1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void assignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 Module *TheModule = nullptr; 137 std::unique_ptr<MemoryBuffer> Buffer; 138 std::unique_ptr<BitstreamReader> StreamFile; 139 BitstreamCursor Stream; 140 // Next offset to start scanning for lazy parsing of function bodies. 141 uint64_t NextUnreadBit = 0; 142 // Last function offset found in the VST. 143 uint64_t LastFunctionBlockBit = 0; 144 bool SeenValueSymbolTable = false; 145 uint64_t VSTOffset = 0; 146 // Contains an arbitrary and optional string identifying the bitcode producer 147 std::string ProducerIdentification; 148 // Number of module level metadata records specified by the 149 // MODULE_CODE_METADATA_VALUES record. 150 unsigned NumModuleMDs = 0; 151 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 152 bool SeenModuleValuesRecord = false; 153 154 std::vector<Type*> TypeList; 155 BitcodeReaderValueList ValueList; 156 BitcodeReaderMetadataList MetadataList; 157 std::vector<Comdat *> ComdatList; 158 SmallVector<Instruction *, 64> InstructionList; 159 160 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 161 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 163 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 164 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 165 166 SmallVector<Instruction*, 64> InstsWithTBAATag; 167 168 /// The set of attributes by index. Index zero in the file is for null, and 169 /// is thus not represented here. As such all indices are off by one. 170 std::vector<AttributeSet> MAttributes; 171 172 /// The set of attribute groups. 173 std::map<unsigned, AttributeSet> MAttributeGroups; 174 175 /// While parsing a function body, this is a list of the basic blocks for the 176 /// function. 177 std::vector<BasicBlock*> FunctionBBs; 178 179 // When reading the module header, this list is populated with functions that 180 // have bodies later in the file. 181 std::vector<Function*> FunctionsWithBodies; 182 183 // When intrinsic functions are encountered which require upgrading they are 184 // stored here with their replacement function. 185 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 186 UpgradedIntrinsicMap UpgradedIntrinsics; 187 188 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 189 DenseMap<unsigned, unsigned> MDKindMap; 190 191 // Several operations happen after the module header has been read, but 192 // before function bodies are processed. This keeps track of whether 193 // we've done this yet. 194 bool SeenFirstFunctionBody = false; 195 196 /// When function bodies are initially scanned, this map contains info about 197 /// where to find deferred function body in the stream. 198 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 199 200 /// When Metadata block is initially scanned when parsing the module, we may 201 /// choose to defer parsing of the metadata. This vector contains info about 202 /// which Metadata blocks are deferred. 203 std::vector<uint64_t> DeferredMetadataInfo; 204 205 /// These are basic blocks forward-referenced by block addresses. They are 206 /// inserted lazily into functions when they're loaded. The basic block ID is 207 /// its index into the vector. 208 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 209 std::deque<Function *> BasicBlockFwdRefQueue; 210 211 /// Indicates that we are using a new encoding for instruction operands where 212 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 213 /// instruction number, for a more compact encoding. Some instruction 214 /// operands are not relative to the instruction ID: basic block numbers, and 215 /// types. Once the old style function blocks have been phased out, we would 216 /// not need this flag. 217 bool UseRelativeIDs = false; 218 219 /// True if all functions will be materialized, negating the need to process 220 /// (e.g.) blockaddress forward references. 221 bool WillMaterializeAllForwardRefs = false; 222 223 /// True if any Metadata block has been materialized. 224 bool IsMetadataMaterialized = false; 225 226 bool StripDebugInfo = false; 227 228 /// Functions that need to be matched with subprograms when upgrading old 229 /// metadata. 230 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 231 232 std::vector<std::string> BundleTags; 233 234 public: 235 std::error_code error(BitcodeError E, const Twine &Message); 236 std::error_code error(BitcodeError E); 237 std::error_code error(const Twine &Message); 238 239 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 240 BitcodeReader(LLVMContext &Context); 241 ~BitcodeReader() override { freeState(); } 242 243 std::error_code materializeForwardReferencedFunctions(); 244 245 void freeState(); 246 247 void releaseBuffer(); 248 249 std::error_code materialize(GlobalValue *GV) override; 250 std::error_code materializeModule() override; 251 std::vector<StructType *> getIdentifiedStructTypes() const override; 252 253 /// \brief Main interface to parsing a bitcode buffer. 254 /// \returns true if an error occurred. 255 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 256 Module *M, 257 bool ShouldLazyLoadMetadata = false); 258 259 /// \brief Cheap mechanism to just extract module triple 260 /// \returns true if an error occurred. 261 ErrorOr<std::string> parseTriple(); 262 263 /// Cheap mechanism to just extract the identification block out of bitcode. 264 ErrorOr<std::string> parseIdentificationBlock(); 265 266 static uint64_t decodeSignRotatedValue(uint64_t V); 267 268 /// Materialize any deferred Metadata block. 269 std::error_code materializeMetadata() override; 270 271 void setStripDebugInfo() override; 272 273 /// Save the mapping between the metadata values and the corresponding 274 /// value id that were recorded in the MetadataList during parsing. If 275 /// OnlyTempMD is true, then only record those entries that are still 276 /// temporary metadata. This interface is used when metadata linking is 277 /// performed as a postpass, such as during function importing. 278 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 279 bool OnlyTempMD) override; 280 281 private: 282 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 283 // ProducerIdentification data member, and do some basic enforcement on the 284 // "epoch" encoded in the bitcode. 285 std::error_code parseBitcodeVersion(); 286 287 std::vector<StructType *> IdentifiedStructTypes; 288 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 289 StructType *createIdentifiedStructType(LLVMContext &Context); 290 291 Type *getTypeByID(unsigned ID); 292 Value *getFnValueByID(unsigned ID, Type *Ty) { 293 if (Ty && Ty->isMetadataTy()) 294 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 295 return ValueList.getValueFwdRef(ID, Ty); 296 } 297 Metadata *getFnMetadataByID(unsigned ID) { 298 return MetadataList.getValueFwdRef(ID); 299 } 300 BasicBlock *getBasicBlock(unsigned ID) const { 301 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 302 return FunctionBBs[ID]; 303 } 304 AttributeSet getAttributes(unsigned i) const { 305 if (i-1 < MAttributes.size()) 306 return MAttributes[i-1]; 307 return AttributeSet(); 308 } 309 310 /// Read a value/type pair out of the specified record from slot 'Slot'. 311 /// Increment Slot past the number of slots used in the record. Return true on 312 /// failure. 313 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 314 unsigned InstNum, Value *&ResVal) { 315 if (Slot == Record.size()) return true; 316 unsigned ValNo = (unsigned)Record[Slot++]; 317 // Adjust the ValNo, if it was encoded relative to the InstNum. 318 if (UseRelativeIDs) 319 ValNo = InstNum - ValNo; 320 if (ValNo < InstNum) { 321 // If this is not a forward reference, just return the value we already 322 // have. 323 ResVal = getFnValueByID(ValNo, nullptr); 324 return ResVal == nullptr; 325 } 326 if (Slot == Record.size()) 327 return true; 328 329 unsigned TypeNo = (unsigned)Record[Slot++]; 330 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 331 return ResVal == nullptr; 332 } 333 334 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 335 /// past the number of slots used by the value in the record. Return true if 336 /// there is an error. 337 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 338 unsigned InstNum, Type *Ty, Value *&ResVal) { 339 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 340 return true; 341 // All values currently take a single record slot. 342 ++Slot; 343 return false; 344 } 345 346 /// Like popValue, but does not increment the Slot number. 347 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 348 unsigned InstNum, Type *Ty, Value *&ResVal) { 349 ResVal = getValue(Record, Slot, InstNum, Ty); 350 return ResVal == nullptr; 351 } 352 353 /// Version of getValue that returns ResVal directly, or 0 if there is an 354 /// error. 355 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 356 unsigned InstNum, Type *Ty) { 357 if (Slot == Record.size()) return nullptr; 358 unsigned ValNo = (unsigned)Record[Slot]; 359 // Adjust the ValNo, if it was encoded relative to the InstNum. 360 if (UseRelativeIDs) 361 ValNo = InstNum - ValNo; 362 return getFnValueByID(ValNo, Ty); 363 } 364 365 /// Like getValue, but decodes signed VBRs. 366 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty); 374 } 375 376 /// Converts alignment exponent (i.e. power of two (or zero)) to the 377 /// corresponding alignment to use. If alignment is too large, returns 378 /// a corresponding error code. 379 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 380 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 381 std::error_code parseModule(uint64_t ResumeBit, 382 bool ShouldLazyLoadMetadata = false); 383 std::error_code parseAttributeBlock(); 384 std::error_code parseAttributeGroupBlock(); 385 std::error_code parseTypeTable(); 386 std::error_code parseTypeTableBody(); 387 std::error_code parseOperandBundleTags(); 388 389 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 390 unsigned NameIndex, Triple &TT); 391 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 392 std::error_code parseConstants(); 393 std::error_code rememberAndSkipFunctionBodies(); 394 std::error_code rememberAndSkipFunctionBody(); 395 /// Save the positions of the Metadata blocks and skip parsing the blocks. 396 std::error_code rememberAndSkipMetadata(); 397 std::error_code parseFunctionBody(Function *F); 398 std::error_code globalCleanup(); 399 std::error_code resolveGlobalAndAliasInits(); 400 std::error_code parseMetadata(bool ModuleLevel = false); 401 std::error_code parseMetadataKinds(); 402 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 403 std::error_code parseMetadataAttachment(Function &F); 404 ErrorOr<std::string> parseModuleTriple(); 405 std::error_code parseUseLists(); 406 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code initStreamFromBuffer(); 408 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code findFunctionInStream( 410 Function *F, 411 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 412 }; 413 414 /// Class to manage reading and parsing function summary index bitcode 415 /// files/sections. 416 class ModuleSummaryIndexBitcodeReader { 417 DiagnosticHandlerFunction DiagnosticHandler; 418 419 /// Eventually points to the module index built during parsing. 420 ModuleSummaryIndex *TheIndex = nullptr; 421 422 std::unique_ptr<MemoryBuffer> Buffer; 423 std::unique_ptr<BitstreamReader> StreamFile; 424 BitstreamCursor Stream; 425 426 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 427 /// 428 /// If false, the summary section is fully parsed into the index during 429 /// the initial parse. Otherwise, if true, the caller is expected to 430 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 431 /// section is thus parsed lazily. 432 bool IsLazy = false; 433 434 /// Used to indicate whether caller only wants to check for the presence 435 /// of the global value summary bitcode section. All blocks are skipped, 436 /// but the SeenGlobalValSummary boolean is set. 437 bool CheckGlobalValSummaryPresenceOnly = false; 438 439 /// Indicates whether we have encountered a global value summary section 440 /// yet during parsing, used when checking if file contains global value 441 /// summary section. 442 bool SeenGlobalValSummary = false; 443 444 /// Indicates whether we have already parsed the VST, used for error checking. 445 bool SeenValueSymbolTable = false; 446 447 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 448 /// Used to enable on-demand parsing of the VST. 449 uint64_t VSTOffset = 0; 450 451 // Map to save ValueId to GUID association that was recorded in the 452 // ValueSymbolTable. It is used after the VST is parsed to convert 453 // call graph edges read from the function summary from referencing 454 // callees by their ValueId to using the GUID instead, which is how 455 // they are recorded in the summary index being built. 456 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 457 458 /// Map to save the association between summary offset in the VST to the 459 /// GlobalValueInfo object created when parsing it. Used to access the 460 /// info object when parsing the summary section. 461 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 462 463 /// Map populated during module path string table parsing, from the 464 /// module ID to a string reference owned by the index's module 465 /// path string table, used to correlate with combined index 466 /// summary records. 467 DenseMap<uint64_t, StringRef> ModuleIdMap; 468 469 /// Original source file name recorded in a bitcode record. 470 std::string SourceFileName; 471 472 public: 473 std::error_code error(BitcodeError E, const Twine &Message); 474 std::error_code error(BitcodeError E); 475 std::error_code error(const Twine &Message); 476 477 ModuleSummaryIndexBitcodeReader( 478 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 479 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 480 ModuleSummaryIndexBitcodeReader( 481 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 482 bool CheckGlobalValSummaryPresenceOnly = false); 483 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 484 485 void freeState(); 486 487 void releaseBuffer(); 488 489 /// Check if the parser has encountered a summary section. 490 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 491 492 /// \brief Main interface to parsing a bitcode buffer. 493 /// \returns true if an error occurred. 494 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 495 ModuleSummaryIndex *I); 496 497 /// \brief Interface for parsing a summary lazily. 498 std::error_code 499 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 500 ModuleSummaryIndex *I, size_t SummaryOffset); 501 502 private: 503 std::error_code parseModule(); 504 std::error_code parseValueSymbolTable( 505 uint64_t Offset, 506 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 507 std::error_code parseEntireSummary(); 508 std::error_code parseModuleStringTable(); 509 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 510 std::error_code initStreamFromBuffer(); 511 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 512 uint64_t getGUIDFromValueId(unsigned ValueId); 513 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 514 }; 515 } // end anonymous namespace 516 517 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 518 DiagnosticSeverity Severity, 519 const Twine &Msg) 520 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 521 522 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 523 524 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 525 std::error_code EC, const Twine &Message) { 526 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 527 DiagnosticHandler(DI); 528 return EC; 529 } 530 531 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 532 std::error_code EC) { 533 return error(DiagnosticHandler, EC, EC.message()); 534 } 535 536 static std::error_code error(LLVMContext &Context, std::error_code EC, 537 const Twine &Message) { 538 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 539 Message); 540 } 541 542 static std::error_code error(LLVMContext &Context, std::error_code EC) { 543 return error(Context, EC, EC.message()); 544 } 545 546 static std::error_code error(LLVMContext &Context, const Twine &Message) { 547 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 548 Message); 549 } 550 551 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 552 if (!ProducerIdentification.empty()) { 553 return ::error(Context, make_error_code(E), 554 Message + " (Producer: '" + ProducerIdentification + 555 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 556 } 557 return ::error(Context, make_error_code(E), Message); 558 } 559 560 std::error_code BitcodeReader::error(const Twine &Message) { 561 if (!ProducerIdentification.empty()) { 562 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 563 Message + " (Producer: '" + ProducerIdentification + 564 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 565 } 566 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 567 Message); 568 } 569 570 std::error_code BitcodeReader::error(BitcodeError E) { 571 return ::error(Context, make_error_code(E)); 572 } 573 574 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 575 : Context(Context), Buffer(Buffer), ValueList(Context), 576 MetadataList(Context) {} 577 578 BitcodeReader::BitcodeReader(LLVMContext &Context) 579 : Context(Context), Buffer(nullptr), ValueList(Context), 580 MetadataList(Context) {} 581 582 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 583 if (WillMaterializeAllForwardRefs) 584 return std::error_code(); 585 586 // Prevent recursion. 587 WillMaterializeAllForwardRefs = true; 588 589 while (!BasicBlockFwdRefQueue.empty()) { 590 Function *F = BasicBlockFwdRefQueue.front(); 591 BasicBlockFwdRefQueue.pop_front(); 592 assert(F && "Expected valid function"); 593 if (!BasicBlockFwdRefs.count(F)) 594 // Already materialized. 595 continue; 596 597 // Check for a function that isn't materializable to prevent an infinite 598 // loop. When parsing a blockaddress stored in a global variable, there 599 // isn't a trivial way to check if a function will have a body without a 600 // linear search through FunctionsWithBodies, so just check it here. 601 if (!F->isMaterializable()) 602 return error("Never resolved function from blockaddress"); 603 604 // Try to materialize F. 605 if (std::error_code EC = materialize(F)) 606 return EC; 607 } 608 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 609 610 // Reset state. 611 WillMaterializeAllForwardRefs = false; 612 return std::error_code(); 613 } 614 615 void BitcodeReader::freeState() { 616 Buffer = nullptr; 617 std::vector<Type*>().swap(TypeList); 618 ValueList.clear(); 619 MetadataList.clear(); 620 std::vector<Comdat *>().swap(ComdatList); 621 622 std::vector<AttributeSet>().swap(MAttributes); 623 std::vector<BasicBlock*>().swap(FunctionBBs); 624 std::vector<Function*>().swap(FunctionsWithBodies); 625 DeferredFunctionInfo.clear(); 626 DeferredMetadataInfo.clear(); 627 MDKindMap.clear(); 628 629 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 630 BasicBlockFwdRefQueue.clear(); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // Helper functions to implement forward reference resolution, etc. 635 //===----------------------------------------------------------------------===// 636 637 /// Convert a string from a record into an std::string, return true on failure. 638 template <typename StrTy> 639 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 640 StrTy &Result) { 641 if (Idx > Record.size()) 642 return true; 643 644 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 645 Result += (char)Record[i]; 646 return false; 647 } 648 649 static bool hasImplicitComdat(size_t Val) { 650 switch (Val) { 651 default: 652 return false; 653 case 1: // Old WeakAnyLinkage 654 case 4: // Old LinkOnceAnyLinkage 655 case 10: // Old WeakODRLinkage 656 case 11: // Old LinkOnceODRLinkage 657 return true; 658 } 659 } 660 661 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 662 switch (Val) { 663 default: // Map unknown/new linkages to external 664 case 0: 665 return GlobalValue::ExternalLinkage; 666 case 2: 667 return GlobalValue::AppendingLinkage; 668 case 3: 669 return GlobalValue::InternalLinkage; 670 case 5: 671 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 672 case 6: 673 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 674 case 7: 675 return GlobalValue::ExternalWeakLinkage; 676 case 8: 677 return GlobalValue::CommonLinkage; 678 case 9: 679 return GlobalValue::PrivateLinkage; 680 case 12: 681 return GlobalValue::AvailableExternallyLinkage; 682 case 13: 683 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 684 case 14: 685 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 686 case 15: 687 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 688 case 1: // Old value with implicit comdat. 689 case 16: 690 return GlobalValue::WeakAnyLinkage; 691 case 10: // Old value with implicit comdat. 692 case 17: 693 return GlobalValue::WeakODRLinkage; 694 case 4: // Old value with implicit comdat. 695 case 18: 696 return GlobalValue::LinkOnceAnyLinkage; 697 case 11: // Old value with implicit comdat. 698 case 19: 699 return GlobalValue::LinkOnceODRLinkage; 700 } 701 } 702 703 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 704 switch (Val) { 705 default: // Map unknown visibilities to default. 706 case 0: return GlobalValue::DefaultVisibility; 707 case 1: return GlobalValue::HiddenVisibility; 708 case 2: return GlobalValue::ProtectedVisibility; 709 } 710 } 711 712 static GlobalValue::DLLStorageClassTypes 713 getDecodedDLLStorageClass(unsigned Val) { 714 switch (Val) { 715 default: // Map unknown values to default. 716 case 0: return GlobalValue::DefaultStorageClass; 717 case 1: return GlobalValue::DLLImportStorageClass; 718 case 2: return GlobalValue::DLLExportStorageClass; 719 } 720 } 721 722 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 723 switch (Val) { 724 case 0: return GlobalVariable::NotThreadLocal; 725 default: // Map unknown non-zero value to general dynamic. 726 case 1: return GlobalVariable::GeneralDynamicTLSModel; 727 case 2: return GlobalVariable::LocalDynamicTLSModel; 728 case 3: return GlobalVariable::InitialExecTLSModel; 729 case 4: return GlobalVariable::LocalExecTLSModel; 730 } 731 } 732 733 static int getDecodedCastOpcode(unsigned Val) { 734 switch (Val) { 735 default: return -1; 736 case bitc::CAST_TRUNC : return Instruction::Trunc; 737 case bitc::CAST_ZEXT : return Instruction::ZExt; 738 case bitc::CAST_SEXT : return Instruction::SExt; 739 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 740 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 741 case bitc::CAST_UITOFP : return Instruction::UIToFP; 742 case bitc::CAST_SITOFP : return Instruction::SIToFP; 743 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 744 case bitc::CAST_FPEXT : return Instruction::FPExt; 745 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 746 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 747 case bitc::CAST_BITCAST : return Instruction::BitCast; 748 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 749 } 750 } 751 752 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 753 bool IsFP = Ty->isFPOrFPVectorTy(); 754 // BinOps are only valid for int/fp or vector of int/fp types 755 if (!IsFP && !Ty->isIntOrIntVectorTy()) 756 return -1; 757 758 switch (Val) { 759 default: 760 return -1; 761 case bitc::BINOP_ADD: 762 return IsFP ? Instruction::FAdd : Instruction::Add; 763 case bitc::BINOP_SUB: 764 return IsFP ? Instruction::FSub : Instruction::Sub; 765 case bitc::BINOP_MUL: 766 return IsFP ? Instruction::FMul : Instruction::Mul; 767 case bitc::BINOP_UDIV: 768 return IsFP ? -1 : Instruction::UDiv; 769 case bitc::BINOP_SDIV: 770 return IsFP ? Instruction::FDiv : Instruction::SDiv; 771 case bitc::BINOP_UREM: 772 return IsFP ? -1 : Instruction::URem; 773 case bitc::BINOP_SREM: 774 return IsFP ? Instruction::FRem : Instruction::SRem; 775 case bitc::BINOP_SHL: 776 return IsFP ? -1 : Instruction::Shl; 777 case bitc::BINOP_LSHR: 778 return IsFP ? -1 : Instruction::LShr; 779 case bitc::BINOP_ASHR: 780 return IsFP ? -1 : Instruction::AShr; 781 case bitc::BINOP_AND: 782 return IsFP ? -1 : Instruction::And; 783 case bitc::BINOP_OR: 784 return IsFP ? -1 : Instruction::Or; 785 case bitc::BINOP_XOR: 786 return IsFP ? -1 : Instruction::Xor; 787 } 788 } 789 790 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 791 switch (Val) { 792 default: return AtomicRMWInst::BAD_BINOP; 793 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 794 case bitc::RMW_ADD: return AtomicRMWInst::Add; 795 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 796 case bitc::RMW_AND: return AtomicRMWInst::And; 797 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 798 case bitc::RMW_OR: return AtomicRMWInst::Or; 799 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 800 case bitc::RMW_MAX: return AtomicRMWInst::Max; 801 case bitc::RMW_MIN: return AtomicRMWInst::Min; 802 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 803 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 804 } 805 } 806 807 static AtomicOrdering getDecodedOrdering(unsigned Val) { 808 switch (Val) { 809 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 810 case bitc::ORDERING_UNORDERED: return Unordered; 811 case bitc::ORDERING_MONOTONIC: return Monotonic; 812 case bitc::ORDERING_ACQUIRE: return Acquire; 813 case bitc::ORDERING_RELEASE: return Release; 814 case bitc::ORDERING_ACQREL: return AcquireRelease; 815 default: // Map unknown orderings to sequentially-consistent. 816 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 817 } 818 } 819 820 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 821 switch (Val) { 822 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 823 default: // Map unknown scopes to cross-thread. 