1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <deque>
38 
39 using namespace llvm;
40 
41 namespace {
42 enum {
43   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
44 };
45 
46 class BitcodeReaderValueList {
47   std::vector<WeakVH> ValuePtrs;
48 
49   /// As we resolve forward-referenced constants, we add information about them
50   /// to this vector.  This allows us to resolve them in bulk instead of
51   /// resolving each reference at a time.  See the code in
52   /// ResolveConstantForwardRefs for more information about this.
53   ///
54   /// The key of this vector is the placeholder constant, the value is the slot
55   /// number that holds the resolved value.
56   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
57   ResolveConstantsTy ResolveConstants;
58   LLVMContext &Context;
59 public:
60   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
61   ~BitcodeReaderValueList() {
62     assert(ResolveConstants.empty() && "Constants not resolved?");
63   }
64 
65   // vector compatibility methods
66   unsigned size() const { return ValuePtrs.size(); }
67   void resize(unsigned N) { ValuePtrs.resize(N); }
68   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
69 
70   void clear() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72     ValuePtrs.clear();
73   }
74 
75   Value *operator[](unsigned i) const {
76     assert(i < ValuePtrs.size());
77     return ValuePtrs[i];
78   }
79 
80   Value *back() const { return ValuePtrs.back(); }
81     void pop_back() { ValuePtrs.pop_back(); }
82   bool empty() const { return ValuePtrs.empty(); }
83   void shrinkTo(unsigned N) {
84     assert(N <= size() && "Invalid shrinkTo request!");
85     ValuePtrs.resize(N);
86   }
87 
88   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
89   Value *getValueFwdRef(unsigned Idx, Type *Ty);
90 
91   void assignValue(Value *V, unsigned Idx);
92 
93   /// Once all constants are read, this method bulk resolves any forward
94   /// references.
95   void resolveConstantForwardRefs();
96 };
97 
98 class BitcodeReaderMetadataList {
99   unsigned NumFwdRefs;
100   bool AnyFwdRefs;
101   unsigned MinFwdRef;
102   unsigned MaxFwdRef;
103   std::vector<TrackingMDRef> MetadataPtrs;
104 
105   LLVMContext &Context;
106 public:
107   BitcodeReaderMetadataList(LLVMContext &C)
108       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
109 
110   // vector compatibility methods
111   unsigned size() const { return MetadataPtrs.size(); }
112   void resize(unsigned N) { MetadataPtrs.resize(N); }
113   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
114   void clear() { MetadataPtrs.clear(); }
115   Metadata *back() const { return MetadataPtrs.back(); }
116   void pop_back() { MetadataPtrs.pop_back(); }
117   bool empty() const { return MetadataPtrs.empty(); }
118 
119   Metadata *operator[](unsigned i) const {
120     assert(i < MetadataPtrs.size());
121     return MetadataPtrs[i];
122   }
123 
124   void shrinkTo(unsigned N) {
125     assert(N <= size() && "Invalid shrinkTo request!");
126     MetadataPtrs.resize(N);
127   }
128 
129   Metadata *getMetadataFwdRef(unsigned Idx);
130   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
131   void assignValue(Metadata *MD, unsigned Idx);
132   void tryToResolveCycles();
133 };
134 
135 class BitcodeReader : public GVMaterializer {
136   LLVMContext &Context;
137   Module *TheModule = nullptr;
138   std::unique_ptr<MemoryBuffer> Buffer;
139   std::unique_ptr<BitstreamReader> StreamFile;
140   BitstreamCursor Stream;
141   // Next offset to start scanning for lazy parsing of function bodies.
142   uint64_t NextUnreadBit = 0;
143   // Last function offset found in the VST.
144   uint64_t LastFunctionBlockBit = 0;
145   bool SeenValueSymbolTable = false;
146   uint64_t VSTOffset = 0;
147   // Contains an arbitrary and optional string identifying the bitcode producer
148   std::string ProducerIdentification;
149   // Number of module level metadata records specified by the
150   // MODULE_CODE_METADATA_VALUES record.
151   unsigned NumModuleMDs = 0;
152   // Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
153   bool SeenModuleValuesRecord = false;
154 
155   std::vector<Type*> TypeList;
156   BitcodeReaderValueList ValueList;
157   BitcodeReaderMetadataList MetadataList;
158   std::vector<Comdat *> ComdatList;
159   SmallVector<Instruction *, 64> InstructionList;
160 
161   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
162   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
163   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
164   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
165   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
166 
167   SmallVector<Instruction*, 64> InstsWithTBAATag;
168 
169   /// The set of attributes by index.  Index zero in the file is for null, and
170   /// is thus not represented here.  As such all indices are off by one.
171   std::vector<AttributeSet> MAttributes;
172 
173   /// The set of attribute groups.
174   std::map<unsigned, AttributeSet> MAttributeGroups;
175 
176   /// While parsing a function body, this is a list of the basic blocks for the
177   /// function.
178   std::vector<BasicBlock*> FunctionBBs;
179 
180   // When reading the module header, this list is populated with functions that
181   // have bodies later in the file.
182   std::vector<Function*> FunctionsWithBodies;
183 
184   // When intrinsic functions are encountered which require upgrading they are
185   // stored here with their replacement function.
186   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
187   UpgradedIntrinsicMap UpgradedIntrinsics;
188 
189   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
190   DenseMap<unsigned, unsigned> MDKindMap;
191 
192   // Several operations happen after the module header has been read, but
193   // before function bodies are processed. This keeps track of whether
194   // we've done this yet.
195   bool SeenFirstFunctionBody = false;
196 
197   /// When function bodies are initially scanned, this map contains info about
198   /// where to find deferred function body in the stream.
199   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
200 
201   /// When Metadata block is initially scanned when parsing the module, we may
202   /// choose to defer parsing of the metadata. This vector contains info about
203   /// which Metadata blocks are deferred.
204   std::vector<uint64_t> DeferredMetadataInfo;
205 
206   /// These are basic blocks forward-referenced by block addresses.  They are
207   /// inserted lazily into functions when they're loaded.  The basic block ID is
208   /// its index into the vector.
209   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
210   std::deque<Function *> BasicBlockFwdRefQueue;
211 
212   /// Indicates that we are using a new encoding for instruction operands where
213   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
214   /// instruction number, for a more compact encoding.  Some instruction
215   /// operands are not relative to the instruction ID: basic block numbers, and
216   /// types. Once the old style function blocks have been phased out, we would
217   /// not need this flag.
218   bool UseRelativeIDs = false;
219 
220   /// True if all functions will be materialized, negating the need to process
221   /// (e.g.) blockaddress forward references.
222   bool WillMaterializeAllForwardRefs = false;
223 
224   /// True if any Metadata block has been materialized.
225   bool IsMetadataMaterialized = false;
226 
227   bool StripDebugInfo = false;
228 
229   /// Functions that need to be matched with subprograms when upgrading old
230   /// metadata.
231   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
232 
233   std::vector<std::string> BundleTags;
234 
235 public:
236   std::error_code error(BitcodeError E, const Twine &Message);
237   std::error_code error(BitcodeError E);
238   std::error_code error(const Twine &Message);
239 
240   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
241   BitcodeReader(LLVMContext &Context);
242   ~BitcodeReader() override { freeState(); }
243 
244   std::error_code materializeForwardReferencedFunctions();
245 
246   void freeState();
247 
248   void releaseBuffer();
249 
250   std::error_code materialize(GlobalValue *GV) override;
251   std::error_code materializeModule() override;
252   std::vector<StructType *> getIdentifiedStructTypes() const override;
253 
254   /// \brief Main interface to parsing a bitcode buffer.
255   /// \returns true if an error occurred.
256   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
257                                    Module *M,
258                                    bool ShouldLazyLoadMetadata = false);
259 
260   /// \brief Cheap mechanism to just extract module triple
261   /// \returns true if an error occurred.
262   ErrorOr<std::string> parseTriple();
263 
264   /// Cheap mechanism to just extract the identification block out of bitcode.
265   ErrorOr<std::string> parseIdentificationBlock();
266 
267   static uint64_t decodeSignRotatedValue(uint64_t V);
268 
269   /// Materialize any deferred Metadata block.
270   std::error_code materializeMetadata() override;
271 
272   void setStripDebugInfo() override;
273 
274   /// Save the mapping between the metadata values and the corresponding
275   /// value id that were recorded in the MetadataList during parsing. If
276   /// OnlyTempMD is true, then only record those entries that are still
277   /// temporary metadata. This interface is used when metadata linking is
278   /// performed as a postpass, such as during function importing.
279   void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs,
280                         bool OnlyTempMD) override;
281 
282 private:
283   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
284   // ProducerIdentification data member, and do some basic enforcement on the
285   // "epoch" encoded in the bitcode.
286   std::error_code parseBitcodeVersion();
287 
288   std::vector<StructType *> IdentifiedStructTypes;
289   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
290   StructType *createIdentifiedStructType(LLVMContext &Context);
291 
292   Type *getTypeByID(unsigned ID);
293   Value *getFnValueByID(unsigned ID, Type *Ty) {
294     if (Ty && Ty->isMetadataTy())
295       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
296     return ValueList.getValueFwdRef(ID, Ty);
297   }
298   Metadata *getFnMetadataByID(unsigned ID) {
299     return MetadataList.getMetadataFwdRef(ID);
300   }
301   BasicBlock *getBasicBlock(unsigned ID) const {
302     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
303     return FunctionBBs[ID];
304   }
305   AttributeSet getAttributes(unsigned i) const {
306     if (i-1 < MAttributes.size())
307       return MAttributes[i-1];
308     return AttributeSet();
309   }
310 
311   /// Read a value/type pair out of the specified record from slot 'Slot'.
312   /// Increment Slot past the number of slots used in the record. Return true on
313   /// failure.
314   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
315                         unsigned InstNum, Value *&ResVal) {
316     if (Slot == Record.size()) return true;
317     unsigned ValNo = (unsigned)Record[Slot++];
318     // Adjust the ValNo, if it was encoded relative to the InstNum.
319     if (UseRelativeIDs)
320       ValNo = InstNum - ValNo;
321     if (ValNo < InstNum) {
322       // If this is not a forward reference, just return the value we already
323       // have.
324       ResVal = getFnValueByID(ValNo, nullptr);
325       return ResVal == nullptr;
326     }
327     if (Slot == Record.size())
328       return true;
329 
330     unsigned TypeNo = (unsigned)Record[Slot++];
331     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
332     return ResVal == nullptr;
333   }
334 
335   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
336   /// past the number of slots used by the value in the record. Return true if
337   /// there is an error.
338   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
339                 unsigned InstNum, Type *Ty, Value *&ResVal) {
340     if (getValue(Record, Slot, InstNum, Ty, ResVal))
341       return true;
342     // All values currently take a single record slot.
343     ++Slot;
344     return false;
345   }
346 
347   /// Like popValue, but does not increment the Slot number.
348   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
349                 unsigned InstNum, Type *Ty, Value *&ResVal) {
350     ResVal = getValue(Record, Slot, InstNum, Ty);
351     return ResVal == nullptr;
352   }
353 
354   /// Version of getValue that returns ResVal directly, or 0 if there is an
355   /// error.
356   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
357                   unsigned InstNum, Type *Ty) {
358     if (Slot == Record.size()) return nullptr;
359     unsigned ValNo = (unsigned)Record[Slot];
360     // Adjust the ValNo, if it was encoded relative to the InstNum.
361     if (UseRelativeIDs)
362       ValNo = InstNum - ValNo;
363     return getFnValueByID(ValNo, Ty);
364   }
365 
366   /// Like getValue, but decodes signed VBRs.
367   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
368                         unsigned InstNum, Type *Ty) {
369     if (Slot == Record.size()) return nullptr;
370     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
371     // Adjust the ValNo, if it was encoded relative to the InstNum.
372     if (UseRelativeIDs)
373       ValNo = InstNum - ValNo;
374     return getFnValueByID(ValNo, Ty);
375   }
376 
377   /// Converts alignment exponent (i.e. power of two (or zero)) to the
378   /// corresponding alignment to use. If alignment is too large, returns
379   /// a corresponding error code.
380   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
381   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
382   std::error_code parseModule(uint64_t ResumeBit,
383                               bool ShouldLazyLoadMetadata = false);
384   std::error_code parseAttributeBlock();
385   std::error_code parseAttributeGroupBlock();
386   std::error_code parseTypeTable();
387   std::error_code parseTypeTableBody();
388   std::error_code parseOperandBundleTags();
389 
390   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
391                                unsigned NameIndex, Triple &TT);
392   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
393   std::error_code parseConstants();
394   std::error_code rememberAndSkipFunctionBodies();
395   std::error_code rememberAndSkipFunctionBody();
396   /// Save the positions of the Metadata blocks and skip parsing the blocks.
397   std::error_code rememberAndSkipMetadata();
398   std::error_code parseFunctionBody(Function *F);
399   std::error_code globalCleanup();
400   std::error_code resolveGlobalAndAliasInits();
401   std::error_code parseMetadata(bool ModuleLevel = false);
402   std::error_code parseMetadataKinds();
403   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
404   std::error_code parseMetadataAttachment(Function &F);
405   ErrorOr<std::string> parseModuleTriple();
406   std::error_code parseUseLists();
407   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
408   std::error_code initStreamFromBuffer();
409   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
410   std::error_code findFunctionInStream(
411       Function *F,
412       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
413 };
414 
415 /// Class to manage reading and parsing function summary index bitcode
416 /// files/sections.
417 class ModuleSummaryIndexBitcodeReader {
418   DiagnosticHandlerFunction DiagnosticHandler;
419 
420   /// Eventually points to the module index built during parsing.
421   ModuleSummaryIndex *TheIndex = nullptr;
422 
423   std::unique_ptr<MemoryBuffer> Buffer;
424   std::unique_ptr<BitstreamReader> StreamFile;
425   BitstreamCursor Stream;
426 
427   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
428   ///
429   /// If false, the summary section is fully parsed into the index during
430   /// the initial parse. Otherwise, if true, the caller is expected to
431   /// invoke \a readGlobalValueSummary for each summary needed, and the summary
432   /// section is thus parsed lazily.
433   bool IsLazy = false;
434 
435   /// Used to indicate whether caller only wants to check for the presence
436   /// of the global value summary bitcode section. All blocks are skipped,
437   /// but the SeenGlobalValSummary boolean is set.
438   bool CheckGlobalValSummaryPresenceOnly = false;
439 
440   /// Indicates whether we have encountered a global value summary section
441   /// yet during parsing, used when checking if file contains global value
442   /// summary section.
443   bool SeenGlobalValSummary = false;
444 
445   /// Indicates whether we have already parsed the VST, used for error checking.
446   bool SeenValueSymbolTable = false;
447 
448   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
449   /// Used to enable on-demand parsing of the VST.
450   uint64_t VSTOffset = 0;
451 
452   // Map to save ValueId to GUID association that was recorded in the
453   // ValueSymbolTable. It is used after the VST is parsed to convert
454   // call graph edges read from the function summary from referencing
455   // callees by their ValueId to using the GUID instead, which is how
456   // they are recorded in the summary index being built.
457   DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap;
458 
459   /// Map to save the association between summary offset in the VST to the
460   /// GlobalValueInfo object created when parsing it. Used to access the
461   /// info object when parsing the summary section.
462   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
463 
464   /// Map populated during module path string table parsing, from the
465   /// module ID to a string reference owned by the index's module
466   /// path string table, used to correlate with combined index
467   /// summary records.
468   DenseMap<uint64_t, StringRef> ModuleIdMap;
469 
470   /// Original source file name recorded in a bitcode record.
471   std::string SourceFileName;
472 
473 public:
474   std::error_code error(BitcodeError E, const Twine &Message);
475   std::error_code error(BitcodeError E);
476   std::error_code error(const Twine &Message);
477 
478   ModuleSummaryIndexBitcodeReader(
479       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
480       bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false);
481   ModuleSummaryIndexBitcodeReader(
482       DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false,
483       bool CheckGlobalValSummaryPresenceOnly = false);
484   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
485 
486   void freeState();
487 
488   void releaseBuffer();
489 
490   /// Check if the parser has encountered a summary section.
491   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
492 
493   /// \brief Main interface to parsing a bitcode buffer.
494   /// \returns true if an error occurred.
495   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
496                                         ModuleSummaryIndex *I);
497 
498   /// \brief Interface for parsing a summary lazily.
499   std::error_code
500   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
501                           ModuleSummaryIndex *I, size_t SummaryOffset);
502 
503 private:
504   std::error_code parseModule();
505   std::error_code parseValueSymbolTable(
506       uint64_t Offset,
507       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
508   std::error_code parseEntireSummary();
509   std::error_code parseModuleStringTable();
510   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
511   std::error_code initStreamFromBuffer();
512   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
513   uint64_t getGUIDFromValueId(unsigned ValueId);
514   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
515 };
516 } // end anonymous namespace
517 
518 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
519                                              DiagnosticSeverity Severity,
520                                              const Twine &Msg)
521     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
522 
523 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
524 
525 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
526                              std::error_code EC, const Twine &Message) {
527   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
528   DiagnosticHandler(DI);
529   return EC;
530 }
531 
532 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
533                              std::error_code EC) {
534   return error(DiagnosticHandler, EC, EC.message());
535 }
536 
537 static std::error_code error(LLVMContext &Context, std::error_code EC,
538                              const Twine &Message) {
539   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
540                Message);
541 }
542 
543 static std::error_code error(LLVMContext &Context, std::error_code EC) {
544   return error(Context, EC, EC.message());
545 }
546 
547 static std::error_code error(LLVMContext &Context, const Twine &Message) {
548   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
549                Message);
550 }
551 
552 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
553   if (!ProducerIdentification.empty()) {
554     return ::error(Context, make_error_code(E),
555                    Message + " (Producer: '" + ProducerIdentification +
556                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
557   }
558   return ::error(Context, make_error_code(E), Message);
559 }
560 
561 std::error_code BitcodeReader::error(const Twine &Message) {
562   if (!ProducerIdentification.empty()) {
563     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
564                    Message + " (Producer: '" + ProducerIdentification +
565                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
566   }
567   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
568                  Message);
569 }
570 
571 std::error_code BitcodeReader::error(BitcodeError E) {
572   return ::error(Context, make_error_code(E));
573 }
574 
575 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
576     : Context(Context), Buffer(Buffer), ValueList(Context),
577       MetadataList(Context) {}
578 
579 BitcodeReader::BitcodeReader(LLVMContext &Context)
580     : Context(Context), Buffer(nullptr), ValueList(Context),
581       MetadataList(Context) {}
582 
583 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
584   if (WillMaterializeAllForwardRefs)
585     return std::error_code();
586 
587   // Prevent recursion.
588   WillMaterializeAllForwardRefs = true;
589 
590   while (!BasicBlockFwdRefQueue.empty()) {
591     Function *F = BasicBlockFwdRefQueue.front();
592     BasicBlockFwdRefQueue.pop_front();
593     assert(F && "Expected valid function");
594     if (!BasicBlockFwdRefs.count(F))
595       // Already materialized.
596       continue;
597 
598     // Check for a function that isn't materializable to prevent an infinite
599     // loop.  When parsing a blockaddress stored in a global variable, there
600     // isn't a trivial way to check if a function will have a body without a
601     // linear search through FunctionsWithBodies, so just check it here.
602     if (!F->isMaterializable())
603       return error("Never resolved function from blockaddress");
604 
605     // Try to materialize F.
606     if (std::error_code EC = materialize(F))
607       return EC;
608   }
609   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
610 
611   // Reset state.
612   WillMaterializeAllForwardRefs = false;
613   return std::error_code();
614 }
615 
616 void BitcodeReader::freeState() {
617   Buffer = nullptr;
618   std::vector<Type*>().swap(TypeList);
619   ValueList.clear();
620   MetadataList.clear();
621   std::vector<Comdat *>().swap(ComdatList);
622 
623   std::vector<AttributeSet>().swap(MAttributes);
624   std::vector<BasicBlock*>().swap(FunctionBBs);
625   std::vector<Function*>().swap(FunctionsWithBodies);
626   DeferredFunctionInfo.clear();
627   DeferredMetadataInfo.clear();
628   MDKindMap.clear();
629 
630   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
631   BasicBlockFwdRefQueue.clear();
632 }
633 
634 //===----------------------------------------------------------------------===//
635 //  Helper functions to implement forward reference resolution, etc.
636 //===----------------------------------------------------------------------===//
637 
638 /// Convert a string from a record into an std::string, return true on failure.
639 template <typename StrTy>
640 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
641                             StrTy &Result) {
642   if (Idx > Record.size())
643     return true;
644 
645   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
646     Result += (char)Record[i];
647   return false;
648 }
649 
650 static bool hasImplicitComdat(size_t Val) {
651   switch (Val) {
652   default:
653     return false;
654   case 1:  // Old WeakAnyLinkage
655   case 4:  // Old LinkOnceAnyLinkage
656   case 10: // Old WeakODRLinkage
657   case 11: // Old LinkOnceODRLinkage
658     return true;
659   }
660 }
661 
662 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
663   switch (Val) {
664   default: // Map unknown/new linkages to external
665   case 0:
666     return GlobalValue::ExternalLinkage;
667   case 2:
668     return GlobalValue::AppendingLinkage;
669   case 3:
670     return GlobalValue::InternalLinkage;
671   case 5:
672     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
673   case 6:
674     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
675   case 7:
676     return GlobalValue::ExternalWeakLinkage;
677   case 8:
678     return GlobalValue::CommonLinkage;
679   case 9:
680     return GlobalValue::PrivateLinkage;
681   case 12:
682     return GlobalValue::AvailableExternallyLinkage;
683   case 13:
684     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
685   case 14:
686     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
687   case 15:
688     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
689   case 1: // Old value with implicit comdat.
690   case 16:
691     return GlobalValue::WeakAnyLinkage;
692   case 10: // Old value with implicit comdat.
693   case 17:
694     return GlobalValue::WeakODRLinkage;
695   case 4: // Old value with implicit comdat.
696   case 18:
697     return GlobalValue::LinkOnceAnyLinkage;
698   case 11: // Old value with implicit comdat.
699   case 19:
700     return GlobalValue::LinkOnceODRLinkage;
701   }
702 }
703 
704 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
705   switch (Val) {
706   default: // Map unknown visibilities to default.
707   case 0: return GlobalValue::DefaultVisibility;
708   case 1: return GlobalValue::HiddenVisibility;
709   case 2: return GlobalValue::ProtectedVisibility;
710   }
711 }
712 
713 static GlobalValue::DLLStorageClassTypes
714 getDecodedDLLStorageClass(unsigned Val) {
715   switch (Val) {
716   default: // Map unknown values to default.
717   case 0: return GlobalValue::DefaultStorageClass;
718   case 1: return GlobalValue::DLLImportStorageClass;
719   case 2: return GlobalValue::DLLExportStorageClass;
720   }
721 }
722 
723 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
724   switch (Val) {
725     case 0: return GlobalVariable::NotThreadLocal;
726     default: // Map unknown non-zero value to general dynamic.
727     case 1: return GlobalVariable::GeneralDynamicTLSModel;
728     case 2: return GlobalVariable::LocalDynamicTLSModel;
729     case 3: return GlobalVariable::InitialExecTLSModel;
730     case 4: return GlobalVariable::LocalExecTLSModel;
731   }
732 }
733 
734 static int getDecodedCastOpcode(unsigned Val) {
735   switch (Val) {
736   default: return -1;
737   case bitc::CAST_TRUNC   : return Instruction::Trunc;
738   case bitc::CAST_ZEXT    : return Instruction::ZExt;
739   case bitc::CAST_SEXT    : return Instruction::SExt;
740   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
741   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
742   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
743   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
744   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
745   case bitc::CAST_FPEXT   : return Instruction::FPExt;
746   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
747   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
748   case bitc::CAST_BITCAST : return Instruction::BitCast;
749   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
750   }
751 }
752 
753 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
754   bool IsFP = Ty->isFPOrFPVectorTy();
755   // BinOps are only valid for int/fp or vector of int/fp types
756   if (!IsFP && !Ty->isIntOrIntVectorTy())
757     return -1;
758 
759   switch (Val) {
760   default:
761     return -1;
762   case bitc::BINOP_ADD:
763     return IsFP ? Instruction::FAdd : Instruction::Add;
764   case bitc::BINOP_SUB:
765     return IsFP ? Instruction::FSub : Instruction::Sub;
766   case bitc::BINOP_MUL:
767     return IsFP ? Instruction::FMul : Instruction::Mul;
768   case bitc::BINOP_UDIV:
769     return IsFP ? -1 : Instruction::UDiv;
770   case bitc::BINOP_SDIV:
771     return IsFP ? Instruction::FDiv : Instruction::SDiv;
772   case bitc::BINOP_UREM:
773     return IsFP ? -1 : Instruction::URem;
774   case bitc::BINOP_SREM:
775     return IsFP ? Instruction::FRem : Instruction::SRem;
776   case bitc::BINOP_SHL:
777     return IsFP ? -1 : Instruction::Shl;
778   case bitc::BINOP_LSHR:
779     return IsFP ? -1 : Instruction::LShr;
780   case bitc::BINOP_ASHR:
781     return IsFP ? -1 : Instruction::AShr;
782   case bitc::BINOP_AND:
783     return IsFP ? -1 : Instruction::And;
784   case bitc::BINOP_OR:
785     return IsFP ? -1 : Instruction::Or;
786   case bitc::BINOP_XOR:
787     return IsFP ? -1 : Instruction::Xor;
788   }
789 }
790 
791 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
792   switch (Val) {
793   default: return AtomicRMWInst::BAD_BINOP;
794   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
795   case bitc::RMW_ADD: return AtomicRMWInst::Add;
796   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
797   case bitc::RMW_AND: return AtomicRMWInst::And;
798   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
799   case bitc::RMW_OR: return AtomicRMWInst::Or;
800   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
801   case bitc::RMW_MAX: return AtomicRMWInst::Max;
802   case bitc::RMW_MIN: return AtomicRMWInst::Min;
803   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
804   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
805   }
806 }
807 
808 static AtomicOrdering getDecodedOrdering(unsigned Val) {
809   switch (Val) {
810   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
811   case bitc::ORDERING_UNORDERED: return Unordered;
812   case bitc::ORDERING_MONOTONIC: return Monotonic;
813   case bitc::ORDERING_ACQUIRE: return Acquire;
814   case bitc::ORDERING_RELEASE: return Release;
815   case bitc::ORDERING_ACQREL: return AcquireRelease;
816   default: // Map unknown orderings to sequentially-consistent.
