn)) 3069 UpgradedIntrinsics[&F] = NewFn; 3070 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3071 // Some types could be renamed during loading if several modules are 3072 // loaded in the same LLVMContext (LTO scenario). In this case we should 3073 // remangle intrinsics names as well. 3074 RemangledIntrinsics[&F] = Remangled.getValue(); 3075 // Look for functions that rely on old function attribute behavior. 3076 UpgradeFunctionAttributes(F); 3077 } 3078 3079 // Look for global variables which need to be renamed. 3080 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3081 for (GlobalVariable &GV : TheModule->globals()) 3082 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3083 UpgradedVariables.emplace_back(&GV, Upgraded); 3084 for (auto &Pair : UpgradedVariables) { 3085 Pair.first->eraseFromParent(); 3086 TheModule->getGlobalList().push_back(Pair.second); 3087 } 3088 3089 // Force deallocation of memory for these vectors to favor the client that 3090 // want lazy deserialization. 3091 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3092 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3093 IndirectSymbolInits); 3094 return Error::success(); 3095 } 3096 3097 /// Support for lazy parsing of function bodies. This is required if we 3098 /// either have an old bitcode file without a VST forward declaration record, 3099 /// or if we have an anonymous function being materialized, since anonymous 3100 /// functions do not have a name and are therefore not in the VST. 3101 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3102 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3103 return JumpFailed; 3104 3105 if (Stream.AtEndOfStream()) 3106 return error("Could not find function in stream"); 3107 3108 if (!SeenFirstFunctionBody) 3109 return error("Trying to materialize functions before seeing function blocks"); 3110 3111 // An old bitcode file with the symbol table at the end would have 3112 // finished the parse greedily. 3113 assert(SeenValueSymbolTable); 3114 3115 SmallVector<uint64_t, 64> Record; 3116 3117 while (true) { 3118 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3119 if (!MaybeEntry) 3120 return MaybeEntry.takeError(); 3121 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3122 3123 switch (Entry.Kind) { 3124 default: 3125 return error("Expect SubBlock"); 3126 case BitstreamEntry::SubBlock: 3127 switch (Entry.ID) { 3128 default: 3129 return error("Expect function block"); 3130 case bitc::FUNCTION_BLOCK_ID: 3131 if (Error Err = rememberAndSkipFunctionBody()) 3132 return Err; 3133 NextUnreadBit = Stream.GetCurrentBitNo(); 3134 return Error::success(); 3135 } 3136 } 3137 } 3138 } 3139 3140 bool BitcodeReaderBase::readBlockInfo() { 3141 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3142 Stream.ReadBlockInfoBlock(); 3143 if (!MaybeNewBlockInfo) 3144 return true; // FIXME Handle the error. 3145 Optional<BitstreamBlockInfo> NewBlockInfo = 3146 std::move(MaybeNewBlockInfo.get()); 3147 if (!NewBlockInfo) 3148 return true; 3149 BlockInfo = std::move(*NewBlockInfo); 3150 return false; 3151 } 3152 3153 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3154 // v1: [selection_kind, name] 3155 // v2: [strtab_offset, strtab_size, selection_kind] 3156 StringRef Name; 3157 std::tie(Name, Record) = readNameFromStrtab(Record); 3158 3159 if (Record.empty()) 3160 return error("Invalid record"); 3161 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3162 std::string OldFormatName; 3163 if (!UseStrtab) { 3164 if (Record.size() < 2) 3165 return error("Invalid record"); 3166 unsigned ComdatNameSize = Record[1]; 3167 OldFormatName.reserve(ComdatNameSize); 3168 for (unsigned i = 0; i != ComdatNameSize; ++i) 3169 OldFormatName += (char)Record[2 + i]; 3170 Name = OldFormatName; 3171 } 3172 Comdat *C = TheModule->getOrInsertComdat(Name); 3173 C->setSelectionKind(SK); 3174 ComdatList.push_back(C); 3175 return Error::success(); 3176 } 3177 3178 static void inferDSOLocal(GlobalValue *GV) { 3179 // infer dso_local from linkage and visibility if it is not encoded. 3180 if (GV->hasLocalLinkage() || 3181 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3182 GV->setDSOLocal(true); 3183 } 3184 3185 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3186 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3187 // visibility, threadlocal, unnamed_addr, externally_initialized, 3188 // dllstorageclass, comdat, attributes, preemption specifier, 3189 // partition strtab offset, partition strtab size] (name in VST) 3190 // v2: [strtab_offset, strtab_size, v1] 3191 StringRef Name; 3192 std::tie(Name, Record) = readNameFromStrtab(Record); 3193 3194 if (Record.size() < 6) 3195 return error("Invalid record"); 3196 Type *Ty = getTypeByID(Record[0]); 3197 if (!Ty) 3198 return error("Invalid record"); 3199 bool isConstant = Record[1] & 1; 3200 bool explicitType = Record[1] & 2; 3201 unsigned AddressSpace; 3202 if (explicitType) { 3203 AddressSpace = Record[1] >> 2; 3204 } else { 3205 if (!Ty->isPointerTy()) 3206 return error("Invalid type for value"); 3207 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3208 Ty = cast<PointerType>(Ty)->getElementType(); 3209 } 3210 3211 uint64_t RawLinkage = Record[3]; 3212 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3213 MaybeAlign Alignment; 3214 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3215 return Err; 3216 std::string Section; 3217 if (Record[5]) { 3218 if (Record[5] - 1 >= SectionTable.size()) 3219 return error("Invalid ID"); 3220 Section = SectionTable[Record[5] - 1]; 3221 } 3222 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3223 // Local linkage must have default visibility. 3224 // auto-upgrade `hidden` and `protected` for old bitcode. 3225 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3226 Visibility = getDecodedVisibility(Record[6]); 3227 3228 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3229 if (Record.size() > 7) 3230 TLM = getDecodedThreadLocalMode(Record[7]); 3231 3232 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3233 if (Record.size() > 8) 3234 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3235 3236 bool ExternallyInitialized = false; 3237 if (Record.size() > 9) 3238 ExternallyInitialized = Record[9]; 3239 3240 GlobalVariable *NewGV = 3241 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3242 nullptr, TLM, AddressSpace, ExternallyInitialized); 3243 NewGV->setAlignment(Alignment); 3244 if (!Section.empty()) 3245 NewGV->setSection(Section); 3246 NewGV->setVisibility(Visibility); 3247 NewGV->setUnnamedAddr(UnnamedAddr); 3248 3249 if (Record.size() > 10) 3250 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3251 else 3252 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3253 3254 ValueList.push_back(NewGV); 3255 3256 // Remember which value to use for the global initializer. 3257 if (unsigned InitID = Record[2]) 3258 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3259 3260 if (Record.size() > 11) { 3261 if (unsigned ComdatID = Record[11]) { 3262 if (ComdatID > ComdatList.size()) 3263 return error("Invalid global variable comdat ID"); 3264 NewGV->setComdat(ComdatList[ComdatID - 1]); 3265 } 3266 } else if (hasImplicitComdat(RawLinkage)) { 3267 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3268 } 3269 3270 if (Record.size() > 12) { 3271 auto AS = getAttributes(Record[12]).getFnAttributes(); 3272 NewGV->setAttributes(AS); 3273 } 3274 3275 if (Record.size() > 13) { 3276 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3277 } 3278 inferDSOLocal(NewGV); 3279 3280 // Check whether we have enough values to read a partition name. 3281 if (Record.size() > 15) 3282 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3283 3284 return Error::success(); 3285 } 3286 3287 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3288 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3289 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3290 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3291 // v2: [strtab_offset, strtab_size, v1] 3292 StringRef Name; 3293 std::tie(Name, Record) = readNameFromStrtab(Record); 3294 3295 if (Record.size() < 8) 3296 return error("Invalid record"); 3297 Type *FTy = getTypeByID(Record[0]); 3298 if (!FTy) 3299 return error("Invalid record"); 3300 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3301 FTy = PTy->getElementType(); 3302 3303 if (!isa<FunctionType>(FTy)) 3304 return error("Invalid type for value"); 3305 auto CC = static_cast<CallingConv::ID>(Record[1]); 3306 if (CC & ~CallingConv::MaxID) 3307 return error("Invalid calling convention ID"); 3308 3309 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3310 if (Record.size() > 16) 3311 AddrSpace = Record[16]; 3312 3313 Function *Func = 3314 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3315 AddrSpace, Name, TheModule); 3316 3317 assert(Func->getFunctionType() == FTy && 3318 "Incorrect fully specified type provided for function"); 3319 FunctionTypes[Func] = cast<FunctionType>(FTy); 3320 3321 Func->setCallingConv(CC); 3322 bool isProto = Record[2]; 3323 uint64_t RawLinkage = Record[3]; 3324 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3325 Func->setAttributes(getAttributes(Record[4])); 3326 3327 // Upgrade any old-style byval or sret without a type by propagating the 3328 // argument's pointee type. There should be no opaque pointers where the byval 3329 // type is implicit. 3330 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3331 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3332 Attribute::InAlloca}) { 3333 if (!Func->hasParamAttribute(i, Kind)) 3334 continue; 3335 3336 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3337 continue; 3338 3339 Func->removeParamAttr(i, Kind); 3340 3341 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3342 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3343 Attribute NewAttr; 3344 switch (Kind) { 3345 case Attribute::ByVal: 3346 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3347 break; 3348 case Attribute::StructRet: 3349 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3350 break; 3351 case Attribute::InAlloca: 3352 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3353 break; 3354 default: 3355 llvm_unreachable("not an upgraded type attribute"); 3356 } 3357 3358 Func->addParamAttr(i, NewAttr); 3359 } 3360 } 3361 3362 MaybeAlign Alignment; 3363 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3364 return Err; 3365 Func->setAlignment(Alignment); 3366 if (Record[6]) { 3367 if (Record[6] - 1 >= SectionTable.size()) 3368 return error("Invalid ID"); 3369 Func->setSection(SectionTable[Record[6] - 1]); 3370 } 3371 // Local linkage must have default visibility. 3372 // auto-upgrade `hidden` and `protected` for old bitcode. 3373 if (!Func->hasLocalLinkage()) 3374 Func->setVisibility(getDecodedVisibility(Record[7])); 3375 if (Record.size() > 8 && Record[8]) { 3376 if (Record[8] - 1 >= GCTable.size()) 3377 return error("Invalid ID"); 3378 Func->setGC(GCTable[Record[8] - 1]); 3379 } 3380 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3381 if (Record.size() > 9) 3382 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3383 Func->setUnnamedAddr(UnnamedAddr); 3384 if (Record.size() > 10 && Record[10] != 0) 3385 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3386 3387 if (Record.size() > 11) 3388 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3389 else 3390 upgradeDLLImportExportLinkage(Func, RawLinkage); 3391 3392 if (Record.size() > 12) { 3393 if (unsigned ComdatID = Record[12]) { 3394 if (ComdatID > ComdatList.size()) 3395 return error("Invalid function comdat ID"); 3396 Func->setComdat(ComdatList[ComdatID - 1]); 3397 } 3398 } else if (hasImplicitComdat(RawLinkage)) { 3399 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3400 } 3401 3402 if (Record.size() > 13 && Record[13] != 0) 3403 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3404 3405 if (Record.size() > 14 && Record[14] != 0) 3406 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3407 3408 if (Record.size() > 15) { 3409 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3410 } 3411 inferDSOLocal(Func); 3412 3413 // Record[16] is the address space number. 3414 3415 // Check whether we have enough values to read a partition name. Also make 3416 // sure Strtab has enough values. 3417 if (Record.size() > 18 && Strtab.data() && 3418 Record[17] + Record[18] <= Strtab.size()) { 3419 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3420 } 3421 3422 ValueList.push_back(Func); 3423 3424 // If this is a function with a body, remember the prototype we are 3425 // creating now, so that we can match up the body with them later. 3426 if (!isProto) { 3427 Func->setIsMaterializable(true); 3428 FunctionsWithBodies.push_back(Func); 3429 DeferredFunctionInfo[Func] = 0; 3430 } 3431 return Error::success(); 3432 } 3433 3434 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3435 unsigned BitCode, ArrayRef<uint64_t> Record) { 3436 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3437 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3438 // dllstorageclass, threadlocal, unnamed_addr, 3439 // preemption specifier] (name in VST) 3440 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3441 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3442 // preemption specifier] (name in VST) 3443 // v2: [strtab_offset, strtab_size, v1] 3444 StringRef Name; 3445 std::tie(Name, Record) = readNameFromStrtab(Record); 3446 3447 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3448 if (Record.size() < (3 + (unsigned)NewRecord)) 3449 return error("Invalid record"); 3450 unsigned OpNum = 0; 3451 Type *Ty = getTypeByID(Record[OpNum++]); 3452 if (!Ty) 3453 return error("Invalid record"); 3454 3455 unsigned AddrSpace; 3456 if (!NewRecord) { 3457 auto *PTy = dyn_cast<PointerType>(Ty); 3458 if (!PTy) 3459 return error("Invalid type for value"); 3460 Ty = PTy->getElementType(); 3461 AddrSpace = PTy->getAddressSpace(); 3462 } else { 3463 AddrSpace = Record[OpNum++]; 3464 } 3465 3466 auto Val = Record[OpNum++]; 3467 auto Linkage = Record[OpNum++]; 3468 GlobalIndirectSymbol *NewGA; 3469 if (BitCode == bitc::MODULE_CODE_ALIAS || 3470 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3471 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3472 TheModule); 3473 else 3474 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3475 nullptr, TheModule); 3476 3477 // Local linkage must have default visibility. 3478 // auto-upgrade `hidden` and `protected` for old bitcode. 3479 if (OpNum != Record.size()) { 3480 auto VisInd = OpNum++; 3481 if (!NewGA->hasLocalLinkage()) 3482 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3483 } 3484 if (BitCode == bitc::MODULE_CODE_ALIAS || 3485 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3486 if (OpNum != Record.size()) 3487 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3488 else 3489 upgradeDLLImportExportLinkage(NewGA, Linkage); 3490 if (OpNum != Record.size()) 3491 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3492 if (OpNum != Record.size()) 3493 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3494 } 3495 if (OpNum != Record.size()) 3496 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3497 inferDSOLocal(NewGA); 3498 3499 // Check whether we have enough values to read a partition name. 3500 if (OpNum + 1 < Record.size()) { 3501 NewGA->setPartition( 3502 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3503 OpNum += 2; 3504 } 3505 3506 ValueList.push_back(NewGA); 3507 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3508 return Error::success(); 3509 } 3510 3511 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3512 bool ShouldLazyLoadMetadata, 3513 DataLayoutCallbackTy DataLayoutCallback) { 3514 if (ResumeBit) { 3515 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3516 return JumpFailed; 3517 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3518 return Err; 3519 3520 SmallVector<uint64_t, 64> Record; 3521 3522 // Parts of bitcode parsing depend on the datalayout. Make sure we 3523 // finalize the datalayout before we run any of that code. 3524 bool ResolvedDataLayout = false; 3525 auto ResolveDataLayout = [&] { 3526 if (ResolvedDataLayout) 3527 return; 3528 3529 // datalayout and triple can't be parsed after this point. 3530 ResolvedDataLayout = true; 3531 3532 // Upgrade data layout string. 3533 std::string DL = llvm::UpgradeDataLayoutString( 3534 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3535 TheModule->setDataLayout(DL); 3536 3537 if (auto LayoutOverride = 3538 DataLayoutCallback(TheModule->getTargetTriple())) 3539 TheModule->setDataLayout(*LayoutOverride); 3540 }; 3541 3542 // Read all the records for this module. 3543 while (true) { 3544 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3545 if (!MaybeEntry) 3546 return MaybeEntry.takeError(); 3547 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3548 3549 switch (Entry.Kind) { 3550 case BitstreamEntry::Error: 3551 return error("Malformed block"); 3552 case BitstreamEntry::EndBlock: 3553 ResolveDataLayout(); 3554 return globalCleanup(); 3555 3556 case BitstreamEntry::SubBlock: 3557 switch (Entry.ID) { 3558 default: // Skip unknown content. 