1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code MaterializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void Dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 405 return ::Error(DiagnosticHandler, make_error_code(E), Message); 406 } 407 408 std::error_code BitcodeReader::Error(const Twine &Message) { 409 return ::Error(DiagnosticHandler, 410 make_error_code(BitcodeError::CorruptedBitcode), Message); 411 } 412 413 std::error_code BitcodeReader::Error(BitcodeError E) { 414 return ::Error(DiagnosticHandler, make_error_code(E)); 415 } 416 417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 418 LLVMContext &C) { 419 if (F) 420 return F; 421 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 422 } 423 424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 425 DiagnosticHandlerFunction DiagnosticHandler) 426 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 427 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 428 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 429 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 430 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 435 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 436 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 437 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 438 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return Error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::FreeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// ConvertToString - Convert a string from a record into an std::string, return 496 /// true on failure. 497 template<typename StrTy> 498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 GetDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int GetDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 611 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 612 bool IsFP = Ty->isFPOrFPVectorTy(); 613 // BinOps are only valid for int/fp or vector of int/fp types 614 if (!IsFP && !Ty->isIntOrIntVectorTy()) 615 return -1; 616 617 switch (Val) { 618 default: 619 return -1; 620 case bitc::BINOP_ADD: 621 return IsFP ? Instruction::FAdd : Instruction::Add; 622 case bitc::BINOP_SUB: 623 return IsFP ? Instruction::FSub : Instruction::Sub; 624 case bitc::BINOP_MUL: 625 return IsFP ? Instruction::FMul : Instruction::Mul; 626 case bitc::BINOP_UDIV: 627 return IsFP ? -1 : Instruction::UDiv; 628 case bitc::BINOP_SDIV: 629 return IsFP ? Instruction::FDiv : Instruction::SDiv; 630 case bitc::BINOP_UREM: 631 return IsFP ? -1 : Instruction::URem; 632 case bitc::BINOP_SREM: 633 return IsFP ? Instruction::FRem : Instruction::SRem; 634 case bitc::BINOP_SHL: 635 return IsFP ? -1 : Instruction::Shl; 636 case bitc::BINOP_LSHR: 637 return IsFP ? -1 : Instruction::LShr; 638 case bitc::BINOP_ASHR: 639 return IsFP ? -1 : Instruction::AShr; 640 case bitc::BINOP_AND: 641 return IsFP ? -1 : Instruction::And; 642 case bitc::BINOP_OR: 643 return IsFP ? -1 : Instruction::Or; 644 case bitc::BINOP_XOR: 645 return IsFP ? -1 : Instruction::Xor; 646 } 647 } 648 649 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 650 switch (Val) { 651 default: return AtomicRMWInst::BAD_BINOP; 652 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 653 case bitc::RMW_ADD: return AtomicRMWInst::Add; 654 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 655 case bitc::RMW_AND: return AtomicRMWInst::And; 656 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 657 case bitc::RMW_OR: return AtomicRMWInst::Or; 658 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 659 case bitc::RMW_MAX: return AtomicRMWInst::Max; 660 case bitc::RMW_MIN: return AtomicRMWInst::Min; 661 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 662 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 663 } 664 } 665 666 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 667 switch (Val) { 668 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 669 case bitc::ORDERING_UNORDERED: return Unordered; 670 case bitc::ORDERING_MONOTONIC: return Monotonic; 671 case bitc::ORDERING_ACQUIRE: return Acquire; 672 case bitc::ORDERING_RELEASE: return Release; 673 case bitc::ORDERING_ACQREL: return AcquireRelease; 674 default: // Map unknown orderings to sequentially-consistent. 675 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 676 } 677 } 678 679 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 680 switch (Val) { 681 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 682 default: // Map unknown scopes to cross-thread. 683 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 684 } 685 } 686 687 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 688 switch (Val) { 689 default: // Map unknown selection kinds to any. 690 case bitc::COMDAT_SELECTION_KIND_ANY: 691 return Comdat::Any; 692 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 693 return Comdat::ExactMatch; 694 case bitc::COMDAT_SELECTION_KIND_LARGEST: 695 return Comdat::Largest; 696 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 697 return Comdat::NoDuplicates; 698 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 699 return Comdat::SameSize; 700 } 701 } 702 703 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 704 switch (Val) { 705 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 706 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 707 } 708 } 709 710 namespace llvm { 711 namespace { 712 /// @brief A class for maintaining the slot number definition 713 /// as a placeholder for the actual definition for forward constants defs. 714 class ConstantPlaceHolder : public ConstantExpr { 715 void operator=(const ConstantPlaceHolder &) = delete; 716 public: 717 // allocate space for exactly one operand 718 void *operator new(size_t s) { 719 return User::operator new(s, 1); 720 } 721 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 722 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 723 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 724 } 725 726 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 727 static bool classof(const Value *V) { 728 return isa<ConstantExpr>(V) && 729 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 730 } 731 732 733 /// Provide fast operand accessors 734 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 735 }; 736 } 737 738 // FIXME: can we inherit this from ConstantExpr? 739 template <> 740 struct OperandTraits<ConstantPlaceHolder> : 741 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 742 }; 743 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 744 } 745 746 747 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 748 if (Idx == size()) { 749 push_back(V); 750 return; 751 } 752 753 if (Idx >= size()) 754 resize(Idx+1); 755 756 WeakVH &OldV = ValuePtrs[Idx]; 757 if (!OldV) { 758 OldV = V; 759 return; 760 } 761 762 // Handle constants and non-constants (e.g. instrs) differently for 763 // efficiency. 764 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 765 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 766 OldV = V; 767 } else { 768 // If there was a forward reference to this value, replace it. 769 Value *PrevVal = OldV; 770 OldV->replaceAllUsesWith(V); 771 delete PrevVal; 772 } 773 } 774 775 776 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 777 Type *Ty) { 778 if (Idx >= size()) 779 resize(Idx + 1); 780 781 if (Value *V = ValuePtrs[Idx]) { 782 assert(Ty == V->getType() && "Type mismatch in constant table!"); 783 return cast<Constant>(V); 784 } 785 786 // Create and return a placeholder, which will later be RAUW'd. 787 Constant *C = new ConstantPlaceHolder(Ty, Context); 788 ValuePtrs[Idx] = C; 789 return C; 790 } 791 792 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 793 if (Idx >= size()) 794 resize(Idx + 1); 795 796 if (Value *V = ValuePtrs[Idx]) { 797 // If the types don't match, it's invalid. 798 if (Ty && Ty != V->getType()) 799 return nullptr; 800 return V; 801 } 802 803 // No type specified, must be invalid reference. 804 if (!Ty) return nullptr; 805 806 // Create and return a placeholder, which will later be RAUW'd. 807 Value *V = new Argument(Ty); 808 ValuePtrs[Idx] = V; 809 return V; 810 } 811 812 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 813 /// resolves any forward references. The idea behind this is that we sometimes 814 /// get constants (such as large arrays) which reference *many* forward ref 815 /// constants. Replacing each of these causes a lot of thrashing when 816 /// building/reuniquing the constant. Instead of doing this, we look at all the 817 /// uses and rewrite all the place holders at once for any constant that uses 818 /// a placeholder. 819 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 820 // Sort the values by-pointer so that they are efficient to look up with a 821 // binary search. 822 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 823 824 SmallVector<Constant*, 64> NewOps; 825 826 while (!ResolveConstants.empty()) { 827 Value *RealVal = operator[](ResolveConstants.back().second); 828 Constant *Placeholder = ResolveConstants.back().first; 829 ResolveConstants.pop_back(); 830 831 // Loop over all users of the placeholder, updating them to reference the 832 // new value. If they reference more than one placeholder, update them all 833 // at once. 834 while (!Placeholder->use_empty()) { 835 auto UI = Placeholder->user_begin(); 836 User *U = *UI; 837 838 // If the using object isn't uniqued, just update the operands. This 839 // handles instructions and initializers for global variables. 840 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 841 UI.getUse().set(RealVal); 842 continue; 843 } 844 845 // Otherwise, we have a constant that uses the placeholder. Replace that 846 // constant with a new constant that has *all* placeholder uses updated. 847 Constant *UserC = cast<Constant>(U); 848 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 849 I != E; ++I) { 850 Value *NewOp; 851 if (!isa<ConstantPlaceHolder>(*I)) { 852 // Not a placeholder reference. 853 NewOp = *I; 854 } else if (*I == Placeholder) { 855 // Common case is that it just references this one placeholder. 856 NewOp = RealVal; 857 } else { 858 // Otherwise, look up the placeholder in ResolveConstants. 859 ResolveConstantsTy::iterator It = 860 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 861 std::pair<Constant*, unsigned>(cast<Constant>(*I), 862 0)); 863 assert(It != ResolveConstants.end() && It->first == *I); 864 NewOp = operator[](It->second); 865 } 866 867 NewOps.push_back(cast<Constant>(NewOp)); 868 } 869 870 // Make the new constant. 871 Constant *NewC; 872 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 873 NewC = ConstantArray::get(UserCA->getType(), NewOps); 874 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 875 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 876 } else if (isa<ConstantVector>(UserC)) { 877 NewC = ConstantVector::get(NewOps); 878 } else { 879 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 880 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 881 } 882 883 UserC->replaceAllUsesWith(NewC); 884 UserC->destroyConstant(); 885 NewOps.clear(); 886 } 887 888 // Update all ValueHandles, they should be the only users at this point. 889 Placeholder->replaceAllUsesWith(RealVal); 890 delete Placeholder; 891 } 892 } 893 894 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 895 if (Idx == size()) { 896 push_back(MD); 897 return; 898 } 899 900 if (Idx >= size()) 901 resize(Idx+1); 902 903 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 904 if (!OldMD) { 905 OldMD.reset(MD); 906 return; 907 } 908 909 // If there was a forward reference to this value, replace it. 910 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 911 PrevMD->replaceAllUsesWith(MD); 912 --NumFwdRefs; 913 } 914 915 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 916 if (Idx >= size()) 917 resize(Idx + 1); 918 919 if (Metadata *MD = MDValuePtrs[Idx]) 920 return MD; 921 922 // Track forward refs to be resolved later. 923 if (AnyFwdRefs) { 924 MinFwdRef = std::min(MinFwdRef, Idx); 925 MaxFwdRef = std::max(MaxFwdRef, Idx); 926 } else { 927 AnyFwdRefs = true; 928 MinFwdRef = MaxFwdRef = Idx; 929 } 930 ++NumFwdRefs; 931 932 // Create and return a placeholder, which will later be RAUW'd. 933 Metadata *MD = MDNode::getTemporary(Context, None).release(); 934 MDValuePtrs[Idx].reset(MD); 935 return MD; 936 } 937 938 void BitcodeReaderMDValueList::tryToResolveCycles() { 939 if (!AnyFwdRefs) 940 // Nothing to do. 941 return; 942 943 if (NumFwdRefs) 944 // Still forward references... can't resolve cycles. 945 return; 946 947 // Resolve any cycles. 948 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 949 auto &MD = MDValuePtrs[I]; 950 auto *N = dyn_cast_or_null<MDNode>(MD); 951 if (!N) 952 continue; 953 954 assert(!N->isTemporary() && "Unexpected forward reference"); 955 N->resolveCycles(); 956 } 957 958 // Make sure we return early again until there's another forward ref. 959 AnyFwdRefs = false; 960 } 961 962 Type *BitcodeReader::getTypeByID(unsigned ID) { 963 // The type table size is always specified correctly. 964 if (ID >= TypeList.size()) 965 return nullptr; 966 967 if (Type *Ty = TypeList[ID]) 968 return Ty; 969 970 // If we have a forward reference, the only possible case is when it is to a 971 // named struct. Just create a placeholder for now. 972 return TypeList[ID] = createIdentifiedStructType(Context); 973 } 974 975 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 976 StringRef Name) { 977 auto *Ret = StructType::create(Context, Name); 978 IdentifiedStructTypes.push_back(Ret); 979 return Ret; 980 } 981 982 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 983 auto *Ret = StructType::create(Context); 984 IdentifiedStructTypes.push_back(Ret); 985 return Ret; 986 } 987 988 989 //===----------------------------------------------------------------------===// 990 // Functions for parsing blocks from the bitcode file 991 //===----------------------------------------------------------------------===// 992 993 994 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 995 /// been decoded from the given integer. This function must stay in sync with 996 /// 'encodeLLVMAttributesForBitcode'. 997 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 998 uint64_t EncodedAttrs) { 999 // FIXME: Remove in 4.0. 1000 1001 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1002 // the bits above 31 down by 11 bits. 1003 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1004 assert((!Alignment || isPowerOf2_32(Alignment)) && 1005 "Alignment must be a power of two."); 1006 1007 if (Alignment) 1008 B.addAlignmentAttr(Alignment); 1009 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1010 (EncodedAttrs & 0xffff)); 1011 } 1012 1013 std::error_code BitcodeReader::ParseAttributeBlock() { 1014 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1015 return Error("Invalid record"); 1016 1017 if (!MAttributes.empty()) 1018 return Error("Invalid multiple blocks"); 1019 1020 SmallVector<uint64_t, 64> Record; 1021 1022 SmallVector<AttributeSet, 8> Attrs; 1023 1024 // Read all the records. 1025 while (1) { 1026 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1027 1028 switch (Entry.Kind) { 1029 case BitstreamEntry::SubBlock: // Handled for us already. 1030 case BitstreamEntry::Error: 1031 return Error("Malformed block"); 1032 case BitstreamEntry::EndBlock: 1033 return std::error_code(); 1034 case BitstreamEntry::Record: 1035 // The interesting case. 1036 break; 1037 } 1038 1039 // Read a record. 1040 Record.clear(); 1041 switch (Stream.readRecord(Entry.ID, Record)) { 1042 default: // Default behavior: ignore. 1043 break; 1044 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1045 // FIXME: Remove in 4.0. 1046 if (Record.size() & 1) 1047 return Error("Invalid record"); 1048 1049 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1050 AttrBuilder B; 1051 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1052 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1053 } 1054 1055 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1056 Attrs.clear(); 1057 break; 1058 } 1059 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1060 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1061 Attrs.push_back(MAttributeGroups[Record[i]]); 1062 1063 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1064 Attrs.clear(); 1065 break; 1066 } 1067 } 1068 } 1069 } 1070 1071 // Returns Attribute::None on unrecognized codes. 