817   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
818   }
819 }
820 
821 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
822   switch (Val) {
823   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
824   default: // Map unknown scopes to cross-thread.
825   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
826   }
827 }
828 
829 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
830   switch (Val) {
831   default: // Map unknown selection kinds to any.
832   case bitc::COMDAT_SELECTION_KIND_ANY:
833     return Comdat::Any;
834   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
835     return Comdat::ExactMatch;
836   case bitc::COMDAT_SELECTION_KIND_LARGEST:
837     return Comdat::Largest;
838   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
839     return Comdat::NoDuplicates;
840   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
841     return Comdat::SameSize;
842   }
843 }
844 
845 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
846   FastMathFlags FMF;
847   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
848     FMF.setUnsafeAlgebra();
849   if (0 != (Val & FastMathFlags::NoNaNs))
850     FMF.setNoNaNs();
851   if (0 != (Val & FastMathFlags::NoInfs))
852     FMF.setNoInfs();
853   if (0 != (Val & FastMathFlags::NoSignedZeros))
854     FMF.setNoSignedZeros();
855   if (0 != (Val & FastMathFlags::AllowReciprocal))
856     FMF.setAllowReciprocal();
857   return FMF;
858 }
859 
860 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
861   switch (Val) {
862   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
863   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
864   }
865 }
866 
867 namespace llvm {
868 namespace {
869 /// \brief A class for maintaining the slot number definition
870 /// as a placeholder for the actual definition for forward constants defs.
871 class ConstantPlaceHolder : public ConstantExpr {
872   void operator=(const ConstantPlaceHolder &) = delete;
873 
874 public:
875   // allocate space for exactly one operand
876   void *operator new(size_t s) { return User::operator new(s, 1); }
877   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
878       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
879     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
880   }
881 
882   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
883   static bool classof(const Value *V) {
884     return isa<ConstantExpr>(V) &&
885            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
886   }
887 
888   /// Provide fast operand accessors
889   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
890 };
891 } // end anonymous namespace
892 
893 // FIXME: can we inherit this from ConstantExpr?
894 template <>
895 struct OperandTraits<ConstantPlaceHolder> :
896   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
897 };
898 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
899 } // end namespace llvm
900 
901 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
902   if (Idx == size()) {
903     push_back(V);
904     return;
905   }
906 
907   if (Idx >= size())
908     resize(Idx+1);
909 
910   WeakVH &OldV = ValuePtrs[Idx];
911   if (!OldV) {
912     OldV = V;
913     return;
914   }
915 
916   // Handle constants and non-constants (e.g. instrs) differently for
917   // efficiency.
918   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
919     ResolveConstants.push_back(std::make_pair(PHC, Idx));
920     OldV = V;
921   } else {
922     // If there was a forward reference to this value, replace it.
923     Value *PrevVal = OldV;
924     OldV->replaceAllUsesWith(V);
925     delete PrevVal;
926   }
927 }
928 
929 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
930                                                     Type *Ty) {
931   if (Idx >= size())
932     resize(Idx + 1);
933 
934   if (Value *V = ValuePtrs[Idx]) {
935     if (Ty != V->getType())
936       report_fatal_error("Type mismatch in constant table!");
937     return cast<Constant>(V);
938   }
939 
940   // Create and return a placeholder, which will later be RAUW'd.
941   Constant *C = new ConstantPlaceHolder(Ty, Context);
942   ValuePtrs[Idx] = C;
943   return C;
944 }
945 
946 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
947   // Bail out for a clearly invalid value. This would make us call resize(0)
948   if (Idx == UINT_MAX)
949     return nullptr;
950 
951   if (Idx >= size())
952     resize(Idx + 1);
953 
954   if (Value *V = ValuePtrs[Idx]) {
955     // If the types don't match, it's invalid.
956     if (Ty && Ty != V->getType())
957       return nullptr;
958     return V;
959   }
960 
961   // No type specified, must be invalid reference.
962   if (!Ty) return nullptr;
963 
964   // Create and return a placeholder, which will later be RAUW'd.
965   Value *V = new Argument(Ty);
966   ValuePtrs[Idx] = V;
967   return V;
968 }
969 
970 /// Once all constants are read, this method bulk resolves any forward
971 /// references.  The idea behind this is that we sometimes get constants (such
972 /// as large arrays) which reference *many* forward ref constants.  Replacing
973 /// each of these causes a lot of thrashing when building/reuniquing the
974 /// constant.  Instead of doing this, we look at all the uses and rewrite all
975 /// the place holders at once for any constant that uses a placeholder.
976 void BitcodeReaderValueList::resolveConstantForwardRefs() {
977   // Sort the values by-pointer so that they are efficient to look up with a
978   // binary search.
979   std::sort(ResolveConstants.begin(), ResolveConstants.end());
980 
981   SmallVector<Constant*, 64> NewOps;
982 
983   while (!ResolveConstants.empty()) {
984     Value *RealVal = operator[](ResolveConstants.back().second);
985     Constant *Placeholder = ResolveConstants.back().first;
986     ResolveConstants.pop_back();
987 
988     // Loop over all users of the placeholder, updating them to reference the
989     // new value.  If they reference more than one placeholder, update them all
990     // at once.
991     while (!Placeholder->use_empty()) {
992       auto UI = Placeholder->user_begin();
993       User *U = *UI;
994 
995       // If the using object isn't uniqued, just update the operands.  This
996       // handles instructions and initializers for global variables.
997       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
998         UI.getUse().set(RealVal);
999         continue;
1000       }
1001 
1002       // Otherwise, we have a constant that uses the placeholder.  Replace that
1003       // constant with a new constant that has *all* placeholder uses updated.
1004       Constant *UserC = cast<Constant>(U);
1005       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1006            I != E; ++I) {
1007         Value *NewOp;
1008         if (!isa<ConstantPlaceHolder>(*I)) {
1009           // Not a placeholder reference.
1010           NewOp = *I;
1011         } else if (*I == Placeholder) {
1012           // Common case is that it just references this one placeholder.
1013           NewOp = RealVal;
1014         } else {
1015           // Otherwise, look up the placeholder in ResolveConstants.
1016           ResolveConstantsTy::iterator It =
1017             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1018                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1019                                                             0));
1020           assert(It != ResolveConstants.end() && It->first == *I);
1021           NewOp = operator[](It->second);
1022         }
1023 
1024         NewOps.push_back(cast<Constant>(NewOp));
1025       }
1026 
1027       // Make the new constant.
1028       Constant *NewC;
1029       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1030         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1031       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1032         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1033       } else if (isa<ConstantVector>(UserC)) {
1034         NewC = ConstantVector::get(NewOps);
1035       } else {
1036         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1037         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1038       }
1039 
1040       UserC->replaceAllUsesWith(NewC);
1041       UserC->destroyConstant();
1042       NewOps.clear();
1043     }
1044 
1045     // Update all ValueHandles, they should be the only users at this point.
1046     Placeholder->replaceAllUsesWith(RealVal);
1047     delete Placeholder;
1048   }
1049 }
1050 
1051 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1052   if (Idx == size()) {
1053     push_back(MD);
1054     return;
1055   }
1056 
1057   if (Idx >= size())
1058     resize(Idx+1);
1059 
1060   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1061   if (!OldMD) {
1062     OldMD.reset(MD);
1063     return;
1064   }
1065 
1066   // If there was a forward reference to this value, replace it.
1067   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1068   PrevMD->replaceAllUsesWith(MD);
1069   --NumFwdRefs;
1070 }
1071 
1072 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1073   if (Idx >= size())
1074     resize(Idx + 1);
1075 
1076   if (Metadata *MD = MetadataPtrs[Idx])
1077     return MD;
1078 
1079   // Track forward refs to be resolved later.
1080   if (AnyFwdRefs) {
1081     MinFwdRef = std::min(MinFwdRef, Idx);
1082     MaxFwdRef = std::max(MaxFwdRef, Idx);
1083   } else {
1084     AnyFwdRefs = true;
1085     MinFwdRef = MaxFwdRef = Idx;
1086   }
1087   ++NumFwdRefs;
1088 
1089   // Create and return a placeholder, which will later be RAUW'd.
1090   Metadata *MD = MDNode::getTemporary(Context, None).release();
1091   MetadataPtrs[Idx].reset(MD);
1092   return MD;
1093 }
1094 
1095 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1096   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1097 }
1098 
1099 void BitcodeReaderMetadataList::tryToResolveCycles() {
1100   if (!AnyFwdRefs)
1101     // Nothing to do.
1102     return;
1103 
1104   if (NumFwdRefs)
1105     // Still forward references... can't resolve cycles.
1106     return;
1107 
1108   // Resolve any cycles.
1109   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1110     auto &MD = MetadataPtrs[I];
1111     auto *N = dyn_cast_or_null<MDNode>(MD);
1112     if (!N)
1113       continue;
1114 
1115     assert(!N->isTemporary() && "Unexpected forward reference");
1116     N->resolveCycles();
1117   }
1118 
1119   // Make sure we return early again until there's another forward ref.
1120   AnyFwdRefs = false;
1121 }
1122 
1123 Type *BitcodeReader::getTypeByID(unsigned ID) {
1124   // The type table size is always specified correctly.
1125   if (ID >= TypeList.size())
1126     return nullptr;
1127 
1128   if (Type *Ty = TypeList[ID])
1129     return Ty;
1130 
1131   // If we have a forward reference, the only possible case is when it is to a
1132   // named struct.  Just create a placeholder for now.
1133   return TypeList[ID] = createIdentifiedStructType(Context);
1134 }
1135 
1136 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1137                                                       StringRef Name) {
1138   auto *Ret = StructType::create(Context, Name);
1139   IdentifiedStructTypes.push_back(Ret);
1140   return Ret;
1141 }
1142 
1143 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1144   auto *Ret = StructType::create(Context);
1145   IdentifiedStructTypes.push_back(Ret);
1146   return Ret;
1147 }
1148 
1149 //===----------------------------------------------------------------------===//
1150 //  Functions for parsing blocks from the bitcode file
1151 //===----------------------------------------------------------------------===//
1152 
1153 
1154 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1155 /// been decoded from the given integer. This function must stay in sync with
1156 /// 'encodeLLVMAttributesForBitcode'.
1157 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1158                                            uint64_t EncodedAttrs) {
1159   // FIXME: Remove in 4.0.
1160 
1161   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1162   // the bits above 31 down by 11 bits.
1163   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1164   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1165          "Alignment must be a power of two.");
1166 
1167   if (Alignment)
1168     B.addAlignmentAttr(Alignment);
1169   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1170                 (EncodedAttrs & 0xffff));
1171 }
1172 
1173 std::error_code BitcodeReader::parseAttributeBlock() {
1174   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1175     return error("Invalid record");
1176 
1177   if (!MAttributes.empty())
1178     return error("Invalid multiple blocks");
1179 
1180   SmallVector<uint64_t, 64> Record;
1181 
1182   SmallVector<AttributeSet, 8> Attrs;
1183 
1184   // Read all the records.
1185   while (1) {
1186     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1187 
1188     switch (Entry.Kind) {
1189     case BitstreamEntry::SubBlock: // Handled for us already.
1190     case BitstreamEntry::Error:
1191       return error("Malformed block");
1192     case BitstreamEntry::EndBlock:
1193       return std::error_code();
1194     case BitstreamEntry::Record:
1195       // The interesting case.
1196       break;
1197     }
1198 
1199     // Read a record.
1200     Record.clear();
1201     switch (Stream.readRecord(Entry.ID, Record)) {
1202     default:  // Default behavior: ignore.
1203       break;
1204     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1205       // FIXME: Remove in 4.0.
1206       if (Record.size() & 1)
1207         return error("Invalid record");
1208 
1209       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1210         AttrBuilder B;
1211         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1212         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1213       }
1214 
1215       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1216       Attrs.clear();
1217       break;
1218     }
1219     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1220       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1221         Attrs.push_back(MAttributeGroups[Record[i]]);
1222 
1223       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1224       Attrs.clear();
1225       break;
1226     }
1227     }
1228   }
1229 }
1230 
1231 // Returns Attribute::None on unrecognized codes.
1232 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1233   switch (Code) {
1234   default:
1235     return Attribute::None;
1236   case bitc::ATTR_KIND_ALIGNMENT:
1237     return Attribute::Alignment;
1238   case bitc::ATTR_KIND_ALWAYS_INLINE:
1239     return Attribute::AlwaysInline;
1240   case bitc::ATTR_KIND_ARGMEMONLY:
1241     return Attribute::ArgMemOnly;
1242   case bitc::ATTR_KIND_BUILTIN:
1243     return Attribute::Builtin;
1244   case bitc::ATTR_KIND_BY_VAL:
1245     return Attribute::ByVal;
1246   case bitc::ATTR_KIND_IN_ALLOCA:
1247     return Attribute::InAlloca;
1248   case bitc::ATTR_KIND_COLD:
1249     return Attribute::Cold;
1250   case bitc::ATTR_KIND_CONVERGENT:
1251     return Attribute::Convergent;
1252   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1253     return Attribute::InaccessibleMemOnly;
1254   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1255     return Attribute::InaccessibleMemOrArgMemOnly;
1256   case bitc::ATTR_KIND_INLINE_HINT:
1257     return Attribute::InlineHint;
1258   case bitc::ATTR_KIND_IN_REG:
1259     return Attribute::InReg;
1260   case bitc::ATTR_KIND_JUMP_TABLE:
1261     return Attribute::JumpTable;
1262   case bitc::ATTR_KIND_MIN_SIZE:
1263     return Attribute::MinSize;
1264   case bitc::ATTR_KIND_NAKED:
1265     return Attribute::Naked;
1266   case bitc::ATTR_KIND_NEST:
1267     return Attribute::Nest;
1268   case bitc::ATTR_KIND_NO_ALIAS:
1269     return Attribute::NoAlias;
1270   case bitc::ATTR_KIND_NO_BUILTIN:
1271     return Attribute::NoBuiltin;
1272   case bitc::ATTR_KIND_NO_CAPTURE:
1273     return Attribute::NoCapture;
1274   case bitc::ATTR_KIND_NO_DUPLICATE:
1275     return Attribute::NoDuplicate;
1276   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1277     return Attribute::NoImplicitFloat;
1278   case bitc::ATTR_KIND_NO_INLINE:
1279     return Attribute::NoInline;
1280   case bitc::ATTR_KIND_NO_RECURSE:
1281     return Attribute::NoRecurse;
1282   case bitc::ATTR_KIND_NON_LAZY_BIND:
1283     return Attribute::NonLazyBind;
1284   case bitc::ATTR_KIND_NON_NULL:
1285     return Attribute::NonNull;
1286   case bitc::ATTR_KIND_DEREFERENCEABLE:
1287     return Attribute::Dereferenceable;
1288   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1289     return Attribute::DereferenceableOrNull;
1290   case bitc::ATTR_KIND_NO_RED_ZONE:
1291     return Attribute::NoRedZone;
1292   case bitc::ATTR_KIND_NO_RETURN:
1293     return Attribute::NoReturn;
1294   case bitc::ATTR_KIND_NO_UNWIND:
1295     return Attribute::NoUnwind;
1296   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1297     return Attribute::OptimizeForSize;
1298   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1299     return Attribute::OptimizeNone;
1300   case bitc::ATTR_KIND_READ_NONE:
1301     return Attribute::ReadNone;
1302   case bitc::ATTR_KIND_READ_ONLY:
1303     return Attribute::ReadOnly;
1304   case bitc::ATTR_KIND_RETURNED:
1305     return Attribute::Returned;
1306   case bitc::ATTR_KIND_RETURNS_TWICE:
1307     return Attribute::ReturnsTwice;
1308   case bitc::ATTR_KIND_S_EXT:
1309     return Attribute::SExt;
1310   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1311     return Attribute::StackAlignment;
1312   case bitc::ATTR_KIND_STACK_PROTECT:
1313     return Attribute::StackProtect;
1314   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1315     return Attribute::StackProtectReq;
1316   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1317     return Attribute::StackProtectStrong;
1318   case bitc::ATTR_KIND_SAFESTACK:
1319     return Attribute::SafeStack;
1320   case bitc::ATTR_KIND_STRUCT_RET:
1321     return Attribute::StructRet;
1322   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1323     return Attribute::SanitizeAddress;
1324   case bitc::ATTR_KIND_SANITIZE_THREAD:
1325     return Attribute::SanitizeThread;
1326   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1327     return Attribute::SanitizeMemory;
1328   case bitc::ATTR_KIND_UW_TABLE:
1329     return Attribute::UWTable;
1330   case bitc::ATTR_KIND_Z_EXT:
1331     return Attribute::ZExt;
1332   }
1333 }
1334 
1335 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1336                                                    unsigned &Alignment) {
1337   // Note: Alignment in bitcode files is incremented by 1, so that zero
1338   // can be used for default alignment.
1339   if (Exponent > Value::MaxAlignmentExponent + 1)
1340     return error("Invalid alignment value");
1341   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1342   return std::error_code();
1343 }
1344 
1345 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1346                                              Attribute::AttrKind *Kind) {
1347   *Kind = getAttrFromCode(Code);
1348   if (*Kind == Attribute::None)
1349     return error(BitcodeError::CorruptedBitcode,
1350                  "Unknown attribute kind (" + Twine(Code) + ")");
1351   return std::error_code();
1352 }
1353 
1354 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1355   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1356     return error("Invalid record");
1357 
1358   if (!MAttributeGroups.empty())
1359     return error("Invalid multiple blocks");
1360 
1361   SmallVector<uint64_t, 64> Record;
1362 
1363   // Read all the records.
1364   while (1) {
1365     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1366 
1367     switch (Entry.Kind) {
1368     case BitstreamEntry::SubBlock: // Handled for us already.
1369     case BitstreamEntry::Error:
1370       return error("Malformed block");
1371     case BitstreamEntry::EndBlock:
1372       return std::error_code();
1373     case BitstreamEntry::Record:
1374       // The interesting case.
1375       break;
1376     }
1377 
1378     // Read a record.
1379     Record.clear();
1380     switch (Stream.readRecord(Entry.ID, Record)) {
1381     default:  // Default behavior: ignore.
1382       break;
1383     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1384       if (Record.size() < 3)
1385         return error("Invalid record");
1386 
1387       uint64_t GrpID = Record[0];
1388       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1389 
1390       AttrBuilder B;
1391       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1392         if (Record[i] == 0) {        // Enum attribute
1393           Attribute::AttrKind Kind;
1394           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1395             return EC;
1396 
1397           B.addAttribute(Kind);
1398         } else if (Record[i] == 1) { // Integer attribute
1399           Attribute::AttrKind Kind;
1400           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1401             return EC;
1402           if (Kind == Attribute::Alignment)
1403             B.addAlignmentAttr(Record[++i]);
1404           else if (Kind == Attribute::StackAlignment)
1405             B.addStackAlignmentAttr(Record[++i]);
1406           else if (Kind == Attribute::Dereferenceable)
1407             B.addDereferenceableAttr(Record[++i]);
1408           else if (Kind == Attribute::DereferenceableOrNull)
1409             B.addDereferenceableOrNullAttr(Record[++i]);
1410         } else {                     // String attribute
1411           assert((Record[i] == 3 || Record[i] == 4) &&
1412                  "Invalid attribute group entry");
1413           bool HasValue = (Record[i++] == 4);
1414           SmallString<64> KindStr;
1415           SmallString<64> ValStr;
1416 
1417           while (Record[i] != 0 && i != e)
1418             KindStr += Record[i++];
1419           assert(Record[i] == 0 && "Kind string not null terminated");
1420 
1421           if (HasValue) {
1422             // Has a value associated with it.
1423             ++i; // Skip the '0' that terminates the "kind" string.
1424             while (Record[i] != 0 && i != e)
1425               ValStr += Record[i++];
1426             assert(Record[i] == 0 && "Value string not null terminated");
1427           }
1428 
1429           B.addAttribute(KindStr.str(), ValStr.str());
1430         }
1431       }
1432 
1433       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1434       break;
1435     }
1436     }
1437   }
1438 }
1439 
1440 std::error_code BitcodeReader::parseTypeTable() {
1441   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1442     return error("Invalid record");
1443 
1444   return parseTypeTableBody();
1445 }
1446 
1447 std::error_code BitcodeReader::parseTypeTableBody() {
1448   if (!TypeList.empty())
1449     return error("Invalid multiple blocks");
1450 
1451   SmallVector<uint64_t, 64> Record;
1452   unsigned NumRecords = 0;
1453 
1454   SmallString<64> TypeName;
1455 
1456   // Read all the records for this type table.
1457   while (1) {
1458     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1459 
1460     switch (Entry.Kind) {
1461     case BitstreamEntry::SubBlock: // Handled for us already.
1462     case BitstreamEntry::Error:
1463       return error("Malformed block");
1464     case BitstreamEntry::EndBlock:
1465       if (NumRecords != TypeList.size())
1466         return error("Malformed block");
1467       return std::error_code();
1468     case BitstreamEntry::Record:
1469       // The interesting case.
1470       break;
1471     }
1472 
1473     // Read a record.
1474     Record.clear();
1475     Type *ResultTy = nullptr;
1476     switch (Stream.readRecord(Entry.ID, Record)) {
1477     default:
1478       return error("Invalid value");
1479     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1480       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1481       // type list.  This allows us to reserve space.
1482       if (Record.size() < 1)
1483         return error("Invalid record");
1484       TypeList.resize(Record[0]);
1485       continue;
1486     case bitc::TYPE_CODE_VOID:      // VOID
1487       ResultTy = Type::getVoidTy(Context);
1488       break;
1489     case bitc::TYPE_CODE_HALF:     // HALF
1490       ResultTy = Type::getHalfTy(Context);
1491       break;
1492     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1493       ResultTy = Type::getFloatTy(Context);
1494       break;
1495     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1496       ResultTy = Type::getDoubleTy(Context);
1497       break;
1498     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1499       ResultTy = Type::getX86_FP80Ty(Context);
1500       break;
1501     case bitc::TYPE_CODE_FP128:     // FP128
1502       ResultTy = Type::getFP128Ty(Context);
1503       break;
1504     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1505       ResultTy = Type::getPPC_FP128Ty(Context);
1506       break;
1507     case bitc::TYPE_CODE_LABEL:     // LABEL
1508       ResultTy = Type::getLabelTy(Context);
1509       break;
1510     case bitc::TYPE_CODE_METADATA:  // METADATA
1511       ResultTy = Type::getMetadataTy(Context);
1512       break;
1513     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1514       ResultTy = Type::getX86_MMXTy(Context);
1515       break;
1516     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1517       ResultTy = Type::getTokenTy(Context);
1518       break;
1519     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1520       if (Record.size() < 1)
1521         return error("Invalid record");
1522 
1523       uint64_t NumBits = Record[0];
1524       if (NumBits < IntegerType::MIN_INT_BITS ||
1525           NumBits > IntegerType::MAX_INT_BITS)
1526         return error("Bitwidth for integer type out of range");
1527       ResultTy = IntegerType::get(Context, NumBits);
1528       break;
1529     }
1530     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1531                                     //          [pointee type, address space]
1532       if (Record.size() < 1)
1533         return error("Invalid record");
1534       unsigned AddressSpace = 0;
1535       if (Record.size() == 2)
1536         AddressSpace = Record[1];
1537       ResultTy = getTypeByID(Record[0]);
1538       if (!ResultTy ||
1539           !PointerType::isValidElementType(ResultTy))
1540         return error("Invalid type");
1541       ResultTy = PointerType::get(ResultTy, AddressSpace);
1542       break;
1543     }
1544     case bitc::TYPE_CODE_FUNCTION_OLD: {
1545       // FIXME: attrid is dead, remove it in LLVM 4.0
1546       // FUNCTION: [vararg, attrid, retty, paramty x N]
1547       if (Record.size() < 3)
1548         return error("Invalid record");
1549       SmallVector<Type*, 8> ArgTys;
1550       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1551         if (Type *T = getTypeByID(Record[i]))
1552           ArgTys.push_back(T);
1553         else
1554           break;
1555       }
1556 
1557       ResultTy = getTypeByID(Record[2]);
1558       if (!ResultTy || ArgTys.size() < Record.size()-3)
1559         return error("Invalid type");
1560 
1561       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1562       break;
1563     }
1564     case bitc::TYPE_CODE_FUNCTION: {
1565       // FUNCTION: [vararg, retty, paramty x N]
1566       if (Record.size() < 2)
1567         return error("Invalid record");
1568       SmallVector<Type*, 8> ArgTys;
1569       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1570         if (Type *T = getTypeByID(Record[i])) {
1571           if (!FunctionType::isValidArgumentType(T))
1572             return error("Invalid function argument type");
1573           ArgTys.push_back(T);
1574         }
1575         else
1576           break;
1577       }
1578 
1579       ResultTy = getTypeByID(Record[1]);
1580       if (!ResultTy || ArgTys.size() < Record.size()-2)
1581         return error("Invalid type");
1582 
1583       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1584       break;
1585     }
1586     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1587       if (Record.size() < 1)
1588         return error("Invalid record");
1589       SmallVector<Type*, 8> EltTys;
1590       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1591         if (Type *T = getTypeByID(Record[i]))
1592           EltTys.push_back(T);
1593         else
1594           break;
1595       }
1596       if (EltTys.size() != Record.size()-1)
1597         return error("Invalid type");
1598       ResultTy = StructType::get(Context, EltTys, Record[0]);
1599       break;
1600     }
1601     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1602       if (convertToString(Record, 0, TypeName))
1603         return error("Invalid record");
1604       continue;
1605 
1606     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1607       if (Record.size() < 1)
1608         return error("Invalid record");
1609 
1610       if (NumRecords >= TypeList.size())
1611         return error("Invalid TYPE table");
1612 
1613       // Check to see if this was forward referenced, if so fill in the temp.