3559 if (Error Err = Stream.SkipBlock()) 3560 return Err; 3561 break; 3562 case bitc::BLOCKINFO_BLOCK_ID: 3563 if (readBlockInfo()) 3564 return error("Malformed block"); 3565 break; 3566 case bitc::PARAMATTR_BLOCK_ID: 3567 if (Error Err = parseAttributeBlock()) 3568 return Err; 3569 break; 3570 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3571 if (Error Err = parseAttributeGroupBlock()) 3572 return Err; 3573 break; 3574 case bitc::TYPE_BLOCK_ID_NEW: 3575 if (Error Err = parseTypeTable()) 3576 return Err; 3577 break; 3578 case bitc::VALUE_SYMTAB_BLOCK_ID: 3579 if (!SeenValueSymbolTable) { 3580 // Either this is an old form VST without function index and an 3581 // associated VST forward declaration record (which would have caused 3582 // the VST to be jumped to and parsed before it was encountered 3583 // normally in the stream), or there were no function blocks to 3584 // trigger an earlier parsing of the VST. 3585 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3586 if (Error Err = parseValueSymbolTable()) 3587 return Err; 3588 SeenValueSymbolTable = true; 3589 } else { 3590 // We must have had a VST forward declaration record, which caused 3591 // the parser to jump to and parse the VST earlier. 3592 assert(VSTOffset > 0); 3593 if (Error Err = Stream.SkipBlock()) 3594 return Err; 3595 } 3596 break; 3597 case bitc::CONSTANTS_BLOCK_ID: 3598 if (Error Err = parseConstants()) 3599 return Err; 3600 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3601 return Err; 3602 break; 3603 case bitc::METADATA_BLOCK_ID: 3604 if (ShouldLazyLoadMetadata) { 3605 if (Error Err = rememberAndSkipMetadata()) 3606 return Err; 3607 break; 3608 } 3609 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3610 if (Error Err = MDLoader->parseModuleMetadata()) 3611 return Err; 3612 break; 3613 case bitc::METADATA_KIND_BLOCK_ID: 3614 if (Error Err = MDLoader->parseMetadataKinds()) 3615 return Err; 3616 break; 3617 case bitc::FUNCTION_BLOCK_ID: 3618 ResolveDataLayout(); 3619 3620 // If this is the first function body we've seen, reverse the 3621 // FunctionsWithBodies list. 3622 if (!SeenFirstFunctionBody) { 3623 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3624 if (Error Err = globalCleanup()) 3625 return Err; 3626 SeenFirstFunctionBody = true; 3627 } 3628 3629 if (VSTOffset > 0) { 3630 // If we have a VST forward declaration record, make sure we 3631 // parse the VST now if we haven't already. It is needed to 3632 // set up the DeferredFunctionInfo vector for lazy reading. 3633 if (!SeenValueSymbolTable) { 3634 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3635 return Err; 3636 SeenValueSymbolTable = true; 3637 // Fall through so that we record the NextUnreadBit below. 3638 // This is necessary in case we have an anonymous function that 3639 // is later materialized. Since it will not have a VST entry we 3640 // need to fall back to the lazy parse to find its offset. 3641 } else { 3642 // If we have a VST forward declaration record, but have already 3643 // parsed the VST (just above, when the first function body was 3644 // encountered here), then we are resuming the parse after 3645 // materializing functions. The ResumeBit points to the 3646 // start of the last function block recorded in the 3647 // DeferredFunctionInfo map. Skip it. 3648 if (Error Err = Stream.SkipBlock()) 3649 return Err; 3650 continue; 3651 } 3652 } 3653 3654 // Support older bitcode files that did not have the function 3655 // index in the VST, nor a VST forward declaration record, as 3656 // well as anonymous functions that do not have VST entries. 3657 // Build the DeferredFunctionInfo vector on the fly. 3658 if (Error Err = rememberAndSkipFunctionBody()) 3659 return Err; 3660 3661 // Suspend parsing when we reach the function bodies. Subsequent 3662 // materialization calls will resume it when necessary. If the bitcode 3663 // file is old, the symbol table will be at the end instead and will not 3664 // have been seen yet. In this case, just finish the parse now. 3665 if (SeenValueSymbolTable) { 3666 NextUnreadBit = Stream.GetCurrentBitNo(); 3667 // After the VST has been parsed, we need to make sure intrinsic name 3668 // are auto-upgraded. 3669 return globalCleanup(); 3670 } 3671 break; 3672 case bitc::USELIST_BLOCK_ID: 3673 if (Error Err = parseUseLists()) 3674 return Err; 3675 break; 3676 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3677 if (Error Err = parseOperandBundleTags()) 3678 return Err; 3679 break; 3680 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3681 if (Error Err = parseSyncScopeNames()) 3682 return Err; 3683 break; 3684 } 3685 continue; 3686 3687 case BitstreamEntry::Record: 3688 // The interesting case. 3689 break; 3690 } 3691 3692 // Read a record. 3693 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3694 if (!MaybeBitCode) 3695 return MaybeBitCode.takeError(); 3696 switch (unsigned BitCode = MaybeBitCode.get()) { 3697 default: break; // Default behavior, ignore unknown content. 3698 case bitc::MODULE_CODE_VERSION: { 3699 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3700 if (!VersionOrErr) 3701 return VersionOrErr.takeError(); 3702 UseRelativeIDs = *VersionOrErr >= 1; 3703 break; 3704 } 3705 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3706 if (ResolvedDataLayout) 3707 return error("target triple too late in module"); 3708 std::string S; 3709 if (convertToString(Record, 0, S)) 3710 return error("Invalid record"); 3711 TheModule->setTargetTriple(S); 3712 break; 3713 } 3714 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3715 if (ResolvedDataLayout) 3716 return error("datalayout too late in module"); 3717 std::string S; 3718 if (convertToString(Record, 0, S)) 3719 return error("Invalid record"); 3720 TheModule->setDataLayout(S); 3721 break; 3722 } 3723 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3724 std::string S; 3725 if (convertToString(Record, 0, S)) 3726 return error("Invalid record"); 3727 TheModule->setModuleInlineAsm(S); 3728 break; 3729 } 3730 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3731 // Deprecated, but still needed to read old bitcode files. 3732 std::string S; 3733 if (convertToString(Record, 0, S)) 3734 return error("Invalid record"); 3735 // Ignore value. 3736 break; 3737 } 3738 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3739 std::string S; 3740 if (convertToString(Record, 0, S)) 3741 return error("Invalid record"); 3742 SectionTable.push_back(S); 3743 break; 3744 } 3745 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3746 std::string S; 3747 if (convertToString(Record, 0, S)) 3748 return error("Invalid record"); 3749 GCTable.push_back(S); 3750 break; 3751 } 3752 case bitc::MODULE_CODE_COMDAT: 3753 if (Error Err = parseComdatRecord(Record)) 3754 return Err; 3755 break; 3756 case bitc::MODULE_CODE_GLOBALVAR: 3757 if (Error Err = parseGlobalVarRecord(Record)) 3758 return Err; 3759 break; 3760 case bitc::MODULE_CODE_FUNCTION: 3761 ResolveDataLayout(); 3762 if (Error Err = parseFunctionRecord(Record)) 3763 return Err; 3764 break; 3765 case bitc::MODULE_CODE_IFUNC: 3766 case bitc::MODULE_CODE_ALIAS: 3767 case bitc::MODULE_CODE_ALIAS_OLD: 3768 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3769 return Err; 3770 break; 3771 /// MODULE_CODE_VSTOFFSET: [offset] 3772 case bitc::MODULE_CODE_VSTOFFSET: 3773 if (Record.empty()) 3774 return error("Invalid record"); 3775 // Note that we subtract 1 here because the offset is relative to one word 3776 // before the start of the identification or module block, which was 3777 // historically always the start of the regular bitcode header. 3778 VSTOffset = Record[0] - 1; 3779 break; 3780 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3781 case bitc::MODULE_CODE_SOURCE_FILENAME: 3782 SmallString<128> ValueName; 3783 if (convertToString(Record, 0, ValueName)) 3784 return error("Invalid record"); 3785 TheModule->setSourceFileName(ValueName); 3786 break; 3787 } 3788 Record.clear(); 3789 } 3790 } 3791 3792 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3793 bool IsImporting, 3794 DataLayoutCallbackTy DataLayoutCallback) { 3795 TheModule = M; 3796 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3797 [&](unsigned ID) { return getTypeByID(ID); }); 3798 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3799 } 3800 3801 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3802 if (!isa<PointerType>(PtrType)) 3803 return error("Load/Store operand is not a pointer type"); 3804 3805 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3806 return error("Explicit load/store type does not match pointee " 3807 "type of pointer operand"); 3808 if (!PointerType::isLoadableOrStorableType(ValType)) 3809 return error("Cannot load/store from pointer"); 3810 return Error::success(); 3811 } 3812 3813 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3814 ArrayRef<Type *> ArgsTys) { 3815 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3816 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3817 Attribute::InAlloca}) { 3818 if (!CB->paramHasAttr(i, Kind)) 3819 continue; 3820 3821 CB->removeParamAttr(i, Kind); 3822 3823 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3824 Attribute NewAttr; 3825 switch (Kind) { 3826 case Attribute::ByVal: 3827 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3828 break; 3829 case Attribute::StructRet: 3830 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3831 break; 3832 case Attribute::InAlloca: 3833 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3834 break; 3835 default: 3836 llvm_unreachable("not an upgraded type attribute"); 3837 } 3838 3839 CB->addParamAttr(i, NewAttr); 3840 } 3841 } 3842 3843 switch (CB->getIntrinsicID()) { 3844 case Intrinsic::preserve_array_access_index: 3845 case Intrinsic::preserve_struct_access_index: 3846 if (!CB->getAttributes().getParamElementType(0)) { 3847 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3848 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3849 CB->addParamAttr(0, NewAttr); 3850 } 3851 break; 3852 default: 3853 break; 3854 } 3855 } 3856 3857 /// Lazily parse the specified function body block. 3858 Error BitcodeReader::parseFunctionBody(Function *F) { 3859 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3860 return Err; 3861 3862 // Unexpected unresolved metadata when parsing function. 3863 if (MDLoader->hasFwdRefs()) 3864 return error("Invalid function metadata: incoming forward references"); 3865 3866 InstructionList.clear(); 3867 unsigned ModuleValueListSize = ValueList.size(); 3868 unsigned ModuleMDLoaderSize = MDLoader->size(); 3869 3870 // Add all the function arguments to the value table. 3871 #ifndef NDEBUG 3872 unsigned ArgNo = 0; 3873 FunctionType *FTy = FunctionTypes[F]; 3874 #endif 3875 for (Argument &I : F->args()) { 3876 assert(I.getType() == FTy->getParamType(ArgNo++) && 3877 "Incorrect fully specified type for Function Argument"); 3878 ValueList.push_back(&I); 3879 } 3880 unsigned NextValueNo = ValueList.size(); 3881 BasicBlock *CurBB = nullptr; 3882 unsigned CurBBNo = 0; 3883 3884 DebugLoc LastLoc; 3885 auto getLastInstruction = [&]() -> Instruction * { 3886 if (CurBB && !CurBB->empty()) 3887 return &CurBB->back(); 3888 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3889 !FunctionBBs[CurBBNo - 1]->empty()) 3890 return &FunctionBBs[CurBBNo - 1]->back(); 3891 return nullptr; 3892 }; 3893 3894 std::vector<OperandBundleDef> OperandBundles; 3895 3896 // Read all the records. 3897 SmallVector<uint64_t, 64> Record; 3898 3899 while (true) { 3900 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3901 if (!MaybeEntry) 3902 return MaybeEntry.takeError(); 3903 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3904 3905 switch (Entry.Kind) { 3906 case BitstreamEntry::Error: 3907 return error("Malformed block"); 3908 case BitstreamEntry::EndBlock: 3909 goto OutOfRecordLoop; 3910 3911 case BitstreamEntry::SubBlock: 3912 switch (Entry.ID) { 3913 default: // Skip unknown content. 3914 if (Error Err = Stream.SkipBlock()) 3915 return Err; 3916 break; 3917 case bitc::CONSTANTS_BLOCK_ID: 3918 if (Error Err = parseConstants()) 3919 return Err; 3920 NextValueNo = ValueList.size(); 3921 break; 3922 case bitc::VALUE_SYMTAB_BLOCK_ID: 3923 if (Error Err = parseValueSymbolTable()) 3924 return Err; 3925 break; 3926 case bitc::METADATA_ATTACHMENT_ID: 3927 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3928 return Err; 3929 break; 3930 case bitc::METADATA_BLOCK_ID: 3931 assert(DeferredMetadataInfo.empty() && 3932 "Must read all module-level metadata before function-level"); 3933 if (Error Err = MDLoader->parseFunctionMetadata()) 3934 return Err; 3935 break; 3936 case bitc::USELIST_BLOCK_ID: 3937 if (Error Err = parseUseLists()) 3938 return Err; 3939 break; 3940 } 3941 continue; 3942 3943 case BitstreamEntry::Record: 3944 // The interesting case. 3945 break; 3946 } 3947 3948 // Read a record. 3949 Record.clear(); 3950 Instruction *I = nullptr; 3951 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3952 if (!MaybeBitCode) 3953 return MaybeBitCode.takeError(); 3954 switch (unsigned BitCode = MaybeBitCode.get()) { 3955 default: // Default behavior: reject 3956 return error("Invalid value"); 3957 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3958 if (Record.empty() || Record[0] == 0) 3959 return error("Invalid record"); 3960 // Create all the basic blocks for the function. 3961 FunctionBBs.resize(Record[0]); 3962 3963 // See if anything took the address of blocks in this function. 3964 auto BBFRI = BasicBlockFwdRefs.find(F); 3965 if (BBFRI == BasicBlockFwdRefs.end()) { 3966 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3967 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3968 } else { 3969 auto &BBRefs = BBFRI->second; 3970 // Check for invalid basic block references. 3971 if (BBRefs.size() > FunctionBBs.size()) 3972 return error("Invalid ID"); 3973 assert(!BBRefs.empty() && "Unexpected empty array"); 3974 assert(!BBRefs.front() && "Invalid reference to entry block"); 3975 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3976 ++I) 3977 if (I < RE && BBRefs[I]) { 3978 BBRefs[I]->insertInto(F); 3979 FunctionBBs[I] = BBRefs[I]; 3980 } else { 3981 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3982 } 3983 3984 // Erase from the table. 3985 BasicBlockFwdRefs.erase(BBFRI); 3986 } 3987 3988 CurBB = FunctionBBs[0]; 3989 continue; 3990 } 3991 3992 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3993 // This record indicates that the last instruction is at the same 3994 // location as the previous instruction with a location. 3995 I = getLastInstruction(); 3996 3997 if (!I) 3998 return error("Invalid record"); 3999 I->setDebugLoc(LastLoc); 4000 I = nullptr; 4001 continue; 4002 4003 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4004 I = getLastInstruction(); 4005 if (!I || Record.size() < 4) 4006 return error("Invalid record"); 4007 4008 unsigned Line = Record[0], Col = Record[1]; 4009 unsigned ScopeID = Record[2], IAID = Record[3]; 4010 bool isImplicitCode = Record.size() == 5 && Record[4]; 4011 4012 MDNode *Scope = nullptr, *IA = nullptr; 4013 if (ScopeID) { 4014 Scope = dyn_cast_or_null<MDNode>( 4015 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4016 if (!Scope) 4017 return error("Invalid record"); 4018 } 4019 if (IAID) { 4020 IA = dyn_cast_or_null<MDNode>( 4021 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4022 if (!IA) 4023 return error("Invalid record"); 4024 } 4025 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4026 isImplicitCode); 4027 I->setDebugLoc(LastLoc); 4028 I = nullptr; 4029 continue; 4030 } 4031 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4032 unsigned OpNum = 0; 4033 Value *LHS; 4034 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4035 OpNum+1 > Record.size()) 4036 return error("Invalid record"); 4037 4038 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4039 if (Opc == -1) 4040 return error("Invalid record"); 4041 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4042 InstructionList.push_back(I); 4043 if (OpNum < Record.size()) { 4044 if (isa<FPMathOperator>(I)) { 4045 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4046 if (FMF.any()) 4047 I->setFastMathFlags(FMF); 4048 } 4049 } 4050 break; 4051 } 4052 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4053 unsigned OpNum = 0; 4054 Value *LHS, *RHS; 4055 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4056 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4057 OpNum+1 > Record.size()) 4058 return error("Invalid record"); 4059 4060 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4061 if (Opc == -1) 4062 return error("Invalid record"); 4063 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4064 InstructionList.push_back(I); 4065 if (OpNum < Record.size()) { 4066 if (Opc == Instruction::Add || 4067 Opc == Instruction::Sub || 4068 Opc == Instruction::Mul || 4069 Opc == Instruction::Shl) { 4070 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4071 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4072 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4073 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4074 } else if (Opc == Instruction::SDiv || 