1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void AssignValue(Value *V, unsigned Idx); 90 91 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 92 /// resolves any forward references. 93 void ResolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void AssignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 DataStreamer *LazyStreamer; 140 uint64_t NextUnreadBit; 141 bool SeenValueSymbolTable; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// MAttributes - The set of attributes by index. Index zero in the 157 /// file is for null, and is thus not represented here. As such all indices 158 /// are off by one. 159 std::vector<AttributeSet> MAttributes; 160 161 /// \brief The set of attribute groups. 162 std::map<unsigned, AttributeSet> MAttributeGroups; 163 164 /// FunctionBBs - While parsing a function body, this is a list of the basic 165 /// blocks for the function. 166 std::vector<BasicBlock*> FunctionBBs; 167 168 // When reading the module header, this list is populated with functions that 169 // have bodies later in the file. 170 std::vector<Function*> FunctionsWithBodies; 171 172 // When intrinsic functions are encountered which require upgrading they are 173 // stored here with their replacement function. 174 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 175 UpgradedIntrinsicMap UpgradedIntrinsics; 176 177 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 178 DenseMap<unsigned, unsigned> MDKindMap; 179 180 // Several operations happen after the module header has been read, but 181 // before function bodies are processed. This keeps track of whether 182 // we've done this yet. 183 bool SeenFirstFunctionBody; 184 185 /// DeferredFunctionInfo - When function bodies are initially scanned, this 186 /// map contains info about where to find deferred function body in the 187 /// stream. 188 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 189 190 /// When Metadata block is initially scanned when parsing the module, we may 191 /// choose to defer parsing of the metadata. This vector contains info about 192 /// which Metadata blocks are deferred. 193 std::vector<uint64_t> DeferredMetadataInfo; 194 195 /// These are basic blocks forward-referenced by block addresses. They are 196 /// inserted lazily into functions when they're loaded. The basic block ID is 197 /// its index into the vector. 198 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 199 std::deque<Function *> BasicBlockFwdRefQueue; 200 201 /// UseRelativeIDs - Indicates that we are using a new encoding for 202 /// instruction operands where most operands in the current 203 /// FUNCTION_BLOCK are encoded relative to the instruction number, 204 /// for a more compact encoding. Some instruction operands are not 205 /// relative to the instruction ID: basic block numbers, and types. 206 /// Once the old style function blocks have been phased out, we would 207 /// not need this flag. 208 bool UseRelativeIDs; 209 210 /// True if all functions will be materialized, negating the need to process 211 /// (e.g.) blockaddress forward references. 212 bool WillMaterializeAllForwardRefs; 213 214 /// Functions that have block addresses taken. This is usually empty. 215 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 216 217 /// True if any Metadata block has been materialized. 218 bool IsMetadataMaterialized; 219 220 bool StripDebugInfo = false; 221 222 public: 223 std::error_code Error(BitcodeError E, const Twine &Message); 224 std::error_code Error(BitcodeError E); 225 std::error_code Error(const Twine &Message); 226 227 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 228 DiagnosticHandlerFunction DiagnosticHandler); 229 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 ~BitcodeReader() override { FreeState(); } 232 233 std::error_code materializeForwardReferencedFunctions(); 234 235 void FreeState(); 236 237 void releaseBuffer(); 238 239 bool isDematerializable(const GlobalValue *GV) const override; 240 std::error_code materialize(GlobalValue *GV) override; 241 std::error_code materializeModule(Module *M) override; 242 std::vector<StructType *> getIdentifiedStructTypes() const override; 243 void dematerialize(GlobalValue *GV) override; 244 245 /// @brief Main interface to parsing a bitcode buffer. 246 /// @returns true if an error occurred. 247 std::error_code ParseBitcodeInto(Module *M, 248 bool ShouldLazyLoadMetadata = false); 249 250 /// @brief Cheap mechanism to just extract module triple 251 /// @returns true if an error occurred. 252 ErrorOr<std::string> parseTriple(); 253 254 static uint64_t decodeSignRotatedValue(uint64_t V); 255 256 /// Materialize any deferred Metadata block. 257 std::error_code materializeMetadata() override; 258 259 void setStripDebugInfo() override; 260 261 private: 262 std::vector<StructType *> IdentifiedStructTypes; 263 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 264 StructType *createIdentifiedStructType(LLVMContext &Context); 265 266 Type *getTypeByID(unsigned ID); 267 Value *getFnValueByID(unsigned ID, Type *Ty) { 268 if (Ty && Ty->isMetadataTy()) 269 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 270 return ValueList.getValueFwdRef(ID, Ty); 271 } 272 Metadata *getFnMetadataByID(unsigned ID) { 273 return MDValueList.getValueFwdRef(ID); 274 } 275 BasicBlock *getBasicBlock(unsigned ID) const { 276 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 277 return FunctionBBs[ID]; 278 } 279 AttributeSet getAttributes(unsigned i) const { 280 if (i-1 < MAttributes.size()) 281 return MAttributes[i-1]; 282 return AttributeSet(); 283 } 284 285 /// getValueTypePair - Read a value/type pair out of the specified record from 286 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 287 /// Return true on failure. 288 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 289 unsigned InstNum, Value *&ResVal) { 290 if (Slot == Record.size()) return true; 291 unsigned ValNo = (unsigned)Record[Slot++]; 292 // Adjust the ValNo, if it was encoded relative to the InstNum. 293 if (UseRelativeIDs) 294 ValNo = InstNum - ValNo; 295 if (ValNo < InstNum) { 296 // If this is not a forward reference, just return the value we already 297 // have. 298 ResVal = getFnValueByID(ValNo, nullptr); 299 return ResVal == nullptr; 300 } 301 if (Slot == Record.size()) 302 return true; 303 304 unsigned TypeNo = (unsigned)Record[Slot++]; 305 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 306 return ResVal == nullptr; 307 } 308 309 /// popValue - Read a value out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used by the value in the record. 311 /// Return true if there is an error. 312 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Type *Ty, Value *&ResVal) { 314 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 315 return true; 316 // All values currently take a single record slot. 317 ++Slot; 318 return false; 319 } 320 321 /// getValue -- Like popValue, but does not increment the Slot number. 322 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 323 unsigned InstNum, Type *Ty, Value *&ResVal) { 324 ResVal = getValue(Record, Slot, InstNum, Ty); 325 return ResVal == nullptr; 326 } 327 328 /// getValue -- Version of getValue that returns ResVal directly, 329 /// or 0 if there is an error. 330 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 331 unsigned InstNum, Type *Ty) { 332 if (Slot == Record.size()) return nullptr; 333 unsigned ValNo = (unsigned)Record[Slot]; 334 // Adjust the ValNo, if it was encoded relative to the InstNum. 335 if (UseRelativeIDs) 336 ValNo = InstNum - ValNo; 337 return getFnValueByID(ValNo, Ty); 338 } 339 340 /// getValueSigned -- Like getValue, but decodes signed VBRs. 341 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 342 unsigned InstNum, Type *Ty) { 343 if (Slot == Record.size()) return nullptr; 344 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 345 // Adjust the ValNo, if it was encoded relative to the InstNum. 346 if (UseRelativeIDs) 347 ValNo = InstNum - ValNo; 348 return getFnValueByID(ValNo, Ty); 349 } 350 351 /// Converts alignment exponent (i.e. power of two (or zero)) to the 352 /// corresponding alignment to use. If alignment is too large, returns 353 /// a corresponding error code. 354 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 355 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 356 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 357 std::error_code ParseAttributeBlock(); 358 std::error_code ParseAttributeGroupBlock(); 359 std::error_code ParseTypeTable(); 360 std::error_code ParseTypeTableBody(); 361 362 std::error_code ParseValueSymbolTable(); 363 std::error_code ParseConstants(); 364 std::error_code RememberAndSkipFunctionBody(); 365 /// Save the positions of the Metadata blocks and skip parsing the blocks. 366 std::error_code rememberAndSkipMetadata(); 367 std::error_code ParseFunctionBody(Function *F); 368 std::error_code GlobalCleanup(); 369 std::error_code ResolveGlobalAndAliasInits(); 370 std::error_code ParseMetadata(); 371 std::error_code ParseMetadataAttachment(Function &F); 372 ErrorOr<std::string> parseModuleTriple(); 373 std::error_code ParseUseLists(); 374 std::error_code InitStream(); 375 std::error_code InitStreamFromBuffer(); 376 std::error_code InitLazyStream(); 377 std::error_code FindFunctionInStream( 378 Function *F, 379 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 380 }; 381 } // namespace 382 383 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 384 DiagnosticSeverity Severity, 385 const Twine &Msg) 386 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 387 388 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 389 390 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 391 std::error_code EC, const Twine &Message) { 392 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 393 DiagnosticHandler(DI); 394 return EC; 395 } 396 397 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 398 std::error_code EC) { 399 return Error(DiagnosticHandler, EC, EC.message()); 400 } 401 402 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 403 const Twine &Message) { 404 return Error(DiagnosticHandler, 405 make_error_code(BitcodeError::CorruptedBitcode), Message); 406 } 407 408 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 409 return ::Error(DiagnosticHandler, make_error_code(E), Message); 410 } 411 412 std::error_code BitcodeReader::Error(const Twine &Message) { 413 return ::Error(DiagnosticHandler, 414 make_error_code(BitcodeError::CorruptedBitcode), Message); 415 } 416 417 std::error_code BitcodeReader::Error(BitcodeError E) { 418 return ::Error(DiagnosticHandler, make_error_code(E)); 419 } 420 421 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 422 LLVMContext &C) { 423 if (F) 424 return F; 425 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 426 } 427 428 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 429 DiagnosticHandlerFunction DiagnosticHandler) 430 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 431 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 432 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 433 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 434 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 435 436 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 437 DiagnosticHandlerFunction DiagnosticHandler) 438 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 439 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 440 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 441 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 442 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 443 444 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 445 if (WillMaterializeAllForwardRefs) 446 return std::error_code(); 447 448 // Prevent recursion. 449 WillMaterializeAllForwardRefs = true; 450 451 while (!BasicBlockFwdRefQueue.empty()) { 452 Function *F = BasicBlockFwdRefQueue.front(); 453 BasicBlockFwdRefQueue.pop_front(); 454 assert(F && "Expected valid function"); 455 if (!BasicBlockFwdRefs.count(F)) 456 // Already materialized. 457 continue; 458 459 // Check for a function that isn't materializable to prevent an infinite 460 // loop. When parsing a blockaddress stored in a global variable, there 461 // isn't a trivial way to check if a function will have a body without a 462 // linear search through FunctionsWithBodies, so just check it here. 463 if (!F->isMaterializable()) 464 return Error("Never resolved function from blockaddress"); 465 466 // Try to materialize F. 467 if (std::error_code EC = materialize(F)) 468 return EC; 469 } 470 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 471 472 // Reset state. 473 WillMaterializeAllForwardRefs = false; 474 return std::error_code(); 475 } 476 477 void BitcodeReader::FreeState() { 478 Buffer = nullptr; 479 std::vector<Type*>().swap(TypeList); 480 ValueList.clear(); 481 MDValueList.clear(); 482 std::vector<Comdat *>().swap(ComdatList); 483 484 std::vector<AttributeSet>().swap(MAttributes); 485 std::vector<BasicBlock*>().swap(FunctionBBs); 486 std::vector<Function*>().swap(FunctionsWithBodies); 487 DeferredFunctionInfo.clear(); 488 DeferredMetadataInfo.clear(); 489 MDKindMap.clear(); 490 491 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 492 BasicBlockFwdRefQueue.clear(); 493 } 494 495 //===----------------------------------------------------------------------===// 496 // Helper functions to implement forward reference resolution, etc. 497 //===----------------------------------------------------------------------===// 498 499 /// ConvertToString - Convert a string from a record into an std::string, return 500 /// true on failure. 501 template<typename StrTy> 502 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 503 StrTy &Result) { 504 if (Idx > Record.size()) 505 return true; 506 507 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 508 Result += (char)Record[i]; 509 return false; 510 } 511 512 static bool hasImplicitComdat(size_t Val) { 513 switch (Val) { 514 default: 515 return false; 516 case 1: // Old WeakAnyLinkage 517 case 4: // Old LinkOnceAnyLinkage 518 case 10: // Old WeakODRLinkage 519 case 11: // Old LinkOnceODRLinkage 520 return true; 521 } 522 } 523 524 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 525 switch (Val) { 526 default: // Map unknown/new linkages to external 527 case 0: 528 return GlobalValue::ExternalLinkage; 529 case 2: 530 return GlobalValue::AppendingLinkage; 531 case 3: 532 return GlobalValue::InternalLinkage; 533 case 5: 534 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 535 case 6: 536 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 537 case 7: 538 return GlobalValue::ExternalWeakLinkage; 539 case 8: 540 return GlobalValue::CommonLinkage; 541 case 9: 542 return GlobalValue::PrivateLinkage; 543 case 12: 544 return GlobalValue::AvailableExternallyLinkage; 545 case 13: 546 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 547 case 14: 548 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 549 case 15: 550 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 551 case 1: // Old value with implicit comdat. 552 case 16: 553 return GlobalValue::WeakAnyLinkage; 554 case 10: // Old value with implicit comdat. 555 case 17: 556 return GlobalValue::WeakODRLinkage; 557 case 4: // Old value with implicit comdat. 558 case 18: 559 return GlobalValue::LinkOnceAnyLinkage; 560 case 11: // Old value with implicit comdat. 561 case 19: 562 return GlobalValue::LinkOnceODRLinkage; 563 } 564 } 565 566 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 567 switch (Val) { 568 default: // Map unknown visibilities to default. 569 case 0: return GlobalValue::DefaultVisibility; 570 case 1: return GlobalValue::HiddenVisibility; 571 case 2: return GlobalValue::ProtectedVisibility; 572 } 573 } 574 575 static GlobalValue::DLLStorageClassTypes 576 GetDecodedDLLStorageClass(unsigned Val) { 577 switch (Val) { 578 default: // Map unknown values to default. 579 case 0: return GlobalValue::DefaultStorageClass; 580 case 1: return GlobalValue::DLLImportStorageClass; 581 case 2: return GlobalValue::DLLExportStorageClass; 582 } 583 } 584 585 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 586 switch (Val) { 587 case 0: return GlobalVariable::NotThreadLocal; 588 default: // Map unknown non-zero value to general dynamic. 589 case 1: return GlobalVariable::GeneralDynamicTLSModel; 590 case 2: return GlobalVariable::LocalDynamicTLSModel; 591 case 3: return GlobalVariable::InitialExecTLSModel; 592 case 4: return GlobalVariable::LocalExecTLSModel; 593 } 594 } 595 596 static int GetDecodedCastOpcode(unsigned Val) { 597 switch (Val) { 598 default: return -1; 599 case bitc::CAST_TRUNC : return Instruction::Trunc; 600 case bitc::CAST_ZEXT : return Instruction::ZExt; 601 case bitc::CAST_SEXT : return Instruction::SExt; 602 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 603 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 604 case bitc::CAST_UITOFP : return Instruction::UIToFP; 605 case bitc::CAST_SITOFP : return Instruction::SIToFP; 606 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 607 case bitc::CAST_FPEXT : return Instruction::FPExt; 608 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 609 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 610 case bitc::CAST_BITCAST : return Instruction::BitCast; 611 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 612 } 613 } 614 615 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 616 bool IsFP = Ty->isFPOrFPVectorTy(); 617 // BinOps are only valid for int/fp or vector of int/fp types 618 if (!IsFP && !Ty->isIntOrIntVectorTy()) 619 return -1; 620 621 switch (Val) { 622 default: 623 return -1; 624 case bitc::BINOP_ADD: 625 return IsFP ? Instruction::FAdd : Instruction::Add; 626 case bitc::BINOP_SUB: 627 return IsFP ? Instruction::FSub : Instruction::Sub; 628 case bitc::BINOP_MUL: 629 return IsFP ? Instruction::FMul : Instruction::Mul; 630 case bitc::BINOP_UDIV: 631 return IsFP ? -1 : Instruction::UDiv; 632 case bitc::BINOP_SDIV: 633 return IsFP ? Instruction::FDiv : Instruction::SDiv; 634 case bitc::BINOP_UREM: 635 return IsFP ? -1 : Instruction::URem; 636 case bitc::BINOP_SREM: 637 return IsFP ? Instruction::FRem : Instruction::SRem; 638 case bitc::BINOP_SHL: 639 return IsFP ? -1 : Instruction::Shl; 640 case bitc::BINOP_LSHR: 641 return IsFP ? -1 : Instruction::LShr; 642 case bitc::BINOP_ASHR: 643 return IsFP ? -1 : Instruction::AShr; 644 case bitc::BINOP_AND: 645 return IsFP ? -1 : Instruction::And; 646 case bitc::BINOP_OR: 647 return IsFP ? -1 : Instruction::Or; 648 case bitc::BINOP_XOR: 649 return IsFP ? -1 : Instruction::Xor; 650 } 651 } 652 653 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 654 switch (Val) { 655 default: return AtomicRMWInst::BAD_BINOP; 656 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 657 case bitc::RMW_ADD: return AtomicRMWInst::Add; 658 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 659 case bitc::RMW_AND: return AtomicRMWInst::And; 660 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 661 case bitc::RMW_OR: return AtomicRMWInst::Or; 662 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 663 case bitc::RMW_MAX: return AtomicRMWInst::Max; 664 case bitc::RMW_MIN: return AtomicRMWInst::Min; 665 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 666 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 667 } 668 } 669 670 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 671 switch (Val) { 672 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 673 case bitc::ORDERING_UNORDERED: return Unordered; 674 case bitc::ORDERING_MONOTONIC: return Monotonic; 675 case bitc::ORDERING_ACQUIRE: return Acquire; 676 case bitc::ORDERING_RELEASE: return Release; 677 case bitc::ORDERING_ACQREL: return AcquireRelease; 678 default: // Map unknown orderings to sequentially-consistent. 