1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile,
747                                                     bool HasRelBF);
748   Error parseEntireSummary(unsigned ID);
749   Error parseModuleStringTable();
750 
751   std::pair<ValueInfo, GlobalValue::GUID>
752   getValueInfoFromValueId(unsigned ValueId);
753 
754   void addThisModule();
755   ModuleSummaryIndex::ModuleInfo *getThisModule();
756 };
757 
758 } // end anonymous namespace
759 
760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
761                                                     Error Err) {
762   if (Err) {
763     std::error_code EC;
764     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
765       EC = EIB.convertToErrorCode();
766       Ctx.emitError(EIB.message());
767     });
768     return EC;
769   }
770   return std::error_code();
771 }
772 
773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
774                              StringRef ProducerIdentification,
775                              LLVMContext &Context)
776     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
777       ValueList(Context) {
778   this->ProducerIdentification = ProducerIdentification;
779 }
780 
781 Error BitcodeReader::materializeForwardReferencedFunctions() {
782   if (WillMaterializeAllForwardRefs)
783     return Error::success();
784 
785   // Prevent recursion.
786   WillMaterializeAllForwardRefs = true;
787 
788   while (!BasicBlockFwdRefQueue.empty()) {
789     Function *F = BasicBlockFwdRefQueue.front();
790     BasicBlockFwdRefQueue.pop_front();
791     assert(F && "Expected valid function");
792     if (!BasicBlockFwdRefs.count(F))
793       // Already materialized.
794       continue;
795 
796     // Check for a function that isn't materializable to prevent an infinite
797     // loop.  When parsing a blockaddress stored in a global variable, there
798     // isn't a trivial way to check if a function will have a body without a
799     // linear search through FunctionsWithBodies, so just check it here.
800     if (!F->isMaterializable())
801       return error("Never resolved function from blockaddress");
802 
803     // Try to materialize F.
804     if (Error Err = materialize(F))
805       return Err;
806   }
807   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
808 
809   // Reset state.
810   WillMaterializeAllForwardRefs = false;
811   return Error::success();
812 }
813 
814 //===----------------------------------------------------------------------===//
815 //  Helper functions to implement forward reference resolution, etc.
816 //===----------------------------------------------------------------------===//
817 
818 static bool hasImplicitComdat(size_t Val) {
819   switch (Val) {
820   default:
821     return false;
822   case 1:  // Old WeakAnyLinkage
823   case 4:  // Old LinkOnceAnyLinkage
824   case 10: // Old WeakODRLinkage
825   case 11: // Old LinkOnceODRLinkage
826     return true;
827   }
828 }
829 
830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
831   switch (Val) {
832   default: // Map unknown/new linkages to external
833   case 0:
834     return GlobalValue::ExternalLinkage;
835   case 2:
836     return GlobalValue::AppendingLinkage;
837   case 3:
838     return GlobalValue::InternalLinkage;
839   case 5:
840     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
841   case 6:
842     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
843   case 7:
844     return GlobalValue::ExternalWeakLinkage;
845   case 8:
846     return GlobalValue::CommonLinkage;
847   case 9:
848     return GlobalValue::PrivateLinkage;
849   case 12:
850     return GlobalValue::AvailableExternallyLinkage;
851   case 13:
852     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
853   case 14:
854     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
855   case 15:
856     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
857   case 1: // Old value with implicit comdat.
858   case 16:
859     return GlobalValue::WeakAnyLinkage;
860   case 10: // Old value with implicit comdat.
861   case 17:
862     return GlobalValue::WeakODRLinkage;
863   case 4: // Old value with implicit comdat.
864   case 18:
865     return GlobalValue::LinkOnceAnyLinkage;
866   case 11: // Old value with implicit comdat.
867   case 19:
868     return GlobalValue::LinkOnceODRLinkage;
869   }
870 }
871 
872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
873   FunctionSummary::FFlags Flags;
874   Flags.ReadNone = RawFlags & 0x1;
875   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
876   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
877   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
878   Flags.NoInline = (RawFlags >> 4) & 0x1;
879   return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
884                                                             uint64_t Version) {
885   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886   // like getDecodedLinkage() above. Any future change to the linkage enum and
887   // to getDecodedLinkage() will need to be taken into account here as above.
888   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889   RawFlags = RawFlags >> 4;
890   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891   // The Live flag wasn't introduced until version 3. For dead stripping
892   // to work correctly on earlier versions, we must conservatively treat all
893   // values as live.
894   bool Live = (RawFlags & 0x2) || Version < 3;
895   bool Local = (RawFlags & 0x4);
896 
897   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
900 // Decode the flags for GlobalVariable in the summary
901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
902   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
903 }
904 
905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
906   switch (Val) {
907   default: // Map unknown visibilities to default.
908   case 0: return GlobalValue::DefaultVisibility;
909   case 1: return GlobalValue::HiddenVisibility;
910   case 2: return GlobalValue::ProtectedVisibility;
911   }
912 }
913 
914 static GlobalValue::DLLStorageClassTypes
915 getDecodedDLLStorageClass(unsigned Val) {
916   switch (Val) {
917   default: // Map unknown values to default.
918   case 0: return GlobalValue::DefaultStorageClass;
919   case 1: return GlobalValue::DLLImportStorageClass;
920   case 2: return GlobalValue::DLLExportStorageClass;
921   }
922 }
923 
924 static bool getDecodedDSOLocal(unsigned Val) {
925   switch(Val) {
926   default: // Map unknown values to preemptable.
927   case 0:  return false;
928   case 1:  return true;
929   }
930 }
931 
932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
933   switch (Val) {
934     case 0: return GlobalVariable::NotThreadLocal;
935     default: // Map unknown non-zero value to general dynamic.
936     case 1: return GlobalVariable::GeneralDynamicTLSModel;
937     case 2: return GlobalVariable::LocalDynamicTLSModel;
938     case 3: return GlobalVariable::InitialExecTLSModel;
939     case 4: return GlobalVariable::LocalExecTLSModel;
940   }
941 }
942 
943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
944   switch (Val) {
945     default: // Map unknown to UnnamedAddr::None.
946     case 0: return GlobalVariable::UnnamedAddr::None;
947     case 1: return GlobalVariable::UnnamedAddr::Global;
948     case 2: return GlobalVariable::UnnamedAddr::Local;
949   }
950 }
951 
952 static int getDecodedCastOpcode(unsigned Val) {
953   switch (Val) {
954   default: return -1;
955   case bitc::CAST_TRUNC   : return Instruction::Trunc;
956   case bitc::CAST_ZEXT    : return Instruction::ZExt;
957   case bitc::CAST_SEXT    : return Instruction::SExt;
958   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
959   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
960   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
961   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
962   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
963   case bitc::CAST_FPEXT   : return Instruction::FPExt;
964   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
965   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
966   case bitc::CAST_BITCAST : return Instruction::BitCast;
967   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
968   }
969 }
970 
971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
972   bool IsFP = Ty->isFPOrFPVectorTy();
973   // UnOps are only valid for int/fp or vector of int/fp types
974   if (!IsFP && !Ty->isIntOrIntVectorTy())
975     return -1;
976 
977   switch (Val) {
978   default:
979     return -1;
980   case bitc::UNOP_NEG:
981     return IsFP ? Instruction::FNeg : -1;
982   }
983 }
984 
985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
986   bool IsFP = Ty->isFPOrFPVectorTy();
987   // BinOps are only valid for int/fp or vector of int/fp types
988   if (!IsFP && !Ty->isIntOrIntVectorTy())
989     return -1;
990 
991   switch (Val) {
992   default:
993     return -1;
994   case bitc::BINOP_ADD:
995     return IsFP ? Instruction::FAdd : Instruction::Add;
996   case bitc::BINOP_SUB:
997     return IsFP ? Instruction::FSub : Instruction::Sub;
998   case bitc::BINOP_MUL:
999     return IsFP ? Instruction::FMul : Instruction::Mul;
1000   case bitc::BINOP_UDIV:
1001     return IsFP ? -1 : Instruction::UDiv;
1002   case bitc::BINOP_SDIV:
1003     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1004   case bitc::BINOP_UREM:
1005     return IsFP ? -1 : Instruction::URem;
1006   case bitc::BINOP_SREM:
1007     return IsFP ? Instruction::FRem : Instruction::SRem;
1008   case bitc::BINOP_SHL:
1009     return IsFP ? -1 : Instruction::Shl;
1010   case bitc::BINOP_LSHR:
1011     return IsFP ? -1 : Instruction::LShr;
1012   case bitc::BINOP_ASHR:
1013     return IsFP ? -1 : Instruction::AShr;
1014   case bitc::BINOP_AND:
1015     return IsFP ? -1 : Instruction::And;
1016   case bitc::BINOP_OR:
1017     return IsFP ? -1 : Instruction::Or;
1018   case bitc::BINOP_XOR:
1019     return IsFP ? -1 : Instruction::Xor;
1020   }
1021 }
1022 
1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1024   switch (Val) {
1025   default: return AtomicRMWInst::BAD_BINOP;
1026   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1027   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1028   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1029   case bitc::RMW_AND: return AtomicRMWInst::And;
1030   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1031   case bitc::RMW_OR: return AtomicRMWInst::Or;
1032   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1033   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1034   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1035   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1036   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1037   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1038   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1039   }
1040 }
1041 
1042 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1043   switch (Val) {
1044   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1045   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1046   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1047   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1048   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1049   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1050   default: // Map unknown orderings to sequentially-consistent.
1051   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1052   }
1053 }
1054 
1055 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1056   switch (Val) {
1057   default: // Map unknown selection kinds to any.
1058   case bitc::COMDAT_SELECTION_KIND_ANY:
1059     return Comdat::Any;
1060   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1061     return Comdat::ExactMatch;
1062   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1063     return Comdat::Largest;
1064   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1065     return Comdat::NoDuplicates;
1066   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1067     return Comdat::SameSize;
1068   }
1069 }
1070 
1071 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1072   FastMathFlags FMF;
1073   if (0 != (Val & bitc::UnsafeAlgebra))
1074     FMF.setFast();
1075   if (0 != (Val & bitc::AllowReassoc))
1076     FMF.setAllowReassoc();
1077   if (0 != (Val & bitc::NoNaNs))
1078     FMF.setNoNaNs();
1079   if (0 != (Val & bitc::NoInfs))
1080     FMF.setNoInfs();
1081   if (0 != (Val & bitc::NoSignedZeros))
1082     FMF.setNoSignedZeros();
1083   if (0 != (Val & bitc::AllowReciprocal))
1084     FMF.setAllowReciprocal();
1085   if (0 != (Val & bitc::AllowContract))
1086     FMF.setAllowContract(true);
1087   if (0 != (Val & bitc::ApproxFunc))
1088     FMF.setApproxFunc();
1089   return FMF;
1090 }
1091 
1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1093   switch (Val) {
1094   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1095   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1096   }
1097 }
1098 
1099 Type *BitcodeReader::getTypeByID(unsigned ID) {
1100   // The type table size is always specified correctly.
1101   if (ID >= TypeList.size())
1102     return nullptr;
1103 
1104   if (Type *Ty = TypeList[ID])
1105     return Ty;
1106 
1107   // If we have a forward reference, the only possible case is when it is to a
1108   // named struct.  Just create a placeholder for now.
1109   return TypeList[ID] = createIdentifiedStructType(Context);
1110 }
1111 
1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1113                                                       StringRef Name) {
1114   auto *Ret = StructType::create(Context, Name);
1115   IdentifiedStructTypes.push_back(Ret);
1116   return Ret;
1117 }
1118 
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1120   auto *Ret = StructType::create(Context);
1121   IdentifiedStructTypes.push_back(Ret);
1122   return Ret;
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 //  Functions for parsing blocks from the bitcode file
1127 //===----------------------------------------------------------------------===//
1128 
1129 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1130   switch (Val) {
1131   case Attribute::EndAttrKinds:
1132     llvm_unreachable("Synthetic enumerators which should never get here");
1133 
1134   case Attribute::None:            return 0;
1135   case Attribute::ZExt:            return 1 << 0;
1136   case Attribute::SExt:            return 1 << 1;
1137   case Attribute::NoReturn:        return 1 << 2;
1138   case Attribute::InReg:           return 1 << 3;
1139   case Attribute::StructRet:       return 1 << 4;
1140   case Attribute::NoUnwind:        return 1 << 5;
1141   case Attribute::NoAlias:         return 1 << 6;
1142   case Attribute::ByVal:           return 1 << 7;
1143   case Attribute::Nest:            return 1 << 8;
1144   case Attribute::ReadNone:        return 1 << 9;
1145   case Attribute::ReadOnly:        return 1 << 10;
1146   case Attribute::NoInline:        return 1 << 11;
1147   case Attribute::AlwaysInline:    return 1 << 12;
1148   case Attribute::OptimizeForSize: return 1 << 13;
1149   case Attribute::StackProtect:    return 1 << 14;
1150   case Attribute::StackProtectReq: return 1 << 15;
1151   case Attribute::Alignment:       return 31 << 16;
1152   case Attribute::NoCapture:       return 1 << 21;
1153   case Attribute::NoRedZone:       return 1 << 22;
1154   case Attribute::NoImplicitFloat: return 1 << 23;
1155   case Attribute::Naked:           return 1 << 24;
1156   case Attribute::InlineHint:      return 1 << 25;
1157   case Attribute::StackAlignment:  return 7 << 26;
1158   case Attribute::ReturnsTwice:    return 1 << 29;
1159   case Attribute::UWTable:         return 1 << 30;
1160   case Attribute::NonLazyBind:     return 1U << 31;
1161   case Attribute::SanitizeAddress: return 1ULL << 32;
1162   case Attribute::MinSize:         return 1ULL << 33;
1163   case Attribute::NoDuplicate:     return 1ULL << 34;
1164   case Attribute::StackProtectStrong: return 1ULL << 35;
1165   case Attribute::SanitizeThread:  return 1ULL << 36;
1166   case Attribute::SanitizeMemory:  return 1ULL << 37;
1167   case Attribute::NoBuiltin:       return 1ULL << 38;
1168   case Attribute::Returned:        return 1ULL << 39;
1169   case Attribute::Cold:            return 1ULL << 40;
1170   case Attribute::Builtin:         return 1ULL << 41;
1171   case Attribute::OptimizeNone:    return 1ULL << 42;
1172   case Attribute::InAlloca:        return 1ULL << 43;
1173   case Attribute::NonNull:         return 1ULL << 44;
1174   case Attribute::JumpTable:       return 1ULL << 45;
1175   case Attribute::Convergent:      return 1ULL << 46;
1176   case Attribute::SafeStack:       return 1ULL << 47;
1177   case Attribute::NoRecurse:       return 1ULL << 48;
1178   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1179   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1180   case Attribute::SwiftSelf:       return 1ULL << 51;
1181   case Attribute::SwiftError:      return 1ULL << 52;
1182   case Attribute::WriteOnly:       return 1ULL << 53;
1183   case Attribute::Speculatable:    return 1ULL << 54;
1184   case Attribute::StrictFP:        return 1ULL << 55;
1185   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1186   case Attribute::NoCfCheck:       return 1ULL << 57;
1187   case Attribute::OptForFuzzing:   return 1ULL << 58;
1188   case Attribute::ShadowCallStack: return 1ULL << 59;
1189   case Attribute::SpeculativeLoadHardening:
1190     return 1ULL << 60;
1191   case Attribute::ImmArg:
1192     return 1ULL << 61;
1193   case Attribute::Dereferenceable:
1194     llvm_unreachable("dereferenceable attribute not supported in raw format");
1195     break;
1196   case Attribute::DereferenceableOrNull:
1197     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1198                      "format");
1199     break;
1200   case Attribute::ArgMemOnly:
1201     llvm_unreachable("argmemonly attribute not supported in raw format");
1202     break;
1203   case Attribute::AllocSize:
1204     llvm_unreachable("allocsize not supported in raw format");
1205     break;
1206   }
1207   llvm_unreachable("Unsupported attribute type");
1208 }
1209 
1210 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1211   if (!Val) return;
1212 
1213   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1214        I = Attribute::AttrKind(I + 1)) {
1215     if (I == Attribute::Dereferenceable ||
1216         I == Attribute::DereferenceableOrNull ||
1217         I == Attribute::ArgMemOnly ||
1218         I == Attribute::AllocSize)
1219       continue;
1220     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1221       if (I == Attribute::Alignment)
1222         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1223       else if (I == Attribute::StackAlignment)
1224         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1225       else
1226         B.addAttribute(I);
1227     }
1228   }
1229 }
1230 
1231 /// This fills an AttrBuilder object with the LLVM attributes that have
1232 /// been decoded from the given integer. This function must stay in sync with
1233 /// 'encodeLLVMAttributesForBitcode'.
1234 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1235                                            uint64_t EncodedAttrs) {
1236   // FIXME: Remove in 4.0.
1237 
1238   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1239   // the bits above 31 down by 11 bits.
1240   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1241   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1242          "Alignment must be a power of two.");
1243 
1244   if (Alignment)
1245     B.addAlignmentAttr(Alignment);
1246   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1247                           (EncodedAttrs & 0xffff));
1248 }
1249 
1250 Error BitcodeReader::parseAttributeBlock() {
1251   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1252     return error("Invalid record");
1253 
1254   if (!MAttributes.empty())
1255     return error("Invalid multiple blocks");
1256 
1257   SmallVector<uint64_t, 64> Record;
1258 
1259   SmallVector<AttributeList, 8> Attrs;
1260 
1261   // Read all the records.
1262   while (true) {
1263     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1264 
1265     switch (Entry.Kind) {
1266     case BitstreamEntry::SubBlock: // Handled for us already.
1267     case BitstreamEntry::Error:
1268       return error("Malformed block");
1269     case BitstreamEntry::EndBlock:
1270       return Error::success();
1271     case BitstreamEntry::Record:
1272       // The interesting case.
1273       break;
1274     }
1275 
1276     // Read a record.
1277     Record.clear();
1278     switch (Stream.readRecord(Entry.ID, Record)) {
1279     default:  // Default behavior: ignore.
1280       break;
1281     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1282       // FIXME: Remove in 4.0.
1283       if (Record.size() & 1)
1284         return error("Invalid record");
1285 
1286       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1287         AttrBuilder B;
1288         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1289         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1290       }
1291 
1292       MAttributes.push_back(AttributeList::get(Context, Attrs));
1293       Attrs.clear();
1294       break;
1295     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1296       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1297         Attrs.push_back(MAttributeGroups[Record[i]]);
1298 
1299       MAttributes.push_back(AttributeList::get(Context, Attrs));
1300       Attrs.clear();
1301       break;
1302     }
1303   }
1304 }
1305 
1306 // Returns Attribute::None on unrecognized codes.
1307 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1308   switch (Code) {
1309   default:
1310     return Attribute::None;
1311   case bitc::ATTR_KIND_ALIGNMENT:
1312     return Attribute::Alignment;
1313   case bitc::ATTR_KIND_ALWAYS_INLINE:
1314     return Attribute::AlwaysInline;
1315   case bitc::ATTR_KIND_ARGMEMONLY:
1316     return Attribute::ArgMemOnly;
1317   case bitc::ATTR_KIND_BUILTIN:
1318     return Attribute::Builtin;
1319   case bitc::ATTR_KIND_BY_VAL:
1320     return Attribute::ByVal;
1321   case bitc::ATTR_KIND_IN_ALLOCA:
1322     return Attribute::InAlloca;
1323   case bitc::ATTR_KIND_COLD:
1324     return Attribute::Cold;
1325   case bitc::ATTR_KIND_CONVERGENT:
1326     return Attribute::Convergent;
1327   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1328     return Attribute::InaccessibleMemOnly;
1329   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1330     return Attribute::InaccessibleMemOrArgMemOnly;
1331   case bitc::ATTR_KIND_INLINE_HINT:
1332     return Attribute::InlineHint;
1333   case bitc::ATTR_KIND_IN_REG:
1334     return Attribute::InReg;
1335   case bitc::ATTR_KIND_JUMP_TABLE:
1336     return Attribute::JumpTable;
1337   case bitc::ATTR_KIND_MIN_SIZE:
1338     return Attribute::MinSize;
1339   case bitc::ATTR_KIND_NAKED:
1340     return Attribute::Naked;
1341   case bitc::ATTR_KIND_NEST:
1342     return Attribute::Nest;
1343   case bitc::ATTR_KIND_NO_ALIAS:
1344     return Attribute::NoAlias;
1345   case bitc::ATTR_KIND_NO_BUILTIN:
1346     return Attribute::NoBuiltin;
1347   case bitc::ATTR_KIND_NO_CAPTURE:
1348     return Attribute::NoCapture;
1349   case bitc::ATTR_KIND_NO_DUPLICATE:
1350     return Attribute::NoDuplicate;
1351   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1352     return Attribute::NoImplicitFloat;
1353   case bitc::ATTR_KIND_NO_INLINE:
1354     return Attribute::NoInline;
1355   case bitc::ATTR_KIND_NO_RECURSE:
1356     return Attribute::NoRecurse;
1357   case bitc::ATTR_KIND_NON_LAZY_BIND:
1358     return Attribute::NonLazyBind;
1359   case bitc::ATTR_KIND_NON_NULL:
1360     return Attribute::NonNull;
1361   case bitc::ATTR_KIND_DEREFERENCEABLE:
1362     return Attribute::Dereferenceable;
1363   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1364     return Attribute::DereferenceableOrNull;
1365   case bitc::ATTR_KIND_ALLOC_SIZE:
1366     return Attribute::AllocSize;
1367   case bitc::ATTR_KIND_NO_RED_ZONE:
1368     return Attribute::NoRedZone;
1369   case bitc::ATTR_KIND_NO_RETURN:
1370     return Attribute::NoReturn;
1371   case bitc::ATTR_KIND_NOCF_CHECK:
1372     return Attribute::NoCfCheck;
1373   case bitc::ATTR_KIND_NO_UNWIND:
1374     return Attribute::NoUnwind;
1375   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1376     return Attribute::OptForFuzzing;
1377   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1378     return Attribute::OptimizeForSize;
1379   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1380     return Attribute::OptimizeNone;
1381   case bitc::ATTR_KIND_READ_NONE:
1382     return Attribute::ReadNone;
1383   case bitc::ATTR_KIND_READ_ONLY:
1384     return Attribute::ReadOnly;
1385   case bitc::ATTR_KIND_RETURNED:
1386     return Attribute::Returned;
1387   case bitc::ATTR_KIND_RETURNS_TWICE:
1388     return Attribute::ReturnsTwice;
1389   case bitc::ATTR_KIND_S_EXT:
1390     return Attribute::SExt;
1391   case bitc::ATTR_KIND_SPECULATABLE:
1392     return Attribute::Speculatable;
1393   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1394     return Attribute::StackAlignment;
1395   case bitc::ATTR_KIND_STACK_PROTECT:
1396     return Attribute::StackProtect;
1397   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1398     return Attribute::StackProtectReq;
1399   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1400     return Attribute::StackProtectStrong;
1401   case bitc::ATTR_KIND_SAFESTACK:
1402     return Attribute::SafeStack;
1403   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1404     return Attribute::ShadowCallStack;
1405   case bitc::ATTR_KIND_STRICT_FP:
1406     return Attribute::StrictFP;
1407   case bitc::ATTR_KIND_STRUCT_RET:
1408     return Attribute::StructRet;
1409   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1410     return Attribute::SanitizeAddress;
1411   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1412     return Attribute::SanitizeHWAddress;
1413   case bitc::ATTR_KIND_SANITIZE_THREAD:
1414     return Attribute::SanitizeThread;
1415   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1416     return Attribute::SanitizeMemory;
1417   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1418     return Attribute::SpeculativeLoadHardening;
1419   case bitc::ATTR_KIND_SWIFT_ERROR:
1420     return Attribute::SwiftError;
1421   case bitc::ATTR_KIND_SWIFT_SELF:
1422     return Attribute::SwiftSelf;
1423   case bitc::ATTR_KIND_UW_TABLE:
1424     return Attribute::UWTable;
1425   case bitc::ATTR_KIND_WRITEONLY:
1426     return Attribute::WriteOnly;
1427   case bitc::ATTR_KIND_Z_EXT:
1428     return Attribute::ZExt;
1429   case bitc::ATTR_KIND_IMMARG:
1430     return Attribute::ImmArg;
1431   }
1432 }
1433 
1434 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1435                                          unsigned &Alignment) {
1436   // Note: Alignment in bitcode files is incremented by 1, so that zero
1437   // can be used for default alignment.
