1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 uint64_t NextUnreadBit = 0; 150 bool SeenValueSymbolTable = false; 151 unsigned VSTOffset = 0; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMDValueList MDValueList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// Functions that have block addresses taken. This is usually empty. 223 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 224 225 /// True if any Metadata block has been materialized. 226 bool IsMetadataMaterialized = false; 227 228 bool StripDebugInfo = false; 229 230 std::vector<std::string> BundleTags; 231 232 public: 233 std::error_code error(BitcodeError E, const Twine &Message); 234 std::error_code error(BitcodeError E); 235 std::error_code error(const Twine &Message); 236 237 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 238 DiagnosticHandlerFunction DiagnosticHandler); 239 BitcodeReader(LLVMContext &Context, 240 DiagnosticHandlerFunction DiagnosticHandler); 241 ~BitcodeReader() override { freeState(); } 242 243 std::error_code materializeForwardReferencedFunctions(); 244 245 void freeState(); 246 247 void releaseBuffer(); 248 249 bool isDematerializable(const GlobalValue *GV) const override; 250 std::error_code materialize(GlobalValue *GV) override; 251 std::error_code materializeModule(Module *M) override; 252 std::vector<StructType *> getIdentifiedStructTypes() const override; 253 void dematerialize(GlobalValue *GV) override; 254 255 /// \brief Main interface to parsing a bitcode buffer. 256 /// \returns true if an error occurred. 257 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 258 Module *M, 259 bool ShouldLazyLoadMetadata = false); 260 261 /// \brief Cheap mechanism to just extract module triple 262 /// \returns true if an error occurred. 263 ErrorOr<std::string> parseTriple(); 264 265 static uint64_t decodeSignRotatedValue(uint64_t V); 266 267 /// Materialize any deferred Metadata block. 268 std::error_code materializeMetadata() override; 269 270 void setStripDebugInfo() override; 271 272 private: 273 std::vector<StructType *> IdentifiedStructTypes; 274 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 275 StructType *createIdentifiedStructType(LLVMContext &Context); 276 277 Type *getTypeByID(unsigned ID); 278 Value *getFnValueByID(unsigned ID, Type *Ty, 279 OperatorConstraint OC = OC_None) { 280 if (Ty && Ty->isMetadataTy()) 281 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 282 return ValueList.getValueFwdRef(ID, Ty, OC); 283 } 284 Metadata *getFnMetadataByID(unsigned ID) { 285 return MDValueList.getValueFwdRef(ID); 286 } 287 BasicBlock *getBasicBlock(unsigned ID) const { 288 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 289 return FunctionBBs[ID]; 290 } 291 AttributeSet getAttributes(unsigned i) const { 292 if (i-1 < MAttributes.size()) 293 return MAttributes[i-1]; 294 return AttributeSet(); 295 } 296 297 /// Read a value/type pair out of the specified record from slot 'Slot'. 298 /// Increment Slot past the number of slots used in the record. Return true on 299 /// failure. 300 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 301 unsigned InstNum, Value *&ResVal) { 302 if (Slot == Record.size()) return true; 303 unsigned ValNo = (unsigned)Record[Slot++]; 304 // Adjust the ValNo, if it was encoded relative to the InstNum. 305 if (UseRelativeIDs) 306 ValNo = InstNum - ValNo; 307 if (ValNo < InstNum) { 308 // If this is not a forward reference, just return the value we already 309 // have. 310 ResVal = getFnValueByID(ValNo, nullptr); 311 return ResVal == nullptr; 312 } 313 if (Slot == Record.size()) 314 return true; 315 316 unsigned TypeNo = (unsigned)Record[Slot++]; 317 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 318 return ResVal == nullptr; 319 } 320 321 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 322 /// past the number of slots used by the value in the record. Return true if 323 /// there is an error. 324 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal, 326 OperatorConstraint OC = OC_None) { 327 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 328 return true; 329 // All values currently take a single record slot. 330 ++Slot; 331 return false; 332 } 333 334 /// Like popValue, but does not increment the Slot number. 335 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 336 unsigned InstNum, Type *Ty, Value *&ResVal, 337 OperatorConstraint OC = OC_None) { 338 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 339 return ResVal == nullptr; 340 } 341 342 /// Version of getValue that returns ResVal directly, or 0 if there is an 343 /// error. 344 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 345 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 346 if (Slot == Record.size()) return nullptr; 347 unsigned ValNo = (unsigned)Record[Slot]; 348 // Adjust the ValNo, if it was encoded relative to the InstNum. 349 if (UseRelativeIDs) 350 ValNo = InstNum - ValNo; 351 return getFnValueByID(ValNo, Ty, OC); 352 } 353 354 /// Like getValue, but decodes signed VBRs. 355 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 356 unsigned InstNum, Type *Ty, 357 OperatorConstraint OC = OC_None) { 358 if (Slot == Record.size()) return nullptr; 359 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 360 // Adjust the ValNo, if it was encoded relative to the InstNum. 361 if (UseRelativeIDs) 362 ValNo = InstNum - ValNo; 363 return getFnValueByID(ValNo, Ty, OC); 364 } 365 366 /// Converts alignment exponent (i.e. power of two (or zero)) to the 367 /// corresponding alignment to use. If alignment is too large, returns 368 /// a corresponding error code. 369 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 370 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 371 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 372 std::error_code parseAttributeBlock(); 373 std::error_code parseAttributeGroupBlock(); 374 std::error_code parseTypeTable(); 375 std::error_code parseTypeTableBody(); 376 std::error_code parseOperandBundleTags(); 377 378 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 379 unsigned NameIndex, Triple &TT); 380 std::error_code parseValueSymbolTable(unsigned Offset = 0); 381 std::error_code parseConstants(); 382 std::error_code rememberAndSkipFunctionBody(); 383 /// Save the positions of the Metadata blocks and skip parsing the blocks. 384 std::error_code rememberAndSkipMetadata(); 385 std::error_code parseFunctionBody(Function *F); 386 std::error_code globalCleanup(); 387 std::error_code resolveGlobalAndAliasInits(); 388 std::error_code parseMetadata(); 389 std::error_code parseMetadataAttachment(Function &F); 390 ErrorOr<std::string> parseModuleTriple(); 391 std::error_code parseUseLists(); 392 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 393 std::error_code initStreamFromBuffer(); 394 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 395 std::error_code findFunctionInStream( 396 Function *F, 397 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 398 }; 399 400 /// Class to manage reading and parsing function summary index bitcode 401 /// files/sections. 402 class FunctionIndexBitcodeReader { 403 DiagnosticHandlerFunction DiagnosticHandler; 404 405 /// Eventually points to the function index built during parsing. 406 FunctionInfoIndex *TheIndex = nullptr; 407 408 std::unique_ptr<MemoryBuffer> Buffer; 409 std::unique_ptr<BitstreamReader> StreamFile; 410 BitstreamCursor Stream; 411 412 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 413 /// 414 /// If false, the summary section is fully parsed into the index during 415 /// the initial parse. Otherwise, if true, the caller is expected to 416 /// invoke \a readFunctionSummary for each summary needed, and the summary 417 /// section is thus parsed lazily. 418 bool IsLazy = false; 419 420 /// Used to indicate whether caller only wants to check for the presence 421 /// of the function summary bitcode section. All blocks are skipped, 422 /// but the SeenFuncSummary boolean is set. 423 bool CheckFuncSummaryPresenceOnly = false; 424 425 /// Indicates whether we have encountered a function summary section 426 /// yet during parsing, used when checking if file contains function 427 /// summary section. 428 bool SeenFuncSummary = false; 429 430 /// \brief Map populated during function summary section parsing, and 431 /// consumed during ValueSymbolTable parsing. 432 /// 433 /// Used to correlate summary records with VST entries. For the per-module 434 /// index this maps the ValueID to the parsed function summary, and 435 /// for the combined index this maps the summary record's bitcode 436 /// offset to the function summary (since in the combined index the 437 /// VST records do not hold value IDs but rather hold the function 438 /// summary record offset). 439 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 440 441 /// Map populated during module path string table parsing, from the 442 /// module ID to a string reference owned by the index's module 443 /// path string table, used to correlate with combined index function 444 /// summary records. 445 DenseMap<uint64_t, StringRef> ModuleIdMap; 446 447 public: 448 std::error_code error(BitcodeError E, const Twine &Message); 449 std::error_code error(BitcodeError E); 450 std::error_code error(const Twine &Message); 451 452 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 453 DiagnosticHandlerFunction DiagnosticHandler, 454 bool IsLazy = false, 455 bool CheckFuncSummaryPresenceOnly = false); 456 FunctionIndexBitcodeReader(LLVMContext &Context, 457 DiagnosticHandlerFunction DiagnosticHandler, 458 bool IsLazy = false, 459 bool CheckFuncSummaryPresenceOnly = false); 460 ~FunctionIndexBitcodeReader() { freeState(); } 461 462 void freeState(); 463 464 void releaseBuffer(); 465 466 /// Check if the parser has encountered a function summary section. 467 bool foundFuncSummary() { return SeenFuncSummary; } 468 469 /// \brief Main interface to parsing a bitcode buffer. 470 /// \returns true if an error occurred. 471 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 472 FunctionInfoIndex *I); 473 474 /// \brief Interface for parsing a function summary lazily. 475 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 476 FunctionInfoIndex *I, 477 size_t FunctionSummaryOffset); 478 479 private: 480 std::error_code parseModule(); 481 std::error_code parseValueSymbolTable(); 482 std::error_code parseEntireSummary(); 483 std::error_code parseModuleStringTable(); 484 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 485 std::error_code initStreamFromBuffer(); 486 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 487 }; 488 } // namespace 489 490 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 491 DiagnosticSeverity Severity, 492 const Twine &Msg) 493 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 494 495 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 496 497 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 498 std::error_code EC, const Twine &Message) { 499 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 500 DiagnosticHandler(DI); 501 return EC; 502 } 503 504 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 505 std::error_code EC) { 506 return error(DiagnosticHandler, EC, EC.message()); 507 } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 const Twine &Message) { 511 return error(DiagnosticHandler, 512 make_error_code(BitcodeError::CorruptedBitcode), Message); 513 } 514 515 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 516 return ::error(DiagnosticHandler, make_error_code(E), Message); 517 } 518 519 std::error_code BitcodeReader::error(const Twine &Message) { 520 return ::error(DiagnosticHandler, 521 make_error_code(BitcodeError::CorruptedBitcode), Message); 522 } 523 524 std::error_code BitcodeReader::error(BitcodeError E) { 525 return ::error(DiagnosticHandler, make_error_code(E)); 526 } 527 528 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 529 LLVMContext &C) { 530 if (F) 531 return F; 532 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 533 } 534 535 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 536 DiagnosticHandlerFunction DiagnosticHandler) 537 : Context(Context), 538 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 539 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 540 541 BitcodeReader::BitcodeReader(LLVMContext &Context, 542 DiagnosticHandlerFunction DiagnosticHandler) 543 : Context(Context), 544 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 545 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 546 547 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 548 if (WillMaterializeAllForwardRefs) 549 return std::error_code(); 550 551 // Prevent recursion. 552 WillMaterializeAllForwardRefs = true; 553 554 while (!BasicBlockFwdRefQueue.empty()) { 555 Function *F = BasicBlockFwdRefQueue.front(); 556 BasicBlockFwdRefQueue.pop_front(); 557 assert(F && "Expected valid function"); 558 if (!BasicBlockFwdRefs.count(F)) 559 // Already materialized. 560 continue; 561 562 // Check for a function that isn't materializable to prevent an infinite 563 // loop. When parsing a blockaddress stored in a global variable, there 564 // isn't a trivial way to check if a function will have a body without a 565 // linear search through FunctionsWithBodies, so just check it here. 566 if (!F->isMaterializable()) 567 return error("Never resolved function from blockaddress"); 568 569 // Try to materialize F. 570 if (std::error_code EC = materialize(F)) 571 return EC; 572 } 573 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 574 575 // Reset state. 576 WillMaterializeAllForwardRefs = false; 577 return std::error_code(); 578 } 579 580 void BitcodeReader::freeState() { 581 Buffer = nullptr; 582 std::vector<Type*>().swap(TypeList); 583 ValueList.clear(); 584 MDValueList.clear(); 585 std::vector<Comdat *>().swap(ComdatList); 586 587 std::vector<AttributeSet>().swap(MAttributes); 588 std::vector<BasicBlock*>().swap(FunctionBBs); 589 std::vector<Function*>().swap(FunctionsWithBodies); 590 DeferredFunctionInfo.clear(); 591 DeferredMetadataInfo.clear(); 592 MDKindMap.clear(); 593 594 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 595 BasicBlockFwdRefQueue.clear(); 596 } 597 598 //===----------------------------------------------------------------------===// 599 // Helper functions to implement forward reference resolution, etc. 600 //===----------------------------------------------------------------------===// 601 602 /// Convert a string from a record into an std::string, return true on failure. 603 template <typename StrTy> 604 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 605 StrTy &Result) { 606 if (Idx > Record.size()) 607 return true; 608 609 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 610 Result += (char)Record[i]; 611 return false; 612 } 613 614 static bool hasImplicitComdat(size_t Val) { 615 switch (Val) { 616 default: 617 return false; 618 case 1: // Old WeakAnyLinkage 619 case 4: // Old LinkOnceAnyLinkage 620 case 10: // Old WeakODRLinkage 621 case 11: // Old LinkOnceODRLinkage 622 return true; 623 } 624 } 625 626 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 627 switch (Val) { 628 default: // Map unknown/new linkages to external 629 case 0: 630 return GlobalValue::ExternalLinkage; 631 case 2: 632 return GlobalValue::AppendingLinkage; 633 case 3: 634 return GlobalValue::InternalLinkage; 635 case 5: 636 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 637 case 6: 638 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 639 case 7: 640 return GlobalValue::ExternalWeakLinkage; 641 case 8: 642 return GlobalValue::CommonLinkage; 643 case 9: 644 return GlobalValue::PrivateLinkage; 645 case 12: 646 return GlobalValue::AvailableExternallyLinkage; 647 case 13: 648 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 649 case 14: 650 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 651 case 15: 652 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 653 case 1: // Old value with implicit comdat. 654 case 16: 655 return GlobalValue::WeakAnyLinkage; 656 case 10: // Old value with implicit comdat. 657 case 17: 658 return GlobalValue::WeakODRLinkage; 659 case 4: // Old value with implicit comdat. 660 case 18: 661 return GlobalValue::LinkOnceAnyLinkage; 662 case 11: // Old value with implicit comdat. 663 case 19: 664 return GlobalValue::LinkOnceODRLinkage; 665 } 666 } 667 668 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 669 switch (Val) { 670 default: // Map unknown visibilities to default. 671 case 0: return GlobalValue::DefaultVisibility; 672 case 1: return GlobalValue::HiddenVisibility; 673 case 2: return GlobalValue::ProtectedVisibility; 674 } 675 } 676 677 static GlobalValue::DLLStorageClassTypes 678 getDecodedDLLStorageClass(unsigned Val) { 679 switch (Val) { 680 default: // Map unknown values to default. 681 case 0: return GlobalValue::DefaultStorageClass; 682 case 1: return GlobalValue::DLLImportStorageClass; 683 case 2: return GlobalValue::DLLExportStorageClass; 684 } 685 } 686 687 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 688 switch (Val) { 689 case 0: return GlobalVariable::NotThreadLocal; 690 default: // Map unknown non-zero value to general dynamic. 691 case 1: return GlobalVariable::GeneralDynamicTLSModel; 692 case 2: return GlobalVariable::LocalDynamicTLSModel; 693 case 3: return GlobalVariable::InitialExecTLSModel; 694 case 4: return GlobalVariable::LocalExecTLSModel; 695 } 696 } 697 698 static int getDecodedCastOpcode(unsigned Val) { 699 switch (Val) { 700 default: return -1; 701 case bitc::CAST_TRUNC : return Instruction::Trunc; 702 case bitc::CAST_ZEXT : return Instruction::ZExt; 703 case bitc::CAST_SEXT : return Instruction::SExt; 704 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 705 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 706 case bitc::CAST_UITOFP : return Instruction::UIToFP; 707 case bitc::CAST_SITOFP : return Instruction::SIToFP; 708 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 709 case bitc::CAST_FPEXT : return Instruction::FPExt; 710 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 711 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 712 case bitc::CAST_BITCAST : return Instruction::BitCast; 713 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 714 } 715 } 716 717 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 718 bool IsFP = Ty->isFPOrFPVectorTy(); 719 // BinOps are only valid for int/fp or vector of int/fp types 720 if (!IsFP && !Ty->isIntOrIntVectorTy()) 721 return -1; 722 723 switch (Val) { 724 default: 725 return -1; 726 case bitc::BINOP_ADD: 727 return IsFP ? Instruction::FAdd : Instruction::Add; 728 case bitc::BINOP_SUB: 729 return IsFP ? Instruction::FSub : Instruction::Sub; 730 case bitc::BINOP_MUL: 731 return IsFP ? Instruction::FMul : Instruction::Mul; 732 case bitc::BINOP_UDIV: 733 return IsFP ? -1 : Instruction::UDiv; 734 case bitc::BINOP_SDIV: 735 return IsFP ? Instruction::FDiv : Instruction::SDiv; 736 case bitc::BINOP_UREM: 737 return IsFP ? -1 : Instruction::URem; 738 case bitc::BINOP_SREM: 739 return IsFP ? Instruction::FRem : Instruction::SRem; 740 case bitc::BINOP_SHL: 741 return IsFP ? -1 : Instruction::Shl; 742 case bitc::BINOP_LSHR: 743 return IsFP ? -1 : Instruction::LShr; 744 case bitc::BINOP_ASHR: 745 return IsFP ? -1 : Instruction::AShr; 746 case bitc::BINOP_AND: 747 return IsFP ? -1 : Instruction::And; 748 case bitc::BINOP_OR: 749 return IsFP ? -1 : Instruction::Or; 750 case bitc::BINOP_XOR: 751 return IsFP ? -1 : Instruction::Xor; 752 } 753 } 754 755 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 756 switch (Val) { 757 default: return AtomicRMWInst::BAD_BINOP; 758 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 759 case bitc::RMW_ADD: return AtomicRMWInst::Add; 760 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 761 case bitc::RMW_AND: return AtomicRMWInst::And; 762 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 763 case bitc::RMW_OR: return AtomicRMWInst::Or; 764 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 765 case bitc::RMW_MAX: return AtomicRMWInst::Max; 766 case bitc::RMW_MIN: return AtomicRMWInst::Min; 767 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 768 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 769 } 770 } 771 772 static AtomicOrdering getDecodedOrdering(unsigned Val) { 773 switch (Val) { 774 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 775 case bitc::ORDERING_UNORDERED: return Unordered; 776 case bitc::ORDERING_MONOTONIC: return Monotonic; 777 case bitc::ORDERING_ACQUIRE: return Acquire; 778 case bitc::ORDERING_RELEASE: return Release; 779 case bitc::ORDERING_ACQREL: return AcquireRelease; 780 default: // Map unknown orderings to sequentially-consistent. 781 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 782 } 783 } 784 785 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 786 switch (Val) { 787 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 788 default: // Map unknown scopes to cross-thread. 789 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 790 } 791 } 792 793 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 794 switch (Val) { 795 default: // Map unknown selection kinds to any. 796 case bitc::COMDAT_SELECTION_KIND_ANY: 797 return Comdat::Any; 798 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 799 return Comdat::ExactMatch; 800 case bitc::COMDAT_SELECTION_KIND_LARGEST: 801 return Comdat::Largest; 802 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 803 return Comdat::NoDuplicates; 804 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 805 return Comdat::SameSize; 806 } 807 } 808 809 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 810 FastMathFlags FMF; 811 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 812 FMF.setUnsafeAlgebra(); 813 if (0 != (Val & FastMathFlags::NoNaNs)) 814 FMF.setNoNaNs(); 815 if (0 != (Val & FastMathFlags::NoInfs)) 816 FMF.setNoInfs(); 817 if (0 != (Val & FastMathFlags::NoSignedZeros)) 818 FMF.setNoSignedZeros(); 819 if (0 != (Val & FastMathFlags::AllowReciprocal)) 820 FMF.setAllowReciprocal(); 821 return FMF; 822 } 823 824 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 825 switch (Val) { 826 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 827 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 828 } 829 } 830 831 namespace llvm { 832 namespace { 833 /// \brief A class for maintaining the slot number definition 834 /// as a placeholder for the actual definition for forward constants defs. 835 class ConstantPlaceHolder : public ConstantExpr { 836 void operator=(const ConstantPlaceHolder &) = delete; 837 838 public: 839 // allocate space for exactly one operand 840 void *operator new(size_t s) { return User::operator new(s, 1); } 841 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 842 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 843 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 844 } 845 846 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 847 static bool classof(const Value *V) { 848 return isa<ConstantExpr>(V) && 849 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 850 } 851 852 /// Provide fast operand accessors 853 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 854 }; 855 } 856 857 // FIXME: can we inherit this from ConstantExpr? 858 template <> 859 struct OperandTraits<ConstantPlaceHolder> : 860 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 861 }; 862 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 863 } 864 865 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 866 if (Idx == size()) { 867 push_back(V); 868 return false; 869 } 870 871 if (Idx >= size()) 872 resize(Idx+1); 873 874 WeakVH &OldV = ValuePtrs[Idx]; 875 if (!OldV) { 876 OldV = V; 877 return false; 878 } 879 880 // Handle constants and non-constants (e.g. instrs) differently for 881 // efficiency. 