1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Expected<BitstreamEntry> Res = Stream.advance()) 183 Entry = Res.get(); 184 else 185 return Res.takeError(); 186 187 switch (Entry.Kind) { 188 default: 189 case BitstreamEntry::Error: 190 return error("Malformed block"); 191 case BitstreamEntry::EndBlock: 192 return ProducerIdentification; 193 case BitstreamEntry::Record: 194 // The interesting case. 195 break; 196 } 197 198 // Read a record. 199 Record.clear(); 200 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 201 if (!MaybeBitCode) 202 return MaybeBitCode.takeError(); 203 switch (MaybeBitCode.get()) { 204 default: // Default behavior: reject 205 return error("Invalid value"); 206 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 207 convertToString(Record, 0, ProducerIdentification); 208 break; 209 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 210 unsigned epoch = (unsigned)Record[0]; 211 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 212 return error( 213 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 214 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 215 } 216 } 217 } 218 } 219 } 220 221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 222 // We expect a number of well-defined blocks, though we don't necessarily 223 // need to understand them all. 224 while (true) { 225 if (Stream.AtEndOfStream()) 226 return ""; 227 228 BitstreamEntry Entry; 229 if (Expected<BitstreamEntry> Res = Stream.advance()) 230 Entry = std::move(Res.get()); 231 else 232 return Res.takeError(); 233 234 switch (Entry.Kind) { 235 case BitstreamEntry::EndBlock: 236 case BitstreamEntry::Error: 237 return error("Malformed block"); 238 239 case BitstreamEntry::SubBlock: 240 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 241 return readIdentificationBlock(Stream); 242 243 // Ignore other sub-blocks. 244 if (Error Err = Stream.SkipBlock()) 245 return std::move(Err); 246 continue; 247 case BitstreamEntry::Record: 248 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 249 continue; 250 else 251 return Skipped.takeError(); 252 } 253 } 254 } 255 256 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 257 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 258 return std::move(Err); 259 260 SmallVector<uint64_t, 64> Record; 261 // Read all the records for this module. 262 263 while (true) { 264 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 265 if (!MaybeEntry) 266 return MaybeEntry.takeError(); 267 BitstreamEntry Entry = MaybeEntry.get(); 268 269 switch (Entry.Kind) { 270 case BitstreamEntry::SubBlock: // Handled for us already. 271 case BitstreamEntry::Error: 272 return error("Malformed block"); 273 case BitstreamEntry::EndBlock: 274 return false; 275 case BitstreamEntry::Record: 276 // The interesting case. 277 break; 278 } 279 280 // Read a record. 281 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 282 if (!MaybeRecord) 283 return MaybeRecord.takeError(); 284 switch (MaybeRecord.get()) { 285 default: 286 break; // Default behavior, ignore unknown content. 287 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 288 std::string S; 289 if (convertToString(Record, 0, S)) 290 return error("Invalid record"); 291 // Check for the i386 and other (x86_64, ARM) conventions 292 if (S.find("__DATA,__objc_catlist") != std::string::npos || 293 S.find("__OBJC,__category") != std::string::npos) 294 return true; 295 break; 296 } 297 } 298 Record.clear(); 299 } 300 llvm_unreachable("Exit infinite loop"); 301 } 302 303 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 304 // We expect a number of well-defined blocks, though we don't necessarily 305 // need to understand them all. 306 while (true) { 307 BitstreamEntry Entry; 308 if (Expected<BitstreamEntry> Res = Stream.advance()) 309 Entry = std::move(Res.get()); 310 else 311 return Res.takeError(); 312 313 switch (Entry.Kind) { 314 case BitstreamEntry::Error: 315 return error("Malformed block"); 316 case BitstreamEntry::EndBlock: 317 return false; 318 319 case BitstreamEntry::SubBlock: 320 if (Entry.ID == bitc::MODULE_BLOCK_ID) 321 return hasObjCCategoryInModule(Stream); 322 323 // Ignore other sub-blocks. 324 if (Error Err = Stream.SkipBlock()) 325 return std::move(Err); 326 continue; 327 328 case BitstreamEntry::Record: 329 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 330 continue; 331 else 332 return Skipped.takeError(); 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 bool readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 482 LLVMContext &Context; 483 Module *TheModule = nullptr; 484 // Next offset to start scanning for lazy parsing of function bodies. 485 uint64_t NextUnreadBit = 0; 486 // Last function offset found in the VST. 487 uint64_t LastFunctionBlockBit = 0; 488 bool SeenValueSymbolTable = false; 489 uint64_t VSTOffset = 0; 490 491 std::vector<std::string> SectionTable; 492 std::vector<std::string> GCTable; 493 494 std::vector<Type*> TypeList; 495 DenseMap<Function *, FunctionType *> FunctionTypes; 496 BitcodeReaderValueList ValueList; 497 Optional<MetadataLoader> MDLoader; 498 std::vector<Comdat *> ComdatList; 499 SmallVector<Instruction *, 64> InstructionList; 500 501 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 502 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 503 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 505 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 506 507 /// The set of attributes by index. Index zero in the file is for null, and 508 /// is thus not represented here. As such all indices are off by one. 509 std::vector<AttributeList> MAttributes; 510 511 /// The set of attribute groups. 512 std::map<unsigned, AttributeList> MAttributeGroups; 513 514 /// While parsing a function body, this is a list of the basic blocks for the 515 /// function. 516 std::vector<BasicBlock*> FunctionBBs; 517 518 // When reading the module header, this list is populated with functions that 519 // have bodies later in the file. 520 std::vector<Function*> FunctionsWithBodies; 521 522 // When intrinsic functions are encountered which require upgrading they are 523 // stored here with their replacement function. 524 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 525 UpdatedIntrinsicMap UpgradedIntrinsics; 526 // Intrinsics which were remangled because of types rename 527 UpdatedIntrinsicMap RemangledIntrinsics; 528 529 // Several operations happen after the module header has been read, but 530 // before function bodies are processed. This keeps track of whether 531 // we've done this yet. 532 bool SeenFirstFunctionBody = false; 533 534 /// When function bodies are initially scanned, this map contains info about 535 /// where to find deferred function body in the stream. 536 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 537 538 /// When Metadata block is initially scanned when parsing the module, we may 539 /// choose to defer parsing of the metadata. This vector contains info about 540 /// which Metadata blocks are deferred. 541 std::vector<uint64_t> DeferredMetadataInfo; 542 543 /// These are basic blocks forward-referenced by block addresses. They are 544 /// inserted lazily into functions when they're loaded. The basic block ID is 545 /// its index into the vector. 546 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 547 std::deque<Function *> BasicBlockFwdRefQueue; 548 549 /// Indicates that we are using a new encoding for instruction operands where 550 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 551 /// instruction number, for a more compact encoding. Some instruction 552 /// operands are not relative to the instruction ID: basic block numbers, and 553 /// types. Once the old style function blocks have been phased out, we would 554 /// not need this flag. 555 bool UseRelativeIDs = false; 556 557 /// True if all functions will be materialized, negating the need to process 558 /// (e.g.) blockaddress forward references. 559 bool WillMaterializeAllForwardRefs = false; 560 561 bool StripDebugInfo = false; 562 TBAAVerifier TBAAVerifyHelper; 563 564 std::vector<std::string> BundleTags; 565 SmallVector<SyncScope::ID, 8> SSIDs; 566 567 public: 568 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 569 StringRef ProducerIdentification, LLVMContext &Context); 570 571 Error materializeForwardReferencedFunctions(); 572 573 Error materialize(GlobalValue *GV) override; 574 Error materializeModule() override; 575 std::vector<StructType *> getIdentifiedStructTypes() const override; 576 577 /// Main interface to parsing a bitcode buffer. 578 /// \returns true if an error occurred. 579 Error parseBitcodeInto( 580 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 581 DataLayoutCallbackTy DataLayoutCallback = [](std::string) { 582 return None; 583 }); 584 585 static uint64_t decodeSignRotatedValue(uint64_t V); 586 587 /// Materialize any deferred Metadata block. 588 Error materializeMetadata() override; 589 590 void setStripDebugInfo() override; 591 592 private: 593 std::vector<StructType *> IdentifiedStructTypes; 594 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 595 StructType *createIdentifiedStructType(LLVMContext &Context); 596 597 /// Map all pointer types within \param Ty to the opaque pointer 598 /// type in the same address space if opaque pointers are being 599 /// used, otherwise nop. This converts a bitcode-reader internal 600 /// type into one suitable for use in a Value. 601 Type *flattenPointerTypes(Type *Ty) { 602 return Ty; 603 } 604 605 /// Given a fully structured pointer type (i.e. not opaque), return 606 /// the flattened form of its element, suitable for use in a Value. 607 Type *getPointerElementFlatType(Type *Ty) { 608 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 609 } 610 611 /// Given a fully structured pointer type, get its element type in 612 /// both fully structured form, and flattened form suitable for use 613 /// in a Value. 614 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 615 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 616 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 617 } 618 619 /// Return the flattened type (suitable for use in a Value) 620 /// specified by the given \param ID . 621 Type *getTypeByID(unsigned ID) { 622 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 623 } 624 625 /// Return the fully structured (bitcode-reader internal) type 626 /// corresponding to the given \param ID . 627 Type *getFullyStructuredTypeByID(unsigned ID); 628 629 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 630 if (Ty && Ty->isMetadataTy()) 631 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 632 return ValueList.getValueFwdRef(ID, Ty, FullTy); 633 } 634 635 Metadata *getFnMetadataByID(unsigned ID) { 636 return MDLoader->getMetadataFwdRefOrLoad(ID); 637 } 638 639 BasicBlock *getBasicBlock(unsigned ID) const { 640 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 641 return FunctionBBs[ID]; 642 } 643 644 AttributeList getAttributes(unsigned i) const { 645 if (i-1 < MAttributes.size()) 646 return MAttributes[i-1]; 647 return AttributeList(); 648 } 649 650 /// Read a value/type pair out of the specified record from slot 'Slot'. 651 /// Increment Slot past the number of slots used in the record. Return true on 652 /// failure. 653 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 654 unsigned InstNum, Value *&ResVal, 655 Type **FullTy = nullptr) { 656 if (Slot == Record.size()) return true; 657 unsigned ValNo = (unsigned)Record[Slot++]; 658 // Adjust the ValNo, if it was encoded relative to the InstNum. 659 if (UseRelativeIDs) 660 ValNo = InstNum - ValNo; 661 if (ValNo < InstNum) { 662 // If this is not a forward reference, just return the value we already 663 // have. 664 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 665 return ResVal == nullptr; 666 } 667 if (Slot == Record.size()) 668 return true; 669 670 unsigned TypeNo = (unsigned)Record[Slot++]; 671 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 672 if (FullTy) 673 *FullTy = getFullyStructuredTypeByID(TypeNo); 674 return ResVal == nullptr; 675 } 676 677 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 678 /// past the number of slots used by the value in the record. Return true if 679 /// there is an error. 680 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 681 unsigned InstNum, Type *Ty, Value *&ResVal) { 682 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 683 return true; 684 // All values currently take a single record slot. 685 ++Slot; 686 return false; 687 } 688 689 /// Like popValue, but does not increment the Slot number. 690 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 691 unsigned InstNum, Type *Ty, Value *&ResVal) { 692 ResVal = getValue(Record, Slot, InstNum, Ty); 693 return ResVal == nullptr; 694 } 695 696 /// Version of getValue that returns ResVal directly, or 0 if there is an 697 /// error. 698 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 699 unsigned InstNum, Type *Ty) { 700 if (Slot == Record.size()) return nullptr; 701 unsigned ValNo = (unsigned)Record[Slot]; 702 // Adjust the ValNo, if it was encoded relative to the InstNum. 703 if (UseRelativeIDs) 704 ValNo = InstNum - ValNo; 705 return getFnValueByID(ValNo, Ty); 706 } 707 708 /// Like getValue, but decodes signed VBRs. 709 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 710 unsigned InstNum, Type *Ty) { 711 if (Slot == Record.size()) return nullptr; 712 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 713 // Adjust the ValNo, if it was encoded relative to the InstNum. 714 if (UseRelativeIDs) 715 ValNo = InstNum - ValNo; 716 return getFnValueByID(ValNo, Ty); 717 } 718 719 /// Upgrades old-style typeless byval attributes by adding the corresponding 720 /// argument's pointee type. 721 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 722 723 /// Converts alignment exponent (i.e. power of two (or zero)) to the 724 /// corresponding alignment to use. If alignment is too large, returns 725 /// a corresponding error code. 726 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 727 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 728 Error parseModule( 729 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 730 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 731 732 Error parseComdatRecord(ArrayRef<uint64_t> Record); 733 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 734 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 735 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 736 ArrayRef<uint64_t> Record); 737 738 Error parseAttributeBlock(); 739 Error parseAttributeGroupBlock(); 740 Error parseTypeTable(); 741 Error parseTypeTableBody(); 742 Error parseOperandBundleTags(); 743 Error parseSyncScopeNames(); 744 745 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 746 unsigned NameIndex, Triple &TT); 747 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 748 ArrayRef<uint64_t> Record); 749 Error parseValueSymbolTable(uint64_t Offset = 0); 750 Error parseGlobalValueSymbolTable(); 751 Error parseConstants(); 752 Error rememberAndSkipFunctionBodies(); 753 Error rememberAndSkipFunctionBody(); 754 /// Save the positions of the Metadata blocks and skip parsing the blocks. 755 Error rememberAndSkipMetadata(); 756 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 757 Error parseFunctionBody(Function *F); 758 Error globalCleanup(); 759 Error resolveGlobalAndIndirectSymbolInits(); 760 Error parseUseLists(); 761 Error findFunctionInStream( 762 Function *F, 763 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 764 765 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 766 }; 767 768 /// Class to manage reading and parsing function summary index bitcode 769 /// files/sections. 770 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 771 /// The module index built during parsing. 772 ModuleSummaryIndex &TheIndex; 773 774 /// Indicates whether we have encountered a global value summary section 775 /// yet during parsing. 776 bool SeenGlobalValSummary = false; 777 778 /// Indicates whether we have already parsed the VST, used for error checking. 779 bool SeenValueSymbolTable = false; 780 781 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 782 /// Used to enable on-demand parsing of the VST. 783 uint64_t VSTOffset = 0; 784 785 // Map to save ValueId to ValueInfo association that was recorded in the 786 // ValueSymbolTable. It is used after the VST is parsed to convert 787 // call graph edges read from the function summary from referencing 788 // callees by their ValueId to using the ValueInfo instead, which is how 789 // they are recorded in the summary index being built. 790 // We save a GUID which refers to the same global as the ValueInfo, but 791 // ignoring the linkage, i.e. for values other than local linkage they are 792 // identical. 793 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 794 ValueIdToValueInfoMap; 795 796 /// Map populated during module path string table parsing, from the 797 /// module ID to a string reference owned by the index's module 798 /// path string table, used to correlate with combined index 799 /// summary records. 800 DenseMap<uint64_t, StringRef> ModuleIdMap; 801 802 /// Original source file name recorded in a bitcode record. 803 std::string SourceFileName; 804 805 /// The string identifier given to this module by the client, normally the 806 /// path to the bitcode file. 807 StringRef ModulePath; 808 809 /// For per-module summary indexes, the unique numerical identifier given to 810 /// this module by the client. 811 unsigned ModuleId; 812 813 public: 814 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 815 ModuleSummaryIndex &TheIndex, 816 StringRef ModulePath, unsigned ModuleId); 817 818 Error parseModule(); 819 820 private: 821 void setValueGUID(uint64_t ValueID, StringRef ValueName, 822 GlobalValue::LinkageTypes Linkage, 823 StringRef SourceFileName); 824 Error parseValueSymbolTable( 825 uint64_t Offset, 826 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 827 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 828 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 829 bool IsOldProfileFormat, 830 bool HasProfile, 831 bool HasRelBF); 832 Error parseEntireSummary(unsigned ID); 833 Error parseModuleStringTable(); 834 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 835 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 836 TypeIdCompatibleVtableInfo &TypeId); 837 838 std::pair<ValueInfo, GlobalValue::GUID> 839 getValueInfoFromValueId(unsigned ValueId); 840 841 void addThisModule(); 842 ModuleSummaryIndex::ModuleInfo *getThisModule(); 843 }; 844 845 } // end anonymous namespace 846 847 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 848 Error Err) { 849 if (Err) { 850 std::error_code EC; 851 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 852 EC = EIB.convertToErrorCode(); 853 Ctx.emitError(EIB.message()); 854 }); 855 return EC; 856 } 857 return std::error_code(); 858 } 859 860 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 861 StringRef ProducerIdentification, 862 LLVMContext &Context) 863 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 864 ValueList(Context, Stream.SizeInBytes()) { 865 this->ProducerIdentification = std::string(ProducerIdentification); 866 } 867 868 Error BitcodeReader::materializeForwardReferencedFunctions() { 869 if (WillMaterializeAllForwardRefs) 870 return Error::success(); 871 872 // Prevent recursion. 873 WillMaterializeAllForwardRefs = true; 874 875 while (!BasicBlockFwdRefQueue.empty()) { 876 Function *F = BasicBlockFwdRefQueue.front(); 877 BasicBlockFwdRefQueue.pop_front(); 878 assert(F && "Expected valid function"); 879 if (!BasicBlockFwdRefs.count(F)) 880 // Already materialized. 881 continue; 882 883 // Check for a function that isn't materializable to prevent an infinite 884 // loop. When parsing a blockaddress stored in a global variable, there 885 // isn't a trivial way to check if a function will have a body without a 886 // linear search through FunctionsWithBodies, so just check it here. 887 if (!F->isMaterializable()) 888 return error("Never resolved function from blockaddress"); 889 890 // Try to materialize F. 891 if (Error Err = materialize(F)) 892 return Err; 893 } 894 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 895 896 // Reset state. 897 WillMaterializeAllForwardRefs = false; 898 return Error::success(); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // Helper functions to implement forward reference resolution, etc. 903 //===----------------------------------------------------------------------===// 904 905 static bool hasImplicitComdat(size_t Val) { 906 switch (Val) { 907 default: 908 return false; 909 case 1: // Old WeakAnyLinkage 910 case 4: // Old LinkOnceAnyLinkage 911 case 10: // Old WeakODRLinkage 912 case 11: // Old LinkOnceODRLinkage 913 return true; 914 } 915 } 916 917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 918 switch (Val) { 919 default: // Map unknown/new linkages to external 920 case 0: 921 return GlobalValue::ExternalLinkage; 922 case 2: 923 return GlobalValue::AppendingLinkage; 924 case 3: 925 return GlobalValue::InternalLinkage; 926 case 5: 927 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 928 case 6: 929 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 930 case 7: 931 return GlobalValue::ExternalWeakLinkage; 932 case 8: 933 return GlobalValue::CommonLinkage; 934 case 9: 935 return GlobalValue::PrivateLinkage; 936 case 12: 937 return GlobalValue::AvailableExternallyLinkage; 938 case 13: 939 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 940 case 14: 941 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 942 case 15: 943 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 944 case 1: // Old value with implicit comdat. 945 case 16: 946 return GlobalValue::WeakAnyLinkage; 947 case 10: // Old value with implicit comdat. 948 case 17: 949 return GlobalValue::WeakODRLinkage; 950 case 4: // Old value with implicit comdat. 951 case 18: 952 return GlobalValue::LinkOnceAnyLinkage; 953 case 11: // Old value with implicit comdat. 954 case 19: 955 return GlobalValue::LinkOnceODRLinkage; 956 } 957 } 958 959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 960 FunctionSummary::FFlags Flags; 961 Flags.ReadNone = RawFlags & 0x1; 962 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 963 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 964 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 965 Flags.NoInline = (RawFlags >> 4) & 0x1; 966 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 967 return Flags; 968 } 969 970 /// Decode the flags for GlobalValue in the summary. 971 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 972 uint64_t Version) { 973 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 974 // like getDecodedLinkage() above. Any future change to the linkage enum and 975 // to getDecodedLinkage() will need to be taken into account here as above. 976 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 977 RawFlags = RawFlags >> 4; 978 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 979 // The Live flag wasn't introduced until version 3. For dead stripping 980 // to work correctly on earlier versions, we must conservatively treat all 981 // values as live. 982 bool Live = (RawFlags & 0x2) || Version < 3; 983 bool Local = (RawFlags & 0x4); 984 bool AutoHide = (RawFlags & 0x8); 985 986 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 987 } 988 989 // Decode the flags for GlobalVariable in the summary 990 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 991 return GlobalVarSummary::GVarFlags( 992 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 993 (RawFlags & 0x4) ? true : false, 994 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 995 } 996 997 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 998 switch (Val) { 999 default: // Map unknown visibilities to default. 1000 case 0: return GlobalValue::DefaultVisibility; 1001 case 1: return GlobalValue::HiddenVisibility; 1002 case 2: return GlobalValue::ProtectedVisibility; 1003 } 1004 } 1005 1006 static GlobalValue::DLLStorageClassTypes 1007 getDecodedDLLStorageClass(unsigned Val) { 1008 switch (Val) { 1009 default: // Map unknown values to default. 1010 case 0: return GlobalValue::DefaultStorageClass; 1011 case 1: return GlobalValue::DLLImportStorageClass; 1012 case 2: return GlobalValue::DLLExportStorageClass; 1013 } 1014 } 1015 1016 static bool getDecodedDSOLocal(unsigned Val) { 1017 switch(Val) { 1018 default: // Map unknown values to preemptable. 1019 case 0: return false; 1020 case 1: return true; 1021 } 1022 } 1023 1024 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1025 switch (Val) { 1026 case 0: return GlobalVariable::NotThreadLocal; 1027 default: // Map unknown non-zero value to general dynamic. 1028 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1029 case 2: return GlobalVariable::LocalDynamicTLSModel; 1030 case 3: return GlobalVariable::InitialExecTLSModel; 1031 case 4: return GlobalVariable::LocalExecTLSModel; 1032 } 1033 } 1034 1035 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1036 switch (Val) { 1037 default: // Map unknown to UnnamedAddr::None. 1038 case 0: return GlobalVariable::UnnamedAddr::None; 1039 case 1: return GlobalVariable::UnnamedAddr::Global; 1040 case 2: return GlobalVariable::UnnamedAddr::Local; 1041 } 1042 } 1043 1044 static int getDecodedCastOpcode(unsigned Val) { 1045 switch (Val) { 1046 default: return -1; 1047 case bitc::CAST_TRUNC : return Instruction::Trunc; 1048 case bitc::CAST_ZEXT : return Instruction::ZExt; 1049 case bitc::CAST_SEXT : return Instruction::SExt; 1050 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1051 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1052 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1053 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1054 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1055 case bitc::CAST_FPEXT : return Instruction::FPExt; 1056 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1057 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1058 case bitc::CAST_BITCAST : return Instruction::BitCast; 1059 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1060 } 1061 } 1062 1063 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1064 bool IsFP = Ty->isFPOrFPVectorTy(); 1065 // UnOps are only valid for int/fp or vector of int/fp types 1066 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1067 return -1; 1068 1069 switch (Val) { 1070 default: 1071 return -1; 1072 case bitc::UNOP_FNEG: 1073 return IsFP ? Instruction::FNeg : -1; 1074 } 1075 } 1076 1077 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1078 bool IsFP = Ty->isFPOrFPVectorTy(); 1079 // BinOps are only valid for int/fp or vector of int/fp types 1080 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1081 return -1; 1082 1083 switch (Val) { 1084 default: 1085 return -1; 1086 case bitc::BINOP_ADD: 1087 return IsFP ? Instruction::FAdd : Instruction::Add; 1088 case bitc::BINOP_SUB: 1089 return IsFP ? Instruction::FSub : Instruction::Sub; 1090 case bitc::BINOP_MUL: 1091 return IsFP ? Instruction::FMul : Instruction::Mul; 1092 case bitc::BINOP_UDIV: 1093 return IsFP ? -1 : Instruction::UDiv; 1094 case bitc::BINOP_SDIV: 1095 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1096 case bitc::BINOP_UREM: 1097 return IsFP ? -1 : Instruction::URem; 1098 case bitc::BINOP_SREM: 1099 return IsFP ? Instruction::FRem : Instruction::SRem; 1100 case bitc::BINOP_SHL: 1101 return IsFP ? -1 : Instruction::Shl; 1102 case bitc::BINOP_LSHR: 1103 return IsFP ? -1 : Instruction::LShr; 1104 case bitc::BINOP_ASHR: 1105 return IsFP ? -1 : Instruction::AShr; 1106 case bitc::BINOP_AND: 1107 return IsFP ? -1 : Instruction::And; 1108 case bitc::BINOP_OR: 1109 return IsFP ? -1 : Instruction::Or; 1110 case bitc::BINOP_XOR: 1111 return IsFP ? -1 : Instruction::Xor; 1112 } 1113 } 1114 1115 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1116 switch (Val) { 1117 default: return AtomicRMWInst::BAD_BINOP; 1118 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1119 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1120 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1121 case bitc::RMW_AND: return AtomicRMWInst::And; 1122 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1123 case bitc::RMW_OR: return AtomicRMWInst::Or; 1124 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1125 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1126 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1127 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1128 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1129 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1130 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1131 } 1132 } 1133 1134 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1135 switch (Val) { 1136 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1137 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1138 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1139 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1140 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1141 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1142 default: // Map unknown orderings to sequentially-consistent. 