1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 void addThisModule(); 755 ModuleSummaryIndex::ModuleInfo *getThisModule(); 756 }; 757 758 } // end anonymous namespace 759 760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 761 Error Err) { 762 if (Err) { 763 std::error_code EC; 764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 765 EC = EIB.convertToErrorCode(); 766 Ctx.emitError(EIB.message()); 767 }); 768 return EC; 769 } 770 return std::error_code(); 771 } 772 773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 774 StringRef ProducerIdentification, 775 LLVMContext &Context) 776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 777 ValueList(Context) { 778 this->ProducerIdentification = ProducerIdentification; 779 } 780 781 Error BitcodeReader::materializeForwardReferencedFunctions() { 782 if (WillMaterializeAllForwardRefs) 783 return Error::success(); 784 785 // Prevent recursion. 786 WillMaterializeAllForwardRefs = true; 787 788 while (!BasicBlockFwdRefQueue.empty()) { 789 Function *F = BasicBlockFwdRefQueue.front(); 790 BasicBlockFwdRefQueue.pop_front(); 791 assert(F && "Expected valid function"); 792 if (!BasicBlockFwdRefs.count(F)) 793 // Already materialized. 794 continue; 795 796 // Check for a function that isn't materializable to prevent an infinite 797 // loop. When parsing a blockaddress stored in a global variable, there 798 // isn't a trivial way to check if a function will have a body without a 799 // linear search through FunctionsWithBodies, so just check it here. 800 if (!F->isMaterializable()) 801 return error("Never resolved function from blockaddress"); 802 803 // Try to materialize F. 804 if (Error Err = materialize(F)) 805 return Err; 806 } 807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 808 809 // Reset state. 810 WillMaterializeAllForwardRefs = false; 811 return Error::success(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Helper functions to implement forward reference resolution, etc. 816 //===----------------------------------------------------------------------===// 817 818 static bool hasImplicitComdat(size_t Val) { 819 switch (Val) { 820 default: 821 return false; 822 case 1: // Old WeakAnyLinkage 823 case 4: // Old LinkOnceAnyLinkage 824 case 10: // Old WeakODRLinkage 825 case 11: // Old LinkOnceODRLinkage 826 return true; 827 } 828 } 829 830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown/new linkages to external 833 case 0: 834 return GlobalValue::ExternalLinkage; 835 case 2: 836 return GlobalValue::AppendingLinkage; 837 case 3: 838 return GlobalValue::InternalLinkage; 839 case 5: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 841 case 6: 842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 843 case 7: 844 return GlobalValue::ExternalWeakLinkage; 845 case 8: 846 return GlobalValue::CommonLinkage; 847 case 9: 848 return GlobalValue::PrivateLinkage; 849 case 12: 850 return GlobalValue::AvailableExternallyLinkage; 851 case 13: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 853 case 14: 854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 855 case 15: 856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 857 case 1: // Old value with implicit comdat. 858 case 16: 859 return GlobalValue::WeakAnyLinkage; 860 case 10: // Old value with implicit comdat. 861 case 17: 862 return GlobalValue::WeakODRLinkage; 863 case 4: // Old value with implicit comdat. 864 case 18: 865 return GlobalValue::LinkOnceAnyLinkage; 866 case 11: // Old value with implicit comdat. 867 case 19: 868 return GlobalValue::LinkOnceODRLinkage; 869 } 870 } 871 872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 873 FunctionSummary::FFlags Flags; 874 Flags.ReadNone = RawFlags & 0x1; 875 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 876 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 878 Flags.NoInline = (RawFlags >> 4) & 0x1; 879 return Flags; 880 } 881 882 /// Decode the flags for GlobalValue in the summary. 883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 884 uint64_t Version) { 885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 886 // like getDecodedLinkage() above. Any future change to the linkage enum and 887 // to getDecodedLinkage() will need to be taken into account here as above. 888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 889 RawFlags = RawFlags >> 4; 890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 891 // The Live flag wasn't introduced until version 3. For dead stripping 892 // to work correctly on earlier versions, we must conservatively treat all 893 // values as live. 894 bool Live = (RawFlags & 0x2) || Version < 3; 895 bool Local = (RawFlags & 0x4); 896 897 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 898 } 899 900 // Decode the flags for GlobalVariable in the summary 901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 902 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 903 } 904 905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 906 switch (Val) { 907 default: // Map unknown visibilities to default. 908 case 0: return GlobalValue::DefaultVisibility; 909 case 1: return GlobalValue::HiddenVisibility; 910 case 2: return GlobalValue::ProtectedVisibility; 911 } 912 } 913 914 static GlobalValue::DLLStorageClassTypes 915 getDecodedDLLStorageClass(unsigned Val) { 916 switch (Val) { 917 default: // Map unknown values to default. 918 case 0: return GlobalValue::DefaultStorageClass; 919 case 1: return GlobalValue::DLLImportStorageClass; 920 case 2: return GlobalValue::DLLExportStorageClass; 921 } 922 } 923 924 static bool getDecodedDSOLocal(unsigned Val) { 925 switch(Val) { 926 default: // Map unknown values to preemptable. 927 case 0: return false; 928 case 1: return true; 929 } 930 } 931 932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 933 switch (Val) { 934 case 0: return GlobalVariable::NotThreadLocal; 935 default: // Map unknown non-zero value to general dynamic. 936 case 1: return GlobalVariable::GeneralDynamicTLSModel; 937 case 2: return GlobalVariable::LocalDynamicTLSModel; 938 case 3: return GlobalVariable::InitialExecTLSModel; 939 case 4: return GlobalVariable::LocalExecTLSModel; 940 } 941 } 942 943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 944 switch (Val) { 945 default: // Map unknown to UnnamedAddr::None. 946 case 0: return GlobalVariable::UnnamedAddr::None; 947 case 1: return GlobalVariable::UnnamedAddr::Global; 948 case 2: return GlobalVariable::UnnamedAddr::Local; 949 } 950 } 951 952 static int getDecodedCastOpcode(unsigned Val) { 953 switch (Val) { 954 default: return -1; 955 case bitc::CAST_TRUNC : return Instruction::Trunc; 956 case bitc::CAST_ZEXT : return Instruction::ZExt; 957 case bitc::CAST_SEXT : return Instruction::SExt; 958 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 959 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 960 case bitc::CAST_UITOFP : return Instruction::UIToFP; 961 case bitc::CAST_SITOFP : return Instruction::SIToFP; 962 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 963 case bitc::CAST_FPEXT : return Instruction::FPExt; 964 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 965 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 966 case bitc::CAST_BITCAST : return Instruction::BitCast; 967 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 968 } 969 } 970 971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 972 bool IsFP = Ty->isFPOrFPVectorTy(); 973 // UnOps are only valid for int/fp or vector of int/fp types 974 if (!IsFP && !Ty->isIntOrIntVectorTy()) 975 return -1; 976 977 switch (Val) { 978 default: 979 return -1; 980 case bitc::UNOP_NEG: 981 return IsFP ? Instruction::FNeg : -1; 982 } 983 } 984 985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 986 bool IsFP = Ty->isFPOrFPVectorTy(); 987 // BinOps are only valid for int/fp or vector of int/fp types 988 if (!IsFP && !Ty->isIntOrIntVectorTy()) 989 return -1; 990 991 switch (Val) { 992 default: 993 return -1; 994 case bitc::BINOP_ADD: 995 return IsFP ? Instruction::FAdd : Instruction::Add; 996 case bitc::BINOP_SUB: 997 return IsFP ? Instruction::FSub : Instruction::Sub; 998 case bitc::BINOP_MUL: 999 return IsFP ? Instruction::FMul : Instruction::Mul; 1000 case bitc::BINOP_UDIV: 1001 return IsFP ? -1 : Instruction::UDiv; 1002 case bitc::BINOP_SDIV: 1003 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1004 case bitc::BINOP_UREM: 1005 return IsFP ? -1 : Instruction::URem; 1006 case bitc::BINOP_SREM: 1007 return IsFP ? Instruction::FRem : Instruction::SRem; 1008 case bitc::BINOP_SHL: 1009 return IsFP ? -1 : Instruction::Shl; 1010 case bitc::BINOP_LSHR: 1011 return IsFP ? -1 : Instruction::LShr; 1012 case bitc::BINOP_ASHR: 1013 return IsFP ? -1 : Instruction::AShr; 1014 case bitc::BINOP_AND: 1015 return IsFP ? -1 : Instruction::And; 1016 case bitc::BINOP_OR: 1017 return IsFP ? -1 : Instruction::Or; 1018 case bitc::BINOP_XOR: 1019 return IsFP ? -1 : Instruction::Xor; 1020 } 1021 } 1022 1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1024 switch (Val) { 1025 default: return AtomicRMWInst::BAD_BINOP; 1026 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1027 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1028 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1029 case bitc::RMW_AND: return AtomicRMWInst::And; 1030 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1031 case bitc::RMW_OR: return AtomicRMWInst::Or; 1032 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1033 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1034 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1035 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1036 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1037 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1038 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1039 } 1040 } 1041 1042 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1043 switch (Val) { 1044 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1045 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1046 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1047 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1048 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1049 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1050 default: // Map unknown orderings to sequentially-consistent. 1051 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1052 } 1053 } 1054 1055 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1056 switch (Val) { 1057 default: // Map unknown selection kinds to any. 1058 case bitc::COMDAT_SELECTION_KIND_ANY: 1059 return Comdat::Any; 1060 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1061 return Comdat::ExactMatch; 1062 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1063 return Comdat::Largest; 1064 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1065 return Comdat::NoDuplicates; 1066 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1067 return Comdat::SameSize; 1068 } 1069 } 1070 1071 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1072 FastMathFlags FMF; 1073 if (0 != (Val & bitc::UnsafeAlgebra)) 1074 FMF.setFast(); 1075 if (0 != (Val & bitc::AllowReassoc)) 1076 FMF.setAllowReassoc(); 1077 if (0 != (Val & bitc::NoNaNs)) 1078 FMF.setNoNaNs(); 1079 if (0 != (Val & bitc::NoInfs)) 1080 FMF.setNoInfs(); 1081 if (0 != (Val & bitc::NoSignedZeros)) 1082 FMF.setNoSignedZeros(); 1083 if (0 != (Val & bitc::AllowReciprocal)) 1084 FMF.setAllowReciprocal(); 1085 if (0 != (Val & bitc::AllowContract)) 1086 FMF.setAllowContract(true); 1087 if (0 != (Val & bitc::ApproxFunc)) 1088 FMF.setApproxFunc(); 1089 return FMF; 1090 } 1091 1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1093 switch (Val) { 1094 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1095 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1096 } 1097 } 1098 1099 Type *BitcodeReader::getTypeByID(unsigned ID) { 1100 // The type table size is always specified correctly. 1101 if (ID >= TypeList.size()) 1102 return nullptr; 1103 1104 if (Type *Ty = TypeList[ID]) 1105 return Ty; 1106 1107 // If we have a forward reference, the only possible case is when it is to a 1108 // named struct. Just create a placeholder for now. 1109 return TypeList[ID] = createIdentifiedStructType(Context); 1110 } 1111 1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1113 StringRef Name) { 1114 auto *Ret = StructType::create(Context, Name); 1115 IdentifiedStructTypes.push_back(Ret); 1116 return Ret; 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1120 auto *Ret = StructType::create(Context); 1121 IdentifiedStructTypes.push_back(Ret); 1122 return Ret; 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // Functions for parsing blocks from the bitcode file 1127 //===----------------------------------------------------------------------===// 1128 1129 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1130 switch (Val) { 1131 case Attribute::EndAttrKinds: 1132 llvm_unreachable("Synthetic enumerators which should never get here"); 1133 1134 case Attribute::None: return 0; 1135 case Attribute::ZExt: return 1 << 0; 1136 case Attribute::SExt: return 1 << 1; 1137 case Attribute::NoReturn: return 1 << 2; 1138 case Attribute::InReg: return 1 << 3; 1139 case Attribute::StructRet: return 1 << 4; 1140 case Attribute::NoUnwind: return 1 << 5; 1141 case Attribute::NoAlias: return 1 << 6; 1142 case Attribute::ByVal: return 1 << 7; 1143 case Attribute::Nest: return 1 << 8; 1144 case Attribute::ReadNone: return 1 << 9; 1145 case Attribute::ReadOnly: return 1 << 10; 1146 case Attribute::NoInline: return 1 << 11; 1147 case Attribute::AlwaysInline: return 1 << 12; 1148 case Attribute::OptimizeForSize: return 1 << 13; 1149 case Attribute::StackProtect: return 1 << 14; 1150 case Attribute::StackProtectReq: return 1 << 15; 1151 case Attribute::Alignment: return 31 << 16; 1152 case Attribute::NoCapture: return 1 << 21; 1153 case Attribute::NoRedZone: return 1 << 22; 1154 case Attribute::NoImplicitFloat: return 1 << 23; 1155 case Attribute::Naked: return 1 << 24; 1156 case Attribute::InlineHint: return 1 << 25; 1157 case Attribute::StackAlignment: return 7 << 26; 1158 case Attribute::ReturnsTwice: return 1 << 29; 1159 case Attribute::UWTable: return 1 << 30; 1160 case Attribute::NonLazyBind: return 1U << 31; 1161 case Attribute::SanitizeAddress: return 1ULL << 32; 1162 case Attribute::MinSize: return 1ULL << 33; 1163 case Attribute::NoDuplicate: return 1ULL << 34; 1164 case Attribute::StackProtectStrong: return 1ULL << 35; 1165 case Attribute::SanitizeThread: return 1ULL << 36; 1166 case Attribute::SanitizeMemory: return 1ULL << 37; 1167 case Attribute::NoBuiltin: return 1ULL << 38; 1168 case Attribute::Returned: return 1ULL << 39; 1169 case Attribute::Cold: return 1ULL << 40; 1170 case Attribute::Builtin: return 1ULL << 41; 1171 case Attribute::OptimizeNone: return 1ULL << 42; 1172 case Attribute::InAlloca: return 1ULL << 43; 1173 case Attribute::NonNull: return 1ULL << 44; 1174 case Attribute::JumpTable: return 1ULL << 45; 1175 case Attribute::Convergent: return 1ULL << 46; 1176 case Attribute::SafeStack: return 1ULL << 47; 1177 case Attribute::NoRecurse: return 1ULL << 48; 1178 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1179 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1180 case Attribute::SwiftSelf: return 1ULL << 51; 1181 case Attribute::SwiftError: return 1ULL << 52; 1182 case Attribute::WriteOnly: return 1ULL << 53; 1183 case Attribute::Speculatable: return 1ULL << 54; 1184 case Attribute::StrictFP: return 1ULL << 55; 1185 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1186 case Attribute::NoCfCheck: return 1ULL << 57; 1187 case Attribute::OptForFuzzing: return 1ULL << 58; 1188 case Attribute::ShadowCallStack: return 1ULL << 59; 1189 case Attribute::SpeculativeLoadHardening: 1190 return 1ULL << 60; 1191 case Attribute::ImmArg: 1192 return 1ULL << 61; 1193 case Attribute::Dereferenceable: 1194 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1195 break; 1196 case Attribute::DereferenceableOrNull: 1197 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1198 "format"); 1199 break; 1200 case Attribute::ArgMemOnly: 1201 llvm_unreachable("argmemonly attribute not supported in raw format"); 1202 break; 1203 case Attribute::AllocSize: 1204 llvm_unreachable("allocsize not supported in raw format"); 1205 break; 1206 } 1207 llvm_unreachable("Unsupported attribute type"); 1208 } 1209 1210 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1211 if (!Val) return; 1212 1213 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1214 I = Attribute::AttrKind(I + 1)) { 1215 if (I == Attribute::Dereferenceable || 1216 I == Attribute::DereferenceableOrNull || 1217 I == Attribute::ArgMemOnly || 1218 I == Attribute::AllocSize) 1219 continue; 1220 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1221 if (I == Attribute::Alignment) 1222 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1223 else if (I == Attribute::StackAlignment) 1224 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1225 else 1226 B.addAttribute(I); 1227 } 1228 } 1229 } 1230 1231 /// This fills an AttrBuilder object with the LLVM attributes that have 1232 /// been decoded from the given integer. This function must stay in sync with 1233 /// 'encodeLLVMAttributesForBitcode'. 1234 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1235 uint64_t EncodedAttrs) { 1236 // FIXME: Remove in 4.0. 1237 1238 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1239 // the bits above 31 down by 11 bits. 1240 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1241 assert((!Alignment || isPowerOf2_32(Alignment)) && 1242 "Alignment must be a power of two."); 1243 1244 if (Alignment) 1245 B.addAlignmentAttr(Alignment); 1246 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1247 (EncodedAttrs & 0xffff)); 1248 } 1249 1250 Error BitcodeReader::parseAttributeBlock() { 1251 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1252 return error("Invalid record"); 1253 1254 if (!MAttributes.empty()) 1255 return error("Invalid multiple blocks"); 1256 1257 SmallVector<uint64_t, 64> Record; 1258 1259 SmallVector<AttributeList, 8> Attrs; 1260 1261 // Read all the records. 1262 while (true) { 1263 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1264 1265 switch (Entry.Kind) { 1266 case BitstreamEntry::SubBlock: // Handled for us already. 1267 case BitstreamEntry::Error: 1268 return error("Malformed block"); 1269 case BitstreamEntry::EndBlock: 1270 return Error::success(); 1271 case BitstreamEntry::Record: 1272 // The interesting case. 1273 break; 1274 } 1275 1276 // Read a record. 1277 Record.clear(); 1278 switch (Stream.readRecord(Entry.ID, Record)) { 1279 default: // Default behavior: ignore. 1280 break; 1281 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1282 // FIXME: Remove in 4.0. 1283 if (Record.size() & 1) 1284 return error("Invalid record"); 1285 1286 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1287 AttrBuilder B; 1288 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1289 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1290 } 1291 1292 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1293 Attrs.clear(); 1294 break; 1295 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1296 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1297 Attrs.push_back(MAttributeGroups[Record[i]]); 1298 1299 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1300 Attrs.clear(); 1301 break; 1302 } 1303 } 1304 } 1305 1306 // Returns Attribute::None on unrecognized codes. 1307 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1308 switch (Code) { 1309 default: 1310 return Attribute::None; 1311 case bitc::ATTR_KIND_ALIGNMENT: 1312 return Attribute::Alignment; 1313 case bitc::ATTR_KIND_ALWAYS_INLINE: 1314 return Attribute::AlwaysInline; 1315 case bitc::ATTR_KIND_ARGMEMONLY: 1316 return Attribute::ArgMemOnly; 1317 case bitc::ATTR_KIND_BUILTIN: 1318 return Attribute::Builtin; 1319 case bitc::ATTR_KIND_BY_VAL: 1320 return Attribute::ByVal; 1321 case bitc::ATTR_KIND_IN_ALLOCA: 1322 return Attribute::InAlloca; 1323 case bitc::ATTR_KIND_COLD: 1324 return Attribute::Cold; 1325 case bitc::ATTR_KIND_CONVERGENT: 1326 return Attribute::Convergent; 1327 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1328 return Attribute::InaccessibleMemOnly; 1329 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1330 return Attribute::InaccessibleMemOrArgMemOnly; 1331 case bitc::ATTR_KIND_INLINE_HINT: 1332 return Attribute::InlineHint; 1333 case bitc::ATTR_KIND_IN_REG: 1334 return Attribute::InReg; 1335 case bitc::ATTR_KIND_JUMP_TABLE: 1336 return Attribute::JumpTable; 1337 case bitc::ATTR_KIND_MIN_SIZE: 1338 return Attribute::MinSize; 1339 case bitc::ATTR_KIND_NAKED: 1340 return Attribute::Naked; 1341 case bitc::ATTR_KIND_NEST: 1342 return Attribute::Nest; 1343 case bitc::ATTR_KIND_NO_ALIAS: 1344 return Attribute::NoAlias; 1345 case bitc::ATTR_KIND_NO_BUILTIN: 1346 return Attribute::NoBuiltin; 1347 case bitc::ATTR_KIND_NO_CAPTURE: 1348 return Attribute::NoCapture; 1349 case bitc::ATTR_KIND_NO_DUPLICATE: 1350 return Attribute::NoDuplicate; 1351 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1352 return Attribute::NoImplicitFloat; 1353 case bitc::ATTR_KIND_NO_INLINE: 1354 return Attribute::NoInline; 1355 case bitc::ATTR_KIND_NO_RECURSE: 1356 return Attribute::NoRecurse; 1357 case bitc::ATTR_KIND_NON_LAZY_BIND: 1358 return Attribute::NonLazyBind; 1359 case bitc::ATTR_KIND_NON_NULL: 1360 return Attribute::NonNull; 1361 case bitc::ATTR_KIND_DEREFERENCEABLE: 1362 return Attribute::Dereferenceable; 1363 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1364 return Attribute::DereferenceableOrNull; 1365 case bitc::ATTR_KIND_ALLOC_SIZE: 1366 return Attribute::AllocSize; 1367 case bitc::ATTR_KIND_NO_RED_ZONE: 1368 return Attribute::NoRedZone; 1369 case bitc::ATTR_KIND_NO_RETURN: 1370 return Attribute::NoReturn; 1371 case bitc::ATTR_KIND_NOCF_CHECK: 1372 return Attribute::NoCfCheck; 1373 case bitc::ATTR_KIND_NO_UNWIND: 1374 return Attribute::NoUnwind; 1375 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1376 return Attribute::OptForFuzzing; 1377 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1378 return Attribute::OptimizeForSize; 1379 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1380 return Attribute::OptimizeNone; 1381 case bitc::ATTR_KIND_READ_NONE: 1382 return Attribute::ReadNone; 1383 case bitc::ATTR_KIND_READ_ONLY: 1384 return Attribute::ReadOnly; 1385 case bitc::ATTR_KIND_RETURNED: 1386 return Attribute::Returned; 1387 case bitc::ATTR_KIND_RETURNS_TWICE: 1388 return Attribute::ReturnsTwice; 1389 case bitc::ATTR_KIND_S_EXT: 1390 return Attribute::SExt; 1391 case bitc::ATTR_KIND_SPECULATABLE: 1392 return Attribute::Speculatable; 1393 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1394 return Attribute::StackAlignment; 1395 case bitc::ATTR_KIND_STACK_PROTECT: 1396 return Attribute::StackProtect; 1397 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1398 return Attribute::StackProtectReq; 1399 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1400 return Attribute::StackProtectStrong; 1401 case bitc::ATTR_KIND_SAFESTACK: 1402 return Attribute::SafeStack; 1403 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1404 return Attribute::ShadowCallStack; 1405 case bitc::ATTR_KIND_STRICT_FP: 1406 return Attribute::StrictFP; 1407 case bitc::ATTR_KIND_STRUCT_RET: 1408 return Attribute::StructRet; 1409 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1410 return Attribute::SanitizeAddress; 1411 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1412 return Attribute::SanitizeHWAddress; 1413 case bitc::ATTR_KIND_SANITIZE_THREAD: 1414 return Attribute::SanitizeThread; 1415 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1416 return Attribute::SanitizeMemory; 1417 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1418 return Attribute::SpeculativeLoadHardening; 1419 case bitc::ATTR_KIND_SWIFT_ERROR: 1420 return Attribute::SwiftError; 1421 case bitc::ATTR_KIND_SWIFT_SELF: 1422 return Attribute::SwiftSelf; 1423 case bitc::ATTR_KIND_UW_TABLE: 1424 return Attribute::UWTable; 1425 case bitc::ATTR_KIND_WRITEONLY: 1426 return Attribute::WriteOnly; 1427 case bitc::ATTR_KIND_Z_EXT: 1428 return Attribute::ZExt; 1429 case bitc::ATTR_KIND_IMMARG: 1430 return Attribute::ImmArg; 1431 } 1432 } 1433 1434 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1435 unsigned &Alignment) { 1436 // Note: Alignment in bitcode files is incremented by 1, so that zero 1437 // can be used for default alignment. 