1614       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1615       if (Res) {
1616         Res->setName(TypeName);
1617         TypeList[NumRecords] = nullptr;
1618       } else  // Otherwise, create a new struct.
1619         Res = createIdentifiedStructType(Context, TypeName);
1620       TypeName.clear();
1621 
1622       SmallVector<Type*, 8> EltTys;
1623       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1624         if (Type *T = getTypeByID(Record[i]))
1625           EltTys.push_back(T);
1626         else
1627           break;
1628       }
1629       if (EltTys.size() != Record.size()-1)
1630         return error("Invalid record");
1631       Res->setBody(EltTys, Record[0]);
1632       ResultTy = Res;
1633       break;
1634     }
1635     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1636       if (Record.size() != 1)
1637         return error("Invalid record");
1638 
1639       if (NumRecords >= TypeList.size())
1640         return error("Invalid TYPE table");
1641 
1642       // Check to see if this was forward referenced, if so fill in the temp.
1643       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1644       if (Res) {
1645         Res->setName(TypeName);
1646         TypeList[NumRecords] = nullptr;
1647       } else  // Otherwise, create a new struct with no body.
1648         Res = createIdentifiedStructType(Context, TypeName);
1649       TypeName.clear();
1650       ResultTy = Res;
1651       break;
1652     }
1653     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1654       if (Record.size() < 2)
1655         return error("Invalid record");
1656       ResultTy = getTypeByID(Record[1]);
1657       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1658         return error("Invalid type");
1659       ResultTy = ArrayType::get(ResultTy, Record[0]);
1660       break;
1661     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1662       if (Record.size() < 2)
1663         return error("Invalid record");
1664       if (Record[0] == 0)
1665         return error("Invalid vector length");
1666       ResultTy = getTypeByID(Record[1]);
1667       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1668         return error("Invalid type");
1669       ResultTy = VectorType::get(ResultTy, Record[0]);
1670       break;
1671     }
1672 
1673     if (NumRecords >= TypeList.size())
1674       return error("Invalid TYPE table");
1675     if (TypeList[NumRecords])
1676       return error(
1677           "Invalid TYPE table: Only named structs can be forward referenced");
1678     assert(ResultTy && "Didn't read a type?");
1679     TypeList[NumRecords++] = ResultTy;
1680   }
1681 }
1682 
1683 std::error_code BitcodeReader::parseOperandBundleTags() {
1684   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1685     return error("Invalid record");
1686 
1687   if (!BundleTags.empty())
1688     return error("Invalid multiple blocks");
1689 
1690   SmallVector<uint64_t, 64> Record;
1691 
1692   while (1) {
1693     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       return std::error_code();
1701     case BitstreamEntry::Record:
1702       // The interesting case.
1703       break;
1704     }
1705 
1706     // Tags are implicitly mapped to integers by their order.
1707 
1708     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1709       return error("Invalid record");
1710 
1711     // OPERAND_BUNDLE_TAG: [strchr x N]
1712     BundleTags.emplace_back();
1713     if (convertToString(Record, 0, BundleTags.back()))
1714       return error("Invalid record");
1715     Record.clear();
1716   }
1717 }
1718 
1719 /// Associate a value with its name from the given index in the provided record.
1720 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1721                                             unsigned NameIndex, Triple &TT) {
1722   SmallString<128> ValueName;
1723   if (convertToString(Record, NameIndex, ValueName))
1724     return error("Invalid record");
1725   unsigned ValueID = Record[0];
1726   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1727     return error("Invalid record");
1728   Value *V = ValueList[ValueID];
1729 
1730   StringRef NameStr(ValueName.data(), ValueName.size());
1731   if (NameStr.find_first_of(0) != StringRef::npos)
1732     return error("Invalid value name");
1733   V->setName(NameStr);
1734   auto *GO = dyn_cast<GlobalObject>(V);
1735   if (GO) {
1736     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1737       if (TT.isOSBinFormatMachO())
1738         GO->setComdat(nullptr);
1739       else
1740         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1741     }
1742   }
1743   return V;
1744 }
1745 
1746 /// Helper to note and return the current location, and jump to the given
1747 /// offset.
1748 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1749                                        BitstreamCursor &Stream) {
1750   // Save the current parsing location so we can jump back at the end
1751   // of the VST read.
1752   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1753   Stream.JumpToBit(Offset * 32);
1754 #ifndef NDEBUG
1755   // Do some checking if we are in debug mode.
1756   BitstreamEntry Entry = Stream.advance();
1757   assert(Entry.Kind == BitstreamEntry::SubBlock);
1758   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1759 #else
1760   // In NDEBUG mode ignore the output so we don't get an unused variable
1761   // warning.
1762   Stream.advance();
1763 #endif
1764   return CurrentBit;
1765 }
1766 
1767 /// Parse the value symbol table at either the current parsing location or
1768 /// at the given bit offset if provided.
1769 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1770   uint64_t CurrentBit;
1771   // Pass in the Offset to distinguish between calling for the module-level
1772   // VST (where we want to jump to the VST offset) and the function-level
1773   // VST (where we don't).
1774   if (Offset > 0)
1775     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1776 
1777   // Compute the delta between the bitcode indices in the VST (the word offset
1778   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1779   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1780   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1781   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1782   // just before entering the VST subblock because: 1) the EnterSubBlock
1783   // changes the AbbrevID width; 2) the VST block is nested within the same
1784   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1785   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1786   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1787   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1788   unsigned FuncBitcodeOffsetDelta =
1789       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1790 
1791   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1792     return error("Invalid record");
1793 
1794   SmallVector<uint64_t, 64> Record;
1795 
1796   Triple TT(TheModule->getTargetTriple());
1797 
1798   // Read all the records for this value table.
1799   SmallString<128> ValueName;
1800   while (1) {
1801     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1802 
1803     switch (Entry.Kind) {
1804     case BitstreamEntry::SubBlock: // Handled for us already.
1805     case BitstreamEntry::Error:
1806       return error("Malformed block");
1807     case BitstreamEntry::EndBlock:
1808       if (Offset > 0)
1809         Stream.JumpToBit(CurrentBit);
1810       return std::error_code();
1811     case BitstreamEntry::Record:
1812       // The interesting case.
1813       break;
1814     }
1815 
1816     // Read a record.
1817     Record.clear();
1818     switch (Stream.readRecord(Entry.ID, Record)) {
1819     default:  // Default behavior: unknown type.
1820       break;
1821     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1822       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1823       if (std::error_code EC = ValOrErr.getError())
1824         return EC;
1825       ValOrErr.get();
1826       break;
1827     }
1828     case bitc::VST_CODE_FNENTRY: {
1829       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1830       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1831       if (std::error_code EC = ValOrErr.getError())
1832         return EC;
1833       Value *V = ValOrErr.get();
1834 
1835       auto *GO = dyn_cast<GlobalObject>(V);
1836       if (!GO) {
1837         // If this is an alias, need to get the actual Function object
1838         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1839         auto *GA = dyn_cast<GlobalAlias>(V);
1840         if (GA)
1841           GO = GA->getBaseObject();
1842         assert(GO);
1843       }
1844 
1845       uint64_t FuncWordOffset = Record[1];
1846       Function *F = dyn_cast<Function>(GO);
1847       assert(F);
1848       uint64_t FuncBitOffset = FuncWordOffset * 32;
1849       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1850       // Set the LastFunctionBlockBit to point to the last function block.
1851       // Later when parsing is resumed after function materialization,
1852       // we can simply skip that last function block.
1853       if (FuncBitOffset > LastFunctionBlockBit)
1854         LastFunctionBlockBit = FuncBitOffset;
1855       break;
1856     }
1857     case bitc::VST_CODE_BBENTRY: {
1858       if (convertToString(Record, 1, ValueName))
1859         return error("Invalid record");
1860       BasicBlock *BB = getBasicBlock(Record[0]);
1861       if (!BB)
1862         return error("Invalid record");
1863 
1864       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1865       ValueName.clear();
1866       break;
1867     }
1868     }
1869   }
1870 }
1871 
1872 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1873 std::error_code
1874 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1875   if (Record.size() < 2)
1876     return error("Invalid record");
1877 
1878   unsigned Kind = Record[0];
1879   SmallString<8> Name(Record.begin() + 1, Record.end());
1880 
1881   unsigned NewKind = TheModule->getMDKindID(Name.str());
1882   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1883     return error("Conflicting METADATA_KIND records");
1884   return std::error_code();
1885 }
1886 
1887 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1888 
1889 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1890 /// module level metadata.
1891 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1892   IsMetadataMaterialized = true;
1893   unsigned NextMetadataNo = MetadataList.size();
1894   if (ModuleLevel && SeenModuleValuesRecord) {
1895     // Now that we are parsing the module level metadata, we want to restart
1896     // the numbering of the MD values, and replace temp MD created earlier
1897     // with their real values. If we saw a METADATA_VALUE record then we
1898     // would have set the MetadataList size to the number specified in that
1899     // record, to support parsing function-level metadata first, and we need
1900     // to reset back to 0 to fill the MetadataList in with the parsed module
1901     // The function-level metadata parsing should have reset the MetadataList
1902     // size back to the value reported by the METADATA_VALUE record, saved in
1903     // NumModuleMDs.
1904     assert(NumModuleMDs == MetadataList.size() &&
1905            "Expected MetadataList to only contain module level values");
1906     NextMetadataNo = 0;
1907   }
1908 
1909   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1910     return error("Invalid record");
1911 
1912   SmallVector<uint64_t, 64> Record;
1913 
1914   auto getMD = [&](unsigned ID) -> Metadata * {
1915     return MetadataList.getMetadataFwdRef(ID);
1916   };
1917   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1918     if (ID)
1919       return getMD(ID - 1);
1920     return nullptr;
1921   };
1922   auto getMDString = [&](unsigned ID) -> MDString *{
1923     // This requires that the ID is not really a forward reference.  In
1924     // particular, the MDString must already have been resolved.
1925     return cast_or_null<MDString>(getMDOrNull(ID));
1926   };
1927 
1928 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1929   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1930 
1931   // Read all the records.
1932   while (1) {
1933     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1934 
1935     switch (Entry.Kind) {
1936     case BitstreamEntry::SubBlock: // Handled for us already.
1937     case BitstreamEntry::Error:
1938       return error("Malformed block");
1939     case BitstreamEntry::EndBlock:
1940       MetadataList.tryToResolveCycles();
1941       assert((!(ModuleLevel && SeenModuleValuesRecord) ||
1942               NumModuleMDs == MetadataList.size()) &&
1943              "Inconsistent bitcode: METADATA_VALUES mismatch");
1944       return std::error_code();
1945     case BitstreamEntry::Record:
1946       // The interesting case.
1947       break;
1948     }
1949 
1950     // Read a record.
1951     Record.clear();
1952     unsigned Code = Stream.readRecord(Entry.ID, Record);
1953     bool IsDistinct = false;
1954     switch (Code) {
1955     default:  // Default behavior: ignore.
1956       break;
1957     case bitc::METADATA_NAME: {
1958       // Read name of the named metadata.
1959       SmallString<8> Name(Record.begin(), Record.end());
1960       Record.clear();
1961       Code = Stream.ReadCode();
1962 
1963       unsigned NextBitCode = Stream.readRecord(Code, Record);
1964       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1965         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1966 
1967       // Read named metadata elements.
1968       unsigned Size = Record.size();
1969       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1970       for (unsigned i = 0; i != Size; ++i) {
1971         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
1972         if (!MD)
1973           return error("Invalid record");
1974         NMD->addOperand(MD);
1975       }
1976       break;
1977     }
1978     case bitc::METADATA_OLD_FN_NODE: {
1979       // FIXME: Remove in 4.0.
1980       // This is a LocalAsMetadata record, the only type of function-local
1981       // metadata.
1982       if (Record.size() % 2 == 1)
1983         return error("Invalid record");
1984 
1985       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1986       // to be legal, but there's no upgrade path.
1987       auto dropRecord = [&] {
1988         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
1989       };
1990       if (Record.size() != 2) {
1991         dropRecord();
1992         break;
1993       }
1994 
1995       Type *Ty = getTypeByID(Record[0]);
1996       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1997         dropRecord();
1998         break;
1999       }
2000 
2001       MetadataList.assignValue(
2002           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2003           NextMetadataNo++);
2004       break;
2005     }
2006     case bitc::METADATA_OLD_NODE: {
2007       // FIXME: Remove in 4.0.
2008       if (Record.size() % 2 == 1)
2009         return error("Invalid record");
2010 
2011       unsigned Size = Record.size();
2012       SmallVector<Metadata *, 8> Elts;
2013       for (unsigned i = 0; i != Size; i += 2) {
2014         Type *Ty = getTypeByID(Record[i]);
2015         if (!Ty)
2016           return error("Invalid record");
2017         if (Ty->isMetadataTy())
2018           Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1]));
2019         else if (!Ty->isVoidTy()) {
2020           auto *MD =
2021               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2022           assert(isa<ConstantAsMetadata>(MD) &&
2023                  "Expected non-function-local metadata");
2024           Elts.push_back(MD);
2025         } else
2026           Elts.push_back(nullptr);
2027       }
2028       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2029       break;
2030     }
2031     case bitc::METADATA_VALUE: {
2032       if (Record.size() != 2)
2033         return error("Invalid record");
2034 
2035       Type *Ty = getTypeByID(Record[0]);
2036       if (Ty->isMetadataTy() || Ty->isVoidTy())
2037         return error("Invalid record");
2038 
2039       MetadataList.assignValue(
2040           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2041           NextMetadataNo++);
2042       break;
2043     }
2044     case bitc::METADATA_DISTINCT_NODE:
2045       IsDistinct = true;
2046       // fallthrough...
2047     case bitc::METADATA_NODE: {
2048       SmallVector<Metadata *, 8> Elts;
2049       Elts.reserve(Record.size());
2050       for (unsigned ID : Record)
2051         Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr);
2052       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2053                                           : MDNode::get(Context, Elts),
2054                                NextMetadataNo++);
2055       break;
2056     }
2057     case bitc::METADATA_LOCATION: {
2058       if (Record.size() != 5)
2059         return error("Invalid record");
2060 
2061       unsigned Line = Record[1];
2062       unsigned Column = Record[2];
2063       MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]);
2064       if (!Scope)
2065         return error("Invalid record");
2066       Metadata *InlinedAt =
2067           Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr;
2068       MetadataList.assignValue(
2069           GET_OR_DISTINCT(DILocation, Record[0],
2070                           (Context, Line, Column, Scope, InlinedAt)),
2071           NextMetadataNo++);
2072       break;
2073     }
2074     case bitc::METADATA_GENERIC_DEBUG: {
2075       if (Record.size() < 4)
2076         return error("Invalid record");
2077 
2078       unsigned Tag = Record[1];
2079       unsigned Version = Record[2];
2080 
2081       if (Tag >= 1u << 16 || Version != 0)
2082         return error("Invalid record");
2083 
2084       auto *Header = getMDString(Record[3]);
2085       SmallVector<Metadata *, 8> DwarfOps;
2086       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2087         DwarfOps.push_back(Record[I]
2088                                ? MetadataList.getMetadataFwdRef(Record[I] - 1)
2089                                : nullptr);
2090       MetadataList.assignValue(
2091           GET_OR_DISTINCT(GenericDINode, Record[0],
2092                           (Context, Tag, Header, DwarfOps)),
2093           NextMetadataNo++);
2094       break;
2095     }
2096     case bitc::METADATA_SUBRANGE: {
2097       if (Record.size() != 3)
2098         return error("Invalid record");
2099 
2100       MetadataList.assignValue(
2101           GET_OR_DISTINCT(DISubrange, Record[0],
2102                           (Context, Record[1], unrotateSign(Record[2]))),
2103           NextMetadataNo++);
2104       break;
2105     }
2106     case bitc::METADATA_ENUMERATOR: {
2107       if (Record.size() != 3)
2108         return error("Invalid record");
2109 
2110       MetadataList.assignValue(
2111           GET_OR_DISTINCT(
2112               DIEnumerator, Record[0],
2113               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2114           NextMetadataNo++);
2115       break;
2116     }
2117     case bitc::METADATA_BASIC_TYPE: {
2118       if (Record.size() != 6)
2119         return error("Invalid record");
2120 
2121       MetadataList.assignValue(
2122           GET_OR_DISTINCT(DIBasicType, Record[0],
2123                           (Context, Record[1], getMDString(Record[2]),
2124                            Record[3], Record[4], Record[5])),
2125           NextMetadataNo++);
2126       break;
2127     }
2128     case bitc::METADATA_DERIVED_TYPE: {
2129       if (Record.size() != 12)
2130         return error("Invalid record");
2131 
2132       MetadataList.assignValue(
2133           GET_OR_DISTINCT(DIDerivedType, Record[0],
2134                           (Context, Record[1], getMDString(Record[2]),
2135                            getMDOrNull(Record[3]), Record[4],
2136                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2137                            Record[7], Record[8], Record[9], Record[10],
2138                            getMDOrNull(Record[11]))),
2139           NextMetadataNo++);
2140       break;
2141     }
2142     case bitc::METADATA_COMPOSITE_TYPE: {
2143       if (Record.size() != 16)
2144         return error("Invalid record");
2145 
2146       MetadataList.assignValue(
2147           GET_OR_DISTINCT(DICompositeType, Record[0],
2148                           (Context, Record[1], getMDString(Record[2]),
2149                            getMDOrNull(Record[3]), Record[4],
2150                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2151                            Record[7], Record[8], Record[9], Record[10],
2152                            getMDOrNull(Record[11]), Record[12],
2153                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2154                            getMDString(Record[15]))),
2155           NextMetadataNo++);
2156       break;
2157     }
2158     case bitc::METADATA_SUBROUTINE_TYPE: {
2159       if (Record.size() != 3)
2160         return error("Invalid record");
2161 
2162       MetadataList.assignValue(
2163           GET_OR_DISTINCT(DISubroutineType, Record[0],
2164                           (Context, Record[1], getMDOrNull(Record[2]))),
2165           NextMetadataNo++);
2166       break;
2167     }
2168 
2169     case bitc::METADATA_MODULE: {
2170       if (Record.size() != 6)
2171         return error("Invalid record");
2172 
2173       MetadataList.assignValue(
2174           GET_OR_DISTINCT(DIModule, Record[0],
2175                           (Context, getMDOrNull(Record[1]),
2176                            getMDString(Record[2]), getMDString(Record[3]),
2177                            getMDString(Record[4]), getMDString(Record[5]))),
2178           NextMetadataNo++);
2179       break;
2180     }
2181 
2182     case bitc::METADATA_FILE: {
2183       if (Record.size() != 3)
2184         return error("Invalid record");
2185 
2186       MetadataList.assignValue(
2187           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2188                                               getMDString(Record[2]))),
2189           NextMetadataNo++);
2190       break;
2191     }
2192     case bitc::METADATA_COMPILE_UNIT: {
2193       if (Record.size() < 14 || Record.size() > 16)
2194         return error("Invalid record");
2195 
2196       // Ignore Record[0], which indicates whether this compile unit is
2197       // distinct.  It's always distinct.
2198       MetadataList.assignValue(
2199           DICompileUnit::getDistinct(
2200               Context, Record[1], getMDOrNull(Record[2]),
2201               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2202               Record[6], getMDString(Record[7]), Record[8],
2203               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2204               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2205               getMDOrNull(Record[13]),
2206               Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2207               Record.size() <= 14 ? 0 : Record[14]),
2208           NextMetadataNo++);
2209       break;
2210     }
2211     case bitc::METADATA_SUBPROGRAM: {
2212       if (Record.size() != 18 && Record.size() != 19)
2213         return error("Invalid record");
2214 
2215       bool HasFn = Record.size() == 19;
2216       DISubprogram *SP = GET_OR_DISTINCT(
2217           DISubprogram,
2218           Record[0] || Record[8], // All definitions should be distinct.
2219           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2220            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2221            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2222            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2223            Record[14], getMDOrNull(Record[15 + HasFn]),
2224            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2225       MetadataList.assignValue(SP, NextMetadataNo++);
2226 
2227       // Upgrade sp->function mapping to function->sp mapping.
2228       if (HasFn && Record[15]) {
2229         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2230           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2231             if (F->isMaterializable())
2232               // Defer until materialized; unmaterialized functions may not have
2233               // metadata.
2234               FunctionsWithSPs[F] = SP;
2235             else if (!F->empty())
2236               F->setSubprogram(SP);
2237           }
2238       }
2239       break;
2240     }
2241     case bitc::METADATA_LEXICAL_BLOCK: {
2242       if (Record.size() != 5)
2243         return error("Invalid record");
2244 
2245       MetadataList.assignValue(
2246           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2247                           (Context, getMDOrNull(Record[1]),
2248                            getMDOrNull(Record[2]), Record[3], Record[4])),
2249           NextMetadataNo++);
2250       break;
2251     }
2252     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2253       if (Record.size() != 4)
2254         return error("Invalid record");
2255 
2256       MetadataList.assignValue(
2257           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2258                           (Context, getMDOrNull(Record[1]),
2259                            getMDOrNull(Record[2]), Record[3])),
2260           NextMetadataNo++);
2261       break;
2262     }
2263     case bitc::METADATA_NAMESPACE: {
2264       if (Record.size() != 5)
2265         return error("Invalid record");
2266 
2267       MetadataList.assignValue(
2268           GET_OR_DISTINCT(DINamespace, Record[0],
2269                           (Context, getMDOrNull(Record[1]),
2270                            getMDOrNull(Record[2]), getMDString(Record[3]),
2271                            Record[4])),
2272           NextMetadataNo++);
2273       break;
2274     }
2275     case bitc::METADATA_MACRO: {
2276       if (Record.size() != 5)
2277         return error("Invalid record");
2278 
2279       MetadataList.assignValue(
2280           GET_OR_DISTINCT(DIMacro, Record[0],
2281                           (Context, Record[1], Record[2],
2282                            getMDString(Record[3]), getMDString(Record[4]))),
2283           NextMetadataNo++);
2284       break;
2285     }
2286     case bitc::METADATA_MACRO_FILE: {
2287       if (Record.size() != 5)
2288         return error("Invalid record");
2289 
2290       MetadataList.assignValue(
2291           GET_OR_DISTINCT(DIMacroFile, Record[0],
2292                           (Context, Record[1], Record[2],
2293                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2294           NextMetadataNo++);
2295       break;
2296     }
2297     case bitc::METADATA_TEMPLATE_TYPE: {
2298       if (Record.size() != 3)
2299         return error("Invalid record");
2300 
2301       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2302                                                Record[0],
2303                                                (Context, getMDString(Record[1]),
2304                                                 getMDOrNull(Record[2]))),
2305                                NextMetadataNo++);
2306       break;
2307     }
2308     case bitc::METADATA_TEMPLATE_VALUE: {
2309       if (Record.size() != 5)
2310         return error("Invalid record");
2311 
2312       MetadataList.assignValue(
2313           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2314                           (Context, Record[1], getMDString(Record[2]),
2315                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2316           NextMetadataNo++);
2317       break;
2318     }
2319     case bitc::METADATA_GLOBAL_VAR: {
2320       if (Record.size() != 11)
2321         return error("Invalid record");
2322 
2323       MetadataList.assignValue(
2324           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2325                           (Context, getMDOrNull(Record[1]),
2326                            getMDString(Record[2]), getMDString(Record[3]),
2327                            getMDOrNull(Record[4]), Record[5],
2328                            getMDOrNull(Record[6]), Record[7], Record[8],
2329                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2330           NextMetadataNo++);
2331       break;
2332     }
2333     case bitc::METADATA_LOCAL_VAR: {
2334       // 10th field is for the obseleted 'inlinedAt:' field.