1438   if (Exponent > Value::MaxAlignmentExponent + 1)
1439     return error("Invalid alignment value");
1440   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1441   return Error::success();
1442 }
1443 
1444 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1445   *Kind = getAttrFromCode(Code);
1446   if (*Kind == Attribute::None)
1447     return error("Unknown attribute kind (" + Twine(Code) + ")");
1448   return Error::success();
1449 }
1450 
1451 Error BitcodeReader::parseAttributeGroupBlock() {
1452   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1453     return error("Invalid record");
1454 
1455   if (!MAttributeGroups.empty())
1456     return error("Invalid multiple blocks");
1457 
1458   SmallVector<uint64_t, 64> Record;
1459 
1460   // Read all the records.
1461   while (true) {
1462     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1463 
1464     switch (Entry.Kind) {
1465     case BitstreamEntry::SubBlock: // Handled for us already.
1466     case BitstreamEntry::Error:
1467       return error("Malformed block");
1468     case BitstreamEntry::EndBlock:
1469       return Error::success();
1470     case BitstreamEntry::Record:
1471       // The interesting case.
1472       break;
1473     }
1474 
1475     // Read a record.
1476     Record.clear();
1477     switch (Stream.readRecord(Entry.ID, Record)) {
1478     default:  // Default behavior: ignore.
1479       break;
1480     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1481       if (Record.size() < 3)
1482         return error("Invalid record");
1483 
1484       uint64_t GrpID = Record[0];
1485       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1486 
1487       AttrBuilder B;
1488       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1489         if (Record[i] == 0) {        // Enum attribute
1490           Attribute::AttrKind Kind;
1491           if (Error Err = parseAttrKind(Record[++i], &Kind))
1492             return Err;
1493 
1494           B.addAttribute(Kind);
1495         } else if (Record[i] == 1) { // Integer attribute
1496           Attribute::AttrKind Kind;
1497           if (Error Err = parseAttrKind(Record[++i], &Kind))
1498             return Err;
1499           if (Kind == Attribute::Alignment)
1500             B.addAlignmentAttr(Record[++i]);
1501           else if (Kind == Attribute::StackAlignment)
1502             B.addStackAlignmentAttr(Record[++i]);
1503           else if (Kind == Attribute::Dereferenceable)
1504             B.addDereferenceableAttr(Record[++i]);
1505           else if (Kind == Attribute::DereferenceableOrNull)
1506             B.addDereferenceableOrNullAttr(Record[++i]);
1507           else if (Kind == Attribute::AllocSize)
1508             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1509         } else {                     // String attribute
1510           assert((Record[i] == 3 || Record[i] == 4) &&
1511                  "Invalid attribute group entry");
1512           bool HasValue = (Record[i++] == 4);
1513           SmallString<64> KindStr;
1514           SmallString<64> ValStr;
1515 
1516           while (Record[i] != 0 && i != e)
1517             KindStr += Record[i++];
1518           assert(Record[i] == 0 && "Kind string not null terminated");
1519 
1520           if (HasValue) {
1521             // Has a value associated with it.
1522             ++i; // Skip the '0' that terminates the "kind" string.
1523             while (Record[i] != 0 && i != e)
1524               ValStr += Record[i++];
1525             assert(Record[i] == 0 && "Value string not null terminated");
1526           }
1527 
1528           B.addAttribute(KindStr.str(), ValStr.str());
1529         }
1530       }
1531 
1532       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1533       break;
1534     }
1535     }
1536   }
1537 }
1538 
1539 Error BitcodeReader::parseTypeTable() {
1540   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1541     return error("Invalid record");
1542 
1543   return parseTypeTableBody();
1544 }
1545 
1546 Error BitcodeReader::parseTypeTableBody() {
1547   if (!TypeList.empty())
1548     return error("Invalid multiple blocks");
1549 
1550   SmallVector<uint64_t, 64> Record;
1551   unsigned NumRecords = 0;
1552 
1553   SmallString<64> TypeName;
1554 
1555   // Read all the records for this type table.
1556   while (true) {
1557     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1558 
1559     switch (Entry.Kind) {
1560     case BitstreamEntry::SubBlock: // Handled for us already.
1561     case BitstreamEntry::Error:
1562       return error("Malformed block");
1563     case BitstreamEntry::EndBlock:
1564       if (NumRecords != TypeList.size())
1565         return error("Malformed block");
1566       return Error::success();
1567     case BitstreamEntry::Record:
1568       // The interesting case.
1569       break;
1570     }
1571 
1572     // Read a record.
1573     Record.clear();
1574     Type *ResultTy = nullptr;
1575     switch (Stream.readRecord(Entry.ID, Record)) {
1576     default:
1577       return error("Invalid value");
1578     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1579       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1580       // type list.  This allows us to reserve space.
1581       if (Record.size() < 1)
1582         return error("Invalid record");
1583       TypeList.resize(Record[0]);
1584       continue;
1585     case bitc::TYPE_CODE_VOID:      // VOID
1586       ResultTy = Type::getVoidTy(Context);
1587       break;
1588     case bitc::TYPE_CODE_HALF:     // HALF
1589       ResultTy = Type::getHalfTy(Context);
1590       break;
1591     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1592       ResultTy = Type::getFloatTy(Context);
1593       break;
1594     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1595       ResultTy = Type::getDoubleTy(Context);
1596       break;
1597     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1598       ResultTy = Type::getX86_FP80Ty(Context);
1599       break;
1600     case bitc::TYPE_CODE_FP128:     // FP128
1601       ResultTy = Type::getFP128Ty(Context);
1602       break;
1603     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1604       ResultTy = Type::getPPC_FP128Ty(Context);
1605       break;
1606     case bitc::TYPE_CODE_LABEL:     // LABEL
1607       ResultTy = Type::getLabelTy(Context);
1608       break;
1609     case bitc::TYPE_CODE_METADATA:  // METADATA
1610       ResultTy = Type::getMetadataTy(Context);
1611       break;
1612     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1613       ResultTy = Type::getX86_MMXTy(Context);
1614       break;
1615     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1616       ResultTy = Type::getTokenTy(Context);
1617       break;
1618     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1619       if (Record.size() < 1)
1620         return error("Invalid record");
1621 
1622       uint64_t NumBits = Record[0];
1623       if (NumBits < IntegerType::MIN_INT_BITS ||
1624           NumBits > IntegerType::MAX_INT_BITS)
1625         return error("Bitwidth for integer type out of range");
1626       ResultTy = IntegerType::get(Context, NumBits);
1627       break;
1628     }
1629     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1630                                     //          [pointee type, address space]
1631       if (Record.size() < 1)
1632         return error("Invalid record");
1633       unsigned AddressSpace = 0;
1634       if (Record.size() == 2)
1635         AddressSpace = Record[1];
1636       ResultTy = getTypeByID(Record[0]);
1637       if (!ResultTy ||
1638           !PointerType::isValidElementType(ResultTy))
1639         return error("Invalid type");
1640       ResultTy = PointerType::get(ResultTy, AddressSpace);
1641       break;
1642     }
1643     case bitc::TYPE_CODE_FUNCTION_OLD: {
1644       // FIXME: attrid is dead, remove it in LLVM 4.0
1645       // FUNCTION: [vararg, attrid, retty, paramty x N]
1646       if (Record.size() < 3)
1647         return error("Invalid record");
1648       SmallVector<Type*, 8> ArgTys;
1649       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1650         if (Type *T = getTypeByID(Record[i]))
1651           ArgTys.push_back(T);
1652         else
1653           break;
1654       }
1655 
1656       ResultTy = getTypeByID(Record[2]);
1657       if (!ResultTy || ArgTys.size() < Record.size()-3)
1658         return error("Invalid type");
1659 
1660       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1661       break;
1662     }
1663     case bitc::TYPE_CODE_FUNCTION: {
1664       // FUNCTION: [vararg, retty, paramty x N]
1665       if (Record.size() < 2)
1666         return error("Invalid record");
1667       SmallVector<Type*, 8> ArgTys;
1668       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1669         if (Type *T = getTypeByID(Record[i])) {
1670           if (!FunctionType::isValidArgumentType(T))
1671             return error("Invalid function argument type");
1672           ArgTys.push_back(T);
1673         }
1674         else
1675           break;
1676       }
1677 
1678       ResultTy = getTypeByID(Record[1]);
1679       if (!ResultTy || ArgTys.size() < Record.size()-2)
1680         return error("Invalid type");
1681 
1682       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1683       break;
1684     }
1685     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1686       if (Record.size() < 1)
1687         return error("Invalid record");
1688       SmallVector<Type*, 8> EltTys;
1689       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1690         if (Type *T = getTypeByID(Record[i]))
1691           EltTys.push_back(T);
1692         else
1693           break;
1694       }
1695       if (EltTys.size() != Record.size()-1)
1696         return error("Invalid type");
1697       ResultTy = StructType::get(Context, EltTys, Record[0]);
1698       break;
1699     }
1700     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1701       if (convertToString(Record, 0, TypeName))
1702         return error("Invalid record");
1703       continue;
1704 
1705     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1706       if (Record.size() < 1)
1707         return error("Invalid record");
1708 
1709       if (NumRecords >= TypeList.size())
1710         return error("Invalid TYPE table");
1711 
1712       // Check to see if this was forward referenced, if so fill in the temp.
1713       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1714       if (Res) {
1715         Res->setName(TypeName);
1716         TypeList[NumRecords] = nullptr;
1717       } else  // Otherwise, create a new struct.
1718         Res = createIdentifiedStructType(Context, TypeName);
1719       TypeName.clear();
1720 
1721       SmallVector<Type*, 8> EltTys;
1722       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1723         if (Type *T = getTypeByID(Record[i]))
1724           EltTys.push_back(T);
1725         else
1726           break;
1727       }
1728       if (EltTys.size() != Record.size()-1)
1729         return error("Invalid record");
1730       Res->setBody(EltTys, Record[0]);
1731       ResultTy = Res;
1732       break;
1733     }
1734     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1735       if (Record.size() != 1)
1736         return error("Invalid record");
1737 
1738       if (NumRecords >= TypeList.size())
1739         return error("Invalid TYPE table");
1740 
1741       // Check to see if this was forward referenced, if so fill in the temp.
1742       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1743       if (Res) {
1744         Res->setName(TypeName);
1745         TypeList[NumRecords] = nullptr;
1746       } else  // Otherwise, create a new struct with no body.
1747         Res = createIdentifiedStructType(Context, TypeName);
1748       TypeName.clear();
1749       ResultTy = Res;
1750       break;
1751     }
1752     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1753       if (Record.size() < 2)
1754         return error("Invalid record");
1755       ResultTy = getTypeByID(Record[1]);
1756       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1757         return error("Invalid type");
1758       ResultTy = ArrayType::get(ResultTy, Record[0]);
1759       break;
1760     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1761       if (Record.size() < 2)
1762         return error("Invalid record");
1763       if (Record[0] == 0)
1764         return error("Invalid vector length");
1765       ResultTy = getTypeByID(Record[1]);
1766       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1767         return error("Invalid type");
1768       ResultTy = VectorType::get(ResultTy, Record[0]);
1769       break;
1770     }
1771 
1772     if (NumRecords >= TypeList.size())
1773       return error("Invalid TYPE table");
1774     if (TypeList[NumRecords])
1775       return error(
1776           "Invalid TYPE table: Only named structs can be forward referenced");
1777     assert(ResultTy && "Didn't read a type?");
1778     TypeList[NumRecords++] = ResultTy;
1779   }
1780 }
1781 
1782 Error BitcodeReader::parseOperandBundleTags() {
1783   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1784     return error("Invalid record");
1785 
1786   if (!BundleTags.empty())
1787     return error("Invalid multiple blocks");
1788 
1789   SmallVector<uint64_t, 64> Record;
1790 
1791   while (true) {
1792     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1793 
1794     switch (Entry.Kind) {
1795     case BitstreamEntry::SubBlock: // Handled for us already.
1796     case BitstreamEntry::Error:
1797       return error("Malformed block");
1798     case BitstreamEntry::EndBlock:
1799       return Error::success();
1800     case BitstreamEntry::Record:
1801       // The interesting case.
1802       break;
1803     }
1804 
1805     // Tags are implicitly mapped to integers by their order.
1806 
1807     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1808       return error("Invalid record");
1809 
1810     // OPERAND_BUNDLE_TAG: [strchr x N]
1811     BundleTags.emplace_back();
1812     if (convertToString(Record, 0, BundleTags.back()))
1813       return error("Invalid record");
1814     Record.clear();
1815   }
1816 }
1817 
1818 Error BitcodeReader::parseSyncScopeNames() {
1819   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1820     return error("Invalid record");
1821 
1822   if (!SSIDs.empty())
1823     return error("Invalid multiple synchronization scope names blocks");
1824 
1825   SmallVector<uint64_t, 64> Record;
1826   while (true) {
1827     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1828     switch (Entry.Kind) {
1829     case BitstreamEntry::SubBlock: // Handled for us already.
1830     case BitstreamEntry::Error:
1831       return error("Malformed block");
1832     case BitstreamEntry::EndBlock:
1833       if (SSIDs.empty())
1834         return error("Invalid empty synchronization scope names block");
1835       return Error::success();
1836     case BitstreamEntry::Record:
1837       // The interesting case.
1838       break;
1839     }
1840 
1841     // Synchronization scope names are implicitly mapped to synchronization
1842     // scope IDs by their order.
1843 
1844     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1845       return error("Invalid record");
1846 
1847     SmallString<16> SSN;
1848     if (convertToString(Record, 0, SSN))
1849       return error("Invalid record");
1850 
1851     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1852     Record.clear();
1853   }
1854 }
1855 
1856 /// Associate a value with its name from the given index in the provided record.
1857 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1858                                              unsigned NameIndex, Triple &TT) {
1859   SmallString<128> ValueName;
1860   if (convertToString(Record, NameIndex, ValueName))
1861     return error("Invalid record");
1862   unsigned ValueID = Record[0];
1863   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1864     return error("Invalid record");
1865   Value *V = ValueList[ValueID];
1866 
1867   StringRef NameStr(ValueName.data(), ValueName.size());
1868   if (NameStr.find_first_of(0) != StringRef::npos)
1869     return error("Invalid value name");
1870   V->setName(NameStr);
1871   auto *GO = dyn_cast<GlobalObject>(V);
1872   if (GO) {
1873     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1874       if (TT.supportsCOMDAT())
1875         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1876       else
1877         GO->setComdat(nullptr);
1878     }
1879   }
1880   return V;
1881 }
1882 
1883 /// Helper to note and return the current location, and jump to the given
1884 /// offset.
1885 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1886                                        BitstreamCursor &Stream) {
1887   // Save the current parsing location so we can jump back at the end
1888   // of the VST read.
1889   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1890   Stream.JumpToBit(Offset * 32);
1891 #ifndef NDEBUG
1892   // Do some checking if we are in debug mode.
1893   BitstreamEntry Entry = Stream.advance();
1894   assert(Entry.Kind == BitstreamEntry::SubBlock);
1895   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1896 #else
1897   // In NDEBUG mode ignore the output so we don't get an unused variable
1898   // warning.
1899   Stream.advance();
1900 #endif
1901   return CurrentBit;
1902 }
1903 
1904 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1905                                             Function *F,
1906                                             ArrayRef<uint64_t> Record) {
1907   // Note that we subtract 1 here because the offset is relative to one word
1908   // before the start of the identification or module block, which was
1909   // historically always the start of the regular bitcode header.
1910   uint64_t FuncWordOffset = Record[1] - 1;
1911   uint64_t FuncBitOffset = FuncWordOffset * 32;
1912   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1913   // Set the LastFunctionBlockBit to point to the last function block.
1914   // Later when parsing is resumed after function materialization,
1915   // we can simply skip that last function block.
1916   if (FuncBitOffset > LastFunctionBlockBit)
1917     LastFunctionBlockBit = FuncBitOffset;
1918 }
1919 
1920 /// Read a new-style GlobalValue symbol table.
1921 Error BitcodeReader::parseGlobalValueSymbolTable() {
1922   unsigned FuncBitcodeOffsetDelta =
1923       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1924 
1925   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1926     return error("Invalid record");
1927 
1928   SmallVector<uint64_t, 64> Record;
1929   while (true) {
1930     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1931 
1932     switch (Entry.Kind) {
1933     case BitstreamEntry::SubBlock:
1934     case BitstreamEntry::Error:
1935       return error("Malformed block");
1936     case BitstreamEntry::EndBlock:
1937       return Error::success();
1938     case BitstreamEntry::Record:
1939       break;
1940     }
1941 
1942     Record.clear();
1943     switch (Stream.readRecord(Entry.ID, Record)) {
1944     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1945       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1946                               cast<Function>(ValueList[Record[0]]), Record);
1947       break;
1948     }
1949   }
1950 }
1951 
1952 /// Parse the value symbol table at either the current parsing location or
1953 /// at the given bit offset if provided.
1954 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1955   uint64_t CurrentBit;
1956   // Pass in the Offset to distinguish between calling for the module-level
1957   // VST (where we want to jump to the VST offset) and the function-level
1958   // VST (where we don't).
1959   if (Offset > 0) {
1960     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1961     // If this module uses a string table, read this as a module-level VST.
1962     if (UseStrtab) {
1963       if (Error Err = parseGlobalValueSymbolTable())
1964         return Err;
1965       Stream.JumpToBit(CurrentBit);
1966       return Error::success();
1967     }
1968     // Otherwise, the VST will be in a similar format to a function-level VST,
1969     // and will contain symbol names.
1970   }
1971 
1972   // Compute the delta between the bitcode indices in the VST (the word offset
1973   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1974   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1975   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1976   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1977   // just before entering the VST subblock because: 1) the EnterSubBlock
1978   // changes the AbbrevID width; 2) the VST block is nested within the same
1979   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1980   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1981   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1982   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1983   unsigned FuncBitcodeOffsetDelta =
1984       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1985 
1986   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1987     return error("Invalid record");
1988 
1989   SmallVector<uint64_t, 64> Record;
1990 
1991   Triple TT(TheModule->getTargetTriple());
1992 
1993   // Read all the records for this value table.
1994   SmallString<128> ValueName;
1995 
1996   while (true) {
1997     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1998 
1999     switch (Entry.Kind) {
2000     case BitstreamEntry::SubBlock: // Handled for us already.
2001     case BitstreamEntry::Error:
2002       return error("Malformed block");
2003     case BitstreamEntry::EndBlock:
2004       if (Offset > 0)
2005         Stream.JumpToBit(CurrentBit);
2006       return Error::success();
2007     case BitstreamEntry::Record:
2008       // The interesting case.
2009       break;
2010     }
2011 
2012     // Read a record.
2013     Record.clear();
2014     switch (Stream.readRecord(Entry.ID, Record)) {
2015     default:  // Default behavior: unknown type.
2016       break;
2017     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2018       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2019       if (Error Err = ValOrErr.takeError())
2020         return Err;
2021       ValOrErr.get();
2022       break;
2023     }
2024     case bitc::VST_CODE_FNENTRY: {
2025       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2026       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2027       if (Error Err = ValOrErr.takeError())
2028         return Err;
2029       Value *V = ValOrErr.get();
2030 
2031       // Ignore function offsets emitted for aliases of functions in older
2032       // versions of LLVM.
2033       if (auto *F = dyn_cast<Function>(V))
2034         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2035       break;
2036     }
2037     case bitc::VST_CODE_BBENTRY: {
2038       if (convertToString(Record, 1, ValueName))
2039         return error("Invalid record");
2040       BasicBlock *BB = getBasicBlock(Record[0]);
2041       if (!BB)
2042         return error("Invalid record");
2043 
2044       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2045       ValueName.clear();
2046       break;
2047     }
2048     }
2049   }
2050 }
2051 
2052 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2053 /// encoding.