1143 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1144 } 1145 } 1146 1147 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1148 switch (Val) { 1149 default: // Map unknown selection kinds to any. 1150 case bitc::COMDAT_SELECTION_KIND_ANY: 1151 return Comdat::Any; 1152 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1153 return Comdat::ExactMatch; 1154 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1155 return Comdat::Largest; 1156 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1157 return Comdat::NoDuplicates; 1158 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1159 return Comdat::SameSize; 1160 } 1161 } 1162 1163 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1164 FastMathFlags FMF; 1165 if (0 != (Val & bitc::UnsafeAlgebra)) 1166 FMF.setFast(); 1167 if (0 != (Val & bitc::AllowReassoc)) 1168 FMF.setAllowReassoc(); 1169 if (0 != (Val & bitc::NoNaNs)) 1170 FMF.setNoNaNs(); 1171 if (0 != (Val & bitc::NoInfs)) 1172 FMF.setNoInfs(); 1173 if (0 != (Val & bitc::NoSignedZeros)) 1174 FMF.setNoSignedZeros(); 1175 if (0 != (Val & bitc::AllowReciprocal)) 1176 FMF.setAllowReciprocal(); 1177 if (0 != (Val & bitc::AllowContract)) 1178 FMF.setAllowContract(true); 1179 if (0 != (Val & bitc::ApproxFunc)) 1180 FMF.setApproxFunc(); 1181 return FMF; 1182 } 1183 1184 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1185 switch (Val) { 1186 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1187 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1188 } 1189 } 1190 1191 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1192 // The type table size is always specified correctly. 1193 if (ID >= TypeList.size()) 1194 return nullptr; 1195 1196 if (Type *Ty = TypeList[ID]) 1197 return Ty; 1198 1199 // If we have a forward reference, the only possible case is when it is to a 1200 // named struct. Just create a placeholder for now. 1201 return TypeList[ID] = createIdentifiedStructType(Context); 1202 } 1203 1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1205 StringRef Name) { 1206 auto *Ret = StructType::create(Context, Name); 1207 IdentifiedStructTypes.push_back(Ret); 1208 return Ret; 1209 } 1210 1211 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1212 auto *Ret = StructType::create(Context); 1213 IdentifiedStructTypes.push_back(Ret); 1214 return Ret; 1215 } 1216 1217 //===----------------------------------------------------------------------===// 1218 // Functions for parsing blocks from the bitcode file 1219 //===----------------------------------------------------------------------===// 1220 1221 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1222 switch (Val) { 1223 case Attribute::EndAttrKinds: 1224 case Attribute::EmptyKey: 1225 case Attribute::TombstoneKey: 1226 llvm_unreachable("Synthetic enumerators which should never get here"); 1227 1228 case Attribute::None: return 0; 1229 case Attribute::ZExt: return 1 << 0; 1230 case Attribute::SExt: return 1 << 1; 1231 case Attribute::NoReturn: return 1 << 2; 1232 case Attribute::InReg: return 1 << 3; 1233 case Attribute::StructRet: return 1 << 4; 1234 case Attribute::NoUnwind: return 1 << 5; 1235 case Attribute::NoAlias: return 1 << 6; 1236 case Attribute::ByVal: return 1 << 7; 1237 case Attribute::Nest: return 1 << 8; 1238 case Attribute::ReadNone: return 1 << 9; 1239 case Attribute::ReadOnly: return 1 << 10; 1240 case Attribute::NoInline: return 1 << 11; 1241 case Attribute::AlwaysInline: return 1 << 12; 1242 case Attribute::OptimizeForSize: return 1 << 13; 1243 case Attribute::StackProtect: return 1 << 14; 1244 case Attribute::StackProtectReq: return 1 << 15; 1245 case Attribute::Alignment: return 31 << 16; 1246 case Attribute::NoCapture: return 1 << 21; 1247 case Attribute::NoRedZone: return 1 << 22; 1248 case Attribute::NoImplicitFloat: return 1 << 23; 1249 case Attribute::Naked: return 1 << 24; 1250 case Attribute::InlineHint: return 1 << 25; 1251 case Attribute::StackAlignment: return 7 << 26; 1252 case Attribute::ReturnsTwice: return 1 << 29; 1253 case Attribute::UWTable: return 1 << 30; 1254 case Attribute::NonLazyBind: return 1U << 31; 1255 case Attribute::SanitizeAddress: return 1ULL << 32; 1256 case Attribute::MinSize: return 1ULL << 33; 1257 case Attribute::NoDuplicate: return 1ULL << 34; 1258 case Attribute::StackProtectStrong: return 1ULL << 35; 1259 case Attribute::SanitizeThread: return 1ULL << 36; 1260 case Attribute::SanitizeMemory: return 1ULL << 37; 1261 case Attribute::NoBuiltin: return 1ULL << 38; 1262 case Attribute::Returned: return 1ULL << 39; 1263 case Attribute::Cold: return 1ULL << 40; 1264 case Attribute::Builtin: return 1ULL << 41; 1265 case Attribute::OptimizeNone: return 1ULL << 42; 1266 case Attribute::InAlloca: return 1ULL << 43; 1267 case Attribute::NonNull: return 1ULL << 44; 1268 case Attribute::JumpTable: return 1ULL << 45; 1269 case Attribute::Convergent: return 1ULL << 46; 1270 case Attribute::SafeStack: return 1ULL << 47; 1271 case Attribute::NoRecurse: return 1ULL << 48; 1272 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1273 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1274 case Attribute::SwiftSelf: return 1ULL << 51; 1275 case Attribute::SwiftError: return 1ULL << 52; 1276 case Attribute::WriteOnly: return 1ULL << 53; 1277 case Attribute::Speculatable: return 1ULL << 54; 1278 case Attribute::StrictFP: return 1ULL << 55; 1279 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1280 case Attribute::NoCfCheck: return 1ULL << 57; 1281 case Attribute::OptForFuzzing: return 1ULL << 58; 1282 case Attribute::ShadowCallStack: return 1ULL << 59; 1283 case Attribute::SpeculativeLoadHardening: 1284 return 1ULL << 60; 1285 case Attribute::ImmArg: 1286 return 1ULL << 61; 1287 case Attribute::WillReturn: 1288 return 1ULL << 62; 1289 case Attribute::NoFree: 1290 return 1ULL << 63; 1291 default: 1292 // Other attributes are not supported in the raw format, 1293 // as we ran out of space. 1294 return 0; 1295 } 1296 llvm_unreachable("Unsupported attribute type"); 1297 } 1298 1299 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1300 if (!Val) return; 1301 1302 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1303 I = Attribute::AttrKind(I + 1)) { 1304 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1305 if (I == Attribute::Alignment) 1306 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1307 else if (I == Attribute::StackAlignment) 1308 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1309 else 1310 B.addAttribute(I); 1311 } 1312 } 1313 } 1314 1315 /// This fills an AttrBuilder object with the LLVM attributes that have 1316 /// been decoded from the given integer. This function must stay in sync with 1317 /// 'encodeLLVMAttributesForBitcode'. 1318 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1319 uint64_t EncodedAttrs) { 1320 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1321 // the bits above 31 down by 11 bits. 1322 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1323 assert((!Alignment || isPowerOf2_32(Alignment)) && 1324 "Alignment must be a power of two."); 1325 1326 if (Alignment) 1327 B.addAlignmentAttr(Alignment); 1328 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1329 (EncodedAttrs & 0xffff)); 1330 } 1331 1332 Error BitcodeReader::parseAttributeBlock() { 1333 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1334 return Err; 1335 1336 if (!MAttributes.empty()) 1337 return error("Invalid multiple blocks"); 1338 1339 SmallVector<uint64_t, 64> Record; 1340 1341 SmallVector<AttributeList, 8> Attrs; 1342 1343 // Read all the records. 1344 while (true) { 1345 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1346 if (!MaybeEntry) 1347 return MaybeEntry.takeError(); 1348 BitstreamEntry Entry = MaybeEntry.get(); 1349 1350 switch (Entry.Kind) { 1351 case BitstreamEntry::SubBlock: // Handled for us already. 1352 case BitstreamEntry::Error: 1353 return error("Malformed block"); 1354 case BitstreamEntry::EndBlock: 1355 return Error::success(); 1356 case BitstreamEntry::Record: 1357 // The interesting case. 1358 break; 1359 } 1360 1361 // Read a record. 1362 Record.clear(); 1363 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1364 if (!MaybeRecord) 1365 return MaybeRecord.takeError(); 1366 switch (MaybeRecord.get()) { 1367 default: // Default behavior: ignore. 1368 break; 1369 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1370 // Deprecated, but still needed to read old bitcode files. 1371 if (Record.size() & 1) 1372 return error("Invalid record"); 1373 1374 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1375 AttrBuilder B; 1376 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1377 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1378 } 1379 1380 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1381 Attrs.clear(); 1382 break; 1383 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1384 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1385 Attrs.push_back(MAttributeGroups[Record[i]]); 1386 1387 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1388 Attrs.clear(); 1389 break; 1390 } 1391 } 1392 } 1393 1394 // Returns Attribute::None on unrecognized codes. 1395 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1396 switch (Code) { 1397 default: 1398 return Attribute::None; 1399 case bitc::ATTR_KIND_ALIGNMENT: 1400 return Attribute::Alignment; 1401 case bitc::ATTR_KIND_ALWAYS_INLINE: 1402 return Attribute::AlwaysInline; 1403 case bitc::ATTR_KIND_ARGMEMONLY: 1404 return Attribute::ArgMemOnly; 1405 case bitc::ATTR_KIND_BUILTIN: 1406 return Attribute::Builtin; 1407 case bitc::ATTR_KIND_BY_VAL: 1408 return Attribute::ByVal; 1409 case bitc::ATTR_KIND_IN_ALLOCA: 1410 return Attribute::InAlloca; 1411 case bitc::ATTR_KIND_COLD: 1412 return Attribute::Cold; 1413 case bitc::ATTR_KIND_CONVERGENT: 1414 return Attribute::Convergent; 1415 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1416 return Attribute::InaccessibleMemOnly; 1417 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1418 return Attribute::InaccessibleMemOrArgMemOnly; 1419 case bitc::ATTR_KIND_INLINE_HINT: 1420 return Attribute::InlineHint; 1421 case bitc::ATTR_KIND_IN_REG: 1422 return Attribute::InReg; 1423 case bitc::ATTR_KIND_JUMP_TABLE: 1424 return Attribute::JumpTable; 1425 case bitc::ATTR_KIND_MIN_SIZE: 1426 return Attribute::MinSize; 1427 case bitc::ATTR_KIND_NAKED: 1428 return Attribute::Naked; 1429 case bitc::ATTR_KIND_NEST: 1430 return Attribute::Nest; 1431 case bitc::ATTR_KIND_NO_ALIAS: 1432 return Attribute::NoAlias; 1433 case bitc::ATTR_KIND_NO_BUILTIN: 1434 return Attribute::NoBuiltin; 1435 case bitc::ATTR_KIND_NO_CAPTURE: 1436 return Attribute::NoCapture; 1437 case bitc::ATTR_KIND_NO_DUPLICATE: 1438 return Attribute::NoDuplicate; 1439 case bitc::ATTR_KIND_NOFREE: 1440 return Attribute::NoFree; 1441 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1442 return Attribute::NoImplicitFloat; 1443 case bitc::ATTR_KIND_NO_INLINE: 1444 return Attribute::NoInline; 1445 case bitc::ATTR_KIND_NO_RECURSE: 1446 return Attribute::NoRecurse; 1447 case bitc::ATTR_KIND_NO_MERGE: 1448 return Attribute::NoMerge; 1449 case bitc::ATTR_KIND_NON_LAZY_BIND: 1450 return Attribute::NonLazyBind; 1451 case bitc::ATTR_KIND_NON_NULL: 1452 return Attribute::NonNull; 1453 case bitc::ATTR_KIND_DEREFERENCEABLE: 1454 return Attribute::Dereferenceable; 1455 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1456 return Attribute::DereferenceableOrNull; 1457 case bitc::ATTR_KIND_ALLOC_SIZE: 1458 return Attribute::AllocSize; 1459 case bitc::ATTR_KIND_NO_RED_ZONE: 1460 return Attribute::NoRedZone; 1461 case bitc::ATTR_KIND_NO_RETURN: 1462 return Attribute::NoReturn; 1463 case bitc::ATTR_KIND_NOSYNC: 1464 return Attribute::NoSync; 1465 case bitc::ATTR_KIND_NOCF_CHECK: 1466 return Attribute::NoCfCheck; 1467 case bitc::ATTR_KIND_NO_UNWIND: 1468 return Attribute::NoUnwind; 1469 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1470 return Attribute::NullPointerIsValid; 1471 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1472 return Attribute::OptForFuzzing; 1473 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1474 return Attribute::OptimizeForSize; 1475 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1476 return Attribute::OptimizeNone; 1477 case bitc::ATTR_KIND_READ_NONE: 1478 return Attribute::ReadNone; 1479 case bitc::ATTR_KIND_READ_ONLY: 1480 return Attribute::ReadOnly; 1481 case bitc::ATTR_KIND_RETURNED: 1482 return Attribute::Returned; 1483 case bitc::ATTR_KIND_RETURNS_TWICE: 1484 return Attribute::ReturnsTwice; 1485 case bitc::ATTR_KIND_S_EXT: 1486 return Attribute::SExt; 1487 case bitc::ATTR_KIND_SPECULATABLE: 1488 return Attribute::Speculatable; 1489 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1490 return Attribute::StackAlignment; 1491 case bitc::ATTR_KIND_STACK_PROTECT: 1492 return Attribute::StackProtect; 1493 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1494 return Attribute::StackProtectReq; 1495 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1496 return Attribute::StackProtectStrong; 1497 case bitc::ATTR_KIND_SAFESTACK: 1498 return Attribute::SafeStack; 1499 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1500 return Attribute::ShadowCallStack; 1501 case bitc::ATTR_KIND_STRICT_FP: 1502 return Attribute::StrictFP; 1503 case bitc::ATTR_KIND_STRUCT_RET: 1504 return Attribute::StructRet; 1505 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1506 return Attribute::SanitizeAddress; 1507 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1508 return Attribute::SanitizeHWAddress; 1509 case bitc::ATTR_KIND_SANITIZE_THREAD: 1510 return Attribute::SanitizeThread; 1511 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1512 return Attribute::SanitizeMemory; 1513 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1514 return Attribute::SpeculativeLoadHardening; 1515 case bitc::ATTR_KIND_SWIFT_ERROR: 1516 return Attribute::SwiftError; 1517 case bitc::ATTR_KIND_SWIFT_SELF: 1518 return Attribute::SwiftSelf; 1519 case bitc::ATTR_KIND_UW_TABLE: 1520 return Attribute::UWTable; 1521 case bitc::ATTR_KIND_WILLRETURN: 1522 return Attribute::WillReturn; 1523 case bitc::ATTR_KIND_WRITEONLY: 1524 return Attribute::WriteOnly; 1525 case bitc::ATTR_KIND_Z_EXT: 1526 return Attribute::ZExt; 1527 case bitc::ATTR_KIND_IMMARG: 1528 return Attribute::ImmArg; 1529 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1530 return Attribute::SanitizeMemTag; 1531 case bitc::ATTR_KIND_PREALLOCATED: 1532 return Attribute::Preallocated; 1533 case bitc::ATTR_KIND_NOUNDEF: 1534 return Attribute::NoUndef; 1535 case bitc::ATTR_KIND_BYREF: 1536 return Attribute::ByRef; 1537 } 1538 } 1539 1540 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1541 MaybeAlign &Alignment) { 1542 // Note: Alignment in bitcode files is incremented by 1, so that zero 1543 // can be used for default alignment. 1544 if (Exponent > Value::MaxAlignmentExponent + 1) 1545 return error("Invalid alignment value"); 1546 Alignment = decodeMaybeAlign(Exponent); 1547 return Error::success(); 1548 } 1549 1550 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1551 *Kind = getAttrFromCode(Code); 1552 if (*Kind == Attribute::None) 1553 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1554 return Error::success(); 1555 } 1556 1557 Error BitcodeReader::parseAttributeGroupBlock() { 1558 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1559 return Err; 1560 1561 if (!MAttributeGroups.empty()) 1562 return error("Invalid multiple blocks"); 1563 1564 SmallVector<uint64_t, 64> Record; 1565 1566 // Read all the records. 1567 while (true) { 1568 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1569 if (!MaybeEntry) 1570 return MaybeEntry.takeError(); 1571 BitstreamEntry Entry = MaybeEntry.get(); 1572 1573 switch (Entry.Kind) { 1574 case BitstreamEntry::SubBlock: // Handled for us already. 1575 case BitstreamEntry::Error: 1576 return error("Malformed block"); 1577 case BitstreamEntry::EndBlock: 1578 return Error::success(); 1579 case BitstreamEntry::Record: 1580 // The interesting case. 1581 break; 1582 } 1583 1584 // Read a record. 1585 Record.clear(); 1586 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1587 if (!MaybeRecord) 1588 return MaybeRecord.takeError(); 1589 switch (MaybeRecord.get()) { 1590 default: // Default behavior: ignore. 1591 break; 1592 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1593 if (Record.size() < 3) 1594 return error("Invalid record"); 1595 1596 uint64_t GrpID = Record[0]; 1597 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1598 1599 AttrBuilder B; 1600 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1601 if (Record[i] == 0) { // Enum attribute 1602 Attribute::AttrKind Kind; 1603 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1604 return Err; 1605 1606 // Upgrade old-style byval attribute to one with a type, even if it's 1607 // nullptr. We will have to insert the real type when we associate 1608 // this AttributeList with a function. 1609 if (Kind == Attribute::ByVal) 1610 B.addByValAttr(nullptr); 1611 1612 B.addAttribute(Kind); 1613 } else if (Record[i] == 1) { // Integer attribute 1614 Attribute::AttrKind Kind; 1615 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1616 return Err; 1617 if (Kind == Attribute::Alignment) 1618 B.addAlignmentAttr(Record[++i]); 1619 else if (Kind == Attribute::StackAlignment) 1620 B.addStackAlignmentAttr(Record[++i]); 1621 else if (Kind == Attribute::Dereferenceable) 1622 B.addDereferenceableAttr(Record[++i]); 1623 else if (Kind == Attribute::DereferenceableOrNull) 1624 B.addDereferenceableOrNullAttr(Record[++i]); 1625 else if (Kind == Attribute::AllocSize) 1626 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1627 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1628 bool HasValue = (Record[i++] == 4); 1629 SmallString<64> KindStr; 1630 SmallString<64> ValStr; 1631 1632 while (Record[i] != 0 && i != e) 1633 KindStr += Record[i++]; 1634 assert(Record[i] == 0 && "Kind string not null terminated"); 1635 1636 if (HasValue) { 1637 // Has a value associated with it. 1638 ++i; // Skip the '0' that terminates the "kind" string. 1639 while (Record[i] != 0 && i != e) 1640 ValStr += Record[i++]; 1641 assert(Record[i] == 0 && "Value string not null terminated"); 1642 } 1643 1644 B.addAttribute(KindStr.str(), ValStr.str()); 1645 } else { 1646 assert((Record[i] == 5 || Record[i] == 6) && 1647 "Invalid attribute group entry"); 1648 bool HasType = Record[i] == 6; 1649 Attribute::AttrKind Kind; 1650 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1651 return Err; 1652 if (Kind == Attribute::ByVal) { 1653 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1654 } else if (Kind == Attribute::ByRef) { 1655 B.addByRefAttr(getTypeByID(Record[++i])); 1656 } else if (Kind == Attribute::Preallocated) { 1657 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1658 } 1659 } 1660 } 1661 1662 UpgradeAttributes(B); 1663 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1664 break; 1665 } 1666 } 1667 } 1668 } 1669 1670 Error BitcodeReader::parseTypeTable() { 1671 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1672 return Err; 1673 1674 return parseTypeTableBody(); 1675 } 1676 1677 Error BitcodeReader::parseTypeTableBody() { 1678 if (!TypeList.empty()) 1679 return error("Invalid multiple blocks"); 1680 1681 SmallVector<uint64_t, 64> Record; 1682 unsigned NumRecords = 0; 1683 1684 SmallString<64> TypeName; 1685 1686 // Read all the records for this type table. 1687 while (true) { 1688 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1689 if (!MaybeEntry) 1690 return MaybeEntry.takeError(); 1691 BitstreamEntry Entry = MaybeEntry.get(); 1692 1693 switch (Entry.Kind) { 1694 case BitstreamEntry::SubBlock: // Handled for us already. 1695 case BitstreamEntry::Error: 1696 return error("Malformed block"); 1697 case BitstreamEntry::EndBlock: 1698 if (NumRecords != TypeList.size()) 1699 return error("Malformed block"); 1700 return Error::success(); 1701 case BitstreamEntry::Record: 1702 // The interesting case. 1703 break; 1704 } 1705 1706 // Read a record. 1707 Record.clear(); 1708 Type *ResultTy = nullptr; 1709 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1710 if (!MaybeRecord) 1711 return MaybeRecord.takeError(); 1712 switch (MaybeRecord.get()) { 1713 default: 1714 return error("Invalid value"); 1715 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1716 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1717 // type list. This allows us to reserve space. 1718 if (Record.size() < 1) 1719 return error("Invalid record"); 1720 TypeList.resize(Record[0]); 1721 continue; 1722 case bitc::TYPE_CODE_VOID: // VOID 1723 ResultTy = Type::getVoidTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_HALF: // HALF 1726 ResultTy = Type::getHalfTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1729 ResultTy = Type::getBFloatTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_FLOAT: // FLOAT 1732 ResultTy = Type::getFloatTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1735 ResultTy = Type::getDoubleTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1738 ResultTy = Type::getX86_FP80Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_FP128: // FP128 1741 ResultTy = Type::getFP128Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1744 ResultTy = Type::getPPC_FP128Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_LABEL: // LABEL 1747 ResultTy = Type::getLabelTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_METADATA: // METADATA 1750 ResultTy = Type::getMetadataTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1753 ResultTy = Type::getX86_MMXTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_TOKEN: // TOKEN 1756 ResultTy = Type::getTokenTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1759 if (Record.size() < 1) 1760 return error("Invalid record"); 1761 1762 uint64_t NumBits = Record[0]; 1763 if (NumBits < IntegerType::MIN_INT_BITS || 1764 NumBits > IntegerType::MAX_INT_BITS) 1765 return error("Bitwidth for integer type out of range"); 1766 ResultTy = IntegerType::get(Context, NumBits); 1767 break; 1768 } 1769 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1770 // [pointee type, address space] 1771 if (Record.size() < 1) 1772 return error("Invalid record"); 1773 unsigned AddressSpace = 0; 1774 if (Record.size() == 2) 1775 AddressSpace = Record[1]; 1776 ResultTy = getTypeByID(Record[0]); 1777 if (!ResultTy || 1778 !PointerType::isValidElementType(ResultTy)) 1779 return error("Invalid type"); 1780 ResultTy = PointerType::get(ResultTy, AddressSpace); 1781 break; 1782 } 1783 case bitc::TYPE_CODE_FUNCTION_OLD: { 1784 // Deprecated, but still needed to read old bitcode files. 1785 // FUNCTION: [vararg, attrid, retty, paramty x N] 1786 if (Record.size() < 3) 1787 return error("Invalid record"); 1788 SmallVector<Type*, 8> ArgTys; 1789 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1790 if (Type *T = getTypeByID(Record[i])) 1791 ArgTys.push_back(T); 1792 else 1793 break; 1794 } 1795 1796 ResultTy = getTypeByID(Record[2]); 1797 if (!ResultTy || ArgTys.size() < Record.size()-3) 1798 return error("Invalid type"); 1799 1800 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1801 break; 1802 } 1803 case bitc::TYPE_CODE_FUNCTION: { 1804 // FUNCTION: [vararg, retty, paramty x N] 1805 if (Record.size() < 2) 1806 return error("Invalid record"); 1807 SmallVector<Type*, 8> ArgTys; 1808 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1809 if (Type *T = getTypeByID(Record[i])) { 1810 if (!FunctionType::isValidArgumentType(T)) 1811 return error("Invalid function argument type"); 1812 ArgTys.push_back(T); 1813 } 1814 else 1815 break; 1816 } 1817 1818 ResultTy = getTypeByID(Record[1]); 1819 if (!ResultTy || ArgTys.size() < Record.size()-2) 1820 return error("Invalid type"); 1821 1822 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1823 break; 1824 } 1825 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1826 if (Record.size() < 1) 1827 return error("Invalid record"); 1828 SmallVector<Type*, 8> EltTys; 1829 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1830 if (Type *T = getTypeByID(Record[i])) 1831 EltTys.push_back(T); 1832 else 1833 break; 1834 } 1835 if (EltTys.size() != Record.size()-1) 1836 return error("Invalid type"); 1837 ResultTy = StructType::get(Context, EltTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1841 if (convertToString(Record, 0, TypeName)) 1842 return error("Invalid record"); 1843 continue; 1844 1845 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1846 if (Record.size() < 1) 1847 return error("Invalid record"); 1848 1849 if (NumRecords >= TypeList.size()) 1850 return error("Invalid TYPE table"); 1851 1852 // Check to see if this was forward referenced, if so fill in the temp. 1853 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1854 if (Res) { 1855 Res->setName(TypeName); 1856 TypeList[NumRecords] = nullptr; 1857 } else // Otherwise, create a new struct. 1858 Res = createIdentifiedStructType(Context, TypeName); 1859 TypeName.clear(); 1860 1861 SmallVector<Type*, 8> EltTys; 1862 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1863 if (Type *T = getTypeByID(Record[i])) 1864 EltTys.push_back(T); 1865 else 1866 break; 1867 } 1868 if (EltTys.size() != Record.size()-1) 1869 return error("Invalid record"); 1870 Res->setBody(EltTys, Record[0]); 1871 ResultTy = Res; 1872 break; 1873 } 1874 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1875 if (Record.size() != 1) 1876 return error("Invalid record"); 1877 1878 if (NumRecords >= TypeList.size()) 1879 return error("Invalid TYPE table"); 1880 1881 // Check to see if this was forward referenced, if so fill in the temp. 1882 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1883 if (Res) { 1884 Res->setName(TypeName); 1885 TypeList[NumRecords] = nullptr; 1886 } else // Otherwise, create a new struct with no body. 1887 Res = createIdentifiedStructType(Context, TypeName); 1888 TypeName.clear(); 1889 ResultTy = Res; 1890 break; 1891 } 1892 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1893 if (Record.size() < 2) 1894 return error("Invalid record"); 1895 ResultTy = getTypeByID(Record[1]); 1896 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1897 return error("Invalid type"); 1898 ResultTy = ArrayType::get(ResultTy, Record[0]); 1899 break; 1900 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1901 // [numelts, eltty, scalable] 1902 if (Record.size() < 2) 1903 return error("Invalid record"); 1904 if (Record[0] == 0) 1905 return error("Invalid vector length"); 1906 ResultTy = getTypeByID(Record[1]); 1907 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1908 return error("Invalid type"); 1909 bool Scalable = Record.size() > 2 ? Record[2] : false; 1910 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1911 break; 1912 } 1913 1914 if (NumRecords >= TypeList.size()) 1915 return error("Invalid TYPE table"); 1916 if (TypeList[NumRecords]) 1917 return error( 1918 "Invalid TYPE table: Only named structs can be forward referenced"); 1919 assert(ResultTy && "Didn't read a type?"); 1920 TypeList[NumRecords++] = ResultTy; 1921 } 1922 } 1923 1924 Error BitcodeReader::parseOperandBundleTags() { 1925 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1926 return Err; 1927 1928 if (!BundleTags.empty()) 1929 return error("Invalid multiple blocks"); 1930 1931 SmallVector<uint64_t, 64> Record; 1932 1933 while (true) { 1934 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1935 if (!MaybeEntry) 1936 return MaybeEntry.takeError(); 1937 BitstreamEntry Entry = MaybeEntry.get(); 1938 1939 switch (Entry.Kind) { 1940 case BitstreamEntry::SubBlock: // Handled for us already. 1941 case BitstreamEntry::Error: 1942 return error("Malformed block"); 1943 case BitstreamEntry::EndBlock: 1944 return Error::success(); 1945 case BitstreamEntry::Record: 1946 // The interesting case. 1947 break; 1948 } 1949 1950 // Tags are implicitly mapped to integers by their order. 1951 1952 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1953 if (!MaybeRecord) 1954 return MaybeRecord.takeError(); 1955 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1956 return error("Invalid record"); 1957 1958 // OPERAND_BUNDLE_TAG: [strchr x N] 1959 BundleTags.emplace_back(); 1960 if (convertToString(Record, 0, BundleTags.back())) 1961 return error("Invalid record"); 1962 Record.clear(); 1963 } 1964 } 1965 1966 Error BitcodeReader::parseSyncScopeNames() { 1967 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1968 return Err; 1969 1970 if (!SSIDs.empty()) 1971 return error("Invalid multiple synchronization scope names blocks"); 1972 1973 SmallVector<uint64_t, 64> Record; 1974 while (true) { 1975 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1976 if (!MaybeEntry) 1977 return MaybeEntry.takeError(); 1978 BitstreamEntry Entry = MaybeEntry.get(); 1979 1980 switch (Entry.Kind) { 1981 case BitstreamEntry::SubBlock: // Handled for us already. 