679 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 680 } 681 } 682 683 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 684 switch (Val) { 685 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 686 default: // Map unknown scopes to cross-thread. 687 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 688 } 689 } 690 691 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 692 switch (Val) { 693 default: // Map unknown selection kinds to any. 694 case bitc::COMDAT_SELECTION_KIND_ANY: 695 return Comdat::Any; 696 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 697 return Comdat::ExactMatch; 698 case bitc::COMDAT_SELECTION_KIND_LARGEST: 699 return Comdat::Largest; 700 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 701 return Comdat::NoDuplicates; 702 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 703 return Comdat::SameSize; 704 } 705 } 706 707 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 708 switch (Val) { 709 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 710 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 711 } 712 } 713 714 namespace llvm { 715 namespace { 716 /// @brief A class for maintaining the slot number definition 717 /// as a placeholder for the actual definition for forward constants defs. 718 class ConstantPlaceHolder : public ConstantExpr { 719 void operator=(const ConstantPlaceHolder &) = delete; 720 public: 721 // allocate space for exactly one operand 722 void *operator new(size_t s) { 723 return User::operator new(s, 1); 724 } 725 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 726 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 727 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 728 } 729 730 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 731 static bool classof(const Value *V) { 732 return isa<ConstantExpr>(V) && 733 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 734 } 735 736 737 /// Provide fast operand accessors 738 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 739 }; 740 } 741 742 // FIXME: can we inherit this from ConstantExpr? 743 template <> 744 struct OperandTraits<ConstantPlaceHolder> : 745 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 746 }; 747 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 748 } 749 750 751 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 752 if (Idx == size()) { 753 push_back(V); 754 return; 755 } 756 757 if (Idx >= size()) 758 resize(Idx+1); 759 760 WeakVH &OldV = ValuePtrs[Idx]; 761 if (!OldV) { 762 OldV = V; 763 return; 764 } 765 766 // Handle constants and non-constants (e.g. instrs) differently for 767 // efficiency. 768 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 769 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 770 OldV = V; 771 } else { 772 // If there was a forward reference to this value, replace it. 773 Value *PrevVal = OldV; 774 OldV->replaceAllUsesWith(V); 775 delete PrevVal; 776 } 777 } 778 779 780 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 781 Type *Ty) { 782 if (Idx >= size()) 783 resize(Idx + 1); 784 785 if (Value *V = ValuePtrs[Idx]) { 786 if (Ty != V->getType()) 787 report_fatal_error("Type mismatch in constant table!"); 788 return cast<Constant>(V); 789 } 790 791 // Create and return a placeholder, which will later be RAUW'd. 792 Constant *C = new ConstantPlaceHolder(Ty, Context); 793 ValuePtrs[Idx] = C; 794 return C; 795 } 796 797 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 798 // Bail out for a clearly invalid value. This would make us call resize(0) 799 if (Idx == UINT_MAX) 800 return nullptr; 801 802 if (Idx >= size()) 803 resize(Idx + 1); 804 805 if (Value *V = ValuePtrs[Idx]) { 806 // If the types don't match, it's invalid. 807 if (Ty && Ty != V->getType()) 808 return nullptr; 809 return V; 810 } 811 812 // No type specified, must be invalid reference. 813 if (!Ty) return nullptr; 814 815 // Create and return a placeholder, which will later be RAUW'd. 816 Value *V = new Argument(Ty); 817 ValuePtrs[Idx] = V; 818 return V; 819 } 820 821 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 822 /// resolves any forward references. The idea behind this is that we sometimes 823 /// get constants (such as large arrays) which reference *many* forward ref 824 /// constants. Replacing each of these causes a lot of thrashing when 825 /// building/reuniquing the constant. Instead of doing this, we look at all the 826 /// uses and rewrite all the place holders at once for any constant that uses 827 /// a placeholder. 828 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 829 // Sort the values by-pointer so that they are efficient to look up with a 830 // binary search. 831 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 832 833 SmallVector<Constant*, 64> NewOps; 834 835 while (!ResolveConstants.empty()) { 836 Value *RealVal = operator[](ResolveConstants.back().second); 837 Constant *Placeholder = ResolveConstants.back().first; 838 ResolveConstants.pop_back(); 839 840 // Loop over all users of the placeholder, updating them to reference the 841 // new value. If they reference more than one placeholder, update them all 842 // at once. 843 while (!Placeholder->use_empty()) { 844 auto UI = Placeholder->user_begin(); 845 User *U = *UI; 846 847 // If the using object isn't uniqued, just update the operands. This 848 // handles instructions and initializers for global variables. 849 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 850 UI.getUse().set(RealVal); 851 continue; 852 } 853 854 // Otherwise, we have a constant that uses the placeholder. Replace that 855 // constant with a new constant that has *all* placeholder uses updated. 856 Constant *UserC = cast<Constant>(U); 857 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 858 I != E; ++I) { 859 Value *NewOp; 860 if (!isa<ConstantPlaceHolder>(*I)) { 861 // Not a placeholder reference. 862 NewOp = *I; 863 } else if (*I == Placeholder) { 864 // Common case is that it just references this one placeholder. 865 NewOp = RealVal; 866 } else { 867 // Otherwise, look up the placeholder in ResolveConstants. 868 ResolveConstantsTy::iterator It = 869 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 870 std::pair<Constant*, unsigned>(cast<Constant>(*I), 871 0)); 872 assert(It != ResolveConstants.end() && It->first == *I); 873 NewOp = operator[](It->second); 874 } 875 876 NewOps.push_back(cast<Constant>(NewOp)); 877 } 878 879 // Make the new constant. 880 Constant *NewC; 881 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 882 NewC = ConstantArray::get(UserCA->getType(), NewOps); 883 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 884 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 885 } else if (isa<ConstantVector>(UserC)) { 886 NewC = ConstantVector::get(NewOps); 887 } else { 888 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 889 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 890 } 891 892 UserC->replaceAllUsesWith(NewC); 893 UserC->destroyConstant(); 894 NewOps.clear(); 895 } 896 897 // Update all ValueHandles, they should be the only users at this point. 898 Placeholder->replaceAllUsesWith(RealVal); 899 delete Placeholder; 900 } 901 } 902 903 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 904 if (Idx == size()) { 905 push_back(MD); 906 return; 907 } 908 909 if (Idx >= size()) 910 resize(Idx+1); 911 912 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 913 if (!OldMD) { 914 OldMD.reset(MD); 915 return; 916 } 917 918 // If there was a forward reference to this value, replace it. 919 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 920 PrevMD->replaceAllUsesWith(MD); 921 --NumFwdRefs; 922 } 923 924 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 925 if (Idx >= size()) 926 resize(Idx + 1); 927 928 if (Metadata *MD = MDValuePtrs[Idx]) 929 return MD; 930 931 // Track forward refs to be resolved later. 932 if (AnyFwdRefs) { 933 MinFwdRef = std::min(MinFwdRef, Idx); 934 MaxFwdRef = std::max(MaxFwdRef, Idx); 935 } else { 936 AnyFwdRefs = true; 937 MinFwdRef = MaxFwdRef = Idx; 938 } 939 ++NumFwdRefs; 940 941 // Create and return a placeholder, which will later be RAUW'd. 942 Metadata *MD = MDNode::getTemporary(Context, None).release(); 943 MDValuePtrs[Idx].reset(MD); 944 return MD; 945 } 946 947 void BitcodeReaderMDValueList::tryToResolveCycles() { 948 if (!AnyFwdRefs) 949 // Nothing to do. 950 return; 951 952 if (NumFwdRefs) 953 // Still forward references... can't resolve cycles. 954 return; 955 956 // Resolve any cycles. 957 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 958 auto &MD = MDValuePtrs[I]; 959 auto *N = dyn_cast_or_null<MDNode>(MD); 960 if (!N) 961 continue; 962 963 assert(!N->isTemporary() && "Unexpected forward reference"); 964 N->resolveCycles(); 965 } 966 967 // Make sure we return early again until there's another forward ref. 968 AnyFwdRefs = false; 969 } 970 971 Type *BitcodeReader::getTypeByID(unsigned ID) { 972 // The type table size is always specified correctly. 973 if (ID >= TypeList.size()) 974 return nullptr; 975 976 if (Type *Ty = TypeList[ID]) 977 return Ty; 978 979 // If we have a forward reference, the only possible case is when it is to a 980 // named struct. Just create a placeholder for now. 981 return TypeList[ID] = createIdentifiedStructType(Context); 982 } 983 984 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 985 StringRef Name) { 986 auto *Ret = StructType::create(Context, Name); 987 IdentifiedStructTypes.push_back(Ret); 988 return Ret; 989 } 990 991 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 992 auto *Ret = StructType::create(Context); 993 IdentifiedStructTypes.push_back(Ret); 994 return Ret; 995 } 996 997 998 //===----------------------------------------------------------------------===// 999 // Functions for parsing blocks from the bitcode file 1000 //===----------------------------------------------------------------------===// 1001 1002 1003 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1004 /// been decoded from the given integer. This function must stay in sync with 1005 /// 'encodeLLVMAttributesForBitcode'. 1006 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1007 uint64_t EncodedAttrs) { 1008 // FIXME: Remove in 4.0. 1009 1010 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1011 // the bits above 31 down by 11 bits. 1012 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1013 assert((!Alignment || isPowerOf2_32(Alignment)) && 1014 "Alignment must be a power of two."); 1015 1016 if (Alignment) 1017 B.addAlignmentAttr(Alignment); 1018 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1019 (EncodedAttrs & 0xffff)); 1020 } 1021 1022 std::error_code BitcodeReader::ParseAttributeBlock() { 1023 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1024 return Error("Invalid record"); 1025 1026 if (!MAttributes.empty()) 1027 return Error("Invalid multiple blocks"); 1028 1029 SmallVector<uint64_t, 64> Record; 1030 1031 SmallVector<AttributeSet, 8> Attrs; 1032 1033 // Read all the records. 1034 while (1) { 1035 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1036 1037 switch (Entry.Kind) { 1038 case BitstreamEntry::SubBlock: // Handled for us already. 1039 case BitstreamEntry::Error: 1040 return Error("Malformed block"); 1041 case BitstreamEntry::EndBlock: 1042 return std::error_code(); 1043 case BitstreamEntry::Record: 1044 // The interesting case. 1045 break; 1046 } 1047 1048 // Read a record. 1049 Record.clear(); 1050 switch (Stream.readRecord(Entry.ID, Record)) { 1051 default: // Default behavior: ignore. 1052 break; 1053 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1054 // FIXME: Remove in 4.0. 1055 if (Record.size() & 1) 1056 return Error("Invalid record"); 1057 1058 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1059 AttrBuilder B; 1060 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1061 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1062 } 1063 1064 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1065 Attrs.clear(); 1066 break; 1067 } 1068 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1069 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1070 Attrs.push_back(MAttributeGroups[Record[i]]); 1071 1072 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1073 Attrs.clear(); 1074 break; 1075 } 1076 } 1077 } 1078 } 1079 1080 // Returns Attribute::None on unrecognized codes. 1081 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1082 switch (Code) { 1083 default: 1084 return Attribute::None; 1085 case bitc::ATTR_KIND_ALIGNMENT: 1086 return Attribute::Alignment; 1087 case bitc::ATTR_KIND_ALWAYS_INLINE: 1088 return Attribute::AlwaysInline; 1089 case bitc::ATTR_KIND_BUILTIN: 1090 return Attribute::Builtin; 1091 case bitc::ATTR_KIND_BY_VAL: 1092 return Attribute::ByVal; 1093 case bitc::ATTR_KIND_IN_ALLOCA: 1094 return Attribute::InAlloca; 1095 case bitc::ATTR_KIND_COLD: 1096 return Attribute::Cold; 1097 case bitc::ATTR_KIND_CONVERGENT: 1098 return Attribute::Convergent; 1099 case bitc::ATTR_KIND_INLINE_HINT: 1100 return Attribute::InlineHint; 1101 case bitc::ATTR_KIND_IN_REG: 1102 return Attribute::InReg; 1103 case bitc::ATTR_KIND_JUMP_TABLE: 1104 return Attribute::JumpTable; 1105 case bitc::ATTR_KIND_MIN_SIZE: 1106 return Attribute::MinSize; 1107 case bitc::ATTR_KIND_NAKED: 1108 return Attribute::Naked; 1109 case bitc::ATTR_KIND_NEST: 1110 return Attribute::Nest; 1111 case bitc::ATTR_KIND_NO_ALIAS: 1112 return Attribute::NoAlias; 1113 case bitc::ATTR_KIND_NO_BUILTIN: 1114 return Attribute::NoBuiltin; 1115 case bitc::ATTR_KIND_NO_CAPTURE: 1116 return Attribute::NoCapture; 1117 case bitc::ATTR_KIND_NO_DUPLICATE: 1118 return Attribute::NoDuplicate; 1119 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1120 return Attribute::NoImplicitFloat; 1121 case bitc::ATTR_KIND_NO_INLINE: 1122 return Attribute::NoInline; 1123 case bitc::ATTR_KIND_NON_LAZY_BIND: 1124 return Attribute::NonLazyBind; 1125 case bitc::ATTR_KIND_NON_NULL: 1126 return Attribute::NonNull; 1127 case bitc::ATTR_KIND_DEREFERENCEABLE: 1128 return Attribute::Dereferenceable; 1129 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1130 return Attribute::DereferenceableOrNull; 1131 case bitc::ATTR_KIND_NO_RED_ZONE: 1132 return Attribute::NoRedZone; 1133 case bitc::ATTR_KIND_NO_RETURN: 1134 return Attribute::NoReturn; 1135 case bitc::ATTR_KIND_NO_UNWIND: 1136 return Attribute::NoUnwind; 1137 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1138 return Attribute::OptimizeForSize; 1139 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1140 return Attribute::OptimizeNone; 1141 case bitc::ATTR_KIND_READ_NONE: 1142 return Attribute::ReadNone; 1143 case bitc::ATTR_KIND_READ_ONLY: 1144 return Attribute::ReadOnly; 1145 case bitc::ATTR_KIND_RETURNED: 1146 return Attribute::Returned; 1147 case bitc::ATTR_KIND_RETURNS_TWICE: 1148 return Attribute::ReturnsTwice; 1149 case bitc::ATTR_KIND_S_EXT: 1150 return Attribute::SExt; 1151 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1152 return Attribute::StackAlignment; 1153 case bitc::ATTR_KIND_STACK_PROTECT: 1154 return Attribute::StackProtect; 1155 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1156 return Attribute::StackProtectReq; 1157 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1158 return Attribute::StackProtectStrong; 1159 case bitc::ATTR_KIND_STRUCT_RET: 1160 return Attribute::StructRet; 1161 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1162 return Attribute::SanitizeAddress; 1163 case bitc::ATTR_KIND_SANITIZE_THREAD: 1164 return Attribute::SanitizeThread; 1165 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1166 return Attribute::SanitizeMemory; 1167 case bitc::ATTR_KIND_UW_TABLE: 1168 return Attribute::UWTable; 1169 case bitc::ATTR_KIND_Z_EXT: 1170 return Attribute::ZExt; 1171 } 1172 } 1173 1174 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1175 unsigned &Alignment) { 1176 // Note: Alignment in bitcode files is incremented by 1, so that zero 1177 // can be used for default alignment. 1178 if (Exponent > Value::MaxAlignmentExponent + 1) 1179 return Error("Invalid alignment value"); 1180 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1181 return std::error_code(); 1182 } 1183 1184 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1185 Attribute::AttrKind *Kind) { 1186 *Kind = GetAttrFromCode(Code); 1187 if (*Kind == Attribute::None) 1188 return Error(BitcodeError::CorruptedBitcode, 1189 "Unknown attribute kind (" + Twine(Code) + ")"); 1190 return std::error_code(); 1191 } 1192 1193 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1194 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1195 return Error("Invalid record"); 1196 1197 if (!MAttributeGroups.empty()) 1198 return Error("Invalid multiple blocks"); 1199 1200 SmallVector<uint64_t, 64> Record; 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 return std::error_code(); 1212 case BitstreamEntry::Record: 1213 // The interesting case. 1214 break; 1215 } 1216 1217 // Read a record. 1218 Record.clear(); 1219 switch (Stream.readRecord(Entry.ID, Record)) { 1220 default: // Default behavior: ignore. 1221 break; 1222 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1223 if (Record.size() < 3) 1224 return Error("Invalid record"); 1225 1226 uint64_t GrpID = Record[0]; 1227 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1228 1229 AttrBuilder B; 1230 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1231 if (Record[i] == 0) { // Enum attribute 1232 Attribute::AttrKind Kind; 1233 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1234 return EC; 1235 1236 B.addAttribute(Kind); 1237 } else if (Record[i] == 1) { // Integer attribute 1238 Attribute::AttrKind Kind; 1239 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1240 return EC; 1241 if (Kind == Attribute::Alignment) 1242 B.addAlignmentAttr(Record[++i]); 1243 else if (Kind == Attribute::StackAlignment) 1244 B.addStackAlignmentAttr(Record[++i]); 1245 else if (Kind == Attribute::Dereferenceable) 1246 B.addDereferenceableAttr(Record[++i]); 1247 else if (Kind == Attribute::DereferenceableOrNull) 1248 B.addDereferenceableOrNullAttr(Record[++i]); 1249 } else { // String attribute 1250 assert((Record[i] == 3 || Record[i] == 4) && 1251 "Invalid attribute group entry"); 1252 bool HasValue = (Record[i++] == 4); 1253 SmallString<64> KindStr; 1254 SmallString<64> ValStr; 1255 1256 while (Record[i] != 0 && i != e) 1257 KindStr += Record[i++]; 1258 assert(Record[i] == 0 && "Kind string not null terminated"); 1259 1260 if (HasValue) { 1261 // Has a value associated with it. 1262 ++i; // Skip the '0' that terminates the "kind" string. 