1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) = delete; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Track forward refs to be resolved later. 559 if (AnyFwdRefs) { 560 MinFwdRef = std::min(MinFwdRef, Idx); 561 MaxFwdRef = std::max(MaxFwdRef, Idx); 562 } else { 563 AnyFwdRefs = true; 564 MinFwdRef = MaxFwdRef = Idx; 565 } 566 ++NumFwdRefs; 567 568 // Create and return a placeholder, which will later be RAUW'd. 569 Metadata *MD = MDNode::getTemporary(Context, None).release(); 570 MDValuePtrs[Idx].reset(MD); 571 return MD; 572 } 573 574 void BitcodeReaderMDValueList::tryToResolveCycles() { 575 if (!AnyFwdRefs) 576 // Nothing to do. 577 return; 578 579 if (NumFwdRefs) 580 // Still forward references... can't resolve cycles. 581 return; 582 583 // Resolve any cycles. 584 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 585 auto &MD = MDValuePtrs[I]; 586 auto *N = dyn_cast_or_null<MDNode>(MD); 587 if (!N) 588 continue; 589 590 assert(!N->isTemporary() && "Unexpected forward reference"); 591 N->resolveCycles(); 592 } 593 594 // Make sure we return early again until there's another forward ref. 595 AnyFwdRefs = false; 596 } 597 598 Type *BitcodeReader::getTypeByID(unsigned ID) { 599 // The type table size is always specified correctly. 600 if (ID >= TypeList.size()) 601 return nullptr; 602 603 if (Type *Ty = TypeList[ID]) 604 return Ty; 605 606 // If we have a forward reference, the only possible case is when it is to a 607 // named struct. Just create a placeholder for now. 608 return TypeList[ID] = createIdentifiedStructType(Context); 609 } 610 611 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 612 StringRef Name) { 613 auto *Ret = StructType::create(Context, Name); 614 IdentifiedStructTypes.push_back(Ret); 615 return Ret; 616 } 617 618 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 619 auto *Ret = StructType::create(Context); 620 IdentifiedStructTypes.push_back(Ret); 621 return Ret; 622 } 623 624 625 //===----------------------------------------------------------------------===// 626 // Functions for parsing blocks from the bitcode file 627 //===----------------------------------------------------------------------===// 628 629 630 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 631 /// been decoded from the given integer. This function must stay in sync with 632 /// 'encodeLLVMAttributesForBitcode'. 633 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 634 uint64_t EncodedAttrs) { 635 // FIXME: Remove in 4.0. 636 637 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 638 // the bits above 31 down by 11 bits. 639 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 640 assert((!Alignment || isPowerOf2_32(Alignment)) && 641 "Alignment must be a power of two."); 642 643 if (Alignment) 644 B.addAlignmentAttr(Alignment); 645 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 646 (EncodedAttrs & 0xffff)); 647 } 648 649 std::error_code BitcodeReader::ParseAttributeBlock() { 650 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 651 return Error("Invalid record"); 652 653 if (!MAttributes.empty()) 654 return Error("Invalid multiple blocks"); 655 656 SmallVector<uint64_t, 64> Record; 657 658 SmallVector<AttributeSet, 8> Attrs; 659 660 // Read all the records. 661 while (1) { 662 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 663 664 switch (Entry.Kind) { 665 case BitstreamEntry::SubBlock: // Handled for us already. 666 case BitstreamEntry::Error: 667 return Error("Malformed block"); 668 case BitstreamEntry::EndBlock: 669 return std::error_code(); 670 case BitstreamEntry::Record: 671 // The interesting case. 672 break; 673 } 674 675 // Read a record. 676 Record.clear(); 677 switch (Stream.readRecord(Entry.ID, Record)) { 678 default: // Default behavior: ignore. 679 break; 680 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 681 // FIXME: Remove in 4.0. 682 if (Record.size() & 1) 683 return Error("Invalid record"); 684 685 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 686 AttrBuilder B; 687 decodeLLVMAttributesForBitcode(B, Record[i+1]); 688 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 689 } 690 691 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 692 Attrs.clear(); 693 break; 694 } 695 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 696 for (unsigned i = 0, e = Record.size(); i != e; ++i) 697 Attrs.push_back(MAttributeGroups[Record[i]]); 698 699 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 700 Attrs.clear(); 701 break; 702 } 703 } 704 } 705 } 706 707 // Returns Attribute::None on unrecognized codes. 708 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 709 switch (Code) { 710 default: 711 return Attribute::None; 712 case bitc::ATTR_KIND_ALIGNMENT: 713 return Attribute::Alignment; 714 case bitc::ATTR_KIND_ALWAYS_INLINE: 715 return Attribute::AlwaysInline; 716 case bitc::ATTR_KIND_BUILTIN: 717 return Attribute::Builtin; 718 case bitc::ATTR_KIND_BY_VAL: 719 return Attribute::ByVal; 720 case bitc::ATTR_KIND_IN_ALLOCA: 721 return Attribute::InAlloca; 722 case bitc::ATTR_KIND_COLD: 723 return Attribute::Cold; 724 case bitc::ATTR_KIND_INLINE_HINT: 725 return Attribute::InlineHint; 726 case bitc::ATTR_KIND_IN_REG: 727 return Attribute::InReg; 728 case bitc::ATTR_KIND_JUMP_TABLE: 729 return Attribute::JumpTable; 730 case bitc::ATTR_KIND_MIN_SIZE: 731 return Attribute::MinSize; 732 case bitc::ATTR_KIND_NAKED: 733 return Attribute::Naked; 734 case bitc::ATTR_KIND_NEST: 735 return Attribute::Nest; 736 case bitc::ATTR_KIND_NO_ALIAS: 737 return Attribute::NoAlias; 738 case bitc::ATTR_KIND_NO_BUILTIN: 739 return Attribute::NoBuiltin; 740 case bitc::ATTR_KIND_NO_CAPTURE: 741 return Attribute::NoCapture; 742 case bitc::ATTR_KIND_NO_DUPLICATE: 743 return Attribute::NoDuplicate; 744 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 745 return Attribute::NoImplicitFloat; 746 case bitc::ATTR_KIND_NO_INLINE: 747 return Attribute::NoInline; 748 case bitc::ATTR_KIND_NON_LAZY_BIND: 749 return Attribute::NonLazyBind; 750 case bitc::ATTR_KIND_NON_NULL: 751 return Attribute::NonNull; 752 case bitc::ATTR_KIND_DEREFERENCEABLE: 753 return Attribute::Dereferenceable; 754 case bitc::ATTR_KIND_NO_RED_ZONE: 755 return Attribute::NoRedZone; 756 case bitc::ATTR_KIND_NO_RETURN: 757 return Attribute::NoReturn; 758 case bitc::ATTR_KIND_NO_UNWIND: 759 return Attribute::NoUnwind; 760 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 761 return Attribute::OptimizeForSize; 762 case bitc::ATTR_KIND_OPTIMIZE_NONE: 763 return Attribute::OptimizeNone; 764 case bitc::ATTR_KIND_READ_NONE: 765 return Attribute::ReadNone; 766 case bitc::ATTR_KIND_READ_ONLY: 767 return Attribute::ReadOnly; 768 case bitc::ATTR_KIND_RETURNED: 769 return Attribute::Returned; 770 case bitc::ATTR_KIND_RETURNS_TWICE: 771 return Attribute::ReturnsTwice; 772 case bitc::ATTR_KIND_S_EXT: 773 return Attribute::SExt; 774 case bitc::ATTR_KIND_STACK_ALIGNMENT: 775 return Attribute::StackAlignment; 776 case bitc::ATTR_KIND_STACK_PROTECT: 777 return Attribute::StackProtect; 778 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 779 return Attribute::StackProtectReq; 780 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 781 return Attribute::StackProtectStrong; 782 case bitc::ATTR_KIND_STRUCT_RET: 783 return Attribute::StructRet; 784 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 785 return Attribute::SanitizeAddress; 786 case bitc::ATTR_KIND_SANITIZE_THREAD: 787 return Attribute::SanitizeThread; 788 case bitc::ATTR_KIND_SANITIZE_MEMORY: 789 return Attribute::SanitizeMemory; 790 case bitc::ATTR_KIND_UW_TABLE: 791 return Attribute::UWTable; 792 case bitc::ATTR_KIND_Z_EXT: 793 return Attribute::ZExt; 794 } 795 } 796 797 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 798 unsigned &Alignment) { 799 // Note: Alignment in bitcode files is incremented by 1, so that zero 800 // can be used for default alignment. 801 if (Exponent > Value::MaxAlignmentExponent + 1) 802 return Error("Invalid alignment value"); 803 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 804 return std::error_code(); 805 } 806 807 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 808 Attribute::AttrKind *Kind) { 809 *Kind = GetAttrFromCode(Code); 810 if (*Kind == Attribute::None) 811 return Error(BitcodeError::CorruptedBitcode, 812 "Unknown attribute kind (" + Twine(Code) + ")"); 813 return std::error_code(); 814 } 815 816 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 817 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 818 return Error("Invalid record"); 819 820 if (!MAttributeGroups.empty()) 821 return Error("Invalid multiple blocks"); 822 823 SmallVector<uint64_t, 64> Record; 824 825 // Read all the records. 826 while (1) { 827 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 828 829 switch (Entry.Kind) { 830 case BitstreamEntry::SubBlock: // Handled for us already. 831 case BitstreamEntry::Error: 832 return Error("Malformed block"); 833 case BitstreamEntry::EndBlock: 834 return std::error_code(); 835 case BitstreamEntry::Record: 836 // The interesting case. 837 break; 838 } 839 840 // Read a record. 841 Record.clear(); 842 switch (Stream.readRecord(Entry.ID, Record)) { 843 default: // Default behavior: ignore. 844 break; 845 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 846 if (Record.size() < 3) 847 return Error("Invalid record"); 848 849 uint64_t GrpID = Record[0]; 850 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 851 852 AttrBuilder B; 853 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 854 if (Record[i] == 0) { // Enum attribute 855 Attribute::AttrKind Kind; 856 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 857 return EC; 858 859 B.addAttribute(Kind); 860 } else if (Record[i] == 1) { // Integer attribute 861 Attribute::AttrKind Kind; 862 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 863 return EC; 864 if (Kind == Attribute::Alignment) 865 B.addAlignmentAttr(Record[++i]); 866 else if (Kind == Attribute::StackAlignment) 867 B.addStackAlignmentAttr(Record[++i]); 868 else if (Kind == Attribute::Dereferenceable) 869 B.addDereferenceableAttr(Record[++i]); 870 } else { // String attribute 871 assert((Record[i] == 3 || Record[i] == 4) && 872 "Invalid attribute group entry"); 873 bool HasValue = (Record[i++] == 4); 874 SmallString<64> KindStr; 875 SmallString<64> ValStr; 876 877 while (Record[i] != 0 && i != e) 878 KindStr += Record[i++]; 879 assert(Record[i] == 0 && "Kind string not null terminated"); 880 881 if (HasValue) { 882 // Has a value associated with it. 883 ++i; // Skip the '0' that terminates the "kind" string. 884 while (Record[i] != 0 && i != e) 885 ValStr += Record[i++]; 886 assert(Record[i] == 0 && "Value string not null terminated"); 887 } 888 889 B.addAttribute(KindStr.str(), ValStr.str()); 890 } 891 } 892 893 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 894 break; 895 } 896 } 897 } 898 } 899 900 std::error_code BitcodeReader::ParseTypeTable() { 901 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 902 return Error("Invalid record"); 903 904 return ParseTypeTableBody(); 905 } 906 907 std::error_code BitcodeReader::ParseTypeTableBody() { 908 if (!TypeList.empty()) 909 return Error("Invalid multiple blocks"); 910 911 SmallVector<uint64_t, 64> Record; 912 unsigned NumRecords = 0; 913 914 SmallString<64> TypeName; 915 916 // Read all the records for this type table. 917 while (1) { 918 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 919 920 switch (Entry.Kind) { 921 case BitstreamEntry::SubBlock: // Handled for us already. 922 case BitstreamEntry::Error: 923 return Error("Malformed block"); 924 case BitstreamEntry::EndBlock: 925 if (NumRecords != TypeList.size()) 926 return Error("Malformed block"); 927 return std::error_code(); 928 case BitstreamEntry::Record: 929 // The interesting case. 930 break; 931 } 932 933 // Read a record. 934 Record.clear(); 935 Type *ResultTy = nullptr; 936 switch (Stream.readRecord(Entry.ID, Record)) { 937 default: 938 return Error("Invalid value"); 939 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 940 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 941 // type list. This allows us to reserve space. 942 if (Record.size() < 1) 943 return Error("Invalid record"); 944 TypeList.resize(Record[0]); 945 continue; 946 case bitc::TYPE_CODE_VOID: // VOID 947 ResultTy = Type::getVoidTy(Context); 948 break; 949 case bitc::TYPE_CODE_HALF: // HALF 950 ResultTy = Type::getHalfTy(Context); 951 break; 952 case bitc::TYPE_CODE_FLOAT: // FLOAT 953 ResultTy = Type::getFloatTy(Context); 954 break; 955 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 956 ResultTy = Type::getDoubleTy(Context); 957 break; 958 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 959 ResultTy = Type::getX86_FP80Ty(Context); 960 break; 961 case bitc::TYPE_CODE_FP128: // FP128 962 ResultTy = Type::getFP128Ty(Context); 963 break; 964 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 965 ResultTy = Type::getPPC_FP128Ty(Context); 966 break; 967 case bitc::TYPE_CODE_LABEL: // LABEL 968 ResultTy = Type::getLabelTy(Context); 969 break; 970 case bitc::TYPE_CODE_METADATA: // METADATA 971 ResultTy = Type::getMetadataTy(Context); 972 break; 973 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 974 ResultTy = Type::getX86_MMXTy(Context); 975 break; 976 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 977 if (Record.size() < 1) 978 return Error("Invalid record"); 979 980 uint64_t NumBits = Record[0]; 981 if (NumBits < IntegerType::MIN_INT_BITS || 982 NumBits > IntegerType::MAX_INT_BITS) 983 return Error("Bitwidth for integer type out of range"); 984 ResultTy = IntegerType::get(Context, NumBits); 985 break; 986 } 987 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 988 // [pointee type, address space] 989 if (Record.size() < 1) 990 return Error("Invalid record"); 991 unsigned AddressSpace = 0; 992 if (Record.size() == 2) 993 AddressSpace = Record[1]; 994 ResultTy = getTypeByID(Record[0]); 995 if (!ResultTy) 996 return Error("Invalid type"); 997 ResultTy = PointerType::get(ResultTy, AddressSpace); 998 break; 999 } 1000 case bitc::TYPE_CODE_FUNCTION_OLD: { 1001 // FIXME: attrid is dead, remove it in LLVM 4.0 1002 // FUNCTION: [vararg, attrid, retty, paramty x N] 1003 if (Record.size() < 3) 1004 return Error("Invalid record"); 1005 SmallVector<Type*, 8> ArgTys; 1006 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1007 if (Type *T = getTypeByID(Record[i])) 1008 ArgTys.push_back(T); 1009 else 1010 break; 1011 } 1012 1013 ResultTy = getTypeByID(Record[2]); 1014 if (!ResultTy || ArgTys.size() < Record.size()-3) 1015 return Error("Invalid type"); 1016 1017 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1018 break; 1019 } 1020 case bitc::TYPE_CODE_FUNCTION: { 1021 // FUNCTION: [vararg, retty, paramty x N] 1022 if (Record.size() < 2) 1023 return Error("Invalid record"); 1024 SmallVector<Type*, 8> ArgTys; 1025 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1026 if (Type *T = getTypeByID(Record[i])) 1027 ArgTys.push_back(T); 1028 else 1029 break; 1030 } 1031 1032 ResultTy = getTypeByID(Record[1]); 1033 if (!ResultTy || ArgTys.size() < Record.size()-2) 1034 return Error("Invalid type"); 1035 1036 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1037 break; 1038 } 1039 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1040 if (Record.size() < 1) 1041 return Error("Invalid record"); 1042 SmallVector<Type*, 8> EltTys; 1043 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1044 if (Type *T = getTypeByID(Record[i])) 1045 EltTys.push_back(T); 1046 else 1047 break; 1048 } 1049 if (EltTys.size() != Record.size()-1) 1050 return Error("Invalid type"); 1051 ResultTy = StructType::get(Context, EltTys, Record[0]); 1052 break; 1053 } 1054 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1055 if (ConvertToString(Record, 0, TypeName)) 1056 return Error("Invalid record"); 1057 continue; 1058 1059 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1060 if (Record.size() < 1) 1061 return Error("Invalid record"); 1062 1063 if (NumRecords >= TypeList.size()) 1064 return Error("Invalid TYPE table"); 1065 1066 // Check to see if this was forward referenced, if so fill in the temp. 1067 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1068 if (Res) { 1069 Res->setName(TypeName); 1070 TypeList[NumRecords] = nullptr; 1071 } else // Otherwise, create a new struct. 