1982 case BitstreamEntry::Error: 1983 return error("Malformed block"); 1984 case BitstreamEntry::EndBlock: 1985 if (SSIDs.empty()) 1986 return error("Invalid empty synchronization scope names block"); 1987 return Error::success(); 1988 case BitstreamEntry::Record: 1989 // The interesting case. 1990 break; 1991 } 1992 1993 // Synchronization scope names are implicitly mapped to synchronization 1994 // scope IDs by their order. 1995 1996 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1997 if (!MaybeRecord) 1998 return MaybeRecord.takeError(); 1999 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2000 return error("Invalid record"); 2001 2002 SmallString<16> SSN; 2003 if (convertToString(Record, 0, SSN)) 2004 return error("Invalid record"); 2005 2006 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2007 Record.clear(); 2008 } 2009 } 2010 2011 /// Associate a value with its name from the given index in the provided record. 2012 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2013 unsigned NameIndex, Triple &TT) { 2014 SmallString<128> ValueName; 2015 if (convertToString(Record, NameIndex, ValueName)) 2016 return error("Invalid record"); 2017 unsigned ValueID = Record[0]; 2018 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2019 return error("Invalid record"); 2020 Value *V = ValueList[ValueID]; 2021 2022 StringRef NameStr(ValueName.data(), ValueName.size()); 2023 if (NameStr.find_first_of(0) != StringRef::npos) 2024 return error("Invalid value name"); 2025 V->setName(NameStr); 2026 auto *GO = dyn_cast<GlobalObject>(V); 2027 if (GO) { 2028 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2029 if (TT.supportsCOMDAT()) 2030 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2031 else 2032 GO->setComdat(nullptr); 2033 } 2034 } 2035 return V; 2036 } 2037 2038 /// Helper to note and return the current location, and jump to the given 2039 /// offset. 2040 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2041 BitstreamCursor &Stream) { 2042 // Save the current parsing location so we can jump back at the end 2043 // of the VST read. 2044 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2045 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2046 return std::move(JumpFailed); 2047 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2048 if (!MaybeEntry) 2049 return MaybeEntry.takeError(); 2050 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2051 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2052 return CurrentBit; 2053 } 2054 2055 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2056 Function *F, 2057 ArrayRef<uint64_t> Record) { 2058 // Note that we subtract 1 here because the offset is relative to one word 2059 // before the start of the identification or module block, which was 2060 // historically always the start of the regular bitcode header. 2061 uint64_t FuncWordOffset = Record[1] - 1; 2062 uint64_t FuncBitOffset = FuncWordOffset * 32; 2063 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2064 // Set the LastFunctionBlockBit to point to the last function block. 2065 // Later when parsing is resumed after function materialization, 2066 // we can simply skip that last function block. 2067 if (FuncBitOffset > LastFunctionBlockBit) 2068 LastFunctionBlockBit = FuncBitOffset; 2069 } 2070 2071 /// Read a new-style GlobalValue symbol table. 2072 Error BitcodeReader::parseGlobalValueSymbolTable() { 2073 unsigned FuncBitcodeOffsetDelta = 2074 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2075 2076 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2077 return Err; 2078 2079 SmallVector<uint64_t, 64> Record; 2080 while (true) { 2081 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2082 if (!MaybeEntry) 2083 return MaybeEntry.takeError(); 2084 BitstreamEntry Entry = MaybeEntry.get(); 2085 2086 switch (Entry.Kind) { 2087 case BitstreamEntry::SubBlock: 2088 case BitstreamEntry::Error: 2089 return error("Malformed block"); 2090 case BitstreamEntry::EndBlock: 2091 return Error::success(); 2092 case BitstreamEntry::Record: 2093 break; 2094 } 2095 2096 Record.clear(); 2097 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2098 if (!MaybeRecord) 2099 return MaybeRecord.takeError(); 2100 switch (MaybeRecord.get()) { 2101 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2102 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2103 cast<Function>(ValueList[Record[0]]), Record); 2104 break; 2105 } 2106 } 2107 } 2108 2109 /// Parse the value symbol table at either the current parsing location or 2110 /// at the given bit offset if provided. 2111 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2112 uint64_t CurrentBit; 2113 // Pass in the Offset to distinguish between calling for the module-level 2114 // VST (where we want to jump to the VST offset) and the function-level 2115 // VST (where we don't). 2116 if (Offset > 0) { 2117 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2118 if (!MaybeCurrentBit) 2119 return MaybeCurrentBit.takeError(); 2120 CurrentBit = MaybeCurrentBit.get(); 2121 // If this module uses a string table, read this as a module-level VST. 2122 if (UseStrtab) { 2123 if (Error Err = parseGlobalValueSymbolTable()) 2124 return Err; 2125 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2126 return JumpFailed; 2127 return Error::success(); 2128 } 2129 // Otherwise, the VST will be in a similar format to a function-level VST, 2130 // and will contain symbol names. 2131 } 2132 2133 // Compute the delta between the bitcode indices in the VST (the word offset 2134 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2135 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2136 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2137 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2138 // just before entering the VST subblock because: 1) the EnterSubBlock 2139 // changes the AbbrevID width; 2) the VST block is nested within the same 2140 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2141 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2142 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2143 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2144 unsigned FuncBitcodeOffsetDelta = 2145 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2146 2147 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2148 return Err; 2149 2150 SmallVector<uint64_t, 64> Record; 2151 2152 Triple TT(TheModule->getTargetTriple()); 2153 2154 // Read all the records for this value table. 2155 SmallString<128> ValueName; 2156 2157 while (true) { 2158 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2159 if (!MaybeEntry) 2160 return MaybeEntry.takeError(); 2161 BitstreamEntry Entry = MaybeEntry.get(); 2162 2163 switch (Entry.Kind) { 2164 case BitstreamEntry::SubBlock: // Handled for us already. 2165 case BitstreamEntry::Error: 2166 return error("Malformed block"); 2167 case BitstreamEntry::EndBlock: 2168 if (Offset > 0) 2169 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2170 return JumpFailed; 2171 return Error::success(); 2172 case BitstreamEntry::Record: 2173 // The interesting case. 2174 break; 2175 } 2176 2177 // Read a record. 2178 Record.clear(); 2179 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2180 if (!MaybeRecord) 2181 return MaybeRecord.takeError(); 2182 switch (MaybeRecord.get()) { 2183 default: // Default behavior: unknown type. 2184 break; 2185 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2186 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2187 if (Error Err = ValOrErr.takeError()) 2188 return Err; 2189 ValOrErr.get(); 2190 break; 2191 } 2192 case bitc::VST_CODE_FNENTRY: { 2193 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2194 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2195 if (Error Err = ValOrErr.takeError()) 2196 return Err; 2197 Value *V = ValOrErr.get(); 2198 2199 // Ignore function offsets emitted for aliases of functions in older 2200 // versions of LLVM. 2201 if (auto *F = dyn_cast<Function>(V)) 2202 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2203 break; 2204 } 2205 case bitc::VST_CODE_BBENTRY: { 2206 if (convertToString(Record, 1, ValueName)) 2207 return error("Invalid record"); 2208 BasicBlock *BB = getBasicBlock(Record[0]); 2209 if (!BB) 2210 return error("Invalid record"); 2211 2212 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2213 ValueName.clear(); 2214 break; 2215 } 2216 } 2217 } 2218 } 2219 2220 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2221 /// encoding. 2222 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2223 if ((V & 1) == 0) 2224 return V >> 1; 2225 if (V != 1) 2226 return -(V >> 1); 2227 // There is no such thing as -0 with integers. "-0" really means MININT. 2228 return 1ULL << 63; 2229 } 2230 2231 /// Resolve all of the initializers for global values and aliases that we can. 2232 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2233 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2234 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2235 IndirectSymbolInitWorklist; 2236 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2237 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2238 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2239 2240 GlobalInitWorklist.swap(GlobalInits); 2241 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2242 FunctionPrefixWorklist.swap(FunctionPrefixes); 2243 FunctionPrologueWorklist.swap(FunctionPrologues); 2244 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2245 2246 while (!GlobalInitWorklist.empty()) { 2247 unsigned ValID = GlobalInitWorklist.back().second; 2248 if (ValID >= ValueList.size()) { 2249 // Not ready to resolve this yet, it requires something later in the file. 2250 GlobalInits.push_back(GlobalInitWorklist.back()); 2251 } else { 2252 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2253 GlobalInitWorklist.back().first->setInitializer(C); 2254 else 2255 return error("Expected a constant"); 2256 } 2257 GlobalInitWorklist.pop_back(); 2258 } 2259 2260 while (!IndirectSymbolInitWorklist.empty()) { 2261 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2262 if (ValID >= ValueList.size()) { 2263 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2264 } else { 2265 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2266 if (!C) 2267 return error("Expected a constant"); 2268 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2269 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2270 return error("Alias and aliasee types don't match"); 2271 GIS->setIndirectSymbol(C); 2272 } 2273 IndirectSymbolInitWorklist.pop_back(); 2274 } 2275 2276 while (!FunctionPrefixWorklist.empty()) { 2277 unsigned ValID = FunctionPrefixWorklist.back().second; 2278 if (ValID >= ValueList.size()) { 2279 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2280 } else { 2281 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2282 FunctionPrefixWorklist.back().first->setPrefixData(C); 2283 else 2284 return error("Expected a constant"); 2285 } 2286 FunctionPrefixWorklist.pop_back(); 2287 } 2288 2289 while (!FunctionPrologueWorklist.empty()) { 2290 unsigned ValID = FunctionPrologueWorklist.back().second; 2291 if (ValID >= ValueList.size()) { 2292 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2293 } else { 2294 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2295 FunctionPrologueWorklist.back().first->setPrologueData(C); 2296 else 2297 return error("Expected a constant"); 2298 } 2299 FunctionPrologueWorklist.pop_back(); 2300 } 2301 2302 while (!FunctionPersonalityFnWorklist.empty()) { 2303 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2304 if (ValID >= ValueList.size()) { 2305 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2306 } else { 2307 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2308 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2309 else 2310 return error("Expected a constant"); 2311 } 2312 FunctionPersonalityFnWorklist.pop_back(); 2313 } 2314 2315 return Error::success(); 2316 } 2317 2318 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2319 SmallVector<uint64_t, 8> Words(Vals.size()); 2320 transform(Vals, Words.begin(), 2321 BitcodeReader::decodeSignRotatedValue); 2322 2323 return APInt(TypeBits, Words); 2324 } 2325 2326 Error BitcodeReader::parseConstants() { 2327 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2328 return Err; 2329 2330 SmallVector<uint64_t, 64> Record; 2331 2332 // Read all the records for this value table. 2333 Type *CurTy = Type::getInt32Ty(Context); 2334 Type *CurFullTy = Type::getInt32Ty(Context); 2335 unsigned NextCstNo = ValueList.size(); 2336 2337 struct DelayedShufTy { 2338 VectorType *OpTy; 2339 VectorType *RTy; 2340 Type *CurFullTy; 2341 uint64_t Op0Idx; 2342 uint64_t Op1Idx; 2343 uint64_t Op2Idx; 2344 unsigned CstNo; 2345 }; 2346 std::vector<DelayedShufTy> DelayedShuffles; 2347 while (true) { 2348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2349 if (!MaybeEntry) 2350 return MaybeEntry.takeError(); 2351 BitstreamEntry Entry = MaybeEntry.get(); 2352 2353 switch (Entry.Kind) { 2354 case BitstreamEntry::SubBlock: // Handled for us already. 2355 case BitstreamEntry::Error: 2356 return error("Malformed block"); 2357 case BitstreamEntry::EndBlock: 2358 // Once all the constants have been read, go through and resolve forward 2359 // references. 2360 // 2361 // We have to treat shuffles specially because they don't have three 2362 // operands anymore. We need to convert the shuffle mask into an array, 2363 // and we can't convert a forward reference. 2364 for (auto &DelayedShuffle : DelayedShuffles) { 2365 VectorType *OpTy = DelayedShuffle.OpTy; 2366 VectorType *RTy = DelayedShuffle.RTy; 2367 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2368 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2369 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2370 uint64_t CstNo = DelayedShuffle.CstNo; 2371 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2372 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2373 Type *ShufTy = 2374 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2375 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2376 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2377 return error("Invalid shufflevector operands"); 2378 SmallVector<int, 16> Mask; 2379 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2380 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2381 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2382 } 2383 2384 if (NextCstNo != ValueList.size()) 2385 return error("Invalid constant reference"); 2386 2387 ValueList.resolveConstantForwardRefs(); 2388 return Error::success(); 2389 case BitstreamEntry::Record: 2390 // The interesting case. 2391 break; 2392 } 2393 2394 // Read a record. 2395 Record.clear(); 2396 Type *VoidType = Type::getVoidTy(Context); 2397 Value *V = nullptr; 2398 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2399 if (!MaybeBitCode) 2400 return MaybeBitCode.takeError(); 2401 switch (unsigned BitCode = MaybeBitCode.get()) { 2402 default: // Default behavior: unknown constant 2403 case bitc::CST_CODE_UNDEF: // UNDEF 2404 V = UndefValue::get(CurTy); 2405 break; 2406 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2407 if (Record.empty()) 2408 return error("Invalid record"); 2409 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2410 return error("Invalid record"); 2411 if (TypeList[Record[0]] == VoidType) 2412 return error("Invalid constant type"); 2413 CurFullTy = TypeList[Record[0]]; 2414 CurTy = flattenPointerTypes(CurFullTy); 2415 continue; // Skip the ValueList manipulation. 2416 case bitc::CST_CODE_NULL: // NULL 2417 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2418 return error("Invalid type for a constant null value"); 2419 V = Constant::getNullValue(CurTy); 2420 break; 2421 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2422 if (!CurTy->isIntegerTy() || Record.empty()) 2423 return error("Invalid record"); 2424 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2425 break; 2426 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2427 if (!CurTy->isIntegerTy() || Record.empty()) 2428 return error("Invalid record"); 2429 2430 APInt VInt = 2431 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2432 V = ConstantInt::get(Context, VInt); 2433 2434 break; 2435 } 2436 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2437 if (Record.empty()) 2438 return error("Invalid record"); 2439 if (CurTy->isHalfTy()) 2440 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2441 APInt(16, (uint16_t)Record[0]))); 2442 else if (CurTy->isBFloatTy()) 2443 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2444 APInt(16, (uint32_t)Record[0]))); 2445 else if (CurTy->isFloatTy()) 2446 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2447 APInt(32, (uint32_t)Record[0]))); 2448 else if (CurTy->isDoubleTy()) 2449 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2450 APInt(64, Record[0]))); 2451 else if (CurTy->isX86_FP80Ty()) { 2452 // Bits are not stored the same way as a normal i80 APInt, compensate. 2453 uint64_t Rearrange[2]; 2454 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2455 Rearrange[1] = Record[0] >> 48; 2456 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2457 APInt(80, Rearrange))); 2458 } else if (CurTy->isFP128Ty()) 2459 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2460 APInt(128, Record))); 2461 else if (CurTy->isPPC_FP128Ty()) 2462 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2463 APInt(128, Record))); 2464 else 2465 V = UndefValue::get(CurTy); 2466 break; 2467 } 2468 2469 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2470 if (Record.empty()) 2471 return error("Invalid record"); 2472 2473 unsigned Size = Record.size(); 2474 SmallVector<Constant*, 16> Elts; 2475 2476 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2477 for (unsigned i = 0; i != Size; ++i) 2478 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2479 STy->getElementType(i))); 2480 V = ConstantStruct::get(STy, Elts); 2481 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2482 Type *EltTy = ATy->getElementType(); 2483 for (unsigned i = 0; i != Size; ++i) 2484 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2485 V = ConstantArray::get(ATy, Elts); 2486 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2487 Type *EltTy = VTy->getElementType(); 2488 for (unsigned i = 0; i != Size; ++i) 2489 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2490 V = ConstantVector::get(Elts); 2491 } else { 2492 V = UndefValue::get(CurTy); 2493 } 2494 break; 2495 } 2496 case bitc::CST_CODE_STRING: // STRING: [values] 2497 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2498 if (Record.empty()) 2499 return error("Invalid record"); 2500 2501 SmallString<16> Elts(Record.begin(), Record.end()); 2502 V = ConstantDataArray::getString(Context, Elts, 2503 BitCode == bitc::CST_CODE_CSTRING); 2504 break; 2505 } 2506 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2507 if (Record.empty()) 2508 return error("Invalid record"); 2509 2510 Type *EltTy; 2511 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2512 EltTy = Array->getElementType(); 2513 else 2514 EltTy = cast<VectorType>(CurTy)->getElementType(); 2515 if (EltTy->isIntegerTy(8)) { 2516 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2517 if (isa<VectorType>(CurTy)) 2518 V = ConstantDataVector::get(Context, Elts); 2519 else 2520 V = ConstantDataArray::get(Context, Elts); 2521 } else if (EltTy->isIntegerTy(16)) { 2522 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2523 if (isa<VectorType>(CurTy)) 2524 V = ConstantDataVector::get(Context, Elts); 2525 else 2526 V = ConstantDataArray::get(Context, Elts); 2527 } else if (EltTy->isIntegerTy(32)) { 2528 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2529 if (isa<VectorType>(CurTy)) 2530 V = ConstantDataVector::get(Context, Elts); 2531 else 2532 V = ConstantDataArray::get(Context, Elts); 2533 } else if (EltTy->isIntegerTy(64)) { 2534 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2535 if (isa<VectorType>(CurTy)) 2536 V = ConstantDataVector::get(Context, Elts); 2537 else 2538 V = ConstantDataArray::get(Context, Elts); 2539 } else if (EltTy->isHalfTy()) { 2540 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2541 if (isa<VectorType>(CurTy)) 2542 V = ConstantDataVector::getFP(EltTy, Elts); 2543 else 2544 V = ConstantDataArray::getFP(EltTy, Elts); 2545 } else if (EltTy->isBFloatTy()) { 2546 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2547 if (isa<VectorType>(CurTy)) 2548 V = ConstantDataVector::getFP(EltTy, Elts); 2549 else 2550 V = ConstantDataArray::getFP(EltTy, Elts); 2551 } else if (EltTy->isFloatTy()) { 2552 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2553 if (isa<VectorType>(CurTy)) 2554 V = ConstantDataVector::getFP(EltTy, Elts); 2555 else 2556 V = ConstantDataArray::getFP(EltTy, Elts); 2557 } else if (EltTy->isDoubleTy()) { 2558 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2559 if (isa<VectorType>(CurTy)) 2560 V = ConstantDataVector::getFP(EltTy, Elts); 2561 else 2562 V = ConstantDataArray::getFP(EltTy, Elts); 2563 } else { 2564 return error("Invalid type for value"); 2565 } 2566 break; 2567 } 2568 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2569 if (Record.size() < 2) 2570 return error("Invalid record"); 2571 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2572 if (Opc < 0) { 2573 V = UndefValue::get(CurTy); // Unknown unop. 2574 } else { 2575 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2576 unsigned Flags = 0; 2577 V = ConstantExpr::get(Opc, LHS, Flags); 2578 } 2579 break; 2580 } 2581 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2582 if (Record.size() < 3) 2583 return error("Invalid record"); 2584 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2585 if (Opc < 0) { 2586 V = UndefValue::get(CurTy); // Unknown binop. 2587 } else { 2588 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2589 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2590 unsigned Flags = 0; 2591 if (Record.size() >= 4) { 2592 if (Opc == Instruction::Add || 2593 Opc == Instruction::Sub || 2594 Opc == Instruction::Mul || 2595 Opc == Instruction::Shl) { 2596 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2597 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2598 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2599 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2600 } else if (Opc == Instruction::SDiv || 2601 Opc == Instruction::UDiv || 2602 Opc == Instruction::LShr || 2603 Opc == Instruction::AShr) { 2604 if (Record[3] & (1 << bitc::PEO_EXACT)) 2605 Flags |= SDivOperator::IsExact; 2606 } 2607 } 2608 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2609 } 2610 break; 2611 } 2612 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2613 if (Record.size() < 3) 2614 return error("Invalid record"); 2615 int Opc = getDecodedCastOpcode(Record[0]); 2616 if (Opc < 0) { 2617 V = UndefValue::get(CurTy); // Unknown cast. 2618 } else { 2619 Type *OpTy = getTypeByID(Record[1]); 2620 if (!OpTy) 2621 return error("Invalid record"); 2622 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2623 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2624 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2625 } 2626 break; 2627 } 2628 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2629 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2630 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2631 // operands] 2632 unsigned OpNum = 0; 2633 Type *PointeeType = nullptr; 2634 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2635 Record.size() % 2) 2636 PointeeType = getTypeByID(Record[OpNum++]); 2637 2638 bool InBounds = false; 2639 Optional<unsigned> InRangeIndex; 2640 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2641 uint64_t Op = Record[OpNum++]; 2642 InBounds = Op & 1; 2643 InRangeIndex = Op >> 1; 2644 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2645 InBounds = true; 2646 2647 SmallVector<Constant*, 16> Elts; 2648 Type *Elt0FullTy = nullptr; 2649 while (OpNum != Record.size()) { 2650 if (!Elt0FullTy) 2651 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2652 Type *ElTy = getTypeByID(Record[OpNum++]); 2653 if (!ElTy) 2654 return error("Invalid record"); 2655 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2656 } 2657 2658 if (Elts.size() < 1) 2659 return error("Invalid gep with no operands"); 2660 2661 Type *ImplicitPointeeType = 2662 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2663 if (!PointeeType) 2664 PointeeType = ImplicitPointeeType; 2665 else if (PointeeType != ImplicitPointeeType) 2666 return error("Explicit gep operator type does not match pointee type " 2667 "of pointer operand"); 2668 2669 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2670 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2671 InBounds, InRangeIndex); 2672 break; 2673 } 2674 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2675 if (Record.size() < 3) 2676 return error("Invalid record"); 2677 2678 Type *SelectorTy = Type::getInt1Ty(Context); 2679 2680 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2681 // Get the type from the ValueList before getting a forward ref. 2682 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2683 if (Value *V = ValueList[Record[0]]) 2684 if (SelectorTy != V->getType()) 2685 SelectorTy = VectorType::get(SelectorTy, 2686 VTy->getElementCount()); 2687 2688 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2689 SelectorTy), 2690 ValueList.getConstantFwdRef(Record[1],CurTy), 2691 ValueList.getConstantFwdRef(Record[2],CurTy)); 2692 break; 2693 } 2694 case bitc::CST_CODE_CE_EXTRACTELT 2695 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2696 if (Record.size() < 3) 2697 return error("Invalid record"); 2698 VectorType *OpTy = 2699 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2700 if (!OpTy) 2701 return error("Invalid record"); 2702 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2703 Constant *Op1 = nullptr; 2704 if (Record.size() == 4) { 2705 Type *IdxTy = getTypeByID(Record[2]); 2706 if (!IdxTy) 2707 return error("Invalid record"); 2708 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2709 } else { 2710 // Deprecated, but still needed to read old bitcode files. 2711 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2712 } 2713 if (!Op1) 2714 return error("Invalid record"); 2715 V = ConstantExpr::getExtractElement(Op0, Op1); 2716 break; 2717 } 2718 case bitc::CST_CODE_CE_INSERTELT 2719 : { // CE_INSERTELT: [opval, opval, opty, opval] 2720 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2721 if (Record.size() < 3 || !OpTy) 2722 return error("Invalid record"); 2723 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2724 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2725 OpTy->getElementType()); 2726 Constant *Op2 = nullptr; 2727 if (Record.size() == 4) { 2728 Type *IdxTy = getTypeByID(Record[2]); 2729 if (!IdxTy) 2730 return error("Invalid record"); 2731 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2732 } else { 2733 // Deprecated, but still needed to read old bitcode files. 2734 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2735 } 2736 if (!Op2) 2737 return error("Invalid record"); 2738 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2739 break; 2740 } 2741 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2742 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2743 if (Record.size() < 3 || !OpTy) 2744 return error("Invalid record"); 2745 DelayedShuffles.push_back( 2746 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2747 ++NextCstNo; 2748 continue; 2749 } 2750 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2751 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2752 VectorType *OpTy = 2753 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2754 if (Record.size() < 4 || !RTy || !OpTy) 2755 return error("Invalid record"); 2756 DelayedShuffles.push_back( 2757 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2758 ++NextCstNo; 2759 continue; 2760 } 2761 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2762 if (Record.size() < 4) 2763 return error("Invalid record"); 2764 Type *OpTy = getTypeByID(Record[0]); 2765 if (!OpTy) 2766 return error("Invalid record"); 2767 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2768 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2769 2770 if (OpTy->isFPOrFPVectorTy()) 2771 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2772 else 2773 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2774 break; 2775 } 2776 // This maintains backward compatibility, pre-asm dialect keywords. 