1072 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1073 switch (Code) { 1074 default: 1075 return Attribute::None; 1076 case bitc::ATTR_KIND_ALIGNMENT: 1077 return Attribute::Alignment; 1078 case bitc::ATTR_KIND_ALWAYS_INLINE: 1079 return Attribute::AlwaysInline; 1080 case bitc::ATTR_KIND_BUILTIN: 1081 return Attribute::Builtin; 1082 case bitc::ATTR_KIND_BY_VAL: 1083 return Attribute::ByVal; 1084 case bitc::ATTR_KIND_IN_ALLOCA: 1085 return Attribute::InAlloca; 1086 case bitc::ATTR_KIND_COLD: 1087 return Attribute::Cold; 1088 case bitc::ATTR_KIND_INLINE_HINT: 1089 return Attribute::InlineHint; 1090 case bitc::ATTR_KIND_IN_REG: 1091 return Attribute::InReg; 1092 case bitc::ATTR_KIND_JUMP_TABLE: 1093 return Attribute::JumpTable; 1094 case bitc::ATTR_KIND_MIN_SIZE: 1095 return Attribute::MinSize; 1096 case bitc::ATTR_KIND_NAKED: 1097 return Attribute::Naked; 1098 case bitc::ATTR_KIND_NEST: 1099 return Attribute::Nest; 1100 case bitc::ATTR_KIND_NO_ALIAS: 1101 return Attribute::NoAlias; 1102 case bitc::ATTR_KIND_NO_BUILTIN: 1103 return Attribute::NoBuiltin; 1104 case bitc::ATTR_KIND_NO_CAPTURE: 1105 return Attribute::NoCapture; 1106 case bitc::ATTR_KIND_NO_DUPLICATE: 1107 return Attribute::NoDuplicate; 1108 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1109 return Attribute::NoImplicitFloat; 1110 case bitc::ATTR_KIND_NO_INLINE: 1111 return Attribute::NoInline; 1112 case bitc::ATTR_KIND_NON_LAZY_BIND: 1113 return Attribute::NonLazyBind; 1114 case bitc::ATTR_KIND_NON_NULL: 1115 return Attribute::NonNull; 1116 case bitc::ATTR_KIND_DEREFERENCEABLE: 1117 return Attribute::Dereferenceable; 1118 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1119 return Attribute::DereferenceableOrNull; 1120 case bitc::ATTR_KIND_NO_RED_ZONE: 1121 return Attribute::NoRedZone; 1122 case bitc::ATTR_KIND_NO_RETURN: 1123 return Attribute::NoReturn; 1124 case bitc::ATTR_KIND_NO_UNWIND: 1125 return Attribute::NoUnwind; 1126 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1127 return Attribute::OptimizeForSize; 1128 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1129 return Attribute::OptimizeNone; 1130 case bitc::ATTR_KIND_READ_NONE: 1131 return Attribute::ReadNone; 1132 case bitc::ATTR_KIND_READ_ONLY: 1133 return Attribute::ReadOnly; 1134 case bitc::ATTR_KIND_RETURNED: 1135 return Attribute::Returned; 1136 case bitc::ATTR_KIND_RETURNS_TWICE: 1137 return Attribute::ReturnsTwice; 1138 case bitc::ATTR_KIND_S_EXT: 1139 return Attribute::SExt; 1140 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1141 return Attribute::StackAlignment; 1142 case bitc::ATTR_KIND_STACK_PROTECT: 1143 return Attribute::StackProtect; 1144 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1145 return Attribute::StackProtectReq; 1146 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1147 return Attribute::StackProtectStrong; 1148 case bitc::ATTR_KIND_STRUCT_RET: 1149 return Attribute::StructRet; 1150 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1151 return Attribute::SanitizeAddress; 1152 case bitc::ATTR_KIND_SANITIZE_THREAD: 1153 return Attribute::SanitizeThread; 1154 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1155 return Attribute::SanitizeMemory; 1156 case bitc::ATTR_KIND_UW_TABLE: 1157 return Attribute::UWTable; 1158 case bitc::ATTR_KIND_Z_EXT: 1159 return Attribute::ZExt; 1160 } 1161 } 1162 1163 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1164 unsigned &Alignment) { 1165 // Note: Alignment in bitcode files is incremented by 1, so that zero 1166 // can be used for default alignment. 1167 if (Exponent > Value::MaxAlignmentExponent + 1) 1168 return Error("Invalid alignment value"); 1169 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1170 return std::error_code(); 1171 } 1172 1173 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1174 Attribute::AttrKind *Kind) { 1175 *Kind = GetAttrFromCode(Code); 1176 if (*Kind == Attribute::None) 1177 return Error(BitcodeError::CorruptedBitcode, 1178 "Unknown attribute kind (" + Twine(Code) + ")"); 1179 return std::error_code(); 1180 } 1181 1182 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1183 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1184 return Error("Invalid record"); 1185 1186 if (!MAttributeGroups.empty()) 1187 return Error("Invalid multiple blocks"); 1188 1189 SmallVector<uint64_t, 64> Record; 1190 1191 // Read all the records. 1192 while (1) { 1193 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1194 1195 switch (Entry.Kind) { 1196 case BitstreamEntry::SubBlock: // Handled for us already. 1197 case BitstreamEntry::Error: 1198 return Error("Malformed block"); 1199 case BitstreamEntry::EndBlock: 1200 return std::error_code(); 1201 case BitstreamEntry::Record: 1202 // The interesting case. 1203 break; 1204 } 1205 1206 // Read a record. 1207 Record.clear(); 1208 switch (Stream.readRecord(Entry.ID, Record)) { 1209 default: // Default behavior: ignore. 1210 break; 1211 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1212 if (Record.size() < 3) 1213 return Error("Invalid record"); 1214 1215 uint64_t GrpID = Record[0]; 1216 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1217 1218 AttrBuilder B; 1219 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1220 if (Record[i] == 0) { // Enum attribute 1221 Attribute::AttrKind Kind; 1222 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1223 return EC; 1224 1225 B.addAttribute(Kind); 1226 } else if (Record[i] == 1) { // Integer attribute 1227 Attribute::AttrKind Kind; 1228 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1229 return EC; 1230 if (Kind == Attribute::Alignment) 1231 B.addAlignmentAttr(Record[++i]); 1232 else if (Kind == Attribute::StackAlignment) 1233 B.addStackAlignmentAttr(Record[++i]); 1234 else if (Kind == Attribute::Dereferenceable) 1235 B.addDereferenceableAttr(Record[++i]); 1236 else if (Kind == Attribute::DereferenceableOrNull) 1237 B.addDereferenceableOrNullAttr(Record[++i]); 1238 } else { // String attribute 1239 assert((Record[i] == 3 || Record[i] == 4) && 1240 "Invalid attribute group entry"); 1241 bool HasValue = (Record[i++] == 4); 1242 SmallString<64> KindStr; 1243 SmallString<64> ValStr; 1244 1245 while (Record[i] != 0 && i != e) 1246 KindStr += Record[i++]; 1247 assert(Record[i] == 0 && "Kind string not null terminated"); 1248 1249 if (HasValue) { 1250 // Has a value associated with it. 1251 ++i; // Skip the '0' that terminates the "kind" string. 1252 while (Record[i] != 0 && i != e) 1253 ValStr += Record[i++]; 1254 assert(Record[i] == 0 && "Value string not null terminated"); 1255 } 1256 1257 B.addAttribute(KindStr.str(), ValStr.str()); 1258 } 1259 } 1260 1261 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1262 break; 1263 } 1264 } 1265 } 1266 } 1267 1268 std::error_code BitcodeReader::ParseTypeTable() { 1269 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1270 return Error("Invalid record"); 1271 1272 return ParseTypeTableBody(); 1273 } 1274 1275 std::error_code BitcodeReader::ParseTypeTableBody() { 1276 if (!TypeList.empty()) 1277 return Error("Invalid multiple blocks"); 1278 1279 SmallVector<uint64_t, 64> Record; 1280 unsigned NumRecords = 0; 1281 1282 SmallString<64> TypeName; 1283 1284 // Read all the records for this type table. 1285 while (1) { 1286 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1287 1288 switch (Entry.Kind) { 1289 case BitstreamEntry::SubBlock: // Handled for us already. 1290 case BitstreamEntry::Error: 1291 return Error("Malformed block"); 1292 case BitstreamEntry::EndBlock: 1293 if (NumRecords != TypeList.size()) 1294 return Error("Malformed block"); 1295 return std::error_code(); 1296 case BitstreamEntry::Record: 1297 // The interesting case. 1298 break; 1299 } 1300 1301 // Read a record. 1302 Record.clear(); 1303 Type *ResultTy = nullptr; 1304 switch (Stream.readRecord(Entry.ID, Record)) { 1305 default: 1306 return Error("Invalid value"); 1307 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1308 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1309 // type list. This allows us to reserve space. 1310 if (Record.size() < 1) 1311 return Error("Invalid record"); 1312 TypeList.resize(Record[0]); 1313 continue; 1314 case bitc::TYPE_CODE_VOID: // VOID 1315 ResultTy = Type::getVoidTy(Context); 1316 break; 1317 case bitc::TYPE_CODE_HALF: // HALF 1318 ResultTy = Type::getHalfTy(Context); 1319 break; 1320 case bitc::TYPE_CODE_FLOAT: // FLOAT 1321 ResultTy = Type::getFloatTy(Context); 1322 break; 1323 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1324 ResultTy = Type::getDoubleTy(Context); 1325 break; 1326 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1327 ResultTy = Type::getX86_FP80Ty(Context); 1328 break; 1329 case bitc::TYPE_CODE_FP128: // FP128 1330 ResultTy = Type::getFP128Ty(Context); 1331 break; 1332 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1333 ResultTy = Type::getPPC_FP128Ty(Context); 1334 break; 1335 case bitc::TYPE_CODE_LABEL: // LABEL 1336 ResultTy = Type::getLabelTy(Context); 1337 break; 1338 case bitc::TYPE_CODE_METADATA: // METADATA 1339 ResultTy = Type::getMetadataTy(Context); 1340 break; 1341 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1342 ResultTy = Type::getX86_MMXTy(Context); 1343 break; 1344 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1345 if (Record.size() < 1) 1346 return Error("Invalid record"); 1347 1348 uint64_t NumBits = Record[0]; 1349 if (NumBits < IntegerType::MIN_INT_BITS || 1350 NumBits > IntegerType::MAX_INT_BITS) 1351 return Error("Bitwidth for integer type out of range"); 1352 ResultTy = IntegerType::get(Context, NumBits); 1353 break; 1354 } 1355 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1356 // [pointee type, address space] 1357 if (Record.size() < 1) 1358 return Error("Invalid record"); 1359 unsigned AddressSpace = 0; 1360 if (Record.size() == 2) 1361 AddressSpace = Record[1]; 1362 ResultTy = getTypeByID(Record[0]); 1363 if (!ResultTy) 1364 return Error("Invalid type"); 1365 ResultTy = PointerType::get(ResultTy, AddressSpace); 1366 break; 1367 } 1368 case bitc::TYPE_CODE_FUNCTION_OLD: { 1369 // FIXME: attrid is dead, remove it in LLVM 4.0 1370 // FUNCTION: [vararg, attrid, retty, paramty x N] 1371 if (Record.size() < 3) 1372 return Error("Invalid record"); 1373 SmallVector<Type*, 8> ArgTys; 1374 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1375 if (Type *T = getTypeByID(Record[i])) 1376 ArgTys.push_back(T); 1377 else 1378 break; 1379 } 1380 1381 ResultTy = getTypeByID(Record[2]); 1382 if (!ResultTy || ArgTys.size() < Record.size()-3) 1383 return Error("Invalid type"); 1384 1385 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1386 break; 1387 } 1388 case bitc::TYPE_CODE_FUNCTION: { 1389 // FUNCTION: [vararg, retty, paramty x N] 1390 if (Record.size() < 2) 1391 return Error("Invalid record"); 1392 SmallVector<Type*, 8> ArgTys; 1393 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1394 if (Type *T = getTypeByID(Record[i])) 1395 ArgTys.push_back(T); 1396 else 1397 break; 1398 } 1399 1400 ResultTy = getTypeByID(Record[1]); 1401 if (!ResultTy || ArgTys.size() < Record.size()-2) 1402 return Error("Invalid type"); 1403 1404 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1405 break; 1406 } 1407 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1408 if (Record.size() < 1) 1409 return Error("Invalid record"); 1410 SmallVector<Type*, 8> EltTys; 1411 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1412 if (Type *T = getTypeByID(Record[i])) 1413 EltTys.push_back(T); 1414 else 1415 break; 1416 } 1417 if (EltTys.size() != Record.size()-1) 1418 return Error("Invalid type"); 1419 ResultTy = StructType::get(Context, EltTys, Record[0]); 1420 break; 1421 } 1422 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1423 if (ConvertToString(Record, 0, TypeName)) 1424 return Error("Invalid record"); 1425 continue; 1426 1427 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1428 if (Record.size() < 1) 1429 return Error("Invalid record"); 1430 1431 if (NumRecords >= TypeList.size()) 1432 return Error("Invalid TYPE table"); 1433 1434 // Check to see if this was forward referenced, if so fill in the temp. 1435 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1436 if (Res) { 1437 Res->setName(TypeName); 1438 TypeList[NumRecords] = nullptr; 1439 } else // Otherwise, create a new struct. 1440 Res = createIdentifiedStructType(Context, TypeName); 1441 TypeName.clear(); 1442 1443 SmallVector<Type*, 8> EltTys; 1444 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1445 if (Type *T = getTypeByID(Record[i])) 1446 EltTys.push_back(T); 1447 else 1448 break; 1449 } 1450 if (EltTys.size() != Record.size()-1) 1451 return Error("Invalid record"); 1452 Res->setBody(EltTys, Record[0]); 1453 ResultTy = Res; 1454 break; 1455 } 1456 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1457 if (Record.size() != 1) 1458 return Error("Invalid record"); 1459 1460 if (NumRecords >= TypeList.size()) 1461 return Error("Invalid TYPE table"); 1462 1463 // Check to see if this was forward referenced, if so fill in the temp. 1464 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1465 if (Res) { 1466 Res->setName(TypeName); 1467 TypeList[NumRecords] = nullptr; 1468 } else // Otherwise, create a new struct with no body. 1469 Res = createIdentifiedStructType(Context, TypeName); 1470 TypeName.clear(); 1471 ResultTy = Res; 1472 break; 1473 } 1474 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1475 if (Record.size() < 2) 1476 return Error("Invalid record"); 1477 if ((ResultTy = getTypeByID(Record[1]))) 1478 ResultTy = ArrayType::get(ResultTy, Record[0]); 1479 else 1480 return Error("Invalid type"); 1481 break; 1482 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1483 if (Record.size() < 2) 1484 return Error("Invalid record"); 1485 if ((ResultTy = getTypeByID(Record[1]))) 1486 ResultTy = VectorType::get(ResultTy, Record[0]); 1487 else 1488 return Error("Invalid type"); 1489 break; 1490 } 1491 1492 if (NumRecords >= TypeList.size()) 1493 return Error("Invalid TYPE table"); 1494 if (TypeList[NumRecords]) 1495 return Error( 1496 "Invalid TYPE table: Only named structs can be forward referenced"); 1497 assert(ResultTy && "Didn't read a type?"); 1498 TypeList[NumRecords++] = ResultTy; 1499 } 1500 } 1501 1502 std::error_code BitcodeReader::ParseValueSymbolTable() { 1503 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1504 return Error("Invalid record"); 1505 1506 SmallVector<uint64_t, 64> Record; 1507 1508 Triple TT(TheModule->getTargetTriple()); 1509 1510 // Read all the records for this value table. 1511 SmallString<128> ValueName; 1512 while (1) { 1513 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1514 1515 switch (Entry.Kind) { 1516 case BitstreamEntry::SubBlock: // Handled for us already. 1517 case BitstreamEntry::Error: 1518 return Error("Malformed block"); 1519 case BitstreamEntry::EndBlock: 1520 return std::error_code(); 1521 case BitstreamEntry::Record: 1522 // The interesting case. 1523 break; 1524 } 1525 1526 // Read a record. 1527 Record.clear(); 1528 switch (Stream.readRecord(Entry.ID, Record)) { 1529 default: // Default behavior: unknown type. 1530 break; 1531 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1532 if (ConvertToString(Record, 1, ValueName)) 1533 return Error("Invalid record"); 1534 unsigned ValueID = Record[0]; 1535 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1536 return Error("Invalid record"); 1537 Value *V = ValueList[ValueID]; 1538 1539 V->setName(StringRef(ValueName.data(), ValueName.size())); 1540 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1541 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1542 if (TT.isOSBinFormatMachO()) 1543 GO->setComdat(nullptr); 1544 else 1545 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1546 } 1547 } 1548 ValueName.clear(); 1549 break; 1550 } 1551 case bitc::VST_CODE_BBENTRY: { 1552 if (ConvertToString(Record, 1, ValueName)) 1553 return Error("Invalid record"); 1554 BasicBlock *BB = getBasicBlock(Record[0]); 1555 if (!BB) 1556 return Error("Invalid record"); 1557 1558 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1559 ValueName.clear(); 1560 break; 1561 } 1562 } 1563 } 1564 } 1565 1566 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1567 1568 std::error_code BitcodeReader::ParseMetadata() { 1569 IsMetadataMaterialized = true; 1570 unsigned NextMDValueNo = MDValueList.size(); 1571 1572 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1573 return Error("Invalid record"); 1574 1575 SmallVector<uint64_t, 64> Record; 1576 1577 auto getMD = 1578 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1579 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1580 if (ID) 1581 return getMD(ID - 1); 1582 return nullptr; 1583 }; 1584 auto getMDString = [&](unsigned ID) -> MDString *{ 1585 // This requires that the ID is not really a forward reference. In 1586 // particular, the MDString must already have been resolved. 1587 return cast_or_null<MDString>(getMDOrNull(ID)); 1588 }; 1589 1590 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1591 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1592 1593 // Read all the records. 1594 while (1) { 1595 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1596 1597 switch (Entry.Kind) { 1598 case BitstreamEntry::SubBlock: // Handled for us already. 1599 case BitstreamEntry::Error: 1600 return Error("Malformed block"); 1601 case BitstreamEntry::EndBlock: 1602 MDValueList.tryToResolveCycles(); 1603 return std::error_code(); 1604 case BitstreamEntry::Record: 1605 // The interesting case. 1606 break; 1607 } 1608 1609 // Read a record. 1610 Record.clear(); 1611 unsigned Code = Stream.readRecord(Entry.ID, Record); 1612 bool IsDistinct = false; 1613 switch (Code) { 1614 default: // Default behavior: ignore. 1615 break; 1616 case bitc::METADATA_NAME: { 1617 // Read name of the named metadata. 