1072 Res = createIdentifiedStructType(Context, TypeName); 1073 TypeName.clear(); 1074 1075 SmallVector<Type*, 8> EltTys; 1076 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1077 if (Type *T = getTypeByID(Record[i])) 1078 EltTys.push_back(T); 1079 else 1080 break; 1081 } 1082 if (EltTys.size() != Record.size()-1) 1083 return Error("Invalid record"); 1084 Res->setBody(EltTys, Record[0]); 1085 ResultTy = Res; 1086 break; 1087 } 1088 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1089 if (Record.size() != 1) 1090 return Error("Invalid record"); 1091 1092 if (NumRecords >= TypeList.size()) 1093 return Error("Invalid TYPE table"); 1094 1095 // Check to see if this was forward referenced, if so fill in the temp. 1096 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1097 if (Res) { 1098 Res->setName(TypeName); 1099 TypeList[NumRecords] = nullptr; 1100 } else // Otherwise, create a new struct with no body. 1101 Res = createIdentifiedStructType(Context, TypeName); 1102 TypeName.clear(); 1103 ResultTy = Res; 1104 break; 1105 } 1106 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1107 if (Record.size() < 2) 1108 return Error("Invalid record"); 1109 if ((ResultTy = getTypeByID(Record[1]))) 1110 ResultTy = ArrayType::get(ResultTy, Record[0]); 1111 else 1112 return Error("Invalid type"); 1113 break; 1114 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1115 if (Record.size() < 2) 1116 return Error("Invalid record"); 1117 if ((ResultTy = getTypeByID(Record[1]))) 1118 ResultTy = VectorType::get(ResultTy, Record[0]); 1119 else 1120 return Error("Invalid type"); 1121 break; 1122 } 1123 1124 if (NumRecords >= TypeList.size()) 1125 return Error("Invalid TYPE table"); 1126 if (TypeList[NumRecords]) 1127 return Error( 1128 "Invalid TYPE table: Only named structs can be forward referenced"); 1129 assert(ResultTy && "Didn't read a type?"); 1130 TypeList[NumRecords++] = ResultTy; 1131 } 1132 } 1133 1134 std::error_code BitcodeReader::ParseValueSymbolTable() { 1135 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1136 return Error("Invalid record"); 1137 1138 SmallVector<uint64_t, 64> Record; 1139 1140 Triple TT(TheModule->getTargetTriple()); 1141 1142 // Read all the records for this value table. 1143 SmallString<128> ValueName; 1144 while (1) { 1145 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1146 1147 switch (Entry.Kind) { 1148 case BitstreamEntry::SubBlock: // Handled for us already. 1149 case BitstreamEntry::Error: 1150 return Error("Malformed block"); 1151 case BitstreamEntry::EndBlock: 1152 return std::error_code(); 1153 case BitstreamEntry::Record: 1154 // The interesting case. 1155 break; 1156 } 1157 1158 // Read a record. 1159 Record.clear(); 1160 switch (Stream.readRecord(Entry.ID, Record)) { 1161 default: // Default behavior: unknown type. 1162 break; 1163 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1164 if (ConvertToString(Record, 1, ValueName)) 1165 return Error("Invalid record"); 1166 unsigned ValueID = Record[0]; 1167 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1168 return Error("Invalid record"); 1169 Value *V = ValueList[ValueID]; 1170 1171 V->setName(StringRef(ValueName.data(), ValueName.size())); 1172 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1173 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1174 if (TT.isOSBinFormatMachO()) 1175 GO->setComdat(nullptr); 1176 else 1177 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1178 } 1179 } 1180 ValueName.clear(); 1181 break; 1182 } 1183 case bitc::VST_CODE_BBENTRY: { 1184 if (ConvertToString(Record, 1, ValueName)) 1185 return Error("Invalid record"); 1186 BasicBlock *BB = getBasicBlock(Record[0]); 1187 if (!BB) 1188 return Error("Invalid record"); 1189 1190 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1191 ValueName.clear(); 1192 break; 1193 } 1194 } 1195 } 1196 } 1197 1198 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1199 1200 std::error_code BitcodeReader::ParseMetadata() { 1201 unsigned NextMDValueNo = MDValueList.size(); 1202 1203 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1204 return Error("Invalid record"); 1205 1206 SmallVector<uint64_t, 64> Record; 1207 1208 auto getMD = 1209 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1210 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1211 if (ID) 1212 return getMD(ID - 1); 1213 return nullptr; 1214 }; 1215 auto getMDString = [&](unsigned ID) -> MDString *{ 1216 // This requires that the ID is not really a forward reference. In 1217 // particular, the MDString must already have been resolved. 1218 return cast_or_null<MDString>(getMDOrNull(ID)); 1219 }; 1220 1221 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1222 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1223 1224 // Read all the records. 1225 while (1) { 1226 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1227 1228 switch (Entry.Kind) { 1229 case BitstreamEntry::SubBlock: // Handled for us already. 1230 case BitstreamEntry::Error: 1231 return Error("Malformed block"); 1232 case BitstreamEntry::EndBlock: 1233 MDValueList.tryToResolveCycles(); 1234 return std::error_code(); 1235 case BitstreamEntry::Record: 1236 // The interesting case. 1237 break; 1238 } 1239 1240 // Read a record. 1241 Record.clear(); 1242 unsigned Code = Stream.readRecord(Entry.ID, Record); 1243 bool IsDistinct = false; 1244 switch (Code) { 1245 default: // Default behavior: ignore. 1246 break; 1247 case bitc::METADATA_NAME: { 1248 // Read name of the named metadata. 1249 SmallString<8> Name(Record.begin(), Record.end()); 1250 Record.clear(); 1251 Code = Stream.ReadCode(); 1252 1253 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1254 unsigned NextBitCode = Stream.readRecord(Code, Record); 1255 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1256 1257 // Read named metadata elements. 1258 unsigned Size = Record.size(); 1259 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1260 for (unsigned i = 0; i != Size; ++i) { 1261 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1262 if (!MD) 1263 return Error("Invalid record"); 1264 NMD->addOperand(MD); 1265 } 1266 break; 1267 } 1268 case bitc::METADATA_OLD_FN_NODE: { 1269 // FIXME: Remove in 4.0. 1270 // This is a LocalAsMetadata record, the only type of function-local 1271 // metadata. 1272 if (Record.size() % 2 == 1) 1273 return Error("Invalid record"); 1274 1275 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1276 // to be legal, but there's no upgrade path. 1277 auto dropRecord = [&] { 1278 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1279 }; 1280 if (Record.size() != 2) { 1281 dropRecord(); 1282 break; 1283 } 1284 1285 Type *Ty = getTypeByID(Record[0]); 1286 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1287 dropRecord(); 1288 break; 1289 } 1290 1291 MDValueList.AssignValue( 1292 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1293 NextMDValueNo++); 1294 break; 1295 } 1296 case bitc::METADATA_OLD_NODE: { 1297 // FIXME: Remove in 4.0. 1298 if (Record.size() % 2 == 1) 1299 return Error("Invalid record"); 1300 1301 unsigned Size = Record.size(); 1302 SmallVector<Metadata *, 8> Elts; 1303 for (unsigned i = 0; i != Size; i += 2) { 1304 Type *Ty = getTypeByID(Record[i]); 1305 if (!Ty) 1306 return Error("Invalid record"); 1307 if (Ty->isMetadataTy()) 1308 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1309 else if (!Ty->isVoidTy()) { 1310 auto *MD = 1311 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1312 assert(isa<ConstantAsMetadata>(MD) && 1313 "Expected non-function-local metadata"); 1314 Elts.push_back(MD); 1315 } else 1316 Elts.push_back(nullptr); 1317 } 1318 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1319 break; 1320 } 1321 case bitc::METADATA_VALUE: { 1322 if (Record.size() != 2) 1323 return Error("Invalid record"); 1324 1325 Type *Ty = getTypeByID(Record[0]); 1326 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1327 return Error("Invalid record"); 1328 1329 MDValueList.AssignValue( 1330 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1331 NextMDValueNo++); 1332 break; 1333 } 1334 case bitc::METADATA_DISTINCT_NODE: 1335 IsDistinct = true; 1336 // fallthrough... 1337 case bitc::METADATA_NODE: { 1338 SmallVector<Metadata *, 8> Elts; 1339 Elts.reserve(Record.size()); 1340 for (unsigned ID : Record) 1341 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1342 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1343 : MDNode::get(Context, Elts), 1344 NextMDValueNo++); 1345 break; 1346 } 1347 case bitc::METADATA_LOCATION: { 1348 if (Record.size() != 5) 1349 return Error("Invalid record"); 1350 1351 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1352 unsigned Line = Record[1]; 1353 unsigned Column = Record[2]; 1354 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1355 Metadata *InlinedAt = 1356 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1357 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1358 NextMDValueNo++); 1359 break; 1360 } 1361 case bitc::METADATA_GENERIC_DEBUG: { 1362 if (Record.size() < 4) 1363 return Error("Invalid record"); 1364 1365 unsigned Tag = Record[1]; 1366 unsigned Version = Record[2]; 1367 1368 if (Tag >= 1u << 16 || Version != 0) 1369 return Error("Invalid record"); 1370 1371 auto *Header = getMDString(Record[3]); 1372 SmallVector<Metadata *, 8> DwarfOps; 1373 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1374 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1375 : nullptr); 1376 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1377 (Context, Tag, Header, DwarfOps)), 1378 NextMDValueNo++); 1379 break; 1380 } 1381 case bitc::METADATA_SUBRANGE: { 1382 if (Record.size() != 3) 1383 return Error("Invalid record"); 1384 1385 MDValueList.AssignValue( 1386 GET_OR_DISTINCT(MDSubrange, Record[0], 1387 (Context, Record[1], unrotateSign(Record[2]))), 1388 NextMDValueNo++); 1389 break; 1390 } 1391 case bitc::METADATA_ENUMERATOR: { 1392 if (Record.size() != 3) 1393 return Error("Invalid record"); 1394 1395 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1396 (Context, unrotateSign(Record[1]), 1397 getMDString(Record[2]))), 1398 NextMDValueNo++); 1399 break; 1400 } 1401 case bitc::METADATA_BASIC_TYPE: { 1402 if (Record.size() != 6) 1403 return Error("Invalid record"); 1404 1405 MDValueList.AssignValue( 1406 GET_OR_DISTINCT(MDBasicType, Record[0], 1407 (Context, Record[1], getMDString(Record[2]), 1408 Record[3], Record[4], Record[5])), 1409 NextMDValueNo++); 1410 break; 1411 } 1412 case bitc::METADATA_DERIVED_TYPE: { 1413 if (Record.size() != 12) 1414 return Error("Invalid record"); 1415 1416 MDValueList.AssignValue( 1417 GET_OR_DISTINCT(MDDerivedType, Record[0], 1418 (Context, Record[1], getMDString(Record[2]), 1419 getMDOrNull(Record[3]), Record[4], 1420 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1421 Record[7], Record[8], Record[9], Record[10], 1422 getMDOrNull(Record[11]))), 1423 NextMDValueNo++); 1424 break; 1425 } 1426 case bitc::METADATA_COMPOSITE_TYPE: { 1427 if (Record.size() != 16) 1428 return Error("Invalid record"); 1429 1430 MDValueList.AssignValue( 1431 GET_OR_DISTINCT(MDCompositeType, Record[0], 1432 (Context, Record[1], getMDString(Record[2]), 1433 getMDOrNull(Record[3]), Record[4], 1434 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1435 Record[7], Record[8], Record[9], Record[10], 1436 getMDOrNull(Record[11]), Record[12], 1437 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1438 getMDString(Record[15]))), 1439 NextMDValueNo++); 1440 break; 1441 } 1442 case bitc::METADATA_SUBROUTINE_TYPE: { 1443 if (Record.size() != 3) 1444 return Error("Invalid record"); 1445 1446 MDValueList.AssignValue( 1447 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1448 (Context, Record[1], getMDOrNull(Record[2]))), 1449 NextMDValueNo++); 1450 break; 1451 } 1452 case bitc::METADATA_FILE: { 1453 if (Record.size() != 3) 1454 return Error("Invalid record"); 1455 1456 MDValueList.AssignValue( 1457 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1458 getMDString(Record[2]))), 1459 NextMDValueNo++); 1460 break; 1461 } 1462 case bitc::METADATA_COMPILE_UNIT: { 1463 if (Record.size() != 14) 1464 return Error("Invalid record"); 1465 1466 MDValueList.AssignValue( 1467 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1468 (Context, Record[1], getMDOrNull(Record[2]), 1469 getMDString(Record[3]), Record[4], 1470 getMDString(Record[5]), Record[6], 1471 getMDString(Record[7]), Record[8], 1472 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1473 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1474 getMDOrNull(Record[13]))), 1475 NextMDValueNo++); 1476 break; 1477 } 1478 case bitc::METADATA_SUBPROGRAM: { 1479 if (Record.size() != 19) 1480 return Error("Invalid record"); 1481 1482 MDValueList.AssignValue( 1483 GET_OR_DISTINCT( 1484 MDSubprogram, Record[0], 1485 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1486 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1487 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1488 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1489 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1490 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1491 NextMDValueNo++); 1492 break; 1493 } 1494 case bitc::METADATA_LEXICAL_BLOCK: { 1495 if (Record.size() != 5) 1496 return Error("Invalid record"); 1497 1498 MDValueList.AssignValue( 1499 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1500 (Context, getMDOrNull(Record[1]), 1501 getMDOrNull(Record[2]), Record[3], Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1506 if (Record.size() != 4) 1507 return Error("Invalid record"); 1508 1509 MDValueList.AssignValue( 1510 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1511 (Context, getMDOrNull(Record[1]), 1512 getMDOrNull(Record[2]), Record[3])), 1513 NextMDValueNo++); 1514 break; 1515 } 1516 case bitc::METADATA_NAMESPACE: { 1517 if (Record.size() != 5) 1518 return Error("Invalid record"); 1519 1520 MDValueList.AssignValue( 1521 GET_OR_DISTINCT(MDNamespace, Record[0], 1522 (Context, getMDOrNull(Record[1]), 1523 getMDOrNull(Record[2]), getMDString(Record[3]), 1524 Record[4])), 1525 NextMDValueNo++); 1526 break; 1527 } 1528 case bitc::METADATA_TEMPLATE_TYPE: { 1529 if (Record.size() != 3) 1530 return Error("Invalid record"); 1531 1532 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1533 Record[0], 1534 (Context, getMDString(Record[1]), 1535 getMDOrNull(Record[2]))), 1536 NextMDValueNo++); 1537 break; 1538 } 1539 case bitc::METADATA_TEMPLATE_VALUE: { 1540 if (Record.size() != 5) 1541 return Error("Invalid record"); 1542 1543 MDValueList.AssignValue( 1544 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1545 (Context, Record[1], getMDString(Record[2]), 1546 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1547 NextMDValueNo++); 1548 break; 1549 } 1550 case bitc::METADATA_GLOBAL_VAR: { 1551 if (Record.size() != 11) 1552 return Error("Invalid record"); 1553 1554 MDValueList.AssignValue( 1555 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1556 (Context, getMDOrNull(Record[1]), 1557 getMDString(Record[2]), getMDString(Record[3]), 1558 getMDOrNull(Record[4]), Record[5], 1559 getMDOrNull(Record[6]), Record[7], Record[8], 1560 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1561 NextMDValueNo++); 1562 break; 1563 } 1564 case bitc::METADATA_LOCAL_VAR: { 1565 if (Record.size() != 10) 1566 return Error("Invalid record"); 1567 1568 MDValueList.AssignValue( 1569 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1570 (Context, Record[1], getMDOrNull(Record[2]), 1571 getMDString(Record[3]), getMDOrNull(Record[4]), 1572 Record[5], getMDOrNull(Record[6]), Record[7], 1573 Record[8], getMDOrNull(Record[9]))), 1574 NextMDValueNo++); 1575 break; 1576 } 1577 case bitc::METADATA_EXPRESSION: { 1578 if (Record.size() < 1) 1579 return Error("Invalid record"); 1580 1581 MDValueList.AssignValue( 1582 GET_OR_DISTINCT(MDExpression, Record[0], 1583 (Context, makeArrayRef(Record).slice(1))), 1584 NextMDValueNo++); 1585 break; 1586 } 1587 case bitc::METADATA_OBJC_PROPERTY: { 1588 if (Record.size() != 8) 1589 return Error("Invalid record"); 1590 1591 MDValueList.AssignValue( 1592 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1593 (Context, getMDString(Record[1]), 1594 getMDOrNull(Record[2]), Record[3], 1595 getMDString(Record[4]), getMDString(Record[5]), 1596 Record[6], getMDOrNull(Record[7]))), 1597 NextMDValueNo++); 1598 break; 1599 } 1600 case bitc::METADATA_IMPORTED_ENTITY: { 1601 if (Record.size() != 6) 1602 return Error("Invalid record"); 1603 1604 MDValueList.AssignValue( 1605 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1606 (Context, Record[1], getMDOrNull(Record[2]), 1607 getMDOrNull(Record[3]), Record[4], 1608 getMDString(Record[5]))), 1609 NextMDValueNo++); 1610 break; 1611 } 1612 case bitc::METADATA_STRING: { 1613 std::string String(Record.begin(), Record.end()); 1614 llvm::UpgradeMDStringConstant(String); 1615 Metadata *MD = MDString::get(Context, String); 1616 MDValueList.AssignValue(MD, NextMDValueNo++); 1617 break; 1618 } 1619 case bitc::METADATA_KIND: { 1620 if (Record.size() < 2) 1621 return Error("Invalid record"); 1622 1623 unsigned Kind = Record[0]; 1624 SmallString<8> Name(Record.begin()+1, Record.end()); 1625 1626 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1627 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1628 return Error("Conflicting METADATA_KIND records"); 1629 break; 1630 } 1631 } 1632 } 1633 #undef GET_OR_DISTINCT 1634 } 1635 1636 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1637 /// the LSB for dense VBR encoding. 1638 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1639 if ((V & 1) == 0) 1640 return V >> 1; 1641 if (V != 1) 1642 return -(V >> 1); 1643 // There is no such thing as -0 with integers. "-0" really means MININT. 1644 return 1ULL << 63; 1645 } 1646 1647 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1648 /// values and aliases that we can. 1649 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1650 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1651 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1652 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1653 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1654 1655 GlobalInitWorklist.swap(GlobalInits); 1656 AliasInitWorklist.swap(AliasInits); 1657 FunctionPrefixWorklist.swap(FunctionPrefixes); 1658 FunctionPrologueWorklist.swap(FunctionPrologues); 1659 1660 while (!GlobalInitWorklist.empty()) { 1661 unsigned ValID = GlobalInitWorklist.back().second; 1662 if (ValID >= ValueList.size()) { 1663 // Not ready to resolve this yet, it requires something later in the file. 1664 GlobalInits.push_back(GlobalInitWorklist.back()); 1665 } else { 1666 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1667 GlobalInitWorklist.back().first->setInitializer(C); 1668 else 1669 return Error("Expected a constant"); 1670 } 1671 GlobalInitWorklist.pop_back(); 1672 } 1673 1674 while (!AliasInitWorklist.empty()) { 1675 unsigned ValID = AliasInitWorklist.back().second; 1676 if (ValID >= ValueList.size()) { 1677 AliasInits.push_back(AliasInitWorklist.back()); 1678 } else { 1679 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1680 AliasInitWorklist.back().first->setAliasee(C); 1681 else 1682 return Error("Expected a constant"); 1683 } 1684 AliasInitWorklist.pop_back(); 1685 } 1686 1687 while (!FunctionPrefixWorklist.empty()) { 1688 unsigned ValID = FunctionPrefixWorklist.back().second; 1689 if (ValID >= ValueList.size()) { 1690 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1691 } else { 1692 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1693 FunctionPrefixWorklist.back().first->setPrefixData(C); 1694 else 1695 return Error("Expected a constant"); 1696 } 1697 FunctionPrefixWorklist.pop_back(); 1698 } 1699 1700 while (!FunctionPrologueWorklist.empty()) { 1701 unsigned ValID = FunctionPrologueWorklist.back().second; 1702 if (ValID >= ValueList.size()) { 1703 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1704 } else { 1705 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1706 FunctionPrologueWorklist.back().first->setPrologueData(C); 1707 else 1708 return Error("Expected a constant"); 1709 } 1710 FunctionPrologueWorklist.pop_back(); 1711 } 1712 1713 return std::error_code(); 1714 } 1715 1716 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1717 SmallVector<uint64_t, 8> Words(Vals.size()); 1718 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1719 BitcodeReader::decodeSignRotatedValue); 1720 1721 return APInt(TypeBits, Words); 1722 } 1723 1724 std::error_code BitcodeReader::ParseConstants() { 1725 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1726 return Error("Invalid record"); 1727 1728 SmallVector<uint64_t, 64> Record; 1729 1730 // Read all the records for this value table. 1731 Type *CurTy = Type::getInt32Ty(Context); 1732 unsigned NextCstNo = ValueList.size(); 1733 while (1) { 1734 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1735 1736 switch (Entry.Kind) { 1737 case BitstreamEntry::SubBlock: // Handled for us already. 1738 case BitstreamEntry::Error: 1739 return Error("Malformed block"); 1740 case BitstreamEntry::EndBlock: 1741 if (NextCstNo != ValueList.size()) 1742 return Error("Invalid ronstant reference"); 1743 1744 // Once all the constants have been read, go through and resolve forward 1745 // references. 1746 ValueList.ResolveConstantForwardRefs(); 1747 return std::error_code(); 1748 case BitstreamEntry::Record: 1749 // The interesting case. 1750 break; 1751 } 1752 1753 // Read a record. 1754 Record.clear(); 1755 Value *V = nullptr; 1756 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1757 switch (BitCode) { 1758 default: // Default behavior: unknown constant 1759 case bitc::CST_CODE_UNDEF: // UNDEF 1760 V = UndefValue::get(CurTy); 1761 break; 1762 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1763 if (Record.empty()) 1764 return Error("Invalid record"); 1765 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1766 return Error("Invalid record"); 1767 CurTy = TypeList[Record[0]]; 1768 continue; // Skip the ValueList manipulation. 1769 case bitc::CST_CODE_NULL: // NULL 1770 V = Constant::getNullValue(CurTy); 1771 break; 1772 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1773 if (!CurTy->isIntegerTy() || Record.empty()) 1774 return Error("Invalid record"); 1775 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1776 break; 1777 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1778 if (!CurTy->isIntegerTy() || Record.empty()) 1779 return Error("Invalid record"); 1780 1781 APInt VInt = ReadWideAPInt(Record, 1782 cast<IntegerType>(CurTy)->getBitWidth()); 1783 V = ConstantInt::get(Context, VInt); 1784 1785 break; 1786 } 1787 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1788 if (Record.empty()) 1789 return Error("Invalid record"); 1790 if (CurTy->isHalfTy()) 1791 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1792 APInt(16, (uint16_t)Record[0]))); 1793 else if (CurTy->isFloatTy()) 1794 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1795 APInt(32, (uint32_t)Record[0]))); 1796 else if (CurTy->isDoubleTy()) 1797 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1798 APInt(64, Record[0]))); 1799 else if (CurTy->isX86_FP80Ty()) { 1800 // Bits are not stored the same way as a normal i80 APInt, compensate. 1801 uint64_t Rearrange[2]; 1802 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1803 Rearrange[1] = Record[0] >> 48; 1804 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1805 APInt(80, Rearrange))); 1806 } else if (CurTy->isFP128Ty()) 1807 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1808 APInt(128, Record))); 1809 else if (CurTy->isPPC_FP128Ty()) 1810 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1811 APInt(128, Record))); 1812 else 1813 V = UndefValue::get(CurTy); 1814 break; 1815 } 1816 1817 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1818 if (Record.empty()) 1819 return Error("Invalid record"); 1820 1821 unsigned Size = Record.size(); 1822 SmallVector<Constant*, 16> Elts; 1823 1824 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1825 for (unsigned i = 0; i != Size; ++i) 1826 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1827 STy->getElementType(i))); 1828 V = ConstantStruct::get(STy, Elts); 1829 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1830 Type *EltTy = ATy->getElementType(); 1831 for (unsigned i = 0; i != Size; ++i) 1832 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1833 V = ConstantArray::get(ATy, Elts); 1834 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1835 Type *EltTy = VTy->getElementType(); 1836 for (unsigned i = 0; i != Size; ++i) 1837 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1838 V = ConstantVector::get(Elts); 1839 } else { 1840 V = UndefValue::get(CurTy); 1841 } 1842 break; 1843 } 1844 case bitc::CST_CODE_STRING: // STRING: [values] 1845 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1846 if (Record.empty()) 1847 return Error("Invalid record"); 1848 1849 SmallString<16> Elts(Record.begin(), Record.end()); 1850 V = ConstantDataArray::getString(Context, Elts, 1851 BitCode == bitc::CST_CODE_CSTRING); 1852 break; 1853 } 1854 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1855 if (Record.empty()) 1856 return Error("Invalid record"); 1857 1858 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1859 unsigned Size = Record.size(); 1860 1861 if (EltTy->isIntegerTy(8)) { 1862 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1863 if (isa<VectorType>(CurTy)) 1864 V = ConstantDataVector::get(Context, Elts); 1865 else 1866 V = ConstantDataArray::get(Context, Elts); 1867 } else if (EltTy->isIntegerTy(16)) { 1868 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1869 if (isa<VectorType>(CurTy)) 1870 V = ConstantDataVector::get(Context, Elts); 1871 else 1872 V = ConstantDataArray::get(Context, Elts); 1873 } else if (EltTy->isIntegerTy(32)) { 1874 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1875 if (isa<VectorType>(CurTy)) 1876 V = ConstantDataVector::get(Context, Elts); 1877 else 1878 V = ConstantDataArray::get(Context, Elts); 1879 } else if (EltTy->isIntegerTy(64)) { 1880 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1881 if (isa<VectorType>(CurTy)) 1882 V = ConstantDataVector::get(Context, Elts); 1883 else 1884 V = ConstantDataArray::get(Context, Elts); 1885 } else if (EltTy->isFloatTy()) { 1886 SmallVector<float, 16> Elts(Size); 1887 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1888 if (isa<VectorType>(CurTy)) 1889 V = ConstantDataVector::get(Context, Elts); 1890 else 1891 V = ConstantDataArray::get(Context, Elts); 1892 } else if (EltTy->isDoubleTy()) { 1893 SmallVector<double, 16> Elts(Size); 1894 std::transform(Record.begin(), Record.end(), Elts.begin(), 1895 BitsToDouble); 1896 if (isa<VectorType>(CurTy)) 1897 V = ConstantDataVector::get(Context, Elts); 1898 else 1899 V = ConstantDataArray::get(Context, Elts); 1900 } else { 1901 return Error("Invalid type for value"); 1902 } 1903 break; 1904 } 1905 1906 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1907 if (Record.size() < 3) 1908 return Error("Invalid record"); 1909 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1910 if (Opc < 0) { 1911 V = UndefValue::get(CurTy); // Unknown binop. 