882 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 883 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 884 OldV = V; 885 } else { 886 // If there was a forward reference to this value, replace it. 887 Value *PrevVal = OldV; 888 // Check operator constraints. We only put cleanuppads or catchpads in 889 // the forward value map if the value is constrained to match. 890 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 891 if (!isa<CatchPadInst>(V)) 892 return true; 893 // Delete the dummy basic block that was created with the sentinel 894 // catchpad. 895 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 896 assert(DummyBlock == CatchPad->getNormalDest()); 897 CatchPad->dropAllReferences(); 898 delete DummyBlock; 899 } else if (isa<CleanupPadInst>(PrevVal)) { 900 if (!isa<CleanupPadInst>(V)) 901 return true; 902 } 903 OldV->replaceAllUsesWith(V); 904 delete PrevVal; 905 } 906 907 return false; 908 } 909 910 911 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 912 Type *Ty) { 913 if (Idx >= size()) 914 resize(Idx + 1); 915 916 if (Value *V = ValuePtrs[Idx]) { 917 if (Ty != V->getType()) 918 report_fatal_error("Type mismatch in constant table!"); 919 return cast<Constant>(V); 920 } 921 922 // Create and return a placeholder, which will later be RAUW'd. 923 Constant *C = new ConstantPlaceHolder(Ty, Context); 924 ValuePtrs[Idx] = C; 925 return C; 926 } 927 928 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 929 OperatorConstraint OC) { 930 // Bail out for a clearly invalid value. This would make us call resize(0) 931 if (Idx == UINT_MAX) 932 return nullptr; 933 934 if (Idx >= size()) 935 resize(Idx + 1); 936 937 if (Value *V = ValuePtrs[Idx]) { 938 // If the types don't match, it's invalid. 939 if (Ty && Ty != V->getType()) 940 return nullptr; 941 if (!OC) 942 return V; 943 // Use dyn_cast to enforce operator constraints 944 switch (OC) { 945 case OC_CatchPad: 946 return dyn_cast<CatchPadInst>(V); 947 case OC_CleanupPad: 948 return dyn_cast<CleanupPadInst>(V); 949 default: 950 llvm_unreachable("Unexpected operator constraint"); 951 } 952 } 953 954 // No type specified, must be invalid reference. 955 if (!Ty) return nullptr; 956 957 // Create and return a placeholder, which will later be RAUW'd. 958 Value *V; 959 switch (OC) { 960 case OC_None: 961 V = new Argument(Ty); 962 break; 963 case OC_CatchPad: { 964 BasicBlock *BB = BasicBlock::Create(Context); 965 V = CatchPadInst::Create(BB, BB, {}); 966 break; 967 } 968 default: 969 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 970 V = CleanupPadInst::Create(Context, {}); 971 break; 972 } 973 974 ValuePtrs[Idx] = V; 975 return V; 976 } 977 978 /// Once all constants are read, this method bulk resolves any forward 979 /// references. The idea behind this is that we sometimes get constants (such 980 /// as large arrays) which reference *many* forward ref constants. Replacing 981 /// each of these causes a lot of thrashing when building/reuniquing the 982 /// constant. Instead of doing this, we look at all the uses and rewrite all 983 /// the place holders at once for any constant that uses a placeholder. 984 void BitcodeReaderValueList::resolveConstantForwardRefs() { 985 // Sort the values by-pointer so that they are efficient to look up with a 986 // binary search. 987 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 988 989 SmallVector<Constant*, 64> NewOps; 990 991 while (!ResolveConstants.empty()) { 992 Value *RealVal = operator[](ResolveConstants.back().second); 993 Constant *Placeholder = ResolveConstants.back().first; 994 ResolveConstants.pop_back(); 995 996 // Loop over all users of the placeholder, updating them to reference the 997 // new value. If they reference more than one placeholder, update them all 998 // at once. 999 while (!Placeholder->use_empty()) { 1000 auto UI = Placeholder->user_begin(); 1001 User *U = *UI; 1002 1003 // If the using object isn't uniqued, just update the operands. This 1004 // handles instructions and initializers for global variables. 1005 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1006 UI.getUse().set(RealVal); 1007 continue; 1008 } 1009 1010 // Otherwise, we have a constant that uses the placeholder. Replace that 1011 // constant with a new constant that has *all* placeholder uses updated. 1012 Constant *UserC = cast<Constant>(U); 1013 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1014 I != E; ++I) { 1015 Value *NewOp; 1016 if (!isa<ConstantPlaceHolder>(*I)) { 1017 // Not a placeholder reference. 1018 NewOp = *I; 1019 } else if (*I == Placeholder) { 1020 // Common case is that it just references this one placeholder. 1021 NewOp = RealVal; 1022 } else { 1023 // Otherwise, look up the placeholder in ResolveConstants. 1024 ResolveConstantsTy::iterator It = 1025 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1026 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1027 0)); 1028 assert(It != ResolveConstants.end() && It->first == *I); 1029 NewOp = operator[](It->second); 1030 } 1031 1032 NewOps.push_back(cast<Constant>(NewOp)); 1033 } 1034 1035 // Make the new constant. 1036 Constant *NewC; 1037 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1038 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1039 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1040 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1041 } else if (isa<ConstantVector>(UserC)) { 1042 NewC = ConstantVector::get(NewOps); 1043 } else { 1044 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1045 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1046 } 1047 1048 UserC->replaceAllUsesWith(NewC); 1049 UserC->destroyConstant(); 1050 NewOps.clear(); 1051 } 1052 1053 // Update all ValueHandles, they should be the only users at this point. 1054 Placeholder->replaceAllUsesWith(RealVal); 1055 delete Placeholder; 1056 } 1057 } 1058 1059 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1060 if (Idx == size()) { 1061 push_back(MD); 1062 return; 1063 } 1064 1065 if (Idx >= size()) 1066 resize(Idx+1); 1067 1068 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1069 if (!OldMD) { 1070 OldMD.reset(MD); 1071 return; 1072 } 1073 1074 // If there was a forward reference to this value, replace it. 1075 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1076 PrevMD->replaceAllUsesWith(MD); 1077 --NumFwdRefs; 1078 } 1079 1080 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1081 if (Idx >= size()) 1082 resize(Idx + 1); 1083 1084 if (Metadata *MD = MDValuePtrs[Idx]) 1085 return MD; 1086 1087 // Track forward refs to be resolved later. 1088 if (AnyFwdRefs) { 1089 MinFwdRef = std::min(MinFwdRef, Idx); 1090 MaxFwdRef = std::max(MaxFwdRef, Idx); 1091 } else { 1092 AnyFwdRefs = true; 1093 MinFwdRef = MaxFwdRef = Idx; 1094 } 1095 ++NumFwdRefs; 1096 1097 // Create and return a placeholder, which will later be RAUW'd. 1098 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1099 MDValuePtrs[Idx].reset(MD); 1100 return MD; 1101 } 1102 1103 void BitcodeReaderMDValueList::tryToResolveCycles() { 1104 if (!AnyFwdRefs) 1105 // Nothing to do. 1106 return; 1107 1108 if (NumFwdRefs) 1109 // Still forward references... can't resolve cycles. 1110 return; 1111 1112 // Resolve any cycles. 1113 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1114 auto &MD = MDValuePtrs[I]; 1115 auto *N = dyn_cast_or_null<MDNode>(MD); 1116 if (!N) 1117 continue; 1118 1119 assert(!N->isTemporary() && "Unexpected forward reference"); 1120 N->resolveCycles(); 1121 } 1122 1123 // Make sure we return early again until there's another forward ref. 1124 AnyFwdRefs = false; 1125 } 1126 1127 Type *BitcodeReader::getTypeByID(unsigned ID) { 1128 // The type table size is always specified correctly. 1129 if (ID >= TypeList.size()) 1130 return nullptr; 1131 1132 if (Type *Ty = TypeList[ID]) 1133 return Ty; 1134 1135 // If we have a forward reference, the only possible case is when it is to a 1136 // named struct. Just create a placeholder for now. 1137 return TypeList[ID] = createIdentifiedStructType(Context); 1138 } 1139 1140 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1141 StringRef Name) { 1142 auto *Ret = StructType::create(Context, Name); 1143 IdentifiedStructTypes.push_back(Ret); 1144 return Ret; 1145 } 1146 1147 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1148 auto *Ret = StructType::create(Context); 1149 IdentifiedStructTypes.push_back(Ret); 1150 return Ret; 1151 } 1152 1153 1154 //===----------------------------------------------------------------------===// 1155 // Functions for parsing blocks from the bitcode file 1156 //===----------------------------------------------------------------------===// 1157 1158 1159 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1160 /// been decoded from the given integer. This function must stay in sync with 1161 /// 'encodeLLVMAttributesForBitcode'. 1162 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1163 uint64_t EncodedAttrs) { 1164 // FIXME: Remove in 4.0. 1165 1166 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1167 // the bits above 31 down by 11 bits. 1168 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1169 assert((!Alignment || isPowerOf2_32(Alignment)) && 1170 "Alignment must be a power of two."); 1171 1172 if (Alignment) 1173 B.addAlignmentAttr(Alignment); 1174 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1175 (EncodedAttrs & 0xffff)); 1176 } 1177 1178 std::error_code BitcodeReader::parseAttributeBlock() { 1179 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1180 return error("Invalid record"); 1181 1182 if (!MAttributes.empty()) 1183 return error("Invalid multiple blocks"); 1184 1185 SmallVector<uint64_t, 64> Record; 1186 1187 SmallVector<AttributeSet, 8> Attrs; 1188 1189 // Read all the records. 1190 while (1) { 1191 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1192 1193 switch (Entry.Kind) { 1194 case BitstreamEntry::SubBlock: // Handled for us already. 1195 case BitstreamEntry::Error: 1196 return error("Malformed block"); 1197 case BitstreamEntry::EndBlock: 1198 return std::error_code(); 1199 case BitstreamEntry::Record: 1200 // The interesting case. 1201 break; 1202 } 1203 1204 // Read a record. 1205 Record.clear(); 1206 switch (Stream.readRecord(Entry.ID, Record)) { 1207 default: // Default behavior: ignore. 1208 break; 1209 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1210 // FIXME: Remove in 4.0. 1211 if (Record.size() & 1) 1212 return error("Invalid record"); 1213 1214 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1215 AttrBuilder B; 1216 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1217 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1218 } 1219 1220 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1221 Attrs.clear(); 1222 break; 1223 } 1224 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1225 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1226 Attrs.push_back(MAttributeGroups[Record[i]]); 1227 1228 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1229 Attrs.clear(); 1230 break; 1231 } 1232 } 1233 } 1234 } 1235 1236 // Returns Attribute::None on unrecognized codes. 1237 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1238 switch (Code) { 1239 default: 1240 return Attribute::None; 1241 case bitc::ATTR_KIND_ALIGNMENT: 1242 return Attribute::Alignment; 1243 case bitc::ATTR_KIND_ALWAYS_INLINE: 1244 return Attribute::AlwaysInline; 1245 case bitc::ATTR_KIND_ARGMEMONLY: 1246 return Attribute::ArgMemOnly; 1247 case bitc::ATTR_KIND_BUILTIN: 1248 return Attribute::Builtin; 1249 case bitc::ATTR_KIND_BY_VAL: 1250 return Attribute::ByVal; 1251 case bitc::ATTR_KIND_IN_ALLOCA: 1252 return Attribute::InAlloca; 1253 case bitc::ATTR_KIND_COLD: 1254 return Attribute::Cold; 1255 case bitc::ATTR_KIND_CONVERGENT: 1256 return Attribute::Convergent; 1257 case bitc::ATTR_KIND_INLINE_HINT: 1258 return Attribute::InlineHint; 1259 case bitc::ATTR_KIND_IN_REG: 1260 return Attribute::InReg; 1261 case bitc::ATTR_KIND_JUMP_TABLE: 1262 return Attribute::JumpTable; 1263 case bitc::ATTR_KIND_MIN_SIZE: 1264 return Attribute::MinSize; 1265 case bitc::ATTR_KIND_NAKED: 1266 return Attribute::Naked; 1267 case bitc::ATTR_KIND_NEST: 1268 return Attribute::Nest; 1269 case bitc::ATTR_KIND_NO_ALIAS: 1270 return Attribute::NoAlias; 1271 case bitc::ATTR_KIND_NO_BUILTIN: 1272 return Attribute::NoBuiltin; 1273 case bitc::ATTR_KIND_NO_CAPTURE: 1274 return Attribute::NoCapture; 1275 case bitc::ATTR_KIND_NO_DUPLICATE: 1276 return Attribute::NoDuplicate; 1277 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1278 return Attribute::NoImplicitFloat; 1279 case bitc::ATTR_KIND_NO_INLINE: 1280 return Attribute::NoInline; 1281 case bitc::ATTR_KIND_NON_LAZY_BIND: 1282 return Attribute::NonLazyBind; 1283 case bitc::ATTR_KIND_NON_NULL: 1284 return Attribute::NonNull; 1285 case bitc::ATTR_KIND_DEREFERENCEABLE: 1286 return Attribute::Dereferenceable; 1287 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1288 return Attribute::DereferenceableOrNull; 1289 case bitc::ATTR_KIND_NO_RED_ZONE: 1290 return Attribute::NoRedZone; 1291 case bitc::ATTR_KIND_NO_RETURN: 1292 return Attribute::NoReturn; 1293 case bitc::ATTR_KIND_NO_UNWIND: 1294 return Attribute::NoUnwind; 1295 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1296 return Attribute::OptimizeForSize; 1297 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1298 return Attribute::OptimizeNone; 1299 case bitc::ATTR_KIND_READ_NONE: 1300 return Attribute::ReadNone; 1301 case bitc::ATTR_KIND_READ_ONLY: 1302 return Attribute::ReadOnly; 1303 case bitc::ATTR_KIND_RETURNED: 1304 return Attribute::Returned; 1305 case bitc::ATTR_KIND_RETURNS_TWICE: 1306 return Attribute::ReturnsTwice; 1307 case bitc::ATTR_KIND_S_EXT: 1308 return Attribute::SExt; 1309 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1310 return Attribute::StackAlignment; 1311 case bitc::ATTR_KIND_STACK_PROTECT: 1312 return Attribute::StackProtect; 1313 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1314 return Attribute::StackProtectReq; 1315 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1316 return Attribute::StackProtectStrong; 1317 case bitc::ATTR_KIND_SAFESTACK: 1318 return Attribute::SafeStack; 1319 case bitc::ATTR_KIND_STRUCT_RET: 1320 return Attribute::StructRet; 1321 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1322 return Attribute::SanitizeAddress; 1323 case bitc::ATTR_KIND_SANITIZE_THREAD: 1324 return Attribute::SanitizeThread; 1325 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1326 return Attribute::SanitizeMemory; 1327 case bitc::ATTR_KIND_UW_TABLE: 1328 return Attribute::UWTable; 1329 case bitc::ATTR_KIND_Z_EXT: 1330 return Attribute::ZExt; 1331 } 1332 } 1333 1334 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1335 unsigned &Alignment) { 1336 // Note: Alignment in bitcode files is incremented by 1, so that zero 1337 // can be used for default alignment. 1338 if (Exponent > Value::MaxAlignmentExponent + 1) 1339 return error("Invalid alignment value"); 1340 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1341 return std::error_code(); 1342 } 1343 1344 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1345 Attribute::AttrKind *Kind) { 1346 *Kind = getAttrFromCode(Code); 1347 if (*Kind == Attribute::None) 1348 return error(BitcodeError::CorruptedBitcode, 1349 "Unknown attribute kind (" + Twine(Code) + ")"); 1350 return std::error_code(); 1351 } 1352 1353 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1354 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1355 return error("Invalid record"); 1356 1357 if (!MAttributeGroups.empty()) 1358 return error("Invalid multiple blocks"); 1359 1360 SmallVector<uint64_t, 64> Record; 1361 1362 // Read all the records. 1363 while (1) { 1364 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1365 1366 switch (Entry.Kind) { 1367 case BitstreamEntry::SubBlock: // Handled for us already. 1368 case BitstreamEntry::Error: 1369 return error("Malformed block"); 1370 case BitstreamEntry::EndBlock: 1371 return std::error_code(); 1372 case BitstreamEntry::Record: 1373 // The interesting case. 1374 break; 1375 } 1376 1377 // Read a record. 1378 Record.clear(); 1379 switch (Stream.readRecord(Entry.ID, Record)) { 1380 default: // Default behavior: ignore. 1381 break; 1382 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1383 if (Record.size() < 3) 1384 return error("Invalid record"); 1385 1386 uint64_t GrpID = Record[0]; 1387 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1388 1389 AttrBuilder B; 1390 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1391 if (Record[i] == 0) { // Enum attribute 1392 Attribute::AttrKind Kind; 1393 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1394 return EC; 1395 1396 B.addAttribute(Kind); 1397 } else if (Record[i] == 1) { // Integer attribute 1398 Attribute::AttrKind Kind; 1399 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1400 return EC; 1401 if (Kind == Attribute::Alignment) 1402 B.addAlignmentAttr(Record[++i]); 1403 else if (Kind == Attribute::StackAlignment) 1404 B.addStackAlignmentAttr(Record[++i]); 1405 else if (Kind == Attribute::Dereferenceable) 1406 B.addDereferenceableAttr(Record[++i]); 1407 else if (Kind == Attribute::DereferenceableOrNull) 1408 B.addDereferenceableOrNullAttr(Record[++i]); 1409 } else { // String attribute 1410 assert((Record[i] == 3 || Record[i] == 4) && 1411 "Invalid attribute group entry"); 1412 bool HasValue = (Record[i++] == 4); 1413 SmallString<64> KindStr; 1414 SmallString<64> ValStr; 1415 1416 while (Record[i] != 0 && i != e) 1417 KindStr += Record[i++]; 1418 assert(Record[i] == 0 && "Kind string not null terminated"); 1419 1420 if (HasValue) { 1421 // Has a value associated with it. 1422 ++i; // Skip the '0' that terminates the "kind" string. 1423 while (Record[i] != 0 && i != e) 1424 ValStr += Record[i++]; 1425 assert(Record[i] == 0 && "Value string not null terminated"); 1426 } 1427 1428 B.addAttribute(KindStr.str(), ValStr.str()); 1429 } 1430 } 1431 1432 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1433 break; 1434 } 1435 } 1436 } 1437 } 1438 1439 std::error_code BitcodeReader::parseTypeTable() { 1440 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1441 return error("Invalid record"); 1442 1443 return parseTypeTableBody(); 1444 } 1445 1446 std::error_code BitcodeReader::parseTypeTableBody() { 1447 if (!TypeList.empty()) 1448 return error("Invalid multiple blocks"); 1449 1450 SmallVector<uint64_t, 64> Record; 1451 unsigned NumRecords = 0; 1452 1453 SmallString<64> TypeName; 1454 1455 // Read all the records for this type table. 1456 while (1) { 1457 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1458 1459 switch (Entry.Kind) { 1460 case BitstreamEntry::SubBlock: // Handled for us already. 1461 case BitstreamEntry::Error: 1462 return error("Malformed block"); 1463 case BitstreamEntry::EndBlock: 1464 if (NumRecords != TypeList.size()) 1465 return error("Malformed block"); 1466 return std::error_code(); 1467 case BitstreamEntry::Record: 1468 // The interesting case. 1469 break; 1470 } 1471 1472 // Read a record. 1473 Record.clear(); 1474 Type *ResultTy = nullptr; 1475 switch (Stream.readRecord(Entry.ID, Record)) { 1476 default: 1477 return error("Invalid value"); 1478 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1479 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1480 // type list. This allows us to reserve space. 1481 if (Record.size() < 1) 1482 return error("Invalid record"); 1483 TypeList.resize(Record[0]); 1484 continue; 1485 case bitc::TYPE_CODE_VOID: // VOID 1486 ResultTy = Type::getVoidTy(Context); 1487 break; 1488 case bitc::TYPE_CODE_HALF: // HALF 1489 ResultTy = Type::getHalfTy(Context); 1490 break; 1491 case bitc::TYPE_CODE_FLOAT: // FLOAT 1492 ResultTy = Type::getFloatTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1495 ResultTy = Type::getDoubleTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1498 ResultTy = Type::getX86_FP80Ty(Context); 1499 break; 1500 case bitc::TYPE_CODE_FP128: // FP128 1501 ResultTy = Type::getFP128Ty(Context); 1502 break; 1503 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1504 ResultTy = Type::getPPC_FP128Ty(Context); 1505 break; 1506 case bitc::TYPE_CODE_LABEL: // LABEL 1507 ResultTy = Type::getLabelTy(Context); 1508 break; 1509 case bitc::TYPE_CODE_METADATA: // METADATA 1510 ResultTy = Type::getMetadataTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1513 ResultTy = Type::getX86_MMXTy(Context); 1514 break; 1515 case bitc::TYPE_CODE_TOKEN: // TOKEN 1516 ResultTy = Type::getTokenTy(Context); 1517 break; 1518 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1519 if (Record.size() < 1) 1520 return error("Invalid record"); 1521 1522 uint64_t NumBits = Record[0]; 1523 if (NumBits < IntegerType::MIN_INT_BITS || 1524 NumBits > IntegerType::MAX_INT_BITS) 1525 return error("Bitwidth for integer type out of range"); 1526 ResultTy = IntegerType::get(Context, NumBits); 1527 break; 1528 } 1529 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1530 // [pointee type, address space] 1531 if (Record.size() < 1) 1532 return error("Invalid record"); 1533 unsigned AddressSpace = 0; 1534 if (Record.size() == 2) 1535 AddressSpace = Record[1]; 1536 ResultTy = getTypeByID(Record[0]); 1537 if (!ResultTy || 1538 !PointerType::isValidElementType(ResultTy)) 1539 return error("Invalid type"); 1540 ResultTy = PointerType::get(ResultTy, AddressSpace); 1541 break; 1542 } 1543 case bitc::TYPE_CODE_FUNCTION_OLD: { 1544 // FIXME: attrid is dead, remove it in LLVM 4.0 1545 // FUNCTION: [vararg, attrid, retty, paramty x N] 1546 if (Record.size() < 3) 1547 return error("Invalid record"); 1548 SmallVector<Type*, 8> ArgTys; 1549 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1550 if (Type *T = getTypeByID(Record[i])) 1551 ArgTys.push_back(T); 1552 else 1553 break; 1554 } 1555 1556 ResultTy = getTypeByID(Record[2]); 1557 if (!ResultTy || ArgTys.size() < Record.size()-3) 1558 return error("Invalid type"); 1559 1560 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1561 break; 1562 } 1563 case bitc::TYPE_CODE_FUNCTION: { 1564 // FUNCTION: [vararg, retty, paramty x N] 1565 if (Record.size() < 2) 1566 return error("Invalid record"); 1567 SmallVector<Type*, 8> ArgTys; 1568 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1569 if (Type *T = getTypeByID(Record[i])) { 1570 if (!FunctionType::isValidArgumentType(T)) 1571 return error("Invalid function argument type"); 1572 ArgTys.push_back(T); 1573 } 1574 else 1575 break; 1576 } 1577 1578 ResultTy = getTypeByID(Record[1]); 1579 if (!ResultTy || ArgTys.size() < Record.size()-2) 1580 return error("Invalid type"); 1581 1582 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1586 if (Record.size() < 1) 1587 return error("Invalid record"); 1588 SmallVector<Type*, 8> EltTys; 1589 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1590 if (Type *T = getTypeByID(Record[i])) 1591 EltTys.push_back(T); 1592 else 1593 break; 1594 } 1595 if (EltTys.size() != Record.size()-1) 1596 return error("Invalid type"); 1597 ResultTy = StructType::get(Context, EltTys, Record[0]); 1598 break; 1599 } 1600 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1601 if (convertToString(Record, 0, TypeName)) 1602 return error("Invalid record"); 1603 continue; 1604 1605 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1606 if (Record.size() < 1) 1607 return error("Invalid record"); 1608 1609 if (NumRecords >= TypeList.size()) 1610 return error("Invalid TYPE table"); 1611 1612 // Check to see if this was forward referenced, if so fill in the temp. 1613 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1614 if (Res) { 1615 Res->setName(TypeName); 1616 TypeList[NumRecords] = nullptr; 1617 } else // Otherwise, create a new struct. 