2335       if (Record.size() < 8 || Record.size() > 10)
2336         return error("Invalid record");
2337 
2338       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2339       // DW_TAG_arg_variable.
2340       bool HasTag = Record.size() > 8;
2341       MetadataList.assignValue(
2342           GET_OR_DISTINCT(DILocalVariable, Record[0],
2343                           (Context, getMDOrNull(Record[1 + HasTag]),
2344                            getMDString(Record[2 + HasTag]),
2345                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2346                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2347                            Record[7 + HasTag])),
2348           NextMetadataNo++);
2349       break;
2350     }
2351     case bitc::METADATA_EXPRESSION: {
2352       if (Record.size() < 1)
2353         return error("Invalid record");
2354 
2355       MetadataList.assignValue(
2356           GET_OR_DISTINCT(DIExpression, Record[0],
2357                           (Context, makeArrayRef(Record).slice(1))),
2358           NextMetadataNo++);
2359       break;
2360     }
2361     case bitc::METADATA_OBJC_PROPERTY: {
2362       if (Record.size() != 8)
2363         return error("Invalid record");
2364 
2365       MetadataList.assignValue(
2366           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2367                           (Context, getMDString(Record[1]),
2368                            getMDOrNull(Record[2]), Record[3],
2369                            getMDString(Record[4]), getMDString(Record[5]),
2370                            Record[6], getMDOrNull(Record[7]))),
2371           NextMetadataNo++);
2372       break;
2373     }
2374     case bitc::METADATA_IMPORTED_ENTITY: {
2375       if (Record.size() != 6)
2376         return error("Invalid record");
2377 
2378       MetadataList.assignValue(
2379           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2380                           (Context, Record[1], getMDOrNull(Record[2]),
2381                            getMDOrNull(Record[3]), Record[4],
2382                            getMDString(Record[5]))),
2383           NextMetadataNo++);
2384       break;
2385     }
2386     case bitc::METADATA_STRING: {
2387       std::string String(Record.begin(), Record.end());
2388       llvm::UpgradeMDStringConstant(String);
2389       Metadata *MD = MDString::get(Context, String);
2390       MetadataList.assignValue(MD, NextMetadataNo++);
2391       break;
2392     }
2393     case bitc::METADATA_KIND: {
2394       // Support older bitcode files that had METADATA_KIND records in a
2395       // block with METADATA_BLOCK_ID.
2396       if (std::error_code EC = parseMetadataKindRecord(Record))
2397         return EC;
2398       break;
2399     }
2400     }
2401   }
2402 #undef GET_OR_DISTINCT
2403 }
2404 
2405 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2406 std::error_code BitcodeReader::parseMetadataKinds() {
2407   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2408     return error("Invalid record");
2409 
2410   SmallVector<uint64_t, 64> Record;
2411 
2412   // Read all the records.
2413   while (1) {
2414     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2415 
2416     switch (Entry.Kind) {
2417     case BitstreamEntry::SubBlock: // Handled for us already.
2418     case BitstreamEntry::Error:
2419       return error("Malformed block");
2420     case BitstreamEntry::EndBlock:
2421       return std::error_code();
2422     case BitstreamEntry::Record:
2423       // The interesting case.
2424       break;
2425     }
2426 
2427     // Read a record.
2428     Record.clear();
2429     unsigned Code = Stream.readRecord(Entry.ID, Record);
2430     switch (Code) {
2431     default: // Default behavior: ignore.
2432       break;
2433     case bitc::METADATA_KIND: {
2434       if (std::error_code EC = parseMetadataKindRecord(Record))
2435         return EC;
2436       break;
2437     }
2438     }
2439   }
2440 }
2441 
2442 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2443 /// encoding.
2444 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2445   if ((V & 1) == 0)
2446     return V >> 1;
2447   if (V != 1)
2448     return -(V >> 1);
2449   // There is no such thing as -0 with integers.  "-0" really means MININT.
2450   return 1ULL << 63;
2451 }
2452 
2453 /// Resolve all of the initializers for global values and aliases that we can.
2454 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2455   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2456   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2457   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2458   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2459   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2460 
2461   GlobalInitWorklist.swap(GlobalInits);
2462   AliasInitWorklist.swap(AliasInits);
2463   FunctionPrefixWorklist.swap(FunctionPrefixes);
2464   FunctionPrologueWorklist.swap(FunctionPrologues);
2465   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2466 
2467   while (!GlobalInitWorklist.empty()) {
2468     unsigned ValID = GlobalInitWorklist.back().second;
2469     if (ValID >= ValueList.size()) {
2470       // Not ready to resolve this yet, it requires something later in the file.
2471       GlobalInits.push_back(GlobalInitWorklist.back());
2472     } else {
2473       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2474         GlobalInitWorklist.back().first->setInitializer(C);
2475       else
2476         return error("Expected a constant");
2477     }
2478     GlobalInitWorklist.pop_back();
2479   }
2480 
2481   while (!AliasInitWorklist.empty()) {
2482     unsigned ValID = AliasInitWorklist.back().second;
2483     if (ValID >= ValueList.size()) {
2484       AliasInits.push_back(AliasInitWorklist.back());
2485     } else {
2486       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2487       if (!C)
2488         return error("Expected a constant");
2489       GlobalAlias *Alias = AliasInitWorklist.back().first;
2490       if (C->getType() != Alias->getType())
2491         return error("Alias and aliasee types don't match");
2492       Alias->setAliasee(C);
2493     }
2494     AliasInitWorklist.pop_back();
2495   }
2496 
2497   while (!FunctionPrefixWorklist.empty()) {
2498     unsigned ValID = FunctionPrefixWorklist.back().second;
2499     if (ValID >= ValueList.size()) {
2500       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2501     } else {
2502       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2503         FunctionPrefixWorklist.back().first->setPrefixData(C);
2504       else
2505         return error("Expected a constant");
2506     }
2507     FunctionPrefixWorklist.pop_back();
2508   }
2509 
2510   while (!FunctionPrologueWorklist.empty()) {
2511     unsigned ValID = FunctionPrologueWorklist.back().second;
2512     if (ValID >= ValueList.size()) {
2513       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2514     } else {
2515       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2516         FunctionPrologueWorklist.back().first->setPrologueData(C);
2517       else
2518         return error("Expected a constant");
2519     }
2520     FunctionPrologueWorklist.pop_back();
2521   }
2522 
2523   while (!FunctionPersonalityFnWorklist.empty()) {
2524     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2525     if (ValID >= ValueList.size()) {
2526       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2527     } else {
2528       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2529         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2530       else
2531         return error("Expected a constant");
2532     }
2533     FunctionPersonalityFnWorklist.pop_back();
2534   }
2535 
2536   return std::error_code();
2537 }
2538 
2539 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2540   SmallVector<uint64_t, 8> Words(Vals.size());
2541   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2542                  BitcodeReader::decodeSignRotatedValue);
2543 
2544   return APInt(TypeBits, Words);
2545 }
2546 
2547 std::error_code BitcodeReader::parseConstants() {
2548   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2549     return error("Invalid record");
2550 
2551   SmallVector<uint64_t, 64> Record;
2552 
2553   // Read all the records for this value table.
2554   Type *CurTy = Type::getInt32Ty(Context);
2555   unsigned NextCstNo = ValueList.size();
2556   while (1) {
2557     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2558 
2559     switch (Entry.Kind) {
2560     case BitstreamEntry::SubBlock: // Handled for us already.
2561     case BitstreamEntry::Error:
2562       return error("Malformed block");
2563     case BitstreamEntry::EndBlock:
2564       if (NextCstNo != ValueList.size())
2565         return error("Invalid constant reference");
2566 
2567       // Once all the constants have been read, go through and resolve forward
2568       // references.
2569       ValueList.resolveConstantForwardRefs();
2570       return std::error_code();
2571     case BitstreamEntry::Record:
2572       // The interesting case.
2573       break;
2574     }
2575 
2576     // Read a record.
2577     Record.clear();
2578     Value *V = nullptr;
2579     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2580     switch (BitCode) {
2581     default:  // Default behavior: unknown constant
2582     case bitc::CST_CODE_UNDEF:     // UNDEF
2583       V = UndefValue::get(CurTy);
2584       break;
2585     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2586       if (Record.empty())
2587         return error("Invalid record");
2588       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2589         return error("Invalid record");
2590       CurTy = TypeList[Record[0]];
2591       continue;  // Skip the ValueList manipulation.
2592     case bitc::CST_CODE_NULL:      // NULL
2593       V = Constant::getNullValue(CurTy);
2594       break;
2595     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2596       if (!CurTy->isIntegerTy() || Record.empty())
2597         return error("Invalid record");
2598       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2599       break;
2600     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2601       if (!CurTy->isIntegerTy() || Record.empty())
2602         return error("Invalid record");
2603 
2604       APInt VInt =
2605           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2606       V = ConstantInt::get(Context, VInt);
2607 
2608       break;
2609     }
2610     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2611       if (Record.empty())
2612         return error("Invalid record");
2613       if (CurTy->isHalfTy())
2614         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2615                                              APInt(16, (uint16_t)Record[0])));
2616       else if (CurTy->isFloatTy())
2617         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2618                                              APInt(32, (uint32_t)Record[0])));
2619       else if (CurTy->isDoubleTy())
2620         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2621                                              APInt(64, Record[0])));
2622       else if (CurTy->isX86_FP80Ty()) {
2623         // Bits are not stored the same way as a normal i80 APInt, compensate.
2624         uint64_t Rearrange[2];
2625         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2626         Rearrange[1] = Record[0] >> 48;
2627         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2628                                              APInt(80, Rearrange)));
2629       } else if (CurTy->isFP128Ty())
2630         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2631                                              APInt(128, Record)));
2632       else if (CurTy->isPPC_FP128Ty())
2633         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2634                                              APInt(128, Record)));
2635       else
2636         V = UndefValue::get(CurTy);
2637       break;
2638     }
2639 
2640     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2641       if (Record.empty())
2642         return error("Invalid record");
2643 
2644       unsigned Size = Record.size();
2645       SmallVector<Constant*, 16> Elts;
2646 
2647       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2648         for (unsigned i = 0; i != Size; ++i)
2649           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2650                                                      STy->getElementType(i)));
2651         V = ConstantStruct::get(STy, Elts);
2652       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2653         Type *EltTy = ATy->getElementType();
2654         for (unsigned i = 0; i != Size; ++i)
2655           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2656         V = ConstantArray::get(ATy, Elts);
2657       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2658         Type *EltTy = VTy->getElementType();
2659         for (unsigned i = 0; i != Size; ++i)
2660           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2661         V = ConstantVector::get(Elts);
2662       } else {
2663         V = UndefValue::get(CurTy);
2664       }
2665       break;
2666     }
2667     case bitc::CST_CODE_STRING:    // STRING: [values]
2668     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2669       if (Record.empty())
2670         return error("Invalid record");
2671 
2672       SmallString<16> Elts(Record.begin(), Record.end());
2673       V = ConstantDataArray::getString(Context, Elts,
2674                                        BitCode == bitc::CST_CODE_CSTRING);
2675       break;
2676     }
2677     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2678       if (Record.empty())
2679         return error("Invalid record");
2680 
2681       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2682       if (EltTy->isIntegerTy(8)) {
2683         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2684         if (isa<VectorType>(CurTy))
2685           V = ConstantDataVector::get(Context, Elts);
2686         else
2687           V = ConstantDataArray::get(Context, Elts);
2688       } else if (EltTy->isIntegerTy(16)) {
2689         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2690         if (isa<VectorType>(CurTy))
2691           V = ConstantDataVector::get(Context, Elts);
2692         else
2693           V = ConstantDataArray::get(Context, Elts);
2694       } else if (EltTy->isIntegerTy(32)) {
2695         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2696         if (isa<VectorType>(CurTy))
2697           V = ConstantDataVector::get(Context, Elts);
2698         else
2699           V = ConstantDataArray::get(Context, Elts);
2700       } else if (EltTy->isIntegerTy(64)) {
2701         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2702         if (isa<VectorType>(CurTy))
2703           V = ConstantDataVector::get(Context, Elts);
2704         else
2705           V = ConstantDataArray::get(Context, Elts);
2706       } else if (EltTy->isHalfTy()) {
2707         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2708         if (isa<VectorType>(CurTy))
2709           V = ConstantDataVector::getFP(Context, Elts);
2710         else
2711           V = ConstantDataArray::getFP(Context, Elts);
2712       } else if (EltTy->isFloatTy()) {
2713         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2714         if (isa<VectorType>(CurTy))
2715           V = ConstantDataVector::getFP(Context, Elts);
2716         else
2717           V = ConstantDataArray::getFP(Context, Elts);
2718       } else if (EltTy->isDoubleTy()) {
2719         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2720         if (isa<VectorType>(CurTy))
2721           V = ConstantDataVector::getFP(Context, Elts);
2722         else
2723           V = ConstantDataArray::getFP(Context, Elts);
2724       } else {
2725         return error("Invalid type for value");
2726       }
2727       break;
2728     }
2729     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2730       if (Record.size() < 3)
2731         return error("Invalid record");
2732       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2733       if (Opc < 0) {
2734         V = UndefValue::get(CurTy);  // Unknown binop.
2735       } else {
2736         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2737         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2738         unsigned Flags = 0;
2739         if (Record.size() >= 4) {
2740           if (Opc == Instruction::Add ||
2741               Opc == Instruction::Sub ||
2742               Opc == Instruction::Mul ||
2743               Opc == Instruction::Shl) {
2744             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2745               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2746             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2747               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2748           } else if (Opc == Instruction::SDiv ||
2749                      Opc == Instruction::UDiv ||
2750                      Opc == Instruction::LShr ||
2751                      Opc == Instruction::AShr) {
2752             if (Record[3] & (1 << bitc::PEO_EXACT))
2753               Flags |= SDivOperator::IsExact;
2754           }
2755         }
2756         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2757       }
2758       break;
2759     }
2760     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2761       if (Record.size() < 3)
2762         return error("Invalid record");
2763       int Opc = getDecodedCastOpcode(Record[0]);
2764       if (Opc < 0) {
2765         V = UndefValue::get(CurTy);  // Unknown cast.
2766       } else {
2767         Type *OpTy = getTypeByID(Record[1]);
2768         if (!OpTy)
2769           return error("Invalid record");
2770         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2771         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2772         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2773       }
2774       break;
2775     }
2776     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2777     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2778       unsigned OpNum = 0;
2779       Type *PointeeType = nullptr;
2780       if (Record.size() % 2)
2781         PointeeType = getTypeByID(Record[OpNum++]);
2782       SmallVector<Constant*, 16> Elts;
2783       while (OpNum != Record.size()) {
2784         Type *ElTy = getTypeByID(Record[OpNum++]);
2785         if (!ElTy)
2786           return error("Invalid record");
2787         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2788       }
2789 
2790       if (PointeeType &&
2791           PointeeType !=
2792               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2793                   ->getElementType())
2794         return error("Explicit gep operator type does not match pointee type "
2795                      "of pointer operand");
2796 
2797       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2798       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2799                                          BitCode ==
2800                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2801       break;
2802     }
2803     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2804       if (Record.size() < 3)
2805         return error("Invalid record");
2806 
2807       Type *SelectorTy = Type::getInt1Ty(Context);
2808 
2809       // The selector might be an i1 or an <n x i1>
2810       // Get the type from the ValueList before getting a forward ref.
2811       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2812         if (Value *V = ValueList[Record[0]])
2813           if (SelectorTy != V->getType())
2814             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2815 
2816       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2817                                                               SelectorTy),
2818                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2819                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2820       break;
2821     }
2822     case bitc::CST_CODE_CE_EXTRACTELT
2823         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2824       if (Record.size() < 3)
2825         return error("Invalid record");
2826       VectorType *OpTy =
2827         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2828       if (!OpTy)
2829         return error("Invalid record");
2830       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2831       Constant *Op1 = nullptr;
2832       if (Record.size() == 4) {
2833         Type *IdxTy = getTypeByID(Record[2]);
2834         if (!IdxTy)
2835           return error("Invalid record");
2836         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2837       } else // TODO: Remove with llvm 4.0
2838         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2839       if (!Op1)
2840         return error("Invalid record");
2841       V = ConstantExpr::getExtractElement(Op0, Op1);
2842       break;
2843     }
2844     case bitc::CST_CODE_CE_INSERTELT
2845         : { // CE_INSERTELT: [opval, opval, opty, opval]
2846       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2847       if (Record.size() < 3 || !OpTy)
2848         return error("Invalid record");
2849       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2850       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2851                                                   OpTy->getElementType());
2852       Constant *Op2 = nullptr;
2853       if (Record.size() == 4) {
2854         Type *IdxTy = getTypeByID(Record[2]);
2855         if (!IdxTy)
2856           return error("Invalid record");
2857         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2858       } else // TODO: Remove with llvm 4.0
2859         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2860       if (!Op2)
2861         return error("Invalid record");
2862       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2863       break;
2864     }
2865     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2866       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2867       if (Record.size() < 3 || !OpTy)
2868         return error("Invalid record");
2869       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2870       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2871       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2872                                                  OpTy->getNumElements());
2873       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2874       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2875       break;
2876     }
2877     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2878       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2879       VectorType *OpTy =
2880         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2881       if (Record.size() < 4 || !RTy || !OpTy)
2882         return error("Invalid record");
2883       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2884       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2885       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2886                                                  RTy->getNumElements());
2887       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2888       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2889       break;
2890     }
2891     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2892       if (Record.size() < 4)
2893         return error("Invalid record");
2894       Type *OpTy = getTypeByID(Record[0]);
2895       if (!OpTy)
2896         return error("Invalid record");
2897       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2898       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2899 
2900       if (OpTy->isFPOrFPVectorTy())
2901         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2902       else
2903         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2904       break;
2905     }
2906     // This maintains backward compatibility, pre-asm dialect keywords.
2907     // FIXME: Remove with the 4.0 release.
2908     case bitc::CST_CODE_INLINEASM_OLD: {
2909       if (Record.size() < 2)
2910         return error("Invalid record");
2911       std::string AsmStr, ConstrStr;
2912       bool HasSideEffects = Record[0] & 1;
2913       bool IsAlignStack = Record[0] >> 1;
2914       unsigned AsmStrSize = Record[1];
2915       if (2+AsmStrSize >= Record.size())
2916         return error("Invalid record");
2917       unsigned ConstStrSize = Record[2+AsmStrSize];
2918       if (3+AsmStrSize+ConstStrSize > Record.size())
2919         return error("Invalid record");
2920 
2921       for (unsigned i = 0; i != AsmStrSize; ++i)
2922         AsmStr += (char)Record[2+i];
2923       for (unsigned i = 0; i != ConstStrSize; ++i)
2924         ConstrStr += (char)Record[3+AsmStrSize+i];
2925       PointerType *PTy = cast<PointerType>(CurTy);
2926       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2927                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2928       break;
2929     }
2930     // This version adds support for the asm dialect keywords (e.g.,
2931     // inteldialect).
2932     case bitc::CST_CODE_INLINEASM: {
2933       if (Record.size() < 2)
2934         return error("Invalid record");
2935       std::string AsmStr, ConstrStr;
2936       bool HasSideEffects = Record[0] & 1;
2937       bool IsAlignStack = (Record[0] >> 1) & 1;
2938       unsigned AsmDialect = Record[0] >> 2;
2939       unsigned AsmStrSize = Record[1];
2940       if (2+AsmStrSize >= Record.size())
2941         return error("Invalid record");
2942       unsigned ConstStrSize = Record[2+AsmStrSize];
2943       if (3+AsmStrSize+ConstStrSize > Record.size())
2944         return error("Invalid record");
2945 
2946       for (unsigned i = 0; i != AsmStrSize; ++i)
2947         AsmStr += (char)Record[2+i];
2948       for (unsigned i = 0; i != ConstStrSize; ++i)
2949         ConstrStr += (char)Record[3+AsmStrSize+i];
2950       PointerType *PTy = cast<PointerType>(CurTy);
2951       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2952                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2953                          InlineAsm::AsmDialect(AsmDialect));
2954       break;
2955     }
2956     case bitc::CST_CODE_BLOCKADDRESS:{
2957       if (Record.size() < 3)
2958         return error("Invalid record");
2959       Type *FnTy = getTypeByID(Record[0]);
2960       if (!FnTy)
2961         return error("Invalid record");
2962       Function *Fn =
2963         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2964       if (!Fn)
2965         return error("Invalid record");
2966 
2967       // If the function is already parsed we can insert the block address right
2968       // away.
2969       BasicBlock *BB;
2970       unsigned BBID = Record[2];
2971       if (!BBID)
2972         // Invalid reference to entry block.
2973         return error("Invalid ID");
2974       if (!Fn->empty()) {
2975         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2976         for (size_t I = 0, E = BBID; I != E; ++I) {
2977           if (BBI == BBE)
2978             return error("Invalid ID");
2979           ++BBI;
2980         }
2981         BB = &*BBI;
2982       } else {
2983         // Otherwise insert a placeholder and remember it so it can be inserted
2984         // when the function is parsed.
2985         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2986         if (FwdBBs.empty())
2987           BasicBlockFwdRefQueue.push_back(Fn);
2988         if (FwdBBs.size() < BBID + 1)
2989           FwdBBs.resize(BBID + 1);
2990         if (!FwdBBs[BBID])
2991           FwdBBs[BBID] = BasicBlock::Create(Context);
2992         BB = FwdBBs[BBID];
2993       }
2994       V = BlockAddress::get(Fn, BB);
2995       break;
2996     }
2997     }
2998 
2999     ValueList.assignValue(V, NextCstNo);
3000     ++NextCstNo;
3001   }
3002 }
3003 
3004 std::error_code BitcodeReader::parseUseLists() {
3005   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3006     return error("Invalid record");
3007 
3008   // Read all the records.
3009   SmallVector<uint64_t, 64> Record;
3010   while (1) {
3011     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3012 
3013     switch (Entry.Kind) {
3014     case BitstreamEntry::SubBlock: // Handled for us already.
3015     case BitstreamEntry::Error:
3016       return error("Malformed block");
3017     case BitstreamEntry::EndBlock:
3018       return std::error_code();
3019     case BitstreamEntry::Record:
3020       // The interesting case.
3021       break;
3022     }
3023 
3024     // Read a use list record.
3025     Record.clear();
3026     bool IsBB = false;
3027     switch (Stream.readRecord(Entry.ID, Record)) {
3028     default:  // Default behavior: unknown type.
3029       break;
3030     case bitc::USELIST_CODE_BB:
3031       IsBB = true;
3032       // fallthrough
3033     case bitc::USELIST_CODE_DEFAULT: {
3034       unsigned RecordLength = Record.size();
3035       if (RecordLength < 3)
3036         // Records should have at least an ID and two indexes.
3037         return error("Invalid record");
3038       unsigned ID = Record.back();
3039       Record.pop_back();
3040 
3041       Value *V;
3042       if (IsBB) {
3043         assert(ID < FunctionBBs.size() && "Basic block not found");
3044         V = FunctionBBs[ID];
3045       } else
3046         V = ValueList[ID];
3047       unsigned NumUses = 0;
3048       SmallDenseMap<const Use *, unsigned, 16> Order;
3049       for (const Use &U : V->materialized_uses()) {
3050         if (++NumUses > Record.size())
3051           break;
3052         Order[&U] = Record[NumUses - 1];
3053       }
3054       if (Order.size() != Record.size() || NumUses > Record.size())
3055         // Mismatches can happen if the functions are being materialized lazily
3056         // (out-of-order), or a value has been upgraded.
3057         break;
3058 
3059       V->sortUseList([&](const Use &L, const Use &R) {
3060         return Order.lookup(&L) < Order.lookup(&R);
3061       });
3062       break;
3063     }
3064     }
3065   }
3066 }
3067 
3068 /// When we see the block for metadata, remember where it is and then skip it.
3069 /// This lets us lazily deserialize the metadata.
3070 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3071   // Save the current stream state.
3072   uint64_t CurBit = Stream.GetCurrentBitNo();
3073   DeferredMetadataInfo.push_back(CurBit);
3074 
3075   // Skip over the block for now.
3076   if (Stream.SkipBlock())
3077     return error("Invalid record");
3078   return std::error_code();
3079 }
3080 
3081 std::error_code BitcodeReader::materializeMetadata() {
3082   for (uint64_t BitPos : DeferredMetadataInfo) {
3083     // Move the bit stream to the saved position.
3084     Stream.JumpToBit(BitPos);
3085     if (std::error_code EC = parseMetadata(true))
3086       return EC;
3087   }
3088   DeferredMetadataInfo.clear();
3089   return std::error_code();
3090 }
3091 
3092 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3093 
3094 void BitcodeReader::saveMetadataList(
3095     DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) {
3096   for (unsigned ID = 0; ID < MetadataList.size(); ++ID) {
3097     Metadata *MD = MetadataList[ID];
3098     auto *N = dyn_cast_or_null<MDNode>(MD);
3099     assert((!N || (N->isResolved() || N->isTemporary())) &&
3100            "Found non-resolved non-temp MDNode while saving metadata");
3101     // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3102     // Note that in the !OnlyTempMD case we need to save all Metadata, not
3103     // just MDNode, as we may have references to other types of module-level
3104     // metadata (e.g. ValueAsMetadata) from instructions.
