1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/AutoUpgrade.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 void BitcodeReader::materializeForwardReferencedFunctions() { 35 while (!BlockAddrFwdRefs.empty()) { 36 Function *F = BlockAddrFwdRefs.begin()->first; 37 F->Materialize(); 38 } 39 } 40 41 void BitcodeReader::FreeState() { 42 if (BufferOwned) 43 delete Buffer; 44 Buffer = 0; 45 std::vector<Type*>().swap(TypeList); 46 ValueList.clear(); 47 MDValueList.clear(); 48 49 std::vector<AttributeSet>().swap(MAttributes); 50 std::vector<BasicBlock*>().swap(FunctionBBs); 51 std::vector<Function*>().swap(FunctionsWithBodies); 52 DeferredFunctionInfo.clear(); 53 MDKindMap.clear(); 54 55 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 56 } 57 58 //===----------------------------------------------------------------------===// 59 // Helper functions to implement forward reference resolution, etc. 60 //===----------------------------------------------------------------------===// 61 62 /// ConvertToString - Convert a string from a record into an std::string, return 63 /// true on failure. 64 template<typename StrTy> 65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 66 StrTy &Result) { 67 if (Idx > Record.size()) 68 return true; 69 70 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 71 Result += (char)Record[i]; 72 return false; 73 } 74 75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 76 switch (Val) { 77 default: // Map unknown/new linkages to external 78 case 0: return GlobalValue::ExternalLinkage; 79 case 1: return GlobalValue::WeakAnyLinkage; 80 case 2: return GlobalValue::AppendingLinkage; 81 case 3: return GlobalValue::InternalLinkage; 82 case 4: return GlobalValue::LinkOnceAnyLinkage; 83 case 5: return GlobalValue::DLLImportLinkage; 84 case 6: return GlobalValue::DLLExportLinkage; 85 case 7: return GlobalValue::ExternalWeakLinkage; 86 case 8: return GlobalValue::CommonLinkage; 87 case 9: return GlobalValue::PrivateLinkage; 88 case 10: return GlobalValue::WeakODRLinkage; 89 case 11: return GlobalValue::LinkOnceODRLinkage; 90 case 12: return GlobalValue::AvailableExternallyLinkage; 91 case 13: return GlobalValue::LinkerPrivateLinkage; 92 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 93 } 94 } 95 96 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 97 switch (Val) { 98 default: // Map unknown visibilities to default. 99 case 0: return GlobalValue::DefaultVisibility; 100 case 1: return GlobalValue::HiddenVisibility; 101 case 2: return GlobalValue::ProtectedVisibility; 102 } 103 } 104 105 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 106 switch (Val) { 107 case 0: return GlobalVariable::NotThreadLocal; 108 default: // Map unknown non-zero value to general dynamic. 109 case 1: return GlobalVariable::GeneralDynamicTLSModel; 110 case 2: return GlobalVariable::LocalDynamicTLSModel; 111 case 3: return GlobalVariable::InitialExecTLSModel; 112 case 4: return GlobalVariable::LocalExecTLSModel; 113 } 114 } 115 116 static int GetDecodedCastOpcode(unsigned Val) { 117 switch (Val) { 118 default: return -1; 119 case bitc::CAST_TRUNC : return Instruction::Trunc; 120 case bitc::CAST_ZEXT : return Instruction::ZExt; 121 case bitc::CAST_SEXT : return Instruction::SExt; 122 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 123 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 124 case bitc::CAST_UITOFP : return Instruction::UIToFP; 125 case bitc::CAST_SITOFP : return Instruction::SIToFP; 126 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 127 case bitc::CAST_FPEXT : return Instruction::FPExt; 128 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 129 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 130 case bitc::CAST_BITCAST : return Instruction::BitCast; 131 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 132 } 133 } 134 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 135 switch (Val) { 136 default: return -1; 137 case bitc::BINOP_ADD: 138 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 139 case bitc::BINOP_SUB: 140 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 141 case bitc::BINOP_MUL: 142 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 143 case bitc::BINOP_UDIV: return Instruction::UDiv; 144 case bitc::BINOP_SDIV: 145 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 146 case