824 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 825 } 826 } 827 828 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 829 switch (Val) { 830 default: // Map unknown selection kinds to any. 831 case bitc::COMDAT_SELECTION_KIND_ANY: 832 return Comdat::Any; 833 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 834 return Comdat::ExactMatch; 835 case bitc::COMDAT_SELECTION_KIND_LARGEST: 836 return Comdat::Largest; 837 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 838 return Comdat::NoDuplicates; 839 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 840 return Comdat::SameSize; 841 } 842 } 843 844 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 845 FastMathFlags FMF; 846 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 847 FMF.setUnsafeAlgebra(); 848 if (0 != (Val & FastMathFlags::NoNaNs)) 849 FMF.setNoNaNs(); 850 if (0 != (Val & FastMathFlags::NoInfs)) 851 FMF.setNoInfs(); 852 if (0 != (Val & FastMathFlags::NoSignedZeros)) 853 FMF.setNoSignedZeros(); 854 if (0 != (Val & FastMathFlags::AllowReciprocal)) 855 FMF.setAllowReciprocal(); 856 return FMF; 857 } 858 859 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 860 switch (Val) { 861 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 862 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 863 } 864 } 865 866 namespace llvm { 867 namespace { 868 /// \brief A class for maintaining the slot number definition 869 /// as a placeholder for the actual definition for forward constants defs. 870 class ConstantPlaceHolder : public ConstantExpr { 871 void operator=(const ConstantPlaceHolder &) = delete; 872 873 public: 874 // allocate space for exactly one operand 875 void *operator new(size_t s) { return User::operator new(s, 1); } 876 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 877 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 878 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 879 } 880 881 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 882 static bool classof(const Value *V) { 883 return isa<ConstantExpr>(V) && 884 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 885 } 886 887 /// Provide fast operand accessors 888 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 889 }; 890 } // end anonymous namespace 891 892 // FIXME: can we inherit this from ConstantExpr? 893 template <> 894 struct OperandTraits<ConstantPlaceHolder> : 895 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 896 }; 897 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 898 } // end namespace llvm 899 900 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 901 if (Idx == size()) { 902 push_back(V); 903 return; 904 } 905 906 if (Idx >= size()) 907 resize(Idx+1); 908 909 WeakVH &OldV = ValuePtrs[Idx]; 910 if (!OldV) { 911 OldV = V; 912 return; 913 } 914 915 // Handle constants and non-constants (e.g. instrs) differently for 916 // efficiency. 917 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 918 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 919 OldV = V; 920 } else { 921 // If there was a forward reference to this value, replace it. 922 Value *PrevVal = OldV; 923 OldV->replaceAllUsesWith(V); 924 delete PrevVal; 925 } 926 } 927 928 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 929 Type *Ty) { 930 if (Idx >= size()) 931 resize(Idx + 1); 932 933 if (Value *V = ValuePtrs[Idx]) { 934 if (Ty != V->getType()) 935 report_fatal_error("Type mismatch in constant table!"); 936 return cast<Constant>(V); 937 } 938 939 // Create and return a placeholder, which will later be RAUW'd. 940 Constant *C = new ConstantPlaceHolder(Ty, Context); 941 ValuePtrs[Idx] = C; 942 return C; 943 } 944 945 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 946 // Bail out for a clearly invalid value. This would make us call resize(0) 947 if (Idx == UINT_MAX) 948 return nullptr; 949 950 if (Idx >= size()) 951 resize(Idx + 1); 952 953 if (Value *V = ValuePtrs[Idx]) { 954 // If the types don't match, it's invalid. 955 if (Ty && Ty != V->getType()) 956 return nullptr; 957 return V; 958 } 959 960 // No type specified, must be invalid reference. 961 if (!Ty) return nullptr; 962 963 // Create and return a placeholder, which will later be RAUW'd. 964 Value *V = new Argument(Ty); 965 ValuePtrs[Idx] = V; 966 return V; 967 } 968 969 /// Once all constants are read, this method bulk resolves any forward 970 /// references. The idea behind this is that we sometimes get constants (such 971 /// as large arrays) which reference *many* forward ref constants. Replacing 972 /// each of these causes a lot of thrashing when building/reuniquing the 973 /// constant. Instead of doing this, we look at all the uses and rewrite all 974 /// the place holders at once for any constant that uses a placeholder. 975 void BitcodeReaderValueList::resolveConstantForwardRefs() { 976 // Sort the values by-pointer so that they are efficient to look up with a 977 // binary search. 978 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 979 980 SmallVector<Constant*, 64> NewOps; 981 982 while (!ResolveConstants.empty()) { 983 Value *RealVal = operator[](ResolveConstants.back().second); 984 Constant *Placeholder = ResolveConstants.back().first; 985 ResolveConstants.pop_back(); 986 987 // Loop over all users of the placeholder, updating them to reference the 988 // new value. If they reference more than one placeholder, update them all 989 // at once. 990 while (!Placeholder->use_empty()) { 991 auto UI = Placeholder->user_begin(); 992 User *U = *UI; 993 994 // If the using object isn't uniqued, just update the operands. This 995 // handles instructions and initializers for global variables. 996 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 997 UI.getUse().set(RealVal); 998 continue; 999 } 1000 1001 // Otherwise, we have a constant that uses the placeholder. Replace that 1002 // constant with a new constant that has *all* placeholder uses updated. 1003 Constant *UserC = cast<Constant>(U); 1004 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1005 I != E; ++I) { 1006 Value *NewOp; 1007 if (!isa<ConstantPlaceHolder>(*I)) { 1008 // Not a placeholder reference. 1009 NewOp = *I; 1010 } else if (*I == Placeholder) { 1011 // Common case is that it just references this one placeholder. 1012 NewOp = RealVal; 1013 } else { 1014 // Otherwise, look up the placeholder in ResolveConstants. 1015 ResolveConstantsTy::iterator It = 1016 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1017 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1018 0)); 1019 assert(It != ResolveConstants.end() && It->first == *I); 1020 NewOp = operator[](It->second); 1021 } 1022 1023 NewOps.push_back(cast<Constant>(NewOp)); 1024 } 1025 1026 // Make the new constant. 1027 Constant *NewC; 1028 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1029 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1030 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1031 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1032 } else if (isa<ConstantVector>(UserC)) { 1033 NewC = ConstantVector::get(NewOps); 1034 } else { 1035 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1036 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1037 } 1038 1039 UserC->replaceAllUsesWith(NewC); 1040 UserC->destroyConstant(); 1041 NewOps.clear(); 1042 } 1043 1044 // Update all ValueHandles, they should be the only users at this point. 1045 Placeholder->replaceAllUsesWith(RealVal); 1046 delete Placeholder; 1047 } 1048 } 1049 1050 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1051 if (Idx == size()) { 1052 push_back(MD); 1053 return; 1054 } 1055 1056 if (Idx >= size()) 1057 resize(Idx+1); 1058 1059 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1060 if (!OldMD) { 1061 OldMD.reset(MD); 1062 return; 1063 } 1064 1065 // If there was a forward reference to this value, replace it. 1066 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1067 PrevMD->replaceAllUsesWith(MD); 1068 --NumFwdRefs; 1069 } 1070 1071 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1072 if (Idx >= size()) 1073 resize(Idx + 1); 1074 1075 if (Metadata *MD = MetadataPtrs[Idx]) 1076 return MD; 1077 1078 // Track forward refs to be resolved later. 1079 if (AnyFwdRefs) { 1080 MinFwdRef = std::min(MinFwdRef, Idx); 1081 MaxFwdRef = std::max(MaxFwdRef, Idx); 1082 } else { 1083 AnyFwdRefs = true; 1084 MinFwdRef = MaxFwdRef = Idx; 1085 } 1086 ++NumFwdRefs; 1087 1088 // Create and return a placeholder, which will later be RAUW'd. 1089 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1090 MetadataPtrs[Idx].reset(MD); 1091 return MD; 1092 } 1093 1094 void BitcodeReaderMetadataList::tryToResolveCycles() { 1095 if (!AnyFwdRefs) 1096 // Nothing to do. 1097 return; 1098 1099 if (NumFwdRefs) 1100 // Still forward references... can't resolve cycles. 1101 return; 1102 1103 // Resolve any cycles. 1104 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1105 auto &MD = MetadataPtrs[I]; 1106 auto *N = dyn_cast_or_null<MDNode>(MD); 1107 if (!N) 1108 continue; 1109 1110 assert(!N->isTemporary() && "Unexpected forward reference"); 1111 N->resolveCycles(); 1112 } 1113 1114 // Make sure we return early again until there's another forward ref. 1115 AnyFwdRefs = false; 1116 } 1117 1118 Type *BitcodeReader::getTypeByID(unsigned ID) { 1119 // The type table size is always specified correctly. 1120 if (ID >= TypeList.size()) 1121 return nullptr; 1122 1123 if (Type *Ty = TypeList[ID]) 1124 return Ty; 1125 1126 // If we have a forward reference, the only possible case is when it is to a 1127 // named struct. Just create a placeholder for now. 1128 return TypeList[ID] = createIdentifiedStructType(Context); 1129 } 1130 1131 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1132 StringRef Name) { 1133 auto *Ret = StructType::create(Context, Name); 1134 IdentifiedStructTypes.push_back(Ret); 1135 return Ret; 1136 } 1137 1138 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1139 auto *Ret = StructType::create(Context); 1140 IdentifiedStructTypes.push_back(Ret); 1141 return Ret; 1142 } 1143 1144 //===----------------------------------------------------------------------===// 1145 // Functions for parsing blocks from the bitcode file 1146 //===----------------------------------------------------------------------===// 1147 1148 1149 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1150 /// been decoded from the given integer. This function must stay in sync with 1151 /// 'encodeLLVMAttributesForBitcode'. 1152 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1153 uint64_t EncodedAttrs) { 1154 // FIXME: Remove in 4.0. 1155 1156 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1157 // the bits above 31 down by 11 bits. 1158 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1159 assert((!Alignment || isPowerOf2_32(Alignment)) && 1160 "Alignment must be a power of two."); 1161 1162 if (Alignment) 1163 B.addAlignmentAttr(Alignment); 1164 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1165 (EncodedAttrs & 0xffff)); 1166 } 1167 1168 std::error_code BitcodeReader::parseAttributeBlock() { 1169 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1170 return error("Invalid record"); 1171 1172 if (!MAttributes.empty()) 1173 return error("Invalid multiple blocks"); 1174 1175 SmallVector<uint64_t, 64> Record; 1176 1177 SmallVector<AttributeSet, 8> Attrs; 1178 1179 // Read all the records. 1180 while (1) { 1181 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1182 1183 switch (Entry.Kind) { 1184 case BitstreamEntry::SubBlock: // Handled for us already. 1185 case BitstreamEntry::Error: 1186 return error("Malformed block"); 1187 case BitstreamEntry::EndBlock: 1188 return std::error_code(); 1189 case BitstreamEntry::Record: 1190 // The interesting case. 1191 break; 1192 } 1193 1194 // Read a record. 1195 Record.clear(); 1196 switch (Stream.readRecord(Entry.ID, Record)) { 1197 default: // Default behavior: ignore. 1198 break; 1199 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1200 // FIXME: Remove in 4.0. 1201 if (Record.size() & 1) 1202 return error("Invalid record"); 1203 1204 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1205 AttrBuilder B; 1206 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1207 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1208 } 1209 1210 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1211 Attrs.clear(); 1212 break; 1213 } 1214 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1215 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1216 Attrs.push_back(MAttributeGroups[Record[i]]); 1217 1218 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1219 Attrs.clear(); 1220 break; 1221 } 1222 } 1223 } 1224 } 1225 1226 // Returns Attribute::None on unrecognized codes. 1227 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1228 switch (Code) { 1229 default: 1230 return Attribute::None; 1231 case bitc::ATTR_KIND_ALIGNMENT: 1232 return Attribute::Alignment; 1233 case bitc::ATTR_KIND_ALWAYS_INLINE: 1234 return Attribute::AlwaysInline; 1235 case bitc::ATTR_KIND_ARGMEMONLY: 1236 return Attribute::ArgMemOnly; 1237 case bitc::ATTR_KIND_BUILTIN: 1238 return Attribute::Builtin; 1239 case bitc::ATTR_KIND_BY_VAL: 1240 return Attribute::ByVal; 1241 case bitc::ATTR_KIND_IN_ALLOCA: 1242 return Attribute::InAlloca; 1243 case bitc::ATTR_KIND_COLD: 1244 return Attribute::Cold; 1245 case bitc::ATTR_KIND_CONVERGENT: 1246 return Attribute::Convergent; 1247 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1248 return Attribute::InaccessibleMemOnly; 1249 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1250 return Attribute::InaccessibleMemOrArgMemOnly; 1251 case bitc::ATTR_KIND_INLINE_HINT: 1252 return Attribute::InlineHint; 1253 case bitc::ATTR_KIND_IN_REG: 1254 return Attribute::InReg; 1255 case bitc::ATTR_KIND_JUMP_TABLE: 1256 return Attribute::JumpTable; 1257 case bitc::ATTR_KIND_MIN_SIZE: 1258 return Attribute::MinSize; 1259 case bitc::ATTR_KIND_NAKED: 1260 return Attribute::Naked; 1261 case bitc::ATTR_KIND_NEST: 1262 return Attribute::Nest; 1263 case bitc::ATTR_KIND_NO_ALIAS: 1264 return Attribute::NoAlias; 1265 case bitc::ATTR_KIND_NO_BUILTIN: 1266 return Attribute::NoBuiltin; 1267 case bitc::ATTR_KIND_NO_CAPTURE: 1268 return Attribute::NoCapture; 1269 case bitc::ATTR_KIND_NO_DUPLICATE: 1270 return Attribute::NoDuplicate; 1271 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1272 return Attribute::NoImplicitFloat; 1273 case bitc::ATTR_KIND_NO_INLINE: 1274 return Attribute::NoInline; 1275 case bitc::ATTR_KIND_NO_RECURSE: 1276 return Attribute::NoRecurse; 1277 case bitc::ATTR_KIND_NON_LAZY_BIND: 1278 return Attribute::NonLazyBind; 1279 case bitc::ATTR_KIND_NON_NULL: 1280 return Attribute::NonNull; 1281 case bitc::ATTR_KIND_DEREFERENCEABLE: 1282 return Attribute::Dereferenceable; 1283 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1284 return Attribute::DereferenceableOrNull; 1285 case bitc::ATTR_KIND_NO_RED_ZONE: 1286 return Attribute::NoRedZone; 1287 case bitc::ATTR_KIND_NO_RETURN: 1288 return Attribute::NoReturn; 1289 case bitc::ATTR_KIND_NO_UNWIND: 1290 return Attribute::NoUnwind; 1291 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1292 return Attribute::OptimizeForSize; 1293 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1294 return Attribute::OptimizeNone; 1295 case bitc::ATTR_KIND_READ_NONE: 1296 return Attribute::ReadNone; 1297 case bitc::ATTR_KIND_READ_ONLY: 1298 return Attribute::ReadOnly; 1299 case bitc::ATTR_KIND_RETURNED: 1300 return Attribute::Returned; 1301 case bitc::ATTR_KIND_RETURNS_TWICE: 1302 return Attribute::ReturnsTwice; 1303 case bitc::ATTR_KIND_S_EXT: 1304 return Attribute::SExt; 1305 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1306 return Attribute::StackAlignment; 1307 case bitc::ATTR_KIND_STACK_PROTECT: 1308 return Attribute::StackProtect; 1309 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1310 return Attribute::StackProtectReq; 1311 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1312 return Attribute::StackProtectStrong; 1313 case bitc::ATTR_KIND_SAFESTACK: 1314 return Attribute::SafeStack; 1315 case bitc::ATTR_KIND_STRUCT_RET: 1316 return Attribute::StructRet; 1317 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1318 return Attribute::SanitizeAddress; 1319 case bitc::ATTR_KIND_SANITIZE_THREAD: 1320 return Attribute::SanitizeThread; 1321 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1322 return Attribute::SanitizeMemory; 1323 case bitc::ATTR_KIND_UW_TABLE: 1324 return Attribute::UWTable; 1325 case bitc::ATTR_KIND_Z_EXT: 1326 return Attribute::ZExt; 1327 } 1328 } 1329 1330 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1331 unsigned &Alignment) { 1332 // Note: Alignment in bitcode files is incremented by 1, so that zero 1333 // can be used for default alignment. 1334 if (Exponent > Value::MaxAlignmentExponent + 1) 1335 return error("Invalid alignment value"); 1336 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1337 return std::error_code(); 1338 } 1339 1340 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1341 Attribute::AttrKind *Kind) { 1342 *Kind = getAttrFromCode(Code); 1343 if (*Kind == Attribute::None) 1344 return error(BitcodeError::CorruptedBitcode, 1345 "Unknown attribute kind (" + Twine(Code) + ")"); 1346 return std::error_code(); 1347 } 1348 1349 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1350 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1351 return error("Invalid record"); 1352 1353 if (!MAttributeGroups.empty()) 1354 return error("Invalid multiple blocks"); 1355 1356 SmallVector<uint64_t, 64> Record; 1357 1358 // Read all the records. 1359 while (1) { 1360 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1361 1362 switch (Entry.Kind) { 1363 case BitstreamEntry::SubBlock: // Handled for us already. 1364 case BitstreamEntry::Error: 1365 return error("Malformed block"); 1366 case BitstreamEntry::EndBlock: 1367 return std::error_code(); 1368 case BitstreamEntry::Record: 1369 // The interesting case. 1370 break; 1371 } 1372 1373 // Read a record. 1374 Record.clear(); 1375 switch (Stream.readRecord(Entry.ID, Record)) { 1376 default: // Default behavior: ignore. 1377 break; 1378 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1379 if (Record.size() < 3) 1380 return error("Invalid record"); 1381 1382 uint64_t GrpID = Record[0]; 1383 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1384 1385 AttrBuilder B; 1386 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1387 if (Record[i] == 0) { // Enum attribute 1388 Attribute::AttrKind Kind; 1389 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1390 return EC; 1391 1392 B.addAttribute(Kind); 1393 } else if (Record[i] == 1) { // Integer attribute 1394 Attribute::AttrKind Kind; 1395 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1396 return EC; 1397 if (Kind == Attribute::Alignment) 1398 B.addAlignmentAttr(Record[++i]); 1399 else if (Kind == Attribute::StackAlignment) 1400 B.addStackAlignmentAttr(Record[++i]); 1401 else if (Kind == Attribute::Dereferenceable) 1402 B.addDereferenceableAttr(Record[++i]); 1403 else if (Kind == Attribute::DereferenceableOrNull) 1404 B.addDereferenceableOrNullAttr(Record[++i]); 1405 } else { // String attribute 1406 assert((Record[i] == 3 || Record[i] == 4) && 1407 "Invalid attribute group entry"); 1408 bool HasValue = (Record[i++] == 4); 1409 SmallString<64> KindStr; 1410 SmallString<64> ValStr; 1411 1412 while (Record[i] != 0 && i != e) 1413 KindStr += Record[i++]; 1414 assert(Record[i] == 0 && "Kind string not null terminated"); 1415 1416 if (HasValue) { 1417 // Has a value associated with it. 1418 ++i; // Skip the '0' that terminates the "kind" string. 1419 while (Record[i] != 0 && i != e) 1420 ValStr += Record[i++]; 1421 assert(Record[i] == 0 && "Value string not null terminated"); 1422 } 1423 1424 B.addAttribute(KindStr.str(), ValStr.str()); 1425 } 1426 } 1427 1428 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1429 break; 1430 } 1431 } 1432 } 1433 } 1434 1435 std::error_code BitcodeReader::parseTypeTable() { 1436 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1437 return error("Invalid record"); 1438 1439 return parseTypeTableBody(); 1440 } 1441 1442 std::error_code BitcodeReader::parseTypeTableBody() { 1443 if (!TypeList.empty()) 1444 return error("Invalid multiple blocks"); 1445 1446 SmallVector<uint64_t, 64> Record; 1447 unsigned NumRecords = 0; 1448 1449 SmallString<64> TypeName; 1450 1451 // Read all the records for this type table. 1452 while (1) { 1453 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1454 1455 switch (Entry.Kind) { 1456 case BitstreamEntry::SubBlock: // Handled for us already. 1457 case BitstreamEntry::Error: 1458 return error("Malformed block"); 1459 case BitstreamEntry::EndBlock: 1460 if (NumRecords != TypeList.size()) 1461 return error("Malformed block"); 1462 return std::error_code(); 1463 case BitstreamEntry::Record: 1464 // The interesting case. 1465 break; 1466 } 1467 1468 // Read a record. 1469 Record.clear(); 1470 Type *ResultTy = nullptr; 1471 switch (Stream.readRecord(Entry.ID, Record)) { 1472 default: 1473 return error("Invalid value"); 1474 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1475 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1476 // type list. This allows us to reserve space. 1477 if (Record.size() < 1) 1478 return error("Invalid record"); 1479 TypeList.resize(Record[0]); 1480 continue; 1481 case bitc::TYPE_CODE_VOID: // VOID 1482 ResultTy = Type::getVoidTy(Context); 1483 break; 1484 case bitc::TYPE_CODE_HALF: // HALF 1485 ResultTy = Type::getHalfTy(Context); 1486 break; 1487 case bitc::TYPE_CODE_FLOAT: // FLOAT 1488 ResultTy = Type::getFloatTy(Context); 1489 break; 1490 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1491 ResultTy = Type::getDoubleTy(Context); 1492 break; 1493 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1494 ResultTy = Type::getX86_FP80Ty(Context); 1495 break; 1496 case bitc::TYPE_CODE_FP128: // FP128 1497 ResultTy = Type::getFP128Ty(Context); 1498 break; 1499 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1500 ResultTy = Type::getPPC_FP128Ty(Context); 1501 break; 1502 case bitc::TYPE_CODE_LABEL: // LABEL 1503 ResultTy = Type::getLabelTy(Context); 1504 break; 1505 case bitc::TYPE_CODE_METADATA: // METADATA 1506 ResultTy = Type::getMetadataTy(Context); 1507 break; 1508 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1509 ResultTy = Type::getX86_MMXTy(Context); 1510 break; 1511 case bitc::TYPE_CODE_TOKEN: // TOKEN 1512 ResultTy = Type::getTokenTy(Context); 1513 break; 1514 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1515 if (Record.size() < 1) 1516 return error("Invalid record"); 1517 1518 uint64_t NumBits = Record[0]; 1519 if (NumBits < IntegerType::MIN_INT_BITS || 1520 NumBits > IntegerType::MAX_INT_BITS) 1521 return error("Bitwidth for integer type out of range"); 1522 ResultTy = IntegerType::get(Context, NumBits); 1523 break; 1524 } 1525 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1526 // [pointee type, address space] 1527 if (Record.size() < 1) 1528 return error("Invalid record"); 1529 unsigned AddressSpace = 0; 1530 if (Record.size() == 2) 1531 AddressSpace = Record[1]; 1532 ResultTy = getTypeByID(Record[0]); 1533 if (!ResultTy || 1534 !PointerType::isValidElementType(ResultTy)) 1535 return error("Invalid type"); 1536 ResultTy = PointerType::get(ResultTy, AddressSpace); 1537 break; 1538 } 1539 case bitc::TYPE_CODE_FUNCTION_OLD: { 1540 // FIXME: attrid is dead, remove it in LLVM 4.0 1541 // FUNCTION: [vararg, attrid, retty, paramty x N] 1542 if (Record.size() < 3) 1543 return error("Invalid record"); 1544 SmallVector<Type*, 8> ArgTys; 1545 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1546 if (Type *T = getTypeByID(Record[i])) 1547 ArgTys.push_back(T); 1548 else 1549 break; 1550 } 1551 1552 ResultTy = getTypeByID(Record[2]); 1553 if (!ResultTy || ArgTys.size() < Record.size()-3) 1554 return error("Invalid type"); 1555 1556 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1557 break; 1558 } 1559 case bitc::TYPE_CODE_FUNCTION: { 1560 // FUNCTION: [vararg, retty, paramty x N] 1561 if (Record.size() < 2) 1562 return error("Invalid record"); 1563 SmallVector<Type*, 8> ArgTys; 1564 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1565 if (Type *T = getTypeByID(Record[i])) { 1566 if (!FunctionType::isValidArgumentType(T)) 1567 return error("Invalid function argument type"); 1568 ArgTys.push_back(T); 1569 } 1570 else 1571 break; 1572 } 1573 1574 ResultTy = getTypeByID(Record[1]); 1575 if (!ResultTy || ArgTys.size() < Record.size()-2) 1576 return error("Invalid type"); 1577 1578 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1579 break; 1580 } 1581 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1582 if (Record.size() < 1) 1583 return error("Invalid record"); 1584 SmallVector<Type*, 8> EltTys; 1585 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1586 if (Type *T = getTypeByID(Record[i])) 1587 EltTys.push_back(T); 1588 else 1589 break; 1590 } 1591 if (EltTys.size() != Record.size()-1) 1592 return error("Invalid type"); 1593 ResultTy = StructType::get(Context, EltTys, Record[0]); 1594 break; 1595 } 1596 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1597 if (convertToString(Record, 0, TypeName)) 1598 return error("Invalid record"); 1599 continue; 1600 1601 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1602 if (Record.size() < 1) 1603 return error("Invalid record"); 1604 1605 if (NumRecords >= TypeList.size()) 1606 return error("Invalid TYPE table"); 1607 1608 // Check to see if this was forward referenced, if so fill in the temp. 1609 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1610 if (Res) { 1611 Res->setName(TypeName); 1612 TypeList[NumRecords] = nullptr; 1613 } else // Otherwise, create a new struct. 1614 Res = createIdentifiedStructType(Context, TypeName); 1615 TypeName.clear(); 1616 1617 SmallVector<Type*, 8> EltTys; 1618 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1619 if (Type *T = getTypeByID(Record[i])) 1620 EltTys.push_back(T); 1621 else 1622 break; 1623 } 1624 if (EltTys.size() != Record.size()-1) 1625 return error("Invalid record"); 1626 Res->setBody(EltTys, Record[0]); 1627 ResultTy = Res; 1628 break; 1629 } 1630 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1631 if (Record.size() != 1) 1632 return error("Invalid record"); 1633 1634 if (NumRecords >= TypeList.size()) 1635 return error("Invalid TYPE table"); 1636 1637 // Check to see if this was forward referenced, if so fill in the temp. 1638 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1639 if (Res) { 1640 Res->setName(TypeName); 1641 TypeList[NumRecords] = nullptr; 1642 } else // Otherwise, create a new struct with no body. 1643 Res = createIdentifiedStructType(Context, TypeName); 1644 TypeName.clear(); 1645 ResultTy = Res; 1646 break; 1647 } 1648 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1649 if (Record.size() < 2) 1650 return error("Invalid record"); 1651 ResultTy = getTypeByID(Record[1]); 1652 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1653 return error("Invalid type"); 1654 ResultTy = ArrayType::get(ResultTy, Record[0]); 1655 break; 1656 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1657 if (Record.size() < 2) 1658 return error("Invalid record"); 1659 if (Record[0] == 0) 1660 return error("Invalid vector length"); 1661 ResultTy = getTypeByID(Record[1]); 1662 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1663 return error("Invalid type"); 1664 ResultTy = VectorType::get(ResultTy, Record[0]); 1665 break; 1666 } 1667 1668 if (NumRecords >= TypeList.size()) 1669 return error("Invalid TYPE table"); 1670 if (TypeList[NumRecords]) 1671 return error( 1672 "Invalid TYPE table: Only named structs can be forward referenced"); 1673 assert(ResultTy && "Didn't read a type?"); 1674 TypeList[NumRecords++] = ResultTy; 1675 } 1676 } 1677 1678 std::error_code BitcodeReader::parseOperandBundleTags() { 1679 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1680 return error("Invalid record"); 1681 1682 if (!BundleTags.empty()) 1683 return error("Invalid multiple blocks"); 1684 1685 SmallVector<uint64_t, 64> Record; 1686 1687 while (1) { 1688 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1689 1690 switch (Entry.Kind) { 1691 case BitstreamEntry::SubBlock: // Handled for us already. 