1618 SmallString<8> Name(Record.begin(), Record.end()); 1619 Record.clear(); 1620 Code = Stream.ReadCode(); 1621 1622 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1623 unsigned NextBitCode = Stream.readRecord(Code, Record); 1624 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1625 1626 // Read named metadata elements. 1627 unsigned Size = Record.size(); 1628 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1629 for (unsigned i = 0; i != Size; ++i) { 1630 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1631 if (!MD) 1632 return Error("Invalid record"); 1633 NMD->addOperand(MD); 1634 } 1635 break; 1636 } 1637 case bitc::METADATA_OLD_FN_NODE: { 1638 // FIXME: Remove in 4.0. 1639 // This is a LocalAsMetadata record, the only type of function-local 1640 // metadata. 1641 if (Record.size() % 2 == 1) 1642 return Error("Invalid record"); 1643 1644 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1645 // to be legal, but there's no upgrade path. 1646 auto dropRecord = [&] { 1647 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1648 }; 1649 if (Record.size() != 2) { 1650 dropRecord(); 1651 break; 1652 } 1653 1654 Type *Ty = getTypeByID(Record[0]); 1655 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1656 dropRecord(); 1657 break; 1658 } 1659 1660 MDValueList.AssignValue( 1661 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1662 NextMDValueNo++); 1663 break; 1664 } 1665 case bitc::METADATA_OLD_NODE: { 1666 // FIXME: Remove in 4.0. 1667 if (Record.size() % 2 == 1) 1668 return Error("Invalid record"); 1669 1670 unsigned Size = Record.size(); 1671 SmallVector<Metadata *, 8> Elts; 1672 for (unsigned i = 0; i != Size; i += 2) { 1673 Type *Ty = getTypeByID(Record[i]); 1674 if (!Ty) 1675 return Error("Invalid record"); 1676 if (Ty->isMetadataTy()) 1677 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1678 else if (!Ty->isVoidTy()) { 1679 auto *MD = 1680 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1681 assert(isa<ConstantAsMetadata>(MD) && 1682 "Expected non-function-local metadata"); 1683 Elts.push_back(MD); 1684 } else 1685 Elts.push_back(nullptr); 1686 } 1687 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1688 break; 1689 } 1690 case bitc::METADATA_VALUE: { 1691 if (Record.size() != 2) 1692 return Error("Invalid record"); 1693 1694 Type *Ty = getTypeByID(Record[0]); 1695 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1696 return Error("Invalid record"); 1697 1698 MDValueList.AssignValue( 1699 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1700 NextMDValueNo++); 1701 break; 1702 } 1703 case bitc::METADATA_DISTINCT_NODE: 1704 IsDistinct = true; 1705 // fallthrough... 1706 case bitc::METADATA_NODE: { 1707 SmallVector<Metadata *, 8> Elts; 1708 Elts.reserve(Record.size()); 1709 for (unsigned ID : Record) 1710 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1711 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1712 : MDNode::get(Context, Elts), 1713 NextMDValueNo++); 1714 break; 1715 } 1716 case bitc::METADATA_LOCATION: { 1717 if (Record.size() != 5) 1718 return Error("Invalid record"); 1719 1720 unsigned Line = Record[1]; 1721 unsigned Column = Record[2]; 1722 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1723 Metadata *InlinedAt = 1724 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1725 MDValueList.AssignValue( 1726 GET_OR_DISTINCT(MDLocation, Record[0], 1727 (Context, Line, Column, Scope, InlinedAt)), 1728 NextMDValueNo++); 1729 break; 1730 } 1731 case bitc::METADATA_GENERIC_DEBUG: { 1732 if (Record.size() < 4) 1733 return Error("Invalid record"); 1734 1735 unsigned Tag = Record[1]; 1736 unsigned Version = Record[2]; 1737 1738 if (Tag >= 1u << 16 || Version != 0) 1739 return Error("Invalid record"); 1740 1741 auto *Header = getMDString(Record[3]); 1742 SmallVector<Metadata *, 8> DwarfOps; 1743 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1744 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1745 : nullptr); 1746 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1747 (Context, Tag, Header, DwarfOps)), 1748 NextMDValueNo++); 1749 break; 1750 } 1751 case bitc::METADATA_SUBRANGE: { 1752 if (Record.size() != 3) 1753 return Error("Invalid record"); 1754 1755 MDValueList.AssignValue( 1756 GET_OR_DISTINCT(MDSubrange, Record[0], 1757 (Context, Record[1], unrotateSign(Record[2]))), 1758 NextMDValueNo++); 1759 break; 1760 } 1761 case bitc::METADATA_ENUMERATOR: { 1762 if (Record.size() != 3) 1763 return Error("Invalid record"); 1764 1765 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1766 (Context, unrotateSign(Record[1]), 1767 getMDString(Record[2]))), 1768 NextMDValueNo++); 1769 break; 1770 } 1771 case bitc::METADATA_BASIC_TYPE: { 1772 if (Record.size() != 6) 1773 return Error("Invalid record"); 1774 1775 MDValueList.AssignValue( 1776 GET_OR_DISTINCT(MDBasicType, Record[0], 1777 (Context, Record[1], getMDString(Record[2]), 1778 Record[3], Record[4], Record[5])), 1779 NextMDValueNo++); 1780 break; 1781 } 1782 case bitc::METADATA_DERIVED_TYPE: { 1783 if (Record.size() != 12) 1784 return Error("Invalid record"); 1785 1786 MDValueList.AssignValue( 1787 GET_OR_DISTINCT(MDDerivedType, Record[0], 1788 (Context, Record[1], getMDString(Record[2]), 1789 getMDOrNull(Record[3]), Record[4], 1790 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1791 Record[7], Record[8], Record[9], Record[10], 1792 getMDOrNull(Record[11]))), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_COMPOSITE_TYPE: { 1797 if (Record.size() != 16) 1798 return Error("Invalid record"); 1799 1800 MDValueList.AssignValue( 1801 GET_OR_DISTINCT(MDCompositeType, Record[0], 1802 (Context, Record[1], getMDString(Record[2]), 1803 getMDOrNull(Record[3]), Record[4], 1804 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1805 Record[7], Record[8], Record[9], Record[10], 1806 getMDOrNull(Record[11]), Record[12], 1807 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1808 getMDString(Record[15]))), 1809 NextMDValueNo++); 1810 break; 1811 } 1812 case bitc::METADATA_SUBROUTINE_TYPE: { 1813 if (Record.size() != 3) 1814 return Error("Invalid record"); 1815 1816 MDValueList.AssignValue( 1817 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1818 (Context, Record[1], getMDOrNull(Record[2]))), 1819 NextMDValueNo++); 1820 break; 1821 } 1822 case bitc::METADATA_FILE: { 1823 if (Record.size() != 3) 1824 return Error("Invalid record"); 1825 1826 MDValueList.AssignValue( 1827 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1828 getMDString(Record[2]))), 1829 NextMDValueNo++); 1830 break; 1831 } 1832 case bitc::METADATA_COMPILE_UNIT: { 1833 if (Record.size() != 14) 1834 return Error("Invalid record"); 1835 1836 MDValueList.AssignValue( 1837 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1838 (Context, Record[1], getMDOrNull(Record[2]), 1839 getMDString(Record[3]), Record[4], 1840 getMDString(Record[5]), Record[6], 1841 getMDString(Record[7]), Record[8], 1842 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1843 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1844 getMDOrNull(Record[13]))), 1845 NextMDValueNo++); 1846 break; 1847 } 1848 case bitc::METADATA_SUBPROGRAM: { 1849 if (Record.size() != 19) 1850 return Error("Invalid record"); 1851 1852 MDValueList.AssignValue( 1853 GET_OR_DISTINCT( 1854 MDSubprogram, Record[0], 1855 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1856 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1857 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1858 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1859 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1860 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1861 NextMDValueNo++); 1862 break; 1863 } 1864 case bitc::METADATA_LEXICAL_BLOCK: { 1865 if (Record.size() != 5) 1866 return Error("Invalid record"); 1867 1868 MDValueList.AssignValue( 1869 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1870 (Context, getMDOrNull(Record[1]), 1871 getMDOrNull(Record[2]), Record[3], Record[4])), 1872 NextMDValueNo++); 1873 break; 1874 } 1875 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1876 if (Record.size() != 4) 1877 return Error("Invalid record"); 1878 1879 MDValueList.AssignValue( 1880 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1881 (Context, getMDOrNull(Record[1]), 1882 getMDOrNull(Record[2]), Record[3])), 1883 NextMDValueNo++); 1884 break; 1885 } 1886 case bitc::METADATA_NAMESPACE: { 1887 if (Record.size() != 5) 1888 return Error("Invalid record"); 1889 1890 MDValueList.AssignValue( 1891 GET_OR_DISTINCT(MDNamespace, Record[0], 1892 (Context, getMDOrNull(Record[1]), 1893 getMDOrNull(Record[2]), getMDString(Record[3]), 1894 Record[4])), 1895 NextMDValueNo++); 1896 break; 1897 } 1898 case bitc::METADATA_TEMPLATE_TYPE: { 1899 if (Record.size() != 3) 1900 return Error("Invalid record"); 1901 1902 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1903 Record[0], 1904 (Context, getMDString(Record[1]), 1905 getMDOrNull(Record[2]))), 1906 NextMDValueNo++); 1907 break; 1908 } 1909 case bitc::METADATA_TEMPLATE_VALUE: { 1910 if (Record.size() != 5) 1911 return Error("Invalid record"); 1912 1913 MDValueList.AssignValue( 1914 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1915 (Context, Record[1], getMDString(Record[2]), 1916 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1917 NextMDValueNo++); 1918 break; 1919 } 1920 case bitc::METADATA_GLOBAL_VAR: { 1921 if (Record.size() != 11) 1922 return Error("Invalid record"); 1923 1924 MDValueList.AssignValue( 1925 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1926 (Context, getMDOrNull(Record[1]), 1927 getMDString(Record[2]), getMDString(Record[3]), 1928 getMDOrNull(Record[4]), Record[5], 1929 getMDOrNull(Record[6]), Record[7], Record[8], 1930 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1931 NextMDValueNo++); 1932 break; 1933 } 1934 case bitc::METADATA_LOCAL_VAR: { 1935 // 10th field is for the obseleted 'inlinedAt:' field. 1936 if (Record.size() != 9 && Record.size() != 10) 1937 return Error("Invalid record"); 1938 1939 MDValueList.AssignValue( 1940 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1941 (Context, Record[1], getMDOrNull(Record[2]), 1942 getMDString(Record[3]), getMDOrNull(Record[4]), 1943 Record[5], getMDOrNull(Record[6]), Record[7], 1944 Record[8])), 1945 NextMDValueNo++); 1946 break; 1947 } 1948 case bitc::METADATA_EXPRESSION: { 1949 if (Record.size() < 1) 1950 return Error("Invalid record"); 1951 1952 MDValueList.AssignValue( 1953 GET_OR_DISTINCT(MDExpression, Record[0], 1954 (Context, makeArrayRef(Record).slice(1))), 1955 NextMDValueNo++); 1956 break; 1957 } 1958 case bitc::METADATA_OBJC_PROPERTY: { 1959 if (Record.size() != 8) 1960 return Error("Invalid record"); 1961 1962 MDValueList.AssignValue( 1963 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1964 (Context, getMDString(Record[1]), 1965 getMDOrNull(Record[2]), Record[3], 1966 getMDString(Record[4]), getMDString(Record[5]), 1967 Record[6], getMDOrNull(Record[7]))), 1968 NextMDValueNo++); 1969 break; 1970 } 1971 case bitc::METADATA_IMPORTED_ENTITY: { 1972 if (Record.size() != 6) 1973 return Error("Invalid record"); 1974 1975 MDValueList.AssignValue( 1976 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1977 (Context, Record[1], getMDOrNull(Record[2]), 1978 getMDOrNull(Record[3]), Record[4], 1979 getMDString(Record[5]))), 1980 NextMDValueNo++); 1981 break; 1982 } 1983 case bitc::METADATA_STRING: { 1984 std::string String(Record.begin(), Record.end()); 1985 llvm::UpgradeMDStringConstant(String); 1986 Metadata *MD = MDString::get(Context, String); 1987 MDValueList.AssignValue(MD, NextMDValueNo++); 1988 break; 1989 } 1990 case bitc::METADATA_KIND: { 1991 if (Record.size() < 2) 1992 return Error("Invalid record"); 1993 1994 unsigned Kind = Record[0]; 1995 SmallString<8> Name(Record.begin()+1, Record.end()); 1996 1997 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1998 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1999 return Error("Conflicting METADATA_KIND records"); 2000 break; 2001 } 2002 } 2003 } 2004 #undef GET_OR_DISTINCT 2005 } 2006 2007 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2008 /// the LSB for dense VBR encoding. 2009 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2010 if ((V & 1) == 0) 2011 return V >> 1; 2012 if (V != 1) 2013 return -(V >> 1); 2014 // There is no such thing as -0 with integers. "-0" really means MININT. 2015 return 1ULL << 63; 2016 } 2017 2018 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2019 /// values and aliases that we can. 2020 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2021 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2022 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2023 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2024 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2025 2026 GlobalInitWorklist.swap(GlobalInits); 2027 AliasInitWorklist.swap(AliasInits); 2028 FunctionPrefixWorklist.swap(FunctionPrefixes); 2029 FunctionPrologueWorklist.swap(FunctionPrologues); 2030 2031 while (!GlobalInitWorklist.empty()) { 2032 unsigned ValID = GlobalInitWorklist.back().second; 2033 if (ValID >= ValueList.size()) { 2034 // Not ready to resolve this yet, it requires something later in the file. 2035 GlobalInits.push_back(GlobalInitWorklist.back()); 2036 } else { 2037 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2038 GlobalInitWorklist.back().first->setInitializer(C); 2039 else 2040 return Error("Expected a constant"); 2041 } 2042 GlobalInitWorklist.pop_back(); 2043 } 2044 2045 while (!AliasInitWorklist.empty()) { 2046 unsigned ValID = AliasInitWorklist.back().second; 2047 if (ValID >= ValueList.size()) { 2048 AliasInits.push_back(AliasInitWorklist.back()); 2049 } else { 2050 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2051 AliasInitWorklist.back().first->setAliasee(C); 2052 else 2053 return Error("Expected a constant"); 2054 } 2055 AliasInitWorklist.pop_back(); 2056 } 2057 2058 while (!FunctionPrefixWorklist.empty()) { 2059 unsigned ValID = FunctionPrefixWorklist.back().second; 2060 if (ValID >= ValueList.size()) { 2061 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2062 } else { 2063 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2064 FunctionPrefixWorklist.back().first->setPrefixData(C); 2065 else 2066 return Error("Expected a constant"); 2067 } 2068 FunctionPrefixWorklist.pop_back(); 2069 } 2070 2071 while (!FunctionPrologueWorklist.empty()) { 2072 unsigned ValID = FunctionPrologueWorklist.back().second; 2073 if (ValID >= ValueList.size()) { 2074 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2075 } else { 2076 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2077 FunctionPrologueWorklist.back().first->setPrologueData(C); 2078 else 2079 return Error("Expected a constant"); 2080 } 2081 FunctionPrologueWorklist.pop_back(); 2082 } 2083 2084 return std::error_code(); 2085 } 2086 2087 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2088 SmallVector<uint64_t, 8> Words(Vals.size()); 2089 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2090 BitcodeReader::decodeSignRotatedValue); 2091 2092 return APInt(TypeBits, Words); 2093 } 2094 2095 std::error_code BitcodeReader::ParseConstants() { 2096 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2097 return Error("Invalid record"); 2098 2099 SmallVector<uint64_t, 64> Record; 2100 2101 // Read all the records for this value table. 2102 Type *CurTy = Type::getInt32Ty(Context); 2103 unsigned NextCstNo = ValueList.size(); 2104 while (1) { 2105 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2106 2107 switch (Entry.Kind) { 2108 case BitstreamEntry::SubBlock: // Handled for us already. 2109 case BitstreamEntry::Error: 2110 return Error("Malformed block"); 2111 case BitstreamEntry::EndBlock: 2112 if (NextCstNo != ValueList.size()) 2113 return Error("Invalid ronstant reference"); 2114 2115 // Once all the constants have been read, go through and resolve forward 2116 // references. 2117 ValueList.ResolveConstantForwardRefs(); 2118 return std::error_code(); 2119 case BitstreamEntry::Record: 2120 // The interesting case. 2121 break; 2122 } 2123 2124 // Read a record. 2125 Record.clear(); 2126 Value *V = nullptr; 2127 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2128 switch (BitCode) { 2129 default: // Default behavior: unknown constant 2130 case bitc::CST_CODE_UNDEF: // UNDEF 2131 V = UndefValue::get(CurTy); 2132 break; 2133 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2134 if (Record.empty()) 2135 return Error("Invalid record"); 2136 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2137 return Error("Invalid record"); 2138 CurTy = TypeList[Record[0]]; 2139 continue; // Skip the ValueList manipulation. 