1618 Res = createIdentifiedStructType(Context, TypeName); 1619 TypeName.clear(); 1620 1621 SmallVector<Type*, 8> EltTys; 1622 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1623 if (Type *T = getTypeByID(Record[i])) 1624 EltTys.push_back(T); 1625 else 1626 break; 1627 } 1628 if (EltTys.size() != Record.size()-1) 1629 return error("Invalid record"); 1630 Res->setBody(EltTys, Record[0]); 1631 ResultTy = Res; 1632 break; 1633 } 1634 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1635 if (Record.size() != 1) 1636 return error("Invalid record"); 1637 1638 if (NumRecords >= TypeList.size()) 1639 return error("Invalid TYPE table"); 1640 1641 // Check to see if this was forward referenced, if so fill in the temp. 1642 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1643 if (Res) { 1644 Res->setName(TypeName); 1645 TypeList[NumRecords] = nullptr; 1646 } else // Otherwise, create a new struct with no body. 1647 Res = createIdentifiedStructType(Context, TypeName); 1648 TypeName.clear(); 1649 ResultTy = Res; 1650 break; 1651 } 1652 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1653 if (Record.size() < 2) 1654 return error("Invalid record"); 1655 ResultTy = getTypeByID(Record[1]); 1656 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1657 return error("Invalid type"); 1658 ResultTy = ArrayType::get(ResultTy, Record[0]); 1659 break; 1660 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1661 if (Record.size() < 2) 1662 return error("Invalid record"); 1663 if (Record[0] == 0) 1664 return error("Invalid vector length"); 1665 ResultTy = getTypeByID(Record[1]); 1666 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1667 return error("Invalid type"); 1668 ResultTy = VectorType::get(ResultTy, Record[0]); 1669 break; 1670 } 1671 1672 if (NumRecords >= TypeList.size()) 1673 return error("Invalid TYPE table"); 1674 if (TypeList[NumRecords]) 1675 return error( 1676 "Invalid TYPE table: Only named structs can be forward referenced"); 1677 assert(ResultTy && "Didn't read a type?"); 1678 TypeList[NumRecords++] = ResultTy; 1679 } 1680 } 1681 1682 std::error_code BitcodeReader::parseOperandBundleTags() { 1683 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1684 return error("Invalid record"); 1685 1686 if (!BundleTags.empty()) 1687 return error("Invalid multiple blocks"); 1688 1689 SmallVector<uint64_t, 64> Record; 1690 1691 while (1) { 1692 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1693 1694 switch (Entry.Kind) { 1695 case BitstreamEntry::SubBlock: // Handled for us already. 1696 case BitstreamEntry::Error: 1697 return error("Malformed block"); 1698 case BitstreamEntry::EndBlock: 1699 return std::error_code(); 1700 case BitstreamEntry::Record: 1701 // The interesting case. 1702 break; 1703 } 1704 1705 // Tags are implicitly mapped to integers by their order. 1706 1707 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1708 return error("Invalid record"); 1709 1710 // OPERAND_BUNDLE_TAG: [strchr x N] 1711 BundleTags.emplace_back(); 1712 if (convertToString(Record, 0, BundleTags.back())) 1713 return error("Invalid record"); 1714 Record.clear(); 1715 } 1716 } 1717 1718 /// Associate a value with its name from the given index in the provided record. 1719 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1720 unsigned NameIndex, Triple &TT) { 1721 SmallString<128> ValueName; 1722 if (convertToString(Record, NameIndex, ValueName)) 1723 return error("Invalid record"); 1724 unsigned ValueID = Record[0]; 1725 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1726 return error("Invalid record"); 1727 Value *V = ValueList[ValueID]; 1728 1729 V->setName(StringRef(ValueName.data(), ValueName.size())); 1730 auto *GO = dyn_cast<GlobalObject>(V); 1731 if (GO) { 1732 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1733 if (TT.isOSBinFormatMachO()) 1734 GO->setComdat(nullptr); 1735 else 1736 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1737 } 1738 } 1739 return V; 1740 } 1741 1742 /// Parse the value symbol table at either the current parsing location or 1743 /// at the given bit offset if provided. 1744 std::error_code BitcodeReader::parseValueSymbolTable(unsigned Offset) { 1745 uint64_t CurrentBit; 1746 // Pass in the Offset to distinguish between calling for the module-level 1747 // VST (where we want to jump to the VST offset) and the function-level 1748 // VST (where we don't). 1749 if (Offset > 0) { 1750 // Save the current parsing location so we can jump back at the end 1751 // of the VST read. 1752 CurrentBit = Stream.GetCurrentBitNo(); 1753 Stream.JumpToBit(Offset * 32); 1754 #ifndef NDEBUG 1755 // Do some checking if we are in debug mode. 1756 BitstreamEntry Entry = Stream.advance(); 1757 assert(Entry.Kind == BitstreamEntry::SubBlock); 1758 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1759 #else 1760 // In NDEBUG mode ignore the output so we don't get an unused variable 1761 // warning. 1762 Stream.advance(); 1763 #endif 1764 } 1765 1766 // Compute the delta between the bitcode indices in the VST (the word offset 1767 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1768 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1769 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1770 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1771 // just before entering the VST subblock because: 1) the EnterSubBlock 1772 // changes the AbbrevID width; 2) the VST block is nested within the same 1773 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1774 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1775 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1776 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1777 unsigned FuncBitcodeOffsetDelta = 1778 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1779 1780 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1781 return error("Invalid record"); 1782 1783 SmallVector<uint64_t, 64> Record; 1784 1785 Triple TT(TheModule->getTargetTriple()); 1786 1787 // Read all the records for this value table. 1788 SmallString<128> ValueName; 1789 while (1) { 1790 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1791 1792 switch (Entry.Kind) { 1793 case BitstreamEntry::SubBlock: // Handled for us already. 1794 case BitstreamEntry::Error: 1795 return error("Malformed block"); 1796 case BitstreamEntry::EndBlock: 1797 if (Offset > 0) 1798 Stream.JumpToBit(CurrentBit); 1799 return std::error_code(); 1800 case BitstreamEntry::Record: 1801 // The interesting case. 1802 break; 1803 } 1804 1805 // Read a record. 1806 Record.clear(); 1807 switch (Stream.readRecord(Entry.ID, Record)) { 1808 default: // Default behavior: unknown type. 1809 break; 1810 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1811 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1812 if (std::error_code EC = ValOrErr.getError()) 1813 return EC; 1814 ValOrErr.get(); 1815 break; 1816 } 1817 case bitc::VST_CODE_FNENTRY: { 1818 // VST_FNENTRY: [valueid, offset, namechar x N] 1819 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1820 if (std::error_code EC = ValOrErr.getError()) 1821 return EC; 1822 Value *V = ValOrErr.get(); 1823 1824 auto *GO = dyn_cast<GlobalObject>(V); 1825 if (!GO) { 1826 // If this is an alias, need to get the actual Function object 1827 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1828 auto *GA = dyn_cast<GlobalAlias>(V); 1829 if (GA) 1830 GO = GA->getBaseObject(); 1831 assert(GO); 1832 } 1833 1834 uint64_t FuncWordOffset = Record[1]; 1835 Function *F = dyn_cast<Function>(GO); 1836 assert(F); 1837 uint64_t FuncBitOffset = FuncWordOffset * 32; 1838 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1839 // Set the NextUnreadBit to point to the last function block. 1840 // Later when parsing is resumed after function materialization, 1841 // we can simply skip that last function block. 1842 if (FuncBitOffset > NextUnreadBit) 1843 NextUnreadBit = FuncBitOffset; 1844 break; 1845 } 1846 case bitc::VST_CODE_BBENTRY: { 1847 if (convertToString(Record, 1, ValueName)) 1848 return error("Invalid record"); 1849 BasicBlock *BB = getBasicBlock(Record[0]); 1850 if (!BB) 1851 return error("Invalid record"); 1852 1853 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1854 ValueName.clear(); 1855 break; 1856 } 1857 } 1858 } 1859 } 1860 1861 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1862 1863 std::error_code BitcodeReader::parseMetadata() { 1864 IsMetadataMaterialized = true; 1865 unsigned NextMDValueNo = MDValueList.size(); 1866 1867 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1868 return error("Invalid record"); 1869 1870 SmallVector<uint64_t, 64> Record; 1871 1872 auto getMD = 1873 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1874 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1875 if (ID) 1876 return getMD(ID - 1); 1877 return nullptr; 1878 }; 1879 auto getMDString = [&](unsigned ID) -> MDString *{ 1880 // This requires that the ID is not really a forward reference. In 1881 // particular, the MDString must already have been resolved. 1882 return cast_or_null<MDString>(getMDOrNull(ID)); 1883 }; 1884 1885 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1886 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1887 1888 // Read all the records. 1889 while (1) { 1890 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1891 1892 switch (Entry.Kind) { 1893 case BitstreamEntry::SubBlock: // Handled for us already. 1894 case BitstreamEntry::Error: 1895 return error("Malformed block"); 1896 case BitstreamEntry::EndBlock: 1897 MDValueList.tryToResolveCycles(); 1898 return std::error_code(); 1899 case BitstreamEntry::Record: 1900 // The interesting case. 1901 break; 1902 } 1903 1904 // Read a record. 1905 Record.clear(); 1906 unsigned Code = Stream.readRecord(Entry.ID, Record); 1907 bool IsDistinct = false; 1908 switch (Code) { 1909 default: // Default behavior: ignore. 1910 break; 1911 case bitc::METADATA_NAME: { 1912 // Read name of the named metadata. 1913 SmallString<8> Name(Record.begin(), Record.end()); 1914 Record.clear(); 1915 Code = Stream.ReadCode(); 1916 1917 unsigned NextBitCode = Stream.readRecord(Code, Record); 1918 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1919 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1920 1921 // Read named metadata elements. 1922 unsigned Size = Record.size(); 1923 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1924 for (unsigned i = 0; i != Size; ++i) { 1925 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1926 if (!MD) 1927 return error("Invalid record"); 1928 NMD->addOperand(MD); 1929 } 1930 break; 1931 } 1932 case bitc::METADATA_OLD_FN_NODE: { 1933 // FIXME: Remove in 4.0. 1934 // This is a LocalAsMetadata record, the only type of function-local 1935 // metadata. 1936 if (Record.size() % 2 == 1) 1937 return error("Invalid record"); 1938 1939 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1940 // to be legal, but there's no upgrade path. 1941 auto dropRecord = [&] { 1942 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1943 }; 1944 if (Record.size() != 2) { 1945 dropRecord(); 1946 break; 1947 } 1948 1949 Type *Ty = getTypeByID(Record[0]); 1950 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1951 dropRecord(); 1952 break; 1953 } 1954 1955 MDValueList.assignValue( 1956 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1957 NextMDValueNo++); 1958 break; 1959 } 1960 case bitc::METADATA_OLD_NODE: { 1961 // FIXME: Remove in 4.0. 1962 if (Record.size() % 2 == 1) 1963 return error("Invalid record"); 1964 1965 unsigned Size = Record.size(); 1966 SmallVector<Metadata *, 8> Elts; 1967 for (unsigned i = 0; i != Size; i += 2) { 1968 Type *Ty = getTypeByID(Record[i]); 1969 if (!Ty) 1970 return error("Invalid record"); 1971 if (Ty->isMetadataTy()) 1972 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1973 else if (!Ty->isVoidTy()) { 1974 auto *MD = 1975 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1976 assert(isa<ConstantAsMetadata>(MD) && 1977 "Expected non-function-local metadata"); 1978 Elts.push_back(MD); 1979 } else 1980 Elts.push_back(nullptr); 1981 } 1982 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1983 break; 1984 } 1985 case bitc::METADATA_VALUE: { 1986 if (Record.size() != 2) 1987 return error("Invalid record"); 1988 1989 Type *Ty = getTypeByID(Record[0]); 1990 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1991 return error("Invalid record"); 1992 1993 MDValueList.assignValue( 1994 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1995 NextMDValueNo++); 1996 break; 1997 } 1998 case bitc::METADATA_DISTINCT_NODE: 1999 IsDistinct = true; 2000 // fallthrough... 2001 case bitc::METADATA_NODE: { 2002 SmallVector<Metadata *, 8> Elts; 2003 Elts.reserve(Record.size()); 2004 for (unsigned ID : Record) 2005 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2006 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2007 : MDNode::get(Context, Elts), 2008 NextMDValueNo++); 2009 break; 2010 } 2011 case bitc::METADATA_LOCATION: { 2012 if (Record.size() != 5) 2013 return error("Invalid record"); 2014 2015 unsigned Line = Record[1]; 2016 unsigned Column = Record[2]; 2017 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2018 Metadata *InlinedAt = 2019 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2020 MDValueList.assignValue( 2021 GET_OR_DISTINCT(DILocation, Record[0], 2022 (Context, Line, Column, Scope, InlinedAt)), 2023 NextMDValueNo++); 2024 break; 2025 } 2026 case bitc::METADATA_GENERIC_DEBUG: { 2027 if (Record.size() < 4) 2028 return error("Invalid record"); 2029 2030 unsigned Tag = Record[1]; 2031 unsigned Version = Record[2]; 2032 2033 if (Tag >= 1u << 16 || Version != 0) 2034 return error("Invalid record"); 2035 2036 auto *Header = getMDString(Record[3]); 2037 SmallVector<Metadata *, 8> DwarfOps; 2038 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2039 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2040 : nullptr); 2041 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2042 (Context, Tag, Header, DwarfOps)), 2043 NextMDValueNo++); 2044 break; 2045 } 2046 case bitc::METADATA_SUBRANGE: { 2047 if (Record.size() != 3) 2048 return error("Invalid record"); 2049 2050 MDValueList.assignValue( 2051 GET_OR_DISTINCT(DISubrange, Record[0], 2052 (Context, Record[1], unrotateSign(Record[2]))), 2053 NextMDValueNo++); 2054 break; 2055 } 2056 case bitc::METADATA_ENUMERATOR: { 2057 if (Record.size() != 3) 2058 return error("Invalid record"); 2059 2060 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2061 (Context, unrotateSign(Record[1]), 2062 getMDString(Record[2]))), 2063 NextMDValueNo++); 2064 break; 2065 } 2066 case bitc::METADATA_BASIC_TYPE: { 2067 if (Record.size() != 6) 2068 return error("Invalid record"); 2069 2070 MDValueList.assignValue( 2071 GET_OR_DISTINCT(DIBasicType, Record[0], 2072 (Context, Record[1], getMDString(Record[2]), 2073 Record[3], Record[4], Record[5])), 2074 NextMDValueNo++); 2075 break; 2076 } 2077 case bitc::METADATA_DERIVED_TYPE: { 2078 if (Record.size() != 12) 2079 return error("Invalid record"); 2080 2081 MDValueList.assignValue( 2082 GET_OR_DISTINCT(DIDerivedType, Record[0], 2083 (Context, Record[1], getMDString(Record[2]), 2084 getMDOrNull(Record[3]), Record[4], 2085 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2086 Record[7], Record[8], Record[9], Record[10], 2087 getMDOrNull(Record[11]))), 2088 NextMDValueNo++); 2089 break; 2090 } 2091 case bitc::METADATA_COMPOSITE_TYPE: { 2092 if (Record.size() != 16) 2093 return error("Invalid record"); 2094 2095 MDValueList.assignValue( 2096 GET_OR_DISTINCT(DICompositeType, Record[0], 2097 (Context, Record[1], getMDString(Record[2]), 2098 getMDOrNull(Record[3]), Record[4], 2099 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2100 Record[7], Record[8], Record[9], Record[10], 2101 getMDOrNull(Record[11]), Record[12], 2102 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2103 getMDString(Record[15]))), 2104 NextMDValueNo++); 2105 break; 2106 } 2107 case bitc::METADATA_SUBROUTINE_TYPE: { 2108 if (Record.size() != 3) 2109 return error("Invalid record"); 2110 2111 MDValueList.assignValue( 2112 GET_OR_DISTINCT(DISubroutineType, Record[0], 2113 (Context, Record[1], getMDOrNull(Record[2]))), 2114 NextMDValueNo++); 2115 break; 2116 } 2117 2118 case bitc::METADATA_MODULE: { 2119 if (Record.size() != 6) 2120 return error("Invalid record"); 2121 2122 MDValueList.assignValue( 2123 GET_OR_DISTINCT(DIModule, Record[0], 2124 (Context, getMDOrNull(Record[1]), 2125 getMDString(Record[2]), getMDString(Record[3]), 2126 getMDString(Record[4]), getMDString(Record[5]))), 2127 NextMDValueNo++); 2128 break; 2129 } 2130 2131 case bitc::METADATA_FILE: { 2132 if (Record.size() != 3) 2133 return error("Invalid record"); 2134 2135 MDValueList.assignValue( 2136 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2137 getMDString(Record[2]))), 2138 NextMDValueNo++); 2139 break; 2140 } 2141 case bitc::METADATA_COMPILE_UNIT: { 2142 if (Record.size() < 14 || Record.size() > 15) 2143 return error("Invalid record"); 2144 2145 // Ignore Record[1], which indicates whether this compile unit is 2146 // distinct. It's always distinct. 2147 MDValueList.assignValue( 2148 DICompileUnit::getDistinct( 2149 Context, Record[1], getMDOrNull(Record[2]), 2150 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2151 Record[6], getMDString(Record[7]), Record[8], 2152 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2153 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2154 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2155 NextMDValueNo++); 2156 break; 2157 } 2158 case bitc::METADATA_SUBPROGRAM: { 2159 if (Record.size() != 19) 2160 return error("Invalid record"); 2161 2162 MDValueList.assignValue( 2163 GET_OR_DISTINCT( 2164 DISubprogram, 2165 Record[0] || Record[8], // All definitions should be distinct. 2166 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2167 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2168 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2169 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2170 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 2171 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 2172 NextMDValueNo++); 2173 break; 2174 } 2175 case bitc::METADATA_LEXICAL_BLOCK: { 2176 if (Record.size() != 5) 2177 return error("Invalid record"); 2178 2179 MDValueList.assignValue( 2180 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2181 (Context, getMDOrNull(Record[1]), 2182 getMDOrNull(Record[2]), Record[3], Record[4])), 2183 NextMDValueNo++); 2184 break; 2185 } 2186 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2187 if (Record.size() != 4) 2188 return error("Invalid record"); 2189 2190 MDValueList.assignValue( 2191 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2192 (Context, getMDOrNull(Record[1]), 2193 getMDOrNull(Record[2]), Record[3])), 2194 NextMDValueNo++); 2195 break; 2196 } 2197 case bitc::METADATA_NAMESPACE: { 2198 if (Record.size() != 5) 2199 return error("Invalid record"); 2200 2201 MDValueList.assignValue( 2202 GET_OR_DISTINCT(DINamespace, Record[0], 2203 (Context, getMDOrNull(Record[1]), 2204 getMDOrNull(Record[2]), getMDString(Record[3]), 2205 Record[4])), 2206 NextMDValueNo++); 2207 break; 2208 } 2209 case bitc::METADATA_TEMPLATE_TYPE: { 2210 if (Record.size() != 3) 2211 return error("Invalid record"); 2212 2213 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2214 Record[0], 2215 (Context, getMDString(Record[1]), 2216 getMDOrNull(Record[2]))), 2217 NextMDValueNo++); 2218 break; 2219 } 2220 case bitc::METADATA_TEMPLATE_VALUE: { 2221 if (Record.size() != 5) 2222 return error("Invalid record"); 2223 2224 MDValueList.assignValue( 2225 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2226 (Context, Record[1], getMDString(Record[2]), 2227 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2228 NextMDValueNo++); 2229 break; 2230 } 2231 case bitc::METADATA_GLOBAL_VAR: { 2232 if (Record.size() != 11) 2233 return error("Invalid record"); 2234 2235 MDValueList.assignValue( 2236 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2237 (Context, getMDOrNull(Record[1]), 2238 getMDString(Record[2]), getMDString(Record[3]), 2239 getMDOrNull(Record[4]), Record[5], 2240 getMDOrNull(Record[6]), Record[7], Record[8], 2241 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2242 NextMDValueNo++); 2243 break; 2244 } 2245 case bitc::METADATA_LOCAL_VAR: { 2246 // 10th field is for the obseleted 'inlinedAt:' field. 2247 if (Record.size() < 8 || Record.size() > 10) 2248 return error("Invalid record"); 2249 2250 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2251 // DW_TAG_arg_variable. 2252 bool HasTag = Record.size() > 8; 2253 MDValueList.assignValue( 2254 GET_OR_DISTINCT(DILocalVariable, Record[0], 2255 (Context, getMDOrNull(Record[1 + HasTag]), 2256 getMDString(Record[2 + HasTag]), 2257 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2258 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2259 Record[7 + HasTag])), 2260 NextMDValueNo++); 2261 break; 2262 } 2263 case bitc::METADATA_EXPRESSION: { 2264 if (Record.size() < 1) 2265 return error("Invalid record"); 2266 2267 MDValueList.assignValue( 2268 GET_OR_DISTINCT(DIExpression, Record[0], 2269 (Context, makeArrayRef(Record).slice(1))), 2270 NextMDValueNo++); 2271 break; 2272 } 2273 case bitc::METADATA_OBJC_PROPERTY: { 2274 if (Record.size() != 8) 2275 return error("Invalid record"); 2276 2277 MDValueList.assignValue( 2278 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2279 (Context, getMDString(Record[1]), 2280 getMDOrNull(Record[2]), Record[3], 2281 getMDString(Record[4]), getMDString(Record[5]), 2282 Record[6], getMDOrNull(Record[7]))), 2283 NextMDValueNo++); 2284 break; 2285 } 2286 case bitc::METADATA_IMPORTED_ENTITY: { 2287 if (Record.size() != 6) 2288 return error("Invalid record"); 2289 2290 MDValueList.assignValue( 2291 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2292 (Context, Record[1], getMDOrNull(Record[2]), 2293 getMDOrNull(Record[3]), Record[4], 2294 getMDString(Record[5]))), 2295 NextMDValueNo++); 2296 break; 2297 } 2298 case bitc::METADATA_STRING: { 2299 std::string String(Record.begin(), Record.end()); 2300 llvm::UpgradeMDStringConstant(String); 2301 Metadata *MD = MDString::get(Context, String); 2302 MDValueList.assignValue(MD, NextMDValueNo++); 2303 break; 2304 } 2305 case bitc::METADATA_KIND: { 2306 if (Record.size() < 2) 2307 return error("Invalid record"); 2308 2309 unsigned Kind = Record[0]; 2310 SmallString<8> Name(Record.begin()+1, Record.end()); 2311 2312 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2313 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2314 return error("Conflicting METADATA_KIND records"); 2315 break; 2316 } 2317 } 2318 } 2319 #undef GET_OR_DISTINCT 2320 } 2321 2322 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2323 /// encoding. 2324 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2325 if ((V & 1) == 0) 2326 return V >> 1; 2327 if (V != 1) 2328 return -(V >> 1); 2329 // There is no such thing as -0 with integers. "-0" really means MININT. 