3105     if (!OnlyTempMD || (N && N->isTemporary())) {
3106       // Will call this after materializing each function, in order to
3107       // handle remapping of the function's instructions/metadata.
3108       auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID));
3109       // See if we already have an entry in that case.
3110       if (OnlyTempMD && !IterBool.second) {
3111         assert(IterBool.first->second == ID &&
3112                "Inconsistent metadata value id");
3113         continue;
3114       }
3115       if (N && N->isTemporary())
3116         // Ensure that we assert if someone tries to RAUW this temporary
3117         // metadata while it is the key of a map. The flag will be set back
3118         // to true when the saved metadata list is destroyed.
3119         N->setCanReplace(false);
3120     }
3121   }
3122 }
3123 
3124 /// When we see the block for a function body, remember where it is and then
3125 /// skip it.  This lets us lazily deserialize the functions.
3126 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3127   // Get the function we are talking about.
3128   if (FunctionsWithBodies.empty())
3129     return error("Insufficient function protos");
3130 
3131   Function *Fn = FunctionsWithBodies.back();
3132   FunctionsWithBodies.pop_back();
3133 
3134   // Save the current stream state.
3135   uint64_t CurBit = Stream.GetCurrentBitNo();
3136   assert(
3137       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3138       "Mismatch between VST and scanned function offsets");
3139   DeferredFunctionInfo[Fn] = CurBit;
3140 
3141   // Skip over the function block for now.
3142   if (Stream.SkipBlock())
3143     return error("Invalid record");
3144   return std::error_code();
3145 }
3146 
3147 std::error_code BitcodeReader::globalCleanup() {
3148   // Patch the initializers for globals and aliases up.
3149   resolveGlobalAndAliasInits();
3150   if (!GlobalInits.empty() || !AliasInits.empty())
3151     return error("Malformed global initializer set");
3152 
3153   // Look for intrinsic functions which need to be upgraded at some point
3154   for (Function &F : *TheModule) {
3155     Function *NewFn;
3156     if (UpgradeIntrinsicFunction(&F, NewFn))
3157       UpgradedIntrinsics[&F] = NewFn;
3158   }
3159 
3160   // Look for global variables which need to be renamed.
3161   for (GlobalVariable &GV : TheModule->globals())
3162     UpgradeGlobalVariable(&GV);
3163 
3164   // Force deallocation of memory for these vectors to favor the client that
3165   // want lazy deserialization.
3166   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3167   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3168   return std::error_code();
3169 }
3170 
3171 /// Support for lazy parsing of function bodies. This is required if we
3172 /// either have an old bitcode file without a VST forward declaration record,
3173 /// or if we have an anonymous function being materialized, since anonymous
3174 /// functions do not have a name and are therefore not in the VST.
3175 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3176   Stream.JumpToBit(NextUnreadBit);
3177 
3178   if (Stream.AtEndOfStream())
3179     return error("Could not find function in stream");
3180 
3181   if (!SeenFirstFunctionBody)
3182     return error("Trying to materialize functions before seeing function blocks");
3183 
3184   // An old bitcode file with the symbol table at the end would have
3185   // finished the parse greedily.
3186   assert(SeenValueSymbolTable);
3187 
3188   SmallVector<uint64_t, 64> Record;
3189 
3190   while (1) {
3191     BitstreamEntry Entry = Stream.advance();
3192     switch (Entry.Kind) {
3193     default:
3194       return error("Expect SubBlock");
3195     case BitstreamEntry::SubBlock:
3196       switch (Entry.ID) {
3197       default:
3198         return error("Expect function block");
3199       case bitc::FUNCTION_BLOCK_ID:
3200         if (std::error_code EC = rememberAndSkipFunctionBody())
3201           return EC;
3202         NextUnreadBit = Stream.GetCurrentBitNo();
3203         return std::error_code();
3204       }
3205     }
3206   }
3207 }
3208 
3209 std::error_code BitcodeReader::parseBitcodeVersion() {
3210   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3211     return error("Invalid record");
3212 
3213   // Read all the records.
3214   SmallVector<uint64_t, 64> Record;
3215   while (1) {
3216     BitstreamEntry Entry = Stream.advance();
3217 
3218     switch (Entry.Kind) {
3219     default:
3220     case BitstreamEntry::Error:
3221       return error("Malformed block");
3222     case BitstreamEntry::EndBlock:
3223       return std::error_code();
3224     case BitstreamEntry::Record:
3225       // The interesting case.
3226       break;
3227     }
3228 
3229     // Read a record.
3230     Record.clear();
3231     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3232     switch (BitCode) {
3233     default: // Default behavior: reject
3234       return error("Invalid value");
3235     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3236                                              // N]
3237       convertToString(Record, 0, ProducerIdentification);
3238       break;
3239     }
3240     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3241       unsigned epoch = (unsigned)Record[0];
3242       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3243         return error(
3244           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3245           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3246       }
3247     }
3248     }
3249   }
3250 }
3251 
3252 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3253                                            bool ShouldLazyLoadMetadata) {
3254   if (ResumeBit)
3255     Stream.JumpToBit(ResumeBit);
3256   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3257     return error("Invalid record");
3258 
3259   SmallVector<uint64_t, 64> Record;
3260   std::vector<std::string> SectionTable;
3261   std::vector<std::string> GCTable;
3262 
3263   // Read all the records for this module.
3264   while (1) {
3265     BitstreamEntry Entry = Stream.advance();
3266 
3267     switch (Entry.Kind) {
3268     case BitstreamEntry::Error:
3269       return error("Malformed block");
3270     case BitstreamEntry::EndBlock:
3271       return globalCleanup();
3272 
3273     case BitstreamEntry::SubBlock:
3274       switch (Entry.ID) {
3275       default:  // Skip unknown content.
3276         if (Stream.SkipBlock())
3277           return error("Invalid record");
3278         break;
3279       case bitc::BLOCKINFO_BLOCK_ID:
3280         if (Stream.ReadBlockInfoBlock())
3281           return error("Malformed block");
3282         break;
3283       case bitc::PARAMATTR_BLOCK_ID:
3284         if (std::error_code EC = parseAttributeBlock())
3285           return EC;
3286         break;
3287       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3288         if (std::error_code EC = parseAttributeGroupBlock())
3289           return EC;
3290         break;
3291       case bitc::TYPE_BLOCK_ID_NEW:
3292         if (std::error_code EC = parseTypeTable())
3293           return EC;
3294         break;
3295       case bitc::VALUE_SYMTAB_BLOCK_ID:
3296         if (!SeenValueSymbolTable) {
3297           // Either this is an old form VST without function index and an
3298           // associated VST forward declaration record (which would have caused
3299           // the VST to be jumped to and parsed before it was encountered
3300           // normally in the stream), or there were no function blocks to
3301           // trigger an earlier parsing of the VST.
3302           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3303           if (std::error_code EC = parseValueSymbolTable())
3304             return EC;
3305           SeenValueSymbolTable = true;
3306         } else {
3307           // We must have had a VST forward declaration record, which caused
3308           // the parser to jump to and parse the VST earlier.
3309           assert(VSTOffset > 0);
3310           if (Stream.SkipBlock())
3311             return error("Invalid record");
3312         }
3313         break;
3314       case bitc::CONSTANTS_BLOCK_ID:
3315         if (std::error_code EC = parseConstants())
3316           return EC;
3317         if (std::error_code EC = resolveGlobalAndAliasInits())
3318           return EC;
3319         break;
3320       case bitc::METADATA_BLOCK_ID:
3321         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3322           if (std::error_code EC = rememberAndSkipMetadata())
3323             return EC;
3324           break;
3325         }
3326         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3327         if (std::error_code EC = parseMetadata(true))
3328           return EC;
3329         break;
3330       case bitc::METADATA_KIND_BLOCK_ID:
3331         if (std::error_code EC = parseMetadataKinds())
3332           return EC;
3333         break;
3334       case bitc::FUNCTION_BLOCK_ID:
3335         // If this is the first function body we've seen, reverse the
3336         // FunctionsWithBodies list.
3337         if (!SeenFirstFunctionBody) {
3338           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3339           if (std::error_code EC = globalCleanup())
3340             return EC;
3341           SeenFirstFunctionBody = true;
3342         }
3343 
3344         if (VSTOffset > 0) {
3345           // If we have a VST forward declaration record, make sure we
3346           // parse the VST now if we haven't already. It is needed to
3347           // set up the DeferredFunctionInfo vector for lazy reading.
3348           if (!SeenValueSymbolTable) {
3349             if (std::error_code EC =
3350                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3351               return EC;
3352             SeenValueSymbolTable = true;
3353             // Fall through so that we record the NextUnreadBit below.
3354             // This is necessary in case we have an anonymous function that
3355             // is later materialized. Since it will not have a VST entry we
3356             // need to fall back to the lazy parse to find its offset.
3357           } else {
3358             // If we have a VST forward declaration record, but have already
3359             // parsed the VST (just above, when the first function body was
3360             // encountered here), then we are resuming the parse after
3361             // materializing functions. The ResumeBit points to the
3362             // start of the last function block recorded in the
3363             // DeferredFunctionInfo map. Skip it.
3364             if (Stream.SkipBlock())
3365               return error("Invalid record");
3366             continue;
3367           }
3368         }
3369 
3370         // Support older bitcode files that did not have the function
3371         // index in the VST, nor a VST forward declaration record, as
3372         // well as anonymous functions that do not have VST entries.
3373         // Build the DeferredFunctionInfo vector on the fly.
3374         if (std::error_code EC = rememberAndSkipFunctionBody())
3375           return EC;
3376 
3377         // Suspend parsing when we reach the function bodies. Subsequent
3378         // materialization calls will resume it when necessary. If the bitcode
3379         // file is old, the symbol table will be at the end instead and will not
3380         // have been seen yet. In this case, just finish the parse now.
3381         if (SeenValueSymbolTable) {
3382           NextUnreadBit = Stream.GetCurrentBitNo();
3383           return std::error_code();
3384         }
3385         break;
3386       case bitc::USELIST_BLOCK_ID:
3387         if (std::error_code EC = parseUseLists())
3388           return EC;
3389         break;
3390       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3391         if (std::error_code EC = parseOperandBundleTags())
3392           return EC;
3393         break;
3394       }
3395       continue;
3396 
3397     case BitstreamEntry::Record:
3398       // The interesting case.
3399       break;
3400     }
3401 
3402     // Read a record.
3403     auto BitCode = Stream.readRecord(Entry.ID, Record);
3404     switch (BitCode) {
3405     default: break;  // Default behavior, ignore unknown content.
3406     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3407       if (Record.size() < 1)
3408         return error("Invalid record");
3409       // Only version #0 and #1 are supported so far.
3410       unsigned module_version = Record[0];
3411       switch (module_version) {
3412         default:
3413           return error("Invalid value");
3414         case 0:
3415           UseRelativeIDs = false;
3416           break;
3417         case 1:
3418           UseRelativeIDs = true;
3419           break;
3420       }
3421       break;
3422     }
3423     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3424       std::string S;
3425       if (convertToString(Record, 0, S))
3426         return error("Invalid record");
3427       TheModule->setTargetTriple(S);
3428       break;
3429     }
3430     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3431       std::string S;
3432       if (convertToString(Record, 0, S))
3433         return error("Invalid record");
3434       TheModule->setDataLayout(S);
3435       break;
3436     }
3437     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3438       std::string S;
3439       if (convertToString(Record, 0, S))
3440         return error("Invalid record");
3441       TheModule->setModuleInlineAsm(S);
3442       break;
3443     }
3444     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3445       // FIXME: Remove in 4.0.
3446       std::string S;
3447       if (convertToString(Record, 0, S))
3448         return error("Invalid record");
3449       // Ignore value.
3450       break;
3451     }
3452     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3453       std::string S;
3454       if (convertToString(Record, 0, S))
3455         return error("Invalid record");
3456       SectionTable.push_back(S);
3457       break;
3458     }
3459     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3460       std::string S;
3461       if (convertToString(Record, 0, S))
3462         return error("Invalid record");
3463       GCTable.push_back(S);
3464       break;
3465     }
3466     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3467       if (Record.size() < 2)
3468         return error("Invalid record");
3469       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3470       unsigned ComdatNameSize = Record[1];
3471       std::string ComdatName;
3472       ComdatName.reserve(ComdatNameSize);
3473       for (unsigned i = 0; i != ComdatNameSize; ++i)
3474         ComdatName += (char)Record[2 + i];
3475       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3476       C->setSelectionKind(SK);
3477       ComdatList.push_back(C);
3478       break;
3479     }
3480     // GLOBALVAR: [pointer type, isconst, initid,
3481     //             linkage, alignment, section, visibility, threadlocal,
3482     //             unnamed_addr, externally_initialized, dllstorageclass,
3483     //             comdat]
3484     case bitc::MODULE_CODE_GLOBALVAR: {
3485       if (Record.size() < 6)
3486         return error("Invalid record");
3487       Type *Ty = getTypeByID(Record[0]);
3488       if (!Ty)
3489         return error("Invalid record");
3490       bool isConstant = Record[1] & 1;
3491       bool explicitType = Record[1] & 2;
3492       unsigned AddressSpace;
3493       if (explicitType) {
3494         AddressSpace = Record[1] >> 2;
3495       } else {
3496         if (!Ty->isPointerTy())
3497           return error("Invalid type for value");
3498         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3499         Ty = cast<PointerType>(Ty)->getElementType();
3500       }
3501 
3502       uint64_t RawLinkage = Record[3];
3503       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3504       unsigned Alignment;
3505       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3506         return EC;
3507       std::string Section;
3508       if (Record[5]) {
3509         if (Record[5]-1 >= SectionTable.size())
3510           return error("Invalid ID");
3511         Section = SectionTable[Record[5]-1];
3512       }
3513       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3514       // Local linkage must have default visibility.
3515       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3516         // FIXME: Change to an error if non-default in 4.0.
3517         Visibility = getDecodedVisibility(Record[6]);
3518 
3519       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3520       if (Record.size() > 7)
3521         TLM = getDecodedThreadLocalMode(Record[7]);
3522 
3523       bool UnnamedAddr = false;
3524       if (Record.size() > 8)
3525         UnnamedAddr = Record[8];
3526 
3527       bool ExternallyInitialized = false;
3528       if (Record.size() > 9)
3529         ExternallyInitialized = Record[9];
3530 
3531       GlobalVariable *NewGV =
3532         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3533                            TLM, AddressSpace, ExternallyInitialized);
3534       NewGV->setAlignment(Alignment);
3535       if (!Section.empty())
3536         NewGV->setSection(Section);
3537       NewGV->setVisibility(Visibility);
3538       NewGV->setUnnamedAddr(UnnamedAddr);
3539 
3540       if (Record.size() > 10)
3541         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3542       else
3543         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3544 
3545       ValueList.push_back(NewGV);
3546 
3547       // Remember which value to use for the global initializer.
3548       if (unsigned InitID = Record[2])
3549         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3550 
3551       if (Record.size() > 11) {
3552         if (unsigned ComdatID = Record[11]) {
3553           if (ComdatID > ComdatList.size())
3554             return error("Invalid global variable comdat ID");
3555           NewGV->setComdat(ComdatList[ComdatID - 1]);
3556         }
3557       } else if (hasImplicitComdat(RawLinkage)) {
3558         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3559       }
3560       break;
3561     }
3562     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3563     //             alignment, section, visibility, gc, unnamed_addr,
3564     //             prologuedata, dllstorageclass, comdat, prefixdata]
3565     case bitc::MODULE_CODE_FUNCTION: {
3566       if (Record.size() < 8)
3567         return error("Invalid record");
3568       Type *Ty = getTypeByID(Record[0]);
3569       if (!Ty)
3570         return error("Invalid record");
3571       if (auto *PTy = dyn_cast<PointerType>(Ty))
3572         Ty = PTy->getElementType();
3573       auto *FTy = dyn_cast<FunctionType>(Ty);
3574       if (!FTy)
3575         return error("Invalid type for value");
3576       auto CC = static_cast<CallingConv::ID>(Record[1]);
3577       if (CC & ~CallingConv::MaxID)
3578         return error("Invalid calling convention ID");
3579 
3580       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3581                                         "", TheModule);
3582 
3583       Func->setCallingConv(CC);
3584       bool isProto = Record[2];
3585       uint64_t RawLinkage = Record[3];
3586       Func->setLinkage(getDecodedLinkage(RawLinkage));
3587       Func->setAttributes(getAttributes(Record[4]));
3588 
3589       unsigned Alignment;
3590       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3591         return EC;
3592       Func->setAlignment(Alignment);
3593       if (Record[6]) {
3594         if (Record[6]-1 >= SectionTable.size())
3595           return error("Invalid ID");
3596         Func->setSection(SectionTable[Record[6]-1]);
3597       }
3598       // Local linkage must have default visibility.
3599       if (!Func->hasLocalLinkage())
3600         // FIXME: Change to an error if non-default in 4.0.
3601         Func->setVisibility(getDecodedVisibility(Record[7]));
3602       if (Record.size() > 8 && Record[8]) {
3603         if (Record[8]-1 >= GCTable.size())
3604           return error("Invalid ID");
3605         Func->setGC(GCTable[Record[8]-1].c_str());
3606       }
3607       bool UnnamedAddr = false;
3608       if (Record.size() > 9)
3609         UnnamedAddr = Record[9];
3610       Func->setUnnamedAddr(UnnamedAddr);
3611       if (Record.size() > 10 && Record[10] != 0)
3612         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3613 
3614       if (Record.size() > 11)
3615         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3616       else
3617         upgradeDLLImportExportLinkage(Func, RawLinkage);
3618 
3619       if (Record.size() > 12) {
3620         if (unsigned ComdatID = Record[12]) {
3621           if (ComdatID > ComdatList.size())
3622             return error("Invalid function comdat ID");
3623           Func->setComdat(ComdatList[ComdatID - 1]);
3624         }
3625       } else if (hasImplicitComdat(RawLinkage)) {
3626         Func->setComdat(reinterpret_cast<Comdat *>(1));
3627       }
3628 
3629       if (Record.size() > 13 && Record[13] != 0)
3630         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3631 
3632       if (Record.size() > 14 && Record[14] != 0)
3633         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3634 
3635       ValueList.push_back(Func);
3636 
3637       // If this is a function with a body, remember the prototype we are
3638       // creating now, so that we can match up the body with them later.
3639       if (!isProto) {
3640         Func->setIsMaterializable(true);
3641         FunctionsWithBodies.push_back(Func);
3642         DeferredFunctionInfo[Func] = 0;
3643       }
3644       break;
3645     }
3646     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3647     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3648     case bitc::MODULE_CODE_ALIAS:
3649     case bitc::MODULE_CODE_ALIAS_OLD: {
3650       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3651       if (Record.size() < (3 + (unsigned)NewRecord))
3652         return error("Invalid record");
3653       unsigned OpNum = 0;
3654       Type *Ty = getTypeByID(Record[OpNum++]);
3655       if (!Ty)
3656         return error("Invalid record");
3657 
3658       unsigned AddrSpace;
3659       if (!NewRecord) {
3660         auto *PTy = dyn_cast<PointerType>(Ty);
3661         if (!PTy)
3662           return error("Invalid type for value");
3663         Ty = PTy->getElementType();
3664         AddrSpace = PTy->getAddressSpace();
3665       } else {
3666         AddrSpace = Record[OpNum++];
3667       }
3668 
3669       auto Val = Record[OpNum++];
3670       auto Linkage = Record[OpNum++];
3671       auto *NewGA = GlobalAlias::create(
3672           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3673       // Old bitcode files didn't have visibility field.
3674       // Local linkage must have default visibility.
3675       if (OpNum != Record.size()) {
3676         auto VisInd = OpNum++;
3677         if (!NewGA->hasLocalLinkage())
3678           // FIXME: Change to an error if non-default in 4.0.
3679           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3680       }
3681       if (OpNum != Record.size())
3682         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3683       else
3684         upgradeDLLImportExportLinkage(NewGA, Linkage);
3685       if (OpNum != Record.size())
3686         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3687       if (OpNum != Record.size())
3688         NewGA->setUnnamedAddr(Record[OpNum++]);
3689       ValueList.push_back(NewGA);
3690       AliasInits.push_back(std::make_pair(NewGA, Val));
3691       break;
3692     }
3693     /// MODULE_CODE_PURGEVALS: [numvals]
3694     case bitc::MODULE_CODE_PURGEVALS:
3695       // Trim down the value list to the specified size.
3696       if (Record.size() < 1 || Record[0] > ValueList.size())
3697         return error("Invalid record");
3698       ValueList.shrinkTo(Record[0]);
3699       break;
3700     /// MODULE_CODE_VSTOFFSET: [offset]
3701     case bitc::MODULE_CODE_VSTOFFSET:
3702       if (Record.size() < 1)
3703         return error("Invalid record");
3704       VSTOffset = Record[0];
3705       break;
3706     /// MODULE_CODE_METADATA_VALUES: [numvals]
3707     case bitc::MODULE_CODE_METADATA_VALUES:
3708       if (Record.size() < 1)
3709         return error("Invalid record");
3710       assert(!IsMetadataMaterialized);
3711       // This record contains the number of metadata values in the module-level
3712       // METADATA_BLOCK. It is used to support lazy parsing of metadata as
3713       // a postpass, where we will parse function-level metadata first.
3714       // This is needed because the ids of metadata are assigned implicitly
3715       // based on their ordering in the bitcode, with the function-level
3716       // metadata ids starting after the module-level metadata ids. Otherwise,
3717       // we would have to parse the module-level metadata block to prime the
3718       // MetadataList when we are lazy loading metadata during function
3719       // importing. Initialize the MetadataList size here based on the
3720       // record value, regardless of whether we are doing lazy metadata
3721       // loading, so that we have consistent handling and assertion
3722       // checking in parseMetadata for module-level metadata.
3723       NumModuleMDs = Record[0];
3724       SeenModuleValuesRecord = true;
3725       assert(MetadataList.size() == 0);
3726       MetadataList.resize(NumModuleMDs);
3727       break;
3728     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3729     case bitc::MODULE_CODE_SOURCE_FILENAME:
3730       SmallString<128> ValueName;
3731       if (convertToString(Record, 0, ValueName))
3732         return error("Invalid record");
3733       TheModule->setSourceFileName(ValueName);
3734       break;
3735     }
3736     Record.clear();
3737   }
3738 }
3739 
3740 /// Helper to read the header common to all bitcode files.
3741 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3742   // Sniff for the signature.
3743   if (Stream.Read(8) != 'B' ||
3744       Stream.Read(8) != 'C' ||
3745       Stream.Read(4) != 0x0 ||
3746       Stream.Read(4) != 0xC ||
3747       Stream.Read(4) != 0xE ||
3748       Stream.Read(4) != 0xD)
3749     return false;
3750   return true;
3751 }
3752 
3753 std::error_code
3754 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3755                                 Module *M, bool ShouldLazyLoadMetadata) {
3756   TheModule = M;
3757 
3758   if (std::error_code EC = initStream(std::move(Streamer)))
3759     return EC;
3760 
3761   // Sniff for the signature.
3762   if (!hasValidBitcodeHeader(Stream))
3763     return error("Invalid bitcode signature");
3764 
3765   // We expect a number of well-defined blocks, though we don't necessarily
3766   // need to understand them all.
3767   while (1) {
3768     if (Stream.AtEndOfStream()) {
3769       // We didn't really read a proper Module.
3770       return error("Malformed IR file");
3771     }
3772 
3773     BitstreamEntry Entry =
3774       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3775 
3776     if (Entry.Kind != BitstreamEntry::SubBlock)
3777       return error("Malformed block");
3778 
3779     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3780       parseBitcodeVersion();
3781       continue;
3782     }
3783 
3784     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3785       return parseModule(0, ShouldLazyLoadMetadata);
3786 
3787     if (Stream.SkipBlock())
3788       return error("Invalid record");
3789   }
3790 }
3791 
3792 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3793   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3794     return error("Invalid record");
3795 
3796   SmallVector<uint64_t, 64> Record;
3797 
3798   std::string Triple;
3799   // Read all the records for this module.
3800   while (1) {
3801     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3802 
3803     switch (Entry.Kind) {
3804     case BitstreamEntry::SubBlock: // Handled for us already.
3805     case BitstreamEntry::Error:
3806       return error("Malformed block");
3807     case BitstreamEntry::EndBlock:
3808       return Triple;
3809     case BitstreamEntry::Record:
3810       // The interesting case.
3811       break;
3812     }
3813 
3814     // Read a record.
3815     switch (Stream.readRecord(Entry.ID, Record)) {
3816     default: break;  // Default behavior, ignore unknown content.
3817     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3818       std::string S;
3819       if (convertToString(Record, 0, S))
3820         return error("Invalid record");
3821       Triple = S;
3822       break;
3823     }
3824     }
3825     Record.clear();
3826   }
3827   llvm_unreachable("Exit infinite loop");
3828 }
3829 
3830 ErrorOr<std::string> BitcodeReader::parseTriple() {
3831   if (std::error_code EC = initStream(nullptr))
3832     return EC;
3833 
3834   // Sniff for the signature.