2140 case bitc::CST_CODE_NULL: // NULL 2141 V = Constant::getNullValue(CurTy); 2142 break; 2143 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2144 if (!CurTy->isIntegerTy() || Record.empty()) 2145 return Error("Invalid record"); 2146 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2147 break; 2148 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2149 if (!CurTy->isIntegerTy() || Record.empty()) 2150 return Error("Invalid record"); 2151 2152 APInt VInt = ReadWideAPInt(Record, 2153 cast<IntegerType>(CurTy)->getBitWidth()); 2154 V = ConstantInt::get(Context, VInt); 2155 2156 break; 2157 } 2158 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2159 if (Record.empty()) 2160 return Error("Invalid record"); 2161 if (CurTy->isHalfTy()) 2162 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2163 APInt(16, (uint16_t)Record[0]))); 2164 else if (CurTy->isFloatTy()) 2165 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2166 APInt(32, (uint32_t)Record[0]))); 2167 else if (CurTy->isDoubleTy()) 2168 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2169 APInt(64, Record[0]))); 2170 else if (CurTy->isX86_FP80Ty()) { 2171 // Bits are not stored the same way as a normal i80 APInt, compensate. 2172 uint64_t Rearrange[2]; 2173 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2174 Rearrange[1] = Record[0] >> 48; 2175 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2176 APInt(80, Rearrange))); 2177 } else if (CurTy->isFP128Ty()) 2178 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2179 APInt(128, Record))); 2180 else if (CurTy->isPPC_FP128Ty()) 2181 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2182 APInt(128, Record))); 2183 else 2184 V = UndefValue::get(CurTy); 2185 break; 2186 } 2187 2188 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2189 if (Record.empty()) 2190 return Error("Invalid record"); 2191 2192 unsigned Size = Record.size(); 2193 SmallVector<Constant*, 16> Elts; 2194 2195 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2196 for (unsigned i = 0; i != Size; ++i) 2197 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2198 STy->getElementType(i))); 2199 V = ConstantStruct::get(STy, Elts); 2200 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2201 Type *EltTy = ATy->getElementType(); 2202 for (unsigned i = 0; i != Size; ++i) 2203 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2204 V = ConstantArray::get(ATy, Elts); 2205 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2206 Type *EltTy = VTy->getElementType(); 2207 for (unsigned i = 0; i != Size; ++i) 2208 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2209 V = ConstantVector::get(Elts); 2210 } else { 2211 V = UndefValue::get(CurTy); 2212 } 2213 break; 2214 } 2215 case bitc::CST_CODE_STRING: // STRING: [values] 2216 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2217 if (Record.empty()) 2218 return Error("Invalid record"); 2219 2220 SmallString<16> Elts(Record.begin(), Record.end()); 2221 V = ConstantDataArray::getString(Context, Elts, 2222 BitCode == bitc::CST_CODE_CSTRING); 2223 break; 2224 } 2225 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2226 if (Record.empty()) 2227 return Error("Invalid record"); 2228 2229 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2230 unsigned Size = Record.size(); 2231 2232 if (EltTy->isIntegerTy(8)) { 2233 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2234 if (isa<VectorType>(CurTy)) 2235 V = ConstantDataVector::get(Context, Elts); 2236 else 2237 V = ConstantDataArray::get(Context, Elts); 2238 } else if (EltTy->isIntegerTy(16)) { 2239 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2240 if (isa<VectorType>(CurTy)) 2241 V = ConstantDataVector::get(Context, Elts); 2242 else 2243 V = ConstantDataArray::get(Context, Elts); 2244 } else if (EltTy->isIntegerTy(32)) { 2245 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2246 if (isa<VectorType>(CurTy)) 2247 V = ConstantDataVector::get(Context, Elts); 2248 else 2249 V = ConstantDataArray::get(Context, Elts); 2250 } else if (EltTy->isIntegerTy(64)) { 2251 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2252 if (isa<VectorType>(CurTy)) 2253 V = ConstantDataVector::get(Context, Elts); 2254 else 2255 V = ConstantDataArray::get(Context, Elts); 2256 } else if (EltTy->isFloatTy()) { 2257 SmallVector<float, 16> Elts(Size); 2258 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2259 if (isa<VectorType>(CurTy)) 2260 V = ConstantDataVector::get(Context, Elts); 2261 else 2262 V = ConstantDataArray::get(Context, Elts); 2263 } else if (EltTy->isDoubleTy()) { 2264 SmallVector<double, 16> Elts(Size); 2265 std::transform(Record.begin(), Record.end(), Elts.begin(), 2266 BitsToDouble); 2267 if (isa<VectorType>(CurTy)) 2268 V = ConstantDataVector::get(Context, Elts); 2269 else 2270 V = ConstantDataArray::get(Context, Elts); 2271 } else { 2272 return Error("Invalid type for value"); 2273 } 2274 break; 2275 } 2276 2277 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2278 if (Record.size() < 3) 2279 return Error("Invalid record"); 2280 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2281 if (Opc < 0) { 2282 V = UndefValue::get(CurTy); // Unknown binop. 2283 } else { 2284 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2285 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2286 unsigned Flags = 0; 2287 if (Record.size() >= 4) { 2288 if (Opc == Instruction::Add || 2289 Opc == Instruction::Sub || 2290 Opc == Instruction::Mul || 2291 Opc == Instruction::Shl) { 2292 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2293 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2294 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2295 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2296 } else if (Opc == Instruction::SDiv || 2297 Opc == Instruction::UDiv || 2298 Opc == Instruction::LShr || 2299 Opc == Instruction::AShr) { 2300 if (Record[3] & (1 << bitc::PEO_EXACT)) 2301 Flags |= SDivOperator::IsExact; 2302 } 2303 } 2304 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2305 } 2306 break; 2307 } 2308 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2309 if (Record.size() < 3) 2310 return Error("Invalid record"); 2311 int Opc = GetDecodedCastOpcode(Record[0]); 2312 if (Opc < 0) { 2313 V = UndefValue::get(CurTy); // Unknown cast. 2314 } else { 2315 Type *OpTy = getTypeByID(Record[1]); 2316 if (!OpTy) 2317 return Error("Invalid record"); 2318 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2319 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2320 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2321 } 2322 break; 2323 } 2324 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2325 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2326 unsigned OpNum = 0; 2327 Type *PointeeType = nullptr; 2328 if (Record.size() % 2) 2329 PointeeType = getTypeByID(Record[OpNum++]); 2330 SmallVector<Constant*, 16> Elts; 2331 while (OpNum != Record.size()) { 2332 Type *ElTy = getTypeByID(Record[OpNum++]); 2333 if (!ElTy) 2334 return Error("Invalid record"); 2335 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2336 } 2337 2338 if (PointeeType && 2339 PointeeType != 2340 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2341 ->getElementType()) 2342 return Error("Explicit gep operator type does not match pointee type " 2343 "of pointer operand"); 2344 2345 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2346 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2347 BitCode == 2348 bitc::CST_CODE_CE_INBOUNDS_GEP); 2349 break; 2350 } 2351 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2352 if (Record.size() < 3) 2353 return Error("Invalid record"); 2354 2355 Type *SelectorTy = Type::getInt1Ty(Context); 2356 2357 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2358 // vector. Otherwise, it must be a single bit. 2359 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2360 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2361 VTy->getNumElements()); 2362 2363 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2364 SelectorTy), 2365 ValueList.getConstantFwdRef(Record[1],CurTy), 2366 ValueList.getConstantFwdRef(Record[2],CurTy)); 2367 break; 2368 } 2369 case bitc::CST_CODE_CE_EXTRACTELT 2370 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2371 if (Record.size() < 3) 2372 return Error("Invalid record"); 2373 VectorType *OpTy = 2374 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2375 if (!OpTy) 2376 return Error("Invalid record"); 2377 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2378 Constant *Op1 = nullptr; 2379 if (Record.size() == 4) { 2380 Type *IdxTy = getTypeByID(Record[2]); 2381 if (!IdxTy) 2382 return Error("Invalid record"); 2383 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2384 } else // TODO: Remove with llvm 4.0 2385 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2386 if (!Op1) 2387 return Error("Invalid record"); 2388 V = ConstantExpr::getExtractElement(Op0, Op1); 2389 break; 2390 } 2391 case bitc::CST_CODE_CE_INSERTELT 2392 : { // CE_INSERTELT: [opval, opval, opty, opval] 2393 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2394 if (Record.size() < 3 || !OpTy) 2395 return Error("Invalid record"); 2396 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2397 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2398 OpTy->getElementType()); 2399 Constant *Op2 = nullptr; 2400 if (Record.size() == 4) { 2401 Type *IdxTy = getTypeByID(Record[2]); 2402 if (!IdxTy) 2403 return Error("Invalid record"); 2404 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2405 } else // TODO: Remove with llvm 4.0 2406 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2407 if (!Op2) 2408 return Error("Invalid record"); 2409 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2410 break; 2411 } 2412 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2413 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2414 if (Record.size() < 3 || !OpTy) 2415 return Error("Invalid record"); 2416 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2417 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2418 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2419 OpTy->getNumElements()); 2420 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2421 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2422 break; 2423 } 2424 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2425 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2426 VectorType *OpTy = 2427 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2428 if (Record.size() < 4 || !RTy || !OpTy) 2429 return Error("Invalid record"); 2430 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2431 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2432 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2433 RTy->getNumElements()); 2434 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2435 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2436 break; 2437 } 2438 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2439 if (Record.size() < 4) 2440 return Error("Invalid record"); 2441 Type *OpTy = getTypeByID(Record[0]); 2442 if (!OpTy) 2443 return Error("Invalid record"); 2444 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2445 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2446 2447 if (OpTy->isFPOrFPVectorTy()) 2448 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2449 else 2450 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2451 break; 2452 } 2453 // This maintains backward compatibility, pre-asm dialect keywords. 2454 // FIXME: Remove with the 4.0 release. 2455 case bitc::CST_CODE_INLINEASM_OLD: { 2456 if (Record.size() < 2) 2457 return Error("Invalid record"); 2458 std::string AsmStr, ConstrStr; 2459 bool HasSideEffects = Record[0] & 1; 2460 bool IsAlignStack = Record[0] >> 1; 2461 unsigned AsmStrSize = Record[1]; 2462 if (2+AsmStrSize >= Record.size()) 2463 return Error("Invalid record"); 2464 unsigned ConstStrSize = Record[2+AsmStrSize]; 2465 if (3+AsmStrSize+ConstStrSize > Record.size()) 2466 return Error("Invalid record"); 2467 2468 for (unsigned i = 0; i != AsmStrSize; ++i) 2469 AsmStr += (char)Record[2+i]; 2470 for (unsigned i = 0; i != ConstStrSize; ++i) 2471 ConstrStr += (char)Record[3+AsmStrSize+i]; 2472 PointerType *PTy = cast<PointerType>(CurTy); 2473 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2474 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2475 break; 2476 } 2477 // This version adds support for the asm dialect keywords (e.g., 2478 // inteldialect). 2479 case bitc::CST_CODE_INLINEASM: { 2480 if (Record.size() < 2) 2481 return Error("Invalid record"); 2482 std::string AsmStr, ConstrStr; 2483 bool HasSideEffects = Record[0] & 1; 2484 bool IsAlignStack = (Record[0] >> 1) & 1; 2485 unsigned AsmDialect = Record[0] >> 2; 2486 unsigned AsmStrSize = Record[1]; 2487 if (2+AsmStrSize >= Record.size()) 2488 return Error("Invalid record"); 2489 unsigned ConstStrSize = Record[2+AsmStrSize]; 2490 if (3+AsmStrSize+ConstStrSize > Record.size()) 2491 return Error("Invalid record"); 2492 2493 for (unsigned i = 0; i != AsmStrSize; ++i) 2494 AsmStr += (char)Record[2+i]; 2495 for (unsigned i = 0; i != ConstStrSize; ++i) 2496 ConstrStr += (char)Record[3+AsmStrSize+i]; 2497 PointerType *PTy = cast<PointerType>(CurTy); 2498 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2499 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2500 InlineAsm::AsmDialect(AsmDialect)); 2501 break; 2502 } 2503 case bitc::CST_CODE_BLOCKADDRESS:{ 2504 if (Record.size() < 3) 2505 return Error("Invalid record"); 2506 Type *FnTy = getTypeByID(Record[0]); 2507 if (!FnTy) 2508 return Error("Invalid record"); 2509 Function *Fn = 2510 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2511 if (!Fn) 2512 return Error("Invalid record"); 2513 2514 // Don't let Fn get dematerialized. 2515 BlockAddressesTaken.insert(Fn); 2516 2517 // If the function is already parsed we can insert the block address right 2518 // away. 2519 BasicBlock *BB; 2520 unsigned BBID = Record[2]; 2521 if (!BBID) 2522 // Invalid reference to entry block. 2523 return Error("Invalid ID"); 2524 if (!Fn->empty()) { 2525 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2526 for (size_t I = 0, E = BBID; I != E; ++I) { 2527 if (BBI == BBE) 2528 return Error("Invalid ID"); 2529 ++BBI; 2530 } 2531 BB = BBI; 2532 } else { 2533 // Otherwise insert a placeholder and remember it so it can be inserted 2534 // when the function is parsed. 2535 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2536 if (FwdBBs.empty()) 2537 BasicBlockFwdRefQueue.push_back(Fn); 2538 if (FwdBBs.size() < BBID + 1) 2539 FwdBBs.resize(BBID + 1); 2540 if (!FwdBBs[BBID]) 2541 FwdBBs[BBID] = BasicBlock::Create(Context); 2542 BB = FwdBBs[BBID]; 2543 } 2544 V = BlockAddress::get(Fn, BB); 2545 break; 2546 } 2547 } 2548 2549 ValueList.AssignValue(V, NextCstNo); 2550 ++NextCstNo; 2551 } 2552 } 2553 2554 std::error_code BitcodeReader::ParseUseLists() { 2555 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2556 return Error("Invalid record"); 2557 2558 // Read all the records. 2559 SmallVector<uint64_t, 64> Record; 2560 while (1) { 2561 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2562 2563 switch (Entry.Kind) { 2564 case BitstreamEntry::SubBlock: // Handled for us already. 2565 case BitstreamEntry::Error: 2566 return Error("Malformed block"); 2567 case BitstreamEntry::EndBlock: 2568 return std::error_code(); 2569 case BitstreamEntry::Record: 2570 // The interesting case. 2571 break; 2572 } 2573 2574 // Read a use list record. 2575 Record.clear(); 2576 bool IsBB = false; 2577 switch (Stream.readRecord(Entry.ID, Record)) { 2578 default: // Default behavior: unknown type. 2579 break; 2580 case bitc::USELIST_CODE_BB: 2581 IsBB = true; 2582 // fallthrough 2583 case bitc::USELIST_CODE_DEFAULT: { 2584 unsigned RecordLength = Record.size(); 2585 if (RecordLength < 3) 2586 // Records should have at least an ID and two indexes. 2587 return Error("Invalid record"); 2588 unsigned ID = Record.back(); 2589 Record.pop_back(); 2590 2591 Value *V; 2592 if (IsBB) { 2593 assert(ID < FunctionBBs.size() && "Basic block not found"); 2594 V = FunctionBBs[ID]; 2595 } else 2596 V = ValueList[ID]; 2597 unsigned NumUses = 0; 2598 SmallDenseMap<const Use *, unsigned, 16> Order; 2599 for (const Use &U : V->uses()) { 2600 if (++NumUses > Record.size()) 2601 break; 2602 Order[&U] = Record[NumUses - 1]; 2603 } 2604 if (Order.size() != Record.size() || NumUses > Record.size()) 2605 // Mismatches can happen if the functions are being materialized lazily 2606 // (out-of-order), or a value has been upgraded. 2607 break; 2608 2609 V->sortUseList([&](const Use &L, const Use &R) { 2610 return Order.lookup(&L) < Order.lookup(&R); 2611 }); 2612 break; 2613 } 2614 } 2615 } 2616 } 2617 2618 /// When we see the block for metadata, remember where it is and then skip it. 2619 /// This lets us lazily deserialize the metadata. 2620 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2621 // Save the current stream state. 2622 uint64_t CurBit = Stream.GetCurrentBitNo(); 2623 DeferredMetadataInfo.push_back(CurBit); 2624 2625 // Skip over the block for now. 2626 if (Stream.SkipBlock()) 2627 return Error("Invalid record"); 2628 return std::error_code(); 2629 } 2630 2631 std::error_code BitcodeReader::materializeMetadata() { 2632 for (uint64_t BitPos : DeferredMetadataInfo) { 2633 // Move the bit stream to the saved position. 2634 Stream.JumpToBit(BitPos); 2635 if (std::error_code EC = ParseMetadata()) 2636 return EC; 2637 } 2638 DeferredMetadataInfo.clear(); 2639 return std::error_code(); 2640 } 2641 2642 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2643 2644 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2645 /// remember where it is and then skip it. This lets us lazily deserialize the 2646 /// functions. 