1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 376 : Stream(std::move(Stream)), Strtab(Strtab) { 377 this->Stream.setBlockInfo(&BlockInfo); 378 } 379 380 BitstreamBlockInfo BlockInfo; 381 BitstreamCursor Stream; 382 StringRef Strtab; 383 384 /// In version 2 of the bitcode we store names of global values and comdats in 385 /// a string table rather than in the VST. 386 bool UseStrtab = false; 387 388 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 389 390 /// If this module uses a string table, pop the reference to the string table 391 /// and return the referenced string and the rest of the record. Otherwise 392 /// just return the record itself. 393 std::pair<StringRef, ArrayRef<uint64_t>> 394 readNameFromStrtab(ArrayRef<uint64_t> Record); 395 396 bool readBlockInfo(); 397 398 // Contains an arbitrary and optional string identifying the bitcode producer 399 std::string ProducerIdentification; 400 401 Error error(const Twine &Message); 402 }; 403 404 Error BitcodeReaderBase::error(const Twine &Message) { 405 std::string FullMsg = Message.str(); 406 if (!ProducerIdentification.empty()) 407 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 408 LLVM_VERSION_STRING "')"; 409 return ::error(FullMsg); 410 } 411 412 Expected<unsigned> 413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 414 if (Record.size() < 1) 415 return error("Invalid record"); 416 unsigned ModuleVersion = Record[0]; 417 if (ModuleVersion > 2) 418 return error("Invalid value"); 419 UseStrtab = ModuleVersion >= 2; 420 return ModuleVersion; 421 } 422 423 std::pair<StringRef, ArrayRef<uint64_t>> 424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 425 if (!UseStrtab) 426 return {"", Record}; 427 // Invalid reference. Let the caller complain about the record being empty. 428 if (Record[0] + Record[1] > Strtab.size()) 429 return {"", {}}; 430 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 431 } 432 433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 434 LLVMContext &Context; 435 Module *TheModule = nullptr; 436 // Next offset to start scanning for lazy parsing of function bodies. 437 uint64_t NextUnreadBit = 0; 438 // Last function offset found in the VST. 439 uint64_t LastFunctionBlockBit = 0; 440 bool SeenValueSymbolTable = false; 441 uint64_t VSTOffset = 0; 442 443 std::vector<std::string> SectionTable; 444 std::vector<std::string> GCTable; 445 446 std::vector<Type*> TypeList; 447 BitcodeReaderValueList ValueList; 448 Optional<MetadataLoader> MDLoader; 449 std::vector<Comdat *> ComdatList; 450 SmallVector<Instruction *, 64> InstructionList; 451 452 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 453 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 454 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 455 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 456 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 457 458 /// The set of attributes by index. Index zero in the file is for null, and 459 /// is thus not represented here. As such all indices are off by one. 460 std::vector<AttributeList> MAttributes; 461 462 /// The set of attribute groups. 463 std::map<unsigned, AttributeList> MAttributeGroups; 464 465 /// While parsing a function body, this is a list of the basic blocks for the 466 /// function. 467 std::vector<BasicBlock*> FunctionBBs; 468 469 // When reading the module header, this list is populated with functions that 470 // have bodies later in the file. 471 std::vector<Function*> FunctionsWithBodies; 472 473 // When intrinsic functions are encountered which require upgrading they are 474 // stored here with their replacement function. 475 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 476 UpdatedIntrinsicMap UpgradedIntrinsics; 477 // Intrinsics which were remangled because of types rename 478 UpdatedIntrinsicMap RemangledIntrinsics; 479 480 // Several operations happen after the module header has been read, but 481 // before function bodies are processed. This keeps track of whether 482 // we've done this yet. 483 bool SeenFirstFunctionBody = false; 484 485 /// When function bodies are initially scanned, this map contains info about 486 /// where to find deferred function body in the stream. 487 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 488 489 /// When Metadata block is initially scanned when parsing the module, we may 490 /// choose to defer parsing of the metadata. This vector contains info about 491 /// which Metadata blocks are deferred. 492 std::vector<uint64_t> DeferredMetadataInfo; 493 494 /// These are basic blocks forward-referenced by block addresses. They are 495 /// inserted lazily into functions when they're loaded. The basic block ID is 496 /// its index into the vector. 497 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 498 std::deque<Function *> BasicBlockFwdRefQueue; 499 500 /// Indicates that we are using a new encoding for instruction operands where 501 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 502 /// instruction number, for a more compact encoding. Some instruction 503 /// operands are not relative to the instruction ID: basic block numbers, and 504 /// types. Once the old style function blocks have been phased out, we would 505 /// not need this flag. 506 bool UseRelativeIDs = false; 507 508 /// True if all functions will be materialized, negating the need to process 509 /// (e.g.) blockaddress forward references. 510 bool WillMaterializeAllForwardRefs = false; 511 512 bool StripDebugInfo = false; 513 TBAAVerifier TBAAVerifyHelper; 514 515 std::vector<std::string> BundleTags; 516 517 public: 518 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 519 StringRef ProducerIdentification, LLVMContext &Context); 520 521 Error materializeForwardReferencedFunctions(); 522 523 Error materialize(GlobalValue *GV) override; 524 Error materializeModule() override; 525 std::vector<StructType *> getIdentifiedStructTypes() const override; 526 527 /// \brief Main interface to parsing a bitcode buffer. 528 /// \returns true if an error occurred. 529 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 530 bool IsImporting = false); 531 532 static uint64_t decodeSignRotatedValue(uint64_t V); 533 534 /// Materialize any deferred Metadata block. 535 Error materializeMetadata() override; 536 537 void setStripDebugInfo() override; 538 539 private: 540 std::vector<StructType *> IdentifiedStructTypes; 541 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 542 StructType *createIdentifiedStructType(LLVMContext &Context); 543 544 Type *getTypeByID(unsigned ID); 545 546 Value *getFnValueByID(unsigned ID, Type *Ty) { 547 if (Ty && Ty->isMetadataTy()) 548 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 549 return ValueList.getValueFwdRef(ID, Ty); 550 } 551 552 Metadata *getFnMetadataByID(unsigned ID) { 553 return MDLoader->getMetadataFwdRefOrLoad(ID); 554 } 555 556 BasicBlock *getBasicBlock(unsigned ID) const { 557 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 558 return FunctionBBs[ID]; 559 } 560 561 AttributeList getAttributes(unsigned i) const { 562 if (i-1 < MAttributes.size()) 563 return MAttributes[i-1]; 564 return AttributeList(); 565 } 566 567 /// Read a value/type pair out of the specified record from slot 'Slot'. 568 /// Increment Slot past the number of slots used in the record. Return true on 569 /// failure. 570 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 571 unsigned InstNum, Value *&ResVal) { 572 if (Slot == Record.size()) return true; 573 unsigned ValNo = (unsigned)Record[Slot++]; 574 // Adjust the ValNo, if it was encoded relative to the InstNum. 575 if (UseRelativeIDs) 576 ValNo = InstNum - ValNo; 577 if (ValNo < InstNum) { 578 // If this is not a forward reference, just return the value we already 579 // have. 580 ResVal = getFnValueByID(ValNo, nullptr); 581 return ResVal == nullptr; 582 } 583 if (Slot == Record.size()) 584 return true; 585 586 unsigned TypeNo = (unsigned)Record[Slot++]; 587 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 588 return ResVal == nullptr; 589 } 590 591 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 592 /// past the number of slots used by the value in the record. Return true if 593 /// there is an error. 594 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 595 unsigned InstNum, Type *Ty, Value *&ResVal) { 596 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 597 return true; 598 // All values currently take a single record slot. 599 ++Slot; 600 return false; 601 } 602 603 /// Like popValue, but does not increment the Slot number. 604 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 605 unsigned InstNum, Type *Ty, Value *&ResVal) { 606 ResVal = getValue(Record, Slot, InstNum, Ty); 607 return ResVal == nullptr; 608 } 609 610 /// Version of getValue that returns ResVal directly, or 0 if there is an 611 /// error. 612 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty) { 614 if (Slot == Record.size()) return nullptr; 615 unsigned ValNo = (unsigned)Record[Slot]; 616 // Adjust the ValNo, if it was encoded relative to the InstNum. 617 if (UseRelativeIDs) 618 ValNo = InstNum - ValNo; 619 return getFnValueByID(ValNo, Ty); 620 } 621 622 /// Like getValue, but decodes signed VBRs. 623 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 624 unsigned InstNum, Type *Ty) { 625 if (Slot == Record.size()) return nullptr; 626 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 627 // Adjust the ValNo, if it was encoded relative to the InstNum. 628 if (UseRelativeIDs) 629 ValNo = InstNum - ValNo; 630 return getFnValueByID(ValNo, Ty); 631 } 632 633 /// Converts alignment exponent (i.e. power of two (or zero)) to the 634 /// corresponding alignment to use. If alignment is too large, returns 635 /// a corresponding error code. 636 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 637 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 638 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 639 640 Error parseComdatRecord(ArrayRef<uint64_t> Record); 641 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 642 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 643 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 644 ArrayRef<uint64_t> Record); 645 646 Error parseAttributeBlock(); 647 Error parseAttributeGroupBlock(); 648 Error parseTypeTable(); 649 Error parseTypeTableBody(); 650 Error parseOperandBundleTags(); 651 652 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 653 unsigned NameIndex, Triple &TT); 654 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 655 ArrayRef<uint64_t> Record); 656 Error parseValueSymbolTable(uint64_t Offset = 0); 657 Error parseGlobalValueSymbolTable(); 658 Error parseConstants(); 659 Error rememberAndSkipFunctionBodies(); 660 Error rememberAndSkipFunctionBody(); 661 /// Save the positions of the Metadata blocks and skip parsing the blocks. 662 Error rememberAndSkipMetadata(); 663 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 664 Error parseFunctionBody(Function *F); 665 Error globalCleanup(); 666 Error resolveGlobalAndIndirectSymbolInits(); 667 Error parseUseLists(); 668 Error findFunctionInStream( 669 Function *F, 670 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 671 }; 672 673 /// Class to manage reading and parsing function summary index bitcode 674 /// files/sections. 675 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 676 /// The module index built during parsing. 677 ModuleSummaryIndex &TheIndex; 678 679 /// Indicates whether we have encountered a global value summary section 680 /// yet during parsing. 681 bool SeenGlobalValSummary = false; 682 683 /// Indicates whether we have already parsed the VST, used for error checking. 684 bool SeenValueSymbolTable = false; 685 686 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 687 /// Used to enable on-demand parsing of the VST. 688 uint64_t VSTOffset = 0; 689 690 // Map to save ValueId to GUID association that was recorded in the 691 // ValueSymbolTable. It is used after the VST is parsed to convert 692 // call graph edges read from the function summary from referencing 693 // callees by their ValueId to using the GUID instead, which is how 694 // they are recorded in the summary index being built. 695 // We save a second GUID which is the same as the first one, but ignoring the 696 // linkage, i.e. for value other than local linkage they are identical. 697 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 698 ValueIdToCallGraphGUIDMap; 699 700 /// Map populated during module path string table parsing, from the 701 /// module ID to a string reference owned by the index's module 702 /// path string table, used to correlate with combined index 703 /// summary records. 704 DenseMap<uint64_t, StringRef> ModuleIdMap; 705 706 /// Original source file name recorded in a bitcode record. 707 std::string SourceFileName; 708 709 public: 710 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 711 ModuleSummaryIndex &TheIndex); 712 713 Error parseModule(StringRef ModulePath); 714 715 private: 716 void setValueGUID(uint64_t ValueID, StringRef ValueName, 717 GlobalValue::LinkageTypes Linkage, 718 StringRef SourceFileName); 719 Error parseValueSymbolTable( 720 uint64_t Offset, 721 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 722 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 723 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 724 bool IsOldProfileFormat, 725 bool HasProfile); 726 Error parseEntireSummary(StringRef ModulePath); 727 Error parseModuleStringTable(); 728 729 std::pair<GlobalValue::GUID, GlobalValue::GUID> 730 getGUIDFromValueId(unsigned ValueId); 731 }; 732 733 } // end anonymous namespace 734 735 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 736 Error Err) { 737 if (Err) { 738 std::error_code EC; 739 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 740 EC = EIB.convertToErrorCode(); 741 Ctx.emitError(EIB.message()); 742 }); 743 return EC; 744 } 745 return std::error_code(); 746 } 747 748 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 749 StringRef ProducerIdentification, 750 LLVMContext &Context) 751 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 752 ValueList(Context) { 753 this->ProducerIdentification = ProducerIdentification; 754 } 755 756 Error BitcodeReader::materializeForwardReferencedFunctions() { 757 if (WillMaterializeAllForwardRefs) 758 return Error::success(); 759 760 // Prevent recursion. 761 WillMaterializeAllForwardRefs = true; 762 763 while (!BasicBlockFwdRefQueue.empty()) { 764 Function *F = BasicBlockFwdRefQueue.front(); 765 BasicBlockFwdRefQueue.pop_front(); 766 assert(F && "Expected valid function"); 767 if (!BasicBlockFwdRefs.count(F)) 768 // Already materialized. 769 continue; 770 771 // Check for a function that isn't materializable to prevent an infinite 772 // loop. When parsing a blockaddress stored in a global variable, there 773 // isn't a trivial way to check if a function will have a body without a 774 // linear search through FunctionsWithBodies, so just check it here. 775 if (!F->isMaterializable()) 776 return error("Never resolved function from blockaddress"); 777 778 // Try to materialize F. 779 if (Error Err = materialize(F)) 780 return Err; 781 } 782 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 783 784 // Reset state. 785 WillMaterializeAllForwardRefs = false; 786 return Error::success(); 787 } 788 789 //===----------------------------------------------------------------------===// 790 // Helper functions to implement forward reference resolution, etc. 791 //===----------------------------------------------------------------------===// 792 793 static bool hasImplicitComdat(size_t Val) { 794 switch (Val) { 795 default: 796 return false; 797 case 1: // Old WeakAnyLinkage 798 case 4: // Old LinkOnceAnyLinkage 799 case 10: // Old WeakODRLinkage 800 case 11: // Old LinkOnceODRLinkage 801 return true; 802 } 803 } 804 805 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 806 switch (Val) { 807 default: // Map unknown/new linkages to external 808 case 0: 809 return GlobalValue::ExternalLinkage; 810 case 2: 811 return GlobalValue::AppendingLinkage; 812 case 3: 813 return GlobalValue::InternalLinkage; 814 case 5: 815 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 816 case 6: 817 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 818 case 7: 819 return GlobalValue::ExternalWeakLinkage; 820 case 8: 821 return GlobalValue::CommonLinkage; 822 case 9: 823 return GlobalValue::PrivateLinkage; 824 case 12: 825 return GlobalValue::AvailableExternallyLinkage; 826 case 13: 827 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 828 case 14: 829 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 830 case 15: 831 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 832 case 1: // Old value with implicit comdat. 833 case 16: 834 return GlobalValue::WeakAnyLinkage; 835 case 10: // Old value with implicit comdat. 836 case 17: 837 return GlobalValue::WeakODRLinkage; 838 case 4: // Old value with implicit comdat. 839 case 18: 840 return GlobalValue::LinkOnceAnyLinkage; 841 case 11: // Old value with implicit comdat. 842 case 19: 843 return GlobalValue::LinkOnceODRLinkage; 844 } 845 } 846 847 /// Decode the flags for GlobalValue in the summary. 848 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 849 uint64_t Version) { 850 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 851 // like getDecodedLinkage() above. Any future change to the linkage enum and 852 // to getDecodedLinkage() will need to be taken into account here as above. 853 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 854 RawFlags = RawFlags >> 4; 855 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 856 // The LiveRoot flag wasn't introduced until version 3. For dead stripping 857 // to work correctly on earlier versions, we must conservatively treat all 858 // values as live. 859 bool LiveRoot = (RawFlags & 0x2) || Version < 3; 860 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot); 861 } 862 863 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 864 switch (Val) { 865 default: // Map unknown visibilities to default. 866 case 0: return GlobalValue::DefaultVisibility; 867 case 1: return GlobalValue::HiddenVisibility; 868 case 2: return GlobalValue::ProtectedVisibility; 869 } 870 } 871 872 static GlobalValue::DLLStorageClassTypes 873 getDecodedDLLStorageClass(unsigned Val) { 874 switch (Val) { 875 default: // Map unknown values to default. 876 case 0: return GlobalValue::DefaultStorageClass; 877 case 1: return GlobalValue::DLLImportStorageClass; 878 case 2: return GlobalValue::DLLExportStorageClass; 879 } 880 } 881 882 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 883 switch (Val) { 884 case 0: return GlobalVariable::NotThreadLocal; 885 default: // Map unknown non-zero value to general dynamic. 886 case 1: return GlobalVariable::GeneralDynamicTLSModel; 887 case 2: return GlobalVariable::LocalDynamicTLSModel; 888 case 3: return GlobalVariable::InitialExecTLSModel; 889 case 4: return GlobalVariable::LocalExecTLSModel; 890 } 891 } 892 893 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 894 switch (Val) { 895 default: // Map unknown to UnnamedAddr::None. 896 case 0: return GlobalVariable::UnnamedAddr::None; 897 case 1: return GlobalVariable::UnnamedAddr::Global; 898 case 2: return GlobalVariable::UnnamedAddr::Local; 899 } 900 } 901 902 static int getDecodedCastOpcode(unsigned Val) { 903 switch (Val) { 904 default: return -1; 905 case bitc::CAST_TRUNC : return Instruction::Trunc; 906 case bitc::CAST_ZEXT : return Instruction::ZExt; 907 case bitc::CAST_SEXT : return Instruction::SExt; 908 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 909 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 910 case bitc::CAST_UITOFP : return Instruction::UIToFP; 911 case bitc::CAST_SITOFP : return Instruction::SIToFP; 912 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 913 case bitc::CAST_FPEXT : return Instruction::FPExt; 914 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 915 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 916 case bitc::CAST_BITCAST : return Instruction::BitCast; 917 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 918 } 919 } 920 921 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 922 bool IsFP = Ty->isFPOrFPVectorTy(); 923 // BinOps are only valid for int/fp or vector of int/fp types 924 if (!IsFP && !Ty->isIntOrIntVectorTy()) 925 return -1; 926 927 switch (Val) { 928 default: 929 return -1; 930 case bitc::BINOP_ADD: 931 return IsFP ? Instruction::FAdd : Instruction::Add; 932 case bitc::BINOP_SUB: 933 return IsFP ? Instruction::FSub : Instruction::Sub; 934 case bitc::BINOP_MUL: 935 return IsFP ? Instruction::FMul : Instruction::Mul; 936 case bitc::BINOP_UDIV: 937 return IsFP ? -1 : Instruction::UDiv; 938 case bitc::BINOP_SDIV: 939 return IsFP ? Instruction::FDiv : Instruction::SDiv; 940 case bitc::BINOP_UREM: 941 return IsFP ? -1 : Instruction::URem; 942 case bitc::BINOP_SREM: 943 return IsFP ? Instruction::FRem : Instruction::SRem; 944 case bitc::BINOP_SHL: 945 return IsFP ? -1 : Instruction::Shl; 946 case bitc::BINOP_LSHR: 947 return IsFP ? -1 : Instruction::LShr; 948 case bitc::BINOP_ASHR: 949 return IsFP ? -1 : Instruction::AShr; 950 case bitc::BINOP_AND: 951 return IsFP ? -1 : Instruction::And; 952 case bitc::BINOP_OR: 953 return IsFP ? -1 : Instruction::Or; 954 case bitc::BINOP_XOR: 955 return IsFP ? -1 : Instruction::Xor; 956 } 957 } 958 959 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 960 switch (Val) { 961 default: return AtomicRMWInst::BAD_BINOP; 962 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 963 case bitc::RMW_ADD: return AtomicRMWInst::Add; 964 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 965 case bitc::RMW_AND: return AtomicRMWInst::And; 966 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 967 case bitc::RMW_OR: return AtomicRMWInst::Or; 968 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 969 case bitc::RMW_MAX: return AtomicRMWInst::Max; 970 case bitc::RMW_MIN: return AtomicRMWInst::Min; 971 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 972 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 973 } 974 } 975 976 static AtomicOrdering getDecodedOrdering(unsigned Val) { 977 switch (Val) { 978 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 979 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 980 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 981 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 982 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 983 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 984 default: // Map unknown orderings to sequentially-consistent. 985 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 986 } 987 } 988 989 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 990 switch (Val) { 991 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 992 default: // Map unknown scopes to cross-thread. 