1263 while (Record[i] != 0 && i != e) 1264 ValStr += Record[i++]; 1265 assert(Record[i] == 0 && "Value string not null terminated"); 1266 } 1267 1268 B.addAttribute(KindStr.str(), ValStr.str()); 1269 } 1270 } 1271 1272 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1273 break; 1274 } 1275 } 1276 } 1277 } 1278 1279 std::error_code BitcodeReader::ParseTypeTable() { 1280 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1281 return Error("Invalid record"); 1282 1283 return ParseTypeTableBody(); 1284 } 1285 1286 std::error_code BitcodeReader::ParseTypeTableBody() { 1287 if (!TypeList.empty()) 1288 return Error("Invalid multiple blocks"); 1289 1290 SmallVector<uint64_t, 64> Record; 1291 unsigned NumRecords = 0; 1292 1293 SmallString<64> TypeName; 1294 1295 // Read all the records for this type table. 1296 while (1) { 1297 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1298 1299 switch (Entry.Kind) { 1300 case BitstreamEntry::SubBlock: // Handled for us already. 1301 case BitstreamEntry::Error: 1302 return Error("Malformed block"); 1303 case BitstreamEntry::EndBlock: 1304 if (NumRecords != TypeList.size()) 1305 return Error("Malformed block"); 1306 return std::error_code(); 1307 case BitstreamEntry::Record: 1308 // The interesting case. 1309 break; 1310 } 1311 1312 // Read a record. 1313 Record.clear(); 1314 Type *ResultTy = nullptr; 1315 switch (Stream.readRecord(Entry.ID, Record)) { 1316 default: 1317 return Error("Invalid value"); 1318 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1319 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1320 // type list. This allows us to reserve space. 1321 if (Record.size() < 1) 1322 return Error("Invalid record"); 1323 TypeList.resize(Record[0]); 1324 continue; 1325 case bitc::TYPE_CODE_VOID: // VOID 1326 ResultTy = Type::getVoidTy(Context); 1327 break; 1328 case bitc::TYPE_CODE_HALF: // HALF 1329 ResultTy = Type::getHalfTy(Context); 1330 break; 1331 case bitc::TYPE_CODE_FLOAT: // FLOAT 1332 ResultTy = Type::getFloatTy(Context); 1333 break; 1334 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1335 ResultTy = Type::getDoubleTy(Context); 1336 break; 1337 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1338 ResultTy = Type::getX86_FP80Ty(Context); 1339 break; 1340 case bitc::TYPE_CODE_FP128: // FP128 1341 ResultTy = Type::getFP128Ty(Context); 1342 break; 1343 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1344 ResultTy = Type::getPPC_FP128Ty(Context); 1345 break; 1346 case bitc::TYPE_CODE_LABEL: // LABEL 1347 ResultTy = Type::getLabelTy(Context); 1348 break; 1349 case bitc::TYPE_CODE_METADATA: // METADATA 1350 ResultTy = Type::getMetadataTy(Context); 1351 break; 1352 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1353 ResultTy = Type::getX86_MMXTy(Context); 1354 break; 1355 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1356 if (Record.size() < 1) 1357 return Error("Invalid record"); 1358 1359 uint64_t NumBits = Record[0]; 1360 if (NumBits < IntegerType::MIN_INT_BITS || 1361 NumBits > IntegerType::MAX_INT_BITS) 1362 return Error("Bitwidth for integer type out of range"); 1363 ResultTy = IntegerType::get(Context, NumBits); 1364 break; 1365 } 1366 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1367 // [pointee type, address space] 1368 if (Record.size() < 1) 1369 return Error("Invalid record"); 1370 unsigned AddressSpace = 0; 1371 if (Record.size() == 2) 1372 AddressSpace = Record[1]; 1373 ResultTy = getTypeByID(Record[0]); 1374 if (!ResultTy || 1375 !PointerType::isValidElementType(ResultTy)) 1376 return Error("Invalid type"); 1377 ResultTy = PointerType::get(ResultTy, AddressSpace); 1378 break; 1379 } 1380 case bitc::TYPE_CODE_FUNCTION_OLD: { 1381 // FIXME: attrid is dead, remove it in LLVM 4.0 1382 // FUNCTION: [vararg, attrid, retty, paramty x N] 1383 if (Record.size() < 3) 1384 return Error("Invalid record"); 1385 SmallVector<Type*, 8> ArgTys; 1386 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1387 if (Type *T = getTypeByID(Record[i])) 1388 ArgTys.push_back(T); 1389 else 1390 break; 1391 } 1392 1393 ResultTy = getTypeByID(Record[2]); 1394 if (!ResultTy || ArgTys.size() < Record.size()-3) 1395 return Error("Invalid type"); 1396 1397 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1398 break; 1399 } 1400 case bitc::TYPE_CODE_FUNCTION: { 1401 // FUNCTION: [vararg, retty, paramty x N] 1402 if (Record.size() < 2) 1403 return Error("Invalid record"); 1404 SmallVector<Type*, 8> ArgTys; 1405 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1406 if (Type *T = getTypeByID(Record[i])) { 1407 if (!FunctionType::isValidArgumentType(T)) 1408 return Error("Invalid function argument type"); 1409 ArgTys.push_back(T); 1410 } 1411 else 1412 break; 1413 } 1414 1415 ResultTy = getTypeByID(Record[1]); 1416 if (!ResultTy || ArgTys.size() < Record.size()-2) 1417 return Error("Invalid type"); 1418 1419 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1420 break; 1421 } 1422 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1423 if (Record.size() < 1) 1424 return Error("Invalid record"); 1425 SmallVector<Type*, 8> EltTys; 1426 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1427 if (Type *T = getTypeByID(Record[i])) 1428 EltTys.push_back(T); 1429 else 1430 break; 1431 } 1432 if (EltTys.size() != Record.size()-1) 1433 return Error("Invalid type"); 1434 ResultTy = StructType::get(Context, EltTys, Record[0]); 1435 break; 1436 } 1437 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1438 if (ConvertToString(Record, 0, TypeName)) 1439 return Error("Invalid record"); 1440 continue; 1441 1442 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1443 if (Record.size() < 1) 1444 return Error("Invalid record"); 1445 1446 if (NumRecords >= TypeList.size()) 1447 return Error("Invalid TYPE table"); 1448 1449 // Check to see if this was forward referenced, if so fill in the temp. 1450 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1451 if (Res) { 1452 Res->setName(TypeName); 1453 TypeList[NumRecords] = nullptr; 1454 } else // Otherwise, create a new struct. 1455 Res = createIdentifiedStructType(Context, TypeName); 1456 TypeName.clear(); 1457 1458 SmallVector<Type*, 8> EltTys; 1459 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1460 if (Type *T = getTypeByID(Record[i])) 1461 EltTys.push_back(T); 1462 else 1463 break; 1464 } 1465 if (EltTys.size() != Record.size()-1) 1466 return Error("Invalid record"); 1467 Res->setBody(EltTys, Record[0]); 1468 ResultTy = Res; 1469 break; 1470 } 1471 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1472 if (Record.size() != 1) 1473 return Error("Invalid record"); 1474 1475 if (NumRecords >= TypeList.size()) 1476 return Error("Invalid TYPE table"); 1477 1478 // Check to see if this was forward referenced, if so fill in the temp. 1479 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1480 if (Res) { 1481 Res->setName(TypeName); 1482 TypeList[NumRecords] = nullptr; 1483 } else // Otherwise, create a new struct with no body. 1484 Res = createIdentifiedStructType(Context, TypeName); 1485 TypeName.clear(); 1486 ResultTy = Res; 1487 break; 1488 } 1489 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1490 if (Record.size() < 2) 1491 return Error("Invalid record"); 1492 ResultTy = getTypeByID(Record[1]); 1493 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1494 return Error("Invalid type"); 1495 ResultTy = ArrayType::get(ResultTy, Record[0]); 1496 break; 1497 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1498 if (Record.size() < 2) 1499 return Error("Invalid record"); 1500 if (Record[0] == 0) 1501 return Error("Invalid vector length"); 1502 ResultTy = getTypeByID(Record[1]); 1503 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1504 return Error("Invalid type"); 1505 ResultTy = VectorType::get(ResultTy, Record[0]); 1506 break; 1507 } 1508 1509 if (NumRecords >= TypeList.size()) 1510 return Error("Invalid TYPE table"); 1511 if (TypeList[NumRecords]) 1512 return Error( 1513 "Invalid TYPE table: Only named structs can be forward referenced"); 1514 assert(ResultTy && "Didn't read a type?"); 1515 TypeList[NumRecords++] = ResultTy; 1516 } 1517 } 1518 1519 std::error_code BitcodeReader::ParseValueSymbolTable() { 1520 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1521 return Error("Invalid record"); 1522 1523 SmallVector<uint64_t, 64> Record; 1524 1525 Triple TT(TheModule->getTargetTriple()); 1526 1527 // Read all the records for this value table. 1528 SmallString<128> ValueName; 1529 while (1) { 1530 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1531 1532 switch (Entry.Kind) { 1533 case BitstreamEntry::SubBlock: // Handled for us already. 1534 case BitstreamEntry::Error: 1535 return Error("Malformed block"); 1536 case BitstreamEntry::EndBlock: 1537 return std::error_code(); 1538 case BitstreamEntry::Record: 1539 // The interesting case. 1540 break; 1541 } 1542 1543 // Read a record. 1544 Record.clear(); 1545 switch (Stream.readRecord(Entry.ID, Record)) { 1546 default: // Default behavior: unknown type. 1547 break; 1548 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1549 if (ConvertToString(Record, 1, ValueName)) 1550 return Error("Invalid record"); 1551 unsigned ValueID = Record[0]; 1552 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1553 return Error("Invalid record"); 1554 Value *V = ValueList[ValueID]; 1555 1556 V->setName(StringRef(ValueName.data(), ValueName.size())); 1557 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1558 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1559 if (TT.isOSBinFormatMachO()) 1560 GO->setComdat(nullptr); 1561 else 1562 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1563 } 1564 } 1565 ValueName.clear(); 1566 break; 1567 } 1568 case bitc::VST_CODE_BBENTRY: { 1569 if (ConvertToString(Record, 1, ValueName)) 1570 return Error("Invalid record"); 1571 BasicBlock *BB = getBasicBlock(Record[0]); 1572 if (!BB) 1573 return Error("Invalid record"); 1574 1575 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1576 ValueName.clear(); 1577 break; 1578 } 1579 } 1580 } 1581 } 1582 1583 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1584 1585 std::error_code BitcodeReader::ParseMetadata() { 1586 IsMetadataMaterialized = true; 1587 unsigned NextMDValueNo = MDValueList.size(); 1588 1589 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1590 return Error("Invalid record"); 1591 1592 SmallVector<uint64_t, 64> Record; 1593 1594 auto getMD = 1595 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1596 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1597 if (ID) 1598 return getMD(ID - 1); 1599 return nullptr; 1600 }; 1601 auto getMDString = [&](unsigned ID) -> MDString *{ 1602 // This requires that the ID is not really a forward reference. In 1603 // particular, the MDString must already have been resolved. 1604 return cast_or_null<MDString>(getMDOrNull(ID)); 1605 }; 1606 1607 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1608 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1609 1610 // Read all the records. 1611 while (1) { 1612 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1613 1614 switch (Entry.Kind) { 1615 case BitstreamEntry::SubBlock: // Handled for us already. 1616 case BitstreamEntry::Error: 1617 return Error("Malformed block"); 1618 case BitstreamEntry::EndBlock: 1619 MDValueList.tryToResolveCycles(); 1620 return std::error_code(); 1621 case BitstreamEntry::Record: 1622 // The interesting case. 1623 break; 1624 } 1625 1626 // Read a record. 1627 Record.clear(); 1628 unsigned Code = Stream.readRecord(Entry.ID, Record); 1629 bool IsDistinct = false; 1630 switch (Code) { 1631 default: // Default behavior: ignore. 1632 break; 1633 case bitc::METADATA_NAME: { 1634 // Read name of the named metadata. 1635 SmallString<8> Name(Record.begin(), Record.end()); 1636 Record.clear(); 1637 Code = Stream.ReadCode(); 1638 1639 unsigned NextBitCode = Stream.readRecord(Code, Record); 1640 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1641 return Error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1642 1643 // Read named metadata elements. 1644 unsigned Size = Record.size(); 1645 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1646 for (unsigned i = 0; i != Size; ++i) { 1647 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1648 if (!MD) 1649 return Error("Invalid record"); 1650 NMD->addOperand(MD); 1651 } 1652 break; 1653 } 1654 case bitc::METADATA_OLD_FN_NODE: { 1655 // FIXME: Remove in 4.0. 1656 // This is a LocalAsMetadata record, the only type of function-local 1657 // metadata. 1658 if (Record.size() % 2 == 1) 1659 return Error("Invalid record"); 1660 1661 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1662 // to be legal, but there's no upgrade path. 1663 auto dropRecord = [&] { 1664 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1665 }; 1666 if (Record.size() != 2) { 1667 dropRecord(); 1668 break; 1669 } 1670 1671 Type *Ty = getTypeByID(Record[0]); 1672 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1673 dropRecord(); 1674 break; 1675 } 1676 1677 MDValueList.AssignValue( 1678 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1679 NextMDValueNo++); 1680 break; 1681 } 1682 case bitc::METADATA_OLD_NODE: { 1683 // FIXME: Remove in 4.0. 1684 if (Record.size() % 2 == 1) 1685 return Error("Invalid record"); 1686 1687 unsigned Size = Record.size(); 1688 SmallVector<Metadata *, 8> Elts; 1689 for (unsigned i = 0; i != Size; i += 2) { 1690 Type *Ty = getTypeByID(Record[i]); 1691 if (!Ty) 1692 return Error("Invalid record"); 1693 if (Ty->isMetadataTy()) 1694 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1695 else if (!Ty->isVoidTy()) { 1696 auto *MD = 1697 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1698 assert(isa<ConstantAsMetadata>(MD) && 1699 "Expected non-function-local metadata"); 1700 Elts.push_back(MD); 1701 } else 1702 Elts.push_back(nullptr); 1703 } 1704 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1705 break; 1706 } 1707 case bitc::METADATA_VALUE: { 1708 if (Record.size() != 2) 1709 return Error("Invalid record"); 1710 1711 Type *Ty = getTypeByID(Record[0]); 1712 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1713 return Error("Invalid record"); 1714 1715 MDValueList.AssignValue( 1716 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1717 NextMDValueNo++); 1718 break; 1719 } 1720 case bitc::METADATA_DISTINCT_NODE: 1721 IsDistinct = true; 1722 // fallthrough... 1723 case bitc::METADATA_NODE: { 1724 SmallVector<Metadata *, 8> Elts; 1725 Elts.reserve(Record.size()); 1726 for (unsigned ID : Record) 1727 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1728 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1729 : MDNode::get(Context, Elts), 1730 NextMDValueNo++); 1731 break; 1732 } 1733 case bitc::METADATA_LOCATION: { 1734 if (Record.size() != 5) 1735 return Error("Invalid record"); 1736 1737 unsigned Line = Record[1]; 1738 unsigned Column = Record[2]; 1739 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1740 Metadata *InlinedAt = 1741 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1742 MDValueList.AssignValue( 1743 GET_OR_DISTINCT(DILocation, Record[0], 1744 (Context, Line, Column, Scope, InlinedAt)), 1745 NextMDValueNo++); 1746 break; 1747 } 1748 case bitc::METADATA_GENERIC_DEBUG: { 1749 if (Record.size() < 4) 1750 return Error("Invalid record"); 1751 1752 unsigned Tag = Record[1]; 1753 unsigned Version = Record[2]; 1754 1755 if (Tag >= 1u << 16 || Version != 0) 1756 return Error("Invalid record"); 1757 1758 auto *Header = getMDString(Record[3]); 1759 SmallVector<Metadata *, 8> DwarfOps; 1760 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1761 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1762 : nullptr); 1763 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1764 (Context, Tag, Header, DwarfOps)), 1765 NextMDValueNo++); 1766 break; 1767 } 1768 case bitc::METADATA_SUBRANGE: { 1769 if (Record.size() != 3) 1770 return Error("Invalid record"); 1771 1772 MDValueList.AssignValue( 1773 GET_OR_DISTINCT(DISubrange, Record[0], 1774 (Context, Record[1], unrotateSign(Record[2]))), 1775 NextMDValueNo++); 1776 break; 1777 } 1778 case bitc::METADATA_ENUMERATOR: { 1779 if (Record.size() != 3) 1780 return Error("Invalid record"); 1781 1782 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1783 (Context, unrotateSign(Record[1]), 1784 getMDString(Record[2]))), 1785 NextMDValueNo++); 1786 break; 1787 } 1788 case bitc::METADATA_BASIC_TYPE: { 1789 if (Record.size() != 6) 1790 return Error("Invalid record"); 1791 1792 MDValueList.AssignValue( 1793 GET_OR_DISTINCT(DIBasicType, Record[0], 1794 (Context, Record[1], getMDString(Record[2]), 1795 Record[3], Record[4], Record[5])), 1796 NextMDValueNo++); 1797 break; 1798 } 1799 case bitc::METADATA_DERIVED_TYPE: { 1800 if (Record.size() != 12) 1801 return Error("Invalid record"); 1802 1803 MDValueList.AssignValue( 1804 GET_OR_DISTINCT(DIDerivedType, Record[0], 1805 (Context, Record[1], getMDString(Record[2]), 1806 getMDOrNull(Record[3]), Record[4], 1807 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1808 Record[7], Record[8], Record[9], Record[10], 1809 getMDOrNull(Record[11]))), 1810 NextMDValueNo++); 1811 break; 1812 } 1813 case bitc::METADATA_COMPOSITE_TYPE: { 1814 if (Record.size() != 16) 1815 return Error("Invalid record"); 1816 1817 MDValueList.AssignValue( 1818 GET_OR_DISTINCT(DICompositeType, Record[0], 1819 (Context, Record[1], getMDString(Record[2]), 1820 getMDOrNull(Record[3]), Record[4], 1821 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1822 Record[7], Record[8], Record[9], Record[10], 1823 getMDOrNull(Record[11]), Record[12], 1824 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1825 getMDString(Record[15]))), 1826 NextMDValueNo++); 1827 break; 1828 } 1829 case bitc::METADATA_SUBROUTINE_TYPE: { 1830 if (Record.size() != 3) 1831 return Error("Invalid record"); 1832 1833 MDValueList.AssignValue( 1834 GET_OR_DISTINCT(DISubroutineType, Record[0], 1835 (Context, Record[1], getMDOrNull(Record[2]))), 1836 NextMDValueNo++); 1837 break; 1838 } 1839 case bitc::METADATA_FILE: { 1840 if (Record.size() != 3) 1841 return Error("Invalid record"); 1842 1843 MDValueList.AssignValue( 1844 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1845 getMDString(Record[2]))), 1846 NextMDValueNo++); 1847 break; 1848 } 1849 case bitc::METADATA_COMPILE_UNIT: { 1850 if (Record.size() < 14 || Record.size() > 15) 1851 return Error("Invalid record"); 1852 1853 MDValueList.AssignValue( 1854 GET_OR_DISTINCT(DICompileUnit, Record[0], 1855 (Context, Record[1], getMDOrNull(Record[2]), 1856 getMDString(Record[3]), Record[4], 1857 getMDString(Record[5]), Record[6], 1858 getMDString(Record[7]), Record[8], 1859 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1860 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1861 getMDOrNull(Record[13]), 1862 Record.size() == 14 ? 