bitc::BINOP_UREM: return Instruction::URem; 147 case bitc::BINOP_SREM: 148 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 149 case bitc::BINOP_SHL: return Instruction::Shl; 150 case bitc::BINOP_LSHR: return Instruction::LShr; 151 case bitc::BINOP_ASHR: return Instruction::AShr; 152 case bitc::BINOP_AND: return Instruction::And; 153 case bitc::BINOP_OR: return Instruction::Or; 154 case bitc::BINOP_XOR: return Instruction::Xor; 155 } 156 } 157 158 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 159 switch (Val) { 160 default: return AtomicRMWInst::BAD_BINOP; 161 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 162 case bitc::RMW_ADD: return AtomicRMWInst::Add; 163 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 164 case bitc::RMW_AND: return AtomicRMWInst::And; 165 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 166 case bitc::RMW_OR: return AtomicRMWInst::Or; 167 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 168 case bitc::RMW_MAX: return AtomicRMWInst::Max; 169 case bitc::RMW_MIN: return AtomicRMWInst::Min; 170 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 171 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 172 } 173 } 174 175 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 176 switch (Val) { 177 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 178 case bitc::ORDERING_UNORDERED: return Unordered; 179 case bitc::ORDERING_MONOTONIC: return Monotonic; 180 case bitc::ORDERING_ACQUIRE: return Acquire; 181 case bitc::ORDERING_RELEASE: return Release; 182 case bitc::ORDERING_ACQREL: return AcquireRelease; 183 default: // Map unknown orderings to sequentially-consistent. 184 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 185 } 186 } 187 188 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 189 switch (Val) { 190 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 191 default: // Map unknown scopes to cross-thread. 192 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 193 } 194 } 195 196 namespace llvm { 197 namespace { 198 /// @brief A class for maintaining the slot number definition 199 /// as a placeholder for the actual definition for forward constants defs. 200 class ConstantPlaceHolder : public ConstantExpr { 201 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 202 public: 203 // allocate space for exactly one operand 204 void *operator new(size_t s) { 205 return User::operator new(s, 1); 206 } 207 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 208 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 209 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 210 } 211 212 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 213 static bool classof(const Value *V) { 214 return isa<ConstantExpr>(V) && 215 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 216 } 217 218 219 /// Provide fast operand accessors 220 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 221 }; 222 } 223 224 // FIXME: can we inherit this from ConstantExpr? 225 template <> 226 struct OperandTraits<ConstantPlaceHolder> : 227 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 228 }; 229 } 230 231 232 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 233 if (Idx == size()) { 234 push_back(V); 235 return; 236 } 237 238 if (Idx >= size()) 239 resize(Idx+1); 240 241 WeakVH &OldV = ValuePtrs[Idx]; 242 if (OldV == 0) { 243 OldV = V; 244 return; 245 } 246 247 // Handle constants and non-constants (e.g. instrs) differently for 248 // efficiency. 249 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 250 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 251 OldV = V; 252 } else { 253 // If there was a forward reference to this value, replace it. 254 Value *PrevVal = OldV; 255 OldV->replaceAllUsesWith(V); 256 delete PrevVal; 257 } 258 } 259 260 261 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 262 Type *Ty) { 263 if (Idx >= size()) 264 resize(Idx + 1); 265 266 if (Value *V = ValuePtrs[Idx]) { 267 assert(Ty == V->getType() && "Type mismatch in constant table!"); 268 return cast<Constant>(V); 269 } 270 271 // Create and return a placeholder, which will later be RAUW'd. 272 Constant *C = new ConstantPlaceHolder(Ty, Context); 273 ValuePtrs[Idx] = C; 274 return C; 275 } 276 277 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 278 if (Idx >= size()) 279 resize(Idx + 1); 280 281 if (Value *V = ValuePtrs[Idx]) { 282 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 283 return V; 284 } 285 286 // No type specified, must be invalid reference. 