2054 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2055   if ((V & 1) == 0)
2056     return V >> 1;
2057   if (V != 1)
2058     return -(V >> 1);
2059   // There is no such thing as -0 with integers.  "-0" really means MININT.
2060   return 1ULL << 63;
2061 }
2062 
2063 /// Resolve all of the initializers for global values and aliases that we can.
2064 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2065   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2066   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2067       IndirectSymbolInitWorklist;
2068   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2069   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2070   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2071 
2072   GlobalInitWorklist.swap(GlobalInits);
2073   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2074   FunctionPrefixWorklist.swap(FunctionPrefixes);
2075   FunctionPrologueWorklist.swap(FunctionPrologues);
2076   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2077 
2078   while (!GlobalInitWorklist.empty()) {
2079     unsigned ValID = GlobalInitWorklist.back().second;
2080     if (ValID >= ValueList.size()) {
2081       // Not ready to resolve this yet, it requires something later in the file.
2082       GlobalInits.push_back(GlobalInitWorklist.back());
2083     } else {
2084       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2085         GlobalInitWorklist.back().first->setInitializer(C);
2086       else
2087         return error("Expected a constant");
2088     }
2089     GlobalInitWorklist.pop_back();
2090   }
2091 
2092   while (!IndirectSymbolInitWorklist.empty()) {
2093     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2094     if (ValID >= ValueList.size()) {
2095       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2096     } else {
2097       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2098       if (!C)
2099         return error("Expected a constant");
2100       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2101       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2102         return error("Alias and aliasee types don't match");
2103       GIS->setIndirectSymbol(C);
2104     }
2105     IndirectSymbolInitWorklist.pop_back();
2106   }
2107 
2108   while (!FunctionPrefixWorklist.empty()) {
2109     unsigned ValID = FunctionPrefixWorklist.back().second;
2110     if (ValID >= ValueList.size()) {
2111       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2112     } else {
2113       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2114         FunctionPrefixWorklist.back().first->setPrefixData(C);
2115       else
2116         return error("Expected a constant");
2117     }
2118     FunctionPrefixWorklist.pop_back();
2119   }
2120 
2121   while (!FunctionPrologueWorklist.empty()) {
2122     unsigned ValID = FunctionPrologueWorklist.back().second;
2123     if (ValID >= ValueList.size()) {
2124       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2125     } else {
2126       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2127         FunctionPrologueWorklist.back().first->setPrologueData(C);
2128       else
2129         return error("Expected a constant");
2130     }
2131     FunctionPrologueWorklist.pop_back();
2132   }
2133 
2134   while (!FunctionPersonalityFnWorklist.empty()) {
2135     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2136     if (ValID >= ValueList.size()) {
2137       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2138     } else {
2139       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2140         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2141       else
2142         return error("Expected a constant");
2143     }
2144     FunctionPersonalityFnWorklist.pop_back();
2145   }
2146 
2147   return Error::success();
2148 }
2149 
2150 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2151   SmallVector<uint64_t, 8> Words(Vals.size());
2152   transform(Vals, Words.begin(),
2153                  BitcodeReader::decodeSignRotatedValue);
2154 
2155   return APInt(TypeBits, Words);
2156 }
2157 
2158 Error BitcodeReader::parseConstants() {
2159   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2160     return error("Invalid record");
2161 
2162   SmallVector<uint64_t, 64> Record;
2163 
2164   // Read all the records for this value table.
2165   Type *CurTy = Type::getInt32Ty(Context);
2166   unsigned NextCstNo = ValueList.size();
2167 
2168   while (true) {
2169     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2170 
2171     switch (Entry.Kind) {
2172     case BitstreamEntry::SubBlock: // Handled for us already.
2173     case BitstreamEntry::Error:
2174       return error("Malformed block");
2175     case BitstreamEntry::EndBlock:
2176       if (NextCstNo != ValueList.size())
2177         return error("Invalid constant reference");
2178 
2179       // Once all the constants have been read, go through and resolve forward
2180       // references.
2181       ValueList.resolveConstantForwardRefs();
2182       return Error::success();
2183     case BitstreamEntry::Record:
2184       // The interesting case.
2185       break;
2186     }
2187 
2188     // Read a record.
2189     Record.clear();
2190     Type *VoidType = Type::getVoidTy(Context);
2191     Value *V = nullptr;
2192     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2193     switch (BitCode) {
2194     default:  // Default behavior: unknown constant
2195     case bitc::CST_CODE_UNDEF:     // UNDEF
2196       V = UndefValue::get(CurTy);
2197       break;
2198     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2199       if (Record.empty())
2200         return error("Invalid record");
2201       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2202         return error("Invalid record");
2203       if (TypeList[Record[0]] == VoidType)
2204         return error("Invalid constant type");
2205       CurTy = TypeList[Record[0]];
2206       continue;  // Skip the ValueList manipulation.
2207     case bitc::CST_CODE_NULL:      // NULL
2208       V = Constant::getNullValue(CurTy);
2209       break;
2210     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2211       if (!CurTy->isIntegerTy() || Record.empty())
2212         return error("Invalid record");
2213       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2214       break;
2215     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2216       if (!CurTy->isIntegerTy() || Record.empty())
2217         return error("Invalid record");
2218 
2219       APInt VInt =
2220           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2221       V = ConstantInt::get(Context, VInt);
2222 
2223       break;
2224     }
2225     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2226       if (Record.empty())
2227         return error("Invalid record");
2228       if (CurTy->isHalfTy())
2229         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2230                                              APInt(16, (uint16_t)Record[0])));
2231       else if (CurTy->isFloatTy())
2232         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2233                                              APInt(32, (uint32_t)Record[0])));
2234       else if (CurTy->isDoubleTy())
2235         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2236                                              APInt(64, Record[0])));
2237       else if (CurTy->isX86_FP80Ty()) {
2238         // Bits are not stored the same way as a normal i80 APInt, compensate.
2239         uint64_t Rearrange[2];
2240         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2241         Rearrange[1] = Record[0] >> 48;
2242         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2243                                              APInt(80, Rearrange)));
2244       } else if (CurTy->isFP128Ty())
2245         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2246                                              APInt(128, Record)));
2247       else if (CurTy->isPPC_FP128Ty())
2248         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2249                                              APInt(128, Record)));
2250       else
2251         V = UndefValue::get(CurTy);
2252       break;
2253     }
2254 
2255     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2256       if (Record.empty())
2257         return error("Invalid record");
2258 
2259       unsigned Size = Record.size();
2260       SmallVector<Constant*, 16> Elts;
2261 
2262       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2263         for (unsigned i = 0; i != Size; ++i)
2264           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2265                                                      STy->getElementType(i)));
2266         V = ConstantStruct::get(STy, Elts);
2267       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2268         Type *EltTy = ATy->getElementType();
2269         for (unsigned i = 0; i != Size; ++i)
2270           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2271         V = ConstantArray::get(ATy, Elts);
2272       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2273         Type *EltTy = VTy->getElementType();
2274         for (unsigned i = 0; i != Size; ++i)
2275           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2276         V = ConstantVector::get(Elts);
2277       } else {
2278         V = UndefValue::get(CurTy);
2279       }
2280       break;
2281     }
2282     case bitc::CST_CODE_STRING:    // STRING: [values]
2283     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2284       if (Record.empty())
2285         return error("Invalid record");
2286 
2287       SmallString<16> Elts(Record.begin(), Record.end());
2288       V = ConstantDataArray::getString(Context, Elts,
2289                                        BitCode == bitc::CST_CODE_CSTRING);
2290       break;
2291     }
2292     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2293       if (Record.empty())
2294         return error("Invalid record");
2295 
2296       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2297       if (EltTy->isIntegerTy(8)) {
2298         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2299         if (isa<VectorType>(CurTy))
2300           V = ConstantDataVector::get(Context, Elts);
2301         else
2302           V = ConstantDataArray::get(Context, Elts);
2303       } else if (EltTy->isIntegerTy(16)) {
2304         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2305         if (isa<VectorType>(CurTy))
2306           V = ConstantDataVector::get(Context, Elts);
2307         else
2308           V = ConstantDataArray::get(Context, Elts);
2309       } else if (EltTy->isIntegerTy(32)) {
2310         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2311         if (isa<VectorType>(CurTy))
2312           V = ConstantDataVector::get(Context, Elts);
2313         else
2314           V = ConstantDataArray::get(Context, Elts);
2315       } else if (EltTy->isIntegerTy(64)) {
2316         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2317         if (isa<VectorType>(CurTy))
2318           V = ConstantDataVector::get(Context, Elts);
2319         else
2320           V = ConstantDataArray::get(Context, Elts);
2321       } else if (EltTy->isHalfTy()) {
2322         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2323         if (isa<VectorType>(CurTy))
2324           V = ConstantDataVector::getFP(Context, Elts);
2325         else
2326           V = ConstantDataArray::getFP(Context, Elts);
2327       } else if (EltTy->isFloatTy()) {
2328         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2329         if (isa<VectorType>(CurTy))
2330           V = ConstantDataVector::getFP(Context, Elts);
2331         else
2332           V = ConstantDataArray::getFP(Context, Elts);
2333       } else if (EltTy->isDoubleTy()) {
2334         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2335         if (isa<VectorType>(CurTy))
2336           V = ConstantDataVector::getFP(Context, Elts);
2337         else
2338           V = ConstantDataArray::getFP(Context, Elts);
2339       } else {
2340         return error("Invalid type for value");
2341       }
2342       break;
2343     }
2344     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2345       if (Record.size() < 2)
2346         return error("Invalid record");
2347       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2348       if (Opc < 0) {
2349         V = UndefValue::get(CurTy);  // Unknown unop.
2350       } else {
2351         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2352         unsigned Flags = 0;
2353         V = ConstantExpr::get(Opc, LHS, Flags);
2354       }
2355       break;
2356     }
2357     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2358       if (Record.size() < 3)
2359         return error("Invalid record");
2360       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2361       if (Opc < 0) {
2362         V = UndefValue::get(CurTy);  // Unknown binop.
2363       } else {
2364         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2365         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2366         unsigned Flags = 0;
2367         if (Record.size() >= 4) {
2368           if (Opc == Instruction::Add ||
2369               Opc == Instruction::Sub ||
2370               Opc == Instruction::Mul ||
2371               Opc == Instruction::Shl) {
2372             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2373               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2374             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2375               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2376           } else if (Opc == Instruction::SDiv ||
2377                      Opc == Instruction::UDiv ||
2378                      Opc == Instruction::LShr ||
2379                      Opc == Instruction::AShr) {
2380             if (Record[3] & (1 << bitc::PEO_EXACT))
2381               Flags |= SDivOperator::IsExact;
2382           }
2383         }
2384         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2385       }
2386       break;
2387     }
2388     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2389       if (Record.size() < 3)
2390         return error("Invalid record");
2391       int Opc = getDecodedCastOpcode(Record[0]);
2392       if (Opc < 0) {
2393         V = UndefValue::get(CurTy);  // Unknown cast.
2394       } else {
2395         Type *OpTy = getTypeByID(Record[1]);
2396         if (!OpTy)
2397           return error("Invalid record");
2398         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2399         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2400         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2401       }
2402       break;
2403     }
2404     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2405     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2406     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2407                                                      // operands]
2408       unsigned OpNum = 0;
2409       Type *PointeeType = nullptr;
2410       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2411           Record.size() % 2)
2412         PointeeType = getTypeByID(Record[OpNum++]);
2413 
2414       bool InBounds = false;
2415       Optional<unsigned> InRangeIndex;
2416       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2417         uint64_t Op = Record[OpNum++];
2418         InBounds = Op & 1;
2419         InRangeIndex = Op >> 1;
2420       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2421         InBounds = true;
2422 
2423       SmallVector<Constant*, 16> Elts;
2424       while (OpNum != Record.size()) {
2425         Type *ElTy = getTypeByID(Record[OpNum++]);
2426         if (!ElTy)
2427           return error("Invalid record");
2428         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2429       }
2430 
2431       if (Elts.size() < 1)
2432         return error("Invalid gep with no operands");
2433 
2434       Type *ImplicitPointeeType =
2435           cast<PointerType>(Elts[0]->getType()->getScalarType())
2436               ->getElementType();
2437       if (!PointeeType)
2438         PointeeType = ImplicitPointeeType;
2439       else if (PointeeType != ImplicitPointeeType)
2440         return error("Explicit gep operator type does not match pointee type "
2441                      "of pointer operand");
2442 
2443       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2444       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2445                                          InBounds, InRangeIndex);
2446       break;
2447     }
2448     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2449       if (Record.size() < 3)
2450         return error("Invalid record");
2451 
2452       Type *SelectorTy = Type::getInt1Ty(Context);
2453 
2454       // The selector might be an i1 or an <n x i1>
2455       // Get the type from the ValueList before getting a forward ref.
2456       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2457         if (Value *V = ValueList[Record[0]])
2458           if (SelectorTy != V->getType())
2459             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2460 
2461       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2462                                                               SelectorTy),
2463                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2464                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2465       break;
2466     }
2467     case bitc::CST_CODE_CE_EXTRACTELT
2468         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2469       if (Record.size() < 3)
2470         return error("Invalid record");
2471       VectorType *OpTy =
2472         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2473       if (!OpTy)
2474         return error("Invalid record");
2475       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2476       Constant *Op1 = nullptr;
2477       if (Record.size() == 4) {
2478         Type *IdxTy = getTypeByID(Record[2]);
2479         if (!IdxTy)
2480           return error("Invalid record");
2481         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2482       } else // TODO: Remove with llvm 4.0
2483         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2484       if (!Op1)
2485         return error("Invalid record");
2486       V = ConstantExpr::getExtractElement(Op0, Op1);
2487       break;
2488     }
2489     case bitc::CST_CODE_CE_INSERTELT
2490         : { // CE_INSERTELT: [opval, opval, opty, opval]
2491       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2492       if (Record.size() < 3 || !OpTy)
2493         return error("Invalid record");
2494       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2495       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2496                                                   OpTy->getElementType());
2497       Constant *Op2 = nullptr;
2498       if (Record.size() == 4) {
2499         Type *IdxTy = getTypeByID(Record[2]);
2500         if (!IdxTy)
2501           return error("Invalid record");
2502         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2503       } else // TODO: Remove with llvm 4.0
2504         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2505       if (!Op2)
2506         return error("Invalid record");
2507       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2508       break;
2509     }
2510     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2511       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2512       if (Record.size() < 3 || !OpTy)
2513         return error("Invalid record");
2514       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2515       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2516       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2517                                                  OpTy->getNumElements());
2518       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2519       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2520       break;
2521     }
2522     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2523       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2524       VectorType *OpTy =
2525         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2526       if (Record.size() < 4 || !RTy || !OpTy)
2527         return error("Invalid record");
2528       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2529       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2530       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2531                                                  RTy->getNumElements());
2532       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2533       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2534       break;
2535     }
2536     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2537       if (Record.size() < 4)
2538         return error("Invalid record");
2539       Type *OpTy = getTypeByID(Record[0]);
2540       if (!OpTy)
2541         return error("Invalid record");
2542       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2543       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2544 
2545       if (OpTy->isFPOrFPVectorTy())
2546         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2547       else
2548         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2549       break;
2550     }
2551     // This maintains backward compatibility, pre-asm dialect keywords.
2552     // FIXME: Remove with the 4.0 release.
2553     case bitc::CST_CODE_INLINEASM_OLD: {
2554       if (Record.size() < 2)
2555         return error("Invalid record");
2556       std::string AsmStr, ConstrStr;
2557       bool HasSideEffects = Record[0] & 1;
2558       bool IsAlignStack = Record[0] >> 1;
2559       unsigned AsmStrSize = Record[1];
2560       if (2+AsmStrSize >= Record.size())
2561         return error("Invalid record");
2562       unsigned ConstStrSize = Record[2+AsmStrSize];
2563       if (3+AsmStrSize+ConstStrSize > Record.size())
2564         return error("Invalid record");
2565 
2566       for (unsigned i = 0; i != AsmStrSize; ++i)
2567         AsmStr += (char)Record[2+i];
2568       for (unsigned i = 0; i != ConstStrSize; ++i)
2569         ConstrStr += (char)Record[3+AsmStrSize+i];
2570       PointerType *PTy = cast<PointerType>(CurTy);
2571       UpgradeInlineAsmString(&AsmStr);
2572       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2573                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2574       break;
2575     }
2576     // This version adds support for the asm dialect keywords (e.g.,
2577     // inteldialect).
2578     case bitc::CST_CODE_INLINEASM: {
2579       if (Record.size() < 2)
2580         return error("Invalid record");
2581       std::string AsmStr, ConstrStr;
2582       bool HasSideEffects = Record[0] & 1;
2583       bool IsAlignStack = (Record[0] >> 1) & 1;
2584       unsigned AsmDialect = Record[0] >> 2;
2585       unsigned AsmStrSize = Record[1];
2586       if (2+AsmStrSize >= Record.size())
2587         return error("Invalid record");
2588       unsigned ConstStrSize = Record[2+AsmStrSize];
2589       if (3+AsmStrSize+ConstStrSize > Record.size())
2590         return error("Invalid record");
2591 
2592       for (unsigned i = 0; i != AsmStrSize; ++i)
2593         AsmStr += (char)Record[2+i];
2594       for (unsigned i = 0; i != ConstStrSize; ++i)
2595         ConstrStr += (char)Record[3+AsmStrSize+i];
2596       PointerType *PTy = cast<PointerType>(CurTy);
2597       UpgradeInlineAsmString(&AsmStr);
2598       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2599                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2600                          InlineAsm::AsmDialect(AsmDialect));
2601       break;
2602     }
2603     case bitc::CST_CODE_BLOCKADDRESS:{
2604       if (Record.size() < 3)
2605         return error("Invalid record");
2606       Type *FnTy = getTypeByID(Record[0]);
2607       if (!FnTy)
2608         return error("Invalid record");
2609       Function *Fn =
2610         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2611       if (!Fn)
2612         return error("Invalid record");
2613 
2614       // If the function is already parsed we can insert the block address right
2615       // away.
2616       BasicBlock *BB;
2617       unsigned BBID = Record[2];
2618       if (!BBID)
2619         // Invalid reference to entry block.
2620         return error("Invalid ID");
2621       if (!Fn->empty()) {
2622         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2623         for (size_t I = 0, E = BBID; I != E; ++I) {
2624           if (BBI == BBE)
2625             return error("Invalid ID");
2626           ++BBI;
2627         }
2628         BB = &*BBI;
2629       } else {
2630         // Otherwise insert a placeholder and remember it so it can be inserted
2631         // when the function is parsed.
2632         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2633         if (FwdBBs.empty())
2634           BasicBlockFwdRefQueue.push_back(Fn);
2635         if (FwdBBs.size() < BBID + 1)
2636           FwdBBs.resize(BBID + 1);
2637         if (!FwdBBs[BBID])
2638           FwdBBs[BBID] = BasicBlock::Create(Context);
2639         BB = FwdBBs[BBID];
2640       }
2641       V = BlockAddress::get(Fn, BB);
2642       break;
2643     }
2644     }
2645 
2646     ValueList.assignValue(V, NextCstNo);
2647     ++NextCstNo;
2648   }
2649 }
2650 
2651 Error BitcodeReader::parseUseLists() {
2652   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2653     return error("Invalid record");
2654 
2655   // Read all the records.
2656   SmallVector<uint64_t, 64> Record;
2657 
2658   while (true) {
2659     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2660 
2661     switch (Entry.Kind) {
2662     case BitstreamEntry::SubBlock: // Handled for us already.
2663     case BitstreamEntry::Error:
2664       return error("Malformed block");
2665     case BitstreamEntry::EndBlock:
2666       return Error::success();
2667     case BitstreamEntry::Record:
2668       // The interesting case.
2669       break;
2670     }
2671 
2672     // Read a use list record.
2673     Record.clear();
2674     bool IsBB = false;
2675     switch (Stream.readRecord(Entry.ID, Record)) {
2676     default:  // Default behavior: unknown type.
2677       break;
2678     case bitc::USELIST_CODE_BB:
2679       IsBB = true;
2680       LLVM_FALLTHROUGH;
2681     case bitc::USELIST_CODE_DEFAULT: {
2682       unsigned RecordLength = Record.size();
2683       if (RecordLength < 3)
2684         // Records should have at least an ID and two indexes.
2685         return error("Invalid record");
2686       unsigned ID = Record.back();
2687       Record.pop_back();
2688 
2689       Value *V;
2690       if (IsBB) {
2691         assert(ID < FunctionBBs.size() && "Basic block not found");
2692         V = FunctionBBs[ID];
2693       } else
2694         V = ValueList[ID];
2695       unsigned NumUses = 0;
2696       SmallDenseMap<const Use *, unsigned, 16> Order;
2697       for (const Use &U : V->materialized_uses()) {
2698         if (++NumUses > Record.size())
2699           break;
2700         Order[&U] = Record[NumUses - 1];
2701       }
2702       if (Order.size() != Record.size() || NumUses > Record.size())
2703         // Mismatches can happen if the functions are being materialized lazily
2704         // (out-of-order), or a value has been upgraded.
2705         break;
2706 
2707       V->sortUseList([&](const Use &L, const Use &R) {
2708         return Order.lookup(&L) < Order.lookup(&R);
2709       });
2710       break;
2711     }
2712     }
2713   }
2714 }
2715 
2716 /// When we see the block for metadata, remember where it is and then skip it.
2717 /// This lets us lazily deserialize the metadata.
2718 Error BitcodeReader::rememberAndSkipMetadata() {
2719   // Save the current stream state.
2720   uint64_t CurBit = Stream.GetCurrentBitNo();
2721   DeferredMetadataInfo.push_back(CurBit);
2722 
2723   // Skip over the block for now.
2724   if (Stream.SkipBlock())
2725     return error("Invalid record");
2726   return Error::success();
2727 }
2728 
2729 Error BitcodeReader::materializeMetadata() {
2730   for (uint64_t BitPos : DeferredMetadataInfo) {
2731     // Move the bit stream to the saved position.