993 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 994 } 995 } 996 997 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 998 switch (Val) { 999 default: // Map unknown selection kinds to any. 1000 case bitc::COMDAT_SELECTION_KIND_ANY: 1001 return Comdat::Any; 1002 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1003 return Comdat::ExactMatch; 1004 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1005 return Comdat::Largest; 1006 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1007 return Comdat::NoDuplicates; 1008 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1009 return Comdat::SameSize; 1010 } 1011 } 1012 1013 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1014 FastMathFlags FMF; 1015 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1016 FMF.setUnsafeAlgebra(); 1017 if (0 != (Val & FastMathFlags::NoNaNs)) 1018 FMF.setNoNaNs(); 1019 if (0 != (Val & FastMathFlags::NoInfs)) 1020 FMF.setNoInfs(); 1021 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1022 FMF.setNoSignedZeros(); 1023 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1024 FMF.setAllowReciprocal(); 1025 if (0 != (Val & FastMathFlags::AllowContract)) 1026 FMF.setAllowContract(true); 1027 return FMF; 1028 } 1029 1030 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1031 switch (Val) { 1032 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1033 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1034 } 1035 } 1036 1037 1038 Type *BitcodeReader::getTypeByID(unsigned ID) { 1039 // The type table size is always specified correctly. 1040 if (ID >= TypeList.size()) 1041 return nullptr; 1042 1043 if (Type *Ty = TypeList[ID]) 1044 return Ty; 1045 1046 // If we have a forward reference, the only possible case is when it is to a 1047 // named struct. Just create a placeholder for now. 1048 return TypeList[ID] = createIdentifiedStructType(Context); 1049 } 1050 1051 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1052 StringRef Name) { 1053 auto *Ret = StructType::create(Context, Name); 1054 IdentifiedStructTypes.push_back(Ret); 1055 return Ret; 1056 } 1057 1058 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1059 auto *Ret = StructType::create(Context); 1060 IdentifiedStructTypes.push_back(Ret); 1061 return Ret; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // Functions for parsing blocks from the bitcode file 1066 //===----------------------------------------------------------------------===// 1067 1068 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1069 switch (Val) { 1070 case Attribute::EndAttrKinds: 1071 llvm_unreachable("Synthetic enumerators which should never get here"); 1072 1073 case Attribute::None: return 0; 1074 case Attribute::ZExt: return 1 << 0; 1075 case Attribute::SExt: return 1 << 1; 1076 case Attribute::NoReturn: return 1 << 2; 1077 case Attribute::InReg: return 1 << 3; 1078 case Attribute::StructRet: return 1 << 4; 1079 case Attribute::NoUnwind: return 1 << 5; 1080 case Attribute::NoAlias: return 1 << 6; 1081 case Attribute::ByVal: return 1 << 7; 1082 case Attribute::Nest: return 1 << 8; 1083 case Attribute::ReadNone: return 1 << 9; 1084 case Attribute::ReadOnly: return 1 << 10; 1085 case Attribute::NoInline: return 1 << 11; 1086 case Attribute::AlwaysInline: return 1 << 12; 1087 case Attribute::OptimizeForSize: return 1 << 13; 1088 case Attribute::StackProtect: return 1 << 14; 1089 case Attribute::StackProtectReq: return 1 << 15; 1090 case Attribute::Alignment: return 31 << 16; 1091 case Attribute::NoCapture: return 1 << 21; 1092 case Attribute::NoRedZone: return 1 << 22; 1093 case Attribute::NoImplicitFloat: return 1 << 23; 1094 case Attribute::Naked: return 1 << 24; 1095 case Attribute::InlineHint: return 1 << 25; 1096 case Attribute::StackAlignment: return 7 << 26; 1097 case Attribute::ReturnsTwice: return 1 << 29; 1098 case Attribute::UWTable: return 1 << 30; 1099 case Attribute::NonLazyBind: return 1U << 31; 1100 case Attribute::SanitizeAddress: return 1ULL << 32; 1101 case Attribute::MinSize: return 1ULL << 33; 1102 case Attribute::NoDuplicate: return 1ULL << 34; 1103 case Attribute::StackProtectStrong: return 1ULL << 35; 1104 case Attribute::SanitizeThread: return 1ULL << 36; 1105 case Attribute::SanitizeMemory: return 1ULL << 37; 1106 case Attribute::NoBuiltin: return 1ULL << 38; 1107 case Attribute::Returned: return 1ULL << 39; 1108 case Attribute::Cold: return 1ULL << 40; 1109 case Attribute::Builtin: return 1ULL << 41; 1110 case Attribute::OptimizeNone: return 1ULL << 42; 1111 case Attribute::InAlloca: return 1ULL << 43; 1112 case Attribute::NonNull: return 1ULL << 44; 1113 case Attribute::JumpTable: return 1ULL << 45; 1114 case Attribute::Convergent: return 1ULL << 46; 1115 case Attribute::SafeStack: return 1ULL << 47; 1116 case Attribute::NoRecurse: return 1ULL << 48; 1117 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1118 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1119 case Attribute::SwiftSelf: return 1ULL << 51; 1120 case Attribute::SwiftError: return 1ULL << 52; 1121 case Attribute::WriteOnly: return 1ULL << 53; 1122 case Attribute::Speculatable: return 1ULL << 54; 1123 case Attribute::Dereferenceable: 1124 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1125 break; 1126 case Attribute::DereferenceableOrNull: 1127 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1128 "format"); 1129 break; 1130 case Attribute::ArgMemOnly: 1131 llvm_unreachable("argmemonly attribute not supported in raw format"); 1132 break; 1133 case Attribute::AllocSize: 1134 llvm_unreachable("allocsize not supported in raw format"); 1135 break; 1136 } 1137 llvm_unreachable("Unsupported attribute type"); 1138 } 1139 1140 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1141 if (!Val) return; 1142 1143 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1144 I = Attribute::AttrKind(I + 1)) { 1145 if (I == Attribute::Dereferenceable || 1146 I == Attribute::DereferenceableOrNull || 1147 I == Attribute::ArgMemOnly || 1148 I == Attribute::AllocSize) 1149 continue; 1150 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1151 if (I == Attribute::Alignment) 1152 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1153 else if (I == Attribute::StackAlignment) 1154 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1155 else 1156 B.addAttribute(I); 1157 } 1158 } 1159 } 1160 1161 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1162 /// been decoded from the given integer. This function must stay in sync with 1163 /// 'encodeLLVMAttributesForBitcode'. 1164 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1165 uint64_t EncodedAttrs) { 1166 // FIXME: Remove in 4.0. 1167 1168 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1169 // the bits above 31 down by 11 bits. 1170 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1171 assert((!Alignment || isPowerOf2_32(Alignment)) && 1172 "Alignment must be a power of two."); 1173 1174 if (Alignment) 1175 B.addAlignmentAttr(Alignment); 1176 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1177 (EncodedAttrs & 0xffff)); 1178 } 1179 1180 Error BitcodeReader::parseAttributeBlock() { 1181 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1182 return error("Invalid record"); 1183 1184 if (!MAttributes.empty()) 1185 return error("Invalid multiple blocks"); 1186 1187 SmallVector<uint64_t, 64> Record; 1188 1189 SmallVector<AttributeList, 8> Attrs; 1190 1191 // Read all the records. 1192 while (true) { 1193 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1194 1195 switch (Entry.Kind) { 1196 case BitstreamEntry::SubBlock: // Handled for us already. 1197 case BitstreamEntry::Error: 1198 return error("Malformed block"); 1199 case BitstreamEntry::EndBlock: 1200 return Error::success(); 1201 case BitstreamEntry::Record: 1202 // The interesting case. 1203 break; 1204 } 1205 1206 // Read a record. 1207 Record.clear(); 1208 switch (Stream.readRecord(Entry.ID, Record)) { 1209 default: // Default behavior: ignore. 1210 break; 1211 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1212 // FIXME: Remove in 4.0. 1213 if (Record.size() & 1) 1214 return error("Invalid record"); 1215 1216 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1217 AttrBuilder B; 1218 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1219 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1220 } 1221 1222 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1223 Attrs.clear(); 1224 break; 1225 } 1226 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1227 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1228 Attrs.push_back(MAttributeGroups[Record[i]]); 1229 1230 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1231 Attrs.clear(); 1232 break; 1233 } 1234 } 1235 } 1236 } 1237 1238 // Returns Attribute::None on unrecognized codes. 1239 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1240 switch (Code) { 1241 default: 1242 return Attribute::None; 1243 case bitc::ATTR_KIND_ALIGNMENT: 1244 return Attribute::Alignment; 1245 case bitc::ATTR_KIND_ALWAYS_INLINE: 1246 return Attribute::AlwaysInline; 1247 case bitc::ATTR_KIND_ARGMEMONLY: 1248 return Attribute::ArgMemOnly; 1249 case bitc::ATTR_KIND_BUILTIN: 1250 return Attribute::Builtin; 1251 case bitc::ATTR_KIND_BY_VAL: 1252 return Attribute::ByVal; 1253 case bitc::ATTR_KIND_IN_ALLOCA: 1254 return Attribute::InAlloca; 1255 case bitc::ATTR_KIND_COLD: 1256 return Attribute::Cold; 1257 case bitc::ATTR_KIND_CONVERGENT: 1258 return Attribute::Convergent; 1259 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1260 return Attribute::InaccessibleMemOnly; 1261 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1262 return Attribute::InaccessibleMemOrArgMemOnly; 1263 case bitc::ATTR_KIND_INLINE_HINT: 1264 return Attribute::InlineHint; 1265 case bitc::ATTR_KIND_IN_REG: 1266 return Attribute::InReg; 1267 case bitc::ATTR_KIND_JUMP_TABLE: 1268 return Attribute::JumpTable; 1269 case bitc::ATTR_KIND_MIN_SIZE: 1270 return Attribute::MinSize; 1271 case bitc::ATTR_KIND_NAKED: 1272 return Attribute::Naked; 1273 case bitc::ATTR_KIND_NEST: 1274 return Attribute::Nest; 1275 case bitc::ATTR_KIND_NO_ALIAS: 1276 return Attribute::NoAlias; 1277 case bitc::ATTR_KIND_NO_BUILTIN: 1278 return Attribute::NoBuiltin; 1279 case bitc::ATTR_KIND_NO_CAPTURE: 1280 return Attribute::NoCapture; 1281 case bitc::ATTR_KIND_NO_DUPLICATE: 1282 return Attribute::NoDuplicate; 1283 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1284 return Attribute::NoImplicitFloat; 1285 case bitc::ATTR_KIND_NO_INLINE: 1286 return Attribute::NoInline; 1287 case bitc::ATTR_KIND_NO_RECURSE: 1288 return Attribute::NoRecurse; 1289 case bitc::ATTR_KIND_NON_LAZY_BIND: 1290 return Attribute::NonLazyBind; 1291 case bitc::ATTR_KIND_NON_NULL: 1292 return Attribute::NonNull; 1293 case bitc::ATTR_KIND_DEREFERENCEABLE: 1294 return Attribute::Dereferenceable; 1295 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1296 return Attribute::DereferenceableOrNull; 1297 case bitc::ATTR_KIND_ALLOC_SIZE: 1298 return Attribute::AllocSize; 1299 case bitc::ATTR_KIND_NO_RED_ZONE: 1300 return Attribute::NoRedZone; 1301 case bitc::ATTR_KIND_NO_RETURN: 1302 return Attribute::NoReturn; 1303 case bitc::ATTR_KIND_NO_UNWIND: 1304 return Attribute::NoUnwind; 1305 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1306 return Attribute::OptimizeForSize; 1307 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1308 return Attribute::OptimizeNone; 1309 case bitc::ATTR_KIND_READ_NONE: 1310 return Attribute::ReadNone; 1311 case bitc::ATTR_KIND_READ_ONLY: 1312 return Attribute::ReadOnly; 1313 case bitc::ATTR_KIND_RETURNED: 1314 return Attribute::Returned; 1315 case bitc::ATTR_KIND_RETURNS_TWICE: 1316 return Attribute::ReturnsTwice; 1317 case bitc::ATTR_KIND_S_EXT: 1318 return Attribute::SExt; 1319 case bitc::ATTR_KIND_SPECULATABLE: 1320 return Attribute::Speculatable; 1321 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1322 return Attribute::StackAlignment; 1323 case bitc::ATTR_KIND_STACK_PROTECT: 1324 return Attribute::StackProtect; 1325 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1326 return Attribute::StackProtectReq; 1327 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1328 return Attribute::StackProtectStrong; 1329 case bitc::ATTR_KIND_SAFESTACK: 1330 return Attribute::SafeStack; 1331 case bitc::ATTR_KIND_STRUCT_RET: 1332 return Attribute::StructRet; 1333 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1334 return Attribute::SanitizeAddress; 1335 case bitc::ATTR_KIND_SANITIZE_THREAD: 1336 return Attribute::SanitizeThread; 1337 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1338 return Attribute::SanitizeMemory; 1339 case bitc::ATTR_KIND_SWIFT_ERROR: 1340 return Attribute::SwiftError; 1341 case bitc::ATTR_KIND_SWIFT_SELF: 1342 return Attribute::SwiftSelf; 1343 case bitc::ATTR_KIND_UW_TABLE: 1344 return Attribute::UWTable; 1345 case bitc::ATTR_KIND_WRITEONLY: 1346 return Attribute::WriteOnly; 1347 case bitc::ATTR_KIND_Z_EXT: 1348 return Attribute::ZExt; 1349 } 1350 } 1351 1352 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1353 unsigned &Alignment) { 1354 // Note: Alignment in bitcode files is incremented by 1, so that zero 1355 // can be used for default alignment. 1356 if (Exponent > Value::MaxAlignmentExponent + 1) 1357 return error("Invalid alignment value"); 1358 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1359 return Error::success(); 1360 } 1361 1362 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1363 *Kind = getAttrFromCode(Code); 1364 if (*Kind == Attribute::None) 1365 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1366 return Error::success(); 1367 } 1368 1369 Error BitcodeReader::parseAttributeGroupBlock() { 1370 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1371 return error("Invalid record"); 1372 1373 if (!MAttributeGroups.empty()) 1374 return error("Invalid multiple blocks"); 1375 1376 SmallVector<uint64_t, 64> Record; 1377 1378 // Read all the records. 1379 while (true) { 1380 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1381 1382 switch (Entry.Kind) { 1383 case BitstreamEntry::SubBlock: // Handled for us already. 1384 case BitstreamEntry::Error: 1385 return error("Malformed block"); 1386 case BitstreamEntry::EndBlock: 1387 return Error::success(); 1388 case BitstreamEntry::Record: 1389 // The interesting case. 1390 break; 1391 } 1392 1393 // Read a record. 1394 Record.clear(); 1395 switch (Stream.readRecord(Entry.ID, Record)) { 1396 default: // Default behavior: ignore. 1397 break; 1398 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1399 if (Record.size() < 3) 1400 return error("Invalid record"); 1401 1402 uint64_t GrpID = Record[0]; 1403 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1404 1405 AttrBuilder B; 1406 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1407 if (Record[i] == 0) { // Enum attribute 1408 Attribute::AttrKind Kind; 1409 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1410 return Err; 1411 1412 B.addAttribute(Kind); 1413 } else if (Record[i] == 1) { // Integer attribute 1414 Attribute::AttrKind Kind; 1415 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1416 return Err; 1417 if (Kind == Attribute::Alignment) 1418 B.addAlignmentAttr(Record[++i]); 1419 else if (Kind == Attribute::StackAlignment) 1420 B.addStackAlignmentAttr(Record[++i]); 1421 else if (Kind == Attribute::Dereferenceable) 1422 B.addDereferenceableAttr(Record[++i]); 1423 else if (Kind == Attribute::DereferenceableOrNull) 1424 B.addDereferenceableOrNullAttr(Record[++i]); 1425 else if (Kind == Attribute::AllocSize) 1426 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1427 } else { // String attribute 1428 assert((Record[i] == 3 || Record[i] == 4) && 1429 "Invalid attribute group entry"); 1430 bool HasValue = (Record[i++] == 4); 1431 SmallString<64> KindStr; 1432 SmallString<64> ValStr; 1433 1434 while (Record[i] != 0 && i != e) 1435 KindStr += Record[i++]; 1436 assert(Record[i] == 0 && "Kind string not null terminated"); 1437 1438 if (HasValue) { 1439 // Has a value associated with it. 1440 ++i; // Skip the '0' that terminates the "kind" string. 1441 while (Record[i] != 0 && i != e) 1442 ValStr += Record[i++]; 1443 assert(Record[i] == 0 && "Value string not null terminated"); 1444 } 1445 1446 B.addAttribute(KindStr.str(), ValStr.str()); 1447 } 1448 } 1449 1450 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1451 break; 1452 } 1453 } 1454 } 1455 } 1456 1457 Error BitcodeReader::parseTypeTable() { 1458 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1459 return error("Invalid record"); 1460 1461 return parseTypeTableBody(); 1462 } 1463 1464 Error BitcodeReader::parseTypeTableBody() { 1465 if (!TypeList.empty()) 1466 return error("Invalid multiple blocks"); 1467 1468 SmallVector<uint64_t, 64> Record; 1469 unsigned NumRecords = 0; 1470 1471 SmallString<64> TypeName; 1472 1473 // Read all the records for this type table. 1474 while (true) { 1475 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1476 1477 switch (Entry.Kind) { 1478 case BitstreamEntry::SubBlock: // Handled for us already. 1479 case BitstreamEntry::Error: 1480 return error("Malformed block"); 1481 case BitstreamEntry::EndBlock: 1482 if (NumRecords != TypeList.size()) 1483 return error("Malformed block"); 1484 return Error::success(); 1485 case BitstreamEntry::Record: 1486 // The interesting case. 1487 break; 1488 } 1489 1490 // Read a record. 1491 Record.clear(); 1492 Type *ResultTy = nullptr; 1493 switch (Stream.readRecord(Entry.ID, Record)) { 1494 default: 1495 return error("Invalid value"); 1496 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1497 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1498 // type list. This allows us to reserve space. 1499 if (Record.size() < 1) 1500 return error("Invalid record"); 1501 TypeList.resize(Record[0]); 1502 continue; 1503 case bitc::TYPE_CODE_VOID: // VOID 1504 ResultTy = Type::getVoidTy(Context); 1505 break; 1506 case bitc::TYPE_CODE_HALF: // HALF 1507 ResultTy = Type::getHalfTy(Context); 1508 break; 1509 case bitc::TYPE_CODE_FLOAT: // FLOAT 1510 ResultTy = Type::getFloatTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1513 ResultTy = Type::getDoubleTy(Context); 1514 break; 1515 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1516 ResultTy = Type::getX86_FP80Ty(Context); 1517 break; 1518 case bitc::TYPE_CODE_FP128: // FP128 1519 ResultTy = Type::getFP128Ty(Context); 1520 break; 1521 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1522 ResultTy = Type::getPPC_FP128Ty(Context); 1523 break; 1524 case bitc::TYPE_CODE_LABEL: // LABEL 1525 ResultTy = Type::getLabelTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_METADATA: // METADATA 1528 ResultTy = Type::getMetadataTy(Context); 1529 break; 1530 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1531 ResultTy = Type::getX86_MMXTy(Context); 1532 break; 1533 case bitc::TYPE_CODE_TOKEN: // TOKEN 1534 ResultTy = Type::getTokenTy(Context); 1535 break; 1536 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1537 if (Record.size() < 1) 1538 return error("Invalid record"); 1539 1540 uint64_t NumBits = Record[0]; 1541 if (NumBits < IntegerType::MIN_INT_BITS || 1542 NumBits > IntegerType::MAX_INT_BITS) 1543 return error("Bitwidth for integer type out of range"); 1544 ResultTy = IntegerType::get(Context, NumBits); 1545 break; 1546 } 1547 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1548 // [pointee type, address space] 1549 if (Record.size() < 1) 1550 return error("Invalid record"); 1551 unsigned AddressSpace = 0; 1552 if (Record.size() == 2) 1553 AddressSpace = Record[1]; 1554 ResultTy = getTypeByID(Record[0]); 1555 if (!ResultTy || 1556 !PointerType::isValidElementType(ResultTy)) 1557 return error("Invalid type"); 1558 ResultTy = PointerType::get(ResultTy, AddressSpace); 1559 break; 1560 } 1561 case bitc::TYPE_CODE_FUNCTION_OLD: { 1562 // FIXME: attrid is dead, remove it in LLVM 4.0 1563 // FUNCTION: [vararg, attrid, retty, paramty x N] 1564 if (Record.size() < 3) 1565 return error("Invalid record"); 1566 SmallVector<Type*, 8> ArgTys; 1567 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1568 if (Type *T = getTypeByID(Record[i])) 1569 ArgTys.push_back(T); 1570 else 1571 break; 1572 } 1573 1574 ResultTy = getTypeByID(Record[2]); 1575 if (!ResultTy || ArgTys.size() < Record.size()-3) 1576 return error("Invalid type"); 1577 1578 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1579 break; 1580 } 1581 case bitc::TYPE_CODE_FUNCTION: { 1582 // FUNCTION: [vararg, retty, paramty x N] 1583 if (Record.size() < 2) 1584 return error("Invalid record"); 1585 SmallVector<Type*, 8> ArgTys; 1586 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1587 if (Type *T = getTypeByID(Record[i])) { 1588 if (!FunctionType::isValidArgumentType(T)) 1589 return error("Invalid function argument type"); 1590 ArgTys.push_back(T); 1591 } 1592 else 1593 break; 1594 } 1595 1596 ResultTy = getTypeByID(Record[1]); 1597 if (!ResultTy || ArgTys.size() < Record.size()-2) 1598 return error("Invalid type"); 1599 1600 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1601 break; 1602 } 1603 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1604 if (Record.size() < 1) 1605 return error("Invalid record"); 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid type"); 1615 ResultTy = StructType::get(Context, EltTys, Record[0]); 1616 break; 1617 } 1618 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1619 if (convertToString(Record, 0, TypeName)) 1620 return error("Invalid record"); 1621 continue; 1622 1623 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1624 if (Record.size() < 1) 1625 return error("Invalid record"); 1626 1627 if (NumRecords >= TypeList.size()) 1628 return error("Invalid TYPE table"); 1629 1630 // Check to see if this was forward referenced, if so fill in the temp. 1631 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1632 if (Res) { 1633 Res->setName(TypeName); 1634 TypeList[NumRecords] = nullptr; 1635 } else // Otherwise, create a new struct. 