2330 return 1ULL << 63; 2331 } 2332 2333 /// Resolve all of the initializers for global values and aliases that we can. 2334 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2335 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2336 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2337 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2338 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2339 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2340 2341 GlobalInitWorklist.swap(GlobalInits); 2342 AliasInitWorklist.swap(AliasInits); 2343 FunctionPrefixWorklist.swap(FunctionPrefixes); 2344 FunctionPrologueWorklist.swap(FunctionPrologues); 2345 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2346 2347 while (!GlobalInitWorklist.empty()) { 2348 unsigned ValID = GlobalInitWorklist.back().second; 2349 if (ValID >= ValueList.size()) { 2350 // Not ready to resolve this yet, it requires something later in the file. 2351 GlobalInits.push_back(GlobalInitWorklist.back()); 2352 } else { 2353 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2354 GlobalInitWorklist.back().first->setInitializer(C); 2355 else 2356 return error("Expected a constant"); 2357 } 2358 GlobalInitWorklist.pop_back(); 2359 } 2360 2361 while (!AliasInitWorklist.empty()) { 2362 unsigned ValID = AliasInitWorklist.back().second; 2363 if (ValID >= ValueList.size()) { 2364 AliasInits.push_back(AliasInitWorklist.back()); 2365 } else { 2366 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2367 if (!C) 2368 return error("Expected a constant"); 2369 GlobalAlias *Alias = AliasInitWorklist.back().first; 2370 if (C->getType() != Alias->getType()) 2371 return error("Alias and aliasee types don't match"); 2372 Alias->setAliasee(C); 2373 } 2374 AliasInitWorklist.pop_back(); 2375 } 2376 2377 while (!FunctionPrefixWorklist.empty()) { 2378 unsigned ValID = FunctionPrefixWorklist.back().second; 2379 if (ValID >= ValueList.size()) { 2380 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2381 } else { 2382 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2383 FunctionPrefixWorklist.back().first->setPrefixData(C); 2384 else 2385 return error("Expected a constant"); 2386 } 2387 FunctionPrefixWorklist.pop_back(); 2388 } 2389 2390 while (!FunctionPrologueWorklist.empty()) { 2391 unsigned ValID = FunctionPrologueWorklist.back().second; 2392 if (ValID >= ValueList.size()) { 2393 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2394 } else { 2395 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2396 FunctionPrologueWorklist.back().first->setPrologueData(C); 2397 else 2398 return error("Expected a constant"); 2399 } 2400 FunctionPrologueWorklist.pop_back(); 2401 } 2402 2403 while (!FunctionPersonalityFnWorklist.empty()) { 2404 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2405 if (ValID >= ValueList.size()) { 2406 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2407 } else { 2408 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2409 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2410 else 2411 return error("Expected a constant"); 2412 } 2413 FunctionPersonalityFnWorklist.pop_back(); 2414 } 2415 2416 return std::error_code(); 2417 } 2418 2419 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2420 SmallVector<uint64_t, 8> Words(Vals.size()); 2421 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2422 BitcodeReader::decodeSignRotatedValue); 2423 2424 return APInt(TypeBits, Words); 2425 } 2426 2427 std::error_code BitcodeReader::parseConstants() { 2428 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2429 return error("Invalid record"); 2430 2431 SmallVector<uint64_t, 64> Record; 2432 2433 // Read all the records for this value table. 2434 Type *CurTy = Type::getInt32Ty(Context); 2435 unsigned NextCstNo = ValueList.size(); 2436 while (1) { 2437 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2438 2439 switch (Entry.Kind) { 2440 case BitstreamEntry::SubBlock: // Handled for us already. 2441 case BitstreamEntry::Error: 2442 return error("Malformed block"); 2443 case BitstreamEntry::EndBlock: 2444 if (NextCstNo != ValueList.size()) 2445 return error("Invalid ronstant reference"); 2446 2447 // Once all the constants have been read, go through and resolve forward 2448 // references. 2449 ValueList.resolveConstantForwardRefs(); 2450 return std::error_code(); 2451 case BitstreamEntry::Record: 2452 // The interesting case. 2453 break; 2454 } 2455 2456 // Read a record. 2457 Record.clear(); 2458 Value *V = nullptr; 2459 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2460 switch (BitCode) { 2461 default: // Default behavior: unknown constant 2462 case bitc::CST_CODE_UNDEF: // UNDEF 2463 V = UndefValue::get(CurTy); 2464 break; 2465 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2466 if (Record.empty()) 2467 return error("Invalid record"); 2468 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2469 return error("Invalid record"); 2470 CurTy = TypeList[Record[0]]; 2471 continue; // Skip the ValueList manipulation. 2472 case bitc::CST_CODE_NULL: // NULL 2473 V = Constant::getNullValue(CurTy); 2474 break; 2475 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2476 if (!CurTy->isIntegerTy() || Record.empty()) 2477 return error("Invalid record"); 2478 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2479 break; 2480 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2481 if (!CurTy->isIntegerTy() || Record.empty()) 2482 return error("Invalid record"); 2483 2484 APInt VInt = 2485 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2486 V = ConstantInt::get(Context, VInt); 2487 2488 break; 2489 } 2490 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2491 if (Record.empty()) 2492 return error("Invalid record"); 2493 if (CurTy->isHalfTy()) 2494 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2495 APInt(16, (uint16_t)Record[0]))); 2496 else if (CurTy->isFloatTy()) 2497 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2498 APInt(32, (uint32_t)Record[0]))); 2499 else if (CurTy->isDoubleTy()) 2500 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2501 APInt(64, Record[0]))); 2502 else if (CurTy->isX86_FP80Ty()) { 2503 // Bits are not stored the same way as a normal i80 APInt, compensate. 2504 uint64_t Rearrange[2]; 2505 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2506 Rearrange[1] = Record[0] >> 48; 2507 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2508 APInt(80, Rearrange))); 2509 } else if (CurTy->isFP128Ty()) 2510 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2511 APInt(128, Record))); 2512 else if (CurTy->isPPC_FP128Ty()) 2513 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2514 APInt(128, Record))); 2515 else 2516 V = UndefValue::get(CurTy); 2517 break; 2518 } 2519 2520 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2521 if (Record.empty()) 2522 return error("Invalid record"); 2523 2524 unsigned Size = Record.size(); 2525 SmallVector<Constant*, 16> Elts; 2526 2527 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2528 for (unsigned i = 0; i != Size; ++i) 2529 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2530 STy->getElementType(i))); 2531 V = ConstantStruct::get(STy, Elts); 2532 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2533 Type *EltTy = ATy->getElementType(); 2534 for (unsigned i = 0; i != Size; ++i) 2535 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2536 V = ConstantArray::get(ATy, Elts); 2537 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2538 Type *EltTy = VTy->getElementType(); 2539 for (unsigned i = 0; i != Size; ++i) 2540 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2541 V = ConstantVector::get(Elts); 2542 } else { 2543 V = UndefValue::get(CurTy); 2544 } 2545 break; 2546 } 2547 case bitc::CST_CODE_STRING: // STRING: [values] 2548 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2549 if (Record.empty()) 2550 return error("Invalid record"); 2551 2552 SmallString<16> Elts(Record.begin(), Record.end()); 2553 V = ConstantDataArray::getString(Context, Elts, 2554 BitCode == bitc::CST_CODE_CSTRING); 2555 break; 2556 } 2557 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2558 if (Record.empty()) 2559 return error("Invalid record"); 2560 2561 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2562 unsigned Size = Record.size(); 2563 2564 if (EltTy->isIntegerTy(8)) { 2565 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2566 if (isa<VectorType>(CurTy)) 2567 V = ConstantDataVector::get(Context, Elts); 2568 else 2569 V = ConstantDataArray::get(Context, Elts); 2570 } else if (EltTy->isIntegerTy(16)) { 2571 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2572 if (isa<VectorType>(CurTy)) 2573 V = ConstantDataVector::get(Context, Elts); 2574 else 2575 V = ConstantDataArray::get(Context, Elts); 2576 } else if (EltTy->isIntegerTy(32)) { 2577 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2578 if (isa<VectorType>(CurTy)) 2579 V = ConstantDataVector::get(Context, Elts); 2580 else 2581 V = ConstantDataArray::get(Context, Elts); 2582 } else if (EltTy->isIntegerTy(64)) { 2583 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2584 if (isa<VectorType>(CurTy)) 2585 V = ConstantDataVector::get(Context, Elts); 2586 else 2587 V = ConstantDataArray::get(Context, Elts); 2588 } else if (EltTy->isFloatTy()) { 2589 SmallVector<float, 16> Elts(Size); 2590 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2591 if (isa<VectorType>(CurTy)) 2592 V = ConstantDataVector::get(Context, Elts); 2593 else 2594 V = ConstantDataArray::get(Context, Elts); 2595 } else if (EltTy->isDoubleTy()) { 2596 SmallVector<double, 16> Elts(Size); 2597 std::transform(Record.begin(), Record.end(), Elts.begin(), 2598 BitsToDouble); 2599 if (isa<VectorType>(CurTy)) 2600 V = ConstantDataVector::get(Context, Elts); 2601 else 2602 V = ConstantDataArray::get(Context, Elts); 2603 } else { 2604 return error("Invalid type for value"); 2605 } 2606 break; 2607 } 2608 2609 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2610 if (Record.size() < 3) 2611 return error("Invalid record"); 2612 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2613 if (Opc < 0) { 2614 V = UndefValue::get(CurTy); // Unknown binop. 2615 } else { 2616 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2617 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2618 unsigned Flags = 0; 2619 if (Record.size() >= 4) { 2620 if (Opc == Instruction::Add || 2621 Opc == Instruction::Sub || 2622 Opc == Instruction::Mul || 2623 Opc == Instruction::Shl) { 2624 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2625 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2626 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2627 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2628 } else if (Opc == Instruction::SDiv || 2629 Opc == Instruction::UDiv || 2630 Opc == Instruction::LShr || 2631 Opc == Instruction::AShr) { 2632 if (Record[3] & (1 << bitc::PEO_EXACT)) 2633 Flags |= SDivOperator::IsExact; 2634 } 2635 } 2636 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2637 } 2638 break; 2639 } 2640 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2641 if (Record.size() < 3) 2642 return error("Invalid record"); 2643 int Opc = getDecodedCastOpcode(Record[0]); 2644 if (Opc < 0) { 2645 V = UndefValue::get(CurTy); // Unknown cast. 2646 } else { 2647 Type *OpTy = getTypeByID(Record[1]); 2648 if (!OpTy) 2649 return error("Invalid record"); 2650 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2651 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2652 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2653 } 2654 break; 2655 } 2656 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2657 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2658 unsigned OpNum = 0; 2659 Type *PointeeType = nullptr; 2660 if (Record.size() % 2) 2661 PointeeType = getTypeByID(Record[OpNum++]); 2662 SmallVector<Constant*, 16> Elts; 2663 while (OpNum != Record.size()) { 2664 Type *ElTy = getTypeByID(Record[OpNum++]); 2665 if (!ElTy) 2666 return error("Invalid record"); 2667 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2668 } 2669 2670 if (PointeeType && 2671 PointeeType != 2672 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2673 ->getElementType()) 2674 return error("Explicit gep operator type does not match pointee type " 2675 "of pointer operand"); 2676 2677 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2678 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2679 BitCode == 2680 bitc::CST_CODE_CE_INBOUNDS_GEP); 2681 break; 2682 } 2683 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2684 if (Record.size() < 3) 2685 return error("Invalid record"); 2686 2687 Type *SelectorTy = Type::getInt1Ty(Context); 2688 2689 // The selector might be an i1 or an <n x i1> 2690 // Get the type from the ValueList before getting a forward ref. 2691 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2692 if (Value *V = ValueList[Record[0]]) 2693 if (SelectorTy != V->getType()) 2694 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2695 2696 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2697 SelectorTy), 2698 ValueList.getConstantFwdRef(Record[1],CurTy), 2699 ValueList.getConstantFwdRef(Record[2],CurTy)); 2700 break; 2701 } 2702 case bitc::CST_CODE_CE_EXTRACTELT 2703 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2704 if (Record.size() < 3) 2705 return error("Invalid record"); 2706 VectorType *OpTy = 2707 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2708 if (!OpTy) 2709 return error("Invalid record"); 2710 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2711 Constant *Op1 = nullptr; 2712 if (Record.size() == 4) { 2713 Type *IdxTy = getTypeByID(Record[2]); 2714 if (!IdxTy) 2715 return error("Invalid record"); 2716 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2717 } else // TODO: Remove with llvm 4.0 2718 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2719 if (!Op1) 2720 return error("Invalid record"); 2721 V = ConstantExpr::getExtractElement(Op0, Op1); 2722 break; 2723 } 2724 case bitc::CST_CODE_CE_INSERTELT 2725 : { // CE_INSERTELT: [opval, opval, opty, opval] 2726 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2727 if (Record.size() < 3 || !OpTy) 2728 return error("Invalid record"); 2729 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2730 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2731 OpTy->getElementType()); 2732 Constant *Op2 = nullptr; 2733 if (Record.size() == 4) { 2734 Type *IdxTy = getTypeByID(Record[2]); 2735 if (!IdxTy) 2736 return error("Invalid record"); 2737 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2738 } else // TODO: Remove with llvm 4.0 2739 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2740 if (!Op2) 2741 return error("Invalid record"); 2742 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2743 break; 2744 } 2745 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2746 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2747 if (Record.size() < 3 || !OpTy) 2748 return error("Invalid record"); 2749 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2750 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2751 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2752 OpTy->getNumElements()); 2753 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2754 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2755 break; 2756 } 2757 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2758 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2759 VectorType *OpTy = 2760 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2761 if (Record.size() < 4 || !RTy || !OpTy) 2762 return error("Invalid record"); 2763 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2764 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2765 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2766 RTy->getNumElements()); 2767 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2768 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2769 break; 2770 } 2771 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2772 if (Record.size() < 4) 2773 return error("Invalid record"); 2774 Type *OpTy = getTypeByID(Record[0]); 2775 if (!OpTy) 2776 return error("Invalid record"); 2777 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2778 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2779 2780 if (OpTy->isFPOrFPVectorTy()) 2781 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2782 else 2783 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2784 break; 2785 } 2786 // This maintains backward compatibility, pre-asm dialect keywords. 2787 // FIXME: Remove with the 4.0 release. 2788 case bitc::CST_CODE_INLINEASM_OLD: { 2789 if (Record.size() < 2) 2790 return error("Invalid record"); 2791 std::string AsmStr, ConstrStr; 2792 bool HasSideEffects = Record[0] & 1; 2793 bool IsAlignStack = Record[0] >> 1; 2794 unsigned AsmStrSize = Record[1]; 2795 if (2+AsmStrSize >= Record.size()) 2796 return error("Invalid record"); 2797 unsigned ConstStrSize = Record[2+AsmStrSize]; 2798 if (3+AsmStrSize+ConstStrSize > Record.size()) 2799 return error("Invalid record"); 2800 2801 for (unsigned i = 0; i != AsmStrSize; ++i) 2802 AsmStr += (char)Record[2+i]; 2803 for (unsigned i = 0; i != ConstStrSize; ++i) 2804 ConstrStr += (char)Record[3+AsmStrSize+i]; 2805 PointerType *PTy = cast<PointerType>(CurTy); 2806 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2807 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2808 break; 2809 } 2810 // This version adds support for the asm dialect keywords (e.g., 2811 // inteldialect). 2812 case bitc::CST_CODE_INLINEASM: { 2813 if (Record.size() < 2) 2814 return error("Invalid record"); 2815 std::string AsmStr, ConstrStr; 2816 bool HasSideEffects = Record[0] & 1; 2817 bool IsAlignStack = (Record[0] >> 1) & 1; 2818 unsigned AsmDialect = Record[0] >> 2; 2819 unsigned AsmStrSize = Record[1]; 2820 if (2+AsmStrSize >= Record.size()) 2821 return error("Invalid record"); 2822 unsigned ConstStrSize = Record[2+AsmStrSize]; 2823 if (3+AsmStrSize+ConstStrSize > Record.size()) 2824 return error("Invalid record"); 2825 2826 for (unsigned i = 0; i != AsmStrSize; ++i) 2827 AsmStr += (char)Record[2+i]; 2828 for (unsigned i = 0; i != ConstStrSize; ++i) 2829 ConstrStr += (char)Record[3+AsmStrSize+i]; 2830 PointerType *PTy = cast<PointerType>(CurTy); 2831 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2832 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2833 InlineAsm::AsmDialect(AsmDialect)); 2834 break; 2835 } 2836 case bitc::CST_CODE_BLOCKADDRESS:{ 2837 if (Record.size() < 3) 2838 return error("Invalid record"); 2839 Type *FnTy = getTypeByID(Record[0]); 2840 if (!FnTy) 2841 return error("Invalid record"); 2842 Function *Fn = 2843 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2844 if (!Fn) 2845 return error("Invalid record"); 2846 2847 // Don't let Fn get dematerialized. 2848 BlockAddressesTaken.insert(Fn); 2849 2850 // If the function is already parsed we can insert the block address right 2851 // away. 2852 BasicBlock *BB; 2853 unsigned BBID = Record[2]; 2854 if (!BBID) 2855 // Invalid reference to entry block. 2856 return error("Invalid ID"); 2857 if (!Fn->empty()) { 2858 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2859 for (size_t I = 0, E = BBID; I != E; ++I) { 2860 if (BBI == BBE) 2861 return error("Invalid ID"); 2862 ++BBI; 2863 } 2864 BB = BBI; 2865 } else { 2866 // Otherwise insert a placeholder and remember it so it can be inserted 2867 // when the function is parsed. 2868 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2869 if (FwdBBs.empty()) 2870 BasicBlockFwdRefQueue.push_back(Fn); 2871 if (FwdBBs.size() < BBID + 1) 2872 FwdBBs.resize(BBID + 1); 2873 if (!FwdBBs[BBID]) 2874 FwdBBs[BBID] = BasicBlock::Create(Context); 2875 BB = FwdBBs[BBID]; 2876 } 2877 V = BlockAddress::get(Fn, BB); 2878 break; 2879 } 2880 } 2881 2882 if (ValueList.assignValue(V, NextCstNo)) 2883 return error("Invalid forward reference"); 2884 ++NextCstNo; 2885 } 2886 } 2887 2888 std::error_code BitcodeReader::parseUseLists() { 2889 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2890 return error("Invalid record"); 2891 2892 // Read all the records. 2893 SmallVector<uint64_t, 64> Record; 2894 while (1) { 2895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2896 2897 switch (Entry.Kind) { 2898 case BitstreamEntry::SubBlock: // Handled for us already. 2899 case BitstreamEntry::Error: 2900 return error("Malformed block"); 2901 case BitstreamEntry::EndBlock: 2902 return std::error_code(); 2903 case BitstreamEntry::Record: 2904 // The interesting case. 2905 break; 2906 } 2907 2908 // Read a use list record. 2909 Record.clear(); 2910 bool IsBB = false; 2911 switch (Stream.readRecord(Entry.ID, Record)) { 2912 default: // Default behavior: unknown type. 2913 break; 2914 case bitc::USELIST_CODE_BB: 2915 IsBB = true; 2916 // fallthrough 2917 case bitc::USELIST_CODE_DEFAULT: { 2918 unsigned RecordLength = Record.size(); 2919 if (RecordLength < 3) 2920 // Records should have at least an ID and two indexes. 2921 return error("Invalid record"); 2922 unsigned ID = Record.back(); 2923 Record.pop_back(); 2924 2925 Value *V; 2926 if (IsBB) { 2927 assert(ID < FunctionBBs.size() && "Basic block not found"); 2928 V = FunctionBBs[ID]; 2929 } else 2930 V = ValueList[ID]; 2931 unsigned NumUses = 0; 2932 SmallDenseMap<const Use *, unsigned, 16> Order; 2933 for (const Use &U : V->uses()) { 2934 if (++NumUses > Record.size()) 2935 break; 2936 Order[&U] = Record[NumUses - 1]; 2937 } 2938 if (Order.size() != Record.size() || NumUses > Record.size()) 2939 // Mismatches can happen if the functions are being materialized lazily 2940 // (out-of-order), or a value has been upgraded. 2941 break; 2942 2943 V->sortUseList([&](const Use &L, const Use &R) { 2944 return Order.lookup(&L) < Order.lookup(&R); 2945 }); 2946 break; 2947 } 2948 } 2949 } 2950 } 2951 2952 /// When we see the block for metadata, remember where it is and then skip it. 2953 /// This lets us lazily deserialize the metadata. 2954 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2955 // Save the current stream state. 2956 uint64_t CurBit = Stream.GetCurrentBitNo(); 2957 DeferredMetadataInfo.push_back(CurBit); 2958 2959 // Skip over the block for now. 2960 if (Stream.SkipBlock()) 2961 return error("Invalid record"); 2962 return std::error_code(); 2963 } 2964 2965 std::error_code BitcodeReader::materializeMetadata() { 2966 for (uint64_t BitPos : DeferredMetadataInfo) { 2967 // Move the bit stream to the saved position. 2968 Stream.JumpToBit(BitPos); 2969 if (std::error_code EC = parseMetadata()) 2970 return EC; 2971 } 2972 DeferredMetadataInfo.clear(); 2973 return std::error_code(); 2974 } 2975 2976 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2977 2978 /// When we see the block for a function body, remember where it is and then 2979 /// skip it. This lets us lazily deserialize the functions. 2980 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2981 // Get the function we are talking about. 2982 if (FunctionsWithBodies.empty()) 2983 return error("Insufficient function protos"); 2984 2985 Function *Fn = FunctionsWithBodies.back(); 2986 FunctionsWithBodies.pop_back(); 2987 2988 // Save the current stream state. 2989 uint64_t CurBit = Stream.GetCurrentBitNo(); 2990 DeferredFunctionInfo[Fn] = CurBit; 2991 2992 // Skip over the function block for now. 2993 if (Stream.SkipBlock()) 2994 return error("Invalid record"); 2995 return std::error_code(); 2996 } 2997 2998 std::error_code BitcodeReader::globalCleanup() { 2999 // Patch the initializers for globals and aliases up. 3000 resolveGlobalAndAliasInits(); 3001 if (!GlobalInits.empty() || !AliasInits.empty()) 3002 return error("Malformed global initializer set"); 3003 3004 // Look for intrinsic functions which need to be upgraded at some point 3005 for (Function &F : *TheModule) { 3006 Function *NewFn; 3007 if (UpgradeIntrinsicFunction(&F, NewFn)) 3008 UpgradedIntrinsics[&F] = NewFn; 3009 } 3010 3011 // Look for global variables which need to be renamed. 