1438 if (Exponent > Value::MaxAlignmentExponent + 1) 1439 return error("Invalid alignment value"); 1440 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1441 return Error::success(); 1442 } 1443 1444 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1445 *Kind = getAttrFromCode(Code); 1446 if (*Kind == Attribute::None) 1447 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1448 return Error::success(); 1449 } 1450 1451 Error BitcodeReader::parseAttributeGroupBlock() { 1452 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1453 return error("Invalid record"); 1454 1455 if (!MAttributeGroups.empty()) 1456 return error("Invalid multiple blocks"); 1457 1458 SmallVector<uint64_t, 64> Record; 1459 1460 // Read all the records. 1461 while (true) { 1462 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1463 1464 switch (Entry.Kind) { 1465 case BitstreamEntry::SubBlock: // Handled for us already. 1466 case BitstreamEntry::Error: 1467 return error("Malformed block"); 1468 case BitstreamEntry::EndBlock: 1469 return Error::success(); 1470 case BitstreamEntry::Record: 1471 // The interesting case. 1472 break; 1473 } 1474 1475 // Read a record. 1476 Record.clear(); 1477 switch (Stream.readRecord(Entry.ID, Record)) { 1478 default: // Default behavior: ignore. 1479 break; 1480 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1481 if (Record.size() < 3) 1482 return error("Invalid record"); 1483 1484 uint64_t GrpID = Record[0]; 1485 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1486 1487 AttrBuilder B; 1488 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1489 if (Record[i] == 0) { // Enum attribute 1490 Attribute::AttrKind Kind; 1491 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1492 return Err; 1493 1494 B.addAttribute(Kind); 1495 } else if (Record[i] == 1) { // Integer attribute 1496 Attribute::AttrKind Kind; 1497 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1498 return Err; 1499 if (Kind == Attribute::Alignment) 1500 B.addAlignmentAttr(Record[++i]); 1501 else if (Kind == Attribute::StackAlignment) 1502 B.addStackAlignmentAttr(Record[++i]); 1503 else if (Kind == Attribute::Dereferenceable) 1504 B.addDereferenceableAttr(Record[++i]); 1505 else if (Kind == Attribute::DereferenceableOrNull) 1506 B.addDereferenceableOrNullAttr(Record[++i]); 1507 else if (Kind == Attribute::AllocSize) 1508 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1509 } else { // String attribute 1510 assert((Record[i] == 3 || Record[i] == 4) && 1511 "Invalid attribute group entry"); 1512 bool HasValue = (Record[i++] == 4); 1513 SmallString<64> KindStr; 1514 SmallString<64> ValStr; 1515 1516 while (Record[i] != 0 && i != e) 1517 KindStr += Record[i++]; 1518 assert(Record[i] == 0 && "Kind string not null terminated"); 1519 1520 if (HasValue) { 1521 // Has a value associated with it. 1522 ++i; // Skip the '0' that terminates the "kind" string. 1523 while (Record[i] != 0 && i != e) 1524 ValStr += Record[i++]; 1525 assert(Record[i] == 0 && "Value string not null terminated"); 1526 } 1527 1528 B.addAttribute(KindStr.str(), ValStr.str()); 1529 } 1530 } 1531 1532 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1533 break; 1534 } 1535 } 1536 } 1537 } 1538 1539 Error BitcodeReader::parseTypeTable() { 1540 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1541 return error("Invalid record"); 1542 1543 return parseTypeTableBody(); 1544 } 1545 1546 Error BitcodeReader::parseTypeTableBody() { 1547 if (!TypeList.empty()) 1548 return error("Invalid multiple blocks"); 1549 1550 SmallVector<uint64_t, 64> Record; 1551 unsigned NumRecords = 0; 1552 1553 SmallString<64> TypeName; 1554 1555 // Read all the records for this type table. 1556 while (true) { 1557 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1558 1559 switch (Entry.Kind) { 1560 case BitstreamEntry::SubBlock: // Handled for us already. 1561 case BitstreamEntry::Error: 1562 return error("Malformed block"); 1563 case BitstreamEntry::EndBlock: 1564 if (NumRecords != TypeList.size()) 1565 return error("Malformed block"); 1566 return Error::success(); 1567 case BitstreamEntry::Record: 1568 // The interesting case. 1569 break; 1570 } 1571 1572 // Read a record. 1573 Record.clear(); 1574 Type *ResultTy = nullptr; 1575 switch (Stream.readRecord(Entry.ID, Record)) { 1576 default: 1577 return error("Invalid value"); 1578 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1579 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1580 // type list. This allows us to reserve space. 1581 if (Record.size() < 1) 1582 return error("Invalid record"); 1583 TypeList.resize(Record[0]); 1584 continue; 1585 case bitc::TYPE_CODE_VOID: // VOID 1586 ResultTy = Type::getVoidTy(Context); 1587 break; 1588 case bitc::TYPE_CODE_HALF: // HALF 1589 ResultTy = Type::getHalfTy(Context); 1590 break; 1591 case bitc::TYPE_CODE_FLOAT: // FLOAT 1592 ResultTy = Type::getFloatTy(Context); 1593 break; 1594 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1595 ResultTy = Type::getDoubleTy(Context); 1596 break; 1597 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1598 ResultTy = Type::getX86_FP80Ty(Context); 1599 break; 1600 case bitc::TYPE_CODE_FP128: // FP128 1601 ResultTy = Type::getFP128Ty(Context); 1602 break; 1603 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1604 ResultTy = Type::getPPC_FP128Ty(Context); 1605 break; 1606 case bitc::TYPE_CODE_LABEL: // LABEL 1607 ResultTy = Type::getLabelTy(Context); 1608 break; 1609 case bitc::TYPE_CODE_METADATA: // METADATA 1610 ResultTy = Type::getMetadataTy(Context); 1611 break; 1612 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1613 ResultTy = Type::getX86_MMXTy(Context); 1614 break; 1615 case bitc::TYPE_CODE_TOKEN: // TOKEN 1616 ResultTy = Type::getTokenTy(Context); 1617 break; 1618 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1619 if (Record.size() < 1) 1620 return error("Invalid record"); 1621 1622 uint64_t NumBits = Record[0]; 1623 if (NumBits < IntegerType::MIN_INT_BITS || 1624 NumBits > IntegerType::MAX_INT_BITS) 1625 return error("Bitwidth for integer type out of range"); 1626 ResultTy = IntegerType::get(Context, NumBits); 1627 break; 1628 } 1629 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1630 // [pointee type, address space] 1631 if (Record.size() < 1) 1632 return error("Invalid record"); 1633 unsigned AddressSpace = 0; 1634 if (Record.size() == 2) 1635 AddressSpace = Record[1]; 1636 ResultTy = getTypeByID(Record[0]); 1637 if (!ResultTy || 1638 !PointerType::isValidElementType(ResultTy)) 1639 return error("Invalid type"); 1640 ResultTy = PointerType::get(ResultTy, AddressSpace); 1641 break; 1642 } 1643 case bitc::TYPE_CODE_FUNCTION_OLD: { 1644 // FIXME: attrid is dead, remove it in LLVM 4.0 1645 // FUNCTION: [vararg, attrid, retty, paramty x N] 1646 if (Record.size() < 3) 1647 return error("Invalid record"); 1648 SmallVector<Type*, 8> ArgTys; 1649 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1650 if (Type *T = getTypeByID(Record[i])) 1651 ArgTys.push_back(T); 1652 else 1653 break; 1654 } 1655 1656 ResultTy = getTypeByID(Record[2]); 1657 if (!ResultTy || ArgTys.size() < Record.size()-3) 1658 return error("Invalid type"); 1659 1660 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1661 break; 1662 } 1663 case bitc::TYPE_CODE_FUNCTION: { 1664 // FUNCTION: [vararg, retty, paramty x N] 1665 if (Record.size() < 2) 1666 return error("Invalid record"); 1667 SmallVector<Type*, 8> ArgTys; 1668 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1669 if (Type *T = getTypeByID(Record[i])) { 1670 if (!FunctionType::isValidArgumentType(T)) 1671 return error("Invalid function argument type"); 1672 ArgTys.push_back(T); 1673 } 1674 else 1675 break; 1676 } 1677 1678 ResultTy = getTypeByID(Record[1]); 1679 if (!ResultTy || ArgTys.size() < Record.size()-2) 1680 return error("Invalid type"); 1681 1682 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1683 break; 1684 } 1685 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1686 if (Record.size() < 1) 1687 return error("Invalid record"); 1688 SmallVector<Type*, 8> EltTys; 1689 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1690 if (Type *T = getTypeByID(Record[i])) 1691 EltTys.push_back(T); 1692 else 1693 break; 1694 } 1695 if (EltTys.size() != Record.size()-1) 1696 return error("Invalid type"); 1697 ResultTy = StructType::get(Context, EltTys, Record[0]); 1698 break; 1699 } 1700 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1701 if (convertToString(Record, 0, TypeName)) 1702 return error("Invalid record"); 1703 continue; 1704 1705 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1706 if (Record.size() < 1) 1707 return error("Invalid record"); 1708 1709 if (NumRecords >= TypeList.size()) 1710 return error("Invalid TYPE table"); 1711 1712 // Check to see if this was forward referenced, if so fill in the temp. 1713 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1714 if (Res) { 1715 Res->setName(TypeName); 1716 TypeList[NumRecords] = nullptr; 1717 } else // Otherwise, create a new struct. 1718 Res = createIdentifiedStructType(Context, TypeName); 1719 TypeName.clear(); 1720 1721 SmallVector<Type*, 8> EltTys; 1722 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1723 if (Type *T = getTypeByID(Record[i])) 1724 EltTys.push_back(T); 1725 else 1726 break; 1727 } 1728 if (EltTys.size() != Record.size()-1) 1729 return error("Invalid record"); 1730 Res->setBody(EltTys, Record[0]); 1731 ResultTy = Res; 1732 break; 1733 } 1734 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1735 if (Record.size() != 1) 1736 return error("Invalid record"); 1737 1738 if (NumRecords >= TypeList.size()) 1739 return error("Invalid TYPE table"); 1740 1741 // Check to see if this was forward referenced, if so fill in the temp. 1742 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1743 if (Res) { 1744 Res->setName(TypeName); 1745 TypeList[NumRecords] = nullptr; 1746 } else // Otherwise, create a new struct with no body. 1747 Res = createIdentifiedStructType(Context, TypeName); 1748 TypeName.clear(); 1749 ResultTy = Res; 1750 break; 1751 } 1752 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1753 if (Record.size() < 2) 1754 return error("Invalid record"); 1755 ResultTy = getTypeByID(Record[1]); 1756 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1757 return error("Invalid type"); 1758 ResultTy = ArrayType::get(ResultTy, Record[0]); 1759 break; 1760 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1761 if (Record.size() < 2) 1762 return error("Invalid record"); 1763 if (Record[0] == 0) 1764 return error("Invalid vector length"); 1765 ResultTy = getTypeByID(Record[1]); 1766 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1767 return error("Invalid type"); 1768 ResultTy = VectorType::get(ResultTy, Record[0]); 1769 break; 1770 } 1771 1772 if (NumRecords >= TypeList.size()) 1773 return error("Invalid TYPE table"); 1774 if (TypeList[NumRecords]) 1775 return error( 1776 "Invalid TYPE table: Only named structs can be forward referenced"); 1777 assert(ResultTy && "Didn't read a type?"); 1778 TypeList[NumRecords++] = ResultTy; 1779 } 1780 } 1781 1782 Error BitcodeReader::parseOperandBundleTags() { 1783 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1784 return error("Invalid record"); 1785 1786 if (!BundleTags.empty()) 1787 return error("Invalid multiple blocks"); 1788 1789 SmallVector<uint64_t, 64> Record; 1790 1791 while (true) { 1792 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1793 1794 switch (Entry.Kind) { 1795 case BitstreamEntry::SubBlock: // Handled for us already. 1796 case BitstreamEntry::Error: 1797 return error("Malformed block"); 1798 case BitstreamEntry::EndBlock: 1799 return Error::success(); 1800 case BitstreamEntry::Record: 1801 // The interesting case. 1802 break; 1803 } 1804 1805 // Tags are implicitly mapped to integers by their order. 1806 1807 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1808 return error("Invalid record"); 1809 1810 // OPERAND_BUNDLE_TAG: [strchr x N] 1811 BundleTags.emplace_back(); 1812 if (convertToString(Record, 0, BundleTags.back())) 1813 return error("Invalid record"); 1814 Record.clear(); 1815 } 1816 } 1817 1818 Error BitcodeReader::parseSyncScopeNames() { 1819 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1820 return error("Invalid record"); 1821 1822 if (!SSIDs.empty()) 1823 return error("Invalid multiple synchronization scope names blocks"); 1824 1825 SmallVector<uint64_t, 64> Record; 1826 while (true) { 1827 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1828 switch (Entry.Kind) { 1829 case BitstreamEntry::SubBlock: // Handled for us already. 1830 case BitstreamEntry::Error: 1831 return error("Malformed block"); 1832 case BitstreamEntry::EndBlock: 1833 if (SSIDs.empty()) 1834 return error("Invalid empty synchronization scope names block"); 1835 return Error::success(); 1836 case BitstreamEntry::Record: 1837 // The interesting case. 1838 break; 1839 } 1840 1841 // Synchronization scope names are implicitly mapped to synchronization 1842 // scope IDs by their order. 1843 1844 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1845 return error("Invalid record"); 1846 1847 SmallString<16> SSN; 1848 if (convertToString(Record, 0, SSN)) 1849 return error("Invalid record"); 1850 1851 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1852 Record.clear(); 1853 } 1854 } 1855 1856 /// Associate a value with its name from the given index in the provided record. 1857 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1858 unsigned NameIndex, Triple &TT) { 1859 SmallString<128> ValueName; 1860 if (convertToString(Record, NameIndex, ValueName)) 1861 return error("Invalid record"); 1862 unsigned ValueID = Record[0]; 1863 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1864 return error("Invalid record"); 1865 Value *V = ValueList[ValueID]; 1866 1867 StringRef NameStr(ValueName.data(), ValueName.size()); 1868 if (NameStr.find_first_of(0) != StringRef::npos) 1869 return error("Invalid value name"); 1870 V->setName(NameStr); 1871 auto *GO = dyn_cast<GlobalObject>(V); 1872 if (GO) { 1873 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1874 if (TT.supportsCOMDAT()) 1875 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1876 else 1877 GO->setComdat(nullptr); 1878 } 1879 } 1880 return V; 1881 } 1882 1883 /// Helper to note and return the current location, and jump to the given 1884 /// offset. 1885 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1886 BitstreamCursor &Stream) { 1887 // Save the current parsing location so we can jump back at the end 1888 // of the VST read. 1889 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1890 Stream.JumpToBit(Offset * 32); 1891 #ifndef NDEBUG 1892 // Do some checking if we are in debug mode. 1893 BitstreamEntry Entry = Stream.advance(); 1894 assert(Entry.Kind == BitstreamEntry::SubBlock); 1895 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1896 #else 1897 // In NDEBUG mode ignore the output so we don't get an unused variable 1898 // warning. 1899 Stream.advance(); 1900 #endif 1901 return CurrentBit; 1902 } 1903 1904 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1905 Function *F, 1906 ArrayRef<uint64_t> Record) { 1907 // Note that we subtract 1 here because the offset is relative to one word 1908 // before the start of the identification or module block, which was 1909 // historically always the start of the regular bitcode header. 1910 uint64_t FuncWordOffset = Record[1] - 1; 1911 uint64_t FuncBitOffset = FuncWordOffset * 32; 1912 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1913 // Set the LastFunctionBlockBit to point to the last function block. 1914 // Later when parsing is resumed after function materialization, 1915 // we can simply skip that last function block. 1916 if (FuncBitOffset > LastFunctionBlockBit) 1917 LastFunctionBlockBit = FuncBitOffset; 1918 } 1919 1920 /// Read a new-style GlobalValue symbol table. 1921 Error BitcodeReader::parseGlobalValueSymbolTable() { 1922 unsigned FuncBitcodeOffsetDelta = 1923 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1924 1925 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1926 return error("Invalid record"); 1927 1928 SmallVector<uint64_t, 64> Record; 1929 while (true) { 1930 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1931 1932 switch (Entry.Kind) { 1933 case BitstreamEntry::SubBlock: 1934 case BitstreamEntry::Error: 1935 return error("Malformed block"); 1936 case BitstreamEntry::EndBlock: 1937 return Error::success(); 1938 case BitstreamEntry::Record: 1939 break; 1940 } 1941 1942 Record.clear(); 1943 switch (Stream.readRecord(Entry.ID, Record)) { 1944 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1945 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1946 cast<Function>(ValueList[Record[0]]), Record); 1947 break; 1948 } 1949 } 1950 } 1951 1952 /// Parse the value symbol table at either the current parsing location or 1953 /// at the given bit offset if provided. 1954 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1955 uint64_t CurrentBit; 1956 // Pass in the Offset to distinguish between calling for the module-level 1957 // VST (where we want to jump to the VST offset) and the function-level 1958 // VST (where we don't). 1959 if (Offset > 0) { 1960 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1961 // If this module uses a string table, read this as a module-level VST. 1962 if (UseStrtab) { 1963 if (Error Err = parseGlobalValueSymbolTable()) 1964 return Err; 1965 Stream.JumpToBit(CurrentBit); 1966 return Error::success(); 1967 } 1968 // Otherwise, the VST will be in a similar format to a function-level VST, 1969 // and will contain symbol names. 1970 } 1971 1972 // Compute the delta between the bitcode indices in the VST (the word offset 1973 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1974 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1975 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1976 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1977 // just before entering the VST subblock because: 1) the EnterSubBlock 1978 // changes the AbbrevID width; 2) the VST block is nested within the same 1979 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1980 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1981 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1982 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1983 unsigned FuncBitcodeOffsetDelta = 1984 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1985 1986 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1987 return error("Invalid record"); 1988 1989 SmallVector<uint64_t, 64> Record; 1990 1991 Triple TT(TheModule->getTargetTriple()); 1992 1993 // Read all the records for this value table. 1994 SmallString<128> ValueName; 1995 1996 while (true) { 1997 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1998 1999 switch (Entry.Kind) { 2000 case BitstreamEntry::SubBlock: // Handled for us already. 2001 case BitstreamEntry::Error: 2002 return error("Malformed block"); 2003 case BitstreamEntry::EndBlock: 2004 if (Offset > 0) 2005 Stream.JumpToBit(CurrentBit); 2006 return Error::success(); 2007 case BitstreamEntry::Record: 2008 // The interesting case. 2009 break; 2010 } 2011 2012 // Read a record. 2013 Record.clear(); 2014 switch (Stream.readRecord(Entry.ID, Record)) { 2015 default: // Default behavior: unknown type. 2016 break; 2017 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2018 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2019 if (Error Err = ValOrErr.takeError()) 2020 return Err; 2021 ValOrErr.get(); 2022 break; 2023 } 2024 case bitc::VST_CODE_FNENTRY: { 2025 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2026 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2027 if (Error Err = ValOrErr.takeError()) 2028 return Err; 2029 Value *V = ValOrErr.get(); 2030 2031 // Ignore function offsets emitted for aliases of functions in older 2032 // versions of LLVM. 2033 if (auto *F = dyn_cast<Function>(V)) 2034 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2035 break; 2036 } 2037 case bitc::VST_CODE_BBENTRY: { 2038 if (convertToString(Record, 1, ValueName)) 2039 return error("Invalid record"); 2040 BasicBlock *BB = getBasicBlock(Record[0]); 2041 if (!BB) 2042 return error("Invalid record"); 2043 2044 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2045 ValueName.clear(); 2046 break; 2047 } 2048 } 2049 } 2050 } 2051 2052 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2053 /// encoding. 2054 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2055 if ((V & 1) == 0) 2056 return V >> 1; 2057 if (V != 1) 2058 return -(V >> 1); 2059 // There is no such thing as -0 with integers. "-0" really means MININT. 2060 return 1ULL << 63; 2061 } 2062 2063 /// Resolve all of the initializers for global values and aliases that we can. 2064 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2065 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2066 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2067 IndirectSymbolInitWorklist; 2068 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2069 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2070 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2071 2072 GlobalInitWorklist.swap(GlobalInits); 2073 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2074 FunctionPrefixWorklist.swap(FunctionPrefixes); 2075 FunctionPrologueWorklist.swap(FunctionPrologues); 2076 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2077 2078 while (!GlobalInitWorklist.empty()) { 2079 unsigned ValID = GlobalInitWorklist.back().second; 2080 if (ValID >= ValueList.size()) { 2081 // Not ready to resolve this yet, it requires something later in the file. 2082 GlobalInits.push_back(GlobalInitWorklist.back()); 2083 } else { 2084 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2085 GlobalInitWorklist.back().first->setInitializer(C); 2086 else 2087 return error("Expected a constant"); 2088 } 2089 GlobalInitWorklist.pop_back(); 2090 } 2091 2092 while (!IndirectSymbolInitWorklist.empty()) { 2093 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2094 if (ValID >= ValueList.size()) { 2095 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2096 } else { 2097 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2098 if (!C) 2099 return error("Expected a constant"); 2100 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2101 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2102 return error("Alias and aliasee types don't match"); 2103 GIS->setIndirectSymbol(C); 2104 } 2105 IndirectSymbolInitWorklist.pop_back(); 2106 } 2107 2108 while (!FunctionPrefixWorklist.empty()) { 2109 unsigned ValID = FunctionPrefixWorklist.back().second; 2110 if (ValID >= ValueList.size()) { 2111 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2112 } else { 2113 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2114 FunctionPrefixWorklist.back().first->setPrefixData(C); 2115 else 2116 return error("Expected a constant"); 2117 } 2118 FunctionPrefixWorklist.pop_back(); 2119 } 2120 2121 while (!FunctionPrologueWorklist.empty()) { 2122 unsigned ValID = FunctionPrologueWorklist.back().second; 2123 if (ValID >= ValueList.size()) { 2124 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2125 } else { 2126 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2127 FunctionPrologueWorklist.back().first->setPrologueData(C); 2128 else 2129 return error("Expected a constant"); 2130 } 2131 FunctionPrologueWorklist.pop_back(); 2132 } 2133 2134 while (!FunctionPersonalityFnWorklist.empty()) { 2135 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2136 if (ValID >= ValueList.size()) { 2137 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2138 } else { 2139 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2140 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2141 else 2142 return error("Expected a constant"); 2143 } 2144 FunctionPersonalityFnWorklist.pop_back(); 2145 } 2146 2147 return Error::success(); 2148 } 2149 2150 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2151 SmallVector<uint64_t, 8> Words(Vals.size()); 2152 transform(Vals, Words.begin(), 2153 BitcodeReader::decodeSignRotatedValue); 2154 2155 return APInt(TypeBits, Words); 2156 } 2157 2158 Error BitcodeReader::parseConstants() { 2159 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2160 return error("Invalid record"); 2161 2162 SmallVector<uint64_t, 64> Record; 2163 2164 // Read all the records for this value table. 