2732     Stream.JumpToBit(BitPos);
2733     if (Error Err = MDLoader->parseModuleMetadata())
2734       return Err;
2735   }
2736 
2737   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2738   // metadata.
2739   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2740     NamedMDNode *LinkerOpts =
2741         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2742     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2743       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2744   }
2745 
2746   DeferredMetadataInfo.clear();
2747   return Error::success();
2748 }
2749 
2750 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2751 
2752 /// When we see the block for a function body, remember where it is and then
2753 /// skip it.  This lets us lazily deserialize the functions.
2754 Error BitcodeReader::rememberAndSkipFunctionBody() {
2755   // Get the function we are talking about.
2756   if (FunctionsWithBodies.empty())
2757     return error("Insufficient function protos");
2758 
2759   Function *Fn = FunctionsWithBodies.back();
2760   FunctionsWithBodies.pop_back();
2761 
2762   // Save the current stream state.
2763   uint64_t CurBit = Stream.GetCurrentBitNo();
2764   assert(
2765       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2766       "Mismatch between VST and scanned function offsets");
2767   DeferredFunctionInfo[Fn] = CurBit;
2768 
2769   // Skip over the function block for now.
2770   if (Stream.SkipBlock())
2771     return error("Invalid record");
2772   return Error::success();
2773 }
2774 
2775 Error BitcodeReader::globalCleanup() {
2776   // Patch the initializers for globals and aliases up.
2777   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2778     return Err;
2779   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2780     return error("Malformed global initializer set");
2781 
2782   // Look for intrinsic functions which need to be upgraded at some point
2783   for (Function &F : *TheModule) {
2784     MDLoader->upgradeDebugIntrinsics(F);
2785     Function *NewFn;
2786     if (UpgradeIntrinsicFunction(&F, NewFn))
2787       UpgradedIntrinsics[&F] = NewFn;
2788     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2789       // Some types could be renamed during loading if several modules are
2790       // loaded in the same LLVMContext (LTO scenario). In this case we should
2791       // remangle intrinsics names as well.
2792       RemangledIntrinsics[&F] = Remangled.getValue();
2793   }
2794 
2795   // Look for global variables which need to be renamed.
2796   for (GlobalVariable &GV : TheModule->globals())
2797     UpgradeGlobalVariable(&GV);
2798 
2799   // Force deallocation of memory for these vectors to favor the client that
2800   // want lazy deserialization.
2801   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2802   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2803       IndirectSymbolInits);
2804   return Error::success();
2805 }
2806 
2807 /// Support for lazy parsing of function bodies. This is required if we
2808 /// either have an old bitcode file without a VST forward declaration record,
2809 /// or if we have an anonymous function being materialized, since anonymous
2810 /// functions do not have a name and are therefore not in the VST.
2811 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2812   Stream.JumpToBit(NextUnreadBit);
2813 
2814   if (Stream.AtEndOfStream())
2815     return error("Could not find function in stream");
2816 
2817   if (!SeenFirstFunctionBody)
2818     return error("Trying to materialize functions before seeing function blocks");
2819 
2820   // An old bitcode file with the symbol table at the end would have
2821   // finished the parse greedily.
2822   assert(SeenValueSymbolTable);
2823 
2824   SmallVector<uint64_t, 64> Record;
2825 
2826   while (true) {
2827     BitstreamEntry Entry = Stream.advance();
2828     switch (Entry.Kind) {
2829     default:
2830       return error("Expect SubBlock");
2831     case BitstreamEntry::SubBlock:
2832       switch (Entry.ID) {
2833       default:
2834         return error("Expect function block");
2835       case bitc::FUNCTION_BLOCK_ID:
2836         if (Error Err = rememberAndSkipFunctionBody())
2837           return Err;
2838         NextUnreadBit = Stream.GetCurrentBitNo();
2839         return Error::success();
2840       }
2841     }
2842   }
2843 }
2844 
2845 bool BitcodeReaderBase::readBlockInfo() {
2846   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2847   if (!NewBlockInfo)
2848     return true;
2849   BlockInfo = std::move(*NewBlockInfo);
2850   return false;
2851 }
2852 
2853 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2854   // v1: [selection_kind, name]
2855   // v2: [strtab_offset, strtab_size, selection_kind]
2856   StringRef Name;
2857   std::tie(Name, Record) = readNameFromStrtab(Record);
2858 
2859   if (Record.empty())
2860     return error("Invalid record");
2861   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2862   std::string OldFormatName;
2863   if (!UseStrtab) {
2864     if (Record.size() < 2)
2865       return error("Invalid record");
2866     unsigned ComdatNameSize = Record[1];
2867     OldFormatName.reserve(ComdatNameSize);
2868     for (unsigned i = 0; i != ComdatNameSize; ++i)
2869       OldFormatName += (char)Record[2 + i];
2870     Name = OldFormatName;
2871   }
2872   Comdat *C = TheModule->getOrInsertComdat(Name);
2873   C->setSelectionKind(SK);
2874   ComdatList.push_back(C);
2875   return Error::success();
2876 }
2877 
2878 static void inferDSOLocal(GlobalValue *GV) {
2879   // infer dso_local from linkage and visibility if it is not encoded.
2880   if (GV->hasLocalLinkage() ||
2881       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2882     GV->setDSOLocal(true);
2883 }
2884 
2885 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2886   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2887   // visibility, threadlocal, unnamed_addr, externally_initialized,
2888   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2889   // v2: [strtab_offset, strtab_size, v1]
2890   StringRef Name;
2891   std::tie(Name, Record) = readNameFromStrtab(Record);
2892 
2893   if (Record.size() < 6)
2894     return error("Invalid record");
2895   Type *Ty = getTypeByID(Record[0]);
2896   if (!Ty)
2897     return error("Invalid record");
2898   bool isConstant = Record[1] & 1;
2899   bool explicitType = Record[1] & 2;
2900   unsigned AddressSpace;
2901   if (explicitType) {
2902     AddressSpace = Record[1] >> 2;
2903   } else {
2904     if (!Ty->isPointerTy())
2905       return error("Invalid type for value");
2906     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2907     Ty = cast<PointerType>(Ty)->getElementType();
2908   }
2909 
2910   uint64_t RawLinkage = Record[3];
2911   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2912   unsigned Alignment;
2913   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2914     return Err;
2915   std::string Section;
2916   if (Record[5]) {
2917     if (Record[5] - 1 >= SectionTable.size())
2918       return error("Invalid ID");
2919     Section = SectionTable[Record[5] - 1];
2920   }
2921   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2922   // Local linkage must have default visibility.
2923   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2924     // FIXME: Change to an error if non-default in 4.0.
2925     Visibility = getDecodedVisibility(Record[6]);
2926 
2927   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2928   if (Record.size() > 7)
2929     TLM = getDecodedThreadLocalMode(Record[7]);
2930 
2931   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2932   if (Record.size() > 8)
2933     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2934 
2935   bool ExternallyInitialized = false;
2936   if (Record.size() > 9)
2937     ExternallyInitialized = Record[9];
2938 
2939   GlobalVariable *NewGV =
2940       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2941                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2942   NewGV->setAlignment(Alignment);
2943   if (!Section.empty())
2944     NewGV->setSection(Section);
2945   NewGV->setVisibility(Visibility);
2946   NewGV->setUnnamedAddr(UnnamedAddr);
2947 
2948   if (Record.size() > 10)
2949     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2950   else
2951     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2952 
2953   ValueList.push_back(NewGV);
2954 
2955   // Remember which value to use for the global initializer.
2956   if (unsigned InitID = Record[2])
2957     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2958 
2959   if (Record.size() > 11) {
2960     if (unsigned ComdatID = Record[11]) {
2961       if (ComdatID > ComdatList.size())
2962         return error("Invalid global variable comdat ID");
2963       NewGV->setComdat(ComdatList[ComdatID - 1]);
2964     }
2965   } else if (hasImplicitComdat(RawLinkage)) {
2966     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2967   }
2968 
2969   if (Record.size() > 12) {
2970     auto AS = getAttributes(Record[12]).getFnAttributes();
2971     NewGV->setAttributes(AS);
2972   }
2973 
2974   if (Record.size() > 13) {
2975     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2976   }
2977   inferDSOLocal(NewGV);
2978 
2979   return Error::success();
2980 }
2981 
2982 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2983   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2984   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2985   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
2986   // v2: [strtab_offset, strtab_size, v1]
2987   StringRef Name;
2988   std::tie(Name, Record) = readNameFromStrtab(Record);
2989 
2990   if (Record.size() < 8)
2991     return error("Invalid record");
2992   Type *Ty = getTypeByID(Record[0]);
2993   if (!Ty)
2994     return error("Invalid record");
2995   if (auto *PTy = dyn_cast<PointerType>(Ty))
2996     Ty = PTy->getElementType();
2997   auto *FTy = dyn_cast<FunctionType>(Ty);
2998   if (!FTy)
2999     return error("Invalid type for value");
3000   auto CC = static_cast<CallingConv::ID>(Record[1]);
3001   if (CC & ~CallingConv::MaxID)
3002     return error("Invalid calling convention ID");
3003 
3004   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3005   if (Record.size() > 16)
3006     AddrSpace = Record[16];
3007 
3008   Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3009                                     AddrSpace, Name, TheModule);
3010 
3011   Func->setCallingConv(CC);
3012   bool isProto = Record[2];
3013   uint64_t RawLinkage = Record[3];
3014   Func->setLinkage(getDecodedLinkage(RawLinkage));
3015   Func->setAttributes(getAttributes(Record[4]));
3016 
3017   unsigned Alignment;
3018   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3019     return Err;
3020   Func->setAlignment(Alignment);
3021   if (Record[6]) {
3022     if (Record[6] - 1 >= SectionTable.size())
3023       return error("Invalid ID");
3024     Func->setSection(SectionTable[Record[6] - 1]);
3025   }
3026   // Local linkage must have default visibility.
3027   if (!Func->hasLocalLinkage())
3028     // FIXME: Change to an error if non-default in 4.0.
3029     Func->setVisibility(getDecodedVisibility(Record[7]));
3030   if (Record.size() > 8 && Record[8]) {
3031     if (Record[8] - 1 >= GCTable.size())
3032       return error("Invalid ID");
3033     Func->setGC(GCTable[Record[8] - 1]);
3034   }
3035   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3036   if (Record.size() > 9)
3037     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3038   Func->setUnnamedAddr(UnnamedAddr);
3039   if (Record.size() > 10 && Record[10] != 0)
3040     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3041 
3042   if (Record.size() > 11)
3043     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3044   else
3045     upgradeDLLImportExportLinkage(Func, RawLinkage);
3046 
3047   if (Record.size() > 12) {
3048     if (unsigned ComdatID = Record[12]) {
3049       if (ComdatID > ComdatList.size())
3050         return error("Invalid function comdat ID");
3051       Func->setComdat(ComdatList[ComdatID - 1]);
3052     }
3053   } else if (hasImplicitComdat(RawLinkage)) {
3054     Func->setComdat(reinterpret_cast<Comdat *>(1));
3055   }
3056 
3057   if (Record.size() > 13 && Record[13] != 0)
3058     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3059 
3060   if (Record.size() > 14 && Record[14] != 0)
3061     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3062 
3063   if (Record.size() > 15) {
3064     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3065   }
3066   inferDSOLocal(Func);
3067 
3068   ValueList.push_back(Func);
3069 
3070   // If this is a function with a body, remember the prototype we are
3071   // creating now, so that we can match up the body with them later.
3072   if (!isProto) {
3073     Func->setIsMaterializable(true);
3074     FunctionsWithBodies.push_back(Func);
3075     DeferredFunctionInfo[Func] = 0;
3076   }
3077   return Error::success();
3078 }
3079 
3080 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3081     unsigned BitCode, ArrayRef<uint64_t> Record) {
3082   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3083   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3084   // dllstorageclass, threadlocal, unnamed_addr,
3085   // preemption specifier] (name in VST)
3086   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3087   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3088   // preemption specifier] (name in VST)
3089   // v2: [strtab_offset, strtab_size, v1]
3090   StringRef Name;
3091   std::tie(Name, Record) = readNameFromStrtab(Record);
3092 
3093   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3094   if (Record.size() < (3 + (unsigned)NewRecord))
3095     return error("Invalid record");
3096   unsigned OpNum = 0;
3097   Type *Ty = getTypeByID(Record[OpNum++]);
3098   if (!Ty)
3099     return error("Invalid record");
3100 
3101   unsigned AddrSpace;
3102   if (!NewRecord) {
3103     auto *PTy = dyn_cast<PointerType>(Ty);
3104     if (!PTy)
3105       return error("Invalid type for value");
3106     Ty = PTy->getElementType();
3107     AddrSpace = PTy->getAddressSpace();
3108   } else {
3109     AddrSpace = Record[OpNum++];
3110   }
3111 
3112   auto Val = Record[OpNum++];
3113   auto Linkage = Record[OpNum++];
3114   GlobalIndirectSymbol *NewGA;
3115   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3116       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3117     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3118                                 TheModule);
3119   else
3120     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3121                                 nullptr, TheModule);
3122   // Old bitcode files didn't have visibility field.
3123   // Local linkage must have default visibility.
3124   if (OpNum != Record.size()) {
3125     auto VisInd = OpNum++;
3126     if (!NewGA->hasLocalLinkage())
3127       // FIXME: Change to an error if non-default in 4.0.
3128       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3129   }
3130   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3131       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3132     if (OpNum != Record.size())
3133       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3134     else
3135       upgradeDLLImportExportLinkage(NewGA, Linkage);
3136     if (OpNum != Record.size())
3137       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3138     if (OpNum != Record.size())
3139       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3140   }
3141   if (OpNum != Record.size())
3142     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3143   inferDSOLocal(NewGA);
3144 
3145   ValueList.push_back(NewGA);
3146   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3147   return Error::success();
3148 }
3149 
3150 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3151                                  bool ShouldLazyLoadMetadata) {
3152   if (ResumeBit)
3153     Stream.JumpToBit(ResumeBit);
3154   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3155     return error("Invalid record");
3156 
3157   SmallVector<uint64_t, 64> Record;
3158 
3159   // Read all the records for this module.
3160   while (true) {
3161     BitstreamEntry Entry = Stream.advance();
3162 
3163     switch (Entry.Kind) {
3164     case BitstreamEntry::Error:
3165       return error("Malformed block");
3166     case BitstreamEntry::EndBlock:
3167       return globalCleanup();
3168 
3169     case BitstreamEntry::SubBlock:
3170       switch (Entry.ID) {
3171       default:  // Skip unknown content.
3172         if (Stream.SkipBlock())
3173           return error("Invalid record");
3174         break;
3175       case bitc::BLOCKINFO_BLOCK_ID:
3176         if (readBlockInfo())
3177           return error("Malformed block");
3178         break;
3179       case bitc::PARAMATTR_BLOCK_ID:
3180         if (Error Err = parseAttributeBlock())
3181           return Err;
3182         break;
3183       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3184         if (Error Err = parseAttributeGroupBlock())
3185           return Err;
3186         break;
3187       case bitc::TYPE_BLOCK_ID_NEW:
3188         if (Error Err = parseTypeTable())
3189           return Err;
3190         break;
3191       case bitc::VALUE_SYMTAB_BLOCK_ID:
3192         if (!SeenValueSymbolTable) {
3193           // Either this is an old form VST without function index and an
3194           // associated VST forward declaration record (which would have caused
3195           // the VST to be jumped to and parsed before it was encountered
3196           // normally in the stream), or there were no function blocks to
3197           // trigger an earlier parsing of the VST.
3198           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3199           if (Error Err = parseValueSymbolTable())
3200             return Err;
3201           SeenValueSymbolTable = true;
3202         } else {
3203           // We must have had a VST forward declaration record, which caused
3204           // the parser to jump to and parse the VST earlier.
3205           assert(VSTOffset > 0);
3206           if (Stream.SkipBlock())
3207             return error("Invalid record");
3208         }
3209         break;
3210       case bitc::CONSTANTS_BLOCK_ID:
3211         if (Error Err = parseConstants())
3212           return Err;
3213         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3214           return Err;
3215         break;
3216       case bitc::METADATA_BLOCK_ID:
3217         if (ShouldLazyLoadMetadata) {
3218           if (Error Err = rememberAndSkipMetadata())
3219             return Err;
3220           break;
3221         }
3222         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3223         if (Error Err = MDLoader->parseModuleMetadata())
3224           return Err;
3225         break;
3226       case bitc::METADATA_KIND_BLOCK_ID:
3227         if (Error Err = MDLoader->parseMetadataKinds())
3228           return Err;
3229         break;
3230       case bitc::FUNCTION_BLOCK_ID:
3231         // If this is the first function body we've seen, reverse the
3232         // FunctionsWithBodies list.
3233         if (!SeenFirstFunctionBody) {
3234           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3235           if (Error Err = globalCleanup())
3236             return Err;
3237           SeenFirstFunctionBody = true;
3238         }
3239 
3240         if (VSTOffset > 0) {
3241           // If we have a VST forward declaration record, make sure we
3242           // parse the VST now if we haven't already. It is needed to
3243           // set up the DeferredFunctionInfo vector for lazy reading.
3244           if (!SeenValueSymbolTable) {
3245             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3246               return Err;
3247             SeenValueSymbolTable = true;
3248             // Fall through so that we record the NextUnreadBit below.
3249             // This is necessary in case we have an anonymous function that
3250             // is later materialized. Since it will not have a VST entry we
3251             // need to fall back to the lazy parse to find its offset.
3252           } else {
3253             // If we have a VST forward declaration record, but have already
3254             // parsed the VST (just above, when the first function body was
3255             // encountered here), then we are resuming the parse after
3256             // materializing functions. The ResumeBit points to the
3257             // start of the last function block recorded in the
3258             // DeferredFunctionInfo map. Skip it.
3259             if (Stream.SkipBlock())
3260               return error("Invalid record");
3261             continue;
3262           }
3263         }
3264 
3265         // Support older bitcode files that did not have the function
3266         // index in the VST, nor a VST forward declaration record, as
3267         // well as anonymous functions that do not have VST entries.
3268         // Build the DeferredFunctionInfo vector on the fly.
3269         if (Error Err = rememberAndSkipFunctionBody())
3270           return Err;
3271 
3272         // Suspend parsing when we reach the function bodies. Subsequent
3273         // materialization calls will resume it when necessary. If the bitcode
3274         // file is old, the symbol table will be at the end instead and will not
3275         // have been seen yet. In this case, just finish the parse now.
3276         if (SeenValueSymbolTable) {
3277           NextUnreadBit = Stream.GetCurrentBitNo();
3278           // After the VST has been parsed, we need to make sure intrinsic name
3279           // are auto-upgraded.
3280           return globalCleanup();
3281         }
3282         break;
3283       case bitc::USELIST_BLOCK_ID:
3284         if (Error Err = parseUseLists())
3285           return Err;
3286         break;
3287       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3288         if (Error Err = parseOperandBundleTags())
3289           return Err;
3290         break;
3291       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3292         if (Error Err = parseSyncScopeNames())
3293           return Err;
3294         break;
3295       }
3296       continue;
3297 
3298     case BitstreamEntry::Record:
3299       // The interesting case.
3300       break;
3301     }
3302 
3303     // Read a record.
3304     auto BitCode = Stream.readRecord(Entry.ID, Record);
3305     switch (BitCode) {
3306     default: break;  // Default behavior, ignore unknown content.
3307     case bitc::MODULE_CODE_VERSION: {
3308       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3309       if (!VersionOrErr)
3310         return VersionOrErr.takeError();
3311       UseRelativeIDs = *VersionOrErr >= 1;
3312       break;
3313     }
3314     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3315       std::string S;
3316       if (convertToString(Record, 0, S))
3317         return error("Invalid record");
3318       TheModule->setTargetTriple(S);
3319       break;
3320     }
3321     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3322       std::string S;
3323       if (convertToString(Record, 0, S))
3324         return error("Invalid record");
3325       TheModule->setDataLayout(S);
3326       break;
3327     }
3328     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3329       std::string S;
3330       if (convertToString(Record, 0, S))
3331         return error("Invalid record");
3332       TheModule->setModuleInlineAsm(S);
3333       break;
3334     }
3335     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3336       // FIXME: Remove in 4.0.
3337       std::string S;
3338       if (convertToString(Record, 0, S))
3339         return error("Invalid record");
3340       // Ignore value.
3341       break;
3342     }
3343     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3344       std::string S;
3345       if (convertToString(Record, 0, S))
3346         return error("Invalid record");
3347       SectionTable.push_back(S);
3348       break;
3349     }
3350     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3351       std::string S;
3352       if (convertToString(Record, 0, S))
3353         return error("Invalid record");
3354       GCTable.push_back(S);
3355       break;
3356     }
3357     case bitc::MODULE_CODE_COMDAT:
3358       if (Error Err = parseComdatRecord(Record))
3359         return Err;
3360       break;
3361     case bitc::MODULE_CODE_GLOBALVAR:
3362       if (Error Err = parseGlobalVarRecord(Record))
3363         return Err;
3364       break;
3365     case bitc::MODULE_CODE_FUNCTION:
3366       if (Error Err = parseFunctionRecord(Record))
3367         return Err;
3368       break;
3369     case bitc::MODULE_CODE_IFUNC:
3370     case bitc::MODULE_CODE_ALIAS:
3371     case bitc::MODULE_CODE_ALIAS_OLD:
3372       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3373         return Err;
3374       break;
3375     /// MODULE_CODE_VSTOFFSET: [offset]
3376     case bitc::MODULE_CODE_VSTOFFSET:
3377       if (Record.size() < 1)
3378         return error("Invalid record");
3379       // Note that we subtract 1 here because the offset is relative to one word
3380       // before the start of the identification or module block, which was
3381       // historically always the start of the regular bitcode header.