1692 case BitstreamEntry::Error: 1693 return error("Malformed block"); 1694 case BitstreamEntry::EndBlock: 1695 return std::error_code(); 1696 case BitstreamEntry::Record: 1697 // The interesting case. 1698 break; 1699 } 1700 1701 // Tags are implicitly mapped to integers by their order. 1702 1703 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1704 return error("Invalid record"); 1705 1706 // OPERAND_BUNDLE_TAG: [strchr x N] 1707 BundleTags.emplace_back(); 1708 if (convertToString(Record, 0, BundleTags.back())) 1709 return error("Invalid record"); 1710 Record.clear(); 1711 } 1712 } 1713 1714 /// Associate a value with its name from the given index in the provided record. 1715 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1716 unsigned NameIndex, Triple &TT) { 1717 SmallString<128> ValueName; 1718 if (convertToString(Record, NameIndex, ValueName)) 1719 return error("Invalid record"); 1720 unsigned ValueID = Record[0]; 1721 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1722 return error("Invalid record"); 1723 Value *V = ValueList[ValueID]; 1724 1725 StringRef NameStr(ValueName.data(), ValueName.size()); 1726 if (NameStr.find_first_of(0) != StringRef::npos) 1727 return error("Invalid value name"); 1728 V->setName(NameStr); 1729 auto *GO = dyn_cast<GlobalObject>(V); 1730 if (GO) { 1731 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1732 if (TT.isOSBinFormatMachO()) 1733 GO->setComdat(nullptr); 1734 else 1735 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1736 } 1737 } 1738 return V; 1739 } 1740 1741 /// Helper to note and return the current location, and jump to the given 1742 /// offset. 1743 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1744 BitstreamCursor &Stream) { 1745 // Save the current parsing location so we can jump back at the end 1746 // of the VST read. 1747 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1748 Stream.JumpToBit(Offset * 32); 1749 #ifndef NDEBUG 1750 // Do some checking if we are in debug mode. 1751 BitstreamEntry Entry = Stream.advance(); 1752 assert(Entry.Kind == BitstreamEntry::SubBlock); 1753 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1754 #else 1755 // In NDEBUG mode ignore the output so we don't get an unused variable 1756 // warning. 1757 Stream.advance(); 1758 #endif 1759 return CurrentBit; 1760 } 1761 1762 /// Parse the value symbol table at either the current parsing location or 1763 /// at the given bit offset if provided. 1764 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1765 uint64_t CurrentBit; 1766 // Pass in the Offset to distinguish between calling for the module-level 1767 // VST (where we want to jump to the VST offset) and the function-level 1768 // VST (where we don't). 1769 if (Offset > 0) 1770 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1771 1772 // Compute the delta between the bitcode indices in the VST (the word offset 1773 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1774 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1775 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1776 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1777 // just before entering the VST subblock because: 1) the EnterSubBlock 1778 // changes the AbbrevID width; 2) the VST block is nested within the same 1779 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1780 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1781 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1782 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1783 unsigned FuncBitcodeOffsetDelta = 1784 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1785 1786 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1787 return error("Invalid record"); 1788 1789 SmallVector<uint64_t, 64> Record; 1790 1791 Triple TT(TheModule->getTargetTriple()); 1792 1793 // Read all the records for this value table. 1794 SmallString<128> ValueName; 1795 while (1) { 1796 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1797 1798 switch (Entry.Kind) { 1799 case BitstreamEntry::SubBlock: // Handled for us already. 1800 case BitstreamEntry::Error: 1801 return error("Malformed block"); 1802 case BitstreamEntry::EndBlock: 1803 if (Offset > 0) 1804 Stream.JumpToBit(CurrentBit); 1805 return std::error_code(); 1806 case BitstreamEntry::Record: 1807 // The interesting case. 1808 break; 1809 } 1810 1811 // Read a record. 1812 Record.clear(); 1813 switch (Stream.readRecord(Entry.ID, Record)) { 1814 default: // Default behavior: unknown type. 1815 break; 1816 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1817 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1818 if (std::error_code EC = ValOrErr.getError()) 1819 return EC; 1820 ValOrErr.get(); 1821 break; 1822 } 1823 case bitc::VST_CODE_FNENTRY: { 1824 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1825 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1826 if (std::error_code EC = ValOrErr.getError()) 1827 return EC; 1828 Value *V = ValOrErr.get(); 1829 1830 auto *GO = dyn_cast<GlobalObject>(V); 1831 if (!GO) { 1832 // If this is an alias, need to get the actual Function object 1833 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1834 auto *GA = dyn_cast<GlobalAlias>(V); 1835 if (GA) 1836 GO = GA->getBaseObject(); 1837 assert(GO); 1838 } 1839 1840 uint64_t FuncWordOffset = Record[1]; 1841 Function *F = dyn_cast<Function>(GO); 1842 assert(F); 1843 uint64_t FuncBitOffset = FuncWordOffset * 32; 1844 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1845 // Set the LastFunctionBlockBit to point to the last function block. 1846 // Later when parsing is resumed after function materialization, 1847 // we can simply skip that last function block. 1848 if (FuncBitOffset > LastFunctionBlockBit) 1849 LastFunctionBlockBit = FuncBitOffset; 1850 break; 1851 } 1852 case bitc::VST_CODE_BBENTRY: { 1853 if (convertToString(Record, 1, ValueName)) 1854 return error("Invalid record"); 1855 BasicBlock *BB = getBasicBlock(Record[0]); 1856 if (!BB) 1857 return error("Invalid record"); 1858 1859 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1860 ValueName.clear(); 1861 break; 1862 } 1863 } 1864 } 1865 } 1866 1867 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1868 std::error_code 1869 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1870 if (Record.size() < 2) 1871 return error("Invalid record"); 1872 1873 unsigned Kind = Record[0]; 1874 SmallString<8> Name(Record.begin() + 1, Record.end()); 1875 1876 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1877 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1878 return error("Conflicting METADATA_KIND records"); 1879 return std::error_code(); 1880 } 1881 1882 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1883 1884 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1885 /// module level metadata. 1886 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1887 IsMetadataMaterialized = true; 1888 unsigned NextMetadataNo = MetadataList.size(); 1889 if (ModuleLevel && SeenModuleValuesRecord) { 1890 // Now that we are parsing the module level metadata, we want to restart 1891 // the numbering of the MD values, and replace temp MD created earlier 1892 // with their real values. If we saw a METADATA_VALUE record then we 1893 // would have set the MetadataList size to the number specified in that 1894 // record, to support parsing function-level metadata first, and we need 1895 // to reset back to 0 to fill the MetadataList in with the parsed module 1896 // The function-level metadata parsing should have reset the MetadataList 1897 // size back to the value reported by the METADATA_VALUE record, saved in 1898 // NumModuleMDs. 1899 assert(NumModuleMDs == MetadataList.size() && 1900 "Expected MetadataList to only contain module level values"); 1901 NextMetadataNo = 0; 1902 } 1903 1904 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1905 return error("Invalid record"); 1906 1907 SmallVector<uint64_t, 64> Record; 1908 1909 auto getMD = [&](unsigned ID) -> Metadata * { 1910 return MetadataList.getValueFwdRef(ID); 1911 }; 1912 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1913 if (ID) 1914 return getMD(ID - 1); 1915 return nullptr; 1916 }; 1917 auto getMDString = [&](unsigned ID) -> MDString *{ 1918 // This requires that the ID is not really a forward reference. In 1919 // particular, the MDString must already have been resolved. 1920 return cast_or_null<MDString>(getMDOrNull(ID)); 1921 }; 1922 1923 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1924 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1925 1926 // Read all the records. 1927 while (1) { 1928 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1929 1930 switch (Entry.Kind) { 1931 case BitstreamEntry::SubBlock: // Handled for us already. 1932 case BitstreamEntry::Error: 1933 return error("Malformed block"); 1934 case BitstreamEntry::EndBlock: 1935 MetadataList.tryToResolveCycles(); 1936 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1937 NumModuleMDs == MetadataList.size()) && 1938 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1939 return std::error_code(); 1940 case BitstreamEntry::Record: 1941 // The interesting case. 1942 break; 1943 } 1944 1945 // Read a record. 1946 Record.clear(); 1947 unsigned Code = Stream.readRecord(Entry.ID, Record); 1948 bool IsDistinct = false; 1949 switch (Code) { 1950 default: // Default behavior: ignore. 1951 break; 1952 case bitc::METADATA_NAME: { 1953 // Read name of the named metadata. 1954 SmallString<8> Name(Record.begin(), Record.end()); 1955 Record.clear(); 1956 Code = Stream.ReadCode(); 1957 1958 unsigned NextBitCode = Stream.readRecord(Code, Record); 1959 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1960 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1961 1962 // Read named metadata elements. 1963 unsigned Size = Record.size(); 1964 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1965 for (unsigned i = 0; i != Size; ++i) { 1966 MDNode *MD = 1967 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1968 if (!MD) 1969 return error("Invalid record"); 1970 NMD->addOperand(MD); 1971 } 1972 break; 1973 } 1974 case bitc::METADATA_OLD_FN_NODE: { 1975 // FIXME: Remove in 4.0. 1976 // This is a LocalAsMetadata record, the only type of function-local 1977 // metadata. 1978 if (Record.size() % 2 == 1) 1979 return error("Invalid record"); 1980 1981 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1982 // to be legal, but there's no upgrade path. 1983 auto dropRecord = [&] { 1984 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1985 }; 1986 if (Record.size() != 2) { 1987 dropRecord(); 1988 break; 1989 } 1990 1991 Type *Ty = getTypeByID(Record[0]); 1992 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1993 dropRecord(); 1994 break; 1995 } 1996 1997 MetadataList.assignValue( 1998 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1999 NextMetadataNo++); 2000 break; 2001 } 2002 case bitc::METADATA_OLD_NODE: { 2003 // FIXME: Remove in 4.0. 2004 if (Record.size() % 2 == 1) 2005 return error("Invalid record"); 2006 2007 unsigned Size = Record.size(); 2008 SmallVector<Metadata *, 8> Elts; 2009 for (unsigned i = 0; i != Size; i += 2) { 2010 Type *Ty = getTypeByID(Record[i]); 2011 if (!Ty) 2012 return error("Invalid record"); 2013 if (Ty->isMetadataTy()) 2014 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 2015 else if (!Ty->isVoidTy()) { 2016 auto *MD = 2017 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2018 assert(isa<ConstantAsMetadata>(MD) && 2019 "Expected non-function-local metadata"); 2020 Elts.push_back(MD); 2021 } else 2022 Elts.push_back(nullptr); 2023 } 2024 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2025 break; 2026 } 2027 case bitc::METADATA_VALUE: { 2028 if (Record.size() != 2) 2029 return error("Invalid record"); 2030 2031 Type *Ty = getTypeByID(Record[0]); 2032 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2033 return error("Invalid record"); 2034 2035 MetadataList.assignValue( 2036 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2037 NextMetadataNo++); 2038 break; 2039 } 2040 case bitc::METADATA_DISTINCT_NODE: 2041 IsDistinct = true; 2042 // fallthrough... 2043 case bitc::METADATA_NODE: { 2044 SmallVector<Metadata *, 8> Elts; 2045 Elts.reserve(Record.size()); 2046 for (unsigned ID : Record) 2047 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2048 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2049 : MDNode::get(Context, Elts), 2050 NextMetadataNo++); 2051 break; 2052 } 2053 case bitc::METADATA_LOCATION: { 2054 if (Record.size() != 5) 2055 return error("Invalid record"); 2056 2057 unsigned Line = Record[1]; 2058 unsigned Column = Record[2]; 2059 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2060 Metadata *InlinedAt = 2061 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2062 MetadataList.assignValue( 2063 GET_OR_DISTINCT(DILocation, Record[0], 2064 (Context, Line, Column, Scope, InlinedAt)), 2065 NextMetadataNo++); 2066 break; 2067 } 2068 case bitc::METADATA_GENERIC_DEBUG: { 2069 if (Record.size() < 4) 2070 return error("Invalid record"); 2071 2072 unsigned Tag = Record[1]; 2073 unsigned Version = Record[2]; 2074 2075 if (Tag >= 1u << 16 || Version != 0) 2076 return error("Invalid record"); 2077 2078 auto *Header = getMDString(Record[3]); 2079 SmallVector<Metadata *, 8> DwarfOps; 2080 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2081 DwarfOps.push_back( 2082 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2083 MetadataList.assignValue( 2084 GET_OR_DISTINCT(GenericDINode, Record[0], 2085 (Context, Tag, Header, DwarfOps)), 2086 NextMetadataNo++); 2087 break; 2088 } 2089 case bitc::METADATA_SUBRANGE: { 2090 if (Record.size() != 3) 2091 return error("Invalid record"); 2092 2093 MetadataList.assignValue( 2094 GET_OR_DISTINCT(DISubrange, Record[0], 2095 (Context, Record[1], unrotateSign(Record[2]))), 2096 NextMetadataNo++); 2097 break; 2098 } 2099 case bitc::METADATA_ENUMERATOR: { 2100 if (Record.size() != 3) 2101 return error("Invalid record"); 2102 2103 MetadataList.assignValue( 2104 GET_OR_DISTINCT( 2105 DIEnumerator, Record[0], 2106 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2107 NextMetadataNo++); 2108 break; 2109 } 2110 case bitc::METADATA_BASIC_TYPE: { 2111 if (Record.size() != 6) 2112 return error("Invalid record"); 2113 2114 MetadataList.assignValue( 2115 GET_OR_DISTINCT(DIBasicType, Record[0], 2116 (Context, Record[1], getMDString(Record[2]), 2117 Record[3], Record[4], Record[5])), 2118 NextMetadataNo++); 2119 break; 2120 } 2121 case bitc::METADATA_DERIVED_TYPE: { 2122 if (Record.size() != 12) 2123 return error("Invalid record"); 2124 2125 MetadataList.assignValue( 2126 GET_OR_DISTINCT(DIDerivedType, Record[0], 2127 (Context, Record[1], getMDString(Record[2]), 2128 getMDOrNull(Record[3]), Record[4], 2129 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2130 Record[7], Record[8], Record[9], Record[10], 2131 getMDOrNull(Record[11]))), 2132 NextMetadataNo++); 2133 break; 2134 } 2135 case bitc::METADATA_COMPOSITE_TYPE: { 2136 if (Record.size() != 16) 2137 return error("Invalid record"); 2138 2139 MetadataList.assignValue( 2140 GET_OR_DISTINCT(DICompositeType, Record[0], 2141 (Context, Record[1], getMDString(Record[2]), 2142 getMDOrNull(Record[3]), Record[4], 2143 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2144 Record[7], Record[8], Record[9], Record[10], 2145 getMDOrNull(Record[11]), Record[12], 2146 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2147 getMDString(Record[15]))), 2148 NextMetadataNo++); 2149 break; 2150 } 2151 case bitc::METADATA_SUBROUTINE_TYPE: { 2152 if (Record.size() != 3) 2153 return error("Invalid record"); 2154 2155 MetadataList.assignValue( 2156 GET_OR_DISTINCT(DISubroutineType, Record[0], 2157 (Context, Record[1], getMDOrNull(Record[2]))), 2158 NextMetadataNo++); 2159 break; 2160 } 2161 2162 case bitc::METADATA_MODULE: { 2163 if (Record.size() != 6) 2164 return error("Invalid record"); 2165 2166 MetadataList.assignValue( 2167 GET_OR_DISTINCT(DIModule, Record[0], 2168 (Context, getMDOrNull(Record[1]), 2169 getMDString(Record[2]), getMDString(Record[3]), 2170 getMDString(Record[4]), getMDString(Record[5]))), 2171 NextMetadataNo++); 2172 break; 2173 } 2174 2175 case bitc::METADATA_FILE: { 2176 if (Record.size() != 3) 2177 return error("Invalid record"); 2178 2179 MetadataList.assignValue( 2180 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2181 getMDString(Record[2]))), 2182 NextMetadataNo++); 2183 break; 2184 } 2185 case bitc::METADATA_COMPILE_UNIT: { 2186 if (Record.size() < 14 || Record.size() > 16) 2187 return error("Invalid record"); 2188 2189 // Ignore Record[0], which indicates whether this compile unit is 2190 // distinct. It's always distinct. 2191 MetadataList.assignValue( 2192 DICompileUnit::getDistinct( 2193 Context, Record[1], getMDOrNull(Record[2]), 2194 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2195 Record[6], getMDString(Record[7]), Record[8], 2196 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2197 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2198 getMDOrNull(Record[13]), 2199 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2200 Record.size() <= 14 ? 0 : Record[14]), 2201 NextMetadataNo++); 2202 break; 2203 } 2204 case bitc::METADATA_SUBPROGRAM: { 2205 if (Record.size() != 18 && Record.size() != 19) 2206 return error("Invalid record"); 2207 2208 bool HasFn = Record.size() == 19; 2209 DISubprogram *SP = GET_OR_DISTINCT( 2210 DISubprogram, 2211 Record[0] || Record[8], // All definitions should be distinct. 2212 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2213 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2214 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2215 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2216 Record[14], getMDOrNull(Record[15 + HasFn]), 2217 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2218 MetadataList.assignValue(SP, NextMetadataNo++); 2219 2220 // Upgrade sp->function mapping to function->sp mapping. 2221 if (HasFn && Record[15]) { 2222 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2223 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2224 if (F->isMaterializable()) 2225 // Defer until materialized; unmaterialized functions may not have 2226 // metadata. 2227 FunctionsWithSPs[F] = SP; 2228 else if (!F->empty()) 2229 F->setSubprogram(SP); 2230 } 2231 } 2232 break; 2233 } 2234 case bitc::METADATA_LEXICAL_BLOCK: { 2235 if (Record.size() != 5) 2236 return error("Invalid record"); 2237 2238 MetadataList.assignValue( 2239 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2240 (Context, getMDOrNull(Record[1]), 2241 getMDOrNull(Record[2]), Record[3], Record[4])), 2242 NextMetadataNo++); 2243 break; 2244 } 2245 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2246 if (Record.size() != 4) 2247 return error("Invalid record"); 2248 2249 MetadataList.assignValue( 2250 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2251 (Context, getMDOrNull(Record[1]), 2252 getMDOrNull(Record[2]), Record[3])), 2253 NextMetadataNo++); 2254 break; 2255 } 2256 case bitc::METADATA_NAMESPACE: { 2257 if (Record.size() != 5) 2258 return error("Invalid record"); 2259 2260 MetadataList.assignValue( 2261 GET_OR_DISTINCT(DINamespace, Record[0], 2262 (Context, getMDOrNull(Record[1]), 2263 getMDOrNull(Record[2]), getMDString(Record[3]), 2264 Record[4])), 2265 NextMetadataNo++); 2266 break; 2267 } 2268 case bitc::METADATA_MACRO: { 2269 if (Record.size() != 5) 2270 return error("Invalid record"); 2271 2272 MetadataList.assignValue( 2273 GET_OR_DISTINCT(DIMacro, Record[0], 2274 (Context, Record[1], Record[2], 2275 getMDString(Record[3]), getMDString(Record[4]))), 2276 NextMetadataNo++); 2277 break; 2278 } 2279 case bitc::METADATA_MACRO_FILE: { 2280 if (Record.size() != 5) 2281 return error("Invalid record"); 2282 2283 MetadataList.assignValue( 2284 GET_OR_DISTINCT(DIMacroFile, Record[0], 2285 (Context, Record[1], Record[2], 2286 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2287 NextMetadataNo++); 2288 break; 2289 } 2290 case bitc::METADATA_TEMPLATE_TYPE: { 2291 if (Record.size() != 3) 2292 return error("Invalid record"); 2293 2294 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2295 Record[0], 2296 (Context, getMDString(Record[1]), 2297 getMDOrNull(Record[2]))), 2298 NextMetadataNo++); 2299 break; 2300 } 2301 case bitc::METADATA_TEMPLATE_VALUE: { 2302 if (Record.size() != 5) 2303 return error("Invalid record"); 2304 2305 MetadataList.assignValue( 2306 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2307 (Context, Record[1], getMDString(Record[2]), 2308 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2309 NextMetadataNo++); 2310 break; 2311 } 2312 case bitc::METADATA_GLOBAL_VAR: { 2313 if (Record.size() != 11) 2314 return error("Invalid record"); 2315 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2318 (Context, getMDOrNull(Record[1]), 2319 getMDString(Record[2]), getMDString(Record[3]), 2320 getMDOrNull(Record[4]), Record[5], 2321 getMDOrNull(Record[6]), Record[7], Record[8], 2322 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_LOCAL_VAR: { 2327 // 10th field is for the obseleted 'inlinedAt:' field. 2328 if (Record.size() < 8 || Record.size() > 10) 2329 return error("Invalid record"); 2330 2331 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2332 // DW_TAG_arg_variable. 2333 bool HasTag = Record.size() > 8; 2334 MetadataList.assignValue( 2335 GET_OR_DISTINCT(DILocalVariable, Record[0], 2336 (Context, getMDOrNull(Record[1 + HasTag]), 2337 getMDString(Record[2 + HasTag]), 2338 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2339 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2340 Record[7 + HasTag])), 2341 NextMetadataNo++); 2342 break; 2343 } 2344 case bitc::METADATA_EXPRESSION: { 2345 if (Record.size() < 1) 2346 return error("Invalid record"); 2347 2348 MetadataList.assignValue( 2349 GET_OR_DISTINCT(DIExpression, Record[0], 2350 (Context, makeArrayRef(Record).slice(1))), 2351 NextMetadataNo++); 2352 break; 2353 } 2354 case bitc::METADATA_OBJC_PROPERTY: { 2355 if (Record.size() != 8) 2356 return error("Invalid record"); 2357 2358 MetadataList.assignValue( 2359 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2360 (Context, getMDString(Record[1]), 2361 getMDOrNull(Record[2]), Record[3], 2362 getMDString(Record[4]), getMDString(Record[5]), 2363 Record[6], getMDOrNull(Record[7]))), 2364 NextMetadataNo++); 2365 break; 2366 } 2367 case bitc::METADATA_IMPORTED_ENTITY: { 2368 if (Record.size() != 6) 2369 return error("Invalid record"); 2370 2371 MetadataList.assignValue( 2372 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2373 (Context, Record[1], getMDOrNull(Record[2]), 2374 getMDOrNull(Record[3]), Record[4], 2375 getMDString(Record[5]))), 2376 NextMetadataNo++); 2377 break; 2378 } 2379 case bitc::METADATA_STRING: { 2380 std::string String(Record.begin(), Record.end()); 2381 llvm::UpgradeMDStringConstant(String); 2382 Metadata *MD = MDString::get(Context, String); 2383 MetadataList.assignValue(MD, NextMetadataNo++); 2384 break; 2385 } 2386 case bitc::METADATA_KIND: { 2387 // Support older bitcode files that had METADATA_KIND records in a 2388 // block with METADATA_BLOCK_ID. 2389 if (std::error_code EC = parseMetadataKindRecord(Record)) 2390 return EC; 2391 break; 2392 } 2393 } 2394 } 2395 #undef GET_OR_DISTINCT 2396 } 2397 2398 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2399 std::error_code BitcodeReader::parseMetadataKinds() { 2400 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2401 return error("Invalid record"); 2402 2403 SmallVector<uint64_t, 64> Record; 2404 2405 // Read all the records. 2406 while (1) { 2407 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2408 2409 switch (Entry.Kind) { 2410 case BitstreamEntry::SubBlock: // Handled for us already. 2411 case BitstreamEntry::Error: 2412 return error("Malformed block"); 2413 case BitstreamEntry::EndBlock: 2414 return std::error_code(); 2415 case BitstreamEntry::Record: 2416 // The interesting case. 2417 break; 2418 } 2419 2420 // Read a record. 2421 Record.clear(); 2422 unsigned Code = Stream.readRecord(Entry.ID, Record); 2423 switch (Code) { 2424 default: // Default behavior: ignore. 2425 break; 2426 case bitc::METADATA_KIND: { 2427 if (std::error_code EC = parseMetadataKindRecord(Record)) 2428 return EC; 2429 break; 2430 } 2431 } 2432 } 2433 } 2434 2435 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2436 /// encoding. 2437 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2438 if ((V & 1) == 0) 2439 return V >> 1; 2440 if (V != 1) 2441 return -(V >> 1); 2442 // There is no such thing as -0 with integers. "-0" really means MININT. 