4075 Opc == Instruction::UDiv || 4076 Opc == Instruction::LShr || 4077 Opc == Instruction::AShr) { 4078 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4079 cast<BinaryOperator>(I)->setIsExact(true); 4080 } else if (isa<FPMathOperator>(I)) { 4081 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4082 if (FMF.any()) 4083 I->setFastMathFlags(FMF); 4084 } 4085 4086 } 4087 break; 4088 } 4089 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4090 unsigned OpNum = 0; 4091 Value *Op; 4092 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4093 OpNum+2 != Record.size()) 4094 return error("Invalid record"); 4095 4096 Type *ResTy = getTypeByID(Record[OpNum]); 4097 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4098 if (Opc == -1 || !ResTy) 4099 return error("Invalid record"); 4100 Instruction *Temp = nullptr; 4101 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4102 if (Temp) { 4103 InstructionList.push_back(Temp); 4104 assert(CurBB && "No current BB?"); 4105 CurBB->getInstList().push_back(Temp); 4106 } 4107 } else { 4108 auto CastOp = (Instruction::CastOps)Opc; 4109 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4110 return error("Invalid cast"); 4111 I = CastInst::Create(CastOp, Op, ResTy); 4112 } 4113 InstructionList.push_back(I); 4114 break; 4115 } 4116 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4117 case bitc::FUNC_CODE_INST_GEP_OLD: 4118 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4119 unsigned OpNum = 0; 4120 4121 Type *Ty; 4122 bool InBounds; 4123 4124 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4125 InBounds = Record[OpNum++]; 4126 Ty = getTypeByID(Record[OpNum++]); 4127 } else { 4128 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4129 Ty = nullptr; 4130 } 4131 4132 Value *BasePtr; 4133 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4134 return error("Invalid record"); 4135 4136 if (!Ty) { 4137 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4138 ->getElementType(); 4139 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4140 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4141 return error( 4142 "Explicit gep type does not match pointee type of pointer operand"); 4143 } 4144 4145 SmallVector<Value*, 16> GEPIdx; 4146 while (OpNum != Record.size()) { 4147 Value *Op; 4148 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4149 return error("Invalid record"); 4150 GEPIdx.push_back(Op); 4151 } 4152 4153 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4154 4155 InstructionList.push_back(I); 4156 if (InBounds) 4157 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4158 break; 4159 } 4160 4161 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4162 // EXTRACTVAL: [opty, opval, n x indices] 4163 unsigned OpNum = 0; 4164 Value *Agg; 4165 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4166 return error("Invalid record"); 4167 Type *Ty = Agg->getType(); 4168 4169 unsigned RecSize = Record.size(); 4170 if (OpNum == RecSize) 4171 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4172 4173 SmallVector<unsigned, 4> EXTRACTVALIdx; 4174 for (; OpNum != RecSize; ++OpNum) { 4175 bool IsArray = Ty->isArrayTy(); 4176 bool IsStruct = Ty->isStructTy(); 4177 uint64_t Index = Record[OpNum]; 4178 4179 if (!IsStruct && !IsArray) 4180 return error("EXTRACTVAL: Invalid type"); 4181 if ((unsigned)Index != Index) 4182 return error("Invalid value"); 4183 if (IsStruct && Index >= Ty->getStructNumElements()) 4184 return error("EXTRACTVAL: Invalid struct index"); 4185 if (IsArray && Index >= Ty->getArrayNumElements()) 4186 return error("EXTRACTVAL: Invalid array index"); 4187 EXTRACTVALIdx.push_back((unsigned)Index); 4188 4189 if (IsStruct) 4190 Ty = Ty->getStructElementType(Index); 4191 else 4192 Ty = Ty->getArrayElementType(); 4193 } 4194 4195 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4196 InstructionList.push_back(I); 4197 break; 4198 } 4199 4200 case bitc::FUNC_CODE_INST_INSERTVAL: { 4201 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4202 unsigned OpNum = 0; 4203 Value *Agg; 4204 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4205 return error("Invalid record"); 4206 Value *Val; 4207 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4208 return error("Invalid record"); 4209 4210 unsigned RecSize = Record.size(); 4211 if (OpNum == RecSize) 4212 return error("INSERTVAL: Invalid instruction with 0 indices"); 4213 4214 SmallVector<unsigned, 4> INSERTVALIdx; 4215 Type *CurTy = Agg->getType(); 4216 for (; OpNum != RecSize; ++OpNum) { 4217 bool IsArray = CurTy->isArrayTy(); 4218 bool IsStruct = CurTy->isStructTy(); 4219 uint64_t Index = Record[OpNum]; 4220 4221 if (!IsStruct && !IsArray) 4222 return error("INSERTVAL: Invalid type"); 4223 if ((unsigned)Index != Index) 4224 return error("Invalid value"); 4225 if (IsStruct && Index >= CurTy->getStructNumElements()) 4226 return error("INSERTVAL: Invalid struct index"); 4227 if (IsArray && Index >= CurTy->getArrayNumElements()) 4228 return error("INSERTVAL: Invalid array index"); 4229 4230 INSERTVALIdx.push_back((unsigned)Index); 4231 if (IsStruct) 4232 CurTy = CurTy->getStructElementType(Index); 4233 else 4234 CurTy = CurTy->getArrayElementType(); 4235 } 4236 4237 if (CurTy != Val->getType()) 4238 return error("Inserted value type doesn't match aggregate type"); 4239 4240 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4241 InstructionList.push_back(I); 4242 break; 4243 } 4244 4245 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4246 // obsolete form of select 4247 // handles select i1 ... in old bitcode 4248 unsigned OpNum = 0; 4249 Value *TrueVal, *FalseVal, *Cond; 4250 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4251 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4252 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4253 return error("Invalid record"); 4254 4255 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4256 InstructionList.push_back(I); 4257 break; 4258 } 4259 4260 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4261 // new form of select 4262 // handles select i1 or select [N x i1] 4263 unsigned OpNum = 0; 4264 Value *TrueVal, *FalseVal, *Cond; 4265 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4266 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4267 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4268 return error("Invalid record"); 4269 4270 // select condition can be either i1 or [N x i1] 4271 if (VectorType* vector_type = 4272 dyn_cast<VectorType>(Cond->getType())) { 4273 // expect <n x i1> 4274 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4275 return error("Invalid type for value"); 4276 } else { 4277 // expect i1 4278 if (Cond->getType() != Type::getInt1Ty(Context)) 4279 return error("Invalid type for value"); 4280 } 4281 4282 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4283 InstructionList.push_back(I); 4284 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4285 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4286 if (FMF.any()) 4287 I->setFastMathFlags(FMF); 4288 } 4289 break; 4290 } 4291 4292 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4293 unsigned OpNum = 0; 4294 Value *Vec, *Idx; 4295 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4296 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4297 return error("Invalid record"); 4298 if (!Vec->getType()->isVectorTy()) 4299 return error("Invalid type for value"); 4300 I = ExtractElementInst::Create(Vec, Idx); 4301 InstructionList.push_back(I); 4302 break; 4303 } 4304 4305 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4306 unsigned OpNum = 0; 4307 Value *Vec, *Elt, *Idx; 4308 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4309 return error("Invalid record"); 4310 if (!Vec->getType()->isVectorTy()) 4311 return error("Invalid type for value"); 4312 if (popValue(Record, OpNum, NextValueNo, 4313 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4314 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4315 return error("Invalid record"); 4316 I = InsertElementInst::Create(Vec, Elt, Idx); 4317 InstructionList.push_back(I); 4318 break; 4319 } 4320 4321 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4322 unsigned OpNum = 0; 4323 Value *Vec1, *Vec2, *Mask; 4324 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4325 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4326 return error("Invalid record"); 4327 4328 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4329 return error("Invalid record"); 4330 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4331 return error("Invalid type for value"); 4332 4333 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4334 InstructionList.push_back(I); 4335 break; 4336 } 4337 4338 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4339 // Old form of ICmp/FCmp returning bool 4340 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4341 // both legal on vectors but had different behaviour. 4342 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4343 // FCmp/ICmp returning bool or vector of bool 4344 4345 unsigned OpNum = 0; 4346 Value *LHS, *RHS; 4347 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4348 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4349 return error("Invalid record"); 4350 4351 if (OpNum >= Record.size()) 4352 return error( 4353 "Invalid record: operand number exceeded available operands"); 4354 4355 unsigned PredVal = Record[OpNum]; 4356 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4357 FastMathFlags FMF; 4358 if (IsFP && Record.size() > OpNum+1) 4359 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4360 4361 if (OpNum+1 != Record.size()) 4362 return error("Invalid record"); 4363 4364 if (LHS->getType()->isFPOrFPVectorTy()) 4365 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4366 else 4367 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4368 4369 if (FMF.any()) 4370 I->setFastMathFlags(FMF); 4371 InstructionList.push_back(I); 4372 break; 4373 } 4374 4375 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4376 { 4377 unsigned Size = Record.size(); 4378 if (Size == 0) { 4379 I = ReturnInst::Create(Context); 4380 InstructionList.push_back(I); 4381 break; 4382 } 4383 4384 unsigned OpNum = 0; 4385 Value *Op = nullptr; 4386 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4387 return error("Invalid record"); 4388 if (OpNum != Record.size()) 4389 return error("Invalid record"); 4390 4391 I = ReturnInst::Create(Context, Op); 4392 InstructionList.push_back(I); 4393 break; 4394 } 4395 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4396 if (Record.size() != 1 && Record.size() != 3) 4397 return error("Invalid record"); 4398 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4399 if (!TrueDest) 4400 return error("Invalid record"); 4401 4402 if (Record.size() == 1) { 4403 I = BranchInst::Create(TrueDest); 4404 InstructionList.push_back(I); 4405 } 4406 else { 4407 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4408 Value *Cond = getValue(Record, 2, NextValueNo, 4409 Type::getInt1Ty(Context)); 4410 if (!FalseDest || !Cond) 4411 return error("Invalid record"); 4412 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4413 InstructionList.push_back(I); 4414 } 4415 break; 4416 } 4417 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4418 if (Record.size() != 1 && Record.size() != 2) 4419 return error("Invalid record"); 4420 unsigned Idx = 0; 4421 Value *CleanupPad = 4422 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4423 if (!CleanupPad) 4424 return error("Invalid record"); 4425 BasicBlock *UnwindDest = nullptr; 4426 if (Record.size() == 2) { 4427 UnwindDest = getBasicBlock(Record[Idx++]); 4428 if (!UnwindDest) 4429 return error("Invalid record"); 4430 } 4431 4432 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4437 if (Record.size() != 2) 4438 return error("Invalid record"); 4439 unsigned Idx = 0; 4440 Value *CatchPad = 4441 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4442 if (!CatchPad) 4443 return error("Invalid record"); 4444 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4445 if (!BB) 4446 return error("Invalid record"); 4447 4448 I = CatchReturnInst::Create(CatchPad, BB); 4449 InstructionList.push_back(I); 4450 break; 4451 } 4452 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4453 // We must have, at minimum, the outer scope and the number of arguments. 4454 if (Record.size() < 2) 4455 return error("Invalid record"); 4456 4457 unsigned Idx = 0; 4458 4459 Value *ParentPad = 4460 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4461 4462 unsigned NumHandlers = Record[Idx++]; 4463 4464 SmallVector<BasicBlock *, 2> Handlers; 4465 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4466 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4467 if (!BB) 4468 return error("Invalid record"); 4469 Handlers.push_back(BB); 4470 } 4471 4472 BasicBlock *UnwindDest = nullptr; 4473 if (Idx + 1 == Record.size()) { 4474 UnwindDest = getBasicBlock(Record[Idx++]); 4475 if (!UnwindDest) 4476 return error("Invalid record"); 4477 } 4478 4479 if (Record.size() != Idx) 4480 return error("Invalid record"); 4481 4482 auto *CatchSwitch = 4483 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4484 for (BasicBlock *Handler : Handlers) 4485 CatchSwitch->addHandler(Handler); 4486 I = CatchSwitch; 4487 InstructionList.push_back(I); 4488 break; 4489 } 4490 case bitc::FUNC_CODE_INST_CATCHPAD: 4491 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4492 // We must have, at minimum, the outer scope and the number of arguments. 4493 if (Record.size() < 2) 4494 return error("Invalid record"); 4495 4496 unsigned Idx = 0; 4497 4498 Value *ParentPad = 4499 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4500 4501 unsigned NumArgOperands = Record[Idx++]; 4502 4503 SmallVector<Value *, 2> Args; 4504 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4505 Value *Val; 4506 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4507 return error("Invalid record"); 4508 Args.push_back(Val); 4509 } 4510 4511 if (Record.size() != Idx) 4512 return error("Invalid record"); 4513 4514 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4515 I = CleanupPadInst::Create(ParentPad, Args); 4516 else 4517 I = CatchPadInst::Create(ParentPad, Args); 4518 InstructionList.push_back(I); 4519 break; 4520 } 4521 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4522 // Check magic 4523 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4524 // "New" SwitchInst format with case ranges. The changes to write this 4525 // format were reverted but we still recognize bitcode that uses it. 4526 // Hopefully someday we will have support for case ranges and can use 4527 // this format again. 4528 4529 Type *OpTy = getTypeByID(Record[1]); 4530 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4531 4532 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4533 BasicBlock *Default = getBasicBlock(Record[3]); 4534 if (!OpTy || !Cond || !Default) 4535 return error("Invalid record"); 4536 4537 unsigned NumCases = Record[4]; 4538 4539 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4540 InstructionList.push_back(SI); 4541 4542 unsigned CurIdx = 5; 4543 for (unsigned i = 0; i != NumCases; ++i) { 4544 SmallVector<ConstantInt*, 1> CaseVals; 4545 unsigned NumItems = Record[CurIdx++]; 4546 for (unsigned ci = 0; ci != NumItems; ++ci) { 4547 bool isSingleNumber = Record[CurIdx++]; 4548 4549 APInt Low; 4550 unsigned ActiveWords = 1; 4551 if (ValueBitWidth > 64) 4552 ActiveWords = Record[CurIdx++]; 4553 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4554 ValueBitWidth); 4555 CurIdx += ActiveWords; 4556 4557 if (!isSingleNumber) { 4558 ActiveWords = 1; 4559 if (ValueBitWidth > 64) 4560 ActiveWords = Record[CurIdx++]; 4561 APInt High = readWideAPInt( 4562 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4563 CurIdx += ActiveWords; 4564 4565 // FIXME: It is not clear whether values in the range should be 4566 // compared as signed or unsigned values. The partially 4567 // implemented changes that used this format in the past used 4568 // unsigned comparisons. 4569 for ( ; Low.ule(High); ++Low) 4570 CaseVals.push_back(ConstantInt::get(Context, Low)); 4571 } else 4572 CaseVals.push_back(ConstantInt::get(Context, Low)); 4573 } 4574 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4575 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4576 cve = CaseVals.end(); cvi != cve; ++cvi) 4577 SI->addCase(*cvi, DestBB); 4578 } 4579 I = SI; 4580 break; 4581 } 4582 4583 // Old SwitchInst format without case ranges. 