2165 Type *CurTy = Type::getInt32Ty(Context); 2166 unsigned NextCstNo = ValueList.size(); 2167 2168 while (true) { 2169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2170 2171 switch (Entry.Kind) { 2172 case BitstreamEntry::SubBlock: // Handled for us already. 2173 case BitstreamEntry::Error: 2174 return error("Malformed block"); 2175 case BitstreamEntry::EndBlock: 2176 if (NextCstNo != ValueList.size()) 2177 return error("Invalid constant reference"); 2178 2179 // Once all the constants have been read, go through and resolve forward 2180 // references. 2181 ValueList.resolveConstantForwardRefs(); 2182 return Error::success(); 2183 case BitstreamEntry::Record: 2184 // The interesting case. 2185 break; 2186 } 2187 2188 // Read a record. 2189 Record.clear(); 2190 Type *VoidType = Type::getVoidTy(Context); 2191 Value *V = nullptr; 2192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2193 switch (BitCode) { 2194 default: // Default behavior: unknown constant 2195 case bitc::CST_CODE_UNDEF: // UNDEF 2196 V = UndefValue::get(CurTy); 2197 break; 2198 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2199 if (Record.empty()) 2200 return error("Invalid record"); 2201 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2202 return error("Invalid record"); 2203 if (TypeList[Record[0]] == VoidType) 2204 return error("Invalid constant type"); 2205 CurTy = TypeList[Record[0]]; 2206 continue; // Skip the ValueList manipulation. 2207 case bitc::CST_CODE_NULL: // NULL 2208 V = Constant::getNullValue(CurTy); 2209 break; 2210 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2211 if (!CurTy->isIntegerTy() || Record.empty()) 2212 return error("Invalid record"); 2213 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2214 break; 2215 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2216 if (!CurTy->isIntegerTy() || Record.empty()) 2217 return error("Invalid record"); 2218 2219 APInt VInt = 2220 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2221 V = ConstantInt::get(Context, VInt); 2222 2223 break; 2224 } 2225 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2226 if (Record.empty()) 2227 return error("Invalid record"); 2228 if (CurTy->isHalfTy()) 2229 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2230 APInt(16, (uint16_t)Record[0]))); 2231 else if (CurTy->isFloatTy()) 2232 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2233 APInt(32, (uint32_t)Record[0]))); 2234 else if (CurTy->isDoubleTy()) 2235 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2236 APInt(64, Record[0]))); 2237 else if (CurTy->isX86_FP80Ty()) { 2238 // Bits are not stored the same way as a normal i80 APInt, compensate. 2239 uint64_t Rearrange[2]; 2240 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2241 Rearrange[1] = Record[0] >> 48; 2242 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2243 APInt(80, Rearrange))); 2244 } else if (CurTy->isFP128Ty()) 2245 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2246 APInt(128, Record))); 2247 else if (CurTy->isPPC_FP128Ty()) 2248 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2249 APInt(128, Record))); 2250 else 2251 V = UndefValue::get(CurTy); 2252 break; 2253 } 2254 2255 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2256 if (Record.empty()) 2257 return error("Invalid record"); 2258 2259 unsigned Size = Record.size(); 2260 SmallVector<Constant*, 16> Elts; 2261 2262 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2263 for (unsigned i = 0; i != Size; ++i) 2264 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2265 STy->getElementType(i))); 2266 V = ConstantStruct::get(STy, Elts); 2267 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2268 Type *EltTy = ATy->getElementType(); 2269 for (unsigned i = 0; i != Size; ++i) 2270 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2271 V = ConstantArray::get(ATy, Elts); 2272 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2273 Type *EltTy = VTy->getElementType(); 2274 for (unsigned i = 0; i != Size; ++i) 2275 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2276 V = ConstantVector::get(Elts); 2277 } else { 2278 V = UndefValue::get(CurTy); 2279 } 2280 break; 2281 } 2282 case bitc::CST_CODE_STRING: // STRING: [values] 2283 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2284 if (Record.empty()) 2285 return error("Invalid record"); 2286 2287 SmallString<16> Elts(Record.begin(), Record.end()); 2288 V = ConstantDataArray::getString(Context, Elts, 2289 BitCode == bitc::CST_CODE_CSTRING); 2290 break; 2291 } 2292 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2293 if (Record.empty()) 2294 return error("Invalid record"); 2295 2296 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2297 if (EltTy->isIntegerTy(8)) { 2298 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2299 if (isa<VectorType>(CurTy)) 2300 V = ConstantDataVector::get(Context, Elts); 2301 else 2302 V = ConstantDataArray::get(Context, Elts); 2303 } else if (EltTy->isIntegerTy(16)) { 2304 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2305 if (isa<VectorType>(CurTy)) 2306 V = ConstantDataVector::get(Context, Elts); 2307 else 2308 V = ConstantDataArray::get(Context, Elts); 2309 } else if (EltTy->isIntegerTy(32)) { 2310 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2311 if (isa<VectorType>(CurTy)) 2312 V = ConstantDataVector::get(Context, Elts); 2313 else 2314 V = ConstantDataArray::get(Context, Elts); 2315 } else if (EltTy->isIntegerTy(64)) { 2316 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2317 if (isa<VectorType>(CurTy)) 2318 V = ConstantDataVector::get(Context, Elts); 2319 else 2320 V = ConstantDataArray::get(Context, Elts); 2321 } else if (EltTy->isHalfTy()) { 2322 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2323 if (isa<VectorType>(CurTy)) 2324 V = ConstantDataVector::getFP(Context, Elts); 2325 else 2326 V = ConstantDataArray::getFP(Context, Elts); 2327 } else if (EltTy->isFloatTy()) { 2328 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2329 if (isa<VectorType>(CurTy)) 2330 V = ConstantDataVector::getFP(Context, Elts); 2331 else 2332 V = ConstantDataArray::getFP(Context, Elts); 2333 } else if (EltTy->isDoubleTy()) { 2334 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2335 if (isa<VectorType>(CurTy)) 2336 V = ConstantDataVector::getFP(Context, Elts); 2337 else 2338 V = ConstantDataArray::getFP(Context, Elts); 2339 } else { 2340 return error("Invalid type for value"); 2341 } 2342 break; 2343 } 2344 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2345 if (Record.size() < 2) 2346 return error("Invalid record"); 2347 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2348 if (Opc < 0) { 2349 V = UndefValue::get(CurTy); // Unknown unop. 2350 } else { 2351 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2352 unsigned Flags = 0; 2353 V = ConstantExpr::get(Opc, LHS, Flags); 2354 } 2355 break; 2356 } 2357 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2358 if (Record.size() < 3) 2359 return error("Invalid record"); 2360 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2361 if (Opc < 0) { 2362 V = UndefValue::get(CurTy); // Unknown binop. 2363 } else { 2364 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2365 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2366 unsigned Flags = 0; 2367 if (Record.size() >= 4) { 2368 if (Opc == Instruction::Add || 2369 Opc == Instruction::Sub || 2370 Opc == Instruction::Mul || 2371 Opc == Instruction::Shl) { 2372 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2373 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2374 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2375 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2376 } else if (Opc == Instruction::SDiv || 2377 Opc == Instruction::UDiv || 2378 Opc == Instruction::LShr || 2379 Opc == Instruction::AShr) { 2380 if (Record[3] & (1 << bitc::PEO_EXACT)) 2381 Flags |= SDivOperator::IsExact; 2382 } 2383 } 2384 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2385 } 2386 break; 2387 } 2388 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2389 if (Record.size() < 3) 2390 return error("Invalid record"); 2391 int Opc = getDecodedCastOpcode(Record[0]); 2392 if (Opc < 0) { 2393 V = UndefValue::get(CurTy); // Unknown cast. 2394 } else { 2395 Type *OpTy = getTypeByID(Record[1]); 2396 if (!OpTy) 2397 return error("Invalid record"); 2398 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2399 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2400 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2401 } 2402 break; 2403 } 2404 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2405 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2406 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2407 // operands] 2408 unsigned OpNum = 0; 2409 Type *PointeeType = nullptr; 2410 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2411 Record.size() % 2) 2412 PointeeType = getTypeByID(Record[OpNum++]); 2413 2414 bool InBounds = false; 2415 Optional<unsigned> InRangeIndex; 2416 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2417 uint64_t Op = Record[OpNum++]; 2418 InBounds = Op & 1; 2419 InRangeIndex = Op >> 1; 2420 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2421 InBounds = true; 2422 2423 SmallVector<Constant*, 16> Elts; 2424 while (OpNum != Record.size()) { 2425 Type *ElTy = getTypeByID(Record[OpNum++]); 2426 if (!ElTy) 2427 return error("Invalid record"); 2428 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2429 } 2430 2431 if (Elts.size() < 1) 2432 return error("Invalid gep with no operands"); 2433 2434 Type *ImplicitPointeeType = 2435 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2436 ->getElementType(); 2437 if (!PointeeType) 2438 PointeeType = ImplicitPointeeType; 2439 else if (PointeeType != ImplicitPointeeType) 2440 return error("Explicit gep operator type does not match pointee type " 2441 "of pointer operand"); 2442 2443 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2444 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2445 InBounds, InRangeIndex); 2446 break; 2447 } 2448 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2449 if (Record.size() < 3) 2450 return error("Invalid record"); 2451 2452 Type *SelectorTy = Type::getInt1Ty(Context); 2453 2454 // The selector might be an i1 or an <n x i1> 2455 // Get the type from the ValueList before getting a forward ref. 2456 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2457 if (Value *V = ValueList[Record[0]]) 2458 if (SelectorTy != V->getType()) 2459 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2460 2461 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2462 SelectorTy), 2463 ValueList.getConstantFwdRef(Record[1],CurTy), 2464 ValueList.getConstantFwdRef(Record[2],CurTy)); 2465 break; 2466 } 2467 case bitc::CST_CODE_CE_EXTRACTELT 2468 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2469 if (Record.size() < 3) 2470 return error("Invalid record"); 2471 VectorType *OpTy = 2472 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2473 if (!OpTy) 2474 return error("Invalid record"); 2475 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2476 Constant *Op1 = nullptr; 2477 if (Record.size() == 4) { 2478 Type *IdxTy = getTypeByID(Record[2]); 2479 if (!IdxTy) 2480 return error("Invalid record"); 2481 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2482 } else // TODO: Remove with llvm 4.0 2483 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2484 if (!Op1) 2485 return error("Invalid record"); 2486 V = ConstantExpr::getExtractElement(Op0, Op1); 2487 break; 2488 } 2489 case bitc::CST_CODE_CE_INSERTELT 2490 : { // CE_INSERTELT: [opval, opval, opty, opval] 2491 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2492 if (Record.size() < 3 || !OpTy) 2493 return error("Invalid record"); 2494 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2495 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2496 OpTy->getElementType()); 2497 Constant *Op2 = nullptr; 2498 if (Record.size() == 4) { 2499 Type *IdxTy = getTypeByID(Record[2]); 2500 if (!IdxTy) 2501 return error("Invalid record"); 2502 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2503 } else // TODO: Remove with llvm 4.0 2504 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2505 if (!Op2) 2506 return error("Invalid record"); 2507 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2508 break; 2509 } 2510 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2511 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2512 if (Record.size() < 3 || !OpTy) 2513 return error("Invalid record"); 2514 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2515 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2516 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2517 OpTy->getNumElements()); 2518 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2519 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2520 break; 2521 } 2522 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2523 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2524 VectorType *OpTy = 2525 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2526 if (Record.size() < 4 || !RTy || !OpTy) 2527 return error("Invalid record"); 2528 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2529 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2530 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2531 RTy->getNumElements()); 2532 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2533 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2534 break; 2535 } 2536 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2537 if (Record.size() < 4) 2538 return error("Invalid record"); 2539 Type *OpTy = getTypeByID(Record[0]); 2540 if (!OpTy) 2541 return error("Invalid record"); 2542 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2543 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2544 2545 if (OpTy->isFPOrFPVectorTy()) 2546 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2547 else 2548 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2549 break; 2550 } 2551 // This maintains backward compatibility, pre-asm dialect keywords. 2552 // FIXME: Remove with the 4.0 release. 2553 case bitc::CST_CODE_INLINEASM_OLD: { 2554 if (Record.size() < 2) 2555 return error("Invalid record"); 2556 std::string AsmStr, ConstrStr; 2557 bool HasSideEffects = Record[0] & 1; 2558 bool IsAlignStack = Record[0] >> 1; 2559 unsigned AsmStrSize = Record[1]; 2560 if (2+AsmStrSize >= Record.size()) 2561 return error("Invalid record"); 2562 unsigned ConstStrSize = Record[2+AsmStrSize]; 2563 if (3+AsmStrSize+ConstStrSize > Record.size()) 2564 return error("Invalid record"); 2565 2566 for (unsigned i = 0; i != AsmStrSize; ++i) 2567 AsmStr += (char)Record[2+i]; 2568 for (unsigned i = 0; i != ConstStrSize; ++i) 2569 ConstrStr += (char)Record[3+AsmStrSize+i]; 2570 PointerType *PTy = cast<PointerType>(CurTy); 2571 UpgradeInlineAsmString(&AsmStr); 2572 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2573 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2574 break; 2575 } 2576 // This version adds support for the asm dialect keywords (e.g., 2577 // inteldialect). 2578 case bitc::CST_CODE_INLINEASM: { 2579 if (Record.size() < 2) 2580 return error("Invalid record"); 2581 std::string AsmStr, ConstrStr; 2582 bool HasSideEffects = Record[0] & 1; 2583 bool IsAlignStack = (Record[0] >> 1) & 1; 2584 unsigned AsmDialect = Record[0] >> 2; 2585 unsigned AsmStrSize = Record[1]; 2586 if (2+AsmStrSize >= Record.size()) 2587 return error("Invalid record"); 2588 unsigned ConstStrSize = Record[2+AsmStrSize]; 2589 if (3+AsmStrSize+ConstStrSize > Record.size()) 2590 return error("Invalid record"); 2591 2592 for (unsigned i = 0; i != AsmStrSize; ++i) 2593 AsmStr += (char)Record[2+i]; 2594 for (unsigned i = 0; i != ConstStrSize; ++i) 2595 ConstrStr += (char)Record[3+AsmStrSize+i]; 2596 PointerType *PTy = cast<PointerType>(CurTy); 2597 UpgradeInlineAsmString(&AsmStr); 2598 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2599 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2600 InlineAsm::AsmDialect(AsmDialect)); 2601 break; 2602 } 2603 case bitc::CST_CODE_BLOCKADDRESS:{ 2604 if (Record.size() < 3) 2605 return error("Invalid record"); 2606 Type *FnTy = getTypeByID(Record[0]); 2607 if (!FnTy) 2608 return error("Invalid record"); 2609 Function *Fn = 2610 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2611 if (!Fn) 2612 return error("Invalid record"); 2613 2614 // If the function is already parsed we can insert the block address right 2615 // away. 2616 BasicBlock *BB; 2617 unsigned BBID = Record[2]; 2618 if (!BBID) 2619 // Invalid reference to entry block. 2620 return error("Invalid ID"); 2621 if (!Fn->empty()) { 2622 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2623 for (size_t I = 0, E = BBID; I != E; ++I) { 2624 if (BBI == BBE) 2625 return error("Invalid ID"); 2626 ++BBI; 2627 } 2628 BB = &*BBI; 2629 } else { 2630 // Otherwise insert a placeholder and remember it so it can be inserted 2631 // when the function is parsed. 2632 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2633 if (FwdBBs.empty()) 2634 BasicBlockFwdRefQueue.push_back(Fn); 2635 if (FwdBBs.size() < BBID + 1) 2636 FwdBBs.resize(BBID + 1); 2637 if (!FwdBBs[BBID]) 2638 FwdBBs[BBID] = BasicBlock::Create(Context); 2639 BB = FwdBBs[BBID]; 2640 } 2641 V = BlockAddress::get(Fn, BB); 2642 break; 2643 } 2644 } 2645 2646 ValueList.assignValue(V, NextCstNo); 2647 ++NextCstNo; 2648 } 2649 } 2650 2651 Error BitcodeReader::parseUseLists() { 2652 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2653 return error("Invalid record"); 2654 2655 // Read all the records. 2656 SmallVector<uint64_t, 64> Record; 2657 2658 while (true) { 2659 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2660 2661 switch (Entry.Kind) { 2662 case BitstreamEntry::SubBlock: // Handled for us already. 2663 case BitstreamEntry::Error: 2664 return error("Malformed block"); 2665 case BitstreamEntry::EndBlock: 2666 return Error::success(); 2667 case BitstreamEntry::Record: 2668 // The interesting case. 2669 break; 2670 } 2671 2672 // Read a use list record. 2673 Record.clear(); 2674 bool IsBB = false; 2675 switch (Stream.readRecord(Entry.ID, Record)) { 2676 default: // Default behavior: unknown type. 2677 break; 2678 case bitc::USELIST_CODE_BB: 2679 IsBB = true; 2680 LLVM_FALLTHROUGH; 2681 case bitc::USELIST_CODE_DEFAULT: { 2682 unsigned RecordLength = Record.size(); 2683 if (RecordLength < 3) 2684 // Records should have at least an ID and two indexes. 2685 return error("Invalid record"); 2686 unsigned ID = Record.back(); 2687 Record.pop_back(); 2688 2689 Value *V; 2690 if (IsBB) { 2691 assert(ID < FunctionBBs.size() && "Basic block not found"); 2692 V = FunctionBBs[ID]; 2693 } else 2694 V = ValueList[ID]; 2695 unsigned NumUses = 0; 2696 SmallDenseMap<const Use *, unsigned, 16> Order; 2697 for (const Use &U : V->materialized_uses()) { 2698 if (++NumUses > Record.size()) 2699 break; 2700 Order[&U] = Record[NumUses - 1]; 2701 } 2702 if (Order.size() != Record.size() || NumUses > Record.size()) 2703 // Mismatches can happen if the functions are being materialized lazily 2704 // (out-of-order), or a value has been upgraded. 2705 break; 2706 2707 V->sortUseList([&](const Use &L, const Use &R) { 2708 return Order.lookup(&L) < Order.lookup(&R); 2709 }); 2710 break; 2711 } 2712 } 2713 } 2714 } 2715 2716 /// When we see the block for metadata, remember where it is and then skip it. 2717 /// This lets us lazily deserialize the metadata. 2718 Error BitcodeReader::rememberAndSkipMetadata() { 2719 // Save the current stream state. 2720 uint64_t CurBit = Stream.GetCurrentBitNo(); 2721 DeferredMetadataInfo.push_back(CurBit); 2722 2723 // Skip over the block for now. 2724 if (Stream.SkipBlock()) 2725 return error("Invalid record"); 2726 return Error::success(); 2727 } 2728 2729 Error BitcodeReader::materializeMetadata() { 2730 for (uint64_t BitPos : DeferredMetadataInfo) { 2731 // Move the bit stream to the saved position. 2732 Stream.JumpToBit(BitPos); 2733 if (Error Err = MDLoader->parseModuleMetadata()) 2734 return Err; 2735 } 2736 2737 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2738 // metadata. 2739 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2740 NamedMDNode *LinkerOpts = 2741 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2742 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2743 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2744 } 2745 2746 DeferredMetadataInfo.clear(); 2747 return Error::success(); 2748 } 2749 2750 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2751 2752 /// When we see the block for a function body, remember where it is and then 2753 /// skip it. This lets us lazily deserialize the functions. 2754 Error BitcodeReader::rememberAndSkipFunctionBody() { 2755 // Get the function we are talking about. 2756 if (FunctionsWithBodies.empty()) 2757 return error("Insufficient function protos"); 2758 2759 Function *Fn = FunctionsWithBodies.back(); 2760 FunctionsWithBodies.pop_back(); 2761 2762 // Save the current stream state. 2763 uint64_t CurBit = Stream.GetCurrentBitNo(); 2764 assert( 2765 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2766 "Mismatch between VST and scanned function offsets"); 2767 DeferredFunctionInfo[Fn] = CurBit; 2768 2769 // Skip over the function block for now. 2770 if (Stream.SkipBlock()) 2771 return error("Invalid record"); 2772 return Error::success(); 2773 } 2774 2775 Error BitcodeReader::globalCleanup() { 2776 // Patch the initializers for globals and aliases up. 2777 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2778 return Err; 2779 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2780 return error("Malformed global initializer set"); 2781 2782 // Look for intrinsic functions which need to be upgraded at some point 2783 for (Function &F : *TheModule) { 2784 MDLoader->upgradeDebugIntrinsics(F); 2785 Function *NewFn; 2786 if (UpgradeIntrinsicFunction(&F, NewFn)) 2787 UpgradedIntrinsics[&F] = NewFn; 2788 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2789 // Some types could be renamed during loading if several modules are 2790 // loaded in the same LLVMContext (LTO scenario). In this case we should 2791 // remangle intrinsics names as well. 2792 RemangledIntrinsics[&F] = Remangled.getValue(); 2793 } 2794 2795 // Look for global variables which need to be renamed. 