3382       VSTOffset = Record[0] - 1;
3383       break;
3384     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3385     case bitc::MODULE_CODE_SOURCE_FILENAME:
3386       SmallString<128> ValueName;
3387       if (convertToString(Record, 0, ValueName))
3388         return error("Invalid record");
3389       TheModule->setSourceFileName(ValueName);
3390       break;
3391     }
3392     Record.clear();
3393   }
3394 }
3395 
3396 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3397                                       bool IsImporting) {
3398   TheModule = M;
3399   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3400                             [&](unsigned ID) { return getTypeByID(ID); });
3401   return parseModule(0, ShouldLazyLoadMetadata);
3402 }
3403 
3404 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3405   if (!isa<PointerType>(PtrType))
3406     return error("Load/Store operand is not a pointer type");
3407   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3408 
3409   if (ValType && ValType != ElemType)
3410     return error("Explicit load/store type does not match pointee "
3411                  "type of pointer operand");
3412   if (!PointerType::isLoadableOrStorableType(ElemType))
3413     return error("Cannot load/store from pointer");
3414   return Error::success();
3415 }
3416 
3417 /// Lazily parse the specified function body block.
3418 Error BitcodeReader::parseFunctionBody(Function *F) {
3419   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3420     return error("Invalid record");
3421 
3422   // Unexpected unresolved metadata when parsing function.
3423   if (MDLoader->hasFwdRefs())
3424     return error("Invalid function metadata: incoming forward references");
3425 
3426   InstructionList.clear();
3427   unsigned ModuleValueListSize = ValueList.size();
3428   unsigned ModuleMDLoaderSize = MDLoader->size();
3429 
3430   // Add all the function arguments to the value table.
3431   for (Argument &I : F->args())
3432     ValueList.push_back(&I);
3433 
3434   unsigned NextValueNo = ValueList.size();
3435   BasicBlock *CurBB = nullptr;
3436   unsigned CurBBNo = 0;
3437 
3438   DebugLoc LastLoc;
3439   auto getLastInstruction = [&]() -> Instruction * {
3440     if (CurBB && !CurBB->empty())
3441       return &CurBB->back();
3442     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3443              !FunctionBBs[CurBBNo - 1]->empty())
3444       return &FunctionBBs[CurBBNo - 1]->back();
3445     return nullptr;
3446   };
3447 
3448   std::vector<OperandBundleDef> OperandBundles;
3449 
3450   // Read all the records.
3451   SmallVector<uint64_t, 64> Record;
3452 
3453   while (true) {
3454     BitstreamEntry Entry = Stream.advance();
3455 
3456     switch (Entry.Kind) {
3457     case BitstreamEntry::Error:
3458       return error("Malformed block");
3459     case BitstreamEntry::EndBlock:
3460       goto OutOfRecordLoop;
3461 
3462     case BitstreamEntry::SubBlock:
3463       switch (Entry.ID) {
3464       default:  // Skip unknown content.
3465         if (Stream.SkipBlock())
3466           return error("Invalid record");
3467         break;
3468       case bitc::CONSTANTS_BLOCK_ID:
3469         if (Error Err = parseConstants())
3470           return Err;
3471         NextValueNo = ValueList.size();
3472         break;
3473       case bitc::VALUE_SYMTAB_BLOCK_ID:
3474         if (Error Err = parseValueSymbolTable())
3475           return Err;
3476         break;
3477       case bitc::METADATA_ATTACHMENT_ID:
3478         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3479           return Err;
3480         break;
3481       case bitc::METADATA_BLOCK_ID:
3482         assert(DeferredMetadataInfo.empty() &&
3483                "Must read all module-level metadata before function-level");
3484         if (Error Err = MDLoader->parseFunctionMetadata())
3485           return Err;
3486         break;
3487       case bitc::USELIST_BLOCK_ID:
3488         if (Error Err = parseUseLists())
3489           return Err;
3490         break;
3491       }
3492       continue;
3493 
3494     case BitstreamEntry::Record:
3495       // The interesting case.
3496       break;
3497     }
3498 
3499     // Read a record.
3500     Record.clear();
3501     Instruction *I = nullptr;
3502     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3503     switch (BitCode) {
3504     default: // Default behavior: reject
3505       return error("Invalid value");
3506     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3507       if (Record.size() < 1 || Record[0] == 0)
3508         return error("Invalid record");
3509       // Create all the basic blocks for the function.
3510       FunctionBBs.resize(Record[0]);
3511 
3512       // See if anything took the address of blocks in this function.
3513       auto BBFRI = BasicBlockFwdRefs.find(F);
3514       if (BBFRI == BasicBlockFwdRefs.end()) {
3515         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3516           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3517       } else {
3518         auto &BBRefs = BBFRI->second;
3519         // Check for invalid basic block references.
3520         if (BBRefs.size() > FunctionBBs.size())
3521           return error("Invalid ID");
3522         assert(!BBRefs.empty() && "Unexpected empty array");
3523         assert(!BBRefs.front() && "Invalid reference to entry block");
3524         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3525              ++I)
3526           if (I < RE && BBRefs[I]) {
3527             BBRefs[I]->insertInto(F);
3528             FunctionBBs[I] = BBRefs[I];
3529           } else {
3530             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3531           }
3532 
3533         // Erase from the table.
3534         BasicBlockFwdRefs.erase(BBFRI);
3535       }
3536 
3537       CurBB = FunctionBBs[0];
3538       continue;
3539     }
3540 
3541     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3542       // This record indicates that the last instruction is at the same
3543       // location as the previous instruction with a location.
3544       I = getLastInstruction();
3545 
3546       if (!I)
3547         return error("Invalid record");
3548       I->setDebugLoc(LastLoc);
3549       I = nullptr;
3550       continue;
3551 
3552     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3553       I = getLastInstruction();
3554       if (!I || Record.size() < 4)
3555         return error("Invalid record");
3556 
3557       unsigned Line = Record[0], Col = Record[1];
3558       unsigned ScopeID = Record[2], IAID = Record[3];
3559       bool isImplicitCode = Record.size() == 5 && Record[4];
3560 
3561       MDNode *Scope = nullptr, *IA = nullptr;
3562       if (ScopeID) {
3563         Scope = dyn_cast_or_null<MDNode>(
3564             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3565         if (!Scope)
3566           return error("Invalid record");
3567       }
3568       if (IAID) {
3569         IA = dyn_cast_or_null<MDNode>(
3570             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3571         if (!IA)
3572           return error("Invalid record");
3573       }
3574       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3575       I->setDebugLoc(LastLoc);
3576       I = nullptr;
3577       continue;
3578     }
3579     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3580       unsigned OpNum = 0;
3581       Value *LHS;
3582       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3583           OpNum+1 > Record.size())
3584         return error("Invalid record");
3585 
3586       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3587       if (Opc == -1)
3588         return error("Invalid record");
3589       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3590       InstructionList.push_back(I);
3591       if (OpNum < Record.size()) {
3592         if (isa<FPMathOperator>(I)) {
3593           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3594           if (FMF.any())
3595             I->setFastMathFlags(FMF);
3596         }
3597       }
3598       break;
3599     }
3600     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3601       unsigned OpNum = 0;
3602       Value *LHS, *RHS;
3603       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3604           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3605           OpNum+1 > Record.size())
3606         return error("Invalid record");
3607 
3608       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3609       if (Opc == -1)
3610         return error("Invalid record");
3611       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3612       InstructionList.push_back(I);
3613       if (OpNum < Record.size()) {
3614         if (Opc == Instruction::Add ||
3615             Opc == Instruction::Sub ||
3616             Opc == Instruction::Mul ||
3617             Opc == Instruction::Shl) {
3618           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3619             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3620           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3621             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3622         } else if (Opc == Instruction::SDiv ||
3623                    Opc == Instruction::UDiv ||
3624                    Opc == Instruction::LShr ||
3625                    Opc == Instruction::AShr) {
3626           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3627             cast<BinaryOperator>(I)->setIsExact(true);
3628         } else if (isa<FPMathOperator>(I)) {
3629           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3630           if (FMF.any())
3631             I->setFastMathFlags(FMF);
3632         }
3633 
3634       }
3635       break;
3636     }
3637     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3638       unsigned OpNum = 0;
3639       Value *Op;
3640       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3641           OpNum+2 != Record.size())
3642         return error("Invalid record");
3643 
3644       Type *ResTy = getTypeByID(Record[OpNum]);
3645       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3646       if (Opc == -1 || !ResTy)
3647         return error("Invalid record");
3648       Instruction *Temp = nullptr;
3649       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3650         if (Temp) {
3651           InstructionList.push_back(Temp);
3652           CurBB->getInstList().push_back(Temp);
3653         }
3654       } else {
3655         auto CastOp = (Instruction::CastOps)Opc;
3656         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3657           return error("Invalid cast");
3658         I = CastInst::Create(CastOp, Op, ResTy);
3659       }
3660       InstructionList.push_back(I);
3661       break;
3662     }
3663     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3664     case bitc::FUNC_CODE_INST_GEP_OLD:
3665     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3666       unsigned OpNum = 0;
3667 
3668       Type *Ty;
3669       bool InBounds;
3670 
3671       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3672         InBounds = Record[OpNum++];
3673         Ty = getTypeByID(Record[OpNum++]);
3674       } else {
3675         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3676         Ty = nullptr;
3677       }
3678 
3679       Value *BasePtr;
3680       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3681         return error("Invalid record");
3682 
3683       if (!Ty)
3684         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3685                  ->getElementType();
3686       else if (Ty !=
3687                cast<PointerType>(BasePtr->getType()->getScalarType())
3688                    ->getElementType())
3689         return error(
3690             "Explicit gep type does not match pointee type of pointer operand");
3691 
3692       SmallVector<Value*, 16> GEPIdx;
3693       while (OpNum != Record.size()) {
3694         Value *Op;
3695         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3696           return error("Invalid record");
3697         GEPIdx.push_back(Op);
3698       }
3699 
3700       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3701 
3702       InstructionList.push_back(I);
3703       if (InBounds)
3704         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3705       break;
3706     }
3707 
3708     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3709                                        // EXTRACTVAL: [opty, opval, n x indices]
3710       unsigned OpNum = 0;
3711       Value *Agg;
3712       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3713         return error("Invalid record");
3714 
3715       unsigned RecSize = Record.size();
3716       if (OpNum == RecSize)
3717         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3718 
3719       SmallVector<unsigned, 4> EXTRACTVALIdx;
3720       Type *CurTy = Agg->getType();
3721       for (; OpNum != RecSize; ++OpNum) {
3722         bool IsArray = CurTy->isArrayTy();
3723         bool IsStruct = CurTy->isStructTy();
3724         uint64_t Index = Record[OpNum];
3725 
3726         if (!IsStruct && !IsArray)
3727           return error("EXTRACTVAL: Invalid type");
3728         if ((unsigned)Index != Index)
3729           return error("Invalid value");
3730         if (IsStruct && Index >= CurTy->getStructNumElements())
3731           return error("EXTRACTVAL: Invalid struct index");
3732         if (IsArray && Index >= CurTy->getArrayNumElements())
3733           return error("EXTRACTVAL: Invalid array index");
3734         EXTRACTVALIdx.push_back((unsigned)Index);
3735 
3736         if (IsStruct)
3737           CurTy = CurTy->getStructElementType(Index);
3738         else
3739           CurTy = CurTy->getArrayElementType();
3740       }
3741 
3742       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3743       InstructionList.push_back(I);
3744       break;
3745     }
3746 
3747     case bitc::FUNC_CODE_INST_INSERTVAL: {
3748                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3749       unsigned OpNum = 0;
3750       Value *Agg;
3751       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3752         return error("Invalid record");
3753       Value *Val;
3754       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3755         return error("Invalid record");
3756 
3757       unsigned RecSize = Record.size();
3758       if (OpNum == RecSize)
3759         return error("INSERTVAL: Invalid instruction with 0 indices");
3760 
3761       SmallVector<unsigned, 4> INSERTVALIdx;
3762       Type *CurTy = Agg->getType();
3763       for (; OpNum != RecSize; ++OpNum) {
3764         bool IsArray = CurTy->isArrayTy();
3765         bool IsStruct = CurTy->isStructTy();
3766         uint64_t Index = Record[OpNum];
3767 
3768         if (!IsStruct && !IsArray)
3769           return error("INSERTVAL: Invalid type");
3770         if ((unsigned)Index != Index)
3771           return error("Invalid value");
3772         if (IsStruct && Index >= CurTy->getStructNumElements())
3773           return error("INSERTVAL: Invalid struct index");
3774         if (IsArray && Index >= CurTy->getArrayNumElements())
3775           return error("INSERTVAL: Invalid array index");
3776 
3777         INSERTVALIdx.push_back((unsigned)Index);
3778         if (IsStruct)
3779           CurTy = CurTy->getStructElementType(Index);
3780         else
3781           CurTy = CurTy->getArrayElementType();
3782       }
3783 
3784       if (CurTy != Val->getType())
3785         return error("Inserted value type doesn't match aggregate type");
3786 
3787       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3788       InstructionList.push_back(I);
3789       break;
3790     }
3791 
3792     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3793       // obsolete form of select
3794       // handles select i1 ... in old bitcode
3795       unsigned OpNum = 0;
3796       Value *TrueVal, *FalseVal, *Cond;
3797       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3798           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3799           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3800         return error("Invalid record");
3801 
3802       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3803       InstructionList.push_back(I);
3804       break;
3805     }
3806 
3807     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3808       // new form of select
3809       // handles select i1 or select [N x i1]
3810       unsigned OpNum = 0;
3811       Value *TrueVal, *FalseVal, *Cond;
3812       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3813           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3814           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3815         return error("Invalid record");
3816 
3817       // select condition can be either i1 or [N x i1]
3818       if (VectorType* vector_type =
3819           dyn_cast<VectorType>(Cond->getType())) {
3820         // expect <n x i1>
3821         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3822           return error("Invalid type for value");
3823       } else {
3824         // expect i1
3825         if (Cond->getType() != Type::getInt1Ty(Context))
3826           return error("Invalid type for value");
3827       }
3828 
3829       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3830       InstructionList.push_back(I);
3831       break;
3832     }
3833 
3834     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3835       unsigned OpNum = 0;
3836       Value *Vec, *Idx;
3837       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3838           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3839         return error("Invalid record");
3840       if (!Vec->getType()->isVectorTy())
3841         return error("Invalid type for value");
3842       I = ExtractElementInst::Create(Vec, Idx);
3843       InstructionList.push_back(I);
3844       break;
3845     }
3846 
3847     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3848       unsigned OpNum = 0;
3849       Value *Vec, *Elt, *Idx;
3850       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3851         return error("Invalid record");
3852       if (!Vec->getType()->isVectorTy())
3853         return error("Invalid type for value");
3854       if (popValue(Record, OpNum, NextValueNo,
3855                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3856           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3857         return error("Invalid record");
3858       I = InsertElementInst::Create(Vec, Elt, Idx);
3859       InstructionList.push_back(I);
3860       break;
3861     }
3862 
3863     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3864       unsigned OpNum = 0;
3865       Value *Vec1, *Vec2, *Mask;
3866       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3867           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3868         return error("Invalid record");
3869 
3870       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3871         return error("Invalid record");
3872       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3873         return error("Invalid type for value");
3874       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3875       InstructionList.push_back(I);
3876       break;
3877     }
3878 
3879     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3880       // Old form of ICmp/FCmp returning bool
3881       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3882       // both legal on vectors but had different behaviour.
3883     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3884       // FCmp/ICmp returning bool or vector of bool
3885 
3886       unsigned OpNum = 0;
3887       Value *LHS, *RHS;
3888       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3889           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3890         return error("Invalid record");
3891 
3892       unsigned PredVal = Record[OpNum];
3893       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3894       FastMathFlags FMF;
3895       if (IsFP && Record.size() > OpNum+1)
3896         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3897 
3898       if (OpNum+1 != Record.size())
3899         return error("Invalid record");
3900 
3901       if (LHS->getType()->isFPOrFPVectorTy())
3902         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3903       else
3904         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3905 
3906       if (FMF.any())
3907         I->setFastMathFlags(FMF);
3908       InstructionList.push_back(I);
3909       break;
3910     }
3911 
3912     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3913       {
3914         unsigned Size = Record.size();
3915         if (Size == 0) {
3916           I = ReturnInst::Create(Context);
3917           InstructionList.push_back(I);
3918           break;
3919         }
3920 
3921         unsigned OpNum = 0;
3922         Value *Op = nullptr;
3923         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3924           return error("Invalid record");
3925         if (OpNum != Record.size())
3926           return error("Invalid record");
3927 
3928         I = ReturnInst::Create(Context, Op);
3929         InstructionList.push_back(I);
3930         break;
3931       }
3932     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3933       if (Record.size() != 1 && Record.size() != 3)
3934         return error("Invalid record");
3935       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3936       if (!TrueDest)
3937         return error("Invalid record");
3938 
3939       if (Record.size() == 1) {
3940         I = BranchInst::Create(TrueDest);
3941         InstructionList.push_back(I);
3942       }
3943       else {
3944         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3945         Value *Cond = getValue(Record, 2, NextValueNo,
3946                                Type::getInt1Ty(Context));
3947         if (!FalseDest || !Cond)
3948           return error("Invalid record");
3949         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3950         InstructionList.push_back(I);
3951       }
3952       break;
3953     }
3954     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3955       if (Record.size() != 1 && Record.size() != 2)
3956         return error("Invalid record");
3957       unsigned Idx = 0;
3958       Value *CleanupPad =
3959           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3960       if (!CleanupPad)
3961         return error("Invalid record");
3962       BasicBlock *UnwindDest = nullptr;
3963       if (Record.size() == 2) {
3964         UnwindDest = getBasicBlock(Record[Idx++]);
3965         if (!UnwindDest)
3966           return error("Invalid record");
3967       }
3968 
3969       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3970       InstructionList.push_back(I);
3971       break;
3972     }
3973     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3974       if (Record.size() != 2)
3975         return error("Invalid record");
3976       unsigned Idx = 0;
3977       Value *CatchPad =
3978           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3979       if (!CatchPad)
3980         return error("Invalid record");
3981       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3982       if (!BB)
3983         return error("Invalid record");
3984 
3985       I = CatchReturnInst::Create(CatchPad, BB);
3986       InstructionList.push_back(I);
3987       break;
3988     }
3989     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3990       // We must have, at minimum, the outer scope and the number of arguments.
3991       if (Record.size() < 2)
3992         return error("Invalid record");
3993 
3994       unsigned Idx = 0;
3995 
3996       Value *ParentPad =
3997           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3998 
3999       unsigned NumHandlers = Record[Idx++];
4000 
4001       SmallVector<BasicBlock *, 2> Handlers;
4002       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4003         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4004         if (!BB)
4005           return error("Invalid record");
4006         Handlers.push_back(BB);
4007       }
4008 
4009       BasicBlock *UnwindDest = nullptr;
4010       if (Idx + 1 == Record.size()) {
4011         UnwindDest = getBasicBlock(Record[Idx++]);
4012         if (!UnwindDest)
4013           return error("Invalid record");
4014       }
4015 
4016       if (Record.size() != Idx)
4017         return error("Invalid record");
4018 
4019       auto *CatchSwitch =
4020           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4021       for (BasicBlock *Handler : Handlers)
4022         CatchSwitch->addHandler(Handler);
4023       I = CatchSwitch;
4024       InstructionList.push_back(I);
4025       break;
4026     }
4027     case bitc::FUNC_CODE_INST_CATCHPAD:
4028     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4029       // We must have, at minimum, the outer scope and the number of arguments.
4030       if (Record.size() < 2)
4031         return error("Invalid record");
4032 
4033       unsigned Idx = 0;
4034 
4035       Value *ParentPad =
4036           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4037 
4038       unsigned NumArgOperands = Record[Idx++];
4039 
4040       SmallVector<Value *, 2> Args;
4041       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4042         Value *Val;
4043         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4044           return error("Invalid record");
4045         Args.push_back(Val);
4046       }
4047 
4048       if (Record.size() != Idx)
4049         return error("Invalid record");
4050 
4051       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4052         I = CleanupPadInst::Create(ParentPad, Args);
4053       else
4054         I = CatchPadInst::Create(ParentPad, Args);
4055       InstructionList.push_back(I);
4056       break;
4057     }
4058     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4059       // Check magic
4060       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4061         // "New" SwitchInst format with case ranges. The changes to write this
4062         // format were reverted but we still recognize bitcode that uses it.
4063         // Hopefully someday we will have support for case ranges and can use
4064         // this format again.
4065 
4066         Type *OpTy = getTypeByID(Record[1]);
4067         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4068 
4069         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4070         BasicBlock *Default = getBasicBlock(Record[3]);
4071         if (!OpTy || !Cond || !Default)
4072           return error("Invalid record");
4073 
4074         unsigned NumCases = Record[4];
4075 
4076         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4077         InstructionList.push_back(SI);
4078 
4079         unsigned CurIdx = 5;
4080         for (unsigned i = 0; i != NumCases; ++i) {
4081           SmallVector<ConstantInt*, 1> CaseVals;
4082           unsigned NumItems = Record[CurIdx++];
4083           for (unsigned ci = 0; ci != NumItems; ++ci) {
4084             bool isSingleNumber = Record[CurIdx++];
4085 
4086             APInt Low;
4087             unsigned ActiveWords = 1;
4088             if (ValueBitWidth > 64)
4089               ActiveWords = Record[CurIdx++];
4090             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4091                                 ValueBitWidth);
4092             CurIdx += ActiveWords;
4093 
4094             if (!isSingleNumber) {
4095               ActiveWords = 1;
4096               if (ValueBitWidth > 64)
4097                 ActiveWords = Record[CurIdx++];
4098               APInt High = readWideAPInt(
4099                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4100               CurIdx += ActiveWords;
4101 
4102               // FIXME: It is not clear whether values in the range should be
4103               // compared as signed or unsigned values. The partially
4104               // implemented changes that used this format in the past used
4105               // unsigned comparisons.