2777 // Deprecated, but still needed to read old bitcode files. 2778 case bitc::CST_CODE_INLINEASM_OLD: { 2779 if (Record.size() < 2) 2780 return error("Invalid record"); 2781 std::string AsmStr, ConstrStr; 2782 bool HasSideEffects = Record[0] & 1; 2783 bool IsAlignStack = Record[0] >> 1; 2784 unsigned AsmStrSize = Record[1]; 2785 if (2+AsmStrSize >= Record.size()) 2786 return error("Invalid record"); 2787 unsigned ConstStrSize = Record[2+AsmStrSize]; 2788 if (3+AsmStrSize+ConstStrSize > Record.size()) 2789 return error("Invalid record"); 2790 2791 for (unsigned i = 0; i != AsmStrSize; ++i) 2792 AsmStr += (char)Record[2+i]; 2793 for (unsigned i = 0; i != ConstStrSize; ++i) 2794 ConstrStr += (char)Record[3+AsmStrSize+i]; 2795 UpgradeInlineAsmString(&AsmStr); 2796 V = InlineAsm::get( 2797 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2798 ConstrStr, HasSideEffects, IsAlignStack); 2799 break; 2800 } 2801 // This version adds support for the asm dialect keywords (e.g., 2802 // inteldialect). 2803 case bitc::CST_CODE_INLINEASM: { 2804 if (Record.size() < 2) 2805 return error("Invalid record"); 2806 std::string AsmStr, ConstrStr; 2807 bool HasSideEffects = Record[0] & 1; 2808 bool IsAlignStack = (Record[0] >> 1) & 1; 2809 unsigned AsmDialect = Record[0] >> 2; 2810 unsigned AsmStrSize = Record[1]; 2811 if (2+AsmStrSize >= Record.size()) 2812 return error("Invalid record"); 2813 unsigned ConstStrSize = Record[2+AsmStrSize]; 2814 if (3+AsmStrSize+ConstStrSize > Record.size()) 2815 return error("Invalid record"); 2816 2817 for (unsigned i = 0; i != AsmStrSize; ++i) 2818 AsmStr += (char)Record[2+i]; 2819 for (unsigned i = 0; i != ConstStrSize; ++i) 2820 ConstrStr += (char)Record[3+AsmStrSize+i]; 2821 UpgradeInlineAsmString(&AsmStr); 2822 V = InlineAsm::get( 2823 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2824 ConstrStr, HasSideEffects, IsAlignStack, 2825 InlineAsm::AsmDialect(AsmDialect)); 2826 break; 2827 } 2828 case bitc::CST_CODE_BLOCKADDRESS:{ 2829 if (Record.size() < 3) 2830 return error("Invalid record"); 2831 Type *FnTy = getTypeByID(Record[0]); 2832 if (!FnTy) 2833 return error("Invalid record"); 2834 Function *Fn = 2835 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2836 if (!Fn) 2837 return error("Invalid record"); 2838 2839 // If the function is already parsed we can insert the block address right 2840 // away. 2841 BasicBlock *BB; 2842 unsigned BBID = Record[2]; 2843 if (!BBID) 2844 // Invalid reference to entry block. 2845 return error("Invalid ID"); 2846 if (!Fn->empty()) { 2847 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2848 for (size_t I = 0, E = BBID; I != E; ++I) { 2849 if (BBI == BBE) 2850 return error("Invalid ID"); 2851 ++BBI; 2852 } 2853 BB = &*BBI; 2854 } else { 2855 // Otherwise insert a placeholder and remember it so it can be inserted 2856 // when the function is parsed. 2857 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2858 if (FwdBBs.empty()) 2859 BasicBlockFwdRefQueue.push_back(Fn); 2860 if (FwdBBs.size() < BBID + 1) 2861 FwdBBs.resize(BBID + 1); 2862 if (!FwdBBs[BBID]) 2863 FwdBBs[BBID] = BasicBlock::Create(Context); 2864 BB = FwdBBs[BBID]; 2865 } 2866 V = BlockAddress::get(Fn, BB); 2867 break; 2868 } 2869 } 2870 2871 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2872 "Incorrect fully structured type provided for Constant"); 2873 ValueList.assignValue(V, NextCstNo, CurFullTy); 2874 ++NextCstNo; 2875 } 2876 } 2877 2878 Error BitcodeReader::parseUseLists() { 2879 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2880 return Err; 2881 2882 // Read all the records. 2883 SmallVector<uint64_t, 64> Record; 2884 2885 while (true) { 2886 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2887 if (!MaybeEntry) 2888 return MaybeEntry.takeError(); 2889 BitstreamEntry Entry = MaybeEntry.get(); 2890 2891 switch (Entry.Kind) { 2892 case BitstreamEntry::SubBlock: // Handled for us already. 2893 case BitstreamEntry::Error: 2894 return error("Malformed block"); 2895 case BitstreamEntry::EndBlock: 2896 return Error::success(); 2897 case BitstreamEntry::Record: 2898 // The interesting case. 2899 break; 2900 } 2901 2902 // Read a use list record. 2903 Record.clear(); 2904 bool IsBB = false; 2905 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2906 if (!MaybeRecord) 2907 return MaybeRecord.takeError(); 2908 switch (MaybeRecord.get()) { 2909 default: // Default behavior: unknown type. 2910 break; 2911 case bitc::USELIST_CODE_BB: 2912 IsBB = true; 2913 LLVM_FALLTHROUGH; 2914 case bitc::USELIST_CODE_DEFAULT: { 2915 unsigned RecordLength = Record.size(); 2916 if (RecordLength < 3) 2917 // Records should have at least an ID and two indexes. 2918 return error("Invalid record"); 2919 unsigned ID = Record.back(); 2920 Record.pop_back(); 2921 2922 Value *V; 2923 if (IsBB) { 2924 assert(ID < FunctionBBs.size() && "Basic block not found"); 2925 V = FunctionBBs[ID]; 2926 } else 2927 V = ValueList[ID]; 2928 unsigned NumUses = 0; 2929 SmallDenseMap<const Use *, unsigned, 16> Order; 2930 for (const Use &U : V->materialized_uses()) { 2931 if (++NumUses > Record.size()) 2932 break; 2933 Order[&U] = Record[NumUses - 1]; 2934 } 2935 if (Order.size() != Record.size() || NumUses > Record.size()) 2936 // Mismatches can happen if the functions are being materialized lazily 2937 // (out-of-order), or a value has been upgraded. 2938 break; 2939 2940 V->sortUseList([&](const Use &L, const Use &R) { 2941 return Order.lookup(&L) < Order.lookup(&R); 2942 }); 2943 break; 2944 } 2945 } 2946 } 2947 } 2948 2949 /// When we see the block for metadata, remember where it is and then skip it. 2950 /// This lets us lazily deserialize the metadata. 2951 Error BitcodeReader::rememberAndSkipMetadata() { 2952 // Save the current stream state. 2953 uint64_t CurBit = Stream.GetCurrentBitNo(); 2954 DeferredMetadataInfo.push_back(CurBit); 2955 2956 // Skip over the block for now. 2957 if (Error Err = Stream.SkipBlock()) 2958 return Err; 2959 return Error::success(); 2960 } 2961 2962 Error BitcodeReader::materializeMetadata() { 2963 for (uint64_t BitPos : DeferredMetadataInfo) { 2964 // Move the bit stream to the saved position. 2965 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2966 return JumpFailed; 2967 if (Error Err = MDLoader->parseModuleMetadata()) 2968 return Err; 2969 } 2970 2971 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2972 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 2973 // multiple times. 2974 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 2975 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2976 NamedMDNode *LinkerOpts = 2977 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2978 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2979 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2980 } 2981 } 2982 2983 DeferredMetadataInfo.clear(); 2984 return Error::success(); 2985 } 2986 2987 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2988 2989 /// When we see the block for a function body, remember where it is and then 2990 /// skip it. This lets us lazily deserialize the functions. 2991 Error BitcodeReader::rememberAndSkipFunctionBody() { 2992 // Get the function we are talking about. 2993 if (FunctionsWithBodies.empty()) 2994 return error("Insufficient function protos"); 2995 2996 Function *Fn = FunctionsWithBodies.back(); 2997 FunctionsWithBodies.pop_back(); 2998 2999 // Save the current stream state. 3000 uint64_t CurBit = Stream.GetCurrentBitNo(); 3001 assert( 3002 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3003 "Mismatch between VST and scanned function offsets"); 3004 DeferredFunctionInfo[Fn] = CurBit; 3005 3006 // Skip over the function block for now. 3007 if (Error Err = Stream.SkipBlock()) 3008 return Err; 3009 return Error::success(); 3010 } 3011 3012 Error BitcodeReader::globalCleanup() { 3013 // Patch the initializers for globals and aliases up. 3014 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3015 return Err; 3016 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3017 return error("Malformed global initializer set"); 3018 3019 // Look for intrinsic functions which need to be upgraded at some point 3020 // and functions that need to have their function attributes upgraded. 3021 for (Function &F : *TheModule) { 3022 MDLoader->upgradeDebugIntrinsics(F); 3023 Function *NewFn; 3024 if (UpgradeIntrinsicFunction(&F, NewFn)) 3025 UpgradedIntrinsics[&F] = NewFn; 3026 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3027 // Some types could be renamed during loading if several modules are 3028 // loaded in the same LLVMContext (LTO scenario). In this case we should 3029 // remangle intrinsics names as well. 3030 RemangledIntrinsics[&F] = Remangled.getValue(); 3031 // Look for functions that rely on old function attribute behavior. 3032 UpgradeFunctionAttributes(F); 3033 } 3034 3035 // Look for global variables which need to be renamed. 3036 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3037 for (GlobalVariable &GV : TheModule->globals()) 3038 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3039 UpgradedVariables.emplace_back(&GV, Upgraded); 3040 for (auto &Pair : UpgradedVariables) { 3041 Pair.first->eraseFromParent(); 3042 TheModule->getGlobalList().push_back(Pair.second); 3043 } 3044 3045 // Force deallocation of memory for these vectors to favor the client that 3046 // want lazy deserialization. 3047 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3048 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3049 IndirectSymbolInits); 3050 return Error::success(); 3051 } 3052 3053 /// Support for lazy parsing of function bodies. This is required if we 3054 /// either have an old bitcode file without a VST forward declaration record, 3055 /// or if we have an anonymous function being materialized, since anonymous 3056 /// functions do not have a name and are therefore not in the VST. 3057 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3058 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3059 return JumpFailed; 3060 3061 if (Stream.AtEndOfStream()) 3062 return error("Could not find function in stream"); 3063 3064 if (!SeenFirstFunctionBody) 3065 return error("Trying to materialize functions before seeing function blocks"); 3066 3067 // An old bitcode file with the symbol table at the end would have 3068 // finished the parse greedily. 3069 assert(SeenValueSymbolTable); 3070 3071 SmallVector<uint64_t, 64> Record; 3072 3073 while (true) { 3074 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3075 if (!MaybeEntry) 3076 return MaybeEntry.takeError(); 3077 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3078 3079 switch (Entry.Kind) { 3080 default: 3081 return error("Expect SubBlock"); 3082 case BitstreamEntry::SubBlock: 3083 switch (Entry.ID) { 3084 default: 3085 return error("Expect function block"); 3086 case bitc::FUNCTION_BLOCK_ID: 3087 if (Error Err = rememberAndSkipFunctionBody()) 3088 return Err; 3089 NextUnreadBit = Stream.GetCurrentBitNo(); 3090 return Error::success(); 3091 } 3092 } 3093 } 3094 } 3095 3096 bool BitcodeReaderBase::readBlockInfo() { 3097 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3098 Stream.ReadBlockInfoBlock(); 3099 if (!MaybeNewBlockInfo) 3100 return true; // FIXME Handle the error. 3101 Optional<BitstreamBlockInfo> NewBlockInfo = 3102 std::move(MaybeNewBlockInfo.get()); 3103 if (!NewBlockInfo) 3104 return true; 3105 BlockInfo = std::move(*NewBlockInfo); 3106 return false; 3107 } 3108 3109 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3110 // v1: [selection_kind, name] 3111 // v2: [strtab_offset, strtab_size, selection_kind] 3112 StringRef Name; 3113 std::tie(Name, Record) = readNameFromStrtab(Record); 3114 3115 if (Record.empty()) 3116 return error("Invalid record"); 3117 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3118 std::string OldFormatName; 3119 if (!UseStrtab) { 3120 if (Record.size() < 2) 3121 return error("Invalid record"); 3122 unsigned ComdatNameSize = Record[1]; 3123 OldFormatName.reserve(ComdatNameSize); 3124 for (unsigned i = 0; i != ComdatNameSize; ++i) 3125 OldFormatName += (char)Record[2 + i]; 3126 Name = OldFormatName; 3127 } 3128 Comdat *C = TheModule->getOrInsertComdat(Name); 3129 C->setSelectionKind(SK); 3130 ComdatList.push_back(C); 3131 return Error::success(); 3132 } 3133 3134 static void inferDSOLocal(GlobalValue *GV) { 3135 // infer dso_local from linkage and visibility if it is not encoded. 3136 if (GV->hasLocalLinkage() || 3137 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3138 GV->setDSOLocal(true); 3139 } 3140 3141 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3142 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3143 // visibility, threadlocal, unnamed_addr, externally_initialized, 3144 // dllstorageclass, comdat, attributes, preemption specifier, 3145 // partition strtab offset, partition strtab size] (name in VST) 3146 // v2: [strtab_offset, strtab_size, v1] 3147 StringRef Name; 3148 std::tie(Name, Record) = readNameFromStrtab(Record); 3149 3150 if (Record.size() < 6) 3151 return error("Invalid record"); 3152 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3153 Type *Ty = flattenPointerTypes(FullTy); 3154 if (!Ty) 3155 return error("Invalid record"); 3156 bool isConstant = Record[1] & 1; 3157 bool explicitType = Record[1] & 2; 3158 unsigned AddressSpace; 3159 if (explicitType) { 3160 AddressSpace = Record[1] >> 2; 3161 } else { 3162 if (!Ty->isPointerTy()) 3163 return error("Invalid type for value"); 3164 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3165 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3166 } 3167 3168 uint64_t RawLinkage = Record[3]; 3169 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3170 MaybeAlign Alignment; 3171 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3172 return Err; 3173 std::string Section; 3174 if (Record[5]) { 3175 if (Record[5] - 1 >= SectionTable.size()) 3176 return error("Invalid ID"); 3177 Section = SectionTable[Record[5] - 1]; 3178 } 3179 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3180 // Local linkage must have default visibility. 3181 // auto-upgrade `hidden` and `protected` for old bitcode. 3182 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3183 Visibility = getDecodedVisibility(Record[6]); 3184 3185 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3186 if (Record.size() > 7) 3187 TLM = getDecodedThreadLocalMode(Record[7]); 3188 3189 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3190 if (Record.size() > 8) 3191 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3192 3193 bool ExternallyInitialized = false; 3194 if (Record.size() > 9) 3195 ExternallyInitialized = Record[9]; 3196 3197 GlobalVariable *NewGV = 3198 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3199 nullptr, TLM, AddressSpace, ExternallyInitialized); 3200 NewGV->setAlignment(Alignment); 3201 if (!Section.empty()) 3202 NewGV->setSection(Section); 3203 NewGV->setVisibility(Visibility); 3204 NewGV->setUnnamedAddr(UnnamedAddr); 3205 3206 if (Record.size() > 10) 3207 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3208 else 3209 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3210 3211 FullTy = PointerType::get(FullTy, AddressSpace); 3212 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3213 "Incorrect fully specified type for GlobalVariable"); 3214 ValueList.push_back(NewGV, FullTy); 3215 3216 // Remember which value to use for the global initializer. 3217 if (unsigned InitID = Record[2]) 3218 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3219 3220 if (Record.size() > 11) { 3221 if (unsigned ComdatID = Record[11]) { 3222 if (ComdatID > ComdatList.size()) 3223 return error("Invalid global variable comdat ID"); 3224 NewGV->setComdat(ComdatList[ComdatID - 1]); 3225 } 3226 } else if (hasImplicitComdat(RawLinkage)) { 3227 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3228 } 3229 3230 if (Record.size() > 12) { 3231 auto AS = getAttributes(Record[12]).getFnAttributes(); 3232 NewGV->setAttributes(AS); 3233 } 3234 3235 if (Record.size() > 13) { 3236 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3237 } 3238 inferDSOLocal(NewGV); 3239 3240 // Check whether we have enough values to read a partition name. 3241 if (Record.size() > 15) 3242 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3243 3244 return Error::success(); 3245 } 3246 3247 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3248 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3249 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3250 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3251 // v2: [strtab_offset, strtab_size, v1] 3252 StringRef Name; 3253 std::tie(Name, Record) = readNameFromStrtab(Record); 3254 3255 if (Record.size() < 8) 3256 return error("Invalid record"); 3257 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3258 Type *FTy = flattenPointerTypes(FullFTy); 3259 if (!FTy) 3260 return error("Invalid record"); 3261 if (isa<PointerType>(FTy)) 3262 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3263 3264 if (!isa<FunctionType>(FTy)) 3265 return error("Invalid type for value"); 3266 auto CC = static_cast<CallingConv::ID>(Record[1]); 3267 if (CC & ~CallingConv::MaxID) 3268 return error("Invalid calling convention ID"); 3269 3270 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3271 if (Record.size() > 16) 3272 AddrSpace = Record[16]; 3273 3274 Function *Func = 3275 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3276 AddrSpace, Name, TheModule); 3277 3278 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3279 "Incorrect fully specified type provided for function"); 3280 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3281 3282 Func->setCallingConv(CC); 3283 bool isProto = Record[2]; 3284 uint64_t RawLinkage = Record[3]; 3285 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3286 Func->setAttributes(getAttributes(Record[4])); 3287 3288 // Upgrade any old-style byval without a type by propagating the argument's 3289 // pointee type. There should be no opaque pointers where the byval type is 3290 // implicit. 3291 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3292 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3293 continue; 3294 3295 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3296 Func->removeParamAttr(i, Attribute::ByVal); 3297 Func->addParamAttr(i, Attribute::getWithByValType( 3298 Context, getPointerElementFlatType(PTy))); 3299 } 3300 3301 MaybeAlign Alignment; 3302 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3303 return Err; 3304 Func->setAlignment(Alignment); 3305 if (Record[6]) { 3306 if (Record[6] - 1 >= SectionTable.size()) 3307 return error("Invalid ID"); 3308 Func->setSection(SectionTable[Record[6] - 1]); 3309 } 3310 // Local linkage must have default visibility. 3311 // auto-upgrade `hidden` and `protected` for old bitcode. 3312 if (!Func->hasLocalLinkage()) 3313 Func->setVisibility(getDecodedVisibility(Record[7])); 3314 if (Record.size() > 8 && Record[8]) { 3315 if (Record[8] - 1 >= GCTable.size()) 3316 return error("Invalid ID"); 3317 Func->setGC(GCTable[Record[8] - 1]); 3318 } 3319 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3320 if (Record.size() > 9) 3321 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3322 Func->setUnnamedAddr(UnnamedAddr); 3323 if (Record.size() > 10 && Record[10] != 0) 3324 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3325 3326 if (Record.size() > 11) 3327 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3328 else 3329 upgradeDLLImportExportLinkage(Func, RawLinkage); 3330 3331 if (Record.size() > 12) { 3332 if (unsigned ComdatID = Record[12]) { 3333 if (ComdatID > ComdatList.size()) 3334 return error("Invalid function comdat ID"); 3335 Func->setComdat(ComdatList[ComdatID - 1]); 3336 } 3337 } else if (hasImplicitComdat(RawLinkage)) { 3338 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3339 } 3340 3341 if (Record.size() > 13 && Record[13] != 0) 3342 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3343 3344 if (Record.size() > 14 && Record[14] != 0) 3345 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3346 3347 if (Record.size() > 15) { 3348 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3349 } 3350 inferDSOLocal(Func); 3351 3352 // Record[16] is the address space number. 3353 3354 // Check whether we have enough values to read a partition name. 3355 if (Record.size() > 18) 3356 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3357 3358 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3359 assert(Func->getType() == flattenPointerTypes(FullTy) && 3360 "Incorrect fully specified type provided for Function"); 3361 ValueList.push_back(Func, FullTy); 3362 3363 // If this is a function with a body, remember the prototype we are 3364 // creating now, so that we can match up the body with them later. 3365 if (!isProto) { 3366 Func->setIsMaterializable(true); 3367 FunctionsWithBodies.push_back(Func); 3368 DeferredFunctionInfo[Func] = 0; 3369 } 3370 return Error::success(); 3371 } 3372 3373 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3374 unsigned BitCode, ArrayRef<uint64_t> Record) { 3375 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3376 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3377 // dllstorageclass, threadlocal, unnamed_addr, 3378 // preemption specifier] (name in VST) 3379 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3380 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3381 // preemption specifier] (name in VST) 3382 // v2: [strtab_offset, strtab_size, v1] 3383 StringRef Name; 3384 std::tie(Name, Record) = readNameFromStrtab(Record); 3385 3386 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3387 if (Record.size() < (3 + (unsigned)NewRecord)) 3388 return error("Invalid record"); 3389 unsigned OpNum = 0; 3390 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3391 Type *Ty = flattenPointerTypes(FullTy); 3392 if (!Ty) 3393 return error("Invalid record"); 3394 3395 unsigned AddrSpace; 3396 if (!NewRecord) { 3397 auto *PTy = dyn_cast<PointerType>(Ty); 3398 if (!PTy) 3399 return error("Invalid type for value"); 3400 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3401 AddrSpace = PTy->getAddressSpace(); 3402 } else { 3403 AddrSpace = Record[OpNum++]; 3404 } 3405 3406 auto Val = Record[OpNum++]; 3407 auto Linkage = Record[OpNum++]; 3408 GlobalIndirectSymbol *NewGA; 3409 if (BitCode == bitc::MODULE_CODE_ALIAS || 3410 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3411 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3412 TheModule); 3413 else 3414 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3415 nullptr, TheModule); 3416 3417 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3418 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3419 // Local linkage must have default visibility. 3420 // auto-upgrade `hidden` and `protected` for old bitcode. 3421 if (OpNum != Record.size()) { 3422 auto VisInd = OpNum++; 3423 if (!NewGA->hasLocalLinkage()) 3424 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3425 } 3426 if (BitCode == bitc::MODULE_CODE_ALIAS || 3427 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3428 if (OpNum != Record.size()) 3429 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3430 else 3431 upgradeDLLImportExportLinkage(NewGA, Linkage); 3432 if (OpNum != Record.size()) 3433 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3434 if (OpNum != Record.size()) 3435 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3436 } 3437 if (OpNum != Record.size()) 3438 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3439 inferDSOLocal(NewGA); 3440 3441 // Check whether we have enough values to read a partition name. 3442 if (OpNum + 1 < Record.size()) { 3443 NewGA->setPartition( 3444 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3445 OpNum += 2; 3446 } 3447 3448 FullTy = PointerType::get(FullTy, AddrSpace); 3449 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3450 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3451 ValueList.push_back(NewGA, FullTy); 3452 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3453 return Error::success(); 3454 } 3455 3456 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3457 bool ShouldLazyLoadMetadata, 3458 DataLayoutCallbackTy DataLayoutCallback) { 3459 if (ResumeBit) { 3460 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3461 return JumpFailed; 3462 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3463 return Err; 3464 3465 SmallVector<uint64_t, 64> Record; 3466 3467 // Parts of bitcode parsing depend on the datalayout. Make sure we 3468 // finalize the datalayout before we run any of that code. 3469 bool ResolvedDataLayout = false; 3470 auto ResolveDataLayout = [&] { 3471 if (ResolvedDataLayout) 3472 return; 3473 3474 // datalayout and triple can't be parsed after this point. 3475 ResolvedDataLayout = true; 3476 3477 // Upgrade data layout string. 3478 std::string DL = llvm::UpgradeDataLayoutString( 3479 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3480 TheModule->setDataLayout(DL); 3481 3482 if (auto LayoutOverride = 3483 DataLayoutCallback(TheModule->getTargetTriple())) 3484 TheModule->setDataLayout(*LayoutOverride); 3485 }; 3486 3487 // Read all the records for this module. 3488 while (true) { 3489 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3490 if (!MaybeEntry) 3491 return MaybeEntry.takeError(); 3492 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3493 3494 switch (Entry.Kind) { 3495 case BitstreamEntry::Error: 3496 return error("Malformed block"); 3497 case BitstreamEntry::EndBlock: 3498 ResolveDataLayout(); 3499 return globalCleanup(); 3500 3501 case BitstreamEntry::SubBlock: 3502 switch (Entry.ID) { 3503 default: // Skip unknown content. 3504 if (Error Err = Stream.SkipBlock()) 3505 return Err; 3506 break; 3507 case bitc::BLOCKINFO_BLOCK_ID: 3508 if (readBlockInfo()) 3509 return error("Malformed block"); 3510 break; 3511 case bitc::PARAMATTR_BLOCK_ID: 3512 if (Error Err = parseAttributeBlock()) 3513 return Err; 3514 break; 3515 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3516 if (Error Err = parseAttributeGroupBlock()) 3517 return Err; 3518 break; 3519 case bitc::TYPE_BLOCK_ID_NEW: 3520 if (Error Err = parseTypeTable()) 3521 return Err; 3522 break; 3523 case bitc::VALUE_SYMTAB_BLOCK_ID: 3524 if (!SeenValueSymbolTable) { 3525 // Either this is an old form VST without function index and an 3526 // associated VST forward declaration record (which would have caused 3527 // the VST to be jumped to and parsed before it was encountered 3528 // normally in the stream), or there were no function blocks to 3529 // trigger an earlier parsing of the VST. 3530 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3531 if (Error Err = parseValueSymbolTable()) 3532 return Err; 3533 SeenValueSymbolTable = true; 3534 } else { 3535 // We must have had a VST forward declaration record, which caused 3536 // the parser to jump to and parse the VST earlier. 3537 assert(VSTOffset > 0); 3538 if (Error Err = Stream.SkipBlock()) 3539 return Err; 3540 } 3541 break; 3542 case bitc::CONSTANTS_BLOCK_ID: 3543 if (Error Err = parseConstants()) 3544 return Err; 3545 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3546 return Err; 3547 break; 3548 case bitc::METADATA_BLOCK_ID: 3549 if (ShouldLazyLoadMetadata) { 3550 if (Error Err = rememberAndSkipMetadata()) 3551 return Err; 3552 break; 3553 } 3554 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3555 if (Error Err = MDLoader->parseModuleMetadata()) 3556 return Err; 3557 break; 3558 case bitc::METADATA_KIND_BLOCK_ID: 3559 if (Error Err = MDLoader->parseMetadataKinds()) 3560 return Err; 3561 break; 3562 case bitc::FUNCTION_BLOCK_ID: 3563 ResolveDataLayout(); 3564 3565 // If this is the first function body we've seen, reverse the 3566 // FunctionsWithBodies list. 3567 if (!SeenFirstFunctionBody) { 3568 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3569 if (Error Err = globalCleanup()) 3570 return Err; 3571 SeenFirstFunctionBody = true; 3572 } 3573 3574 if (VSTOffset > 0) { 3575 // If we have a VST forward declaration record, make sure we 3576 // parse the VST now if we haven't already. It is needed to 3577 // set up the DeferredFunctionInfo vector for lazy reading. 3578 if (!SeenValueSymbolTable) { 3579 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3580 return Err; 3581 SeenValueSymbolTable = true; 3582 // Fall through so that we record the NextUnreadBit below. 3583 // This is necessary in case we have an anonymous function that 3584 // is later materialized. Since it will not have a VST entry we 3585 // need to fall back to the lazy parse to find its offset. 