2796 for (GlobalVariable &GV : TheModule->globals()) 2797 UpgradeGlobalVariable(&GV); 2798 2799 // Force deallocation of memory for these vectors to favor the client that 2800 // want lazy deserialization. 2801 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2802 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2803 IndirectSymbolInits); 2804 return Error::success(); 2805 } 2806 2807 /// Support for lazy parsing of function bodies. This is required if we 2808 /// either have an old bitcode file without a VST forward declaration record, 2809 /// or if we have an anonymous function being materialized, since anonymous 2810 /// functions do not have a name and are therefore not in the VST. 2811 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2812 Stream.JumpToBit(NextUnreadBit); 2813 2814 if (Stream.AtEndOfStream()) 2815 return error("Could not find function in stream"); 2816 2817 if (!SeenFirstFunctionBody) 2818 return error("Trying to materialize functions before seeing function blocks"); 2819 2820 // An old bitcode file with the symbol table at the end would have 2821 // finished the parse greedily. 2822 assert(SeenValueSymbolTable); 2823 2824 SmallVector<uint64_t, 64> Record; 2825 2826 while (true) { 2827 BitstreamEntry Entry = Stream.advance(); 2828 switch (Entry.Kind) { 2829 default: 2830 return error("Expect SubBlock"); 2831 case BitstreamEntry::SubBlock: 2832 switch (Entry.ID) { 2833 default: 2834 return error("Expect function block"); 2835 case bitc::FUNCTION_BLOCK_ID: 2836 if (Error Err = rememberAndSkipFunctionBody()) 2837 return Err; 2838 NextUnreadBit = Stream.GetCurrentBitNo(); 2839 return Error::success(); 2840 } 2841 } 2842 } 2843 } 2844 2845 bool BitcodeReaderBase::readBlockInfo() { 2846 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2847 if (!NewBlockInfo) 2848 return true; 2849 BlockInfo = std::move(*NewBlockInfo); 2850 return false; 2851 } 2852 2853 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2854 // v1: [selection_kind, name] 2855 // v2: [strtab_offset, strtab_size, selection_kind] 2856 StringRef Name; 2857 std::tie(Name, Record) = readNameFromStrtab(Record); 2858 2859 if (Record.empty()) 2860 return error("Invalid record"); 2861 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2862 std::string OldFormatName; 2863 if (!UseStrtab) { 2864 if (Record.size() < 2) 2865 return error("Invalid record"); 2866 unsigned ComdatNameSize = Record[1]; 2867 OldFormatName.reserve(ComdatNameSize); 2868 for (unsigned i = 0; i != ComdatNameSize; ++i) 2869 OldFormatName += (char)Record[2 + i]; 2870 Name = OldFormatName; 2871 } 2872 Comdat *C = TheModule->getOrInsertComdat(Name); 2873 C->setSelectionKind(SK); 2874 ComdatList.push_back(C); 2875 return Error::success(); 2876 } 2877 2878 static void inferDSOLocal(GlobalValue *GV) { 2879 // infer dso_local from linkage and visibility if it is not encoded. 2880 if (GV->hasLocalLinkage() || 2881 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2882 GV->setDSOLocal(true); 2883 } 2884 2885 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2886 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2887 // visibility, threadlocal, unnamed_addr, externally_initialized, 2888 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2889 // v2: [strtab_offset, strtab_size, v1] 2890 StringRef Name; 2891 std::tie(Name, Record) = readNameFromStrtab(Record); 2892 2893 if (Record.size() < 6) 2894 return error("Invalid record"); 2895 Type *Ty = getTypeByID(Record[0]); 2896 if (!Ty) 2897 return error("Invalid record"); 2898 bool isConstant = Record[1] & 1; 2899 bool explicitType = Record[1] & 2; 2900 unsigned AddressSpace; 2901 if (explicitType) { 2902 AddressSpace = Record[1] >> 2; 2903 } else { 2904 if (!Ty->isPointerTy()) 2905 return error("Invalid type for value"); 2906 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2907 Ty = cast<PointerType>(Ty)->getElementType(); 2908 } 2909 2910 uint64_t RawLinkage = Record[3]; 2911 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2912 unsigned Alignment; 2913 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2914 return Err; 2915 std::string Section; 2916 if (Record[5]) { 2917 if (Record[5] - 1 >= SectionTable.size()) 2918 return error("Invalid ID"); 2919 Section = SectionTable[Record[5] - 1]; 2920 } 2921 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2922 // Local linkage must have default visibility. 2923 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2924 // FIXME: Change to an error if non-default in 4.0. 2925 Visibility = getDecodedVisibility(Record[6]); 2926 2927 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2928 if (Record.size() > 7) 2929 TLM = getDecodedThreadLocalMode(Record[7]); 2930 2931 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2932 if (Record.size() > 8) 2933 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2934 2935 bool ExternallyInitialized = false; 2936 if (Record.size() > 9) 2937 ExternallyInitialized = Record[9]; 2938 2939 GlobalVariable *NewGV = 2940 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2941 nullptr, TLM, AddressSpace, ExternallyInitialized); 2942 NewGV->setAlignment(Alignment); 2943 if (!Section.empty()) 2944 NewGV->setSection(Section); 2945 NewGV->setVisibility(Visibility); 2946 NewGV->setUnnamedAddr(UnnamedAddr); 2947 2948 if (Record.size() > 10) 2949 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2950 else 2951 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2952 2953 ValueList.push_back(NewGV); 2954 2955 // Remember which value to use for the global initializer. 2956 if (unsigned InitID = Record[2]) 2957 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2958 2959 if (Record.size() > 11) { 2960 if (unsigned ComdatID = Record[11]) { 2961 if (ComdatID > ComdatList.size()) 2962 return error("Invalid global variable comdat ID"); 2963 NewGV->setComdat(ComdatList[ComdatID - 1]); 2964 } 2965 } else if (hasImplicitComdat(RawLinkage)) { 2966 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2967 } 2968 2969 if (Record.size() > 12) { 2970 auto AS = getAttributes(Record[12]).getFnAttributes(); 2971 NewGV->setAttributes(AS); 2972 } 2973 2974 if (Record.size() > 13) { 2975 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2976 } 2977 inferDSOLocal(NewGV); 2978 2979 return Error::success(); 2980 } 2981 2982 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2983 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2984 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2985 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2986 // v2: [strtab_offset, strtab_size, v1] 2987 StringRef Name; 2988 std::tie(Name, Record) = readNameFromStrtab(Record); 2989 2990 if (Record.size() < 8) 2991 return error("Invalid record"); 2992 Type *Ty = getTypeByID(Record[0]); 2993 if (!Ty) 2994 return error("Invalid record"); 2995 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2996 Ty = PTy->getElementType(); 2997 auto *FTy = dyn_cast<FunctionType>(Ty); 2998 if (!FTy) 2999 return error("Invalid type for value"); 3000 auto CC = static_cast<CallingConv::ID>(Record[1]); 3001 if (CC & ~CallingConv::MaxID) 3002 return error("Invalid calling convention ID"); 3003 3004 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3005 if (Record.size() > 16) 3006 AddrSpace = Record[16]; 3007 3008 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3009 AddrSpace, Name, TheModule); 3010 3011 Func->setCallingConv(CC); 3012 bool isProto = Record[2]; 3013 uint64_t RawLinkage = Record[3]; 3014 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3015 Func->setAttributes(getAttributes(Record[4])); 3016 3017 unsigned Alignment; 3018 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3019 return Err; 3020 Func->setAlignment(Alignment); 3021 if (Record[6]) { 3022 if (Record[6] - 1 >= SectionTable.size()) 3023 return error("Invalid ID"); 3024 Func->setSection(SectionTable[Record[6] - 1]); 3025 } 3026 // Local linkage must have default visibility. 3027 if (!Func->hasLocalLinkage()) 3028 // FIXME: Change to an error if non-default in 4.0. 3029 Func->setVisibility(getDecodedVisibility(Record[7])); 3030 if (Record.size() > 8 && Record[8]) { 3031 if (Record[8] - 1 >= GCTable.size()) 3032 return error("Invalid ID"); 3033 Func->setGC(GCTable[Record[8] - 1]); 3034 } 3035 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3036 if (Record.size() > 9) 3037 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3038 Func->setUnnamedAddr(UnnamedAddr); 3039 if (Record.size() > 10 && Record[10] != 0) 3040 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3041 3042 if (Record.size() > 11) 3043 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3044 else 3045 upgradeDLLImportExportLinkage(Func, RawLinkage); 3046 3047 if (Record.size() > 12) { 3048 if (unsigned ComdatID = Record[12]) { 3049 if (ComdatID > ComdatList.size()) 3050 return error("Invalid function comdat ID"); 3051 Func->setComdat(ComdatList[ComdatID - 1]); 3052 } 3053 } else if (hasImplicitComdat(RawLinkage)) { 3054 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3055 } 3056 3057 if (Record.size() > 13 && Record[13] != 0) 3058 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3059 3060 if (Record.size() > 14 && Record[14] != 0) 3061 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3062 3063 if (Record.size() > 15) { 3064 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3065 } 3066 inferDSOLocal(Func); 3067 3068 ValueList.push_back(Func); 3069 3070 // If this is a function with a body, remember the prototype we are 3071 // creating now, so that we can match up the body with them later. 3072 if (!isProto) { 3073 Func->setIsMaterializable(true); 3074 FunctionsWithBodies.push_back(Func); 3075 DeferredFunctionInfo[Func] = 0; 3076 } 3077 return Error::success(); 3078 } 3079 3080 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3081 unsigned BitCode, ArrayRef<uint64_t> Record) { 3082 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3083 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3084 // dllstorageclass, threadlocal, unnamed_addr, 3085 // preemption specifier] (name in VST) 3086 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3087 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3088 // preemption specifier] (name in VST) 3089 // v2: [strtab_offset, strtab_size, v1] 3090 StringRef Name; 3091 std::tie(Name, Record) = readNameFromStrtab(Record); 3092 3093 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3094 if (Record.size() < (3 + (unsigned)NewRecord)) 3095 return error("Invalid record"); 3096 unsigned OpNum = 0; 3097 Type *Ty = getTypeByID(Record[OpNum++]); 3098 if (!Ty) 3099 return error("Invalid record"); 3100 3101 unsigned AddrSpace; 3102 if (!NewRecord) { 3103 auto *PTy = dyn_cast<PointerType>(Ty); 3104 if (!PTy) 3105 return error("Invalid type for value"); 3106 Ty = PTy->getElementType(); 3107 AddrSpace = PTy->getAddressSpace(); 3108 } else { 3109 AddrSpace = Record[OpNum++]; 3110 } 3111 3112 auto Val = Record[OpNum++]; 3113 auto Linkage = Record[OpNum++]; 3114 GlobalIndirectSymbol *NewGA; 3115 if (BitCode == bitc::MODULE_CODE_ALIAS || 3116 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3117 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3118 TheModule); 3119 else 3120 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3121 nullptr, TheModule); 3122 // Old bitcode files didn't have visibility field. 3123 // Local linkage must have default visibility. 3124 if (OpNum != Record.size()) { 3125 auto VisInd = OpNum++; 3126 if (!NewGA->hasLocalLinkage()) 3127 // FIXME: Change to an error if non-default in 4.0. 3128 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3129 } 3130 if (BitCode == bitc::MODULE_CODE_ALIAS || 3131 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3132 if (OpNum != Record.size()) 3133 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3134 else 3135 upgradeDLLImportExportLinkage(NewGA, Linkage); 3136 if (OpNum != Record.size()) 3137 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3138 if (OpNum != Record.size()) 3139 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3140 } 3141 if (OpNum != Record.size()) 3142 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3143 inferDSOLocal(NewGA); 3144 3145 ValueList.push_back(NewGA); 3146 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3147 return Error::success(); 3148 } 3149 3150 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3151 bool ShouldLazyLoadMetadata) { 3152 if (ResumeBit) 3153 Stream.JumpToBit(ResumeBit); 3154 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3155 return error("Invalid record"); 3156 3157 SmallVector<uint64_t, 64> Record; 3158 3159 // Read all the records for this module. 3160 while (true) { 3161 BitstreamEntry Entry = Stream.advance(); 3162 3163 switch (Entry.Kind) { 3164 case BitstreamEntry::Error: 3165 return error("Malformed block"); 3166 case BitstreamEntry::EndBlock: 3167 return globalCleanup(); 3168 3169 case BitstreamEntry::SubBlock: 3170 switch (Entry.ID) { 3171 default: // Skip unknown content. 3172 if (Stream.SkipBlock()) 3173 return error("Invalid record"); 3174 break; 3175 case bitc::BLOCKINFO_BLOCK_ID: 3176 if (readBlockInfo()) 3177 return error("Malformed block"); 3178 break; 3179 case bitc::PARAMATTR_BLOCK_ID: 3180 if (Error Err = parseAttributeBlock()) 3181 return Err; 3182 break; 3183 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3184 if (Error Err = parseAttributeGroupBlock()) 3185 return Err; 3186 break; 3187 case bitc::TYPE_BLOCK_ID_NEW: 3188 if (Error Err = parseTypeTable()) 3189 return Err; 3190 break; 3191 case bitc::VALUE_SYMTAB_BLOCK_ID: 3192 if (!SeenValueSymbolTable) { 3193 // Either this is an old form VST without function index and an 3194 // associated VST forward declaration record (which would have caused 3195 // the VST to be jumped to and parsed before it was encountered 3196 // normally in the stream), or there were no function blocks to 3197 // trigger an earlier parsing of the VST. 3198 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3199 if (Error Err = parseValueSymbolTable()) 3200 return Err; 3201 SeenValueSymbolTable = true; 3202 } else { 3203 // We must have had a VST forward declaration record, which caused 3204 // the parser to jump to and parse the VST earlier. 3205 assert(VSTOffset > 0); 3206 if (Stream.SkipBlock()) 3207 return error("Invalid record"); 3208 } 3209 break; 3210 case bitc::CONSTANTS_BLOCK_ID: 3211 if (Error Err = parseConstants()) 3212 return Err; 3213 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3214 return Err; 3215 break; 3216 case bitc::METADATA_BLOCK_ID: 3217 if (ShouldLazyLoadMetadata) { 3218 if (Error Err = rememberAndSkipMetadata()) 3219 return Err; 3220 break; 3221 } 3222 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3223 if (Error Err = MDLoader->parseModuleMetadata()) 3224 return Err; 3225 break; 3226 case bitc::METADATA_KIND_BLOCK_ID: 3227 if (Error Err = MDLoader->parseMetadataKinds()) 3228 return Err; 3229 break; 3230 case bitc::FUNCTION_BLOCK_ID: 3231 // If this is the first function body we've seen, reverse the 3232 // FunctionsWithBodies list. 3233 if (!SeenFirstFunctionBody) { 3234 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3235 if (Error Err = globalCleanup()) 3236 return Err; 3237 SeenFirstFunctionBody = true; 3238 } 3239 3240 if (VSTOffset > 0) { 3241 // If we have a VST forward declaration record, make sure we 3242 // parse the VST now if we haven't already. It is needed to 3243 // set up the DeferredFunctionInfo vector for lazy reading. 3244 if (!SeenValueSymbolTable) { 3245 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3246 return Err; 3247 SeenValueSymbolTable = true; 3248 // Fall through so that we record the NextUnreadBit below. 3249 // This is necessary in case we have an anonymous function that 3250 // is later materialized. Since it will not have a VST entry we 3251 // need to fall back to the lazy parse to find its offset. 3252 } else { 3253 // If we have a VST forward declaration record, but have already 3254 // parsed the VST (just above, when the first function body was 3255 // encountered here), then we are resuming the parse after 3256 // materializing functions. The ResumeBit points to the 3257 // start of the last function block recorded in the 3258 // DeferredFunctionInfo map. Skip it. 3259 if (Stream.SkipBlock()) 3260 return error("Invalid record"); 3261 continue; 3262 } 3263 } 3264 3265 // Support older bitcode files that did not have the function 3266 // index in the VST, nor a VST forward declaration record, as 3267 // well as anonymous functions that do not have VST entries. 3268 // Build the DeferredFunctionInfo vector on the fly. 3269 if (Error Err = rememberAndSkipFunctionBody()) 3270 return Err; 3271 3272 // Suspend parsing when we reach the function bodies. Subsequent 3273 // materialization calls will resume it when necessary. If the bitcode 3274 // file is old, the symbol table will be at the end instead and will not 3275 // have been seen yet. In this case, just finish the parse now. 3276 if (SeenValueSymbolTable) { 3277 NextUnreadBit = Stream.GetCurrentBitNo(); 3278 // After the VST has been parsed, we need to make sure intrinsic name 3279 // are auto-upgraded. 3280 return globalCleanup(); 3281 } 3282 break; 3283 case bitc::USELIST_BLOCK_ID: 3284 if (Error Err = parseUseLists()) 3285 return Err; 3286 break; 3287 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3288 if (Error Err = parseOperandBundleTags()) 3289 return Err; 3290 break; 3291 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3292 if (Error Err = parseSyncScopeNames()) 3293 return Err; 3294 break; 3295 } 3296 continue; 3297 3298 case BitstreamEntry::Record: 3299 // The interesting case. 3300 break; 3301 } 3302 3303 // Read a record. 3304 auto BitCode = Stream.readRecord(Entry.ID, Record); 3305 switch (BitCode) { 3306 default: break; // Default behavior, ignore unknown content. 3307 case bitc::MODULE_CODE_VERSION: { 3308 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3309 if (!VersionOrErr) 3310 return VersionOrErr.takeError(); 3311 UseRelativeIDs = *VersionOrErr >= 1; 3312 break; 3313 } 3314 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3315 std::string S; 3316 if (convertToString(Record, 0, S)) 3317 return error("Invalid record"); 3318 TheModule->setTargetTriple(S); 3319 break; 3320 } 3321 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3322 std::string S; 3323 if (convertToString(Record, 0, S)) 3324 return error("Invalid record"); 3325 TheModule->setDataLayout(S); 3326 break; 3327 } 3328 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3329 std::string S; 3330 if (convertToString(Record, 0, S)) 3331 return error("Invalid record"); 3332 TheModule->setModuleInlineAsm(S); 3333 break; 3334 } 3335 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3336 // FIXME: Remove in 4.0. 3337 std::string S; 3338 if (convertToString(Record, 0, S)) 3339 return error("Invalid record"); 3340 // Ignore value. 3341 break; 3342 } 3343 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3344 std::string S; 3345 if (convertToString(Record, 0, S)) 3346 return error("Invalid record"); 3347 SectionTable.push_back(S); 3348 break; 3349 } 3350 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3351 std::string S; 3352 if (convertToString(Record, 0, S)) 3353 return error("Invalid record"); 3354 GCTable.push_back(S); 3355 break; 3356 } 3357 case bitc::MODULE_CODE_COMDAT: 3358 if (Error Err = parseComdatRecord(Record)) 3359 return Err; 3360 break; 3361 case bitc::MODULE_CODE_GLOBALVAR: 3362 if (Error Err = parseGlobalVarRecord(Record)) 3363 return Err; 3364 break; 3365 case bitc::MODULE_CODE_FUNCTION: 3366 if (Error Err = parseFunctionRecord(Record)) 3367 return Err; 3368 break; 3369 case bitc::MODULE_CODE_IFUNC: 3370 case bitc::MODULE_CODE_ALIAS: 3371 case bitc::MODULE_CODE_ALIAS_OLD: 3372 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3373 return Err; 3374 break; 3375 /// MODULE_CODE_VSTOFFSET: [offset] 3376 case bitc::MODULE_CODE_VSTOFFSET: 3377 if (Record.size() < 1) 3378 return error("Invalid record"); 3379 // Note that we subtract 1 here because the offset is relative to one word 3380 // before the start of the identification or module block, which was 3381 // historically always the start of the regular bitcode header. 3382 VSTOffset = Record[0] - 1; 3383 break; 3384 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3385 case bitc::MODULE_CODE_SOURCE_FILENAME: 3386 SmallString<128> ValueName; 3387 if (convertToString(Record, 0, ValueName)) 3388 return error("Invalid record"); 3389 TheModule->setSourceFileName(ValueName); 3390 break; 3391 } 3392 Record.clear(); 3393 } 3394 } 3395 3396 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3397 bool IsImporting) { 3398 TheModule = M; 3399 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3400 [&](unsigned ID) { return getTypeByID(ID); }); 3401 return parseModule(0, ShouldLazyLoadMetadata); 3402 } 3403 3404 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3405 if (!isa<PointerType>(PtrType)) 3406 return error("Load/Store operand is not a pointer type"); 3407 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3408 3409 if (ValType && ValType != ElemType) 3410 return error("Explicit load/store type does not match pointee " 3411 "type of pointer operand"); 3412 if (!PointerType::isLoadableOrStorableType(ElemType)) 3413 return error("Cannot load/store from pointer"); 3414 return Error::success(); 3415 } 3416 3417 /// Lazily parse the specified function body block. 3418 Error BitcodeReader::parseFunctionBody(Function *F) { 3419 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3420 return error("Invalid record"); 3421 3422 // Unexpected unresolved metadata when parsing function. 3423 if (MDLoader->hasFwdRefs()) 3424 return error("Invalid function metadata: incoming forward references"); 3425 3426 InstructionList.clear(); 3427 unsigned ModuleValueListSize = ValueList.size(); 3428 unsigned ModuleMDLoaderSize = MDLoader->size(); 3429 3430 // Add all the function arguments to the value table. 3431 for (Argument &I : F->args()) 3432 ValueList.push_back(&I); 3433 3434 unsigned NextValueNo = ValueList.size(); 3435 BasicBlock *CurBB = nullptr; 3436 unsigned CurBBNo = 0; 3437 3438 DebugLoc LastLoc; 3439 auto getLastInstruction = [&]() -> Instruction * { 3440 if (CurBB && !CurBB->empty()) 3441 return &CurBB->back(); 3442 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3443 !FunctionBBs[CurBBNo - 1]->empty()) 3444 return &FunctionBBs[CurBBNo - 1]->back(); 3445 return nullptr; 3446 }; 3447 3448 std::vector<OperandBundleDef> OperandBundles; 3449 3450 // Read all the records. 3451 SmallVector<uint64_t, 64> Record; 3452 3453 while (true) { 3454 BitstreamEntry Entry = Stream.advance(); 3455 3456 switch (Entry.Kind) { 3457 case BitstreamEntry::Error: 3458 return error("Malformed block"); 3459 case BitstreamEntry::EndBlock: 3460 goto OutOfRecordLoop; 3461 3462 case BitstreamEntry::SubBlock: 3463 switch (Entry.ID) { 3464 default: // Skip unknown content. 