1912 } else { 1913 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1914 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1915 unsigned Flags = 0; 1916 if (Record.size() >= 4) { 1917 if (Opc == Instruction::Add || 1918 Opc == Instruction::Sub || 1919 Opc == Instruction::Mul || 1920 Opc == Instruction::Shl) { 1921 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1922 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1923 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1924 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1925 } else if (Opc == Instruction::SDiv || 1926 Opc == Instruction::UDiv || 1927 Opc == Instruction::LShr || 1928 Opc == Instruction::AShr) { 1929 if (Record[3] & (1 << bitc::PEO_EXACT)) 1930 Flags |= SDivOperator::IsExact; 1931 } 1932 } 1933 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1934 } 1935 break; 1936 } 1937 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1938 if (Record.size() < 3) 1939 return Error("Invalid record"); 1940 int Opc = GetDecodedCastOpcode(Record[0]); 1941 if (Opc < 0) { 1942 V = UndefValue::get(CurTy); // Unknown cast. 1943 } else { 1944 Type *OpTy = getTypeByID(Record[1]); 1945 if (!OpTy) 1946 return Error("Invalid record"); 1947 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1948 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1949 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1950 } 1951 break; 1952 } 1953 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1954 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1955 if (Record.size() & 1) 1956 return Error("Invalid record"); 1957 SmallVector<Constant*, 16> Elts; 1958 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1959 Type *ElTy = getTypeByID(Record[i]); 1960 if (!ElTy) 1961 return Error("Invalid record"); 1962 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1963 } 1964 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1965 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1966 BitCode == 1967 bitc::CST_CODE_CE_INBOUNDS_GEP); 1968 break; 1969 } 1970 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1971 if (Record.size() < 3) 1972 return Error("Invalid record"); 1973 1974 Type *SelectorTy = Type::getInt1Ty(Context); 1975 1976 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1977 // vector. Otherwise, it must be a single bit. 1978 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1979 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1980 VTy->getNumElements()); 1981 1982 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1983 SelectorTy), 1984 ValueList.getConstantFwdRef(Record[1],CurTy), 1985 ValueList.getConstantFwdRef(Record[2],CurTy)); 1986 break; 1987 } 1988 case bitc::CST_CODE_CE_EXTRACTELT 1989 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1990 if (Record.size() < 3) 1991 return Error("Invalid record"); 1992 VectorType *OpTy = 1993 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1994 if (!OpTy) 1995 return Error("Invalid record"); 1996 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1997 Constant *Op1 = nullptr; 1998 if (Record.size() == 4) { 1999 Type *IdxTy = getTypeByID(Record[2]); 2000 if (!IdxTy) 2001 return Error("Invalid record"); 2002 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2003 } else // TODO: Remove with llvm 4.0 2004 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2005 if (!Op1) 2006 return Error("Invalid record"); 2007 V = ConstantExpr::getExtractElement(Op0, Op1); 2008 break; 2009 } 2010 case bitc::CST_CODE_CE_INSERTELT 2011 : { // CE_INSERTELT: [opval, opval, opty, opval] 2012 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2013 if (Record.size() < 3 || !OpTy) 2014 return Error("Invalid record"); 2015 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2016 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2017 OpTy->getElementType()); 2018 Constant *Op2 = nullptr; 2019 if (Record.size() == 4) { 2020 Type *IdxTy = getTypeByID(Record[2]); 2021 if (!IdxTy) 2022 return Error("Invalid record"); 2023 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2024 } else // TODO: Remove with llvm 4.0 2025 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2026 if (!Op2) 2027 return Error("Invalid record"); 2028 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2029 break; 2030 } 2031 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2032 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2033 if (Record.size() < 3 || !OpTy) 2034 return Error("Invalid record"); 2035 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2036 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2037 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2038 OpTy->getNumElements()); 2039 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2040 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2041 break; 2042 } 2043 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2044 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2045 VectorType *OpTy = 2046 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2047 if (Record.size() < 4 || !RTy || !OpTy) 2048 return Error("Invalid record"); 2049 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2050 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2051 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2052 RTy->getNumElements()); 2053 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2054 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2055 break; 2056 } 2057 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2058 if (Record.size() < 4) 2059 return Error("Invalid record"); 2060 Type *OpTy = getTypeByID(Record[0]); 2061 if (!OpTy) 2062 return Error("Invalid record"); 2063 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2064 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2065 2066 if (OpTy->isFPOrFPVectorTy()) 2067 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2068 else 2069 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2070 break; 2071 } 2072 // This maintains backward compatibility, pre-asm dialect keywords. 2073 // FIXME: Remove with the 4.0 release. 2074 case bitc::CST_CODE_INLINEASM_OLD: { 2075 if (Record.size() < 2) 2076 return Error("Invalid record"); 2077 std::string AsmStr, ConstrStr; 2078 bool HasSideEffects = Record[0] & 1; 2079 bool IsAlignStack = Record[0] >> 1; 2080 unsigned AsmStrSize = Record[1]; 2081 if (2+AsmStrSize >= Record.size()) 2082 return Error("Invalid record"); 2083 unsigned ConstStrSize = Record[2+AsmStrSize]; 2084 if (3+AsmStrSize+ConstStrSize > Record.size()) 2085 return Error("Invalid record"); 2086 2087 for (unsigned i = 0; i != AsmStrSize; ++i) 2088 AsmStr += (char)Record[2+i]; 2089 for (unsigned i = 0; i != ConstStrSize; ++i) 2090 ConstrStr += (char)Record[3+AsmStrSize+i]; 2091 PointerType *PTy = cast<PointerType>(CurTy); 2092 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2093 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2094 break; 2095 } 2096 // This version adds support for the asm dialect keywords (e.g., 2097 // inteldialect). 2098 case bitc::CST_CODE_INLINEASM: { 2099 if (Record.size() < 2) 2100 return Error("Invalid record"); 2101 std::string AsmStr, ConstrStr; 2102 bool HasSideEffects = Record[0] & 1; 2103 bool IsAlignStack = (Record[0] >> 1) & 1; 2104 unsigned AsmDialect = Record[0] >> 2; 2105 unsigned AsmStrSize = Record[1]; 2106 if (2+AsmStrSize >= Record.size()) 2107 return Error("Invalid record"); 2108 unsigned ConstStrSize = Record[2+AsmStrSize]; 2109 if (3+AsmStrSize+ConstStrSize > Record.size()) 2110 return Error("Invalid record"); 2111 2112 for (unsigned i = 0; i != AsmStrSize; ++i) 2113 AsmStr += (char)Record[2+i]; 2114 for (unsigned i = 0; i != ConstStrSize; ++i) 2115 ConstrStr += (char)Record[3+AsmStrSize+i]; 2116 PointerType *PTy = cast<PointerType>(CurTy); 2117 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2118 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2119 InlineAsm::AsmDialect(AsmDialect)); 2120 break; 2121 } 2122 case bitc::CST_CODE_BLOCKADDRESS:{ 2123 if (Record.size() < 3) 2124 return Error("Invalid record"); 2125 Type *FnTy = getTypeByID(Record[0]); 2126 if (!FnTy) 2127 return Error("Invalid record"); 2128 Function *Fn = 2129 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2130 if (!Fn) 2131 return Error("Invalid record"); 2132 2133 // Don't let Fn get dematerialized. 2134 BlockAddressesTaken.insert(Fn); 2135 2136 // If the function is already parsed we can insert the block address right 2137 // away. 2138 BasicBlock *BB; 2139 unsigned BBID = Record[2]; 2140 if (!BBID) 2141 // Invalid reference to entry block. 2142 return Error("Invalid ID"); 2143 if (!Fn->empty()) { 2144 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2145 for (size_t I = 0, E = BBID; I != E; ++I) { 2146 if (BBI == BBE) 2147 return Error("Invalid ID"); 2148 ++BBI; 2149 } 2150 BB = BBI; 2151 } else { 2152 // Otherwise insert a placeholder and remember it so it can be inserted 2153 // when the function is parsed. 2154 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2155 if (FwdBBs.empty()) 2156 BasicBlockFwdRefQueue.push_back(Fn); 2157 if (FwdBBs.size() < BBID + 1) 2158 FwdBBs.resize(BBID + 1); 2159 if (!FwdBBs[BBID]) 2160 FwdBBs[BBID] = BasicBlock::Create(Context); 2161 BB = FwdBBs[BBID]; 2162 } 2163 V = BlockAddress::get(Fn, BB); 2164 break; 2165 } 2166 } 2167 2168 ValueList.AssignValue(V, NextCstNo); 2169 ++NextCstNo; 2170 } 2171 } 2172 2173 std::error_code BitcodeReader::ParseUseLists() { 2174 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2175 return Error("Invalid record"); 2176 2177 // Read all the records. 2178 SmallVector<uint64_t, 64> Record; 2179 while (1) { 2180 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2181 2182 switch (Entry.Kind) { 2183 case BitstreamEntry::SubBlock: // Handled for us already. 2184 case BitstreamEntry::Error: 2185 return Error("Malformed block"); 2186 case BitstreamEntry::EndBlock: 2187 return std::error_code(); 2188 case BitstreamEntry::Record: 2189 // The interesting case. 2190 break; 2191 } 2192 2193 // Read a use list record. 2194 Record.clear(); 2195 bool IsBB = false; 2196 switch (Stream.readRecord(Entry.ID, Record)) { 2197 default: // Default behavior: unknown type. 2198 break; 2199 case bitc::USELIST_CODE_BB: 2200 IsBB = true; 2201 // fallthrough 2202 case bitc::USELIST_CODE_DEFAULT: { 2203 unsigned RecordLength = Record.size(); 2204 if (RecordLength < 3) 2205 // Records should have at least an ID and two indexes. 2206 return Error("Invalid record"); 2207 unsigned ID = Record.back(); 2208 Record.pop_back(); 2209 2210 Value *V; 2211 if (IsBB) { 2212 assert(ID < FunctionBBs.size() && "Basic block not found"); 2213 V = FunctionBBs[ID]; 2214 } else 2215 V = ValueList[ID]; 2216 unsigned NumUses = 0; 2217 SmallDenseMap<const Use *, unsigned, 16> Order; 2218 for (const Use &U : V->uses()) { 2219 if (++NumUses > Record.size()) 2220 break; 2221 Order[&U] = Record[NumUses - 1]; 2222 } 2223 if (Order.size() != Record.size() || NumUses > Record.size()) 2224 // Mismatches can happen if the functions are being materialized lazily 2225 // (out-of-order), or a value has been upgraded. 2226 break; 2227 2228 V->sortUseList([&](const Use &L, const Use &R) { 2229 return Order.lookup(&L) < Order.lookup(&R); 2230 }); 2231 break; 2232 } 2233 } 2234 } 2235 } 2236 2237 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2238 /// remember where it is and then skip it. This lets us lazily deserialize the 2239 /// functions. 2240 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2241 // Get the function we are talking about. 2242 if (FunctionsWithBodies.empty()) 2243 return Error("Insufficient function protos"); 2244 2245 Function *Fn = FunctionsWithBodies.back(); 2246 FunctionsWithBodies.pop_back(); 2247 2248 // Save the current stream state. 2249 uint64_t CurBit = Stream.GetCurrentBitNo(); 2250 DeferredFunctionInfo[Fn] = CurBit; 2251 2252 // Skip over the function block for now. 2253 if (Stream.SkipBlock()) 2254 return Error("Invalid record"); 2255 return std::error_code(); 2256 } 2257 2258 std::error_code BitcodeReader::GlobalCleanup() { 2259 // Patch the initializers for globals and aliases up. 2260 ResolveGlobalAndAliasInits(); 2261 if (!GlobalInits.empty() || !AliasInits.empty()) 2262 return Error("Malformed global initializer set"); 2263 2264 // Look for intrinsic functions which need to be upgraded at some point 2265 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2266 FI != FE; ++FI) { 2267 Function *NewFn; 2268 if (UpgradeIntrinsicFunction(FI, NewFn)) 2269 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2270 } 2271 2272 // Look for global variables which need to be renamed. 2273 for (Module::global_iterator 2274 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2275 GI != GE;) { 2276 GlobalVariable *GV = GI++; 2277 UpgradeGlobalVariable(GV); 2278 } 2279 2280 // Force deallocation of memory for these vectors to favor the client that 2281 // want lazy deserialization. 2282 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2283 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2284 return std::error_code(); 2285 } 2286 2287 std::error_code BitcodeReader::ParseModule(bool Resume) { 2288 if (Resume) 2289 Stream.JumpToBit(NextUnreadBit); 2290 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2291 return Error("Invalid record"); 2292 2293 SmallVector<uint64_t, 64> Record; 2294 std::vector<std::string> SectionTable; 2295 std::vector<std::string> GCTable; 2296 2297 // Read all the records for this module. 2298 while (1) { 2299 BitstreamEntry Entry = Stream.advance(); 2300 2301 switch (Entry.Kind) { 2302 case BitstreamEntry::Error: 2303 return Error("Malformed block"); 2304 case BitstreamEntry::EndBlock: 2305 return GlobalCleanup(); 2306 2307 case BitstreamEntry::SubBlock: 2308 switch (Entry.ID) { 2309 default: // Skip unknown content. 2310 if (Stream.SkipBlock()) 2311 return Error("Invalid record"); 2312 break; 2313 case bitc::BLOCKINFO_BLOCK_ID: 2314 if (Stream.ReadBlockInfoBlock()) 2315 return Error("Malformed block"); 2316 break; 2317 case bitc::PARAMATTR_BLOCK_ID: 2318 if (std::error_code EC = ParseAttributeBlock()) 2319 return EC; 2320 break; 2321 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2322 if (std::error_code EC = ParseAttributeGroupBlock()) 2323 return EC; 2324 break; 2325 case bitc::TYPE_BLOCK_ID_NEW: 2326 if (std::error_code EC = ParseTypeTable()) 2327 return EC; 2328 break; 2329 case bitc::VALUE_SYMTAB_BLOCK_ID: 2330 if (std::error_code EC = ParseValueSymbolTable()) 2331 return EC; 2332 SeenValueSymbolTable = true; 2333 break; 2334 case bitc::CONSTANTS_BLOCK_ID: 2335 if (std::error_code EC = ParseConstants()) 2336 return EC; 2337 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2338 return EC; 2339 break; 2340 case bitc::METADATA_BLOCK_ID: 2341 if (std::error_code EC = ParseMetadata()) 2342 return EC; 2343 break; 2344 case bitc::FUNCTION_BLOCK_ID: 2345 // If this is the first function body we've seen, reverse the 2346 // FunctionsWithBodies list. 2347 if (!SeenFirstFunctionBody) { 2348 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2349 if (std::error_code EC = GlobalCleanup()) 2350 return EC; 2351 SeenFirstFunctionBody = true; 2352 } 2353 2354 if (std::error_code EC = RememberAndSkipFunctionBody()) 2355 return EC; 2356 // For streaming bitcode, suspend parsing when we reach the function 2357 // bodies. Subsequent materialization calls will resume it when 2358 // necessary. For streaming, the function bodies must be at the end of 2359 // the bitcode. If the bitcode file is old, the symbol table will be 2360 // at the end instead and will not have been seen yet. In this case, 2361 // just finish the parse now. 2362 if (LazyStreamer && SeenValueSymbolTable) { 2363 NextUnreadBit = Stream.GetCurrentBitNo(); 2364 return std::error_code(); 2365 } 2366 break; 2367 case bitc::USELIST_BLOCK_ID: 2368 if (std::error_code EC = ParseUseLists()) 2369 return EC; 2370 break; 2371 } 2372 continue; 2373 2374 case BitstreamEntry::Record: 2375 // The interesting case. 2376 break; 2377 } 2378 2379 2380 // Read a record. 2381 switch (Stream.readRecord(Entry.ID, Record)) { 2382 default: break; // Default behavior, ignore unknown content. 