1636 Res = createIdentifiedStructType(Context, TypeName); 1637 TypeName.clear(); 1638 1639 SmallVector<Type*, 8> EltTys; 1640 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1641 if (Type *T = getTypeByID(Record[i])) 1642 EltTys.push_back(T); 1643 else 1644 break; 1645 } 1646 if (EltTys.size() != Record.size()-1) 1647 return error("Invalid record"); 1648 Res->setBody(EltTys, Record[0]); 1649 ResultTy = Res; 1650 break; 1651 } 1652 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1653 if (Record.size() != 1) 1654 return error("Invalid record"); 1655 1656 if (NumRecords >= TypeList.size()) 1657 return error("Invalid TYPE table"); 1658 1659 // Check to see if this was forward referenced, if so fill in the temp. 1660 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1661 if (Res) { 1662 Res->setName(TypeName); 1663 TypeList[NumRecords] = nullptr; 1664 } else // Otherwise, create a new struct with no body. 1665 Res = createIdentifiedStructType(Context, TypeName); 1666 TypeName.clear(); 1667 ResultTy = Res; 1668 break; 1669 } 1670 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1671 if (Record.size() < 2) 1672 return error("Invalid record"); 1673 ResultTy = getTypeByID(Record[1]); 1674 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1675 return error("Invalid type"); 1676 ResultTy = ArrayType::get(ResultTy, Record[0]); 1677 break; 1678 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1679 if (Record.size() < 2) 1680 return error("Invalid record"); 1681 if (Record[0] == 0) 1682 return error("Invalid vector length"); 1683 ResultTy = getTypeByID(Record[1]); 1684 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1685 return error("Invalid type"); 1686 ResultTy = VectorType::get(ResultTy, Record[0]); 1687 break; 1688 } 1689 1690 if (NumRecords >= TypeList.size()) 1691 return error("Invalid TYPE table"); 1692 if (TypeList[NumRecords]) 1693 return error( 1694 "Invalid TYPE table: Only named structs can be forward referenced"); 1695 assert(ResultTy && "Didn't read a type?"); 1696 TypeList[NumRecords++] = ResultTy; 1697 } 1698 } 1699 1700 Error BitcodeReader::parseOperandBundleTags() { 1701 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1702 return error("Invalid record"); 1703 1704 if (!BundleTags.empty()) 1705 return error("Invalid multiple blocks"); 1706 1707 SmallVector<uint64_t, 64> Record; 1708 1709 while (true) { 1710 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1711 1712 switch (Entry.Kind) { 1713 case BitstreamEntry::SubBlock: // Handled for us already. 1714 case BitstreamEntry::Error: 1715 return error("Malformed block"); 1716 case BitstreamEntry::EndBlock: 1717 return Error::success(); 1718 case BitstreamEntry::Record: 1719 // The interesting case. 1720 break; 1721 } 1722 1723 // Tags are implicitly mapped to integers by their order. 1724 1725 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1726 return error("Invalid record"); 1727 1728 // OPERAND_BUNDLE_TAG: [strchr x N] 1729 BundleTags.emplace_back(); 1730 if (convertToString(Record, 0, BundleTags.back())) 1731 return error("Invalid record"); 1732 Record.clear(); 1733 } 1734 } 1735 1736 /// Associate a value with its name from the given index in the provided record. 1737 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1738 unsigned NameIndex, Triple &TT) { 1739 SmallString<128> ValueName; 1740 if (convertToString(Record, NameIndex, ValueName)) 1741 return error("Invalid record"); 1742 unsigned ValueID = Record[0]; 1743 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1744 return error("Invalid record"); 1745 Value *V = ValueList[ValueID]; 1746 1747 StringRef NameStr(ValueName.data(), ValueName.size()); 1748 if (NameStr.find_first_of(0) != StringRef::npos) 1749 return error("Invalid value name"); 1750 V->setName(NameStr); 1751 auto *GO = dyn_cast<GlobalObject>(V); 1752 if (GO) { 1753 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1754 if (TT.isOSBinFormatMachO()) 1755 GO->setComdat(nullptr); 1756 else 1757 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1758 } 1759 } 1760 return V; 1761 } 1762 1763 /// Helper to note and return the current location, and jump to the given 1764 /// offset. 1765 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1766 BitstreamCursor &Stream) { 1767 // Save the current parsing location so we can jump back at the end 1768 // of the VST read. 1769 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1770 Stream.JumpToBit(Offset * 32); 1771 #ifndef NDEBUG 1772 // Do some checking if we are in debug mode. 1773 BitstreamEntry Entry = Stream.advance(); 1774 assert(Entry.Kind == BitstreamEntry::SubBlock); 1775 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1776 #else 1777 // In NDEBUG mode ignore the output so we don't get an unused variable 1778 // warning. 1779 Stream.advance(); 1780 #endif 1781 return CurrentBit; 1782 } 1783 1784 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1785 Function *F, 1786 ArrayRef<uint64_t> Record) { 1787 // Note that we subtract 1 here because the offset is relative to one word 1788 // before the start of the identification or module block, which was 1789 // historically always the start of the regular bitcode header. 1790 uint64_t FuncWordOffset = Record[1] - 1; 1791 uint64_t FuncBitOffset = FuncWordOffset * 32; 1792 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1793 // Set the LastFunctionBlockBit to point to the last function block. 1794 // Later when parsing is resumed after function materialization, 1795 // we can simply skip that last function block. 1796 if (FuncBitOffset > LastFunctionBlockBit) 1797 LastFunctionBlockBit = FuncBitOffset; 1798 } 1799 1800 /// Read a new-style GlobalValue symbol table. 1801 Error BitcodeReader::parseGlobalValueSymbolTable() { 1802 unsigned FuncBitcodeOffsetDelta = 1803 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1804 1805 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1806 return error("Invalid record"); 1807 1808 SmallVector<uint64_t, 64> Record; 1809 while (true) { 1810 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1811 1812 switch (Entry.Kind) { 1813 case BitstreamEntry::SubBlock: 1814 case BitstreamEntry::Error: 1815 return error("Malformed block"); 1816 case BitstreamEntry::EndBlock: 1817 return Error::success(); 1818 case BitstreamEntry::Record: 1819 break; 1820 } 1821 1822 Record.clear(); 1823 switch (Stream.readRecord(Entry.ID, Record)) { 1824 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1825 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1826 cast<Function>(ValueList[Record[0]]), Record); 1827 break; 1828 } 1829 } 1830 } 1831 1832 /// Parse the value symbol table at either the current parsing location or 1833 /// at the given bit offset if provided. 1834 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1835 uint64_t CurrentBit; 1836 // Pass in the Offset to distinguish between calling for the module-level 1837 // VST (where we want to jump to the VST offset) and the function-level 1838 // VST (where we don't). 1839 if (Offset > 0) { 1840 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1841 // If this module uses a string table, read this as a module-level VST. 1842 if (UseStrtab) { 1843 if (Error Err = parseGlobalValueSymbolTable()) 1844 return Err; 1845 Stream.JumpToBit(CurrentBit); 1846 return Error::success(); 1847 } 1848 // Otherwise, the VST will be in a similar format to a function-level VST, 1849 // and will contain symbol names. 1850 } 1851 1852 // Compute the delta between the bitcode indices in the VST (the word offset 1853 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1854 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1855 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1856 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1857 // just before entering the VST subblock because: 1) the EnterSubBlock 1858 // changes the AbbrevID width; 2) the VST block is nested within the same 1859 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1860 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1861 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1862 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1863 unsigned FuncBitcodeOffsetDelta = 1864 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1865 1866 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1867 return error("Invalid record"); 1868 1869 SmallVector<uint64_t, 64> Record; 1870 1871 Triple TT(TheModule->getTargetTriple()); 1872 1873 // Read all the records for this value table. 1874 SmallString<128> ValueName; 1875 1876 while (true) { 1877 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1878 1879 switch (Entry.Kind) { 1880 case BitstreamEntry::SubBlock: // Handled for us already. 1881 case BitstreamEntry::Error: 1882 return error("Malformed block"); 1883 case BitstreamEntry::EndBlock: 1884 if (Offset > 0) 1885 Stream.JumpToBit(CurrentBit); 1886 return Error::success(); 1887 case BitstreamEntry::Record: 1888 // The interesting case. 1889 break; 1890 } 1891 1892 // Read a record. 1893 Record.clear(); 1894 switch (Stream.readRecord(Entry.ID, Record)) { 1895 default: // Default behavior: unknown type. 1896 break; 1897 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1898 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1899 if (Error Err = ValOrErr.takeError()) 1900 return Err; 1901 ValOrErr.get(); 1902 break; 1903 } 1904 case bitc::VST_CODE_FNENTRY: { 1905 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1906 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1907 if (Error Err = ValOrErr.takeError()) 1908 return Err; 1909 Value *V = ValOrErr.get(); 1910 1911 // Ignore function offsets emitted for aliases of functions in older 1912 // versions of LLVM. 1913 if (auto *F = dyn_cast<Function>(V)) 1914 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1915 break; 1916 } 1917 case bitc::VST_CODE_BBENTRY: { 1918 if (convertToString(Record, 1, ValueName)) 1919 return error("Invalid record"); 1920 BasicBlock *BB = getBasicBlock(Record[0]); 1921 if (!BB) 1922 return error("Invalid record"); 1923 1924 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1925 ValueName.clear(); 1926 break; 1927 } 1928 } 1929 } 1930 } 1931 1932 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1933 /// encoding. 1934 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1935 if ((V & 1) == 0) 1936 return V >> 1; 1937 if (V != 1) 1938 return -(V >> 1); 1939 // There is no such thing as -0 with integers. "-0" really means MININT. 1940 return 1ULL << 63; 1941 } 1942 1943 /// Resolve all of the initializers for global values and aliases that we can. 1944 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1945 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1946 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1947 IndirectSymbolInitWorklist; 1948 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1949 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1950 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1951 1952 GlobalInitWorklist.swap(GlobalInits); 1953 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1954 FunctionPrefixWorklist.swap(FunctionPrefixes); 1955 FunctionPrologueWorklist.swap(FunctionPrologues); 1956 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1957 1958 while (!GlobalInitWorklist.empty()) { 1959 unsigned ValID = GlobalInitWorklist.back().second; 1960 if (ValID >= ValueList.size()) { 1961 // Not ready to resolve this yet, it requires something later in the file. 1962 GlobalInits.push_back(GlobalInitWorklist.back()); 1963 } else { 1964 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1965 GlobalInitWorklist.back().first->setInitializer(C); 1966 else 1967 return error("Expected a constant"); 1968 } 1969 GlobalInitWorklist.pop_back(); 1970 } 1971 1972 while (!IndirectSymbolInitWorklist.empty()) { 1973 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1974 if (ValID >= ValueList.size()) { 1975 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1976 } else { 1977 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1978 if (!C) 1979 return error("Expected a constant"); 1980 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1981 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1982 return error("Alias and aliasee types don't match"); 1983 GIS->setIndirectSymbol(C); 1984 } 1985 IndirectSymbolInitWorklist.pop_back(); 1986 } 1987 1988 while (!FunctionPrefixWorklist.empty()) { 1989 unsigned ValID = FunctionPrefixWorklist.back().second; 1990 if (ValID >= ValueList.size()) { 1991 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1992 } else { 1993 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1994 FunctionPrefixWorklist.back().first->setPrefixData(C); 1995 else 1996 return error("Expected a constant"); 1997 } 1998 FunctionPrefixWorklist.pop_back(); 1999 } 2000 2001 while (!FunctionPrologueWorklist.empty()) { 2002 unsigned ValID = FunctionPrologueWorklist.back().second; 2003 if (ValID >= ValueList.size()) { 2004 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2005 } else { 2006 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2007 FunctionPrologueWorklist.back().first->setPrologueData(C); 2008 else 2009 return error("Expected a constant"); 2010 } 2011 FunctionPrologueWorklist.pop_back(); 2012 } 2013 2014 while (!FunctionPersonalityFnWorklist.empty()) { 2015 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2016 if (ValID >= ValueList.size()) { 2017 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2018 } else { 2019 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2020 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2021 else 2022 return error("Expected a constant"); 2023 } 2024 FunctionPersonalityFnWorklist.pop_back(); 2025 } 2026 2027 return Error::success(); 2028 } 2029 2030 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2031 SmallVector<uint64_t, 8> Words(Vals.size()); 2032 transform(Vals, Words.begin(), 2033 BitcodeReader::decodeSignRotatedValue); 2034 2035 return APInt(TypeBits, Words); 2036 } 2037 2038 Error BitcodeReader::parseConstants() { 2039 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2040 return error("Invalid record"); 2041 2042 SmallVector<uint64_t, 64> Record; 2043 2044 // Read all the records for this value table. 2045 Type *CurTy = Type::getInt32Ty(Context); 2046 unsigned NextCstNo = ValueList.size(); 2047 2048 while (true) { 2049 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2050 2051 switch (Entry.Kind) { 2052 case BitstreamEntry::SubBlock: // Handled for us already. 2053 case BitstreamEntry::Error: 2054 return error("Malformed block"); 2055 case BitstreamEntry::EndBlock: 2056 if (NextCstNo != ValueList.size()) 2057 return error("Invalid constant reference"); 2058 2059 // Once all the constants have been read, go through and resolve forward 2060 // references. 2061 ValueList.resolveConstantForwardRefs(); 2062 return Error::success(); 2063 case BitstreamEntry::Record: 2064 // The interesting case. 2065 break; 2066 } 2067 2068 // Read a record. 2069 Record.clear(); 2070 Type *VoidType = Type::getVoidTy(Context); 2071 Value *V = nullptr; 2072 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2073 switch (BitCode) { 2074 default: // Default behavior: unknown constant 2075 case bitc::CST_CODE_UNDEF: // UNDEF 2076 V = UndefValue::get(CurTy); 2077 break; 2078 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2079 if (Record.empty()) 2080 return error("Invalid record"); 2081 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2082 return error("Invalid record"); 2083 if (TypeList[Record[0]] == VoidType) 2084 return error("Invalid constant type"); 2085 CurTy = TypeList[Record[0]]; 2086 continue; // Skip the ValueList manipulation. 2087 case bitc::CST_CODE_NULL: // NULL 2088 V = Constant::getNullValue(CurTy); 2089 break; 2090 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2091 if (!CurTy->isIntegerTy() || Record.empty()) 2092 return error("Invalid record"); 2093 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2094 break; 2095 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2096 if (!CurTy->isIntegerTy() || Record.empty()) 2097 return error("Invalid record"); 2098 2099 APInt VInt = 2100 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2101 V = ConstantInt::get(Context, VInt); 2102 2103 break; 2104 } 2105 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2106 if (Record.empty()) 2107 return error("Invalid record"); 2108 if (CurTy->isHalfTy()) 2109 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2110 APInt(16, (uint16_t)Record[0]))); 2111 else if (CurTy->isFloatTy()) 2112 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2113 APInt(32, (uint32_t)Record[0]))); 2114 else if (CurTy->isDoubleTy()) 2115 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2116 APInt(64, Record[0]))); 2117 else if (CurTy->isX86_FP80Ty()) { 2118 // Bits are not stored the same way as a normal i80 APInt, compensate. 2119 uint64_t Rearrange[2]; 2120 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2121 Rearrange[1] = Record[0] >> 48; 2122 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2123 APInt(80, Rearrange))); 2124 } else if (CurTy->isFP128Ty()) 2125 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2126 APInt(128, Record))); 2127 else if (CurTy->isPPC_FP128Ty()) 2128 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2129 APInt(128, Record))); 2130 else 2131 V = UndefValue::get(CurTy); 2132 break; 2133 } 2134 2135 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2136 if (Record.empty()) 2137 return error("Invalid record"); 2138 2139 unsigned Size = Record.size(); 2140 SmallVector<Constant*, 16> Elts; 2141 2142 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2143 for (unsigned i = 0; i != Size; ++i) 2144 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2145 STy->getElementType(i))); 2146 V = ConstantStruct::get(STy, Elts); 2147 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2148 Type *EltTy = ATy->getElementType(); 2149 for (unsigned i = 0; i != Size; ++i) 2150 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2151 V = ConstantArray::get(ATy, Elts); 2152 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2153 Type *EltTy = VTy->getElementType(); 2154 for (unsigned i = 0; i != Size; ++i) 2155 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2156 V = ConstantVector::get(Elts); 2157 } else { 2158 V = UndefValue::get(CurTy); 2159 } 2160 break; 2161 } 2162 case bitc::CST_CODE_STRING: // STRING: [values] 2163 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2164 if (Record.empty()) 2165 return error("Invalid record"); 2166 2167 SmallString<16> Elts(Record.begin(), Record.end()); 2168 V = ConstantDataArray::getString(Context, Elts, 2169 BitCode == bitc::CST_CODE_CSTRING); 2170 break; 2171 } 2172 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2173 if (Record.empty()) 2174 return error("Invalid record"); 2175 2176 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2177 if (EltTy->isIntegerTy(8)) { 2178 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2179 if (isa<VectorType>(CurTy)) 2180 V = ConstantDataVector::get(Context, Elts); 2181 else 2182 V = ConstantDataArray::get(Context, Elts); 2183 } else if (EltTy->isIntegerTy(16)) { 2184 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2185 if (isa<VectorType>(CurTy)) 2186 V = ConstantDataVector::get(Context, Elts); 2187 else 2188 V = ConstantDataArray::get(Context, Elts); 2189 } else if (EltTy->isIntegerTy(32)) { 2190 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2191 if (isa<VectorType>(CurTy)) 2192 V = ConstantDataVector::get(Context, Elts); 2193 else 2194 V = ConstantDataArray::get(Context, Elts); 2195 } else if (EltTy->isIntegerTy(64)) { 2196 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2197 if (isa<VectorType>(CurTy)) 2198 V = ConstantDataVector::get(Context, Elts); 2199 else 2200 V = ConstantDataArray::get(Context, Elts); 2201 } else if (EltTy->isHalfTy()) { 2202 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2203 if (isa<VectorType>(CurTy)) 2204 V = ConstantDataVector::getFP(Context, Elts); 2205 else 2206 V = ConstantDataArray::getFP(Context, Elts); 2207 } else if (EltTy->isFloatTy()) { 2208 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2209 if (isa<VectorType>(CurTy)) 2210 V = ConstantDataVector::getFP(Context, Elts); 2211 else 2212 V = ConstantDataArray::getFP(Context, Elts); 2213 } else if (EltTy->isDoubleTy()) { 2214 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2215 if (isa<VectorType>(CurTy)) 2216 V = ConstantDataVector::getFP(Context, Elts); 2217 else 2218 V = ConstantDataArray::getFP(Context, Elts); 2219 } else { 2220 return error("Invalid type for value"); 2221 } 2222 break; 2223 } 2224 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2225 if (Record.size() < 3) 2226 return error("Invalid record"); 2227 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2228 if (Opc < 0) { 2229 V = UndefValue::get(CurTy); // Unknown binop. 