0 : Record[14])), 1863 NextMDValueNo++); 1864 break; 1865 } 1866 case bitc::METADATA_SUBPROGRAM: { 1867 if (Record.size() != 19) 1868 return Error("Invalid record"); 1869 1870 MDValueList.AssignValue( 1871 GET_OR_DISTINCT( 1872 DISubprogram, Record[0], 1873 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1874 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1875 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1876 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1877 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1878 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1879 NextMDValueNo++); 1880 break; 1881 } 1882 case bitc::METADATA_LEXICAL_BLOCK: { 1883 if (Record.size() != 5) 1884 return Error("Invalid record"); 1885 1886 MDValueList.AssignValue( 1887 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1888 (Context, getMDOrNull(Record[1]), 1889 getMDOrNull(Record[2]), Record[3], Record[4])), 1890 NextMDValueNo++); 1891 break; 1892 } 1893 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1894 if (Record.size() != 4) 1895 return Error("Invalid record"); 1896 1897 MDValueList.AssignValue( 1898 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1899 (Context, getMDOrNull(Record[1]), 1900 getMDOrNull(Record[2]), Record[3])), 1901 NextMDValueNo++); 1902 break; 1903 } 1904 case bitc::METADATA_NAMESPACE: { 1905 if (Record.size() != 5) 1906 return Error("Invalid record"); 1907 1908 MDValueList.AssignValue( 1909 GET_OR_DISTINCT(DINamespace, Record[0], 1910 (Context, getMDOrNull(Record[1]), 1911 getMDOrNull(Record[2]), getMDString(Record[3]), 1912 Record[4])), 1913 NextMDValueNo++); 1914 break; 1915 } 1916 case bitc::METADATA_TEMPLATE_TYPE: { 1917 if (Record.size() != 3) 1918 return Error("Invalid record"); 1919 1920 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1921 Record[0], 1922 (Context, getMDString(Record[1]), 1923 getMDOrNull(Record[2]))), 1924 NextMDValueNo++); 1925 break; 1926 } 1927 case bitc::METADATA_TEMPLATE_VALUE: { 1928 if (Record.size() != 5) 1929 return Error("Invalid record"); 1930 1931 MDValueList.AssignValue( 1932 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1933 (Context, Record[1], getMDString(Record[2]), 1934 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1935 NextMDValueNo++); 1936 break; 1937 } 1938 case bitc::METADATA_GLOBAL_VAR: { 1939 if (Record.size() != 11) 1940 return Error("Invalid record"); 1941 1942 MDValueList.AssignValue( 1943 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1944 (Context, getMDOrNull(Record[1]), 1945 getMDString(Record[2]), getMDString(Record[3]), 1946 getMDOrNull(Record[4]), Record[5], 1947 getMDOrNull(Record[6]), Record[7], Record[8], 1948 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1949 NextMDValueNo++); 1950 break; 1951 } 1952 case bitc::METADATA_LOCAL_VAR: { 1953 // 10th field is for the obseleted 'inlinedAt:' field. 1954 if (Record.size() != 9 && Record.size() != 10) 1955 return Error("Invalid record"); 1956 1957 MDValueList.AssignValue( 1958 GET_OR_DISTINCT(DILocalVariable, Record[0], 1959 (Context, Record[1], getMDOrNull(Record[2]), 1960 getMDString(Record[3]), getMDOrNull(Record[4]), 1961 Record[5], getMDOrNull(Record[6]), Record[7], 1962 Record[8])), 1963 NextMDValueNo++); 1964 break; 1965 } 1966 case bitc::METADATA_EXPRESSION: { 1967 if (Record.size() < 1) 1968 return Error("Invalid record"); 1969 1970 MDValueList.AssignValue( 1971 GET_OR_DISTINCT(DIExpression, Record[0], 1972 (Context, makeArrayRef(Record).slice(1))), 1973 NextMDValueNo++); 1974 break; 1975 } 1976 case bitc::METADATA_OBJC_PROPERTY: { 1977 if (Record.size() != 8) 1978 return Error("Invalid record"); 1979 1980 MDValueList.AssignValue( 1981 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1982 (Context, getMDString(Record[1]), 1983 getMDOrNull(Record[2]), Record[3], 1984 getMDString(Record[4]), getMDString(Record[5]), 1985 Record[6], getMDOrNull(Record[7]))), 1986 NextMDValueNo++); 1987 break; 1988 } 1989 case bitc::METADATA_IMPORTED_ENTITY: { 1990 if (Record.size() != 6) 1991 return Error("Invalid record"); 1992 1993 MDValueList.AssignValue( 1994 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1995 (Context, Record[1], getMDOrNull(Record[2]), 1996 getMDOrNull(Record[3]), Record[4], 1997 getMDString(Record[5]))), 1998 NextMDValueNo++); 1999 break; 2000 } 2001 case bitc::METADATA_STRING: { 2002 std::string String(Record.begin(), Record.end()); 2003 llvm::UpgradeMDStringConstant(String); 2004 Metadata *MD = MDString::get(Context, String); 2005 MDValueList.AssignValue(MD, NextMDValueNo++); 2006 break; 2007 } 2008 case bitc::METADATA_KIND: { 2009 if (Record.size() < 2) 2010 return Error("Invalid record"); 2011 2012 unsigned Kind = Record[0]; 2013 SmallString<8> Name(Record.begin()+1, Record.end()); 2014 2015 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2016 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2017 return Error("Conflicting METADATA_KIND records"); 2018 break; 2019 } 2020 } 2021 } 2022 #undef GET_OR_DISTINCT 2023 } 2024 2025 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2026 /// the LSB for dense VBR encoding. 2027 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2028 if ((V & 1) == 0) 2029 return V >> 1; 2030 if (V != 1) 2031 return -(V >> 1); 2032 // There is no such thing as -0 with integers. "-0" really means MININT. 2033 return 1ULL << 63; 2034 } 2035 2036 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2037 /// values and aliases that we can. 2038 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2039 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2040 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2041 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2042 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2043 2044 GlobalInitWorklist.swap(GlobalInits); 2045 AliasInitWorklist.swap(AliasInits); 2046 FunctionPrefixWorklist.swap(FunctionPrefixes); 2047 FunctionPrologueWorklist.swap(FunctionPrologues); 2048 2049 while (!GlobalInitWorklist.empty()) { 2050 unsigned ValID = GlobalInitWorklist.back().second; 2051 if (ValID >= ValueList.size()) { 2052 // Not ready to resolve this yet, it requires something later in the file. 2053 GlobalInits.push_back(GlobalInitWorklist.back()); 2054 } else { 2055 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2056 GlobalInitWorklist.back().first->setInitializer(C); 2057 else 2058 return Error("Expected a constant"); 2059 } 2060 GlobalInitWorklist.pop_back(); 2061 } 2062 2063 while (!AliasInitWorklist.empty()) { 2064 unsigned ValID = AliasInitWorklist.back().second; 2065 if (ValID >= ValueList.size()) { 2066 AliasInits.push_back(AliasInitWorklist.back()); 2067 } else { 2068 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2069 if (!C) 2070 return Error("Expected a constant"); 2071 GlobalAlias *Alias = AliasInitWorklist.back().first; 2072 if (C->getType() != Alias->getType()) 2073 return Error("Alias and aliasee types don't match"); 2074 Alias->setAliasee(C); 2075 } 2076 AliasInitWorklist.pop_back(); 2077 } 2078 2079 while (!FunctionPrefixWorklist.empty()) { 2080 unsigned ValID = FunctionPrefixWorklist.back().second; 2081 if (ValID >= ValueList.size()) { 2082 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2083 } else { 2084 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2085 FunctionPrefixWorklist.back().first->setPrefixData(C); 2086 else 2087 return Error("Expected a constant"); 2088 } 2089 FunctionPrefixWorklist.pop_back(); 2090 } 2091 2092 while (!FunctionPrologueWorklist.empty()) { 2093 unsigned ValID = FunctionPrologueWorklist.back().second; 2094 if (ValID >= ValueList.size()) { 2095 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2096 } else { 2097 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2098 FunctionPrologueWorklist.back().first->setPrologueData(C); 2099 else 2100 return Error("Expected a constant"); 2101 } 2102 FunctionPrologueWorklist.pop_back(); 2103 } 2104 2105 return std::error_code(); 2106 } 2107 2108 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2109 SmallVector<uint64_t, 8> Words(Vals.size()); 2110 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2111 BitcodeReader::decodeSignRotatedValue); 2112 2113 return APInt(TypeBits, Words); 2114 } 2115 2116 std::error_code BitcodeReader::ParseConstants() { 2117 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2118 return Error("Invalid record"); 2119 2120 SmallVector<uint64_t, 64> Record; 2121 2122 // Read all the records for this value table. 2123 Type *CurTy = Type::getInt32Ty(Context); 2124 unsigned NextCstNo = ValueList.size(); 2125 while (1) { 2126 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2127 2128 switch (Entry.Kind) { 2129 case BitstreamEntry::SubBlock: // Handled for us already. 2130 case BitstreamEntry::Error: 2131 return Error("Malformed block"); 2132 case BitstreamEntry::EndBlock: 2133 if (NextCstNo != ValueList.size()) 2134 return Error("Invalid ronstant reference"); 2135 2136 // Once all the constants have been read, go through and resolve forward 2137 // references. 2138 ValueList.ResolveConstantForwardRefs(); 2139 return std::error_code(); 2140 case BitstreamEntry::Record: 2141 // The interesting case. 2142 break; 2143 } 2144 2145 // Read a record. 2146 Record.clear(); 2147 Value *V = nullptr; 2148 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2149 switch (BitCode) { 2150 default: // Default behavior: unknown constant 2151 case bitc::CST_CODE_UNDEF: // UNDEF 2152 V = UndefValue::get(CurTy); 2153 break; 2154 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2155 if (Record.empty()) 2156 return Error("Invalid record"); 2157 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2158 return Error("Invalid record"); 2159 CurTy = TypeList[Record[0]]; 2160 continue; // Skip the ValueList manipulation. 2161 case bitc::CST_CODE_NULL: // NULL 2162 V = Constant::getNullValue(CurTy); 2163 break; 2164 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2165 if (!CurTy->isIntegerTy() || Record.empty()) 2166 return Error("Invalid record"); 2167 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2168 break; 2169 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2170 if (!CurTy->isIntegerTy() || Record.empty()) 2171 return Error("Invalid record"); 2172 2173 APInt VInt = ReadWideAPInt(Record, 2174 cast<IntegerType>(CurTy)->getBitWidth()); 2175 V = ConstantInt::get(Context, VInt); 2176 2177 break; 2178 } 2179 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2180 if (Record.empty()) 2181 return Error("Invalid record"); 2182 if (CurTy->isHalfTy()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2184 APInt(16, (uint16_t)Record[0]))); 2185 else if (CurTy->isFloatTy()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2187 APInt(32, (uint32_t)Record[0]))); 2188 else if (CurTy->isDoubleTy()) 2189 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2190 APInt(64, Record[0]))); 2191 else if (CurTy->isX86_FP80Ty()) { 2192 // Bits are not stored the same way as a normal i80 APInt, compensate. 2193 uint64_t Rearrange[2]; 2194 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2195 Rearrange[1] = Record[0] >> 48; 2196 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2197 APInt(80, Rearrange))); 2198 } else if (CurTy->isFP128Ty()) 2199 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2200 APInt(128, Record))); 2201 else if (CurTy->isPPC_FP128Ty()) 2202 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2203 APInt(128, Record))); 2204 else 2205 V = UndefValue::get(CurTy); 2206 break; 2207 } 2208 2209 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2210 if (Record.empty()) 2211 return Error("Invalid record"); 2212 2213 unsigned Size = Record.size(); 2214 SmallVector<Constant*, 16> Elts; 2215 2216 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2217 for (unsigned i = 0; i != Size; ++i) 2218 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2219 STy->getElementType(i))); 2220 V = ConstantStruct::get(STy, Elts); 2221 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2222 Type *EltTy = ATy->getElementType(); 2223 for (unsigned i = 0; i != Size; ++i) 2224 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2225 V = ConstantArray::get(ATy, Elts); 2226 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2227 Type *EltTy = VTy->getElementType(); 2228 for (unsigned i = 0; i != Size; ++i) 2229 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2230 V = ConstantVector::get(Elts); 2231 } else { 2232 V = UndefValue::get(CurTy); 2233 } 2234 break; 2235 } 2236 case bitc::CST_CODE_STRING: // STRING: [values] 2237 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2238 if (Record.empty()) 2239 return Error("Invalid record"); 2240 2241 SmallString<16> Elts(Record.begin(), Record.end()); 2242 V = ConstantDataArray::getString(Context, Elts, 2243 BitCode == bitc::CST_CODE_CSTRING); 2244 break; 2245 } 2246 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2247 if (Record.empty()) 2248 return Error("Invalid record"); 2249 2250 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2251 unsigned Size = Record.size(); 2252 2253 if (EltTy->isIntegerTy(8)) { 2254 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::get(Context, Elts); 2257 else 2258 V = ConstantDataArray::get(Context, Elts); 2259 } else if (EltTy->isIntegerTy(16)) { 2260 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2261 if (isa<VectorType>(CurTy)) 2262 V = ConstantDataVector::get(Context, Elts); 2263 else 2264 V = ConstantDataArray::get(Context, Elts); 2265 } else if (EltTy->isIntegerTy(32)) { 2266 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2267 if (isa<VectorType>(CurTy)) 2268 V = ConstantDataVector::get(Context, Elts); 2269 else 2270 V = ConstantDataArray::get(Context, Elts); 2271 } else if (EltTy->isIntegerTy(64)) { 2272 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2273 if (isa<VectorType>(CurTy)) 2274 V = ConstantDataVector::get(Context, Elts); 2275 else 2276 V = ConstantDataArray::get(Context, Elts); 2277 } else if (EltTy->isFloatTy()) { 2278 SmallVector<float, 16> Elts(Size); 2279 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::get(Context, Elts); 2282 else 2283 V = ConstantDataArray::get(Context, Elts); 2284 } else if (EltTy->isDoubleTy()) { 2285 SmallVector<double, 16> Elts(Size); 2286 std::transform(Record.begin(), Record.end(), Elts.begin(), 2287 BitsToDouble); 2288 if (isa<VectorType>(CurTy)) 2289 V = ConstantDataVector::get(Context, Elts); 2290 else 2291 V = ConstantDataArray::get(Context, Elts); 2292 } else { 2293 return Error("Invalid type for value"); 2294 } 2295 break; 2296 } 2297 2298 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2299 if (Record.size() < 3) 2300 return Error("Invalid record"); 2301 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2302 if (Opc < 0) { 2303 V = UndefValue::get(CurTy); // Unknown binop. 2304 } else { 2305 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2306 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2307 unsigned Flags = 0; 2308 if (Record.size() >= 4) { 2309 if (Opc == Instruction::Add || 2310 Opc == Instruction::Sub || 2311 Opc == Instruction::Mul || 2312 Opc == Instruction::Shl) { 2313 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2314 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2315 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2316 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2317 } else if (Opc == Instruction::SDiv || 2318 Opc == Instruction::UDiv || 2319 Opc == Instruction::LShr || 2320 Opc == Instruction::AShr) { 2321 if (Record[3] & (1 << bitc::PEO_EXACT)) 2322 Flags |= SDivOperator::IsExact; 2323 } 2324 } 2325 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2326 } 2327 break; 2328 } 2329 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2330 if (Record.size() < 3) 2331 return Error("Invalid record"); 2332 int Opc = GetDecodedCastOpcode(Record[0]); 2333 if (Opc < 0) { 2334 V = UndefValue::get(CurTy); // Unknown cast. 2335 } else { 2336 Type *OpTy = getTypeByID(Record[1]); 2337 if (!OpTy) 2338 return Error("Invalid record"); 2339 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2340 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2341 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2342 } 2343 break; 2344 } 2345 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2346 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2347 unsigned OpNum = 0; 2348 Type *PointeeType = nullptr; 2349 if (Record.size() % 2) 2350 PointeeType = getTypeByID(Record[OpNum++]); 2351 SmallVector<Constant*, 16> Elts; 2352 while (OpNum != Record.size()) { 2353 Type *ElTy = getTypeByID(Record[OpNum++]); 2354 if (!ElTy) 2355 return Error("Invalid record"); 2356 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2357 } 2358 2359 if (PointeeType && 2360 PointeeType != 2361 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2362 ->getElementType()) 2363 return Error("Explicit gep operator type does not match pointee type " 2364 "of pointer operand"); 2365 2366 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2367 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2368 BitCode == 2369 bitc::CST_CODE_CE_INBOUNDS_GEP); 2370 break; 2371 } 2372 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2373 if (Record.size() < 3) 2374 return Error("Invalid record"); 2375 2376 Type *SelectorTy = Type::getInt1Ty(Context); 2377 2378 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2379 // vector. Otherwise, it must be a single bit. 2380 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2381 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2382 VTy->getNumElements()); 2383 2384 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2385 SelectorTy), 2386 ValueList.getConstantFwdRef(Record[1],CurTy), 2387 ValueList.getConstantFwdRef(Record[2],CurTy)); 2388 break; 2389 } 2390 case bitc::CST_CODE_CE_EXTRACTELT 2391 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2392 if (Record.size() < 3) 2393 return Error("Invalid record"); 2394 VectorType *OpTy = 2395 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2396 if (!OpTy) 2397 return Error("Invalid record"); 2398 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2399 Constant *Op1 = nullptr; 2400 if (Record.size() == 4) { 2401 Type *IdxTy = getTypeByID(Record[2]); 2402 if (!IdxTy) 2403 return Error("Invalid record"); 2404 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2405 } else // TODO: Remove with llvm 4.0 2406 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2407 if (!Op1) 2408 return Error("Invalid record"); 2409 V = ConstantExpr::getExtractElement(Op0, Op1); 2410 break; 2411 } 2412 case bitc::CST_CODE_CE_INSERTELT 2413 : { // CE_INSERTELT: [opval, opval, opty, opval] 2414 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2415 if (Record.size() < 3 || !OpTy) 2416 return Error("Invalid record"); 2417 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2418 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2419 OpTy->getElementType()); 2420 Constant *Op2 = nullptr; 2421 if (Record.size() == 4) { 2422 Type *IdxTy = getTypeByID(Record[2]); 2423 if (!IdxTy) 2424 return Error("Invalid record"); 2425 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2426 } else // TODO: Remove with llvm 4.0 2427 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2428 if (!Op2) 2429 return Error("Invalid record"); 2430 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2434 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2435 if (Record.size() < 3 || !OpTy) 2436 return Error("Invalid record"); 2437 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2438 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2439 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2440 OpTy->getNumElements()); 2441 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2442 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2443 break; 2444 } 2445 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2446 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2447 VectorType *OpTy = 2448 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2449 if (Record.size() < 4 || !RTy || !OpTy) 2450 return Error("Invalid record"); 2451 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2452 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2453 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2454 RTy->getNumElements()); 2455 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2456 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2457 break; 2458 } 2459 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2460 if (Record.size() < 4) 2461 return Error("Invalid record"); 2462 Type *OpTy = getTypeByID(Record[0]); 2463 if (!OpTy) 2464 return Error("Invalid record"); 2465 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2466 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2467 2468 if (OpTy->isFPOrFPVectorTy()) 2469 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2470 else 2471 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2472 break; 2473 } 2474 // This maintains backward compatibility, pre-asm dialect keywords. 