2443 return 1ULL << 63; 2444 } 2445 2446 /// Resolve all of the initializers for global values and aliases that we can. 2447 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2448 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2449 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2450 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2451 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2452 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2453 2454 GlobalInitWorklist.swap(GlobalInits); 2455 AliasInitWorklist.swap(AliasInits); 2456 FunctionPrefixWorklist.swap(FunctionPrefixes); 2457 FunctionPrologueWorklist.swap(FunctionPrologues); 2458 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2459 2460 while (!GlobalInitWorklist.empty()) { 2461 unsigned ValID = GlobalInitWorklist.back().second; 2462 if (ValID >= ValueList.size()) { 2463 // Not ready to resolve this yet, it requires something later in the file. 2464 GlobalInits.push_back(GlobalInitWorklist.back()); 2465 } else { 2466 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2467 GlobalInitWorklist.back().first->setInitializer(C); 2468 else 2469 return error("Expected a constant"); 2470 } 2471 GlobalInitWorklist.pop_back(); 2472 } 2473 2474 while (!AliasInitWorklist.empty()) { 2475 unsigned ValID = AliasInitWorklist.back().second; 2476 if (ValID >= ValueList.size()) { 2477 AliasInits.push_back(AliasInitWorklist.back()); 2478 } else { 2479 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2480 if (!C) 2481 return error("Expected a constant"); 2482 GlobalAlias *Alias = AliasInitWorklist.back().first; 2483 if (C->getType() != Alias->getType()) 2484 return error("Alias and aliasee types don't match"); 2485 Alias->setAliasee(C); 2486 } 2487 AliasInitWorklist.pop_back(); 2488 } 2489 2490 while (!FunctionPrefixWorklist.empty()) { 2491 unsigned ValID = FunctionPrefixWorklist.back().second; 2492 if (ValID >= ValueList.size()) { 2493 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2494 } else { 2495 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2496 FunctionPrefixWorklist.back().first->setPrefixData(C); 2497 else 2498 return error("Expected a constant"); 2499 } 2500 FunctionPrefixWorklist.pop_back(); 2501 } 2502 2503 while (!FunctionPrologueWorklist.empty()) { 2504 unsigned ValID = FunctionPrologueWorklist.back().second; 2505 if (ValID >= ValueList.size()) { 2506 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2507 } else { 2508 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2509 FunctionPrologueWorklist.back().first->setPrologueData(C); 2510 else 2511 return error("Expected a constant"); 2512 } 2513 FunctionPrologueWorklist.pop_back(); 2514 } 2515 2516 while (!FunctionPersonalityFnWorklist.empty()) { 2517 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2518 if (ValID >= ValueList.size()) { 2519 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2520 } else { 2521 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2522 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2523 else 2524 return error("Expected a constant"); 2525 } 2526 FunctionPersonalityFnWorklist.pop_back(); 2527 } 2528 2529 return std::error_code(); 2530 } 2531 2532 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2533 SmallVector<uint64_t, 8> Words(Vals.size()); 2534 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2535 BitcodeReader::decodeSignRotatedValue); 2536 2537 return APInt(TypeBits, Words); 2538 } 2539 2540 std::error_code BitcodeReader::parseConstants() { 2541 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2542 return error("Invalid record"); 2543 2544 SmallVector<uint64_t, 64> Record; 2545 2546 // Read all the records for this value table. 2547 Type *CurTy = Type::getInt32Ty(Context); 2548 unsigned NextCstNo = ValueList.size(); 2549 while (1) { 2550 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2551 2552 switch (Entry.Kind) { 2553 case BitstreamEntry::SubBlock: // Handled for us already. 2554 case BitstreamEntry::Error: 2555 return error("Malformed block"); 2556 case BitstreamEntry::EndBlock: 2557 if (NextCstNo != ValueList.size()) 2558 return error("Invalid constant reference"); 2559 2560 // Once all the constants have been read, go through and resolve forward 2561 // references. 2562 ValueList.resolveConstantForwardRefs(); 2563 return std::error_code(); 2564 case BitstreamEntry::Record: 2565 // The interesting case. 2566 break; 2567 } 2568 2569 // Read a record. 2570 Record.clear(); 2571 Value *V = nullptr; 2572 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2573 switch (BitCode) { 2574 default: // Default behavior: unknown constant 2575 case bitc::CST_CODE_UNDEF: // UNDEF 2576 V = UndefValue::get(CurTy); 2577 break; 2578 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2579 if (Record.empty()) 2580 return error("Invalid record"); 2581 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2582 return error("Invalid record"); 2583 CurTy = TypeList[Record[0]]; 2584 continue; // Skip the ValueList manipulation. 2585 case bitc::CST_CODE_NULL: // NULL 2586 V = Constant::getNullValue(CurTy); 2587 break; 2588 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2589 if (!CurTy->isIntegerTy() || Record.empty()) 2590 return error("Invalid record"); 2591 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2592 break; 2593 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2594 if (!CurTy->isIntegerTy() || Record.empty()) 2595 return error("Invalid record"); 2596 2597 APInt VInt = 2598 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2599 V = ConstantInt::get(Context, VInt); 2600 2601 break; 2602 } 2603 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2604 if (Record.empty()) 2605 return error("Invalid record"); 2606 if (CurTy->isHalfTy()) 2607 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2608 APInt(16, (uint16_t)Record[0]))); 2609 else if (CurTy->isFloatTy()) 2610 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2611 APInt(32, (uint32_t)Record[0]))); 2612 else if (CurTy->isDoubleTy()) 2613 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2614 APInt(64, Record[0]))); 2615 else if (CurTy->isX86_FP80Ty()) { 2616 // Bits are not stored the same way as a normal i80 APInt, compensate. 2617 uint64_t Rearrange[2]; 2618 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2619 Rearrange[1] = Record[0] >> 48; 2620 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2621 APInt(80, Rearrange))); 2622 } else if (CurTy->isFP128Ty()) 2623 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2624 APInt(128, Record))); 2625 else if (CurTy->isPPC_FP128Ty()) 2626 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2627 APInt(128, Record))); 2628 else 2629 V = UndefValue::get(CurTy); 2630 break; 2631 } 2632 2633 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2634 if (Record.empty()) 2635 return error("Invalid record"); 2636 2637 unsigned Size = Record.size(); 2638 SmallVector<Constant*, 16> Elts; 2639 2640 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2641 for (unsigned i = 0; i != Size; ++i) 2642 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2643 STy->getElementType(i))); 2644 V = ConstantStruct::get(STy, Elts); 2645 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2646 Type *EltTy = ATy->getElementType(); 2647 for (unsigned i = 0; i != Size; ++i) 2648 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2649 V = ConstantArray::get(ATy, Elts); 2650 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2651 Type *EltTy = VTy->getElementType(); 2652 for (unsigned i = 0; i != Size; ++i) 2653 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2654 V = ConstantVector::get(Elts); 2655 } else { 2656 V = UndefValue::get(CurTy); 2657 } 2658 break; 2659 } 2660 case bitc::CST_CODE_STRING: // STRING: [values] 2661 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2662 if (Record.empty()) 2663 return error("Invalid record"); 2664 2665 SmallString<16> Elts(Record.begin(), Record.end()); 2666 V = ConstantDataArray::getString(Context, Elts, 2667 BitCode == bitc::CST_CODE_CSTRING); 2668 break; 2669 } 2670 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2671 if (Record.empty()) 2672 return error("Invalid record"); 2673 2674 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2675 if (EltTy->isIntegerTy(8)) { 2676 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2677 if (isa<VectorType>(CurTy)) 2678 V = ConstantDataVector::get(Context, Elts); 2679 else 2680 V = ConstantDataArray::get(Context, Elts); 2681 } else if (EltTy->isIntegerTy(16)) { 2682 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2683 if (isa<VectorType>(CurTy)) 2684 V = ConstantDataVector::get(Context, Elts); 2685 else 2686 V = ConstantDataArray::get(Context, Elts); 2687 } else if (EltTy->isIntegerTy(32)) { 2688 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2689 if (isa<VectorType>(CurTy)) 2690 V = ConstantDataVector::get(Context, Elts); 2691 else 2692 V = ConstantDataArray::get(Context, Elts); 2693 } else if (EltTy->isIntegerTy(64)) { 2694 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::get(Context, Elts); 2697 else 2698 V = ConstantDataArray::get(Context, Elts); 2699 } else if (EltTy->isHalfTy()) { 2700 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2701 if (isa<VectorType>(CurTy)) 2702 V = ConstantDataVector::getFP(Context, Elts); 2703 else 2704 V = ConstantDataArray::getFP(Context, Elts); 2705 } else if (EltTy->isFloatTy()) { 2706 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2707 if (isa<VectorType>(CurTy)) 2708 V = ConstantDataVector::getFP(Context, Elts); 2709 else 2710 V = ConstantDataArray::getFP(Context, Elts); 2711 } else if (EltTy->isDoubleTy()) { 2712 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2713 if (isa<VectorType>(CurTy)) 2714 V = ConstantDataVector::getFP(Context, Elts); 2715 else 2716 V = ConstantDataArray::getFP(Context, Elts); 2717 } else { 2718 return error("Invalid type for value"); 2719 } 2720 break; 2721 } 2722 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2723 if (Record.size() < 3) 2724 return error("Invalid record"); 2725 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2726 if (Opc < 0) { 2727 V = UndefValue::get(CurTy); // Unknown binop. 2728 } else { 2729 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2730 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2731 unsigned Flags = 0; 2732 if (Record.size() >= 4) { 2733 if (Opc == Instruction::Add || 2734 Opc == Instruction::Sub || 2735 Opc == Instruction::Mul || 2736 Opc == Instruction::Shl) { 2737 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2738 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2739 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2740 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2741 } else if (Opc == Instruction::SDiv || 2742 Opc == Instruction::UDiv || 2743 Opc == Instruction::LShr || 2744 Opc == Instruction::AShr) { 2745 if (Record[3] & (1 << bitc::PEO_EXACT)) 2746 Flags |= SDivOperator::IsExact; 2747 } 2748 } 2749 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2750 } 2751 break; 2752 } 2753 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2754 if (Record.size() < 3) 2755 return error("Invalid record"); 2756 int Opc = getDecodedCastOpcode(Record[0]); 2757 if (Opc < 0) { 2758 V = UndefValue::get(CurTy); // Unknown cast. 2759 } else { 2760 Type *OpTy = getTypeByID(Record[1]); 2761 if (!OpTy) 2762 return error("Invalid record"); 2763 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2764 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2765 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2766 } 2767 break; 2768 } 2769 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2770 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2771 unsigned OpNum = 0; 2772 Type *PointeeType = nullptr; 2773 if (Record.size() % 2) 2774 PointeeType = getTypeByID(Record[OpNum++]); 2775 SmallVector<Constant*, 16> Elts; 2776 while (OpNum != Record.size()) { 2777 Type *ElTy = getTypeByID(Record[OpNum++]); 2778 if (!ElTy) 2779 return error("Invalid record"); 2780 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2781 } 2782 2783 if (PointeeType && 2784 PointeeType != 2785 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2786 ->getElementType()) 2787 return error("Explicit gep operator type does not match pointee type " 2788 "of pointer operand"); 2789 2790 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2791 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2792 BitCode == 2793 bitc::CST_CODE_CE_INBOUNDS_GEP); 2794 break; 2795 } 2796 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2797 if (Record.size() < 3) 2798 return error("Invalid record"); 2799 2800 Type *SelectorTy = Type::getInt1Ty(Context); 2801 2802 // The selector might be an i1 or an <n x i1> 2803 // Get the type from the ValueList before getting a forward ref. 2804 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2805 if (Value *V = ValueList[Record[0]]) 2806 if (SelectorTy != V->getType()) 2807 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2808 2809 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2810 SelectorTy), 2811 ValueList.getConstantFwdRef(Record[1],CurTy), 2812 ValueList.getConstantFwdRef(Record[2],CurTy)); 2813 break; 2814 } 2815 case bitc::CST_CODE_CE_EXTRACTELT 2816 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2817 if (Record.size() < 3) 2818 return error("Invalid record"); 2819 VectorType *OpTy = 2820 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2821 if (!OpTy) 2822 return error("Invalid record"); 2823 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2824 Constant *Op1 = nullptr; 2825 if (Record.size() == 4) { 2826 Type *IdxTy = getTypeByID(Record[2]); 2827 if (!IdxTy) 2828 return error("Invalid record"); 2829 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2830 } else // TODO: Remove with llvm 4.0 2831 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2832 if (!Op1) 2833 return error("Invalid record"); 2834 V = ConstantExpr::getExtractElement(Op0, Op1); 2835 break; 2836 } 2837 case bitc::CST_CODE_CE_INSERTELT 2838 : { // CE_INSERTELT: [opval, opval, opty, opval] 2839 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2840 if (Record.size() < 3 || !OpTy) 2841 return error("Invalid record"); 2842 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2843 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2844 OpTy->getElementType()); 2845 Constant *Op2 = nullptr; 2846 if (Record.size() == 4) { 2847 Type *IdxTy = getTypeByID(Record[2]); 2848 if (!IdxTy) 2849 return error("Invalid record"); 2850 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2851 } else // TODO: Remove with llvm 4.0 2852 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2853 if (!Op2) 2854 return error("Invalid record"); 2855 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2856 break; 2857 } 2858 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2859 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2860 if (Record.size() < 3 || !OpTy) 2861 return error("Invalid record"); 2862 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2863 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2864 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2865 OpTy->getNumElements()); 2866 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2867 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2868 break; 2869 } 2870 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2871 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2872 VectorType *OpTy = 2873 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2874 if (Record.size() < 4 || !RTy || !OpTy) 2875 return error("Invalid record"); 2876 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2877 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2878 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2879 RTy->getNumElements()); 2880 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2881 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2882 break; 2883 } 2884 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2885 if (Record.size() < 4) 2886 return error("Invalid record"); 2887 Type *OpTy = getTypeByID(Record[0]); 2888 if (!OpTy) 2889 return error("Invalid record"); 2890 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2891 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2892 2893 if (OpTy->isFPOrFPVectorTy()) 2894 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2895 else 2896 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2897 break; 2898 } 2899 // This maintains backward compatibility, pre-asm dialect keywords. 2900 // FIXME: Remove with the 4.0 release. 2901 case bitc::CST_CODE_INLINEASM_OLD: { 2902 if (Record.size() < 2) 2903 return error("Invalid record"); 2904 std::string AsmStr, ConstrStr; 2905 bool HasSideEffects = Record[0] & 1; 2906 bool IsAlignStack = Record[0] >> 1; 2907 unsigned AsmStrSize = Record[1]; 2908 if (2+AsmStrSize >= Record.size()) 2909 return error("Invalid record"); 2910 unsigned ConstStrSize = Record[2+AsmStrSize]; 2911 if (3+AsmStrSize+ConstStrSize > Record.size()) 2912 return error("Invalid record"); 2913 2914 for (unsigned i = 0; i != AsmStrSize; ++i) 2915 AsmStr += (char)Record[2+i]; 2916 for (unsigned i = 0; i != ConstStrSize; ++i) 2917 ConstrStr += (char)Record[3+AsmStrSize+i]; 2918 PointerType *PTy = cast<PointerType>(CurTy); 2919 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2920 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2921 break; 2922 } 2923 // This version adds support for the asm dialect keywords (e.g., 2924 // inteldialect). 2925 case bitc::CST_CODE_INLINEASM: { 2926 if (Record.size() < 2) 2927 return error("Invalid record"); 2928 std::string AsmStr, ConstrStr; 2929 bool HasSideEffects = Record[0] & 1; 2930 bool IsAlignStack = (Record[0] >> 1) & 1; 2931 unsigned AsmDialect = Record[0] >> 2; 2932 unsigned AsmStrSize = Record[1]; 2933 if (2+AsmStrSize >= Record.size()) 2934 return error("Invalid record"); 2935 unsigned ConstStrSize = Record[2+AsmStrSize]; 2936 if (3+AsmStrSize+ConstStrSize > Record.size()) 2937 return error("Invalid record"); 2938 2939 for (unsigned i = 0; i != AsmStrSize; ++i) 2940 AsmStr += (char)Record[2+i]; 2941 for (unsigned i = 0; i != ConstStrSize; ++i) 2942 ConstrStr += (char)Record[3+AsmStrSize+i]; 2943 PointerType *PTy = cast<PointerType>(CurTy); 2944 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2945 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2946 InlineAsm::AsmDialect(AsmDialect)); 2947 break; 2948 } 2949 case bitc::CST_CODE_BLOCKADDRESS:{ 2950 if (Record.size() < 3) 2951 return error("Invalid record"); 2952 Type *FnTy = getTypeByID(Record[0]); 2953 if (!FnTy) 2954 return error("Invalid record"); 2955 Function *Fn = 2956 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2957 if (!Fn) 2958 return error("Invalid record"); 2959 2960 // If the function is already parsed we can insert the block address right 2961 // away. 2962 BasicBlock *BB; 2963 unsigned BBID = Record[2]; 2964 if (!BBID) 2965 // Invalid reference to entry block. 2966 return error("Invalid ID"); 2967 if (!Fn->empty()) { 2968 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2969 for (size_t I = 0, E = BBID; I != E; ++I) { 2970 if (BBI == BBE) 2971 return error("Invalid ID"); 2972 ++BBI; 2973 } 2974 BB = &*BBI; 2975 } else { 2976 // Otherwise insert a placeholder and remember it so it can be inserted 2977 // when the function is parsed. 2978 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2979 if (FwdBBs.empty()) 2980 BasicBlockFwdRefQueue.push_back(Fn); 2981 if (FwdBBs.size() < BBID + 1) 2982 FwdBBs.resize(BBID + 1); 2983 if (!FwdBBs[BBID]) 2984 FwdBBs[BBID] = BasicBlock::Create(Context); 2985 BB = FwdBBs[BBID]; 2986 } 2987 V = BlockAddress::get(Fn, BB); 2988 break; 2989 } 2990 } 2991 2992 ValueList.assignValue(V, NextCstNo); 2993 ++NextCstNo; 2994 } 2995 } 2996 2997 std::error_code BitcodeReader::parseUseLists() { 2998 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2999 return error("Invalid record"); 3000 3001 // Read all the records. 3002 SmallVector<uint64_t, 64> Record; 3003 while (1) { 3004 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3005 3006 switch (Entry.Kind) { 3007 case BitstreamEntry::SubBlock: // Handled for us already. 3008 case BitstreamEntry::Error: 3009 return error("Malformed block"); 3010 case BitstreamEntry::EndBlock: 3011 return std::error_code(); 3012 case BitstreamEntry::Record: 3013 // The interesting case. 3014 break; 3015 } 3016 3017 // Read a use list record. 3018 Record.clear(); 3019 bool IsBB = false; 3020 switch (Stream.readRecord(Entry.ID, Record)) { 3021 default: // Default behavior: unknown type. 3022 break; 3023 case bitc::USELIST_CODE_BB: 3024 IsBB = true; 3025 // fallthrough 3026 case bitc::USELIST_CODE_DEFAULT: { 3027 unsigned RecordLength = Record.size(); 3028 if (RecordLength < 3) 3029 // Records should have at least an ID and two indexes. 3030 return error("Invalid record"); 3031 unsigned ID = Record.back(); 3032 Record.pop_back(); 3033 3034 Value *V; 3035 if (IsBB) { 3036 assert(ID < FunctionBBs.size() && "Basic block not found"); 3037 V = FunctionBBs[ID]; 3038 } else 3039 V = ValueList[ID]; 3040 unsigned NumUses = 0; 3041 SmallDenseMap<const Use *, unsigned, 16> Order; 3042 for (const Use &U : V->materialized_uses()) { 3043 if (++NumUses > Record.size()) 3044 break; 3045 Order[&U] = Record[NumUses - 1]; 3046 } 3047 if (Order.size() != Record.size() || NumUses > Record.size()) 3048 // Mismatches can happen if the functions are being materialized lazily 3049 // (out-of-order), or a value has been upgraded. 3050 break; 3051 3052 V->sortUseList([&](const Use &L, const Use &R) { 3053 return Order.lookup(&L) < Order.lookup(&R); 3054 }); 3055 break; 3056 } 3057 } 3058 } 3059 } 3060 3061 /// When we see the block for metadata, remember where it is and then skip it. 3062 /// This lets us lazily deserialize the metadata. 3063 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3064 // Save the current stream state. 3065 uint64_t CurBit = Stream.GetCurrentBitNo(); 3066 DeferredMetadataInfo.push_back(CurBit); 3067 3068 // Skip over the block for now. 3069 if (Stream.SkipBlock()) 3070 return error("Invalid record"); 3071 return std::error_code(); 3072 } 3073 3074 std::error_code BitcodeReader::materializeMetadata() { 3075 for (uint64_t BitPos : DeferredMetadataInfo) { 3076 // Move the bit stream to the saved position. 3077 Stream.JumpToBit(BitPos); 3078 if (std::error_code EC = parseMetadata(true)) 3079 return EC; 3080 } 3081 DeferredMetadataInfo.clear(); 3082 return std::error_code(); 3083 } 3084 3085 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3086 3087 void BitcodeReader::saveMetadataList( 3088 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3089 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3090 Metadata *MD = MetadataList[ID]; 3091 auto *N = dyn_cast_or_null<MDNode>(MD); 3092 assert((!N || (N->isResolved() || N->isTemporary())) && 3093 "Found non-resolved non-temp MDNode while saving metadata"); 3094 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3095 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3096 // just MDNode, as we may have references to other types of module-level 3097 // metadata (e.g. ValueAsMetadata) from instructions. 3098 if (!OnlyTempMD || (N && N->isTemporary())) { 3099 // Will call this after materializing each function, in order to 3100 // handle remapping of the function's instructions/metadata. 3101 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3102 // See if we already have an entry in that case. 3103 if (OnlyTempMD && !IterBool.second) { 3104 assert(IterBool.first->second == ID && 3105 "Inconsistent metadata value id"); 3106 continue; 3107 } 3108 if (N && N->isTemporary()) 3109 // Ensure that we assert if someone tries to RAUW this temporary 3110 // metadata while it is the key of a map. The flag will be set back 3111 // to true when the saved metadata list is destroyed. 3112 N->setCanReplace(false); 3113 } 3114 } 3115 } 3116 3117 /// When we see the block for a function body, remember where it is and then 3118 /// skip it. This lets us lazily deserialize the functions. 3119 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3120 // Get the function we are talking about. 3121 if (FunctionsWithBodies.empty()) 3122 return error("Insufficient function protos"); 3123 3124 Function *Fn = FunctionsWithBodies.back(); 3125 FunctionsWithBodies.pop_back(); 3126 3127 // Save the current stream state. 3128 uint64_t CurBit = Stream.GetCurrentBitNo(); 3129 assert( 3130 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3131 "Mismatch between VST and scanned function offsets"); 3132 DeferredFunctionInfo[Fn] = CurBit; 3133 3134 // Skip over the function block for now. 3135 if (Stream.SkipBlock()) 3136 return error("Invalid record"); 3137 return std::error_code(); 3138 } 3139 3140 std::error_code BitcodeReader::globalCleanup() { 3141 // Patch the initializers for globals and aliases up. 3142 resolveGlobalAndAliasInits(); 3143 if (!GlobalInits.empty() || !AliasInits.empty()) 3144 return error("Malformed global initializer set"); 3145 3146 // Look for intrinsic functions which need to be upgraded at some point 3147 for (Function &F : *TheModule) { 3148 Function *NewFn; 3149 if (UpgradeIntrinsicFunction(&F, NewFn)) 3150 UpgradedIntrinsics[&F] = NewFn; 3151 } 3152 3153 // Look for global variables which need to be renamed. 3154 for (GlobalVariable &GV : TheModule->globals()) 3155 UpgradeGlobalVariable(&GV); 3156 3157 // Force deallocation of memory for these vectors to favor the client that 3158 // want lazy deserialization. 3159 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3160 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3161 return std::error_code(); 3162 } 3163 3164 /// Support for lazy parsing of function bodies. This is required if we 3165 /// either have an old bitcode file without a VST forward declaration record, 3166 /// or if we have an anonymous function being materialized, since anonymous 3167 /// functions do not have a name and are therefore not in the VST. 3168 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3169 Stream.JumpToBit(NextUnreadBit); 3170 3171 if (Stream.AtEndOfStream()) 3172 return error("Could not find function in stream"); 3173 3174 if (!SeenFirstFunctionBody) 3175 return error("Trying to materialize functions before seeing function blocks"); 3176 3177 // An old bitcode file with the symbol table at the end would have 3178 // finished the parse greedily. 3179 assert(SeenValueSymbolTable); 3180 3181 SmallVector<uint64_t, 64> Record; 3182 3183 while (1) { 3184 BitstreamEntry Entry = Stream.advance(); 3185 switch (Entry.Kind) { 3186 default: 3187 return error("Expect SubBlock"); 3188 case BitstreamEntry::SubBlock: 3189 switch (Entry.ID) { 3190 default: 3191 return error("Expect function block"); 3192 case bitc::FUNCTION_BLOCK_ID: 3193 if (std::error_code EC = rememberAndSkipFunctionBody()) 3194 return EC; 3195 NextUnreadBit = Stream.GetCurrentBitNo(); 3196 return std::error_code(); 3197 } 3198 } 3199 } 3200 } 3201 3202 std::error_code BitcodeReader::parseBitcodeVersion() { 3203 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3204 return error("Invalid record"); 3205 3206 // Read all the records. 