4106               for ( ; Low.ule(High); ++Low)
4107                 CaseVals.push_back(ConstantInt::get(Context, Low));
4108             } else
4109               CaseVals.push_back(ConstantInt::get(Context, Low));
4110           }
4111           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4112           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4113                  cve = CaseVals.end(); cvi != cve; ++cvi)
4114             SI->addCase(*cvi, DestBB);
4115         }
4116         I = SI;
4117         break;
4118       }
4119 
4120       // Old SwitchInst format without case ranges.
4121 
4122       if (Record.size() < 3 || (Record.size() & 1) == 0)
4123         return error("Invalid record");
4124       Type *OpTy = getTypeByID(Record[0]);
4125       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4126       BasicBlock *Default = getBasicBlock(Record[2]);
4127       if (!OpTy || !Cond || !Default)
4128         return error("Invalid record");
4129       unsigned NumCases = (Record.size()-3)/2;
4130       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4131       InstructionList.push_back(SI);
4132       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4133         ConstantInt *CaseVal =
4134           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4135         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4136         if (!CaseVal || !DestBB) {
4137           delete SI;
4138           return error("Invalid record");
4139         }
4140         SI->addCase(CaseVal, DestBB);
4141       }
4142       I = SI;
4143       break;
4144     }
4145     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4146       if (Record.size() < 2)
4147         return error("Invalid record");
4148       Type *OpTy = getTypeByID(Record[0]);
4149       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4150       if (!OpTy || !Address)
4151         return error("Invalid record");
4152       unsigned NumDests = Record.size()-2;
4153       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4154       InstructionList.push_back(IBI);
4155       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4156         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4157           IBI->addDestination(DestBB);
4158         } else {
4159           delete IBI;
4160           return error("Invalid record");
4161         }
4162       }
4163       I = IBI;
4164       break;
4165     }
4166 
4167     case bitc::FUNC_CODE_INST_INVOKE: {
4168       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4169       if (Record.size() < 4)
4170         return error("Invalid record");
4171       unsigned OpNum = 0;
4172       AttributeList PAL = getAttributes(Record[OpNum++]);
4173       unsigned CCInfo = Record[OpNum++];
4174       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4175       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4176 
4177       FunctionType *FTy = nullptr;
4178       if (CCInfo >> 13 & 1 &&
4179           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4180         return error("Explicit invoke type is not a function type");
4181 
4182       Value *Callee;
4183       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4184         return error("Invalid record");
4185 
4186       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4187       if (!CalleeTy)
4188         return error("Callee is not a pointer");
4189       if (!FTy) {
4190         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4191         if (!FTy)
4192           return error("Callee is not of pointer to function type");
4193       } else if (CalleeTy->getElementType() != FTy)
4194         return error("Explicit invoke type does not match pointee type of "
4195                      "callee operand");
4196       if (Record.size() < FTy->getNumParams() + OpNum)
4197         return error("Insufficient operands to call");
4198 
4199       SmallVector<Value*, 16> Ops;
4200       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4201         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4202                                FTy->getParamType(i)));
4203         if (!Ops.back())
4204           return error("Invalid record");
4205       }
4206 
4207       if (!FTy->isVarArg()) {
4208         if (Record.size() != OpNum)
4209           return error("Invalid record");
4210       } else {
4211         // Read type/value pairs for varargs params.
4212         while (OpNum != Record.size()) {
4213           Value *Op;
4214           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4215             return error("Invalid record");
4216           Ops.push_back(Op);
4217         }
4218       }
4219 
4220       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4221                              OperandBundles);
4222       OperandBundles.clear();
4223       InstructionList.push_back(I);
4224       cast<InvokeInst>(I)->setCallingConv(
4225           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4226       cast<InvokeInst>(I)->setAttributes(PAL);
4227       break;
4228     }
4229     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4230       unsigned Idx = 0;
4231       Value *Val = nullptr;
4232       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4233         return error("Invalid record");
4234       I = ResumeInst::Create(Val);
4235       InstructionList.push_back(I);
4236       break;
4237     }
4238     case bitc::FUNC_CODE_INST_CALLBR: {
4239       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4240       unsigned OpNum = 0;
4241       AttributeList PAL = getAttributes(Record[OpNum++]);
4242       unsigned CCInfo = Record[OpNum++];
4243 
4244       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4245       unsigned NumIndirectDests = Record[OpNum++];
4246       SmallVector<BasicBlock *, 16> IndirectDests;
4247       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4248         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4249 
4250       FunctionType *FTy = nullptr;
4251       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4252           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4253         return error("Explicit call type is not a function type");
4254 
4255       Value *Callee;
4256       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4257         return error("Invalid record");
4258 
4259       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4260       if (!OpTy)
4261         return error("Callee is not a pointer type");
4262       if (!FTy) {
4263         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4264         if (!FTy)
4265           return error("Callee is not of pointer to function type");
4266       } else if (OpTy->getElementType() != FTy)
4267         return error("Explicit call type does not match pointee type of "
4268                      "callee operand");
4269       if (Record.size() < FTy->getNumParams() + OpNum)
4270         return error("Insufficient operands to call");
4271 
4272       SmallVector<Value*, 16> Args;
4273       // Read the fixed params.
4274       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4275         if (FTy->getParamType(i)->isLabelTy())
4276           Args.push_back(getBasicBlock(Record[OpNum]));
4277         else
4278           Args.push_back(getValue(Record, OpNum, NextValueNo,
4279                                   FTy->getParamType(i)));
4280         if (!Args.back())
4281           return error("Invalid record");
4282       }
4283 
4284       // Read type/value pairs for varargs params.
4285       if (!FTy->isVarArg()) {
4286         if (OpNum != Record.size())
4287           return error("Invalid record");
4288       } else {
4289         while (OpNum != Record.size()) {
4290           Value *Op;
4291           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4292             return error("Invalid record");
4293           Args.push_back(Op);
4294         }
4295       }
4296 
4297       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4298                              OperandBundles);
4299       OperandBundles.clear();
4300       InstructionList.push_back(I);
4301       cast<CallBrInst>(I)->setCallingConv(
4302           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4303       cast<CallBrInst>(I)->setAttributes(PAL);
4304       break;
4305     }
4306     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4307       I = new UnreachableInst(Context);
4308       InstructionList.push_back(I);
4309       break;
4310     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4311       if (Record.size() < 1 || ((Record.size()-1)&1))
4312         return error("Invalid record");
4313       Type *Ty = getTypeByID(Record[0]);
4314       if (!Ty)
4315         return error("Invalid record");
4316 
4317       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4318       InstructionList.push_back(PN);
4319 
4320       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4321         Value *V;
4322         // With the new function encoding, it is possible that operands have
4323         // negative IDs (for forward references).  Use a signed VBR
4324         // representation to keep the encoding small.
4325         if (UseRelativeIDs)
4326           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4327         else
4328           V = getValue(Record, 1+i, NextValueNo, Ty);
4329         BasicBlock *BB = getBasicBlock(Record[2+i]);
4330         if (!V || !BB)
4331           return error("Invalid record");
4332         PN->addIncoming(V, BB);
4333       }
4334       I = PN;
4335       break;
4336     }
4337 
4338     case bitc::FUNC_CODE_INST_LANDINGPAD:
4339     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4340       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4341       unsigned Idx = 0;
4342       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4343         if (Record.size() < 3)
4344           return error("Invalid record");
4345       } else {
4346         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4347         if (Record.size() < 4)
4348           return error("Invalid record");
4349       }
4350       Type *Ty = getTypeByID(Record[Idx++]);
4351       if (!Ty)
4352         return error("Invalid record");
4353       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4354         Value *PersFn = nullptr;
4355         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4356           return error("Invalid record");
4357 
4358         if (!F->hasPersonalityFn())
4359           F->setPersonalityFn(cast<Constant>(PersFn));
4360         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4361           return error("Personality function mismatch");
4362       }
4363 
4364       bool IsCleanup = !!Record[Idx++];
4365       unsigned NumClauses = Record[Idx++];
4366       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4367       LP->setCleanup(IsCleanup);
4368       for (unsigned J = 0; J != NumClauses; ++J) {
4369         LandingPadInst::ClauseType CT =
4370           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4371         Value *Val;
4372 
4373         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4374           delete LP;
4375           return error("Invalid record");
4376         }
4377 
4378         assert((CT != LandingPadInst::Catch ||
4379                 !isa<ArrayType>(Val->getType())) &&
4380                "Catch clause has a invalid type!");
4381         assert((CT != LandingPadInst::Filter ||
4382                 isa<ArrayType>(Val->getType())) &&
4383                "Filter clause has invalid type!");
4384         LP->addClause(cast<Constant>(Val));
4385       }
4386 
4387       I = LP;
4388       InstructionList.push_back(I);
4389       break;
4390     }
4391 
4392     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4393       if (Record.size() != 4)
4394         return error("Invalid record");
4395       uint64_t AlignRecord = Record[3];
4396       const uint64_t InAllocaMask = uint64_t(1) << 5;
4397       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4398       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4399       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4400                                 SwiftErrorMask;
4401       bool InAlloca = AlignRecord & InAllocaMask;
4402       bool SwiftError = AlignRecord & SwiftErrorMask;
4403       Type *Ty = getTypeByID(Record[0]);
4404       if ((AlignRecord & ExplicitTypeMask) == 0) {
4405         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4406         if (!PTy)
4407           return error("Old-style alloca with a non-pointer type");
4408         Ty = PTy->getElementType();
4409       }
4410       Type *OpTy = getTypeByID(Record[1]);
4411       Value *Size = getFnValueByID(Record[2], OpTy);
4412       unsigned Align;
4413       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4414         return Err;
4415       }
4416       if (!Ty || !Size)
4417         return error("Invalid record");
4418 
4419       // FIXME: Make this an optional field.
4420       const DataLayout &DL = TheModule->getDataLayout();
4421       unsigned AS = DL.getAllocaAddrSpace();
4422 
4423       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4424       AI->setUsedWithInAlloca(InAlloca);
4425       AI->setSwiftError(SwiftError);
4426       I = AI;
4427       InstructionList.push_back(I);
4428       break;
4429     }
4430     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4431       unsigned OpNum = 0;
4432       Value *Op;
4433       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4434           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4435         return error("Invalid record");
4436 
4437       Type *Ty = nullptr;
4438       if (OpNum + 3 == Record.size())
4439         Ty = getTypeByID(Record[OpNum++]);
4440       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4441         return Err;
4442       if (!Ty)
4443         Ty = cast<PointerType>(Op->getType())->getElementType();
4444 
4445       unsigned Align;
4446       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4447         return Err;
4448       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4449 
4450       InstructionList.push_back(I);
4451       break;
4452     }
4453     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4454        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4455       unsigned OpNum = 0;
4456       Value *Op;
4457       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4458           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4459         return error("Invalid record");
4460 
4461       Type *Ty = nullptr;
4462       if (OpNum + 5 == Record.size())
4463         Ty = getTypeByID(Record[OpNum++]);
4464       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4465         return Err;
4466       if (!Ty)
4467         Ty = cast<PointerType>(Op->getType())->getElementType();
4468 
4469       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4470       if (Ordering == AtomicOrdering::NotAtomic ||
4471           Ordering == AtomicOrdering::Release ||
4472           Ordering == AtomicOrdering::AcquireRelease)
4473         return error("Invalid record");
4474       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4475         return error("Invalid record");
4476       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4477 
4478       unsigned Align;
4479       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4480         return Err;
4481       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4482 
4483       InstructionList.push_back(I);
4484       break;
4485     }
4486     case bitc::FUNC_CODE_INST_STORE:
4487     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4488       unsigned OpNum = 0;
4489       Value *Val, *Ptr;
4490       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4491           (BitCode == bitc::FUNC_CODE_INST_STORE
4492                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4493                : popValue(Record, OpNum, NextValueNo,
4494                           cast<PointerType>(Ptr->getType())->getElementType(),
4495                           Val)) ||
4496           OpNum + 2 != Record.size())
4497         return error("Invalid record");
4498 
4499       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4500         return Err;
4501       unsigned Align;
4502       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4503         return Err;
4504       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4505       InstructionList.push_back(I);
4506       break;
4507     }
4508     case bitc::FUNC_CODE_INST_STOREATOMIC:
4509     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4510       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4511       unsigned OpNum = 0;
4512       Value *Val, *Ptr;
4513       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4514           !isa<PointerType>(Ptr->getType()) ||
4515           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4516                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4517                : popValue(Record, OpNum, NextValueNo,
4518                           cast<PointerType>(Ptr->getType())->getElementType(),
4519                           Val)) ||
4520           OpNum + 4 != Record.size())
4521         return error("Invalid record");
4522 
4523       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4524         return Err;
4525       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4526       if (Ordering == AtomicOrdering::NotAtomic ||
4527           Ordering == AtomicOrdering::Acquire ||
4528           Ordering == AtomicOrdering::AcquireRelease)
4529         return error("Invalid record");
4530       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4531       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4532         return error("Invalid record");
4533 
4534       unsigned Align;
4535       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4536         return Err;
4537       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4538       InstructionList.push_back(I);
4539       break;
4540     }
4541     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4542     case bitc::FUNC_CODE_INST_CMPXCHG: {
4543       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4544       //          failureordering?, isweak?]
4545       unsigned OpNum = 0;
4546       Value *Ptr, *Cmp, *New;
4547       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4548           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4549                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4550                : popValue(Record, OpNum, NextValueNo,
4551                           cast<PointerType>(Ptr->getType())->getElementType(),
4552                           Cmp)) ||
4553           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4554           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4555         return error("Invalid record");
4556       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4557       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4558           SuccessOrdering == AtomicOrdering::Unordered)
4559         return error("Invalid record");
4560       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4561 
4562       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4563         return Err;
4564       AtomicOrdering FailureOrdering;
4565       if (Record.size() < 7)
4566         FailureOrdering =
4567             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4568       else
4569         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4570 
4571       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4572                                 SSID);
4573       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4574 
4575       if (Record.size() < 8) {
4576         // Before weak cmpxchgs existed, the instruction simply returned the
4577         // value loaded from memory, so bitcode files from that era will be
4578         // expecting the first component of a modern cmpxchg.
4579         CurBB->getInstList().push_back(I);
4580         I = ExtractValueInst::Create(I, 0);
4581       } else {
4582         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4583       }
4584 
4585       InstructionList.push_back(I);
4586       break;
4587     }
4588     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4589       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4590       unsigned OpNum = 0;
4591       Value *Ptr, *Val;
4592       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4593           !isa<PointerType>(Ptr->getType()) ||
4594           popValue(Record, OpNum, NextValueNo,
4595                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4596           OpNum+4 != Record.size())
4597         return error("Invalid record");
4598       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4599       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4600           Operation > AtomicRMWInst::LAST_BINOP)
4601         return error("Invalid record");
4602       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4603       if (Ordering == AtomicOrdering::NotAtomic ||
4604           Ordering == AtomicOrdering::Unordered)
4605         return error("Invalid record");
4606       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4607       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4608       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4609       InstructionList.push_back(I);
4610       break;
4611     }
4612     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4613       if (2 != Record.size())
4614         return error("Invalid record");
4615       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4616       if (Ordering == AtomicOrdering::NotAtomic ||
4617           Ordering == AtomicOrdering::Unordered ||
4618           Ordering == AtomicOrdering::Monotonic)
4619         return error("Invalid record");
4620       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4621       I = new FenceInst(Context, Ordering, SSID);
4622       InstructionList.push_back(I);
4623       break;
4624     }
4625     case bitc::FUNC_CODE_INST_CALL: {
4626       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4627       if (Record.size() < 3)
4628         return error("Invalid record");
4629 
4630       unsigned OpNum = 0;
4631       AttributeList PAL = getAttributes(Record[OpNum++]);
4632       unsigned CCInfo = Record[OpNum++];
4633 
4634       FastMathFlags FMF;
4635       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4636         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4637         if (!FMF.any())
4638           return error("Fast math flags indicator set for call with no FMF");
4639       }
4640 
4641       FunctionType *FTy = nullptr;
4642       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4643           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4644         return error("Explicit call type is not a function type");
4645 
4646       Value *Callee;
4647       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4648         return error("Invalid record");
4649 
4650       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4651       if (!OpTy)
4652         return error("Callee is not a pointer type");
4653       if (!FTy) {
4654         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4655         if (!FTy)
4656           return error("Callee is not of pointer to function type");
4657       } else if (OpTy->getElementType() != FTy)
4658         return error("Explicit call type does not match pointee type of "
4659                      "callee operand");
4660       if (Record.size() < FTy->getNumParams() + OpNum)
4661         return error("Insufficient operands to call");
4662 
4663       SmallVector<Value*, 16> Args;
4664       // Read the fixed params.
4665       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4666         if (FTy->getParamType(i)->isLabelTy())
4667           Args.push_back(getBasicBlock(Record[OpNum]));
4668         else
4669           Args.push_back(getValue(Record, OpNum, NextValueNo,
4670                                   FTy->getParamType(i)));
4671         if (!Args.back())
4672           return error("Invalid record");
4673       }
4674 
4675       // Read type/value pairs for varargs params.
4676       if (!FTy->isVarArg()) {
4677         if (OpNum != Record.size())
4678           return error("Invalid record");
4679       } else {
4680         while (OpNum != Record.size()) {
4681           Value *Op;
4682           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4683             return error("Invalid record");
4684           Args.push_back(Op);
4685         }
4686       }
4687 
4688       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4689       OperandBundles.clear();
4690       InstructionList.push_back(I);
4691       cast<CallInst>(I)->setCallingConv(
4692           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4693       CallInst::TailCallKind TCK = CallInst::TCK_None;
4694       if (CCInfo & 1 << bitc::CALL_TAIL)
4695         TCK = CallInst::TCK_Tail;
4696       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4697         TCK = CallInst::TCK_MustTail;
4698       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4699         TCK = CallInst::TCK_NoTail;
4700       cast<CallInst>(I)->setTailCallKind(TCK);
4701       cast<CallInst>(I)->setAttributes(PAL);
4702       if (FMF.any()) {
4703         if (!isa<FPMathOperator>(I))
4704           return error("Fast-math-flags specified for call without "
4705                        "floating-point scalar or vector return type");
4706         I->setFastMathFlags(FMF);
4707       }
4708       break;
4709     }
4710     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4711       if (Record.size() < 3)
4712         return error("Invalid record");
4713       Type *OpTy = getTypeByID(Record[0]);
4714       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4715       Type *ResTy = getTypeByID(Record[2]);
4716       if (!OpTy || !Op || !ResTy)
4717         return error("Invalid record");
4718       I = new VAArgInst(Op, ResTy);
4719       InstructionList.push_back(I);
4720       break;
4721     }
4722 
4723     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4724       // A call or an invoke can be optionally prefixed with some variable
4725       // number of operand bundle blocks.  These blocks are read into
4726       // OperandBundles and consumed at the next call or invoke instruction.
4727 
4728       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4729         return error("Invalid record");
4730 
4731       std::vector<Value *> Inputs;
4732 
4733       unsigned OpNum = 1;
4734       while (OpNum != Record.size()) {
4735         Value *Op;
4736         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4737           return error("Invalid record");
4738         Inputs.push_back(Op);
4739       }
4740 
4741       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4742       continue;
4743     }
4744     }
4745 
4746     // Add instruction to end of current BB.  If there is no current BB, reject
4747     // this file.
4748     if (!CurBB) {
4749       I->deleteValue();
4750       return error("Invalid instruction with no BB");
4751     }
4752     if (!OperandBundles.empty()) {
4753       I->deleteValue();
4754       return error("Operand bundles found with no consumer");
4755     }
4756     CurBB->getInstList().push_back(I);
4757 
4758     // If this was a terminator instruction, move to the next block.
4759     if (I->isTerminator()) {
4760       ++CurBBNo;
4761       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4762     }
4763 
4764     // Non-void values get registered in the value table for future use.
4765     if (I && !I->getType()->isVoidTy())
4766       ValueList.assignValue(I, NextValueNo++);
4767   }
4768 
4769 OutOfRecordLoop:
4770 
4771   if (!OperandBundles.empty())
4772     return error("Operand bundles found with no consumer");
4773 
4774   // Check the function list for unresolved values.
4775   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4776     if (!A->getParent()) {
4777       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4778       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4779         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4780           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4781           delete A;
4782         }
4783       }
4784       return error("Never resolved value found in function");
4785     }
4786   }
4787 
4788   // Unexpected unresolved metadata about to be dropped.
4789   if (MDLoader->hasFwdRefs())
4790     return error("Invalid function metadata: outgoing forward refs");
4791 
4792   // Trim the value list down to the size it was before we parsed this function.
4793   ValueList.shrinkTo(ModuleValueListSize);
4794   MDLoader->shrinkTo(ModuleMDLoaderSize);
4795   std::vector<BasicBlock*>().swap(FunctionBBs);
4796   return Error::success();
4797 }
4798 
4799 /// Find the function body in the bitcode stream
4800 Error BitcodeReader::findFunctionInStream(
4801     Function *F,
4802     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4803   while (DeferredFunctionInfoIterator->second == 0) {
4804     // This is the fallback handling for the old format bitcode that
4805     // didn't contain the function index in the VST, or when we have
4806     // an anonymous function which would not have a VST entry.
4807     // Assert that we have one of those two cases.
4808     assert(VSTOffset == 0 || !F->hasName());
4809     // Parse the next body in the stream and set its position in the
4810     // DeferredFunctionInfo map.
4811     if (Error Err = rememberAndSkipFunctionBodies())
4812       return Err;
4813   }
4814   return Error::success();
4815 }
4816 
4817 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4818   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4819     return SyncScope::ID(Val);
4820   if (Val >= SSIDs.size())
4821     return SyncScope::System; // Map unknown synchronization scopes to system.
4822   return SSIDs[Val];
4823 }
4824 
4825 //===----------------------------------------------------------------------===//
4826 // GVMaterializer implementation
4827 //===----------------------------------------------------------------------===//
4828 
4829 Error BitcodeReader::materialize(GlobalValue *GV) {
4830   Function *F = dyn_cast<Function>(GV);
4831   // If it's not a function or is already material, ignore the request.
4832   if (!F || !F->isMaterializable())
4833     return Error::success();
4834 
4835   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4836   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4837   // If its position is recorded as 0, its body is somewhere in the stream
4838   // but we haven't seen it yet.