2383 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2384 if (Record.size() < 1) 2385 return Error("Invalid record"); 2386 // Only version #0 and #1 are supported so far. 2387 unsigned module_version = Record[0]; 2388 switch (module_version) { 2389 default: 2390 return Error("Invalid value"); 2391 case 0: 2392 UseRelativeIDs = false; 2393 break; 2394 case 1: 2395 UseRelativeIDs = true; 2396 break; 2397 } 2398 break; 2399 } 2400 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2401 std::string S; 2402 if (ConvertToString(Record, 0, S)) 2403 return Error("Invalid record"); 2404 TheModule->setTargetTriple(S); 2405 break; 2406 } 2407 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2408 std::string S; 2409 if (ConvertToString(Record, 0, S)) 2410 return Error("Invalid record"); 2411 TheModule->setDataLayout(S); 2412 break; 2413 } 2414 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2415 std::string S; 2416 if (ConvertToString(Record, 0, S)) 2417 return Error("Invalid record"); 2418 TheModule->setModuleInlineAsm(S); 2419 break; 2420 } 2421 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2422 // FIXME: Remove in 4.0. 2423 std::string S; 2424 if (ConvertToString(Record, 0, S)) 2425 return Error("Invalid record"); 2426 // Ignore value. 2427 break; 2428 } 2429 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2430 std::string S; 2431 if (ConvertToString(Record, 0, S)) 2432 return Error("Invalid record"); 2433 SectionTable.push_back(S); 2434 break; 2435 } 2436 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2437 std::string S; 2438 if (ConvertToString(Record, 0, S)) 2439 return Error("Invalid record"); 2440 GCTable.push_back(S); 2441 break; 2442 } 2443 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2444 if (Record.size() < 2) 2445 return Error("Invalid record"); 2446 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2447 unsigned ComdatNameSize = Record[1]; 2448 std::string ComdatName; 2449 ComdatName.reserve(ComdatNameSize); 2450 for (unsigned i = 0; i != ComdatNameSize; ++i) 2451 ComdatName += (char)Record[2 + i]; 2452 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2453 C->setSelectionKind(SK); 2454 ComdatList.push_back(C); 2455 break; 2456 } 2457 // GLOBALVAR: [pointer type, isconst, initid, 2458 // linkage, alignment, section, visibility, threadlocal, 2459 // unnamed_addr, externally_initialized, dllstorageclass, 2460 // comdat] 2461 case bitc::MODULE_CODE_GLOBALVAR: { 2462 if (Record.size() < 6) 2463 return Error("Invalid record"); 2464 Type *Ty = getTypeByID(Record[0]); 2465 if (!Ty) 2466 return Error("Invalid record"); 2467 if (!Ty->isPointerTy()) 2468 return Error("Invalid type for value"); 2469 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2470 Ty = cast<PointerType>(Ty)->getElementType(); 2471 2472 bool isConstant = Record[1]; 2473 uint64_t RawLinkage = Record[3]; 2474 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2475 unsigned Alignment; 2476 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2477 return EC; 2478 std::string Section; 2479 if (Record[5]) { 2480 if (Record[5]-1 >= SectionTable.size()) 2481 return Error("Invalid ID"); 2482 Section = SectionTable[Record[5]-1]; 2483 } 2484 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2485 // Local linkage must have default visibility. 2486 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2487 // FIXME: Change to an error if non-default in 4.0. 2488 Visibility = GetDecodedVisibility(Record[6]); 2489 2490 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2491 if (Record.size() > 7) 2492 TLM = GetDecodedThreadLocalMode(Record[7]); 2493 2494 bool UnnamedAddr = false; 2495 if (Record.size() > 8) 2496 UnnamedAddr = Record[8]; 2497 2498 bool ExternallyInitialized = false; 2499 if (Record.size() > 9) 2500 ExternallyInitialized = Record[9]; 2501 2502 GlobalVariable *NewGV = 2503 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2504 TLM, AddressSpace, ExternallyInitialized); 2505 NewGV->setAlignment(Alignment); 2506 if (!Section.empty()) 2507 NewGV->setSection(Section); 2508 NewGV->setVisibility(Visibility); 2509 NewGV->setUnnamedAddr(UnnamedAddr); 2510 2511 if (Record.size() > 10) 2512 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2513 else 2514 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2515 2516 ValueList.push_back(NewGV); 2517 2518 // Remember which value to use for the global initializer. 2519 if (unsigned InitID = Record[2]) 2520 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2521 2522 if (Record.size() > 11) { 2523 if (unsigned ComdatID = Record[11]) { 2524 assert(ComdatID <= ComdatList.size()); 2525 NewGV->setComdat(ComdatList[ComdatID - 1]); 2526 } 2527 } else if (hasImplicitComdat(RawLinkage)) { 2528 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2529 } 2530 break; 2531 } 2532 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2533 // alignment, section, visibility, gc, unnamed_addr, 2534 // prologuedata, dllstorageclass, comdat, prefixdata] 2535 case bitc::MODULE_CODE_FUNCTION: { 2536 if (Record.size() < 8) 2537 return Error("Invalid record"); 2538 Type *Ty = getTypeByID(Record[0]); 2539 if (!Ty) 2540 return Error("Invalid record"); 2541 if (!Ty->isPointerTy()) 2542 return Error("Invalid type for value"); 2543 FunctionType *FTy = 2544 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2545 if (!FTy) 2546 return Error("Invalid type for value"); 2547 2548 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2549 "", TheModule); 2550 2551 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2552 bool isProto = Record[2]; 2553 uint64_t RawLinkage = Record[3]; 2554 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2555 Func->setAttributes(getAttributes(Record[4])); 2556 2557 unsigned Alignment; 2558 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2559 return EC; 2560 Func->setAlignment(Alignment); 2561 if (Record[6]) { 2562 if (Record[6]-1 >= SectionTable.size()) 2563 return Error("Invalid ID"); 2564 Func->setSection(SectionTable[Record[6]-1]); 2565 } 2566 // Local linkage must have default visibility. 2567 if (!Func->hasLocalLinkage()) 2568 // FIXME: Change to an error if non-default in 4.0. 2569 Func->setVisibility(GetDecodedVisibility(Record[7])); 2570 if (Record.size() > 8 && Record[8]) { 2571 if (Record[8]-1 > GCTable.size()) 2572 return Error("Invalid ID"); 2573 Func->setGC(GCTable[Record[8]-1].c_str()); 2574 } 2575 bool UnnamedAddr = false; 2576 if (Record.size() > 9) 2577 UnnamedAddr = Record[9]; 2578 Func->setUnnamedAddr(UnnamedAddr); 2579 if (Record.size() > 10 && Record[10] != 0) 2580 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2581 2582 if (Record.size() > 11) 2583 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2584 else 2585 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2586 2587 if (Record.size() > 12) { 2588 if (unsigned ComdatID = Record[12]) { 2589 assert(ComdatID <= ComdatList.size()); 2590 Func->setComdat(ComdatList[ComdatID - 1]); 2591 } 2592 } else if (hasImplicitComdat(RawLinkage)) { 2593 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2594 } 2595 2596 if (Record.size() > 13 && Record[13] != 0) 2597 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2598 2599 ValueList.push_back(Func); 2600 2601 // If this is a function with a body, remember the prototype we are 2602 // creating now, so that we can match up the body with them later. 2603 if (!isProto) { 2604 Func->setIsMaterializable(true); 2605 FunctionsWithBodies.push_back(Func); 2606 if (LazyStreamer) 2607 DeferredFunctionInfo[Func] = 0; 2608 } 2609 break; 2610 } 2611 // ALIAS: [alias type, aliasee val#, linkage] 2612 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2613 case bitc::MODULE_CODE_ALIAS: { 2614 if (Record.size() < 3) 2615 return Error("Invalid record"); 2616 Type *Ty = getTypeByID(Record[0]); 2617 if (!Ty) 2618 return Error("Invalid record"); 2619 auto *PTy = dyn_cast<PointerType>(Ty); 2620 if (!PTy) 2621 return Error("Invalid type for value"); 2622 2623 auto *NewGA = 2624 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2625 getDecodedLinkage(Record[2]), "", TheModule); 2626 // Old bitcode files didn't have visibility field. 2627 // Local linkage must have default visibility. 2628 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2629 // FIXME: Change to an error if non-default in 4.0. 2630 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2631 if (Record.size() > 4) 2632 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2633 else 2634 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2635 if (Record.size() > 5) 2636 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2637 if (Record.size() > 6) 2638 NewGA->setUnnamedAddr(Record[6]); 2639 ValueList.push_back(NewGA); 2640 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2641 break; 2642 } 2643 /// MODULE_CODE_PURGEVALS: [numvals] 2644 case bitc::MODULE_CODE_PURGEVALS: 2645 // Trim down the value list to the specified size. 2646 if (Record.size() < 1 || Record[0] > ValueList.size()) 2647 return Error("Invalid record"); 2648 ValueList.shrinkTo(Record[0]); 2649 break; 2650 } 2651 Record.clear(); 2652 } 2653 } 2654 2655 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2656 TheModule = nullptr; 2657 2658 if (std::error_code EC = InitStream()) 2659 return EC; 2660 2661 // Sniff for the signature. 2662 if (Stream.Read(8) != 'B' || 2663 Stream.Read(8) != 'C' || 2664 Stream.Read(4) != 0x0 || 2665 Stream.Read(4) != 0xC || 2666 Stream.Read(4) != 0xE || 2667 Stream.Read(4) != 0xD) 2668 return Error("Invalid bitcode signature"); 2669 2670 // We expect a number of well-defined blocks, though we don't necessarily 2671 // need to understand them all. 2672 while (1) { 2673 if (Stream.AtEndOfStream()) 2674 return std::error_code(); 2675 2676 BitstreamEntry Entry = 2677 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2678 2679 switch (Entry.Kind) { 2680 case BitstreamEntry::Error: 2681 return Error("Malformed block"); 2682 case BitstreamEntry::EndBlock: 2683 return std::error_code(); 2684 2685 case BitstreamEntry::SubBlock: 2686 switch (Entry.ID) { 2687 case bitc::BLOCKINFO_BLOCK_ID: 2688 if (Stream.ReadBlockInfoBlock()) 2689 return Error("Malformed block"); 2690 break; 2691 case bitc::MODULE_BLOCK_ID: 2692 // Reject multiple MODULE_BLOCK's in a single bitstream. 2693 if (TheModule) 2694 return Error("Invalid multiple blocks"); 2695 TheModule = M; 2696 if (std::error_code EC = ParseModule(false)) 2697 return EC; 2698 if (LazyStreamer) 2699 return std::error_code(); 2700 break; 2701 default: 2702 if (Stream.SkipBlock()) 2703 return Error("Invalid record"); 2704 break; 2705 } 2706 continue; 2707 case BitstreamEntry::Record: 2708 // There should be no records in the top-level of blocks. 2709 2710 // The ranlib in Xcode 4 will align archive members by appending newlines 2711 // to the end of them. If this file size is a multiple of 4 but not 8, we 2712 // have to read and ignore these final 4 bytes :-( 2713 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2714 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2715 Stream.AtEndOfStream()) 2716 return std::error_code(); 2717 2718 return Error("Invalid record"); 2719 } 2720 } 2721 } 2722 2723 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2724 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2725 return Error("Invalid record"); 2726 2727 SmallVector<uint64_t, 64> Record; 2728 2729 std::string Triple; 2730 // Read all the records for this module. 2731 while (1) { 2732 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2733 2734 switch (Entry.Kind) { 2735 case BitstreamEntry::SubBlock: // Handled for us already. 2736 case BitstreamEntry::Error: 2737 return Error("Malformed block"); 2738 case BitstreamEntry::EndBlock: 2739 return Triple; 2740 case BitstreamEntry::Record: 2741 // The interesting case. 2742 break; 2743 } 2744 2745 // Read a record. 2746 switch (Stream.readRecord(Entry.ID, Record)) { 2747 default: break; // Default behavior, ignore unknown content. 2748 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2749 std::string S; 2750 if (ConvertToString(Record, 0, S)) 2751 return Error("Invalid record"); 2752 Triple = S; 2753 break; 2754 } 2755 } 2756 Record.clear(); 2757 } 2758 llvm_unreachable("Exit infinite loop"); 2759 } 2760 2761 ErrorOr<std::string> BitcodeReader::parseTriple() { 2762 if (std::error_code EC = InitStream()) 2763 return EC; 2764 2765 // Sniff for the signature. 2766 if (Stream.Read(8) != 'B' || 2767 Stream.Read(8) != 'C' || 2768 Stream.Read(4) != 0x0 || 2769 Stream.Read(4) != 0xC || 2770 Stream.Read(4) != 0xE || 2771 Stream.Read(4) != 0xD) 2772 return Error("Invalid bitcode signature"); 2773 2774 // We expect a number of well-defined blocks, though we don't necessarily 2775 // need to understand them all. 2776 while (1) { 2777 BitstreamEntry Entry = Stream.advance(); 2778 2779 switch (Entry.Kind) { 2780 case BitstreamEntry::Error: 2781 return Error("Malformed block"); 2782 case BitstreamEntry::EndBlock: 2783 return std::error_code(); 2784 2785 case BitstreamEntry::SubBlock: 2786 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2787 return parseModuleTriple(); 2788 2789 // Ignore other sub-blocks. 2790 if (Stream.SkipBlock()) 2791 return Error("Malformed block"); 2792 continue; 2793 2794 case BitstreamEntry::Record: 2795 Stream.skipRecord(Entry.ID); 2796 continue; 2797 } 2798 } 2799 } 2800 2801 /// ParseMetadataAttachment - Parse metadata attachments. 2802 std::error_code BitcodeReader::ParseMetadataAttachment() { 2803 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2804 return Error("Invalid record"); 2805 2806 SmallVector<uint64_t, 64> Record; 2807 while (1) { 2808 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2809 2810 switch (Entry.Kind) { 2811 case BitstreamEntry::SubBlock: // Handled for us already. 2812 case BitstreamEntry::Error: 2813 return Error("Malformed block"); 2814 case BitstreamEntry::EndBlock: 2815 return std::error_code(); 2816 case BitstreamEntry::Record: 2817 // The interesting case. 2818 break; 2819 } 2820 2821 // Read a metadata attachment record. 2822 Record.clear(); 2823 switch (Stream.readRecord(Entry.ID, Record)) { 2824 default: // Default behavior: ignore. 2825 break; 2826 case bitc::METADATA_ATTACHMENT: { 2827 unsigned RecordLength = Record.size(); 2828 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2829 return Error("Invalid record"); 2830 Instruction *Inst = InstructionList[Record[0]]; 2831 for (unsigned i = 1; i != RecordLength; i = i+2) { 2832 unsigned Kind = Record[i]; 2833 DenseMap<unsigned, unsigned>::iterator I = 2834 MDKindMap.find(Kind); 2835 if (I == MDKindMap.end()) 2836 return Error("Invalid ID"); 2837 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2838 if (isa<LocalAsMetadata>(Node)) 2839 // Drop the attachment. This used to be legal, but there's no 2840 // upgrade path. 2841 break; 2842 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2843 if (I->second == LLVMContext::MD_tbaa) 2844 InstsWithTBAATag.push_back(Inst); 2845 } 2846 break; 2847 } 2848 } 2849 } 2850 } 2851 2852 /// ParseFunctionBody - Lazily parse the specified function body block. 2853 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2854 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2855 return Error("Invalid record"); 2856 2857 InstructionList.clear(); 2858 unsigned ModuleValueListSize = ValueList.size(); 2859 unsigned ModuleMDValueListSize = MDValueList.size(); 2860 2861 // Add all the function arguments to the value table. 