2230 } else { 2231 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2232 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2233 unsigned Flags = 0; 2234 if (Record.size() >= 4) { 2235 if (Opc == Instruction::Add || 2236 Opc == Instruction::Sub || 2237 Opc == Instruction::Mul || 2238 Opc == Instruction::Shl) { 2239 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2240 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2241 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2242 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2243 } else if (Opc == Instruction::SDiv || 2244 Opc == Instruction::UDiv || 2245 Opc == Instruction::LShr || 2246 Opc == Instruction::AShr) { 2247 if (Record[3] & (1 << bitc::PEO_EXACT)) 2248 Flags |= SDivOperator::IsExact; 2249 } 2250 } 2251 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2252 } 2253 break; 2254 } 2255 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2256 if (Record.size() < 3) 2257 return error("Invalid record"); 2258 int Opc = getDecodedCastOpcode(Record[0]); 2259 if (Opc < 0) { 2260 V = UndefValue::get(CurTy); // Unknown cast. 2261 } else { 2262 Type *OpTy = getTypeByID(Record[1]); 2263 if (!OpTy) 2264 return error("Invalid record"); 2265 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2266 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2267 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2268 } 2269 break; 2270 } 2271 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2272 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2273 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2274 // operands] 2275 unsigned OpNum = 0; 2276 Type *PointeeType = nullptr; 2277 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2278 Record.size() % 2) 2279 PointeeType = getTypeByID(Record[OpNum++]); 2280 2281 bool InBounds = false; 2282 Optional<unsigned> InRangeIndex; 2283 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2284 uint64_t Op = Record[OpNum++]; 2285 InBounds = Op & 1; 2286 InRangeIndex = Op >> 1; 2287 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2288 InBounds = true; 2289 2290 SmallVector<Constant*, 16> Elts; 2291 while (OpNum != Record.size()) { 2292 Type *ElTy = getTypeByID(Record[OpNum++]); 2293 if (!ElTy) 2294 return error("Invalid record"); 2295 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2296 } 2297 2298 if (PointeeType && 2299 PointeeType != 2300 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2301 ->getElementType()) 2302 return error("Explicit gep operator type does not match pointee type " 2303 "of pointer operand"); 2304 2305 if (Elts.size() < 1) 2306 return error("Invalid gep with no operands"); 2307 2308 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2309 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2310 InBounds, InRangeIndex); 2311 break; 2312 } 2313 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2314 if (Record.size() < 3) 2315 return error("Invalid record"); 2316 2317 Type *SelectorTy = Type::getInt1Ty(Context); 2318 2319 // The selector might be an i1 or an <n x i1> 2320 // Get the type from the ValueList before getting a forward ref. 2321 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2322 if (Value *V = ValueList[Record[0]]) 2323 if (SelectorTy != V->getType()) 2324 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2325 2326 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2327 SelectorTy), 2328 ValueList.getConstantFwdRef(Record[1],CurTy), 2329 ValueList.getConstantFwdRef(Record[2],CurTy)); 2330 break; 2331 } 2332 case bitc::CST_CODE_CE_EXTRACTELT 2333 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2334 if (Record.size() < 3) 2335 return error("Invalid record"); 2336 VectorType *OpTy = 2337 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2338 if (!OpTy) 2339 return error("Invalid record"); 2340 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2341 Constant *Op1 = nullptr; 2342 if (Record.size() == 4) { 2343 Type *IdxTy = getTypeByID(Record[2]); 2344 if (!IdxTy) 2345 return error("Invalid record"); 2346 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2347 } else // TODO: Remove with llvm 4.0 2348 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2349 if (!Op1) 2350 return error("Invalid record"); 2351 V = ConstantExpr::getExtractElement(Op0, Op1); 2352 break; 2353 } 2354 case bitc::CST_CODE_CE_INSERTELT 2355 : { // CE_INSERTELT: [opval, opval, opty, opval] 2356 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2357 if (Record.size() < 3 || !OpTy) 2358 return error("Invalid record"); 2359 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2360 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2361 OpTy->getElementType()); 2362 Constant *Op2 = nullptr; 2363 if (Record.size() == 4) { 2364 Type *IdxTy = getTypeByID(Record[2]); 2365 if (!IdxTy) 2366 return error("Invalid record"); 2367 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2368 } else // TODO: Remove with llvm 4.0 2369 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2370 if (!Op2) 2371 return error("Invalid record"); 2372 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2373 break; 2374 } 2375 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2376 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2377 if (Record.size() < 3 || !OpTy) 2378 return error("Invalid record"); 2379 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2380 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2381 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2382 OpTy->getNumElements()); 2383 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2384 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2385 break; 2386 } 2387 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2388 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2389 VectorType *OpTy = 2390 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2391 if (Record.size() < 4 || !RTy || !OpTy) 2392 return error("Invalid record"); 2393 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2394 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2395 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2396 RTy->getNumElements()); 2397 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2398 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2399 break; 2400 } 2401 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2402 if (Record.size() < 4) 2403 return error("Invalid record"); 2404 Type *OpTy = getTypeByID(Record[0]); 2405 if (!OpTy) 2406 return error("Invalid record"); 2407 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2408 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2409 2410 if (OpTy->isFPOrFPVectorTy()) 2411 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2412 else 2413 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2414 break; 2415 } 2416 // This maintains backward compatibility, pre-asm dialect keywords. 2417 // FIXME: Remove with the 4.0 release. 2418 case bitc::CST_CODE_INLINEASM_OLD: { 2419 if (Record.size() < 2) 2420 return error("Invalid record"); 2421 std::string AsmStr, ConstrStr; 2422 bool HasSideEffects = Record[0] & 1; 2423 bool IsAlignStack = Record[0] >> 1; 2424 unsigned AsmStrSize = Record[1]; 2425 if (2+AsmStrSize >= Record.size()) 2426 return error("Invalid record"); 2427 unsigned ConstStrSize = Record[2+AsmStrSize]; 2428 if (3+AsmStrSize+ConstStrSize > Record.size()) 2429 return error("Invalid record"); 2430 2431 for (unsigned i = 0; i != AsmStrSize; ++i) 2432 AsmStr += (char)Record[2+i]; 2433 for (unsigned i = 0; i != ConstStrSize; ++i) 2434 ConstrStr += (char)Record[3+AsmStrSize+i]; 2435 PointerType *PTy = cast<PointerType>(CurTy); 2436 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2437 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2438 break; 2439 } 2440 // This version adds support for the asm dialect keywords (e.g., 2441 // inteldialect). 2442 case bitc::CST_CODE_INLINEASM: { 2443 if (Record.size() < 2) 2444 return error("Invalid record"); 2445 std::string AsmStr, ConstrStr; 2446 bool HasSideEffects = Record[0] & 1; 2447 bool IsAlignStack = (Record[0] >> 1) & 1; 2448 unsigned AsmDialect = Record[0] >> 2; 2449 unsigned AsmStrSize = Record[1]; 2450 if (2+AsmStrSize >= Record.size()) 2451 return error("Invalid record"); 2452 unsigned ConstStrSize = Record[2+AsmStrSize]; 2453 if (3+AsmStrSize+ConstStrSize > Record.size()) 2454 return error("Invalid record"); 2455 2456 for (unsigned i = 0; i != AsmStrSize; ++i) 2457 AsmStr += (char)Record[2+i]; 2458 for (unsigned i = 0; i != ConstStrSize; ++i) 2459 ConstrStr += (char)Record[3+AsmStrSize+i]; 2460 PointerType *PTy = cast<PointerType>(CurTy); 2461 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2462 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2463 InlineAsm::AsmDialect(AsmDialect)); 2464 break; 2465 } 2466 case bitc::CST_CODE_BLOCKADDRESS:{ 2467 if (Record.size() < 3) 2468 return error("Invalid record"); 2469 Type *FnTy = getTypeByID(Record[0]); 2470 if (!FnTy) 2471 return error("Invalid record"); 2472 Function *Fn = 2473 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2474 if (!Fn) 2475 return error("Invalid record"); 2476 2477 // If the function is already parsed we can insert the block address right 2478 // away. 2479 BasicBlock *BB; 2480 unsigned BBID = Record[2]; 2481 if (!BBID) 2482 // Invalid reference to entry block. 2483 return error("Invalid ID"); 2484 if (!Fn->empty()) { 2485 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2486 for (size_t I = 0, E = BBID; I != E; ++I) { 2487 if (BBI == BBE) 2488 return error("Invalid ID"); 2489 ++BBI; 2490 } 2491 BB = &*BBI; 2492 } else { 2493 // Otherwise insert a placeholder and remember it so it can be inserted 2494 // when the function is parsed. 2495 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2496 if (FwdBBs.empty()) 2497 BasicBlockFwdRefQueue.push_back(Fn); 2498 if (FwdBBs.size() < BBID + 1) 2499 FwdBBs.resize(BBID + 1); 2500 if (!FwdBBs[BBID]) 2501 FwdBBs[BBID] = BasicBlock::Create(Context); 2502 BB = FwdBBs[BBID]; 2503 } 2504 V = BlockAddress::get(Fn, BB); 2505 break; 2506 } 2507 } 2508 2509 ValueList.assignValue(V, NextCstNo); 2510 ++NextCstNo; 2511 } 2512 } 2513 2514 Error BitcodeReader::parseUseLists() { 2515 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2516 return error("Invalid record"); 2517 2518 // Read all the records. 2519 SmallVector<uint64_t, 64> Record; 2520 2521 while (true) { 2522 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2523 2524 switch (Entry.Kind) { 2525 case BitstreamEntry::SubBlock: // Handled for us already. 2526 case BitstreamEntry::Error: 2527 return error("Malformed block"); 2528 case BitstreamEntry::EndBlock: 2529 return Error::success(); 2530 case BitstreamEntry::Record: 2531 // The interesting case. 2532 break; 2533 } 2534 2535 // Read a use list record. 2536 Record.clear(); 2537 bool IsBB = false; 2538 switch (Stream.readRecord(Entry.ID, Record)) { 2539 default: // Default behavior: unknown type. 2540 break; 2541 case bitc::USELIST_CODE_BB: 2542 IsBB = true; 2543 LLVM_FALLTHROUGH; 2544 case bitc::USELIST_CODE_DEFAULT: { 2545 unsigned RecordLength = Record.size(); 2546 if (RecordLength < 3) 2547 // Records should have at least an ID and two indexes. 2548 return error("Invalid record"); 2549 unsigned ID = Record.back(); 2550 Record.pop_back(); 2551 2552 Value *V; 2553 if (IsBB) { 2554 assert(ID < FunctionBBs.size() && "Basic block not found"); 2555 V = FunctionBBs[ID]; 2556 } else 2557 V = ValueList[ID]; 2558 unsigned NumUses = 0; 2559 SmallDenseMap<const Use *, unsigned, 16> Order; 2560 for (const Use &U : V->materialized_uses()) { 2561 if (++NumUses > Record.size()) 2562 break; 2563 Order[&U] = Record[NumUses - 1]; 2564 } 2565 if (Order.size() != Record.size() || NumUses > Record.size()) 2566 // Mismatches can happen if the functions are being materialized lazily 2567 // (out-of-order), or a value has been upgraded. 2568 break; 2569 2570 V->sortUseList([&](const Use &L, const Use &R) { 2571 return Order.lookup(&L) < Order.lookup(&R); 2572 }); 2573 break; 2574 } 2575 } 2576 } 2577 } 2578 2579 /// When we see the block for metadata, remember where it is and then skip it. 2580 /// This lets us lazily deserialize the metadata. 2581 Error BitcodeReader::rememberAndSkipMetadata() { 2582 // Save the current stream state. 2583 uint64_t CurBit = Stream.GetCurrentBitNo(); 2584 DeferredMetadataInfo.push_back(CurBit); 2585 2586 // Skip over the block for now. 2587 if (Stream.SkipBlock()) 2588 return error("Invalid record"); 2589 return Error::success(); 2590 } 2591 2592 Error BitcodeReader::materializeMetadata() { 2593 for (uint64_t BitPos : DeferredMetadataInfo) { 2594 // Move the bit stream to the saved position. 2595 Stream.JumpToBit(BitPos); 2596 if (Error Err = MDLoader->parseModuleMetadata()) 2597 return Err; 2598 } 2599 DeferredMetadataInfo.clear(); 2600 return Error::success(); 2601 } 2602 2603 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2604 2605 /// When we see the block for a function body, remember where it is and then 2606 /// skip it. This lets us lazily deserialize the functions. 2607 Error BitcodeReader::rememberAndSkipFunctionBody() { 2608 // Get the function we are talking about. 2609 if (FunctionsWithBodies.empty()) 2610 return error("Insufficient function protos"); 2611 2612 Function *Fn = FunctionsWithBodies.back(); 2613 FunctionsWithBodies.pop_back(); 2614 2615 // Save the current stream state. 2616 uint64_t CurBit = Stream.GetCurrentBitNo(); 2617 assert( 2618 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2619 "Mismatch between VST and scanned function offsets"); 2620 DeferredFunctionInfo[Fn] = CurBit; 2621 2622 // Skip over the function block for now. 2623 if (Stream.SkipBlock()) 2624 return error("Invalid record"); 2625 return Error::success(); 2626 } 2627 2628 Error BitcodeReader::globalCleanup() { 2629 // Patch the initializers for globals and aliases up. 2630 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2631 return Err; 2632 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2633 return error("Malformed global initializer set"); 2634 2635 // Look for intrinsic functions which need to be upgraded at some point 2636 for (Function &F : *TheModule) { 2637 MDLoader->upgradeDebugIntrinsics(F); 2638 Function *NewFn; 2639 if (UpgradeIntrinsicFunction(&F, NewFn)) 2640 UpgradedIntrinsics[&F] = NewFn; 2641 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2642 // Some types could be renamed during loading if several modules are 2643 // loaded in the same LLVMContext (LTO scenario). In this case we should 2644 // remangle intrinsics names as well. 2645 RemangledIntrinsics[&F] = Remangled.getValue(); 2646 } 2647 2648 // Look for global variables which need to be renamed. 2649 for (GlobalVariable &GV : TheModule->globals()) 2650 UpgradeGlobalVariable(&GV); 2651 2652 // Force deallocation of memory for these vectors to favor the client that 2653 // want lazy deserialization. 2654 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2655 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2656 IndirectSymbolInits); 2657 return Error::success(); 2658 } 2659 2660 /// Support for lazy parsing of function bodies. This is required if we 2661 /// either have an old bitcode file without a VST forward declaration record, 2662 /// or if we have an anonymous function being materialized, since anonymous 2663 /// functions do not have a name and are therefore not in the VST. 2664 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2665 Stream.JumpToBit(NextUnreadBit); 2666 2667 if (Stream.AtEndOfStream()) 2668 return error("Could not find function in stream"); 2669 2670 if (!SeenFirstFunctionBody) 2671 return error("Trying to materialize functions before seeing function blocks"); 2672 2673 // An old bitcode file with the symbol table at the end would have 2674 // finished the parse greedily. 2675 assert(SeenValueSymbolTable); 2676 2677 SmallVector<uint64_t, 64> Record; 2678 2679 while (true) { 2680 BitstreamEntry Entry = Stream.advance(); 2681 switch (Entry.Kind) { 2682 default: 2683 return error("Expect SubBlock"); 2684 case BitstreamEntry::SubBlock: 2685 switch (Entry.ID) { 2686 default: 2687 return error("Expect function block"); 2688 case bitc::FUNCTION_BLOCK_ID: 2689 if (Error Err = rememberAndSkipFunctionBody()) 2690 return Err; 2691 NextUnreadBit = Stream.GetCurrentBitNo(); 2692 return Error::success(); 2693 } 2694 } 2695 } 2696 } 2697 2698 bool BitcodeReaderBase::readBlockInfo() { 2699 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2700 if (!NewBlockInfo) 2701 return true; 2702 BlockInfo = std::move(*NewBlockInfo); 2703 return false; 2704 } 2705 2706 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2707 // v1: [selection_kind, name] 2708 // v2: [strtab_offset, strtab_size, selection_kind] 2709 StringRef Name; 2710 std::tie(Name, Record) = readNameFromStrtab(Record); 2711 2712 if (Record.size() < 1) 2713 return error("Invalid record"); 2714 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2715 std::string OldFormatName; 2716 if (!UseStrtab) { 2717 if (Record.size() < 2) 2718 return error("Invalid record"); 2719 unsigned ComdatNameSize = Record[1]; 2720 OldFormatName.reserve(ComdatNameSize); 2721 for (unsigned i = 0; i != ComdatNameSize; ++i) 2722 OldFormatName += (char)Record[2 + i]; 2723 Name = OldFormatName; 2724 } 2725 Comdat *C = TheModule->getOrInsertComdat(Name); 2726 C->setSelectionKind(SK); 2727 ComdatList.push_back(C); 2728 return Error::success(); 2729 } 2730 2731 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2732 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2733 // visibility, threadlocal, unnamed_addr, externally_initialized, 2734 // dllstorageclass, comdat] (name in VST) 2735 // v2: [strtab_offset, strtab_size, v1] 2736 StringRef Name; 2737 std::tie(Name, Record) = readNameFromStrtab(Record); 2738 2739 if (Record.size() < 6) 2740 return error("Invalid record"); 2741 Type *Ty = getTypeByID(Record[0]); 2742 if (!Ty) 2743 return error("Invalid record"); 2744 bool isConstant = Record[1] & 1; 2745 bool explicitType = Record[1] & 2; 2746 unsigned AddressSpace; 2747 if (explicitType) { 2748 AddressSpace = Record[1] >> 2; 2749 } else { 2750 if (!Ty->isPointerTy()) 2751 return error("Invalid type for value"); 2752 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2753 Ty = cast<PointerType>(Ty)->getElementType(); 2754 } 2755 2756 uint64_t RawLinkage = Record[3]; 2757 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2758 unsigned Alignment; 2759 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2760 return Err; 2761 std::string Section; 2762 if (Record[5]) { 2763 if (Record[5] - 1 >= SectionTable.size()) 2764 return error("Invalid ID"); 2765 Section = SectionTable[Record[5] - 1]; 2766 } 2767 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2768 // Local linkage must have default visibility. 2769 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2770 // FIXME: Change to an error if non-default in 4.0. 2771 Visibility = getDecodedVisibility(Record[6]); 2772 2773 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2774 if (Record.size() > 7) 2775 TLM = getDecodedThreadLocalMode(Record[7]); 2776 2777 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2778 if (Record.size() > 8) 2779 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2780 2781 bool ExternallyInitialized = false; 2782 if (Record.size() > 9) 2783 ExternallyInitialized = Record[9]; 2784 2785 GlobalVariable *NewGV = 2786 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2787 nullptr, TLM, AddressSpace, ExternallyInitialized); 2788 NewGV->setAlignment(Alignment); 2789 if (!Section.empty()) 2790 NewGV->setSection(Section); 2791 NewGV->setVisibility(Visibility); 2792 NewGV->setUnnamedAddr(UnnamedAddr); 2793 2794 if (Record.size() > 10) 2795 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2796 else 2797 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2798 2799 ValueList.push_back(NewGV); 2800 2801 // Remember which value to use for the global initializer. 2802 if (unsigned InitID = Record[2]) 2803 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2804 2805 if (Record.size() > 11) { 2806 if (unsigned ComdatID = Record[11]) { 2807 if (ComdatID > ComdatList.size()) 2808 return error("Invalid global variable comdat ID"); 2809 NewGV->setComdat(ComdatList[ComdatID - 1]); 2810 } 2811 } else if (hasImplicitComdat(RawLinkage)) { 2812 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2813 } 2814 return Error::success(); 2815 } 2816 2817 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2818 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2819 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2820 // prefixdata] (name in VST) 2821 // v2: [strtab_offset, strtab_size, v1] 2822 StringRef Name; 2823 std::tie(Name, Record) = readNameFromStrtab(Record); 2824 2825 if (Record.size() < 8) 2826 return error("Invalid record"); 2827 Type *Ty = getTypeByID(Record[0]); 2828 if (!Ty) 2829 return error("Invalid record"); 2830 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2831 Ty = PTy->getElementType(); 2832 auto *FTy = dyn_cast<FunctionType>(Ty); 2833 if (!FTy) 2834 return error("Invalid type for value"); 2835 auto CC = static_cast<CallingConv::ID>(Record[1]); 2836 if (CC & ~CallingConv::MaxID) 2837 return error("Invalid calling convention ID"); 2838 2839 Function *Func = 2840 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2841 2842 Func->setCallingConv(CC); 2843 bool isProto = Record[2]; 2844 uint64_t RawLinkage = Record[3]; 2845 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2846 Func->setAttributes(getAttributes(Record[4])); 2847 2848 unsigned Alignment; 2849 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2850 return Err; 2851 Func->setAlignment(Alignment); 2852 if (Record[6]) { 2853 if (Record[6] - 1 >= SectionTable.size()) 2854 return error("Invalid ID"); 2855 Func->setSection(SectionTable[Record[6] - 1]); 2856 } 2857 // Local linkage must have default visibility. 2858 if (!Func->hasLocalLinkage()) 2859 // FIXME: Change to an error if non-default in 4.0. 2860 Func->setVisibility(getDecodedVisibility(Record[7])); 2861 if (Record.size() > 8 && Record[8]) { 2862 if (Record[8] - 1 >= GCTable.size()) 2863 return error("Invalid ID"); 2864 Func->setGC(GCTable[Record[8] - 1]); 2865 } 2866 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2867 if (Record.size() > 9) 2868 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2869 Func->setUnnamedAddr(UnnamedAddr); 2870 if (Record.size() > 10 && Record[10] != 0) 2871 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2872 2873 if (Record.size() > 11) 2874 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2875 else 2876 upgradeDLLImportExportLinkage(Func, RawLinkage); 2877 2878 if (Record.size() > 12) { 2879 if (unsigned ComdatID = Record[12]) { 2880 if (ComdatID > ComdatList.size()) 2881 return error("Invalid function comdat ID"); 2882 Func->setComdat(ComdatList[ComdatID - 1]); 2883 } 2884 } else if (hasImplicitComdat(RawLinkage)) { 2885 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2886 } 2887 2888 if (Record.size() > 13 && Record[13] != 0) 2889 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2890 2891 if (Record.size() > 14 && Record[14] != 0) 2892 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2893 2894 ValueList.push_back(Func); 2895 2896 // If this is a function with a body, remember the prototype we are 2897 // creating now, so that we can match up the body with them later. 2898 if (!isProto) { 2899 Func->setIsMaterializable(true); 2900 FunctionsWithBodies.push_back(Func); 2901 DeferredFunctionInfo[Func] = 0; 2902 } 2903 return Error::success(); 2904 } 2905 2906 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2907 unsigned BitCode, ArrayRef<uint64_t> Record) { 2908 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2909 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2910 // dllstorageclass] (name in VST) 2911 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2912 // visibility, dllstorageclass] (name in VST) 2913 // v2: [strtab_offset, strtab_size, v1] 2914 StringRef Name; 2915 std::tie(Name, Record) = readNameFromStrtab(Record); 2916 2917 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2918 if (Record.size() < (3 + (unsigned)NewRecord)) 2919 return error("Invalid record"); 2920 unsigned OpNum = 0; 2921 Type *Ty = getTypeByID(Record[OpNum++]); 2922 if (!Ty) 2923 return error("Invalid record"); 2924 2925 unsigned AddrSpace; 2926 if (!NewRecord) { 2927 auto *PTy = dyn_cast<PointerType>(Ty); 2928 if (!PTy) 2929 return error("Invalid type for value"); 2930 Ty = PTy->getElementType(); 2931 AddrSpace = PTy->getAddressSpace(); 2932 } else { 2933 AddrSpace = Record[OpNum++]; 2934 } 2935 2936 auto Val = Record[OpNum++]; 2937 auto Linkage = Record[OpNum++]; 2938 GlobalIndirectSymbol *NewGA; 2939 if (BitCode == bitc::MODULE_CODE_ALIAS || 2940 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 2941 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2942 TheModule); 2943 else 2944 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2945 nullptr, TheModule); 2946 // Old bitcode files didn't have visibility field. 2947 // Local linkage must have default visibility. 2948 if (OpNum != Record.size()) { 2949 auto VisInd = OpNum++; 2950 if (!NewGA->hasLocalLinkage()) 2951 // FIXME: Change to an error if non-default in 4.0. 2952 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 2953 } 2954 if (OpNum != Record.size()) 2955 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 2956 else 2957 upgradeDLLImportExportLinkage(NewGA, Linkage); 2958 if (OpNum != Record.size()) 2959 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 2960 if (OpNum != Record.size()) 2961 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 2962 ValueList.push_back(NewGA); 2963 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 2964 return Error::success(); 2965 } 2966 2967 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2968 bool ShouldLazyLoadMetadata) { 2969 if (ResumeBit) 2970 Stream.JumpToBit(ResumeBit); 2971 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2972 return error("Invalid record"); 2973 2974 SmallVector<uint64_t, 64> Record; 2975 2976 // Read all the records for this module. 