2647 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2648 // Get the function we are talking about. 2649 if (FunctionsWithBodies.empty()) 2650 return Error("Insufficient function protos"); 2651 2652 Function *Fn = FunctionsWithBodies.back(); 2653 FunctionsWithBodies.pop_back(); 2654 2655 // Save the current stream state. 2656 uint64_t CurBit = Stream.GetCurrentBitNo(); 2657 DeferredFunctionInfo[Fn] = CurBit; 2658 2659 // Skip over the function block for now. 2660 if (Stream.SkipBlock()) 2661 return Error("Invalid record"); 2662 return std::error_code(); 2663 } 2664 2665 std::error_code BitcodeReader::GlobalCleanup() { 2666 // Patch the initializers for globals and aliases up. 2667 ResolveGlobalAndAliasInits(); 2668 if (!GlobalInits.empty() || !AliasInits.empty()) 2669 return Error("Malformed global initializer set"); 2670 2671 // Look for intrinsic functions which need to be upgraded at some point 2672 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2673 FI != FE; ++FI) { 2674 Function *NewFn; 2675 if (UpgradeIntrinsicFunction(FI, NewFn)) 2676 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2677 } 2678 2679 // Look for global variables which need to be renamed. 2680 for (Module::global_iterator 2681 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2682 GI != GE;) { 2683 GlobalVariable *GV = GI++; 2684 UpgradeGlobalVariable(GV); 2685 } 2686 2687 // Force deallocation of memory for these vectors to favor the client that 2688 // want lazy deserialization. 2689 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2690 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2691 return std::error_code(); 2692 } 2693 2694 std::error_code BitcodeReader::ParseModule(bool Resume, 2695 bool ShouldLazyLoadMetadata) { 2696 if (Resume) 2697 Stream.JumpToBit(NextUnreadBit); 2698 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2699 return Error("Invalid record"); 2700 2701 SmallVector<uint64_t, 64> Record; 2702 std::vector<std::string> SectionTable; 2703 std::vector<std::string> GCTable; 2704 2705 // Read all the records for this module. 2706 while (1) { 2707 BitstreamEntry Entry = Stream.advance(); 2708 2709 switch (Entry.Kind) { 2710 case BitstreamEntry::Error: 2711 return Error("Malformed block"); 2712 case BitstreamEntry::EndBlock: 2713 return GlobalCleanup(); 2714 2715 case BitstreamEntry::SubBlock: 2716 switch (Entry.ID) { 2717 default: // Skip unknown content. 2718 if (Stream.SkipBlock()) 2719 return Error("Invalid record"); 2720 break; 2721 case bitc::BLOCKINFO_BLOCK_ID: 2722 if (Stream.ReadBlockInfoBlock()) 2723 return Error("Malformed block"); 2724 break; 2725 case bitc::PARAMATTR_BLOCK_ID: 2726 if (std::error_code EC = ParseAttributeBlock()) 2727 return EC; 2728 break; 2729 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2730 if (std::error_code EC = ParseAttributeGroupBlock()) 2731 return EC; 2732 break; 2733 case bitc::TYPE_BLOCK_ID_NEW: 2734 if (std::error_code EC = ParseTypeTable()) 2735 return EC; 2736 break; 2737 case bitc::VALUE_SYMTAB_BLOCK_ID: 2738 if (std::error_code EC = ParseValueSymbolTable()) 2739 return EC; 2740 SeenValueSymbolTable = true; 2741 break; 2742 case bitc::CONSTANTS_BLOCK_ID: 2743 if (std::error_code EC = ParseConstants()) 2744 return EC; 2745 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2746 return EC; 2747 break; 2748 case bitc::METADATA_BLOCK_ID: 2749 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2750 if (std::error_code EC = rememberAndSkipMetadata()) 2751 return EC; 2752 break; 2753 } 2754 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2755 if (std::error_code EC = ParseMetadata()) 2756 return EC; 2757 break; 2758 case bitc::FUNCTION_BLOCK_ID: 2759 // If this is the first function body we've seen, reverse the 2760 // FunctionsWithBodies list. 2761 if (!SeenFirstFunctionBody) { 2762 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2763 if (std::error_code EC = GlobalCleanup()) 2764 return EC; 2765 SeenFirstFunctionBody = true; 2766 } 2767 2768 if (std::error_code EC = RememberAndSkipFunctionBody()) 2769 return EC; 2770 // For streaming bitcode, suspend parsing when we reach the function 2771 // bodies. Subsequent materialization calls will resume it when 2772 // necessary. For streaming, the function bodies must be at the end of 2773 // the bitcode. If the bitcode file is old, the symbol table will be 2774 // at the end instead and will not have been seen yet. In this case, 2775 // just finish the parse now. 2776 if (LazyStreamer && SeenValueSymbolTable) { 2777 NextUnreadBit = Stream.GetCurrentBitNo(); 2778 return std::error_code(); 2779 } 2780 break; 2781 case bitc::USELIST_BLOCK_ID: 2782 if (std::error_code EC = ParseUseLists()) 2783 return EC; 2784 break; 2785 } 2786 continue; 2787 2788 case BitstreamEntry::Record: 2789 // The interesting case. 2790 break; 2791 } 2792 2793 2794 // Read a record. 2795 switch (Stream.readRecord(Entry.ID, Record)) { 2796 default: break; // Default behavior, ignore unknown content. 2797 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2798 if (Record.size() < 1) 2799 return Error("Invalid record"); 2800 // Only version #0 and #1 are supported so far. 2801 unsigned module_version = Record[0]; 2802 switch (module_version) { 2803 default: 2804 return Error("Invalid value"); 2805 case 0: 2806 UseRelativeIDs = false; 2807 break; 2808 case 1: 2809 UseRelativeIDs = true; 2810 break; 2811 } 2812 break; 2813 } 2814 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2815 std::string S; 2816 if (ConvertToString(Record, 0, S)) 2817 return Error("Invalid record"); 2818 TheModule->setTargetTriple(S); 2819 break; 2820 } 2821 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2822 std::string S; 2823 if (ConvertToString(Record, 0, S)) 2824 return Error("Invalid record"); 2825 TheModule->setDataLayout(S); 2826 break; 2827 } 2828 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2829 std::string S; 2830 if (ConvertToString(Record, 0, S)) 2831 return Error("Invalid record"); 2832 TheModule->setModuleInlineAsm(S); 2833 break; 2834 } 2835 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2836 // FIXME: Remove in 4.0. 2837 std::string S; 2838 if (ConvertToString(Record, 0, S)) 2839 return Error("Invalid record"); 2840 // Ignore value. 2841 break; 2842 } 2843 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2844 std::string S; 2845 if (ConvertToString(Record, 0, S)) 2846 return Error("Invalid record"); 2847 SectionTable.push_back(S); 2848 break; 2849 } 2850 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2851 std::string S; 2852 if (ConvertToString(Record, 0, S)) 2853 return Error("Invalid record"); 2854 GCTable.push_back(S); 2855 break; 2856 } 2857 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2858 if (Record.size() < 2) 2859 return Error("Invalid record"); 2860 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2861 unsigned ComdatNameSize = Record[1]; 2862 std::string ComdatName; 2863 ComdatName.reserve(ComdatNameSize); 2864 for (unsigned i = 0; i != ComdatNameSize; ++i) 2865 ComdatName += (char)Record[2 + i]; 2866 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2867 C->setSelectionKind(SK); 2868 ComdatList.push_back(C); 2869 break; 2870 } 2871 // GLOBALVAR: [pointer type, isconst, initid, 2872 // linkage, alignment, section, visibility, threadlocal, 2873 // unnamed_addr, externally_initialized, dllstorageclass, 2874 // comdat] 2875 case bitc::MODULE_CODE_GLOBALVAR: { 2876 if (Record.size() < 6) 2877 return Error("Invalid record"); 2878 Type *Ty = getTypeByID(Record[0]); 2879 if (!Ty) 2880 return Error("Invalid record"); 2881 bool isConstant = Record[1] & 1; 2882 bool explicitType = Record[1] & 2; 2883 unsigned AddressSpace; 2884 if (explicitType) { 2885 AddressSpace = Record[1] >> 2; 2886 } else { 2887 if (!Ty->isPointerTy()) 2888 return Error("Invalid type for value"); 2889 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2890 Ty = cast<PointerType>(Ty)->getElementType(); 2891 } 2892 2893 uint64_t RawLinkage = Record[3]; 2894 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2895 unsigned Alignment; 2896 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2897 return EC; 2898 std::string Section; 2899 if (Record[5]) { 2900 if (Record[5]-1 >= SectionTable.size()) 2901 return Error("Invalid ID"); 2902 Section = SectionTable[Record[5]-1]; 2903 } 2904 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2905 // Local linkage must have default visibility. 2906 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2907 // FIXME: Change to an error if non-default in 4.0. 2908 Visibility = GetDecodedVisibility(Record[6]); 2909 2910 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2911 if (Record.size() > 7) 2912 TLM = GetDecodedThreadLocalMode(Record[7]); 2913 2914 bool UnnamedAddr = false; 2915 if (Record.size() > 8) 2916 UnnamedAddr = Record[8]; 2917 2918 bool ExternallyInitialized = false; 2919 if (Record.size() > 9) 2920 ExternallyInitialized = Record[9]; 2921 2922 GlobalVariable *NewGV = 2923 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2924 TLM, AddressSpace, ExternallyInitialized); 2925 NewGV->setAlignment(Alignment); 2926 if (!Section.empty()) 2927 NewGV->setSection(Section); 2928 NewGV->setVisibility(Visibility); 2929 NewGV->setUnnamedAddr(UnnamedAddr); 2930 2931 if (Record.size() > 10) 2932 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2933 else 2934 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2935 2936 ValueList.push_back(NewGV); 2937 2938 // Remember which value to use for the global initializer. 2939 if (unsigned InitID = Record[2]) 2940 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2941 2942 if (Record.size() > 11) { 2943 if (unsigned ComdatID = Record[11]) { 2944 assert(ComdatID <= ComdatList.size()); 2945 NewGV->setComdat(ComdatList[ComdatID - 1]); 2946 } 2947 } else if (hasImplicitComdat(RawLinkage)) { 2948 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2949 } 2950 break; 2951 } 2952 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2953 // alignment, section, visibility, gc, unnamed_addr, 2954 // prologuedata, dllstorageclass, comdat, prefixdata] 2955 case bitc::MODULE_CODE_FUNCTION: { 2956 if (Record.size() < 8) 2957 return Error("Invalid record"); 2958 Type *Ty = getTypeByID(Record[0]); 2959 if (!Ty) 2960 return Error("Invalid record"); 2961 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2962 Ty = PTy->getElementType(); 2963 auto *FTy = dyn_cast<FunctionType>(Ty); 2964 if (!FTy) 2965 return Error("Invalid type for value"); 2966 2967 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2968 "", TheModule); 2969 2970 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2971 bool isProto = Record[2]; 2972 uint64_t RawLinkage = Record[3]; 2973 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2974 Func->setAttributes(getAttributes(Record[4])); 2975 2976 unsigned Alignment; 2977 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2978 return EC; 2979 Func->setAlignment(Alignment); 2980 if (Record[6]) { 2981 if (Record[6]-1 >= SectionTable.size()) 2982 return Error("Invalid ID"); 2983 Func->setSection(SectionTable[Record[6]-1]); 2984 } 2985 // Local linkage must have default visibility. 2986 if (!Func->hasLocalLinkage()) 2987 // FIXME: Change to an error if non-default in 4.0. 2988 Func->setVisibility(GetDecodedVisibility(Record[7])); 2989 if (Record.size() > 8 && Record[8]) { 2990 if (Record[8]-1 > GCTable.size()) 2991 return Error("Invalid ID"); 2992 Func->setGC(GCTable[Record[8]-1].c_str()); 2993 } 2994 bool UnnamedAddr = false; 2995 if (Record.size() > 9) 2996 UnnamedAddr = Record[9]; 2997 Func->setUnnamedAddr(UnnamedAddr); 2998 if (Record.size() > 10 && Record[10] != 0) 2999 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3000 3001 if (Record.size() > 11) 3002 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3003 else 3004 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3005 3006 if (Record.size() > 12) { 3007 if (unsigned ComdatID = Record[12]) { 3008 assert(ComdatID <= ComdatList.size()); 3009 Func->setComdat(ComdatList[ComdatID - 1]); 3010 } 3011 } else if (hasImplicitComdat(RawLinkage)) { 3012 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3013 } 3014 3015 if (Record.size() > 13 && Record[13] != 0) 3016 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3017 3018 ValueList.push_back(Func); 3019 3020 // If this is a function with a body, remember the prototype we are 3021 // creating now, so that we can match up the body with them later. 3022 if (!isProto) { 3023 Func->setIsMaterializable(true); 3024 FunctionsWithBodies.push_back(Func); 3025 if (LazyStreamer) 3026 DeferredFunctionInfo[Func] = 0; 3027 } 3028 break; 3029 } 3030 // ALIAS: [alias type, aliasee val#, linkage] 3031 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3032 case bitc::MODULE_CODE_ALIAS: { 3033 if (Record.size() < 3) 3034 return Error("Invalid record"); 3035 Type *Ty = getTypeByID(Record[0]); 3036 if (!Ty) 3037 return Error("Invalid record"); 3038 auto *PTy = dyn_cast<PointerType>(Ty); 3039 if (!PTy) 3040 return Error("Invalid type for value"); 3041 3042 auto *NewGA = 3043 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3044 getDecodedLinkage(Record[2]), "", TheModule); 3045 // Old bitcode files didn't have visibility field. 3046 // Local linkage must have default visibility. 3047 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3048 // FIXME: Change to an error if non-default in 4.0. 3049 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3050 if (Record.size() > 4) 3051 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3052 else 3053 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3054 if (Record.size() > 5) 3055 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3056 if (Record.size() > 6) 3057 NewGA->setUnnamedAddr(Record[6]); 3058 ValueList.push_back(NewGA); 3059 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3060 break; 3061 } 3062 /// MODULE_CODE_PURGEVALS: [numvals] 3063 case bitc::MODULE_CODE_PURGEVALS: 3064 // Trim down the value list to the specified size. 3065 if (Record.size() < 1 || Record[0] > ValueList.size()) 3066 return Error("Invalid record"); 3067 ValueList.shrinkTo(Record[0]); 3068 break; 3069 } 3070 Record.clear(); 3071 } 3072 } 3073 3074 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3075 bool ShouldLazyLoadMetadata) { 3076 TheModule = nullptr; 3077 3078 if (std::error_code EC = InitStream()) 3079 return EC; 3080 3081 // Sniff for the signature. 3082 if (Stream.Read(8) != 'B' || 3083 Stream.Read(8) != 'C' || 3084 Stream.Read(4) != 0x0 || 3085 Stream.Read(4) != 0xC || 3086 Stream.Read(4) != 0xE || 3087 Stream.Read(4) != 0xD) 3088 return Error("Invalid bitcode signature"); 3089 3090 // We expect a number of well-defined blocks, though we don't necessarily 3091 // need to understand them all. 3092 while (1) { 3093 if (Stream.AtEndOfStream()) { 3094 if (TheModule) 3095 return std::error_code(); 3096 // We didn't really read a proper Module. 3097 return Error("Malformed IR file"); 3098 } 3099 3100 BitstreamEntry Entry = 3101 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3102 3103 switch (Entry.Kind) { 3104 case BitstreamEntry::Error: 3105 return Error("Malformed block"); 3106 case BitstreamEntry::EndBlock: 3107 return std::error_code(); 3108 3109 case BitstreamEntry::SubBlock: 3110 switch (Entry.ID) { 3111 case bitc::BLOCKINFO_BLOCK_ID: 3112 if (Stream.ReadBlockInfoBlock()) 3113 return Error("Malformed block"); 3114 break; 3115 case bitc::MODULE_BLOCK_ID: 3116 // Reject multiple MODULE_BLOCK's in a single bitstream. 3117 if (TheModule) 3118 return Error("Invalid multiple blocks"); 3119 TheModule = M; 3120 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3121 return EC; 3122 if (LazyStreamer) 3123 return std::error_code(); 3124 break; 3125 default: 3126 if (Stream.SkipBlock()) 3127 return Error("Invalid record"); 3128 break; 3129 } 3130 continue; 3131 case BitstreamEntry::Record: 3132 // There should be no records in the top-level of blocks. 3133 3134 // The ranlib in Xcode 4 will align archive members by appending newlines 3135 // to the end of them. If this file size is a multiple of 4 but not 8, we 3136 // have to read and ignore these final 4 bytes :-( 3137 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3138 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3139 Stream.AtEndOfStream()) 3140 return std::error_code(); 3141 3142 return Error("Invalid record"); 3143 } 3144 } 3145 } 3146 3147 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3148 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3149 return Error("Invalid record"); 3150 3151 SmallVector<uint64_t, 64> Record; 3152 3153 std::string Triple; 3154 // Read all the records for this module. 3155 while (1) { 3156 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3157 3158 switch (Entry.Kind) { 3159 case BitstreamEntry::SubBlock: // Handled for us already. 3160 case BitstreamEntry::Error: 3161 return Error("Malformed block"); 3162 case BitstreamEntry::EndBlock: 3163 return Triple; 3164 case BitstreamEntry::Record: 3165 // The interesting case. 3166 break; 3167 } 3168 3169 // Read a record. 