3207 SmallVector<uint64_t, 64> Record; 3208 while (1) { 3209 BitstreamEntry Entry = Stream.advance(); 3210 3211 switch (Entry.Kind) { 3212 default: 3213 case BitstreamEntry::Error: 3214 return error("Malformed block"); 3215 case BitstreamEntry::EndBlock: 3216 return std::error_code(); 3217 case BitstreamEntry::Record: 3218 // The interesting case. 3219 break; 3220 } 3221 3222 // Read a record. 3223 Record.clear(); 3224 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3225 switch (BitCode) { 3226 default: // Default behavior: reject 3227 return error("Invalid value"); 3228 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3229 // N] 3230 convertToString(Record, 0, ProducerIdentification); 3231 break; 3232 } 3233 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3234 unsigned epoch = (unsigned)Record[0]; 3235 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3236 return error( 3237 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3238 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3239 } 3240 } 3241 } 3242 } 3243 } 3244 3245 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3246 bool ShouldLazyLoadMetadata) { 3247 if (ResumeBit) 3248 Stream.JumpToBit(ResumeBit); 3249 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3250 return error("Invalid record"); 3251 3252 SmallVector<uint64_t, 64> Record; 3253 std::vector<std::string> SectionTable; 3254 std::vector<std::string> GCTable; 3255 3256 // Read all the records for this module. 3257 while (1) { 3258 BitstreamEntry Entry = Stream.advance(); 3259 3260 switch (Entry.Kind) { 3261 case BitstreamEntry::Error: 3262 return error("Malformed block"); 3263 case BitstreamEntry::EndBlock: 3264 return globalCleanup(); 3265 3266 case BitstreamEntry::SubBlock: 3267 switch (Entry.ID) { 3268 default: // Skip unknown content. 3269 if (Stream.SkipBlock()) 3270 return error("Invalid record"); 3271 break; 3272 case bitc::BLOCKINFO_BLOCK_ID: 3273 if (Stream.ReadBlockInfoBlock()) 3274 return error("Malformed block"); 3275 break; 3276 case bitc::PARAMATTR_BLOCK_ID: 3277 if (std::error_code EC = parseAttributeBlock()) 3278 return EC; 3279 break; 3280 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3281 if (std::error_code EC = parseAttributeGroupBlock()) 3282 return EC; 3283 break; 3284 case bitc::TYPE_BLOCK_ID_NEW: 3285 if (std::error_code EC = parseTypeTable()) 3286 return EC; 3287 break; 3288 case bitc::VALUE_SYMTAB_BLOCK_ID: 3289 if (!SeenValueSymbolTable) { 3290 // Either this is an old form VST without function index and an 3291 // associated VST forward declaration record (which would have caused 3292 // the VST to be jumped to and parsed before it was encountered 3293 // normally in the stream), or there were no function blocks to 3294 // trigger an earlier parsing of the VST. 3295 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3296 if (std::error_code EC = parseValueSymbolTable()) 3297 return EC; 3298 SeenValueSymbolTable = true; 3299 } else { 3300 // We must have had a VST forward declaration record, which caused 3301 // the parser to jump to and parse the VST earlier. 3302 assert(VSTOffset > 0); 3303 if (Stream.SkipBlock()) 3304 return error("Invalid record"); 3305 } 3306 break; 3307 case bitc::CONSTANTS_BLOCK_ID: 3308 if (std::error_code EC = parseConstants()) 3309 return EC; 3310 if (std::error_code EC = resolveGlobalAndAliasInits()) 3311 return EC; 3312 break; 3313 case bitc::METADATA_BLOCK_ID: 3314 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3315 if (std::error_code EC = rememberAndSkipMetadata()) 3316 return EC; 3317 break; 3318 } 3319 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3320 if (std::error_code EC = parseMetadata(true)) 3321 return EC; 3322 break; 3323 case bitc::METADATA_KIND_BLOCK_ID: 3324 if (std::error_code EC = parseMetadataKinds()) 3325 return EC; 3326 break; 3327 case bitc::FUNCTION_BLOCK_ID: 3328 // If this is the first function body we've seen, reverse the 3329 // FunctionsWithBodies list. 3330 if (!SeenFirstFunctionBody) { 3331 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3332 if (std::error_code EC = globalCleanup()) 3333 return EC; 3334 SeenFirstFunctionBody = true; 3335 } 3336 3337 if (VSTOffset > 0) { 3338 // If we have a VST forward declaration record, make sure we 3339 // parse the VST now if we haven't already. It is needed to 3340 // set up the DeferredFunctionInfo vector for lazy reading. 3341 if (!SeenValueSymbolTable) { 3342 if (std::error_code EC = 3343 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3344 return EC; 3345 SeenValueSymbolTable = true; 3346 // Fall through so that we record the NextUnreadBit below. 3347 // This is necessary in case we have an anonymous function that 3348 // is later materialized. Since it will not have a VST entry we 3349 // need to fall back to the lazy parse to find its offset. 3350 } else { 3351 // If we have a VST forward declaration record, but have already 3352 // parsed the VST (just above, when the first function body was 3353 // encountered here), then we are resuming the parse after 3354 // materializing functions. The ResumeBit points to the 3355 // start of the last function block recorded in the 3356 // DeferredFunctionInfo map. Skip it. 3357 if (Stream.SkipBlock()) 3358 return error("Invalid record"); 3359 continue; 3360 } 3361 } 3362 3363 // Support older bitcode files that did not have the function 3364 // index in the VST, nor a VST forward declaration record, as 3365 // well as anonymous functions that do not have VST entries. 3366 // Build the DeferredFunctionInfo vector on the fly. 3367 if (std::error_code EC = rememberAndSkipFunctionBody()) 3368 return EC; 3369 3370 // Suspend parsing when we reach the function bodies. Subsequent 3371 // materialization calls will resume it when necessary. If the bitcode 3372 // file is old, the symbol table will be at the end instead and will not 3373 // have been seen yet. In this case, just finish the parse now. 3374 if (SeenValueSymbolTable) { 3375 NextUnreadBit = Stream.GetCurrentBitNo(); 3376 return std::error_code(); 3377 } 3378 break; 3379 case bitc::USELIST_BLOCK_ID: 3380 if (std::error_code EC = parseUseLists()) 3381 return EC; 3382 break; 3383 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3384 if (std::error_code EC = parseOperandBundleTags()) 3385 return EC; 3386 break; 3387 } 3388 continue; 3389 3390 case BitstreamEntry::Record: 3391 // The interesting case. 3392 break; 3393 } 3394 3395 // Read a record. 3396 auto BitCode = Stream.readRecord(Entry.ID, Record); 3397 switch (BitCode) { 3398 default: break; // Default behavior, ignore unknown content. 3399 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3400 if (Record.size() < 1) 3401 return error("Invalid record"); 3402 // Only version #0 and #1 are supported so far. 3403 unsigned module_version = Record[0]; 3404 switch (module_version) { 3405 default: 3406 return error("Invalid value"); 3407 case 0: 3408 UseRelativeIDs = false; 3409 break; 3410 case 1: 3411 UseRelativeIDs = true; 3412 break; 3413 } 3414 break; 3415 } 3416 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3417 std::string S; 3418 if (convertToString(Record, 0, S)) 3419 return error("Invalid record"); 3420 TheModule->setTargetTriple(S); 3421 break; 3422 } 3423 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3424 std::string S; 3425 if (convertToString(Record, 0, S)) 3426 return error("Invalid record"); 3427 TheModule->setDataLayout(S); 3428 break; 3429 } 3430 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3431 std::string S; 3432 if (convertToString(Record, 0, S)) 3433 return error("Invalid record"); 3434 TheModule->setModuleInlineAsm(S); 3435 break; 3436 } 3437 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3438 // FIXME: Remove in 4.0. 3439 std::string S; 3440 if (convertToString(Record, 0, S)) 3441 return error("Invalid record"); 3442 // Ignore value. 3443 break; 3444 } 3445 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3446 std::string S; 3447 if (convertToString(Record, 0, S)) 3448 return error("Invalid record"); 3449 SectionTable.push_back(S); 3450 break; 3451 } 3452 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3453 std::string S; 3454 if (convertToString(Record, 0, S)) 3455 return error("Invalid record"); 3456 GCTable.push_back(S); 3457 break; 3458 } 3459 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3460 if (Record.size() < 2) 3461 return error("Invalid record"); 3462 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3463 unsigned ComdatNameSize = Record[1]; 3464 std::string ComdatName; 3465 ComdatName.reserve(ComdatNameSize); 3466 for (unsigned i = 0; i != ComdatNameSize; ++i) 3467 ComdatName += (char)Record[2 + i]; 3468 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3469 C->setSelectionKind(SK); 3470 ComdatList.push_back(C); 3471 break; 3472 } 3473 // GLOBALVAR: [pointer type, isconst, initid, 3474 // linkage, alignment, section, visibility, threadlocal, 3475 // unnamed_addr, externally_initialized, dllstorageclass, 3476 // comdat] 3477 case bitc::MODULE_CODE_GLOBALVAR: { 3478 if (Record.size() < 6) 3479 return error("Invalid record"); 3480 Type *Ty = getTypeByID(Record[0]); 3481 if (!Ty) 3482 return error("Invalid record"); 3483 bool isConstant = Record[1] & 1; 3484 bool explicitType = Record[1] & 2; 3485 unsigned AddressSpace; 3486 if (explicitType) { 3487 AddressSpace = Record[1] >> 2; 3488 } else { 3489 if (!Ty->isPointerTy()) 3490 return error("Invalid type for value"); 3491 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3492 Ty = cast<PointerType>(Ty)->getElementType(); 3493 } 3494 3495 uint64_t RawLinkage = Record[3]; 3496 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3497 unsigned Alignment; 3498 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3499 return EC; 3500 std::string Section; 3501 if (Record[5]) { 3502 if (Record[5]-1 >= SectionTable.size()) 3503 return error("Invalid ID"); 3504 Section = SectionTable[Record[5]-1]; 3505 } 3506 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3507 // Local linkage must have default visibility. 3508 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3509 // FIXME: Change to an error if non-default in 4.0. 3510 Visibility = getDecodedVisibility(Record[6]); 3511 3512 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3513 if (Record.size() > 7) 3514 TLM = getDecodedThreadLocalMode(Record[7]); 3515 3516 bool UnnamedAddr = false; 3517 if (Record.size() > 8) 3518 UnnamedAddr = Record[8]; 3519 3520 bool ExternallyInitialized = false; 3521 if (Record.size() > 9) 3522 ExternallyInitialized = Record[9]; 3523 3524 GlobalVariable *NewGV = 3525 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3526 TLM, AddressSpace, ExternallyInitialized); 3527 NewGV->setAlignment(Alignment); 3528 if (!Section.empty()) 3529 NewGV->setSection(Section); 3530 NewGV->setVisibility(Visibility); 3531 NewGV->setUnnamedAddr(UnnamedAddr); 3532 3533 if (Record.size() > 10) 3534 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3535 else 3536 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3537 3538 ValueList.push_back(NewGV); 3539 3540 // Remember which value to use for the global initializer. 3541 if (unsigned InitID = Record[2]) 3542 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3543 3544 if (Record.size() > 11) { 3545 if (unsigned ComdatID = Record[11]) { 3546 if (ComdatID > ComdatList.size()) 3547 return error("Invalid global variable comdat ID"); 3548 NewGV->setComdat(ComdatList[ComdatID - 1]); 3549 } 3550 } else if (hasImplicitComdat(RawLinkage)) { 3551 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3552 } 3553 break; 3554 } 3555 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3556 // alignment, section, visibility, gc, unnamed_addr, 3557 // prologuedata, dllstorageclass, comdat, prefixdata] 3558 case bitc::MODULE_CODE_FUNCTION: { 3559 if (Record.size() < 8) 3560 return error("Invalid record"); 3561 Type *Ty = getTypeByID(Record[0]); 3562 if (!Ty) 3563 return error("Invalid record"); 3564 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3565 Ty = PTy->getElementType(); 3566 auto *FTy = dyn_cast<FunctionType>(Ty); 3567 if (!FTy) 3568 return error("Invalid type for value"); 3569 auto CC = static_cast<CallingConv::ID>(Record[1]); 3570 if (CC & ~CallingConv::MaxID) 3571 return error("Invalid calling convention ID"); 3572 3573 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3574 "", TheModule); 3575 3576 Func->setCallingConv(CC); 3577 bool isProto = Record[2]; 3578 uint64_t RawLinkage = Record[3]; 3579 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3580 Func->setAttributes(getAttributes(Record[4])); 3581 3582 unsigned Alignment; 3583 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3584 return EC; 3585 Func->setAlignment(Alignment); 3586 if (Record[6]) { 3587 if (Record[6]-1 >= SectionTable.size()) 3588 return error("Invalid ID"); 3589 Func->setSection(SectionTable[Record[6]-1]); 3590 } 3591 // Local linkage must have default visibility. 3592 if (!Func->hasLocalLinkage()) 3593 // FIXME: Change to an error if non-default in 4.0. 3594 Func->setVisibility(getDecodedVisibility(Record[7])); 3595 if (Record.size() > 8 && Record[8]) { 3596 if (Record[8]-1 >= GCTable.size()) 3597 return error("Invalid ID"); 3598 Func->setGC(GCTable[Record[8]-1].c_str()); 3599 } 3600 bool UnnamedAddr = false; 3601 if (Record.size() > 9) 3602 UnnamedAddr = Record[9]; 3603 Func->setUnnamedAddr(UnnamedAddr); 3604 if (Record.size() > 10 && Record[10] != 0) 3605 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3606 3607 if (Record.size() > 11) 3608 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3609 else 3610 upgradeDLLImportExportLinkage(Func, RawLinkage); 3611 3612 if (Record.size() > 12) { 3613 if (unsigned ComdatID = Record[12]) { 3614 if (ComdatID > ComdatList.size()) 3615 return error("Invalid function comdat ID"); 3616 Func->setComdat(ComdatList[ComdatID - 1]); 3617 } 3618 } else if (hasImplicitComdat(RawLinkage)) { 3619 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3620 } 3621 3622 if (Record.size() > 13 && Record[13] != 0) 3623 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3624 3625 if (Record.size() > 14 && Record[14] != 0) 3626 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3627 3628 ValueList.push_back(Func); 3629 3630 // If this is a function with a body, remember the prototype we are 3631 // creating now, so that we can match up the body with them later. 3632 if (!isProto) { 3633 Func->setIsMaterializable(true); 3634 FunctionsWithBodies.push_back(Func); 3635 DeferredFunctionInfo[Func] = 0; 3636 } 3637 break; 3638 } 3639 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3640 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3641 case bitc::MODULE_CODE_ALIAS: 3642 case bitc::MODULE_CODE_ALIAS_OLD: { 3643 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3644 if (Record.size() < (3 + (unsigned)NewRecord)) 3645 return error("Invalid record"); 3646 unsigned OpNum = 0; 3647 Type *Ty = getTypeByID(Record[OpNum++]); 3648 if (!Ty) 3649 return error("Invalid record"); 3650 3651 unsigned AddrSpace; 3652 if (!NewRecord) { 3653 auto *PTy = dyn_cast<PointerType>(Ty); 3654 if (!PTy) 3655 return error("Invalid type for value"); 3656 Ty = PTy->getElementType(); 3657 AddrSpace = PTy->getAddressSpace(); 3658 } else { 3659 AddrSpace = Record[OpNum++]; 3660 } 3661 3662 auto Val = Record[OpNum++]; 3663 auto Linkage = Record[OpNum++]; 3664 auto *NewGA = GlobalAlias::create( 3665 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3666 // Old bitcode files didn't have visibility field. 3667 // Local linkage must have default visibility. 3668 if (OpNum != Record.size()) { 3669 auto VisInd = OpNum++; 3670 if (!NewGA->hasLocalLinkage()) 3671 // FIXME: Change to an error if non-default in 4.0. 3672 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3673 } 3674 if (OpNum != Record.size()) 3675 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3676 else 3677 upgradeDLLImportExportLinkage(NewGA, Linkage); 3678 if (OpNum != Record.size()) 3679 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3680 if (OpNum != Record.size()) 3681 NewGA->setUnnamedAddr(Record[OpNum++]); 3682 ValueList.push_back(NewGA); 3683 AliasInits.push_back(std::make_pair(NewGA, Val)); 3684 break; 3685 } 3686 /// MODULE_CODE_PURGEVALS: [numvals] 3687 case bitc::MODULE_CODE_PURGEVALS: 3688 // Trim down the value list to the specified size. 3689 if (Record.size() < 1 || Record[0] > ValueList.size()) 3690 return error("Invalid record"); 3691 ValueList.shrinkTo(Record[0]); 3692 break; 3693 /// MODULE_CODE_VSTOFFSET: [offset] 3694 case bitc::MODULE_CODE_VSTOFFSET: 3695 if (Record.size() < 1) 3696 return error("Invalid record"); 3697 VSTOffset = Record[0]; 3698 break; 3699 /// MODULE_CODE_METADATA_VALUES: [numvals] 3700 case bitc::MODULE_CODE_METADATA_VALUES: 3701 if (Record.size() < 1) 3702 return error("Invalid record"); 3703 assert(!IsMetadataMaterialized); 3704 // This record contains the number of metadata values in the module-level 3705 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3706 // a postpass, where we will parse function-level metadata first. 3707 // This is needed because the ids of metadata are assigned implicitly 3708 // based on their ordering in the bitcode, with the function-level 3709 // metadata ids starting after the module-level metadata ids. Otherwise, 3710 // we would have to parse the module-level metadata block to prime the 3711 // MetadataList when we are lazy loading metadata during function 3712 // importing. Initialize the MetadataList size here based on the 3713 // record value, regardless of whether we are doing lazy metadata 3714 // loading, so that we have consistent handling and assertion 3715 // checking in parseMetadata for module-level metadata. 3716 NumModuleMDs = Record[0]; 3717 SeenModuleValuesRecord = true; 3718 assert(MetadataList.size() == 0); 3719 MetadataList.resize(NumModuleMDs); 3720 break; 3721 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3722 case bitc::MODULE_CODE_SOURCE_FILENAME: 3723 SmallString<128> ValueName; 3724 if (convertToString(Record, 0, ValueName)) 3725 return error("Invalid record"); 3726 TheModule->setSourceFileName(ValueName); 3727 break; 3728 } 3729 Record.clear(); 3730 } 3731 } 3732 3733 /// Helper to read the header common to all bitcode files. 3734 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3735 // Sniff for the signature. 3736 if (Stream.Read(8) != 'B' || 3737 Stream.Read(8) != 'C' || 3738 Stream.Read(4) != 0x0 || 3739 Stream.Read(4) != 0xC || 3740 Stream.Read(4) != 0xE || 3741 Stream.Read(4) != 0xD) 3742 return false; 3743 return true; 3744 } 3745 3746 std::error_code 3747 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3748 Module *M, bool ShouldLazyLoadMetadata) { 3749 TheModule = M; 3750 3751 if (std::error_code EC = initStream(std::move(Streamer))) 3752 return EC; 3753 3754 // Sniff for the signature. 3755 if (!hasValidBitcodeHeader(Stream)) 3756 return error("Invalid bitcode signature"); 3757 3758 // We expect a number of well-defined blocks, though we don't necessarily 3759 // need to understand them all. 3760 while (1) { 3761 if (Stream.AtEndOfStream()) { 3762 // We didn't really read a proper Module. 3763 return error("Malformed IR file"); 3764 } 3765 3766 BitstreamEntry Entry = 3767 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3768 3769 if (Entry.Kind != BitstreamEntry::SubBlock) 3770 return error("Malformed block"); 3771 3772 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3773 parseBitcodeVersion(); 3774 continue; 3775 } 3776 3777 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3778 return parseModule(0, ShouldLazyLoadMetadata); 3779 3780 if (Stream.SkipBlock()) 3781 return error("Invalid record"); 3782 } 3783 } 3784 3785 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3786 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3787 return error("Invalid record"); 3788 3789 SmallVector<uint64_t, 64> Record; 3790 3791 std::string Triple; 3792 // Read all the records for this module. 3793 while (1) { 3794 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3795 3796 switch (Entry.Kind) { 3797 case BitstreamEntry::SubBlock: // Handled for us already. 3798 case BitstreamEntry::Error: 3799 return error("Malformed block"); 3800 case BitstreamEntry::EndBlock: 3801 return Triple; 3802 case BitstreamEntry::Record: 3803 // The interesting case. 3804 break; 3805 } 3806 3807 // Read a record. 3808 switch (Stream.readRecord(Entry.ID, Record)) { 3809 default: break; // Default behavior, ignore unknown content. 3810 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3811 std::string S; 3812 if (convertToString(Record, 0, S)) 3813 return error("Invalid record"); 3814 Triple = S; 3815 break; 3816 } 3817 } 3818 Record.clear(); 3819 } 3820 llvm_unreachable("Exit infinite loop"); 3821 } 3822 3823 ErrorOr<std::string> BitcodeReader::parseTriple() { 3824 if (std::error_code EC = initStream(nullptr)) 3825 return EC; 3826 3827 // Sniff for the signature. 3828 if (!hasValidBitcodeHeader(Stream)) 3829 return error("Invalid bitcode signature"); 3830 3831 // We expect a number of well-defined blocks, though we don't necessarily 3832 // need to understand them all. 3833 while (1) { 3834 BitstreamEntry Entry = Stream.advance(); 3835 3836 switch (Entry.Kind) { 3837 case BitstreamEntry::Error: 3838 return error("Malformed block"); 3839 case BitstreamEntry::EndBlock: 3840 return std::error_code(); 3841 3842 case BitstreamEntry::SubBlock: 3843 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3844 return parseModuleTriple(); 3845 3846 // Ignore other sub-blocks. 3847 if (Stream.SkipBlock()) 3848 return error("Malformed block"); 3849 continue; 3850 3851 case BitstreamEntry::Record: 3852 Stream.skipRecord(Entry.ID); 3853 continue; 3854 } 3855 } 3856 } 3857 3858 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3859 if (std::error_code EC = initStream(nullptr)) 3860 return EC; 3861 3862 // Sniff for the signature. 3863 if (!hasValidBitcodeHeader(Stream)) 3864 return error("Invalid bitcode signature"); 3865 3866 // We expect a number of well-defined blocks, though we don't necessarily 3867 // need to understand them all. 3868 while (1) { 3869 BitstreamEntry Entry = Stream.advance(); 3870 switch (Entry.Kind) { 3871 case BitstreamEntry::Error: 3872 return error("Malformed block"); 3873 case BitstreamEntry::EndBlock: 3874 return std::error_code(); 3875 3876 case BitstreamEntry::SubBlock: 3877 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3878 if (std::error_code EC = parseBitcodeVersion()) 3879 return EC; 3880 return ProducerIdentification; 3881 } 3882 // Ignore other sub-blocks. 3883 if (Stream.SkipBlock()) 3884 return error("Malformed block"); 3885 continue; 3886 case BitstreamEntry::Record: 3887 Stream.skipRecord(Entry.ID); 3888 continue; 3889 } 3890 } 3891 } 3892 3893 /// Parse metadata attachments. 3894 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3895 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3896 return error("Invalid record"); 3897 3898 SmallVector<uint64_t, 64> Record; 3899 while (1) { 3900 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3901 3902 switch (Entry.Kind) { 3903 case BitstreamEntry::SubBlock: // Handled for us already. 3904 case BitstreamEntry::Error: 3905 return error("Malformed block"); 3906 case BitstreamEntry::EndBlock: 3907 return std::error_code(); 3908 case BitstreamEntry::Record: 3909 // The interesting case. 3910 break; 3911 } 3912 3913 // Read a metadata attachment record. 3914 Record.clear(); 3915 switch (Stream.readRecord(Entry.ID, Record)) { 3916 default: // Default behavior: ignore. 3917 break; 3918 case bitc::METADATA_ATTACHMENT: { 3919 unsigned RecordLength = Record.size(); 3920 if (Record.empty()) 3921 return error("Invalid record"); 3922 if (RecordLength % 2 == 0) { 3923 // A function attachment. 3924 for (unsigned I = 0; I != RecordLength; I += 2) { 3925 auto K = MDKindMap.find(Record[I]); 3926 if (K == MDKindMap.end()) 3927 return error("Invalid ID"); 3928 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3929 F.setMetadata(K->second, cast<MDNode>(MD)); 3930 } 3931 continue; 3932 } 3933 3934 // An instruction attachment. 3935 Instruction *Inst = InstructionList[Record[0]]; 3936 for (unsigned i = 1; i != RecordLength; i = i+2) { 3937 unsigned Kind = Record[i]; 3938 DenseMap<unsigned, unsigned>::iterator I = 3939 MDKindMap.find(Kind); 3940 if (I == MDKindMap.end()) 3941 return error("Invalid ID"); 3942 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3943 if (isa<LocalAsMetadata>(Node)) 3944 // Drop the attachment. This used to be legal, but there's no 3945 // upgrade path. 3946 break; 3947 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3948 if (I->second == LLVMContext::MD_tbaa) 3949 InstsWithTBAATag.push_back(Inst); 3950 } 3951 break; 3952 } 3953 } 3954 } 3955 } 3956 3957 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3958 LLVMContext &Context = PtrType->getContext(); 3959 if (!isa<PointerType>(PtrType)) 3960 return error(Context, "Load/Store operand is not a pointer type"); 3961 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3962 3963 if (ValType && ValType != ElemType) 3964 return error(Context, "Explicit load/store type does not match pointee " 3965 "type of pointer operand"); 3966 if (!PointerType::isLoadableOrStorableType(ElemType)) 3967 return error(Context, "Cannot load/store from pointer"); 3968 return std::error_code(); 3969 } 3970 3971 /// Lazily parse the specified function body block. 3972 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3973 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3974 return error("Invalid record"); 3975 3976 InstructionList.clear(); 3977 unsigned ModuleValueListSize = ValueList.size(); 3978 unsigned ModuleMetadataListSize = MetadataList.size(); 3979 3980 // Add all the function arguments to the value table. 3981 for (Argument &I : F->args()) 3982 ValueList.push_back(&I); 3983 3984 unsigned NextValueNo = ValueList.size(); 3985 BasicBlock *CurBB = nullptr; 3986 unsigned CurBBNo = 0; 3987 3988 DebugLoc LastLoc; 3989 auto getLastInstruction = [&]() -> Instruction * { 3990 if (CurBB && !CurBB->empty()) 3991 return &CurBB->back(); 3992 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3993 !FunctionBBs[CurBBNo - 1]->empty()) 3994 return &FunctionBBs[CurBBNo - 1]->back(); 3995 return nullptr; 3996 }; 3997 3998 std::vector<OperandBundleDef> OperandBundles; 3999 4000 // Read all the records. 4001 SmallVector<uint64_t, 64> Record; 4002 while (1) { 4003 BitstreamEntry Entry = Stream.advance(); 4004 4005 switch (Entry.Kind) { 4006 case BitstreamEntry::Error: 4007 return error("Malformed block"); 4008 case BitstreamEntry::EndBlock: 4009 goto OutOfRecordLoop; 4010 4011 case BitstreamEntry::SubBlock: 4012 switch (Entry.ID) { 4013 default: // Skip unknown content. 