3835   if (!hasValidBitcodeHeader(Stream))
3836     return error("Invalid bitcode signature");
3837 
3838   // We expect a number of well-defined blocks, though we don't necessarily
3839   // need to understand them all.
3840   while (1) {
3841     BitstreamEntry Entry = Stream.advance();
3842 
3843     switch (Entry.Kind) {
3844     case BitstreamEntry::Error:
3845       return error("Malformed block");
3846     case BitstreamEntry::EndBlock:
3847       return std::error_code();
3848 
3849     case BitstreamEntry::SubBlock:
3850       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3851         return parseModuleTriple();
3852 
3853       // Ignore other sub-blocks.
3854       if (Stream.SkipBlock())
3855         return error("Malformed block");
3856       continue;
3857 
3858     case BitstreamEntry::Record:
3859       Stream.skipRecord(Entry.ID);
3860       continue;
3861     }
3862   }
3863 }
3864 
3865 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3866   if (std::error_code EC = initStream(nullptr))
3867     return EC;
3868 
3869   // Sniff for the signature.
3870   if (!hasValidBitcodeHeader(Stream))
3871     return error("Invalid bitcode signature");
3872 
3873   // We expect a number of well-defined blocks, though we don't necessarily
3874   // need to understand them all.
3875   while (1) {
3876     BitstreamEntry Entry = Stream.advance();
3877     switch (Entry.Kind) {
3878     case BitstreamEntry::Error:
3879       return error("Malformed block");
3880     case BitstreamEntry::EndBlock:
3881       return std::error_code();
3882 
3883     case BitstreamEntry::SubBlock:
3884       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3885         if (std::error_code EC = parseBitcodeVersion())
3886           return EC;
3887         return ProducerIdentification;
3888       }
3889       // Ignore other sub-blocks.
3890       if (Stream.SkipBlock())
3891         return error("Malformed block");
3892       continue;
3893     case BitstreamEntry::Record:
3894       Stream.skipRecord(Entry.ID);
3895       continue;
3896     }
3897   }
3898 }
3899 
3900 /// Parse metadata attachments.
3901 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3902   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3903     return error("Invalid record");
3904 
3905   SmallVector<uint64_t, 64> Record;
3906   while (1) {
3907     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3908 
3909     switch (Entry.Kind) {
3910     case BitstreamEntry::SubBlock: // Handled for us already.
3911     case BitstreamEntry::Error:
3912       return error("Malformed block");
3913     case BitstreamEntry::EndBlock:
3914       return std::error_code();
3915     case BitstreamEntry::Record:
3916       // The interesting case.
3917       break;
3918     }
3919 
3920     // Read a metadata attachment record.
3921     Record.clear();
3922     switch (Stream.readRecord(Entry.ID, Record)) {
3923     default:  // Default behavior: ignore.
3924       break;
3925     case bitc::METADATA_ATTACHMENT: {
3926       unsigned RecordLength = Record.size();
3927       if (Record.empty())
3928         return error("Invalid record");
3929       if (RecordLength % 2 == 0) {
3930         // A function attachment.
3931         for (unsigned I = 0; I != RecordLength; I += 2) {
3932           auto K = MDKindMap.find(Record[I]);
3933           if (K == MDKindMap.end())
3934             return error("Invalid ID");
3935           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3936           if (!MD)
3937             return error("Invalid metadata attachment");
3938           F.setMetadata(K->second, MD);
3939         }
3940         continue;
3941       }
3942 
3943       // An instruction attachment.
3944       Instruction *Inst = InstructionList[Record[0]];
3945       for (unsigned i = 1; i != RecordLength; i = i+2) {
3946         unsigned Kind = Record[i];
3947         DenseMap<unsigned, unsigned>::iterator I =
3948           MDKindMap.find(Kind);
3949         if (I == MDKindMap.end())
3950           return error("Invalid ID");
3951         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
3952         if (isa<LocalAsMetadata>(Node))
3953           // Drop the attachment.  This used to be legal, but there's no
3954           // upgrade path.
3955           break;
3956         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
3957         if (!MD)
3958           return error("Invalid metadata attachment");
3959         Inst->setMetadata(I->second, MD);
3960         if (I->second == LLVMContext::MD_tbaa)
3961           InstsWithTBAATag.push_back(Inst);
3962       }
3963       break;
3964     }
3965     }
3966   }
3967 }
3968 
3969 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3970   LLVMContext &Context = PtrType->getContext();
3971   if (!isa<PointerType>(PtrType))
3972     return error(Context, "Load/Store operand is not a pointer type");
3973   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3974 
3975   if (ValType && ValType != ElemType)
3976     return error(Context, "Explicit load/store type does not match pointee "
3977                           "type of pointer operand");
3978   if (!PointerType::isLoadableOrStorableType(ElemType))
3979     return error(Context, "Cannot load/store from pointer");
3980   return std::error_code();
3981 }
3982 
3983 /// Lazily parse the specified function body block.
3984 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3985   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3986     return error("Invalid record");
3987 
3988   InstructionList.clear();
3989   unsigned ModuleValueListSize = ValueList.size();
3990   unsigned ModuleMetadataListSize = MetadataList.size();
3991 
3992   // Add all the function arguments to the value table.
3993   for (Argument &I : F->args())
3994     ValueList.push_back(&I);
3995 
3996   unsigned NextValueNo = ValueList.size();
3997   BasicBlock *CurBB = nullptr;
3998   unsigned CurBBNo = 0;
3999 
4000   DebugLoc LastLoc;
4001   auto getLastInstruction = [&]() -> Instruction * {
4002     if (CurBB && !CurBB->empty())
4003       return &CurBB->back();
4004     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4005              !FunctionBBs[CurBBNo - 1]->empty())
4006       return &FunctionBBs[CurBBNo - 1]->back();
4007     return nullptr;
4008   };
4009 
4010   std::vector<OperandBundleDef> OperandBundles;
4011 
4012   // Read all the records.
4013   SmallVector<uint64_t, 64> Record;
4014   while (1) {
4015     BitstreamEntry Entry = Stream.advance();
4016 
4017     switch (Entry.Kind) {
4018     case BitstreamEntry::Error:
4019       return error("Malformed block");
4020     case BitstreamEntry::EndBlock:
4021       goto OutOfRecordLoop;
4022 
4023     case BitstreamEntry::SubBlock:
4024       switch (Entry.ID) {
4025       default:  // Skip unknown content.
4026         if (Stream.SkipBlock())
4027           return error("Invalid record");
4028         break;
4029       case bitc::CONSTANTS_BLOCK_ID:
4030         if (std::error_code EC = parseConstants())
4031           return EC;
4032         NextValueNo = ValueList.size();
4033         break;
4034       case bitc::VALUE_SYMTAB_BLOCK_ID:
4035         if (std::error_code EC = parseValueSymbolTable())
4036           return EC;
4037         break;
4038       case bitc::METADATA_ATTACHMENT_ID:
4039         if (std::error_code EC = parseMetadataAttachment(*F))
4040           return EC;
4041         break;
4042       case bitc::METADATA_BLOCK_ID:
4043         if (std::error_code EC = parseMetadata())
4044           return EC;
4045         break;
4046       case bitc::USELIST_BLOCK_ID:
4047         if (std::error_code EC = parseUseLists())
4048           return EC;
4049         break;
4050       }
4051       continue;
4052 
4053     case BitstreamEntry::Record:
4054       // The interesting case.
4055       break;
4056     }
4057 
4058     // Read a record.
4059     Record.clear();
4060     Instruction *I = nullptr;
4061     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4062     switch (BitCode) {
4063     default: // Default behavior: reject
4064       return error("Invalid value");
4065     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4066       if (Record.size() < 1 || Record[0] == 0)
4067         return error("Invalid record");
4068       // Create all the basic blocks for the function.
4069       FunctionBBs.resize(Record[0]);
4070 
4071       // See if anything took the address of blocks in this function.
4072       auto BBFRI = BasicBlockFwdRefs.find(F);
4073       if (BBFRI == BasicBlockFwdRefs.end()) {
4074         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4075           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4076       } else {
4077         auto &BBRefs = BBFRI->second;
4078         // Check for invalid basic block references.
4079         if (BBRefs.size() > FunctionBBs.size())
4080           return error("Invalid ID");
4081         assert(!BBRefs.empty() && "Unexpected empty array");
4082         assert(!BBRefs.front() && "Invalid reference to entry block");
4083         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4084              ++I)
4085           if (I < RE && BBRefs[I]) {
4086             BBRefs[I]->insertInto(F);
4087             FunctionBBs[I] = BBRefs[I];
4088           } else {
4089             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4090           }
4091 
4092         // Erase from the table.
4093         BasicBlockFwdRefs.erase(BBFRI);
4094       }
4095 
4096       CurBB = FunctionBBs[0];
4097       continue;
4098     }
4099 
4100     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4101       // This record indicates that the last instruction is at the same
4102       // location as the previous instruction with a location.
4103       I = getLastInstruction();
4104 
4105       if (!I)
4106         return error("Invalid record");
4107       I->setDebugLoc(LastLoc);
4108       I = nullptr;
4109       continue;
4110 
4111     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4112       I = getLastInstruction();
4113       if (!I || Record.size() < 4)
4114         return error("Invalid record");
4115 
4116       unsigned Line = Record[0], Col = Record[1];
4117       unsigned ScopeID = Record[2], IAID = Record[3];
4118 
4119       MDNode *Scope = nullptr, *IA = nullptr;
4120       if (ScopeID) {
4121         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4122         if (!Scope)
4123           return error("Invalid record");
4124       }
4125       if (IAID) {
4126         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4127         if (!IA)
4128           return error("Invalid record");
4129       }
4130       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4131       I->setDebugLoc(LastLoc);
4132       I = nullptr;
4133       continue;
4134     }
4135 
4136     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4137       unsigned OpNum = 0;
4138       Value *LHS, *RHS;
4139       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4140           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4141           OpNum+1 > Record.size())
4142         return error("Invalid record");
4143 
4144       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4145       if (Opc == -1)
4146         return error("Invalid record");
4147       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4148       InstructionList.push_back(I);
4149       if (OpNum < Record.size()) {
4150         if (Opc == Instruction::Add ||
4151             Opc == Instruction::Sub ||
4152             Opc == Instruction::Mul ||
4153             Opc == Instruction::Shl) {
4154           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4155             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4156           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4157             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4158         } else if (Opc == Instruction::SDiv ||
4159                    Opc == Instruction::UDiv ||
4160                    Opc == Instruction::LShr ||
4161                    Opc == Instruction::AShr) {
4162           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4163             cast<BinaryOperator>(I)->setIsExact(true);
4164         } else if (isa<FPMathOperator>(I)) {
4165           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4166           if (FMF.any())
4167             I->setFastMathFlags(FMF);
4168         }
4169 
4170       }
4171       break;
4172     }
4173     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4174       unsigned OpNum = 0;
4175       Value *Op;
4176       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4177           OpNum+2 != Record.size())
4178         return error("Invalid record");
4179 
4180       Type *ResTy = getTypeByID(Record[OpNum]);
4181       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4182       if (Opc == -1 || !ResTy)
4183         return error("Invalid record");
4184       Instruction *Temp = nullptr;
4185       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4186         if (Temp) {
4187           InstructionList.push_back(Temp);
4188           CurBB->getInstList().push_back(Temp);
4189         }
4190       } else {
4191         auto CastOp = (Instruction::CastOps)Opc;
4192         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4193           return error("Invalid cast");
4194         I = CastInst::Create(CastOp, Op, ResTy);
4195       }
4196       InstructionList.push_back(I);
4197       break;
4198     }
4199     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4200     case bitc::FUNC_CODE_INST_GEP_OLD:
4201     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4202       unsigned OpNum = 0;
4203 
4204       Type *Ty;
4205       bool InBounds;
4206 
4207       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4208         InBounds = Record[OpNum++];
4209         Ty = getTypeByID(Record[OpNum++]);
4210       } else {
4211         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4212         Ty = nullptr;
4213       }
4214 
4215       Value *BasePtr;
4216       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4217         return error("Invalid record");
4218 
4219       if (!Ty)
4220         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4221                  ->getElementType();
4222       else if (Ty !=
4223                cast<SequentialType>(BasePtr->getType()->getScalarType())
4224                    ->getElementType())
4225         return error(
4226             "Explicit gep type does not match pointee type of pointer operand");
4227 
4228       SmallVector<Value*, 16> GEPIdx;
4229       while (OpNum != Record.size()) {
4230         Value *Op;
4231         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4232           return error("Invalid record");
4233         GEPIdx.push_back(Op);
4234       }
4235 
4236       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4237 
4238       InstructionList.push_back(I);
4239       if (InBounds)
4240         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4241       break;
4242     }
4243 
4244     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4245                                        // EXTRACTVAL: [opty, opval, n x indices]
4246       unsigned OpNum = 0;
4247       Value *Agg;
4248       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4249         return error("Invalid record");
4250 
4251       unsigned RecSize = Record.size();
4252       if (OpNum == RecSize)
4253         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4254 
4255       SmallVector<unsigned, 4> EXTRACTVALIdx;
4256       Type *CurTy = Agg->getType();
4257       for (; OpNum != RecSize; ++OpNum) {
4258         bool IsArray = CurTy->isArrayTy();
4259         bool IsStruct = CurTy->isStructTy();
4260         uint64_t Index = Record[OpNum];
4261 
4262         if (!IsStruct && !IsArray)
4263           return error("EXTRACTVAL: Invalid type");
4264         if ((unsigned)Index != Index)
4265           return error("Invalid value");
4266         if (IsStruct && Index >= CurTy->subtypes().size())
4267           return error("EXTRACTVAL: Invalid struct index");
4268         if (IsArray && Index >= CurTy->getArrayNumElements())
4269           return error("EXTRACTVAL: Invalid array index");
4270         EXTRACTVALIdx.push_back((unsigned)Index);
4271 
4272         if (IsStruct)
4273           CurTy = CurTy->subtypes()[Index];
4274         else
4275           CurTy = CurTy->subtypes()[0];
4276       }
4277 
4278       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4279       InstructionList.push_back(I);
4280       break;
4281     }
4282 
4283     case bitc::FUNC_CODE_INST_INSERTVAL: {
4284                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4285       unsigned OpNum = 0;
4286       Value *Agg;
4287       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4288         return error("Invalid record");
4289       Value *Val;
4290       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4291         return error("Invalid record");
4292 
4293       unsigned RecSize = Record.size();
4294       if (OpNum == RecSize)
4295         return error("INSERTVAL: Invalid instruction with 0 indices");
4296 
4297       SmallVector<unsigned, 4> INSERTVALIdx;
4298       Type *CurTy = Agg->getType();
4299       for (; OpNum != RecSize; ++OpNum) {
4300         bool IsArray = CurTy->isArrayTy();
4301         bool IsStruct = CurTy->isStructTy();
4302         uint64_t Index = Record[OpNum];
4303 
4304         if (!IsStruct && !IsArray)
4305           return error("INSERTVAL: Invalid type");
4306         if ((unsigned)Index != Index)
4307           return error("Invalid value");
4308         if (IsStruct && Index >= CurTy->subtypes().size())
4309           return error("INSERTVAL: Invalid struct index");
4310         if (IsArray && Index >= CurTy->getArrayNumElements())
4311           return error("INSERTVAL: Invalid array index");
4312 
4313         INSERTVALIdx.push_back((unsigned)Index);
4314         if (IsStruct)
4315           CurTy = CurTy->subtypes()[Index];
4316         else
4317           CurTy = CurTy->subtypes()[0];
4318       }
4319 
4320       if (CurTy != Val->getType())
4321         return error("Inserted value type doesn't match aggregate type");
4322 
4323       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4324       InstructionList.push_back(I);
4325       break;
4326     }
4327 
4328     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4329       // obsolete form of select
4330       // handles select i1 ... in old bitcode
4331       unsigned OpNum = 0;
4332       Value *TrueVal, *FalseVal, *Cond;
4333       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4334           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4335           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4336         return error("Invalid record");
4337 
4338       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4339       InstructionList.push_back(I);
4340       break;
4341     }
4342 
4343     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4344       // new form of select
4345       // handles select i1 or select [N x i1]
4346       unsigned OpNum = 0;
4347       Value *TrueVal, *FalseVal, *Cond;
4348       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4349           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4350           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4351         return error("Invalid record");
4352 
4353       // select condition can be either i1 or [N x i1]
4354       if (VectorType* vector_type =
4355           dyn_cast<VectorType>(Cond->getType())) {
4356         // expect <n x i1>
4357         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4358           return error("Invalid type for value");
4359       } else {
4360         // expect i1
4361         if (Cond->getType() != Type::getInt1Ty(Context))
4362           return error("Invalid type for value");
4363       }
4364 
4365       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4366       InstructionList.push_back(I);
4367       break;
4368     }
4369 
4370     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4371       unsigned OpNum = 0;
4372       Value *Vec, *Idx;
4373       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4374           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4375         return error("Invalid record");
4376       if (!Vec->getType()->isVectorTy())
4377         return error("Invalid type for value");
4378       I = ExtractElementInst::Create(Vec, Idx);
4379       InstructionList.push_back(I);
4380       break;
4381     }
4382 
4383     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4384       unsigned OpNum = 0;
4385       Value *Vec, *Elt, *Idx;
4386       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4387         return error("Invalid record");
4388       if (!Vec->getType()->isVectorTy())
4389         return error("Invalid type for value");
4390       if (popValue(Record, OpNum, NextValueNo,
4391                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4392           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4393         return error("Invalid record");
4394       I = InsertElementInst::Create(Vec, Elt, Idx);
4395       InstructionList.push_back(I);
4396       break;
4397     }
4398 
4399     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4400       unsigned OpNum = 0;
4401       Value *Vec1, *Vec2, *Mask;
4402       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4403           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4404         return error("Invalid record");
4405 
4406       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4407         return error("Invalid record");
4408       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4409         return error("Invalid type for value");
4410       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4411       InstructionList.push_back(I);
4412       break;
4413     }
4414 
4415     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4416       // Old form of ICmp/FCmp returning bool
4417       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4418       // both legal on vectors but had different behaviour.
4419     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4420       // FCmp/ICmp returning bool or vector of bool
4421 
4422       unsigned OpNum = 0;
4423       Value *LHS, *RHS;
4424       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4425           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4426         return error("Invalid record");
4427 
4428       unsigned PredVal = Record[OpNum];
4429       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4430       FastMathFlags FMF;
4431       if (IsFP && Record.size() > OpNum+1)
4432         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4433 
4434       if (OpNum+1 != Record.size())
4435         return error("Invalid record");
4436 
4437       if (LHS->getType()->isFPOrFPVectorTy())
4438         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4439       else
4440         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4441 
4442       if (FMF.any())
4443         I->setFastMathFlags(FMF);
4444       InstructionList.push_back(I);
4445       break;
4446     }
4447 
4448     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4449       {
4450         unsigned Size = Record.size();
4451         if (Size == 0) {
4452           I = ReturnInst::Create(Context);
4453           InstructionList.push_back(I);
4454           break;
4455         }
4456 
4457         unsigned OpNum = 0;
4458         Value *Op = nullptr;
4459         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4460           return error("Invalid record");
4461         if (OpNum != Record.size())
4462           return error("Invalid record");
4463 
4464         I = ReturnInst::Create(Context, Op);
4465         InstructionList.push_back(I);
4466         break;
4467       }
4468     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4469       if (Record.size() != 1 && Record.size() != 3)
4470         return error("Invalid record");
4471       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4472       if (!TrueDest)
4473         return error("Invalid record");
4474 
4475       if (Record.size() == 1) {
4476         I = BranchInst::Create(TrueDest);
4477         InstructionList.push_back(I);
4478       }
4479       else {
4480         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4481         Value *Cond = getValue(Record, 2, NextValueNo,
4482                                Type::getInt1Ty(Context));
4483         if (!FalseDest || !Cond)
4484           return error("Invalid record");
4485         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4486         InstructionList.push_back(I);
4487       }
4488       break;
4489     }
4490     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4491       if (Record.size() != 1 && Record.size() != 2)
4492         return error("Invalid record");
4493       unsigned Idx = 0;
4494       Value *CleanupPad =
4495           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4496       if (!CleanupPad)
4497         return error("Invalid record");
4498       BasicBlock *UnwindDest = nullptr;
4499       if (Record.size() == 2) {
4500         UnwindDest = getBasicBlock(Record[Idx++]);
4501         if (!UnwindDest)
4502           return error("Invalid record");
4503       }
4504 
4505       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4506       InstructionList.push_back(I);
4507       break;
4508     }
4509     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4510       if (Record.size() != 2)
4511         return error("Invalid record");
4512       unsigned Idx = 0;
4513       Value *CatchPad =
4514           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4515       if (!CatchPad)
4516         return error("Invalid record");
4517       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4518       if (!BB)
4519         return error("Invalid record");
4520 
4521       I = CatchReturnInst::Create(CatchPad, BB);
4522       InstructionList.push_back(I);
4523       break;
4524     }
4525     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4526       // We must have, at minimum, the outer scope and the number of arguments.
4527       if (Record.size() < 2)
4528         return error("Invalid record");
4529 
4530       unsigned Idx = 0;
4531 
4532       Value *ParentPad =
4533           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4534 
4535       unsigned NumHandlers = Record[Idx++];
4536 
4537       SmallVector<BasicBlock *, 2> Handlers;
4538       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4539         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4540         if (!BB)
4541           return error("Invalid record");
4542         Handlers.push_back(BB);
4543       }
4544 
4545       BasicBlock *UnwindDest = nullptr;
4546       if (Idx + 1 == Record.size()) {
4547         UnwindDest = getBasicBlock(Record[Idx++]);
4548         if (!UnwindDest)
4549           return error("Invalid record");
4550       }
4551 
4552       if (Record.size() != Idx)
4553         return error("Invalid record");
4554 
4555       auto *CatchSwitch =
4556           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4557       for (BasicBlock *Handler : Handlers)
4558         CatchSwitch->addHandler(Handler);
4559       I = CatchSwitch;
4560       InstructionList.push_back(I);
4561       break;
4562     }
4563     case bitc::FUNC_CODE_INST_CATCHPAD:
4564     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4565       // We must have, at minimum, the outer scope and the number of arguments.
4566       if (Record.size() < 2)
4567         return error("Invalid record");
4568 
4569       unsigned Idx = 0;
4570 
4571       Value *ParentPad =
4572           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4573 
4574       unsigned NumArgOperands = Record[Idx++];
4575 
4576       SmallVector<Value *, 2> Args;
4577       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4578         Value *Val;
4579         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4580           return error("Invalid record");
4581         Args.push_back(Val);
4582       }
4583 
4584       if (Record.size() != Idx)
4585         return error("Invalid record");
4586 
4587       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4588         I = CleanupPadInst::Create(ParentPad, Args);
4589       else
4590         I = CatchPadInst::Create(ParentPad, Args);
4591       InstructionList.push_back(I);
4592       break;
4593     }
4594     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4595       // Check magic
4596       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4597         // "New" SwitchInst format with case ranges. The changes to write this
4598         // format were reverted but we still recognize bitcode that uses it.
4599         // Hopefully someday we will have support for case ranges and can use
4600         // this format again.
4601 
4602         Type *OpTy = getTypeByID(Record[1]);
4603         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4604 
4605         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4606         BasicBlock *Default = getBasicBlock(Record[3]);
4607         if (!OpTy || !Cond || !Default)
4608           return error("Invalid record");
4609 
4610         unsigned NumCases = Record[4];
4611 
4612         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4613         InstructionList.push_back(SI);
4614 
4615         unsigned CurIdx = 5;
4616         for (unsigned i = 0; i != NumCases; ++i) {
4617           SmallVector<ConstantInt*, 1> CaseVals;
4618           unsigned NumItems = Record[CurIdx++];
4619           for (unsigned ci = 0; ci != NumItems; ++ci) {
4620             bool isSingleNumber = Record[CurIdx++];
4621 
4622             APInt Low;
4623             unsigned ActiveWords = 1;
4624             if (ValueBitWidth > 64)
4625               ActiveWords = Record[CurIdx++];
4626             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4627                                 ValueBitWidth);
4628             CurIdx += ActiveWords;
4629 
4630             if (!isSingleNumber) {
4631               ActiveWords = 1;
4632               if (ValueBitWidth > 64)
4633                 ActiveWords = Record[CurIdx++];
4634               APInt High = readWideAPInt(
4635                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4636               CurIdx += ActiveWords;
4637 
4638               // FIXME: It is not clear whether values in the range should be
4639               // compared as signed or unsigned values. The partially
4640               // implemented changes that used this format in the past used
4641               // unsigned comparisons.
4642               for ( ; Low.ule(High); ++Low)
4643                 CaseVals.push_back(ConstantInt::get(Context, Low));
4644             } else
4645               CaseVals.push_back(ConstantInt::get(Context, Low));
4646           }
4647           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4648           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4649                  cve = CaseVals.end(); cvi != cve; ++cvi)
4650             SI->addCase(*cvi, DestBB);
4651         }
4652         I = SI;
4653         break;
4654       }
4655 
4656       // Old SwitchInst format without case ranges.