3012 for (GlobalVariable &GV : TheModule->globals()) 3013 UpgradeGlobalVariable(&GV); 3014 3015 // Force deallocation of memory for these vectors to favor the client that 3016 // want lazy deserialization. 3017 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3018 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3019 return std::error_code(); 3020 } 3021 3022 std::error_code BitcodeReader::parseModule(bool Resume, 3023 bool ShouldLazyLoadMetadata) { 3024 if (Resume) 3025 Stream.JumpToBit(NextUnreadBit); 3026 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3027 return error("Invalid record"); 3028 3029 SmallVector<uint64_t, 64> Record; 3030 std::vector<std::string> SectionTable; 3031 std::vector<std::string> GCTable; 3032 3033 // Read all the records for this module. 3034 while (1) { 3035 BitstreamEntry Entry = Stream.advance(); 3036 3037 switch (Entry.Kind) { 3038 case BitstreamEntry::Error: 3039 return error("Malformed block"); 3040 case BitstreamEntry::EndBlock: 3041 return globalCleanup(); 3042 3043 case BitstreamEntry::SubBlock: 3044 switch (Entry.ID) { 3045 default: // Skip unknown content. 3046 if (Stream.SkipBlock()) 3047 return error("Invalid record"); 3048 break; 3049 case bitc::BLOCKINFO_BLOCK_ID: 3050 if (Stream.ReadBlockInfoBlock()) 3051 return error("Malformed block"); 3052 break; 3053 case bitc::PARAMATTR_BLOCK_ID: 3054 if (std::error_code EC = parseAttributeBlock()) 3055 return EC; 3056 break; 3057 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3058 if (std::error_code EC = parseAttributeGroupBlock()) 3059 return EC; 3060 break; 3061 case bitc::TYPE_BLOCK_ID_NEW: 3062 if (std::error_code EC = parseTypeTable()) 3063 return EC; 3064 break; 3065 case bitc::VALUE_SYMTAB_BLOCK_ID: 3066 if (!SeenValueSymbolTable) { 3067 // Either this is an old form VST without function index and an 3068 // associated VST forward declaration record (which would have caused 3069 // the VST to be jumped to and parsed before it was encountered 3070 // normally in the stream), or there were no function blocks to 3071 // trigger an earlier parsing of the VST. 3072 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3073 if (std::error_code EC = parseValueSymbolTable()) 3074 return EC; 3075 SeenValueSymbolTable = true; 3076 } else { 3077 // We must have had a VST forward declaration record, which caused 3078 // the parser to jump to and parse the VST earlier. 3079 assert(VSTOffset > 0); 3080 if (Stream.SkipBlock()) 3081 return error("Invalid record"); 3082 } 3083 break; 3084 case bitc::CONSTANTS_BLOCK_ID: 3085 if (std::error_code EC = parseConstants()) 3086 return EC; 3087 if (std::error_code EC = resolveGlobalAndAliasInits()) 3088 return EC; 3089 break; 3090 case bitc::METADATA_BLOCK_ID: 3091 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3092 if (std::error_code EC = rememberAndSkipMetadata()) 3093 return EC; 3094 break; 3095 } 3096 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3097 if (std::error_code EC = parseMetadata()) 3098 return EC; 3099 break; 3100 case bitc::FUNCTION_BLOCK_ID: 3101 // If this is the first function body we've seen, reverse the 3102 // FunctionsWithBodies list. 3103 if (!SeenFirstFunctionBody) { 3104 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3105 if (std::error_code EC = globalCleanup()) 3106 return EC; 3107 SeenFirstFunctionBody = true; 3108 } 3109 3110 if (VSTOffset > 0) { 3111 // If we have a VST forward declaration record, make sure we 3112 // parse the VST now if we haven't already. It is needed to 3113 // set up the DeferredFunctionInfo vector for lazy reading. 3114 if (!SeenValueSymbolTable) { 3115 if (std::error_code EC = 3116 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3117 return EC; 3118 SeenValueSymbolTable = true; 3119 return std::error_code(); 3120 } else { 3121 // If we have a VST forward declaration record, but have already 3122 // parsed the VST (just above, when the first function body was 3123 // encountered here), then we are resuming the parse after 3124 // materializing functions. The NextUnreadBit points to the start 3125 // of the last function block recorded in the VST (set when 3126 // parsing the VST function entries). Skip it. 3127 if (Stream.SkipBlock()) 3128 return error("Invalid record"); 3129 continue; 3130 } 3131 } 3132 3133 // Support older bitcode files that did not have the function 3134 // index in the VST, nor a VST forward declaration record. 3135 // Build the DeferredFunctionInfo vector on the fly. 3136 if (std::error_code EC = rememberAndSkipFunctionBody()) 3137 return EC; 3138 // Suspend parsing when we reach the function bodies. Subsequent 3139 // materialization calls will resume it when necessary. If the bitcode 3140 // file is old, the symbol table will be at the end instead and will not 3141 // have been seen yet. In this case, just finish the parse now. 3142 if (SeenValueSymbolTable) { 3143 NextUnreadBit = Stream.GetCurrentBitNo(); 3144 return std::error_code(); 3145 } 3146 break; 3147 case bitc::USELIST_BLOCK_ID: 3148 if (std::error_code EC = parseUseLists()) 3149 return EC; 3150 break; 3151 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3152 if (std::error_code EC = parseOperandBundleTags()) 3153 return EC; 3154 break; 3155 } 3156 continue; 3157 3158 case BitstreamEntry::Record: 3159 // The interesting case. 3160 break; 3161 } 3162 3163 3164 // Read a record. 3165 auto BitCode = Stream.readRecord(Entry.ID, Record); 3166 switch (BitCode) { 3167 default: break; // Default behavior, ignore unknown content. 3168 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3169 if (Record.size() < 1) 3170 return error("Invalid record"); 3171 // Only version #0 and #1 are supported so far. 3172 unsigned module_version = Record[0]; 3173 switch (module_version) { 3174 default: 3175 return error("Invalid value"); 3176 case 0: 3177 UseRelativeIDs = false; 3178 break; 3179 case 1: 3180 UseRelativeIDs = true; 3181 break; 3182 } 3183 break; 3184 } 3185 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3186 std::string S; 3187 if (convertToString(Record, 0, S)) 3188 return error("Invalid record"); 3189 TheModule->setTargetTriple(S); 3190 break; 3191 } 3192 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3193 std::string S; 3194 if (convertToString(Record, 0, S)) 3195 return error("Invalid record"); 3196 TheModule->setDataLayout(S); 3197 break; 3198 } 3199 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3200 std::string S; 3201 if (convertToString(Record, 0, S)) 3202 return error("Invalid record"); 3203 TheModule->setModuleInlineAsm(S); 3204 break; 3205 } 3206 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3207 // FIXME: Remove in 4.0. 3208 std::string S; 3209 if (convertToString(Record, 0, S)) 3210 return error("Invalid record"); 3211 // Ignore value. 3212 break; 3213 } 3214 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3215 std::string S; 3216 if (convertToString(Record, 0, S)) 3217 return error("Invalid record"); 3218 SectionTable.push_back(S); 3219 break; 3220 } 3221 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3222 std::string S; 3223 if (convertToString(Record, 0, S)) 3224 return error("Invalid record"); 3225 GCTable.push_back(S); 3226 break; 3227 } 3228 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3229 if (Record.size() < 2) 3230 return error("Invalid record"); 3231 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3232 unsigned ComdatNameSize = Record[1]; 3233 std::string ComdatName; 3234 ComdatName.reserve(ComdatNameSize); 3235 for (unsigned i = 0; i != ComdatNameSize; ++i) 3236 ComdatName += (char)Record[2 + i]; 3237 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3238 C->setSelectionKind(SK); 3239 ComdatList.push_back(C); 3240 break; 3241 } 3242 // GLOBALVAR: [pointer type, isconst, initid, 3243 // linkage, alignment, section, visibility, threadlocal, 3244 // unnamed_addr, externally_initialized, dllstorageclass, 3245 // comdat] 3246 case bitc::MODULE_CODE_GLOBALVAR: { 3247 if (Record.size() < 6) 3248 return error("Invalid record"); 3249 Type *Ty = getTypeByID(Record[0]); 3250 if (!Ty) 3251 return error("Invalid record"); 3252 bool isConstant = Record[1] & 1; 3253 bool explicitType = Record[1] & 2; 3254 unsigned AddressSpace; 3255 if (explicitType) { 3256 AddressSpace = Record[1] >> 2; 3257 } else { 3258 if (!Ty->isPointerTy()) 3259 return error("Invalid type for value"); 3260 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3261 Ty = cast<PointerType>(Ty)->getElementType(); 3262 } 3263 3264 uint64_t RawLinkage = Record[3]; 3265 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3266 unsigned Alignment; 3267 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3268 return EC; 3269 std::string Section; 3270 if (Record[5]) { 3271 if (Record[5]-1 >= SectionTable.size()) 3272 return error("Invalid ID"); 3273 Section = SectionTable[Record[5]-1]; 3274 } 3275 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3276 // Local linkage must have default visibility. 3277 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3278 // FIXME: Change to an error if non-default in 4.0. 3279 Visibility = getDecodedVisibility(Record[6]); 3280 3281 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3282 if (Record.size() > 7) 3283 TLM = getDecodedThreadLocalMode(Record[7]); 3284 3285 bool UnnamedAddr = false; 3286 if (Record.size() > 8) 3287 UnnamedAddr = Record[8]; 3288 3289 bool ExternallyInitialized = false; 3290 if (Record.size() > 9) 3291 ExternallyInitialized = Record[9]; 3292 3293 GlobalVariable *NewGV = 3294 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3295 TLM, AddressSpace, ExternallyInitialized); 3296 NewGV->setAlignment(Alignment); 3297 if (!Section.empty()) 3298 NewGV->setSection(Section); 3299 NewGV->setVisibility(Visibility); 3300 NewGV->setUnnamedAddr(UnnamedAddr); 3301 3302 if (Record.size() > 10) 3303 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3304 else 3305 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3306 3307 ValueList.push_back(NewGV); 3308 3309 // Remember which value to use for the global initializer. 3310 if (unsigned InitID = Record[2]) 3311 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3312 3313 if (Record.size() > 11) { 3314 if (unsigned ComdatID = Record[11]) { 3315 if (ComdatID > ComdatList.size()) 3316 return error("Invalid global variable comdat ID"); 3317 NewGV->setComdat(ComdatList[ComdatID - 1]); 3318 } 3319 } else if (hasImplicitComdat(RawLinkage)) { 3320 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3321 } 3322 break; 3323 } 3324 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3325 // alignment, section, visibility, gc, unnamed_addr, 3326 // prologuedata, dllstorageclass, comdat, prefixdata] 3327 case bitc::MODULE_CODE_FUNCTION: { 3328 if (Record.size() < 8) 3329 return error("Invalid record"); 3330 Type *Ty = getTypeByID(Record[0]); 3331 if (!Ty) 3332 return error("Invalid record"); 3333 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3334 Ty = PTy->getElementType(); 3335 auto *FTy = dyn_cast<FunctionType>(Ty); 3336 if (!FTy) 3337 return error("Invalid type for value"); 3338 3339 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3340 "", TheModule); 3341 3342 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 3343 bool isProto = Record[2]; 3344 uint64_t RawLinkage = Record[3]; 3345 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3346 Func->setAttributes(getAttributes(Record[4])); 3347 3348 unsigned Alignment; 3349 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3350 return EC; 3351 Func->setAlignment(Alignment); 3352 if (Record[6]) { 3353 if (Record[6]-1 >= SectionTable.size()) 3354 return error("Invalid ID"); 3355 Func->setSection(SectionTable[Record[6]-1]); 3356 } 3357 // Local linkage must have default visibility. 3358 if (!Func->hasLocalLinkage()) 3359 // FIXME: Change to an error if non-default in 4.0. 3360 Func->setVisibility(getDecodedVisibility(Record[7])); 3361 if (Record.size() > 8 && Record[8]) { 3362 if (Record[8]-1 >= GCTable.size()) 3363 return error("Invalid ID"); 3364 Func->setGC(GCTable[Record[8]-1].c_str()); 3365 } 3366 bool UnnamedAddr = false; 3367 if (Record.size() > 9) 3368 UnnamedAddr = Record[9]; 3369 Func->setUnnamedAddr(UnnamedAddr); 3370 if (Record.size() > 10 && Record[10] != 0) 3371 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3372 3373 if (Record.size() > 11) 3374 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3375 else 3376 upgradeDLLImportExportLinkage(Func, RawLinkage); 3377 3378 if (Record.size() > 12) { 3379 if (unsigned ComdatID = Record[12]) { 3380 if (ComdatID > ComdatList.size()) 3381 return error("Invalid function comdat ID"); 3382 Func->setComdat(ComdatList[ComdatID - 1]); 3383 } 3384 } else if (hasImplicitComdat(RawLinkage)) { 3385 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3386 } 3387 3388 if (Record.size() > 13 && Record[13] != 0) 3389 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3390 3391 if (Record.size() > 14 && Record[14] != 0) 3392 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3393 3394 ValueList.push_back(Func); 3395 3396 // If this is a function with a body, remember the prototype we are 3397 // creating now, so that we can match up the body with them later. 3398 if (!isProto) { 3399 Func->setIsMaterializable(true); 3400 FunctionsWithBodies.push_back(Func); 3401 DeferredFunctionInfo[Func] = 0; 3402 } 3403 break; 3404 } 3405 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3406 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3407 case bitc::MODULE_CODE_ALIAS: 3408 case bitc::MODULE_CODE_ALIAS_OLD: { 3409 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3410 if (Record.size() < (3 + (unsigned)NewRecord)) 3411 return error("Invalid record"); 3412 unsigned OpNum = 0; 3413 Type *Ty = getTypeByID(Record[OpNum++]); 3414 if (!Ty) 3415 return error("Invalid record"); 3416 3417 unsigned AddrSpace; 3418 if (!NewRecord) { 3419 auto *PTy = dyn_cast<PointerType>(Ty); 3420 if (!PTy) 3421 return error("Invalid type for value"); 3422 Ty = PTy->getElementType(); 3423 AddrSpace = PTy->getAddressSpace(); 3424 } else { 3425 AddrSpace = Record[OpNum++]; 3426 } 3427 3428 auto Val = Record[OpNum++]; 3429 auto Linkage = Record[OpNum++]; 3430 auto *NewGA = GlobalAlias::create( 3431 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3432 // Old bitcode files didn't have visibility field. 3433 // Local linkage must have default visibility. 3434 if (OpNum != Record.size()) { 3435 auto VisInd = OpNum++; 3436 if (!NewGA->hasLocalLinkage()) 3437 // FIXME: Change to an error if non-default in 4.0. 3438 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3439 } 3440 if (OpNum != Record.size()) 3441 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3442 else 3443 upgradeDLLImportExportLinkage(NewGA, Linkage); 3444 if (OpNum != Record.size()) 3445 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3446 if (OpNum != Record.size()) 3447 NewGA->setUnnamedAddr(Record[OpNum++]); 3448 ValueList.push_back(NewGA); 3449 AliasInits.push_back(std::make_pair(NewGA, Val)); 3450 break; 3451 } 3452 /// MODULE_CODE_PURGEVALS: [numvals] 3453 case bitc::MODULE_CODE_PURGEVALS: 3454 // Trim down the value list to the specified size. 3455 if (Record.size() < 1 || Record[0] > ValueList.size()) 3456 return error("Invalid record"); 3457 ValueList.shrinkTo(Record[0]); 3458 break; 3459 /// MODULE_CODE_VSTOFFSET: [offset] 3460 case bitc::MODULE_CODE_VSTOFFSET: 3461 if (Record.size() < 1) 3462 return error("Invalid record"); 3463 VSTOffset = Record[0]; 3464 break; 3465 } 3466 Record.clear(); 3467 } 3468 } 3469 3470 /// Helper to read the header common to all bitcode files. 3471 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3472 // Sniff for the signature. 3473 if (Stream.Read(8) != 'B' || 3474 Stream.Read(8) != 'C' || 3475 Stream.Read(4) != 0x0 || 3476 Stream.Read(4) != 0xC || 3477 Stream.Read(4) != 0xE || 3478 Stream.Read(4) != 0xD) 3479 return false; 3480 return true; 3481 } 3482 3483 std::error_code 3484 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3485 Module *M, bool ShouldLazyLoadMetadata) { 3486 TheModule = M; 3487 3488 if (std::error_code EC = initStream(std::move(Streamer))) 3489 return EC; 3490 3491 // Sniff for the signature. 3492 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 3493 3494 // We expect a number of well-defined blocks, though we don't necessarily 3495 // need to understand them all. 3496 while (1) { 3497 if (Stream.AtEndOfStream()) { 3498 // We didn't really read a proper Module. 3499 return error("Malformed IR file"); 3500 } 3501 3502 BitstreamEntry Entry = 3503 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3504 3505 if (Entry.Kind != BitstreamEntry::SubBlock) 3506 return error("Malformed block"); 3507 3508 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3509 return parseModule(false, ShouldLazyLoadMetadata); 3510 3511 if (Stream.SkipBlock()) 3512 return error("Invalid record"); 3513 } 3514 } 3515 3516 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3517 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3518 return error("Invalid record"); 3519 3520 SmallVector<uint64_t, 64> Record; 3521 3522 std::string Triple; 3523 // Read all the records for this module. 3524 while (1) { 3525 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3526 3527 switch (Entry.Kind) { 3528 case BitstreamEntry::SubBlock: // Handled for us already. 3529 case BitstreamEntry::Error: 3530 return error("Malformed block"); 3531 case BitstreamEntry::EndBlock: 3532 return Triple; 3533 case BitstreamEntry::Record: 3534 // The interesting case. 3535 break; 3536 } 3537 3538 // Read a record. 3539 switch (Stream.readRecord(Entry.ID, Record)) { 3540 default: break; // Default behavior, ignore unknown content. 3541 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3542 std::string S; 3543 if (convertToString(Record, 0, S)) 3544 return error("Invalid record"); 3545 Triple = S; 3546 break; 3547 } 3548 } 3549 Record.clear(); 3550 } 3551 llvm_unreachable("Exit infinite loop"); 3552 } 3553 3554 ErrorOr<std::string> BitcodeReader::parseTriple() { 3555 if (std::error_code EC = initStream(nullptr)) 3556 return EC; 3557 3558 // Sniff for the signature. 3559 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 3560 3561 // We expect a number of well-defined blocks, though we don't necessarily 3562 // need to understand them all. 3563 while (1) { 3564 BitstreamEntry Entry = Stream.advance(); 3565 3566 switch (Entry.Kind) { 3567 case BitstreamEntry::Error: 3568 return error("Malformed block"); 3569 case BitstreamEntry::EndBlock: 3570 return std::error_code(); 3571 3572 case BitstreamEntry::SubBlock: 3573 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3574 return parseModuleTriple(); 3575 3576 // Ignore other sub-blocks. 3577 if (Stream.SkipBlock()) 3578 return error("Malformed block"); 3579 continue; 3580 3581 case BitstreamEntry::Record: 3582 Stream.skipRecord(Entry.ID); 3583 continue; 3584 } 3585 } 3586 } 3587 3588 /// Parse metadata attachments. 3589 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3590 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3591 return error("Invalid record"); 3592 3593 SmallVector<uint64_t, 64> Record; 3594 while (1) { 3595 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3596 3597 switch (Entry.Kind) { 3598 case BitstreamEntry::SubBlock: // Handled for us already. 3599 case BitstreamEntry::Error: 3600 return error("Malformed block"); 3601 case BitstreamEntry::EndBlock: 3602 return std::error_code(); 3603 case BitstreamEntry::Record: 3604 // The interesting case. 3605 break; 3606 } 3607 3608 // Read a metadata attachment record. 3609 Record.clear(); 3610 switch (Stream.readRecord(Entry.ID, Record)) { 3611 default: // Default behavior: ignore. 3612 break; 3613 case bitc::METADATA_ATTACHMENT: { 3614 unsigned RecordLength = Record.size(); 3615 if (Record.empty()) 3616 return error("Invalid record"); 3617 if (RecordLength % 2 == 0) { 3618 // A function attachment. 3619 for (unsigned I = 0; I != RecordLength; I += 2) { 3620 auto K = MDKindMap.find(Record[I]); 3621 if (K == MDKindMap.end()) 3622 return error("Invalid ID"); 3623 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3624 F.setMetadata(K->second, cast<MDNode>(MD)); 3625 } 3626 continue; 3627 } 3628 3629 // An instruction attachment. 3630 Instruction *Inst = InstructionList[Record[0]]; 3631 for (unsigned i = 1; i != RecordLength; i = i+2) { 3632 unsigned Kind = Record[i]; 3633 DenseMap<unsigned, unsigned>::iterator I = 3634 MDKindMap.find(Kind); 3635 if (I == MDKindMap.end()) 3636 return error("Invalid ID"); 3637 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3638 if (isa<LocalAsMetadata>(Node)) 3639 // Drop the attachment. This used to be legal, but there's no 3640 // upgrade path. 3641 break; 3642 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3643 if (I->second == LLVMContext::MD_tbaa) 3644 InstsWithTBAATag.push_back(Inst); 3645 } 3646 break; 3647 } 3648 } 3649 } 3650 } 3651 3652 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3653 Type *ValType, Type *PtrType) { 3654 if (!isa<PointerType>(PtrType)) 3655 return error(DH, "Load/Store operand is not a pointer type"); 3656 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3657 3658 if (ValType && ValType != ElemType) 3659 return error(DH, "Explicit load/store type does not match pointee type of " 3660 "pointer operand"); 3661 if (!PointerType::isLoadableOrStorableType(ElemType)) 3662 return error(DH, "Cannot load/store from pointer"); 3663 return std::error_code(); 3664 } 3665 3666 /// Lazily parse the specified function body block. 3667 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3668 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3669 return error("Invalid record"); 3670 3671 InstructionList.clear(); 3672 unsigned ModuleValueListSize = ValueList.size(); 3673 unsigned ModuleMDValueListSize = MDValueList.size(); 3674 3675 // Add all the function arguments to the value table. 3676 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3677 ValueList.push_back(I); 3678 3679 unsigned NextValueNo = ValueList.size(); 3680 BasicBlock *CurBB = nullptr; 3681 unsigned CurBBNo = 0; 3682 3683 DebugLoc LastLoc; 3684 auto getLastInstruction = [&]() -> Instruction * { 3685 if (CurBB && !CurBB->empty()) 3686 return &CurBB->back(); 3687 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3688 !FunctionBBs[CurBBNo - 1]->empty()) 3689 return &FunctionBBs[CurBBNo - 1]->back(); 3690 return nullptr; 3691 }; 3692 3693 std::vector<OperandBundleDef> OperandBundles; 3694 3695 // Read all the records. 3696 SmallVector<uint64_t, 64> Record; 3697 while (1) { 3698 BitstreamEntry Entry = Stream.advance(); 3699 3700 switch (Entry.Kind) { 3701 case BitstreamEntry::Error: 3702 return error("Malformed block"); 3703 case BitstreamEntry::EndBlock: 3704 goto OutOfRecordLoop; 3705 3706 case BitstreamEntry::SubBlock: 3707 switch (Entry.ID) { 3708 default: // Skip unknown content. 3709 if (Stream.SkipBlock()) 3710 return error("Invalid record"); 3711 break; 3712 case bitc::CONSTANTS_BLOCK_ID: 3713 if (std::error_code EC = parseConstants()) 3714 return EC; 3715 NextValueNo = ValueList.size(); 3716 break; 3717 case bitc::VALUE_SYMTAB_BLOCK_ID: 3718 if (std::error_code EC = parseValueSymbolTable()) 3719 return EC; 3720 break; 3721 case bitc::METADATA_ATTACHMENT_ID: 3722 if (std::error_code EC = parseMetadataAttachment(*F)) 3723 return EC; 3724 break; 3725 case bitc::METADATA_BLOCK_ID: 3726 if (std::error_code EC = parseMetadata()) 3727 return EC; 3728 break; 3729 case bitc::USELIST_BLOCK_ID: 3730 if (std::error_code EC = parseUseLists()) 3731 return EC; 3732 break; 3733 } 3734 continue; 3735 3736 case BitstreamEntry::Record: 3737 // The interesting case. 3738 break; 3739 } 3740 3741 // Read a record. 