4014 if (Stream.SkipBlock()) 4015 return error("Invalid record"); 4016 break; 4017 case bitc::CONSTANTS_BLOCK_ID: 4018 if (std::error_code EC = parseConstants()) 4019 return EC; 4020 NextValueNo = ValueList.size(); 4021 break; 4022 case bitc::VALUE_SYMTAB_BLOCK_ID: 4023 if (std::error_code EC = parseValueSymbolTable()) 4024 return EC; 4025 break; 4026 case bitc::METADATA_ATTACHMENT_ID: 4027 if (std::error_code EC = parseMetadataAttachment(*F)) 4028 return EC; 4029 break; 4030 case bitc::METADATA_BLOCK_ID: 4031 if (std::error_code EC = parseMetadata()) 4032 return EC; 4033 break; 4034 case bitc::USELIST_BLOCK_ID: 4035 if (std::error_code EC = parseUseLists()) 4036 return EC; 4037 break; 4038 } 4039 continue; 4040 4041 case BitstreamEntry::Record: 4042 // The interesting case. 4043 break; 4044 } 4045 4046 // Read a record. 4047 Record.clear(); 4048 Instruction *I = nullptr; 4049 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4050 switch (BitCode) { 4051 default: // Default behavior: reject 4052 return error("Invalid value"); 4053 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4054 if (Record.size() < 1 || Record[0] == 0) 4055 return error("Invalid record"); 4056 // Create all the basic blocks for the function. 4057 FunctionBBs.resize(Record[0]); 4058 4059 // See if anything took the address of blocks in this function. 4060 auto BBFRI = BasicBlockFwdRefs.find(F); 4061 if (BBFRI == BasicBlockFwdRefs.end()) { 4062 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4063 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4064 } else { 4065 auto &BBRefs = BBFRI->second; 4066 // Check for invalid basic block references. 4067 if (BBRefs.size() > FunctionBBs.size()) 4068 return error("Invalid ID"); 4069 assert(!BBRefs.empty() && "Unexpected empty array"); 4070 assert(!BBRefs.front() && "Invalid reference to entry block"); 4071 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4072 ++I) 4073 if (I < RE && BBRefs[I]) { 4074 BBRefs[I]->insertInto(F); 4075 FunctionBBs[I] = BBRefs[I]; 4076 } else { 4077 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4078 } 4079 4080 // Erase from the table. 4081 BasicBlockFwdRefs.erase(BBFRI); 4082 } 4083 4084 CurBB = FunctionBBs[0]; 4085 continue; 4086 } 4087 4088 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4089 // This record indicates that the last instruction is at the same 4090 // location as the previous instruction with a location. 4091 I = getLastInstruction(); 4092 4093 if (!I) 4094 return error("Invalid record"); 4095 I->setDebugLoc(LastLoc); 4096 I = nullptr; 4097 continue; 4098 4099 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4100 I = getLastInstruction(); 4101 if (!I || Record.size() < 4) 4102 return error("Invalid record"); 4103 4104 unsigned Line = Record[0], Col = Record[1]; 4105 unsigned ScopeID = Record[2], IAID = Record[3]; 4106 4107 MDNode *Scope = nullptr, *IA = nullptr; 4108 if (ScopeID) 4109 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4110 if (IAID) 4111 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4112 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4113 I->setDebugLoc(LastLoc); 4114 I = nullptr; 4115 continue; 4116 } 4117 4118 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4119 unsigned OpNum = 0; 4120 Value *LHS, *RHS; 4121 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4122 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4123 OpNum+1 > Record.size()) 4124 return error("Invalid record"); 4125 4126 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4127 if (Opc == -1) 4128 return error("Invalid record"); 4129 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4130 InstructionList.push_back(I); 4131 if (OpNum < Record.size()) { 4132 if (Opc == Instruction::Add || 4133 Opc == Instruction::Sub || 4134 Opc == Instruction::Mul || 4135 Opc == Instruction::Shl) { 4136 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4137 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4138 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4139 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4140 } else if (Opc == Instruction::SDiv || 4141 Opc == Instruction::UDiv || 4142 Opc == Instruction::LShr || 4143 Opc == Instruction::AShr) { 4144 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4145 cast<BinaryOperator>(I)->setIsExact(true); 4146 } else if (isa<FPMathOperator>(I)) { 4147 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4148 if (FMF.any()) 4149 I->setFastMathFlags(FMF); 4150 } 4151 4152 } 4153 break; 4154 } 4155 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4156 unsigned OpNum = 0; 4157 Value *Op; 4158 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4159 OpNum+2 != Record.size()) 4160 return error("Invalid record"); 4161 4162 Type *ResTy = getTypeByID(Record[OpNum]); 4163 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4164 if (Opc == -1 || !ResTy) 4165 return error("Invalid record"); 4166 Instruction *Temp = nullptr; 4167 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4168 if (Temp) { 4169 InstructionList.push_back(Temp); 4170 CurBB->getInstList().push_back(Temp); 4171 } 4172 } else { 4173 auto CastOp = (Instruction::CastOps)Opc; 4174 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4175 return error("Invalid cast"); 4176 I = CastInst::Create(CastOp, Op, ResTy); 4177 } 4178 InstructionList.push_back(I); 4179 break; 4180 } 4181 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4182 case bitc::FUNC_CODE_INST_GEP_OLD: 4183 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4184 unsigned OpNum = 0; 4185 4186 Type *Ty; 4187 bool InBounds; 4188 4189 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4190 InBounds = Record[OpNum++]; 4191 Ty = getTypeByID(Record[OpNum++]); 4192 } else { 4193 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4194 Ty = nullptr; 4195 } 4196 4197 Value *BasePtr; 4198 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4199 return error("Invalid record"); 4200 4201 if (!Ty) 4202 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4203 ->getElementType(); 4204 else if (Ty != 4205 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4206 ->getElementType()) 4207 return error( 4208 "Explicit gep type does not match pointee type of pointer operand"); 4209 4210 SmallVector<Value*, 16> GEPIdx; 4211 while (OpNum != Record.size()) { 4212 Value *Op; 4213 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4214 return error("Invalid record"); 4215 GEPIdx.push_back(Op); 4216 } 4217 4218 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4219 4220 InstructionList.push_back(I); 4221 if (InBounds) 4222 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4223 break; 4224 } 4225 4226 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4227 // EXTRACTVAL: [opty, opval, n x indices] 4228 unsigned OpNum = 0; 4229 Value *Agg; 4230 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4231 return error("Invalid record"); 4232 4233 unsigned RecSize = Record.size(); 4234 if (OpNum == RecSize) 4235 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4236 4237 SmallVector<unsigned, 4> EXTRACTVALIdx; 4238 Type *CurTy = Agg->getType(); 4239 for (; OpNum != RecSize; ++OpNum) { 4240 bool IsArray = CurTy->isArrayTy(); 4241 bool IsStruct = CurTy->isStructTy(); 4242 uint64_t Index = Record[OpNum]; 4243 4244 if (!IsStruct && !IsArray) 4245 return error("EXTRACTVAL: Invalid type"); 4246 if ((unsigned)Index != Index) 4247 return error("Invalid value"); 4248 if (IsStruct && Index >= CurTy->subtypes().size()) 4249 return error("EXTRACTVAL: Invalid struct index"); 4250 if (IsArray && Index >= CurTy->getArrayNumElements()) 4251 return error("EXTRACTVAL: Invalid array index"); 4252 EXTRACTVALIdx.push_back((unsigned)Index); 4253 4254 if (IsStruct) 4255 CurTy = CurTy->subtypes()[Index]; 4256 else 4257 CurTy = CurTy->subtypes()[0]; 4258 } 4259 4260 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4261 InstructionList.push_back(I); 4262 break; 4263 } 4264 4265 case bitc::FUNC_CODE_INST_INSERTVAL: { 4266 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4267 unsigned OpNum = 0; 4268 Value *Agg; 4269 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4270 return error("Invalid record"); 4271 Value *Val; 4272 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4273 return error("Invalid record"); 4274 4275 unsigned RecSize = Record.size(); 4276 if (OpNum == RecSize) 4277 return error("INSERTVAL: Invalid instruction with 0 indices"); 4278 4279 SmallVector<unsigned, 4> INSERTVALIdx; 4280 Type *CurTy = Agg->getType(); 4281 for (; OpNum != RecSize; ++OpNum) { 4282 bool IsArray = CurTy->isArrayTy(); 4283 bool IsStruct = CurTy->isStructTy(); 4284 uint64_t Index = Record[OpNum]; 4285 4286 if (!IsStruct && !IsArray) 4287 return error("INSERTVAL: Invalid type"); 4288 if ((unsigned)Index != Index) 4289 return error("Invalid value"); 4290 if (IsStruct && Index >= CurTy->subtypes().size()) 4291 return error("INSERTVAL: Invalid struct index"); 4292 if (IsArray && Index >= CurTy->getArrayNumElements()) 4293 return error("INSERTVAL: Invalid array index"); 4294 4295 INSERTVALIdx.push_back((unsigned)Index); 4296 if (IsStruct) 4297 CurTy = CurTy->subtypes()[Index]; 4298 else 4299 CurTy = CurTy->subtypes()[0]; 4300 } 4301 4302 if (CurTy != Val->getType()) 4303 return error("Inserted value type doesn't match aggregate type"); 4304 4305 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4306 InstructionList.push_back(I); 4307 break; 4308 } 4309 4310 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4311 // obsolete form of select 4312 // handles select i1 ... in old bitcode 4313 unsigned OpNum = 0; 4314 Value *TrueVal, *FalseVal, *Cond; 4315 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4316 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4317 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4318 return error("Invalid record"); 4319 4320 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 4325 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4326 // new form of select 4327 // handles select i1 or select [N x i1] 4328 unsigned OpNum = 0; 4329 Value *TrueVal, *FalseVal, *Cond; 4330 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4331 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4332 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4333 return error("Invalid record"); 4334 4335 // select condition can be either i1 or [N x i1] 4336 if (VectorType* vector_type = 4337 dyn_cast<VectorType>(Cond->getType())) { 4338 // expect <n x i1> 4339 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4340 return error("Invalid type for value"); 4341 } else { 4342 // expect i1 4343 if (Cond->getType() != Type::getInt1Ty(Context)) 4344 return error("Invalid type for value"); 4345 } 4346 4347 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4348 InstructionList.push_back(I); 4349 break; 4350 } 4351 4352 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4353 unsigned OpNum = 0; 4354 Value *Vec, *Idx; 4355 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4356 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4357 return error("Invalid record"); 4358 if (!Vec->getType()->isVectorTy()) 4359 return error("Invalid type for value"); 4360 I = ExtractElementInst::Create(Vec, Idx); 4361 InstructionList.push_back(I); 4362 break; 4363 } 4364 4365 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4366 unsigned OpNum = 0; 4367 Value *Vec, *Elt, *Idx; 4368 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4369 return error("Invalid record"); 4370 if (!Vec->getType()->isVectorTy()) 4371 return error("Invalid type for value"); 4372 if (popValue(Record, OpNum, NextValueNo, 4373 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4374 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4375 return error("Invalid record"); 4376 I = InsertElementInst::Create(Vec, Elt, Idx); 4377 InstructionList.push_back(I); 4378 break; 4379 } 4380 4381 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4382 unsigned OpNum = 0; 4383 Value *Vec1, *Vec2, *Mask; 4384 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4385 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4386 return error("Invalid record"); 4387 4388 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4389 return error("Invalid record"); 4390 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4391 return error("Invalid type for value"); 4392 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4393 InstructionList.push_back(I); 4394 break; 4395 } 4396 4397 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4398 // Old form of ICmp/FCmp returning bool 4399 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4400 // both legal on vectors but had different behaviour. 4401 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4402 // FCmp/ICmp returning bool or vector of bool 4403 4404 unsigned OpNum = 0; 4405 Value *LHS, *RHS; 4406 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4407 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4408 return error("Invalid record"); 4409 4410 unsigned PredVal = Record[OpNum]; 4411 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4412 FastMathFlags FMF; 4413 if (IsFP && Record.size() > OpNum+1) 4414 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4415 4416 if (OpNum+1 != Record.size()) 4417 return error("Invalid record"); 4418 4419 if (LHS->getType()->isFPOrFPVectorTy()) 4420 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4421 else 4422 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4423 4424 if (FMF.any()) 4425 I->setFastMathFlags(FMF); 4426 InstructionList.push_back(I); 4427 break; 4428 } 4429 4430 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4431 { 4432 unsigned Size = Record.size(); 4433 if (Size == 0) { 4434 I = ReturnInst::Create(Context); 4435 InstructionList.push_back(I); 4436 break; 4437 } 4438 4439 unsigned OpNum = 0; 4440 Value *Op = nullptr; 4441 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4442 return error("Invalid record"); 4443 if (OpNum != Record.size()) 4444 return error("Invalid record"); 4445 4446 I = ReturnInst::Create(Context, Op); 4447 InstructionList.push_back(I); 4448 break; 4449 } 4450 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4451 if (Record.size() != 1 && Record.size() != 3) 4452 return error("Invalid record"); 4453 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4454 if (!TrueDest) 4455 return error("Invalid record"); 4456 4457 if (Record.size() == 1) { 4458 I = BranchInst::Create(TrueDest); 4459 InstructionList.push_back(I); 4460 } 4461 else { 4462 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4463 Value *Cond = getValue(Record, 2, NextValueNo, 4464 Type::getInt1Ty(Context)); 4465 if (!FalseDest || !Cond) 4466 return error("Invalid record"); 4467 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4468 InstructionList.push_back(I); 4469 } 4470 break; 4471 } 4472 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4473 if (Record.size() != 1 && Record.size() != 2) 4474 return error("Invalid record"); 4475 unsigned Idx = 0; 4476 Value *CleanupPad = 4477 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4478 if (!CleanupPad) 4479 return error("Invalid record"); 4480 BasicBlock *UnwindDest = nullptr; 4481 if (Record.size() == 2) { 4482 UnwindDest = getBasicBlock(Record[Idx++]); 4483 if (!UnwindDest) 4484 return error("Invalid record"); 4485 } 4486 4487 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4488 InstructionList.push_back(I); 4489 break; 4490 } 4491 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4492 if (Record.size() != 2) 4493 return error("Invalid record"); 4494 unsigned Idx = 0; 4495 Value *CatchPad = 4496 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4497 if (!CatchPad) 4498 return error("Invalid record"); 4499 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4500 if (!BB) 4501 return error("Invalid record"); 4502 4503 I = CatchReturnInst::Create(CatchPad, BB); 4504 InstructionList.push_back(I); 4505 break; 4506 } 4507 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4508 // We must have, at minimum, the outer scope and the number of arguments. 4509 if (Record.size() < 2) 4510 return error("Invalid record"); 4511 4512 unsigned Idx = 0; 4513 4514 Value *ParentPad = 4515 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4516 4517 unsigned NumHandlers = Record[Idx++]; 4518 4519 SmallVector<BasicBlock *, 2> Handlers; 4520 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4521 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4522 if (!BB) 4523 return error("Invalid record"); 4524 Handlers.push_back(BB); 4525 } 4526 4527 BasicBlock *UnwindDest = nullptr; 4528 if (Idx + 1 == Record.size()) { 4529 UnwindDest = getBasicBlock(Record[Idx++]); 4530 if (!UnwindDest) 4531 return error("Invalid record"); 4532 } 4533 4534 if (Record.size() != Idx) 4535 return error("Invalid record"); 4536 4537 auto *CatchSwitch = 4538 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4539 for (BasicBlock *Handler : Handlers) 4540 CatchSwitch->addHandler(Handler); 4541 I = CatchSwitch; 4542 InstructionList.push_back(I); 4543 break; 4544 } 4545 case bitc::FUNC_CODE_INST_CATCHPAD: 4546 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4547 // We must have, at minimum, the outer scope and the number of arguments. 4548 if (Record.size() < 2) 4549 return error("Invalid record"); 4550 4551 unsigned Idx = 0; 4552 4553 Value *ParentPad = 4554 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4555 4556 unsigned NumArgOperands = Record[Idx++]; 4557 4558 SmallVector<Value *, 2> Args; 4559 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4560 Value *Val; 4561 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4562 return error("Invalid record"); 4563 Args.push_back(Val); 4564 } 4565 4566 if (Record.size() != Idx) 4567 return error("Invalid record"); 4568 4569 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4570 I = CleanupPadInst::Create(ParentPad, Args); 4571 else 4572 I = CatchPadInst::Create(ParentPad, Args); 4573 InstructionList.push_back(I); 4574 break; 4575 } 4576 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4577 // Check magic 4578 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4579 // "New" SwitchInst format with case ranges. The changes to write this 4580 // format were reverted but we still recognize bitcode that uses it. 4581 // Hopefully someday we will have support for case ranges and can use 4582 // this format again. 4583 4584 Type *OpTy = getTypeByID(Record[1]); 4585 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4586 4587 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4588 BasicBlock *Default = getBasicBlock(Record[3]); 4589 if (!OpTy || !Cond || !Default) 4590 return error("Invalid record"); 4591 4592 unsigned NumCases = Record[4]; 4593 4594 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4595 InstructionList.push_back(SI); 4596 4597 unsigned CurIdx = 5; 4598 for (unsigned i = 0; i != NumCases; ++i) { 4599 SmallVector<ConstantInt*, 1> CaseVals; 4600 unsigned NumItems = Record[CurIdx++]; 4601 for (unsigned ci = 0; ci != NumItems; ++ci) { 4602 bool isSingleNumber = Record[CurIdx++]; 4603 4604 APInt Low; 4605 unsigned ActiveWords = 1; 4606 if (ValueBitWidth > 64) 4607 ActiveWords = Record[CurIdx++]; 4608 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4609 ValueBitWidth); 4610 CurIdx += ActiveWords; 4611 4612 if (!isSingleNumber) { 4613 ActiveWords = 1; 4614 if (ValueBitWidth > 64) 4615 ActiveWords = Record[CurIdx++]; 4616 APInt High = readWideAPInt( 4617 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4618 CurIdx += ActiveWords; 4619 4620 // FIXME: It is not clear whether values in the range should be 4621 // compared as signed or unsigned values. The partially 4622 // implemented changes that used this format in the past used 4623 // unsigned comparisons. 4624 for ( ; Low.ule(High); ++Low) 4625 CaseVals.push_back(ConstantInt::get(Context, Low)); 4626 } else 4627 CaseVals.push_back(ConstantInt::get(Context, Low)); 4628 } 4629 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4630 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4631 cve = CaseVals.end(); cvi != cve; ++cvi) 4632 SI->addCase(*cvi, DestBB); 4633 } 4634 I = SI; 4635 break; 4636 } 4637 4638 // Old SwitchInst format without case ranges. 4639 4640 if (Record.size() < 3 || (Record.size() & 1) == 0) 4641 return error("Invalid record"); 4642 Type *OpTy = getTypeByID(Record[0]); 4643 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4644 BasicBlock *Default = getBasicBlock(Record[2]); 4645 if (!OpTy || !Cond || !Default) 4646 return error("Invalid record"); 4647 unsigned NumCases = (Record.size()-3)/2; 4648 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4649 InstructionList.push_back(SI); 4650 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4651 ConstantInt *CaseVal = 4652 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4653 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4654 if (!CaseVal || !DestBB) { 4655 delete SI; 4656 return error("Invalid record"); 4657 } 4658 SI->addCase(CaseVal, DestBB); 4659 } 4660 I = SI; 4661 break; 4662 } 4663 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4664 if (Record.size() < 2) 4665 return error("Invalid record"); 4666 Type *OpTy = getTypeByID(Record[0]); 4667 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4668 if (!OpTy || !Address) 4669 return error("Invalid record"); 4670 unsigned NumDests = Record.size()-2; 4671 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4672 InstructionList.push_back(IBI); 4673 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4674 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4675 IBI->addDestination(DestBB); 4676 } else { 4677 delete IBI; 4678 return error("Invalid record"); 4679 } 4680 } 4681 I = IBI; 4682 break; 4683 } 4684 4685 case bitc::FUNC_CODE_INST_INVOKE: { 4686 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4687 if (Record.size() < 4) 4688 return error("Invalid record"); 4689 unsigned OpNum = 0; 4690 AttributeSet PAL = getAttributes(Record[OpNum++]); 4691 unsigned CCInfo = Record[OpNum++]; 4692 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4693 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4694 4695 FunctionType *FTy = nullptr; 4696 if (CCInfo >> 13 & 1 && 4697 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4698 return error("Explicit invoke type is not a function type"); 4699 4700 Value *Callee; 4701 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4702 return error("Invalid record"); 4703 4704 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4705 if (!CalleeTy) 4706 return error("Callee is not a pointer"); 4707 if (!FTy) { 4708 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4709 if (!FTy) 4710 return error("Callee is not of pointer to function type"); 4711 } else if (CalleeTy->getElementType() != FTy) 4712 return error("Explicit invoke type does not match pointee type of " 4713 "callee operand"); 4714 if (Record.size() < FTy->getNumParams() + OpNum) 4715 return error("Insufficient operands to call"); 4716 4717 SmallVector<Value*, 16> Ops; 4718 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4719 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4720 FTy->getParamType(i))); 4721 if (!Ops.back()) 4722 return error("Invalid record"); 4723 } 4724 4725 if (!FTy->isVarArg()) { 4726 if (Record.size() != OpNum) 4727 return error("Invalid record"); 4728 } else { 4729 // Read type/value pairs for varargs params. 4730 while (OpNum != Record.size()) { 4731 Value *Op; 4732 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4733 return error("Invalid record"); 4734 Ops.push_back(Op); 4735 } 4736 } 4737 4738 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4739 OperandBundles.clear(); 4740 InstructionList.push_back(I); 4741 cast<InvokeInst>(I)->setCallingConv( 4742 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4743 cast<InvokeInst>(I)->setAttributes(PAL); 4744 break; 4745 } 4746 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4747 unsigned Idx = 0; 4748 Value *Val = nullptr; 4749 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4750 return error("Invalid record"); 4751 I = ResumeInst::Create(Val); 4752 InstructionList.push_back(I); 4753 break; 4754 } 4755 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4756 I = new UnreachableInst(Context); 4757 InstructionList.push_back(I); 4758 break; 4759 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4760 if (Record.size() < 1 || ((Record.size()-1)&1)) 4761 return error("Invalid record"); 4762 Type *Ty = getTypeByID(Record[0]); 4763 if (!Ty) 4764 return error("Invalid record"); 4765 4766 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4767 InstructionList.push_back(PN); 4768 4769 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4770 Value *V; 4771 // With the new function encoding, it is possible that operands have 4772 // negative IDs (for forward references). Use a signed VBR 4773 // representation to keep the encoding small. 