2475 // FIXME: Remove with the 4.0 release. 2476 case bitc::CST_CODE_INLINEASM_OLD: { 2477 if (Record.size() < 2) 2478 return Error("Invalid record"); 2479 std::string AsmStr, ConstrStr; 2480 bool HasSideEffects = Record[0] & 1; 2481 bool IsAlignStack = Record[0] >> 1; 2482 unsigned AsmStrSize = Record[1]; 2483 if (2+AsmStrSize >= Record.size()) 2484 return Error("Invalid record"); 2485 unsigned ConstStrSize = Record[2+AsmStrSize]; 2486 if (3+AsmStrSize+ConstStrSize > Record.size()) 2487 return Error("Invalid record"); 2488 2489 for (unsigned i = 0; i != AsmStrSize; ++i) 2490 AsmStr += (char)Record[2+i]; 2491 for (unsigned i = 0; i != ConstStrSize; ++i) 2492 ConstrStr += (char)Record[3+AsmStrSize+i]; 2493 PointerType *PTy = cast<PointerType>(CurTy); 2494 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2495 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2496 break; 2497 } 2498 // This version adds support for the asm dialect keywords (e.g., 2499 // inteldialect). 2500 case bitc::CST_CODE_INLINEASM: { 2501 if (Record.size() < 2) 2502 return Error("Invalid record"); 2503 std::string AsmStr, ConstrStr; 2504 bool HasSideEffects = Record[0] & 1; 2505 bool IsAlignStack = (Record[0] >> 1) & 1; 2506 unsigned AsmDialect = Record[0] >> 2; 2507 unsigned AsmStrSize = Record[1]; 2508 if (2+AsmStrSize >= Record.size()) 2509 return Error("Invalid record"); 2510 unsigned ConstStrSize = Record[2+AsmStrSize]; 2511 if (3+AsmStrSize+ConstStrSize > Record.size()) 2512 return Error("Invalid record"); 2513 2514 for (unsigned i = 0; i != AsmStrSize; ++i) 2515 AsmStr += (char)Record[2+i]; 2516 for (unsigned i = 0; i != ConstStrSize; ++i) 2517 ConstrStr += (char)Record[3+AsmStrSize+i]; 2518 PointerType *PTy = cast<PointerType>(CurTy); 2519 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2520 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2521 InlineAsm::AsmDialect(AsmDialect)); 2522 break; 2523 } 2524 case bitc::CST_CODE_BLOCKADDRESS:{ 2525 if (Record.size() < 3) 2526 return Error("Invalid record"); 2527 Type *FnTy = getTypeByID(Record[0]); 2528 if (!FnTy) 2529 return Error("Invalid record"); 2530 Function *Fn = 2531 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2532 if (!Fn) 2533 return Error("Invalid record"); 2534 2535 // Don't let Fn get dematerialized. 2536 BlockAddressesTaken.insert(Fn); 2537 2538 // If the function is already parsed we can insert the block address right 2539 // away. 2540 BasicBlock *BB; 2541 unsigned BBID = Record[2]; 2542 if (!BBID) 2543 // Invalid reference to entry block. 2544 return Error("Invalid ID"); 2545 if (!Fn->empty()) { 2546 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2547 for (size_t I = 0, E = BBID; I != E; ++I) { 2548 if (BBI == BBE) 2549 return Error("Invalid ID"); 2550 ++BBI; 2551 } 2552 BB = BBI; 2553 } else { 2554 // Otherwise insert a placeholder and remember it so it can be inserted 2555 // when the function is parsed. 2556 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2557 if (FwdBBs.empty()) 2558 BasicBlockFwdRefQueue.push_back(Fn); 2559 if (FwdBBs.size() < BBID + 1) 2560 FwdBBs.resize(BBID + 1); 2561 if (!FwdBBs[BBID]) 2562 FwdBBs[BBID] = BasicBlock::Create(Context); 2563 BB = FwdBBs[BBID]; 2564 } 2565 V = BlockAddress::get(Fn, BB); 2566 break; 2567 } 2568 } 2569 2570 ValueList.AssignValue(V, NextCstNo); 2571 ++NextCstNo; 2572 } 2573 } 2574 2575 std::error_code BitcodeReader::ParseUseLists() { 2576 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2577 return Error("Invalid record"); 2578 2579 // Read all the records. 2580 SmallVector<uint64_t, 64> Record; 2581 while (1) { 2582 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2583 2584 switch (Entry.Kind) { 2585 case BitstreamEntry::SubBlock: // Handled for us already. 2586 case BitstreamEntry::Error: 2587 return Error("Malformed block"); 2588 case BitstreamEntry::EndBlock: 2589 return std::error_code(); 2590 case BitstreamEntry::Record: 2591 // The interesting case. 2592 break; 2593 } 2594 2595 // Read a use list record. 2596 Record.clear(); 2597 bool IsBB = false; 2598 switch (Stream.readRecord(Entry.ID, Record)) { 2599 default: // Default behavior: unknown type. 2600 break; 2601 case bitc::USELIST_CODE_BB: 2602 IsBB = true; 2603 // fallthrough 2604 case bitc::USELIST_CODE_DEFAULT: { 2605 unsigned RecordLength = Record.size(); 2606 if (RecordLength < 3) 2607 // Records should have at least an ID and two indexes. 2608 return Error("Invalid record"); 2609 unsigned ID = Record.back(); 2610 Record.pop_back(); 2611 2612 Value *V; 2613 if (IsBB) { 2614 assert(ID < FunctionBBs.size() && "Basic block not found"); 2615 V = FunctionBBs[ID]; 2616 } else 2617 V = ValueList[ID]; 2618 unsigned NumUses = 0; 2619 SmallDenseMap<const Use *, unsigned, 16> Order; 2620 for (const Use &U : V->uses()) { 2621 if (++NumUses > Record.size()) 2622 break; 2623 Order[&U] = Record[NumUses - 1]; 2624 } 2625 if (Order.size() != Record.size() || NumUses > Record.size()) 2626 // Mismatches can happen if the functions are being materialized lazily 2627 // (out-of-order), or a value has been upgraded. 2628 break; 2629 2630 V->sortUseList([&](const Use &L, const Use &R) { 2631 return Order.lookup(&L) < Order.lookup(&R); 2632 }); 2633 break; 2634 } 2635 } 2636 } 2637 } 2638 2639 /// When we see the block for metadata, remember where it is and then skip it. 2640 /// This lets us lazily deserialize the metadata. 2641 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2642 // Save the current stream state. 2643 uint64_t CurBit = Stream.GetCurrentBitNo(); 2644 DeferredMetadataInfo.push_back(CurBit); 2645 2646 // Skip over the block for now. 2647 if (Stream.SkipBlock()) 2648 return Error("Invalid record"); 2649 return std::error_code(); 2650 } 2651 2652 std::error_code BitcodeReader::materializeMetadata() { 2653 for (uint64_t BitPos : DeferredMetadataInfo) { 2654 // Move the bit stream to the saved position. 2655 Stream.JumpToBit(BitPos); 2656 if (std::error_code EC = ParseMetadata()) 2657 return EC; 2658 } 2659 DeferredMetadataInfo.clear(); 2660 return std::error_code(); 2661 } 2662 2663 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2664 2665 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2666 /// remember where it is and then skip it. This lets us lazily deserialize the 2667 /// functions. 2668 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2669 // Get the function we are talking about. 2670 if (FunctionsWithBodies.empty()) 2671 return Error("Insufficient function protos"); 2672 2673 Function *Fn = FunctionsWithBodies.back(); 2674 FunctionsWithBodies.pop_back(); 2675 2676 // Save the current stream state. 2677 uint64_t CurBit = Stream.GetCurrentBitNo(); 2678 DeferredFunctionInfo[Fn] = CurBit; 2679 2680 // Skip over the function block for now. 2681 if (Stream.SkipBlock()) 2682 return Error("Invalid record"); 2683 return std::error_code(); 2684 } 2685 2686 std::error_code BitcodeReader::GlobalCleanup() { 2687 // Patch the initializers for globals and aliases up. 2688 ResolveGlobalAndAliasInits(); 2689 if (!GlobalInits.empty() || !AliasInits.empty()) 2690 return Error("Malformed global initializer set"); 2691 2692 // Look for intrinsic functions which need to be upgraded at some point 2693 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2694 FI != FE; ++FI) { 2695 Function *NewFn; 2696 if (UpgradeIntrinsicFunction(FI, NewFn)) 2697 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2698 } 2699 2700 // Look for global variables which need to be renamed. 2701 for (Module::global_iterator 2702 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2703 GI != GE;) { 2704 GlobalVariable *GV = GI++; 2705 UpgradeGlobalVariable(GV); 2706 } 2707 2708 // Force deallocation of memory for these vectors to favor the client that 2709 // want lazy deserialization. 2710 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2711 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2712 return std::error_code(); 2713 } 2714 2715 std::error_code BitcodeReader::ParseModule(bool Resume, 2716 bool ShouldLazyLoadMetadata) { 2717 if (Resume) 2718 Stream.JumpToBit(NextUnreadBit); 2719 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2720 return Error("Invalid record"); 2721 2722 SmallVector<uint64_t, 64> Record; 2723 std::vector<std::string> SectionTable; 2724 std::vector<std::string> GCTable; 2725 2726 // Read all the records for this module. 2727 while (1) { 2728 BitstreamEntry Entry = Stream.advance(); 2729 2730 switch (Entry.Kind) { 2731 case BitstreamEntry::Error: 2732 return Error("Malformed block"); 2733 case BitstreamEntry::EndBlock: 2734 return GlobalCleanup(); 2735 2736 case BitstreamEntry::SubBlock: 2737 switch (Entry.ID) { 2738 default: // Skip unknown content. 2739 if (Stream.SkipBlock()) 2740 return Error("Invalid record"); 2741 break; 2742 case bitc::BLOCKINFO_BLOCK_ID: 2743 if (Stream.ReadBlockInfoBlock()) 2744 return Error("Malformed block"); 2745 break; 2746 case bitc::PARAMATTR_BLOCK_ID: 2747 if (std::error_code EC = ParseAttributeBlock()) 2748 return EC; 2749 break; 2750 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2751 if (std::error_code EC = ParseAttributeGroupBlock()) 2752 return EC; 2753 break; 2754 case bitc::TYPE_BLOCK_ID_NEW: 2755 if (std::error_code EC = ParseTypeTable()) 2756 return EC; 2757 break; 2758 case bitc::VALUE_SYMTAB_BLOCK_ID: 2759 if (std::error_code EC = ParseValueSymbolTable()) 2760 return EC; 2761 SeenValueSymbolTable = true; 2762 break; 2763 case bitc::CONSTANTS_BLOCK_ID: 2764 if (std::error_code EC = ParseConstants()) 2765 return EC; 2766 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2767 return EC; 2768 break; 2769 case bitc::METADATA_BLOCK_ID: 2770 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2771 if (std::error_code EC = rememberAndSkipMetadata()) 2772 return EC; 2773 break; 2774 } 2775 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2776 if (std::error_code EC = ParseMetadata()) 2777 return EC; 2778 break; 2779 case bitc::FUNCTION_BLOCK_ID: 2780 // If this is the first function body we've seen, reverse the 2781 // FunctionsWithBodies list. 2782 if (!SeenFirstFunctionBody) { 2783 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2784 if (std::error_code EC = GlobalCleanup()) 2785 return EC; 2786 SeenFirstFunctionBody = true; 2787 } 2788 2789 if (std::error_code EC = RememberAndSkipFunctionBody()) 2790 return EC; 2791 // For streaming bitcode, suspend parsing when we reach the function 2792 // bodies. Subsequent materialization calls will resume it when 2793 // necessary. For streaming, the function bodies must be at the end of 2794 // the bitcode. If the bitcode file is old, the symbol table will be 2795 // at the end instead and will not have been seen yet. In this case, 2796 // just finish the parse now. 2797 if (LazyStreamer && SeenValueSymbolTable) { 2798 NextUnreadBit = Stream.GetCurrentBitNo(); 2799 return std::error_code(); 2800 } 2801 break; 2802 case bitc::USELIST_BLOCK_ID: 2803 if (std::error_code EC = ParseUseLists()) 2804 return EC; 2805 break; 2806 } 2807 continue; 2808 2809 case BitstreamEntry::Record: 2810 // The interesting case. 2811 break; 2812 } 2813 2814 2815 // Read a record. 2816 switch (Stream.readRecord(Entry.ID, Record)) { 2817 default: break; // Default behavior, ignore unknown content. 2818 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2819 if (Record.size() < 1) 2820 return Error("Invalid record"); 2821 // Only version #0 and #1 are supported so far. 2822 unsigned module_version = Record[0]; 2823 switch (module_version) { 2824 default: 2825 return Error("Invalid value"); 2826 case 0: 2827 UseRelativeIDs = false; 2828 break; 2829 case 1: 2830 UseRelativeIDs = true; 2831 break; 2832 } 2833 break; 2834 } 2835 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2836 std::string S; 2837 if (ConvertToString(Record, 0, S)) 2838 return Error("Invalid record"); 2839 TheModule->setTargetTriple(S); 2840 break; 2841 } 2842 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2843 std::string S; 2844 if (ConvertToString(Record, 0, S)) 2845 return Error("Invalid record"); 2846 TheModule->setDataLayout(S); 2847 break; 2848 } 2849 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2850 std::string S; 2851 if (ConvertToString(Record, 0, S)) 2852 return Error("Invalid record"); 2853 TheModule->setModuleInlineAsm(S); 2854 break; 2855 } 2856 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2857 // FIXME: Remove in 4.0. 2858 std::string S; 2859 if (ConvertToString(Record, 0, S)) 2860 return Error("Invalid record"); 2861 // Ignore value. 2862 break; 2863 } 2864 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2865 std::string S; 2866 if (ConvertToString(Record, 0, S)) 2867 return Error("Invalid record"); 2868 SectionTable.push_back(S); 2869 break; 2870 } 2871 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2872 std::string S; 2873 if (ConvertToString(Record, 0, S)) 2874 return Error("Invalid record"); 2875 GCTable.push_back(S); 2876 break; 2877 } 2878 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2879 if (Record.size() < 2) 2880 return Error("Invalid record"); 2881 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2882 unsigned ComdatNameSize = Record[1]; 2883 std::string ComdatName; 2884 ComdatName.reserve(ComdatNameSize); 2885 for (unsigned i = 0; i != ComdatNameSize; ++i) 2886 ComdatName += (char)Record[2 + i]; 2887 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2888 C->setSelectionKind(SK); 2889 ComdatList.push_back(C); 2890 break; 2891 } 2892 // GLOBALVAR: [pointer type, isconst, initid, 2893 // linkage, alignment, section, visibility, threadlocal, 2894 // unnamed_addr, externally_initialized, dllstorageclass, 2895 // comdat] 2896 case bitc::MODULE_CODE_GLOBALVAR: { 2897 if (Record.size() < 6) 2898 return Error("Invalid record"); 2899 Type *Ty = getTypeByID(Record[0]); 2900 if (!Ty) 2901 return Error("Invalid record"); 2902 bool isConstant = Record[1] & 1; 2903 bool explicitType = Record[1] & 2; 2904 unsigned AddressSpace; 2905 if (explicitType) { 2906 AddressSpace = Record[1] >> 2; 2907 } else { 2908 if (!Ty->isPointerTy()) 2909 return Error("Invalid type for value"); 2910 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2911 Ty = cast<PointerType>(Ty)->getElementType(); 2912 } 2913 2914 uint64_t RawLinkage = Record[3]; 2915 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2916 unsigned Alignment; 2917 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2918 return EC; 2919 std::string Section; 2920 if (Record[5]) { 2921 if (Record[5]-1 >= SectionTable.size()) 2922 return Error("Invalid ID"); 2923 Section = SectionTable[Record[5]-1]; 2924 } 2925 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2926 // Local linkage must have default visibility. 2927 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2928 // FIXME: Change to an error if non-default in 4.0. 2929 Visibility = GetDecodedVisibility(Record[6]); 2930 2931 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2932 if (Record.size() > 7) 2933 TLM = GetDecodedThreadLocalMode(Record[7]); 2934 2935 bool UnnamedAddr = false; 2936 if (Record.size() > 8) 2937 UnnamedAddr = Record[8]; 2938 2939 bool ExternallyInitialized = false; 2940 if (Record.size() > 9) 2941 ExternallyInitialized = Record[9]; 2942 2943 GlobalVariable *NewGV = 2944 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2945 TLM, AddressSpace, ExternallyInitialized); 2946 NewGV->setAlignment(Alignment); 2947 if (!Section.empty()) 2948 NewGV->setSection(Section); 2949 NewGV->setVisibility(Visibility); 2950 NewGV->setUnnamedAddr(UnnamedAddr); 2951 2952 if (Record.size() > 10) 2953 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2954 else 2955 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2956 2957 ValueList.push_back(NewGV); 2958 2959 // Remember which value to use for the global initializer. 2960 if (unsigned InitID = Record[2]) 2961 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2962 2963 if (Record.size() > 11) { 2964 if (unsigned ComdatID = Record[11]) { 2965 if (ComdatID > ComdatList.size()) 2966 return Error("Invalid global variable comdat ID"); 2967 NewGV->setComdat(ComdatList[ComdatID - 1]); 2968 } 2969 } else if (hasImplicitComdat(RawLinkage)) { 2970 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2971 } 2972 break; 2973 } 2974 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2975 // alignment, section, visibility, gc, unnamed_addr, 2976 // prologuedata, dllstorageclass, comdat, prefixdata] 2977 case bitc::MODULE_CODE_FUNCTION: { 2978 if (Record.size() < 8) 2979 return Error("Invalid record"); 2980 Type *Ty = getTypeByID(Record[0]); 2981 if (!Ty) 2982 return Error("Invalid record"); 2983 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2984 Ty = PTy->getElementType(); 2985 auto *FTy = dyn_cast<FunctionType>(Ty); 2986 if (!FTy) 2987 return Error("Invalid type for value"); 2988 2989 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2990 "", TheModule); 2991 2992 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2993 bool isProto = Record[2]; 2994 uint64_t RawLinkage = Record[3]; 2995 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2996 Func->setAttributes(getAttributes(Record[4])); 2997 2998 unsigned Alignment; 2999 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3000 return EC; 3001 Func->setAlignment(Alignment); 3002 if (Record[6]) { 3003 if (Record[6]-1 >= SectionTable.size()) 3004 return Error("Invalid ID"); 3005 Func->setSection(SectionTable[Record[6]-1]); 3006 } 3007 // Local linkage must have default visibility. 3008 if (!Func->hasLocalLinkage()) 3009 // FIXME: Change to an error if non-default in 4.0. 