4584 4585 if (Record.size() < 3 || (Record.size() & 1) == 0) 4586 return error("Invalid record"); 4587 Type *OpTy = getTypeByID(Record[0]); 4588 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4589 BasicBlock *Default = getBasicBlock(Record[2]); 4590 if (!OpTy || !Cond || !Default) 4591 return error("Invalid record"); 4592 unsigned NumCases = (Record.size()-3)/2; 4593 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4594 InstructionList.push_back(SI); 4595 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4596 ConstantInt *CaseVal = 4597 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4598 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4599 if (!CaseVal || !DestBB) { 4600 delete SI; 4601 return error("Invalid record"); 4602 } 4603 SI->addCase(CaseVal, DestBB); 4604 } 4605 I = SI; 4606 break; 4607 } 4608 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4609 if (Record.size() < 2) 4610 return error("Invalid record"); 4611 Type *OpTy = getTypeByID(Record[0]); 4612 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4613 if (!OpTy || !Address) 4614 return error("Invalid record"); 4615 unsigned NumDests = Record.size()-2; 4616 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4617 InstructionList.push_back(IBI); 4618 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4619 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4620 IBI->addDestination(DestBB); 4621 } else { 4622 delete IBI; 4623 return error("Invalid record"); 4624 } 4625 } 4626 I = IBI; 4627 break; 4628 } 4629 4630 case bitc::FUNC_CODE_INST_INVOKE: { 4631 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4632 if (Record.size() < 4) 4633 return error("Invalid record"); 4634 unsigned OpNum = 0; 4635 AttributeList PAL = getAttributes(Record[OpNum++]); 4636 unsigned CCInfo = Record[OpNum++]; 4637 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4638 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4639 4640 FunctionType *FTy = nullptr; 4641 if ((CCInfo >> 13) & 1) { 4642 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4643 if (!FTy) 4644 return error("Explicit invoke type is not a function type"); 4645 } 4646 4647 Value *Callee; 4648 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4649 return error("Invalid record"); 4650 4651 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4652 if (!CalleeTy) 4653 return error("Callee is not a pointer"); 4654 if (!FTy) { 4655 FTy = dyn_cast<FunctionType>( 4656 cast<PointerType>(Callee->getType())->getElementType()); 4657 if (!FTy) 4658 return error("Callee is not of pointer to function type"); 4659 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4660 return error("Explicit invoke type does not match pointee type of " 4661 "callee operand"); 4662 if (Record.size() < FTy->getNumParams() + OpNum) 4663 return error("Insufficient operands to call"); 4664 4665 SmallVector<Value*, 16> Ops; 4666 SmallVector<Type *, 16> ArgsTys; 4667 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4668 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4669 FTy->getParamType(i))); 4670 ArgsTys.push_back(FTy->getParamType(i)); 4671 if (!Ops.back()) 4672 return error("Invalid record"); 4673 } 4674 4675 if (!FTy->isVarArg()) { 4676 if (Record.size() != OpNum) 4677 return error("Invalid record"); 4678 } else { 4679 // Read type/value pairs for varargs params. 4680 while (OpNum != Record.size()) { 4681 Value *Op; 4682 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4683 return error("Invalid record"); 4684 Ops.push_back(Op); 4685 ArgsTys.push_back(Op->getType()); 4686 } 4687 } 4688 4689 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4690 OperandBundles); 4691 OperandBundles.clear(); 4692 InstructionList.push_back(I); 4693 cast<InvokeInst>(I)->setCallingConv( 4694 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4695 cast<InvokeInst>(I)->setAttributes(PAL); 4696 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4697 4698 break; 4699 } 4700 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4701 unsigned Idx = 0; 4702 Value *Val = nullptr; 4703 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4704 return error("Invalid record"); 4705 I = ResumeInst::Create(Val); 4706 InstructionList.push_back(I); 4707 break; 4708 } 4709 case bitc::FUNC_CODE_INST_CALLBR: { 4710 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4711 unsigned OpNum = 0; 4712 AttributeList PAL = getAttributes(Record[OpNum++]); 4713 unsigned CCInfo = Record[OpNum++]; 4714 4715 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4716 unsigned NumIndirectDests = Record[OpNum++]; 4717 SmallVector<BasicBlock *, 16> IndirectDests; 4718 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4719 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4720 4721 FunctionType *FTy = nullptr; 4722 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4723 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4724 if (!FTy) 4725 return error("Explicit call type is not a function type"); 4726 } 4727 4728 Value *Callee; 4729 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4730 return error("Invalid record"); 4731 4732 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4733 if (!OpTy) 4734 return error("Callee is not a pointer type"); 4735 if (!FTy) { 4736 FTy = dyn_cast<FunctionType>( 4737 cast<PointerType>(Callee->getType())->getElementType()); 4738 if (!FTy) 4739 return error("Callee is not of pointer to function type"); 4740 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4741 return error("Explicit call type does not match pointee type of " 4742 "callee operand"); 4743 if (Record.size() < FTy->getNumParams() + OpNum) 4744 return error("Insufficient operands to call"); 4745 4746 SmallVector<Value*, 16> Args; 4747 // Read the fixed params. 4748 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4749 if (FTy->getParamType(i)->isLabelTy()) 4750 Args.push_back(getBasicBlock(Record[OpNum])); 4751 else 4752 Args.push_back(getValue(Record, OpNum, NextValueNo, 4753 FTy->getParamType(i))); 4754 if (!Args.back()) 4755 return error("Invalid record"); 4756 } 4757 4758 // Read type/value pairs for varargs params. 4759 if (!FTy->isVarArg()) { 4760 if (OpNum != Record.size()) 4761 return error("Invalid record"); 4762 } else { 4763 while (OpNum != Record.size()) { 4764 Value *Op; 4765 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4766 return error("Invalid record"); 4767 Args.push_back(Op); 4768 } 4769 } 4770 4771 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4772 OperandBundles); 4773 OperandBundles.clear(); 4774 InstructionList.push_back(I); 4775 cast<CallBrInst>(I)->setCallingConv( 4776 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4777 cast<CallBrInst>(I)->setAttributes(PAL); 4778 break; 4779 } 4780 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4781 I = new UnreachableInst(Context); 4782 InstructionList.push_back(I); 4783 break; 4784 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4785 if (Record.empty()) 4786 return error("Invalid record"); 4787 // The first record specifies the type. 4788 Type *Ty = getTypeByID(Record[0]); 4789 if (!Ty) 4790 return error("Invalid record"); 4791 4792 // Phi arguments are pairs of records of [value, basic block]. 4793 // There is an optional final record for fast-math-flags if this phi has a 4794 // floating-point type. 4795 size_t NumArgs = (Record.size() - 1) / 2; 4796 PHINode *PN = PHINode::Create(Ty, NumArgs); 4797 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4798 return error("Invalid record"); 4799 InstructionList.push_back(PN); 4800 4801 for (unsigned i = 0; i != NumArgs; i++) { 4802 Value *V; 4803 // With the new function encoding, it is possible that operands have 4804 // negative IDs (for forward references). Use a signed VBR 4805 // representation to keep the encoding small. 4806 if (UseRelativeIDs) 4807 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4808 else 4809 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4810 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4811 if (!V || !BB) 4812 return error("Invalid record"); 4813 PN->addIncoming(V, BB); 4814 } 4815 I = PN; 4816 4817 // If there are an even number of records, the final record must be FMF. 4818 if (Record.size() % 2 == 0) { 4819 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4820 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4821 if (FMF.any()) 4822 I->setFastMathFlags(FMF); 4823 } 4824 4825 break; 4826 } 4827 4828 case bitc::FUNC_CODE_INST_LANDINGPAD: 4829 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4830 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4831 unsigned Idx = 0; 4832 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4833 if (Record.size() < 3) 4834 return error("Invalid record"); 4835 } else { 4836 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4837 if (Record.size() < 4) 4838 return error("Invalid record"); 4839 } 4840 Type *Ty = getTypeByID(Record[Idx++]); 4841 if (!Ty) 4842 return error("Invalid record"); 4843 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4844 Value *PersFn = nullptr; 4845 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4846 return error("Invalid record"); 4847 4848 if (!F->hasPersonalityFn()) 4849 F->setPersonalityFn(cast<Constant>(PersFn)); 4850 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4851 return error("Personality function mismatch"); 4852 } 4853 4854 bool IsCleanup = !!Record[Idx++]; 4855 unsigned NumClauses = Record[Idx++]; 4856 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4857 LP->setCleanup(IsCleanup); 4858 for (unsigned J = 0; J != NumClauses; ++J) { 4859 LandingPadInst::ClauseType CT = 4860 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4861 Value *Val; 4862 4863 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4864 delete LP; 4865 return error("Invalid record"); 4866 } 4867 4868 assert((CT != LandingPadInst::Catch || 4869 !isa<ArrayType>(Val->getType())) && 4870 "Catch clause has a invalid type!"); 4871 assert((CT != LandingPadInst::Filter || 4872 isa<ArrayType>(Val->getType())) && 4873 "Filter clause has invalid type!"); 4874 LP->addClause(cast<Constant>(Val)); 4875 } 4876 4877 I = LP; 4878 InstructionList.push_back(I); 4879 break; 4880 } 4881 4882 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4883 if (Record.size() != 4) 4884 return error("Invalid record"); 4885 using APV = AllocaPackedValues; 4886 const uint64_t Rec = Record[3]; 4887 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4888 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4889 Type *Ty = getTypeByID(Record[0]); 4890 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4891 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4892 if (!PTy) 4893 return error("Old-style alloca with a non-pointer type"); 4894 Ty = PTy->getElementType(); 4895 } 4896 Type *OpTy = getTypeByID(Record[1]); 4897 Value *Size = getFnValueByID(Record[2], OpTy); 4898 MaybeAlign Align; 4899 if (Error Err = 4900 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4901 return Err; 4902 } 4903 if (!Ty || !Size) 4904 return error("Invalid record"); 4905 4906 // FIXME: Make this an optional field. 4907 const DataLayout &DL = TheModule->getDataLayout(); 4908 unsigned AS = DL.getAllocaAddrSpace(); 4909 4910 SmallPtrSet<Type *, 4> Visited; 4911 if (!Align && !Ty->isSized(&Visited)) 4912 return error("alloca of unsized type"); 4913 if (!Align) 4914 Align = DL.getPrefTypeAlign(Ty); 4915 4916 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4917 AI->setUsedWithInAlloca(InAlloca); 4918 AI->setSwiftError(SwiftError); 4919 I = AI; 4920 InstructionList.push_back(I); 4921 break; 4922 } 4923 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4924 unsigned OpNum = 0; 4925 Value *Op; 4926 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4927 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4928 return error("Invalid record"); 4929 4930 if (!isa<PointerType>(Op->getType())) 4931 return error("Load operand is not a pointer type"); 4932 4933 Type *Ty = nullptr; 4934 if (OpNum + 3 == Record.size()) { 4935 Ty = getTypeByID(Record[OpNum++]); 4936 } else { 4937 Ty = cast<PointerType>(Op->getType())->getElementType(); 4938 } 4939 4940 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4941 return Err; 4942 4943 MaybeAlign Align; 4944 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4945 return Err; 4946 SmallPtrSet<Type *, 4> Visited; 4947 if (!Align && !Ty->isSized(&Visited)) 4948 return error("load of unsized type"); 4949 if (!Align) 4950 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4951 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4952 InstructionList.push_back(I); 4953 break; 4954 } 4955 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4956 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4957 unsigned OpNum = 0; 4958 Value *Op; 4959 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4960 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4961 return error("Invalid record"); 4962 4963 if (!isa<PointerType>(Op->getType())) 4964 return error("Load operand is not a pointer type"); 4965 4966 Type *Ty = nullptr; 4967 if (OpNum + 5 == Record.size()) { 4968 Ty = getTypeByID(Record[OpNum++]); 4969 } else { 4970 Ty = cast<PointerType>(Op->getType())->getElementType(); 4971 } 4972 4973 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4974 return Err; 4975 4976 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4977 if (Ordering == AtomicOrdering::NotAtomic || 4978 Ordering == AtomicOrdering::Release || 4979 Ordering == AtomicOrdering::AcquireRelease) 4980 return error("Invalid record"); 4981 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4982 return error("Invalid record"); 4983 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4984 4985 MaybeAlign Align; 4986 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4987 return Err; 4988 if (!Align) 4989 return error("Alignment missing from atomic load"); 4990 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4991 InstructionList.push_back(I); 4992 break; 4993 } 4994 case bitc::FUNC_CODE_INST_STORE: 4995 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4996 unsigned OpNum = 0; 4997 Value *Val, *Ptr; 4998 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4999 (BitCode == bitc::FUNC_CODE_INST_STORE 5000 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5001 : popValue(Record, OpNum, NextValueNo, 5002 cast<PointerType>(Ptr->getType())->getElementType(), 5003 Val)) || 5004 OpNum + 2 != Record.size()) 5005 return error("Invalid record"); 5006 5007 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5008 return Err; 5009 MaybeAlign Align; 5010 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5011 return Err; 5012 SmallPtrSet<Type *, 4> Visited; 5013 if (!Align && !Val->getType()->isSized(&Visited)) 5014 return error("store of unsized type"); 5015 if (!Align) 5016 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5017 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5018 InstructionList.push_back(I); 5019 break; 5020 } 5021 case bitc::FUNC_CODE_INST_STOREATOMIC: 5022 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5023 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5024 unsigned OpNum = 0; 5025 Value *Val, *Ptr; 5026 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5027 !isa<PointerType>(Ptr->getType()) || 5028 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5029 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5030 : popValue(Record, OpNum, NextValueNo, 5031 cast<PointerType>(Ptr->getType())->getElementType(), 5032 Val)) || 5033 OpNum + 4 != Record.size()) 5034 return error("Invalid record"); 5035 5036 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5037 return Err; 5038 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5039 if (Ordering == AtomicOrdering::NotAtomic || 5040 Ordering == AtomicOrdering::Acquire || 5041 Ordering == AtomicOrdering::AcquireRelease) 5042 return error("Invalid record"); 5043 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5044 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5045 return error("Invalid record"); 5046 5047 MaybeAlign Align; 5048 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5049 return Err; 5050 if (!Align) 5051 return error("Alignment missing from atomic store"); 5052 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5053 InstructionList.push_back(I); 5054 break; 5055 } 5056 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5057 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5058 // failure_ordering?, weak?] 5059 const size_t NumRecords = Record.size(); 5060 unsigned OpNum = 0; 5061 Value *Ptr = nullptr; 5062 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5063 return error("Invalid record"); 5064 5065 if (!isa<PointerType>(Ptr->getType())) 5066 return error("Cmpxchg operand is not a pointer type"); 5067 5068 Value *Cmp = nullptr; 5069 if (popValue(Record, OpNum, NextValueNo, 5070 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5071 Cmp)) 5072 return error("Invalid record"); 5073 5074 Value *New = nullptr; 5075 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5076 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5077 return error("Invalid record"); 5078 5079 const AtomicOrdering SuccessOrdering = 5080 getDecodedOrdering(Record[OpNum + 1]); 5081 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5082 SuccessOrdering == AtomicOrdering::Unordered) 5083 return error("Invalid record"); 5084 5085 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5086 5087 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5088 return Err; 5089 5090 const AtomicOrdering FailureOrdering = 5091 NumRecords < 7 5092 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5093 : getDecodedOrdering(Record[OpNum + 3]); 5094 5095 if (FailureOrdering == AtomicOrdering::NotAtomic || 5096 FailureOrdering == AtomicOrdering::Unordered) 5097 return error("Invalid record"); 5098 5099 const Align Alignment( 5100 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5101 5102 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5103 FailureOrdering, SSID); 5104 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5105 5106 if (NumRecords < 8) { 5107 // Before weak cmpxchgs existed, the instruction simply returned the 5108 // value loaded from memory, so bitcode files from that era will be 5109 // expecting the first component of a modern cmpxchg. 