4774 if (UseRelativeIDs) 4775 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4776 else 4777 V = getValue(Record, 1+i, NextValueNo, Ty); 4778 BasicBlock *BB = getBasicBlock(Record[2+i]); 4779 if (!V || !BB) 4780 return error("Invalid record"); 4781 PN->addIncoming(V, BB); 4782 } 4783 I = PN; 4784 break; 4785 } 4786 4787 case bitc::FUNC_CODE_INST_LANDINGPAD: 4788 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4789 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4790 unsigned Idx = 0; 4791 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4792 if (Record.size() < 3) 4793 return error("Invalid record"); 4794 } else { 4795 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4796 if (Record.size() < 4) 4797 return error("Invalid record"); 4798 } 4799 Type *Ty = getTypeByID(Record[Idx++]); 4800 if (!Ty) 4801 return error("Invalid record"); 4802 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4803 Value *PersFn = nullptr; 4804 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4805 return error("Invalid record"); 4806 4807 if (!F->hasPersonalityFn()) 4808 F->setPersonalityFn(cast<Constant>(PersFn)); 4809 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4810 return error("Personality function mismatch"); 4811 } 4812 4813 bool IsCleanup = !!Record[Idx++]; 4814 unsigned NumClauses = Record[Idx++]; 4815 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4816 LP->setCleanup(IsCleanup); 4817 for (unsigned J = 0; J != NumClauses; ++J) { 4818 LandingPadInst::ClauseType CT = 4819 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4820 Value *Val; 4821 4822 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4823 delete LP; 4824 return error("Invalid record"); 4825 } 4826 4827 assert((CT != LandingPadInst::Catch || 4828 !isa<ArrayType>(Val->getType())) && 4829 "Catch clause has a invalid type!"); 4830 assert((CT != LandingPadInst::Filter || 4831 isa<ArrayType>(Val->getType())) && 4832 "Filter clause has invalid type!"); 4833 LP->addClause(cast<Constant>(Val)); 4834 } 4835 4836 I = LP; 4837 InstructionList.push_back(I); 4838 break; 4839 } 4840 4841 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4842 if (Record.size() != 4) 4843 return error("Invalid record"); 4844 uint64_t AlignRecord = Record[3]; 4845 const uint64_t InAllocaMask = uint64_t(1) << 5; 4846 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4847 // Reserve bit 7 for SwiftError flag. 4848 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4849 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4850 bool InAlloca = AlignRecord & InAllocaMask; 4851 Type *Ty = getTypeByID(Record[0]); 4852 if ((AlignRecord & ExplicitTypeMask) == 0) { 4853 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4854 if (!PTy) 4855 return error("Old-style alloca with a non-pointer type"); 4856 Ty = PTy->getElementType(); 4857 } 4858 Type *OpTy = getTypeByID(Record[1]); 4859 Value *Size = getFnValueByID(Record[2], OpTy); 4860 unsigned Align; 4861 if (std::error_code EC = 4862 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4863 return EC; 4864 } 4865 if (!Ty || !Size) 4866 return error("Invalid record"); 4867 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4868 AI->setUsedWithInAlloca(InAlloca); 4869 I = AI; 4870 InstructionList.push_back(I); 4871 break; 4872 } 4873 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4874 unsigned OpNum = 0; 4875 Value *Op; 4876 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4877 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4878 return error("Invalid record"); 4879 4880 Type *Ty = nullptr; 4881 if (OpNum + 3 == Record.size()) 4882 Ty = getTypeByID(Record[OpNum++]); 4883 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4884 return EC; 4885 if (!Ty) 4886 Ty = cast<PointerType>(Op->getType())->getElementType(); 4887 4888 unsigned Align; 4889 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4890 return EC; 4891 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4892 4893 InstructionList.push_back(I); 4894 break; 4895 } 4896 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4897 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4898 unsigned OpNum = 0; 4899 Value *Op; 4900 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4901 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4902 return error("Invalid record"); 4903 4904 Type *Ty = nullptr; 4905 if (OpNum + 5 == Record.size()) 4906 Ty = getTypeByID(Record[OpNum++]); 4907 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4908 return EC; 4909 if (!Ty) 4910 Ty = cast<PointerType>(Op->getType())->getElementType(); 4911 4912 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4913 if (Ordering == NotAtomic || Ordering == Release || 4914 Ordering == AcquireRelease) 4915 return error("Invalid record"); 4916 if (Ordering != NotAtomic && Record[OpNum] == 0) 4917 return error("Invalid record"); 4918 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4919 4920 unsigned Align; 4921 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4922 return EC; 4923 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4924 4925 InstructionList.push_back(I); 4926 break; 4927 } 4928 case bitc::FUNC_CODE_INST_STORE: 4929 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4930 unsigned OpNum = 0; 4931 Value *Val, *Ptr; 4932 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4933 (BitCode == bitc::FUNC_CODE_INST_STORE 4934 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4935 : popValue(Record, OpNum, NextValueNo, 4936 cast<PointerType>(Ptr->getType())->getElementType(), 4937 Val)) || 4938 OpNum + 2 != Record.size()) 4939 return error("Invalid record"); 4940 4941 if (std::error_code EC = 4942 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4943 return EC; 4944 unsigned Align; 4945 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4946 return EC; 4947 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4948 InstructionList.push_back(I); 4949 break; 4950 } 4951 case bitc::FUNC_CODE_INST_STOREATOMIC: 4952 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4953 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4954 unsigned OpNum = 0; 4955 Value *Val, *Ptr; 4956 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4957 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4958 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4959 : popValue(Record, OpNum, NextValueNo, 4960 cast<PointerType>(Ptr->getType())->getElementType(), 4961 Val)) || 4962 OpNum + 4 != Record.size()) 4963 return error("Invalid record"); 4964 4965 if (std::error_code EC = 4966 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4967 return EC; 4968 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4969 if (Ordering == NotAtomic || Ordering == Acquire || 4970 Ordering == AcquireRelease) 4971 return error("Invalid record"); 4972 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4973 if (Ordering != NotAtomic && Record[OpNum] == 0) 4974 return error("Invalid record"); 4975 4976 unsigned Align; 4977 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4978 return EC; 4979 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4980 InstructionList.push_back(I); 4981 break; 4982 } 4983 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4984 case bitc::FUNC_CODE_INST_CMPXCHG: { 4985 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4986 // failureordering?, isweak?] 4987 unsigned OpNum = 0; 4988 Value *Ptr, *Cmp, *New; 4989 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4990 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4991 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4992 : popValue(Record, OpNum, NextValueNo, 4993 cast<PointerType>(Ptr->getType())->getElementType(), 4994 Cmp)) || 4995 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4996 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4997 return error("Invalid record"); 4998 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4999 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5000 return error("Invalid record"); 5001 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5002 5003 if (std::error_code EC = 5004 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5005 return EC; 5006 AtomicOrdering FailureOrdering; 5007 if (Record.size() < 7) 5008 FailureOrdering = 5009 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5010 else 5011 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5012 5013 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5014 SynchScope); 5015 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5016 5017 if (Record.size() < 8) { 5018 // Before weak cmpxchgs existed, the instruction simply returned the 5019 // value loaded from memory, so bitcode files from that era will be 5020 // expecting the first component of a modern cmpxchg. 5021 CurBB->getInstList().push_back(I); 5022 I = ExtractValueInst::Create(I, 0); 5023 } else { 5024 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5025 } 5026 5027 InstructionList.push_back(I); 5028 break; 5029 } 5030 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5031 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5032 unsigned OpNum = 0; 5033 Value *Ptr, *Val; 5034 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5035 popValue(Record, OpNum, NextValueNo, 5036 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5037 OpNum+4 != Record.size()) 5038 return error("Invalid record"); 5039 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5040 if (Operation < AtomicRMWInst::FIRST_BINOP || 5041 Operation > AtomicRMWInst::LAST_BINOP) 5042 return error("Invalid record"); 5043 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5044 if (Ordering == NotAtomic || Ordering == Unordered) 5045 return error("Invalid record"); 5046 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5047 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5048 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5049 InstructionList.push_back(I); 5050 break; 5051 } 5052 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5053 if (2 != Record.size()) 5054 return error("Invalid record"); 5055 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5056 if (Ordering == NotAtomic || Ordering == Unordered || 5057 Ordering == Monotonic) 5058 return error("Invalid record"); 5059 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5060 I = new FenceInst(Context, Ordering, SynchScope); 5061 InstructionList.push_back(I); 5062 break; 5063 } 5064 case bitc::FUNC_CODE_INST_CALL: { 5065 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5066 if (Record.size() < 3) 5067 return error("Invalid record"); 5068 5069 unsigned OpNum = 0; 5070 AttributeSet PAL = getAttributes(Record[OpNum++]); 5071 unsigned CCInfo = Record[OpNum++]; 5072 5073 FastMathFlags FMF; 5074 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5075 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5076 if (!FMF.any()) 5077 return error("Fast math flags indicator set for call with no FMF"); 5078 } 5079 5080 FunctionType *FTy = nullptr; 5081 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5082 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5083 return error("Explicit call type is not a function type"); 5084 5085 Value *Callee; 5086 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5087 return error("Invalid record"); 5088 5089 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5090 if (!OpTy) 5091 return error("Callee is not a pointer type"); 5092 if (!FTy) { 5093 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5094 if (!FTy) 5095 return error("Callee is not of pointer to function type"); 5096 } else if (OpTy->getElementType() != FTy) 5097 return error("Explicit call type does not match pointee type of " 5098 "callee operand"); 5099 if (Record.size() < FTy->getNumParams() + OpNum) 5100 return error("Insufficient operands to call"); 5101 5102 SmallVector<Value*, 16> Args; 5103 // Read the fixed params. 5104 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5105 if (FTy->getParamType(i)->isLabelTy()) 5106 Args.push_back(getBasicBlock(Record[OpNum])); 5107 else 5108 Args.push_back(getValue(Record, OpNum, NextValueNo, 5109 FTy->getParamType(i))); 5110 if (!Args.back()) 5111 return error("Invalid record"); 5112 } 5113 5114 // Read type/value pairs for varargs params. 5115 if (!FTy->isVarArg()) { 5116 if (OpNum != Record.size()) 5117 return error("Invalid record"); 5118 } else { 5119 while (OpNum != Record.size()) { 5120 Value *Op; 5121 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5122 return error("Invalid record"); 5123 Args.push_back(Op); 5124 } 5125 } 5126 5127 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5128 OperandBundles.clear(); 5129 InstructionList.push_back(I); 5130 cast<CallInst>(I)->setCallingConv( 5131 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5132 CallInst::TailCallKind TCK = CallInst::TCK_None; 5133 if (CCInfo & 1 << bitc::CALL_TAIL) 5134 TCK = CallInst::TCK_Tail; 5135 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5136 TCK = CallInst::TCK_MustTail; 5137 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5138 TCK = CallInst::TCK_NoTail; 5139 cast<CallInst>(I)->setTailCallKind(TCK); 5140 cast<CallInst>(I)->setAttributes(PAL); 5141 if (FMF.any()) { 5142 if (!isa<FPMathOperator>(I)) 5143 return error("Fast-math-flags specified for call without " 5144 "floating-point scalar or vector return type"); 5145 I->setFastMathFlags(FMF); 5146 } 5147 break; 5148 } 5149 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5150 if (Record.size() < 3) 5151 return error("Invalid record"); 5152 Type *OpTy = getTypeByID(Record[0]); 5153 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5154 Type *ResTy = getTypeByID(Record[2]); 5155 if (!OpTy || !Op || !ResTy) 5156 return error("Invalid record"); 5157 I = new VAArgInst(Op, ResTy); 5158 InstructionList.push_back(I); 5159 break; 5160 } 5161 5162 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5163 // A call or an invoke can be optionally prefixed with some variable 5164 // number of operand bundle blocks. These blocks are read into 5165 // OperandBundles and consumed at the next call or invoke instruction. 5166 5167 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5168 return error("Invalid record"); 5169 5170 std::vector<Value *> Inputs; 5171 5172 unsigned OpNum = 1; 5173 while (OpNum != Record.size()) { 5174 Value *Op; 5175 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5176 return error("Invalid record"); 5177 Inputs.push_back(Op); 5178 } 5179 5180 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5181 continue; 5182 } 5183 } 5184 5185 // Add instruction to end of current BB. If there is no current BB, reject 5186 // this file. 5187 if (!CurBB) { 5188 delete I; 5189 return error("Invalid instruction with no BB"); 5190 } 5191 if (!OperandBundles.empty()) { 5192 delete I; 5193 return error("Operand bundles found with no consumer"); 5194 } 5195 CurBB->getInstList().push_back(I); 5196 5197 // If this was a terminator instruction, move to the next block. 5198 if (isa<TerminatorInst>(I)) { 5199 ++CurBBNo; 5200 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5201 } 5202 5203 // Non-void values get registered in the value table for future use. 5204 if (I && !I->getType()->isVoidTy()) 5205 ValueList.assignValue(I, NextValueNo++); 5206 } 5207 5208 OutOfRecordLoop: 5209 5210 if (!OperandBundles.empty()) 5211 return error("Operand bundles found with no consumer"); 5212 5213 // Check the function list for unresolved values. 5214 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5215 if (!A->getParent()) { 5216 // We found at least one unresolved value. Nuke them all to avoid leaks. 5217 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5218 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5219 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5220 delete A; 5221 } 5222 } 5223 return error("Never resolved value found in function"); 5224 } 5225 } 5226 5227 // FIXME: Check for unresolved forward-declared metadata references 5228 // and clean up leaks. 5229 5230 // Trim the value list down to the size it was before we parsed this function. 5231 ValueList.shrinkTo(ModuleValueListSize); 5232 MetadataList.shrinkTo(ModuleMetadataListSize); 5233 std::vector<BasicBlock*>().swap(FunctionBBs); 5234 return std::error_code(); 5235 } 5236 5237 /// Find the function body in the bitcode stream 5238 std::error_code BitcodeReader::findFunctionInStream( 5239 Function *F, 5240 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5241 while (DeferredFunctionInfoIterator->second == 0) { 5242 // This is the fallback handling for the old format bitcode that 5243 // didn't contain the function index in the VST, or when we have 5244 // an anonymous function which would not have a VST entry. 5245 // Assert that we have one of those two cases. 5246 assert(VSTOffset == 0 || !F->hasName()); 5247 // Parse the next body in the stream and set its position in the 5248 // DeferredFunctionInfo map. 5249 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5250 return EC; 5251 } 5252 return std::error_code(); 5253 } 5254 5255 //===----------------------------------------------------------------------===// 5256 // GVMaterializer implementation 5257 //===----------------------------------------------------------------------===// 5258 5259 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5260 5261 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5262 // In older bitcode we must materialize the metadata before parsing 5263 // any functions, in order to set up the MetadataList properly. 5264 if (!SeenModuleValuesRecord) { 5265 if (std::error_code EC = materializeMetadata()) 5266 return EC; 5267 } 5268 5269 Function *F = dyn_cast<Function>(GV); 5270 // If it's not a function or is already material, ignore the request. 5271 if (!F || !F->isMaterializable()) 5272 return std::error_code(); 5273 5274 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5275 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5276 // If its position is recorded as 0, its body is somewhere in the stream 5277 // but we haven't seen it yet. 5278 if (DFII->second == 0) 5279 if (std::error_code EC = findFunctionInStream(F, DFII)) 5280 return EC; 5281 5282 // Move the bit stream to the saved position of the deferred function body. 5283 Stream.JumpToBit(DFII->second); 5284 5285 if (std::error_code EC = parseFunctionBody(F)) 5286 return EC; 5287 F->setIsMaterializable(false); 5288 5289 if (StripDebugInfo) 5290 stripDebugInfo(*F); 5291 5292 // Upgrade any old intrinsic calls in the function. 5293 for (auto &I : UpgradedIntrinsics) { 5294 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5295 UI != UE;) { 5296 User *U = *UI; 5297 ++UI; 5298 if (CallInst *CI = dyn_cast<CallInst>(U)) 5299 UpgradeIntrinsicCall(CI, I.second); 5300 } 5301 } 5302 5303 // Finish fn->subprogram upgrade for materialized functions. 5304 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5305 F->setSubprogram(SP); 5306 5307 // Bring in any functions that this function forward-referenced via 5308 // blockaddresses. 5309 return materializeForwardReferencedFunctions(); 5310 } 5311 5312 std::error_code BitcodeReader::materializeModule() { 5313 if (std::error_code EC = materializeMetadata()) 5314 return EC; 5315 5316 // Promise to materialize all forward references. 5317 WillMaterializeAllForwardRefs = true; 5318 5319 // Iterate over the module, deserializing any functions that are still on 5320 // disk. 5321 for (Function &F : *TheModule) { 5322 if (std::error_code EC = materialize(&F)) 5323 return EC; 5324 } 5325 // At this point, if there are any function bodies, parse the rest of 5326 // the bits in the module past the last function block we have recorded 5327 // through either lazy scanning or the VST. 5328 if (LastFunctionBlockBit || NextUnreadBit) 5329 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5330 : NextUnreadBit); 5331 5332 // Check that all block address forward references got resolved (as we 5333 // promised above). 5334 if (!BasicBlockFwdRefs.empty()) 5335 return error("Never resolved function from blockaddress"); 5336 5337 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5338 // delete the old functions to clean up. We can't do this unless the entire 5339 // module is materialized because there could always be another function body 5340 // with calls to the old function. 5341 for (auto &I : UpgradedIntrinsics) { 5342 for (auto *U : I.first->users()) { 5343 if (CallInst *CI = dyn_cast<CallInst>(U)) 5344 UpgradeIntrinsicCall(CI, I.second); 5345 } 5346 if (!I.first->use_empty()) 5347 I.first->replaceAllUsesWith(I.second); 5348 I.first->eraseFromParent(); 5349 } 5350 UpgradedIntrinsics.clear(); 5351 5352 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5353 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5354 5355 UpgradeDebugInfo(*TheModule); 5356 return std::error_code(); 5357 } 5358 5359 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5360 return IdentifiedStructTypes; 5361 } 5362 5363 std::error_code 5364 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5365 if (Streamer) 5366 return initLazyStream(std::move(Streamer)); 5367 return initStreamFromBuffer(); 5368 } 5369 5370 std::error_code BitcodeReader::initStreamFromBuffer() { 5371 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5372 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5373 5374 if (Buffer->getBufferSize() & 3) 5375 return error("Invalid bitcode signature"); 5376 5377 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5378 // The magic number is 0x0B17C0DE stored in little endian. 5379 if (isBitcodeWrapper(BufPtr, BufEnd)) 5380 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5381 return error("Invalid bitcode wrapper header"); 5382 5383 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5384 Stream.init(&*StreamFile); 5385 5386 return std::error_code(); 5387 } 5388 5389 std::error_code 5390 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5391 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5392 // see it. 5393 auto OwnedBytes = 5394 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5395 StreamingMemoryObject &Bytes = *OwnedBytes; 5396 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5397 Stream.init(&*StreamFile); 5398 5399 unsigned char buf[16]; 5400 if (Bytes.readBytes(buf, 16, 0) != 16) 5401 return error("Invalid bitcode signature"); 5402 5403 if (!isBitcode(buf, buf + 16)) 5404 return error("Invalid bitcode signature"); 5405 5406 if (isBitcodeWrapper(buf, buf + 4)) { 5407 const unsigned char *bitcodeStart = buf; 5408 const unsigned char *bitcodeEnd = buf + 16; 5409 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5410 Bytes.dropLeadingBytes(bitcodeStart - buf); 5411 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5412 } 5413 return std::error_code(); 5414 } 5415 5416 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5417 const Twine &Message) { 5418 return ::error(DiagnosticHandler, make_error_code(E), Message); 5419 } 5420 5421 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5422 return ::error(DiagnosticHandler, 5423 make_error_code(BitcodeError::CorruptedBitcode), Message); 5424 } 5425 5426 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5427 return ::error(DiagnosticHandler, make_error_code(E)); 5428 } 5429 5430 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5431 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5432 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5433 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5434 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5435 5436 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5437 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5438 bool CheckGlobalValSummaryPresenceOnly) 5439 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5440 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5441 5442 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5443 5444 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5445 5446 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5447 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5448 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5449 return VGI->second; 5450 } 5451 5452 GlobalValueInfo * 5453 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5454 auto I = SummaryOffsetToInfoMap.find(Offset); 5455 assert(I != SummaryOffsetToInfoMap.end()); 5456 return I->second; 5457 } 5458 5459 // Specialized value symbol table parser used when reading module index 5460 // blocks where we don't actually create global values. 5461 // At the end of this routine the module index is populated with a map 5462 // from global value name to GlobalValueInfo. The global value info contains 5463 // the function block's bitcode offset (if applicable), or the offset into the 5464 // summary section for the combined index. 5465 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5466 uint64_t Offset, 5467 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5468 assert(Offset > 0 && "Expected non-zero VST offset"); 5469 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5470 5471 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5472 return error("Invalid record"); 5473 5474 SmallVector<uint64_t, 64> Record; 5475 5476 // Read all the records for this value table. 5477 SmallString<128> ValueName; 5478 while (1) { 5479 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5480 5481 switch (Entry.Kind) { 5482 case BitstreamEntry::SubBlock: // Handled for us already. 5483 case BitstreamEntry::Error: 5484 return error("Malformed block"); 5485 case BitstreamEntry::EndBlock: 5486 // Done parsing VST, jump back to wherever we came from. 5487 Stream.JumpToBit(CurrentBit); 5488 return std::error_code(); 5489 case BitstreamEntry::Record: 5490 // The interesting case. 5491 break; 5492 } 5493 5494 // Read a record. 5495 Record.clear(); 5496 switch (Stream.readRecord(Entry.ID, Record)) { 5497 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5498 break; 5499 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5500 if (convertToString(Record, 1, ValueName)) 5501 return error("Invalid record"); 5502 unsigned ValueID = Record[0]; 5503 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5504 llvm::make_unique<GlobalValueInfo>(); 5505 assert(!SourceFileName.empty()); 5506 auto VLI = ValueIdToLinkageMap.find(ValueID); 5507 assert(VLI != ValueIdToLinkageMap.end() && 5508 "No linkage found for VST entry?"); 5509 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5510 ValueName, VLI->second, SourceFileName); 5511 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5512 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5513 ValueName.clear(); 5514 break; 5515 } 5516 case bitc::VST_CODE_FNENTRY: { 5517 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5518 if (convertToString(Record, 2, ValueName)) 5519 return error("Invalid record"); 5520 unsigned ValueID = Record[0]; 5521 uint64_t FuncOffset = Record[1]; 5522 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5523 std::unique_ptr<GlobalValueInfo> FuncInfo = 5524 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5525 assert(!SourceFileName.empty()); 5526 auto VLI = ValueIdToLinkageMap.find(ValueID); 5527 assert(VLI != ValueIdToLinkageMap.end() && 5528 "No linkage found for VST entry?"); 5529 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5530 ValueName, VLI->second, SourceFileName); 5531 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5532 ValueIdToCallGraphGUIDMap[ValueID] = 5533 GlobalValue::getGUID(FunctionGlobalId); 5534 5535 ValueName.clear(); 5536 break; 5537 } 5538 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5539 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5540 unsigned ValueID = Record[0]; 5541 uint64_t GlobalValSummaryOffset = Record[1]; 5542 uint64_t GlobalValGUID = Record[2]; 5543 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5544 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5545 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5546 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5547 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5548 break; 5549 } 5550 case bitc::VST_CODE_COMBINED_ENTRY: { 5551 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5552 unsigned ValueID = Record[0]; 5553 uint64_t RefGUID = Record[1]; 5554 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5555 break; 5556 } 5557 } 5558 } 5559 } 5560 5561 // Parse just the blocks needed for building the index out of the module. 