3465 if (Stream.SkipBlock()) 3466 return error("Invalid record"); 3467 break; 3468 case bitc::CONSTANTS_BLOCK_ID: 3469 if (Error Err = parseConstants()) 3470 return Err; 3471 NextValueNo = ValueList.size(); 3472 break; 3473 case bitc::VALUE_SYMTAB_BLOCK_ID: 3474 if (Error Err = parseValueSymbolTable()) 3475 return Err; 3476 break; 3477 case bitc::METADATA_ATTACHMENT_ID: 3478 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3479 return Err; 3480 break; 3481 case bitc::METADATA_BLOCK_ID: 3482 assert(DeferredMetadataInfo.empty() && 3483 "Must read all module-level metadata before function-level"); 3484 if (Error Err = MDLoader->parseFunctionMetadata()) 3485 return Err; 3486 break; 3487 case bitc::USELIST_BLOCK_ID: 3488 if (Error Err = parseUseLists()) 3489 return Err; 3490 break; 3491 } 3492 continue; 3493 3494 case BitstreamEntry::Record: 3495 // The interesting case. 3496 break; 3497 } 3498 3499 // Read a record. 3500 Record.clear(); 3501 Instruction *I = nullptr; 3502 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3503 switch (BitCode) { 3504 default: // Default behavior: reject 3505 return error("Invalid value"); 3506 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3507 if (Record.size() < 1 || Record[0] == 0) 3508 return error("Invalid record"); 3509 // Create all the basic blocks for the function. 3510 FunctionBBs.resize(Record[0]); 3511 3512 // See if anything took the address of blocks in this function. 3513 auto BBFRI = BasicBlockFwdRefs.find(F); 3514 if (BBFRI == BasicBlockFwdRefs.end()) { 3515 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3516 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3517 } else { 3518 auto &BBRefs = BBFRI->second; 3519 // Check for invalid basic block references. 3520 if (BBRefs.size() > FunctionBBs.size()) 3521 return error("Invalid ID"); 3522 assert(!BBRefs.empty() && "Unexpected empty array"); 3523 assert(!BBRefs.front() && "Invalid reference to entry block"); 3524 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3525 ++I) 3526 if (I < RE && BBRefs[I]) { 3527 BBRefs[I]->insertInto(F); 3528 FunctionBBs[I] = BBRefs[I]; 3529 } else { 3530 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3531 } 3532 3533 // Erase from the table. 3534 BasicBlockFwdRefs.erase(BBFRI); 3535 } 3536 3537 CurBB = FunctionBBs[0]; 3538 continue; 3539 } 3540 3541 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3542 // This record indicates that the last instruction is at the same 3543 // location as the previous instruction with a location. 3544 I = getLastInstruction(); 3545 3546 if (!I) 3547 return error("Invalid record"); 3548 I->setDebugLoc(LastLoc); 3549 I = nullptr; 3550 continue; 3551 3552 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3553 I = getLastInstruction(); 3554 if (!I || Record.size() < 4) 3555 return error("Invalid record"); 3556 3557 unsigned Line = Record[0], Col = Record[1]; 3558 unsigned ScopeID = Record[2], IAID = Record[3]; 3559 bool isImplicitCode = Record.size() == 5 && Record[4]; 3560 3561 MDNode *Scope = nullptr, *IA = nullptr; 3562 if (ScopeID) { 3563 Scope = dyn_cast_or_null<MDNode>( 3564 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3565 if (!Scope) 3566 return error("Invalid record"); 3567 } 3568 if (IAID) { 3569 IA = dyn_cast_or_null<MDNode>( 3570 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3571 if (!IA) 3572 return error("Invalid record"); 3573 } 3574 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3575 I->setDebugLoc(LastLoc); 3576 I = nullptr; 3577 continue; 3578 } 3579 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3580 unsigned OpNum = 0; 3581 Value *LHS; 3582 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3583 OpNum+1 > Record.size()) 3584 return error("Invalid record"); 3585 3586 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3587 if (Opc == -1) 3588 return error("Invalid record"); 3589 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3590 InstructionList.push_back(I); 3591 if (OpNum < Record.size()) { 3592 if (isa<FPMathOperator>(I)) { 3593 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3594 if (FMF.any()) 3595 I->setFastMathFlags(FMF); 3596 } 3597 } 3598 break; 3599 } 3600 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3601 unsigned OpNum = 0; 3602 Value *LHS, *RHS; 3603 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3604 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3605 OpNum+1 > Record.size()) 3606 return error("Invalid record"); 3607 3608 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3609 if (Opc == -1) 3610 return error("Invalid record"); 3611 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3612 InstructionList.push_back(I); 3613 if (OpNum < Record.size()) { 3614 if (Opc == Instruction::Add || 3615 Opc == Instruction::Sub || 3616 Opc == Instruction::Mul || 3617 Opc == Instruction::Shl) { 3618 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3619 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3620 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3621 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3622 } else if (Opc == Instruction::SDiv || 3623 Opc == Instruction::UDiv || 3624 Opc == Instruction::LShr || 3625 Opc == Instruction::AShr) { 3626 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3627 cast<BinaryOperator>(I)->setIsExact(true); 3628 } else if (isa<FPMathOperator>(I)) { 3629 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3630 if (FMF.any()) 3631 I->setFastMathFlags(FMF); 3632 } 3633 3634 } 3635 break; 3636 } 3637 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3638 unsigned OpNum = 0; 3639 Value *Op; 3640 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3641 OpNum+2 != Record.size()) 3642 return error("Invalid record"); 3643 3644 Type *ResTy = getTypeByID(Record[OpNum]); 3645 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3646 if (Opc == -1 || !ResTy) 3647 return error("Invalid record"); 3648 Instruction *Temp = nullptr; 3649 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3650 if (Temp) { 3651 InstructionList.push_back(Temp); 3652 CurBB->getInstList().push_back(Temp); 3653 } 3654 } else { 3655 auto CastOp = (Instruction::CastOps)Opc; 3656 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3657 return error("Invalid cast"); 3658 I = CastInst::Create(CastOp, Op, ResTy); 3659 } 3660 InstructionList.push_back(I); 3661 break; 3662 } 3663 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3664 case bitc::FUNC_CODE_INST_GEP_OLD: 3665 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3666 unsigned OpNum = 0; 3667 3668 Type *Ty; 3669 bool InBounds; 3670 3671 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3672 InBounds = Record[OpNum++]; 3673 Ty = getTypeByID(Record[OpNum++]); 3674 } else { 3675 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3676 Ty = nullptr; 3677 } 3678 3679 Value *BasePtr; 3680 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3681 return error("Invalid record"); 3682 3683 if (!Ty) 3684 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3685 ->getElementType(); 3686 else if (Ty != 3687 cast<PointerType>(BasePtr->getType()->getScalarType()) 3688 ->getElementType()) 3689 return error( 3690 "Explicit gep type does not match pointee type of pointer operand"); 3691 3692 SmallVector<Value*, 16> GEPIdx; 3693 while (OpNum != Record.size()) { 3694 Value *Op; 3695 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3696 return error("Invalid record"); 3697 GEPIdx.push_back(Op); 3698 } 3699 3700 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3701 3702 InstructionList.push_back(I); 3703 if (InBounds) 3704 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3705 break; 3706 } 3707 3708 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3709 // EXTRACTVAL: [opty, opval, n x indices] 3710 unsigned OpNum = 0; 3711 Value *Agg; 3712 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3713 return error("Invalid record"); 3714 3715 unsigned RecSize = Record.size(); 3716 if (OpNum == RecSize) 3717 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3718 3719 SmallVector<unsigned, 4> EXTRACTVALIdx; 3720 Type *CurTy = Agg->getType(); 3721 for (; OpNum != RecSize; ++OpNum) { 3722 bool IsArray = CurTy->isArrayTy(); 3723 bool IsStruct = CurTy->isStructTy(); 3724 uint64_t Index = Record[OpNum]; 3725 3726 if (!IsStruct && !IsArray) 3727 return error("EXTRACTVAL: Invalid type"); 3728 if ((unsigned)Index != Index) 3729 return error("Invalid value"); 3730 if (IsStruct && Index >= CurTy->getStructNumElements()) 3731 return error("EXTRACTVAL: Invalid struct index"); 3732 if (IsArray && Index >= CurTy->getArrayNumElements()) 3733 return error("EXTRACTVAL: Invalid array index"); 3734 EXTRACTVALIdx.push_back((unsigned)Index); 3735 3736 if (IsStruct) 3737 CurTy = CurTy->getStructElementType(Index); 3738 else 3739 CurTy = CurTy->getArrayElementType(); 3740 } 3741 3742 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3743 InstructionList.push_back(I); 3744 break; 3745 } 3746 3747 case bitc::FUNC_CODE_INST_INSERTVAL: { 3748 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3749 unsigned OpNum = 0; 3750 Value *Agg; 3751 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3752 return error("Invalid record"); 3753 Value *Val; 3754 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3755 return error("Invalid record"); 3756 3757 unsigned RecSize = Record.size(); 3758 if (OpNum == RecSize) 3759 return error("INSERTVAL: Invalid instruction with 0 indices"); 3760 3761 SmallVector<unsigned, 4> INSERTVALIdx; 3762 Type *CurTy = Agg->getType(); 3763 for (; OpNum != RecSize; ++OpNum) { 3764 bool IsArray = CurTy->isArrayTy(); 3765 bool IsStruct = CurTy->isStructTy(); 3766 uint64_t Index = Record[OpNum]; 3767 3768 if (!IsStruct && !IsArray) 3769 return error("INSERTVAL: Invalid type"); 3770 if ((unsigned)Index != Index) 3771 return error("Invalid value"); 3772 if (IsStruct && Index >= CurTy->getStructNumElements()) 3773 return error("INSERTVAL: Invalid struct index"); 3774 if (IsArray && Index >= CurTy->getArrayNumElements()) 3775 return error("INSERTVAL: Invalid array index"); 3776 3777 INSERTVALIdx.push_back((unsigned)Index); 3778 if (IsStruct) 3779 CurTy = CurTy->getStructElementType(Index); 3780 else 3781 CurTy = CurTy->getArrayElementType(); 3782 } 3783 3784 if (CurTy != Val->getType()) 3785 return error("Inserted value type doesn't match aggregate type"); 3786 3787 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3788 InstructionList.push_back(I); 3789 break; 3790 } 3791 3792 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3793 // obsolete form of select 3794 // handles select i1 ... in old bitcode 3795 unsigned OpNum = 0; 3796 Value *TrueVal, *FalseVal, *Cond; 3797 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3798 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3799 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3800 return error("Invalid record"); 3801 3802 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3803 InstructionList.push_back(I); 3804 break; 3805 } 3806 3807 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3808 // new form of select 3809 // handles select i1 or select [N x i1] 3810 unsigned OpNum = 0; 3811 Value *TrueVal, *FalseVal, *Cond; 3812 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3813 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3814 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3815 return error("Invalid record"); 3816 3817 // select condition can be either i1 or [N x i1] 3818 if (VectorType* vector_type = 3819 dyn_cast<VectorType>(Cond->getType())) { 3820 // expect <n x i1> 3821 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3822 return error("Invalid type for value"); 3823 } else { 3824 // expect i1 3825 if (Cond->getType() != Type::getInt1Ty(Context)) 3826 return error("Invalid type for value"); 3827 } 3828 3829 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3830 InstructionList.push_back(I); 3831 break; 3832 } 3833 3834 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3835 unsigned OpNum = 0; 3836 Value *Vec, *Idx; 3837 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3838 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3839 return error("Invalid record"); 3840 if (!Vec->getType()->isVectorTy()) 3841 return error("Invalid type for value"); 3842 I = ExtractElementInst::Create(Vec, Idx); 3843 InstructionList.push_back(I); 3844 break; 3845 } 3846 3847 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3848 unsigned OpNum = 0; 3849 Value *Vec, *Elt, *Idx; 3850 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3851 return error("Invalid record"); 3852 if (!Vec->getType()->isVectorTy()) 3853 return error("Invalid type for value"); 3854 if (popValue(Record, OpNum, NextValueNo, 3855 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3856 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3857 return error("Invalid record"); 3858 I = InsertElementInst::Create(Vec, Elt, Idx); 3859 InstructionList.push_back(I); 3860 break; 3861 } 3862 3863 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3864 unsigned OpNum = 0; 3865 Value *Vec1, *Vec2, *Mask; 3866 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3867 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3868 return error("Invalid record"); 3869 3870 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3871 return error("Invalid record"); 3872 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3873 return error("Invalid type for value"); 3874 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3875 InstructionList.push_back(I); 3876 break; 3877 } 3878 3879 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3880 // Old form of ICmp/FCmp returning bool 3881 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3882 // both legal on vectors but had different behaviour. 3883 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3884 // FCmp/ICmp returning bool or vector of bool 3885 3886 unsigned OpNum = 0; 3887 Value *LHS, *RHS; 3888 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3889 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3890 return error("Invalid record"); 3891 3892 unsigned PredVal = Record[OpNum]; 3893 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3894 FastMathFlags FMF; 3895 if (IsFP && Record.size() > OpNum+1) 3896 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3897 3898 if (OpNum+1 != Record.size()) 3899 return error("Invalid record"); 3900 3901 if (LHS->getType()->isFPOrFPVectorTy()) 3902 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3903 else 3904 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3905 3906 if (FMF.any()) 3907 I->setFastMathFlags(FMF); 3908 InstructionList.push_back(I); 3909 break; 3910 } 3911 3912 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3913 { 3914 unsigned Size = Record.size(); 3915 if (Size == 0) { 3916 I = ReturnInst::Create(Context); 3917 InstructionList.push_back(I); 3918 break; 3919 } 3920 3921 unsigned OpNum = 0; 3922 Value *Op = nullptr; 3923 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3924 return error("Invalid record"); 3925 if (OpNum != Record.size()) 3926 return error("Invalid record"); 3927 3928 I = ReturnInst::Create(Context, Op); 3929 InstructionList.push_back(I); 3930 break; 3931 } 3932 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3933 if (Record.size() != 1 && Record.size() != 3) 3934 return error("Invalid record"); 3935 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3936 if (!TrueDest) 3937 return error("Invalid record"); 3938 3939 if (Record.size() == 1) { 3940 I = BranchInst::Create(TrueDest); 3941 InstructionList.push_back(I); 3942 } 3943 else { 3944 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3945 Value *Cond = getValue(Record, 2, NextValueNo, 3946 Type::getInt1Ty(Context)); 3947 if (!FalseDest || !Cond) 3948 return error("Invalid record"); 3949 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3950 InstructionList.push_back(I); 3951 } 3952 break; 3953 } 3954 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3955 if (Record.size() != 1 && Record.size() != 2) 3956 return error("Invalid record"); 3957 unsigned Idx = 0; 3958 Value *CleanupPad = 3959 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3960 if (!CleanupPad) 3961 return error("Invalid record"); 3962 BasicBlock *UnwindDest = nullptr; 3963 if (Record.size() == 2) { 3964 UnwindDest = getBasicBlock(Record[Idx++]); 3965 if (!UnwindDest) 3966 return error("Invalid record"); 3967 } 3968 3969 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3970 InstructionList.push_back(I); 3971 break; 3972 } 3973 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3974 if (Record.size() != 2) 3975 return error("Invalid record"); 3976 unsigned Idx = 0; 3977 Value *CatchPad = 3978 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3979 if (!CatchPad) 3980 return error("Invalid record"); 3981 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3982 if (!BB) 3983 return error("Invalid record"); 3984 3985 I = CatchReturnInst::Create(CatchPad, BB); 3986 InstructionList.push_back(I); 3987 break; 3988 } 3989 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3990 // We must have, at minimum, the outer scope and the number of arguments. 3991 if (Record.size() < 2) 3992 return error("Invalid record"); 3993 3994 unsigned Idx = 0; 3995 3996 Value *ParentPad = 3997 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3998 3999 unsigned NumHandlers = Record[Idx++]; 4000 4001 SmallVector<BasicBlock *, 2> Handlers; 4002 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4003 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4004 if (!BB) 4005 return error("Invalid record"); 4006 Handlers.push_back(BB); 4007 } 4008 4009 BasicBlock *UnwindDest = nullptr; 4010 if (Idx + 1 == Record.size()) { 4011 UnwindDest = getBasicBlock(Record[Idx++]); 4012 if (!UnwindDest) 4013 return error("Invalid record"); 4014 } 4015 4016 if (Record.size() != Idx) 4017 return error("Invalid record"); 4018 4019 auto *CatchSwitch = 4020 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4021 for (BasicBlock *Handler : Handlers) 4022 CatchSwitch->addHandler(Handler); 4023 I = CatchSwitch; 4024 InstructionList.push_back(I); 4025 break; 4026 } 4027 case bitc::FUNC_CODE_INST_CATCHPAD: 4028 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4029 // We must have, at minimum, the outer scope and the number of arguments. 4030 if (Record.size() < 2) 4031 return error("Invalid record"); 4032 4033 unsigned Idx = 0; 4034 4035 Value *ParentPad = 4036 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4037 4038 unsigned NumArgOperands = Record[Idx++]; 4039 4040 SmallVector<Value *, 2> Args; 4041 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4042 Value *Val; 4043 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4044 return error("Invalid record"); 4045 Args.push_back(Val); 4046 } 4047 4048 if (Record.size() != Idx) 4049 return error("Invalid record"); 4050 4051 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4052 I = CleanupPadInst::Create(ParentPad, Args); 4053 else 4054 I = CatchPadInst::Create(ParentPad, Args); 4055 InstructionList.push_back(I); 4056 break; 4057 } 4058 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4059 // Check magic 4060 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4061 // "New" SwitchInst format with case ranges. The changes to write this 4062 // format were reverted but we still recognize bitcode that uses it. 4063 // Hopefully someday we will have support for case ranges and can use 4064 // this format again. 4065 4066 Type *OpTy = getTypeByID(Record[1]); 4067 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4068 4069 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4070 BasicBlock *Default = getBasicBlock(Record[3]); 4071 if (!OpTy || !Cond || !Default) 4072 return error("Invalid record"); 4073 4074 unsigned NumCases = Record[4]; 4075 4076 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4077 InstructionList.push_back(SI); 4078 4079 unsigned CurIdx = 5; 4080 for (unsigned i = 0; i != NumCases; ++i) { 4081 SmallVector<ConstantInt*, 1> CaseVals; 4082 unsigned NumItems = Record[CurIdx++]; 4083 for (unsigned ci = 0; ci != NumItems; ++ci) { 4084 bool isSingleNumber = Record[CurIdx++]; 4085 4086 APInt Low; 4087 unsigned ActiveWords = 1; 4088 if (ValueBitWidth > 64) 4089 ActiveWords = Record[CurIdx++]; 4090 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4091 ValueBitWidth); 4092 CurIdx += ActiveWords; 4093 4094 if (!isSingleNumber) { 4095 ActiveWords = 1; 4096 if (ValueBitWidth > 64) 4097 ActiveWords = Record[CurIdx++]; 4098 APInt High = readWideAPInt( 4099 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4100 CurIdx += ActiveWords; 4101 4102 // FIXME: It is not clear whether values in the range should be 4103 // compared as signed or unsigned values. The partially 4104 // implemented changes that used this format in the past used 4105 // unsigned comparisons. 4106 for ( ; Low.ule(High); ++Low) 4107 CaseVals.push_back(ConstantInt::get(Context, Low)); 4108 } else 4109 CaseVals.push_back(ConstantInt::get(Context, Low)); 4110 } 4111 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4112 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4113 cve = CaseVals.end(); cvi != cve; ++cvi) 4114 SI->addCase(*cvi, DestBB); 4115 } 4116 I = SI; 4117 break; 4118 } 4119 4120 // Old SwitchInst format without case ranges. 4121 4122 if (Record.size() < 3 || (Record.size() & 1) == 0) 4123 return error("Invalid record"); 4124 Type *OpTy = getTypeByID(Record[0]); 4125 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4126 BasicBlock *Default = getBasicBlock(Record[2]); 4127 if (!OpTy || !Cond || !Default) 4128 return error("Invalid record"); 4129 unsigned NumCases = (Record.size()-3)/2; 4130 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4131 InstructionList.push_back(SI); 4132 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4133 ConstantInt *CaseVal = 4134 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4135 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4136 if (!CaseVal || !DestBB) { 4137 delete SI; 4138 return error("Invalid record"); 4139 } 4140 SI->addCase(CaseVal, DestBB); 4141 } 4142 I = SI; 4143 break; 4144 } 4145 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4146 if (Record.size() < 2) 4147 return error("Invalid record"); 4148 Type *OpTy = getTypeByID(Record[0]); 4149 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4150 if (!OpTy || !Address) 4151 return error("Invalid record"); 4152 unsigned NumDests = Record.size()-2; 4153 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4154 InstructionList.push_back(IBI); 4155 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4156 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4157 IBI->addDestination(DestBB); 4158 } else { 4159 delete IBI; 4160 return error("Invalid record"); 4161 } 4162 } 4163 I = IBI; 4164 break; 4165 } 4166 4167 case bitc::FUNC_CODE_INST_INVOKE: { 4168 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4169 if (Record.size() < 4) 4170 return error("Invalid record"); 4171 unsigned OpNum = 0; 4172 AttributeList PAL = getAttributes(Record[OpNum++]); 4173 unsigned CCInfo = Record[OpNum++]; 4174 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4175 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4176 4177 FunctionType *FTy = nullptr; 4178 if (CCInfo >> 13 & 1 && 4179 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4180 return error("Explicit invoke type is not a function type"); 4181 4182 Value *Callee; 4183 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4184 return error("Invalid record"); 4185 4186 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4187 if (!CalleeTy) 4188 return error("Callee is not a pointer"); 4189 if (!FTy) { 4190 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4191 if (!FTy) 4192 return error("Callee is not of pointer to function type"); 4193 } else if (CalleeTy->getElementType() != FTy) 4194 return error("Explicit invoke type does not match pointee type of " 4195 "callee operand"); 4196 if (Record.size() < FTy->getNumParams() + OpNum) 4197 return error("Insufficient operands to call"); 4198 4199 SmallVector<Value*, 16> Ops; 4200 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4201 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4202 FTy->getParamType(i))); 4203 if (!Ops.back()) 4204 return error("Invalid record"); 4205 } 4206 4207 if (!FTy->isVarArg()) { 4208 if (Record.size() != OpNum) 4209 return error("Invalid record"); 4210 } else { 4211 // Read type/value pairs for varargs params. 