3170 switch (Stream.readRecord(Entry.ID, Record)) { 3171 default: break; // Default behavior, ignore unknown content. 3172 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3173 std::string S; 3174 if (ConvertToString(Record, 0, S)) 3175 return Error("Invalid record"); 3176 Triple = S; 3177 break; 3178 } 3179 } 3180 Record.clear(); 3181 } 3182 llvm_unreachable("Exit infinite loop"); 3183 } 3184 3185 ErrorOr<std::string> BitcodeReader::parseTriple() { 3186 if (std::error_code EC = InitStream()) 3187 return EC; 3188 3189 // Sniff for the signature. 3190 if (Stream.Read(8) != 'B' || 3191 Stream.Read(8) != 'C' || 3192 Stream.Read(4) != 0x0 || 3193 Stream.Read(4) != 0xC || 3194 Stream.Read(4) != 0xE || 3195 Stream.Read(4) != 0xD) 3196 return Error("Invalid bitcode signature"); 3197 3198 // We expect a number of well-defined blocks, though we don't necessarily 3199 // need to understand them all. 3200 while (1) { 3201 BitstreamEntry Entry = Stream.advance(); 3202 3203 switch (Entry.Kind) { 3204 case BitstreamEntry::Error: 3205 return Error("Malformed block"); 3206 case BitstreamEntry::EndBlock: 3207 return std::error_code(); 3208 3209 case BitstreamEntry::SubBlock: 3210 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3211 return parseModuleTriple(); 3212 3213 // Ignore other sub-blocks. 3214 if (Stream.SkipBlock()) 3215 return Error("Malformed block"); 3216 continue; 3217 3218 case BitstreamEntry::Record: 3219 Stream.skipRecord(Entry.ID); 3220 continue; 3221 } 3222 } 3223 } 3224 3225 /// ParseMetadataAttachment - Parse metadata attachments. 3226 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3227 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3228 return Error("Invalid record"); 3229 3230 SmallVector<uint64_t, 64> Record; 3231 while (1) { 3232 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3233 3234 switch (Entry.Kind) { 3235 case BitstreamEntry::SubBlock: // Handled for us already. 3236 case BitstreamEntry::Error: 3237 return Error("Malformed block"); 3238 case BitstreamEntry::EndBlock: 3239 return std::error_code(); 3240 case BitstreamEntry::Record: 3241 // The interesting case. 3242 break; 3243 } 3244 3245 // Read a metadata attachment record. 3246 Record.clear(); 3247 switch (Stream.readRecord(Entry.ID, Record)) { 3248 default: // Default behavior: ignore. 3249 break; 3250 case bitc::METADATA_ATTACHMENT: { 3251 unsigned RecordLength = Record.size(); 3252 if (Record.empty()) 3253 return Error("Invalid record"); 3254 if (RecordLength % 2 == 0) { 3255 // A function attachment. 3256 for (unsigned I = 0; I != RecordLength; I += 2) { 3257 auto K = MDKindMap.find(Record[I]); 3258 if (K == MDKindMap.end()) 3259 return Error("Invalid ID"); 3260 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3261 F.setMetadata(K->second, cast<MDNode>(MD)); 3262 } 3263 continue; 3264 } 3265 3266 // An instruction attachment. 3267 Instruction *Inst = InstructionList[Record[0]]; 3268 for (unsigned i = 1; i != RecordLength; i = i+2) { 3269 unsigned Kind = Record[i]; 3270 DenseMap<unsigned, unsigned>::iterator I = 3271 MDKindMap.find(Kind); 3272 if (I == MDKindMap.end()) 3273 return Error("Invalid ID"); 3274 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3275 if (isa<LocalAsMetadata>(Node)) 3276 // Drop the attachment. This used to be legal, but there's no 3277 // upgrade path. 3278 break; 3279 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3280 if (I->second == LLVMContext::MD_tbaa) 3281 InstsWithTBAATag.push_back(Inst); 3282 } 3283 break; 3284 } 3285 } 3286 } 3287 } 3288 3289 /// ParseFunctionBody - Lazily parse the specified function body block. 3290 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3291 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3292 return Error("Invalid record"); 3293 3294 InstructionList.clear(); 3295 unsigned ModuleValueListSize = ValueList.size(); 3296 unsigned ModuleMDValueListSize = MDValueList.size(); 3297 3298 // Add all the function arguments to the value table. 3299 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3300 ValueList.push_back(I); 3301 3302 unsigned NextValueNo = ValueList.size(); 3303 BasicBlock *CurBB = nullptr; 3304 unsigned CurBBNo = 0; 3305 3306 DebugLoc LastLoc; 3307 auto getLastInstruction = [&]() -> Instruction * { 3308 if (CurBB && !CurBB->empty()) 3309 return &CurBB->back(); 3310 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3311 !FunctionBBs[CurBBNo - 1]->empty()) 3312 return &FunctionBBs[CurBBNo - 1]->back(); 3313 return nullptr; 3314 }; 3315 3316 // Read all the records. 3317 SmallVector<uint64_t, 64> Record; 3318 while (1) { 3319 BitstreamEntry Entry = Stream.advance(); 3320 3321 switch (Entry.Kind) { 3322 case BitstreamEntry::Error: 3323 return Error("Malformed block"); 3324 case BitstreamEntry::EndBlock: 3325 goto OutOfRecordLoop; 3326 3327 case BitstreamEntry::SubBlock: 3328 switch (Entry.ID) { 3329 default: // Skip unknown content. 3330 if (Stream.SkipBlock()) 3331 return Error("Invalid record"); 3332 break; 3333 case bitc::CONSTANTS_BLOCK_ID: 3334 if (std::error_code EC = ParseConstants()) 3335 return EC; 3336 NextValueNo = ValueList.size(); 3337 break; 3338 case bitc::VALUE_SYMTAB_BLOCK_ID: 3339 if (std::error_code EC = ParseValueSymbolTable()) 3340 return EC; 3341 break; 3342 case bitc::METADATA_ATTACHMENT_ID: 3343 if (std::error_code EC = ParseMetadataAttachment(*F)) 3344 return EC; 3345 break; 3346 case bitc::METADATA_BLOCK_ID: 3347 if (std::error_code EC = ParseMetadata()) 3348 return EC; 3349 break; 3350 case bitc::USELIST_BLOCK_ID: 3351 if (std::error_code EC = ParseUseLists()) 3352 return EC; 3353 break; 3354 } 3355 continue; 3356 3357 case BitstreamEntry::Record: 3358 // The interesting case. 3359 break; 3360 } 3361 3362 // Read a record. 3363 Record.clear(); 3364 Instruction *I = nullptr; 3365 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3366 switch (BitCode) { 3367 default: // Default behavior: reject 3368 return Error("Invalid value"); 3369 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3370 if (Record.size() < 1 || Record[0] == 0) 3371 return Error("Invalid record"); 3372 // Create all the basic blocks for the function. 3373 FunctionBBs.resize(Record[0]); 3374 3375 // See if anything took the address of blocks in this function. 3376 auto BBFRI = BasicBlockFwdRefs.find(F); 3377 if (BBFRI == BasicBlockFwdRefs.end()) { 3378 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3379 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3380 } else { 3381 auto &BBRefs = BBFRI->second; 3382 // Check for invalid basic block references. 3383 if (BBRefs.size() > FunctionBBs.size()) 3384 return Error("Invalid ID"); 3385 assert(!BBRefs.empty() && "Unexpected empty array"); 3386 assert(!BBRefs.front() && "Invalid reference to entry block"); 3387 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3388 ++I) 3389 if (I < RE && BBRefs[I]) { 3390 BBRefs[I]->insertInto(F); 3391 FunctionBBs[I] = BBRefs[I]; 3392 } else { 3393 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3394 } 3395 3396 // Erase from the table. 3397 BasicBlockFwdRefs.erase(BBFRI); 3398 } 3399 3400 CurBB = FunctionBBs[0]; 3401 continue; 3402 } 3403 3404 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3405 // This record indicates that the last instruction is at the same 3406 // location as the previous instruction with a location. 3407 I = getLastInstruction(); 3408 3409 if (!I) 3410 return Error("Invalid record"); 3411 I->setDebugLoc(LastLoc); 3412 I = nullptr; 3413 continue; 3414 3415 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3416 I = getLastInstruction(); 3417 if (!I || Record.size() < 4) 3418 return Error("Invalid record"); 3419 3420 unsigned Line = Record[0], Col = Record[1]; 3421 unsigned ScopeID = Record[2], IAID = Record[3]; 3422 3423 MDNode *Scope = nullptr, *IA = nullptr; 3424 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3425 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3426 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3427 I->setDebugLoc(LastLoc); 3428 I = nullptr; 3429 continue; 3430 } 3431 3432 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3433 unsigned OpNum = 0; 3434 Value *LHS, *RHS; 3435 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3436 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3437 OpNum+1 > Record.size()) 3438 return Error("Invalid record"); 3439 3440 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3441 if (Opc == -1) 3442 return Error("Invalid record"); 3443 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3444 InstructionList.push_back(I); 3445 if (OpNum < Record.size()) { 3446 if (Opc == Instruction::Add || 3447 Opc == Instruction::Sub || 3448 Opc == Instruction::Mul || 3449 Opc == Instruction::Shl) { 3450 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3451 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3452 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3453 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3454 } else if (Opc == Instruction::SDiv || 3455 Opc == Instruction::UDiv || 3456 Opc == Instruction::LShr || 3457 Opc == Instruction::AShr) { 3458 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3459 cast<BinaryOperator>(I)->setIsExact(true); 3460 } else if (isa<FPMathOperator>(I)) { 3461 FastMathFlags FMF; 3462 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3463 FMF.setUnsafeAlgebra(); 3464 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3465 FMF.setNoNaNs(); 3466 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3467 FMF.setNoInfs(); 3468 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3469 FMF.setNoSignedZeros(); 3470 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3471 FMF.setAllowReciprocal(); 3472 if (FMF.any()) 3473 I->setFastMathFlags(FMF); 3474 } 3475 3476 } 3477 break; 3478 } 3479 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3480 unsigned OpNum = 0; 3481 Value *Op; 3482 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3483 OpNum+2 != Record.size()) 3484 return Error("Invalid record"); 3485 3486 Type *ResTy = getTypeByID(Record[OpNum]); 3487 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3488 if (Opc == -1 || !ResTy) 3489 return Error("Invalid record"); 3490 Instruction *Temp = nullptr; 3491 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3492 if (Temp) { 3493 InstructionList.push_back(Temp); 3494 CurBB->getInstList().push_back(Temp); 3495 } 3496 } else { 3497 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3498 } 3499 InstructionList.push_back(I); 3500 break; 3501 } 3502 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3503 case bitc::FUNC_CODE_INST_GEP_OLD: 3504 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3505 unsigned OpNum = 0; 3506 3507 Type *Ty; 3508 bool InBounds; 3509 3510 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3511 InBounds = Record[OpNum++]; 3512 Ty = getTypeByID(Record[OpNum++]); 3513 } else { 3514 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3515 Ty = nullptr; 3516 } 3517 3518 Value *BasePtr; 3519 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3520 return Error("Invalid record"); 3521 3522 if (Ty && 3523 Ty != 3524 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3525 ->getElementType()) 3526 return Error( 3527 "Explicit gep type does not match pointee type of pointer operand"); 3528 3529 SmallVector<Value*, 16> GEPIdx; 3530 while (OpNum != Record.size()) { 3531 Value *Op; 3532 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3533 return Error("Invalid record"); 3534 GEPIdx.push_back(Op); 3535 } 3536 3537 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3538 3539 InstructionList.push_back(I); 3540 if (InBounds) 3541 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3542 break; 3543 } 3544 3545 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3546 // EXTRACTVAL: [opty, opval, n x indices] 3547 unsigned OpNum = 0; 3548 Value *Agg; 3549 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3550 return Error("Invalid record"); 3551 3552 SmallVector<unsigned, 4> EXTRACTVALIdx; 3553 Type *CurTy = Agg->getType(); 3554 for (unsigned RecSize = Record.size(); 3555 OpNum != RecSize; ++OpNum) { 3556 bool IsArray = CurTy->isArrayTy(); 3557 bool IsStruct = CurTy->isStructTy(); 3558 uint64_t Index = Record[OpNum]; 3559 3560 if (!IsStruct && !IsArray) 3561 return Error("EXTRACTVAL: Invalid type"); 3562 if ((unsigned)Index != Index) 3563 return Error("Invalid value"); 3564 if (IsStruct && Index >= CurTy->subtypes().size()) 3565 return Error("EXTRACTVAL: Invalid struct index"); 3566 if (IsArray && Index >= CurTy->getArrayNumElements()) 3567 return Error("EXTRACTVAL: Invalid array index"); 3568 EXTRACTVALIdx.push_back((unsigned)Index); 3569 3570 if (IsStruct) 3571 CurTy = CurTy->subtypes()[Index]; 3572 else 3573 CurTy = CurTy->subtypes()[0]; 3574 } 3575 3576 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3577 InstructionList.push_back(I); 3578 break; 3579 } 3580 3581 case bitc::FUNC_CODE_INST_INSERTVAL: { 3582 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3583 unsigned OpNum = 0; 3584 Value *Agg; 3585 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3586 return Error("Invalid record"); 3587 Value *Val; 3588 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3589 return Error("Invalid record"); 3590 3591 SmallVector<unsigned, 4> INSERTVALIdx; 3592 Type *CurTy = Agg->getType(); 3593 for (unsigned RecSize = Record.size(); 3594 OpNum != RecSize; ++OpNum) { 3595 bool IsArray = CurTy->isArrayTy(); 3596 bool IsStruct = CurTy->isStructTy(); 3597 uint64_t Index = Record[OpNum]; 3598 3599 if (!IsStruct && !IsArray) 3600 return Error("INSERTVAL: Invalid type"); 3601 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3602 return Error("Invalid type"); 3603 if ((unsigned)Index != Index) 3604 return Error("Invalid value"); 3605 if (IsStruct && Index >= CurTy->subtypes().size()) 3606 return Error("INSERTVAL: Invalid struct index"); 3607 if (IsArray && Index >= CurTy->getArrayNumElements()) 3608 return Error("INSERTVAL: Invalid array index"); 3609 3610 INSERTVALIdx.push_back((unsigned)Index); 3611 if (IsStruct) 3612 CurTy = CurTy->subtypes()[Index]; 3613 else 3614 CurTy = CurTy->subtypes()[0]; 3615 } 3616 3617 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3618 InstructionList.push_back(I); 3619 break; 3620 } 3621 3622 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3623 // obsolete form of select 3624 // handles select i1 ... in old bitcode 3625 unsigned OpNum = 0; 3626 Value *TrueVal, *FalseVal, *Cond; 3627 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3628 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3629 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3630 return Error("Invalid record"); 3631 3632 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3633 InstructionList.push_back(I); 3634 break; 3635 } 3636 3637 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3638 // new form of select 3639 // handles select i1 or select [N x i1] 3640 unsigned OpNum = 0; 3641 Value *TrueVal, *FalseVal, *Cond; 3642 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3643 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3644 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3645 return Error("Invalid record"); 3646 3647 // select condition can be either i1 or [N x i1] 3648 if (VectorType* vector_type = 3649 dyn_cast<VectorType>(Cond->getType())) { 3650 // expect <n x i1> 3651 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3652 return Error("Invalid type for value"); 3653 } else { 3654 // expect i1 3655 if (Cond->getType() != Type::getInt1Ty(Context)) 3656 return Error("Invalid type for value"); 3657 } 3658 3659 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3660 InstructionList.push_back(I); 3661 break; 3662 } 3663 3664 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3665 unsigned OpNum = 0; 3666 Value *Vec, *Idx; 3667 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3668 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3669 return Error("Invalid record"); 3670 if (!Vec->getType()->isVectorTy()) 3671 return Error("Invalid type for value"); 3672 I = ExtractElementInst::Create(Vec, Idx); 3673 InstructionList.push_back(I); 3674 break; 3675 } 3676 3677 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3678 unsigned OpNum = 0; 3679 Value *Vec, *Elt, *Idx; 3680 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3681 return Error("Invalid record"); 3682 if (!Vec->getType()->isVectorTy()) 3683 return Error("Invalid type for value"); 3684 if (popValue(Record, OpNum, NextValueNo, 3685 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3686 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3687 return Error("Invalid record"); 3688 I = InsertElementInst::Create(Vec, Elt, Idx); 3689 InstructionList.push_back(I); 3690 break; 3691 } 3692 3693 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3694 unsigned OpNum = 0; 3695 Value *Vec1, *Vec2, *Mask; 3696 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3697 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3698 return Error("Invalid record"); 3699 3700 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3701 return Error("Invalid record"); 3702 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3703 return Error("Invalid type for value"); 3704 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3705 InstructionList.push_back(I); 3706 break; 3707 } 3708 3709 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3710 // Old form of ICmp/FCmp returning bool 3711 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3712 // both legal on vectors but had different behaviour. 