4657 
4658       if (Record.size() < 3 || (Record.size() & 1) == 0)
4659         return error("Invalid record");
4660       Type *OpTy = getTypeByID(Record[0]);
4661       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4662       BasicBlock *Default = getBasicBlock(Record[2]);
4663       if (!OpTy || !Cond || !Default)
4664         return error("Invalid record");
4665       unsigned NumCases = (Record.size()-3)/2;
4666       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4667       InstructionList.push_back(SI);
4668       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4669         ConstantInt *CaseVal =
4670           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4671         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4672         if (!CaseVal || !DestBB) {
4673           delete SI;
4674           return error("Invalid record");
4675         }
4676         SI->addCase(CaseVal, DestBB);
4677       }
4678       I = SI;
4679       break;
4680     }
4681     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4682       if (Record.size() < 2)
4683         return error("Invalid record");
4684       Type *OpTy = getTypeByID(Record[0]);
4685       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4686       if (!OpTy || !Address)
4687         return error("Invalid record");
4688       unsigned NumDests = Record.size()-2;
4689       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4690       InstructionList.push_back(IBI);
4691       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4692         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4693           IBI->addDestination(DestBB);
4694         } else {
4695           delete IBI;
4696           return error("Invalid record");
4697         }
4698       }
4699       I = IBI;
4700       break;
4701     }
4702 
4703     case bitc::FUNC_CODE_INST_INVOKE: {
4704       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4705       if (Record.size() < 4)
4706         return error("Invalid record");
4707       unsigned OpNum = 0;
4708       AttributeSet PAL = getAttributes(Record[OpNum++]);
4709       unsigned CCInfo = Record[OpNum++];
4710       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4711       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4712 
4713       FunctionType *FTy = nullptr;
4714       if (CCInfo >> 13 & 1 &&
4715           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4716         return error("Explicit invoke type is not a function type");
4717 
4718       Value *Callee;
4719       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4720         return error("Invalid record");
4721 
4722       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4723       if (!CalleeTy)
4724         return error("Callee is not a pointer");
4725       if (!FTy) {
4726         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4727         if (!FTy)
4728           return error("Callee is not of pointer to function type");
4729       } else if (CalleeTy->getElementType() != FTy)
4730         return error("Explicit invoke type does not match pointee type of "
4731                      "callee operand");
4732       if (Record.size() < FTy->getNumParams() + OpNum)
4733         return error("Insufficient operands to call");
4734 
4735       SmallVector<Value*, 16> Ops;
4736       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4737         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4738                                FTy->getParamType(i)));
4739         if (!Ops.back())
4740           return error("Invalid record");
4741       }
4742 
4743       if (!FTy->isVarArg()) {
4744         if (Record.size() != OpNum)
4745           return error("Invalid record");
4746       } else {
4747         // Read type/value pairs for varargs params.
4748         while (OpNum != Record.size()) {
4749           Value *Op;
4750           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4751             return error("Invalid record");
4752           Ops.push_back(Op);
4753         }
4754       }
4755 
4756       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4757       OperandBundles.clear();
4758       InstructionList.push_back(I);
4759       cast<InvokeInst>(I)->setCallingConv(
4760           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4761       cast<InvokeInst>(I)->setAttributes(PAL);
4762       break;
4763     }
4764     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4765       unsigned Idx = 0;
4766       Value *Val = nullptr;
4767       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4768         return error("Invalid record");
4769       I = ResumeInst::Create(Val);
4770       InstructionList.push_back(I);
4771       break;
4772     }
4773     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4774       I = new UnreachableInst(Context);
4775       InstructionList.push_back(I);
4776       break;
4777     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4778       if (Record.size() < 1 || ((Record.size()-1)&1))
4779         return error("Invalid record");
4780       Type *Ty = getTypeByID(Record[0]);
4781       if (!Ty)
4782         return error("Invalid record");
4783 
4784       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4785       InstructionList.push_back(PN);
4786 
4787       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4788         Value *V;
4789         // With the new function encoding, it is possible that operands have
4790         // negative IDs (for forward references).  Use a signed VBR
4791         // representation to keep the encoding small.
4792         if (UseRelativeIDs)
4793           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4794         else
4795           V = getValue(Record, 1+i, NextValueNo, Ty);
4796         BasicBlock *BB = getBasicBlock(Record[2+i]);
4797         if (!V || !BB)
4798           return error("Invalid record");
4799         PN->addIncoming(V, BB);
4800       }
4801       I = PN;
4802       break;
4803     }
4804 
4805     case bitc::FUNC_CODE_INST_LANDINGPAD:
4806     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4807       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4808       unsigned Idx = 0;
4809       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4810         if (Record.size() < 3)
4811           return error("Invalid record");
4812       } else {
4813         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4814         if (Record.size() < 4)
4815           return error("Invalid record");
4816       }
4817       Type *Ty = getTypeByID(Record[Idx++]);
4818       if (!Ty)
4819         return error("Invalid record");
4820       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4821         Value *PersFn = nullptr;
4822         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4823           return error("Invalid record");
4824 
4825         if (!F->hasPersonalityFn())
4826           F->setPersonalityFn(cast<Constant>(PersFn));
4827         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4828           return error("Personality function mismatch");
4829       }
4830 
4831       bool IsCleanup = !!Record[Idx++];
4832       unsigned NumClauses = Record[Idx++];
4833       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4834       LP->setCleanup(IsCleanup);
4835       for (unsigned J = 0; J != NumClauses; ++J) {
4836         LandingPadInst::ClauseType CT =
4837           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4838         Value *Val;
4839 
4840         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4841           delete LP;
4842           return error("Invalid record");
4843         }
4844 
4845         assert((CT != LandingPadInst::Catch ||
4846                 !isa<ArrayType>(Val->getType())) &&
4847                "Catch clause has a invalid type!");
4848         assert((CT != LandingPadInst::Filter ||
4849                 isa<ArrayType>(Val->getType())) &&
4850                "Filter clause has invalid type!");
4851         LP->addClause(cast<Constant>(Val));
4852       }
4853 
4854       I = LP;
4855       InstructionList.push_back(I);
4856       break;
4857     }
4858 
4859     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4860       if (Record.size() != 4)
4861         return error("Invalid record");
4862       uint64_t AlignRecord = Record[3];
4863       const uint64_t InAllocaMask = uint64_t(1) << 5;
4864       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4865       // Reserve bit 7 for SwiftError flag.
4866       // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4867       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4868       bool InAlloca = AlignRecord & InAllocaMask;
4869       Type *Ty = getTypeByID(Record[0]);
4870       if ((AlignRecord & ExplicitTypeMask) == 0) {
4871         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4872         if (!PTy)
4873           return error("Old-style alloca with a non-pointer type");
4874         Ty = PTy->getElementType();
4875       }
4876       Type *OpTy = getTypeByID(Record[1]);
4877       Value *Size = getFnValueByID(Record[2], OpTy);
4878       unsigned Align;
4879       if (std::error_code EC =
4880               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4881         return EC;
4882       }
4883       if (!Ty || !Size)
4884         return error("Invalid record");
4885       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4886       AI->setUsedWithInAlloca(InAlloca);
4887       I = AI;
4888       InstructionList.push_back(I);
4889       break;
4890     }
4891     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4892       unsigned OpNum = 0;
4893       Value *Op;
4894       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4895           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4896         return error("Invalid record");
4897 
4898       Type *Ty = nullptr;
4899       if (OpNum + 3 == Record.size())
4900         Ty = getTypeByID(Record[OpNum++]);
4901       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4902         return EC;
4903       if (!Ty)
4904         Ty = cast<PointerType>(Op->getType())->getElementType();
4905 
4906       unsigned Align;
4907       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4908         return EC;
4909       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4910 
4911       InstructionList.push_back(I);
4912       break;
4913     }
4914     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4915        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4916       unsigned OpNum = 0;
4917       Value *Op;
4918       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4919           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4920         return error("Invalid record");
4921 
4922       Type *Ty = nullptr;
4923       if (OpNum + 5 == Record.size())
4924         Ty = getTypeByID(Record[OpNum++]);
4925       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4926         return EC;
4927       if (!Ty)
4928         Ty = cast<PointerType>(Op->getType())->getElementType();
4929 
4930       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4931       if (Ordering == NotAtomic || Ordering == Release ||
4932           Ordering == AcquireRelease)
4933         return error("Invalid record");
4934       if (Ordering != NotAtomic && Record[OpNum] == 0)
4935         return error("Invalid record");
4936       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4937 
4938       unsigned Align;
4939       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4940         return EC;
4941       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4942 
4943       InstructionList.push_back(I);
4944       break;
4945     }
4946     case bitc::FUNC_CODE_INST_STORE:
4947     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4948       unsigned OpNum = 0;
4949       Value *Val, *Ptr;
4950       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4951           (BitCode == bitc::FUNC_CODE_INST_STORE
4952                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4953                : popValue(Record, OpNum, NextValueNo,
4954                           cast<PointerType>(Ptr->getType())->getElementType(),
4955                           Val)) ||
4956           OpNum + 2 != Record.size())
4957         return error("Invalid record");
4958 
4959       if (std::error_code EC =
4960               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4961         return EC;
4962       unsigned Align;
4963       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4964         return EC;
4965       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4966       InstructionList.push_back(I);
4967       break;
4968     }
4969     case bitc::FUNC_CODE_INST_STOREATOMIC:
4970     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4971       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4972       unsigned OpNum = 0;
4973       Value *Val, *Ptr;
4974       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4975           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4976                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4977                : popValue(Record, OpNum, NextValueNo,
4978                           cast<PointerType>(Ptr->getType())->getElementType(),
4979                           Val)) ||
4980           OpNum + 4 != Record.size())
4981         return error("Invalid record");
4982 
4983       if (std::error_code EC =
4984               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4985         return EC;
4986       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4987       if (Ordering == NotAtomic || Ordering == Acquire ||
4988           Ordering == AcquireRelease)
4989         return error("Invalid record");
4990       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4991       if (Ordering != NotAtomic && Record[OpNum] == 0)
4992         return error("Invalid record");
4993 
4994       unsigned Align;
4995       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4996         return EC;
4997       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4998       InstructionList.push_back(I);
4999       break;
5000     }
5001     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5002     case bitc::FUNC_CODE_INST_CMPXCHG: {
5003       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5004       //          failureordering?, isweak?]
5005       unsigned OpNum = 0;
5006       Value *Ptr, *Cmp, *New;
5007       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5008           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5009                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5010                : popValue(Record, OpNum, NextValueNo,
5011                           cast<PointerType>(Ptr->getType())->getElementType(),
5012                           Cmp)) ||
5013           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5014           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5015         return error("Invalid record");
5016       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5017       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
5018         return error("Invalid record");
5019       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5020 
5021       if (std::error_code EC =
5022               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5023         return EC;
5024       AtomicOrdering FailureOrdering;
5025       if (Record.size() < 7)
5026         FailureOrdering =
5027             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5028       else
5029         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5030 
5031       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5032                                 SynchScope);
5033       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5034 
5035       if (Record.size() < 8) {
5036         // Before weak cmpxchgs existed, the instruction simply returned the
5037         // value loaded from memory, so bitcode files from that era will be
5038         // expecting the first component of a modern cmpxchg.
5039         CurBB->getInstList().push_back(I);
5040         I = ExtractValueInst::Create(I, 0);
5041       } else {
5042         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5043       }
5044 
5045       InstructionList.push_back(I);
5046       break;
5047     }
5048     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5049       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5050       unsigned OpNum = 0;
5051       Value *Ptr, *Val;
5052       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5053           popValue(Record, OpNum, NextValueNo,
5054                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5055           OpNum+4 != Record.size())
5056         return error("Invalid record");
5057       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5058       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5059           Operation > AtomicRMWInst::LAST_BINOP)
5060         return error("Invalid record");
5061       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5062       if (Ordering == NotAtomic || Ordering == Unordered)
5063         return error("Invalid record");
5064       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5065       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5066       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5067       InstructionList.push_back(I);
5068       break;
5069     }
5070     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5071       if (2 != Record.size())
5072         return error("Invalid record");
5073       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5074       if (Ordering == NotAtomic || Ordering == Unordered ||
5075           Ordering == Monotonic)
5076         return error("Invalid record");
5077       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5078       I = new FenceInst(Context, Ordering, SynchScope);
5079       InstructionList.push_back(I);
5080       break;
5081     }
5082     case bitc::FUNC_CODE_INST_CALL: {
5083       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5084       if (Record.size() < 3)
5085         return error("Invalid record");
5086 
5087       unsigned OpNum = 0;
5088       AttributeSet PAL = getAttributes(Record[OpNum++]);
5089       unsigned CCInfo = Record[OpNum++];
5090 
5091       FastMathFlags FMF;
5092       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5093         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5094         if (!FMF.any())
5095           return error("Fast math flags indicator set for call with no FMF");
5096       }
5097 
5098       FunctionType *FTy = nullptr;
5099       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5100           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5101         return error("Explicit call type is not a function type");
5102 
5103       Value *Callee;
5104       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5105         return error("Invalid record");
5106 
5107       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5108       if (!OpTy)
5109         return error("Callee is not a pointer type");
5110       if (!FTy) {
5111         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5112         if (!FTy)
5113           return error("Callee is not of pointer to function type");
5114       } else if (OpTy->getElementType() != FTy)
5115         return error("Explicit call type does not match pointee type of "
5116                      "callee operand");
5117       if (Record.size() < FTy->getNumParams() + OpNum)
5118         return error("Insufficient operands to call");
5119 
5120       SmallVector<Value*, 16> Args;
5121       // Read the fixed params.
5122       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5123         if (FTy->getParamType(i)->isLabelTy())
5124           Args.push_back(getBasicBlock(Record[OpNum]));
5125         else
5126           Args.push_back(getValue(Record, OpNum, NextValueNo,
5127                                   FTy->getParamType(i)));
5128         if (!Args.back())
5129           return error("Invalid record");
5130       }
5131 
5132       // Read type/value pairs for varargs params.
5133       if (!FTy->isVarArg()) {
5134         if (OpNum != Record.size())
5135           return error("Invalid record");
5136       } else {
5137         while (OpNum != Record.size()) {
5138           Value *Op;
5139           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5140             return error("Invalid record");
5141           Args.push_back(Op);
5142         }
5143       }
5144 
5145       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5146       OperandBundles.clear();
5147       InstructionList.push_back(I);
5148       cast<CallInst>(I)->setCallingConv(
5149           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5150       CallInst::TailCallKind TCK = CallInst::TCK_None;
5151       if (CCInfo & 1 << bitc::CALL_TAIL)
5152         TCK = CallInst::TCK_Tail;
5153       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5154         TCK = CallInst::TCK_MustTail;
5155       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5156         TCK = CallInst::TCK_NoTail;
5157       cast<CallInst>(I)->setTailCallKind(TCK);
5158       cast<CallInst>(I)->setAttributes(PAL);
5159       if (FMF.any()) {
5160         if (!isa<FPMathOperator>(I))
5161           return error("Fast-math-flags specified for call without "
5162                        "floating-point scalar or vector return type");
5163         I->setFastMathFlags(FMF);
5164       }
5165       break;
5166     }
5167     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5168       if (Record.size() < 3)
5169         return error("Invalid record");
5170       Type *OpTy = getTypeByID(Record[0]);
5171       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5172       Type *ResTy = getTypeByID(Record[2]);
5173       if (!OpTy || !Op || !ResTy)
5174         return error("Invalid record");
5175       I = new VAArgInst(Op, ResTy);
5176       InstructionList.push_back(I);
5177       break;
5178     }
5179 
5180     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5181       // A call or an invoke can be optionally prefixed with some variable
5182       // number of operand bundle blocks.  These blocks are read into
5183       // OperandBundles and consumed at the next call or invoke instruction.
5184 
5185       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5186         return error("Invalid record");
5187 
5188       std::vector<Value *> Inputs;
5189 
5190       unsigned OpNum = 1;
5191       while (OpNum != Record.size()) {
5192         Value *Op;
5193         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5194           return error("Invalid record");
5195         Inputs.push_back(Op);
5196       }
5197 
5198       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5199       continue;
5200     }
5201     }
5202 
5203     // Add instruction to end of current BB.  If there is no current BB, reject
5204     // this file.
5205     if (!CurBB) {
5206       delete I;
5207       return error("Invalid instruction with no BB");
5208     }
5209     if (!OperandBundles.empty()) {
5210       delete I;
5211       return error("Operand bundles found with no consumer");
5212     }
5213     CurBB->getInstList().push_back(I);
5214 
5215     // If this was a terminator instruction, move to the next block.
5216     if (isa<TerminatorInst>(I)) {
5217       ++CurBBNo;
5218       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5219     }
5220 
5221     // Non-void values get registered in the value table for future use.
5222     if (I && !I->getType()->isVoidTy())
5223       ValueList.assignValue(I, NextValueNo++);
5224   }
5225 
5226 OutOfRecordLoop:
5227 
5228   if (!OperandBundles.empty())
5229     return error("Operand bundles found with no consumer");
5230 
5231   // Check the function list for unresolved values.
5232   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5233     if (!A->getParent()) {
5234       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5235       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5236         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5237           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5238           delete A;
5239         }
5240       }
5241       return error("Never resolved value found in function");
5242     }
5243   }
5244 
5245   // FIXME: Check for unresolved forward-declared metadata references
5246   // and clean up leaks.
5247 
5248   // Trim the value list down to the size it was before we parsed this function.
5249   ValueList.shrinkTo(ModuleValueListSize);
5250   MetadataList.shrinkTo(ModuleMetadataListSize);
5251   std::vector<BasicBlock*>().swap(FunctionBBs);
5252   return std::error_code();
5253 }
5254 
5255 /// Find the function body in the bitcode stream
5256 std::error_code BitcodeReader::findFunctionInStream(
5257     Function *F,
5258     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5259   while (DeferredFunctionInfoIterator->second == 0) {
5260     // This is the fallback handling for the old format bitcode that
5261     // didn't contain the function index in the VST, or when we have
5262     // an anonymous function which would not have a VST entry.
5263     // Assert that we have one of those two cases.
5264     assert(VSTOffset == 0 || !F->hasName());
5265     // Parse the next body in the stream and set its position in the
5266     // DeferredFunctionInfo map.
5267     if (std::error_code EC = rememberAndSkipFunctionBodies())
5268       return EC;
5269   }
5270   return std::error_code();
5271 }
5272 
5273 //===----------------------------------------------------------------------===//
5274 // GVMaterializer implementation
5275 //===----------------------------------------------------------------------===//
5276 
5277 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5278 
5279 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5280   // In older bitcode we must materialize the metadata before parsing
5281   // any functions, in order to set up the MetadataList properly.
5282   if (!SeenModuleValuesRecord) {
5283     if (std::error_code EC = materializeMetadata())
5284       return EC;
5285   }
5286 
5287   Function *F = dyn_cast<Function>(GV);
5288   // If it's not a function or is already material, ignore the request.
5289   if (!F || !F->isMaterializable())
5290     return std::error_code();
5291 
5292   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5293   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5294   // If its position is recorded as 0, its body is somewhere in the stream
5295   // but we haven't seen it yet.
5296   if (DFII->second == 0)
5297     if (std::error_code EC = findFunctionInStream(F, DFII))
5298       return EC;
5299 
5300   // Move the bit stream to the saved position of the deferred function body.
5301   Stream.JumpToBit(DFII->second);
5302 
5303   if (std::error_code EC = parseFunctionBody(F))
5304     return EC;
5305   F->setIsMaterializable(false);
5306 
5307   if (StripDebugInfo)
5308     stripDebugInfo(*F);
5309 
5310   // Upgrade any old intrinsic calls in the function.
5311   for (auto &I : UpgradedIntrinsics) {
5312     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5313          UI != UE;) {
5314       User *U = *UI;
5315       ++UI;
5316       if (CallInst *CI = dyn_cast<CallInst>(U))
5317         UpgradeIntrinsicCall(CI, I.second);
5318     }
5319   }
5320 
5321   // Finish fn->subprogram upgrade for materialized functions.
5322   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5323     F->setSubprogram(SP);
5324 
5325   // Bring in any functions that this function forward-referenced via
5326   // blockaddresses.
5327   return materializeForwardReferencedFunctions();
5328 }
5329 
5330 std::error_code BitcodeReader::materializeModule() {
5331   if (std::error_code EC = materializeMetadata())
5332     return EC;
5333 
5334   // Promise to materialize all forward references.
5335   WillMaterializeAllForwardRefs = true;
5336 
5337   // Iterate over the module, deserializing any functions that are still on
5338   // disk.
5339   for (Function &F : *TheModule) {
5340     if (std::error_code EC = materialize(&F))
5341       return EC;
5342   }
5343   // At this point, if there are any function bodies, parse the rest of
5344   // the bits in the module past the last function block we have recorded
5345   // through either lazy scanning or the VST.
5346   if (LastFunctionBlockBit || NextUnreadBit)
5347     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5348                                                      : NextUnreadBit);
5349 
5350   // Check that all block address forward references got resolved (as we
5351   // promised above).
5352   if (!BasicBlockFwdRefs.empty())
5353     return error("Never resolved function from blockaddress");
5354 
5355   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5356   // to prevent this instructions with TBAA tags should be upgraded first.
5357   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5358     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5359 
5360   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5361   // delete the old functions to clean up. We can't do this unless the entire
5362   // module is materialized because there could always be another function body
5363   // with calls to the old function.
5364   for (auto &I : UpgradedIntrinsics) {
5365     for (auto *U : I.first->users()) {
5366       if (CallInst *CI = dyn_cast<CallInst>(U))
5367         UpgradeIntrinsicCall(CI, I.second);
5368     }
5369     if (!I.first->use_empty())
5370       I.first->replaceAllUsesWith(I.second);
5371     I.first->eraseFromParent();
5372   }
5373   UpgradedIntrinsics.clear();
5374 
5375   UpgradeDebugInfo(*TheModule);
5376   return std::error_code();
5377 }
5378 
5379 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5380   return IdentifiedStructTypes;
5381 }
5382 
5383 std::error_code
5384 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5385   if (Streamer)
5386     return initLazyStream(std::move(Streamer));
5387   return initStreamFromBuffer();
5388 }
5389 
5390 std::error_code BitcodeReader::initStreamFromBuffer() {
5391   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5392   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5393 
5394   if (Buffer->getBufferSize() & 3)
5395     return error("Invalid bitcode signature");
5396 
5397   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5398   // The magic number is 0x0B17C0DE stored in little endian.
5399   if (isBitcodeWrapper(BufPtr, BufEnd))
5400     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5401       return error("Invalid bitcode wrapper header");
5402 
5403   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5404   Stream.init(&*StreamFile);
5405 
5406   return std::error_code();
5407 }
5408 
5409 std::error_code
5410 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5411   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5412   // see it.
5413   auto OwnedBytes =
5414       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5415   StreamingMemoryObject &Bytes = *OwnedBytes;
5416   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5417   Stream.init(&*StreamFile);
5418 
5419   unsigned char buf[16];
5420   if (Bytes.readBytes(buf, 16, 0) != 16)
5421     return error("Invalid bitcode signature");
5422 
5423   if (!isBitcode(buf, buf + 16))
5424     return error("Invalid bitcode signature");
5425 
5426   if (isBitcodeWrapper(buf, buf + 4)) {
5427     const unsigned char *bitcodeStart = buf;
5428     const unsigned char *bitcodeEnd = buf + 16;
5429     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5430     Bytes.dropLeadingBytes(bitcodeStart - buf);
5431     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5432   }
5433   return std::error_code();
5434 }
5435 
5436 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5437                                                        const Twine &Message) {
5438   return ::error(DiagnosticHandler, make_error_code(E), Message);
5439 }
5440 
5441 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5442   return ::error(DiagnosticHandler,
5443                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5444 }
5445 
5446 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5447   return ::error(DiagnosticHandler, make_error_code(E));
5448 }
5449 
5450 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5451     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5452     bool IsLazy, bool CheckGlobalValSummaryPresenceOnly)
5453     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5454       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5455 
5456 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5457     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5458     bool CheckGlobalValSummaryPresenceOnly)
5459     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5460       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5461 
5462 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5463 
5464 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5465 
5466 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5467   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5468   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5469   return VGI->second;
5470 }
5471 
5472 GlobalValueInfo *
5473 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5474   auto I = SummaryOffsetToInfoMap.find(Offset);
5475   assert(I != SummaryOffsetToInfoMap.end());
5476   return I->second;
5477 }
5478 
5479 // Specialized value symbol table parser used when reading module index
5480 // blocks where we don't actually create global values.
5481 // At the end of this routine the module index is populated with a map
5482 // from global value name to GlobalValueInfo. The global value info contains
5483 // the function block's bitcode offset (if applicable), or the offset into the
5484 // summary section for the combined index.
5485 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5486     uint64_t Offset,
5487     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5488   assert(Offset > 0 && "Expected non-zero VST offset");
5489   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5490 
5491   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5492     return error("Invalid record");
5493 
5494   SmallVector<uint64_t, 64> Record;
5495 
5496   // Read all the records for this value table.
5497   SmallString<128> ValueName;
5498   while (1) {
5499     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5500 
5501     switch (Entry.Kind) {
5502     case BitstreamEntry::SubBlock: // Handled for us already.
5503     case BitstreamEntry::Error:
5504       return error("Malformed block");
5505     case BitstreamEntry::EndBlock:
5506       // Done parsing VST, jump back to wherever we came from.