3586 } else { 3587 // If we have a VST forward declaration record, but have already 3588 // parsed the VST (just above, when the first function body was 3589 // encountered here), then we are resuming the parse after 3590 // materializing functions. The ResumeBit points to the 3591 // start of the last function block recorded in the 3592 // DeferredFunctionInfo map. Skip it. 3593 if (Error Err = Stream.SkipBlock()) 3594 return Err; 3595 continue; 3596 } 3597 } 3598 3599 // Support older bitcode files that did not have the function 3600 // index in the VST, nor a VST forward declaration record, as 3601 // well as anonymous functions that do not have VST entries. 3602 // Build the DeferredFunctionInfo vector on the fly. 3603 if (Error Err = rememberAndSkipFunctionBody()) 3604 return Err; 3605 3606 // Suspend parsing when we reach the function bodies. Subsequent 3607 // materialization calls will resume it when necessary. If the bitcode 3608 // file is old, the symbol table will be at the end instead and will not 3609 // have been seen yet. In this case, just finish the parse now. 3610 if (SeenValueSymbolTable) { 3611 NextUnreadBit = Stream.GetCurrentBitNo(); 3612 // After the VST has been parsed, we need to make sure intrinsic name 3613 // are auto-upgraded. 3614 return globalCleanup(); 3615 } 3616 break; 3617 case bitc::USELIST_BLOCK_ID: 3618 if (Error Err = parseUseLists()) 3619 return Err; 3620 break; 3621 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3622 if (Error Err = parseOperandBundleTags()) 3623 return Err; 3624 break; 3625 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3626 if (Error Err = parseSyncScopeNames()) 3627 return Err; 3628 break; 3629 } 3630 continue; 3631 3632 case BitstreamEntry::Record: 3633 // The interesting case. 3634 break; 3635 } 3636 3637 // Read a record. 3638 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3639 if (!MaybeBitCode) 3640 return MaybeBitCode.takeError(); 3641 switch (unsigned BitCode = MaybeBitCode.get()) { 3642 default: break; // Default behavior, ignore unknown content. 3643 case bitc::MODULE_CODE_VERSION: { 3644 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3645 if (!VersionOrErr) 3646 return VersionOrErr.takeError(); 3647 UseRelativeIDs = *VersionOrErr >= 1; 3648 break; 3649 } 3650 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3651 if (ResolvedDataLayout) 3652 return error("target triple too late in module"); 3653 std::string S; 3654 if (convertToString(Record, 0, S)) 3655 return error("Invalid record"); 3656 TheModule->setTargetTriple(S); 3657 break; 3658 } 3659 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3660 if (ResolvedDataLayout) 3661 return error("datalayout too late in module"); 3662 std::string S; 3663 if (convertToString(Record, 0, S)) 3664 return error("Invalid record"); 3665 TheModule->setDataLayout(S); 3666 break; 3667 } 3668 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3669 std::string S; 3670 if (convertToString(Record, 0, S)) 3671 return error("Invalid record"); 3672 TheModule->setModuleInlineAsm(S); 3673 break; 3674 } 3675 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3676 // Deprecated, but still needed to read old bitcode files. 3677 std::string S; 3678 if (convertToString(Record, 0, S)) 3679 return error("Invalid record"); 3680 // Ignore value. 3681 break; 3682 } 3683 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3684 std::string S; 3685 if (convertToString(Record, 0, S)) 3686 return error("Invalid record"); 3687 SectionTable.push_back(S); 3688 break; 3689 } 3690 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3691 std::string S; 3692 if (convertToString(Record, 0, S)) 3693 return error("Invalid record"); 3694 GCTable.push_back(S); 3695 break; 3696 } 3697 case bitc::MODULE_CODE_COMDAT: 3698 if (Error Err = parseComdatRecord(Record)) 3699 return Err; 3700 break; 3701 case bitc::MODULE_CODE_GLOBALVAR: 3702 if (Error Err = parseGlobalVarRecord(Record)) 3703 return Err; 3704 break; 3705 case bitc::MODULE_CODE_FUNCTION: 3706 ResolveDataLayout(); 3707 if (Error Err = parseFunctionRecord(Record)) 3708 return Err; 3709 break; 3710 case bitc::MODULE_CODE_IFUNC: 3711 case bitc::MODULE_CODE_ALIAS: 3712 case bitc::MODULE_CODE_ALIAS_OLD: 3713 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3714 return Err; 3715 break; 3716 /// MODULE_CODE_VSTOFFSET: [offset] 3717 case bitc::MODULE_CODE_VSTOFFSET: 3718 if (Record.size() < 1) 3719 return error("Invalid record"); 3720 // Note that we subtract 1 here because the offset is relative to one word 3721 // before the start of the identification or module block, which was 3722 // historically always the start of the regular bitcode header. 3723 VSTOffset = Record[0] - 1; 3724 break; 3725 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3726 case bitc::MODULE_CODE_SOURCE_FILENAME: 3727 SmallString<128> ValueName; 3728 if (convertToString(Record, 0, ValueName)) 3729 return error("Invalid record"); 3730 TheModule->setSourceFileName(ValueName); 3731 break; 3732 } 3733 Record.clear(); 3734 } 3735 } 3736 3737 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3738 bool IsImporting, 3739 DataLayoutCallbackTy DataLayoutCallback) { 3740 TheModule = M; 3741 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3742 [&](unsigned ID) { return getTypeByID(ID); }); 3743 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3744 } 3745 3746 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3747 if (!isa<PointerType>(PtrType)) 3748 return error("Load/Store operand is not a pointer type"); 3749 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3750 3751 if (ValType && ValType != ElemType) 3752 return error("Explicit load/store type does not match pointee " 3753 "type of pointer operand"); 3754 if (!PointerType::isLoadableOrStorableType(ElemType)) 3755 return error("Cannot load/store from pointer"); 3756 return Error::success(); 3757 } 3758 3759 void BitcodeReader::propagateByValTypes(CallBase *CB, 3760 ArrayRef<Type *> ArgsFullTys) { 3761 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3762 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3763 continue; 3764 3765 CB->removeParamAttr(i, Attribute::ByVal); 3766 CB->addParamAttr( 3767 i, Attribute::getWithByValType( 3768 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3769 } 3770 } 3771 3772 /// Lazily parse the specified function body block. 3773 Error BitcodeReader::parseFunctionBody(Function *F) { 3774 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3775 return Err; 3776 3777 // Unexpected unresolved metadata when parsing function. 3778 if (MDLoader->hasFwdRefs()) 3779 return error("Invalid function metadata: incoming forward references"); 3780 3781 InstructionList.clear(); 3782 unsigned ModuleValueListSize = ValueList.size(); 3783 unsigned ModuleMDLoaderSize = MDLoader->size(); 3784 3785 // Add all the function arguments to the value table. 3786 unsigned ArgNo = 0; 3787 FunctionType *FullFTy = FunctionTypes[F]; 3788 for (Argument &I : F->args()) { 3789 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3790 "Incorrect fully specified type for Function Argument"); 3791 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3792 } 3793 unsigned NextValueNo = ValueList.size(); 3794 BasicBlock *CurBB = nullptr; 3795 unsigned CurBBNo = 0; 3796 3797 DebugLoc LastLoc; 3798 auto getLastInstruction = [&]() -> Instruction * { 3799 if (CurBB && !CurBB->empty()) 3800 return &CurBB->back(); 3801 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3802 !FunctionBBs[CurBBNo - 1]->empty()) 3803 return &FunctionBBs[CurBBNo - 1]->back(); 3804 return nullptr; 3805 }; 3806 3807 std::vector<OperandBundleDef> OperandBundles; 3808 3809 // Read all the records. 3810 SmallVector<uint64_t, 64> Record; 3811 3812 while (true) { 3813 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3814 if (!MaybeEntry) 3815 return MaybeEntry.takeError(); 3816 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3817 3818 switch (Entry.Kind) { 3819 case BitstreamEntry::Error: 3820 return error("Malformed block"); 3821 case BitstreamEntry::EndBlock: 3822 goto OutOfRecordLoop; 3823 3824 case BitstreamEntry::SubBlock: 3825 switch (Entry.ID) { 3826 default: // Skip unknown content. 3827 if (Error Err = Stream.SkipBlock()) 3828 return Err; 3829 break; 3830 case bitc::CONSTANTS_BLOCK_ID: 3831 if (Error Err = parseConstants()) 3832 return Err; 3833 NextValueNo = ValueList.size(); 3834 break; 3835 case bitc::VALUE_SYMTAB_BLOCK_ID: 3836 if (Error Err = parseValueSymbolTable()) 3837 return Err; 3838 break; 3839 case bitc::METADATA_ATTACHMENT_ID: 3840 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3841 return Err; 3842 break; 3843 case bitc::METADATA_BLOCK_ID: 3844 assert(DeferredMetadataInfo.empty() && 3845 "Must read all module-level metadata before function-level"); 3846 if (Error Err = MDLoader->parseFunctionMetadata()) 3847 return Err; 3848 break; 3849 case bitc::USELIST_BLOCK_ID: 3850 if (Error Err = parseUseLists()) 3851 return Err; 3852 break; 3853 } 3854 continue; 3855 3856 case BitstreamEntry::Record: 3857 // The interesting case. 3858 break; 3859 } 3860 3861 // Read a record. 3862 Record.clear(); 3863 Instruction *I = nullptr; 3864 Type *FullTy = nullptr; 3865 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3866 if (!MaybeBitCode) 3867 return MaybeBitCode.takeError(); 3868 switch (unsigned BitCode = MaybeBitCode.get()) { 3869 default: // Default behavior: reject 3870 return error("Invalid value"); 3871 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3872 if (Record.size() < 1 || Record[0] == 0) 3873 return error("Invalid record"); 3874 // Create all the basic blocks for the function. 3875 FunctionBBs.resize(Record[0]); 3876 3877 // See if anything took the address of blocks in this function. 3878 auto BBFRI = BasicBlockFwdRefs.find(F); 3879 if (BBFRI == BasicBlockFwdRefs.end()) { 3880 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3881 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3882 } else { 3883 auto &BBRefs = BBFRI->second; 3884 // Check for invalid basic block references. 3885 if (BBRefs.size() > FunctionBBs.size()) 3886 return error("Invalid ID"); 3887 assert(!BBRefs.empty() && "Unexpected empty array"); 3888 assert(!BBRefs.front() && "Invalid reference to entry block"); 3889 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3890 ++I) 3891 if (I < RE && BBRefs[I]) { 3892 BBRefs[I]->insertInto(F); 3893 FunctionBBs[I] = BBRefs[I]; 3894 } else { 3895 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3896 } 3897 3898 // Erase from the table. 3899 BasicBlockFwdRefs.erase(BBFRI); 3900 } 3901 3902 CurBB = FunctionBBs[0]; 3903 continue; 3904 } 3905 3906 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3907 // This record indicates that the last instruction is at the same 3908 // location as the previous instruction with a location. 3909 I = getLastInstruction(); 3910 3911 if (!I) 3912 return error("Invalid record"); 3913 I->setDebugLoc(LastLoc); 3914 I = nullptr; 3915 continue; 3916 3917 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3918 I = getLastInstruction(); 3919 if (!I || Record.size() < 4) 3920 return error("Invalid record"); 3921 3922 unsigned Line = Record[0], Col = Record[1]; 3923 unsigned ScopeID = Record[2], IAID = Record[3]; 3924 bool isImplicitCode = Record.size() == 5 && Record[4]; 3925 3926 MDNode *Scope = nullptr, *IA = nullptr; 3927 if (ScopeID) { 3928 Scope = dyn_cast_or_null<MDNode>( 3929 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3930 if (!Scope) 3931 return error("Invalid record"); 3932 } 3933 if (IAID) { 3934 IA = dyn_cast_or_null<MDNode>( 3935 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3936 if (!IA) 3937 return error("Invalid record"); 3938 } 3939 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3940 I->setDebugLoc(LastLoc); 3941 I = nullptr; 3942 continue; 3943 } 3944 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3945 unsigned OpNum = 0; 3946 Value *LHS; 3947 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3948 OpNum+1 > Record.size()) 3949 return error("Invalid record"); 3950 3951 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3952 if (Opc == -1) 3953 return error("Invalid record"); 3954 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3955 InstructionList.push_back(I); 3956 if (OpNum < Record.size()) { 3957 if (isa<FPMathOperator>(I)) { 3958 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3959 if (FMF.any()) 3960 I->setFastMathFlags(FMF); 3961 } 3962 } 3963 break; 3964 } 3965 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3966 unsigned OpNum = 0; 3967 Value *LHS, *RHS; 3968 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3969 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3970 OpNum+1 > Record.size()) 3971 return error("Invalid record"); 3972 3973 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3974 if (Opc == -1) 3975 return error("Invalid record"); 3976 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3977 InstructionList.push_back(I); 3978 if (OpNum < Record.size()) { 3979 if (Opc == Instruction::Add || 3980 Opc == Instruction::Sub || 3981 Opc == Instruction::Mul || 3982 Opc == Instruction::Shl) { 3983 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3984 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3985 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3986 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3987 } else if (Opc == Instruction::SDiv || 3988 Opc == Instruction::UDiv || 3989 Opc == Instruction::LShr || 3990 Opc == Instruction::AShr) { 3991 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3992 cast<BinaryOperator>(I)->setIsExact(true); 3993 } else if (isa<FPMathOperator>(I)) { 3994 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3995 if (FMF.any()) 3996 I->setFastMathFlags(FMF); 3997 } 3998 3999 } 4000 break; 4001 } 4002 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4003 unsigned OpNum = 0; 4004 Value *Op; 4005 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4006 OpNum+2 != Record.size()) 4007 return error("Invalid record"); 4008 4009 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4010 Type *ResTy = flattenPointerTypes(FullTy); 4011 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4012 if (Opc == -1 || !ResTy) 4013 return error("Invalid record"); 4014 Instruction *Temp = nullptr; 4015 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4016 if (Temp) { 4017 InstructionList.push_back(Temp); 4018 assert(CurBB && "No current BB?"); 4019 CurBB->getInstList().push_back(Temp); 4020 } 4021 } else { 4022 auto CastOp = (Instruction::CastOps)Opc; 4023 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4024 return error("Invalid cast"); 4025 I = CastInst::Create(CastOp, Op, ResTy); 4026 } 4027 InstructionList.push_back(I); 4028 break; 4029 } 4030 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4031 case bitc::FUNC_CODE_INST_GEP_OLD: 4032 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4033 unsigned OpNum = 0; 4034 4035 Type *Ty; 4036 bool InBounds; 4037 4038 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4039 InBounds = Record[OpNum++]; 4040 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4041 Ty = flattenPointerTypes(FullTy); 4042 } else { 4043 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4044 Ty = nullptr; 4045 } 4046 4047 Value *BasePtr; 4048 Type *FullBaseTy = nullptr; 4049 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4050 return error("Invalid record"); 4051 4052 if (!Ty) { 4053 std::tie(FullTy, Ty) = 4054 getPointerElementTypes(FullBaseTy->getScalarType()); 4055 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4056 return error( 4057 "Explicit gep type does not match pointee type of pointer operand"); 4058 4059 SmallVector<Value*, 16> GEPIdx; 4060 while (OpNum != Record.size()) { 4061 Value *Op; 4062 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4063 return error("Invalid record"); 4064 GEPIdx.push_back(Op); 4065 } 4066 4067 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4068 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4069 4070 InstructionList.push_back(I); 4071 if (InBounds) 4072 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4073 break; 4074 } 4075 4076 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4077 // EXTRACTVAL: [opty, opval, n x indices] 4078 unsigned OpNum = 0; 4079 Value *Agg; 4080 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4081 return error("Invalid record"); 4082 4083 unsigned RecSize = Record.size(); 4084 if (OpNum == RecSize) 4085 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4086 4087 SmallVector<unsigned, 4> EXTRACTVALIdx; 4088 for (; OpNum != RecSize; ++OpNum) { 4089 bool IsArray = FullTy->isArrayTy(); 4090 bool IsStruct = FullTy->isStructTy(); 4091 uint64_t Index = Record[OpNum]; 4092 4093 if (!IsStruct && !IsArray) 4094 return error("EXTRACTVAL: Invalid type"); 4095 if ((unsigned)Index != Index) 4096 return error("Invalid value"); 4097 if (IsStruct && Index >= FullTy->getStructNumElements()) 4098 return error("EXTRACTVAL: Invalid struct index"); 4099 if (IsArray && Index >= FullTy->getArrayNumElements()) 4100 return error("EXTRACTVAL: Invalid array index"); 4101 EXTRACTVALIdx.push_back((unsigned)Index); 4102 4103 if (IsStruct) 4104 FullTy = FullTy->getStructElementType(Index); 4105 else 4106 FullTy = FullTy->getArrayElementType(); 4107 } 4108 4109 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4110 InstructionList.push_back(I); 4111 break; 4112 } 4113 4114 case bitc::FUNC_CODE_INST_INSERTVAL: { 4115 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4116 unsigned OpNum = 0; 4117 Value *Agg; 4118 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4119 return error("Invalid record"); 4120 Value *Val; 4121 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4122 return error("Invalid record"); 4123 4124 unsigned RecSize = Record.size(); 4125 if (OpNum == RecSize) 4126 return error("INSERTVAL: Invalid instruction with 0 indices"); 4127 4128 SmallVector<unsigned, 4> INSERTVALIdx; 4129 Type *CurTy = Agg->getType(); 4130 for (; OpNum != RecSize; ++OpNum) { 4131 bool IsArray = CurTy->isArrayTy(); 4132 bool IsStruct = CurTy->isStructTy(); 4133 uint64_t Index = Record[OpNum]; 4134 4135 if (!IsStruct && !IsArray) 4136 return error("INSERTVAL: Invalid type"); 4137 if ((unsigned)Index != Index) 4138 return error("Invalid value"); 4139 if (IsStruct && Index >= CurTy->getStructNumElements()) 4140 return error("INSERTVAL: Invalid struct index"); 4141 if (IsArray && Index >= CurTy->getArrayNumElements()) 4142 return error("INSERTVAL: Invalid array index"); 4143 4144 INSERTVALIdx.push_back((unsigned)Index); 4145 if (IsStruct) 4146 CurTy = CurTy->getStructElementType(Index); 4147 else 4148 CurTy = CurTy->getArrayElementType(); 4149 } 4150 4151 if (CurTy != Val->getType()) 4152 return error("Inserted value type doesn't match aggregate type"); 4153 4154 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4155 InstructionList.push_back(I); 4156 break; 4157 } 4158 4159 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4160 // obsolete form of select 4161 // handles select i1 ... in old bitcode 4162 unsigned OpNum = 0; 4163 Value *TrueVal, *FalseVal, *Cond; 4164 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4165 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4166 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4167 return error("Invalid record"); 4168 4169 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4170 InstructionList.push_back(I); 4171 break; 4172 } 4173 4174 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4175 // new form of select 4176 // handles select i1 or select [N x i1] 4177 unsigned OpNum = 0; 4178 Value *TrueVal, *FalseVal, *Cond; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4180 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4181 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4182 return error("Invalid record"); 4183 4184 // select condition can be either i1 or [N x i1] 4185 if (VectorType* vector_type = 4186 dyn_cast<VectorType>(Cond->getType())) { 4187 // expect <n x i1> 4188 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4189 return error("Invalid type for value"); 4190 } else { 4191 // expect i1 4192 if (Cond->getType() != Type::getInt1Ty(Context)) 4193 return error("Invalid type for value"); 4194 } 4195 4196 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4197 InstructionList.push_back(I); 4198 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4199 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4200 if (FMF.any()) 4201 I->setFastMathFlags(FMF); 4202 } 4203 break; 4204 } 4205 4206 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4207 unsigned OpNum = 0; 4208 Value *Vec, *Idx; 4209 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4210 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4211 return error("Invalid record"); 4212 if (!Vec->getType()->isVectorTy()) 4213 return error("Invalid type for value"); 4214 I = ExtractElementInst::Create(Vec, Idx); 4215 FullTy = cast<VectorType>(FullTy)->getElementType(); 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 4220 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4221 unsigned OpNum = 0; 4222 Value *Vec, *Elt, *Idx; 4223 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4224 return error("Invalid record"); 4225 if (!Vec->getType()->isVectorTy()) 4226 return error("Invalid type for value"); 4227 if (popValue(Record, OpNum, NextValueNo, 4228 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4229 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4230 return error("Invalid record"); 4231 I = InsertElementInst::Create(Vec, Elt, Idx); 4232 InstructionList.push_back(I); 4233 break; 4234 } 4235 4236 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4237 unsigned OpNum = 0; 4238 Value *Vec1, *Vec2, *Mask; 4239 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4240 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4241 return error("Invalid record"); 4242 4243 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4244 return error("Invalid record"); 4245 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4246 return error("Invalid type for value"); 4247 4248 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4249 FullTy = 4250 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4251 cast<VectorType>(Mask->getType())->getElementCount()); 4252 InstructionList.push_back(I); 4253 break; 4254 } 4255 4256 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4257 // Old form of ICmp/FCmp returning bool 4258 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4259 // both legal on vectors but had different behaviour. 4260 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4261 // FCmp/ICmp returning bool or vector of bool 4262 4263 unsigned OpNum = 0; 4264 Value *LHS, *RHS; 4265 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4266 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4267 return error("Invalid record"); 4268 4269 if (OpNum >= Record.size()) 4270 return error( 4271 "Invalid record: operand number exceeded available operands"); 4272 4273 unsigned PredVal = Record[OpNum]; 4274 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4275 FastMathFlags FMF; 4276 if (IsFP && Record.size() > OpNum+1) 4277 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4278 4279 if (OpNum+1 != Record.size()) 4280 return error("Invalid record"); 4281 4282 if (LHS->getType()->isFPOrFPVectorTy()) 4283 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4284 else 4285 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4286 4287 if (FMF.any()) 4288 I->setFastMathFlags(FMF); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 4293 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4294 { 4295 unsigned Size = Record.size(); 4296 if (Size == 0) { 4297 I = ReturnInst::Create(Context); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 4302 unsigned OpNum = 0; 4303 Value *Op = nullptr; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4305 return error("Invalid record"); 4306 if (OpNum != Record.size()) 4307 return error("Invalid record"); 4308 4309 I = ReturnInst::Create(Context, Op); 4310 InstructionList.push_back(I); 4311 break; 4312 } 4313 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4314 if (Record.size() != 1 && Record.size() != 3) 4315 return error("Invalid record"); 4316 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4317 if (!TrueDest) 4318 return error("Invalid record"); 4319 4320 if (Record.size() == 1) { 4321 I = BranchInst::Create(TrueDest); 4322 InstructionList.push_back(I); 4323 } 4324 else { 4325 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4326 Value *Cond = getValue(Record, 2, NextValueNo, 4327 Type::getInt1Ty(Context)); 4328 if (!FalseDest || !Cond) 4329 return error("Invalid record"); 4330 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4331 InstructionList.push_back(I); 4332 } 4333 break; 4334 } 4335 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4336 if (Record.size() != 1 && Record.size() != 2) 4337 return error("Invalid record"); 4338 unsigned Idx = 0; 4339 Value *CleanupPad = 4340 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4341 if (!CleanupPad) 4342 return error("Invalid record"); 4343 BasicBlock *UnwindDest = nullptr; 4344 if (Record.size() == 2) { 4345 UnwindDest = getBasicBlock(Record[Idx++]); 4346 if (!UnwindDest) 4347 return error("Invalid record"); 4348 } 4349 4350 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4351 InstructionList.push_back(I); 4352 break; 4353 } 4354 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4355 if (Record.size() != 2) 4356 return error("Invalid record"); 4357 unsigned Idx = 0; 4358 Value *CatchPad = 4359 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4360 if (!CatchPad) 4361 return error("Invalid record"); 4362 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4363 if (!BB) 4364 return error("Invalid record"); 4365 4366 I = CatchReturnInst::Create(CatchPad, BB); 4367 InstructionList.push_back(I); 4368 break; 4369 } 4370 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4371 // We must have, at minimum, the outer scope and the number of arguments. 4372 if (Record.size() < 2) 4373 return error("Invalid record"); 4374 4375 unsigned Idx = 0; 4376 4377 Value *ParentPad = 4378 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4379 4380 unsigned NumHandlers = Record[Idx++]; 4381 4382 SmallVector<BasicBlock *, 2> Handlers; 4383 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4384 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4385 if (!BB) 4386 return error("Invalid record"); 4387 Handlers.push_back(BB); 4388 } 4389 4390 BasicBlock *UnwindDest = nullptr; 4391 if (Idx + 1 == Record.size()) { 4392 UnwindDest = getBasicBlock(Record[Idx++]); 4393 if (!UnwindDest) 4394 return error("Invalid record"); 4395 } 4396 4397 if (Record.size() != Idx) 4398 return error("Invalid record"); 4399 4400 auto *CatchSwitch = 4401 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4402 for (BasicBlock *Handler : Handlers) 4403 CatchSwitch->addHandler(Handler); 4404 I = CatchSwitch; 4405 InstructionList.push_back(I); 4406 break; 4407 } 4408 case bitc::FUNC_CODE_INST_CATCHPAD: 4409 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4410 // We must have, at minimum, the outer scope and the number of arguments. 4411 if (Record.size() < 2) 4412 return error("Invalid record"); 4413 4414 unsigned Idx = 0; 4415 4416 Value *ParentPad = 4417 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4418 4419 unsigned NumArgOperands = Record[Idx++]; 4420 4421 SmallVector<Value *, 2> Args; 4422 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4423 Value *Val; 4424 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4425 return error("Invalid record"); 4426 Args.push_back(Val); 4427 } 4428 4429 if (Record.size() != Idx) 4430 return error("Invalid record"); 4431 4432 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4433 I = CleanupPadInst::Create(ParentPad, Args); 4434 else 4435 I = CatchPadInst::Create(ParentPad, Args); 4436 InstructionList.push_back(I); 4437 break; 4438 } 4439 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4440 // Check magic 4441 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4442 // "New" SwitchInst format with case ranges. The changes to write this 4443 // format were reverted but we still recognize bitcode that uses it. 4444 // Hopefully someday we will have support for case ranges and can use 4445 // this format again. 