3010 Func->setVisibility(GetDecodedVisibility(Record[7])); 3011 if (Record.size() > 8 && Record[8]) { 3012 if (Record[8]-1 >= GCTable.size()) 3013 return Error("Invalid ID"); 3014 Func->setGC(GCTable[Record[8]-1].c_str()); 3015 } 3016 bool UnnamedAddr = false; 3017 if (Record.size() > 9) 3018 UnnamedAddr = Record[9]; 3019 Func->setUnnamedAddr(UnnamedAddr); 3020 if (Record.size() > 10 && Record[10] != 0) 3021 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3022 3023 if (Record.size() > 11) 3024 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3025 else 3026 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3027 3028 if (Record.size() > 12) { 3029 if (unsigned ComdatID = Record[12]) { 3030 if (ComdatID > ComdatList.size()) 3031 return Error("Invalid function comdat ID"); 3032 Func->setComdat(ComdatList[ComdatID - 1]); 3033 } 3034 } else if (hasImplicitComdat(RawLinkage)) { 3035 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3036 } 3037 3038 if (Record.size() > 13 && Record[13] != 0) 3039 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3040 3041 ValueList.push_back(Func); 3042 3043 // If this is a function with a body, remember the prototype we are 3044 // creating now, so that we can match up the body with them later. 3045 if (!isProto) { 3046 Func->setIsMaterializable(true); 3047 FunctionsWithBodies.push_back(Func); 3048 if (LazyStreamer) 3049 DeferredFunctionInfo[Func] = 0; 3050 } 3051 break; 3052 } 3053 // ALIAS: [alias type, aliasee val#, linkage] 3054 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3055 case bitc::MODULE_CODE_ALIAS: { 3056 if (Record.size() < 3) 3057 return Error("Invalid record"); 3058 Type *Ty = getTypeByID(Record[0]); 3059 if (!Ty) 3060 return Error("Invalid record"); 3061 auto *PTy = dyn_cast<PointerType>(Ty); 3062 if (!PTy) 3063 return Error("Invalid type for value"); 3064 3065 auto *NewGA = 3066 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3067 // Old bitcode files didn't have visibility field. 3068 // Local linkage must have default visibility. 3069 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3070 // FIXME: Change to an error if non-default in 4.0. 3071 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3072 if (Record.size() > 4) 3073 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3074 else 3075 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3076 if (Record.size() > 5) 3077 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3078 if (Record.size() > 6) 3079 NewGA->setUnnamedAddr(Record[6]); 3080 ValueList.push_back(NewGA); 3081 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3082 break; 3083 } 3084 /// MODULE_CODE_PURGEVALS: [numvals] 3085 case bitc::MODULE_CODE_PURGEVALS: 3086 // Trim down the value list to the specified size. 3087 if (Record.size() < 1 || Record[0] > ValueList.size()) 3088 return Error("Invalid record"); 3089 ValueList.shrinkTo(Record[0]); 3090 break; 3091 } 3092 Record.clear(); 3093 } 3094 } 3095 3096 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3097 bool ShouldLazyLoadMetadata) { 3098 TheModule = nullptr; 3099 3100 if (std::error_code EC = InitStream()) 3101 return EC; 3102 3103 // Sniff for the signature. 3104 if (Stream.Read(8) != 'B' || 3105 Stream.Read(8) != 'C' || 3106 Stream.Read(4) != 0x0 || 3107 Stream.Read(4) != 0xC || 3108 Stream.Read(4) != 0xE || 3109 Stream.Read(4) != 0xD) 3110 return Error("Invalid bitcode signature"); 3111 3112 // We expect a number of well-defined blocks, though we don't necessarily 3113 // need to understand them all. 3114 while (1) { 3115 if (Stream.AtEndOfStream()) { 3116 if (TheModule) 3117 return std::error_code(); 3118 // We didn't really read a proper Module. 3119 return Error("Malformed IR file"); 3120 } 3121 3122 BitstreamEntry Entry = 3123 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3124 3125 switch (Entry.Kind) { 3126 case BitstreamEntry::Error: 3127 return Error("Malformed block"); 3128 case BitstreamEntry::EndBlock: 3129 return std::error_code(); 3130 3131 case BitstreamEntry::SubBlock: 3132 switch (Entry.ID) { 3133 case bitc::BLOCKINFO_BLOCK_ID: 3134 if (Stream.ReadBlockInfoBlock()) 3135 return Error("Malformed block"); 3136 break; 3137 case bitc::MODULE_BLOCK_ID: 3138 // Reject multiple MODULE_BLOCK's in a single bitstream. 3139 if (TheModule) 3140 return Error("Invalid multiple blocks"); 3141 TheModule = M; 3142 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3143 return EC; 3144 if (LazyStreamer) 3145 return std::error_code(); 3146 break; 3147 default: 3148 if (Stream.SkipBlock()) 3149 return Error("Invalid record"); 3150 break; 3151 } 3152 continue; 3153 case BitstreamEntry::Record: 3154 // There should be no records in the top-level of blocks. 3155 3156 // The ranlib in Xcode 4 will align archive members by appending newlines 3157 // to the end of them. If this file size is a multiple of 4 but not 8, we 3158 // have to read and ignore these final 4 bytes :-( 3159 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3160 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3161 Stream.AtEndOfStream()) 3162 return std::error_code(); 3163 3164 return Error("Invalid record"); 3165 } 3166 } 3167 } 3168 3169 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3170 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3171 return Error("Invalid record"); 3172 3173 SmallVector<uint64_t, 64> Record; 3174 3175 std::string Triple; 3176 // Read all the records for this module. 3177 while (1) { 3178 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3179 3180 switch (Entry.Kind) { 3181 case BitstreamEntry::SubBlock: // Handled for us already. 3182 case BitstreamEntry::Error: 3183 return Error("Malformed block"); 3184 case BitstreamEntry::EndBlock: 3185 return Triple; 3186 case BitstreamEntry::Record: 3187 // The interesting case. 3188 break; 3189 } 3190 3191 // Read a record. 3192 switch (Stream.readRecord(Entry.ID, Record)) { 3193 default: break; // Default behavior, ignore unknown content. 3194 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3195 std::string S; 3196 if (ConvertToString(Record, 0, S)) 3197 return Error("Invalid record"); 3198 Triple = S; 3199 break; 3200 } 3201 } 3202 Record.clear(); 3203 } 3204 llvm_unreachable("Exit infinite loop"); 3205 } 3206 3207 ErrorOr<std::string> BitcodeReader::parseTriple() { 3208 if (std::error_code EC = InitStream()) 3209 return EC; 3210 3211 // Sniff for the signature. 3212 if (Stream.Read(8) != 'B' || 3213 Stream.Read(8) != 'C' || 3214 Stream.Read(4) != 0x0 || 3215 Stream.Read(4) != 0xC || 3216 Stream.Read(4) != 0xE || 3217 Stream.Read(4) != 0xD) 3218 return Error("Invalid bitcode signature"); 3219 3220 // We expect a number of well-defined blocks, though we don't necessarily 3221 // need to understand them all. 3222 while (1) { 3223 BitstreamEntry Entry = Stream.advance(); 3224 3225 switch (Entry.Kind) { 3226 case BitstreamEntry::Error: 3227 return Error("Malformed block"); 3228 case BitstreamEntry::EndBlock: 3229 return std::error_code(); 3230 3231 case BitstreamEntry::SubBlock: 3232 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3233 return parseModuleTriple(); 3234 3235 // Ignore other sub-blocks. 3236 if (Stream.SkipBlock()) 3237 return Error("Malformed block"); 3238 continue; 3239 3240 case BitstreamEntry::Record: 3241 Stream.skipRecord(Entry.ID); 3242 continue; 3243 } 3244 } 3245 } 3246 3247 /// ParseMetadataAttachment - Parse metadata attachments. 3248 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3249 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3250 return Error("Invalid record"); 3251 3252 SmallVector<uint64_t, 64> Record; 3253 while (1) { 3254 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3255 3256 switch (Entry.Kind) { 3257 case BitstreamEntry::SubBlock: // Handled for us already. 3258 case BitstreamEntry::Error: 3259 return Error("Malformed block"); 3260 case BitstreamEntry::EndBlock: 3261 return std::error_code(); 3262 case BitstreamEntry::Record: 3263 // The interesting case. 3264 break; 3265 } 3266 3267 // Read a metadata attachment record. 3268 Record.clear(); 3269 switch (Stream.readRecord(Entry.ID, Record)) { 3270 default: // Default behavior: ignore. 3271 break; 3272 case bitc::METADATA_ATTACHMENT: { 3273 unsigned RecordLength = Record.size(); 3274 if (Record.empty()) 3275 return Error("Invalid record"); 3276 if (RecordLength % 2 == 0) { 3277 // A function attachment. 3278 for (unsigned I = 0; I != RecordLength; I += 2) { 3279 auto K = MDKindMap.find(Record[I]); 3280 if (K == MDKindMap.end()) 3281 return Error("Invalid ID"); 3282 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3283 F.setMetadata(K->second, cast<MDNode>(MD)); 3284 } 3285 continue; 3286 } 3287 3288 // An instruction attachment. 3289 Instruction *Inst = InstructionList[Record[0]]; 3290 for (unsigned i = 1; i != RecordLength; i = i+2) { 3291 unsigned Kind = Record[i]; 3292 DenseMap<unsigned, unsigned>::iterator I = 3293 MDKindMap.find(Kind); 3294 if (I == MDKindMap.end()) 3295 return Error("Invalid ID"); 3296 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3297 if (isa<LocalAsMetadata>(Node)) 3298 // Drop the attachment. This used to be legal, but there's no 3299 // upgrade path. 3300 break; 3301 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3302 if (I->second == LLVMContext::MD_tbaa) 3303 InstsWithTBAATag.push_back(Inst); 3304 } 3305 break; 3306 } 3307 } 3308 } 3309 } 3310 3311 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3312 Type *ValType, Type *PtrType) { 3313 if (!isa<PointerType>(PtrType)) 3314 return Error(DH, "Load/Store operand is not a pointer type"); 3315 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3316 3317 if (ValType && ValType != ElemType) 3318 return Error(DH, "Explicit load/store type does not match pointee type of " 3319 "pointer operand"); 3320 if (!PointerType::isLoadableOrStorableType(ElemType)) 3321 return Error(DH, "Cannot load/store from pointer"); 3322 return std::error_code(); 3323 } 3324 3325 /// ParseFunctionBody - Lazily parse the specified function body block. 3326 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3327 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3328 return Error("Invalid record"); 3329 3330 InstructionList.clear(); 3331 unsigned ModuleValueListSize = ValueList.size(); 3332 unsigned ModuleMDValueListSize = MDValueList.size(); 3333 3334 // Add all the function arguments to the value table. 3335 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3336 ValueList.push_back(I); 3337 3338 unsigned NextValueNo = ValueList.size(); 3339 BasicBlock *CurBB = nullptr; 3340 unsigned CurBBNo = 0; 3341 3342 DebugLoc LastLoc; 3343 auto getLastInstruction = [&]() -> Instruction * { 3344 if (CurBB && !CurBB->empty()) 3345 return &CurBB->back(); 3346 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3347 !FunctionBBs[CurBBNo - 1]->empty()) 3348 return &FunctionBBs[CurBBNo - 1]->back(); 3349 return nullptr; 3350 }; 3351 3352 // Read all the records. 3353 SmallVector<uint64_t, 64> Record; 3354 while (1) { 3355 BitstreamEntry Entry = Stream.advance(); 3356 3357 switch (Entry.Kind) { 3358 case BitstreamEntry::Error: 3359 return Error("Malformed block"); 3360 case BitstreamEntry::EndBlock: 3361 goto OutOfRecordLoop; 3362 3363 case BitstreamEntry::SubBlock: 3364 switch (Entry.ID) { 3365 default: // Skip unknown content. 3366 if (Stream.SkipBlock()) 3367 return Error("Invalid record"); 3368 break; 3369 case bitc::CONSTANTS_BLOCK_ID: 3370 if (std::error_code EC = ParseConstants()) 3371 return EC; 3372 NextValueNo = ValueList.size(); 3373 break; 3374 case bitc::VALUE_SYMTAB_BLOCK_ID: 3375 if (std::error_code EC = ParseValueSymbolTable()) 3376 return EC; 3377 break; 3378 case bitc::METADATA_ATTACHMENT_ID: 3379 if (std::error_code EC = ParseMetadataAttachment(*F)) 3380 return EC; 3381 break; 3382 case bitc::METADATA_BLOCK_ID: 3383 if (std::error_code EC = ParseMetadata()) 3384 return EC; 3385 break; 3386 case bitc::USELIST_BLOCK_ID: 3387 if (std::error_code EC = ParseUseLists()) 3388 return EC; 3389 break; 3390 } 3391 continue; 3392 3393 case BitstreamEntry::Record: 3394 // The interesting case. 3395 break; 3396 } 3397 3398 // Read a record. 3399 Record.clear(); 3400 Instruction *I = nullptr; 3401 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3402 switch (BitCode) { 3403 default: // Default behavior: reject 3404 return Error("Invalid value"); 3405 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3406 if (Record.size() < 1 || Record[0] == 0) 3407 return Error("Invalid record"); 3408 // Create all the basic blocks for the function. 3409 FunctionBBs.resize(Record[0]); 3410 3411 // See if anything took the address of blocks in this function. 3412 auto BBFRI = BasicBlockFwdRefs.find(F); 3413 if (BBFRI == BasicBlockFwdRefs.end()) { 3414 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3415 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3416 } else { 3417 auto &BBRefs = BBFRI->second; 3418 // Check for invalid basic block references. 3419 if (BBRefs.size() > FunctionBBs.size()) 3420 return Error("Invalid ID"); 3421 assert(!BBRefs.empty() && "Unexpected empty array"); 3422 assert(!BBRefs.front() && "Invalid reference to entry block"); 3423 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3424 ++I) 3425 if (I < RE && BBRefs[I]) { 3426 BBRefs[I]->insertInto(F); 3427 FunctionBBs[I] = BBRefs[I]; 3428 } else { 3429 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3430 } 3431 3432 // Erase from the table. 3433 BasicBlockFwdRefs.erase(BBFRI); 3434 } 3435 3436 CurBB = FunctionBBs[0]; 3437 continue; 3438 } 3439 3440 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3441 // This record indicates that the last instruction is at the same 3442 // location as the previous instruction with a location. 3443 I = getLastInstruction(); 3444 3445 if (!I) 3446 return Error("Invalid record"); 3447 I->setDebugLoc(LastLoc); 3448 I = nullptr; 3449 continue; 3450 3451 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3452 I = getLastInstruction(); 3453 if (!I || Record.size() < 4) 3454 return Error("Invalid record"); 3455 3456 unsigned Line = Record[0], Col = Record[1]; 3457 unsigned ScopeID = Record[2], IAID = Record[3]; 3458 3459 MDNode *Scope = nullptr, *IA = nullptr; 3460 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3461 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3462 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3463 I->setDebugLoc(LastLoc); 3464 I = nullptr; 3465 continue; 3466 } 3467 3468 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3469 unsigned OpNum = 0; 3470 Value *LHS, *RHS; 3471 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3472 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3473 OpNum+1 > Record.size()) 3474 return Error("Invalid record"); 3475 3476 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3477 if (Opc == -1) 3478 return Error("Invalid record"); 3479 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3480 InstructionList.push_back(I); 3481 if (OpNum < Record.size()) { 3482 if (Opc == Instruction::Add || 3483 Opc == Instruction::Sub || 3484 Opc == Instruction::Mul || 3485 Opc == Instruction::Shl) { 3486 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3487 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3488 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3489 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3490 } else if (Opc == Instruction::SDiv || 3491 Opc == Instruction::UDiv || 3492 Opc == Instruction::LShr || 3493 Opc == Instruction::AShr) { 3494 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3495 cast<BinaryOperator>(I)->setIsExact(true); 3496 } else if (isa<FPMathOperator>(I)) { 3497 FastMathFlags FMF; 3498 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3499 FMF.setUnsafeAlgebra(); 3500 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3501 FMF.setNoNaNs(); 3502 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3503 FMF.setNoInfs(); 3504 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3505 FMF.setNoSignedZeros(); 3506 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3507 FMF.setAllowReciprocal(); 3508 if (FMF.any()) 3509 I->setFastMathFlags(FMF); 3510 } 3511 3512 } 3513 break; 3514 } 3515 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3516 unsigned OpNum = 0; 3517 Value *Op; 3518 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3519 OpNum+2 != Record.size()) 3520 return Error("Invalid record"); 3521 3522 Type *ResTy = getTypeByID(Record[OpNum]); 3523 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3524 if (Opc == -1 || !ResTy) 3525 return Error("Invalid record"); 3526 Instruction *Temp = nullptr; 3527 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3528 if (Temp) { 3529 InstructionList.push_back(Temp); 3530 CurBB->getInstList().push_back(Temp); 3531 } 3532 } else { 3533 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3534 } 3535 InstructionList.push_back(I); 3536 break; 3537 } 3538 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3539 case bitc::FUNC_CODE_INST_GEP_OLD: 3540 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3541 unsigned OpNum = 0; 3542 3543 Type *Ty; 3544 bool InBounds; 3545 3546 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3547 InBounds = Record[OpNum++]; 3548 Ty = getTypeByID(Record[OpNum++]); 3549 } else { 3550 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3551 Ty = nullptr; 3552 } 3553 3554 Value *BasePtr; 3555 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3556 return Error("Invalid record"); 3557 3558 if (!Ty) 3559 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3560 ->getElementType(); 3561 else if (Ty != 3562 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3563 ->getElementType()) 3564 return Error( 3565 "Explicit gep type does not match pointee type of pointer operand"); 3566 3567 SmallVector<Value*, 16> GEPIdx; 3568 while (OpNum != Record.size()) { 3569 Value *Op; 3570 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3571 return Error("Invalid record"); 3572 GEPIdx.push_back(Op); 3573 } 3574 3575 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3576 3577 InstructionList.push_back(I); 3578 if (InBounds) 3579 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3580 break; 3581 } 3582 3583 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3584 // EXTRACTVAL: [opty, opval, n x indices] 3585 unsigned OpNum = 0; 3586 Value *Agg; 3587 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3588 return Error("Invalid record"); 3589 3590 unsigned RecSize = Record.size(); 3591 if (OpNum == RecSize) 3592 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3593 3594 SmallVector<unsigned, 4> EXTRACTVALIdx; 3595 Type *CurTy = Agg->getType(); 3596 for (; OpNum != RecSize; ++OpNum) { 3597 bool IsArray = CurTy->isArrayTy(); 3598 bool IsStruct = CurTy->isStructTy(); 3599 uint64_t Index = Record[OpNum]; 3600 3601 if (!IsStruct && !IsArray) 3602 return Error("EXTRACTVAL: Invalid type"); 3603 if ((unsigned)Index != Index) 3604 return Error("Invalid value"); 3605 if (IsStruct && Index >= CurTy->subtypes().size()) 3606 return Error("EXTRACTVAL: Invalid struct index"); 3607 if (IsArray && Index >= CurTy->getArrayNumElements()) 3608 return Error("EXTRACTVAL: Invalid array index"); 3609 EXTRACTVALIdx.push_back((unsigned)Index); 3610 3611 if (IsStruct) 3612 CurTy = CurTy->subtypes()[Index]; 3613 else 3614 CurTy = CurTy->subtypes()[0]; 3615 } 3616 3617 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3618 InstructionList.push_back(I); 3619 break; 3620 } 3621 3622 case bitc::FUNC_CODE_INST_INSERTVAL: { 3623 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3624 unsigned OpNum = 0; 3625 Value *Agg; 3626 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3627 return Error("Invalid record"); 3628 Value *Val; 3629 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3630 return Error("Invalid record"); 3631 3632 unsigned RecSize = Record.size(); 3633 if (OpNum == RecSize) 