2862 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2863 ValueList.push_back(I); 2864 2865 unsigned NextValueNo = ValueList.size(); 2866 BasicBlock *CurBB = nullptr; 2867 unsigned CurBBNo = 0; 2868 2869 DebugLoc LastLoc; 2870 auto getLastInstruction = [&]() -> Instruction * { 2871 if (CurBB && !CurBB->empty()) 2872 return &CurBB->back(); 2873 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2874 !FunctionBBs[CurBBNo - 1]->empty()) 2875 return &FunctionBBs[CurBBNo - 1]->back(); 2876 return nullptr; 2877 }; 2878 2879 // Read all the records. 2880 SmallVector<uint64_t, 64> Record; 2881 while (1) { 2882 BitstreamEntry Entry = Stream.advance(); 2883 2884 switch (Entry.Kind) { 2885 case BitstreamEntry::Error: 2886 return Error("Malformed block"); 2887 case BitstreamEntry::EndBlock: 2888 goto OutOfRecordLoop; 2889 2890 case BitstreamEntry::SubBlock: 2891 switch (Entry.ID) { 2892 default: // Skip unknown content. 2893 if (Stream.SkipBlock()) 2894 return Error("Invalid record"); 2895 break; 2896 case bitc::CONSTANTS_BLOCK_ID: 2897 if (std::error_code EC = ParseConstants()) 2898 return EC; 2899 NextValueNo = ValueList.size(); 2900 break; 2901 case bitc::VALUE_SYMTAB_BLOCK_ID: 2902 if (std::error_code EC = ParseValueSymbolTable()) 2903 return EC; 2904 break; 2905 case bitc::METADATA_ATTACHMENT_ID: 2906 if (std::error_code EC = ParseMetadataAttachment()) 2907 return EC; 2908 break; 2909 case bitc::METADATA_BLOCK_ID: 2910 if (std::error_code EC = ParseMetadata()) 2911 return EC; 2912 break; 2913 case bitc::USELIST_BLOCK_ID: 2914 if (std::error_code EC = ParseUseLists()) 2915 return EC; 2916 break; 2917 } 2918 continue; 2919 2920 case BitstreamEntry::Record: 2921 // The interesting case. 2922 break; 2923 } 2924 2925 // Read a record. 2926 Record.clear(); 2927 Instruction *I = nullptr; 2928 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2929 switch (BitCode) { 2930 default: // Default behavior: reject 2931 return Error("Invalid value"); 2932 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2933 if (Record.size() < 1 || Record[0] == 0) 2934 return Error("Invalid record"); 2935 // Create all the basic blocks for the function. 2936 FunctionBBs.resize(Record[0]); 2937 2938 // See if anything took the address of blocks in this function. 2939 auto BBFRI = BasicBlockFwdRefs.find(F); 2940 if (BBFRI == BasicBlockFwdRefs.end()) { 2941 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2942 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2943 } else { 2944 auto &BBRefs = BBFRI->second; 2945 // Check for invalid basic block references. 2946 if (BBRefs.size() > FunctionBBs.size()) 2947 return Error("Invalid ID"); 2948 assert(!BBRefs.empty() && "Unexpected empty array"); 2949 assert(!BBRefs.front() && "Invalid reference to entry block"); 2950 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2951 ++I) 2952 if (I < RE && BBRefs[I]) { 2953 BBRefs[I]->insertInto(F); 2954 FunctionBBs[I] = BBRefs[I]; 2955 } else { 2956 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2957 } 2958 2959 // Erase from the table. 2960 BasicBlockFwdRefs.erase(BBFRI); 2961 } 2962 2963 CurBB = FunctionBBs[0]; 2964 continue; 2965 } 2966 2967 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2968 // This record indicates that the last instruction is at the same 2969 // location as the previous instruction with a location. 2970 I = getLastInstruction(); 2971 2972 if (!I) 2973 return Error("Invalid record"); 2974 I->setDebugLoc(LastLoc); 2975 I = nullptr; 2976 continue; 2977 2978 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2979 I = getLastInstruction(); 2980 if (!I || Record.size() < 4) 2981 return Error("Invalid record"); 2982 2983 unsigned Line = Record[0], Col = Record[1]; 2984 unsigned ScopeID = Record[2], IAID = Record[3]; 2985 2986 MDNode *Scope = nullptr, *IA = nullptr; 2987 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2988 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2989 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2990 I->setDebugLoc(LastLoc); 2991 I = nullptr; 2992 continue; 2993 } 2994 2995 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2996 unsigned OpNum = 0; 2997 Value *LHS, *RHS; 2998 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2999 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3000 OpNum+1 > Record.size()) 3001 return Error("Invalid record"); 3002 3003 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3004 if (Opc == -1) 3005 return Error("Invalid record"); 3006 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3007 InstructionList.push_back(I); 3008 if (OpNum < Record.size()) { 3009 if (Opc == Instruction::Add || 3010 Opc == Instruction::Sub || 3011 Opc == Instruction::Mul || 3012 Opc == Instruction::Shl) { 3013 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3014 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3015 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3016 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3017 } else if (Opc == Instruction::SDiv || 3018 Opc == Instruction::UDiv || 3019 Opc == Instruction::LShr || 3020 Opc == Instruction::AShr) { 3021 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3022 cast<BinaryOperator>(I)->setIsExact(true); 3023 } else if (isa<FPMathOperator>(I)) { 3024 FastMathFlags FMF; 3025 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3026 FMF.setUnsafeAlgebra(); 3027 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3028 FMF.setNoNaNs(); 3029 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3030 FMF.setNoInfs(); 3031 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3032 FMF.setNoSignedZeros(); 3033 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3034 FMF.setAllowReciprocal(); 3035 if (FMF.any()) 3036 I->setFastMathFlags(FMF); 3037 } 3038 3039 } 3040 break; 3041 } 3042 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3043 unsigned OpNum = 0; 3044 Value *Op; 3045 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3046 OpNum+2 != Record.size()) 3047 return Error("Invalid record"); 3048 3049 Type *ResTy = getTypeByID(Record[OpNum]); 3050 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3051 if (Opc == -1 || !ResTy) 3052 return Error("Invalid record"); 3053 Instruction *Temp = nullptr; 3054 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3055 if (Temp) { 3056 InstructionList.push_back(Temp); 3057 CurBB->getInstList().push_back(Temp); 3058 } 3059 } else { 3060 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3061 } 3062 InstructionList.push_back(I); 3063 break; 3064 } 3065 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3066 case bitc::FUNC_CODE_INST_GEP_OLD: 3067 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3068 unsigned OpNum = 0; 3069 3070 Type *Ty; 3071 bool InBounds; 3072 3073 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3074 InBounds = Record[OpNum++]; 3075 Ty = getTypeByID(Record[OpNum++]); 3076 } else { 3077 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3078 Ty = nullptr; 3079 } 3080 3081 Value *BasePtr; 3082 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3083 return Error("Invalid record"); 3084 3085 SmallVector<Value*, 16> GEPIdx; 3086 while (OpNum != Record.size()) { 3087 Value *Op; 3088 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3089 return Error("Invalid record"); 3090 GEPIdx.push_back(Op); 3091 } 3092 3093 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 3094 assert(!Ty || Ty == cast<GetElementPtrInst>(I)->getSourceElementType()); 3095 InstructionList.push_back(I); 3096 if (InBounds) 3097 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3098 break; 3099 } 3100 3101 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3102 // EXTRACTVAL: [opty, opval, n x indices] 3103 unsigned OpNum = 0; 3104 Value *Agg; 3105 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3106 return Error("Invalid record"); 3107 3108 SmallVector<unsigned, 4> EXTRACTVALIdx; 3109 Type *CurTy = Agg->getType(); 3110 for (unsigned RecSize = Record.size(); 3111 OpNum != RecSize; ++OpNum) { 3112 bool IsArray = CurTy->isArrayTy(); 3113 bool IsStruct = CurTy->isStructTy(); 3114 uint64_t Index = Record[OpNum]; 3115 3116 if (!IsStruct && !IsArray) 3117 return Error("EXTRACTVAL: Invalid type"); 3118 if ((unsigned)Index != Index) 3119 return Error("Invalid value"); 3120 if (IsStruct && Index >= CurTy->subtypes().size()) 3121 return Error("EXTRACTVAL: Invalid struct index"); 3122 if (IsArray && Index >= CurTy->getArrayNumElements()) 3123 return Error("EXTRACTVAL: Invalid array index"); 3124 EXTRACTVALIdx.push_back((unsigned)Index); 3125 3126 if (IsStruct) 3127 CurTy = CurTy->subtypes()[Index]; 3128 else 3129 CurTy = CurTy->subtypes()[0]; 3130 } 3131 3132 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3133 InstructionList.push_back(I); 3134 break; 3135 } 3136 3137 case bitc::FUNC_CODE_INST_INSERTVAL: { 3138 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3139 unsigned OpNum = 0; 3140 Value *Agg; 3141 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3142 return Error("Invalid record"); 3143 Value *Val; 3144 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3145 return Error("Invalid record"); 3146 3147 SmallVector<unsigned, 4> INSERTVALIdx; 3148 Type *CurTy = Agg->getType(); 3149 for (unsigned RecSize = Record.size(); 3150 OpNum != RecSize; ++OpNum) { 3151 bool IsArray = CurTy->isArrayTy(); 3152 bool IsStruct = CurTy->isStructTy(); 3153 uint64_t Index = Record[OpNum]; 3154 3155 if (!IsStruct && !IsArray) 3156 return Error("INSERTVAL: Invalid type"); 3157 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3158 return Error("Invalid type"); 3159 if ((unsigned)Index != Index) 3160 return Error("Invalid value"); 3161 if (IsStruct && Index >= CurTy->subtypes().size()) 3162 return Error("INSERTVAL: Invalid struct index"); 3163 if (IsArray && Index >= CurTy->getArrayNumElements()) 3164 return Error("INSERTVAL: Invalid array index"); 3165 3166 INSERTVALIdx.push_back((unsigned)Index); 3167 if (IsStruct) 3168 CurTy = CurTy->subtypes()[Index]; 3169 else 3170 CurTy = CurTy->subtypes()[0]; 3171 } 3172 3173 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3174 InstructionList.push_back(I); 3175 break; 3176 } 3177 3178 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3179 // obsolete form of select 3180 // handles select i1 ... in old bitcode 3181 unsigned OpNum = 0; 3182 Value *TrueVal, *FalseVal, *Cond; 3183 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3184 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3185 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3186 return Error("Invalid record"); 3187 3188 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3189 InstructionList.push_back(I); 3190 break; 3191 } 3192 3193 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3194 // new form of select 3195 // handles select i1 or select [N x i1] 3196 unsigned OpNum = 0; 3197 Value *TrueVal, *FalseVal, *Cond; 3198 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3199 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3200 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3201 return Error("Invalid record"); 3202 3203 // select condition can be either i1 or [N x i1] 3204 if (VectorType* vector_type = 3205 dyn_cast<VectorType>(Cond->getType())) { 3206 // expect <n x i1> 3207 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3208 return Error("Invalid type for value"); 3209 } else { 3210 // expect i1 3211 if (Cond->getType() != Type::getInt1Ty(Context)) 3212 return Error("Invalid type for value"); 3213 } 3214 3215 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3216 InstructionList.push_back(I); 3217 break; 3218 } 3219 3220 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3221 unsigned OpNum = 0; 3222 Value *Vec, *Idx; 3223 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3224 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3225 return Error("Invalid record"); 3226 I = ExtractElementInst::Create(Vec, Idx); 3227 InstructionList.push_back(I); 3228 break; 3229 } 3230 3231 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3232 unsigned OpNum = 0; 3233 Value *Vec, *Elt, *Idx; 3234 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3235 popValue(Record, OpNum, NextValueNo, 3236 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3237 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3238 return Error("Invalid record"); 3239 I = InsertElementInst::Create(Vec, Elt, Idx); 3240 InstructionList.push_back(I); 3241 break; 3242 } 3243 3244 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3245 unsigned OpNum = 0; 3246 Value *Vec1, *Vec2, *Mask; 3247 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3248 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3249 return Error("Invalid record"); 3250 3251 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3252 return Error("Invalid record"); 3253 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3254 InstructionList.push_back(I); 3255 break; 3256 } 3257 3258 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3259 // Old form of ICmp/FCmp returning bool 3260 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3261 // both legal on vectors but had different behaviour. 3262 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3263 // FCmp/ICmp returning bool or vector of bool 3264 3265 unsigned OpNum = 0; 3266 Value *LHS, *RHS; 3267 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3268 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3269 OpNum+1 != Record.size()) 3270 return Error("Invalid record"); 3271 3272 if (LHS->getType()->isFPOrFPVectorTy()) 3273 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3274 else 3275 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3276 InstructionList.push_back(I); 3277 break; 3278 } 3279 3280 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3281 { 3282 unsigned Size = Record.size(); 3283 if (Size == 0) { 3284 I = ReturnInst::Create(Context); 3285 InstructionList.push_back(I); 3286 break; 3287 } 3288 3289 unsigned OpNum = 0; 3290 Value *Op = nullptr; 3291 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3292 return Error("Invalid record"); 3293 if (OpNum != Record.size()) 3294 return Error("Invalid record"); 3295 3296 I = ReturnInst::Create(Context, Op); 3297 InstructionList.push_back(I); 3298 break; 3299 } 3300 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3301 if (Record.size() != 1 && Record.size() != 3) 3302 return Error("Invalid record"); 3303 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3304 if (!TrueDest) 3305 return Error("Invalid record"); 3306 3307 if (Record.size() == 1) { 3308 I = BranchInst::Create(TrueDest); 3309 InstructionList.push_back(I); 3310 } 3311 else { 3312 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3313 Value *Cond = getValue(Record, 2, NextValueNo, 3314 Type::getInt1Ty(Context)); 3315 if (!FalseDest || !Cond) 3316 return Error("Invalid record"); 3317 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3318 InstructionList.push_back(I); 3319 } 3320 break; 3321 } 3322 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3323 // Check magic 3324 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3325 // "New" SwitchInst format with case ranges. The changes to write this 3326 // format were reverted but we still recognize bitcode that uses it. 3327 // Hopefully someday we will have support for case ranges and can use 3328 // this format again. 