3713 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3714 // FCmp/ICmp returning bool or vector of bool 3715 3716 unsigned OpNum = 0; 3717 Value *LHS, *RHS; 3718 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3719 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3720 OpNum+1 != Record.size()) 3721 return Error("Invalid record"); 3722 3723 if (LHS->getType()->isFPOrFPVectorTy()) 3724 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3725 else 3726 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3727 InstructionList.push_back(I); 3728 break; 3729 } 3730 3731 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3732 { 3733 unsigned Size = Record.size(); 3734 if (Size == 0) { 3735 I = ReturnInst::Create(Context); 3736 InstructionList.push_back(I); 3737 break; 3738 } 3739 3740 unsigned OpNum = 0; 3741 Value *Op = nullptr; 3742 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3743 return Error("Invalid record"); 3744 if (OpNum != Record.size()) 3745 return Error("Invalid record"); 3746 3747 I = ReturnInst::Create(Context, Op); 3748 InstructionList.push_back(I); 3749 break; 3750 } 3751 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3752 if (Record.size() != 1 && Record.size() != 3) 3753 return Error("Invalid record"); 3754 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3755 if (!TrueDest) 3756 return Error("Invalid record"); 3757 3758 if (Record.size() == 1) { 3759 I = BranchInst::Create(TrueDest); 3760 InstructionList.push_back(I); 3761 } 3762 else { 3763 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3764 Value *Cond = getValue(Record, 2, NextValueNo, 3765 Type::getInt1Ty(Context)); 3766 if (!FalseDest || !Cond) 3767 return Error("Invalid record"); 3768 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3769 InstructionList.push_back(I); 3770 } 3771 break; 3772 } 3773 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3774 // Check magic 3775 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3776 // "New" SwitchInst format with case ranges. The changes to write this 3777 // format were reverted but we still recognize bitcode that uses it. 3778 // Hopefully someday we will have support for case ranges and can use 3779 // this format again. 3780 3781 Type *OpTy = getTypeByID(Record[1]); 3782 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3783 3784 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3785 BasicBlock *Default = getBasicBlock(Record[3]); 3786 if (!OpTy || !Cond || !Default) 3787 return Error("Invalid record"); 3788 3789 unsigned NumCases = Record[4]; 3790 3791 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3792 InstructionList.push_back(SI); 3793 3794 unsigned CurIdx = 5; 3795 for (unsigned i = 0; i != NumCases; ++i) { 3796 SmallVector<ConstantInt*, 1> CaseVals; 3797 unsigned NumItems = Record[CurIdx++]; 3798 for (unsigned ci = 0; ci != NumItems; ++ci) { 3799 bool isSingleNumber = Record[CurIdx++]; 3800 3801 APInt Low; 3802 unsigned ActiveWords = 1; 3803 if (ValueBitWidth > 64) 3804 ActiveWords = Record[CurIdx++]; 3805 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3806 ValueBitWidth); 3807 CurIdx += ActiveWords; 3808 3809 if (!isSingleNumber) { 3810 ActiveWords = 1; 3811 if (ValueBitWidth > 64) 3812 ActiveWords = Record[CurIdx++]; 3813 APInt High = 3814 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3815 ValueBitWidth); 3816 CurIdx += ActiveWords; 3817 3818 // FIXME: It is not clear whether values in the range should be 3819 // compared as signed or unsigned values. The partially 3820 // implemented changes that used this format in the past used 3821 // unsigned comparisons. 3822 for ( ; Low.ule(High); ++Low) 3823 CaseVals.push_back(ConstantInt::get(Context, Low)); 3824 } else 3825 CaseVals.push_back(ConstantInt::get(Context, Low)); 3826 } 3827 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3828 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3829 cve = CaseVals.end(); cvi != cve; ++cvi) 3830 SI->addCase(*cvi, DestBB); 3831 } 3832 I = SI; 3833 break; 3834 } 3835 3836 // Old SwitchInst format without case ranges. 3837 3838 if (Record.size() < 3 || (Record.size() & 1) == 0) 3839 return Error("Invalid record"); 3840 Type *OpTy = getTypeByID(Record[0]); 3841 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3842 BasicBlock *Default = getBasicBlock(Record[2]); 3843 if (!OpTy || !Cond || !Default) 3844 return Error("Invalid record"); 3845 unsigned NumCases = (Record.size()-3)/2; 3846 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3847 InstructionList.push_back(SI); 3848 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3849 ConstantInt *CaseVal = 3850 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3851 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3852 if (!CaseVal || !DestBB) { 3853 delete SI; 3854 return Error("Invalid record"); 3855 } 3856 SI->addCase(CaseVal, DestBB); 3857 } 3858 I = SI; 3859 break; 3860 } 3861 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3862 if (Record.size() < 2) 3863 return Error("Invalid record"); 3864 Type *OpTy = getTypeByID(Record[0]); 3865 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3866 if (!OpTy || !Address) 3867 return Error("Invalid record"); 3868 unsigned NumDests = Record.size()-2; 3869 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3870 InstructionList.push_back(IBI); 3871 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3872 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3873 IBI->addDestination(DestBB); 3874 } else { 3875 delete IBI; 3876 return Error("Invalid record"); 3877 } 3878 } 3879 I = IBI; 3880 break; 3881 } 3882 3883 case bitc::FUNC_CODE_INST_INVOKE: { 3884 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3885 if (Record.size() < 4) 3886 return Error("Invalid record"); 3887 unsigned OpNum = 0; 3888 AttributeSet PAL = getAttributes(Record[OpNum++]); 3889 unsigned CCInfo = Record[OpNum++]; 3890 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3891 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3892 3893 FunctionType *FTy = nullptr; 3894 if (CCInfo >> 13 & 1 && 3895 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3896 return Error("Explicit invoke type is not a function type"); 3897 3898 Value *Callee; 3899 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3900 return Error("Invalid record"); 3901 3902 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3903 if (!CalleeTy) 3904 return Error("Callee is not a pointer"); 3905 if (!FTy) { 3906 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3907 if (!FTy) 3908 return Error("Callee is not of pointer to function type"); 3909 } else if (CalleeTy->getElementType() != FTy) 3910 return Error("Explicit invoke type does not match pointee type of " 3911 "callee operand"); 3912 if (Record.size() < FTy->getNumParams() + OpNum) 3913 return Error("Insufficient operands to call"); 3914 3915 SmallVector<Value*, 16> Ops; 3916 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3917 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3918 FTy->getParamType(i))); 3919 if (!Ops.back()) 3920 return Error("Invalid record"); 3921 } 3922 3923 if (!FTy->isVarArg()) { 3924 if (Record.size() != OpNum) 3925 return Error("Invalid record"); 3926 } else { 3927 // Read type/value pairs for varargs params. 3928 while (OpNum != Record.size()) { 3929 Value *Op; 3930 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3931 return Error("Invalid record"); 3932 Ops.push_back(Op); 3933 } 3934 } 3935 3936 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3937 InstructionList.push_back(I); 3938 cast<InvokeInst>(I) 3939 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3940 cast<InvokeInst>(I)->setAttributes(PAL); 3941 break; 3942 } 3943 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3944 unsigned Idx = 0; 3945 Value *Val = nullptr; 3946 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3947 return Error("Invalid record"); 3948 I = ResumeInst::Create(Val); 3949 InstructionList.push_back(I); 3950 break; 3951 } 3952 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3953 I = new UnreachableInst(Context); 3954 InstructionList.push_back(I); 3955 break; 3956 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3957 if (Record.size() < 1 || ((Record.size()-1)&1)) 3958 return Error("Invalid record"); 3959 Type *Ty = getTypeByID(Record[0]); 3960 if (!Ty) 3961 return Error("Invalid record"); 3962 3963 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3964 InstructionList.push_back(PN); 3965 3966 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3967 Value *V; 3968 // With the new function encoding, it is possible that operands have 3969 // negative IDs (for forward references). Use a signed VBR 3970 // representation to keep the encoding small. 3971 if (UseRelativeIDs) 3972 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3973 else 3974 V = getValue(Record, 1+i, NextValueNo, Ty); 3975 BasicBlock *BB = getBasicBlock(Record[2+i]); 3976 if (!V || !BB) 3977 return Error("Invalid record"); 3978 PN->addIncoming(V, BB); 3979 } 3980 I = PN; 3981 break; 3982 } 3983 3984 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3985 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3986 unsigned Idx = 0; 3987 if (Record.size() < 4) 3988 return Error("Invalid record"); 3989 Type *Ty = getTypeByID(Record[Idx++]); 3990 if (!Ty) 3991 return Error("Invalid record"); 3992 Value *PersFn = nullptr; 3993 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3994 return Error("Invalid record"); 3995 3996 bool IsCleanup = !!Record[Idx++]; 3997 unsigned NumClauses = Record[Idx++]; 3998 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3999 LP->setCleanup(IsCleanup); 4000 for (unsigned J = 0; J != NumClauses; ++J) { 4001 LandingPadInst::ClauseType CT = 4002 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4003 Value *Val; 4004 4005 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4006 delete LP; 4007 return Error("Invalid record"); 4008 } 4009 4010 assert((CT != LandingPadInst::Catch || 4011 !isa<ArrayType>(Val->getType())) && 4012 "Catch clause has a invalid type!"); 4013 assert((CT != LandingPadInst::Filter || 4014 isa<ArrayType>(Val->getType())) && 4015 "Filter clause has invalid type!"); 4016 LP->addClause(cast<Constant>(Val)); 4017 } 4018 4019 I = LP; 4020 InstructionList.push_back(I); 4021 break; 4022 } 4023 4024 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4025 if (Record.size() != 4) 4026 return Error("Invalid record"); 4027 uint64_t AlignRecord = Record[3]; 4028 const uint64_t InAllocaMask = uint64_t(1) << 5; 4029 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4030 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4031 bool InAlloca = AlignRecord & InAllocaMask; 4032 Type *Ty = getTypeByID(Record[0]); 4033 if ((AlignRecord & ExplicitTypeMask) == 0) { 4034 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4035 if (!PTy) 4036 return Error("Old-style alloca with a non-pointer type"); 4037 Ty = PTy->getElementType(); 4038 } 4039 Type *OpTy = getTypeByID(Record[1]); 4040 Value *Size = getFnValueByID(Record[2], OpTy); 4041 unsigned Align; 4042 if (std::error_code EC = 4043 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4044 return EC; 4045 } 4046 if (!Ty || !Size) 4047 return Error("Invalid record"); 4048 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4049 AI->setUsedWithInAlloca(InAlloca); 4050 I = AI; 4051 InstructionList.push_back(I); 4052 break; 4053 } 4054 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4055 unsigned OpNum = 0; 4056 Value *Op; 4057 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4058 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4059 return Error("Invalid record"); 4060 4061 Type *Ty = nullptr; 4062 if (OpNum + 3 == Record.size()) 4063 Ty = getTypeByID(Record[OpNum++]); 4064 if (!Ty) 4065 Ty = cast<PointerType>(Op->getType())->getElementType(); 4066 else if (Ty != cast<PointerType>(Op->getType())->getElementType()) 4067 return Error("Explicit load type does not match pointee type of " 4068 "pointer operand"); 4069 4070 unsigned Align; 4071 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4072 return EC; 4073 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4074 4075 InstructionList.push_back(I); 4076 break; 4077 } 4078 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4079 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4080 unsigned OpNum = 0; 4081 Value *Op; 4082 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4083 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4084 return Error("Invalid record"); 4085 4086 Type *Ty = nullptr; 4087 if (OpNum + 5 == Record.size()) 4088 Ty = getTypeByID(Record[OpNum++]); 4089 4090 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4091 if (Ordering == NotAtomic || Ordering == Release || 4092 Ordering == AcquireRelease) 4093 return Error("Invalid record"); 4094 if (Ordering != NotAtomic && Record[OpNum] == 0) 4095 return Error("Invalid record"); 4096 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4097 4098 unsigned Align; 4099 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4100 return EC; 4101 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4102 4103 (void)Ty; 4104 assert((!Ty || Ty == I->getType()) && 4105 "Explicit type doesn't match pointee type of the first operand"); 4106 4107 InstructionList.push_back(I); 4108 break; 4109 } 4110 case bitc::FUNC_CODE_INST_STORE: 4111 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4112 unsigned OpNum = 0; 4113 Value *Val, *Ptr; 4114 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4115 (BitCode == bitc::FUNC_CODE_INST_STORE 4116 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4117 : popValue(Record, OpNum, NextValueNo, 4118 cast<PointerType>(Ptr->getType())->getElementType(), 4119 Val)) || 4120 OpNum + 2 != Record.size()) 4121 return Error("Invalid record"); 4122 unsigned Align; 4123 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4124 return EC; 4125 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4126 InstructionList.push_back(I); 4127 break; 4128 } 4129 case bitc::FUNC_CODE_INST_STOREATOMIC: 4130 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4131 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4132 unsigned OpNum = 0; 4133 Value *Val, *Ptr; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4135 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4136 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4137 : popValue(Record, OpNum, NextValueNo, 4138 cast<PointerType>(Ptr->getType())->getElementType(), 4139 Val)) || 4140 OpNum + 4 != Record.size()) 4141 return Error("Invalid record"); 4142 4143 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4144 if (Ordering == NotAtomic || Ordering == Acquire || 4145 Ordering == AcquireRelease) 4146 return Error("Invalid record"); 4147 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4148 if (Ordering != NotAtomic && Record[OpNum] == 0) 4149 return Error("Invalid record"); 4150 4151 unsigned Align; 4152 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4153 return EC; 4154 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4155 InstructionList.push_back(I); 4156 break; 4157 } 4158 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4159 case bitc::FUNC_CODE_INST_CMPXCHG: { 4160 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4161 // failureordering?, isweak?] 4162 unsigned OpNum = 0; 4163 Value *Ptr, *Cmp, *New; 4164 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4165 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4166 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4167 : popValue(Record, OpNum, NextValueNo, 4168 cast<PointerType>(Ptr->getType())->getElementType(), 4169 Cmp)) || 4170 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4171 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4172 return Error("Invalid record"); 4173 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4174 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4175 return Error("Invalid record"); 4176 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4177 4178 AtomicOrdering FailureOrdering; 4179 if (Record.size() < 7) 4180 FailureOrdering = 4181 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4182 else 4183 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4184 4185 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4186 SynchScope); 4187 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4188 4189 if (Record.size() < 8) { 4190 // Before weak cmpxchgs existed, the instruction simply returned the 4191 // value loaded from memory, so bitcode files from that era will be 4192 // expecting the first component of a modern cmpxchg. 