4839   if (DFII->second == 0)
4840     if (Error Err = findFunctionInStream(F, DFII))
4841       return Err;
4842 
4843   // Materialize metadata before parsing any function bodies.
4844   if (Error Err = materializeMetadata())
4845     return Err;
4846 
4847   // Move the bit stream to the saved position of the deferred function body.
4848   Stream.JumpToBit(DFII->second);
4849 
4850   if (Error Err = parseFunctionBody(F))
4851     return Err;
4852   F->setIsMaterializable(false);
4853 
4854   if (StripDebugInfo)
4855     stripDebugInfo(*F);
4856 
4857   // Upgrade any old intrinsic calls in the function.
4858   for (auto &I : UpgradedIntrinsics) {
4859     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4860          UI != UE;) {
4861       User *U = *UI;
4862       ++UI;
4863       if (CallInst *CI = dyn_cast<CallInst>(U))
4864         UpgradeIntrinsicCall(CI, I.second);
4865     }
4866   }
4867 
4868   // Update calls to the remangled intrinsics
4869   for (auto &I : RemangledIntrinsics)
4870     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4871          UI != UE;)
4872       // Don't expect any other users than call sites
4873       CallSite(*UI++).setCalledFunction(I.second);
4874 
4875   // Finish fn->subprogram upgrade for materialized functions.
4876   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4877     F->setSubprogram(SP);
4878 
4879   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4880   if (!MDLoader->isStrippingTBAA()) {
4881     for (auto &I : instructions(F)) {
4882       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4883       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4884         continue;
4885       MDLoader->setStripTBAA(true);
4886       stripTBAA(F->getParent());
4887     }
4888   }
4889 
4890   // Bring in any functions that this function forward-referenced via
4891   // blockaddresses.
4892   return materializeForwardReferencedFunctions();
4893 }
4894 
4895 Error BitcodeReader::materializeModule() {
4896   if (Error Err = materializeMetadata())
4897     return Err;
4898 
4899   // Promise to materialize all forward references.
4900   WillMaterializeAllForwardRefs = true;
4901 
4902   // Iterate over the module, deserializing any functions that are still on
4903   // disk.
4904   for (Function &F : *TheModule) {
4905     if (Error Err = materialize(&F))
4906       return Err;
4907   }
4908   // At this point, if there are any function bodies, parse the rest of
4909   // the bits in the module past the last function block we have recorded
4910   // through either lazy scanning or the VST.
4911   if (LastFunctionBlockBit || NextUnreadBit)
4912     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4913                                     ? LastFunctionBlockBit
4914                                     : NextUnreadBit))
4915       return Err;
4916 
4917   // Check that all block address forward references got resolved (as we
4918   // promised above).
4919   if (!BasicBlockFwdRefs.empty())
4920     return error("Never resolved function from blockaddress");
4921 
4922   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4923   // delete the old functions to clean up. We can't do this unless the entire
4924   // module is materialized because there could always be another function body
4925   // with calls to the old function.
4926   for (auto &I : UpgradedIntrinsics) {
4927     for (auto *U : I.first->users()) {
4928       if (CallInst *CI = dyn_cast<CallInst>(U))
4929         UpgradeIntrinsicCall(CI, I.second);
4930     }
4931     if (!I.first->use_empty())
4932       I.first->replaceAllUsesWith(I.second);
4933     I.first->eraseFromParent();
4934   }
4935   UpgradedIntrinsics.clear();
4936   // Do the same for remangled intrinsics
4937   for (auto &I : RemangledIntrinsics) {
4938     I.first->replaceAllUsesWith(I.second);
4939     I.first->eraseFromParent();
4940   }
4941   RemangledIntrinsics.clear();
4942 
4943   UpgradeDebugInfo(*TheModule);
4944 
4945   UpgradeModuleFlags(*TheModule);
4946 
4947   UpgradeRetainReleaseMarker(*TheModule);
4948 
4949   return Error::success();
4950 }
4951 
4952 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4953   return IdentifiedStructTypes;
4954 }
4955 
4956 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4957     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4958     StringRef ModulePath, unsigned ModuleId)
4959     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4960       ModulePath(ModulePath), ModuleId(ModuleId) {}
4961 
4962 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4963   TheIndex.addModule(ModulePath, ModuleId);
4964 }
4965 
4966 ModuleSummaryIndex::ModuleInfo *
4967 ModuleSummaryIndexBitcodeReader::getThisModule() {
4968   return TheIndex.getModule(ModulePath);
4969 }
4970 
4971 std::pair<ValueInfo, GlobalValue::GUID>
4972 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4973   auto VGI = ValueIdToValueInfoMap[ValueId];
4974   assert(VGI.first);
4975   return VGI;
4976 }
4977 
4978 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4979     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4980     StringRef SourceFileName) {
4981   std::string GlobalId =
4982       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4983   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4984   auto OriginalNameID = ValueGUID;
4985   if (GlobalValue::isLocalLinkage(Linkage))
4986     OriginalNameID = GlobalValue::getGUID(ValueName);
4987   if (PrintSummaryGUIDs)
4988     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4989            << ValueName << "\n";
4990 
4991   // UseStrtab is false for legacy summary formats and value names are
4992   // created on stack. In that case we save the name in a string saver in
4993   // the index so that the value name can be recorded.
4994   ValueIdToValueInfoMap[ValueID] = std::make_pair(
4995       TheIndex.getOrInsertValueInfo(
4996           ValueGUID,
4997           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
4998       OriginalNameID);
4999 }
5000 
5001 // Specialized value symbol table parser used when reading module index
5002 // blocks where we don't actually create global values. The parsed information
5003 // is saved in the bitcode reader for use when later parsing summaries.
5004 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5005     uint64_t Offset,
5006     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5007   // With a strtab the VST is not required to parse the summary.
5008   if (UseStrtab)
5009     return Error::success();
5010 
5011   assert(Offset > 0 && "Expected non-zero VST offset");
5012   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5013 
5014   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5015     return error("Invalid record");
5016 
5017   SmallVector<uint64_t, 64> Record;
5018 
5019   // Read all the records for this value table.
5020   SmallString<128> ValueName;
5021 
5022   while (true) {
5023     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5024 
5025     switch (Entry.Kind) {
5026     case BitstreamEntry::SubBlock: // Handled for us already.
5027     case BitstreamEntry::Error:
5028       return error("Malformed block");
5029     case BitstreamEntry::EndBlock:
5030       // Done parsing VST, jump back to wherever we came from.
5031       Stream.JumpToBit(CurrentBit);
5032       return Error::success();
5033     case BitstreamEntry::Record:
5034       // The interesting case.
5035       break;
5036     }
5037 
5038     // Read a record.
5039     Record.clear();
5040     switch (Stream.readRecord(Entry.ID, Record)) {
5041     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5042       break;
5043     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5044       if (convertToString(Record, 1, ValueName))
5045         return error("Invalid record");
5046       unsigned ValueID = Record[0];
5047       assert(!SourceFileName.empty());
5048       auto VLI = ValueIdToLinkageMap.find(ValueID);
5049       assert(VLI != ValueIdToLinkageMap.end() &&
5050              "No linkage found for VST entry?");
5051       auto Linkage = VLI->second;
5052       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5053       ValueName.clear();
5054       break;
5055     }
5056     case bitc::VST_CODE_FNENTRY: {
5057       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5058       if (convertToString(Record, 2, ValueName))
5059         return error("Invalid record");
5060       unsigned ValueID = Record[0];
5061       assert(!SourceFileName.empty());
5062       auto VLI = ValueIdToLinkageMap.find(ValueID);
5063       assert(VLI != ValueIdToLinkageMap.end() &&
5064              "No linkage found for VST entry?");
5065       auto Linkage = VLI->second;
5066       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5067       ValueName.clear();
5068       break;
5069     }
5070     case bitc::VST_CODE_COMBINED_ENTRY: {
5071       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5072       unsigned ValueID = Record[0];
5073       GlobalValue::GUID RefGUID = Record[1];
5074       // The "original name", which is the second value of the pair will be
5075       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5076       ValueIdToValueInfoMap[ValueID] =
5077           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5078       break;
5079     }
5080     }
5081   }
5082 }
5083 
5084 // Parse just the blocks needed for building the index out of the module.
5085 // At the end of this routine the module Index is populated with a map
5086 // from global value id to GlobalValueSummary objects.
5087 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5088   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5089     return error("Invalid record");
5090 
5091   SmallVector<uint64_t, 64> Record;
5092   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5093   unsigned ValueId = 0;
5094 
5095   // Read the index for this module.
5096   while (true) {
5097     BitstreamEntry Entry = Stream.advance();
5098 
5099     switch (Entry.Kind) {
5100     case BitstreamEntry::Error:
5101       return error("Malformed block");
5102     case BitstreamEntry::EndBlock:
5103       return Error::success();
5104 
5105     case BitstreamEntry::SubBlock:
5106       switch (Entry.ID) {
5107       default: // Skip unknown content.
5108         if (Stream.SkipBlock())
5109           return error("Invalid record");
5110         break;
5111       case bitc::BLOCKINFO_BLOCK_ID:
5112         // Need to parse these to get abbrev ids (e.g. for VST)
5113         if (readBlockInfo())
5114           return error("Malformed block");
5115         break;
5116       case bitc::VALUE_SYMTAB_BLOCK_ID:
5117         // Should have been parsed earlier via VSTOffset, unless there
5118         // is no summary section.
5119         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5120                 !SeenGlobalValSummary) &&
5121                "Expected early VST parse via VSTOffset record");
5122         if (Stream.SkipBlock())
5123           return error("Invalid record");
5124         break;
5125       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5126       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5127         // Add the module if it is a per-module index (has a source file name).
5128         if (!SourceFileName.empty())
5129           addThisModule();
5130         assert(!SeenValueSymbolTable &&
5131                "Already read VST when parsing summary block?");
5132         // We might not have a VST if there were no values in the
5133         // summary. An empty summary block generated when we are
5134         // performing ThinLTO compiles so we don't later invoke
5135         // the regular LTO process on them.
5136         if (VSTOffset > 0) {
5137           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5138             return Err;
5139           SeenValueSymbolTable = true;
5140         }
5141         SeenGlobalValSummary = true;
5142         if (Error Err = parseEntireSummary(Entry.ID))
5143           return Err;
5144         break;
5145       case bitc::MODULE_STRTAB_BLOCK_ID:
5146         if (Error Err = parseModuleStringTable())
5147           return Err;
5148         break;
5149       }
5150       continue;
5151 
5152     case BitstreamEntry::Record: {
5153         Record.clear();
5154         auto BitCode = Stream.readRecord(Entry.ID, Record);
5155         switch (BitCode) {
5156         default:
5157           break; // Default behavior, ignore unknown content.
5158         case bitc::MODULE_CODE_VERSION: {
5159           if (Error Err = parseVersionRecord(Record).takeError())
5160             return Err;
5161           break;
5162         }
5163         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5164         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5165           SmallString<128> ValueName;
5166           if (convertToString(Record, 0, ValueName))
5167             return error("Invalid record");
5168           SourceFileName = ValueName.c_str();
5169           break;
5170         }
5171         /// MODULE_CODE_HASH: [5*i32]
5172         case bitc::MODULE_CODE_HASH: {
5173           if (Record.size() != 5)
5174             return error("Invalid hash length " + Twine(Record.size()).str());
5175           auto &Hash = getThisModule()->second.second;
5176           int Pos = 0;
5177           for (auto &Val : Record) {
5178             assert(!(Val >> 32) && "Unexpected high bits set");
5179             Hash[Pos++] = Val;
5180           }
5181           break;
5182         }
5183         /// MODULE_CODE_VSTOFFSET: [offset]
5184         case bitc::MODULE_CODE_VSTOFFSET:
5185           if (Record.size() < 1)
5186             return error("Invalid record");
5187           // Note that we subtract 1 here because the offset is relative to one
5188           // word before the start of the identification or module block, which
5189           // was historically always the start of the regular bitcode header.
5190           VSTOffset = Record[0] - 1;
5191           break;
5192         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5193         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5194         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5195         // v2: [strtab offset, strtab size, v1]
5196         case bitc::MODULE_CODE_GLOBALVAR:
5197         case bitc::MODULE_CODE_FUNCTION:
5198         case bitc::MODULE_CODE_ALIAS: {
5199           StringRef Name;
5200           ArrayRef<uint64_t> GVRecord;
5201           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5202           if (GVRecord.size() <= 3)
5203             return error("Invalid record");
5204           uint64_t RawLinkage = GVRecord[3];
5205           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5206           if (!UseStrtab) {
5207             ValueIdToLinkageMap[ValueId++] = Linkage;
5208             break;
5209           }
5210 
5211           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5212           break;
5213         }
5214         }
5215       }
5216       continue;
5217     }
5218   }
5219 }
5220 
5221 std::vector<ValueInfo>
5222 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5223   std::vector<ValueInfo> Ret;
5224   Ret.reserve(Record.size());
5225   for (uint64_t RefValueId : Record)
5226     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5227   return Ret;
5228 }
5229 
5230 std::vector<FunctionSummary::EdgeTy>
5231 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5232                                               bool IsOldProfileFormat,
5233                                               bool HasProfile, bool HasRelBF) {
5234   std::vector<FunctionSummary::EdgeTy> Ret;
5235   Ret.reserve(Record.size());
5236   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5237     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5238     uint64_t RelBF = 0;
5239     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5240     if (IsOldProfileFormat) {
5241       I += 1; // Skip old callsitecount field
5242       if (HasProfile)
5243         I += 1; // Skip old profilecount field
5244     } else if (HasProfile)
5245       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5246     else if (HasRelBF)
5247       RelBF = Record[++I];
5248     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5249   }
5250   return Ret;
5251 }
5252 
5253 static void
5254 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5255                                        WholeProgramDevirtResolution &Wpd) {
5256   uint64_t ArgNum = Record[Slot++];
5257   WholeProgramDevirtResolution::ByArg &B =
5258       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5259   Slot += ArgNum;
5260 
5261   B.TheKind =
5262       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5263   B.Info = Record[Slot++];
5264   B.Byte = Record[Slot++];
5265   B.Bit = Record[Slot++];
5266 }
5267 
5268 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5269                                               StringRef Strtab, size_t &Slot,
5270                                               TypeIdSummary &TypeId) {
5271   uint64_t Id = Record[Slot++];
5272   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5273 
5274   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5275   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5276                         static_cast<size_t>(Record[Slot + 1])};
5277   Slot += 2;
5278 
5279   uint64_t ResByArgNum = Record[Slot++];
5280   for (uint64_t I = 0; I != ResByArgNum; ++I)
5281     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5282 }
5283 
5284 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5285                                      StringRef Strtab,
5286                                      ModuleSummaryIndex &TheIndex) {
5287   size_t Slot = 0;
5288   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5289       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5290   Slot += 2;
5291 
5292   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5293   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5294   TypeId.TTRes.AlignLog2 = Record[Slot++];
5295   TypeId.TTRes.SizeM1 = Record[Slot++];
5296   TypeId.TTRes.BitMask = Record[Slot++];
5297   TypeId.TTRes.InlineBits = Record[Slot++];
5298 
5299   while (Slot < Record.size())
5300     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5301 }
5302 
5303 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5304   // Read-only refs are in the end of the refs list.
5305   for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5306     Refs[RefNo].setReadOnly();
5307 }
5308 
5309 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5310 // objects in the index.
5311 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5312   if (Stream.EnterSubBlock(ID))
5313     return error("Invalid record");
5314   SmallVector<uint64_t, 64> Record;
5315 
5316   // Parse version
5317   {
5318     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5319     if (Entry.Kind != BitstreamEntry::Record)
5320       return error("Invalid Summary Block: record for version expected");
5321     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5322       return error("Invalid Summary Block: version expected");
5323   }
5324   const uint64_t Version = Record[0];
5325   const bool IsOldProfileFormat = Version == 1;
5326   if (Version < 1 || Version > 6)
5327     return error("Invalid summary version " + Twine(Version) +
5328                  ". Version should be in the range [1-6].");
5329   Record.clear();
5330 
5331   // Keep around the last seen summary to be used when we see an optional
5332   // "OriginalName" attachement.
5333   GlobalValueSummary *LastSeenSummary = nullptr;
5334   GlobalValue::GUID LastSeenGUID = 0;
5335 
5336   // We can expect to see any number of type ID information records before
5337   // each function summary records; these variables store the information
5338   // collected so far so that it can be used to create the summary object.
5339   std::vector<GlobalValue::GUID> PendingTypeTests;
5340   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5341       PendingTypeCheckedLoadVCalls;
5342   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5343       PendingTypeCheckedLoadConstVCalls;
5344 
5345   while (true) {
5346     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5347 
5348     switch (Entry.Kind) {
5349     case BitstreamEntry::SubBlock: // Handled for us already.
5350     case BitstreamEntry::Error:
5351       return error("Malformed block");
5352     case BitstreamEntry::EndBlock:
5353       return Error::success();
5354     case BitstreamEntry::Record:
5355       // The interesting case.
5356       break;
5357     }
5358 
5359     // Read a record. The record format depends on whether this
5360     // is a per-module index or a combined index file. In the per-module
5361     // case the records contain the associated value's ID for correlation
5362     // with VST entries. In the combined index the correlation is done
5363     // via the bitcode offset of the summary records (which were saved
5364     // in the combined index VST entries). The records also contain
5365     // information used for ThinLTO renaming and importing.
5366     Record.clear();
5367     auto BitCode = Stream.readRecord(Entry.ID, Record);
5368     switch (BitCode) {
5369     default: // Default behavior: ignore.
5370       break;
5371     case bitc::FS_FLAGS: {  // [flags]
5372       uint64_t Flags = Record[0];
5373       // Scan flags.
5374       assert(Flags <= 0x1f && "Unexpected bits in flag");
5375 
5376       // 1 bit: WithGlobalValueDeadStripping flag.
5377       // Set on combined index only.
5378       if (Flags & 0x1)
5379         TheIndex.setWithGlobalValueDeadStripping();
5380       // 1 bit: SkipModuleByDistributedBackend flag.
5381       // Set on combined index only.
5382       if (Flags & 0x2)
5383         TheIndex.setSkipModuleByDistributedBackend();
5384       // 1 bit: HasSyntheticEntryCounts flag.
5385       // Set on combined index only.
5386       if (Flags & 0x4)
5387         TheIndex.setHasSyntheticEntryCounts();
5388       // 1 bit: DisableSplitLTOUnit flag.
5389       // Set on per module indexes. It is up to the client to validate
5390       // the consistency of this flag across modules being linked.
5391       if (Flags & 0x8)
5392         TheIndex.setEnableSplitLTOUnit();
5393       // 1 bit: PartiallySplitLTOUnits flag.
5394       // Set on combined index only.
5395       if (Flags & 0x10)
5396         TheIndex.setPartiallySplitLTOUnits();
5397       break;
5398     }
5399     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5400       uint64_t ValueID = Record[0];
5401       GlobalValue::GUID RefGUID = Record[1];
5402       ValueIdToValueInfoMap[ValueID] =
5403           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5404       break;
5405     }
5406     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5407     //                numrefs x valueid, n x (valueid)]
5408     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5409     //                        numrefs x valueid,
5410     //                        n x (valueid, hotness)]
5411     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5412     //                      numrefs x valueid,
5413     //                      n x (valueid, relblockfreq)]
5414     case bitc::FS_PERMODULE:
5415     case bitc::FS_PERMODULE_RELBF:
5416     case bitc::FS_PERMODULE_PROFILE: {
5417       unsigned ValueID = Record[0];
5418       uint64_t RawFlags = Record[1];
5419       unsigned InstCount = Record[2];
5420       uint64_t RawFunFlags = 0;
5421       unsigned NumRefs = Record[3];
5422       unsigned NumImmutableRefs = 0;
5423       int RefListStartIndex = 4;
5424       if (Version >= 4) {
5425         RawFunFlags = Record[3];
5426         NumRefs = Record[4];
5427         RefListStartIndex = 5;
5428         if (Version >= 5) {
5429           NumImmutableRefs = Record[5];
5430           RefListStartIndex = 6;
5431         }
5432       }
5433 
5434       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5435       // The module path string ref set in the summary must be owned by the
5436       // index's module string table. Since we don't have a module path
5437       // string table section in the per-module index, we create a single
5438       // module path string table entry with an empty (0) ID to take
5439       // ownership.
5440       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5441       assert(Record.size() >= RefListStartIndex + NumRefs &&
5442              "Record size inconsistent with number of references");
5443       std::vector<ValueInfo> Refs = makeRefList(
5444           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5445       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5446       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5447       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5448           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5449           IsOldProfileFormat, HasProfile, HasRelBF);
5450       setImmutableRefs(Refs, NumImmutableRefs);
5451       auto FS = llvm::make_unique<FunctionSummary>(
5452           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5453           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5454           std::move(PendingTypeTestAssumeVCalls),
5455           std::move(PendingTypeCheckedLoadVCalls),
5456           std::move(PendingTypeTestAssumeConstVCalls),
5457           std::move(PendingTypeCheckedLoadConstVCalls));
5458       PendingTypeTests.clear();
5459       PendingTypeTestAssumeVCalls.clear();
5460       PendingTypeCheckedLoadVCalls.clear();
5461       PendingTypeTestAssumeConstVCalls.clear();
5462       PendingTypeCheckedLoadConstVCalls.clear();
5463       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5464       FS->setModulePath(getThisModule()->first());
5465       FS->setOriginalName(VIAndOriginalGUID.second);
5466       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5467       break;
5468     }
5469     // FS_ALIAS: [valueid, flags, valueid]
5470     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5471     // they expect all aliasee summaries to be available.
5472     case bitc::FS_ALIAS: {
5473       unsigned ValueID = Record[0];
5474       uint64_t RawFlags = Record[1];
5475       unsigned AliaseeID = Record[2];
5476       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5477       auto AS = llvm::make_unique<AliasSummary>(Flags);
5478       // The module path string ref set in the summary must be owned by the
5479       // index's module string table. Since we don't have a module path
5480       // string table section in the per-module index, we create a single
5481       // module path string table entry with an empty (0) ID to take
5482       // ownership.