2977 while (true) { 2978 BitstreamEntry Entry = Stream.advance(); 2979 2980 switch (Entry.Kind) { 2981 case BitstreamEntry::Error: 2982 return error("Malformed block"); 2983 case BitstreamEntry::EndBlock: 2984 return globalCleanup(); 2985 2986 case BitstreamEntry::SubBlock: 2987 switch (Entry.ID) { 2988 default: // Skip unknown content. 2989 if (Stream.SkipBlock()) 2990 return error("Invalid record"); 2991 break; 2992 case bitc::BLOCKINFO_BLOCK_ID: 2993 if (readBlockInfo()) 2994 return error("Malformed block"); 2995 break; 2996 case bitc::PARAMATTR_BLOCK_ID: 2997 if (Error Err = parseAttributeBlock()) 2998 return Err; 2999 break; 3000 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3001 if (Error Err = parseAttributeGroupBlock()) 3002 return Err; 3003 break; 3004 case bitc::TYPE_BLOCK_ID_NEW: 3005 if (Error Err = parseTypeTable()) 3006 return Err; 3007 break; 3008 case bitc::VALUE_SYMTAB_BLOCK_ID: 3009 if (!SeenValueSymbolTable) { 3010 // Either this is an old form VST without function index and an 3011 // associated VST forward declaration record (which would have caused 3012 // the VST to be jumped to and parsed before it was encountered 3013 // normally in the stream), or there were no function blocks to 3014 // trigger an earlier parsing of the VST. 3015 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3016 if (Error Err = parseValueSymbolTable()) 3017 return Err; 3018 SeenValueSymbolTable = true; 3019 } else { 3020 // We must have had a VST forward declaration record, which caused 3021 // the parser to jump to and parse the VST earlier. 3022 assert(VSTOffset > 0); 3023 if (Stream.SkipBlock()) 3024 return error("Invalid record"); 3025 } 3026 break; 3027 case bitc::CONSTANTS_BLOCK_ID: 3028 if (Error Err = parseConstants()) 3029 return Err; 3030 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3031 return Err; 3032 break; 3033 case bitc::METADATA_BLOCK_ID: 3034 if (ShouldLazyLoadMetadata) { 3035 if (Error Err = rememberAndSkipMetadata()) 3036 return Err; 3037 break; 3038 } 3039 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3040 if (Error Err = MDLoader->parseModuleMetadata()) 3041 return Err; 3042 break; 3043 case bitc::METADATA_KIND_BLOCK_ID: 3044 if (Error Err = MDLoader->parseMetadataKinds()) 3045 return Err; 3046 break; 3047 case bitc::FUNCTION_BLOCK_ID: 3048 // If this is the first function body we've seen, reverse the 3049 // FunctionsWithBodies list. 3050 if (!SeenFirstFunctionBody) { 3051 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3052 if (Error Err = globalCleanup()) 3053 return Err; 3054 SeenFirstFunctionBody = true; 3055 } 3056 3057 if (VSTOffset > 0) { 3058 // If we have a VST forward declaration record, make sure we 3059 // parse the VST now if we haven't already. It is needed to 3060 // set up the DeferredFunctionInfo vector for lazy reading. 3061 if (!SeenValueSymbolTable) { 3062 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3063 return Err; 3064 SeenValueSymbolTable = true; 3065 // Fall through so that we record the NextUnreadBit below. 3066 // This is necessary in case we have an anonymous function that 3067 // is later materialized. Since it will not have a VST entry we 3068 // need to fall back to the lazy parse to find its offset. 3069 } else { 3070 // If we have a VST forward declaration record, but have already 3071 // parsed the VST (just above, when the first function body was 3072 // encountered here), then we are resuming the parse after 3073 // materializing functions. The ResumeBit points to the 3074 // start of the last function block recorded in the 3075 // DeferredFunctionInfo map. Skip it. 3076 if (Stream.SkipBlock()) 3077 return error("Invalid record"); 3078 continue; 3079 } 3080 } 3081 3082 // Support older bitcode files that did not have the function 3083 // index in the VST, nor a VST forward declaration record, as 3084 // well as anonymous functions that do not have VST entries. 3085 // Build the DeferredFunctionInfo vector on the fly. 3086 if (Error Err = rememberAndSkipFunctionBody()) 3087 return Err; 3088 3089 // Suspend parsing when we reach the function bodies. Subsequent 3090 // materialization calls will resume it when necessary. If the bitcode 3091 // file is old, the symbol table will be at the end instead and will not 3092 // have been seen yet. In this case, just finish the parse now. 3093 if (SeenValueSymbolTable) { 3094 NextUnreadBit = Stream.GetCurrentBitNo(); 3095 // After the VST has been parsed, we need to make sure intrinsic name 3096 // are auto-upgraded. 3097 return globalCleanup(); 3098 } 3099 break; 3100 case bitc::USELIST_BLOCK_ID: 3101 if (Error Err = parseUseLists()) 3102 return Err; 3103 break; 3104 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3105 if (Error Err = parseOperandBundleTags()) 3106 return Err; 3107 break; 3108 } 3109 continue; 3110 3111 case BitstreamEntry::Record: 3112 // The interesting case. 3113 break; 3114 } 3115 3116 // Read a record. 3117 auto BitCode = Stream.readRecord(Entry.ID, Record); 3118 switch (BitCode) { 3119 default: break; // Default behavior, ignore unknown content. 3120 case bitc::MODULE_CODE_VERSION: { 3121 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3122 if (!VersionOrErr) 3123 return VersionOrErr.takeError(); 3124 UseRelativeIDs = *VersionOrErr >= 1; 3125 break; 3126 } 3127 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3128 std::string S; 3129 if (convertToString(Record, 0, S)) 3130 return error("Invalid record"); 3131 TheModule->setTargetTriple(S); 3132 break; 3133 } 3134 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3135 std::string S; 3136 if (convertToString(Record, 0, S)) 3137 return error("Invalid record"); 3138 TheModule->setDataLayout(S); 3139 break; 3140 } 3141 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3142 std::string S; 3143 if (convertToString(Record, 0, S)) 3144 return error("Invalid record"); 3145 TheModule->setModuleInlineAsm(S); 3146 break; 3147 } 3148 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3149 // FIXME: Remove in 4.0. 3150 std::string S; 3151 if (convertToString(Record, 0, S)) 3152 return error("Invalid record"); 3153 // Ignore value. 3154 break; 3155 } 3156 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3157 std::string S; 3158 if (convertToString(Record, 0, S)) 3159 return error("Invalid record"); 3160 SectionTable.push_back(S); 3161 break; 3162 } 3163 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3164 std::string S; 3165 if (convertToString(Record, 0, S)) 3166 return error("Invalid record"); 3167 GCTable.push_back(S); 3168 break; 3169 } 3170 case bitc::MODULE_CODE_COMDAT: { 3171 if (Error Err = parseComdatRecord(Record)) 3172 return Err; 3173 break; 3174 } 3175 case bitc::MODULE_CODE_GLOBALVAR: { 3176 if (Error Err = parseGlobalVarRecord(Record)) 3177 return Err; 3178 break; 3179 } 3180 case bitc::MODULE_CODE_FUNCTION: { 3181 if (Error Err = parseFunctionRecord(Record)) 3182 return Err; 3183 break; 3184 } 3185 case bitc::MODULE_CODE_IFUNC: 3186 case bitc::MODULE_CODE_ALIAS: 3187 case bitc::MODULE_CODE_ALIAS_OLD: { 3188 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3189 return Err; 3190 break; 3191 } 3192 /// MODULE_CODE_VSTOFFSET: [offset] 3193 case bitc::MODULE_CODE_VSTOFFSET: 3194 if (Record.size() < 1) 3195 return error("Invalid record"); 3196 // Note that we subtract 1 here because the offset is relative to one word 3197 // before the start of the identification or module block, which was 3198 // historically always the start of the regular bitcode header. 3199 VSTOffset = Record[0] - 1; 3200 break; 3201 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3202 case bitc::MODULE_CODE_SOURCE_FILENAME: 3203 SmallString<128> ValueName; 3204 if (convertToString(Record, 0, ValueName)) 3205 return error("Invalid record"); 3206 TheModule->setSourceFileName(ValueName); 3207 break; 3208 } 3209 Record.clear(); 3210 } 3211 } 3212 3213 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3214 bool IsImporting) { 3215 TheModule = M; 3216 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3217 [&](unsigned ID) { return getTypeByID(ID); }); 3218 return parseModule(0, ShouldLazyLoadMetadata); 3219 } 3220 3221 3222 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3223 if (!isa<PointerType>(PtrType)) 3224 return error("Load/Store operand is not a pointer type"); 3225 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3226 3227 if (ValType && ValType != ElemType) 3228 return error("Explicit load/store type does not match pointee " 3229 "type of pointer operand"); 3230 if (!PointerType::isLoadableOrStorableType(ElemType)) 3231 return error("Cannot load/store from pointer"); 3232 return Error::success(); 3233 } 3234 3235 /// Lazily parse the specified function body block. 3236 Error BitcodeReader::parseFunctionBody(Function *F) { 3237 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3238 return error("Invalid record"); 3239 3240 // Unexpected unresolved metadata when parsing function. 3241 if (MDLoader->hasFwdRefs()) 3242 return error("Invalid function metadata: incoming forward references"); 3243 3244 InstructionList.clear(); 3245 unsigned ModuleValueListSize = ValueList.size(); 3246 unsigned ModuleMDLoaderSize = MDLoader->size(); 3247 3248 // Add all the function arguments to the value table. 3249 for (Argument &I : F->args()) 3250 ValueList.push_back(&I); 3251 3252 unsigned NextValueNo = ValueList.size(); 3253 BasicBlock *CurBB = nullptr; 3254 unsigned CurBBNo = 0; 3255 3256 DebugLoc LastLoc; 3257 auto getLastInstruction = [&]() -> Instruction * { 3258 if (CurBB && !CurBB->empty()) 3259 return &CurBB->back(); 3260 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3261 !FunctionBBs[CurBBNo - 1]->empty()) 3262 return &FunctionBBs[CurBBNo - 1]->back(); 3263 return nullptr; 3264 }; 3265 3266 std::vector<OperandBundleDef> OperandBundles; 3267 3268 // Read all the records. 3269 SmallVector<uint64_t, 64> Record; 3270 3271 while (true) { 3272 BitstreamEntry Entry = Stream.advance(); 3273 3274 switch (Entry.Kind) { 3275 case BitstreamEntry::Error: 3276 return error("Malformed block"); 3277 case BitstreamEntry::EndBlock: 3278 goto OutOfRecordLoop; 3279 3280 case BitstreamEntry::SubBlock: 3281 switch (Entry.ID) { 3282 default: // Skip unknown content. 3283 if (Stream.SkipBlock()) 3284 return error("Invalid record"); 3285 break; 3286 case bitc::CONSTANTS_BLOCK_ID: 3287 if (Error Err = parseConstants()) 3288 return Err; 3289 NextValueNo = ValueList.size(); 3290 break; 3291 case bitc::VALUE_SYMTAB_BLOCK_ID: 3292 if (Error Err = parseValueSymbolTable()) 3293 return Err; 3294 break; 3295 case bitc::METADATA_ATTACHMENT_ID: 3296 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3297 return Err; 3298 break; 3299 case bitc::METADATA_BLOCK_ID: 3300 assert(DeferredMetadataInfo.empty() && 3301 "Must read all module-level metadata before function-level"); 3302 if (Error Err = MDLoader->parseFunctionMetadata()) 3303 return Err; 3304 break; 3305 case bitc::USELIST_BLOCK_ID: 3306 if (Error Err = parseUseLists()) 3307 return Err; 3308 break; 3309 } 3310 continue; 3311 3312 case BitstreamEntry::Record: 3313 // The interesting case. 3314 break; 3315 } 3316 3317 // Read a record. 3318 Record.clear(); 3319 Instruction *I = nullptr; 3320 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3321 switch (BitCode) { 3322 default: // Default behavior: reject 3323 return error("Invalid value"); 3324 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3325 if (Record.size() < 1 || Record[0] == 0) 3326 return error("Invalid record"); 3327 // Create all the basic blocks for the function. 3328 FunctionBBs.resize(Record[0]); 3329 3330 // See if anything took the address of blocks in this function. 3331 auto BBFRI = BasicBlockFwdRefs.find(F); 3332 if (BBFRI == BasicBlockFwdRefs.end()) { 3333 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3334 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3335 } else { 3336 auto &BBRefs = BBFRI->second; 3337 // Check for invalid basic block references. 3338 if (BBRefs.size() > FunctionBBs.size()) 3339 return error("Invalid ID"); 3340 assert(!BBRefs.empty() && "Unexpected empty array"); 3341 assert(!BBRefs.front() && "Invalid reference to entry block"); 3342 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3343 ++I) 3344 if (I < RE && BBRefs[I]) { 3345 BBRefs[I]->insertInto(F); 3346 FunctionBBs[I] = BBRefs[I]; 3347 } else { 3348 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3349 } 3350 3351 // Erase from the table. 3352 BasicBlockFwdRefs.erase(BBFRI); 3353 } 3354 3355 CurBB = FunctionBBs[0]; 3356 continue; 3357 } 3358 3359 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3360 // This record indicates that the last instruction is at the same 3361 // location as the previous instruction with a location. 3362 I = getLastInstruction(); 3363 3364 if (!I) 3365 return error("Invalid record"); 3366 I->setDebugLoc(LastLoc); 3367 I = nullptr; 3368 continue; 3369 3370 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3371 I = getLastInstruction(); 3372 if (!I || Record.size() < 4) 3373 return error("Invalid record"); 3374 3375 unsigned Line = Record[0], Col = Record[1]; 3376 unsigned ScopeID = Record[2], IAID = Record[3]; 3377 3378 MDNode *Scope = nullptr, *IA = nullptr; 3379 if (ScopeID) { 3380 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3381 if (!Scope) 3382 return error("Invalid record"); 3383 } 3384 if (IAID) { 3385 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3386 if (!IA) 3387 return error("Invalid record"); 3388 } 3389 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3390 I->setDebugLoc(LastLoc); 3391 I = nullptr; 3392 continue; 3393 } 3394 3395 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3396 unsigned OpNum = 0; 3397 Value *LHS, *RHS; 3398 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3399 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3400 OpNum+1 > Record.size()) 3401 return error("Invalid record"); 3402 3403 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3404 if (Opc == -1) 3405 return error("Invalid record"); 3406 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3407 InstructionList.push_back(I); 3408 if (OpNum < Record.size()) { 3409 if (Opc == Instruction::Add || 3410 Opc == Instruction::Sub || 3411 Opc == Instruction::Mul || 3412 Opc == Instruction::Shl) { 3413 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3414 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3415 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3416 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3417 } else if (Opc == Instruction::SDiv || 3418 Opc == Instruction::UDiv || 3419 Opc == Instruction::LShr || 3420 Opc == Instruction::AShr) { 3421 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3422 cast<BinaryOperator>(I)->setIsExact(true); 3423 } else if (isa<FPMathOperator>(I)) { 3424 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3425 if (FMF.any()) 3426 I->setFastMathFlags(FMF); 3427 } 3428 3429 } 3430 break; 3431 } 3432 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3433 unsigned OpNum = 0; 3434 Value *Op; 3435 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3436 OpNum+2 != Record.size()) 3437 return error("Invalid record"); 3438 3439 Type *ResTy = getTypeByID(Record[OpNum]); 3440 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3441 if (Opc == -1 || !ResTy) 3442 return error("Invalid record"); 3443 Instruction *Temp = nullptr; 3444 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3445 if (Temp) { 3446 InstructionList.push_back(Temp); 3447 CurBB->getInstList().push_back(Temp); 3448 } 3449 } else { 3450 auto CastOp = (Instruction::CastOps)Opc; 3451 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3452 return error("Invalid cast"); 3453 I = CastInst::Create(CastOp, Op, ResTy); 3454 } 3455 InstructionList.push_back(I); 3456 break; 3457 } 3458 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3459 case bitc::FUNC_CODE_INST_GEP_OLD: 3460 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3461 unsigned OpNum = 0; 3462 3463 Type *Ty; 3464 bool InBounds; 3465 3466 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3467 InBounds = Record[OpNum++]; 3468 Ty = getTypeByID(Record[OpNum++]); 3469 } else { 3470 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3471 Ty = nullptr; 3472 } 3473 3474 Value *BasePtr; 3475 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3476 return error("Invalid record"); 3477 3478 if (!Ty) 3479 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3480 ->getElementType(); 3481 else if (Ty != 3482 cast<PointerType>(BasePtr->getType()->getScalarType()) 3483 ->getElementType()) 3484 return error( 3485 "Explicit gep type does not match pointee type of pointer operand"); 3486 3487 SmallVector<Value*, 16> GEPIdx; 3488 while (OpNum != Record.size()) { 3489 Value *Op; 3490 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3491 return error("Invalid record"); 3492 GEPIdx.push_back(Op); 3493 } 3494 3495 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3496 3497 InstructionList.push_back(I); 3498 if (InBounds) 3499 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3500 break; 3501 } 3502 3503 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3504 // EXTRACTVAL: [opty, opval, n x indices] 3505 unsigned OpNum = 0; 3506 Value *Agg; 3507 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3508 return error("Invalid record"); 3509 3510 unsigned RecSize = Record.size(); 3511 if (OpNum == RecSize) 3512 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3513 3514 SmallVector<unsigned, 4> EXTRACTVALIdx; 3515 Type *CurTy = Agg->getType(); 3516 for (; OpNum != RecSize; ++OpNum) { 3517 bool IsArray = CurTy->isArrayTy(); 3518 bool IsStruct = CurTy->isStructTy(); 3519 uint64_t Index = Record[OpNum]; 3520 3521 if (!IsStruct && !IsArray) 3522 return error("EXTRACTVAL: Invalid type"); 3523 if ((unsigned)Index != Index) 3524 return error("Invalid value"); 3525 if (IsStruct && Index >= CurTy->subtypes().size()) 3526 return error("EXTRACTVAL: Invalid struct index"); 3527 if (IsArray && Index >= CurTy->getArrayNumElements()) 3528 return error("EXTRACTVAL: Invalid array index"); 3529 EXTRACTVALIdx.push_back((unsigned)Index); 3530 3531 if (IsStruct) 3532 CurTy = CurTy->subtypes()[Index]; 3533 else 3534 CurTy = CurTy->subtypes()[0]; 3535 } 3536 3537 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3538 InstructionList.push_back(I); 3539 break; 3540 } 3541 3542 case bitc::FUNC_CODE_INST_INSERTVAL: { 3543 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3544 unsigned OpNum = 0; 3545 Value *Agg; 3546 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3547 return error("Invalid record"); 3548 Value *Val; 3549 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3550 return error("Invalid record"); 3551 3552 unsigned RecSize = Record.size(); 3553 if (OpNum == RecSize) 3554 return error("INSERTVAL: Invalid instruction with 0 indices"); 3555 3556 SmallVector<unsigned, 4> INSERTVALIdx; 3557 Type *CurTy = Agg->getType(); 3558 for (; OpNum != RecSize; ++OpNum) { 3559 bool IsArray = CurTy->isArrayTy(); 3560 bool IsStruct = CurTy->isStructTy(); 3561 uint64_t Index = Record[OpNum]; 3562 3563 if (!IsStruct && !IsArray) 3564 return error("INSERTVAL: Invalid type"); 3565 if ((unsigned)Index != Index) 3566 return error("Invalid value"); 3567 if (IsStruct && Index >= CurTy->subtypes().size()) 3568 return error("INSERTVAL: Invalid struct index"); 3569 if (IsArray && Index >= CurTy->getArrayNumElements()) 3570 return error("INSERTVAL: Invalid array index"); 3571 3572 INSERTVALIdx.push_back((unsigned)Index); 3573 if (IsStruct) 3574 CurTy = CurTy->subtypes()[Index]; 3575 else 3576 CurTy = CurTy->subtypes()[0]; 3577 } 3578 3579 if (CurTy != Val->getType()) 3580 return error("Inserted value type doesn't match aggregate type"); 3581 3582 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3583 InstructionList.push_back(I); 3584 break; 3585 } 3586 3587 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3588 // obsolete form of select 3589 // handles select i1 ... in old bitcode 3590 unsigned OpNum = 0; 3591 Value *TrueVal, *FalseVal, *Cond; 3592 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3593 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3594 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3595 return error("Invalid record"); 3596 3597 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3598 InstructionList.push_back(I); 3599 break; 3600 } 3601 3602 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3603 // new form of select 3604 // handles select i1 or select [N x i1] 3605 unsigned OpNum = 0; 3606 Value *TrueVal, *FalseVal, *Cond; 3607 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3608 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3609 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3610 return error("Invalid record"); 3611 3612 // select condition can be either i1 or [N x i1] 3613 if (VectorType* vector_type = 3614 dyn_cast<VectorType>(Cond->getType())) { 3615 // expect <n x i1> 3616 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3617 return error("Invalid type for value"); 3618 } else { 3619 // expect i1 3620 if (Cond->getType() != Type::getInt1Ty(Context)) 3621 return error("Invalid type for value"); 3622 } 3623 3624 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3625 InstructionList.push_back(I); 3626 break; 3627 } 3628 3629 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3630 unsigned OpNum = 0; 3631 Value *Vec, *Idx; 3632 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3633 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3634 return error("Invalid record"); 3635 if (!Vec->getType()->isVectorTy()) 3636 return error("Invalid type for value"); 3637 I = ExtractElementInst::Create(Vec, Idx); 3638 InstructionList.push_back(I); 3639 break; 3640 } 3641 3642 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3643 unsigned OpNum = 0; 3644 Value *Vec, *Elt, *Idx; 3645 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3646 return error("Invalid record"); 3647 if (!Vec->getType()->isVectorTy()) 3648 return error("Invalid type for value"); 3649 if (popValue(Record, OpNum, NextValueNo, 3650 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3651 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3652 return error("Invalid record"); 3653 I = InsertElementInst::Create(Vec, Elt, Idx); 3654 InstructionList.push_back(I); 3655 break; 3656 } 3657 3658 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3659 unsigned OpNum = 0; 3660 Value *Vec1, *Vec2, *Mask; 3661 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3662 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3663 return error("Invalid record"); 3664 3665 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3666 return error("Invalid record"); 3667 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3668 return error("Invalid type for value"); 3669 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3670 InstructionList.push_back(I); 3671 break; 3672 } 3673 3674 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3675 // Old form of ICmp/FCmp returning bool 3676 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3677 // both legal on vectors but had different behaviour. 