4193 CurBB->getInstList().push_back(I); 4194 I = ExtractValueInst::Create(I, 0); 4195 } else { 4196 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4197 } 4198 4199 InstructionList.push_back(I); 4200 break; 4201 } 4202 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4203 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4204 unsigned OpNum = 0; 4205 Value *Ptr, *Val; 4206 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4207 popValue(Record, OpNum, NextValueNo, 4208 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4209 OpNum+4 != Record.size()) 4210 return Error("Invalid record"); 4211 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4212 if (Operation < AtomicRMWInst::FIRST_BINOP || 4213 Operation > AtomicRMWInst::LAST_BINOP) 4214 return Error("Invalid record"); 4215 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4216 if (Ordering == NotAtomic || Ordering == Unordered) 4217 return Error("Invalid record"); 4218 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4219 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4220 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4221 InstructionList.push_back(I); 4222 break; 4223 } 4224 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4225 if (2 != Record.size()) 4226 return Error("Invalid record"); 4227 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4228 if (Ordering == NotAtomic || Ordering == Unordered || 4229 Ordering == Monotonic) 4230 return Error("Invalid record"); 4231 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4232 I = new FenceInst(Context, Ordering, SynchScope); 4233 InstructionList.push_back(I); 4234 break; 4235 } 4236 case bitc::FUNC_CODE_INST_CALL: { 4237 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4238 if (Record.size() < 3) 4239 return Error("Invalid record"); 4240 4241 unsigned OpNum = 0; 4242 AttributeSet PAL = getAttributes(Record[OpNum++]); 4243 unsigned CCInfo = Record[OpNum++]; 4244 4245 FunctionType *FTy = nullptr; 4246 if (CCInfo >> 15 & 1 && 4247 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4248 return Error("Explicit call type is not a function type"); 4249 4250 Value *Callee; 4251 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4252 return Error("Invalid record"); 4253 4254 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4255 if (!OpTy) 4256 return Error("Callee is not a pointer type"); 4257 if (!FTy) { 4258 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4259 if (!FTy) 4260 return Error("Callee is not of pointer to function type"); 4261 } else if (OpTy->getElementType() != FTy) 4262 return Error("Explicit call type does not match pointee type of " 4263 "callee operand"); 4264 if (Record.size() < FTy->getNumParams() + OpNum) 4265 return Error("Insufficient operands to call"); 4266 4267 SmallVector<Value*, 16> Args; 4268 // Read the fixed params. 4269 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4270 if (FTy->getParamType(i)->isLabelTy()) 4271 Args.push_back(getBasicBlock(Record[OpNum])); 4272 else 4273 Args.push_back(getValue(Record, OpNum, NextValueNo, 4274 FTy->getParamType(i))); 4275 if (!Args.back()) 4276 return Error("Invalid record"); 4277 } 4278 4279 // Read type/value pairs for varargs params. 4280 if (!FTy->isVarArg()) { 4281 if (OpNum != Record.size()) 4282 return Error("Invalid record"); 4283 } else { 4284 while (OpNum != Record.size()) { 4285 Value *Op; 4286 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4287 return Error("Invalid record"); 4288 Args.push_back(Op); 4289 } 4290 } 4291 4292 I = CallInst::Create(FTy, Callee, Args); 4293 InstructionList.push_back(I); 4294 cast<CallInst>(I)->setCallingConv( 4295 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4296 CallInst::TailCallKind TCK = CallInst::TCK_None; 4297 if (CCInfo & 1) 4298 TCK = CallInst::TCK_Tail; 4299 if (CCInfo & (1 << 14)) 4300 TCK = CallInst::TCK_MustTail; 4301 cast<CallInst>(I)->setTailCallKind(TCK); 4302 cast<CallInst>(I)->setAttributes(PAL); 4303 break; 4304 } 4305 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4306 if (Record.size() < 3) 4307 return Error("Invalid record"); 4308 Type *OpTy = getTypeByID(Record[0]); 4309 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4310 Type *ResTy = getTypeByID(Record[2]); 4311 if (!OpTy || !Op || !ResTy) 4312 return Error("Invalid record"); 4313 I = new VAArgInst(Op, ResTy); 4314 InstructionList.push_back(I); 4315 break; 4316 } 4317 } 4318 4319 // Add instruction to end of current BB. If there is no current BB, reject 4320 // this file. 4321 if (!CurBB) { 4322 delete I; 4323 return Error("Invalid instruction with no BB"); 4324 } 4325 CurBB->getInstList().push_back(I); 4326 4327 // If this was a terminator instruction, move to the next block. 4328 if (isa<TerminatorInst>(I)) { 4329 ++CurBBNo; 4330 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4331 } 4332 4333 // Non-void values get registered in the value table for future use. 4334 if (I && !I->getType()->isVoidTy()) 4335 ValueList.AssignValue(I, NextValueNo++); 4336 } 4337 4338 OutOfRecordLoop: 4339 4340 // Check the function list for unresolved values. 4341 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4342 if (!A->getParent()) { 4343 // We found at least one unresolved value. Nuke them all to avoid leaks. 4344 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4345 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4346 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4347 delete A; 4348 } 4349 } 4350 return Error("Never resolved value found in function"); 4351 } 4352 } 4353 4354 // FIXME: Check for unresolved forward-declared metadata references 4355 // and clean up leaks. 4356 4357 // Trim the value list down to the size it was before we parsed this function. 4358 ValueList.shrinkTo(ModuleValueListSize); 4359 MDValueList.shrinkTo(ModuleMDValueListSize); 4360 std::vector<BasicBlock*>().swap(FunctionBBs); 4361 return std::error_code(); 4362 } 4363 4364 /// Find the function body in the bitcode stream 4365 std::error_code BitcodeReader::FindFunctionInStream( 4366 Function *F, 4367 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4368 while (DeferredFunctionInfoIterator->second == 0) { 4369 if (Stream.AtEndOfStream()) 4370 return Error("Could not find function in stream"); 4371 // ParseModule will parse the next body in the stream and set its 4372 // position in the DeferredFunctionInfo map. 4373 if (std::error_code EC = ParseModule(true)) 4374 return EC; 4375 } 4376 return std::error_code(); 4377 } 4378 4379 //===----------------------------------------------------------------------===// 4380 // GVMaterializer implementation 4381 //===----------------------------------------------------------------------===// 4382 4383 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4384 4385 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4386 if (std::error_code EC = materializeMetadata()) 4387 return EC; 4388 4389 Function *F = dyn_cast<Function>(GV); 4390 // If it's not a function or is already material, ignore the request. 4391 if (!F || !F->isMaterializable()) 4392 return std::error_code(); 4393 4394 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4395 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4396 // If its position is recorded as 0, its body is somewhere in the stream 4397 // but we haven't seen it yet. 4398 if (DFII->second == 0 && LazyStreamer) 4399 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4400 return EC; 4401 4402 // Move the bit stream to the saved position of the deferred function body. 4403 Stream.JumpToBit(DFII->second); 4404 4405 if (std::error_code EC = ParseFunctionBody(F)) 4406 return EC; 4407 F->setIsMaterializable(false); 4408 4409 if (StripDebugInfo) 4410 stripDebugInfo(*F); 4411 4412 // Upgrade any old intrinsic calls in the function. 4413 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4414 E = UpgradedIntrinsics.end(); I != E; ++I) { 4415 if (I->first != I->second) { 4416 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4417 UI != UE;) { 4418 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4419 UpgradeIntrinsicCall(CI, I->second); 4420 } 4421 } 4422 } 4423 4424 // Bring in any functions that this function forward-referenced via 4425 // blockaddresses. 4426 return materializeForwardReferencedFunctions(); 4427 } 4428 4429 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4430 const Function *F = dyn_cast<Function>(GV); 4431 if (!F || F->isDeclaration()) 4432 return false; 4433 4434 // Dematerializing F would leave dangling references that wouldn't be 4435 // reconnected on re-materialization. 4436 if (BlockAddressesTaken.count(F)) 4437 return false; 4438 4439 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4440 } 4441 4442 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4443 Function *F = dyn_cast<Function>(GV); 4444 // If this function isn't dematerializable, this is a noop. 4445 if (!F || !isDematerializable(F)) 4446 return; 4447 4448 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4449 4450 // Just forget the function body, we can remat it later. 4451 F->dropAllReferences(); 4452 F->setIsMaterializable(true); 4453 } 4454 4455 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4456 assert(M == TheModule && 4457 "Can only Materialize the Module this BitcodeReader is attached to."); 4458 4459 if (std::error_code EC = materializeMetadata()) 4460 return EC; 4461 4462 // Promise to materialize all forward references. 4463 WillMaterializeAllForwardRefs = true; 4464 4465 // Iterate over the module, deserializing any functions that are still on 4466 // disk. 4467 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4468 F != E; ++F) { 4469 if (std::error_code EC = materialize(F)) 4470 return EC; 4471 } 4472 // At this point, if there are any function bodies, the current bit is 4473 // pointing to the END_BLOCK record after them. Now make sure the rest 4474 // of the bits in the module have been read. 4475 if (NextUnreadBit) 4476 ParseModule(true); 4477 4478 // Check that all block address forward references got resolved (as we 4479 // promised above). 4480 if (!BasicBlockFwdRefs.empty()) 4481 return Error("Never resolved function from blockaddress"); 4482 4483 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4484 // delete the old functions to clean up. We can't do this unless the entire 4485 // module is materialized because there could always be another function body 4486 // with calls to the old function. 4487 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4488 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4489 if (I->first != I->second) { 4490 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4491 UI != UE;) { 4492 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4493 UpgradeIntrinsicCall(CI, I->second); 4494 } 4495 if (!I->first->use_empty()) 4496 I->first->replaceAllUsesWith(I->second); 4497 I->first->eraseFromParent(); 4498 } 4499 } 4500 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4501 4502 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4503 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4504 4505 UpgradeDebugInfo(*M); 4506 return std::error_code(); 4507 } 4508 4509 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4510 return IdentifiedStructTypes; 4511 } 4512 4513 std::error_code BitcodeReader::InitStream() { 4514 if (LazyStreamer) 4515 return InitLazyStream(); 4516 return InitStreamFromBuffer(); 4517 } 4518 4519 std::error_code BitcodeReader::InitStreamFromBuffer() { 4520 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4521 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4522 4523 if (Buffer->getBufferSize() & 3) 4524 return Error("Invalid bitcode signature"); 4525 4526 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4527 // The magic number is 0x0B17C0DE stored in little endian. 4528 if (isBitcodeWrapper(BufPtr, BufEnd)) 4529 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4530 return Error("Invalid bitcode wrapper header"); 4531 4532 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4533 Stream.init(&*StreamFile); 4534 4535 return std::error_code(); 4536 } 4537 4538 std::error_code BitcodeReader::InitLazyStream() { 4539 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4540 // see it. 4541 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4542 StreamingMemoryObject &Bytes = *OwnedBytes; 4543 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4544 Stream.init(&*StreamFile); 4545 4546 unsigned char buf[16]; 4547 if (Bytes.readBytes(buf, 16, 0) != 16) 4548 return Error("Invalid bitcode signature"); 4549 4550 if (!isBitcode(buf, buf + 16)) 4551 return Error("Invalid bitcode signature"); 4552 4553 if (isBitcodeWrapper(buf, buf + 4)) { 4554 const unsigned char *bitcodeStart = buf; 4555 const unsigned char *bitcodeEnd = buf + 16; 4556 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4557 Bytes.dropLeadingBytes(bitcodeStart - buf); 4558 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4559 } 4560 return std::error_code(); 4561 } 4562 4563 namespace { 4564 class BitcodeErrorCategoryType : public std::error_category { 4565 const char *name() const LLVM_NOEXCEPT override { 4566 return "llvm.bitcode"; 4567 } 4568 std::string message(int IE) const override { 4569 BitcodeError E = static_cast<BitcodeError>(IE); 4570 switch (E) { 4571 case BitcodeError::InvalidBitcodeSignature: 4572 return "Invalid bitcode signature"; 4573 case BitcodeError::CorruptedBitcode: 4574 return "Corrupted bitcode"; 4575 } 4576 llvm_unreachable("Unknown error type!"); 4577 } 4578 }; 4579 } 4580 4581 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4582 4583 const std::error_category &llvm::BitcodeErrorCategory() { 4584 return *ErrorCategory; 4585 } 4586 4587 //===----------------------------------------------------------------------===// 4588 // External interface 4589 //===----------------------------------------------------------------------===// 4590 4591 /// \brief Get a lazy one-at-time loading module from bitcode. 4592 /// 4593 /// This isn't always used in a lazy context. In particular, it's also used by 4594 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4595 /// in forward-referenced functions from block address references. 4596 /// 4597 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4598 /// materialize everything -- in particular, if this isn't truly lazy. 4599 static ErrorOr<Module *> 4600 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4601 LLVMContext &Context, bool WillMaterializeAll, 4602 DiagnosticHandlerFunction DiagnosticHandler, 4603 bool ShouldLazyLoadMetadata = false) { 4604 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4605 BitcodeReader *R = 4606 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4607 M->setMaterializer(R); 4608 4609 auto cleanupOnError = [&](std::error_code EC) { 4610 R->releaseBuffer(); // Never take ownership on error. 4611 delete M; // Also deletes R. 4612 return EC; 4613 }; 4614 4615 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4616 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4617 return cleanupOnError(EC); 4618 4619 if (!WillMaterializeAll) 4620 // Resolve forward references from blockaddresses. 4621 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4622 return cleanupOnError(EC); 4623 4624 Buffer.release(); // The BitcodeReader owns it now. 4625 return M; 4626 } 4627 4628 ErrorOr<Module *> 4629 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4630 LLVMContext &Context, 4631 DiagnosticHandlerFunction DiagnosticHandler, 4632 bool ShouldLazyLoadMetadata) { 4633 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4634 DiagnosticHandler, ShouldLazyLoadMetadata); 4635 } 4636 4637 ErrorOr<std::unique_ptr<Module>> 4638 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4639 LLVMContext &Context, 4640 DiagnosticHandlerFunction DiagnosticHandler) { 4641 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4642 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4643 M->setMaterializer(R); 4644 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4645 return EC; 4646 return std::move(M); 4647 } 4648 4649 ErrorOr<Module *> 4650 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4651 DiagnosticHandlerFunction DiagnosticHandler) { 4652 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4653 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4654 std::move(Buf), Context, true, DiagnosticHandler); 4655 if (!ModuleOrErr) 4656 return ModuleOrErr; 4657 Module *M = ModuleOrErr.get(); 4658 // Read in the entire module, and destroy the BitcodeReader. 4659 if (std::error_code EC = M->materializeAllPermanently()) { 4660 delete M; 4661 return EC; 4662 } 4663 4664 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4665 // written. We must defer until the Module has been fully materialized. 4666 4667 return M; 4668 } 4669 4670 std::string 4671 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4672 DiagnosticHandlerFunction DiagnosticHandler) { 4673 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4674 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4675 DiagnosticHandler); 4676 ErrorOr<std::string> Triple = R->parseTriple(); 4677 if (Triple.getError()) 4678 return ""; 4679 return Triple.get(); 4680 } 4681