3329 3330 Type *OpTy = getTypeByID(Record[1]); 3331 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3332 3333 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3334 BasicBlock *Default = getBasicBlock(Record[3]); 3335 if (!OpTy || !Cond || !Default) 3336 return Error("Invalid record"); 3337 3338 unsigned NumCases = Record[4]; 3339 3340 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3341 InstructionList.push_back(SI); 3342 3343 unsigned CurIdx = 5; 3344 for (unsigned i = 0; i != NumCases; ++i) { 3345 SmallVector<ConstantInt*, 1> CaseVals; 3346 unsigned NumItems = Record[CurIdx++]; 3347 for (unsigned ci = 0; ci != NumItems; ++ci) { 3348 bool isSingleNumber = Record[CurIdx++]; 3349 3350 APInt Low; 3351 unsigned ActiveWords = 1; 3352 if (ValueBitWidth > 64) 3353 ActiveWords = Record[CurIdx++]; 3354 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3355 ValueBitWidth); 3356 CurIdx += ActiveWords; 3357 3358 if (!isSingleNumber) { 3359 ActiveWords = 1; 3360 if (ValueBitWidth > 64) 3361 ActiveWords = Record[CurIdx++]; 3362 APInt High = 3363 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3364 ValueBitWidth); 3365 CurIdx += ActiveWords; 3366 3367 // FIXME: It is not clear whether values in the range should be 3368 // compared as signed or unsigned values. The partially 3369 // implemented changes that used this format in the past used 3370 // unsigned comparisons. 3371 for ( ; Low.ule(High); ++Low) 3372 CaseVals.push_back(ConstantInt::get(Context, Low)); 3373 } else 3374 CaseVals.push_back(ConstantInt::get(Context, Low)); 3375 } 3376 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3377 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3378 cve = CaseVals.end(); cvi != cve; ++cvi) 3379 SI->addCase(*cvi, DestBB); 3380 } 3381 I = SI; 3382 break; 3383 } 3384 3385 // Old SwitchInst format without case ranges. 3386 3387 if (Record.size() < 3 || (Record.size() & 1) == 0) 3388 return Error("Invalid record"); 3389 Type *OpTy = getTypeByID(Record[0]); 3390 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3391 BasicBlock *Default = getBasicBlock(Record[2]); 3392 if (!OpTy || !Cond || !Default) 3393 return Error("Invalid record"); 3394 unsigned NumCases = (Record.size()-3)/2; 3395 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3396 InstructionList.push_back(SI); 3397 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3398 ConstantInt *CaseVal = 3399 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3400 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3401 if (!CaseVal || !DestBB) { 3402 delete SI; 3403 return Error("Invalid record"); 3404 } 3405 SI->addCase(CaseVal, DestBB); 3406 } 3407 I = SI; 3408 break; 3409 } 3410 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3411 if (Record.size() < 2) 3412 return Error("Invalid record"); 3413 Type *OpTy = getTypeByID(Record[0]); 3414 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3415 if (!OpTy || !Address) 3416 return Error("Invalid record"); 3417 unsigned NumDests = Record.size()-2; 3418 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3419 InstructionList.push_back(IBI); 3420 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3421 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3422 IBI->addDestination(DestBB); 3423 } else { 3424 delete IBI; 3425 return Error("Invalid record"); 3426 } 3427 } 3428 I = IBI; 3429 break; 3430 } 3431 3432 case bitc::FUNC_CODE_INST_INVOKE: { 3433 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3434 if (Record.size() < 4) 3435 return Error("Invalid record"); 3436 AttributeSet PAL = getAttributes(Record[0]); 3437 unsigned CCInfo = Record[1]; 3438 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3439 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3440 3441 unsigned OpNum = 4; 3442 Value *Callee; 3443 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3444 return Error("Invalid record"); 3445 3446 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3447 FunctionType *FTy = !CalleeTy ? nullptr : 3448 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3449 3450 // Check that the right number of fixed parameters are here. 3451 if (!FTy || !NormalBB || !UnwindBB || 3452 Record.size() < OpNum+FTy->getNumParams()) 3453 return Error("Invalid record"); 3454 3455 SmallVector<Value*, 16> Ops; 3456 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3457 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3458 FTy->getParamType(i))); 3459 if (!Ops.back()) 3460 return Error("Invalid record"); 3461 } 3462 3463 if (!FTy->isVarArg()) { 3464 if (Record.size() != OpNum) 3465 return Error("Invalid record"); 3466 } else { 3467 // Read type/value pairs for varargs params. 3468 while (OpNum != Record.size()) { 3469 Value *Op; 3470 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3471 return Error("Invalid record"); 3472 Ops.push_back(Op); 3473 } 3474 } 3475 3476 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3477 InstructionList.push_back(I); 3478 cast<InvokeInst>(I)->setCallingConv( 3479 static_cast<CallingConv::ID>(CCInfo)); 3480 cast<InvokeInst>(I)->setAttributes(PAL); 3481 break; 3482 } 3483 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3484 unsigned Idx = 0; 3485 Value *Val = nullptr; 3486 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3487 return Error("Invalid record"); 3488 I = ResumeInst::Create(Val); 3489 InstructionList.push_back(I); 3490 break; 3491 } 3492 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3493 I = new UnreachableInst(Context); 3494 InstructionList.push_back(I); 3495 break; 3496 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3497 if (Record.size() < 1 || ((Record.size()-1)&1)) 3498 return Error("Invalid record"); 3499 Type *Ty = getTypeByID(Record[0]); 3500 if (!Ty) 3501 return Error("Invalid record"); 3502 3503 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3504 InstructionList.push_back(PN); 3505 3506 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3507 Value *V; 3508 // With the new function encoding, it is possible that operands have 3509 // negative IDs (for forward references). Use a signed VBR 3510 // representation to keep the encoding small. 3511 if (UseRelativeIDs) 3512 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3513 else 3514 V = getValue(Record, 1+i, NextValueNo, Ty); 3515 BasicBlock *BB = getBasicBlock(Record[2+i]); 3516 if (!V || !BB) 3517 return Error("Invalid record"); 3518 PN->addIncoming(V, BB); 3519 } 3520 I = PN; 3521 break; 3522 } 3523 3524 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3525 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3526 unsigned Idx = 0; 3527 if (Record.size() < 4) 3528 return Error("Invalid record"); 3529 Type *Ty = getTypeByID(Record[Idx++]); 3530 if (!Ty) 3531 return Error("Invalid record"); 3532 Value *PersFn = nullptr; 3533 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3534 return Error("Invalid record"); 3535 3536 bool IsCleanup = !!Record[Idx++]; 3537 unsigned NumClauses = Record[Idx++]; 3538 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3539 LP->setCleanup(IsCleanup); 3540 for (unsigned J = 0; J != NumClauses; ++J) { 3541 LandingPadInst::ClauseType CT = 3542 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3543 Value *Val; 3544 3545 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3546 delete LP; 3547 return Error("Invalid record"); 3548 } 3549 3550 assert((CT != LandingPadInst::Catch || 3551 !isa<ArrayType>(Val->getType())) && 3552 "Catch clause has a invalid type!"); 3553 assert((CT != LandingPadInst::Filter || 3554 isa<ArrayType>(Val->getType())) && 3555 "Filter clause has invalid type!"); 3556 LP->addClause(cast<Constant>(Val)); 3557 } 3558 3559 I = LP; 3560 InstructionList.push_back(I); 3561 break; 3562 } 3563 3564 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3565 if (Record.size() != 4) 3566 return Error("Invalid record"); 3567 PointerType *Ty = 3568 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3569 Type *OpTy = getTypeByID(Record[1]); 3570 Value *Size = getFnValueByID(Record[2], OpTy); 3571 uint64_t AlignRecord = Record[3]; 3572 const uint64_t InAllocaMask = uint64_t(1) << 5; 3573 bool InAlloca = AlignRecord & InAllocaMask; 3574 unsigned Align; 3575 if (std::error_code EC = 3576 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3577 return EC; 3578 } 3579 if (!Ty || !Size) 3580 return Error("Invalid record"); 3581 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3582 AI->setUsedWithInAlloca(InAlloca); 3583 I = AI; 3584 InstructionList.push_back(I); 3585 break; 3586 } 3587 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3588 unsigned OpNum = 0; 3589 Value *Op; 3590 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3591 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3592 return Error("Invalid record"); 3593 3594 Type *Ty = nullptr; 3595 if (OpNum + 3 == Record.size()) 3596 Ty = getTypeByID(Record[OpNum++]); 3597 3598 unsigned Align; 3599 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3600 return EC; 3601 I = new LoadInst(Op, "", Record[OpNum+1], Align); 3602 3603 assert((!Ty || Ty == I->getType()) && 3604 "Explicit type doesn't match pointee type of the first operand"); 3605 3606 InstructionList.push_back(I); 3607 break; 3608 } 3609 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3610 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3611 unsigned OpNum = 0; 3612 Value *Op; 3613 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3614 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 3615 return Error("Invalid record"); 3616 3617 Type *Ty = nullptr; 3618 if (OpNum + 5 == Record.size()) 3619 Ty = getTypeByID(Record[OpNum++]); 3620 3621 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3622 if (Ordering == NotAtomic || Ordering == Release || 3623 Ordering == AcquireRelease) 3624 return Error("Invalid record"); 3625 if (Ordering != NotAtomic && Record[OpNum] == 0) 3626 return Error("Invalid record"); 3627 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3628 3629 unsigned Align; 3630 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3631 return EC; 3632 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 3633 3634 assert((!Ty || Ty == I->getType()) && 3635 "Explicit type doesn't match pointee type of the first operand"); 3636 3637 InstructionList.push_back(I); 3638 break; 3639 } 3640 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3641 unsigned OpNum = 0; 3642 Value *Val, *Ptr; 3643 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3644 popValue(Record, OpNum, NextValueNo, 3645 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3646 OpNum+2 != Record.size()) 3647 return Error("Invalid record"); 3648 unsigned Align; 3649 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3650 return EC; 3651 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 3652 InstructionList.push_back(I); 3653 break; 3654 } 3655 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3656 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3657 unsigned OpNum = 0; 3658 Value *Val, *Ptr; 3659 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3660 popValue(Record, OpNum, NextValueNo, 3661 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3662 OpNum+4 != Record.size()) 3663 return Error("Invalid record"); 3664 3665 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3666 if (Ordering == NotAtomic || Ordering == Acquire || 3667 Ordering == AcquireRelease) 3668 return Error("Invalid record"); 3669 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3670 if (Ordering != NotAtomic && Record[OpNum] == 0) 3671 return Error("Invalid record"); 3672 3673 unsigned Align; 3674 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3675 return EC; 3676 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 3677 InstructionList.push_back(I); 3678 break; 3679 } 3680 case bitc::FUNC_CODE_INST_CMPXCHG: { 3681 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3682 // failureordering?, isweak?] 3683 unsigned OpNum = 0; 3684 Value *Ptr, *Cmp, *New; 3685 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3686 popValue(Record, OpNum, NextValueNo, 3687 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3688 popValue(Record, OpNum, NextValueNo, 3689 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3690 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3691 return Error("Invalid record"); 3692 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3693 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3694 return Error("Invalid record"); 3695 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3696 3697 AtomicOrdering FailureOrdering; 3698 if (Record.size() < 7) 3699 FailureOrdering = 3700 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3701 else 3702 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3703 3704 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3705 SynchScope); 3706 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3707 3708 if (Record.size() < 8) { 3709 // Before weak cmpxchgs existed, the instruction simply returned the 3710 // value loaded from memory, so bitcode files from that era will be 3711 // expecting the first component of a modern cmpxchg. 3712 CurBB->getInstList().push_back(I); 3713 I = ExtractValueInst::Create(I, 0); 3714 } else { 3715 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3716 } 3717 3718 InstructionList.push_back(I); 3719 break; 3720 } 3721 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3722 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3723 unsigned OpNum = 0; 3724 Value *Ptr, *Val; 3725 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3726 popValue(Record, OpNum, NextValueNo, 3727 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3728 OpNum+4 != Record.size()) 3729 return Error("Invalid record"); 3730 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3731 if (Operation < AtomicRMWInst::FIRST_BINOP || 3732 Operation > AtomicRMWInst::LAST_BINOP) 3733 return Error("Invalid record"); 3734 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3735 if (Ordering == NotAtomic || Ordering == Unordered) 3736 return Error("Invalid record"); 3737 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3738 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3739 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3740 InstructionList.push_back(I); 3741 break; 3742 } 3743 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3744 if (2 != Record.size()) 3745 return Error("Invalid record"); 3746 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3747 if (Ordering == NotAtomic || Ordering == Unordered || 3748 Ordering == Monotonic) 3749 return Error("Invalid record"); 3750 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3751 I = new FenceInst(Context, Ordering, SynchScope); 3752 InstructionList.push_back(I); 3753 break; 3754 } 3755 case bitc::FUNC_CODE_INST_CALL: { 3756 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3757 if (Record.size() < 3) 3758 return Error("Invalid record"); 3759 3760 AttributeSet PAL = getAttributes(Record[0]); 3761 unsigned CCInfo = Record[1]; 3762 3763 unsigned OpNum = 2; 3764 Value *Callee; 3765 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3766 return Error("Invalid record"); 3767 3768 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3769 FunctionType *FTy = nullptr; 3770 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3771 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3772 return Error("Invalid record"); 3773 3774 SmallVector<Value*, 16> Args; 3775 // Read the fixed params. 