3678 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3679 // FCmp/ICmp returning bool or vector of bool 3680 3681 unsigned OpNum = 0; 3682 Value *LHS, *RHS; 3683 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3684 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3685 return error("Invalid record"); 3686 3687 unsigned PredVal = Record[OpNum]; 3688 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3689 FastMathFlags FMF; 3690 if (IsFP && Record.size() > OpNum+1) 3691 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3692 3693 if (OpNum+1 != Record.size()) 3694 return error("Invalid record"); 3695 3696 if (LHS->getType()->isFPOrFPVectorTy()) 3697 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3698 else 3699 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3700 3701 if (FMF.any()) 3702 I->setFastMathFlags(FMF); 3703 InstructionList.push_back(I); 3704 break; 3705 } 3706 3707 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3708 { 3709 unsigned Size = Record.size(); 3710 if (Size == 0) { 3711 I = ReturnInst::Create(Context); 3712 InstructionList.push_back(I); 3713 break; 3714 } 3715 3716 unsigned OpNum = 0; 3717 Value *Op = nullptr; 3718 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3719 return error("Invalid record"); 3720 if (OpNum != Record.size()) 3721 return error("Invalid record"); 3722 3723 I = ReturnInst::Create(Context, Op); 3724 InstructionList.push_back(I); 3725 break; 3726 } 3727 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3728 if (Record.size() != 1 && Record.size() != 3) 3729 return error("Invalid record"); 3730 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3731 if (!TrueDest) 3732 return error("Invalid record"); 3733 3734 if (Record.size() == 1) { 3735 I = BranchInst::Create(TrueDest); 3736 InstructionList.push_back(I); 3737 } 3738 else { 3739 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3740 Value *Cond = getValue(Record, 2, NextValueNo, 3741 Type::getInt1Ty(Context)); 3742 if (!FalseDest || !Cond) 3743 return error("Invalid record"); 3744 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3745 InstructionList.push_back(I); 3746 } 3747 break; 3748 } 3749 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3750 if (Record.size() != 1 && Record.size() != 2) 3751 return error("Invalid record"); 3752 unsigned Idx = 0; 3753 Value *CleanupPad = 3754 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3755 if (!CleanupPad) 3756 return error("Invalid record"); 3757 BasicBlock *UnwindDest = nullptr; 3758 if (Record.size() == 2) { 3759 UnwindDest = getBasicBlock(Record[Idx++]); 3760 if (!UnwindDest) 3761 return error("Invalid record"); 3762 } 3763 3764 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3765 InstructionList.push_back(I); 3766 break; 3767 } 3768 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3769 if (Record.size() != 2) 3770 return error("Invalid record"); 3771 unsigned Idx = 0; 3772 Value *CatchPad = 3773 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3774 if (!CatchPad) 3775 return error("Invalid record"); 3776 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3777 if (!BB) 3778 return error("Invalid record"); 3779 3780 I = CatchReturnInst::Create(CatchPad, BB); 3781 InstructionList.push_back(I); 3782 break; 3783 } 3784 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3785 // We must have, at minimum, the outer scope and the number of arguments. 3786 if (Record.size() < 2) 3787 return error("Invalid record"); 3788 3789 unsigned Idx = 0; 3790 3791 Value *ParentPad = 3792 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3793 3794 unsigned NumHandlers = Record[Idx++]; 3795 3796 SmallVector<BasicBlock *, 2> Handlers; 3797 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3798 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3799 if (!BB) 3800 return error("Invalid record"); 3801 Handlers.push_back(BB); 3802 } 3803 3804 BasicBlock *UnwindDest = nullptr; 3805 if (Idx + 1 == Record.size()) { 3806 UnwindDest = getBasicBlock(Record[Idx++]); 3807 if (!UnwindDest) 3808 return error("Invalid record"); 3809 } 3810 3811 if (Record.size() != Idx) 3812 return error("Invalid record"); 3813 3814 auto *CatchSwitch = 3815 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3816 for (BasicBlock *Handler : Handlers) 3817 CatchSwitch->addHandler(Handler); 3818 I = CatchSwitch; 3819 InstructionList.push_back(I); 3820 break; 3821 } 3822 case bitc::FUNC_CODE_INST_CATCHPAD: 3823 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3824 // We must have, at minimum, the outer scope and the number of arguments. 3825 if (Record.size() < 2) 3826 return error("Invalid record"); 3827 3828 unsigned Idx = 0; 3829 3830 Value *ParentPad = 3831 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3832 3833 unsigned NumArgOperands = Record[Idx++]; 3834 3835 SmallVector<Value *, 2> Args; 3836 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3837 Value *Val; 3838 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3839 return error("Invalid record"); 3840 Args.push_back(Val); 3841 } 3842 3843 if (Record.size() != Idx) 3844 return error("Invalid record"); 3845 3846 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3847 I = CleanupPadInst::Create(ParentPad, Args); 3848 else 3849 I = CatchPadInst::Create(ParentPad, Args); 3850 InstructionList.push_back(I); 3851 break; 3852 } 3853 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3854 // Check magic 3855 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3856 // "New" SwitchInst format with case ranges. The changes to write this 3857 // format were reverted but we still recognize bitcode that uses it. 3858 // Hopefully someday we will have support for case ranges and can use 3859 // this format again. 3860 3861 Type *OpTy = getTypeByID(Record[1]); 3862 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3863 3864 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3865 BasicBlock *Default = getBasicBlock(Record[3]); 3866 if (!OpTy || !Cond || !Default) 3867 return error("Invalid record"); 3868 3869 unsigned NumCases = Record[4]; 3870 3871 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3872 InstructionList.push_back(SI); 3873 3874 unsigned CurIdx = 5; 3875 for (unsigned i = 0; i != NumCases; ++i) { 3876 SmallVector<ConstantInt*, 1> CaseVals; 3877 unsigned NumItems = Record[CurIdx++]; 3878 for (unsigned ci = 0; ci != NumItems; ++ci) { 3879 bool isSingleNumber = Record[CurIdx++]; 3880 3881 APInt Low; 3882 unsigned ActiveWords = 1; 3883 if (ValueBitWidth > 64) 3884 ActiveWords = Record[CurIdx++]; 3885 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3886 ValueBitWidth); 3887 CurIdx += ActiveWords; 3888 3889 if (!isSingleNumber) { 3890 ActiveWords = 1; 3891 if (ValueBitWidth > 64) 3892 ActiveWords = Record[CurIdx++]; 3893 APInt High = readWideAPInt( 3894 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3895 CurIdx += ActiveWords; 3896 3897 // FIXME: It is not clear whether values in the range should be 3898 // compared as signed or unsigned values. The partially 3899 // implemented changes that used this format in the past used 3900 // unsigned comparisons. 3901 for ( ; Low.ule(High); ++Low) 3902 CaseVals.push_back(ConstantInt::get(Context, Low)); 3903 } else 3904 CaseVals.push_back(ConstantInt::get(Context, Low)); 3905 } 3906 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3907 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3908 cve = CaseVals.end(); cvi != cve; ++cvi) 3909 SI->addCase(*cvi, DestBB); 3910 } 3911 I = SI; 3912 break; 3913 } 3914 3915 // Old SwitchInst format without case ranges. 3916 3917 if (Record.size() < 3 || (Record.size() & 1) == 0) 3918 return error("Invalid record"); 3919 Type *OpTy = getTypeByID(Record[0]); 3920 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3921 BasicBlock *Default = getBasicBlock(Record[2]); 3922 if (!OpTy || !Cond || !Default) 3923 return error("Invalid record"); 3924 unsigned NumCases = (Record.size()-3)/2; 3925 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3926 InstructionList.push_back(SI); 3927 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3928 ConstantInt *CaseVal = 3929 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3930 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3931 if (!CaseVal || !DestBB) { 3932 delete SI; 3933 return error("Invalid record"); 3934 } 3935 SI->addCase(CaseVal, DestBB); 3936 } 3937 I = SI; 3938 break; 3939 } 3940 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3941 if (Record.size() < 2) 3942 return error("Invalid record"); 3943 Type *OpTy = getTypeByID(Record[0]); 3944 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3945 if (!OpTy || !Address) 3946 return error("Invalid record"); 3947 unsigned NumDests = Record.size()-2; 3948 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3949 InstructionList.push_back(IBI); 3950 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3951 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3952 IBI->addDestination(DestBB); 3953 } else { 3954 delete IBI; 3955 return error("Invalid record"); 3956 } 3957 } 3958 I = IBI; 3959 break; 3960 } 3961 3962 case bitc::FUNC_CODE_INST_INVOKE: { 3963 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3964 if (Record.size() < 4) 3965 return error("Invalid record"); 3966 unsigned OpNum = 0; 3967 AttributeList PAL = getAttributes(Record[OpNum++]); 3968 unsigned CCInfo = Record[OpNum++]; 3969 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3970 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3971 3972 FunctionType *FTy = nullptr; 3973 if (CCInfo >> 13 & 1 && 3974 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3975 return error("Explicit invoke type is not a function type"); 3976 3977 Value *Callee; 3978 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3979 return error("Invalid record"); 3980 3981 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3982 if (!CalleeTy) 3983 return error("Callee is not a pointer"); 3984 if (!FTy) { 3985 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3986 if (!FTy) 3987 return error("Callee is not of pointer to function type"); 3988 } else if (CalleeTy->getElementType() != FTy) 3989 return error("Explicit invoke type does not match pointee type of " 3990 "callee operand"); 3991 if (Record.size() < FTy->getNumParams() + OpNum) 3992 return error("Insufficient operands to call"); 3993 3994 SmallVector<Value*, 16> Ops; 3995 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3996 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3997 FTy->getParamType(i))); 3998 if (!Ops.back()) 3999 return error("Invalid record"); 4000 } 4001 4002 if (!FTy->isVarArg()) { 4003 if (Record.size() != OpNum) 4004 return error("Invalid record"); 4005 } else { 4006 // Read type/value pairs for varargs params. 4007 while (OpNum != Record.size()) { 4008 Value *Op; 4009 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4010 return error("Invalid record"); 4011 Ops.push_back(Op); 4012 } 4013 } 4014 4015 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4016 OperandBundles.clear(); 4017 InstructionList.push_back(I); 4018 cast<InvokeInst>(I)->setCallingConv( 4019 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4020 cast<InvokeInst>(I)->setAttributes(PAL); 4021 break; 4022 } 4023 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4024 unsigned Idx = 0; 4025 Value *Val = nullptr; 4026 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4027 return error("Invalid record"); 4028 I = ResumeInst::Create(Val); 4029 InstructionList.push_back(I); 4030 break; 4031 } 4032 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4033 I = new UnreachableInst(Context); 4034 InstructionList.push_back(I); 4035 break; 4036 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4037 if (Record.size() < 1 || ((Record.size()-1)&1)) 4038 return error("Invalid record"); 4039 Type *Ty = getTypeByID(Record[0]); 4040 if (!Ty) 4041 return error("Invalid record"); 4042 4043 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4044 InstructionList.push_back(PN); 4045 4046 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4047 Value *V; 4048 // With the new function encoding, it is possible that operands have 4049 // negative IDs (for forward references). Use a signed VBR 4050 // representation to keep the encoding small. 4051 if (UseRelativeIDs) 4052 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4053 else 4054 V = getValue(Record, 1+i, NextValueNo, Ty); 4055 BasicBlock *BB = getBasicBlock(Record[2+i]); 4056 if (!V || !BB) 4057 return error("Invalid record"); 4058 PN->addIncoming(V, BB); 4059 } 4060 I = PN; 4061 break; 4062 } 4063 4064 case bitc::FUNC_CODE_INST_LANDINGPAD: 4065 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4066 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4067 unsigned Idx = 0; 4068 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4069 if (Record.size() < 3) 4070 return error("Invalid record"); 4071 } else { 4072 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4073 if (Record.size() < 4) 4074 return error("Invalid record"); 4075 } 4076 Type *Ty = getTypeByID(Record[Idx++]); 4077 if (!Ty) 4078 return error("Invalid record"); 4079 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4080 Value *PersFn = nullptr; 4081 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4082 return error("Invalid record"); 4083 4084 if (!F->hasPersonalityFn()) 4085 F->setPersonalityFn(cast<Constant>(PersFn)); 4086 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4087 return error("Personality function mismatch"); 4088 } 4089 4090 bool IsCleanup = !!Record[Idx++]; 4091 unsigned NumClauses = Record[Idx++]; 4092 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4093 LP->setCleanup(IsCleanup); 4094 for (unsigned J = 0; J != NumClauses; ++J) { 4095 LandingPadInst::ClauseType CT = 4096 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4097 Value *Val; 4098 4099 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4100 delete LP; 4101 return error("Invalid record"); 4102 } 4103 4104 assert((CT != LandingPadInst::Catch || 4105 !isa<ArrayType>(Val->getType())) && 4106 "Catch clause has a invalid type!"); 4107 assert((CT != LandingPadInst::Filter || 4108 isa<ArrayType>(Val->getType())) && 4109 "Filter clause has invalid type!"); 4110 LP->addClause(cast<Constant>(Val)); 4111 } 4112 4113 I = LP; 4114 InstructionList.push_back(I); 4115 break; 4116 } 4117 4118 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4119 if (Record.size() != 4) 4120 return error("Invalid record"); 4121 uint64_t AlignRecord = Record[3]; 4122 const uint64_t InAllocaMask = uint64_t(1) << 5; 4123 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4124 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4125 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4126 SwiftErrorMask; 4127 bool InAlloca = AlignRecord & InAllocaMask; 4128 bool SwiftError = AlignRecord & SwiftErrorMask; 4129 Type *Ty = getTypeByID(Record[0]); 4130 if ((AlignRecord & ExplicitTypeMask) == 0) { 4131 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4132 if (!PTy) 4133 return error("Old-style alloca with a non-pointer type"); 4134 Ty = PTy->getElementType(); 4135 } 4136 Type *OpTy = getTypeByID(Record[1]); 4137 Value *Size = getFnValueByID(Record[2], OpTy); 4138 unsigned Align; 4139 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4140 return Err; 4141 } 4142 if (!Ty || !Size) 4143 return error("Invalid record"); 4144 4145 // FIXME: Make this an optional field. 4146 const DataLayout &DL = TheModule->getDataLayout(); 4147 unsigned AS = DL.getAllocaAddrSpace(); 4148 4149 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4150 AI->setUsedWithInAlloca(InAlloca); 4151 AI->setSwiftError(SwiftError); 4152 I = AI; 4153 InstructionList.push_back(I); 4154 break; 4155 } 4156 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4157 unsigned OpNum = 0; 4158 Value *Op; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4160 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4161 return error("Invalid record"); 4162 4163 Type *Ty = nullptr; 4164 if (OpNum + 3 == Record.size()) 4165 Ty = getTypeByID(Record[OpNum++]); 4166 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4167 return Err; 4168 if (!Ty) 4169 Ty = cast<PointerType>(Op->getType())->getElementType(); 4170 4171 unsigned Align; 4172 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4173 return Err; 4174 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4175 4176 InstructionList.push_back(I); 4177 break; 4178 } 4179 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4180 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4181 unsigned OpNum = 0; 4182 Value *Op; 4183 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4184 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4185 return error("Invalid record"); 4186 4187 Type *Ty = nullptr; 4188 if (OpNum + 5 == Record.size()) 4189 Ty = getTypeByID(Record[OpNum++]); 4190 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4191 return Err; 4192 if (!Ty) 4193 Ty = cast<PointerType>(Op->getType())->getElementType(); 4194 4195 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4196 if (Ordering == AtomicOrdering::NotAtomic || 4197 Ordering == AtomicOrdering::Release || 4198 Ordering == AtomicOrdering::AcquireRelease) 4199 return error("Invalid record"); 4200 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4201 return error("Invalid record"); 4202 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4203 4204 unsigned Align; 4205 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4206 return Err; 4207 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4208 4209 InstructionList.push_back(I); 4210 break; 4211 } 4212 case bitc::FUNC_CODE_INST_STORE: 4213 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4214 unsigned OpNum = 0; 4215 Value *Val, *Ptr; 4216 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4217 (BitCode == bitc::FUNC_CODE_INST_STORE 4218 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4219 : popValue(Record, OpNum, NextValueNo, 4220 cast<PointerType>(Ptr->getType())->getElementType(), 4221 Val)) || 4222 OpNum + 2 != Record.size()) 4223 return error("Invalid record"); 4224 4225 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4226 return Err; 4227 unsigned Align; 4228 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4229 return Err; 4230 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4231 InstructionList.push_back(I); 4232 break; 4233 } 4234 case bitc::FUNC_CODE_INST_STOREATOMIC: 4235 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4236 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4237 unsigned OpNum = 0; 4238 Value *Val, *Ptr; 4239 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4240 !isa<PointerType>(Ptr->getType()) || 4241 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4242 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4243 : popValue(Record, OpNum, NextValueNo, 4244 cast<PointerType>(Ptr->getType())->getElementType(), 4245 Val)) || 4246 OpNum + 4 != Record.size()) 4247 return error("Invalid record"); 4248 4249 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4250 return Err; 4251 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4252 if (Ordering == AtomicOrdering::NotAtomic || 4253 Ordering == AtomicOrdering::Acquire || 4254 Ordering == AtomicOrdering::AcquireRelease) 4255 return error("Invalid record"); 4256 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4257 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4258 return error("Invalid record"); 4259 4260 unsigned Align; 4261 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4262 return Err; 4263 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4264 InstructionList.push_back(I); 4265 break; 4266 } 4267 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4268 case bitc::FUNC_CODE_INST_CMPXCHG: { 4269 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4270 // failureordering?, isweak?] 4271 unsigned OpNum = 0; 4272 Value *Ptr, *Cmp, *New; 4273 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4274 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4275 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4276 : popValue(Record, OpNum, NextValueNo, 4277 cast<PointerType>(Ptr->getType())->getElementType(), 4278 Cmp)) || 4279 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4280 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4281 return error("Invalid record"); 4282 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4283 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4284 SuccessOrdering == AtomicOrdering::Unordered) 4285 return error("Invalid record"); 4286 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4287 4288 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4289 return Err; 4290 AtomicOrdering FailureOrdering; 4291 if (Record.size() < 7) 4292 FailureOrdering = 4293 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4294 else 4295 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4296 4297 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4298 SynchScope); 4299 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4300 4301 if (Record.size() < 8) { 4302 // Before weak cmpxchgs existed, the instruction simply returned the 4303 // value loaded from memory, so bitcode files from that era will be 4304 // expecting the first component of a modern cmpxchg. 