4446 4447 Type *OpTy = getTypeByID(Record[1]); 4448 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4449 4450 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4451 BasicBlock *Default = getBasicBlock(Record[3]); 4452 if (!OpTy || !Cond || !Default) 4453 return error("Invalid record"); 4454 4455 unsigned NumCases = Record[4]; 4456 4457 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4458 InstructionList.push_back(SI); 4459 4460 unsigned CurIdx = 5; 4461 for (unsigned i = 0; i != NumCases; ++i) { 4462 SmallVector<ConstantInt*, 1> CaseVals; 4463 unsigned NumItems = Record[CurIdx++]; 4464 for (unsigned ci = 0; ci != NumItems; ++ci) { 4465 bool isSingleNumber = Record[CurIdx++]; 4466 4467 APInt Low; 4468 unsigned ActiveWords = 1; 4469 if (ValueBitWidth > 64) 4470 ActiveWords = Record[CurIdx++]; 4471 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4472 ValueBitWidth); 4473 CurIdx += ActiveWords; 4474 4475 if (!isSingleNumber) { 4476 ActiveWords = 1; 4477 if (ValueBitWidth > 64) 4478 ActiveWords = Record[CurIdx++]; 4479 APInt High = readWideAPInt( 4480 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4481 CurIdx += ActiveWords; 4482 4483 // FIXME: It is not clear whether values in the range should be 4484 // compared as signed or unsigned values. The partially 4485 // implemented changes that used this format in the past used 4486 // unsigned comparisons. 4487 for ( ; Low.ule(High); ++Low) 4488 CaseVals.push_back(ConstantInt::get(Context, Low)); 4489 } else 4490 CaseVals.push_back(ConstantInt::get(Context, Low)); 4491 } 4492 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4493 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4494 cve = CaseVals.end(); cvi != cve; ++cvi) 4495 SI->addCase(*cvi, DestBB); 4496 } 4497 I = SI; 4498 break; 4499 } 4500 4501 // Old SwitchInst format without case ranges. 4502 4503 if (Record.size() < 3 || (Record.size() & 1) == 0) 4504 return error("Invalid record"); 4505 Type *OpTy = getTypeByID(Record[0]); 4506 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4507 BasicBlock *Default = getBasicBlock(Record[2]); 4508 if (!OpTy || !Cond || !Default) 4509 return error("Invalid record"); 4510 unsigned NumCases = (Record.size()-3)/2; 4511 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4512 InstructionList.push_back(SI); 4513 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4514 ConstantInt *CaseVal = 4515 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4516 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4517 if (!CaseVal || !DestBB) { 4518 delete SI; 4519 return error("Invalid record"); 4520 } 4521 SI->addCase(CaseVal, DestBB); 4522 } 4523 I = SI; 4524 break; 4525 } 4526 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4527 if (Record.size() < 2) 4528 return error("Invalid record"); 4529 Type *OpTy = getTypeByID(Record[0]); 4530 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4531 if (!OpTy || !Address) 4532 return error("Invalid record"); 4533 unsigned NumDests = Record.size()-2; 4534 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4535 InstructionList.push_back(IBI); 4536 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4537 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4538 IBI->addDestination(DestBB); 4539 } else { 4540 delete IBI; 4541 return error("Invalid record"); 4542 } 4543 } 4544 I = IBI; 4545 break; 4546 } 4547 4548 case bitc::FUNC_CODE_INST_INVOKE: { 4549 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4550 if (Record.size() < 4) 4551 return error("Invalid record"); 4552 unsigned OpNum = 0; 4553 AttributeList PAL = getAttributes(Record[OpNum++]); 4554 unsigned CCInfo = Record[OpNum++]; 4555 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4556 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4557 4558 FunctionType *FTy = nullptr; 4559 FunctionType *FullFTy = nullptr; 4560 if ((CCInfo >> 13) & 1) { 4561 FullFTy = 4562 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4563 if (!FullFTy) 4564 return error("Explicit invoke type is not a function type"); 4565 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4566 } 4567 4568 Value *Callee; 4569 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4570 return error("Invalid record"); 4571 4572 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4573 if (!CalleeTy) 4574 return error("Callee is not a pointer"); 4575 if (!FTy) { 4576 FullFTy = 4577 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4578 if (!FullFTy) 4579 return error("Callee is not of pointer to function type"); 4580 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4581 } else if (getPointerElementFlatType(FullTy) != FTy) 4582 return error("Explicit invoke type does not match pointee type of " 4583 "callee operand"); 4584 if (Record.size() < FTy->getNumParams() + OpNum) 4585 return error("Insufficient operands to call"); 4586 4587 SmallVector<Value*, 16> Ops; 4588 SmallVector<Type *, 16> ArgsFullTys; 4589 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4590 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4591 FTy->getParamType(i))); 4592 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4593 if (!Ops.back()) 4594 return error("Invalid record"); 4595 } 4596 4597 if (!FTy->isVarArg()) { 4598 if (Record.size() != OpNum) 4599 return error("Invalid record"); 4600 } else { 4601 // Read type/value pairs for varargs params. 4602 while (OpNum != Record.size()) { 4603 Value *Op; 4604 Type *FullTy; 4605 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4606 return error("Invalid record"); 4607 Ops.push_back(Op); 4608 ArgsFullTys.push_back(FullTy); 4609 } 4610 } 4611 4612 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4613 OperandBundles); 4614 FullTy = FullFTy->getReturnType(); 4615 OperandBundles.clear(); 4616 InstructionList.push_back(I); 4617 cast<InvokeInst>(I)->setCallingConv( 4618 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4619 cast<InvokeInst>(I)->setAttributes(PAL); 4620 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4621 4622 break; 4623 } 4624 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4625 unsigned Idx = 0; 4626 Value *Val = nullptr; 4627 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4628 return error("Invalid record"); 4629 I = ResumeInst::Create(Val); 4630 InstructionList.push_back(I); 4631 break; 4632 } 4633 case bitc::FUNC_CODE_INST_CALLBR: { 4634 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4635 unsigned OpNum = 0; 4636 AttributeList PAL = getAttributes(Record[OpNum++]); 4637 unsigned CCInfo = Record[OpNum++]; 4638 4639 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4640 unsigned NumIndirectDests = Record[OpNum++]; 4641 SmallVector<BasicBlock *, 16> IndirectDests; 4642 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4643 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4644 4645 FunctionType *FTy = nullptr; 4646 FunctionType *FullFTy = nullptr; 4647 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4648 FullFTy = 4649 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4650 if (!FullFTy) 4651 return error("Explicit call type is not a function type"); 4652 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4653 } 4654 4655 Value *Callee; 4656 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4657 return error("Invalid record"); 4658 4659 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4660 if (!OpTy) 4661 return error("Callee is not a pointer type"); 4662 if (!FTy) { 4663 FullFTy = 4664 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4665 if (!FullFTy) 4666 return error("Callee is not of pointer to function type"); 4667 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4668 } else if (getPointerElementFlatType(FullTy) != FTy) 4669 return error("Explicit call type does not match pointee type of " 4670 "callee operand"); 4671 if (Record.size() < FTy->getNumParams() + OpNum) 4672 return error("Insufficient operands to call"); 4673 4674 SmallVector<Value*, 16> Args; 4675 // Read the fixed params. 4676 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4677 if (FTy->getParamType(i)->isLabelTy()) 4678 Args.push_back(getBasicBlock(Record[OpNum])); 4679 else 4680 Args.push_back(getValue(Record, OpNum, NextValueNo, 4681 FTy->getParamType(i))); 4682 if (!Args.back()) 4683 return error("Invalid record"); 4684 } 4685 4686 // Read type/value pairs for varargs params. 4687 if (!FTy->isVarArg()) { 4688 if (OpNum != Record.size()) 4689 return error("Invalid record"); 4690 } else { 4691 while (OpNum != Record.size()) { 4692 Value *Op; 4693 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4694 return error("Invalid record"); 4695 Args.push_back(Op); 4696 } 4697 } 4698 4699 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4700 OperandBundles); 4701 FullTy = FullFTy->getReturnType(); 4702 OperandBundles.clear(); 4703 InstructionList.push_back(I); 4704 cast<CallBrInst>(I)->setCallingConv( 4705 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4706 cast<CallBrInst>(I)->setAttributes(PAL); 4707 break; 4708 } 4709 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4710 I = new UnreachableInst(Context); 4711 InstructionList.push_back(I); 4712 break; 4713 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4714 if (Record.size() < 1) 4715 return error("Invalid record"); 4716 // The first record specifies the type. 4717 FullTy = getFullyStructuredTypeByID(Record[0]); 4718 Type *Ty = flattenPointerTypes(FullTy); 4719 if (!Ty) 4720 return error("Invalid record"); 4721 4722 // Phi arguments are pairs of records of [value, basic block]. 4723 // There is an optional final record for fast-math-flags if this phi has a 4724 // floating-point type. 4725 size_t NumArgs = (Record.size() - 1) / 2; 4726 PHINode *PN = PHINode::Create(Ty, NumArgs); 4727 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4728 return error("Invalid record"); 4729 InstructionList.push_back(PN); 4730 4731 for (unsigned i = 0; i != NumArgs; i++) { 4732 Value *V; 4733 // With the new function encoding, it is possible that operands have 4734 // negative IDs (for forward references). Use a signed VBR 4735 // representation to keep the encoding small. 4736 if (UseRelativeIDs) 4737 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4738 else 4739 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4740 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4741 if (!V || !BB) 4742 return error("Invalid record"); 4743 PN->addIncoming(V, BB); 4744 } 4745 I = PN; 4746 4747 // If there are an even number of records, the final record must be FMF. 4748 if (Record.size() % 2 == 0) { 4749 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4750 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4751 if (FMF.any()) 4752 I->setFastMathFlags(FMF); 4753 } 4754 4755 break; 4756 } 4757 4758 case bitc::FUNC_CODE_INST_LANDINGPAD: 4759 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4760 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4761 unsigned Idx = 0; 4762 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4763 if (Record.size() < 3) 4764 return error("Invalid record"); 4765 } else { 4766 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4767 if (Record.size() < 4) 4768 return error("Invalid record"); 4769 } 4770 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4771 Type *Ty = flattenPointerTypes(FullTy); 4772 if (!Ty) 4773 return error("Invalid record"); 4774 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4775 Value *PersFn = nullptr; 4776 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4777 return error("Invalid record"); 4778 4779 if (!F->hasPersonalityFn()) 4780 F->setPersonalityFn(cast<Constant>(PersFn)); 4781 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4782 return error("Personality function mismatch"); 4783 } 4784 4785 bool IsCleanup = !!Record[Idx++]; 4786 unsigned NumClauses = Record[Idx++]; 4787 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4788 LP->setCleanup(IsCleanup); 4789 for (unsigned J = 0; J != NumClauses; ++J) { 4790 LandingPadInst::ClauseType CT = 4791 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4792 Value *Val; 4793 4794 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4795 delete LP; 4796 return error("Invalid record"); 4797 } 4798 4799 assert((CT != LandingPadInst::Catch || 4800 !isa<ArrayType>(Val->getType())) && 4801 "Catch clause has a invalid type!"); 4802 assert((CT != LandingPadInst::Filter || 4803 isa<ArrayType>(Val->getType())) && 4804 "Filter clause has invalid type!"); 4805 LP->addClause(cast<Constant>(Val)); 4806 } 4807 4808 I = LP; 4809 InstructionList.push_back(I); 4810 break; 4811 } 4812 4813 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4814 if (Record.size() != 4) 4815 return error("Invalid record"); 4816 uint64_t AlignRecord = Record[3]; 4817 const uint64_t InAllocaMask = uint64_t(1) << 5; 4818 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4819 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4820 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4821 SwiftErrorMask; 4822 bool InAlloca = AlignRecord & InAllocaMask; 4823 bool SwiftError = AlignRecord & SwiftErrorMask; 4824 FullTy = getFullyStructuredTypeByID(Record[0]); 4825 Type *Ty = flattenPointerTypes(FullTy); 4826 if ((AlignRecord & ExplicitTypeMask) == 0) { 4827 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4828 if (!PTy) 4829 return error("Old-style alloca with a non-pointer type"); 4830 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4831 } 4832 Type *OpTy = getTypeByID(Record[1]); 4833 Value *Size = getFnValueByID(Record[2], OpTy); 4834 MaybeAlign Align; 4835 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4836 return Err; 4837 } 4838 if (!Ty || !Size) 4839 return error("Invalid record"); 4840 4841 // FIXME: Make this an optional field. 4842 const DataLayout &DL = TheModule->getDataLayout(); 4843 unsigned AS = DL.getAllocaAddrSpace(); 4844 4845 SmallPtrSet<Type *, 4> Visited; 4846 if (!Align && !Ty->isSized(&Visited)) 4847 return error("alloca of unsized type"); 4848 if (!Align) 4849 Align = DL.getPrefTypeAlign(Ty); 4850 4851 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4852 AI->setUsedWithInAlloca(InAlloca); 4853 AI->setSwiftError(SwiftError); 4854 I = AI; 4855 FullTy = PointerType::get(FullTy, AS); 4856 InstructionList.push_back(I); 4857 break; 4858 } 4859 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4860 unsigned OpNum = 0; 4861 Value *Op; 4862 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4863 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4864 return error("Invalid record"); 4865 4866 if (!isa<PointerType>(Op->getType())) 4867 return error("Load operand is not a pointer type"); 4868 4869 Type *Ty = nullptr; 4870 if (OpNum + 3 == Record.size()) { 4871 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4872 Ty = flattenPointerTypes(FullTy); 4873 } else 4874 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4875 4876 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4877 return Err; 4878 4879 MaybeAlign Align; 4880 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4881 return Err; 4882 SmallPtrSet<Type *, 4> Visited; 4883 if (!Align && !Ty->isSized(&Visited)) 4884 return error("load of unsized type"); 4885 if (!Align) 4886 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4887 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4888 InstructionList.push_back(I); 4889 break; 4890 } 4891 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4892 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4893 unsigned OpNum = 0; 4894 Value *Op; 4895 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4896 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4897 return error("Invalid record"); 4898 4899 if (!isa<PointerType>(Op->getType())) 4900 return error("Load operand is not a pointer type"); 4901 4902 Type *Ty = nullptr; 4903 if (OpNum + 5 == Record.size()) { 4904 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4905 Ty = flattenPointerTypes(FullTy); 4906 } else 4907 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4908 4909 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4910 return Err; 4911 4912 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4913 if (Ordering == AtomicOrdering::NotAtomic || 4914 Ordering == AtomicOrdering::Release || 4915 Ordering == AtomicOrdering::AcquireRelease) 4916 return error("Invalid record"); 4917 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4918 return error("Invalid record"); 4919 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4920 4921 MaybeAlign Align; 4922 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4923 return Err; 4924 if (!Align) 4925 return error("Alignment missing from atomic load"); 4926 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4927 InstructionList.push_back(I); 4928 break; 4929 } 4930 case bitc::FUNC_CODE_INST_STORE: 4931 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4932 unsigned OpNum = 0; 4933 Value *Val, *Ptr; 4934 Type *FullTy; 4935 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4936 (BitCode == bitc::FUNC_CODE_INST_STORE 4937 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4938 : popValue(Record, OpNum, NextValueNo, 4939 getPointerElementFlatType(FullTy), Val)) || 4940 OpNum + 2 != Record.size()) 4941 return error("Invalid record"); 4942 4943 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4944 return Err; 4945 MaybeAlign Align; 4946 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4947 return Err; 4948 SmallPtrSet<Type *, 4> Visited; 4949 if (!Align && !Val->getType()->isSized(&Visited)) 4950 return error("store of unsized type"); 4951 if (!Align) 4952 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4953 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 case bitc::FUNC_CODE_INST_STOREATOMIC: 4958 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4959 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4960 unsigned OpNum = 0; 4961 Value *Val, *Ptr; 4962 Type *FullTy; 4963 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4964 !isa<PointerType>(Ptr->getType()) || 4965 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4966 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4967 : popValue(Record, OpNum, NextValueNo, 4968 getPointerElementFlatType(FullTy), Val)) || 4969 OpNum + 4 != Record.size()) 4970 return error("Invalid record"); 4971 4972 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4973 return Err; 4974 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4975 if (Ordering == AtomicOrdering::NotAtomic || 4976 Ordering == AtomicOrdering::Acquire || 4977 Ordering == AtomicOrdering::AcquireRelease) 4978 return error("Invalid record"); 4979 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4980 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4981 return error("Invalid record"); 4982 4983 MaybeAlign Align; 4984 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4985 return Err; 4986 if (!Align) 4987 return error("Alignment missing from atomic store"); 4988 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 4989 InstructionList.push_back(I); 4990 break; 4991 } 4992 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4993 case bitc::FUNC_CODE_INST_CMPXCHG: { 4994 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4995 // failureordering?, isweak?] 4996 unsigned OpNum = 0; 4997 Value *Ptr, *Cmp, *New; 4998 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4999 return error("Invalid record"); 5000 5001 if (!isa<PointerType>(Ptr->getType())) 5002 return error("Cmpxchg operand is not a pointer type"); 5003 5004 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 5005 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5006 return error("Invalid record"); 5007 } else if (popValue(Record, OpNum, NextValueNo, 5008 getPointerElementFlatType(FullTy), Cmp)) 5009 return error("Invalid record"); 5010 else 5011 FullTy = cast<PointerType>(FullTy)->getElementType(); 5012 5013 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5014 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5015 return error("Invalid record"); 5016 5017 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5018 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5019 SuccessOrdering == AtomicOrdering::Unordered) 5020 return error("Invalid record"); 5021 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5022 5023 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5024 return Err; 5025 AtomicOrdering FailureOrdering; 5026 if (Record.size() < 7) 5027 FailureOrdering = 5028 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5029 else 5030 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5031 5032 Align Alignment( 5033 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5034 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5035 FailureOrdering, SSID); 5036 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5037 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5038 5039 if (Record.size() < 8) { 5040 // Before weak cmpxchgs existed, the instruction simply returned the 5041 // value loaded from memory, so bitcode files from that era will be 5042 // expecting the first component of a modern cmpxchg. 5043 CurBB->getInstList().push_back(I); 5044 I = ExtractValueInst::Create(I, 0); 5045 FullTy = cast<StructType>(FullTy)->getElementType(0); 5046 } else { 5047 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5048 } 5049 5050 InstructionList.push_back(I); 5051 break; 5052 } 5053 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5054 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5055 unsigned OpNum = 0; 5056 Value *Ptr, *Val; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5058 !isa<PointerType>(Ptr->getType()) || 5059 popValue(Record, OpNum, NextValueNo, 5060 getPointerElementFlatType(FullTy), Val) || 5061 OpNum + 4 != Record.size()) 5062 return error("Invalid record"); 5063 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5064 if (Operation < AtomicRMWInst::FIRST_BINOP || 5065 Operation > AtomicRMWInst::LAST_BINOP) 5066 return error("Invalid record"); 5067 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5068 if (Ordering == AtomicOrdering::NotAtomic || 5069 Ordering == AtomicOrdering::Unordered) 5070 return error("Invalid record"); 5071 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5072 Align Alignment( 5073 TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5074 I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 5075 FullTy = getPointerElementFlatType(FullTy); 5076 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5077 InstructionList.push_back(I); 5078 break; 5079 } 5080 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5081 if (2 != Record.size()) 5082 return error("Invalid record"); 5083 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5084 if (Ordering == AtomicOrdering::NotAtomic || 5085 Ordering == AtomicOrdering::Unordered || 5086 Ordering == AtomicOrdering::Monotonic) 5087 return error("Invalid record"); 5088 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5089 I = new FenceInst(Context, Ordering, SSID); 5090 InstructionList.push_back(I); 5091 break; 5092 } 5093 case bitc::FUNC_CODE_INST_CALL: { 5094 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5095 if (Record.size() < 3) 5096 return error("Invalid record"); 5097 5098 unsigned OpNum = 0; 5099 AttributeList PAL = getAttributes(Record[OpNum++]); 5100 unsigned CCInfo = Record[OpNum++]; 5101 5102 FastMathFlags FMF; 5103 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5104 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5105 if (!FMF.any()) 5106 return error("Fast math flags indicator set for call with no FMF"); 5107 } 5108 5109 FunctionType *FTy = nullptr; 5110 FunctionType *FullFTy = nullptr; 5111 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5112 FullFTy = 5113 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5114 if (!FullFTy) 5115 return error("Explicit call type is not a function type"); 5116 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5117 } 5118 5119 Value *Callee; 5120 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5121 return error("Invalid record"); 5122 5123 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5124 if (!OpTy) 5125 return error("Callee is not a pointer type"); 5126 if (!FTy) { 5127 FullFTy = 5128 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5129 if (!FullFTy) 5130 return error("Callee is not of pointer to function type"); 5131 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5132 } else if (getPointerElementFlatType(FullTy) != FTy) 5133 return error("Explicit call type does not match pointee type of " 5134 "callee operand"); 5135 if (Record.size() < FTy->getNumParams() + OpNum) 5136 return error("Insufficient operands to call"); 5137 5138 SmallVector<Value*, 16> Args; 5139 SmallVector<Type*, 16> ArgsFullTys; 5140 // Read the fixed params. 5141 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5142 if (FTy->getParamType(i)->isLabelTy()) 5143 Args.push_back(getBasicBlock(Record[OpNum])); 5144 else 5145 Args.push_back(getValue(Record, OpNum, NextValueNo, 5146 FTy->getParamType(i))); 5147 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5148 if (!Args.back()) 5149 return error("Invalid record"); 5150 } 5151 5152 // Read type/value pairs for varargs params. 5153 if (!FTy->isVarArg()) { 5154 if (OpNum != Record.size()) 5155 return error("Invalid record"); 5156 } else { 5157 while (OpNum != Record.size()) { 5158 Value *Op; 5159 Type *FullTy; 5160 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5161 return error("Invalid record"); 5162 Args.push_back(Op); 5163 ArgsFullTys.push_back(FullTy); 5164 } 5165 } 5166 5167 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5168 FullTy = FullFTy->getReturnType(); 5169 OperandBundles.clear(); 5170 InstructionList.push_back(I); 5171 cast<CallInst>(I)->setCallingConv( 5172 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5173 CallInst::TailCallKind TCK = CallInst::TCK_None; 5174 if (CCInfo & 1 << bitc::CALL_TAIL) 5175 TCK = CallInst::TCK_Tail; 5176 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5177 TCK = CallInst::TCK_MustTail; 5178 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5179 TCK = CallInst::TCK_NoTail; 5180 cast<CallInst>(I)->setTailCallKind(TCK); 5181 cast<CallInst>(I)->setAttributes(PAL); 5182 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5183 if (FMF.any()) { 5184 if (!isa<FPMathOperator>(I)) 5185 return error("Fast-math-flags specified for call without " 5186 "floating-point scalar or vector return type"); 5187 I->setFastMathFlags(FMF); 5188 } 5189 break; 5190 } 5191 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5192 if (Record.size() < 3) 5193 return error("Invalid record"); 5194 Type *OpTy = getTypeByID(Record[0]); 5195 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5196 FullTy = getFullyStructuredTypeByID(Record[2]); 5197 Type *ResTy = flattenPointerTypes(FullTy); 5198 if (!OpTy || !Op || !ResTy) 5199 return error("Invalid record"); 5200 I = new VAArgInst(Op, ResTy); 5201 InstructionList.push_back(I); 5202 break; 5203 } 5204 5205 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5206 // A call or an invoke can be optionally prefixed with some variable 5207 // number of operand bundle blocks. These blocks are read into 5208 // OperandBundles and consumed at the next call or invoke instruction. 5209 5210 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5211 return error("Invalid record"); 5212 5213 std::vector<Value *> Inputs; 5214 5215 unsigned OpNum = 1; 5216 while (OpNum != Record.size()) { 5217 Value *Op; 5218 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5219 return error("Invalid record"); 5220 Inputs.push_back(Op); 5221 } 5222 5223 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5224 continue; 5225 } 5226 5227 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5228 unsigned OpNum = 0; 5229 Value *Op = nullptr; 5230 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5231 return error("Invalid record"); 5232 if (OpNum != Record.size()) 5233 return error("Invalid record"); 5234 5235 I = new FreezeInst(Op); 5236 InstructionList.push_back(I); 5237 break; 5238 } 5239 } 5240 5241 // Add instruction to end of current BB. If there is no current BB, reject 5242 // this file. 5243 if (!CurBB) { 5244 I->deleteValue(); 5245 return error("Invalid instruction with no BB"); 5246 } 5247 if (!OperandBundles.empty()) { 5248 I->deleteValue(); 5249 return error("Operand bundles found with no consumer"); 5250 } 5251 CurBB->getInstList().push_back(I); 5252 5253 // If this was a terminator instruction, move to the next block. 5254 if (I->isTerminator()) { 5255 ++CurBBNo; 5256 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5257 } 5258 5259 // Non-void values get registered in the value table for future use. 5260 if (!I->getType()->isVoidTy()) { 5261 if (!FullTy) { 5262 FullTy = I->getType(); 5263 assert( 5264 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5265 !isa<ArrayType>(FullTy) && 5266 (!isa<VectorType>(FullTy) || 5267 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5268 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5269 "Structured types must be assigned with corresponding non-opaque " 5270 "pointer type"); 5271 } 5272 5273 assert(I->getType() == flattenPointerTypes(FullTy) && 5274 "Incorrect fully structured type provided for Instruction"); 5275 ValueList.assignValue(I, NextValueNo++, FullTy); 5276 } 5277 } 5278 5279 OutOfRecordLoop: 5280 5281 if (!OperandBundles.empty()) 5282 return error("Operand bundles found with no consumer"); 5283 5284 // Check the function list for unresolved values. 