3742 Record.clear(); 3743 Instruction *I = nullptr; 3744 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3745 switch (BitCode) { 3746 default: // Default behavior: reject 3747 return error("Invalid value"); 3748 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3749 if (Record.size() < 1 || Record[0] == 0) 3750 return error("Invalid record"); 3751 // Create all the basic blocks for the function. 3752 FunctionBBs.resize(Record[0]); 3753 3754 // See if anything took the address of blocks in this function. 3755 auto BBFRI = BasicBlockFwdRefs.find(F); 3756 if (BBFRI == BasicBlockFwdRefs.end()) { 3757 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3758 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3759 } else { 3760 auto &BBRefs = BBFRI->second; 3761 // Check for invalid basic block references. 3762 if (BBRefs.size() > FunctionBBs.size()) 3763 return error("Invalid ID"); 3764 assert(!BBRefs.empty() && "Unexpected empty array"); 3765 assert(!BBRefs.front() && "Invalid reference to entry block"); 3766 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3767 ++I) 3768 if (I < RE && BBRefs[I]) { 3769 BBRefs[I]->insertInto(F); 3770 FunctionBBs[I] = BBRefs[I]; 3771 } else { 3772 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3773 } 3774 3775 // Erase from the table. 3776 BasicBlockFwdRefs.erase(BBFRI); 3777 } 3778 3779 CurBB = FunctionBBs[0]; 3780 continue; 3781 } 3782 3783 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3784 // This record indicates that the last instruction is at the same 3785 // location as the previous instruction with a location. 3786 I = getLastInstruction(); 3787 3788 if (!I) 3789 return error("Invalid record"); 3790 I->setDebugLoc(LastLoc); 3791 I = nullptr; 3792 continue; 3793 3794 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3795 I = getLastInstruction(); 3796 if (!I || Record.size() < 4) 3797 return error("Invalid record"); 3798 3799 unsigned Line = Record[0], Col = Record[1]; 3800 unsigned ScopeID = Record[2], IAID = Record[3]; 3801 3802 MDNode *Scope = nullptr, *IA = nullptr; 3803 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3804 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3805 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3806 I->setDebugLoc(LastLoc); 3807 I = nullptr; 3808 continue; 3809 } 3810 3811 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3812 unsigned OpNum = 0; 3813 Value *LHS, *RHS; 3814 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3815 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3816 OpNum+1 > Record.size()) 3817 return error("Invalid record"); 3818 3819 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3820 if (Opc == -1) 3821 return error("Invalid record"); 3822 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3823 InstructionList.push_back(I); 3824 if (OpNum < Record.size()) { 3825 if (Opc == Instruction::Add || 3826 Opc == Instruction::Sub || 3827 Opc == Instruction::Mul || 3828 Opc == Instruction::Shl) { 3829 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3830 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3831 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3832 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3833 } else if (Opc == Instruction::SDiv || 3834 Opc == Instruction::UDiv || 3835 Opc == Instruction::LShr || 3836 Opc == Instruction::AShr) { 3837 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3838 cast<BinaryOperator>(I)->setIsExact(true); 3839 } else if (isa<FPMathOperator>(I)) { 3840 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3841 if (FMF.any()) 3842 I->setFastMathFlags(FMF); 3843 } 3844 3845 } 3846 break; 3847 } 3848 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3849 unsigned OpNum = 0; 3850 Value *Op; 3851 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3852 OpNum+2 != Record.size()) 3853 return error("Invalid record"); 3854 3855 Type *ResTy = getTypeByID(Record[OpNum]); 3856 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3857 if (Opc == -1 || !ResTy) 3858 return error("Invalid record"); 3859 Instruction *Temp = nullptr; 3860 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3861 if (Temp) { 3862 InstructionList.push_back(Temp); 3863 CurBB->getInstList().push_back(Temp); 3864 } 3865 } else { 3866 auto CastOp = (Instruction::CastOps)Opc; 3867 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3868 return error("Invalid cast"); 3869 I = CastInst::Create(CastOp, Op, ResTy); 3870 } 3871 InstructionList.push_back(I); 3872 break; 3873 } 3874 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3875 case bitc::FUNC_CODE_INST_GEP_OLD: 3876 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3877 unsigned OpNum = 0; 3878 3879 Type *Ty; 3880 bool InBounds; 3881 3882 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3883 InBounds = Record[OpNum++]; 3884 Ty = getTypeByID(Record[OpNum++]); 3885 } else { 3886 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3887 Ty = nullptr; 3888 } 3889 3890 Value *BasePtr; 3891 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3892 return error("Invalid record"); 3893 3894 if (!Ty) 3895 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3896 ->getElementType(); 3897 else if (Ty != 3898 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3899 ->getElementType()) 3900 return error( 3901 "Explicit gep type does not match pointee type of pointer operand"); 3902 3903 SmallVector<Value*, 16> GEPIdx; 3904 while (OpNum != Record.size()) { 3905 Value *Op; 3906 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3907 return error("Invalid record"); 3908 GEPIdx.push_back(Op); 3909 } 3910 3911 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3912 3913 InstructionList.push_back(I); 3914 if (InBounds) 3915 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3916 break; 3917 } 3918 3919 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3920 // EXTRACTVAL: [opty, opval, n x indices] 3921 unsigned OpNum = 0; 3922 Value *Agg; 3923 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3924 return error("Invalid record"); 3925 3926 unsigned RecSize = Record.size(); 3927 if (OpNum == RecSize) 3928 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3929 3930 SmallVector<unsigned, 4> EXTRACTVALIdx; 3931 Type *CurTy = Agg->getType(); 3932 for (; OpNum != RecSize; ++OpNum) { 3933 bool IsArray = CurTy->isArrayTy(); 3934 bool IsStruct = CurTy->isStructTy(); 3935 uint64_t Index = Record[OpNum]; 3936 3937 if (!IsStruct && !IsArray) 3938 return error("EXTRACTVAL: Invalid type"); 3939 if ((unsigned)Index != Index) 3940 return error("Invalid value"); 3941 if (IsStruct && Index >= CurTy->subtypes().size()) 3942 return error("EXTRACTVAL: Invalid struct index"); 3943 if (IsArray && Index >= CurTy->getArrayNumElements()) 3944 return error("EXTRACTVAL: Invalid array index"); 3945 EXTRACTVALIdx.push_back((unsigned)Index); 3946 3947 if (IsStruct) 3948 CurTy = CurTy->subtypes()[Index]; 3949 else 3950 CurTy = CurTy->subtypes()[0]; 3951 } 3952 3953 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3954 InstructionList.push_back(I); 3955 break; 3956 } 3957 3958 case bitc::FUNC_CODE_INST_INSERTVAL: { 3959 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3960 unsigned OpNum = 0; 3961 Value *Agg; 3962 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3963 return error("Invalid record"); 3964 Value *Val; 3965 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3966 return error("Invalid record"); 3967 3968 unsigned RecSize = Record.size(); 3969 if (OpNum == RecSize) 3970 return error("INSERTVAL: Invalid instruction with 0 indices"); 3971 3972 SmallVector<unsigned, 4> INSERTVALIdx; 3973 Type *CurTy = Agg->getType(); 3974 for (; OpNum != RecSize; ++OpNum) { 3975 bool IsArray = CurTy->isArrayTy(); 3976 bool IsStruct = CurTy->isStructTy(); 3977 uint64_t Index = Record[OpNum]; 3978 3979 if (!IsStruct && !IsArray) 3980 return error("INSERTVAL: Invalid type"); 3981 if ((unsigned)Index != Index) 3982 return error("Invalid value"); 3983 if (IsStruct && Index >= CurTy->subtypes().size()) 3984 return error("INSERTVAL: Invalid struct index"); 3985 if (IsArray && Index >= CurTy->getArrayNumElements()) 3986 return error("INSERTVAL: Invalid array index"); 3987 3988 INSERTVALIdx.push_back((unsigned)Index); 3989 if (IsStruct) 3990 CurTy = CurTy->subtypes()[Index]; 3991 else 3992 CurTy = CurTy->subtypes()[0]; 3993 } 3994 3995 if (CurTy != Val->getType()) 3996 return error("Inserted value type doesn't match aggregate type"); 3997 3998 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3999 InstructionList.push_back(I); 4000 break; 4001 } 4002 4003 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4004 // obsolete form of select 4005 // handles select i1 ... in old bitcode 4006 unsigned OpNum = 0; 4007 Value *TrueVal, *FalseVal, *Cond; 4008 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4009 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4010 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4011 return error("Invalid record"); 4012 4013 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4014 InstructionList.push_back(I); 4015 break; 4016 } 4017 4018 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4019 // new form of select 4020 // handles select i1 or select [N x i1] 4021 unsigned OpNum = 0; 4022 Value *TrueVal, *FalseVal, *Cond; 4023 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4024 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4025 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4026 return error("Invalid record"); 4027 4028 // select condition can be either i1 or [N x i1] 4029 if (VectorType* vector_type = 4030 dyn_cast<VectorType>(Cond->getType())) { 4031 // expect <n x i1> 4032 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4033 return error("Invalid type for value"); 4034 } else { 4035 // expect i1 4036 if (Cond->getType() != Type::getInt1Ty(Context)) 4037 return error("Invalid type for value"); 4038 } 4039 4040 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4041 InstructionList.push_back(I); 4042 break; 4043 } 4044 4045 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4046 unsigned OpNum = 0; 4047 Value *Vec, *Idx; 4048 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4049 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4050 return error("Invalid record"); 4051 if (!Vec->getType()->isVectorTy()) 4052 return error("Invalid type for value"); 4053 I = ExtractElementInst::Create(Vec, Idx); 4054 InstructionList.push_back(I); 4055 break; 4056 } 4057 4058 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4059 unsigned OpNum = 0; 4060 Value *Vec, *Elt, *Idx; 4061 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4062 return error("Invalid record"); 4063 if (!Vec->getType()->isVectorTy()) 4064 return error("Invalid type for value"); 4065 if (popValue(Record, OpNum, NextValueNo, 4066 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4067 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4068 return error("Invalid record"); 4069 I = InsertElementInst::Create(Vec, Elt, Idx); 4070 InstructionList.push_back(I); 4071 break; 4072 } 4073 4074 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4075 unsigned OpNum = 0; 4076 Value *Vec1, *Vec2, *Mask; 4077 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4078 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4079 return error("Invalid record"); 4080 4081 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4082 return error("Invalid record"); 4083 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4084 return error("Invalid type for value"); 4085 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4086 InstructionList.push_back(I); 4087 break; 4088 } 4089 4090 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4091 // Old form of ICmp/FCmp returning bool 4092 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4093 // both legal on vectors but had different behaviour. 4094 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4095 // FCmp/ICmp returning bool or vector of bool 4096 4097 unsigned OpNum = 0; 4098 Value *LHS, *RHS; 4099 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4100 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4101 return error("Invalid record"); 4102 4103 unsigned PredVal = Record[OpNum]; 4104 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4105 FastMathFlags FMF; 4106 if (IsFP && Record.size() > OpNum+1) 4107 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4108 4109 if (OpNum+1 != Record.size()) 4110 return error("Invalid record"); 4111 4112 if (LHS->getType()->isFPOrFPVectorTy()) 4113 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4114 else 4115 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4116 4117 if (FMF.any()) 4118 I->setFastMathFlags(FMF); 4119 InstructionList.push_back(I); 4120 break; 4121 } 4122 4123 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4124 { 4125 unsigned Size = Record.size(); 4126 if (Size == 0) { 4127 I = ReturnInst::Create(Context); 4128 InstructionList.push_back(I); 4129 break; 4130 } 4131 4132 unsigned OpNum = 0; 4133 Value *Op = nullptr; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4135 return error("Invalid record"); 4136 if (OpNum != Record.size()) 4137 return error("Invalid record"); 4138 4139 I = ReturnInst::Create(Context, Op); 4140 InstructionList.push_back(I); 4141 break; 4142 } 4143 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4144 if (Record.size() != 1 && Record.size() != 3) 4145 return error("Invalid record"); 4146 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4147 if (!TrueDest) 4148 return error("Invalid record"); 4149 4150 if (Record.size() == 1) { 4151 I = BranchInst::Create(TrueDest); 4152 InstructionList.push_back(I); 4153 } 4154 else { 4155 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4156 Value *Cond = getValue(Record, 2, NextValueNo, 4157 Type::getInt1Ty(Context)); 4158 if (!FalseDest || !Cond) 4159 return error("Invalid record"); 4160 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4161 InstructionList.push_back(I); 4162 } 4163 break; 4164 } 4165 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4166 if (Record.size() != 1 && Record.size() != 2) 4167 return error("Invalid record"); 4168 unsigned Idx = 0; 4169 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4170 Type::getTokenTy(Context), OC_CleanupPad); 4171 if (!CleanupPad) 4172 return error("Invalid record"); 4173 BasicBlock *UnwindDest = nullptr; 4174 if (Record.size() == 2) { 4175 UnwindDest = getBasicBlock(Record[Idx++]); 4176 if (!UnwindDest) 4177 return error("Invalid record"); 4178 } 4179 4180 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4181 UnwindDest); 4182 InstructionList.push_back(I); 4183 break; 4184 } 4185 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4186 if (Record.size() != 2) 4187 return error("Invalid record"); 4188 unsigned Idx = 0; 4189 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4190 Type::getTokenTy(Context), OC_CatchPad); 4191 if (!CatchPad) 4192 return error("Invalid record"); 4193 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4194 if (!BB) 4195 return error("Invalid record"); 4196 4197 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4198 InstructionList.push_back(I); 4199 break; 4200 } 4201 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4202 if (Record.size() < 3) 4203 return error("Invalid record"); 4204 unsigned Idx = 0; 4205 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4206 if (!NormalBB) 4207 return error("Invalid record"); 4208 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4209 if (!UnwindBB) 4210 return error("Invalid record"); 4211 unsigned NumArgOperands = Record[Idx++]; 4212 SmallVector<Value *, 2> Args; 4213 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4214 Value *Val; 4215 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4216 return error("Invalid record"); 4217 Args.push_back(Val); 4218 } 4219 if (Record.size() != Idx) 4220 return error("Invalid record"); 4221 4222 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4223 InstructionList.push_back(I); 4224 break; 4225 } 4226 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4227 if (Record.size() < 1) 4228 return error("Invalid record"); 4229 unsigned Idx = 0; 4230 bool HasUnwindDest = !!Record[Idx++]; 4231 BasicBlock *UnwindDest = nullptr; 4232 if (HasUnwindDest) { 4233 if (Idx == Record.size()) 4234 return error("Invalid record"); 4235 UnwindDest = getBasicBlock(Record[Idx++]); 4236 if (!UnwindDest) 4237 return error("Invalid record"); 4238 } 4239 unsigned NumArgOperands = Record[Idx++]; 4240 SmallVector<Value *, 2> Args; 4241 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4242 Value *Val; 4243 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4244 return error("Invalid record"); 4245 Args.push_back(Val); 4246 } 4247 if (Record.size() != Idx) 4248 return error("Invalid record"); 4249 4250 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4251 InstructionList.push_back(I); 4252 break; 4253 } 4254 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4255 if (Record.size() < 1) 4256 return error("Invalid record"); 4257 unsigned Idx = 0; 4258 unsigned NumArgOperands = Record[Idx++]; 4259 SmallVector<Value *, 2> Args; 4260 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4261 Value *Val; 4262 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4263 return error("Invalid record"); 4264 Args.push_back(Val); 4265 } 4266 if (Record.size() != Idx) 4267 return error("Invalid record"); 4268 4269 I = CleanupPadInst::Create(Context, Args); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4274 if (Record.size() > 1) 4275 return error("Invalid record"); 4276 BasicBlock *BB = nullptr; 4277 if (Record.size() == 1) { 4278 BB = getBasicBlock(Record[0]); 4279 if (!BB) 4280 return error("Invalid record"); 4281 } 4282 I = CatchEndPadInst::Create(Context, BB); 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4287 if (Record.size() != 1 && Record.size() != 2) 4288 return error("Invalid record"); 4289 unsigned Idx = 0; 4290 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4291 Type::getTokenTy(Context), OC_CleanupPad); 4292 if (!CleanupPad) 4293 return error("Invalid record"); 4294 4295 BasicBlock *BB = nullptr; 4296 if (Record.size() == 2) { 4297 BB = getBasicBlock(Record[Idx++]); 4298 if (!BB) 4299 return error("Invalid record"); 4300 } 4301 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4302 InstructionList.push_back(I); 4303 break; 4304 } 4305 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4306 // Check magic 4307 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4308 // "New" SwitchInst format with case ranges. The changes to write this 4309 // format were reverted but we still recognize bitcode that uses it. 4310 // Hopefully someday we will have support for case ranges and can use 4311 // this format again. 4312 4313 Type *OpTy = getTypeByID(Record[1]); 4314 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4315 4316 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4317 BasicBlock *Default = getBasicBlock(Record[3]); 4318 if (!OpTy || !Cond || !Default) 4319 return error("Invalid record"); 4320 4321 unsigned NumCases = Record[4]; 4322 4323 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4324 InstructionList.push_back(SI); 4325 4326 unsigned CurIdx = 5; 4327 for (unsigned i = 0; i != NumCases; ++i) { 4328 SmallVector<ConstantInt*, 1> CaseVals; 4329 unsigned NumItems = Record[CurIdx++]; 4330 for (unsigned ci = 0; ci != NumItems; ++ci) { 4331 bool isSingleNumber = Record[CurIdx++]; 4332 4333 APInt Low; 4334 unsigned ActiveWords = 1; 4335 if (ValueBitWidth > 64) 4336 ActiveWords = Record[CurIdx++]; 4337 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4338 ValueBitWidth); 4339 CurIdx += ActiveWords; 4340 4341 if (!isSingleNumber) { 4342 ActiveWords = 1; 4343 if (ValueBitWidth > 64) 4344 ActiveWords = Record[CurIdx++]; 4345 APInt High = readWideAPInt( 4346 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4347 CurIdx += ActiveWords; 4348 4349 // FIXME: It is not clear whether values in the range should be 4350 // compared as signed or unsigned values. The partially 4351 // implemented changes that used this format in the past used 4352 // unsigned comparisons. 4353 for ( ; Low.ule(High); ++Low) 4354 CaseVals.push_back(ConstantInt::get(Context, Low)); 4355 } else 4356 CaseVals.push_back(ConstantInt::get(Context, Low)); 4357 } 4358 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4359 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4360 cve = CaseVals.end(); cvi != cve; ++cvi) 4361 SI->addCase(*cvi, DestBB); 4362 } 4363 I = SI; 4364 break; 4365 } 4366 4367 // Old SwitchInst format without case ranges. 4368 4369 if (Record.size() < 3 || (Record.size() & 1) == 0) 4370 return error("Invalid record"); 4371 Type *OpTy = getTypeByID(Record[0]); 4372 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4373 BasicBlock *Default = getBasicBlock(Record[2]); 4374 if (!OpTy || !Cond || !Default) 4375 return error("Invalid record"); 4376 unsigned NumCases = (Record.size()-3)/2; 4377 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4378 InstructionList.push_back(SI); 4379 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4380 ConstantInt *CaseVal = 4381 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4382 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4383 if (!CaseVal || !DestBB) { 4384 delete SI; 4385 return error("Invalid record"); 4386 } 4387 SI->addCase(CaseVal, DestBB); 4388 } 4389 I = SI; 4390 break; 4391 } 4392 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4393 if (Record.size() < 2) 4394 return error("Invalid record"); 4395 Type *OpTy = getTypeByID(Record[0]); 4396 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4397 if (!OpTy || !Address) 4398 return error("Invalid record"); 4399 unsigned NumDests = Record.size()-2; 4400 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4401 InstructionList.push_back(IBI); 4402 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4403 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4404 IBI->addDestination(DestBB); 4405 } else { 4406 delete IBI; 4407 return error("Invalid record"); 4408 } 4409 } 4410 I = IBI; 4411 break; 4412 } 4413 4414 case bitc::FUNC_CODE_INST_INVOKE: { 4415 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4416 if (Record.size() < 4) 4417 return error("Invalid record"); 4418 unsigned OpNum = 0; 4419 AttributeSet PAL = getAttributes(Record[OpNum++]); 4420 unsigned CCInfo = Record[OpNum++]; 4421 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4422 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4423 4424 FunctionType *FTy = nullptr; 4425 if (CCInfo >> 13 & 1 && 4426 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4427 return error("Explicit invoke type is not a function type"); 4428 4429 Value *Callee; 4430 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4431 return error("Invalid record"); 4432 4433 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4434 if (!CalleeTy) 4435 return error("Callee is not a pointer"); 4436 if (!FTy) { 4437 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4438 if (!FTy) 4439 return error("Callee is not of pointer to function type"); 4440 } else if (CalleeTy->getElementType() != FTy) 4441 return error("Explicit invoke type does not match pointee type of " 4442 "callee operand"); 4443 if (Record.size() < FTy->getNumParams() + OpNum) 4444 return error("Insufficient operands to call"); 4445 4446 SmallVector<Value*, 16> Ops; 4447 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4448 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4449 FTy->getParamType(i))); 4450 if (!Ops.back()) 4451 return error("Invalid record"); 4452 } 4453 4454 if (!FTy->isVarArg()) { 4455 if (Record.size() != OpNum) 4456 return error("Invalid record"); 4457 } else { 4458 // Read type/value pairs for varargs params. 