4305 CurBB->getInstList().push_back(I); 4306 I = ExtractValueInst::Create(I, 0); 4307 } else { 4308 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4309 } 4310 4311 InstructionList.push_back(I); 4312 break; 4313 } 4314 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4315 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4316 unsigned OpNum = 0; 4317 Value *Ptr, *Val; 4318 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4319 !isa<PointerType>(Ptr->getType()) || 4320 popValue(Record, OpNum, NextValueNo, 4321 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4322 OpNum+4 != Record.size()) 4323 return error("Invalid record"); 4324 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4325 if (Operation < AtomicRMWInst::FIRST_BINOP || 4326 Operation > AtomicRMWInst::LAST_BINOP) 4327 return error("Invalid record"); 4328 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4329 if (Ordering == AtomicOrdering::NotAtomic || 4330 Ordering == AtomicOrdering::Unordered) 4331 return error("Invalid record"); 4332 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4333 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4334 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4335 InstructionList.push_back(I); 4336 break; 4337 } 4338 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4339 if (2 != Record.size()) 4340 return error("Invalid record"); 4341 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4342 if (Ordering == AtomicOrdering::NotAtomic || 4343 Ordering == AtomicOrdering::Unordered || 4344 Ordering == AtomicOrdering::Monotonic) 4345 return error("Invalid record"); 4346 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4347 I = new FenceInst(Context, Ordering, SynchScope); 4348 InstructionList.push_back(I); 4349 break; 4350 } 4351 case bitc::FUNC_CODE_INST_CALL: { 4352 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4353 if (Record.size() < 3) 4354 return error("Invalid record"); 4355 4356 unsigned OpNum = 0; 4357 AttributeList PAL = getAttributes(Record[OpNum++]); 4358 unsigned CCInfo = Record[OpNum++]; 4359 4360 FastMathFlags FMF; 4361 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4362 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4363 if (!FMF.any()) 4364 return error("Fast math flags indicator set for call with no FMF"); 4365 } 4366 4367 FunctionType *FTy = nullptr; 4368 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4369 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4370 return error("Explicit call type is not a function type"); 4371 4372 Value *Callee; 4373 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4374 return error("Invalid record"); 4375 4376 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4377 if (!OpTy) 4378 return error("Callee is not a pointer type"); 4379 if (!FTy) { 4380 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4381 if (!FTy) 4382 return error("Callee is not of pointer to function type"); 4383 } else if (OpTy->getElementType() != FTy) 4384 return error("Explicit call type does not match pointee type of " 4385 "callee operand"); 4386 if (Record.size() < FTy->getNumParams() + OpNum) 4387 return error("Insufficient operands to call"); 4388 4389 SmallVector<Value*, 16> Args; 4390 // Read the fixed params. 4391 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4392 if (FTy->getParamType(i)->isLabelTy()) 4393 Args.push_back(getBasicBlock(Record[OpNum])); 4394 else 4395 Args.push_back(getValue(Record, OpNum, NextValueNo, 4396 FTy->getParamType(i))); 4397 if (!Args.back()) 4398 return error("Invalid record"); 4399 } 4400 4401 // Read type/value pairs for varargs params. 4402 if (!FTy->isVarArg()) { 4403 if (OpNum != Record.size()) 4404 return error("Invalid record"); 4405 } else { 4406 while (OpNum != Record.size()) { 4407 Value *Op; 4408 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4409 return error("Invalid record"); 4410 Args.push_back(Op); 4411 } 4412 } 4413 4414 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4415 OperandBundles.clear(); 4416 InstructionList.push_back(I); 4417 cast<CallInst>(I)->setCallingConv( 4418 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4419 CallInst::TailCallKind TCK = CallInst::TCK_None; 4420 if (CCInfo & 1 << bitc::CALL_TAIL) 4421 TCK = CallInst::TCK_Tail; 4422 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4423 TCK = CallInst::TCK_MustTail; 4424 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4425 TCK = CallInst::TCK_NoTail; 4426 cast<CallInst>(I)->setTailCallKind(TCK); 4427 cast<CallInst>(I)->setAttributes(PAL); 4428 if (FMF.any()) { 4429 if (!isa<FPMathOperator>(I)) 4430 return error("Fast-math-flags specified for call without " 4431 "floating-point scalar or vector return type"); 4432 I->setFastMathFlags(FMF); 4433 } 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4437 if (Record.size() < 3) 4438 return error("Invalid record"); 4439 Type *OpTy = getTypeByID(Record[0]); 4440 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4441 Type *ResTy = getTypeByID(Record[2]); 4442 if (!OpTy || !Op || !ResTy) 4443 return error("Invalid record"); 4444 I = new VAArgInst(Op, ResTy); 4445 InstructionList.push_back(I); 4446 break; 4447 } 4448 4449 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4450 // A call or an invoke can be optionally prefixed with some variable 4451 // number of operand bundle blocks. These blocks are read into 4452 // OperandBundles and consumed at the next call or invoke instruction. 4453 4454 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4455 return error("Invalid record"); 4456 4457 std::vector<Value *> Inputs; 4458 4459 unsigned OpNum = 1; 4460 while (OpNum != Record.size()) { 4461 Value *Op; 4462 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4463 return error("Invalid record"); 4464 Inputs.push_back(Op); 4465 } 4466 4467 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4468 continue; 4469 } 4470 } 4471 4472 // Add instruction to end of current BB. If there is no current BB, reject 4473 // this file. 4474 if (!CurBB) { 4475 delete I; 4476 return error("Invalid instruction with no BB"); 4477 } 4478 if (!OperandBundles.empty()) { 4479 delete I; 4480 return error("Operand bundles found with no consumer"); 4481 } 4482 CurBB->getInstList().push_back(I); 4483 4484 // If this was a terminator instruction, move to the next block. 4485 if (isa<TerminatorInst>(I)) { 4486 ++CurBBNo; 4487 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4488 } 4489 4490 // Non-void values get registered in the value table for future use. 4491 if (I && !I->getType()->isVoidTy()) 4492 ValueList.assignValue(I, NextValueNo++); 4493 } 4494 4495 OutOfRecordLoop: 4496 4497 if (!OperandBundles.empty()) 4498 return error("Operand bundles found with no consumer"); 4499 4500 // Check the function list for unresolved values. 4501 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4502 if (!A->getParent()) { 4503 // We found at least one unresolved value. Nuke them all to avoid leaks. 4504 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4505 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4506 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4507 delete A; 4508 } 4509 } 4510 return error("Never resolved value found in function"); 4511 } 4512 } 4513 4514 // Unexpected unresolved metadata about to be dropped. 4515 if (MDLoader->hasFwdRefs()) 4516 return error("Invalid function metadata: outgoing forward refs"); 4517 4518 // Trim the value list down to the size it was before we parsed this function. 4519 ValueList.shrinkTo(ModuleValueListSize); 4520 MDLoader->shrinkTo(ModuleMDLoaderSize); 4521 std::vector<BasicBlock*>().swap(FunctionBBs); 4522 return Error::success(); 4523 } 4524 4525 /// Find the function body in the bitcode stream 4526 Error BitcodeReader::findFunctionInStream( 4527 Function *F, 4528 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4529 while (DeferredFunctionInfoIterator->second == 0) { 4530 // This is the fallback handling for the old format bitcode that 4531 // didn't contain the function index in the VST, or when we have 4532 // an anonymous function which would not have a VST entry. 4533 // Assert that we have one of those two cases. 4534 assert(VSTOffset == 0 || !F->hasName()); 4535 // Parse the next body in the stream and set its position in the 4536 // DeferredFunctionInfo map. 4537 if (Error Err = rememberAndSkipFunctionBodies()) 4538 return Err; 4539 } 4540 return Error::success(); 4541 } 4542 4543 //===----------------------------------------------------------------------===// 4544 // GVMaterializer implementation 4545 //===----------------------------------------------------------------------===// 4546 4547 Error BitcodeReader::materialize(GlobalValue *GV) { 4548 Function *F = dyn_cast<Function>(GV); 4549 // If it's not a function or is already material, ignore the request. 4550 if (!F || !F->isMaterializable()) 4551 return Error::success(); 4552 4553 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4554 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4555 // If its position is recorded as 0, its body is somewhere in the stream 4556 // but we haven't seen it yet. 4557 if (DFII->second == 0) 4558 if (Error Err = findFunctionInStream(F, DFII)) 4559 return Err; 4560 4561 // Materialize metadata before parsing any function bodies. 4562 if (Error Err = materializeMetadata()) 4563 return Err; 4564 4565 // Move the bit stream to the saved position of the deferred function body. 4566 Stream.JumpToBit(DFII->second); 4567 4568 if (Error Err = parseFunctionBody(F)) 4569 return Err; 4570 F->setIsMaterializable(false); 4571 4572 if (StripDebugInfo) 4573 stripDebugInfo(*F); 4574 4575 // Upgrade any old intrinsic calls in the function. 4576 for (auto &I : UpgradedIntrinsics) { 4577 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4578 UI != UE;) { 4579 User *U = *UI; 4580 ++UI; 4581 if (CallInst *CI = dyn_cast<CallInst>(U)) 4582 UpgradeIntrinsicCall(CI, I.second); 4583 } 4584 } 4585 4586 // Update calls to the remangled intrinsics 4587 for (auto &I : RemangledIntrinsics) 4588 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4589 UI != UE;) 4590 // Don't expect any other users than call sites 4591 CallSite(*UI++).setCalledFunction(I.second); 4592 4593 // Finish fn->subprogram upgrade for materialized functions. 4594 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4595 F->setSubprogram(SP); 4596 4597 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4598 if (!MDLoader->isStrippingTBAA()) { 4599 for (auto &I : instructions(F)) { 4600 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4601 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4602 continue; 4603 MDLoader->setStripTBAA(true); 4604 stripTBAA(F->getParent()); 4605 } 4606 } 4607 4608 // Bring in any functions that this function forward-referenced via 4609 // blockaddresses. 4610 return materializeForwardReferencedFunctions(); 4611 } 4612 4613 Error BitcodeReader::materializeModule() { 4614 if (Error Err = materializeMetadata()) 4615 return Err; 4616 4617 // Promise to materialize all forward references. 4618 WillMaterializeAllForwardRefs = true; 4619 4620 // Iterate over the module, deserializing any functions that are still on 4621 // disk. 4622 for (Function &F : *TheModule) { 4623 if (Error Err = materialize(&F)) 4624 return Err; 4625 } 4626 // At this point, if there are any function bodies, parse the rest of 4627 // the bits in the module past the last function block we have recorded 4628 // through either lazy scanning or the VST. 4629 if (LastFunctionBlockBit || NextUnreadBit) 4630 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4631 ? LastFunctionBlockBit 4632 : NextUnreadBit)) 4633 return Err; 4634 4635 // Check that all block address forward references got resolved (as we 4636 // promised above). 4637 if (!BasicBlockFwdRefs.empty()) 4638 return error("Never resolved function from blockaddress"); 4639 4640 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4641 // delete the old functions to clean up. We can't do this unless the entire 4642 // module is materialized because there could always be another function body 4643 // with calls to the old function. 4644 for (auto &I : UpgradedIntrinsics) { 4645 for (auto *U : I.first->users()) { 4646 if (CallInst *CI = dyn_cast<CallInst>(U)) 4647 UpgradeIntrinsicCall(CI, I.second); 4648 } 4649 if (!I.first->use_empty()) 4650 I.first->replaceAllUsesWith(I.second); 4651 I.first->eraseFromParent(); 4652 } 4653 UpgradedIntrinsics.clear(); 4654 // Do the same for remangled intrinsics 4655 for (auto &I : RemangledIntrinsics) { 4656 I.first->replaceAllUsesWith(I.second); 4657 I.first->eraseFromParent(); 4658 } 4659 RemangledIntrinsics.clear(); 4660 4661 UpgradeDebugInfo(*TheModule); 4662 4663 UpgradeModuleFlags(*TheModule); 4664 return Error::success(); 4665 } 4666 4667 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4668 return IdentifiedStructTypes; 4669 } 4670 4671 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4672 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex) 4673 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex) {} 4674 4675 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4676 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4677 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4678 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4679 return VGI->second; 4680 } 4681 4682 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4683 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4684 StringRef SourceFileName) { 4685 std::string GlobalId = 4686 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4687 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4688 auto OriginalNameID = ValueGUID; 4689 if (GlobalValue::isLocalLinkage(Linkage)) 4690 OriginalNameID = GlobalValue::getGUID(ValueName); 4691 if (PrintSummaryGUIDs) 4692 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4693 << ValueName << "\n"; 4694 ValueIdToCallGraphGUIDMap[ValueID] = 4695 std::make_pair(ValueGUID, OriginalNameID); 4696 } 4697 4698 // Specialized value symbol table parser used when reading module index 4699 // blocks where we don't actually create global values. The parsed information 4700 // is saved in the bitcode reader for use when later parsing summaries. 4701 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4702 uint64_t Offset, 4703 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4704 // With a strtab the VST is not required to parse the summary. 4705 if (UseStrtab) 4706 return Error::success(); 4707 4708 assert(Offset > 0 && "Expected non-zero VST offset"); 4709 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4710 4711 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4712 return error("Invalid record"); 4713 4714 SmallVector<uint64_t, 64> Record; 4715 4716 // Read all the records for this value table. 4717 SmallString<128> ValueName; 4718 4719 while (true) { 4720 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4721 4722 switch (Entry.Kind) { 4723 case BitstreamEntry::SubBlock: // Handled for us already. 4724 case BitstreamEntry::Error: 4725 return error("Malformed block"); 4726 case BitstreamEntry::EndBlock: 4727 // Done parsing VST, jump back to wherever we came from. 4728 Stream.JumpToBit(CurrentBit); 4729 return Error::success(); 4730 case BitstreamEntry::Record: 4731 // The interesting case. 4732 break; 4733 } 4734 4735 // Read a record. 4736 Record.clear(); 4737 switch (Stream.readRecord(Entry.ID, Record)) { 4738 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4739 break; 4740 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4741 if (convertToString(Record, 1, ValueName)) 4742 return error("Invalid record"); 4743 unsigned ValueID = Record[0]; 4744 assert(!SourceFileName.empty()); 4745 auto VLI = ValueIdToLinkageMap.find(ValueID); 4746 assert(VLI != ValueIdToLinkageMap.end() && 4747 "No linkage found for VST entry?"); 4748 auto Linkage = VLI->second; 4749 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4750 ValueName.clear(); 4751 break; 4752 } 4753 case bitc::VST_CODE_FNENTRY: { 4754 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4755 if (convertToString(Record, 2, ValueName)) 4756 return error("Invalid record"); 4757 unsigned ValueID = Record[0]; 4758 assert(!SourceFileName.empty()); 4759 auto VLI = ValueIdToLinkageMap.find(ValueID); 4760 assert(VLI != ValueIdToLinkageMap.end() && 4761 "No linkage found for VST entry?"); 4762 auto Linkage = VLI->second; 4763 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4764 ValueName.clear(); 4765 break; 4766 } 4767 case bitc::VST_CODE_COMBINED_ENTRY: { 4768 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4769 unsigned ValueID = Record[0]; 4770 GlobalValue::GUID RefGUID = Record[1]; 4771 // The "original name", which is the second value of the pair will be 4772 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4773 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4774 break; 4775 } 4776 } 4777 } 4778 } 4779 4780 // Parse just the blocks needed for building the index out of the module. 4781 // At the end of this routine the module Index is populated with a map 4782 // from global value id to GlobalValueSummary objects. 4783 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4784 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4785 return error("Invalid record"); 4786 4787 SmallVector<uint64_t, 64> Record; 4788 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4789 unsigned ValueId = 0; 4790 4791 // Read the index for this module. 4792 while (true) { 4793 BitstreamEntry Entry = Stream.advance(); 4794 4795 switch (Entry.Kind) { 4796 case BitstreamEntry::Error: 4797 return error("Malformed block"); 4798 case BitstreamEntry::EndBlock: 4799 return Error::success(); 4800 4801 case BitstreamEntry::SubBlock: 4802 switch (Entry.ID) { 4803 default: // Skip unknown content. 4804 if (Stream.SkipBlock()) 4805 return error("Invalid record"); 4806 break; 4807 case bitc::BLOCKINFO_BLOCK_ID: 4808 // Need to parse these to get abbrev ids (e.g. for VST) 4809 if (readBlockInfo()) 4810 return error("Malformed block"); 4811 break; 4812 case bitc::VALUE_SYMTAB_BLOCK_ID: 4813 // Should have been parsed earlier via VSTOffset, unless there 4814 // is no summary section. 4815 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4816 !SeenGlobalValSummary) && 4817 "Expected early VST parse via VSTOffset record"); 4818 if (Stream.SkipBlock()) 4819 return error("Invalid record"); 4820 break; 4821 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4822 assert(!SeenValueSymbolTable && 4823 "Already read VST when parsing summary block?"); 4824 // We might not have a VST if there were no values in the 4825 // summary. An empty summary block generated when we are 4826 // performing ThinLTO compiles so we don't later invoke 4827 // the regular LTO process on them. 4828 if (VSTOffset > 0) { 4829 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4830 return Err; 4831 SeenValueSymbolTable = true; 4832 } 4833 SeenGlobalValSummary = true; 4834 if (Error Err = parseEntireSummary(ModulePath)) 4835 return Err; 4836 break; 4837 case bitc::MODULE_STRTAB_BLOCK_ID: 4838 if (Error Err = parseModuleStringTable()) 4839 return Err; 4840 break; 4841 } 4842 continue; 4843 4844 case BitstreamEntry::Record: { 4845 Record.clear(); 4846 auto BitCode = Stream.readRecord(Entry.ID, Record); 4847 switch (BitCode) { 4848 default: 4849 break; // Default behavior, ignore unknown content. 4850 case bitc::MODULE_CODE_VERSION: { 4851 if (Error Err = parseVersionRecord(Record).takeError()) 4852 return Err; 4853 break; 4854 } 4855 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4856 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4857 SmallString<128> ValueName; 4858 if (convertToString(Record, 0, ValueName)) 4859 return error("Invalid record"); 4860 SourceFileName = ValueName.c_str(); 4861 break; 4862 } 4863 /// MODULE_CODE_HASH: [5*i32] 4864 case bitc::MODULE_CODE_HASH: { 4865 if (Record.size() != 5) 4866 return error("Invalid hash length " + Twine(Record.size()).str()); 4867 if (TheIndex.modulePaths().empty()) 4868 // We always seed the index with the module. 4869 TheIndex.addModulePath(ModulePath, 0); 4870 if (TheIndex.modulePaths().size() != 1) 4871 return error("Don't expect multiple modules defined?"); 4872 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4873 int Pos = 0; 4874 for (auto &Val : Record) { 4875 assert(!(Val >> 32) && "Unexpected high bits set"); 4876 Hash[Pos++] = Val; 4877 } 4878 break; 4879 } 4880 /// MODULE_CODE_VSTOFFSET: [offset] 4881 case bitc::MODULE_CODE_VSTOFFSET: 4882 if (Record.size() < 1) 4883 return error("Invalid record"); 4884 // Note that we subtract 1 here because the offset is relative to one 4885 // word before the start of the identification or module block, which 4886 // was historically always the start of the regular bitcode header. 4887 VSTOffset = Record[0] - 1; 4888 break; 4889 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4890 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4891 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4892 // v2: [strtab offset, strtab size, v1] 4893 case bitc::MODULE_CODE_GLOBALVAR: 4894 case bitc::MODULE_CODE_FUNCTION: 4895 case bitc::MODULE_CODE_ALIAS: { 4896 StringRef Name; 4897 ArrayRef<uint64_t> GVRecord; 4898 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4899 if (GVRecord.size() <= 3) 4900 return error("Invalid record"); 4901 uint64_t RawLinkage = GVRecord[3]; 4902 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4903 if (!UseStrtab) { 4904 ValueIdToLinkageMap[ValueId++] = Linkage; 4905 break; 4906 } 4907 4908 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4909 break; 4910 } 4911 } 4912 } 4913 continue; 4914 } 4915 } 4916 } 4917 4918 std::vector<ValueInfo> 4919 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4920 std::vector<ValueInfo> Ret; 4921 Ret.reserve(Record.size()); 4922 for (uint64_t RefValueId : Record) 4923 Ret.push_back(getGUIDFromValueId(RefValueId).first); 4924 return Ret; 4925 } 4926 4927 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4928 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4929 std::vector<FunctionSummary::EdgeTy> Ret; 4930 Ret.reserve(Record.size()); 4931 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4932 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4933 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first; 4934 if (IsOldProfileFormat) { 4935 I += 1; // Skip old callsitecount field 4936 if (HasProfile) 4937 I += 1; // Skip old profilecount field 4938 } else if (HasProfile) 4939 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4940 Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}}); 4941 } 4942 return Ret; 4943 } 4944 4945 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4946 // objects in the index. 4947 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4948 StringRef ModulePath) { 4949 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4950 return error("Invalid record"); 4951 SmallVector<uint64_t, 64> Record; 4952 4953 // Parse version 4954 { 4955 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4956 if (Entry.Kind != BitstreamEntry::Record) 4957 return error("Invalid Summary Block: record for version expected"); 4958 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4959 return error("Invalid Summary Block: version expected"); 4960 } 4961 const uint64_t Version = Record[0]; 4962 const bool IsOldProfileFormat = Version == 1; 4963 if (Version < 1 || Version > 3) 4964 return error("Invalid summary version " + Twine(Version) + 4965 ", 1, 2 or 3 expected"); 4966 Record.clear(); 4967 4968 // Keep around the last seen summary to be used when we see an optional 4969 // "OriginalName" attachement. 4970 GlobalValueSummary *LastSeenSummary = nullptr; 4971 GlobalValue::GUID LastSeenGUID = 0; 4972 bool Combined = false; 4973 4974 // We can expect to see any number of type ID information records before 4975 // each function summary records; these variables store the information 4976 // collected so far so that it can be used to create the summary object. 