5483       AS->setModulePath(getThisModule()->first());
5484 
5485       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5486       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5487       if (!AliaseeInModule)
5488         return error("Alias expects aliasee summary to be parsed");
5489       AS->setAliasee(AliaseeVI, AliaseeInModule);
5490 
5491       auto GUID = getValueInfoFromValueId(ValueID);
5492       AS->setOriginalName(GUID.second);
5493       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5494       break;
5495     }
5496     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5497     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5498       unsigned ValueID = Record[0];
5499       uint64_t RawFlags = Record[1];
5500       unsigned RefArrayStart = 2;
5501       GlobalVarSummary::GVarFlags GVF;
5502       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5503       if (Version >= 5) {
5504         GVF = getDecodedGVarFlags(Record[2]);
5505         RefArrayStart = 3;
5506       }
5507       std::vector<ValueInfo> Refs =
5508           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5509       auto FS =
5510           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5511       FS->setModulePath(getThisModule()->first());
5512       auto GUID = getValueInfoFromValueId(ValueID);
5513       FS->setOriginalName(GUID.second);
5514       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5515       break;
5516     }
5517     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5518     //               numrefs x valueid, n x (valueid)]
5519     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5520     //                       numrefs x valueid, n x (valueid, hotness)]
5521     case bitc::FS_COMBINED:
5522     case bitc::FS_COMBINED_PROFILE: {
5523       unsigned ValueID = Record[0];
5524       uint64_t ModuleId = Record[1];
5525       uint64_t RawFlags = Record[2];
5526       unsigned InstCount = Record[3];
5527       uint64_t RawFunFlags = 0;
5528       uint64_t EntryCount = 0;
5529       unsigned NumRefs = Record[4];
5530       unsigned NumImmutableRefs = 0;
5531       int RefListStartIndex = 5;
5532 
5533       if (Version >= 4) {
5534         RawFunFlags = Record[4];
5535         RefListStartIndex = 6;
5536         size_t NumRefsIndex = 5;
5537         if (Version >= 5) {
5538           RefListStartIndex = 7;
5539           if (Version >= 6) {
5540             NumRefsIndex = 6;
5541             EntryCount = Record[5];
5542             RefListStartIndex = 8;
5543           }
5544           NumImmutableRefs = Record[RefListStartIndex - 1];
5545         }
5546         NumRefs = Record[NumRefsIndex];
5547       }
5548 
5549       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5550       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5551       assert(Record.size() >= RefListStartIndex + NumRefs &&
5552              "Record size inconsistent with number of references");
5553       std::vector<ValueInfo> Refs = makeRefList(
5554           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5555       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5556       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5557           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5558           IsOldProfileFormat, HasProfile, false);
5559       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5560       setImmutableRefs(Refs, NumImmutableRefs);
5561       auto FS = llvm::make_unique<FunctionSummary>(
5562           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5563           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5564           std::move(PendingTypeTestAssumeVCalls),
5565           std::move(PendingTypeCheckedLoadVCalls),
5566           std::move(PendingTypeTestAssumeConstVCalls),
5567           std::move(PendingTypeCheckedLoadConstVCalls));
5568       PendingTypeTests.clear();
5569       PendingTypeTestAssumeVCalls.clear();
5570       PendingTypeCheckedLoadVCalls.clear();
5571       PendingTypeTestAssumeConstVCalls.clear();
5572       PendingTypeCheckedLoadConstVCalls.clear();
5573       LastSeenSummary = FS.get();
5574       LastSeenGUID = VI.getGUID();
5575       FS->setModulePath(ModuleIdMap[ModuleId]);
5576       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5577       break;
5578     }
5579     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5580     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5581     // they expect all aliasee summaries to be available.
5582     case bitc::FS_COMBINED_ALIAS: {
5583       unsigned ValueID = Record[0];
5584       uint64_t ModuleId = Record[1];
5585       uint64_t RawFlags = Record[2];
5586       unsigned AliaseeValueId = Record[3];
5587       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5588       auto AS = llvm::make_unique<AliasSummary>(Flags);
5589       LastSeenSummary = AS.get();
5590       AS->setModulePath(ModuleIdMap[ModuleId]);
5591 
5592       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
5593       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
5594       AS->setAliasee(AliaseeVI, AliaseeInModule);
5595 
5596       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5597       LastSeenGUID = VI.getGUID();
5598       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5599       break;
5600     }
5601     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5602     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5603       unsigned ValueID = Record[0];
5604       uint64_t ModuleId = Record[1];
5605       uint64_t RawFlags = Record[2];
5606       unsigned RefArrayStart = 3;
5607       GlobalVarSummary::GVarFlags GVF;
5608       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5609       if (Version >= 5) {
5610         GVF = getDecodedGVarFlags(Record[3]);
5611         RefArrayStart = 4;
5612       }
5613       std::vector<ValueInfo> Refs =
5614           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5615       auto FS =
5616           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5617       LastSeenSummary = FS.get();
5618       FS->setModulePath(ModuleIdMap[ModuleId]);
5619       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5620       LastSeenGUID = VI.getGUID();
5621       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5622       break;
5623     }
5624     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5625     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5626       uint64_t OriginalName = Record[0];
5627       if (!LastSeenSummary)
5628         return error("Name attachment that does not follow a combined record");
5629       LastSeenSummary->setOriginalName(OriginalName);
5630       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5631       // Reset the LastSeenSummary
5632       LastSeenSummary = nullptr;
5633       LastSeenGUID = 0;
5634       break;
5635     }
5636     case bitc::FS_TYPE_TESTS:
5637       assert(PendingTypeTests.empty());
5638       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5639                               Record.end());
5640       break;
5641 
5642     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5643       assert(PendingTypeTestAssumeVCalls.empty());
5644       for (unsigned I = 0; I != Record.size(); I += 2)
5645         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5646       break;
5647 
5648     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5649       assert(PendingTypeCheckedLoadVCalls.empty());
5650       for (unsigned I = 0; I != Record.size(); I += 2)
5651         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5652       break;
5653 
5654     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5655       PendingTypeTestAssumeConstVCalls.push_back(
5656           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5657       break;
5658 
5659     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5660       PendingTypeCheckedLoadConstVCalls.push_back(
5661           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5662       break;
5663 
5664     case bitc::FS_CFI_FUNCTION_DEFS: {
5665       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5666       for (unsigned I = 0; I != Record.size(); I += 2)
5667         CfiFunctionDefs.insert(
5668             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5669       break;
5670     }
5671 
5672     case bitc::FS_CFI_FUNCTION_DECLS: {
5673       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5674       for (unsigned I = 0; I != Record.size(); I += 2)
5675         CfiFunctionDecls.insert(
5676             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5677       break;
5678     }
5679 
5680     case bitc::FS_TYPE_ID:
5681       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5682       break;
5683     }
5684   }
5685   llvm_unreachable("Exit infinite loop");
5686 }
5687 
5688 // Parse the  module string table block into the Index.
5689 // This populates the ModulePathStringTable map in the index.
5690 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5691   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5692     return error("Invalid record");
5693 
5694   SmallVector<uint64_t, 64> Record;
5695 
5696   SmallString<128> ModulePath;
5697   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5698 
5699   while (true) {
5700     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5701 
5702     switch (Entry.Kind) {
5703     case BitstreamEntry::SubBlock: // Handled for us already.
5704     case BitstreamEntry::Error:
5705       return error("Malformed block");
5706     case BitstreamEntry::EndBlock:
5707       return Error::success();
5708     case BitstreamEntry::Record:
5709       // The interesting case.
5710       break;
5711     }
5712 
5713     Record.clear();
5714     switch (Stream.readRecord(Entry.ID, Record)) {
5715     default: // Default behavior: ignore.
5716       break;
5717     case bitc::MST_CODE_ENTRY: {
5718       // MST_ENTRY: [modid, namechar x N]
5719       uint64_t ModuleId = Record[0];
5720 
5721       if (convertToString(Record, 1, ModulePath))
5722         return error("Invalid record");
5723 
5724       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5725       ModuleIdMap[ModuleId] = LastSeenModule->first();
5726 
5727       ModulePath.clear();
5728       break;
5729     }
5730     /// MST_CODE_HASH: [5*i32]
5731     case bitc::MST_CODE_HASH: {
5732       if (Record.size() != 5)
5733         return error("Invalid hash length " + Twine(Record.size()).str());
5734       if (!LastSeenModule)
5735         return error("Invalid hash that does not follow a module path");
5736       int Pos = 0;
5737       for (auto &Val : Record) {
5738         assert(!(Val >> 32) && "Unexpected high bits set");
5739         LastSeenModule->second.second[Pos++] = Val;
5740       }
5741       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5742       LastSeenModule = nullptr;
5743       break;
5744     }
5745     }
5746   }
5747   llvm_unreachable("Exit infinite loop");
5748 }
5749 
5750 namespace {
5751 
5752 // FIXME: This class is only here to support the transition to llvm::Error. It
5753 // will be removed once this transition is complete. Clients should prefer to
5754 // deal with the Error value directly, rather than converting to error_code.
5755 class BitcodeErrorCategoryType : public std::error_category {
5756   const char *name() const noexcept override {
5757     return "llvm.bitcode";
5758   }
5759 
5760   std::string message(int IE) const override {
5761     BitcodeError E = static_cast<BitcodeError>(IE);
5762     switch (E) {
5763     case BitcodeError::CorruptedBitcode:
5764       return "Corrupted bitcode";
5765     }
5766     llvm_unreachable("Unknown error type!");
5767   }
5768 };
5769 
5770 } // end anonymous namespace
5771 
5772 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5773 
5774 const std::error_category &llvm::BitcodeErrorCategory() {
5775   return *ErrorCategory;
5776 }
5777 
5778 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5779                                             unsigned Block, unsigned RecordID) {
5780   if (Stream.EnterSubBlock(Block))
5781     return error("Invalid record");
5782 
5783   StringRef Strtab;
5784   while (true) {
5785     BitstreamEntry Entry = Stream.advance();
5786     switch (Entry.Kind) {
5787     case BitstreamEntry::EndBlock:
5788       return Strtab;
5789 
5790     case BitstreamEntry::Error:
5791       return error("Malformed block");
5792 
5793     case BitstreamEntry::SubBlock:
5794       if (Stream.SkipBlock())
5795         return error("Malformed block");
5796       break;
5797 
5798     case BitstreamEntry::Record:
5799       StringRef Blob;
5800       SmallVector<uint64_t, 1> Record;
5801       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5802         Strtab = Blob;
5803       break;
5804     }
5805   }
5806 }
5807 
5808 //===----------------------------------------------------------------------===//
5809 // External interface
5810 //===----------------------------------------------------------------------===//
5811 
5812 Expected<std::vector<BitcodeModule>>
5813 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5814   auto FOrErr = getBitcodeFileContents(Buffer);
5815   if (!FOrErr)
5816     return FOrErr.takeError();
5817   return std::move(FOrErr->Mods);
5818 }
5819 
5820 Expected<BitcodeFileContents>
5821 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5822   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5823   if (!StreamOrErr)
5824     return StreamOrErr.takeError();
5825   BitstreamCursor &Stream = *StreamOrErr;
5826 
5827   BitcodeFileContents F;
5828   while (true) {
5829     uint64_t BCBegin = Stream.getCurrentByteNo();
5830 
5831     // We may be consuming bitcode from a client that leaves garbage at the end
5832     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5833     // the end that there cannot possibly be another module, stop looking.
5834     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5835       return F;
5836 
5837     BitstreamEntry Entry = Stream.advance();
5838     switch (Entry.Kind) {
5839     case BitstreamEntry::EndBlock:
5840     case BitstreamEntry::Error:
5841       return error("Malformed block");
5842 
5843     case BitstreamEntry::SubBlock: {
5844       uint64_t IdentificationBit = -1ull;
5845       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5846         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5847         if (Stream.SkipBlock())
5848           return error("Malformed block");
5849 
5850         Entry = Stream.advance();
5851         if (Entry.Kind != BitstreamEntry::SubBlock ||
5852             Entry.ID != bitc::MODULE_BLOCK_ID)
5853           return error("Malformed block");
5854       }
5855 
5856       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5857         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5858         if (Stream.SkipBlock())
5859           return error("Malformed block");
5860 
5861         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5862                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5863                           Buffer.getBufferIdentifier(), IdentificationBit,
5864                           ModuleBit});
5865         continue;
5866       }
5867 
5868       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5869         Expected<StringRef> Strtab =
5870             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5871         if (!Strtab)
5872           return Strtab.takeError();
5873         // This string table is used by every preceding bitcode module that does
5874         // not have its own string table. A bitcode file may have multiple
5875         // string tables if it was created by binary concatenation, for example
5876         // with "llvm-cat -b".
5877         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5878           if (!I->Strtab.empty())
5879             break;
5880           I->Strtab = *Strtab;
5881         }
5882         // Similarly, the string table is used by every preceding symbol table;
5883         // normally there will be just one unless the bitcode file was created
5884         // by binary concatenation.
5885         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5886           F.StrtabForSymtab = *Strtab;
5887         continue;
5888       }
5889 
5890       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5891         Expected<StringRef> SymtabOrErr =
5892             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5893         if (!SymtabOrErr)
5894           return SymtabOrErr.takeError();
5895 
5896         // We can expect the bitcode file to have multiple symbol tables if it
5897         // was created by binary concatenation. In that case we silently
5898         // ignore any subsequent symbol tables, which is fine because this is a
5899         // low level function. The client is expected to notice that the number
5900         // of modules in the symbol table does not match the number of modules
5901         // in the input file and regenerate the symbol table.
5902         if (F.Symtab.empty())
5903           F.Symtab = *SymtabOrErr;
5904         continue;
5905       }
5906 
5907       if (Stream.SkipBlock())
5908         return error("Malformed block");
5909       continue;
5910     }
5911     case BitstreamEntry::Record:
5912       Stream.skipRecord(Entry.ID);
5913       continue;
5914     }
5915   }
5916 }
5917 
5918 /// Get a lazy one-at-time loading module from bitcode.
5919 ///
5920 /// This isn't always used in a lazy context.  In particular, it's also used by
5921 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5922 /// in forward-referenced functions from block address references.
5923 ///
5924 /// \param[in] MaterializeAll Set to \c true if we should materialize
5925 /// everything.
5926 Expected<std::unique_ptr<Module>>
5927 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5928                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5929   BitstreamCursor Stream(Buffer);
5930 
5931   std::string ProducerIdentification;
5932   if (IdentificationBit != -1ull) {
5933     Stream.JumpToBit(IdentificationBit);
5934     Expected<std::string> ProducerIdentificationOrErr =
5935         readIdentificationBlock(Stream);
5936     if (!ProducerIdentificationOrErr)
5937       return ProducerIdentificationOrErr.takeError();
5938 
5939     ProducerIdentification = *ProducerIdentificationOrErr;
5940   }
5941 
5942   Stream.JumpToBit(ModuleBit);
5943   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5944                               Context);
5945 
5946   std::unique_ptr<Module> M =
5947       llvm::make_unique<Module>(ModuleIdentifier, Context);
5948   M->setMaterializer(R);
5949 
5950   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5951   if (Error Err =
5952           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5953     return std::move(Err);
5954 
5955   if (MaterializeAll) {
5956     // Read in the entire module, and destroy the BitcodeReader.
5957     if (Error Err = M->materializeAll())
5958       return std::move(Err);
5959   } else {
5960     // Resolve forward references from blockaddresses.
5961     if (Error Err = R->materializeForwardReferencedFunctions())
5962       return std::move(Err);
5963   }
5964   return std::move(M);
5965 }
5966 
5967 Expected<std::unique_ptr<Module>>
5968 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5969                              bool IsImporting) {
5970   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5971 }
5972 
5973 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5974 // We don't use ModuleIdentifier here because the client may need to control the
5975 // module path used in the combined summary (e.g. when reading summaries for
5976 // regular LTO modules).
5977 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5978                                  StringRef ModulePath, uint64_t ModuleId) {
5979   BitstreamCursor Stream(Buffer);
5980   Stream.JumpToBit(ModuleBit);
5981 
5982   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5983                                     ModulePath, ModuleId);
5984   return R.parseModule();
5985 }
5986 
5987 // Parse the specified bitcode buffer, returning the function info index.
5988 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5989   BitstreamCursor Stream(Buffer);
5990   Stream.JumpToBit(ModuleBit);
5991 
5992   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
5993   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5994                                     ModuleIdentifier, 0);
5995 
5996   if (Error Err = R.parseModule())
5997     return std::move(Err);
5998 
5999   return std::move(Index);
6000 }
6001 
6002 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6003                                                 unsigned ID) {
6004   if (Stream.EnterSubBlock(ID))
6005     return error("Invalid record");
6006   SmallVector<uint64_t, 64> Record;
6007 
6008   while (true) {
6009     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6010 
6011     switch (Entry.Kind) {
6012     case BitstreamEntry::SubBlock: // Handled for us already.
6013     case BitstreamEntry::Error:
6014       return error("Malformed block");
6015     case BitstreamEntry::EndBlock:
6016       // If no flags record found, conservatively return true to mimic
6017       // behavior before this flag was added.
6018       return true;
6019     case BitstreamEntry::Record:
6020       // The interesting case.
6021       break;
6022     }
6023 
6024     // Look for the FS_FLAGS record.
6025     Record.clear();
6026     auto BitCode = Stream.readRecord(Entry.ID, Record);
6027     switch (BitCode) {
6028     default: // Default behavior: ignore.
6029       break;
6030     case bitc::FS_FLAGS: { // [flags]
6031       uint64_t Flags = Record[0];
6032       // Scan flags.
6033       assert(Flags <= 0x1f && "Unexpected bits in flag");
6034 
6035       return Flags & 0x8;
6036     }
6037     }
6038   }
6039   llvm_unreachable("Exit infinite loop");
6040 }
6041 
6042 // Check if the given bitcode buffer contains a global value summary block.
6043 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6044   BitstreamCursor Stream(Buffer);
6045   Stream.JumpToBit(ModuleBit);
6046 
6047   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6048     return error("Invalid record");
6049 
6050   while (true) {
6051     BitstreamEntry Entry = Stream.advance();
6052 
6053     switch (Entry.Kind) {
6054     case BitstreamEntry::Error:
6055       return error("Malformed block");
6056     case BitstreamEntry::EndBlock:
6057       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6058                             /*EnableSplitLTOUnit=*/false};
6059 
6060     case BitstreamEntry::SubBlock:
6061       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6062         Expected<bool> EnableSplitLTOUnit =
6063             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6064         if (!EnableSplitLTOUnit)
6065           return EnableSplitLTOUnit.takeError();
6066         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6067                               *EnableSplitLTOUnit};
6068       }
6069 
6070       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6071         Expected<bool> EnableSplitLTOUnit =
6072             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6073         if (!EnableSplitLTOUnit)
6074           return EnableSplitLTOUnit.takeError();
6075         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6076                               *EnableSplitLTOUnit};
6077       }
6078 
6079       // Ignore other sub-blocks.
6080       if (Stream.SkipBlock())
6081         return error("Malformed block");
6082       continue;
6083 
6084     case BitstreamEntry::Record:
6085       Stream.skipRecord(Entry.ID);
6086       continue;
6087     }
6088   }
6089 }
6090 
6091 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6092   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6093   if (!MsOrErr)
6094     return MsOrErr.takeError();
6095 
6096   if (MsOrErr->size() != 1)
6097     return error("Expected a single module");
6098 
6099   return (*MsOrErr)[0];
6100 }
6101 
6102 Expected<std::unique_ptr<Module>>
6103 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6104                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6105   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6106   if (!BM)
6107     return BM.takeError();
6108 
6109   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6110 }
6111 
6112 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6113     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6114     bool ShouldLazyLoadMetadata, bool IsImporting) {
6115   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6116                                      IsImporting);
6117   if (MOrErr)
6118     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6119   return MOrErr;
6120 }
6121 
6122 Expected<std::unique_ptr<Module>>
6123 BitcodeModule::parseModule(LLVMContext &Context) {
6124   return getModuleImpl(Context, true, false, false);
6125   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6126   // written.  We must defer until the Module has been fully materialized.
6127 }
6128 
6129 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6130                                                          LLVMContext &Context) {
6131   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6132   if (!BM)
6133     return BM.takeError();
6134 
6135   return BM->parseModule(Context);
6136 }
6137 
6138 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6139   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6140   if (!StreamOrErr)
6141     return StreamOrErr.takeError();
6142 
6143   return readTriple(*StreamOrErr);
6144 }
6145 
6146 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6147   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6148   if (!StreamOrErr)
6149     return StreamOrErr.takeError();
6150 
6151   return hasObjCCategory(*StreamOrErr);
6152 }
6153 
6154 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6155   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6156   if (!StreamOrErr)
6157     return StreamOrErr.takeError();
6158 
6159   return readIdentificationCode(*StreamOrErr);
6160 }
6161 
6162 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6163                                    ModuleSummaryIndex &CombinedIndex,
6164                                    uint64_t ModuleId) {
6165   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6166   if (!BM)
6167     return BM.takeError();
6168 
6169   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6170 }
6171 
6172 Expected<std::unique_ptr<ModuleSummaryIndex>>
6173 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6174   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6175   if (!BM)
6176     return BM.takeError();
6177 
6178   return BM->getSummary();
6179 }
6180 
6181 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6182   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6183   if (!BM)
6184     return BM.takeError();
6185 
6186   return BM->getLTOInfo();
6187 }
6188 
6189 Expected<std::unique_ptr<ModuleSummaryIndex>>
6190 llvm::getModuleSummaryIndexForFile(StringRef Path,
6191                                    bool IgnoreEmptyThinLTOIndexFile) {
6192   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6193       MemoryBuffer::getFileOrSTDIN(Path);
6194   if (!FileOrErr)
6195     return errorCodeToError(FileOrErr.getError());
6196   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6197     return nullptr;
6198   return getModuleSummaryIndex(**FileOrErr);
6199 }
6200