5285 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5286 if (!A->getParent()) { 5287 // We found at least one unresolved value. Nuke them all to avoid leaks. 5288 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5289 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5290 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5291 delete A; 5292 } 5293 } 5294 return error("Never resolved value found in function"); 5295 } 5296 } 5297 5298 // Unexpected unresolved metadata about to be dropped. 5299 if (MDLoader->hasFwdRefs()) 5300 return error("Invalid function metadata: outgoing forward refs"); 5301 5302 // Trim the value list down to the size it was before we parsed this function. 5303 ValueList.shrinkTo(ModuleValueListSize); 5304 MDLoader->shrinkTo(ModuleMDLoaderSize); 5305 std::vector<BasicBlock*>().swap(FunctionBBs); 5306 return Error::success(); 5307 } 5308 5309 /// Find the function body in the bitcode stream 5310 Error BitcodeReader::findFunctionInStream( 5311 Function *F, 5312 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5313 while (DeferredFunctionInfoIterator->second == 0) { 5314 // This is the fallback handling for the old format bitcode that 5315 // didn't contain the function index in the VST, or when we have 5316 // an anonymous function which would not have a VST entry. 5317 // Assert that we have one of those two cases. 5318 assert(VSTOffset == 0 || !F->hasName()); 5319 // Parse the next body in the stream and set its position in the 5320 // DeferredFunctionInfo map. 5321 if (Error Err = rememberAndSkipFunctionBodies()) 5322 return Err; 5323 } 5324 return Error::success(); 5325 } 5326 5327 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5328 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5329 return SyncScope::ID(Val); 5330 if (Val >= SSIDs.size()) 5331 return SyncScope::System; // Map unknown synchronization scopes to system. 5332 return SSIDs[Val]; 5333 } 5334 5335 //===----------------------------------------------------------------------===// 5336 // GVMaterializer implementation 5337 //===----------------------------------------------------------------------===// 5338 5339 Error BitcodeReader::materialize(GlobalValue *GV) { 5340 Function *F = dyn_cast<Function>(GV); 5341 // If it's not a function or is already material, ignore the request. 5342 if (!F || !F->isMaterializable()) 5343 return Error::success(); 5344 5345 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5346 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5347 // If its position is recorded as 0, its body is somewhere in the stream 5348 // but we haven't seen it yet. 5349 if (DFII->second == 0) 5350 if (Error Err = findFunctionInStream(F, DFII)) 5351 return Err; 5352 5353 // Materialize metadata before parsing any function bodies. 5354 if (Error Err = materializeMetadata()) 5355 return Err; 5356 5357 // Move the bit stream to the saved position of the deferred function body. 5358 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5359 return JumpFailed; 5360 if (Error Err = parseFunctionBody(F)) 5361 return Err; 5362 F->setIsMaterializable(false); 5363 5364 if (StripDebugInfo) 5365 stripDebugInfo(*F); 5366 5367 // Upgrade any old intrinsic calls in the function. 5368 for (auto &I : UpgradedIntrinsics) { 5369 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5370 UI != UE;) { 5371 User *U = *UI; 5372 ++UI; 5373 if (CallInst *CI = dyn_cast<CallInst>(U)) 5374 UpgradeIntrinsicCall(CI, I.second); 5375 } 5376 } 5377 5378 // Update calls to the remangled intrinsics 5379 for (auto &I : RemangledIntrinsics) 5380 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5381 UI != UE;) 5382 // Don't expect any other users than call sites 5383 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5384 5385 // Finish fn->subprogram upgrade for materialized functions. 5386 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5387 F->setSubprogram(SP); 5388 5389 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5390 if (!MDLoader->isStrippingTBAA()) { 5391 for (auto &I : instructions(F)) { 5392 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5393 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5394 continue; 5395 MDLoader->setStripTBAA(true); 5396 stripTBAA(F->getParent()); 5397 } 5398 } 5399 5400 // "Upgrade" older incorrect branch weights by dropping them. 5401 for (auto &I : instructions(F)) { 5402 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5403 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5404 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5405 StringRef ProfName = MDS->getString(); 5406 // Check consistency of !prof branch_weights metadata. 5407 if (!ProfName.equals("branch_weights")) 5408 continue; 5409 unsigned ExpectedNumOperands = 0; 5410 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5411 ExpectedNumOperands = BI->getNumSuccessors(); 5412 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5413 ExpectedNumOperands = SI->getNumSuccessors(); 5414 else if (isa<CallInst>(&I)) 5415 ExpectedNumOperands = 1; 5416 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5417 ExpectedNumOperands = IBI->getNumDestinations(); 5418 else if (isa<SelectInst>(&I)) 5419 ExpectedNumOperands = 2; 5420 else 5421 continue; // ignore and continue. 5422 5423 // If branch weight doesn't match, just strip branch weight. 5424 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5425 I.setMetadata(LLVMContext::MD_prof, nullptr); 5426 } 5427 } 5428 } 5429 5430 // Look for functions that rely on old function attribute behavior. 5431 UpgradeFunctionAttributes(*F); 5432 5433 // Bring in any functions that this function forward-referenced via 5434 // blockaddresses. 5435 return materializeForwardReferencedFunctions(); 5436 } 5437 5438 Error BitcodeReader::materializeModule() { 5439 if (Error Err = materializeMetadata()) 5440 return Err; 5441 5442 // Promise to materialize all forward references. 5443 WillMaterializeAllForwardRefs = true; 5444 5445 // Iterate over the module, deserializing any functions that are still on 5446 // disk. 5447 for (Function &F : *TheModule) { 5448 if (Error Err = materialize(&F)) 5449 return Err; 5450 } 5451 // At this point, if there are any function bodies, parse the rest of 5452 // the bits in the module past the last function block we have recorded 5453 // through either lazy scanning or the VST. 5454 if (LastFunctionBlockBit || NextUnreadBit) 5455 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5456 ? LastFunctionBlockBit 5457 : NextUnreadBit)) 5458 return Err; 5459 5460 // Check that all block address forward references got resolved (as we 5461 // promised above). 5462 if (!BasicBlockFwdRefs.empty()) 5463 return error("Never resolved function from blockaddress"); 5464 5465 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5466 // delete the old functions to clean up. We can't do this unless the entire 5467 // module is materialized because there could always be another function body 5468 // with calls to the old function. 5469 for (auto &I : UpgradedIntrinsics) { 5470 for (auto *U : I.first->users()) { 5471 if (CallInst *CI = dyn_cast<CallInst>(U)) 5472 UpgradeIntrinsicCall(CI, I.second); 5473 } 5474 if (!I.first->use_empty()) 5475 I.first->replaceAllUsesWith(I.second); 5476 I.first->eraseFromParent(); 5477 } 5478 UpgradedIntrinsics.clear(); 5479 // Do the same for remangled intrinsics 5480 for (auto &I : RemangledIntrinsics) { 5481 I.first->replaceAllUsesWith(I.second); 5482 I.first->eraseFromParent(); 5483 } 5484 RemangledIntrinsics.clear(); 5485 5486 UpgradeDebugInfo(*TheModule); 5487 5488 UpgradeModuleFlags(*TheModule); 5489 5490 UpgradeARCRuntime(*TheModule); 5491 5492 return Error::success(); 5493 } 5494 5495 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5496 return IdentifiedStructTypes; 5497 } 5498 5499 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5500 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5501 StringRef ModulePath, unsigned ModuleId) 5502 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5503 ModulePath(ModulePath), ModuleId(ModuleId) {} 5504 5505 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5506 TheIndex.addModule(ModulePath, ModuleId); 5507 } 5508 5509 ModuleSummaryIndex::ModuleInfo * 5510 ModuleSummaryIndexBitcodeReader::getThisModule() { 5511 return TheIndex.getModule(ModulePath); 5512 } 5513 5514 std::pair<ValueInfo, GlobalValue::GUID> 5515 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5516 auto VGI = ValueIdToValueInfoMap[ValueId]; 5517 assert(VGI.first); 5518 return VGI; 5519 } 5520 5521 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5522 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5523 StringRef SourceFileName) { 5524 std::string GlobalId = 5525 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5526 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5527 auto OriginalNameID = ValueGUID; 5528 if (GlobalValue::isLocalLinkage(Linkage)) 5529 OriginalNameID = GlobalValue::getGUID(ValueName); 5530 if (PrintSummaryGUIDs) 5531 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5532 << ValueName << "\n"; 5533 5534 // UseStrtab is false for legacy summary formats and value names are 5535 // created on stack. In that case we save the name in a string saver in 5536 // the index so that the value name can be recorded. 5537 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5538 TheIndex.getOrInsertValueInfo( 5539 ValueGUID, 5540 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5541 OriginalNameID); 5542 } 5543 5544 // Specialized value symbol table parser used when reading module index 5545 // blocks where we don't actually create global values. The parsed information 5546 // is saved in the bitcode reader for use when later parsing summaries. 5547 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5548 uint64_t Offset, 5549 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5550 // With a strtab the VST is not required to parse the summary. 5551 if (UseStrtab) 5552 return Error::success(); 5553 5554 assert(Offset > 0 && "Expected non-zero VST offset"); 5555 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5556 if (!MaybeCurrentBit) 5557 return MaybeCurrentBit.takeError(); 5558 uint64_t CurrentBit = MaybeCurrentBit.get(); 5559 5560 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5561 return Err; 5562 5563 SmallVector<uint64_t, 64> Record; 5564 5565 // Read all the records for this value table. 5566 SmallString<128> ValueName; 5567 5568 while (true) { 5569 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5570 if (!MaybeEntry) 5571 return MaybeEntry.takeError(); 5572 BitstreamEntry Entry = MaybeEntry.get(); 5573 5574 switch (Entry.Kind) { 5575 case BitstreamEntry::SubBlock: // Handled for us already. 5576 case BitstreamEntry::Error: 5577 return error("Malformed block"); 5578 case BitstreamEntry::EndBlock: 5579 // Done parsing VST, jump back to wherever we came from. 5580 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5581 return JumpFailed; 5582 return Error::success(); 5583 case BitstreamEntry::Record: 5584 // The interesting case. 5585 break; 5586 } 5587 5588 // Read a record. 5589 Record.clear(); 5590 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5591 if (!MaybeRecord) 5592 return MaybeRecord.takeError(); 5593 switch (MaybeRecord.get()) { 5594 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5595 break; 5596 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5597 if (convertToString(Record, 1, ValueName)) 5598 return error("Invalid record"); 5599 unsigned ValueID = Record[0]; 5600 assert(!SourceFileName.empty()); 5601 auto VLI = ValueIdToLinkageMap.find(ValueID); 5602 assert(VLI != ValueIdToLinkageMap.end() && 5603 "No linkage found for VST entry?"); 5604 auto Linkage = VLI->second; 5605 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5606 ValueName.clear(); 5607 break; 5608 } 5609 case bitc::VST_CODE_FNENTRY: { 5610 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5611 if (convertToString(Record, 2, ValueName)) 5612 return error("Invalid record"); 5613 unsigned ValueID = Record[0]; 5614 assert(!SourceFileName.empty()); 5615 auto VLI = ValueIdToLinkageMap.find(ValueID); 5616 assert(VLI != ValueIdToLinkageMap.end() && 5617 "No linkage found for VST entry?"); 5618 auto Linkage = VLI->second; 5619 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5620 ValueName.clear(); 5621 break; 5622 } 5623 case bitc::VST_CODE_COMBINED_ENTRY: { 5624 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5625 unsigned ValueID = Record[0]; 5626 GlobalValue::GUID RefGUID = Record[1]; 5627 // The "original name", which is the second value of the pair will be 5628 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5629 ValueIdToValueInfoMap[ValueID] = 5630 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5631 break; 5632 } 5633 } 5634 } 5635 } 5636 5637 // Parse just the blocks needed for building the index out of the module. 5638 // At the end of this routine the module Index is populated with a map 5639 // from global value id to GlobalValueSummary objects. 5640 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5641 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5642 return Err; 5643 5644 SmallVector<uint64_t, 64> Record; 5645 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5646 unsigned ValueId = 0; 5647 5648 // Read the index for this module. 5649 while (true) { 5650 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5651 if (!MaybeEntry) 5652 return MaybeEntry.takeError(); 5653 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5654 5655 switch (Entry.Kind) { 5656 case BitstreamEntry::Error: 5657 return error("Malformed block"); 5658 case BitstreamEntry::EndBlock: 5659 return Error::success(); 5660 5661 case BitstreamEntry::SubBlock: 5662 switch (Entry.ID) { 5663 default: // Skip unknown content. 5664 if (Error Err = Stream.SkipBlock()) 5665 return Err; 5666 break; 5667 case bitc::BLOCKINFO_BLOCK_ID: 5668 // Need to parse these to get abbrev ids (e.g. for VST) 5669 if (readBlockInfo()) 5670 return error("Malformed block"); 5671 break; 5672 case bitc::VALUE_SYMTAB_BLOCK_ID: 5673 // Should have been parsed earlier via VSTOffset, unless there 5674 // is no summary section. 5675 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5676 !SeenGlobalValSummary) && 5677 "Expected early VST parse via VSTOffset record"); 5678 if (Error Err = Stream.SkipBlock()) 5679 return Err; 5680 break; 5681 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5682 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5683 // Add the module if it is a per-module index (has a source file name). 5684 if (!SourceFileName.empty()) 5685 addThisModule(); 5686 assert(!SeenValueSymbolTable && 5687 "Already read VST when parsing summary block?"); 5688 // We might not have a VST if there were no values in the 5689 // summary. An empty summary block generated when we are 5690 // performing ThinLTO compiles so we don't later invoke 5691 // the regular LTO process on them. 5692 if (VSTOffset > 0) { 5693 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5694 return Err; 5695 SeenValueSymbolTable = true; 5696 } 5697 SeenGlobalValSummary = true; 5698 if (Error Err = parseEntireSummary(Entry.ID)) 5699 return Err; 5700 break; 5701 case bitc::MODULE_STRTAB_BLOCK_ID: 5702 if (Error Err = parseModuleStringTable()) 5703 return Err; 5704 break; 5705 } 5706 continue; 5707 5708 case BitstreamEntry::Record: { 5709 Record.clear(); 5710 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5711 if (!MaybeBitCode) 5712 return MaybeBitCode.takeError(); 5713 switch (MaybeBitCode.get()) { 5714 default: 5715 break; // Default behavior, ignore unknown content. 5716 case bitc::MODULE_CODE_VERSION: { 5717 if (Error Err = parseVersionRecord(Record).takeError()) 5718 return Err; 5719 break; 5720 } 5721 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5722 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5723 SmallString<128> ValueName; 5724 if (convertToString(Record, 0, ValueName)) 5725 return error("Invalid record"); 5726 SourceFileName = ValueName.c_str(); 5727 break; 5728 } 5729 /// MODULE_CODE_HASH: [5*i32] 5730 case bitc::MODULE_CODE_HASH: { 5731 if (Record.size() != 5) 5732 return error("Invalid hash length " + Twine(Record.size()).str()); 5733 auto &Hash = getThisModule()->second.second; 5734 int Pos = 0; 5735 for (auto &Val : Record) { 5736 assert(!(Val >> 32) && "Unexpected high bits set"); 5737 Hash[Pos++] = Val; 5738 } 5739 break; 5740 } 5741 /// MODULE_CODE_VSTOFFSET: [offset] 5742 case bitc::MODULE_CODE_VSTOFFSET: 5743 if (Record.size() < 1) 5744 return error("Invalid record"); 5745 // Note that we subtract 1 here because the offset is relative to one 5746 // word before the start of the identification or module block, which 5747 // was historically always the start of the regular bitcode header. 5748 VSTOffset = Record[0] - 1; 5749 break; 5750 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5751 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5752 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5753 // v2: [strtab offset, strtab size, v1] 5754 case bitc::MODULE_CODE_GLOBALVAR: 5755 case bitc::MODULE_CODE_FUNCTION: 5756 case bitc::MODULE_CODE_ALIAS: { 5757 StringRef Name; 5758 ArrayRef<uint64_t> GVRecord; 5759 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5760 if (GVRecord.size() <= 3) 5761 return error("Invalid record"); 5762 uint64_t RawLinkage = GVRecord[3]; 5763 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5764 if (!UseStrtab) { 5765 ValueIdToLinkageMap[ValueId++] = Linkage; 5766 break; 5767 } 5768 5769 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5770 break; 5771 } 5772 } 5773 } 5774 continue; 5775 } 5776 } 5777 } 5778 5779 std::vector<ValueInfo> 5780 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5781 std::vector<ValueInfo> Ret; 5782 Ret.reserve(Record.size()); 5783 for (uint64_t RefValueId : Record) 5784 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5785 return Ret; 5786 } 5787 5788 std::vector<FunctionSummary::EdgeTy> 5789 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5790 bool IsOldProfileFormat, 5791 bool HasProfile, bool HasRelBF) { 5792 std::vector<FunctionSummary::EdgeTy> Ret; 5793 Ret.reserve(Record.size()); 5794 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5795 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5796 uint64_t RelBF = 0; 5797 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5798 if (IsOldProfileFormat) { 5799 I += 1; // Skip old callsitecount field 5800 if (HasProfile) 5801 I += 1; // Skip old profilecount field 5802 } else if (HasProfile) 5803 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5804 else if (HasRelBF) 5805 RelBF = Record[++I]; 5806 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5807 } 5808 return Ret; 5809 } 5810 5811 static void 5812 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5813 WholeProgramDevirtResolution &Wpd) { 5814 uint64_t ArgNum = Record[Slot++]; 5815 WholeProgramDevirtResolution::ByArg &B = 5816 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5817 Slot += ArgNum; 5818 5819 B.TheKind = 5820 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5821 B.Info = Record[Slot++]; 5822 B.Byte = Record[Slot++]; 5823 B.Bit = Record[Slot++]; 5824 } 5825 5826 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5827 StringRef Strtab, size_t &Slot, 5828 TypeIdSummary &TypeId) { 5829 uint64_t Id = Record[Slot++]; 5830 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5831 5832 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5833 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5834 static_cast<size_t>(Record[Slot + 1])}; 5835 Slot += 2; 5836 5837 uint64_t ResByArgNum = Record[Slot++]; 5838 for (uint64_t I = 0; I != ResByArgNum; ++I) 5839 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5840 } 5841 5842 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5843 StringRef Strtab, 5844 ModuleSummaryIndex &TheIndex) { 5845 size_t Slot = 0; 5846 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5847 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5848 Slot += 2; 5849 5850 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5851 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5852 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5853 TypeId.TTRes.SizeM1 = Record[Slot++]; 5854 TypeId.TTRes.BitMask = Record[Slot++]; 5855 TypeId.TTRes.InlineBits = Record[Slot++]; 5856 5857 while (Slot < Record.size()) 5858 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5859 } 5860 5861 static std::vector<FunctionSummary::ParamAccess> 5862 parseParamAccesses(ArrayRef<uint64_t> Record) { 5863 auto ReadRange = [&]() { 5864 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5865 BitcodeReader::decodeSignRotatedValue(Record.front())); 5866 Record = Record.drop_front(); 5867 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5868 BitcodeReader::decodeSignRotatedValue(Record.front())); 5869 Record = Record.drop_front(); 5870 ConstantRange Range{Lower, Upper}; 5871 assert(!Range.isFullSet()); 5872 assert(!Range.isUpperSignWrapped()); 5873 return Range; 5874 }; 5875 5876 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5877 while (!Record.empty()) { 5878 PendingParamAccesses.emplace_back(); 5879 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5880 ParamAccess.ParamNo = Record.front(); 5881 Record = Record.drop_front(); 5882 ParamAccess.Use = ReadRange(); 5883 ParamAccess.Calls.resize(Record.front()); 5884 Record = Record.drop_front(); 5885 for (auto &Call : ParamAccess.Calls) { 5886 Call.ParamNo = Record.front(); 5887 Record = Record.drop_front(); 5888 Call.Callee = Record.front(); 5889 Record = Record.drop_front(); 5890 Call.Offsets = ReadRange(); 5891 } 5892 } 5893 return PendingParamAccesses; 5894 } 5895 5896 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5897 ArrayRef<uint64_t> Record, size_t &Slot, 5898 TypeIdCompatibleVtableInfo &TypeId) { 5899 uint64_t Offset = Record[Slot++]; 5900 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5901 TypeId.push_back({Offset, Callee}); 5902 } 5903 5904 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5905 ArrayRef<uint64_t> Record) { 5906 size_t Slot = 0; 5907 TypeIdCompatibleVtableInfo &TypeId = 5908 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5909 {Strtab.data() + Record[Slot], 5910 static_cast<size_t>(Record[Slot + 1])}); 5911 Slot += 2; 5912 5913 while (Slot < Record.size()) 5914 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5915 } 5916 5917 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5918 unsigned WOCnt) { 5919 // Readonly and writeonly refs are in the end of the refs list. 5920 assert(ROCnt + WOCnt <= Refs.size()); 5921 unsigned FirstWORef = Refs.size() - WOCnt; 5922 unsigned RefNo = FirstWORef - ROCnt; 5923 for (; RefNo < FirstWORef; ++RefNo) 5924 Refs[RefNo].setReadOnly(); 5925 for (; RefNo < Refs.size(); ++RefNo) 5926 Refs[RefNo].setWriteOnly(); 5927 } 5928 5929 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5930 // objects in the index. 5931 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5932 if (Error Err = Stream.EnterSubBlock(ID)) 5933 return Err; 5934 SmallVector<uint64_t, 64> Record; 5935 5936 // Parse version 5937 { 5938 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5939 if (!MaybeEntry) 5940 return MaybeEntry.takeError(); 5941 BitstreamEntry Entry = MaybeEntry.get(); 5942 5943 if (Entry.Kind != BitstreamEntry::Record) 5944 return error("Invalid Summary Block: record for version expected"); 5945 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5946 if (!MaybeRecord) 5947 return MaybeRecord.takeError(); 5948 if (MaybeRecord.get() != bitc::FS_VERSION) 5949 return error("Invalid Summary Block: version expected"); 5950 } 5951 const uint64_t Version = Record[0]; 5952 const bool IsOldProfileFormat = Version == 1; 5953 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5954 return error("Invalid summary version " + Twine(Version) + 5955 ". Version should be in the range [1-" + 5956 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5957 "]."); 5958 Record.clear(); 5959 5960 // Keep around the last seen summary to be used when we see an optional 5961 // "OriginalName" attachement. 5962 GlobalValueSummary *LastSeenSummary = nullptr; 5963 GlobalValue::GUID LastSeenGUID = 0; 5964 5965 // We can expect to see any number of type ID information records before 5966 // each function summary records; these variables store the information 5967 // collected so far so that it can be used to create the summary object. 5968 std::vector<GlobalValue::GUID> PendingTypeTests; 5969 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5970 PendingTypeCheckedLoadVCalls; 5971 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5972 PendingTypeCheckedLoadConstVCalls; 5973 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5974 5975 while (true) { 5976 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5977 if (!MaybeEntry) 5978 return MaybeEntry.takeError(); 5979 BitstreamEntry Entry = MaybeEntry.get(); 5980 5981 switch (Entry.Kind) { 5982 case BitstreamEntry::SubBlock: // Handled for us already. 5983 case BitstreamEntry::Error: 5984 return error("Malformed block"); 5985 case BitstreamEntry::EndBlock: 5986 return Error::success(); 5987 case BitstreamEntry::Record: 5988 // The interesting case. 5989 break; 5990 } 5991 5992 // Read a record. The record format depends on whether this 5993 // is a per-module index or a combined index file. In the per-module 5994 // case the records contain the associated value's ID for correlation 5995 // with VST entries. In the combined index the correlation is done 5996 // via the bitcode offset of the summary records (which were saved 5997 // in the combined index VST entries). The records also contain 5998 // information used for ThinLTO renaming and importing. 5999 Record.clear(); 6000 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6001 if (!MaybeBitCode) 6002 return MaybeBitCode.takeError(); 6003 switch (unsigned BitCode = MaybeBitCode.get()) { 6004 default: // Default behavior: ignore. 6005 break; 6006 case bitc::FS_FLAGS: { // [flags] 6007 TheIndex.setFlags(Record[0]); 6008 break; 6009 } 6010 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6011 uint64_t ValueID = Record[0]; 6012 GlobalValue::GUID RefGUID = Record[1]; 6013 ValueIdToValueInfoMap[ValueID] = 6014 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6015 break; 6016 } 6017 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6018 // numrefs x valueid, n x (valueid)] 6019 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6020 // numrefs x valueid, 6021 // n x (valueid, hotness)] 6022 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6023 // numrefs x valueid, 6024 // n x (valueid, relblockfreq)] 6025 case bitc::FS_PERMODULE: 6026 case bitc::FS_PERMODULE_RELBF: 6027 case bitc::FS_PERMODULE_PROFILE: { 6028 unsigned ValueID = Record[0]; 6029 uint64_t RawFlags = Record[1]; 6030 unsigned InstCount = Record[2]; 6031 uint64_t RawFunFlags = 0; 6032 unsigned NumRefs = Record[3]; 6033 unsigned NumRORefs = 0, NumWORefs = 0; 6034 int RefListStartIndex = 4; 6035 if (Version >= 4) { 6036 RawFunFlags = Record[3]; 6037 NumRefs = Record[4]; 6038 RefListStartIndex = 5; 6039 if (Version >= 5) { 6040 NumRORefs = Record[5]; 6041 RefListStartIndex = 6; 6042 if (Version >= 7) { 6043 NumWORefs = Record[6]; 6044 RefListStartIndex = 7; 6045 } 6046 } 6047 } 6048 6049 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6050 // The module path string ref set in the summary must be owned by the 6051 // index's module string table. Since we don't have a module path 6052 // string table section in the per-module index, we create a single 6053 // module path string table entry with an empty (0) ID to take 6054 // ownership. 6055 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6056 assert(Record.size() >= RefListStartIndex + NumRefs && 6057 "Record size inconsistent with number of references"); 6058 std::vector<ValueInfo> Refs = makeRefList( 6059 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6060 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6061 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6062 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6063 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6064 IsOldProfileFormat, HasProfile, HasRelBF); 6065 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6066 auto FS = std::make_unique<FunctionSummary>( 6067 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6068 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6069 std::move(PendingTypeTestAssumeVCalls), 6070 std::move(PendingTypeCheckedLoadVCalls), 6071 std::move(PendingTypeTestAssumeConstVCalls), 6072 std::move(PendingTypeCheckedLoadConstVCalls), 6073 std::move(PendingParamAccesses)); 6074 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6075 FS->setModulePath(getThisModule()->first()); 6076 FS->setOriginalName(VIAndOriginalGUID.second); 6077 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6078 break; 6079 } 6080 // FS_ALIAS: [valueid, flags, valueid] 6081 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6082 // they expect all aliasee summaries to be available. 