4977 std::vector<GlobalValue::GUID> PendingTypeTests; 4978 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 4979 PendingTypeCheckedLoadVCalls; 4980 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 4981 PendingTypeCheckedLoadConstVCalls; 4982 4983 while (true) { 4984 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4985 4986 switch (Entry.Kind) { 4987 case BitstreamEntry::SubBlock: // Handled for us already. 4988 case BitstreamEntry::Error: 4989 return error("Malformed block"); 4990 case BitstreamEntry::EndBlock: 4991 return Error::success(); 4992 case BitstreamEntry::Record: 4993 // The interesting case. 4994 break; 4995 } 4996 4997 // Read a record. The record format depends on whether this 4998 // is a per-module index or a combined index file. In the per-module 4999 // case the records contain the associated value's ID for correlation 5000 // with VST entries. In the combined index the correlation is done 5001 // via the bitcode offset of the summary records (which were saved 5002 // in the combined index VST entries). The records also contain 5003 // information used for ThinLTO renaming and importing. 5004 Record.clear(); 5005 auto BitCode = Stream.readRecord(Entry.ID, Record); 5006 switch (BitCode) { 5007 default: // Default behavior: ignore. 5008 break; 5009 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5010 uint64_t ValueID = Record[0]; 5011 GlobalValue::GUID RefGUID = Record[1]; 5012 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5013 break; 5014 } 5015 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 5016 // n x (valueid)] 5017 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 5018 // numrefs x valueid, 5019 // n x (valueid, hotness)] 5020 case bitc::FS_PERMODULE: 5021 case bitc::FS_PERMODULE_PROFILE: { 5022 unsigned ValueID = Record[0]; 5023 uint64_t RawFlags = Record[1]; 5024 unsigned InstCount = Record[2]; 5025 unsigned NumRefs = Record[3]; 5026 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5027 // The module path string ref set in the summary must be owned by the 5028 // index's module string table. Since we don't have a module path 5029 // string table section in the per-module index, we create a single 5030 // module path string table entry with an empty (0) ID to take 5031 // ownership. 5032 static int RefListStartIndex = 4; 5033 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5034 assert(Record.size() >= RefListStartIndex + NumRefs && 5035 "Record size inconsistent with number of references"); 5036 std::vector<ValueInfo> Refs = makeRefList( 5037 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5038 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5039 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5040 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5041 IsOldProfileFormat, HasProfile); 5042 auto FS = llvm::make_unique<FunctionSummary>( 5043 Flags, InstCount, std::move(Refs), std::move(Calls), 5044 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5045 std::move(PendingTypeCheckedLoadVCalls), 5046 std::move(PendingTypeTestAssumeConstVCalls), 5047 std::move(PendingTypeCheckedLoadConstVCalls)); 5048 PendingTypeTests.clear(); 5049 PendingTypeTestAssumeVCalls.clear(); 5050 PendingTypeCheckedLoadVCalls.clear(); 5051 PendingTypeTestAssumeConstVCalls.clear(); 5052 PendingTypeCheckedLoadConstVCalls.clear(); 5053 auto GUID = getGUIDFromValueId(ValueID); 5054 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 5055 FS->setOriginalName(GUID.second); 5056 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5057 break; 5058 } 5059 // FS_ALIAS: [valueid, flags, valueid] 5060 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5061 // they expect all aliasee summaries to be available. 5062 case bitc::FS_ALIAS: { 5063 unsigned ValueID = Record[0]; 5064 uint64_t RawFlags = Record[1]; 5065 unsigned AliaseeID = Record[2]; 5066 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5067 auto AS = 5068 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5069 // The module path string ref set in the summary must be owned by the 5070 // index's module string table. Since we don't have a module path 5071 // string table section in the per-module index, we create a single 5072 // module path string table entry with an empty (0) ID to take 5073 // ownership. 5074 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 5075 5076 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 5077 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 5078 if (!AliaseeSummary) 5079 return error("Alias expects aliasee summary to be parsed"); 5080 AS->setAliasee(AliaseeSummary); 5081 5082 auto GUID = getGUIDFromValueId(ValueID); 5083 AS->setOriginalName(GUID.second); 5084 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5085 break; 5086 } 5087 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5088 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5089 unsigned ValueID = Record[0]; 5090 uint64_t RawFlags = Record[1]; 5091 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5092 std::vector<ValueInfo> Refs = 5093 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5094 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5095 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 5096 auto GUID = getGUIDFromValueId(ValueID); 5097 FS->setOriginalName(GUID.second); 5098 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5099 break; 5100 } 5101 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 5102 // numrefs x valueid, n x (valueid)] 5103 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 5104 // numrefs x valueid, n x (valueid, hotness)] 5105 case bitc::FS_COMBINED: 5106 case bitc::FS_COMBINED_PROFILE: { 5107 unsigned ValueID = Record[0]; 5108 uint64_t ModuleId = Record[1]; 5109 uint64_t RawFlags = Record[2]; 5110 unsigned InstCount = Record[3]; 5111 unsigned NumRefs = Record[4]; 5112 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5113 static int RefListStartIndex = 5; 5114 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5115 assert(Record.size() >= RefListStartIndex + NumRefs && 5116 "Record size inconsistent with number of references"); 5117 std::vector<ValueInfo> Refs = makeRefList( 5118 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5119 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5120 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5121 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5122 IsOldProfileFormat, HasProfile); 5123 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5124 auto FS = llvm::make_unique<FunctionSummary>( 5125 Flags, InstCount, std::move(Refs), std::move(Edges), 5126 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5127 std::move(PendingTypeCheckedLoadVCalls), 5128 std::move(PendingTypeTestAssumeConstVCalls), 5129 std::move(PendingTypeCheckedLoadConstVCalls)); 5130 PendingTypeTests.clear(); 5131 PendingTypeTestAssumeVCalls.clear(); 5132 PendingTypeCheckedLoadVCalls.clear(); 5133 PendingTypeTestAssumeConstVCalls.clear(); 5134 PendingTypeCheckedLoadConstVCalls.clear(); 5135 LastSeenSummary = FS.get(); 5136 LastSeenGUID = GUID; 5137 FS->setModulePath(ModuleIdMap[ModuleId]); 5138 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5139 Combined = true; 5140 break; 5141 } 5142 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5143 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5144 // they expect all aliasee summaries to be available. 5145 case bitc::FS_COMBINED_ALIAS: { 5146 unsigned ValueID = Record[0]; 5147 uint64_t ModuleId = Record[1]; 5148 uint64_t RawFlags = Record[2]; 5149 unsigned AliaseeValueId = Record[3]; 5150 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5151 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5152 LastSeenSummary = AS.get(); 5153 AS->setModulePath(ModuleIdMap[ModuleId]); 5154 5155 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 5156 auto AliaseeInModule = 5157 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5158 if (!AliaseeInModule) 5159 return error("Alias expects aliasee summary to be parsed"); 5160 AS->setAliasee(AliaseeInModule); 5161 5162 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5163 LastSeenGUID = GUID; 5164 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5165 Combined = true; 5166 break; 5167 } 5168 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5169 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5170 unsigned ValueID = Record[0]; 5171 uint64_t ModuleId = Record[1]; 5172 uint64_t RawFlags = Record[2]; 5173 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5174 std::vector<ValueInfo> Refs = 5175 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5176 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5177 LastSeenSummary = FS.get(); 5178 FS->setModulePath(ModuleIdMap[ModuleId]); 5179 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5180 LastSeenGUID = GUID; 5181 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5182 Combined = true; 5183 break; 5184 } 5185 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5186 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5187 uint64_t OriginalName = Record[0]; 5188 if (!LastSeenSummary) 5189 return error("Name attachment that does not follow a combined record"); 5190 LastSeenSummary->setOriginalName(OriginalName); 5191 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5192 // Reset the LastSeenSummary 5193 LastSeenSummary = nullptr; 5194 LastSeenGUID = 0; 5195 break; 5196 } 5197 case bitc::FS_TYPE_TESTS: { 5198 assert(PendingTypeTests.empty()); 5199 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5200 Record.end()); 5201 break; 5202 } 5203 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5204 assert(PendingTypeTestAssumeVCalls.empty()); 5205 for (unsigned I = 0; I != Record.size(); I += 2) 5206 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5207 break; 5208 } 5209 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5210 assert(PendingTypeCheckedLoadVCalls.empty()); 5211 for (unsigned I = 0; I != Record.size(); I += 2) 5212 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5213 break; 5214 } 5215 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5216 PendingTypeTestAssumeConstVCalls.push_back( 5217 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5218 break; 5219 } 5220 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5221 PendingTypeCheckedLoadConstVCalls.push_back( 5222 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5223 break; 5224 } 5225 } 5226 } 5227 llvm_unreachable("Exit infinite loop"); 5228 } 5229 5230 // Parse the module string table block into the Index. 5231 // This populates the ModulePathStringTable map in the index. 5232 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5233 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5234 return error("Invalid record"); 5235 5236 SmallVector<uint64_t, 64> Record; 5237 5238 SmallString<128> ModulePath; 5239 ModulePathStringTableTy::iterator LastSeenModulePath; 5240 5241 while (true) { 5242 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5243 5244 switch (Entry.Kind) { 5245 case BitstreamEntry::SubBlock: // Handled for us already. 5246 case BitstreamEntry::Error: 5247 return error("Malformed block"); 5248 case BitstreamEntry::EndBlock: 5249 return Error::success(); 5250 case BitstreamEntry::Record: 5251 // The interesting case. 5252 break; 5253 } 5254 5255 Record.clear(); 5256 switch (Stream.readRecord(Entry.ID, Record)) { 5257 default: // Default behavior: ignore. 5258 break; 5259 case bitc::MST_CODE_ENTRY: { 5260 // MST_ENTRY: [modid, namechar x N] 5261 uint64_t ModuleId = Record[0]; 5262 5263 if (convertToString(Record, 1, ModulePath)) 5264 return error("Invalid record"); 5265 5266 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5267 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5268 5269 ModulePath.clear(); 5270 break; 5271 } 5272 /// MST_CODE_HASH: [5*i32] 5273 case bitc::MST_CODE_HASH: { 5274 if (Record.size() != 5) 5275 return error("Invalid hash length " + Twine(Record.size()).str()); 5276 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5277 return error("Invalid hash that does not follow a module path"); 5278 int Pos = 0; 5279 for (auto &Val : Record) { 5280 assert(!(Val >> 32) && "Unexpected high bits set"); 5281 LastSeenModulePath->second.second[Pos++] = Val; 5282 } 5283 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5284 LastSeenModulePath = TheIndex.modulePaths().end(); 5285 break; 5286 } 5287 } 5288 } 5289 llvm_unreachable("Exit infinite loop"); 5290 } 5291 5292 namespace { 5293 5294 // FIXME: This class is only here to support the transition to llvm::Error. It 5295 // will be removed once this transition is complete. Clients should prefer to 5296 // deal with the Error value directly, rather than converting to error_code. 5297 class BitcodeErrorCategoryType : public std::error_category { 5298 const char *name() const noexcept override { 5299 return "llvm.bitcode"; 5300 } 5301 std::string message(int IE) const override { 5302 BitcodeError E = static_cast<BitcodeError>(IE); 5303 switch (E) { 5304 case BitcodeError::CorruptedBitcode: 5305 return "Corrupted bitcode"; 5306 } 5307 llvm_unreachable("Unknown error type!"); 5308 } 5309 }; 5310 5311 } // end anonymous namespace 5312 5313 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5314 5315 const std::error_category &llvm::BitcodeErrorCategory() { 5316 return *ErrorCategory; 5317 } 5318 5319 static Expected<StringRef> readStrtab(BitstreamCursor &Stream) { 5320 if (Stream.EnterSubBlock(bitc::STRTAB_BLOCK_ID)) 5321 return error("Invalid record"); 5322 5323 StringRef Strtab; 5324 while (1) { 5325 BitstreamEntry Entry = Stream.advance(); 5326 switch (Entry.Kind) { 5327 case BitstreamEntry::EndBlock: 5328 return Strtab; 5329 5330 case BitstreamEntry::Error: 5331 return error("Malformed block"); 5332 5333 case BitstreamEntry::SubBlock: 5334 if (Stream.SkipBlock()) 5335 return error("Malformed block"); 5336 break; 5337 5338 case BitstreamEntry::Record: 5339 StringRef Blob; 5340 SmallVector<uint64_t, 1> Record; 5341 if (Stream.readRecord(Entry.ID, Record, &Blob) == bitc::STRTAB_BLOB) 5342 Strtab = Blob; 5343 break; 5344 } 5345 } 5346 } 5347 5348 //===----------------------------------------------------------------------===// 5349 // External interface 5350 //===----------------------------------------------------------------------===// 5351 5352 Expected<std::vector<BitcodeModule>> 5353 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5354 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5355 if (!StreamOrErr) 5356 return StreamOrErr.takeError(); 5357 BitstreamCursor &Stream = *StreamOrErr; 5358 5359 std::vector<BitcodeModule> Modules; 5360 while (true) { 5361 uint64_t BCBegin = Stream.getCurrentByteNo(); 5362 5363 // We may be consuming bitcode from a client that leaves garbage at the end 5364 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5365 // the end that there cannot possibly be another module, stop looking. 5366 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5367 return Modules; 5368 5369 BitstreamEntry Entry = Stream.advance(); 5370 switch (Entry.Kind) { 5371 case BitstreamEntry::EndBlock: 5372 case BitstreamEntry::Error: 5373 return error("Malformed block"); 5374 5375 case BitstreamEntry::SubBlock: { 5376 uint64_t IdentificationBit = -1ull; 5377 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5378 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5379 if (Stream.SkipBlock()) 5380 return error("Malformed block"); 5381 5382 Entry = Stream.advance(); 5383 if (Entry.Kind != BitstreamEntry::SubBlock || 5384 Entry.ID != bitc::MODULE_BLOCK_ID) 5385 return error("Malformed block"); 5386 } 5387 5388 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5389 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5390 if (Stream.SkipBlock()) 5391 return error("Malformed block"); 5392 5393 Modules.push_back({Stream.getBitcodeBytes().slice( 5394 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5395 Buffer.getBufferIdentifier(), IdentificationBit, 5396 ModuleBit}); 5397 continue; 5398 } 5399 5400 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5401 Expected<StringRef> Strtab = readStrtab(Stream); 5402 if (!Strtab) 5403 return Strtab.takeError(); 5404 // This string table is used by every preceding bitcode module that does 5405 // not have its own string table. A bitcode file may have multiple 5406 // string tables if it was created by binary concatenation, for example 5407 // with "llvm-cat -b". 5408 for (auto I = Modules.rbegin(), E = Modules.rend(); I != E; ++I) { 5409 if (!I->Strtab.empty()) 5410 break; 5411 I->Strtab = *Strtab; 5412 } 5413 continue; 5414 } 5415 5416 if (Stream.SkipBlock()) 5417 return error("Malformed block"); 5418 continue; 5419 } 5420 case BitstreamEntry::Record: 5421 Stream.skipRecord(Entry.ID); 5422 continue; 5423 } 5424 } 5425 } 5426 5427 /// \brief Get a lazy one-at-time loading module from bitcode. 5428 /// 5429 /// This isn't always used in a lazy context. In particular, it's also used by 5430 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5431 /// in forward-referenced functions from block address references. 5432 /// 5433 /// \param[in] MaterializeAll Set to \c true if we should materialize 5434 /// everything. 5435 Expected<std::unique_ptr<Module>> 5436 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5437 bool ShouldLazyLoadMetadata, bool IsImporting) { 5438 BitstreamCursor Stream(Buffer); 5439 5440 std::string ProducerIdentification; 5441 if (IdentificationBit != -1ull) { 5442 Stream.JumpToBit(IdentificationBit); 5443 Expected<std::string> ProducerIdentificationOrErr = 5444 readIdentificationBlock(Stream); 5445 if (!ProducerIdentificationOrErr) 5446 return ProducerIdentificationOrErr.takeError(); 5447 5448 ProducerIdentification = *ProducerIdentificationOrErr; 5449 } 5450 5451 Stream.JumpToBit(ModuleBit); 5452 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5453 Context); 5454 5455 std::unique_ptr<Module> M = 5456 llvm::make_unique<Module>(ModuleIdentifier, Context); 5457 M->setMaterializer(R); 5458 5459 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5460 if (Error Err = 5461 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5462 return std::move(Err); 5463 5464 if (MaterializeAll) { 5465 // Read in the entire module, and destroy the BitcodeReader. 5466 if (Error Err = M->materializeAll()) 5467 return std::move(Err); 5468 } else { 5469 // Resolve forward references from blockaddresses. 5470 if (Error Err = R->materializeForwardReferencedFunctions()) 5471 return std::move(Err); 5472 } 5473 return std::move(M); 5474 } 5475 5476 Expected<std::unique_ptr<Module>> 5477 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5478 bool IsImporting) { 5479 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5480 } 5481 5482 // Parse the specified bitcode buffer, returning the function info index. 5483 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5484 BitstreamCursor Stream(Buffer); 5485 Stream.JumpToBit(ModuleBit); 5486 5487 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5488 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index); 5489 5490 if (Error Err = R.parseModule(ModuleIdentifier)) 5491 return std::move(Err); 5492 5493 return std::move(Index); 5494 } 5495 5496 // Check if the given bitcode buffer contains a global value summary block. 5497 Expected<bool> BitcodeModule::hasSummary() { 5498 BitstreamCursor Stream(Buffer); 5499 Stream.JumpToBit(ModuleBit); 5500 5501 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5502 return error("Invalid record"); 5503 5504 while (true) { 5505 BitstreamEntry Entry = Stream.advance(); 5506 5507 switch (Entry.Kind) { 5508 case BitstreamEntry::Error: 5509 return error("Malformed block"); 5510 case BitstreamEntry::EndBlock: 5511 return false; 5512 5513 case BitstreamEntry::SubBlock: 5514 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5515 return true; 5516 5517 // Ignore other sub-blocks. 5518 if (Stream.SkipBlock()) 5519 return error("Malformed block"); 5520 continue; 5521 5522 case BitstreamEntry::Record: 5523 Stream.skipRecord(Entry.ID); 5524 continue; 5525 } 5526 } 5527 } 5528 5529 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5530 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5531 if (!MsOrErr) 5532 return MsOrErr.takeError(); 5533 5534 if (MsOrErr->size() != 1) 5535 return error("Expected a single module"); 5536 5537 return (*MsOrErr)[0]; 5538 } 5539 5540 Expected<std::unique_ptr<Module>> 5541 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5542 bool ShouldLazyLoadMetadata, bool IsImporting) { 5543 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5544 if (!BM) 5545 return BM.takeError(); 5546 5547 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5548 } 5549 5550 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5551 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5552 bool ShouldLazyLoadMetadata, bool IsImporting) { 5553 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5554 IsImporting); 5555 if (MOrErr) 5556 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5557 return MOrErr; 5558 } 5559 5560 Expected<std::unique_ptr<Module>> 5561 BitcodeModule::parseModule(LLVMContext &Context) { 5562 return getModuleImpl(Context, true, false, false); 5563 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5564 // written. We must defer until the Module has been fully materialized. 5565 } 5566 5567 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5568 LLVMContext &Context) { 5569 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5570 if (!BM) 5571 return BM.takeError(); 5572 5573 return BM->parseModule(Context); 5574 } 5575 5576 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5577 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5578 if (!StreamOrErr) 5579 return StreamOrErr.takeError(); 5580 5581 return readTriple(*StreamOrErr); 5582 } 5583 5584 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5585 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5586 if (!StreamOrErr) 5587 return StreamOrErr.takeError(); 5588 5589 return hasObjCCategory(*StreamOrErr); 5590 } 5591 5592 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5593 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5594 if (!StreamOrErr) 5595 return StreamOrErr.takeError(); 5596 5597 return readIdentificationCode(*StreamOrErr); 5598 } 5599 5600 Expected<std::unique_ptr<ModuleSummaryIndex>> 5601 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5602 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5603 if (!BM) 5604 return BM.takeError(); 5605 5606 return BM->getSummary(); 5607 } 5608 5609 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5610 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5611 if (!BM) 5612 return BM.takeError(); 5613 5614 return BM->hasSummary(); 5615 } 5616