5110 CurBB->getInstList().push_back(I); 5111 I = ExtractValueInst::Create(I, 0); 5112 } else { 5113 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5114 } 5115 5116 InstructionList.push_back(I); 5117 break; 5118 } 5119 case bitc::FUNC_CODE_INST_CMPXCHG: { 5120 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5121 // failure_ordering, weak, align?] 5122 const size_t NumRecords = Record.size(); 5123 unsigned OpNum = 0; 5124 Value *Ptr = nullptr; 5125 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5126 return error("Invalid record"); 5127 5128 if (!isa<PointerType>(Ptr->getType())) 5129 return error("Cmpxchg operand is not a pointer type"); 5130 5131 Value *Cmp = nullptr; 5132 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5133 return error("Invalid record"); 5134 5135 Value *Val = nullptr; 5136 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5137 return error("Invalid record"); 5138 5139 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5140 return error("Invalid record"); 5141 5142 const bool IsVol = Record[OpNum]; 5143 5144 const AtomicOrdering SuccessOrdering = 5145 getDecodedOrdering(Record[OpNum + 1]); 5146 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5147 return error("Invalid cmpxchg success ordering"); 5148 5149 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5150 5151 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5152 return Err; 5153 5154 const AtomicOrdering FailureOrdering = 5155 getDecodedOrdering(Record[OpNum + 3]); 5156 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5157 return error("Invalid cmpxchg failure ordering"); 5158 5159 const bool IsWeak = Record[OpNum + 4]; 5160 5161 MaybeAlign Alignment; 5162 5163 if (NumRecords == (OpNum + 6)) { 5164 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5165 return Err; 5166 } 5167 if (!Alignment) 5168 Alignment = 5169 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5170 5171 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5172 FailureOrdering, SSID); 5173 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5174 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5175 5176 InstructionList.push_back(I); 5177 break; 5178 } 5179 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5180 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5181 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5182 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5183 const size_t NumRecords = Record.size(); 5184 unsigned OpNum = 0; 5185 5186 Value *Ptr = nullptr; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5188 return error("Invalid record"); 5189 5190 if (!isa<PointerType>(Ptr->getType())) 5191 return error("Invalid record"); 5192 5193 Value *Val = nullptr; 5194 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5195 if (popValue(Record, OpNum, NextValueNo, 5196 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5197 Val)) 5198 return error("Invalid record"); 5199 } else { 5200 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5201 return error("Invalid record"); 5202 } 5203 5204 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5205 return error("Invalid record"); 5206 5207 const AtomicRMWInst::BinOp Operation = 5208 getDecodedRMWOperation(Record[OpNum]); 5209 if (Operation < AtomicRMWInst::FIRST_BINOP || 5210 Operation > AtomicRMWInst::LAST_BINOP) 5211 return error("Invalid record"); 5212 5213 const bool IsVol = Record[OpNum + 1]; 5214 5215 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5216 if (Ordering == AtomicOrdering::NotAtomic || 5217 Ordering == AtomicOrdering::Unordered) 5218 return error("Invalid record"); 5219 5220 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5221 5222 MaybeAlign Alignment; 5223 5224 if (NumRecords == (OpNum + 5)) { 5225 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5226 return Err; 5227 } 5228 5229 if (!Alignment) 5230 Alignment = 5231 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5232 5233 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5234 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5235 5236 InstructionList.push_back(I); 5237 break; 5238 } 5239 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5240 if (2 != Record.size()) 5241 return error("Invalid record"); 5242 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5243 if (Ordering == AtomicOrdering::NotAtomic || 5244 Ordering == AtomicOrdering::Unordered || 5245 Ordering == AtomicOrdering::Monotonic) 5246 return error("Invalid record"); 5247 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5248 I = new FenceInst(Context, Ordering, SSID); 5249 InstructionList.push_back(I); 5250 break; 5251 } 5252 case bitc::FUNC_CODE_INST_CALL: { 5253 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5254 if (Record.size() < 3) 5255 return error("Invalid record"); 5256 5257 unsigned OpNum = 0; 5258 AttributeList PAL = getAttributes(Record[OpNum++]); 5259 unsigned CCInfo = Record[OpNum++]; 5260 5261 FastMathFlags FMF; 5262 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5263 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5264 if (!FMF.any()) 5265 return error("Fast math flags indicator set for call with no FMF"); 5266 } 5267 5268 FunctionType *FTy = nullptr; 5269 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5270 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5271 if (!FTy) 5272 return error("Explicit call type is not a function type"); 5273 } 5274 5275 Value *Callee; 5276 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5277 return error("Invalid record"); 5278 5279 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5280 if (!OpTy) 5281 return error("Callee is not a pointer type"); 5282 if (!FTy) { 5283 FTy = dyn_cast<FunctionType>( 5284 cast<PointerType>(Callee->getType())->getElementType()); 5285 if (!FTy) 5286 return error("Callee is not of pointer to function type"); 5287 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5288 return error("Explicit call type does not match pointee type of " 5289 "callee operand"); 5290 if (Record.size() < FTy->getNumParams() + OpNum) 5291 return error("Insufficient operands to call"); 5292 5293 SmallVector<Value*, 16> Args; 5294 SmallVector<Type *, 16> ArgsTys; 5295 // Read the fixed params. 5296 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5297 if (FTy->getParamType(i)->isLabelTy()) 5298 Args.push_back(getBasicBlock(Record[OpNum])); 5299 else 5300 Args.push_back(getValue(Record, OpNum, NextValueNo, 5301 FTy->getParamType(i))); 5302 ArgsTys.push_back(FTy->getParamType(i)); 5303 if (!Args.back()) 5304 return error("Invalid record"); 5305 } 5306 5307 // Read type/value pairs for varargs params. 5308 if (!FTy->isVarArg()) { 5309 if (OpNum != Record.size()) 5310 return error("Invalid record"); 5311 } else { 5312 while (OpNum != Record.size()) { 5313 Value *Op; 5314 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5315 return error("Invalid record"); 5316 Args.push_back(Op); 5317 ArgsTys.push_back(Op->getType()); 5318 } 5319 } 5320 5321 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5322 OperandBundles.clear(); 5323 InstructionList.push_back(I); 5324 cast<CallInst>(I)->setCallingConv( 5325 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5326 CallInst::TailCallKind TCK = CallInst::TCK_None; 5327 if (CCInfo & 1 << bitc::CALL_TAIL) 5328 TCK = CallInst::TCK_Tail; 5329 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5330 TCK = CallInst::TCK_MustTail; 5331 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5332 TCK = CallInst::TCK_NoTail; 5333 cast<CallInst>(I)->setTailCallKind(TCK); 5334 cast<CallInst>(I)->setAttributes(PAL); 5335 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5336 if (FMF.any()) { 5337 if (!isa<FPMathOperator>(I)) 5338 return error("Fast-math-flags specified for call without " 5339 "floating-point scalar or vector return type"); 5340 I->setFastMathFlags(FMF); 5341 } 5342 break; 5343 } 5344 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5345 if (Record.size() < 3) 5346 return error("Invalid record"); 5347 Type *OpTy = getTypeByID(Record[0]); 5348 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5349 Type *ResTy = getTypeByID(Record[2]); 5350 if (!OpTy || !Op || !ResTy) 5351 return error("Invalid record"); 5352 I = new VAArgInst(Op, ResTy); 5353 InstructionList.push_back(I); 5354 break; 5355 } 5356 5357 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5358 // A call or an invoke can be optionally prefixed with some variable 5359 // number of operand bundle blocks. These blocks are read into 5360 // OperandBundles and consumed at the next call or invoke instruction. 5361 5362 if (Record.empty() || Record[0] >= BundleTags.size()) 5363 return error("Invalid record"); 5364 5365 std::vector<Value *> Inputs; 5366 5367 unsigned OpNum = 1; 5368 while (OpNum != Record.size()) { 5369 Value *Op; 5370 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5371 return error("Invalid record"); 5372 Inputs.push_back(Op); 5373 } 5374 5375 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5376 continue; 5377 } 5378 5379 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5380 unsigned OpNum = 0; 5381 Value *Op = nullptr; 5382 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5383 return error("Invalid record"); 5384 if (OpNum != Record.size()) 5385 return error("Invalid record"); 5386 5387 I = new FreezeInst(Op); 5388 InstructionList.push_back(I); 5389 break; 5390 } 5391 } 5392 5393 // Add instruction to end of current BB. If there is no current BB, reject 5394 // this file. 5395 if (!CurBB) { 5396 I->deleteValue(); 5397 return error("Invalid instruction with no BB"); 5398 } 5399 if (!OperandBundles.empty()) { 5400 I->deleteValue(); 5401 return error("Operand bundles found with no consumer"); 5402 } 5403 CurBB->getInstList().push_back(I); 5404 5405 // If this was a terminator instruction, move to the next block. 5406 if (I->isTerminator()) { 5407 ++CurBBNo; 5408 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5409 } 5410 5411 // Non-void values get registered in the value table for future use. 5412 if (!I->getType()->isVoidTy()) 5413 ValueList.assignValue(I, NextValueNo++); 5414 } 5415 5416 OutOfRecordLoop: 5417 5418 if (!OperandBundles.empty()) 5419 return error("Operand bundles found with no consumer"); 5420 5421 // Check the function list for unresolved values. 5422 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5423 if (!A->getParent()) { 5424 // We found at least one unresolved value. Nuke them all to avoid leaks. 5425 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5426 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5427 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5428 delete A; 5429 } 5430 } 5431 return error("Never resolved value found in function"); 5432 } 5433 } 5434 5435 // Unexpected unresolved metadata about to be dropped. 5436 if (MDLoader->hasFwdRefs()) 5437 return error("Invalid function metadata: outgoing forward refs"); 5438 5439 // Trim the value list down to the size it was before we parsed this function. 5440 ValueList.shrinkTo(ModuleValueListSize); 5441 MDLoader->shrinkTo(ModuleMDLoaderSize); 5442 std::vector<BasicBlock*>().swap(FunctionBBs); 5443 return Error::success(); 5444 } 5445 5446 /// Find the function body in the bitcode stream 5447 Error BitcodeReader::findFunctionInStream( 5448 Function *F, 5449 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5450 while (DeferredFunctionInfoIterator->second == 0) { 5451 // This is the fallback handling for the old format bitcode that 5452 // didn't contain the function index in the VST, or when we have 5453 // an anonymous function which would not have a VST entry. 5454 // Assert that we have one of those two cases. 5455 assert(VSTOffset == 0 || !F->hasName()); 5456 // Parse the next body in the stream and set its position in the 5457 // DeferredFunctionInfo map. 5458 if (Error Err = rememberAndSkipFunctionBodies()) 5459 return Err; 5460 } 5461 return Error::success(); 5462 } 5463 5464 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5465 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5466 return SyncScope::ID(Val); 5467 if (Val >= SSIDs.size()) 5468 return SyncScope::System; // Map unknown synchronization scopes to system. 5469 return SSIDs[Val]; 5470 } 5471 5472 //===----------------------------------------------------------------------===// 5473 // GVMaterializer implementation 5474 //===----------------------------------------------------------------------===// 5475 5476 Error BitcodeReader::materialize(GlobalValue *GV) { 5477 Function *F = dyn_cast<Function>(GV); 5478 // If it's not a function or is already material, ignore the request. 5479 if (!F || !F->isMaterializable()) 5480 return Error::success(); 5481 5482 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5483 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5484 // If its position is recorded as 0, its body is somewhere in the stream 5485 // but we haven't seen it yet. 5486 if (DFII->second == 0) 5487 if (Error Err = findFunctionInStream(F, DFII)) 5488 return Err; 5489 5490 // Materialize metadata before parsing any function bodies. 5491 if (Error Err = materializeMetadata()) 5492 return Err; 5493 5494 // Move the bit stream to the saved position of the deferred function body. 5495 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5496 return JumpFailed; 5497 if (Error Err = parseFunctionBody(F)) 5498 return Err; 5499 F->setIsMaterializable(false); 5500 5501 if (StripDebugInfo) 5502 stripDebugInfo(*F); 5503 5504 // Upgrade any old intrinsic calls in the function. 5505 for (auto &I : UpgradedIntrinsics) { 5506 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5507 UI != UE;) { 5508 User *U = *UI; 5509 ++UI; 5510 if (CallInst *CI = dyn_cast<CallInst>(U)) 5511 UpgradeIntrinsicCall(CI, I.second); 5512 } 5513 } 5514 5515 // Update calls to the remangled intrinsics 5516 for (auto &I : RemangledIntrinsics) 5517 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5518 UI != UE;) 5519 // Don't expect any other users than call sites 5520 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5521 5522 // Finish fn->subprogram upgrade for materialized functions. 5523 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5524 F->setSubprogram(SP); 5525 5526 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5527 if (!MDLoader->isStrippingTBAA()) { 5528 for (auto &I : instructions(F)) { 5529 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5530 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5531 continue; 5532 MDLoader->setStripTBAA(true); 5533 stripTBAA(F->getParent()); 5534 } 5535 } 5536 5537 for (auto &I : instructions(F)) { 5538 // "Upgrade" older incorrect branch weights by dropping them. 5539 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5540 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5541 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5542 StringRef ProfName = MDS->getString(); 5543 // Check consistency of !prof branch_weights metadata. 5544 if (!ProfName.equals("branch_weights")) 5545 continue; 5546 unsigned ExpectedNumOperands = 0; 5547 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5548 ExpectedNumOperands = BI->getNumSuccessors(); 5549 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5550 ExpectedNumOperands = SI->getNumSuccessors(); 5551 else if (isa<CallInst>(&I)) 5552 ExpectedNumOperands = 1; 5553 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5554 ExpectedNumOperands = IBI->getNumDestinations(); 5555 else if (isa<SelectInst>(&I)) 5556 ExpectedNumOperands = 2; 5557 else 5558 continue; // ignore and continue. 5559 5560 // If branch weight doesn't match, just strip branch weight. 5561 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5562 I.setMetadata(LLVMContext::MD_prof, nullptr); 5563 } 5564 } 5565 5566 // Remove incompatible attributes on function calls. 5567 if (auto *CI = dyn_cast<CallBase>(&I)) { 5568 CI->removeAttributes(AttributeList::ReturnIndex, 5569 AttributeFuncs::typeIncompatible( 5570 CI->getFunctionType()->getReturnType())); 5571 5572 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5573 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5574 CI->getArgOperand(ArgNo)->getType())); 5575 } 5576 } 5577 5578 // Look for functions that rely on old function attribute behavior. 5579 UpgradeFunctionAttributes(*F); 5580 5581 // Bring in any functions that this function forward-referenced via 5582 // blockaddresses. 5583 return materializeForwardReferencedFunctions(); 5584 } 5585 5586 Error BitcodeReader::materializeModule() { 5587 if (Error Err = materializeMetadata()) 5588 return Err; 5589 5590 // Promise to materialize all forward references. 