4212 while (OpNum != Record.size()) { 4213 Value *Op; 4214 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4215 return error("Invalid record"); 4216 Ops.push_back(Op); 4217 } 4218 } 4219 4220 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4221 OperandBundles); 4222 OperandBundles.clear(); 4223 InstructionList.push_back(I); 4224 cast<InvokeInst>(I)->setCallingConv( 4225 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4226 cast<InvokeInst>(I)->setAttributes(PAL); 4227 break; 4228 } 4229 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4230 unsigned Idx = 0; 4231 Value *Val = nullptr; 4232 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4233 return error("Invalid record"); 4234 I = ResumeInst::Create(Val); 4235 InstructionList.push_back(I); 4236 break; 4237 } 4238 case bitc::FUNC_CODE_INST_CALLBR: { 4239 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4240 unsigned OpNum = 0; 4241 AttributeList PAL = getAttributes(Record[OpNum++]); 4242 unsigned CCInfo = Record[OpNum++]; 4243 4244 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4245 unsigned NumIndirectDests = Record[OpNum++]; 4246 SmallVector<BasicBlock *, 16> IndirectDests; 4247 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4248 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4249 4250 FunctionType *FTy = nullptr; 4251 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4252 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4253 return error("Explicit call type is not a function type"); 4254 4255 Value *Callee; 4256 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4257 return error("Invalid record"); 4258 4259 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4260 if (!OpTy) 4261 return error("Callee is not a pointer type"); 4262 if (!FTy) { 4263 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4264 if (!FTy) 4265 return error("Callee is not of pointer to function type"); 4266 } else if (OpTy->getElementType() != FTy) 4267 return error("Explicit call type does not match pointee type of " 4268 "callee operand"); 4269 if (Record.size() < FTy->getNumParams() + OpNum) 4270 return error("Insufficient operands to call"); 4271 4272 SmallVector<Value*, 16> Args; 4273 // Read the fixed params. 4274 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4275 if (FTy->getParamType(i)->isLabelTy()) 4276 Args.push_back(getBasicBlock(Record[OpNum])); 4277 else 4278 Args.push_back(getValue(Record, OpNum, NextValueNo, 4279 FTy->getParamType(i))); 4280 if (!Args.back()) 4281 return error("Invalid record"); 4282 } 4283 4284 // Read type/value pairs for varargs params. 4285 if (!FTy->isVarArg()) { 4286 if (OpNum != Record.size()) 4287 return error("Invalid record"); 4288 } else { 4289 while (OpNum != Record.size()) { 4290 Value *Op; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4292 return error("Invalid record"); 4293 Args.push_back(Op); 4294 } 4295 } 4296 4297 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4298 OperandBundles); 4299 OperandBundles.clear(); 4300 InstructionList.push_back(I); 4301 cast<CallBrInst>(I)->setCallingConv( 4302 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4303 cast<CallBrInst>(I)->setAttributes(PAL); 4304 break; 4305 } 4306 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4307 I = new UnreachableInst(Context); 4308 InstructionList.push_back(I); 4309 break; 4310 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4311 if (Record.size() < 1 || ((Record.size()-1)&1)) 4312 return error("Invalid record"); 4313 Type *Ty = getTypeByID(Record[0]); 4314 if (!Ty) 4315 return error("Invalid record"); 4316 4317 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4318 InstructionList.push_back(PN); 4319 4320 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4321 Value *V; 4322 // With the new function encoding, it is possible that operands have 4323 // negative IDs (for forward references). Use a signed VBR 4324 // representation to keep the encoding small. 4325 if (UseRelativeIDs) 4326 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4327 else 4328 V = getValue(Record, 1+i, NextValueNo, Ty); 4329 BasicBlock *BB = getBasicBlock(Record[2+i]); 4330 if (!V || !BB) 4331 return error("Invalid record"); 4332 PN->addIncoming(V, BB); 4333 } 4334 I = PN; 4335 break; 4336 } 4337 4338 case bitc::FUNC_CODE_INST_LANDINGPAD: 4339 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4340 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4341 unsigned Idx = 0; 4342 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4343 if (Record.size() < 3) 4344 return error("Invalid record"); 4345 } else { 4346 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4347 if (Record.size() < 4) 4348 return error("Invalid record"); 4349 } 4350 Type *Ty = getTypeByID(Record[Idx++]); 4351 if (!Ty) 4352 return error("Invalid record"); 4353 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4354 Value *PersFn = nullptr; 4355 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4356 return error("Invalid record"); 4357 4358 if (!F->hasPersonalityFn()) 4359 F->setPersonalityFn(cast<Constant>(PersFn)); 4360 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4361 return error("Personality function mismatch"); 4362 } 4363 4364 bool IsCleanup = !!Record[Idx++]; 4365 unsigned NumClauses = Record[Idx++]; 4366 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4367 LP->setCleanup(IsCleanup); 4368 for (unsigned J = 0; J != NumClauses; ++J) { 4369 LandingPadInst::ClauseType CT = 4370 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4371 Value *Val; 4372 4373 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4374 delete LP; 4375 return error("Invalid record"); 4376 } 4377 4378 assert((CT != LandingPadInst::Catch || 4379 !isa<ArrayType>(Val->getType())) && 4380 "Catch clause has a invalid type!"); 4381 assert((CT != LandingPadInst::Filter || 4382 isa<ArrayType>(Val->getType())) && 4383 "Filter clause has invalid type!"); 4384 LP->addClause(cast<Constant>(Val)); 4385 } 4386 4387 I = LP; 4388 InstructionList.push_back(I); 4389 break; 4390 } 4391 4392 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4393 if (Record.size() != 4) 4394 return error("Invalid record"); 4395 uint64_t AlignRecord = Record[3]; 4396 const uint64_t InAllocaMask = uint64_t(1) << 5; 4397 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4398 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4399 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4400 SwiftErrorMask; 4401 bool InAlloca = AlignRecord & InAllocaMask; 4402 bool SwiftError = AlignRecord & SwiftErrorMask; 4403 Type *Ty = getTypeByID(Record[0]); 4404 if ((AlignRecord & ExplicitTypeMask) == 0) { 4405 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4406 if (!PTy) 4407 return error("Old-style alloca with a non-pointer type"); 4408 Ty = PTy->getElementType(); 4409 } 4410 Type *OpTy = getTypeByID(Record[1]); 4411 Value *Size = getFnValueByID(Record[2], OpTy); 4412 unsigned Align; 4413 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4414 return Err; 4415 } 4416 if (!Ty || !Size) 4417 return error("Invalid record"); 4418 4419 // FIXME: Make this an optional field. 4420 const DataLayout &DL = TheModule->getDataLayout(); 4421 unsigned AS = DL.getAllocaAddrSpace(); 4422 4423 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4424 AI->setUsedWithInAlloca(InAlloca); 4425 AI->setSwiftError(SwiftError); 4426 I = AI; 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4431 unsigned OpNum = 0; 4432 Value *Op; 4433 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4434 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4435 return error("Invalid record"); 4436 4437 Type *Ty = nullptr; 4438 if (OpNum + 3 == Record.size()) 4439 Ty = getTypeByID(Record[OpNum++]); 4440 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4441 return Err; 4442 if (!Ty) 4443 Ty = cast<PointerType>(Op->getType())->getElementType(); 4444 4445 unsigned Align; 4446 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4447 return Err; 4448 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4449 4450 InstructionList.push_back(I); 4451 break; 4452 } 4453 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4454 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4455 unsigned OpNum = 0; 4456 Value *Op; 4457 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4458 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4459 return error("Invalid record"); 4460 4461 Type *Ty = nullptr; 4462 if (OpNum + 5 == Record.size()) 4463 Ty = getTypeByID(Record[OpNum++]); 4464 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4465 return Err; 4466 if (!Ty) 4467 Ty = cast<PointerType>(Op->getType())->getElementType(); 4468 4469 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4470 if (Ordering == AtomicOrdering::NotAtomic || 4471 Ordering == AtomicOrdering::Release || 4472 Ordering == AtomicOrdering::AcquireRelease) 4473 return error("Invalid record"); 4474 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4475 return error("Invalid record"); 4476 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4477 4478 unsigned Align; 4479 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4480 return Err; 4481 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4482 4483 InstructionList.push_back(I); 4484 break; 4485 } 4486 case bitc::FUNC_CODE_INST_STORE: 4487 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4488 unsigned OpNum = 0; 4489 Value *Val, *Ptr; 4490 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4491 (BitCode == bitc::FUNC_CODE_INST_STORE 4492 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4493 : popValue(Record, OpNum, NextValueNo, 4494 cast<PointerType>(Ptr->getType())->getElementType(), 4495 Val)) || 4496 OpNum + 2 != Record.size()) 4497 return error("Invalid record"); 4498 4499 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4500 return Err; 4501 unsigned Align; 4502 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4503 return Err; 4504 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4505 InstructionList.push_back(I); 4506 break; 4507 } 4508 case bitc::FUNC_CODE_INST_STOREATOMIC: 4509 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4510 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4511 unsigned OpNum = 0; 4512 Value *Val, *Ptr; 4513 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4514 !isa<PointerType>(Ptr->getType()) || 4515 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4516 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4517 : popValue(Record, OpNum, NextValueNo, 4518 cast<PointerType>(Ptr->getType())->getElementType(), 4519 Val)) || 4520 OpNum + 4 != Record.size()) 4521 return error("Invalid record"); 4522 4523 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4524 return Err; 4525 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4526 if (Ordering == AtomicOrdering::NotAtomic || 4527 Ordering == AtomicOrdering::Acquire || 4528 Ordering == AtomicOrdering::AcquireRelease) 4529 return error("Invalid record"); 4530 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4531 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4532 return error("Invalid record"); 4533 4534 unsigned Align; 4535 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4536 return Err; 4537 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4538 InstructionList.push_back(I); 4539 break; 4540 } 4541 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4542 case bitc::FUNC_CODE_INST_CMPXCHG: { 4543 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4544 // failureordering?, isweak?] 4545 unsigned OpNum = 0; 4546 Value *Ptr, *Cmp, *New; 4547 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4548 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4549 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4550 : popValue(Record, OpNum, NextValueNo, 4551 cast<PointerType>(Ptr->getType())->getElementType(), 4552 Cmp)) || 4553 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4554 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4555 return error("Invalid record"); 4556 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4557 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4558 SuccessOrdering == AtomicOrdering::Unordered) 4559 return error("Invalid record"); 4560 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4561 4562 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4563 return Err; 4564 AtomicOrdering FailureOrdering; 4565 if (Record.size() < 7) 4566 FailureOrdering = 4567 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4568 else 4569 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4570 4571 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4572 SSID); 4573 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4574 4575 if (Record.size() < 8) { 4576 // Before weak cmpxchgs existed, the instruction simply returned the 4577 // value loaded from memory, so bitcode files from that era will be 4578 // expecting the first component of a modern cmpxchg. 4579 CurBB->getInstList().push_back(I); 4580 I = ExtractValueInst::Create(I, 0); 4581 } else { 4582 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4583 } 4584 4585 InstructionList.push_back(I); 4586 break; 4587 } 4588 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4589 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4590 unsigned OpNum = 0; 4591 Value *Ptr, *Val; 4592 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4593 !isa<PointerType>(Ptr->getType()) || 4594 popValue(Record, OpNum, NextValueNo, 4595 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4596 OpNum+4 != Record.size()) 4597 return error("Invalid record"); 4598 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4599 if (Operation < AtomicRMWInst::FIRST_BINOP || 4600 Operation > AtomicRMWInst::LAST_BINOP) 4601 return error("Invalid record"); 4602 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4603 if (Ordering == AtomicOrdering::NotAtomic || 4604 Ordering == AtomicOrdering::Unordered) 4605 return error("Invalid record"); 4606 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4607 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4608 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4609 InstructionList.push_back(I); 4610 break; 4611 } 4612 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4613 if (2 != Record.size()) 4614 return error("Invalid record"); 4615 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4616 if (Ordering == AtomicOrdering::NotAtomic || 4617 Ordering == AtomicOrdering::Unordered || 4618 Ordering == AtomicOrdering::Monotonic) 4619 return error("Invalid record"); 4620 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4621 I = new FenceInst(Context, Ordering, SSID); 4622 InstructionList.push_back(I); 4623 break; 4624 } 4625 case bitc::FUNC_CODE_INST_CALL: { 4626 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4627 if (Record.size() < 3) 4628 return error("Invalid record"); 4629 4630 unsigned OpNum = 0; 4631 AttributeList PAL = getAttributes(Record[OpNum++]); 4632 unsigned CCInfo = Record[OpNum++]; 4633 4634 FastMathFlags FMF; 4635 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4636 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4637 if (!FMF.any()) 4638 return error("Fast math flags indicator set for call with no FMF"); 4639 } 4640 4641 FunctionType *FTy = nullptr; 4642 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4643 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4644 return error("Explicit call type is not a function type"); 4645 4646 Value *Callee; 4647 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4648 return error("Invalid record"); 4649 4650 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4651 if (!OpTy) 4652 return error("Callee is not a pointer type"); 4653 if (!FTy) { 4654 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4655 if (!FTy) 4656 return error("Callee is not of pointer to function type"); 4657 } else if (OpTy->getElementType() != FTy) 4658 return error("Explicit call type does not match pointee type of " 4659 "callee operand"); 4660 if (Record.size() < FTy->getNumParams() + OpNum) 4661 return error("Insufficient operands to call"); 4662 4663 SmallVector<Value*, 16> Args; 4664 // Read the fixed params. 4665 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4666 if (FTy->getParamType(i)->isLabelTy()) 4667 Args.push_back(getBasicBlock(Record[OpNum])); 4668 else 4669 Args.push_back(getValue(Record, OpNum, NextValueNo, 4670 FTy->getParamType(i))); 4671 if (!Args.back()) 4672 return error("Invalid record"); 4673 } 4674 4675 // Read type/value pairs for varargs params. 4676 if (!FTy->isVarArg()) { 4677 if (OpNum != Record.size()) 4678 return error("Invalid record"); 4679 } else { 4680 while (OpNum != Record.size()) { 4681 Value *Op; 4682 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4683 return error("Invalid record"); 4684 Args.push_back(Op); 4685 } 4686 } 4687 4688 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4689 OperandBundles.clear(); 4690 InstructionList.push_back(I); 4691 cast<CallInst>(I)->setCallingConv( 4692 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4693 CallInst::TailCallKind TCK = CallInst::TCK_None; 4694 if (CCInfo & 1 << bitc::CALL_TAIL) 4695 TCK = CallInst::TCK_Tail; 4696 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4697 TCK = CallInst::TCK_MustTail; 4698 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4699 TCK = CallInst::TCK_NoTail; 4700 cast<CallInst>(I)->setTailCallKind(TCK); 4701 cast<CallInst>(I)->setAttributes(PAL); 4702 if (FMF.any()) { 4703 if (!isa<FPMathOperator>(I)) 4704 return error("Fast-math-flags specified for call without " 4705 "floating-point scalar or vector return type"); 4706 I->setFastMathFlags(FMF); 4707 } 4708 break; 4709 } 4710 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4711 if (Record.size() < 3) 4712 return error("Invalid record"); 4713 Type *OpTy = getTypeByID(Record[0]); 4714 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4715 Type *ResTy = getTypeByID(Record[2]); 4716 if (!OpTy || !Op || !ResTy) 4717 return error("Invalid record"); 4718 I = new VAArgInst(Op, ResTy); 4719 InstructionList.push_back(I); 4720 break; 4721 } 4722 4723 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4724 // A call or an invoke can be optionally prefixed with some variable 4725 // number of operand bundle blocks. These blocks are read into 4726 // OperandBundles and consumed at the next call or invoke instruction. 4727 4728 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4729 return error("Invalid record"); 4730 4731 std::vector<Value *> Inputs; 4732 4733 unsigned OpNum = 1; 4734 while (OpNum != Record.size()) { 4735 Value *Op; 4736 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4737 return error("Invalid record"); 4738 Inputs.push_back(Op); 4739 } 4740 4741 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4742 continue; 4743 } 4744 } 4745 4746 // Add instruction to end of current BB. If there is no current BB, reject 4747 // this file. 4748 if (!CurBB) { 4749 I->deleteValue(); 4750 return error("Invalid instruction with no BB"); 4751 } 4752 if (!OperandBundles.empty()) { 4753 I->deleteValue(); 4754 return error("Operand bundles found with no consumer"); 4755 } 4756 CurBB->getInstList().push_back(I); 4757 4758 // If this was a terminator instruction, move to the next block. 4759 if (I->isTerminator()) { 4760 ++CurBBNo; 4761 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4762 } 4763 4764 // Non-void values get registered in the value table for future use. 4765 if (I && !I->getType()->isVoidTy()) 4766 ValueList.assignValue(I, NextValueNo++); 4767 } 4768 4769 OutOfRecordLoop: 4770 4771 if (!OperandBundles.empty()) 4772 return error("Operand bundles found with no consumer"); 4773 4774 // Check the function list for unresolved values. 4775 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4776 if (!A->getParent()) { 4777 // We found at least one unresolved value. Nuke them all to avoid leaks. 4778 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4779 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4780 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4781 delete A; 4782 } 4783 } 4784 return error("Never resolved value found in function"); 4785 } 4786 } 4787 4788 // Unexpected unresolved metadata about to be dropped. 4789 if (MDLoader->hasFwdRefs()) 4790 return error("Invalid function metadata: outgoing forward refs"); 4791 4792 // Trim the value list down to the size it was before we parsed this function. 4793 ValueList.shrinkTo(ModuleValueListSize); 4794 MDLoader->shrinkTo(ModuleMDLoaderSize); 4795 std::vector<BasicBlock*>().swap(FunctionBBs); 4796 return Error::success(); 4797 } 4798 4799 /// Find the function body in the bitcode stream 4800 Error BitcodeReader::findFunctionInStream( 4801 Function *F, 4802 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4803 while (DeferredFunctionInfoIterator->second == 0) { 4804 // This is the fallback handling for the old format bitcode that 4805 // didn't contain the function index in the VST, or when we have 4806 // an anonymous function which would not have a VST entry. 4807 // Assert that we have one of those two cases. 4808 assert(VSTOffset == 0 || !F->hasName()); 4809 // Parse the next body in the stream and set its position in the 4810 // DeferredFunctionInfo map. 4811 if (Error Err = rememberAndSkipFunctionBodies()) 4812 return Err; 4813 } 4814 return Error::success(); 4815 } 4816 4817 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4818 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4819 return SyncScope::ID(Val); 4820 if (Val >= SSIDs.size()) 4821 return SyncScope::System; // Map unknown synchronization scopes to system. 4822 return SSIDs[Val]; 4823 } 4824 4825 //===----------------------------------------------------------------------===// 4826 // GVMaterializer implementation 4827 //===----------------------------------------------------------------------===// 4828 4829 Error BitcodeReader::materialize(GlobalValue *GV) { 4830 Function *F = dyn_cast<Function>(GV); 4831 // If it's not a function or is already material, ignore the request. 4832 if (!F || !F->isMaterializable()) 4833 return Error::success(); 4834 4835 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4836 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4837 // If its position is recorded as 0, its body is somewhere in the stream 4838 // but we haven't seen it yet. 4839 if (DFII->second == 0) 4840 if (Error Err = findFunctionInStream(F, DFII)) 4841 return Err; 4842 4843 // Materialize metadata before parsing any function bodies. 4844 if (Error Err = materializeMetadata()) 4845 return Err; 4846 4847 // Move the bit stream to the saved position of the deferred function body. 4848 Stream.JumpToBit(DFII->second); 4849 4850 if (Error Err = parseFunctionBody(F)) 4851 return Err; 4852 F->setIsMaterializable(false); 4853 4854 if (StripDebugInfo) 4855 stripDebugInfo(*F); 4856 4857 // Upgrade any old intrinsic calls in the function. 