4459 while (OpNum != Record.size()) { 4460 Value *Op; 4461 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4462 return error("Invalid record"); 4463 Ops.push_back(Op); 4464 } 4465 } 4466 4467 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4468 OperandBundles.clear(); 4469 InstructionList.push_back(I); 4470 cast<InvokeInst>(I) 4471 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 4472 cast<InvokeInst>(I)->setAttributes(PAL); 4473 break; 4474 } 4475 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4476 unsigned Idx = 0; 4477 Value *Val = nullptr; 4478 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4479 return error("Invalid record"); 4480 I = ResumeInst::Create(Val); 4481 InstructionList.push_back(I); 4482 break; 4483 } 4484 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4485 I = new UnreachableInst(Context); 4486 InstructionList.push_back(I); 4487 break; 4488 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4489 if (Record.size() < 1 || ((Record.size()-1)&1)) 4490 return error("Invalid record"); 4491 Type *Ty = getTypeByID(Record[0]); 4492 if (!Ty) 4493 return error("Invalid record"); 4494 4495 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4496 InstructionList.push_back(PN); 4497 4498 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4499 Value *V; 4500 // With the new function encoding, it is possible that operands have 4501 // negative IDs (for forward references). Use a signed VBR 4502 // representation to keep the encoding small. 4503 if (UseRelativeIDs) 4504 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4505 else 4506 V = getValue(Record, 1+i, NextValueNo, Ty); 4507 BasicBlock *BB = getBasicBlock(Record[2+i]); 4508 if (!V || !BB) 4509 return error("Invalid record"); 4510 PN->addIncoming(V, BB); 4511 } 4512 I = PN; 4513 break; 4514 } 4515 4516 case bitc::FUNC_CODE_INST_LANDINGPAD: 4517 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4518 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4519 unsigned Idx = 0; 4520 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4521 if (Record.size() < 3) 4522 return error("Invalid record"); 4523 } else { 4524 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4525 if (Record.size() < 4) 4526 return error("Invalid record"); 4527 } 4528 Type *Ty = getTypeByID(Record[Idx++]); 4529 if (!Ty) 4530 return error("Invalid record"); 4531 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4532 Value *PersFn = nullptr; 4533 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4534 return error("Invalid record"); 4535 4536 if (!F->hasPersonalityFn()) 4537 F->setPersonalityFn(cast<Constant>(PersFn)); 4538 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4539 return error("Personality function mismatch"); 4540 } 4541 4542 bool IsCleanup = !!Record[Idx++]; 4543 unsigned NumClauses = Record[Idx++]; 4544 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4545 LP->setCleanup(IsCleanup); 4546 for (unsigned J = 0; J != NumClauses; ++J) { 4547 LandingPadInst::ClauseType CT = 4548 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4549 Value *Val; 4550 4551 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4552 delete LP; 4553 return error("Invalid record"); 4554 } 4555 4556 assert((CT != LandingPadInst::Catch || 4557 !isa<ArrayType>(Val->getType())) && 4558 "Catch clause has a invalid type!"); 4559 assert((CT != LandingPadInst::Filter || 4560 isa<ArrayType>(Val->getType())) && 4561 "Filter clause has invalid type!"); 4562 LP->addClause(cast<Constant>(Val)); 4563 } 4564 4565 I = LP; 4566 InstructionList.push_back(I); 4567 break; 4568 } 4569 4570 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4571 if (Record.size() != 4) 4572 return error("Invalid record"); 4573 uint64_t AlignRecord = Record[3]; 4574 const uint64_t InAllocaMask = uint64_t(1) << 5; 4575 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4576 // Reserve bit 7 for SwiftError flag. 4577 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4578 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4579 bool InAlloca = AlignRecord & InAllocaMask; 4580 Type *Ty = getTypeByID(Record[0]); 4581 if ((AlignRecord & ExplicitTypeMask) == 0) { 4582 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4583 if (!PTy) 4584 return error("Old-style alloca with a non-pointer type"); 4585 Ty = PTy->getElementType(); 4586 } 4587 Type *OpTy = getTypeByID(Record[1]); 4588 Value *Size = getFnValueByID(Record[2], OpTy); 4589 unsigned Align; 4590 if (std::error_code EC = 4591 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4592 return EC; 4593 } 4594 if (!Ty || !Size) 4595 return error("Invalid record"); 4596 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4597 AI->setUsedWithInAlloca(InAlloca); 4598 I = AI; 4599 InstructionList.push_back(I); 4600 break; 4601 } 4602 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4603 unsigned OpNum = 0; 4604 Value *Op; 4605 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4606 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4607 return error("Invalid record"); 4608 4609 Type *Ty = nullptr; 4610 if (OpNum + 3 == Record.size()) 4611 Ty = getTypeByID(Record[OpNum++]); 4612 if (std::error_code EC = 4613 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4614 return EC; 4615 if (!Ty) 4616 Ty = cast<PointerType>(Op->getType())->getElementType(); 4617 4618 unsigned Align; 4619 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4620 return EC; 4621 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4622 4623 InstructionList.push_back(I); 4624 break; 4625 } 4626 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4627 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4628 unsigned OpNum = 0; 4629 Value *Op; 4630 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4631 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4632 return error("Invalid record"); 4633 4634 Type *Ty = nullptr; 4635 if (OpNum + 5 == Record.size()) 4636 Ty = getTypeByID(Record[OpNum++]); 4637 if (std::error_code EC = 4638 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4639 return EC; 4640 if (!Ty) 4641 Ty = cast<PointerType>(Op->getType())->getElementType(); 4642 4643 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4644 if (Ordering == NotAtomic || Ordering == Release || 4645 Ordering == AcquireRelease) 4646 return error("Invalid record"); 4647 if (Ordering != NotAtomic && Record[OpNum] == 0) 4648 return error("Invalid record"); 4649 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4650 4651 unsigned Align; 4652 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4653 return EC; 4654 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4655 4656 InstructionList.push_back(I); 4657 break; 4658 } 4659 case bitc::FUNC_CODE_INST_STORE: 4660 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4661 unsigned OpNum = 0; 4662 Value *Val, *Ptr; 4663 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4664 (BitCode == bitc::FUNC_CODE_INST_STORE 4665 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4666 : popValue(Record, OpNum, NextValueNo, 4667 cast<PointerType>(Ptr->getType())->getElementType(), 4668 Val)) || 4669 OpNum + 2 != Record.size()) 4670 return error("Invalid record"); 4671 4672 if (std::error_code EC = typeCheckLoadStoreInst( 4673 DiagnosticHandler, Val->getType(), Ptr->getType())) 4674 return EC; 4675 unsigned Align; 4676 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4677 return EC; 4678 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4679 InstructionList.push_back(I); 4680 break; 4681 } 4682 case bitc::FUNC_CODE_INST_STOREATOMIC: 4683 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4684 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4685 unsigned OpNum = 0; 4686 Value *Val, *Ptr; 4687 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4688 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4689 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4690 : popValue(Record, OpNum, NextValueNo, 4691 cast<PointerType>(Ptr->getType())->getElementType(), 4692 Val)) || 4693 OpNum + 4 != Record.size()) 4694 return error("Invalid record"); 4695 4696 if (std::error_code EC = typeCheckLoadStoreInst( 4697 DiagnosticHandler, Val->getType(), Ptr->getType())) 4698 return EC; 4699 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4700 if (Ordering == NotAtomic || Ordering == Acquire || 4701 Ordering == AcquireRelease) 4702 return error("Invalid record"); 4703 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4704 if (Ordering != NotAtomic && Record[OpNum] == 0) 4705 return error("Invalid record"); 4706 4707 unsigned Align; 4708 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4709 return EC; 4710 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4711 InstructionList.push_back(I); 4712 break; 4713 } 4714 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4715 case bitc::FUNC_CODE_INST_CMPXCHG: { 4716 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4717 // failureordering?, isweak?] 4718 unsigned OpNum = 0; 4719 Value *Ptr, *Cmp, *New; 4720 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4721 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4722 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4723 : popValue(Record, OpNum, NextValueNo, 4724 cast<PointerType>(Ptr->getType())->getElementType(), 4725 Cmp)) || 4726 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4727 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4728 return error("Invalid record"); 4729 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4730 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4731 return error("Invalid record"); 4732 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4733 4734 if (std::error_code EC = typeCheckLoadStoreInst( 4735 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4736 return EC; 4737 AtomicOrdering FailureOrdering; 4738 if (Record.size() < 7) 4739 FailureOrdering = 4740 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4741 else 4742 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4743 4744 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4745 SynchScope); 4746 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4747 4748 if (Record.size() < 8) { 4749 // Before weak cmpxchgs existed, the instruction simply returned the 4750 // value loaded from memory, so bitcode files from that era will be 4751 // expecting the first component of a modern cmpxchg. 4752 CurBB->getInstList().push_back(I); 4753 I = ExtractValueInst::Create(I, 0); 4754 } else { 4755 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4756 } 4757 4758 InstructionList.push_back(I); 4759 break; 4760 } 4761 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4762 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4763 unsigned OpNum = 0; 4764 Value *Ptr, *Val; 4765 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4766 popValue(Record, OpNum, NextValueNo, 4767 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4768 OpNum+4 != Record.size()) 4769 return error("Invalid record"); 4770 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4771 if (Operation < AtomicRMWInst::FIRST_BINOP || 4772 Operation > AtomicRMWInst::LAST_BINOP) 4773 return error("Invalid record"); 4774 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4775 if (Ordering == NotAtomic || Ordering == Unordered) 4776 return error("Invalid record"); 4777 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4778 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4779 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4780 InstructionList.push_back(I); 4781 break; 4782 } 4783 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4784 if (2 != Record.size()) 4785 return error("Invalid record"); 4786 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4787 if (Ordering == NotAtomic || Ordering == Unordered || 4788 Ordering == Monotonic) 4789 return error("Invalid record"); 4790 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4791 I = new FenceInst(Context, Ordering, SynchScope); 4792 InstructionList.push_back(I); 4793 break; 4794 } 4795 case bitc::FUNC_CODE_INST_CALL: { 4796 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4797 if (Record.size() < 3) 4798 return error("Invalid record"); 4799 4800 unsigned OpNum = 0; 4801 AttributeSet PAL = getAttributes(Record[OpNum++]); 4802 unsigned CCInfo = Record[OpNum++]; 4803 4804 FunctionType *FTy = nullptr; 4805 if (CCInfo >> 15 & 1 && 4806 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4807 return error("Explicit call type is not a function type"); 4808 4809 Value *Callee; 4810 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4811 return error("Invalid record"); 4812 4813 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4814 if (!OpTy) 4815 return error("Callee is not a pointer type"); 4816 if (!FTy) { 4817 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4818 if (!FTy) 4819 return error("Callee is not of pointer to function type"); 4820 } else if (OpTy->getElementType() != FTy) 4821 return error("Explicit call type does not match pointee type of " 4822 "callee operand"); 4823 if (Record.size() < FTy->getNumParams() + OpNum) 4824 return error("Insufficient operands to call"); 4825 4826 SmallVector<Value*, 16> Args; 4827 // Read the fixed params. 4828 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4829 if (FTy->getParamType(i)->isLabelTy()) 4830 Args.push_back(getBasicBlock(Record[OpNum])); 4831 else 4832 Args.push_back(getValue(Record, OpNum, NextValueNo, 4833 FTy->getParamType(i))); 4834 if (!Args.back()) 4835 return error("Invalid record"); 4836 } 4837 4838 // Read type/value pairs for varargs params. 4839 if (!FTy->isVarArg()) { 4840 if (OpNum != Record.size()) 4841 return error("Invalid record"); 4842 } else { 4843 while (OpNum != Record.size()) { 4844 Value *Op; 4845 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4846 return error("Invalid record"); 4847 Args.push_back(Op); 4848 } 4849 } 4850 4851 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4852 OperandBundles.clear(); 4853 InstructionList.push_back(I); 4854 cast<CallInst>(I)->setCallingConv( 4855 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4856 CallInst::TailCallKind TCK = CallInst::TCK_None; 4857 if (CCInfo & 1) 4858 TCK = CallInst::TCK_Tail; 4859 if (CCInfo & (1 << 14)) 4860 TCK = CallInst::TCK_MustTail; 4861 cast<CallInst>(I)->setTailCallKind(TCK); 4862 cast<CallInst>(I)->setAttributes(PAL); 4863 break; 4864 } 4865 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4866 if (Record.size() < 3) 4867 return error("Invalid record"); 4868 Type *OpTy = getTypeByID(Record[0]); 4869 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4870 Type *ResTy = getTypeByID(Record[2]); 4871 if (!OpTy || !Op || !ResTy) 4872 return error("Invalid record"); 4873 I = new VAArgInst(Op, ResTy); 4874 InstructionList.push_back(I); 4875 break; 4876 } 4877 4878 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4879 // A call or an invoke can be optionally prefixed with some variable 4880 // number of operand bundle blocks. These blocks are read into 4881 // OperandBundles and consumed at the next call or invoke instruction. 4882 4883 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4884 return error("Invalid record"); 4885 4886 OperandBundles.emplace_back(); 4887 OperandBundles.back().Tag = BundleTags[Record[0]]; 4888 4889 std::vector<Value *> &Inputs = OperandBundles.back().Inputs; 4890 4891 unsigned OpNum = 1; 4892 while (OpNum != Record.size()) { 4893 Value *Op; 4894 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4895 return error("Invalid record"); 4896 Inputs.push_back(Op); 4897 } 4898 4899 continue; 4900 } 4901 } 4902 4903 // Add instruction to end of current BB. If there is no current BB, reject 4904 // this file. 4905 if (!CurBB) { 4906 delete I; 4907 return error("Invalid instruction with no BB"); 4908 } 4909 if (!OperandBundles.empty()) { 4910 delete I; 4911 return error("Operand bundles found with no consumer"); 4912 } 4913 CurBB->getInstList().push_back(I); 4914 4915 // If this was a terminator instruction, move to the next block. 4916 if (isa<TerminatorInst>(I)) { 4917 ++CurBBNo; 4918 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4919 } 4920 4921 // Non-void values get registered in the value table for future use. 4922 if (I && !I->getType()->isVoidTy()) 4923 if (ValueList.assignValue(I, NextValueNo++)) 4924 return error("Invalid forward reference"); 4925 } 4926 4927 OutOfRecordLoop: 4928 4929 if (!OperandBundles.empty()) 4930 return error("Operand bundles found with no consumer"); 4931 4932 // Check the function list for unresolved values. 4933 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4934 if (!A->getParent()) { 4935 // We found at least one unresolved value. Nuke them all to avoid leaks. 4936 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4937 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4938 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4939 delete A; 4940 } 4941 } 4942 return error("Never resolved value found in function"); 4943 } 4944 } 4945 4946 // FIXME: Check for unresolved forward-declared metadata references 4947 // and clean up leaks. 4948 4949 // Trim the value list down to the size it was before we parsed this function. 4950 ValueList.shrinkTo(ModuleValueListSize); 4951 MDValueList.shrinkTo(ModuleMDValueListSize); 4952 std::vector<BasicBlock*>().swap(FunctionBBs); 4953 return std::error_code(); 4954 } 4955 4956 /// Find the function body in the bitcode stream 4957 std::error_code BitcodeReader::findFunctionInStream( 4958 Function *F, 4959 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4960 while (DeferredFunctionInfoIterator->second == 0) { 4961 // This is the fallback handling for the old format bitcode that 4962 // didn't contain the function index in the VST. Assert if we end up 4963 // here for the new format (which is the only time the VSTOffset would 4964 // be non-zero). 4965 assert(VSTOffset == 0); 4966 if (Stream.AtEndOfStream()) 4967 return error("Could not find function in stream"); 4968 // ParseModule will parse the next body in the stream and set its 4969 // position in the DeferredFunctionInfo map. 4970 if (std::error_code EC = parseModule(true)) 4971 return EC; 4972 } 4973 return std::error_code(); 4974 } 4975 4976 //===----------------------------------------------------------------------===// 4977 // GVMaterializer implementation 4978 //===----------------------------------------------------------------------===// 4979 4980 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4981 4982 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4983 if (std::error_code EC = materializeMetadata()) 4984 return EC; 4985 4986 Function *F = dyn_cast<Function>(GV); 4987 // If it's not a function or is already material, ignore the request. 4988 if (!F || !F->isMaterializable()) 4989 return std::error_code(); 4990 4991 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4992 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4993 // If its position is recorded as 0, its body is somewhere in the stream 4994 // but we haven't seen it yet. 4995 if (DFII->second == 0) 4996 if (std::error_code EC = findFunctionInStream(F, DFII)) 4997 return EC; 4998 4999 // Move the bit stream to the saved position of the deferred function body. 5000 Stream.JumpToBit(DFII->second); 5001 5002 if (std::error_code EC = parseFunctionBody(F)) 5003 return EC; 5004 F->setIsMaterializable(false); 5005 5006 if (StripDebugInfo) 5007 stripDebugInfo(*F); 5008 5009 // Upgrade any old intrinsic calls in the function. 5010 for (auto &I : UpgradedIntrinsics) { 5011 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5012 User *U = *UI; 5013 ++UI; 5014 if (CallInst *CI = dyn_cast<CallInst>(U)) 5015 UpgradeIntrinsicCall(CI, I.second); 5016 } 5017 } 5018 5019 // Bring in any functions that this function forward-referenced via 5020 // blockaddresses. 5021 return materializeForwardReferencedFunctions(); 5022 } 5023 5024 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5025 const Function *F = dyn_cast<Function>(GV); 5026 if (!F || F->isDeclaration()) 5027 return false; 5028 5029 // Dematerializing F would leave dangling references that wouldn't be 5030 // reconnected on re-materialization. 5031 if (BlockAddressesTaken.count(F)) 5032 return false; 5033 5034 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5035 } 5036 5037 void BitcodeReader::dematerialize(GlobalValue *GV) { 5038 Function *F = dyn_cast<Function>(GV); 5039 // If this function isn't dematerializable, this is a noop. 5040 if (!F || !isDematerializable(F)) 5041 return; 5042 5043 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5044 5045 // Just forget the function body, we can remat it later. 5046 F->dropAllReferences(); 5047 F->setIsMaterializable(true); 5048 } 5049 5050 std::error_code BitcodeReader::materializeModule(Module *M) { 5051 assert(M == TheModule && 5052 "Can only Materialize the Module this BitcodeReader is attached to."); 5053 5054 if (std::error_code EC = materializeMetadata()) 5055 return EC; 5056 5057 // Promise to materialize all forward references. 5058 WillMaterializeAllForwardRefs = true; 5059 5060 // Iterate over the module, deserializing any functions that are still on 5061 // disk. 5062 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 5063 F != E; ++F) { 5064 if (std::error_code EC = materialize(F)) 5065 return EC; 5066 } 5067 // At this point, if there are any function bodies, the current bit is 5068 // pointing to the END_BLOCK record after them. Now make sure the rest 5069 // of the bits in the module have been read. 5070 if (NextUnreadBit) 5071 parseModule(true); 5072 5073 // Check that all block address forward references got resolved (as we 5074 // promised above). 5075 if (!BasicBlockFwdRefs.empty()) 5076 return error("Never resolved function from blockaddress"); 5077 5078 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5079 // delete the old functions to clean up. We can't do this unless the entire 5080 // module is materialized because there could always be another function body 5081 // with calls to the old function. 5082 for (auto &I : UpgradedIntrinsics) { 5083 for (auto *U : I.first->users()) { 5084 if (CallInst *CI = dyn_cast<CallInst>(U)) 5085 UpgradeIntrinsicCall(CI, I.second); 5086 } 5087 if (!I.first->use_empty()) 5088 I.first->replaceAllUsesWith(I.second); 5089 I.first->eraseFromParent(); 5090 } 5091 UpgradedIntrinsics.clear(); 5092 5093 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5094 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5095 5096 UpgradeDebugInfo(*M); 5097 return std::error_code(); 5098 } 5099 5100 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5101 return IdentifiedStructTypes; 5102 } 5103 5104 std::error_code 5105 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5106 if (Streamer) 5107 return initLazyStream(std::move(Streamer)); 5108 return initStreamFromBuffer(); 5109 } 5110 5111 std::error_code BitcodeReader::initStreamFromBuffer() { 5112 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5113 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5114 5115 if (Buffer->getBufferSize() & 3) 5116 return error("Invalid bitcode signature"); 5117 5118 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5119 // The magic number is 0x0B17C0DE stored in little endian. 