5591 WillMaterializeAllForwardRefs = true; 5592 5593 // Iterate over the module, deserializing any functions that are still on 5594 // disk. 5595 for (Function &F : *TheModule) { 5596 if (Error Err = materialize(&F)) 5597 return Err; 5598 } 5599 // At this point, if there are any function bodies, parse the rest of 5600 // the bits in the module past the last function block we have recorded 5601 // through either lazy scanning or the VST. 5602 if (LastFunctionBlockBit || NextUnreadBit) 5603 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5604 ? LastFunctionBlockBit 5605 : NextUnreadBit)) 5606 return Err; 5607 5608 // Check that all block address forward references got resolved (as we 5609 // promised above). 5610 if (!BasicBlockFwdRefs.empty()) 5611 return error("Never resolved function from blockaddress"); 5612 5613 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5614 // delete the old functions to clean up. We can't do this unless the entire 5615 // module is materialized because there could always be another function body 5616 // with calls to the old function. 5617 for (auto &I : UpgradedIntrinsics) { 5618 for (auto *U : I.first->users()) { 5619 if (CallInst *CI = dyn_cast<CallInst>(U)) 5620 UpgradeIntrinsicCall(CI, I.second); 5621 } 5622 if (!I.first->use_empty()) 5623 I.first->replaceAllUsesWith(I.second); 5624 I.first->eraseFromParent(); 5625 } 5626 UpgradedIntrinsics.clear(); 5627 // Do the same for remangled intrinsics 5628 for (auto &I : RemangledIntrinsics) { 5629 I.first->replaceAllUsesWith(I.second); 5630 I.first->eraseFromParent(); 5631 } 5632 RemangledIntrinsics.clear(); 5633 5634 UpgradeDebugInfo(*TheModule); 5635 5636 UpgradeModuleFlags(*TheModule); 5637 5638 UpgradeARCRuntime(*TheModule); 5639 5640 return Error::success(); 5641 } 5642 5643 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5644 return IdentifiedStructTypes; 5645 } 5646 5647 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5648 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5649 StringRef ModulePath, unsigned ModuleId) 5650 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5651 ModulePath(ModulePath), ModuleId(ModuleId) {} 5652 5653 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5654 TheIndex.addModule(ModulePath, ModuleId); 5655 } 5656 5657 ModuleSummaryIndex::ModuleInfo * 5658 ModuleSummaryIndexBitcodeReader::getThisModule() { 5659 return TheIndex.getModule(ModulePath); 5660 } 5661 5662 std::pair<ValueInfo, GlobalValue::GUID> 5663 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5664 auto VGI = ValueIdToValueInfoMap[ValueId]; 5665 assert(VGI.first); 5666 return VGI; 5667 } 5668 5669 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5670 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5671 StringRef SourceFileName) { 5672 std::string GlobalId = 5673 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5674 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5675 auto OriginalNameID = ValueGUID; 5676 if (GlobalValue::isLocalLinkage(Linkage)) 5677 OriginalNameID = GlobalValue::getGUID(ValueName); 5678 if (PrintSummaryGUIDs) 5679 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5680 << ValueName << "\n"; 5681 5682 // UseStrtab is false for legacy summary formats and value names are 5683 // created on stack. In that case we save the name in a string saver in 5684 // the index so that the value name can be recorded. 5685 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5686 TheIndex.getOrInsertValueInfo( 5687 ValueGUID, 5688 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5689 OriginalNameID); 5690 } 5691 5692 // Specialized value symbol table parser used when reading module index 5693 // blocks where we don't actually create global values. The parsed information 5694 // is saved in the bitcode reader for use when later parsing summaries. 5695 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5696 uint64_t Offset, 5697 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5698 // With a strtab the VST is not required to parse the summary. 5699 if (UseStrtab) 5700 return Error::success(); 5701 5702 assert(Offset > 0 && "Expected non-zero VST offset"); 5703 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5704 if (!MaybeCurrentBit) 5705 return MaybeCurrentBit.takeError(); 5706 uint64_t CurrentBit = MaybeCurrentBit.get(); 5707 5708 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5709 return Err; 5710 5711 SmallVector<uint64_t, 64> Record; 5712 5713 // Read all the records for this value table. 5714 SmallString<128> ValueName; 5715 5716 while (true) { 5717 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5718 if (!MaybeEntry) 5719 return MaybeEntry.takeError(); 5720 BitstreamEntry Entry = MaybeEntry.get(); 5721 5722 switch (Entry.Kind) { 5723 case BitstreamEntry::SubBlock: // Handled for us already. 5724 case BitstreamEntry::Error: 5725 return error("Malformed block"); 5726 case BitstreamEntry::EndBlock: 5727 // Done parsing VST, jump back to wherever we came from. 5728 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5729 return JumpFailed; 5730 return Error::success(); 5731 case BitstreamEntry::Record: 5732 // The interesting case. 5733 break; 5734 } 5735 5736 // Read a record. 5737 Record.clear(); 5738 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5739 if (!MaybeRecord) 5740 return MaybeRecord.takeError(); 5741 switch (MaybeRecord.get()) { 5742 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5743 break; 5744 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5745 if (convertToString(Record, 1, ValueName)) 5746 return error("Invalid record"); 5747 unsigned ValueID = Record[0]; 5748 assert(!SourceFileName.empty()); 5749 auto VLI = ValueIdToLinkageMap.find(ValueID); 5750 assert(VLI != ValueIdToLinkageMap.end() && 5751 "No linkage found for VST entry?"); 5752 auto Linkage = VLI->second; 5753 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5754 ValueName.clear(); 5755 break; 5756 } 5757 case bitc::VST_CODE_FNENTRY: { 5758 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5759 if (convertToString(Record, 2, ValueName)) 5760 return error("Invalid record"); 5761 unsigned ValueID = Record[0]; 5762 assert(!SourceFileName.empty()); 5763 auto VLI = ValueIdToLinkageMap.find(ValueID); 5764 assert(VLI != ValueIdToLinkageMap.end() && 5765 "No linkage found for VST entry?"); 5766 auto Linkage = VLI->second; 5767 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5768 ValueName.clear(); 5769 break; 5770 } 5771 case bitc::VST_CODE_COMBINED_ENTRY: { 5772 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5773 unsigned ValueID = Record[0]; 5774 GlobalValue::GUID RefGUID = Record[1]; 5775 // The "original name", which is the second value of the pair will be 5776 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5777 ValueIdToValueInfoMap[ValueID] = 5778 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5779 break; 5780 } 5781 } 5782 } 5783 } 5784 5785 // Parse just the blocks needed for building the index out of the module. 5786 // At the end of this routine the module Index is populated with a map 5787 // from global value id to GlobalValueSummary objects. 5788 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5789 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5790 return Err; 5791 5792 SmallVector<uint64_t, 64> Record; 5793 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5794 unsigned ValueId = 0; 5795 5796 // Read the index for this module. 5797 while (true) { 5798 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5799 if (!MaybeEntry) 5800 return MaybeEntry.takeError(); 5801 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5802 5803 switch (Entry.Kind) { 5804 case BitstreamEntry::Error: 5805 return error("Malformed block"); 5806 case BitstreamEntry::EndBlock: 5807 return Error::success(); 5808 5809 case BitstreamEntry::SubBlock: 5810 switch (Entry.ID) { 5811 default: // Skip unknown content. 5812 if (Error Err = Stream.SkipBlock()) 5813 return Err; 5814 break; 5815 case bitc::BLOCKINFO_BLOCK_ID: 5816 // Need to parse these to get abbrev ids (e.g. for VST) 5817 if (readBlockInfo()) 5818 return error("Malformed block"); 5819 break; 5820 case bitc::VALUE_SYMTAB_BLOCK_ID: 5821 // Should have been parsed earlier via VSTOffset, unless there 5822 // is no summary section. 5823 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5824 !SeenGlobalValSummary) && 5825 "Expected early VST parse via VSTOffset record"); 5826 if (Error Err = Stream.SkipBlock()) 5827 return Err; 5828 break; 5829 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5830 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5831 // Add the module if it is a per-module index (has a source file name). 5832 if (!SourceFileName.empty()) 5833 addThisModule(); 5834 assert(!SeenValueSymbolTable && 5835 "Already read VST when parsing summary block?"); 5836 // We might not have a VST if there were no values in the 5837 // summary. An empty summary block generated when we are 5838 // performing ThinLTO compiles so we don't later invoke 5839 // the regular LTO process on them. 5840 if (VSTOffset > 0) { 5841 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5842 return Err; 5843 SeenValueSymbolTable = true; 5844 } 5845 SeenGlobalValSummary = true; 5846 if (Error Err = parseEntireSummary(Entry.ID)) 5847 return Err; 5848 break; 5849 case bitc::MODULE_STRTAB_BLOCK_ID: 5850 if (Error Err = parseModuleStringTable()) 5851 return Err; 5852 break; 5853 } 5854 continue; 5855 5856 case BitstreamEntry::Record: { 5857 Record.clear(); 5858 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5859 if (!MaybeBitCode) 5860 return MaybeBitCode.takeError(); 5861 switch (MaybeBitCode.get()) { 5862 default: 5863 break; // Default behavior, ignore unknown content. 5864 case bitc::MODULE_CODE_VERSION: { 5865 if (Error Err = parseVersionRecord(Record).takeError()) 5866 return Err; 5867 break; 5868 } 5869 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5870 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5871 SmallString<128> ValueName; 5872 if (convertToString(Record, 0, ValueName)) 5873 return error("Invalid record"); 5874 SourceFileName = ValueName.c_str(); 5875 break; 5876 } 5877 /// MODULE_CODE_HASH: [5*i32] 5878 case bitc::MODULE_CODE_HASH: { 5879 if (Record.size() != 5) 5880 return error("Invalid hash length " + Twine(Record.size()).str()); 5881 auto &Hash = getThisModule()->second.second; 5882 int Pos = 0; 5883 for (auto &Val : Record) { 5884 assert(!(Val >> 32) && "Unexpected high bits set"); 5885 Hash[Pos++] = Val; 5886 } 5887 break; 5888 } 5889 /// MODULE_CODE_VSTOFFSET: [offset] 5890 case bitc::MODULE_CODE_VSTOFFSET: 5891 if (Record.empty()) 5892 return error("Invalid record"); 5893 // Note that we subtract 1 here because the offset is relative to one 5894 // word before the start of the identification or module block, which 5895 // was historically always the start of the regular bitcode header. 5896 VSTOffset = Record[0] - 1; 5897 break; 5898 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5899 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5900 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5901 // v2: [strtab offset, strtab size, v1] 5902 case bitc::MODULE_CODE_GLOBALVAR: 5903 case bitc::MODULE_CODE_FUNCTION: 5904 case bitc::MODULE_CODE_ALIAS: { 5905 StringRef Name; 5906 ArrayRef<uint64_t> GVRecord; 5907 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5908 if (GVRecord.size() <= 3) 5909 return error("Invalid record"); 5910 uint64_t RawLinkage = GVRecord[3]; 5911 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5912 if (!UseStrtab) { 5913 ValueIdToLinkageMap[ValueId++] = Linkage; 5914 break; 5915 } 5916 5917 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5918 break; 5919 } 5920 } 5921 } 5922 continue; 5923 } 5924 } 5925 } 5926 5927 std::vector<ValueInfo> 5928 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5929 std::vector<ValueInfo> Ret; 5930 Ret.reserve(Record.size()); 5931 for (uint64_t RefValueId : Record) 5932 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5933 return Ret; 5934 } 5935 5936 std::vector<FunctionSummary::EdgeTy> 5937 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5938 bool IsOldProfileFormat, 5939 bool HasProfile, bool HasRelBF) { 5940 std::vector<FunctionSummary::EdgeTy> Ret; 5941 Ret.reserve(Record.size()); 5942 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5943 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5944 uint64_t RelBF = 0; 5945 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5946 if (IsOldProfileFormat) { 5947 I += 1; // Skip old callsitecount field 5948 if (HasProfile) 5949 I += 1; // Skip old profilecount field 5950 } else if (HasProfile) 5951 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5952 else if (HasRelBF) 5953 RelBF = Record[++I]; 5954 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5955 } 5956 return Ret; 5957 } 5958 5959 static void 5960 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5961 WholeProgramDevirtResolution &Wpd) { 5962 uint64_t ArgNum = Record[Slot++]; 5963 WholeProgramDevirtResolution::ByArg &B = 5964 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5965 Slot += ArgNum; 5966 5967 B.TheKind = 5968 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5969 B.Info = Record[Slot++]; 5970 B.Byte = Record[Slot++]; 5971 B.Bit = Record[Slot++]; 5972 } 5973 5974 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5975 StringRef Strtab, size_t &Slot, 5976 TypeIdSummary &TypeId) { 5977 uint64_t Id = Record[Slot++]; 5978 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5979 5980 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5981 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5982 static_cast<size_t>(Record[Slot + 1])}; 5983 Slot += 2; 5984 5985 uint64_t ResByArgNum = Record[Slot++]; 5986 for (uint64_t I = 0; I != ResByArgNum; ++I) 5987 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5988 } 5989 5990 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5991 StringRef Strtab, 5992 ModuleSummaryIndex &TheIndex) { 5993 size_t Slot = 0; 5994 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5995 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5996 Slot += 2; 5997 5998 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5999 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6000 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6001 TypeId.TTRes.SizeM1 = Record[Slot++]; 6002 TypeId.TTRes.BitMask = Record[Slot++]; 6003 TypeId.TTRes.InlineBits = Record[Slot++]; 6004 6005 while (Slot < Record.size()) 6006 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6007 } 6008 6009 std::vector<FunctionSummary::ParamAccess> 6010 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6011 auto ReadRange = [&]() { 6012 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6013 BitcodeReader::decodeSignRotatedValue(Record.front())); 6014 Record = Record.drop_front(); 6015 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6016 BitcodeReader::decodeSignRotatedValue(Record.front())); 6017 Record = Record.drop_front(); 6018 ConstantRange Range{Lower, Upper}; 6019 assert(!Range.isFullSet()); 6020 assert(!Range.isUpperSignWrapped()); 6021 return Range; 6022 }; 6023 6024 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6025 while (!Record.empty()) { 6026 PendingParamAccesses.emplace_back(); 6027 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6028 ParamAccess.ParamNo = Record.front(); 6029 Record = Record.drop_front(); 6030 ParamAccess.Use = ReadRange(); 6031 ParamAccess.Calls.resize(Record.front()); 6032 Record = Record.drop_front(); 6033 for (auto &Call : ParamAccess.Calls) { 6034 Call.ParamNo = Record.front(); 6035 Record = Record.drop_front(); 6036 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6037 Record = Record.drop_front(); 6038 Call.Offsets = ReadRange(); 6039 } 6040 } 6041 return PendingParamAccesses; 6042 } 6043 6044 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6045 ArrayRef<uint64_t> Record, size_t &Slot, 6046 TypeIdCompatibleVtableInfo &TypeId) { 6047 uint64_t Offset = Record[Slot++]; 6048 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6049 TypeId.push_back({Offset, Callee}); 6050 } 6051 6052 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6053 ArrayRef<uint64_t> Record) { 6054 size_t Slot = 0; 6055 TypeIdCompatibleVtableInfo &TypeId = 6056 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6057 {Strtab.data() + Record[Slot], 6058 static_cast<size_t>(Record[Slot + 1])}); 6059 Slot += 2; 6060 6061 while (Slot < Record.size()) 6062 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6063 } 6064 6065 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6066 unsigned WOCnt) { 6067 // Readonly and writeonly refs are in the end of the refs list. 6068 assert(ROCnt + WOCnt <= Refs.size()); 6069 unsigned FirstWORef = Refs.size() - WOCnt; 6070 unsigned RefNo = FirstWORef - ROCnt; 6071 for (; RefNo < FirstWORef; ++RefNo) 6072 Refs[RefNo].setReadOnly(); 6073 for (; RefNo < Refs.size(); ++RefNo) 6074 Refs[RefNo].setWriteOnly(); 6075 } 6076 6077 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6078 // objects in the index. 