3776 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3777 if (FTy->getParamType(i)->isLabelTy()) 3778 Args.push_back(getBasicBlock(Record[OpNum])); 3779 else 3780 Args.push_back(getValue(Record, OpNum, NextValueNo, 3781 FTy->getParamType(i))); 3782 if (!Args.back()) 3783 return Error("Invalid record"); 3784 } 3785 3786 // Read type/value pairs for varargs params. 3787 if (!FTy->isVarArg()) { 3788 if (OpNum != Record.size()) 3789 return Error("Invalid record"); 3790 } else { 3791 while (OpNum != Record.size()) { 3792 Value *Op; 3793 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3794 return Error("Invalid record"); 3795 Args.push_back(Op); 3796 } 3797 } 3798 3799 I = CallInst::Create(Callee, Args); 3800 InstructionList.push_back(I); 3801 cast<CallInst>(I)->setCallingConv( 3802 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3803 CallInst::TailCallKind TCK = CallInst::TCK_None; 3804 if (CCInfo & 1) 3805 TCK = CallInst::TCK_Tail; 3806 if (CCInfo & (1 << 14)) 3807 TCK = CallInst::TCK_MustTail; 3808 cast<CallInst>(I)->setTailCallKind(TCK); 3809 cast<CallInst>(I)->setAttributes(PAL); 3810 break; 3811 } 3812 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3813 if (Record.size() < 3) 3814 return Error("Invalid record"); 3815 Type *OpTy = getTypeByID(Record[0]); 3816 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3817 Type *ResTy = getTypeByID(Record[2]); 3818 if (!OpTy || !Op || !ResTy) 3819 return Error("Invalid record"); 3820 I = new VAArgInst(Op, ResTy); 3821 InstructionList.push_back(I); 3822 break; 3823 } 3824 } 3825 3826 // Add instruction to end of current BB. If there is no current BB, reject 3827 // this file. 3828 if (!CurBB) { 3829 delete I; 3830 return Error("Invalid instruction with no BB"); 3831 } 3832 CurBB->getInstList().push_back(I); 3833 3834 // If this was a terminator instruction, move to the next block. 3835 if (isa<TerminatorInst>(I)) { 3836 ++CurBBNo; 3837 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3838 } 3839 3840 // Non-void values get registered in the value table for future use. 3841 if (I && !I->getType()->isVoidTy()) 3842 ValueList.AssignValue(I, NextValueNo++); 3843 } 3844 3845 OutOfRecordLoop: 3846 3847 // Check the function list for unresolved values. 3848 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3849 if (!A->getParent()) { 3850 // We found at least one unresolved value. Nuke them all to avoid leaks. 3851 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3852 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3853 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3854 delete A; 3855 } 3856 } 3857 return Error("Never resolved value found in function"); 3858 } 3859 } 3860 3861 // FIXME: Check for unresolved forward-declared metadata references 3862 // and clean up leaks. 3863 3864 // Trim the value list down to the size it was before we parsed this function. 3865 ValueList.shrinkTo(ModuleValueListSize); 3866 MDValueList.shrinkTo(ModuleMDValueListSize); 3867 std::vector<BasicBlock*>().swap(FunctionBBs); 3868 return std::error_code(); 3869 } 3870 3871 /// Find the function body in the bitcode stream 3872 std::error_code BitcodeReader::FindFunctionInStream( 3873 Function *F, 3874 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3875 while (DeferredFunctionInfoIterator->second == 0) { 3876 if (Stream.AtEndOfStream()) 3877 return Error("Could not find function in stream"); 3878 // ParseModule will parse the next body in the stream and set its 3879 // position in the DeferredFunctionInfo map. 3880 if (std::error_code EC = ParseModule(true)) 3881 return EC; 3882 } 3883 return std::error_code(); 3884 } 3885 3886 //===----------------------------------------------------------------------===// 3887 // GVMaterializer implementation 3888 //===----------------------------------------------------------------------===// 3889 3890 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3891 3892 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3893 Function *F = dyn_cast<Function>(GV); 3894 // If it's not a function or is already material, ignore the request. 3895 if (!F || !F->isMaterializable()) 3896 return std::error_code(); 3897 3898 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3899 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3900 // If its position is recorded as 0, its body is somewhere in the stream 3901 // but we haven't seen it yet. 3902 if (DFII->second == 0 && LazyStreamer) 3903 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3904 return EC; 3905 3906 // Move the bit stream to the saved position of the deferred function body. 3907 Stream.JumpToBit(DFII->second); 3908 3909 if (std::error_code EC = ParseFunctionBody(F)) 3910 return EC; 3911 F->setIsMaterializable(false); 3912 3913 // Upgrade any old intrinsic calls in the function. 3914 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3915 E = UpgradedIntrinsics.end(); I != E; ++I) { 3916 if (I->first != I->second) { 3917 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3918 UI != UE;) { 3919 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3920 UpgradeIntrinsicCall(CI, I->second); 3921 } 3922 } 3923 } 3924 3925 // Bring in any functions that this function forward-referenced via 3926 // blockaddresses. 3927 return materializeForwardReferencedFunctions(); 3928 } 3929 3930 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3931 const Function *F = dyn_cast<Function>(GV); 3932 if (!F || F->isDeclaration()) 3933 return false; 3934 3935 // Dematerializing F would leave dangling references that wouldn't be 3936 // reconnected on re-materialization. 3937 if (BlockAddressesTaken.count(F)) 3938 return false; 3939 3940 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3941 } 3942 3943 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3944 Function *F = dyn_cast<Function>(GV); 3945 // If this function isn't dematerializable, this is a noop. 3946 if (!F || !isDematerializable(F)) 3947 return; 3948 3949 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3950 3951 // Just forget the function body, we can remat it later. 3952 F->dropAllReferences(); 3953 F->setIsMaterializable(true); 3954 } 3955 3956 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3957 assert(M == TheModule && 3958 "Can only Materialize the Module this BitcodeReader is attached to."); 3959 3960 // Promise to materialize all forward references. 3961 WillMaterializeAllForwardRefs = true; 3962 3963 // Iterate over the module, deserializing any functions that are still on 3964 // disk. 3965 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3966 F != E; ++F) { 3967 if (std::error_code EC = materialize(F)) 3968 return EC; 3969 } 3970 // At this point, if there are any function bodies, the current bit is 3971 // pointing to the END_BLOCK record after them. Now make sure the rest 3972 // of the bits in the module have been read. 3973 if (NextUnreadBit) 3974 ParseModule(true); 3975 3976 // Check that all block address forward references got resolved (as we 3977 // promised above). 3978 if (!BasicBlockFwdRefs.empty()) 3979 return Error("Never resolved function from blockaddress"); 3980 3981 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3982 // delete the old functions to clean up. We can't do this unless the entire 3983 // module is materialized because there could always be another function body 3984 // with calls to the old function. 3985 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3986 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3987 if (I->first != I->second) { 3988 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3989 UI != UE;) { 3990 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3991 UpgradeIntrinsicCall(CI, I->second); 3992 } 3993 if (!I->first->use_empty()) 3994 I->first->replaceAllUsesWith(I->second); 3995 I->first->eraseFromParent(); 3996 } 3997 } 3998 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3999 4000 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4001 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4002 4003 UpgradeDebugInfo(*M); 4004 return std::error_code(); 4005 } 4006 4007 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4008 return IdentifiedStructTypes; 4009 } 4010 4011 std::error_code BitcodeReader::InitStream() { 4012 if (LazyStreamer) 4013 return InitLazyStream(); 4014 return InitStreamFromBuffer(); 4015 } 4016 4017 std::error_code BitcodeReader::InitStreamFromBuffer() { 4018 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4019 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4020 4021 if (Buffer->getBufferSize() & 3) 4022 return Error("Invalid bitcode signature"); 4023 4024 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4025 // The magic number is 0x0B17C0DE stored in little endian. 4026 if (isBitcodeWrapper(BufPtr, BufEnd)) 4027 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4028 return Error("Invalid bitcode wrapper header"); 4029 4030 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4031 Stream.init(&*StreamFile); 4032 4033 return std::error_code(); 4034 } 4035 4036 std::error_code BitcodeReader::InitLazyStream() { 4037 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4038 // see it. 4039 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4040 StreamingMemoryObject &Bytes = *OwnedBytes; 4041 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4042 Stream.init(&*StreamFile); 4043 4044 unsigned char buf[16]; 4045 if (Bytes.readBytes(buf, 16, 0) != 16) 4046 return Error("Invalid bitcode signature"); 4047 4048 if (!isBitcode(buf, buf + 16)) 4049 return Error("Invalid bitcode signature"); 4050 4051 if (isBitcodeWrapper(buf, buf + 4)) { 4052 const unsigned char *bitcodeStart = buf; 4053 const unsigned char *bitcodeEnd = buf + 16; 4054 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4055 Bytes.dropLeadingBytes(bitcodeStart - buf); 4056 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4057 } 4058 return std::error_code(); 4059 } 4060 4061 namespace { 4062 class BitcodeErrorCategoryType : public std::error_category { 4063 const char *name() const LLVM_NOEXCEPT override { 4064 return "llvm.bitcode"; 4065 } 4066 std::string message(int IE) const override { 4067 BitcodeError E = static_cast<BitcodeError>(IE); 4068 switch (E) { 4069 case BitcodeError::InvalidBitcodeSignature: 4070 return "Invalid bitcode signature"; 4071 case BitcodeError::CorruptedBitcode: 4072 return "Corrupted bitcode"; 4073 } 4074 llvm_unreachable("Unknown error type!"); 4075 } 4076 }; 4077 } 4078 4079 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4080 4081 const std::error_category &llvm::BitcodeErrorCategory() { 4082 return *ErrorCategory; 4083 } 4084 4085 //===----------------------------------------------------------------------===// 4086 // External interface 4087 //===----------------------------------------------------------------------===// 4088 4089 /// \brief Get a lazy one-at-time loading module from bitcode. 4090 /// 4091 /// This isn't always used in a lazy context. In particular, it's also used by 4092 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4093 /// in forward-referenced functions from block address references. 4094 /// 4095 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4096 /// materialize everything -- in particular, if this isn't truly lazy. 4097 static ErrorOr<Module *> 4098 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4099 LLVMContext &Context, bool WillMaterializeAll, 4100 DiagnosticHandlerFunction DiagnosticHandler) { 4101 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4102 BitcodeReader *R = 4103 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4104 M->setMaterializer(R); 4105 4106 auto cleanupOnError = [&](std::error_code EC) { 4107 R->releaseBuffer(); // Never take ownership on error. 4108 delete M; // Also deletes R. 4109 return EC; 4110 }; 4111 4112 if (std::error_code EC = R->ParseBitcodeInto(M)) 4113 return cleanupOnError(EC); 4114 4115 if (!WillMaterializeAll) 4116 // Resolve forward references from blockaddresses. 4117 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4118 return cleanupOnError(EC); 4119 4120 Buffer.release(); // The BitcodeReader owns it now. 4121 return M; 4122 } 4123 4124 ErrorOr<Module *> 4125 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4126 LLVMContext &Context, 4127 DiagnosticHandlerFunction DiagnosticHandler) { 4128 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4129 DiagnosticHandler); 4130 } 4131 4132 ErrorOr<std::unique_ptr<Module>> 4133 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4134 LLVMContext &Context, 4135 DiagnosticHandlerFunction DiagnosticHandler) { 4136 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4137 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4138 M->setMaterializer(R); 4139 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4140 return EC; 4141 return std::move(M); 4142 } 4143 4144 ErrorOr<Module *> 4145 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4146 DiagnosticHandlerFunction DiagnosticHandler) { 4147 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4148 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4149 std::move(Buf), Context, true, DiagnosticHandler); 4150 if (!ModuleOrErr) 4151 return ModuleOrErr; 4152 Module *M = ModuleOrErr.get(); 4153 // Read in the entire module, and destroy the BitcodeReader. 4154 if (std::error_code EC = M->materializeAllPermanently()) { 4155 delete M; 4156 return EC; 4157 } 4158 4159 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4160 // written. We must defer until the Module has been fully materialized. 4161 4162 return M; 4163 } 4164 4165 std::string 4166 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4167 DiagnosticHandlerFunction DiagnosticHandler) { 4168 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4169 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4170 DiagnosticHandler); 4171 ErrorOr<std::string> Triple = R->parseTriple(); 4172 if (Triple.getError()) 4173 return ""; 4174 return Triple.get(); 4175 } 4176