6083 case bitc::FS_ALIAS: { 6084 unsigned ValueID = Record[0]; 6085 uint64_t RawFlags = Record[1]; 6086 unsigned AliaseeID = Record[2]; 6087 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6088 auto AS = std::make_unique<AliasSummary>(Flags); 6089 // The module path string ref set in the summary must be owned by the 6090 // index's module string table. Since we don't have a module path 6091 // string table section in the per-module index, we create a single 6092 // module path string table entry with an empty (0) ID to take 6093 // ownership. 6094 AS->setModulePath(getThisModule()->first()); 6095 6096 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6097 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6098 if (!AliaseeInModule) 6099 return error("Alias expects aliasee summary to be parsed"); 6100 AS->setAliasee(AliaseeVI, AliaseeInModule); 6101 6102 auto GUID = getValueInfoFromValueId(ValueID); 6103 AS->setOriginalName(GUID.second); 6104 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6105 break; 6106 } 6107 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6108 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6109 unsigned ValueID = Record[0]; 6110 uint64_t RawFlags = Record[1]; 6111 unsigned RefArrayStart = 2; 6112 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6113 /* WriteOnly */ false, 6114 /* Constant */ false, 6115 GlobalObject::VCallVisibilityPublic); 6116 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6117 if (Version >= 5) { 6118 GVF = getDecodedGVarFlags(Record[2]); 6119 RefArrayStart = 3; 6120 } 6121 std::vector<ValueInfo> Refs = 6122 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6123 auto FS = 6124 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6125 FS->setModulePath(getThisModule()->first()); 6126 auto GUID = getValueInfoFromValueId(ValueID); 6127 FS->setOriginalName(GUID.second); 6128 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6129 break; 6130 } 6131 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6132 // numrefs, numrefs x valueid, 6133 // n x (valueid, offset)] 6134 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6135 unsigned ValueID = Record[0]; 6136 uint64_t RawFlags = Record[1]; 6137 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6138 unsigned NumRefs = Record[3]; 6139 unsigned RefListStartIndex = 4; 6140 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6141 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6142 std::vector<ValueInfo> Refs = makeRefList( 6143 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6144 VTableFuncList VTableFuncs; 6145 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6146 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6147 uint64_t Offset = Record[++I]; 6148 VTableFuncs.push_back({Callee, Offset}); 6149 } 6150 auto VS = 6151 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6152 VS->setModulePath(getThisModule()->first()); 6153 VS->setVTableFuncs(VTableFuncs); 6154 auto GUID = getValueInfoFromValueId(ValueID); 6155 VS->setOriginalName(GUID.second); 6156 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6157 break; 6158 } 6159 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6160 // numrefs x valueid, n x (valueid)] 6161 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6162 // numrefs x valueid, n x (valueid, hotness)] 6163 case bitc::FS_COMBINED: 6164 case bitc::FS_COMBINED_PROFILE: { 6165 unsigned ValueID = Record[0]; 6166 uint64_t ModuleId = Record[1]; 6167 uint64_t RawFlags = Record[2]; 6168 unsigned InstCount = Record[3]; 6169 uint64_t RawFunFlags = 0; 6170 uint64_t EntryCount = 0; 6171 unsigned NumRefs = Record[4]; 6172 unsigned NumRORefs = 0, NumWORefs = 0; 6173 int RefListStartIndex = 5; 6174 6175 if (Version >= 4) { 6176 RawFunFlags = Record[4]; 6177 RefListStartIndex = 6; 6178 size_t NumRefsIndex = 5; 6179 if (Version >= 5) { 6180 unsigned NumRORefsOffset = 1; 6181 RefListStartIndex = 7; 6182 if (Version >= 6) { 6183 NumRefsIndex = 6; 6184 EntryCount = Record[5]; 6185 RefListStartIndex = 8; 6186 if (Version >= 7) { 6187 RefListStartIndex = 9; 6188 NumWORefs = Record[8]; 6189 NumRORefsOffset = 2; 6190 } 6191 } 6192 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6193 } 6194 NumRefs = Record[NumRefsIndex]; 6195 } 6196 6197 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6198 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6199 assert(Record.size() >= RefListStartIndex + NumRefs && 6200 "Record size inconsistent with number of references"); 6201 std::vector<ValueInfo> Refs = makeRefList( 6202 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6203 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6204 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6205 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6206 IsOldProfileFormat, HasProfile, false); 6207 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6208 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6209 auto FS = std::make_unique<FunctionSummary>( 6210 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6211 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6212 std::move(PendingTypeTestAssumeVCalls), 6213 std::move(PendingTypeCheckedLoadVCalls), 6214 std::move(PendingTypeTestAssumeConstVCalls), 6215 std::move(PendingTypeCheckedLoadConstVCalls), 6216 std::move(PendingParamAccesses)); 6217 LastSeenSummary = FS.get(); 6218 LastSeenGUID = VI.getGUID(); 6219 FS->setModulePath(ModuleIdMap[ModuleId]); 6220 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6221 break; 6222 } 6223 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6224 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6225 // they expect all aliasee summaries to be available. 6226 case bitc::FS_COMBINED_ALIAS: { 6227 unsigned ValueID = Record[0]; 6228 uint64_t ModuleId = Record[1]; 6229 uint64_t RawFlags = Record[2]; 6230 unsigned AliaseeValueId = Record[3]; 6231 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6232 auto AS = std::make_unique<AliasSummary>(Flags); 6233 LastSeenSummary = AS.get(); 6234 AS->setModulePath(ModuleIdMap[ModuleId]); 6235 6236 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6237 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6238 AS->setAliasee(AliaseeVI, AliaseeInModule); 6239 6240 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6241 LastSeenGUID = VI.getGUID(); 6242 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6243 break; 6244 } 6245 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6246 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6247 unsigned ValueID = Record[0]; 6248 uint64_t ModuleId = Record[1]; 6249 uint64_t RawFlags = Record[2]; 6250 unsigned RefArrayStart = 3; 6251 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6252 /* WriteOnly */ false, 6253 /* Constant */ false, 6254 GlobalObject::VCallVisibilityPublic); 6255 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6256 if (Version >= 5) { 6257 GVF = getDecodedGVarFlags(Record[3]); 6258 RefArrayStart = 4; 6259 } 6260 std::vector<ValueInfo> Refs = 6261 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6262 auto FS = 6263 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6264 LastSeenSummary = FS.get(); 6265 FS->setModulePath(ModuleIdMap[ModuleId]); 6266 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6267 LastSeenGUID = VI.getGUID(); 6268 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6269 break; 6270 } 6271 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6272 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6273 uint64_t OriginalName = Record[0]; 6274 if (!LastSeenSummary) 6275 return error("Name attachment that does not follow a combined record"); 6276 LastSeenSummary->setOriginalName(OriginalName); 6277 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6278 // Reset the LastSeenSummary 6279 LastSeenSummary = nullptr; 6280 LastSeenGUID = 0; 6281 break; 6282 } 6283 case bitc::FS_TYPE_TESTS: 6284 assert(PendingTypeTests.empty()); 6285 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6286 Record.end()); 6287 break; 6288 6289 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6290 assert(PendingTypeTestAssumeVCalls.empty()); 6291 for (unsigned I = 0; I != Record.size(); I += 2) 6292 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6293 break; 6294 6295 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6296 assert(PendingTypeCheckedLoadVCalls.empty()); 6297 for (unsigned I = 0; I != Record.size(); I += 2) 6298 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6299 break; 6300 6301 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6302 PendingTypeTestAssumeConstVCalls.push_back( 6303 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6304 break; 6305 6306 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6307 PendingTypeCheckedLoadConstVCalls.push_back( 6308 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6309 break; 6310 6311 case bitc::FS_CFI_FUNCTION_DEFS: { 6312 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6313 for (unsigned I = 0; I != Record.size(); I += 2) 6314 CfiFunctionDefs.insert( 6315 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6316 break; 6317 } 6318 6319 case bitc::FS_CFI_FUNCTION_DECLS: { 6320 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6321 for (unsigned I = 0; I != Record.size(); I += 2) 6322 CfiFunctionDecls.insert( 6323 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6324 break; 6325 } 6326 6327 case bitc::FS_TYPE_ID: 6328 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6329 break; 6330 6331 case bitc::FS_TYPE_ID_METADATA: 6332 parseTypeIdCompatibleVtableSummaryRecord(Record); 6333 break; 6334 6335 case bitc::FS_BLOCK_COUNT: 6336 TheIndex.addBlockCount(Record[0]); 6337 break; 6338 6339 case bitc::FS_PARAM_ACCESS: { 6340 PendingParamAccesses = parseParamAccesses(Record); 6341 break; 6342 } 6343 } 6344 } 6345 llvm_unreachable("Exit infinite loop"); 6346 } 6347 6348 // Parse the module string table block into the Index. 6349 // This populates the ModulePathStringTable map in the index. 6350 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6351 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6352 return Err; 6353 6354 SmallVector<uint64_t, 64> Record; 6355 6356 SmallString<128> ModulePath; 6357 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6358 6359 while (true) { 6360 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6361 if (!MaybeEntry) 6362 return MaybeEntry.takeError(); 6363 BitstreamEntry Entry = MaybeEntry.get(); 6364 6365 switch (Entry.Kind) { 6366 case BitstreamEntry::SubBlock: // Handled for us already. 6367 case BitstreamEntry::Error: 6368 return error("Malformed block"); 6369 case BitstreamEntry::EndBlock: 6370 return Error::success(); 6371 case BitstreamEntry::Record: 6372 // The interesting case. 6373 break; 6374 } 6375 6376 Record.clear(); 6377 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6378 if (!MaybeRecord) 6379 return MaybeRecord.takeError(); 6380 switch (MaybeRecord.get()) { 6381 default: // Default behavior: ignore. 6382 break; 6383 case bitc::MST_CODE_ENTRY: { 6384 // MST_ENTRY: [modid, namechar x N] 6385 uint64_t ModuleId = Record[0]; 6386 6387 if (convertToString(Record, 1, ModulePath)) 6388 return error("Invalid record"); 6389 6390 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6391 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6392 6393 ModulePath.clear(); 6394 break; 6395 } 6396 /// MST_CODE_HASH: [5*i32] 6397 case bitc::MST_CODE_HASH: { 6398 if (Record.size() != 5) 6399 return error("Invalid hash length " + Twine(Record.size()).str()); 6400 if (!LastSeenModule) 6401 return error("Invalid hash that does not follow a module path"); 6402 int Pos = 0; 6403 for (auto &Val : Record) { 6404 assert(!(Val >> 32) && "Unexpected high bits set"); 6405 LastSeenModule->second.second[Pos++] = Val; 6406 } 6407 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6408 LastSeenModule = nullptr; 6409 break; 6410 } 6411 } 6412 } 6413 llvm_unreachable("Exit infinite loop"); 6414 } 6415 6416 namespace { 6417 6418 // FIXME: This class is only here to support the transition to llvm::Error. It 6419 // will be removed once this transition is complete. Clients should prefer to 6420 // deal with the Error value directly, rather than converting to error_code. 6421 class BitcodeErrorCategoryType : public std::error_category { 6422 const char *name() const noexcept override { 6423 return "llvm.bitcode"; 6424 } 6425 6426 std::string message(int IE) const override { 6427 BitcodeError E = static_cast<BitcodeError>(IE); 6428 switch (E) { 6429 case BitcodeError::CorruptedBitcode: 6430 return "Corrupted bitcode"; 6431 } 6432 llvm_unreachable("Unknown error type!"); 6433 } 6434 }; 6435 6436 } // end anonymous namespace 6437 6438 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6439 6440 const std::error_category &llvm::BitcodeErrorCategory() { 6441 return *ErrorCategory; 6442 } 6443 6444 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6445 unsigned Block, unsigned RecordID) { 6446 if (Error Err = Stream.EnterSubBlock(Block)) 6447 return std::move(Err); 6448 6449 StringRef Strtab; 6450 while (true) { 6451 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6452 if (!MaybeEntry) 6453 return MaybeEntry.takeError(); 6454 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6455 6456 switch (Entry.Kind) { 6457 case BitstreamEntry::EndBlock: 6458 return Strtab; 6459 6460 case BitstreamEntry::Error: 6461 return error("Malformed block"); 6462 6463 case BitstreamEntry::SubBlock: 6464 if (Error Err = Stream.SkipBlock()) 6465 return std::move(Err); 6466 break; 6467 6468 case BitstreamEntry::Record: 6469 StringRef Blob; 6470 SmallVector<uint64_t, 1> Record; 6471 Expected<unsigned> MaybeRecord = 6472 Stream.readRecord(Entry.ID, Record, &Blob); 6473 if (!MaybeRecord) 6474 return MaybeRecord.takeError(); 6475 if (MaybeRecord.get() == RecordID) 6476 Strtab = Blob; 6477 break; 6478 } 6479 } 6480 } 6481 6482 //===----------------------------------------------------------------------===// 6483 // External interface 6484 //===----------------------------------------------------------------------===// 6485 6486 Expected<std::vector<BitcodeModule>> 6487 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6488 auto FOrErr = getBitcodeFileContents(Buffer); 6489 if (!FOrErr) 6490 return FOrErr.takeError(); 6491 return std::move(FOrErr->Mods); 6492 } 6493 6494 Expected<BitcodeFileContents> 6495 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6496 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6497 if (!StreamOrErr) 6498 return StreamOrErr.takeError(); 6499 BitstreamCursor &Stream = *StreamOrErr; 6500 6501 BitcodeFileContents F; 6502 while (true) { 6503 uint64_t BCBegin = Stream.getCurrentByteNo(); 6504 6505 // We may be consuming bitcode from a client that leaves garbage at the end 6506 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6507 // the end that there cannot possibly be another module, stop looking. 6508 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6509 return F; 6510 6511 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6512 if (!MaybeEntry) 6513 return MaybeEntry.takeError(); 6514 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6515 6516 switch (Entry.Kind) { 6517 case BitstreamEntry::EndBlock: 6518 case BitstreamEntry::Error: 6519 return error("Malformed block"); 6520 6521 case BitstreamEntry::SubBlock: { 6522 uint64_t IdentificationBit = -1ull; 6523 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6524 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6525 if (Error Err = Stream.SkipBlock()) 6526 return std::move(Err); 6527 6528 { 6529 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6530 if (!MaybeEntry) 6531 return MaybeEntry.takeError(); 6532 Entry = MaybeEntry.get(); 6533 } 6534 6535 if (Entry.Kind != BitstreamEntry::SubBlock || 6536 Entry.ID != bitc::MODULE_BLOCK_ID) 6537 return error("Malformed block"); 6538 } 6539 6540 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6541 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6542 if (Error Err = Stream.SkipBlock()) 6543 return std::move(Err); 6544 6545 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6546 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6547 Buffer.getBufferIdentifier(), IdentificationBit, 6548 ModuleBit}); 6549 continue; 6550 } 6551 6552 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6553 Expected<StringRef> Strtab = 6554 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6555 if (!Strtab) 6556 return Strtab.takeError(); 6557 // This string table is used by every preceding bitcode module that does 6558 // not have its own string table. A bitcode file may have multiple 6559 // string tables if it was created by binary concatenation, for example 6560 // with "llvm-cat -b". 6561 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6562 if (!I->Strtab.empty()) 6563 break; 6564 I->Strtab = *Strtab; 6565 } 6566 // Similarly, the string table is used by every preceding symbol table; 6567 // normally there will be just one unless the bitcode file was created 6568 // by binary concatenation. 6569 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6570 F.StrtabForSymtab = *Strtab; 6571 continue; 6572 } 6573 6574 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6575 Expected<StringRef> SymtabOrErr = 6576 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6577 if (!SymtabOrErr) 6578 return SymtabOrErr.takeError(); 6579 6580 // We can expect the bitcode file to have multiple symbol tables if it 6581 // was created by binary concatenation. In that case we silently 6582 // ignore any subsequent symbol tables, which is fine because this is a 6583 // low level function. The client is expected to notice that the number 6584 // of modules in the symbol table does not match the number of modules 6585 // in the input file and regenerate the symbol table. 6586 if (F.Symtab.empty()) 6587 F.Symtab = *SymtabOrErr; 6588 continue; 6589 } 6590 6591 if (Error Err = Stream.SkipBlock()) 6592 return std::move(Err); 6593 continue; 6594 } 6595 case BitstreamEntry::Record: 6596 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6597 continue; 6598 else 6599 return StreamFailed.takeError(); 6600 } 6601 } 6602 } 6603 6604 /// Get a lazy one-at-time loading module from bitcode. 6605 /// 6606 /// This isn't always used in a lazy context. In particular, it's also used by 6607 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6608 /// in forward-referenced functions from block address references. 6609 /// 6610 /// \param[in] MaterializeAll Set to \c true if we should materialize 6611 /// everything. 6612 Expected<std::unique_ptr<Module>> 6613 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6614 bool ShouldLazyLoadMetadata, bool IsImporting, 6615 DataLayoutCallbackTy DataLayoutCallback) { 6616 BitstreamCursor Stream(Buffer); 6617 6618 std::string ProducerIdentification; 6619 if (IdentificationBit != -1ull) { 6620 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6621 return std::move(JumpFailed); 6622 Expected<std::string> ProducerIdentificationOrErr = 6623 readIdentificationBlock(Stream); 6624 if (!ProducerIdentificationOrErr) 6625 return ProducerIdentificationOrErr.takeError(); 6626 6627 ProducerIdentification = *ProducerIdentificationOrErr; 6628 } 6629 6630 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6631 return std::move(JumpFailed); 6632 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6633 Context); 6634 6635 std::unique_ptr<Module> M = 6636 std::make_unique<Module>(ModuleIdentifier, Context); 6637 M->setMaterializer(R); 6638 6639 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6640 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6641 IsImporting, DataLayoutCallback)) 6642 return std::move(Err); 6643 6644 if (MaterializeAll) { 6645 // Read in the entire module, and destroy the BitcodeReader. 6646 if (Error Err = M->materializeAll()) 6647 return std::move(Err); 6648 } else { 6649 // Resolve forward references from blockaddresses. 6650 if (Error Err = R->materializeForwardReferencedFunctions()) 6651 return std::move(Err); 6652 } 6653 return std::move(M); 6654 } 6655 6656 Expected<std::unique_ptr<Module>> 6657 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6658 bool IsImporting) { 6659 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6660 [](StringRef) { return None; }); 6661 } 6662 6663 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6664 // We don't use ModuleIdentifier here because the client may need to control the 6665 // module path used in the combined summary (e.g. when reading summaries for 6666 // regular LTO modules). 6667 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6668 StringRef ModulePath, uint64_t ModuleId) { 6669 BitstreamCursor Stream(Buffer); 6670 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6671 return JumpFailed; 6672 6673 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6674 ModulePath, ModuleId); 6675 return R.parseModule(); 6676 } 6677 6678 // Parse the specified bitcode buffer, returning the function info index. 6679 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6680 BitstreamCursor Stream(Buffer); 6681 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6682 return std::move(JumpFailed); 6683 6684 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6685 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6686 ModuleIdentifier, 0); 6687 6688 if (Error Err = R.parseModule()) 6689 return std::move(Err); 6690 6691 return std::move(Index); 6692 } 6693 6694 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6695 unsigned ID) { 6696 if (Error Err = Stream.EnterSubBlock(ID)) 6697 return std::move(Err); 6698 SmallVector<uint64_t, 64> Record; 6699 6700 while (true) { 6701 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6702 if (!MaybeEntry) 6703 return MaybeEntry.takeError(); 6704 BitstreamEntry Entry = MaybeEntry.get(); 6705 6706 switch (Entry.Kind) { 6707 case BitstreamEntry::SubBlock: // Handled for us already. 6708 case BitstreamEntry::Error: 6709 return error("Malformed block"); 6710 case BitstreamEntry::EndBlock: 6711 // If no flags record found, conservatively return true to mimic 6712 // behavior before this flag was added. 6713 return true; 6714 case BitstreamEntry::Record: 6715 // The interesting case. 6716 break; 6717 } 6718 6719 // Look for the FS_FLAGS record. 6720 Record.clear(); 6721 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6722 if (!MaybeBitCode) 6723 return MaybeBitCode.takeError(); 6724 switch (MaybeBitCode.get()) { 6725 default: // Default behavior: ignore. 6726 break; 6727 case bitc::FS_FLAGS: { // [flags] 6728 uint64_t Flags = Record[0]; 6729 // Scan flags. 6730 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6731 6732 return Flags & 0x8; 6733 } 6734 } 6735 } 6736 llvm_unreachable("Exit infinite loop"); 6737 } 6738 6739 // Check if the given bitcode buffer contains a global value summary block. 6740 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6741 BitstreamCursor Stream(Buffer); 6742 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6743 return std::move(JumpFailed); 6744 6745 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6746 return std::move(Err); 6747 6748 while (true) { 6749 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6750 if (!MaybeEntry) 6751 return MaybeEntry.takeError(); 6752 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6753 6754 switch (Entry.Kind) { 6755 case BitstreamEntry::Error: 6756 return error("Malformed block"); 6757 case BitstreamEntry::EndBlock: 6758 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6759 /*EnableSplitLTOUnit=*/false}; 6760 6761 case BitstreamEntry::SubBlock: 6762 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6763 Expected<bool> EnableSplitLTOUnit = 6764 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6765 if (!EnableSplitLTOUnit) 6766 return EnableSplitLTOUnit.takeError(); 6767 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6768 *EnableSplitLTOUnit}; 6769 } 6770 6771 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6772 Expected<bool> EnableSplitLTOUnit = 6773 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6774 if (!EnableSplitLTOUnit) 6775 return EnableSplitLTOUnit.takeError(); 6776 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6777 *EnableSplitLTOUnit}; 6778 } 6779 6780 // Ignore other sub-blocks. 6781 if (Error Err = Stream.SkipBlock()) 6782 return std::move(Err); 6783 continue; 6784 6785 case BitstreamEntry::Record: 6786 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6787 continue; 6788 else 6789 return StreamFailed.takeError(); 6790 } 6791 } 6792 } 6793 6794 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6795 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6796 if (!MsOrErr) 6797 return MsOrErr.takeError(); 6798 6799 if (MsOrErr->size() != 1) 6800 return error("Expected a single module"); 6801 6802 return (*MsOrErr)[0]; 6803 } 6804 6805 Expected<std::unique_ptr<Module>> 6806 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6807 bool ShouldLazyLoadMetadata, bool IsImporting) { 6808 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6809 if (!BM) 6810 return BM.takeError(); 6811 6812 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6813 } 6814 6815 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6816 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6817 bool ShouldLazyLoadMetadata, bool IsImporting) { 6818 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6819 IsImporting); 6820 if (MOrErr) 6821 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6822 return MOrErr; 6823 } 6824 6825 Expected<std::unique_ptr<Module>> 6826 BitcodeModule::parseModule(LLVMContext &Context, 6827 DataLayoutCallbackTy DataLayoutCallback) { 6828 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6829 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6830 // written. We must defer until the Module has been fully materialized. 6831 } 6832 6833 Expected<std::unique_ptr<Module>> 6834 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6835 DataLayoutCallbackTy DataLayoutCallback) { 6836 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6837 if (!BM) 6838 return BM.takeError(); 6839 6840 return BM->parseModule(Context, DataLayoutCallback); 6841 } 6842 6843 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6844 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6845 if (!StreamOrErr) 6846 return StreamOrErr.takeError(); 6847 6848 return readTriple(*StreamOrErr); 6849 } 6850 6851 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6852 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6853 if (!StreamOrErr) 6854 return StreamOrErr.takeError(); 6855 6856 return hasObjCCategory(*StreamOrErr); 6857 } 6858 6859 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6860 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6861 if (!StreamOrErr) 6862 return StreamOrErr.takeError(); 6863 6864 return readIdentificationCode(*StreamOrErr); 6865 } 6866 6867 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6868 ModuleSummaryIndex &CombinedIndex, 6869 uint64_t ModuleId) { 6870 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6871 if (!BM) 6872 return BM.takeError(); 6873 6874 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6875 } 6876 6877 Expected<std::unique_ptr<ModuleSummaryIndex>> 6878 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6879 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6880 if (!BM) 6881 return BM.takeError(); 6882 6883 return BM->getSummary(); 6884 } 6885 6886 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6887 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6888 if (!BM) 6889 return BM.takeError(); 6890 6891 return BM->getLTOInfo(); 6892 } 6893 6894 Expected<std::unique_ptr<ModuleSummaryIndex>> 6895 llvm::getModuleSummaryIndexForFile(StringRef Path, 6896 bool IgnoreEmptyThinLTOIndexFile) { 6897 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6898 MemoryBuffer::getFileOrSTDIN(Path); 6899 if (!FileOrErr) 6900 return errorCodeToError(FileOrErr.getError()); 6901 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6902 return nullptr; 6903 return getModuleSummaryIndex(**FileOrErr); 6904 } 6905