3634 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3635 3636 SmallVector<unsigned, 4> INSERTVALIdx; 3637 Type *CurTy = Agg->getType(); 3638 for (; OpNum != RecSize; ++OpNum) { 3639 bool IsArray = CurTy->isArrayTy(); 3640 bool IsStruct = CurTy->isStructTy(); 3641 uint64_t Index = Record[OpNum]; 3642 3643 if (!IsStruct && !IsArray) 3644 return Error("INSERTVAL: Invalid type"); 3645 if ((unsigned)Index != Index) 3646 return Error("Invalid value"); 3647 if (IsStruct && Index >= CurTy->subtypes().size()) 3648 return Error("INSERTVAL: Invalid struct index"); 3649 if (IsArray && Index >= CurTy->getArrayNumElements()) 3650 return Error("INSERTVAL: Invalid array index"); 3651 3652 INSERTVALIdx.push_back((unsigned)Index); 3653 if (IsStruct) 3654 CurTy = CurTy->subtypes()[Index]; 3655 else 3656 CurTy = CurTy->subtypes()[0]; 3657 } 3658 3659 if (CurTy != Val->getType()) 3660 return Error("Inserted value type doesn't match aggregate type"); 3661 3662 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3663 InstructionList.push_back(I); 3664 break; 3665 } 3666 3667 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3668 // obsolete form of select 3669 // handles select i1 ... in old bitcode 3670 unsigned OpNum = 0; 3671 Value *TrueVal, *FalseVal, *Cond; 3672 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3673 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3674 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3675 return Error("Invalid record"); 3676 3677 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3678 InstructionList.push_back(I); 3679 break; 3680 } 3681 3682 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3683 // new form of select 3684 // handles select i1 or select [N x i1] 3685 unsigned OpNum = 0; 3686 Value *TrueVal, *FalseVal, *Cond; 3687 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3688 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3689 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3690 return Error("Invalid record"); 3691 3692 // select condition can be either i1 or [N x i1] 3693 if (VectorType* vector_type = 3694 dyn_cast<VectorType>(Cond->getType())) { 3695 // expect <n x i1> 3696 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3697 return Error("Invalid type for value"); 3698 } else { 3699 // expect i1 3700 if (Cond->getType() != Type::getInt1Ty(Context)) 3701 return Error("Invalid type for value"); 3702 } 3703 3704 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3705 InstructionList.push_back(I); 3706 break; 3707 } 3708 3709 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3710 unsigned OpNum = 0; 3711 Value *Vec, *Idx; 3712 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3713 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3714 return Error("Invalid record"); 3715 if (!Vec->getType()->isVectorTy()) 3716 return Error("Invalid type for value"); 3717 I = ExtractElementInst::Create(Vec, Idx); 3718 InstructionList.push_back(I); 3719 break; 3720 } 3721 3722 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3723 unsigned OpNum = 0; 3724 Value *Vec, *Elt, *Idx; 3725 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3726 return Error("Invalid record"); 3727 if (!Vec->getType()->isVectorTy()) 3728 return Error("Invalid type for value"); 3729 if (popValue(Record, OpNum, NextValueNo, 3730 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3731 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3732 return Error("Invalid record"); 3733 I = InsertElementInst::Create(Vec, Elt, Idx); 3734 InstructionList.push_back(I); 3735 break; 3736 } 3737 3738 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3739 unsigned OpNum = 0; 3740 Value *Vec1, *Vec2, *Mask; 3741 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3742 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3743 return Error("Invalid record"); 3744 3745 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3746 return Error("Invalid record"); 3747 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3748 return Error("Invalid type for value"); 3749 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3750 InstructionList.push_back(I); 3751 break; 3752 } 3753 3754 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3755 // Old form of ICmp/FCmp returning bool 3756 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3757 // both legal on vectors but had different behaviour. 3758 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3759 // FCmp/ICmp returning bool or vector of bool 3760 3761 unsigned OpNum = 0; 3762 Value *LHS, *RHS; 3763 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3764 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3765 OpNum+1 != Record.size()) 3766 return Error("Invalid record"); 3767 3768 if (LHS->getType()->isFPOrFPVectorTy()) 3769 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3770 else 3771 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3772 InstructionList.push_back(I); 3773 break; 3774 } 3775 3776 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3777 { 3778 unsigned Size = Record.size(); 3779 if (Size == 0) { 3780 I = ReturnInst::Create(Context); 3781 InstructionList.push_back(I); 3782 break; 3783 } 3784 3785 unsigned OpNum = 0; 3786 Value *Op = nullptr; 3787 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3788 return Error("Invalid record"); 3789 if (OpNum != Record.size()) 3790 return Error("Invalid record"); 3791 3792 I = ReturnInst::Create(Context, Op); 3793 InstructionList.push_back(I); 3794 break; 3795 } 3796 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3797 if (Record.size() != 1 && Record.size() != 3) 3798 return Error("Invalid record"); 3799 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3800 if (!TrueDest) 3801 return Error("Invalid record"); 3802 3803 if (Record.size() == 1) { 3804 I = BranchInst::Create(TrueDest); 3805 InstructionList.push_back(I); 3806 } 3807 else { 3808 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3809 Value *Cond = getValue(Record, 2, NextValueNo, 3810 Type::getInt1Ty(Context)); 3811 if (!FalseDest || !Cond) 3812 return Error("Invalid record"); 3813 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3814 InstructionList.push_back(I); 3815 } 3816 break; 3817 } 3818 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3819 // Check magic 3820 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3821 // "New" SwitchInst format with case ranges. The changes to write this 3822 // format were reverted but we still recognize bitcode that uses it. 3823 // Hopefully someday we will have support for case ranges and can use 3824 // this format again. 3825 3826 Type *OpTy = getTypeByID(Record[1]); 3827 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3828 3829 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3830 BasicBlock *Default = getBasicBlock(Record[3]); 3831 if (!OpTy || !Cond || !Default) 3832 return Error("Invalid record"); 3833 3834 unsigned NumCases = Record[4]; 3835 3836 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3837 InstructionList.push_back(SI); 3838 3839 unsigned CurIdx = 5; 3840 for (unsigned i = 0; i != NumCases; ++i) { 3841 SmallVector<ConstantInt*, 1> CaseVals; 3842 unsigned NumItems = Record[CurIdx++]; 3843 for (unsigned ci = 0; ci != NumItems; ++ci) { 3844 bool isSingleNumber = Record[CurIdx++]; 3845 3846 APInt Low; 3847 unsigned ActiveWords = 1; 3848 if (ValueBitWidth > 64) 3849 ActiveWords = Record[CurIdx++]; 3850 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3851 ValueBitWidth); 3852 CurIdx += ActiveWords; 3853 3854 if (!isSingleNumber) { 3855 ActiveWords = 1; 3856 if (ValueBitWidth > 64) 3857 ActiveWords = Record[CurIdx++]; 3858 APInt High = 3859 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3860 ValueBitWidth); 3861 CurIdx += ActiveWords; 3862 3863 // FIXME: It is not clear whether values in the range should be 3864 // compared as signed or unsigned values. The partially 3865 // implemented changes that used this format in the past used 3866 // unsigned comparisons. 3867 for ( ; Low.ule(High); ++Low) 3868 CaseVals.push_back(ConstantInt::get(Context, Low)); 3869 } else 3870 CaseVals.push_back(ConstantInt::get(Context, Low)); 3871 } 3872 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3873 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3874 cve = CaseVals.end(); cvi != cve; ++cvi) 3875 SI->addCase(*cvi, DestBB); 3876 } 3877 I = SI; 3878 break; 3879 } 3880 3881 // Old SwitchInst format without case ranges. 3882 3883 if (Record.size() < 3 || (Record.size() & 1) == 0) 3884 return Error("Invalid record"); 3885 Type *OpTy = getTypeByID(Record[0]); 3886 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3887 BasicBlock *Default = getBasicBlock(Record[2]); 3888 if (!OpTy || !Cond || !Default) 3889 return Error("Invalid record"); 3890 unsigned NumCases = (Record.size()-3)/2; 3891 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3892 InstructionList.push_back(SI); 3893 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3894 ConstantInt *CaseVal = 3895 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3896 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3897 if (!CaseVal || !DestBB) { 3898 delete SI; 3899 return Error("Invalid record"); 3900 } 3901 SI->addCase(CaseVal, DestBB); 3902 } 3903 I = SI; 3904 break; 3905 } 3906 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3907 if (Record.size() < 2) 3908 return Error("Invalid record"); 3909 Type *OpTy = getTypeByID(Record[0]); 3910 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3911 if (!OpTy || !Address) 3912 return Error("Invalid record"); 3913 unsigned NumDests = Record.size()-2; 3914 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3915 InstructionList.push_back(IBI); 3916 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3917 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3918 IBI->addDestination(DestBB); 3919 } else { 3920 delete IBI; 3921 return Error("Invalid record"); 3922 } 3923 } 3924 I = IBI; 3925 break; 3926 } 3927 3928 case bitc::FUNC_CODE_INST_INVOKE: { 3929 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3930 if (Record.size() < 4) 3931 return Error("Invalid record"); 3932 unsigned OpNum = 0; 3933 AttributeSet PAL = getAttributes(Record[OpNum++]); 3934 unsigned CCInfo = Record[OpNum++]; 3935 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3936 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3937 3938 FunctionType *FTy = nullptr; 3939 if (CCInfo >> 13 & 1 && 3940 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3941 return Error("Explicit invoke type is not a function type"); 3942 3943 Value *Callee; 3944 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3945 return Error("Invalid record"); 3946 3947 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3948 if (!CalleeTy) 3949 return Error("Callee is not a pointer"); 3950 if (!FTy) { 3951 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3952 if (!FTy) 3953 return Error("Callee is not of pointer to function type"); 3954 } else if (CalleeTy->getElementType() != FTy) 3955 return Error("Explicit invoke type does not match pointee type of " 3956 "callee operand"); 3957 if (Record.size() < FTy->getNumParams() + OpNum) 3958 return Error("Insufficient operands to call"); 3959 3960 SmallVector<Value*, 16> Ops; 3961 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3962 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3963 FTy->getParamType(i))); 3964 if (!Ops.back()) 3965 return Error("Invalid record"); 3966 } 3967 3968 if (!FTy->isVarArg()) { 3969 if (Record.size() != OpNum) 3970 return Error("Invalid record"); 3971 } else { 3972 // Read type/value pairs for varargs params. 3973 while (OpNum != Record.size()) { 3974 Value *Op; 3975 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3976 return Error("Invalid record"); 3977 Ops.push_back(Op); 3978 } 3979 } 3980 3981 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3982 InstructionList.push_back(I); 3983 cast<InvokeInst>(I) 3984 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3985 cast<InvokeInst>(I)->setAttributes(PAL); 3986 break; 3987 } 3988 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3989 unsigned Idx = 0; 3990 Value *Val = nullptr; 3991 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3992 return Error("Invalid record"); 3993 I = ResumeInst::Create(Val); 3994 InstructionList.push_back(I); 3995 break; 3996 } 3997 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3998 I = new UnreachableInst(Context); 3999 InstructionList.push_back(I); 4000 break; 4001 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4002 if (Record.size() < 1 || ((Record.size()-1)&1)) 4003 return Error("Invalid record"); 4004 Type *Ty = getTypeByID(Record[0]); 4005 if (!Ty) 4006 return Error("Invalid record"); 4007 4008 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4009 InstructionList.push_back(PN); 4010 4011 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4012 Value *V; 4013 // With the new function encoding, it is possible that operands have 4014 // negative IDs (for forward references). Use a signed VBR 4015 // representation to keep the encoding small. 4016 if (UseRelativeIDs) 4017 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4018 else 4019 V = getValue(Record, 1+i, NextValueNo, Ty); 4020 BasicBlock *BB = getBasicBlock(Record[2+i]); 4021 if (!V || !BB) 4022 return Error("Invalid record"); 4023 PN->addIncoming(V, BB); 4024 } 4025 I = PN; 4026 break; 4027 } 4028 4029 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4030 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4031 unsigned Idx = 0; 4032 if (Record.size() < 4) 4033 return Error("Invalid record"); 4034 Type *Ty = getTypeByID(Record[Idx++]); 4035 if (!Ty) 4036 return Error("Invalid record"); 4037 Value *PersFn = nullptr; 4038 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4039 return Error("Invalid record"); 4040 4041 bool IsCleanup = !!Record[Idx++]; 4042 unsigned NumClauses = Record[Idx++]; 4043 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4044 LP->setCleanup(IsCleanup); 4045 for (unsigned J = 0; J != NumClauses; ++J) { 4046 LandingPadInst::ClauseType CT = 4047 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4048 Value *Val; 4049 4050 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4051 delete LP; 4052 return Error("Invalid record"); 4053 } 4054 4055 assert((CT != LandingPadInst::Catch || 4056 !isa<ArrayType>(Val->getType())) && 4057 "Catch clause has a invalid type!"); 4058 assert((CT != LandingPadInst::Filter || 4059 isa<ArrayType>(Val->getType())) && 4060 "Filter clause has invalid type!"); 4061 LP->addClause(cast<Constant>(Val)); 4062 } 4063 4064 I = LP; 4065 InstructionList.push_back(I); 4066 break; 4067 } 4068 4069 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4070 if (Record.size() != 4) 4071 return Error("Invalid record"); 4072 uint64_t AlignRecord = Record[3]; 4073 const uint64_t InAllocaMask = uint64_t(1) << 5; 4074 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4075 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4076 bool InAlloca = AlignRecord & InAllocaMask; 4077 Type *Ty = getTypeByID(Record[0]); 4078 if ((AlignRecord & ExplicitTypeMask) == 0) { 4079 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4080 if (!PTy) 4081 return Error("Old-style alloca with a non-pointer type"); 4082 Ty = PTy->getElementType(); 4083 } 4084 Type *OpTy = getTypeByID(Record[1]); 4085 Value *Size = getFnValueByID(Record[2], OpTy); 4086 unsigned Align; 4087 if (std::error_code EC = 4088 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4089 return EC; 4090 } 4091 if (!Ty || !Size) 4092 return Error("Invalid record"); 4093 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4094 AI->setUsedWithInAlloca(InAlloca); 4095 I = AI; 4096 InstructionList.push_back(I); 4097 break; 4098 } 4099 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4100 unsigned OpNum = 0; 4101 Value *Op; 4102 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4103 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4104 return Error("Invalid record"); 4105 4106 Type *Ty = nullptr; 4107 if (OpNum + 3 == Record.size()) 4108 Ty = getTypeByID(Record[OpNum++]); 4109 if (std::error_code EC = 4110 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4111 return EC; 4112 if (!Ty) 4113 Ty = cast<PointerType>(Op->getType())->getElementType(); 4114 4115 unsigned Align; 4116 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4117 return EC; 4118 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4119 4120 InstructionList.push_back(I); 4121 break; 4122 } 4123 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4124 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4125 unsigned OpNum = 0; 4126 Value *Op; 4127 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4128 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4129 return Error("Invalid record"); 4130 4131 Type *Ty = nullptr; 4132 if (OpNum + 5 == Record.size()) 4133 Ty = getTypeByID(Record[OpNum++]); 4134 if (std::error_code EC = 4135 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4136 return EC; 4137 if (!Ty) 4138 Ty = cast<PointerType>(Op->getType())->getElementType(); 4139 4140 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4141 if (Ordering == NotAtomic || Ordering == Release || 4142 Ordering == AcquireRelease) 4143 return Error("Invalid record"); 4144 if (Ordering != NotAtomic && Record[OpNum] == 0) 4145 return Error("Invalid record"); 4146 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4147 4148 unsigned Align; 4149 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4150 return EC; 4151 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4152 4153 InstructionList.push_back(I); 4154 break; 4155 } 4156 case bitc::FUNC_CODE_INST_STORE: 4157 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4158 unsigned OpNum = 0; 4159 Value *Val, *Ptr; 4160 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4161 (BitCode == bitc::FUNC_CODE_INST_STORE 4162 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4163 : popValue(Record, OpNum, NextValueNo, 4164 cast<PointerType>(Ptr->getType())->getElementType(), 4165 Val)) || 4166 OpNum + 2 != Record.size()) 4167 return Error("Invalid record"); 4168 4169 if (std::error_code EC = TypeCheckLoadStoreInst( 4170 DiagnosticHandler, Val->getType(), Ptr->getType())) 4171 return EC; 4172 unsigned Align; 4173 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4174 return EC; 4175 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4176 InstructionList.push_back(I); 4177 break; 4178 } 4179 case bitc::FUNC_CODE_INST_STOREATOMIC: 4180 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4181 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4182 unsigned OpNum = 0; 4183 Value *Val, *Ptr; 4184 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4185 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4186 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4187 : popValue(Record, OpNum, NextValueNo, 4188 cast<PointerType>(Ptr->getType())->getElementType(), 4189 Val)) || 4190 OpNum + 4 != Record.size()) 4191 return Error("Invalid record"); 4192 4193 if (std::error_code EC = TypeCheckLoadStoreInst( 4194 DiagnosticHandler, Val->getType(), Ptr->getType())) 4195 return EC; 4196 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4197 if (Ordering == NotAtomic || Ordering == Acquire || 4198 Ordering == AcquireRelease) 4199 return Error("Invalid record"); 4200 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4201 if (Ordering != NotAtomic && Record[OpNum] == 0) 4202 return Error("Invalid record"); 4203 4204 unsigned Align; 4205 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4206 return EC; 4207 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4208 InstructionList.push_back(I); 4209 break; 4210 } 4211 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4212 case bitc::FUNC_CODE_INST_CMPXCHG: { 4213 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4214 // failureordering?, isweak?] 