5120 if (isBitcodeWrapper(BufPtr, BufEnd)) 5121 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5122 return error("Invalid bitcode wrapper header"); 5123 5124 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5125 Stream.init(&*StreamFile); 5126 5127 return std::error_code(); 5128 } 5129 5130 std::error_code 5131 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5132 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5133 // see it. 5134 auto OwnedBytes = 5135 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5136 StreamingMemoryObject &Bytes = *OwnedBytes; 5137 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5138 Stream.init(&*StreamFile); 5139 5140 unsigned char buf[16]; 5141 if (Bytes.readBytes(buf, 16, 0) != 16) 5142 return error("Invalid bitcode signature"); 5143 5144 if (!isBitcode(buf, buf + 16)) 5145 return error("Invalid bitcode signature"); 5146 5147 if (isBitcodeWrapper(buf, buf + 4)) { 5148 const unsigned char *bitcodeStart = buf; 5149 const unsigned char *bitcodeEnd = buf + 16; 5150 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5151 Bytes.dropLeadingBytes(bitcodeStart - buf); 5152 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5153 } 5154 return std::error_code(); 5155 } 5156 5157 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5158 const Twine &Message) { 5159 return ::error(DiagnosticHandler, make_error_code(E), Message); 5160 } 5161 5162 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5163 return ::error(DiagnosticHandler, 5164 make_error_code(BitcodeError::CorruptedBitcode), Message); 5165 } 5166 5167 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5168 return ::error(DiagnosticHandler, make_error_code(E)); 5169 } 5170 5171 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5172 MemoryBuffer *Buffer, LLVMContext &Context, 5173 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5174 bool CheckFuncSummaryPresenceOnly) 5175 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5176 Buffer(Buffer), 5177 IsLazy(IsLazy), 5178 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5179 5180 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5181 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler, 5182 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5183 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5184 Buffer(nullptr), 5185 IsLazy(IsLazy), 5186 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5187 5188 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5189 5190 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5191 5192 // Specialized value symbol table parser used when reading function index 5193 // blocks where we don't actually create global values. 5194 // At the end of this routine the function index is populated with a map 5195 // from function name to FunctionInfo. The function info contains 5196 // the function block's bitcode offset as well as the offset into the 5197 // function summary section. 5198 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5199 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5200 return error("Invalid record"); 5201 5202 SmallVector<uint64_t, 64> Record; 5203 5204 // Read all the records for this value table. 5205 SmallString<128> ValueName; 5206 while (1) { 5207 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5208 5209 switch (Entry.Kind) { 5210 case BitstreamEntry::SubBlock: // Handled for us already. 5211 case BitstreamEntry::Error: 5212 return error("Malformed block"); 5213 case BitstreamEntry::EndBlock: 5214 return std::error_code(); 5215 case BitstreamEntry::Record: 5216 // The interesting case. 5217 break; 5218 } 5219 5220 // Read a record. 5221 Record.clear(); 5222 switch (Stream.readRecord(Entry.ID, Record)) { 5223 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5224 break; 5225 case bitc::VST_CODE_FNENTRY: { 5226 // VST_FNENTRY: [valueid, offset, namechar x N] 5227 if (convertToString(Record, 2, ValueName)) 5228 return error("Invalid record"); 5229 unsigned ValueID = Record[0]; 5230 uint64_t FuncOffset = Record[1]; 5231 std::unique_ptr<FunctionInfo> FuncInfo = 5232 llvm::make_unique<FunctionInfo>(FuncOffset); 5233 if (foundFuncSummary() && !IsLazy) { 5234 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5235 SummaryMap.find(ValueID); 5236 assert(SMI != SummaryMap.end() && "Summary info not found"); 5237 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5238 } 5239 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5240 5241 ValueName.clear(); 5242 break; 5243 } 5244 case bitc::VST_CODE_COMBINED_FNENTRY: { 5245 // VST_FNENTRY: [offset, namechar x N] 5246 if (convertToString(Record, 1, ValueName)) 5247 return error("Invalid record"); 5248 uint64_t FuncSummaryOffset = Record[0]; 5249 std::unique_ptr<FunctionInfo> FuncInfo = 5250 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5251 if (foundFuncSummary() && !IsLazy) { 5252 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5253 SummaryMap.find(FuncSummaryOffset); 5254 assert(SMI != SummaryMap.end() && "Summary info not found"); 5255 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5256 } 5257 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5258 5259 ValueName.clear(); 5260 break; 5261 } 5262 } 5263 } 5264 } 5265 5266 // Parse just the blocks needed for function index building out of the module. 5267 // At the end of this routine the function Index is populated with a map 5268 // from function name to FunctionInfo. The function info contains 5269 // either the parsed function summary information (when parsing summaries 5270 // eagerly), or just to the function summary record's offset 5271 // if parsing lazily (IsLazy). 5272 std::error_code FunctionIndexBitcodeReader::parseModule() { 5273 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5274 return error("Invalid record"); 5275 5276 // Read the function index for this module. 5277 while (1) { 5278 BitstreamEntry Entry = Stream.advance(); 5279 5280 switch (Entry.Kind) { 5281 case BitstreamEntry::Error: 5282 return error("Malformed block"); 5283 case BitstreamEntry::EndBlock: 5284 return std::error_code(); 5285 5286 case BitstreamEntry::SubBlock: 5287 if (CheckFuncSummaryPresenceOnly) { 5288 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5289 SeenFuncSummary = true; 5290 if (Stream.SkipBlock()) return error("Invalid record"); 5291 // No need to parse the rest since we found the summary. 5292 return std::error_code(); 5293 } 5294 switch (Entry.ID) { 5295 default: // Skip unknown content. 5296 if (Stream.SkipBlock()) return error("Invalid record"); 5297 break; 5298 case bitc::BLOCKINFO_BLOCK_ID: 5299 // Need to parse these to get abbrev ids (e.g. for VST) 5300 if (Stream.ReadBlockInfoBlock()) return error("Malformed block"); 5301 break; 5302 case bitc::VALUE_SYMTAB_BLOCK_ID: 5303 if (std::error_code EC = parseValueSymbolTable()) return EC; 5304 break; 5305 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5306 SeenFuncSummary = true; 5307 if (IsLazy) { 5308 // Lazy parsing of summary info, skip it. 5309 if (Stream.SkipBlock()) return error("Invalid record"); 5310 } else if (std::error_code EC = parseEntireSummary()) 5311 return EC; 5312 break; 5313 case bitc::MODULE_STRTAB_BLOCK_ID: 5314 if (std::error_code EC = parseModuleStringTable()) return EC; 5315 break; 5316 } 5317 continue; 5318 5319 case BitstreamEntry::Record: 5320 Stream.skipRecord(Entry.ID); 5321 continue; 5322 } 5323 } 5324 } 5325 5326 // Eagerly parse the entire function summary block (i.e. for all functions 5327 // in the index). This populates the FunctionSummary objects in 5328 // the index. 5329 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5330 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5331 return error("Invalid record"); 5332 5333 SmallVector<uint64_t, 64> Record; 5334 5335 while (1) { 5336 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5337 5338 switch (Entry.Kind) { 5339 case BitstreamEntry::SubBlock: // Handled for us already. 5340 case BitstreamEntry::Error: 5341 return error("Malformed block"); 5342 case BitstreamEntry::EndBlock: 5343 return std::error_code(); 5344 case BitstreamEntry::Record: 5345 // The interesting case. 5346 break; 5347 } 5348 5349 // Read a record. The record format depends on whether this 5350 // is a per-module index or a combined index file. In the per-module 5351 // case the records contain the associated value's ID for correlation 5352 // with VST entries. In the combined index the correlation is done 5353 // via the bitcode offset of the summary records (which were saved 5354 // in the combined index VST entries). The records also contain 5355 // information used for ThinLTO renaming and importing. 5356 Record.clear(); 5357 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5358 switch (Stream.readRecord(Entry.ID, Record)) { 5359 default: // Default behavior: ignore. 5360 break; 5361 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5362 case bitc::FS_CODE_PERMODULE_ENTRY: { 5363 unsigned ValueID = Record[0]; 5364 bool IsLocal = Record[1]; 5365 unsigned InstCount = Record[2]; 5366 std::unique_ptr<FunctionSummary> FS = 5367 llvm::make_unique<FunctionSummary>(InstCount); 5368 FS->setLocalFunction(IsLocal); 5369 // The module path string ref set in the summary must be owned by the 5370 // index's module string table. Since we don't have a module path 5371 // string table section in the per-module index, we create a single 5372 // module path string table entry with an empty (0) ID to take 5373 // ownership. 5374 FS->setModulePath( 5375 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5376 SummaryMap[ValueID] = std::move(FS); 5377 } 5378 // FS_COMBINED_ENTRY: [modid, instcount] 5379 case bitc::FS_CODE_COMBINED_ENTRY: { 5380 uint64_t ModuleId = Record[0]; 5381 unsigned InstCount = Record[1]; 5382 std::unique_ptr<FunctionSummary> FS = 5383 llvm::make_unique<FunctionSummary>(InstCount); 5384 FS->setModulePath(ModuleIdMap[ModuleId]); 5385 SummaryMap[CurRecordBit] = std::move(FS); 5386 } 5387 } 5388 } 5389 llvm_unreachable("Exit infinite loop"); 5390 } 5391 5392 // Parse the module string table block into the Index. 5393 // This populates the ModulePathStringTable map in the index. 5394 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5395 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5396 return error("Invalid record"); 5397 5398 SmallVector<uint64_t, 64> Record; 5399 5400 SmallString<128> ModulePath; 5401 while (1) { 5402 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5403 5404 switch (Entry.Kind) { 5405 case BitstreamEntry::SubBlock: // Handled for us already. 5406 case BitstreamEntry::Error: 5407 return error("Malformed block"); 5408 case BitstreamEntry::EndBlock: 5409 return std::error_code(); 5410 case BitstreamEntry::Record: 5411 // The interesting case. 5412 break; 5413 } 5414 5415 Record.clear(); 5416 switch (Stream.readRecord(Entry.ID, Record)) { 5417 default: // Default behavior: ignore. 5418 break; 5419 case bitc::MST_CODE_ENTRY: { 5420 // MST_ENTRY: [modid, namechar x N] 5421 if (convertToString(Record, 1, ModulePath)) 5422 return error("Invalid record"); 5423 uint64_t ModuleId = Record[0]; 5424 StringRef ModulePathInMap = 5425 TheIndex->addModulePath(ModulePath, ModuleId); 5426 ModuleIdMap[ModuleId] = ModulePathInMap; 5427 ModulePath.clear(); 5428 break; 5429 } 5430 } 5431 } 5432 llvm_unreachable("Exit infinite loop"); 5433 } 5434 5435 // Parse the function info index from the bitcode streamer into the given index. 5436 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5437 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5438 TheIndex = I; 5439 5440 if (std::error_code EC = initStream(std::move(Streamer))) return EC; 5441 5442 // Sniff for the signature. 5443 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 5444 5445 // We expect a number of well-defined blocks, though we don't necessarily 5446 // need to understand them all. 5447 while (1) { 5448 if (Stream.AtEndOfStream()) { 5449 // We didn't really read a proper Module block. 5450 return error("Malformed block"); 5451 } 5452 5453 BitstreamEntry Entry = 5454 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5455 5456 if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block"); 5457 5458 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5459 // building the function summary index. 5460 if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule(); 5461 5462 if (Stream.SkipBlock()) return error("Invalid record"); 5463 } 5464 } 5465 5466 // Parse the function information at the given offset in the buffer into 5467 // the index. Used to support lazy parsing of function summaries from the 5468 // combined index during importing. 5469 // TODO: This function is not yet complete as it won't have a consumer 5470 // until ThinLTO function importing is added. 5471 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5472 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5473 size_t FunctionSummaryOffset) { 5474 TheIndex = I; 5475 5476 if (std::error_code EC = initStream(std::move(Streamer))) return EC; 5477 5478 // Sniff for the signature. 5479 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 5480 5481 Stream.JumpToBit(FunctionSummaryOffset); 5482 5483 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5484 5485 switch (Entry.Kind) { 5486 default: 5487 return error("Malformed block"); 5488 case BitstreamEntry::Record: 5489 // The expected case. 5490 break; 5491 } 5492 5493 // TODO: Read a record. This interface will be completed when ThinLTO 5494 // importing is added so that it can be tested. 5495 SmallVector<uint64_t, 64> Record; 5496 switch (Stream.readRecord(Entry.ID, Record)) { 5497 default: 5498 return error("Invalid record"); 5499 } 5500 5501 return std::error_code(); 5502 } 5503 5504 std::error_code FunctionIndexBitcodeReader::initStream( 5505 std::unique_ptr<DataStreamer> Streamer) { 5506 if (Streamer) return initLazyStream(std::move(Streamer)); 5507 return initStreamFromBuffer(); 5508 } 5509 5510 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5511 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5512 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5513 5514 if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature"); 5515 5516 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5517 // The magic number is 0x0B17C0DE stored in little endian. 5518 if (isBitcodeWrapper(BufPtr, BufEnd)) 5519 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5520 return error("Invalid bitcode wrapper header"); 5521 5522 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5523 Stream.init(&*StreamFile); 5524 5525 return std::error_code(); 5526 } 5527 5528 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5529 std::unique_ptr<DataStreamer> Streamer) { 5530 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5531 // see it. 5532 auto OwnedBytes = 5533 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5534 StreamingMemoryObject &Bytes = *OwnedBytes; 5535 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5536 Stream.init(&*StreamFile); 5537 5538 unsigned char buf[16]; 5539 if (Bytes.readBytes(buf, 16, 0) != 16) 5540 return error("Invalid bitcode signature"); 5541 5542 if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature"); 5543 5544 if (isBitcodeWrapper(buf, buf + 4)) { 5545 const unsigned char *bitcodeStart = buf; 5546 const unsigned char *bitcodeEnd = buf + 16; 5547 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5548 Bytes.dropLeadingBytes(bitcodeStart - buf); 5549 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5550 } 5551 return std::error_code(); 5552 } 5553 5554 namespace { 5555 class BitcodeErrorCategoryType : public std::error_category { 5556 const char *name() const LLVM_NOEXCEPT override { 5557 return "llvm.bitcode"; 5558 } 5559 std::string message(int IE) const override { 5560 BitcodeError E = static_cast<BitcodeError>(IE); 5561 switch (E) { 5562 case BitcodeError::InvalidBitcodeSignature: 5563 return "Invalid bitcode signature"; 5564 case BitcodeError::CorruptedBitcode: 5565 return "Corrupted bitcode"; 5566 } 5567 llvm_unreachable("Unknown error type!"); 5568 } 5569 }; 5570 } 5571 5572 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5573 5574 const std::error_category &llvm::BitcodeErrorCategory() { 5575 return *ErrorCategory; 5576 } 5577 5578 //===----------------------------------------------------------------------===// 5579 // External interface 5580 //===----------------------------------------------------------------------===// 5581 5582 static ErrorOr<std::unique_ptr<Module>> 5583 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5584 BitcodeReader *R, LLVMContext &Context, 5585 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5586 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5587 M->setMaterializer(R); 5588 5589 auto cleanupOnError = [&](std::error_code EC) { 5590 R->releaseBuffer(); // Never take ownership on error. 5591 return EC; 5592 }; 5593 5594 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5595 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5596 ShouldLazyLoadMetadata)) 5597 return cleanupOnError(EC); 5598 5599 if (MaterializeAll) { 5600 // Read in the entire module, and destroy the BitcodeReader. 5601 if (std::error_code EC = M->materializeAllPermanently()) 5602 return cleanupOnError(EC); 5603 } else { 5604 // Resolve forward references from blockaddresses. 5605 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5606 return cleanupOnError(EC); 5607 } 5608 return std::move(M); 5609 } 5610 5611 /// \brief Get a lazy one-at-time loading module from bitcode. 5612 /// 5613 /// This isn't always used in a lazy context. In particular, it's also used by 5614 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5615 /// in forward-referenced functions from block address references. 5616 /// 5617 /// \param[in] MaterializeAll Set to \c true if we should materialize 5618 /// everything. 5619 static ErrorOr<std::unique_ptr<Module>> 5620 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5621 LLVMContext &Context, bool MaterializeAll, 5622 DiagnosticHandlerFunction DiagnosticHandler, 5623 bool ShouldLazyLoadMetadata = false) { 5624 BitcodeReader *R = 5625 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5626 5627 ErrorOr<std::unique_ptr<Module>> Ret = 5628 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5629 MaterializeAll, ShouldLazyLoadMetadata); 5630 if (!Ret) 5631 return Ret; 5632 5633 Buffer.release(); // The BitcodeReader owns it now. 5634 return Ret; 5635 } 5636 5637 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5638 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5639 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5640 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5641 DiagnosticHandler, ShouldLazyLoadMetadata); 5642 } 5643 5644 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5645 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5646 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5647 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5648 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5649 5650 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5651 false); 5652 } 5653 5654 ErrorOr<std::unique_ptr<Module>> 5655 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5656 DiagnosticHandlerFunction DiagnosticHandler) { 5657 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5658 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5659 DiagnosticHandler); 5660 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5661 // written. We must defer until the Module has been fully materialized. 5662 } 5663 5664 std::string 5665 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5666 DiagnosticHandlerFunction DiagnosticHandler) { 5667 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5668 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5669 DiagnosticHandler); 5670 ErrorOr<std::string> Triple = R->parseTriple(); 5671 if (Triple.getError()) 5672 return ""; 5673 return Triple.get(); 5674 } 5675 5676 // Parse the specified bitcode buffer, returning the function info index. 5677 // If IsLazy is false, parse the entire function summary into 5678 // the index. Otherwise skip the function summary section, and only create 5679 // an index object with a map from function name to function summary offset. 5680 // The index is used to perform lazy function summary reading later. 5681 ErrorOr<std::unique_ptr<FunctionInfoIndex>> llvm::getFunctionInfoIndex( 5682 MemoryBufferRef Buffer, LLVMContext &Context, 5683 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy) { 5684 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5685 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy); 5686 5687 std::unique_ptr<FunctionInfoIndex> Index = 5688 llvm::make_unique<FunctionInfoIndex>(); 5689 5690 auto cleanupOnError = [&](std::error_code EC) { 5691 R.releaseBuffer(); // Never take ownership on error. 5692 return EC; 5693 }; 5694 5695 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5696 return cleanupOnError(EC); 5697 5698 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5699 return std::move(Index); 5700 } 5701 5702 // Check if the given bitcode buffer contains a function summary block. 5703 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5704 DiagnosticHandlerFunction DiagnosticHandler) { 5705 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5706 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false, 5707 true); 5708 5709 auto cleanupOnError = [&](std::error_code EC) { 5710 R.releaseBuffer(); // Never take ownership on error. 5711 return false; 5712 }; 5713 5714 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5715 return cleanupOnError(EC); 5716 5717 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5718 return R.foundFuncSummary(); 5719 } 5720 5721 // This method supports lazy reading of function summary data from the combined 5722 // index during ThinLTO function importing. When reading the combined index 5723 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5724 // Then this method is called for each function considered for importing, 5725 // to parse the summary information for the given function name into 5726 // the index. 5727 std::error_code llvm::readFunctionSummary( 5728 MemoryBufferRef Buffer, LLVMContext &Context, 5729 DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName, 5730 std::unique_ptr<FunctionInfoIndex> Index) { 5731 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5732 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler); 5733 5734 auto cleanupOnError = [&](std::error_code EC) { 5735 R.releaseBuffer(); // Never take ownership on error. 5736 return EC; 5737 }; 5738 5739 // Lookup the given function name in the FunctionMap, which may 5740 // contain a list of function infos in the case of a COMDAT. Walk through 5741 // and parse each function summary info at the function summary offset 5742 // recorded when parsing the value symbol table. 5743 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5744 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5745 if (std::error_code EC = 5746 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5747 return cleanupOnError(EC); 5748 } 5749 5750 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5751 return std::error_code(); 5752 } 5753