5562 // At the end of this routine the module Index is populated with a map 5563 // from global value name to GlobalValueInfo. The global value info contains 5564 // either the parsed summary information (when parsing summaries 5565 // eagerly), or just to the summary record's offset 5566 // if parsing lazily (IsLazy). 5567 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5568 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5569 return error("Invalid record"); 5570 5571 SmallVector<uint64_t, 64> Record; 5572 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5573 unsigned ValueId = 0; 5574 5575 // Read the index for this module. 5576 while (1) { 5577 BitstreamEntry Entry = Stream.advance(); 5578 5579 switch (Entry.Kind) { 5580 case BitstreamEntry::Error: 5581 return error("Malformed block"); 5582 case BitstreamEntry::EndBlock: 5583 return std::error_code(); 5584 5585 case BitstreamEntry::SubBlock: 5586 if (CheckGlobalValSummaryPresenceOnly) { 5587 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5588 SeenGlobalValSummary = true; 5589 // No need to parse the rest since we found the summary. 5590 return std::error_code(); 5591 } 5592 if (Stream.SkipBlock()) 5593 return error("Invalid record"); 5594 continue; 5595 } 5596 switch (Entry.ID) { 5597 default: // Skip unknown content. 5598 if (Stream.SkipBlock()) 5599 return error("Invalid record"); 5600 break; 5601 case bitc::BLOCKINFO_BLOCK_ID: 5602 // Need to parse these to get abbrev ids (e.g. for VST) 5603 if (Stream.ReadBlockInfoBlock()) 5604 return error("Malformed block"); 5605 break; 5606 case bitc::VALUE_SYMTAB_BLOCK_ID: 5607 // Should have been parsed earlier via VSTOffset, unless there 5608 // is no summary section. 5609 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5610 !SeenGlobalValSummary) && 5611 "Expected early VST parse via VSTOffset record"); 5612 if (Stream.SkipBlock()) 5613 return error("Invalid record"); 5614 break; 5615 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5616 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5617 assert(!SeenValueSymbolTable && 5618 "Already read VST when parsing summary block?"); 5619 if (std::error_code EC = 5620 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5621 return EC; 5622 SeenValueSymbolTable = true; 5623 SeenGlobalValSummary = true; 5624 if (IsLazy) { 5625 // Lazy parsing of summary info, skip it. 5626 if (Stream.SkipBlock()) 5627 return error("Invalid record"); 5628 } else if (std::error_code EC = parseEntireSummary()) 5629 return EC; 5630 break; 5631 case bitc::MODULE_STRTAB_BLOCK_ID: 5632 if (std::error_code EC = parseModuleStringTable()) 5633 return EC; 5634 break; 5635 } 5636 continue; 5637 5638 case BitstreamEntry::Record: 5639 // Once we find the last record of interest, skip the rest. 5640 if (VSTOffset > 0) 5641 Stream.skipRecord(Entry.ID); 5642 else { 5643 Record.clear(); 5644 auto BitCode = Stream.readRecord(Entry.ID, Record); 5645 switch (BitCode) { 5646 default: 5647 break; // Default behavior, ignore unknown content. 5648 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5649 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5650 SmallString<128> ValueName; 5651 if (convertToString(Record, 0, ValueName)) 5652 return error("Invalid record"); 5653 SourceFileName = ValueName.c_str(); 5654 break; 5655 } 5656 /// MODULE_CODE_VSTOFFSET: [offset] 5657 case bitc::MODULE_CODE_VSTOFFSET: 5658 if (Record.size() < 1) 5659 return error("Invalid record"); 5660 VSTOffset = Record[0]; 5661 break; 5662 // GLOBALVAR: [pointer type, isconst, initid, 5663 // linkage, alignment, section, visibility, threadlocal, 5664 // unnamed_addr, externally_initialized, dllstorageclass, 5665 // comdat] 5666 case bitc::MODULE_CODE_GLOBALVAR: { 5667 if (Record.size() < 6) 5668 return error("Invalid record"); 5669 uint64_t RawLinkage = Record[3]; 5670 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5671 ValueIdToLinkageMap[ValueId++] = Linkage; 5672 break; 5673 } 5674 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5675 // alignment, section, visibility, gc, unnamed_addr, 5676 // prologuedata, dllstorageclass, comdat, prefixdata] 5677 case bitc::MODULE_CODE_FUNCTION: { 5678 if (Record.size() < 8) 5679 return error("Invalid record"); 5680 uint64_t RawLinkage = Record[3]; 5681 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5682 ValueIdToLinkageMap[ValueId++] = Linkage; 5683 break; 5684 } 5685 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5686 // dllstorageclass] 5687 case bitc::MODULE_CODE_ALIAS: { 5688 if (Record.size() < 6) 5689 return error("Invalid record"); 5690 uint64_t RawLinkage = Record[3]; 5691 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5692 ValueIdToLinkageMap[ValueId++] = Linkage; 5693 break; 5694 } 5695 } 5696 } 5697 continue; 5698 } 5699 } 5700 } 5701 5702 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5703 // objects in the index. 5704 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5705 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5706 return error("Invalid record"); 5707 5708 SmallVector<uint64_t, 64> Record; 5709 5710 bool Combined = false; 5711 while (1) { 5712 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5713 5714 switch (Entry.Kind) { 5715 case BitstreamEntry::SubBlock: // Handled for us already. 5716 case BitstreamEntry::Error: 5717 return error("Malformed block"); 5718 case BitstreamEntry::EndBlock: 5719 // For a per-module index, remove any entries that still have empty 5720 // summaries. The VST parsing creates entries eagerly for all symbols, 5721 // but not all have associated summaries (e.g. it doesn't know how to 5722 // distinguish between VST_CODE_ENTRY for function declarations vs global 5723 // variables with initializers that end up with a summary). Remove those 5724 // entries now so that we don't need to rely on the combined index merger 5725 // to clean them up (especially since that may not run for the first 5726 // module's index if we merge into that). 5727 if (!Combined) 5728 TheIndex->removeEmptySummaryEntries(); 5729 return std::error_code(); 5730 case BitstreamEntry::Record: 5731 // The interesting case. 5732 break; 5733 } 5734 5735 // Read a record. The record format depends on whether this 5736 // is a per-module index or a combined index file. In the per-module 5737 // case the records contain the associated value's ID for correlation 5738 // with VST entries. In the combined index the correlation is done 5739 // via the bitcode offset of the summary records (which were saved 5740 // in the combined index VST entries). The records also contain 5741 // information used for ThinLTO renaming and importing. 5742 Record.clear(); 5743 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5744 auto BitCode = Stream.readRecord(Entry.ID, Record); 5745 switch (BitCode) { 5746 default: // Default behavior: ignore. 5747 break; 5748 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5749 // n x (valueid, callsitecount)] 5750 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5751 // numrefs x valueid, 5752 // n x (valueid, callsitecount, profilecount)] 5753 case bitc::FS_PERMODULE: 5754 case bitc::FS_PERMODULE_PROFILE: { 5755 unsigned ValueID = Record[0]; 5756 uint64_t RawLinkage = Record[1]; 5757 unsigned InstCount = Record[2]; 5758 unsigned NumRefs = Record[3]; 5759 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5760 getDecodedLinkage(RawLinkage), InstCount); 5761 // The module path string ref set in the summary must be owned by the 5762 // index's module string table. Since we don't have a module path 5763 // string table section in the per-module index, we create a single 5764 // module path string table entry with an empty (0) ID to take 5765 // ownership. 5766 FS->setModulePath( 5767 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5768 static int RefListStartIndex = 4; 5769 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5770 assert(Record.size() >= RefListStartIndex + NumRefs && 5771 "Record size inconsistent with number of references"); 5772 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5773 unsigned RefValueId = Record[I]; 5774 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5775 FS->addRefEdge(RefGUID); 5776 } 5777 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5778 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5779 ++I) { 5780 unsigned CalleeValueId = Record[I]; 5781 unsigned CallsiteCount = Record[++I]; 5782 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5783 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5784 FS->addCallGraphEdge(CalleeGUID, 5785 CalleeInfo(CallsiteCount, ProfileCount)); 5786 } 5787 uint64_t GUID = getGUIDFromValueId(ValueID); 5788 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5789 assert(InfoList != TheIndex->end() && 5790 "Expected VST parse to create GlobalValueInfo entry"); 5791 assert(InfoList->second.size() == 1 && 5792 "Expected a single GlobalValueInfo per GUID in module"); 5793 auto &Info = InfoList->second[0]; 5794 assert(!Info->summary() && "Expected a single summary per VST entry"); 5795 Info->setSummary(std::move(FS)); 5796 break; 5797 } 5798 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5799 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5800 unsigned ValueID = Record[0]; 5801 uint64_t RawLinkage = Record[1]; 5802 std::unique_ptr<GlobalVarSummary> FS = 5803 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5804 FS->setModulePath( 5805 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5806 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5807 unsigned RefValueId = Record[I]; 5808 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5809 FS->addRefEdge(RefGUID); 5810 } 5811 uint64_t GUID = getGUIDFromValueId(ValueID); 5812 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5813 assert(InfoList != TheIndex->end() && 5814 "Expected VST parse to create GlobalValueInfo entry"); 5815 assert(InfoList->second.size() == 1 && 5816 "Expected a single GlobalValueInfo per GUID in module"); 5817 auto &Info = InfoList->second[0]; 5818 assert(!Info->summary() && "Expected a single summary per VST entry"); 5819 Info->setSummary(std::move(FS)); 5820 break; 5821 } 5822 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5823 // n x (valueid, callsitecount)] 5824 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5825 // numrefs x valueid, 5826 // n x (valueid, callsitecount, profilecount)] 5827 case bitc::FS_COMBINED: 5828 case bitc::FS_COMBINED_PROFILE: { 5829 uint64_t ModuleId = Record[0]; 5830 uint64_t RawLinkage = Record[1]; 5831 unsigned InstCount = Record[2]; 5832 unsigned NumRefs = Record[3]; 5833 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5834 getDecodedLinkage(RawLinkage), InstCount); 5835 FS->setModulePath(ModuleIdMap[ModuleId]); 5836 static int RefListStartIndex = 4; 5837 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5838 assert(Record.size() >= RefListStartIndex + NumRefs && 5839 "Record size inconsistent with number of references"); 5840 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5841 unsigned RefValueId = Record[I]; 5842 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5843 FS->addRefEdge(RefGUID); 5844 } 5845 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5846 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5847 ++I) { 5848 unsigned CalleeValueId = Record[I]; 5849 unsigned CallsiteCount = Record[++I]; 5850 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5851 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5852 FS->addCallGraphEdge(CalleeGUID, 5853 CalleeInfo(CallsiteCount, ProfileCount)); 5854 } 5855 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5856 assert(!Info->summary() && "Expected a single summary per VST entry"); 5857 Info->setSummary(std::move(FS)); 5858 Combined = true; 5859 break; 5860 } 5861 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5862 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5863 uint64_t ModuleId = Record[0]; 5864 uint64_t RawLinkage = Record[1]; 5865 std::unique_ptr<GlobalVarSummary> FS = 5866 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5867 FS->setModulePath(ModuleIdMap[ModuleId]); 5868 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5869 unsigned RefValueId = Record[I]; 5870 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5871 FS->addRefEdge(RefGUID); 5872 } 5873 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5874 assert(!Info->summary() && "Expected a single summary per VST entry"); 5875 Info->setSummary(std::move(FS)); 5876 Combined = true; 5877 break; 5878 } 5879 } 5880 } 5881 llvm_unreachable("Exit infinite loop"); 5882 } 5883 5884 // Parse the module string table block into the Index. 5885 // This populates the ModulePathStringTable map in the index. 5886 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5887 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5888 return error("Invalid record"); 5889 5890 SmallVector<uint64_t, 64> Record; 5891 5892 SmallString<128> ModulePath; 5893 while (1) { 5894 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5895 5896 switch (Entry.Kind) { 5897 case BitstreamEntry::SubBlock: // Handled for us already. 5898 case BitstreamEntry::Error: 5899 return error("Malformed block"); 5900 case BitstreamEntry::EndBlock: 5901 return std::error_code(); 5902 case BitstreamEntry::Record: 5903 // The interesting case. 5904 break; 5905 } 5906 5907 Record.clear(); 5908 switch (Stream.readRecord(Entry.ID, Record)) { 5909 default: // Default behavior: ignore. 5910 break; 5911 case bitc::MST_CODE_ENTRY: { 5912 // MST_ENTRY: [modid, namechar x N] 5913 if (convertToString(Record, 1, ModulePath)) 5914 return error("Invalid record"); 5915 uint64_t ModuleId = Record[0]; 5916 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5917 ModuleIdMap[ModuleId] = ModulePathInMap; 5918 ModulePath.clear(); 5919 break; 5920 } 5921 } 5922 } 5923 llvm_unreachable("Exit infinite loop"); 5924 } 5925 5926 // Parse the function info index from the bitcode streamer into the given index. 5927 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5928 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5929 TheIndex = I; 5930 5931 if (std::error_code EC = initStream(std::move(Streamer))) 5932 return EC; 5933 5934 // Sniff for the signature. 5935 if (!hasValidBitcodeHeader(Stream)) 5936 return error("Invalid bitcode signature"); 5937 5938 // We expect a number of well-defined blocks, though we don't necessarily 5939 // need to understand them all. 5940 while (1) { 5941 if (Stream.AtEndOfStream()) { 5942 // We didn't really read a proper Module block. 5943 return error("Malformed block"); 5944 } 5945 5946 BitstreamEntry Entry = 5947 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5948 5949 if (Entry.Kind != BitstreamEntry::SubBlock) 5950 return error("Malformed block"); 5951 5952 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5953 // building the function summary index. 5954 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5955 return parseModule(); 5956 5957 if (Stream.SkipBlock()) 5958 return error("Invalid record"); 5959 } 5960 } 5961 5962 // Parse the summary information at the given offset in the buffer into 5963 // the index. Used to support lazy parsing of summaries from the 5964 // combined index during importing. 5965 // TODO: This function is not yet complete as it won't have a consumer 5966 // until ThinLTO function importing is added. 5967 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 5968 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 5969 size_t SummaryOffset) { 5970 TheIndex = I; 5971 5972 if (std::error_code EC = initStream(std::move(Streamer))) 5973 return EC; 5974 5975 // Sniff for the signature. 5976 if (!hasValidBitcodeHeader(Stream)) 5977 return error("Invalid bitcode signature"); 5978 5979 Stream.JumpToBit(SummaryOffset); 5980 5981 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5982 5983 switch (Entry.Kind) { 5984 default: 5985 return error("Malformed block"); 5986 case BitstreamEntry::Record: 5987 // The expected case. 5988 break; 5989 } 5990 5991 // TODO: Read a record. This interface will be completed when ThinLTO 5992 // importing is added so that it can be tested. 5993 SmallVector<uint64_t, 64> Record; 5994 switch (Stream.readRecord(Entry.ID, Record)) { 5995 case bitc::FS_COMBINED: 5996 case bitc::FS_COMBINED_PROFILE: 5997 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 5998 default: 5999 return error("Invalid record"); 6000 } 6001 6002 return std::error_code(); 6003 } 6004 6005 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6006 std::unique_ptr<DataStreamer> Streamer) { 6007 if (Streamer) 6008 return initLazyStream(std::move(Streamer)); 6009 return initStreamFromBuffer(); 6010 } 6011 6012 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6013 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6014 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6015 6016 if (Buffer->getBufferSize() & 3) 6017 return error("Invalid bitcode signature"); 6018 6019 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6020 // The magic number is 0x0B17C0DE stored in little endian. 6021 if (isBitcodeWrapper(BufPtr, BufEnd)) 6022 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6023 return error("Invalid bitcode wrapper header"); 6024 6025 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6026 Stream.init(&*StreamFile); 6027 6028 return std::error_code(); 6029 } 6030 6031 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6032 std::unique_ptr<DataStreamer> Streamer) { 6033 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6034 // see it. 6035 auto OwnedBytes = 6036 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6037 StreamingMemoryObject &Bytes = *OwnedBytes; 6038 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6039 Stream.init(&*StreamFile); 6040 6041 unsigned char buf[16]; 6042 if (Bytes.readBytes(buf, 16, 0) != 16) 6043 return error("Invalid bitcode signature"); 6044 6045 if (!isBitcode(buf, buf + 16)) 6046 return error("Invalid bitcode signature"); 6047 6048 if (isBitcodeWrapper(buf, buf + 4)) { 6049 const unsigned char *bitcodeStart = buf; 6050 const unsigned char *bitcodeEnd = buf + 16; 6051 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6052 Bytes.dropLeadingBytes(bitcodeStart - buf); 6053 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6054 } 6055 return std::error_code(); 6056 } 6057 6058 namespace { 6059 class BitcodeErrorCategoryType : public std::error_category { 6060 const char *name() const LLVM_NOEXCEPT override { 6061 return "llvm.bitcode"; 6062 } 6063 std::string message(int IE) const override { 6064 BitcodeError E = static_cast<BitcodeError>(IE); 6065 switch (E) { 6066 case BitcodeError::InvalidBitcodeSignature: 6067 return "Invalid bitcode signature"; 6068 case BitcodeError::CorruptedBitcode: 6069 return "Corrupted bitcode"; 6070 } 6071 llvm_unreachable("Unknown error type!"); 6072 } 6073 }; 6074 } // end anonymous namespace 6075 6076 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6077 6078 const std::error_category &llvm::BitcodeErrorCategory() { 6079 return *ErrorCategory; 6080 } 6081 6082 //===----------------------------------------------------------------------===// 6083 // External interface 6084 //===----------------------------------------------------------------------===// 6085 6086 static ErrorOr<std::unique_ptr<Module>> 6087 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6088 BitcodeReader *R, LLVMContext &Context, 6089 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6090 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6091 M->setMaterializer(R); 6092 6093 auto cleanupOnError = [&](std::error_code EC) { 6094 R->releaseBuffer(); // Never take ownership on error. 6095 return EC; 6096 }; 6097 6098 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6099 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6100 ShouldLazyLoadMetadata)) 6101 return cleanupOnError(EC); 6102 6103 if (MaterializeAll) { 6104 // Read in the entire module, and destroy the BitcodeReader. 6105 if (std::error_code EC = M->materializeAll()) 6106 return cleanupOnError(EC); 6107 } else { 6108 // Resolve forward references from blockaddresses. 6109 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6110 return cleanupOnError(EC); 6111 } 6112 return std::move(M); 6113 } 6114 6115 /// \brief Get a lazy one-at-time loading module from bitcode. 6116 /// 6117 /// This isn't always used in a lazy context. In particular, it's also used by 6118 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6119 /// in forward-referenced functions from block address references. 6120 /// 6121 /// \param[in] MaterializeAll Set to \c true if we should materialize 6122 /// everything. 6123 static ErrorOr<std::unique_ptr<Module>> 6124 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6125 LLVMContext &Context, bool MaterializeAll, 6126 bool ShouldLazyLoadMetadata = false) { 6127 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6128 6129 ErrorOr<std::unique_ptr<Module>> Ret = 6130 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6131 MaterializeAll, ShouldLazyLoadMetadata); 6132 if (!Ret) 6133 return Ret; 6134 6135 Buffer.release(); // The BitcodeReader owns it now. 6136 return Ret; 6137 } 6138 6139 ErrorOr<std::unique_ptr<Module>> 6140 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6141 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6142 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6143 ShouldLazyLoadMetadata); 6144 } 6145 6146 ErrorOr<std::unique_ptr<Module>> 6147 llvm::getStreamedBitcodeModule(StringRef Name, 6148 std::unique_ptr<DataStreamer> Streamer, 6149 LLVMContext &Context) { 6150 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6151 BitcodeReader *R = new BitcodeReader(Context); 6152 6153 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6154 false); 6155 } 6156 6157 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6158 LLVMContext &Context) { 6159 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6160 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6161 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6162 // written. We must defer until the Module has been fully materialized. 6163 } 6164 6165 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6166 LLVMContext &Context) { 6167 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6168 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6169 ErrorOr<std::string> Triple = R->parseTriple(); 6170 if (Triple.getError()) 6171 return ""; 6172 return Triple.get(); 6173 } 6174 6175 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6176 LLVMContext &Context) { 6177 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6178 BitcodeReader R(Buf.release(), Context); 6179 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6180 if (ProducerString.getError()) 6181 return ""; 6182 return ProducerString.get(); 6183 } 6184 6185 // Parse the specified bitcode buffer, returning the function info index. 6186 // If IsLazy is false, parse the entire function summary into 6187 // the index. Otherwise skip the function summary section, and only create 6188 // an index object with a map from function name to function summary offset. 6189 // The index is used to perform lazy function summary reading later. 6190 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6191 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6192 DiagnosticHandlerFunction DiagnosticHandler, 6193 bool IsLazy) { 6194 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6195 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6196 6197 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6198 6199 auto cleanupOnError = [&](std::error_code EC) { 6200 R.releaseBuffer(); // Never take ownership on error. 6201 return EC; 6202 }; 6203 6204 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6205 return cleanupOnError(EC); 6206 6207 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6208 return std::move(Index); 6209 } 6210 6211 // Check if the given bitcode buffer contains a global value summary block. 6212 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6213 DiagnosticHandlerFunction DiagnosticHandler) { 6214 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6215 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6216 6217 auto cleanupOnError = [&](std::error_code EC) { 6218 R.releaseBuffer(); // Never take ownership on error. 6219 return false; 6220 }; 6221 6222 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6223 return cleanupOnError(EC); 6224 6225 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6226 return R.foundGlobalValSummary(); 6227 } 6228 6229 // This method supports lazy reading of summary data from the combined 6230 // index during ThinLTO function importing. When reading the combined index 6231 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6232 // Then this method is called for each value considered for importing, 6233 // to parse the summary information for the given value name into 6234 // the index. 6235 std::error_code llvm::readGlobalValueSummary( 6236 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6237 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6238 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6239 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6240 6241 auto cleanupOnError = [&](std::error_code EC) { 6242 R.releaseBuffer(); // Never take ownership on error. 6243 return EC; 6244 }; 6245 6246 // Lookup the given value name in the GlobalValueMap, which may 6247 // contain a list of global value infos in the case of a COMDAT. Walk through 6248 // and parse each summary info at the summary offset 6249 // recorded when parsing the value symbol table. 6250 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6251 size_t SummaryOffset = FI->bitcodeIndex(); 6252 if (std::error_code EC = 6253 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6254 return cleanupOnError(EC); 6255 } 6256 6257 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6258 return std::error_code(); 6259 } 6260