5507       Stream.JumpToBit(CurrentBit);
5508       return std::error_code();
5509     case BitstreamEntry::Record:
5510       // The interesting case.
5511       break;
5512     }
5513 
5514     // Read a record.
5515     Record.clear();
5516     switch (Stream.readRecord(Entry.ID, Record)) {
5517     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5518       break;
5519     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5520       if (convertToString(Record, 1, ValueName))
5521         return error("Invalid record");
5522       unsigned ValueID = Record[0];
5523       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5524           llvm::make_unique<GlobalValueInfo>();
5525       assert(!SourceFileName.empty());
5526       auto VLI = ValueIdToLinkageMap.find(ValueID);
5527       assert(VLI != ValueIdToLinkageMap.end() &&
5528              "No linkage found for VST entry?");
5529       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5530           ValueName, VLI->second, SourceFileName);
5531       TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo));
5532       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId);
5533       ValueName.clear();
5534       break;
5535     }
5536     case bitc::VST_CODE_FNENTRY: {
5537       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5538       if (convertToString(Record, 2, ValueName))
5539         return error("Invalid record");
5540       unsigned ValueID = Record[0];
5541       uint64_t FuncOffset = Record[1];
5542       assert(!IsLazy && "Lazy summary read only supported for combined index");
5543       std::unique_ptr<GlobalValueInfo> FuncInfo =
5544           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5545       assert(!SourceFileName.empty());
5546       auto VLI = ValueIdToLinkageMap.find(ValueID);
5547       assert(VLI != ValueIdToLinkageMap.end() &&
5548              "No linkage found for VST entry?");
5549       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5550           ValueName, VLI->second, SourceFileName);
5551       TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo));
5552       ValueIdToCallGraphGUIDMap[ValueID] =
5553           GlobalValue::getGUID(FunctionGlobalId);
5554 
5555       ValueName.clear();
5556       break;
5557     }
5558     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5559       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5560       unsigned ValueID = Record[0];
5561       uint64_t GlobalValSummaryOffset = Record[1];
5562       uint64_t GlobalValGUID = Record[2];
5563       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5564           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5565       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5566       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5567       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5568       break;
5569     }
5570     case bitc::VST_CODE_COMBINED_ENTRY: {
5571       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5572       unsigned ValueID = Record[0];
5573       uint64_t RefGUID = Record[1];
5574       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5575       break;
5576     }
5577     }
5578   }
5579 }
5580 
5581 // Parse just the blocks needed for building the index out of the module.
5582 // At the end of this routine the module Index is populated with a map
5583 // from global value name to GlobalValueInfo. The global value info contains
5584 // either the parsed summary information (when parsing summaries
5585 // eagerly), or just to the summary record's offset
5586 // if parsing lazily (IsLazy).
5587 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5588   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5589     return error("Invalid record");
5590 
5591   SmallVector<uint64_t, 64> Record;
5592   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5593   unsigned ValueId = 0;
5594 
5595   // Read the index for this module.
5596   while (1) {
5597     BitstreamEntry Entry = Stream.advance();
5598 
5599     switch (Entry.Kind) {
5600     case BitstreamEntry::Error:
5601       return error("Malformed block");
5602     case BitstreamEntry::EndBlock:
5603       return std::error_code();
5604 
5605     case BitstreamEntry::SubBlock:
5606       if (CheckGlobalValSummaryPresenceOnly) {
5607         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5608           SeenGlobalValSummary = true;
5609           // No need to parse the rest since we found the summary.
5610           return std::error_code();
5611         }
5612         if (Stream.SkipBlock())
5613           return error("Invalid record");
5614         continue;
5615       }
5616       switch (Entry.ID) {
5617       default: // Skip unknown content.
5618         if (Stream.SkipBlock())
5619           return error("Invalid record");
5620         break;
5621       case bitc::BLOCKINFO_BLOCK_ID:
5622         // Need to parse these to get abbrev ids (e.g. for VST)
5623         if (Stream.ReadBlockInfoBlock())
5624           return error("Malformed block");
5625         break;
5626       case bitc::VALUE_SYMTAB_BLOCK_ID:
5627         // Should have been parsed earlier via VSTOffset, unless there
5628         // is no summary section.
5629         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5630                 !SeenGlobalValSummary) &&
5631                "Expected early VST parse via VSTOffset record");
5632         if (Stream.SkipBlock())
5633           return error("Invalid record");
5634         break;
5635       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5636         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5637         assert(!SeenValueSymbolTable &&
5638                "Already read VST when parsing summary block?");
5639         if (std::error_code EC =
5640                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5641           return EC;
5642         SeenValueSymbolTable = true;
5643         SeenGlobalValSummary = true;
5644         if (IsLazy) {
5645           // Lazy parsing of summary info, skip it.
5646           if (Stream.SkipBlock())
5647             return error("Invalid record");
5648         } else if (std::error_code EC = parseEntireSummary())
5649           return EC;
5650         break;
5651       case bitc::MODULE_STRTAB_BLOCK_ID:
5652         if (std::error_code EC = parseModuleStringTable())
5653           return EC;
5654         break;
5655       }
5656       continue;
5657 
5658     case BitstreamEntry::Record:
5659       // Once we find the last record of interest, skip the rest.
5660       if (VSTOffset > 0)
5661         Stream.skipRecord(Entry.ID);
5662       else {
5663         Record.clear();
5664         auto BitCode = Stream.readRecord(Entry.ID, Record);
5665         switch (BitCode) {
5666         default:
5667           break; // Default behavior, ignore unknown content.
5668         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5669         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5670           SmallString<128> ValueName;
5671           if (convertToString(Record, 0, ValueName))
5672             return error("Invalid record");
5673           SourceFileName = ValueName.c_str();
5674           break;
5675         }
5676         /// MODULE_CODE_VSTOFFSET: [offset]
5677         case bitc::MODULE_CODE_VSTOFFSET:
5678           if (Record.size() < 1)
5679             return error("Invalid record");
5680           VSTOffset = Record[0];
5681           break;
5682         // GLOBALVAR: [pointer type, isconst, initid,
5683         //             linkage, alignment, section, visibility, threadlocal,
5684         //             unnamed_addr, externally_initialized, dllstorageclass,
5685         //             comdat]
5686         case bitc::MODULE_CODE_GLOBALVAR: {
5687           if (Record.size() < 6)
5688             return error("Invalid record");
5689           uint64_t RawLinkage = Record[3];
5690           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5691           ValueIdToLinkageMap[ValueId++] = Linkage;
5692           break;
5693         }
5694         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5695         //             alignment, section, visibility, gc, unnamed_addr,
5696         //             prologuedata, dllstorageclass, comdat, prefixdata]
5697         case bitc::MODULE_CODE_FUNCTION: {
5698           if (Record.size() < 8)
5699             return error("Invalid record");
5700           uint64_t RawLinkage = Record[3];
5701           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5702           ValueIdToLinkageMap[ValueId++] = Linkage;
5703           break;
5704         }
5705         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5706         // dllstorageclass]
5707         case bitc::MODULE_CODE_ALIAS: {
5708           if (Record.size() < 6)
5709             return error("Invalid record");
5710           uint64_t RawLinkage = Record[3];
5711           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5712           ValueIdToLinkageMap[ValueId++] = Linkage;
5713           break;
5714         }
5715         }
5716       }
5717       continue;
5718     }
5719   }
5720 }
5721 
5722 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5723 // objects in the index.
5724 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5725   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5726     return error("Invalid record");
5727 
5728   SmallVector<uint64_t, 64> Record;
5729 
5730   bool Combined = false;
5731   while (1) {
5732     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5733 
5734     switch (Entry.Kind) {
5735     case BitstreamEntry::SubBlock: // Handled for us already.
5736     case BitstreamEntry::Error:
5737       return error("Malformed block");
5738     case BitstreamEntry::EndBlock:
5739       // For a per-module index, remove any entries that still have empty
5740       // summaries. The VST parsing creates entries eagerly for all symbols,
5741       // but not all have associated summaries (e.g. it doesn't know how to
5742       // distinguish between VST_CODE_ENTRY for function declarations vs global
5743       // variables with initializers that end up with a summary). Remove those
5744       // entries now so that we don't need to rely on the combined index merger
5745       // to clean them up (especially since that may not run for the first
5746       // module's index if we merge into that).
5747       if (!Combined)
5748         TheIndex->removeEmptySummaryEntries();
5749       return std::error_code();
5750     case BitstreamEntry::Record:
5751       // The interesting case.
5752       break;
5753     }
5754 
5755     // Read a record. The record format depends on whether this
5756     // is a per-module index or a combined index file. In the per-module
5757     // case the records contain the associated value's ID for correlation
5758     // with VST entries. In the combined index the correlation is done
5759     // via the bitcode offset of the summary records (which were saved
5760     // in the combined index VST entries). The records also contain
5761     // information used for ThinLTO renaming and importing.
5762     Record.clear();
5763     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5764     auto BitCode = Stream.readRecord(Entry.ID, Record);
5765     switch (BitCode) {
5766     default: // Default behavior: ignore.
5767       break;
5768     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5769     //                n x (valueid, callsitecount)]
5770     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5771     //                        numrefs x valueid,
5772     //                        n x (valueid, callsitecount, profilecount)]
5773     case bitc::FS_PERMODULE:
5774     case bitc::FS_PERMODULE_PROFILE: {
5775       unsigned ValueID = Record[0];
5776       uint64_t RawLinkage = Record[1];
5777       unsigned InstCount = Record[2];
5778       unsigned NumRefs = Record[3];
5779       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5780           getDecodedLinkage(RawLinkage), InstCount);
5781       // The module path string ref set in the summary must be owned by the
5782       // index's module string table. Since we don't have a module path
5783       // string table section in the per-module index, we create a single
5784       // module path string table entry with an empty (0) ID to take
5785       // ownership.
5786       FS->setModulePath(
5787           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5788       static int RefListStartIndex = 4;
5789       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5790       assert(Record.size() >= RefListStartIndex + NumRefs &&
5791              "Record size inconsistent with number of references");
5792       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5793         unsigned RefValueId = Record[I];
5794         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5795         FS->addRefEdge(RefGUID);
5796       }
5797       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5798       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5799            ++I) {
5800         unsigned CalleeValueId = Record[I];
5801         unsigned CallsiteCount = Record[++I];
5802         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5803         uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId);
5804         FS->addCallGraphEdge(CalleeGUID,
5805                              CalleeInfo(CallsiteCount, ProfileCount));
5806       }
5807       uint64_t GUID = getGUIDFromValueId(ValueID);
5808       auto InfoList = TheIndex->findGlobalValueInfoList(GUID);
5809       assert(InfoList != TheIndex->end() &&
5810              "Expected VST parse to create GlobalValueInfo entry");
5811       assert(InfoList->second.size() == 1 &&
5812              "Expected a single GlobalValueInfo per GUID in module");
5813       auto &Info = InfoList->second[0];
5814       assert(!Info->summary() && "Expected a single summary per VST entry");
5815       Info->setSummary(std::move(FS));
5816       break;
5817     }
5818     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5819     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5820       unsigned ValueID = Record[0];
5821       uint64_t RawLinkage = Record[1];
5822       std::unique_ptr<GlobalVarSummary> FS =
5823           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5824       FS->setModulePath(
5825           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5826       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5827         unsigned RefValueId = Record[I];
5828         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5829         FS->addRefEdge(RefGUID);
5830       }
5831       uint64_t GUID = getGUIDFromValueId(ValueID);
5832       auto InfoList = TheIndex->findGlobalValueInfoList(GUID);
5833       assert(InfoList != TheIndex->end() &&
5834              "Expected VST parse to create GlobalValueInfo entry");
5835       assert(InfoList->second.size() == 1 &&
5836              "Expected a single GlobalValueInfo per GUID in module");
5837       auto &Info = InfoList->second[0];
5838       assert(!Info->summary() && "Expected a single summary per VST entry");
5839       Info->setSummary(std::move(FS));
5840       break;
5841     }
5842     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5843     //               n x (valueid, callsitecount)]
5844     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5845     //                       numrefs x valueid,
5846     //                       n x (valueid, callsitecount, profilecount)]
5847     case bitc::FS_COMBINED:
5848     case bitc::FS_COMBINED_PROFILE: {
5849       uint64_t ModuleId = Record[0];
5850       uint64_t RawLinkage = Record[1];
5851       unsigned InstCount = Record[2];
5852       unsigned NumRefs = Record[3];
5853       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5854           getDecodedLinkage(RawLinkage), InstCount);
5855       FS->setModulePath(ModuleIdMap[ModuleId]);
5856       static int RefListStartIndex = 4;
5857       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5858       assert(Record.size() >= RefListStartIndex + NumRefs &&
5859              "Record size inconsistent with number of references");
5860       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5861         unsigned RefValueId = Record[I];
5862         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5863         FS->addRefEdge(RefGUID);
5864       }
5865       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5866       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5867            ++I) {
5868         unsigned CalleeValueId = Record[I];
5869         unsigned CallsiteCount = Record[++I];
5870         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5871         uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId);
5872         FS->addCallGraphEdge(CalleeGUID,
5873                              CalleeInfo(CallsiteCount, ProfileCount));
5874       }
5875       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5876       assert(!Info->summary() && "Expected a single summary per VST entry");
5877       Info->setSummary(std::move(FS));
5878       Combined = true;
5879       break;
5880     }
5881     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
5882     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5883       uint64_t ModuleId = Record[0];
5884       uint64_t RawLinkage = Record[1];
5885       std::unique_ptr<GlobalVarSummary> FS =
5886           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5887       FS->setModulePath(ModuleIdMap[ModuleId]);
5888       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5889         unsigned RefValueId = Record[I];
5890         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5891         FS->addRefEdge(RefGUID);
5892       }
5893       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5894       assert(!Info->summary() && "Expected a single summary per VST entry");
5895       Info->setSummary(std::move(FS));
5896       Combined = true;
5897       break;
5898     }
5899     }
5900   }
5901   llvm_unreachable("Exit infinite loop");
5902 }
5903 
5904 // Parse the  module string table block into the Index.
5905 // This populates the ModulePathStringTable map in the index.
5906 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5907   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5908     return error("Invalid record");
5909 
5910   SmallVector<uint64_t, 64> Record;
5911 
5912   SmallString<128> ModulePath;
5913   while (1) {
5914     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5915 
5916     switch (Entry.Kind) {
5917     case BitstreamEntry::SubBlock: // Handled for us already.
5918     case BitstreamEntry::Error:
5919       return error("Malformed block");
5920     case BitstreamEntry::EndBlock:
5921       return std::error_code();
5922     case BitstreamEntry::Record:
5923       // The interesting case.
5924       break;
5925     }
5926 
5927     Record.clear();
5928     switch (Stream.readRecord(Entry.ID, Record)) {
5929     default: // Default behavior: ignore.
5930       break;
5931     case bitc::MST_CODE_ENTRY: {
5932       // MST_ENTRY: [modid, namechar x N]
5933       if (convertToString(Record, 1, ModulePath))
5934         return error("Invalid record");
5935       uint64_t ModuleId = Record[0];
5936       StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
5937       ModuleIdMap[ModuleId] = ModulePathInMap;
5938       ModulePath.clear();
5939       break;
5940     }
5941     }
5942   }
5943   llvm_unreachable("Exit infinite loop");
5944 }
5945 
5946 // Parse the function info index from the bitcode streamer into the given index.
5947 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
5948     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
5949   TheIndex = I;
5950 
5951   if (std::error_code EC = initStream(std::move(Streamer)))
5952     return EC;
5953 
5954   // Sniff for the signature.
5955   if (!hasValidBitcodeHeader(Stream))
5956     return error("Invalid bitcode signature");
5957 
5958   // We expect a number of well-defined blocks, though we don't necessarily
5959   // need to understand them all.
5960   while (1) {
5961     if (Stream.AtEndOfStream()) {
5962       // We didn't really read a proper Module block.
5963       return error("Malformed block");
5964     }
5965 
5966     BitstreamEntry Entry =
5967         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5968 
5969     if (Entry.Kind != BitstreamEntry::SubBlock)
5970       return error("Malformed block");
5971 
5972     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5973     // building the function summary index.
5974     if (Entry.ID == bitc::MODULE_BLOCK_ID)
5975       return parseModule();
5976 
5977     if (Stream.SkipBlock())
5978       return error("Invalid record");
5979   }
5980 }
5981 
5982 // Parse the summary information at the given offset in the buffer into
5983 // the index. Used to support lazy parsing of summaries from the
5984 // combined index during importing.
5985 // TODO: This function is not yet complete as it won't have a consumer
5986 // until ThinLTO function importing is added.
5987 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
5988     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
5989     size_t SummaryOffset) {
5990   TheIndex = I;
5991 
5992   if (std::error_code EC = initStream(std::move(Streamer)))
5993     return EC;
5994 
5995   // Sniff for the signature.
5996   if (!hasValidBitcodeHeader(Stream))
5997     return error("Invalid bitcode signature");
5998 
5999   Stream.JumpToBit(SummaryOffset);
6000 
6001   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6002 
6003   switch (Entry.Kind) {
6004   default:
6005     return error("Malformed block");
6006   case BitstreamEntry::Record:
6007     // The expected case.
6008     break;
6009   }
6010 
6011   // TODO: Read a record. This interface will be completed when ThinLTO
6012   // importing is added so that it can be tested.
6013   SmallVector<uint64_t, 64> Record;
6014   switch (Stream.readRecord(Entry.ID, Record)) {
6015   case bitc::FS_COMBINED:
6016   case bitc::FS_COMBINED_PROFILE:
6017   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6018   default:
6019     return error("Invalid record");
6020   }
6021 
6022   return std::error_code();
6023 }
6024 
6025 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6026     std::unique_ptr<DataStreamer> Streamer) {
6027   if (Streamer)
6028     return initLazyStream(std::move(Streamer));
6029   return initStreamFromBuffer();
6030 }
6031 
6032 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6033   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6034   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6035 
6036   if (Buffer->getBufferSize() & 3)
6037     return error("Invalid bitcode signature");
6038 
6039   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6040   // The magic number is 0x0B17C0DE stored in little endian.
6041   if (isBitcodeWrapper(BufPtr, BufEnd))
6042     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6043       return error("Invalid bitcode wrapper header");
6044 
6045   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6046   Stream.init(&*StreamFile);
6047 
6048   return std::error_code();
6049 }
6050 
6051 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6052     std::unique_ptr<DataStreamer> Streamer) {
6053   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6054   // see it.
6055   auto OwnedBytes =
6056       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6057   StreamingMemoryObject &Bytes = *OwnedBytes;
6058   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6059   Stream.init(&*StreamFile);
6060 
6061   unsigned char buf[16];
6062   if (Bytes.readBytes(buf, 16, 0) != 16)
6063     return error("Invalid bitcode signature");
6064 
6065   if (!isBitcode(buf, buf + 16))
6066     return error("Invalid bitcode signature");
6067 
6068   if (isBitcodeWrapper(buf, buf + 4)) {
6069     const unsigned char *bitcodeStart = buf;
6070     const unsigned char *bitcodeEnd = buf + 16;
6071     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6072     Bytes.dropLeadingBytes(bitcodeStart - buf);
6073     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6074   }
6075   return std::error_code();
6076 }
6077 
6078 namespace {
6079 class BitcodeErrorCategoryType : public std::error_category {
6080   const char *name() const LLVM_NOEXCEPT override {
6081     return "llvm.bitcode";
6082   }
6083   std::string message(int IE) const override {
6084     BitcodeError E = static_cast<BitcodeError>(IE);
6085     switch (E) {
6086     case BitcodeError::InvalidBitcodeSignature:
6087       return "Invalid bitcode signature";
6088     case BitcodeError::CorruptedBitcode:
6089       return "Corrupted bitcode";
6090     }
6091     llvm_unreachable("Unknown error type!");
6092   }
6093 };
6094 } // end anonymous namespace
6095 
6096 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6097 
6098 const std::error_category &llvm::BitcodeErrorCategory() {
6099   return *ErrorCategory;
6100 }
6101 
6102 //===----------------------------------------------------------------------===//
6103 // External interface
6104 //===----------------------------------------------------------------------===//
6105 
6106 static ErrorOr<std::unique_ptr<Module>>
6107 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6108                      BitcodeReader *R, LLVMContext &Context,
6109                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6110   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6111   M->setMaterializer(R);
6112 
6113   auto cleanupOnError = [&](std::error_code EC) {
6114     R->releaseBuffer(); // Never take ownership on error.
6115     return EC;
6116   };
6117 
6118   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6119   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6120                                                ShouldLazyLoadMetadata))
6121     return cleanupOnError(EC);
6122 
6123   if (MaterializeAll) {
6124     // Read in the entire module, and destroy the BitcodeReader.
6125     if (std::error_code EC = M->materializeAll())
6126       return cleanupOnError(EC);
6127   } else {
6128     // Resolve forward references from blockaddresses.
6129     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6130       return cleanupOnError(EC);
6131   }
6132   return std::move(M);
6133 }
6134 
6135 /// \brief Get a lazy one-at-time loading module from bitcode.
6136 ///
6137 /// This isn't always used in a lazy context.  In particular, it's also used by
6138 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6139 /// in forward-referenced functions from block address references.
6140 ///
6141 /// \param[in] MaterializeAll Set to \c true if we should materialize
6142 /// everything.
6143 static ErrorOr<std::unique_ptr<Module>>
6144 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6145                          LLVMContext &Context, bool MaterializeAll,
6146                          bool ShouldLazyLoadMetadata = false) {
6147   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6148 
6149   ErrorOr<std::unique_ptr<Module>> Ret =
6150       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6151                            MaterializeAll, ShouldLazyLoadMetadata);
6152   if (!Ret)
6153     return Ret;
6154 
6155   Buffer.release(); // The BitcodeReader owns it now.
6156   return Ret;
6157 }
6158 
6159 ErrorOr<std::unique_ptr<Module>>
6160 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6161                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6162   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6163                                   ShouldLazyLoadMetadata);
6164 }
6165 
6166 ErrorOr<std::unique_ptr<Module>>
6167 llvm::getStreamedBitcodeModule(StringRef Name,
6168                                std::unique_ptr<DataStreamer> Streamer,
6169                                LLVMContext &Context) {
6170   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6171   BitcodeReader *R = new BitcodeReader(Context);
6172 
6173   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6174                               false);
6175 }
6176 
6177 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6178                                                         LLVMContext &Context) {
6179   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6180   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6181   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6182   // written.  We must defer until the Module has been fully materialized.
6183 }
6184 
6185 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6186                                          LLVMContext &Context) {
6187   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6188   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6189   ErrorOr<std::string> Triple = R->parseTriple();
6190   if (Triple.getError())
6191     return "";
6192   return Triple.get();
6193 }
6194 
6195 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6196                                            LLVMContext &Context) {
6197   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6198   BitcodeReader R(Buf.release(), Context);
6199   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6200   if (ProducerString.getError())
6201     return "";
6202   return ProducerString.get();
6203 }
6204 
6205 // Parse the specified bitcode buffer, returning the function info index.
6206 // If IsLazy is false, parse the entire function summary into
6207 // the index. Otherwise skip the function summary section, and only create
6208 // an index object with a map from function name to function summary offset.
6209 // The index is used to perform lazy function summary reading later.
6210 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6211 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6212                             DiagnosticHandlerFunction DiagnosticHandler,
6213                             bool IsLazy) {
6214   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6215   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
6216 
6217   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6218 
6219   auto cleanupOnError = [&](std::error_code EC) {
6220     R.releaseBuffer(); // Never take ownership on error.
6221     return EC;
6222   };
6223 
6224   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6225     return cleanupOnError(EC);
6226 
6227   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6228   return std::move(Index);
6229 }
6230 
6231 // Check if the given bitcode buffer contains a global value summary block.
6232 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6233                                  DiagnosticHandlerFunction DiagnosticHandler) {
6234   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6235   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
6236 
6237   auto cleanupOnError = [&](std::error_code EC) {
6238     R.releaseBuffer(); // Never take ownership on error.
6239     return false;
6240   };
6241 
6242   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6243     return cleanupOnError(EC);
6244 
6245   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6246   return R.foundGlobalValSummary();
6247 }
6248 
6249 // This method supports lazy reading of summary data from the combined
6250 // index during ThinLTO function importing. When reading the combined index
6251 // file, getModuleSummaryIndex is first invoked with IsLazy=true.
6252 // Then this method is called for each value considered for importing,
6253 // to parse the summary information for the given value name into
6254 // the index.
6255 std::error_code llvm::readGlobalValueSummary(
6256     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6257     StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) {
6258   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6259   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6260 
6261   auto cleanupOnError = [&](std::error_code EC) {
6262     R.releaseBuffer(); // Never take ownership on error.
6263     return EC;
6264   };
6265 
6266   // Lookup the given value name in the GlobalValueMap, which may
6267   // contain a list of global value infos in the case of a COMDAT. Walk through
6268   // and parse each summary info at the summary offset
6269   // recorded when parsing the value symbol table.
6270   for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) {
6271     size_t SummaryOffset = FI->bitcodeIndex();
6272     if (std::error_code EC =
6273             R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset))
6274       return cleanupOnError(EC);
6275   }
6276 
6277   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6278   return std::error_code();
6279 }
6280