6079 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6080 if (Error Err = Stream.EnterSubBlock(ID)) 6081 return Err; 6082 SmallVector<uint64_t, 64> Record; 6083 6084 // Parse version 6085 { 6086 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6087 if (!MaybeEntry) 6088 return MaybeEntry.takeError(); 6089 BitstreamEntry Entry = MaybeEntry.get(); 6090 6091 if (Entry.Kind != BitstreamEntry::Record) 6092 return error("Invalid Summary Block: record for version expected"); 6093 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6094 if (!MaybeRecord) 6095 return MaybeRecord.takeError(); 6096 if (MaybeRecord.get() != bitc::FS_VERSION) 6097 return error("Invalid Summary Block: version expected"); 6098 } 6099 const uint64_t Version = Record[0]; 6100 const bool IsOldProfileFormat = Version == 1; 6101 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6102 return error("Invalid summary version " + Twine(Version) + 6103 ". Version should be in the range [1-" + 6104 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6105 "]."); 6106 Record.clear(); 6107 6108 // Keep around the last seen summary to be used when we see an optional 6109 // "OriginalName" attachement. 6110 GlobalValueSummary *LastSeenSummary = nullptr; 6111 GlobalValue::GUID LastSeenGUID = 0; 6112 6113 // We can expect to see any number of type ID information records before 6114 // each function summary records; these variables store the information 6115 // collected so far so that it can be used to create the summary object. 6116 std::vector<GlobalValue::GUID> PendingTypeTests; 6117 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6118 PendingTypeCheckedLoadVCalls; 6119 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6120 PendingTypeCheckedLoadConstVCalls; 6121 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6122 6123 while (true) { 6124 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6125 if (!MaybeEntry) 6126 return MaybeEntry.takeError(); 6127 BitstreamEntry Entry = MaybeEntry.get(); 6128 6129 switch (Entry.Kind) { 6130 case BitstreamEntry::SubBlock: // Handled for us already. 6131 case BitstreamEntry::Error: 6132 return error("Malformed block"); 6133 case BitstreamEntry::EndBlock: 6134 return Error::success(); 6135 case BitstreamEntry::Record: 6136 // The interesting case. 6137 break; 6138 } 6139 6140 // Read a record. The record format depends on whether this 6141 // is a per-module index or a combined index file. In the per-module 6142 // case the records contain the associated value's ID for correlation 6143 // with VST entries. In the combined index the correlation is done 6144 // via the bitcode offset of the summary records (which were saved 6145 // in the combined index VST entries). The records also contain 6146 // information used for ThinLTO renaming and importing. 6147 Record.clear(); 6148 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6149 if (!MaybeBitCode) 6150 return MaybeBitCode.takeError(); 6151 switch (unsigned BitCode = MaybeBitCode.get()) { 6152 default: // Default behavior: ignore. 6153 break; 6154 case bitc::FS_FLAGS: { // [flags] 6155 TheIndex.setFlags(Record[0]); 6156 break; 6157 } 6158 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6159 uint64_t ValueID = Record[0]; 6160 GlobalValue::GUID RefGUID = Record[1]; 6161 ValueIdToValueInfoMap[ValueID] = 6162 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6163 break; 6164 } 6165 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6166 // numrefs x valueid, n x (valueid)] 6167 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6168 // numrefs x valueid, 6169 // n x (valueid, hotness)] 6170 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6171 // numrefs x valueid, 6172 // n x (valueid, relblockfreq)] 6173 case bitc::FS_PERMODULE: 6174 case bitc::FS_PERMODULE_RELBF: 6175 case bitc::FS_PERMODULE_PROFILE: { 6176 unsigned ValueID = Record[0]; 6177 uint64_t RawFlags = Record[1]; 6178 unsigned InstCount = Record[2]; 6179 uint64_t RawFunFlags = 0; 6180 unsigned NumRefs = Record[3]; 6181 unsigned NumRORefs = 0, NumWORefs = 0; 6182 int RefListStartIndex = 4; 6183 if (Version >= 4) { 6184 RawFunFlags = Record[3]; 6185 NumRefs = Record[4]; 6186 RefListStartIndex = 5; 6187 if (Version >= 5) { 6188 NumRORefs = Record[5]; 6189 RefListStartIndex = 6; 6190 if (Version >= 7) { 6191 NumWORefs = Record[6]; 6192 RefListStartIndex = 7; 6193 } 6194 } 6195 } 6196 6197 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6198 // The module path string ref set in the summary must be owned by the 6199 // index's module string table. Since we don't have a module path 6200 // string table section in the per-module index, we create a single 6201 // module path string table entry with an empty (0) ID to take 6202 // ownership. 6203 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6204 assert(Record.size() >= RefListStartIndex + NumRefs && 6205 "Record size inconsistent with number of references"); 6206 std::vector<ValueInfo> Refs = makeRefList( 6207 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6208 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6209 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6210 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6211 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6212 IsOldProfileFormat, HasProfile, HasRelBF); 6213 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6214 auto FS = std::make_unique<FunctionSummary>( 6215 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6216 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6217 std::move(PendingTypeTestAssumeVCalls), 6218 std::move(PendingTypeCheckedLoadVCalls), 6219 std::move(PendingTypeTestAssumeConstVCalls), 6220 std::move(PendingTypeCheckedLoadConstVCalls), 6221 std::move(PendingParamAccesses)); 6222 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6223 FS->setModulePath(getThisModule()->first()); 6224 FS->setOriginalName(VIAndOriginalGUID.second); 6225 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6226 break; 6227 } 6228 // FS_ALIAS: [valueid, flags, valueid] 6229 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6230 // they expect all aliasee summaries to be available. 6231 case bitc::FS_ALIAS: { 6232 unsigned ValueID = Record[0]; 6233 uint64_t RawFlags = Record[1]; 6234 unsigned AliaseeID = Record[2]; 6235 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6236 auto AS = std::make_unique<AliasSummary>(Flags); 6237 // The module path string ref set in the summary must be owned by the 6238 // index's module string table. Since we don't have a module path 6239 // string table section in the per-module index, we create a single 6240 // module path string table entry with an empty (0) ID to take 6241 // ownership. 6242 AS->setModulePath(getThisModule()->first()); 6243 6244 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6245 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6246 if (!AliaseeInModule) 6247 return error("Alias expects aliasee summary to be parsed"); 6248 AS->setAliasee(AliaseeVI, AliaseeInModule); 6249 6250 auto GUID = getValueInfoFromValueId(ValueID); 6251 AS->setOriginalName(GUID.second); 6252 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6253 break; 6254 } 6255 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6256 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6257 unsigned ValueID = Record[0]; 6258 uint64_t RawFlags = Record[1]; 6259 unsigned RefArrayStart = 2; 6260 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6261 /* WriteOnly */ false, 6262 /* Constant */ false, 6263 GlobalObject::VCallVisibilityPublic); 6264 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6265 if (Version >= 5) { 6266 GVF = getDecodedGVarFlags(Record[2]); 6267 RefArrayStart = 3; 6268 } 6269 std::vector<ValueInfo> Refs = 6270 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6271 auto FS = 6272 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6273 FS->setModulePath(getThisModule()->first()); 6274 auto GUID = getValueInfoFromValueId(ValueID); 6275 FS->setOriginalName(GUID.second); 6276 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6277 break; 6278 } 6279 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6280 // numrefs, numrefs x valueid, 6281 // n x (valueid, offset)] 6282 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6283 unsigned ValueID = Record[0]; 6284 uint64_t RawFlags = Record[1]; 6285 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6286 unsigned NumRefs = Record[3]; 6287 unsigned RefListStartIndex = 4; 6288 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6289 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6290 std::vector<ValueInfo> Refs = makeRefList( 6291 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6292 VTableFuncList VTableFuncs; 6293 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6294 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6295 uint64_t Offset = Record[++I]; 6296 VTableFuncs.push_back({Callee, Offset}); 6297 } 6298 auto VS = 6299 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6300 VS->setModulePath(getThisModule()->first()); 6301 VS->setVTableFuncs(VTableFuncs); 6302 auto GUID = getValueInfoFromValueId(ValueID); 6303 VS->setOriginalName(GUID.second); 6304 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6305 break; 6306 } 6307 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6308 // numrefs x valueid, n x (valueid)] 6309 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6310 // numrefs x valueid, n x (valueid, hotness)] 6311 case bitc::FS_COMBINED: 6312 case bitc::FS_COMBINED_PROFILE: { 6313 unsigned ValueID = Record[0]; 6314 uint64_t ModuleId = Record[1]; 6315 uint64_t RawFlags = Record[2]; 6316 unsigned InstCount = Record[3]; 6317 uint64_t RawFunFlags = 0; 6318 uint64_t EntryCount = 0; 6319 unsigned NumRefs = Record[4]; 6320 unsigned NumRORefs = 0, NumWORefs = 0; 6321 int RefListStartIndex = 5; 6322 6323 if (Version >= 4) { 6324 RawFunFlags = Record[4]; 6325 RefListStartIndex = 6; 6326 size_t NumRefsIndex = 5; 6327 if (Version >= 5) { 6328 unsigned NumRORefsOffset = 1; 6329 RefListStartIndex = 7; 6330 if (Version >= 6) { 6331 NumRefsIndex = 6; 6332 EntryCount = Record[5]; 6333 RefListStartIndex = 8; 6334 if (Version >= 7) { 6335 RefListStartIndex = 9; 6336 NumWORefs = Record[8]; 6337 NumRORefsOffset = 2; 6338 } 6339 } 6340 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6341 } 6342 NumRefs = Record[NumRefsIndex]; 6343 } 6344 6345 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6346 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6347 assert(Record.size() >= RefListStartIndex + NumRefs && 6348 "Record size inconsistent with number of references"); 6349 std::vector<ValueInfo> Refs = makeRefList( 6350 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6351 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6352 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6353 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6354 IsOldProfileFormat, HasProfile, false); 6355 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6356 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6357 auto FS = std::make_unique<FunctionSummary>( 6358 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6359 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6360 std::move(PendingTypeTestAssumeVCalls), 6361 std::move(PendingTypeCheckedLoadVCalls), 6362 std::move(PendingTypeTestAssumeConstVCalls), 6363 std::move(PendingTypeCheckedLoadConstVCalls), 6364 std::move(PendingParamAccesses)); 6365 LastSeenSummary = FS.get(); 6366 LastSeenGUID = VI.getGUID(); 6367 FS->setModulePath(ModuleIdMap[ModuleId]); 6368 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6369 break; 6370 } 6371 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6372 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6373 // they expect all aliasee summaries to be available. 6374 case bitc::FS_COMBINED_ALIAS: { 6375 unsigned ValueID = Record[0]; 6376 uint64_t ModuleId = Record[1]; 6377 uint64_t RawFlags = Record[2]; 6378 unsigned AliaseeValueId = Record[3]; 6379 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6380 auto AS = std::make_unique<AliasSummary>(Flags); 6381 LastSeenSummary = AS.get(); 6382 AS->setModulePath(ModuleIdMap[ModuleId]); 6383 6384 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6385 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6386 AS->setAliasee(AliaseeVI, AliaseeInModule); 6387 6388 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6389 LastSeenGUID = VI.getGUID(); 6390 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6391 break; 6392 } 6393 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6394 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6395 unsigned ValueID = Record[0]; 6396 uint64_t ModuleId = Record[1]; 6397 uint64_t RawFlags = Record[2]; 6398 unsigned RefArrayStart = 3; 6399 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6400 /* WriteOnly */ false, 6401 /* Constant */ false, 6402 GlobalObject::VCallVisibilityPublic); 6403 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6404 if (Version >= 5) { 6405 GVF = getDecodedGVarFlags(Record[3]); 6406 RefArrayStart = 4; 6407 } 6408 std::vector<ValueInfo> Refs = 6409 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6410 auto FS = 6411 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6412 LastSeenSummary = FS.get(); 6413 FS->setModulePath(ModuleIdMap[ModuleId]); 6414 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6415 LastSeenGUID = VI.getGUID(); 6416 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6417 break; 6418 } 6419 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6420 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6421 uint64_t OriginalName = Record[0]; 6422 if (!LastSeenSummary) 6423 return error("Name attachment that does not follow a combined record"); 6424 LastSeenSummary->setOriginalName(OriginalName); 6425 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6426 // Reset the LastSeenSummary 6427 LastSeenSummary = nullptr; 6428 LastSeenGUID = 0; 6429 break; 6430 } 6431 case bitc::FS_TYPE_TESTS: 6432 assert(PendingTypeTests.empty()); 6433 llvm::append_range(PendingTypeTests, Record); 6434 break; 6435 6436 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6437 assert(PendingTypeTestAssumeVCalls.empty()); 6438 for (unsigned I = 0; I != Record.size(); I += 2) 6439 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6440 break; 6441 6442 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6443 assert(PendingTypeCheckedLoadVCalls.empty()); 6444 for (unsigned I = 0; I != Record.size(); I += 2) 6445 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6446 break; 6447 6448 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6449 PendingTypeTestAssumeConstVCalls.push_back( 6450 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6451 break; 6452 6453 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6454 PendingTypeCheckedLoadConstVCalls.push_back( 6455 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6456 break; 6457 6458 case bitc::FS_CFI_FUNCTION_DEFS: { 6459 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6460 for (unsigned I = 0; I != Record.size(); I += 2) 6461 CfiFunctionDefs.insert( 6462 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6463 break; 6464 } 6465 6466 case bitc::FS_CFI_FUNCTION_DECLS: { 6467 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6468 for (unsigned I = 0; I != Record.size(); I += 2) 6469 CfiFunctionDecls.insert( 6470 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6471 break; 6472 } 6473 6474 case bitc::FS_TYPE_ID: 6475 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6476 break; 6477 6478 case bitc::FS_TYPE_ID_METADATA: 6479 parseTypeIdCompatibleVtableSummaryRecord(Record); 6480 break; 6481 6482 case bitc::FS_BLOCK_COUNT: 6483 TheIndex.addBlockCount(Record[0]); 6484 break; 6485 6486 case bitc::FS_PARAM_ACCESS: { 6487 PendingParamAccesses = parseParamAccesses(Record); 6488 break; 6489 } 6490 } 6491 } 6492 llvm_unreachable("Exit infinite loop"); 6493 } 6494 6495 // Parse the module string table block into the Index. 6496 // This populates the ModulePathStringTable map in the index. 6497 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6498 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6499 return Err; 6500 6501 SmallVector<uint64_t, 64> Record; 6502 6503 SmallString<128> ModulePath; 6504 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6505 6506 while (true) { 6507 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6508 if (!MaybeEntry) 6509 return MaybeEntry.takeError(); 6510 BitstreamEntry Entry = MaybeEntry.get(); 6511 6512 switch (Entry.Kind) { 6513 case BitstreamEntry::SubBlock: // Handled for us already. 6514 case BitstreamEntry::Error: 6515 return error("Malformed block"); 6516 case BitstreamEntry::EndBlock: 6517 return Error::success(); 6518 case BitstreamEntry::Record: 6519 // The interesting case. 6520 break; 6521 } 6522 6523 Record.clear(); 6524 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6525 if (!MaybeRecord) 6526 return MaybeRecord.takeError(); 6527 switch (MaybeRecord.get()) { 6528 default: // Default behavior: ignore. 