4858 for (auto &I : UpgradedIntrinsics) { 4859 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4860 UI != UE;) { 4861 User *U = *UI; 4862 ++UI; 4863 if (CallInst *CI = dyn_cast<CallInst>(U)) 4864 UpgradeIntrinsicCall(CI, I.second); 4865 } 4866 } 4867 4868 // Update calls to the remangled intrinsics 4869 for (auto &I : RemangledIntrinsics) 4870 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4871 UI != UE;) 4872 // Don't expect any other users than call sites 4873 CallSite(*UI++).setCalledFunction(I.second); 4874 4875 // Finish fn->subprogram upgrade for materialized functions. 4876 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4877 F->setSubprogram(SP); 4878 4879 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4880 if (!MDLoader->isStrippingTBAA()) { 4881 for (auto &I : instructions(F)) { 4882 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4883 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4884 continue; 4885 MDLoader->setStripTBAA(true); 4886 stripTBAA(F->getParent()); 4887 } 4888 } 4889 4890 // Bring in any functions that this function forward-referenced via 4891 // blockaddresses. 4892 return materializeForwardReferencedFunctions(); 4893 } 4894 4895 Error BitcodeReader::materializeModule() { 4896 if (Error Err = materializeMetadata()) 4897 return Err; 4898 4899 // Promise to materialize all forward references. 4900 WillMaterializeAllForwardRefs = true; 4901 4902 // Iterate over the module, deserializing any functions that are still on 4903 // disk. 4904 for (Function &F : *TheModule) { 4905 if (Error Err = materialize(&F)) 4906 return Err; 4907 } 4908 // At this point, if there are any function bodies, parse the rest of 4909 // the bits in the module past the last function block we have recorded 4910 // through either lazy scanning or the VST. 4911 if (LastFunctionBlockBit || NextUnreadBit) 4912 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4913 ? LastFunctionBlockBit 4914 : NextUnreadBit)) 4915 return Err; 4916 4917 // Check that all block address forward references got resolved (as we 4918 // promised above). 4919 if (!BasicBlockFwdRefs.empty()) 4920 return error("Never resolved function from blockaddress"); 4921 4922 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4923 // delete the old functions to clean up. We can't do this unless the entire 4924 // module is materialized because there could always be another function body 4925 // with calls to the old function. 4926 for (auto &I : UpgradedIntrinsics) { 4927 for (auto *U : I.first->users()) { 4928 if (CallInst *CI = dyn_cast<CallInst>(U)) 4929 UpgradeIntrinsicCall(CI, I.second); 4930 } 4931 if (!I.first->use_empty()) 4932 I.first->replaceAllUsesWith(I.second); 4933 I.first->eraseFromParent(); 4934 } 4935 UpgradedIntrinsics.clear(); 4936 // Do the same for remangled intrinsics 4937 for (auto &I : RemangledIntrinsics) { 4938 I.first->replaceAllUsesWith(I.second); 4939 I.first->eraseFromParent(); 4940 } 4941 RemangledIntrinsics.clear(); 4942 4943 UpgradeDebugInfo(*TheModule); 4944 4945 UpgradeModuleFlags(*TheModule); 4946 4947 UpgradeRetainReleaseMarker(*TheModule); 4948 4949 return Error::success(); 4950 } 4951 4952 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4953 return IdentifiedStructTypes; 4954 } 4955 4956 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4957 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4958 StringRef ModulePath, unsigned ModuleId) 4959 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4960 ModulePath(ModulePath), ModuleId(ModuleId) {} 4961 4962 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4963 TheIndex.addModule(ModulePath, ModuleId); 4964 } 4965 4966 ModuleSummaryIndex::ModuleInfo * 4967 ModuleSummaryIndexBitcodeReader::getThisModule() { 4968 return TheIndex.getModule(ModulePath); 4969 } 4970 4971 std::pair<ValueInfo, GlobalValue::GUID> 4972 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4973 auto VGI = ValueIdToValueInfoMap[ValueId]; 4974 assert(VGI.first); 4975 return VGI; 4976 } 4977 4978 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4979 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4980 StringRef SourceFileName) { 4981 std::string GlobalId = 4982 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4983 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4984 auto OriginalNameID = ValueGUID; 4985 if (GlobalValue::isLocalLinkage(Linkage)) 4986 OriginalNameID = GlobalValue::getGUID(ValueName); 4987 if (PrintSummaryGUIDs) 4988 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4989 << ValueName << "\n"; 4990 4991 // UseStrtab is false for legacy summary formats and value names are 4992 // created on stack. In that case we save the name in a string saver in 4993 // the index so that the value name can be recorded. 4994 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4995 TheIndex.getOrInsertValueInfo( 4996 ValueGUID, 4997 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 4998 OriginalNameID); 4999 } 5000 5001 // Specialized value symbol table parser used when reading module index 5002 // blocks where we don't actually create global values. The parsed information 5003 // is saved in the bitcode reader for use when later parsing summaries. 5004 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5005 uint64_t Offset, 5006 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5007 // With a strtab the VST is not required to parse the summary. 5008 if (UseStrtab) 5009 return Error::success(); 5010 5011 assert(Offset > 0 && "Expected non-zero VST offset"); 5012 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5013 5014 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5015 return error("Invalid record"); 5016 5017 SmallVector<uint64_t, 64> Record; 5018 5019 // Read all the records for this value table. 5020 SmallString<128> ValueName; 5021 5022 while (true) { 5023 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5024 5025 switch (Entry.Kind) { 5026 case BitstreamEntry::SubBlock: // Handled for us already. 5027 case BitstreamEntry::Error: 5028 return error("Malformed block"); 5029 case BitstreamEntry::EndBlock: 5030 // Done parsing VST, jump back to wherever we came from. 5031 Stream.JumpToBit(CurrentBit); 5032 return Error::success(); 5033 case BitstreamEntry::Record: 5034 // The interesting case. 5035 break; 5036 } 5037 5038 // Read a record. 5039 Record.clear(); 5040 switch (Stream.readRecord(Entry.ID, Record)) { 5041 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5042 break; 5043 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5044 if (convertToString(Record, 1, ValueName)) 5045 return error("Invalid record"); 5046 unsigned ValueID = Record[0]; 5047 assert(!SourceFileName.empty()); 5048 auto VLI = ValueIdToLinkageMap.find(ValueID); 5049 assert(VLI != ValueIdToLinkageMap.end() && 5050 "No linkage found for VST entry?"); 5051 auto Linkage = VLI->second; 5052 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5053 ValueName.clear(); 5054 break; 5055 } 5056 case bitc::VST_CODE_FNENTRY: { 5057 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5058 if (convertToString(Record, 2, ValueName)) 5059 return error("Invalid record"); 5060 unsigned ValueID = Record[0]; 5061 assert(!SourceFileName.empty()); 5062 auto VLI = ValueIdToLinkageMap.find(ValueID); 5063 assert(VLI != ValueIdToLinkageMap.end() && 5064 "No linkage found for VST entry?"); 5065 auto Linkage = VLI->second; 5066 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5067 ValueName.clear(); 5068 break; 5069 } 5070 case bitc::VST_CODE_COMBINED_ENTRY: { 5071 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5072 unsigned ValueID = Record[0]; 5073 GlobalValue::GUID RefGUID = Record[1]; 5074 // The "original name", which is the second value of the pair will be 5075 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5076 ValueIdToValueInfoMap[ValueID] = 5077 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5078 break; 5079 } 5080 } 5081 } 5082 } 5083 5084 // Parse just the blocks needed for building the index out of the module. 5085 // At the end of this routine the module Index is populated with a map 5086 // from global value id to GlobalValueSummary objects. 5087 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5088 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5089 return error("Invalid record"); 5090 5091 SmallVector<uint64_t, 64> Record; 5092 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5093 unsigned ValueId = 0; 5094 5095 // Read the index for this module. 5096 while (true) { 5097 BitstreamEntry Entry = Stream.advance(); 5098 5099 switch (Entry.Kind) { 5100 case BitstreamEntry::Error: 5101 return error("Malformed block"); 5102 case BitstreamEntry::EndBlock: 5103 return Error::success(); 5104 5105 case BitstreamEntry::SubBlock: 5106 switch (Entry.ID) { 5107 default: // Skip unknown content. 5108 if (Stream.SkipBlock()) 5109 return error("Invalid record"); 5110 break; 5111 case bitc::BLOCKINFO_BLOCK_ID: 5112 // Need to parse these to get abbrev ids (e.g. for VST) 5113 if (readBlockInfo()) 5114 return error("Malformed block"); 5115 break; 5116 case bitc::VALUE_SYMTAB_BLOCK_ID: 5117 // Should have been parsed earlier via VSTOffset, unless there 5118 // is no summary section. 5119 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5120 !SeenGlobalValSummary) && 5121 "Expected early VST parse via VSTOffset record"); 5122 if (Stream.SkipBlock()) 5123 return error("Invalid record"); 5124 break; 5125 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5126 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5127 // Add the module if it is a per-module index (has a source file name). 5128 if (!SourceFileName.empty()) 5129 addThisModule(); 5130 assert(!SeenValueSymbolTable && 5131 "Already read VST when parsing summary block?"); 5132 // We might not have a VST if there were no values in the 5133 // summary. An empty summary block generated when we are 5134 // performing ThinLTO compiles so we don't later invoke 5135 // the regular LTO process on them. 5136 if (VSTOffset > 0) { 5137 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5138 return Err; 5139 SeenValueSymbolTable = true; 5140 } 5141 SeenGlobalValSummary = true; 5142 if (Error Err = parseEntireSummary(Entry.ID)) 5143 return Err; 5144 break; 5145 case bitc::MODULE_STRTAB_BLOCK_ID: 5146 if (Error Err = parseModuleStringTable()) 5147 return Err; 5148 break; 5149 } 5150 continue; 5151 5152 case BitstreamEntry::Record: { 5153 Record.clear(); 5154 auto BitCode = Stream.readRecord(Entry.ID, Record); 5155 switch (BitCode) { 5156 default: 5157 break; // Default behavior, ignore unknown content. 5158 case bitc::MODULE_CODE_VERSION: { 5159 if (Error Err = parseVersionRecord(Record).takeError()) 5160 return Err; 5161 break; 5162 } 5163 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5164 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5165 SmallString<128> ValueName; 5166 if (convertToString(Record, 0, ValueName)) 5167 return error("Invalid record"); 5168 SourceFileName = ValueName.c_str(); 5169 break; 5170 } 5171 /// MODULE_CODE_HASH: [5*i32] 5172 case bitc::MODULE_CODE_HASH: { 5173 if (Record.size() != 5) 5174 return error("Invalid hash length " + Twine(Record.size()).str()); 5175 auto &Hash = getThisModule()->second.second; 5176 int Pos = 0; 5177 for (auto &Val : Record) { 5178 assert(!(Val >> 32) && "Unexpected high bits set"); 5179 Hash[Pos++] = Val; 5180 } 5181 break; 5182 } 5183 /// MODULE_CODE_VSTOFFSET: [offset] 5184 case bitc::MODULE_CODE_VSTOFFSET: 5185 if (Record.size() < 1) 5186 return error("Invalid record"); 5187 // Note that we subtract 1 here because the offset is relative to one 5188 // word before the start of the identification or module block, which 5189 // was historically always the start of the regular bitcode header. 5190 VSTOffset = Record[0] - 1; 5191 break; 5192 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5193 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5194 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5195 // v2: [strtab offset, strtab size, v1] 5196 case bitc::MODULE_CODE_GLOBALVAR: 5197 case bitc::MODULE_CODE_FUNCTION: 5198 case bitc::MODULE_CODE_ALIAS: { 5199 StringRef Name; 5200 ArrayRef<uint64_t> GVRecord; 5201 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5202 if (GVRecord.size() <= 3) 5203 return error("Invalid record"); 5204 uint64_t RawLinkage = GVRecord[3]; 5205 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5206 if (!UseStrtab) { 5207 ValueIdToLinkageMap[ValueId++] = Linkage; 5208 break; 5209 } 5210 5211 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5212 break; 5213 } 5214 } 5215 } 5216 continue; 5217 } 5218 } 5219 } 5220 5221 std::vector<ValueInfo> 5222 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5223 std::vector<ValueInfo> Ret; 5224 Ret.reserve(Record.size()); 5225 for (uint64_t RefValueId : Record) 5226 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5227 return Ret; 5228 } 5229 5230 std::vector<FunctionSummary::EdgeTy> 5231 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5232 bool IsOldProfileFormat, 5233 bool HasProfile, bool HasRelBF) { 5234 std::vector<FunctionSummary::EdgeTy> Ret; 5235 Ret.reserve(Record.size()); 5236 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5237 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5238 uint64_t RelBF = 0; 5239 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5240 if (IsOldProfileFormat) { 5241 I += 1; // Skip old callsitecount field 5242 if (HasProfile) 5243 I += 1; // Skip old profilecount field 5244 } else if (HasProfile) 5245 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5246 else if (HasRelBF) 5247 RelBF = Record[++I]; 5248 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5249 } 5250 return Ret; 5251 } 5252 5253 static void 5254 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5255 WholeProgramDevirtResolution &Wpd) { 5256 uint64_t ArgNum = Record[Slot++]; 5257 WholeProgramDevirtResolution::ByArg &B = 5258 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5259 Slot += ArgNum; 5260 5261 B.TheKind = 5262 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5263 B.Info = Record[Slot++]; 5264 B.Byte = Record[Slot++]; 5265 B.Bit = Record[Slot++]; 5266 } 5267 5268 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5269 StringRef Strtab, size_t &Slot, 5270 TypeIdSummary &TypeId) { 5271 uint64_t Id = Record[Slot++]; 5272 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5273 5274 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5275 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5276 static_cast<size_t>(Record[Slot + 1])}; 5277 Slot += 2; 5278 5279 uint64_t ResByArgNum = Record[Slot++]; 5280 for (uint64_t I = 0; I != ResByArgNum; ++I) 5281 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5282 } 5283 5284 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5285 StringRef Strtab, 5286 ModuleSummaryIndex &TheIndex) { 5287 size_t Slot = 0; 5288 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5289 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5290 Slot += 2; 5291 5292 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5293 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5294 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5295 TypeId.TTRes.SizeM1 = Record[Slot++]; 5296 TypeId.TTRes.BitMask = Record[Slot++]; 5297 TypeId.TTRes.InlineBits = Record[Slot++]; 5298 5299 while (Slot < Record.size()) 5300 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5301 } 5302 5303 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5304 // Read-only refs are in the end of the refs list. 5305 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5306 Refs[RefNo].setReadOnly(); 5307 } 5308 5309 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5310 // objects in the index. 5311 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5312 if (Stream.EnterSubBlock(ID)) 5313 return error("Invalid record"); 5314 SmallVector<uint64_t, 64> Record; 5315 5316 // Parse version 5317 { 5318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5319 if (Entry.Kind != BitstreamEntry::Record) 5320 return error("Invalid Summary Block: record for version expected"); 5321 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5322 return error("Invalid Summary Block: version expected"); 5323 } 5324 const uint64_t Version = Record[0]; 5325 const bool IsOldProfileFormat = Version == 1; 5326 if (Version < 1 || Version > 6) 5327 return error("Invalid summary version " + Twine(Version) + 5328 ". Version should be in the range [1-6]."); 5329 Record.clear(); 5330 5331 // Keep around the last seen summary to be used when we see an optional 5332 // "OriginalName" attachement. 5333 GlobalValueSummary *LastSeenSummary = nullptr; 5334 GlobalValue::GUID LastSeenGUID = 0; 5335 5336 // We can expect to see any number of type ID information records before 5337 // each function summary records; these variables store the information 5338 // collected so far so that it can be used to create the summary object. 5339 std::vector<GlobalValue::GUID> PendingTypeTests; 5340 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5341 PendingTypeCheckedLoadVCalls; 5342 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5343 PendingTypeCheckedLoadConstVCalls; 5344 5345 while (true) { 5346 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5347 5348 switch (Entry.Kind) { 5349 case BitstreamEntry::SubBlock: // Handled for us already. 5350 case BitstreamEntry::Error: 5351 return error("Malformed block"); 5352 case BitstreamEntry::EndBlock: 5353 return Error::success(); 5354 case BitstreamEntry::Record: 5355 // The interesting case. 5356 break; 5357 } 5358 5359 // Read a record. The record format depends on whether this 5360 // is a per-module index or a combined index file. In the per-module 5361 // case the records contain the associated value's ID for correlation 5362 // with VST entries. In the combined index the correlation is done 5363 // via the bitcode offset of the summary records (which were saved 5364 // in the combined index VST entries). The records also contain 5365 // information used for ThinLTO renaming and importing. 5366 Record.clear(); 5367 auto BitCode = Stream.readRecord(Entry.ID, Record); 5368 switch (BitCode) { 5369 default: // Default behavior: ignore. 5370 break; 5371 case bitc::FS_FLAGS: { // [flags] 5372 uint64_t Flags = Record[0]; 5373 // Scan flags. 5374 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5375 5376 // 1 bit: WithGlobalValueDeadStripping flag. 5377 // Set on combined index only. 5378 if (Flags & 0x1) 5379 TheIndex.setWithGlobalValueDeadStripping(); 5380 // 1 bit: SkipModuleByDistributedBackend flag. 5381 // Set on combined index only. 5382 if (Flags & 0x2) 5383 TheIndex.setSkipModuleByDistributedBackend(); 5384 // 1 bit: HasSyntheticEntryCounts flag. 5385 // Set on combined index only. 5386 if (Flags & 0x4) 5387 TheIndex.setHasSyntheticEntryCounts(); 5388 // 1 bit: DisableSplitLTOUnit flag. 5389 // Set on per module indexes. It is up to the client to validate 5390 // the consistency of this flag across modules being linked. 5391 if (Flags & 0x8) 5392 TheIndex.setEnableSplitLTOUnit(); 5393 // 1 bit: PartiallySplitLTOUnits flag. 5394 // Set on combined index only. 5395 if (Flags & 0x10) 5396 TheIndex.setPartiallySplitLTOUnits(); 5397 break; 5398 } 5399 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5400 uint64_t ValueID = Record[0]; 5401 GlobalValue::GUID RefGUID = Record[1]; 5402 ValueIdToValueInfoMap[ValueID] = 5403 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5404 break; 5405 } 5406 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5407 // numrefs x valueid, n x (valueid)] 5408 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5409 // numrefs x valueid, 5410 // n x (valueid, hotness)] 5411 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5412 // numrefs x valueid, 5413 // n x (valueid, relblockfreq)] 5414 case bitc::FS_PERMODULE: 5415 case bitc::FS_PERMODULE_RELBF: 5416 case bitc::FS_PERMODULE_PROFILE: { 5417 unsigned ValueID = Record[0]; 5418 uint64_t RawFlags = Record[1]; 5419 unsigned InstCount = Record[2]; 5420 uint64_t RawFunFlags = 0; 5421 unsigned NumRefs = Record[3]; 5422 unsigned NumImmutableRefs = 0; 5423 int RefListStartIndex = 4; 5424 if (Version >= 4) { 5425 RawFunFlags = Record[3]; 5426 NumRefs = Record[4]; 5427 RefListStartIndex = 5; 5428 if (Version >= 5) { 5429 NumImmutableRefs = Record[5]; 5430 RefListStartIndex = 6; 5431 } 5432 } 5433 5434 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5435 // The module path string ref set in the summary must be owned by the 5436 // index's module string table. Since we don't have a module path 5437 // string table section in the per-module index, we create a single 5438 // module path string table entry with an empty (0) ID to take 5439 // ownership. 5440 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5441 assert(Record.size() >= RefListStartIndex + NumRefs && 5442 "Record size inconsistent with number of references"); 5443 std::vector<ValueInfo> Refs = makeRefList( 5444 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5445 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5446 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5447 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5448 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5449 IsOldProfileFormat, HasProfile, HasRelBF); 5450 setImmutableRefs(Refs, NumImmutableRefs); 5451 auto FS = llvm::make_unique<FunctionSummary>( 5452 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5453 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5454 std::move(PendingTypeTestAssumeVCalls), 5455 std::move(PendingTypeCheckedLoadVCalls), 5456 std::move(PendingTypeTestAssumeConstVCalls), 5457 std::move(PendingTypeCheckedLoadConstVCalls)); 5458 PendingTypeTests.clear(); 5459 PendingTypeTestAssumeVCalls.clear(); 5460 PendingTypeCheckedLoadVCalls.clear(); 5461 PendingTypeTestAssumeConstVCalls.clear(); 5462 PendingTypeCheckedLoadConstVCalls.clear(); 5463 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5464 FS->setModulePath(getThisModule()->first()); 5465 FS->setOriginalName(VIAndOriginalGUID.second); 5466 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5467 break; 5468 } 5469 // FS_ALIAS: [valueid, flags, valueid] 5470 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5471 // they expect all aliasee summaries to be available. 5472 case bitc::FS_ALIAS: { 5473 unsigned ValueID = Record[0]; 5474 uint64_t RawFlags = Record[1]; 5475 unsigned AliaseeID = Record[2]; 5476 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5477 auto AS = llvm::make_unique<AliasSummary>(Flags); 5478 // The module path string ref set in the summary must be owned by the 5479 // index's module string table. Since we don't have a module path 5480 // string table section in the per-module index, we create a single 5481 // module path string table entry with an empty (0) ID to take 5482 // ownership. 