4215 unsigned OpNum = 0; 4216 Value *Ptr, *Cmp, *New; 4217 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4218 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4219 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4220 : popValue(Record, OpNum, NextValueNo, 4221 cast<PointerType>(Ptr->getType())->getElementType(), 4222 Cmp)) || 4223 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4224 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4225 return Error("Invalid record"); 4226 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4227 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4228 return Error("Invalid record"); 4229 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4230 4231 if (std::error_code EC = TypeCheckLoadStoreInst( 4232 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4233 return EC; 4234 AtomicOrdering FailureOrdering; 4235 if (Record.size() < 7) 4236 FailureOrdering = 4237 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4238 else 4239 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4240 4241 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4242 SynchScope); 4243 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4244 4245 if (Record.size() < 8) { 4246 // Before weak cmpxchgs existed, the instruction simply returned the 4247 // value loaded from memory, so bitcode files from that era will be 4248 // expecting the first component of a modern cmpxchg. 4249 CurBB->getInstList().push_back(I); 4250 I = ExtractValueInst::Create(I, 0); 4251 } else { 4252 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4253 } 4254 4255 InstructionList.push_back(I); 4256 break; 4257 } 4258 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4259 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4260 unsigned OpNum = 0; 4261 Value *Ptr, *Val; 4262 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4263 popValue(Record, OpNum, NextValueNo, 4264 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4265 OpNum+4 != Record.size()) 4266 return Error("Invalid record"); 4267 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4268 if (Operation < AtomicRMWInst::FIRST_BINOP || 4269 Operation > AtomicRMWInst::LAST_BINOP) 4270 return Error("Invalid record"); 4271 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4272 if (Ordering == NotAtomic || Ordering == Unordered) 4273 return Error("Invalid record"); 4274 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4275 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4276 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4277 InstructionList.push_back(I); 4278 break; 4279 } 4280 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4281 if (2 != Record.size()) 4282 return Error("Invalid record"); 4283 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4284 if (Ordering == NotAtomic || Ordering == Unordered || 4285 Ordering == Monotonic) 4286 return Error("Invalid record"); 4287 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4288 I = new FenceInst(Context, Ordering, SynchScope); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 case bitc::FUNC_CODE_INST_CALL: { 4293 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4294 if (Record.size() < 3) 4295 return Error("Invalid record"); 4296 4297 unsigned OpNum = 0; 4298 AttributeSet PAL = getAttributes(Record[OpNum++]); 4299 unsigned CCInfo = Record[OpNum++]; 4300 4301 FunctionType *FTy = nullptr; 4302 if (CCInfo >> 15 & 1 && 4303 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4304 return Error("Explicit call type is not a function type"); 4305 4306 Value *Callee; 4307 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4308 return Error("Invalid record"); 4309 4310 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4311 if (!OpTy) 4312 return Error("Callee is not a pointer type"); 4313 if (!FTy) { 4314 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4315 if (!FTy) 4316 return Error("Callee is not of pointer to function type"); 4317 } else if (OpTy->getElementType() != FTy) 4318 return Error("Explicit call type does not match pointee type of " 4319 "callee operand"); 4320 if (Record.size() < FTy->getNumParams() + OpNum) 4321 return Error("Insufficient operands to call"); 4322 4323 SmallVector<Value*, 16> Args; 4324 // Read the fixed params. 4325 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4326 if (FTy->getParamType(i)->isLabelTy()) 4327 Args.push_back(getBasicBlock(Record[OpNum])); 4328 else 4329 Args.push_back(getValue(Record, OpNum, NextValueNo, 4330 FTy->getParamType(i))); 4331 if (!Args.back()) 4332 return Error("Invalid record"); 4333 } 4334 4335 // Read type/value pairs for varargs params. 4336 if (!FTy->isVarArg()) { 4337 if (OpNum != Record.size()) 4338 return Error("Invalid record"); 4339 } else { 4340 while (OpNum != Record.size()) { 4341 Value *Op; 4342 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4343 return Error("Invalid record"); 4344 Args.push_back(Op); 4345 } 4346 } 4347 4348 I = CallInst::Create(FTy, Callee, Args); 4349 InstructionList.push_back(I); 4350 cast<CallInst>(I)->setCallingConv( 4351 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4352 CallInst::TailCallKind TCK = CallInst::TCK_None; 4353 if (CCInfo & 1) 4354 TCK = CallInst::TCK_Tail; 4355 if (CCInfo & (1 << 14)) 4356 TCK = CallInst::TCK_MustTail; 4357 cast<CallInst>(I)->setTailCallKind(TCK); 4358 cast<CallInst>(I)->setAttributes(PAL); 4359 break; 4360 } 4361 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4362 if (Record.size() < 3) 4363 return Error("Invalid record"); 4364 Type *OpTy = getTypeByID(Record[0]); 4365 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4366 Type *ResTy = getTypeByID(Record[2]); 4367 if (!OpTy || !Op || !ResTy) 4368 return Error("Invalid record"); 4369 I = new VAArgInst(Op, ResTy); 4370 InstructionList.push_back(I); 4371 break; 4372 } 4373 } 4374 4375 // Add instruction to end of current BB. If there is no current BB, reject 4376 // this file. 4377 if (!CurBB) { 4378 delete I; 4379 return Error("Invalid instruction with no BB"); 4380 } 4381 CurBB->getInstList().push_back(I); 4382 4383 // If this was a terminator instruction, move to the next block. 4384 if (isa<TerminatorInst>(I)) { 4385 ++CurBBNo; 4386 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4387 } 4388 4389 // Non-void values get registered in the value table for future use. 4390 if (I && !I->getType()->isVoidTy()) 4391 ValueList.AssignValue(I, NextValueNo++); 4392 } 4393 4394 OutOfRecordLoop: 4395 4396 // Check the function list for unresolved values. 4397 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4398 if (!A->getParent()) { 4399 // We found at least one unresolved value. Nuke them all to avoid leaks. 4400 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4401 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4402 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4403 delete A; 4404 } 4405 } 4406 return Error("Never resolved value found in function"); 4407 } 4408 } 4409 4410 // FIXME: Check for unresolved forward-declared metadata references 4411 // and clean up leaks. 4412 4413 // Trim the value list down to the size it was before we parsed this function. 4414 ValueList.shrinkTo(ModuleValueListSize); 4415 MDValueList.shrinkTo(ModuleMDValueListSize); 4416 std::vector<BasicBlock*>().swap(FunctionBBs); 4417 return std::error_code(); 4418 } 4419 4420 /// Find the function body in the bitcode stream 4421 std::error_code BitcodeReader::FindFunctionInStream( 4422 Function *F, 4423 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4424 while (DeferredFunctionInfoIterator->second == 0) { 4425 if (Stream.AtEndOfStream()) 4426 return Error("Could not find function in stream"); 4427 // ParseModule will parse the next body in the stream and set its 4428 // position in the DeferredFunctionInfo map. 4429 if (std::error_code EC = ParseModule(true)) 4430 return EC; 4431 } 4432 return std::error_code(); 4433 } 4434 4435 //===----------------------------------------------------------------------===// 4436 // GVMaterializer implementation 4437 //===----------------------------------------------------------------------===// 4438 4439 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4440 4441 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4442 if (std::error_code EC = materializeMetadata()) 4443 return EC; 4444 4445 Function *F = dyn_cast<Function>(GV); 4446 // If it's not a function or is already material, ignore the request. 4447 if (!F || !F->isMaterializable()) 4448 return std::error_code(); 4449 4450 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4451 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4452 // If its position is recorded as 0, its body is somewhere in the stream 4453 // but we haven't seen it yet. 4454 if (DFII->second == 0 && LazyStreamer) 4455 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4456 return EC; 4457 4458 // Move the bit stream to the saved position of the deferred function body. 4459 Stream.JumpToBit(DFII->second); 4460 4461 if (std::error_code EC = ParseFunctionBody(F)) 4462 return EC; 4463 F->setIsMaterializable(false); 4464 4465 if (StripDebugInfo) 4466 stripDebugInfo(*F); 4467 4468 // Upgrade any old intrinsic calls in the function. 4469 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4470 E = UpgradedIntrinsics.end(); I != E; ++I) { 4471 if (I->first != I->second) { 4472 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4473 UI != UE;) { 4474 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4475 UpgradeIntrinsicCall(CI, I->second); 4476 } 4477 } 4478 } 4479 4480 // Bring in any functions that this function forward-referenced via 4481 // blockaddresses. 4482 return materializeForwardReferencedFunctions(); 4483 } 4484 4485 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4486 const Function *F = dyn_cast<Function>(GV); 4487 if (!F || F->isDeclaration()) 4488 return false; 4489 4490 // Dematerializing F would leave dangling references that wouldn't be 4491 // reconnected on re-materialization. 4492 if (BlockAddressesTaken.count(F)) 4493 return false; 4494 4495 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4496 } 4497 4498 void BitcodeReader::dematerialize(GlobalValue *GV) { 4499 Function *F = dyn_cast<Function>(GV); 4500 // If this function isn't dematerializable, this is a noop. 4501 if (!F || !isDematerializable(F)) 4502 return; 4503 4504 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4505 4506 // Just forget the function body, we can remat it later. 4507 F->dropAllReferences(); 4508 F->setIsMaterializable(true); 4509 } 4510 4511 std::error_code BitcodeReader::materializeModule(Module *M) { 4512 assert(M == TheModule && 4513 "Can only Materialize the Module this BitcodeReader is attached to."); 4514 4515 if (std::error_code EC = materializeMetadata()) 4516 return EC; 4517 4518 // Promise to materialize all forward references. 4519 WillMaterializeAllForwardRefs = true; 4520 4521 // Iterate over the module, deserializing any functions that are still on 4522 // disk. 4523 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4524 F != E; ++F) { 4525 if (std::error_code EC = materialize(F)) 4526 return EC; 4527 } 4528 // At this point, if there are any function bodies, the current bit is 4529 // pointing to the END_BLOCK record after them. Now make sure the rest 4530 // of the bits in the module have been read. 4531 if (NextUnreadBit) 4532 ParseModule(true); 4533 4534 // Check that all block address forward references got resolved (as we 4535 // promised above). 4536 if (!BasicBlockFwdRefs.empty()) 4537 return Error("Never resolved function from blockaddress"); 4538 4539 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4540 // delete the old functions to clean up. We can't do this unless the entire 4541 // module is materialized because there could always be another function body 4542 // with calls to the old function. 4543 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4544 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4545 if (I->first != I->second) { 4546 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4547 UI != UE;) { 4548 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4549 UpgradeIntrinsicCall(CI, I->second); 4550 } 4551 if (!I->first->use_empty()) 4552 I->first->replaceAllUsesWith(I->second); 4553 I->first->eraseFromParent(); 4554 } 4555 } 4556 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4557 4558 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4559 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4560 4561 UpgradeDebugInfo(*M); 4562 return std::error_code(); 4563 } 4564 4565 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4566 return IdentifiedStructTypes; 4567 } 4568 4569 std::error_code BitcodeReader::InitStream() { 4570 if (LazyStreamer) 4571 return InitLazyStream(); 4572 return InitStreamFromBuffer(); 4573 } 4574 4575 std::error_code BitcodeReader::InitStreamFromBuffer() { 4576 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4577 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4578 4579 if (Buffer->getBufferSize() & 3) 4580 return Error("Invalid bitcode signature"); 4581 4582 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4583 // The magic number is 0x0B17C0DE stored in little endian. 4584 if (isBitcodeWrapper(BufPtr, BufEnd)) 4585 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4586 return Error("Invalid bitcode wrapper header"); 4587 4588 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4589 Stream.init(&*StreamFile); 4590 4591 return std::error_code(); 4592 } 4593 4594 std::error_code BitcodeReader::InitLazyStream() { 4595 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4596 // see it. 4597 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4598 StreamingMemoryObject &Bytes = *OwnedBytes; 4599 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4600 Stream.init(&*StreamFile); 4601 4602 unsigned char buf[16]; 4603 if (Bytes.readBytes(buf, 16, 0) != 16) 4604 return Error("Invalid bitcode signature"); 4605 4606 if (!isBitcode(buf, buf + 16)) 4607 return Error("Invalid bitcode signature"); 4608 4609 if (isBitcodeWrapper(buf, buf + 4)) { 4610 const unsigned char *bitcodeStart = buf; 4611 const unsigned char *bitcodeEnd = buf + 16; 4612 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4613 Bytes.dropLeadingBytes(bitcodeStart - buf); 4614 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4615 } 4616 return std::error_code(); 4617 } 4618 4619 namespace { 4620 class BitcodeErrorCategoryType : public std::error_category { 4621 const char *name() const LLVM_NOEXCEPT override { 4622 return "llvm.bitcode"; 4623 } 4624 std::string message(int IE) const override { 4625 BitcodeError E = static_cast<BitcodeError>(IE); 4626 switch (E) { 4627 case BitcodeError::InvalidBitcodeSignature: 4628 return "Invalid bitcode signature"; 4629 case BitcodeError::CorruptedBitcode: 4630 return "Corrupted bitcode"; 4631 } 4632 llvm_unreachable("Unknown error type!"); 4633 } 4634 }; 4635 } 4636 4637 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4638 4639 const std::error_category &llvm::BitcodeErrorCategory() { 4640 return *ErrorCategory; 4641 } 4642 4643 //===----------------------------------------------------------------------===// 4644 // External interface 4645 //===----------------------------------------------------------------------===// 4646 4647 /// \brief Get a lazy one-at-time loading module from bitcode. 4648 /// 4649 /// This isn't always used in a lazy context. In particular, it's also used by 4650 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4651 /// in forward-referenced functions from block address references. 4652 /// 4653 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4654 /// materialize everything -- in particular, if this isn't truly lazy. 4655 static ErrorOr<Module *> 4656 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4657 LLVMContext &Context, bool WillMaterializeAll, 4658 DiagnosticHandlerFunction DiagnosticHandler, 4659 bool ShouldLazyLoadMetadata = false) { 4660 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4661 BitcodeReader *R = 4662 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4663 M->setMaterializer(R); 4664 4665 auto cleanupOnError = [&](std::error_code EC) { 4666 R->releaseBuffer(); // Never take ownership on error. 4667 delete M; // Also deletes R. 4668 return EC; 4669 }; 4670 4671 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4672 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4673 return cleanupOnError(EC); 4674 4675 if (!WillMaterializeAll) 4676 // Resolve forward references from blockaddresses. 4677 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4678 return cleanupOnError(EC); 4679 4680 Buffer.release(); // The BitcodeReader owns it now. 4681 return M; 4682 } 4683 4684 ErrorOr<Module *> 4685 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4686 LLVMContext &Context, 4687 DiagnosticHandlerFunction DiagnosticHandler, 4688 bool ShouldLazyLoadMetadata) { 4689 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4690 DiagnosticHandler, ShouldLazyLoadMetadata); 4691 } 4692 4693 ErrorOr<std::unique_ptr<Module>> 4694 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4695 LLVMContext &Context, 4696 DiagnosticHandlerFunction DiagnosticHandler) { 4697 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4698 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4699 M->setMaterializer(R); 4700 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4701 return EC; 4702 return std::move(M); 4703 } 4704 4705 ErrorOr<Module *> 4706 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4707 DiagnosticHandlerFunction DiagnosticHandler) { 4708 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4709 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4710 std::move(Buf), Context, true, DiagnosticHandler); 4711 if (!ModuleOrErr) 4712 return ModuleOrErr; 4713 Module *M = ModuleOrErr.get(); 4714 // Read in the entire module, and destroy the BitcodeReader. 4715 if (std::error_code EC = M->materializeAllPermanently()) { 4716 delete M; 4717 return EC; 4718 } 4719 4720 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4721 // written. We must defer until the Module has been fully materialized. 4722 4723 return M; 4724 } 4725 4726 std::string 4727 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4728 DiagnosticHandlerFunction DiagnosticHandler) { 4729 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4730 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4731 DiagnosticHandler); 4732 ErrorOr<std::string> Triple = R->parseTriple(); 4733 if (Triple.getError()) 4734 return ""; 4735 return Triple.get(); 4736 } 4737