6529 break; 6530 case bitc::MST_CODE_ENTRY: { 6531 // MST_ENTRY: [modid, namechar x N] 6532 uint64_t ModuleId = Record[0]; 6533 6534 if (convertToString(Record, 1, ModulePath)) 6535 return error("Invalid record"); 6536 6537 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6538 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6539 6540 ModulePath.clear(); 6541 break; 6542 } 6543 /// MST_CODE_HASH: [5*i32] 6544 case bitc::MST_CODE_HASH: { 6545 if (Record.size() != 5) 6546 return error("Invalid hash length " + Twine(Record.size()).str()); 6547 if (!LastSeenModule) 6548 return error("Invalid hash that does not follow a module path"); 6549 int Pos = 0; 6550 for (auto &Val : Record) { 6551 assert(!(Val >> 32) && "Unexpected high bits set"); 6552 LastSeenModule->second.second[Pos++] = Val; 6553 } 6554 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6555 LastSeenModule = nullptr; 6556 break; 6557 } 6558 } 6559 } 6560 llvm_unreachable("Exit infinite loop"); 6561 } 6562 6563 namespace { 6564 6565 // FIXME: This class is only here to support the transition to llvm::Error. It 6566 // will be removed once this transition is complete. Clients should prefer to 6567 // deal with the Error value directly, rather than converting to error_code. 6568 class BitcodeErrorCategoryType : public std::error_category { 6569 const char *name() const noexcept override { 6570 return "llvm.bitcode"; 6571 } 6572 6573 std::string message(int IE) const override { 6574 BitcodeError E = static_cast<BitcodeError>(IE); 6575 switch (E) { 6576 case BitcodeError::CorruptedBitcode: 6577 return "Corrupted bitcode"; 6578 } 6579 llvm_unreachable("Unknown error type!"); 6580 } 6581 }; 6582 6583 } // end anonymous namespace 6584 6585 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6586 6587 const std::error_category &llvm::BitcodeErrorCategory() { 6588 return *ErrorCategory; 6589 } 6590 6591 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6592 unsigned Block, unsigned RecordID) { 6593 if (Error Err = Stream.EnterSubBlock(Block)) 6594 return std::move(Err); 6595 6596 StringRef Strtab; 6597 while (true) { 6598 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6599 if (!MaybeEntry) 6600 return MaybeEntry.takeError(); 6601 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6602 6603 switch (Entry.Kind) { 6604 case BitstreamEntry::EndBlock: 6605 return Strtab; 6606 6607 case BitstreamEntry::Error: 6608 return error("Malformed block"); 6609 6610 case BitstreamEntry::SubBlock: 6611 if (Error Err = Stream.SkipBlock()) 6612 return std::move(Err); 6613 break; 6614 6615 case BitstreamEntry::Record: 6616 StringRef Blob; 6617 SmallVector<uint64_t, 1> Record; 6618 Expected<unsigned> MaybeRecord = 6619 Stream.readRecord(Entry.ID, Record, &Blob); 6620 if (!MaybeRecord) 6621 return MaybeRecord.takeError(); 6622 if (MaybeRecord.get() == RecordID) 6623 Strtab = Blob; 6624 break; 6625 } 6626 } 6627 } 6628 6629 //===----------------------------------------------------------------------===// 6630 // External interface 6631 //===----------------------------------------------------------------------===// 6632 6633 Expected<std::vector<BitcodeModule>> 6634 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6635 auto FOrErr = getBitcodeFileContents(Buffer); 6636 if (!FOrErr) 6637 return FOrErr.takeError(); 6638 return std::move(FOrErr->Mods); 6639 } 6640 6641 Expected<BitcodeFileContents> 6642 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6643 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6644 if (!StreamOrErr) 6645 return StreamOrErr.takeError(); 6646 BitstreamCursor &Stream = *StreamOrErr; 6647 6648 BitcodeFileContents F; 6649 while (true) { 6650 uint64_t BCBegin = Stream.getCurrentByteNo(); 6651 6652 // We may be consuming bitcode from a client that leaves garbage at the end 6653 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6654 // the end that there cannot possibly be another module, stop looking. 6655 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6656 return F; 6657 6658 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6659 if (!MaybeEntry) 6660 return MaybeEntry.takeError(); 6661 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6662 6663 switch (Entry.Kind) { 6664 case BitstreamEntry::EndBlock: 6665 case BitstreamEntry::Error: 6666 return error("Malformed block"); 6667 6668 case BitstreamEntry::SubBlock: { 6669 uint64_t IdentificationBit = -1ull; 6670 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6671 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6672 if (Error Err = Stream.SkipBlock()) 6673 return std::move(Err); 6674 6675 { 6676 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6677 if (!MaybeEntry) 6678 return MaybeEntry.takeError(); 6679 Entry = MaybeEntry.get(); 6680 } 6681 6682 if (Entry.Kind != BitstreamEntry::SubBlock || 6683 Entry.ID != bitc::MODULE_BLOCK_ID) 6684 return error("Malformed block"); 6685 } 6686 6687 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6688 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6689 if (Error Err = Stream.SkipBlock()) 6690 return std::move(Err); 6691 6692 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6693 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6694 Buffer.getBufferIdentifier(), IdentificationBit, 6695 ModuleBit}); 6696 continue; 6697 } 6698 6699 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6700 Expected<StringRef> Strtab = 6701 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6702 if (!Strtab) 6703 return Strtab.takeError(); 6704 // This string table is used by every preceding bitcode module that does 6705 // not have its own string table. A bitcode file may have multiple 6706 // string tables if it was created by binary concatenation, for example 6707 // with "llvm-cat -b". 6708 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6709 if (!I->Strtab.empty()) 6710 break; 6711 I->Strtab = *Strtab; 6712 } 6713 // Similarly, the string table is used by every preceding symbol table; 6714 // normally there will be just one unless the bitcode file was created 6715 // by binary concatenation. 6716 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6717 F.StrtabForSymtab = *Strtab; 6718 continue; 6719 } 6720 6721 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6722 Expected<StringRef> SymtabOrErr = 6723 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6724 if (!SymtabOrErr) 6725 return SymtabOrErr.takeError(); 6726 6727 // We can expect the bitcode file to have multiple symbol tables if it 6728 // was created by binary concatenation. In that case we silently 6729 // ignore any subsequent symbol tables, which is fine because this is a 6730 // low level function. The client is expected to notice that the number 6731 // of modules in the symbol table does not match the number of modules 6732 // in the input file and regenerate the symbol table. 6733 if (F.Symtab.empty()) 6734 F.Symtab = *SymtabOrErr; 6735 continue; 6736 } 6737 6738 if (Error Err = Stream.SkipBlock()) 6739 return std::move(Err); 6740 continue; 6741 } 6742 case BitstreamEntry::Record: 6743 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6744 continue; 6745 else 6746 return StreamFailed.takeError(); 6747 } 6748 } 6749 } 6750 6751 /// Get a lazy one-at-time loading module from bitcode. 6752 /// 6753 /// This isn't always used in a lazy context. In particular, it's also used by 6754 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6755 /// in forward-referenced functions from block address references. 6756 /// 6757 /// \param[in] MaterializeAll Set to \c true if we should materialize 6758 /// everything. 6759 Expected<std::unique_ptr<Module>> 6760 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6761 bool ShouldLazyLoadMetadata, bool IsImporting, 6762 DataLayoutCallbackTy DataLayoutCallback) { 6763 BitstreamCursor Stream(Buffer); 6764 6765 std::string ProducerIdentification; 6766 if (IdentificationBit != -1ull) { 6767 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6768 return std::move(JumpFailed); 6769 Expected<std::string> ProducerIdentificationOrErr = 6770 readIdentificationBlock(Stream); 6771 if (!ProducerIdentificationOrErr) 6772 return ProducerIdentificationOrErr.takeError(); 6773 6774 ProducerIdentification = *ProducerIdentificationOrErr; 6775 } 6776 6777 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6778 return std::move(JumpFailed); 6779 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6780 Context); 6781 6782 std::unique_ptr<Module> M = 6783 std::make_unique<Module>(ModuleIdentifier, Context); 6784 M->setMaterializer(R); 6785 6786 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6787 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6788 IsImporting, DataLayoutCallback)) 6789 return std::move(Err); 6790 6791 if (MaterializeAll) { 6792 // Read in the entire module, and destroy the BitcodeReader. 6793 if (Error Err = M->materializeAll()) 6794 return std::move(Err); 6795 } else { 6796 // Resolve forward references from blockaddresses. 6797 if (Error Err = R->materializeForwardReferencedFunctions()) 6798 return std::move(Err); 6799 } 6800 return std::move(M); 6801 } 6802 6803 Expected<std::unique_ptr<Module>> 6804 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6805 bool IsImporting) { 6806 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6807 [](StringRef) { return None; }); 6808 } 6809 6810 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6811 // We don't use ModuleIdentifier here because the client may need to control the 6812 // module path used in the combined summary (e.g. when reading summaries for 6813 // regular LTO modules). 6814 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6815 StringRef ModulePath, uint64_t ModuleId) { 6816 BitstreamCursor Stream(Buffer); 6817 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6818 return JumpFailed; 6819 6820 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6821 ModulePath, ModuleId); 6822 return R.parseModule(); 6823 } 6824 6825 // Parse the specified bitcode buffer, returning the function info index. 6826 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6827 BitstreamCursor Stream(Buffer); 6828 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6829 return std::move(JumpFailed); 6830 6831 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6832 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6833 ModuleIdentifier, 0); 6834 6835 if (Error Err = R.parseModule()) 6836 return std::move(Err); 6837 6838 return std::move(Index); 6839 } 6840 6841 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6842 unsigned ID) { 6843 if (Error Err = Stream.EnterSubBlock(ID)) 6844 return std::move(Err); 6845 SmallVector<uint64_t, 64> Record; 6846 6847 while (true) { 6848 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6849 if (!MaybeEntry) 6850 return MaybeEntry.takeError(); 6851 BitstreamEntry Entry = MaybeEntry.get(); 6852 6853 switch (Entry.Kind) { 6854 case BitstreamEntry::SubBlock: // Handled for us already. 6855 case BitstreamEntry::Error: 6856 return error("Malformed block"); 6857 case BitstreamEntry::EndBlock: 6858 // If no flags record found, conservatively return true to mimic 6859 // behavior before this flag was added. 6860 return true; 6861 case BitstreamEntry::Record: 6862 // The interesting case. 6863 break; 6864 } 6865 6866 // Look for the FS_FLAGS record. 6867 Record.clear(); 6868 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6869 if (!MaybeBitCode) 6870 return MaybeBitCode.takeError(); 6871 switch (MaybeBitCode.get()) { 6872 default: // Default behavior: ignore. 6873 break; 6874 case bitc::FS_FLAGS: { // [flags] 6875 uint64_t Flags = Record[0]; 6876 // Scan flags. 6877 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6878 6879 return Flags & 0x8; 6880 } 6881 } 6882 } 6883 llvm_unreachable("Exit infinite loop"); 6884 } 6885 6886 // Check if the given bitcode buffer contains a global value summary block. 6887 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6888 BitstreamCursor Stream(Buffer); 6889 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6890 return std::move(JumpFailed); 6891 6892 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6893 return std::move(Err); 6894 6895 while (true) { 6896 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6897 if (!MaybeEntry) 6898 return MaybeEntry.takeError(); 6899 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6900 6901 switch (Entry.Kind) { 6902 case BitstreamEntry::Error: 6903 return error("Malformed block"); 6904 case BitstreamEntry::EndBlock: 6905 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6906 /*EnableSplitLTOUnit=*/false}; 6907 6908 case BitstreamEntry::SubBlock: 6909 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6910 Expected<bool> EnableSplitLTOUnit = 6911 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6912 if (!EnableSplitLTOUnit) 6913 return EnableSplitLTOUnit.takeError(); 6914 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6915 *EnableSplitLTOUnit}; 6916 } 6917 6918 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6919 Expected<bool> EnableSplitLTOUnit = 6920 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6921 if (!EnableSplitLTOUnit) 6922 return EnableSplitLTOUnit.takeError(); 6923 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6924 *EnableSplitLTOUnit}; 6925 } 6926 6927 // Ignore other sub-blocks. 6928 if (Error Err = Stream.SkipBlock()) 6929 return std::move(Err); 6930 continue; 6931 6932 case BitstreamEntry::Record: 6933 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6934 continue; 6935 else 6936 return StreamFailed.takeError(); 6937 } 6938 } 6939 } 6940 6941 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6942 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6943 if (!MsOrErr) 6944 return MsOrErr.takeError(); 6945 6946 if (MsOrErr->size() != 1) 6947 return error("Expected a single module"); 6948 6949 return (*MsOrErr)[0]; 6950 } 6951 6952 Expected<std::unique_ptr<Module>> 6953 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6954 bool ShouldLazyLoadMetadata, bool IsImporting) { 6955 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6956 if (!BM) 6957 return BM.takeError(); 6958 6959 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6960 } 6961 6962 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6963 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6964 bool ShouldLazyLoadMetadata, bool IsImporting) { 6965 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6966 IsImporting); 6967 if (MOrErr) 6968 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6969 return MOrErr; 6970 } 6971 6972 Expected<std::unique_ptr<Module>> 6973 BitcodeModule::parseModule(LLVMContext &Context, 6974 DataLayoutCallbackTy DataLayoutCallback) { 6975 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6976 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6977 // written. We must defer until the Module has been fully materialized. 6978 } 6979 6980 Expected<std::unique_ptr<Module>> 6981 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6982 DataLayoutCallbackTy DataLayoutCallback) { 6983 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6984 if (!BM) 6985 return BM.takeError(); 6986 6987 return BM->parseModule(Context, DataLayoutCallback); 6988 } 6989 6990 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6991 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6992 if (!StreamOrErr) 6993 return StreamOrErr.takeError(); 6994 6995 return readTriple(*StreamOrErr); 6996 } 6997 6998 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6999 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7000 if (!StreamOrErr) 7001 return StreamOrErr.takeError(); 7002 7003 return hasObjCCategory(*StreamOrErr); 7004 } 7005 7006 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7007 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7008 if (!StreamOrErr) 7009 return StreamOrErr.takeError(); 7010 7011 return readIdentificationCode(*StreamOrErr); 7012 } 7013 7014 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7015 ModuleSummaryIndex &CombinedIndex, 7016 uint64_t ModuleId) { 7017 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7018 if (!BM) 7019 return BM.takeError(); 7020 7021 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7022 } 7023 7024 Expected<std::unique_ptr<ModuleSummaryIndex>> 7025 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7026 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7027 if (!BM) 7028 return BM.takeError(); 7029 7030 return BM->getSummary(); 7031 } 7032 7033 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7034 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7035 if (!BM) 7036 return BM.takeError(); 7037 7038 return BM->getLTOInfo(); 7039 } 7040 7041 Expected<std::unique_ptr<ModuleSummaryIndex>> 7042 llvm::getModuleSummaryIndexForFile(StringRef Path, 7043 bool IgnoreEmptyThinLTOIndexFile) { 7044 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7045 MemoryBuffer::getFileOrSTDIN(Path); 7046 if (!FileOrErr) 7047 return errorCodeToError(FileOrErr.getError()); 7048 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7049 return nullptr; 7050 return getModuleSummaryIndex(**FileOrErr); 7051 } 7052