5483 AS->setModulePath(getThisModule()->first()); 5484 5485 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5486 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5487 if (!AliaseeInModule) 5488 return error("Alias expects aliasee summary to be parsed"); 5489 AS->setAliasee(AliaseeVI, AliaseeInModule); 5490 5491 auto GUID = getValueInfoFromValueId(ValueID); 5492 AS->setOriginalName(GUID.second); 5493 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5494 break; 5495 } 5496 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5497 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5498 unsigned ValueID = Record[0]; 5499 uint64_t RawFlags = Record[1]; 5500 unsigned RefArrayStart = 2; 5501 GlobalVarSummary::GVarFlags GVF; 5502 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5503 if (Version >= 5) { 5504 GVF = getDecodedGVarFlags(Record[2]); 5505 RefArrayStart = 3; 5506 } 5507 std::vector<ValueInfo> Refs = 5508 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5509 auto FS = 5510 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5511 FS->setModulePath(getThisModule()->first()); 5512 auto GUID = getValueInfoFromValueId(ValueID); 5513 FS->setOriginalName(GUID.second); 5514 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5515 break; 5516 } 5517 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5518 // numrefs x valueid, n x (valueid)] 5519 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5520 // numrefs x valueid, n x (valueid, hotness)] 5521 case bitc::FS_COMBINED: 5522 case bitc::FS_COMBINED_PROFILE: { 5523 unsigned ValueID = Record[0]; 5524 uint64_t ModuleId = Record[1]; 5525 uint64_t RawFlags = Record[2]; 5526 unsigned InstCount = Record[3]; 5527 uint64_t RawFunFlags = 0; 5528 uint64_t EntryCount = 0; 5529 unsigned NumRefs = Record[4]; 5530 unsigned NumImmutableRefs = 0; 5531 int RefListStartIndex = 5; 5532 5533 if (Version >= 4) { 5534 RawFunFlags = Record[4]; 5535 RefListStartIndex = 6; 5536 size_t NumRefsIndex = 5; 5537 if (Version >= 5) { 5538 RefListStartIndex = 7; 5539 if (Version >= 6) { 5540 NumRefsIndex = 6; 5541 EntryCount = Record[5]; 5542 RefListStartIndex = 8; 5543 } 5544 NumImmutableRefs = Record[RefListStartIndex - 1]; 5545 } 5546 NumRefs = Record[NumRefsIndex]; 5547 } 5548 5549 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5550 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5551 assert(Record.size() >= RefListStartIndex + NumRefs && 5552 "Record size inconsistent with number of references"); 5553 std::vector<ValueInfo> Refs = makeRefList( 5554 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5555 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5556 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5557 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5558 IsOldProfileFormat, HasProfile, false); 5559 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5560 setImmutableRefs(Refs, NumImmutableRefs); 5561 auto FS = llvm::make_unique<FunctionSummary>( 5562 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5563 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5564 std::move(PendingTypeTestAssumeVCalls), 5565 std::move(PendingTypeCheckedLoadVCalls), 5566 std::move(PendingTypeTestAssumeConstVCalls), 5567 std::move(PendingTypeCheckedLoadConstVCalls)); 5568 PendingTypeTests.clear(); 5569 PendingTypeTestAssumeVCalls.clear(); 5570 PendingTypeCheckedLoadVCalls.clear(); 5571 PendingTypeTestAssumeConstVCalls.clear(); 5572 PendingTypeCheckedLoadConstVCalls.clear(); 5573 LastSeenSummary = FS.get(); 5574 LastSeenGUID = VI.getGUID(); 5575 FS->setModulePath(ModuleIdMap[ModuleId]); 5576 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5577 break; 5578 } 5579 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5580 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5581 // they expect all aliasee summaries to be available. 5582 case bitc::FS_COMBINED_ALIAS: { 5583 unsigned ValueID = Record[0]; 5584 uint64_t ModuleId = Record[1]; 5585 uint64_t RawFlags = Record[2]; 5586 unsigned AliaseeValueId = Record[3]; 5587 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5588 auto AS = llvm::make_unique<AliasSummary>(Flags); 5589 LastSeenSummary = AS.get(); 5590 AS->setModulePath(ModuleIdMap[ModuleId]); 5591 5592 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5593 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5594 AS->setAliasee(AliaseeVI, AliaseeInModule); 5595 5596 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5597 LastSeenGUID = VI.getGUID(); 5598 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5599 break; 5600 } 5601 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5602 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5603 unsigned ValueID = Record[0]; 5604 uint64_t ModuleId = Record[1]; 5605 uint64_t RawFlags = Record[2]; 5606 unsigned RefArrayStart = 3; 5607 GlobalVarSummary::GVarFlags GVF; 5608 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5609 if (Version >= 5) { 5610 GVF = getDecodedGVarFlags(Record[3]); 5611 RefArrayStart = 4; 5612 } 5613 std::vector<ValueInfo> Refs = 5614 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5615 auto FS = 5616 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5617 LastSeenSummary = FS.get(); 5618 FS->setModulePath(ModuleIdMap[ModuleId]); 5619 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5620 LastSeenGUID = VI.getGUID(); 5621 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5622 break; 5623 } 5624 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5625 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5626 uint64_t OriginalName = Record[0]; 5627 if (!LastSeenSummary) 5628 return error("Name attachment that does not follow a combined record"); 5629 LastSeenSummary->setOriginalName(OriginalName); 5630 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5631 // Reset the LastSeenSummary 5632 LastSeenSummary = nullptr; 5633 LastSeenGUID = 0; 5634 break; 5635 } 5636 case bitc::FS_TYPE_TESTS: 5637 assert(PendingTypeTests.empty()); 5638 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5639 Record.end()); 5640 break; 5641 5642 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5643 assert(PendingTypeTestAssumeVCalls.empty()); 5644 for (unsigned I = 0; I != Record.size(); I += 2) 5645 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5646 break; 5647 5648 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5649 assert(PendingTypeCheckedLoadVCalls.empty()); 5650 for (unsigned I = 0; I != Record.size(); I += 2) 5651 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5652 break; 5653 5654 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5655 PendingTypeTestAssumeConstVCalls.push_back( 5656 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5657 break; 5658 5659 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5660 PendingTypeCheckedLoadConstVCalls.push_back( 5661 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5662 break; 5663 5664 case bitc::FS_CFI_FUNCTION_DEFS: { 5665 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5666 for (unsigned I = 0; I != Record.size(); I += 2) 5667 CfiFunctionDefs.insert( 5668 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5669 break; 5670 } 5671 5672 case bitc::FS_CFI_FUNCTION_DECLS: { 5673 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5674 for (unsigned I = 0; I != Record.size(); I += 2) 5675 CfiFunctionDecls.insert( 5676 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5677 break; 5678 } 5679 5680 case bitc::FS_TYPE_ID: 5681 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5682 break; 5683 } 5684 } 5685 llvm_unreachable("Exit infinite loop"); 5686 } 5687 5688 // Parse the module string table block into the Index. 5689 // This populates the ModulePathStringTable map in the index. 5690 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5691 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5692 return error("Invalid record"); 5693 5694 SmallVector<uint64_t, 64> Record; 5695 5696 SmallString<128> ModulePath; 5697 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5698 5699 while (true) { 5700 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5701 5702 switch (Entry.Kind) { 5703 case BitstreamEntry::SubBlock: // Handled for us already. 5704 case BitstreamEntry::Error: 5705 return error("Malformed block"); 5706 case BitstreamEntry::EndBlock: 5707 return Error::success(); 5708 case BitstreamEntry::Record: 5709 // The interesting case. 5710 break; 5711 } 5712 5713 Record.clear(); 5714 switch (Stream.readRecord(Entry.ID, Record)) { 5715 default: // Default behavior: ignore. 5716 break; 5717 case bitc::MST_CODE_ENTRY: { 5718 // MST_ENTRY: [modid, namechar x N] 5719 uint64_t ModuleId = Record[0]; 5720 5721 if (convertToString(Record, 1, ModulePath)) 5722 return error("Invalid record"); 5723 5724 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5725 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5726 5727 ModulePath.clear(); 5728 break; 5729 } 5730 /// MST_CODE_HASH: [5*i32] 5731 case bitc::MST_CODE_HASH: { 5732 if (Record.size() != 5) 5733 return error("Invalid hash length " + Twine(Record.size()).str()); 5734 if (!LastSeenModule) 5735 return error("Invalid hash that does not follow a module path"); 5736 int Pos = 0; 5737 for (auto &Val : Record) { 5738 assert(!(Val >> 32) && "Unexpected high bits set"); 5739 LastSeenModule->second.second[Pos++] = Val; 5740 } 5741 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5742 LastSeenModule = nullptr; 5743 break; 5744 } 5745 } 5746 } 5747 llvm_unreachable("Exit infinite loop"); 5748 } 5749 5750 namespace { 5751 5752 // FIXME: This class is only here to support the transition to llvm::Error. It 5753 // will be removed once this transition is complete. Clients should prefer to 5754 // deal with the Error value directly, rather than converting to error_code. 5755 class BitcodeErrorCategoryType : public std::error_category { 5756 const char *name() const noexcept override { 5757 return "llvm.bitcode"; 5758 } 5759 5760 std::string message(int IE) const override { 5761 BitcodeError E = static_cast<BitcodeError>(IE); 5762 switch (E) { 5763 case BitcodeError::CorruptedBitcode: 5764 return "Corrupted bitcode"; 5765 } 5766 llvm_unreachable("Unknown error type!"); 5767 } 5768 }; 5769 5770 } // end anonymous namespace 5771 5772 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5773 5774 const std::error_category &llvm::BitcodeErrorCategory() { 5775 return *ErrorCategory; 5776 } 5777 5778 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5779 unsigned Block, unsigned RecordID) { 5780 if (Stream.EnterSubBlock(Block)) 5781 return error("Invalid record"); 5782 5783 StringRef Strtab; 5784 while (true) { 5785 BitstreamEntry Entry = Stream.advance(); 5786 switch (Entry.Kind) { 5787 case BitstreamEntry::EndBlock: 5788 return Strtab; 5789 5790 case BitstreamEntry::Error: 5791 return error("Malformed block"); 5792 5793 case BitstreamEntry::SubBlock: 5794 if (Stream.SkipBlock()) 5795 return error("Malformed block"); 5796 break; 5797 5798 case BitstreamEntry::Record: 5799 StringRef Blob; 5800 SmallVector<uint64_t, 1> Record; 5801 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5802 Strtab = Blob; 5803 break; 5804 } 5805 } 5806 } 5807 5808 //===----------------------------------------------------------------------===// 5809 // External interface 5810 //===----------------------------------------------------------------------===// 5811 5812 Expected<std::vector<BitcodeModule>> 5813 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5814 auto FOrErr = getBitcodeFileContents(Buffer); 5815 if (!FOrErr) 5816 return FOrErr.takeError(); 5817 return std::move(FOrErr->Mods); 5818 } 5819 5820 Expected<BitcodeFileContents> 5821 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5822 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5823 if (!StreamOrErr) 5824 return StreamOrErr.takeError(); 5825 BitstreamCursor &Stream = *StreamOrErr; 5826 5827 BitcodeFileContents F; 5828 while (true) { 5829 uint64_t BCBegin = Stream.getCurrentByteNo(); 5830 5831 // We may be consuming bitcode from a client that leaves garbage at the end 5832 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5833 // the end that there cannot possibly be another module, stop looking. 5834 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5835 return F; 5836 5837 BitstreamEntry Entry = Stream.advance(); 5838 switch (Entry.Kind) { 5839 case BitstreamEntry::EndBlock: 5840 case BitstreamEntry::Error: 5841 return error("Malformed block"); 5842 5843 case BitstreamEntry::SubBlock: { 5844 uint64_t IdentificationBit = -1ull; 5845 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5846 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5847 if (Stream.SkipBlock()) 5848 return error("Malformed block"); 5849 5850 Entry = Stream.advance(); 5851 if (Entry.Kind != BitstreamEntry::SubBlock || 5852 Entry.ID != bitc::MODULE_BLOCK_ID) 5853 return error("Malformed block"); 5854 } 5855 5856 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5857 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5858 if (Stream.SkipBlock()) 5859 return error("Malformed block"); 5860 5861 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5862 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5863 Buffer.getBufferIdentifier(), IdentificationBit, 5864 ModuleBit}); 5865 continue; 5866 } 5867 5868 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5869 Expected<StringRef> Strtab = 5870 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5871 if (!Strtab) 5872 return Strtab.takeError(); 5873 // This string table is used by every preceding bitcode module that does 5874 // not have its own string table. A bitcode file may have multiple 5875 // string tables if it was created by binary concatenation, for example 5876 // with "llvm-cat -b". 5877 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5878 if (!I->Strtab.empty()) 5879 break; 5880 I->Strtab = *Strtab; 5881 } 5882 // Similarly, the string table is used by every preceding symbol table; 5883 // normally there will be just one unless the bitcode file was created 5884 // by binary concatenation. 5885 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5886 F.StrtabForSymtab = *Strtab; 5887 continue; 5888 } 5889 5890 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5891 Expected<StringRef> SymtabOrErr = 5892 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5893 if (!SymtabOrErr) 5894 return SymtabOrErr.takeError(); 5895 5896 // We can expect the bitcode file to have multiple symbol tables if it 5897 // was created by binary concatenation. In that case we silently 5898 // ignore any subsequent symbol tables, which is fine because this is a 5899 // low level function. The client is expected to notice that the number 5900 // of modules in the symbol table does not match the number of modules 5901 // in the input file and regenerate the symbol table. 5902 if (F.Symtab.empty()) 5903 F.Symtab = *SymtabOrErr; 5904 continue; 5905 } 5906 5907 if (Stream.SkipBlock()) 5908 return error("Malformed block"); 5909 continue; 5910 } 5911 case BitstreamEntry::Record: 5912 Stream.skipRecord(Entry.ID); 5913 continue; 5914 } 5915 } 5916 } 5917 5918 /// Get a lazy one-at-time loading module from bitcode. 5919 /// 5920 /// This isn't always used in a lazy context. In particular, it's also used by 5921 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5922 /// in forward-referenced functions from block address references. 5923 /// 5924 /// \param[in] MaterializeAll Set to \c true if we should materialize 5925 /// everything. 5926 Expected<std::unique_ptr<Module>> 5927 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5928 bool ShouldLazyLoadMetadata, bool IsImporting) { 5929 BitstreamCursor Stream(Buffer); 5930 5931 std::string ProducerIdentification; 5932 if (IdentificationBit != -1ull) { 5933 Stream.JumpToBit(IdentificationBit); 5934 Expected<std::string> ProducerIdentificationOrErr = 5935 readIdentificationBlock(Stream); 5936 if (!ProducerIdentificationOrErr) 5937 return ProducerIdentificationOrErr.takeError(); 5938 5939 ProducerIdentification = *ProducerIdentificationOrErr; 5940 } 5941 5942 Stream.JumpToBit(ModuleBit); 5943 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5944 Context); 5945 5946 std::unique_ptr<Module> M = 5947 llvm::make_unique<Module>(ModuleIdentifier, Context); 5948 M->setMaterializer(R); 5949 5950 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5951 if (Error Err = 5952 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5953 return std::move(Err); 5954 5955 if (MaterializeAll) { 5956 // Read in the entire module, and destroy the BitcodeReader. 5957 if (Error Err = M->materializeAll()) 5958 return std::move(Err); 5959 } else { 5960 // Resolve forward references from blockaddresses. 5961 if (Error Err = R->materializeForwardReferencedFunctions()) 5962 return std::move(Err); 5963 } 5964 return std::move(M); 5965 } 5966 5967 Expected<std::unique_ptr<Module>> 5968 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5969 bool IsImporting) { 5970 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5971 } 5972 5973 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5974 // We don't use ModuleIdentifier here because the client may need to control the 5975 // module path used in the combined summary (e.g. when reading summaries for 5976 // regular LTO modules). 5977 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5978 StringRef ModulePath, uint64_t ModuleId) { 5979 BitstreamCursor Stream(Buffer); 5980 Stream.JumpToBit(ModuleBit); 5981 5982 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5983 ModulePath, ModuleId); 5984 return R.parseModule(); 5985 } 5986 5987 // Parse the specified bitcode buffer, returning the function info index. 5988 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5989 BitstreamCursor Stream(Buffer); 5990 Stream.JumpToBit(ModuleBit); 5991 5992 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5993 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5994 ModuleIdentifier, 0); 5995 5996 if (Error Err = R.parseModule()) 5997 return std::move(Err); 5998 5999 return std::move(Index); 6000 } 6001 6002 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6003 unsigned ID) { 6004 if (Stream.EnterSubBlock(ID)) 6005 return error("Invalid record"); 6006 SmallVector<uint64_t, 64> Record; 6007 6008 while (true) { 6009 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6010 6011 switch (Entry.Kind) { 6012 case BitstreamEntry::SubBlock: // Handled for us already. 6013 case BitstreamEntry::Error: 6014 return error("Malformed block"); 6015 case BitstreamEntry::EndBlock: 6016 // If no flags record found, conservatively return true to mimic 6017 // behavior before this flag was added. 6018 return true; 6019 case BitstreamEntry::Record: 6020 // The interesting case. 6021 break; 6022 } 6023 6024 // Look for the FS_FLAGS record. 6025 Record.clear(); 6026 auto BitCode = Stream.readRecord(Entry.ID, Record); 6027 switch (BitCode) { 6028 default: // Default behavior: ignore. 6029 break; 6030 case bitc::FS_FLAGS: { // [flags] 6031 uint64_t Flags = Record[0]; 6032 // Scan flags. 6033 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6034 6035 return Flags & 0x8; 6036 } 6037 } 6038 } 6039 llvm_unreachable("Exit infinite loop"); 6040 } 6041 6042 // Check if the given bitcode buffer contains a global value summary block. 6043 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6044 BitstreamCursor Stream(Buffer); 6045 Stream.JumpToBit(ModuleBit); 6046 6047 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6048 return error("Invalid record"); 6049 6050 while (true) { 6051 BitstreamEntry Entry = Stream.advance(); 6052 6053 switch (Entry.Kind) { 6054 case BitstreamEntry::Error: 6055 return error("Malformed block"); 6056 case BitstreamEntry::EndBlock: 6057 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6058 /*EnableSplitLTOUnit=*/false}; 6059 6060 case BitstreamEntry::SubBlock: 6061 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6062 Expected<bool> EnableSplitLTOUnit = 6063 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6064 if (!EnableSplitLTOUnit) 6065 return EnableSplitLTOUnit.takeError(); 6066 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6067 *EnableSplitLTOUnit}; 6068 } 6069 6070 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6071 Expected<bool> EnableSplitLTOUnit = 6072 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6073 if (!EnableSplitLTOUnit) 6074 return EnableSplitLTOUnit.takeError(); 6075 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6076 *EnableSplitLTOUnit}; 6077 } 6078 6079 // Ignore other sub-blocks. 6080 if (Stream.SkipBlock()) 6081 return error("Malformed block"); 6082 continue; 6083 6084 case BitstreamEntry::Record: 6085 Stream.skipRecord(Entry.ID); 6086 continue; 6087 } 6088 } 6089 } 6090 6091 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6092 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6093 if (!MsOrErr) 6094 return MsOrErr.takeError(); 6095 6096 if (MsOrErr->size() != 1) 6097 return error("Expected a single module"); 6098 6099 return (*MsOrErr)[0]; 6100 } 6101 6102 Expected<std::unique_ptr<Module>> 6103 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6104 bool ShouldLazyLoadMetadata, bool IsImporting) { 6105 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6106 if (!BM) 6107 return BM.takeError(); 6108 6109 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6110 } 6111 6112 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6113 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6114 bool ShouldLazyLoadMetadata, bool IsImporting) { 6115 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6116 IsImporting); 6117 if (MOrErr) 6118 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6119 return MOrErr; 6120 } 6121 6122 Expected<std::unique_ptr<Module>> 6123 BitcodeModule::parseModule(LLVMContext &Context) { 6124 return getModuleImpl(Context, true, false, false); 6125 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6126 // written. We must defer until the Module has been fully materialized. 6127 } 6128 6129 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6130 LLVMContext &Context) { 6131 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6132 if (!BM) 6133 return BM.takeError(); 6134 6135 return BM->parseModule(Context); 6136 } 6137 6138 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6139 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6140 if (!StreamOrErr) 6141 return StreamOrErr.takeError(); 6142 6143 return readTriple(*StreamOrErr); 6144 } 6145 6146 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6147 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6148 if (!StreamOrErr) 6149 return StreamOrErr.takeError(); 6150 6151 return hasObjCCategory(*StreamOrErr); 6152 } 6153 6154 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6155 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6156 if (!StreamOrErr) 6157 return StreamOrErr.takeError(); 6158 6159 return readIdentificationCode(*StreamOrErr); 6160 } 6161 6162 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6163 ModuleSummaryIndex &CombinedIndex, 6164 uint64_t ModuleId) { 6165 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6166 if (!BM) 6167 return BM.takeError(); 6168 6169 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6170 } 6171 6172 Expected<std::unique_ptr<ModuleSummaryIndex>> 6173 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6174 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6175 if (!BM) 6176 return BM.takeError(); 6177 6178 return BM->getSummary(); 6179 } 6180 6181 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6182 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6183 if (!BM) 6184 return BM.takeError(); 6185 6186 return BM->getLTOInfo(); 6187 } 6188 6189 Expected<std::unique_ptr<ModuleSummaryIndex>> 6190 llvm::getModuleSummaryIndexForFile(StringRef Path, 6191 bool IgnoreEmptyThinLTOIndexFile) { 6192 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6193 MemoryBuffer::getFileOrSTDIN(Path); 6194 if (!FileOrErr) 6195 return errorCodeToError(FileOrErr.getError()); 6196 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6197 return nullptr; 6198 return getModuleSummaryIndex(**FileOrErr); 6199 } 6200