287 if (Ty == 0) return 0; 288 289 // Create and return a placeholder, which will later be RAUW'd. 290 Value *V = new Argument(Ty); 291 ValuePtrs[Idx] = V; 292 return V; 293 } 294 295 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 296 /// resolves any forward references. The idea behind this is that we sometimes 297 /// get constants (such as large arrays) which reference *many* forward ref 298 /// constants. Replacing each of these causes a lot of thrashing when 299 /// building/reuniquing the constant. Instead of doing this, we look at all the 300 /// uses and rewrite all the place holders at once for any constant that uses 301 /// a placeholder. 302 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 303 // Sort the values by-pointer so that they are efficient to look up with a 304 // binary search. 305 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 306 307 SmallVector<Constant*, 64> NewOps; 308 309 while (!ResolveConstants.empty()) { 310 Value *RealVal = operator[](ResolveConstants.back().second); 311 Constant *Placeholder = ResolveConstants.back().first; 312 ResolveConstants.pop_back(); 313 314 // Loop over all users of the placeholder, updating them to reference the 315 // new value. If they reference more than one placeholder, update them all 316 // at once. 317 while (!Placeholder->use_empty()) { 318 Value::use_iterator UI = Placeholder->use_begin(); 319 User *U = *UI; 320 321 // If the using object isn't uniqued, just update the operands. This 322 // handles instructions and initializers for global variables. 323 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 324 UI.getUse().set(RealVal); 325 continue; 326 } 327 328 // Otherwise, we have a constant that uses the placeholder. Replace that 329 // constant with a new constant that has *all* placeholder uses updated. 330 Constant *UserC = cast<Constant>(U); 331 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 332 I != E; ++I) { 333 Value *NewOp; 334 if (!isa<ConstantPlaceHolder>(*I)) { 335 // Not a placeholder reference. 336 NewOp = *I; 337 } else if (*I == Placeholder) { 338 // Common case is that it just references this one placeholder. 339 NewOp = RealVal; 340 } else { 341 // Otherwise, look up the placeholder in ResolveConstants. 342 ResolveConstantsTy::iterator It = 343 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 344 std::pair<Constant*, unsigned>(cast<Constant>(*I), 345 0)); 346 assert(It != ResolveConstants.end() && It->first == *I); 347 NewOp = operator[](It->second); 348 } 349 350 NewOps.push_back(cast<Constant>(NewOp)); 351 } 352 353 // Make the new constant. 354 Constant *NewC; 355 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 356 NewC = ConstantArray::get(UserCA->getType(), NewOps); 357 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 358 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 359 } else if (isa<ConstantVector>(UserC)) { 360 NewC = ConstantVector::get(NewOps); 361 } else { 362 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 363 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 364 } 365 366 UserC->replaceAllUsesWith(NewC); 367 UserC->destroyConstant(); 368 NewOps.clear(); 369 } 370 371 // Update all ValueHandles, they should be the only users at this point. 372 Placeholder->replaceAllUsesWith(RealVal); 373 delete Placeholder; 374 } 375 } 376 377 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 378 if (Idx == size()) { 379 push_back(V); 380 return; 381 } 382 383 if (Idx >= size()) 384 resize(Idx+1); 385 386 WeakVH &OldV = MDValuePtrs[Idx]; 387 if (OldV == 0) { 388 OldV = V; 389 return; 390 } 391 392 // If there was a forward reference to this value, replace it. 393 MDNode *PrevVal = cast<MDNode>(OldV); 394 OldV->replaceAllUsesWith(V); 395 MDNode::deleteTemporary(PrevVal); 396 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 397 // value for Idx. 398 MDValuePtrs[Idx] = V; 399 } 400 401 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 402 if (Idx >= size()) 403 resize(Idx + 1); 404 405 if (Value *V = MDValuePtrs[Idx]) { 406 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 407 return V; 408 } 409 410 // Create and return a placeholder, which will later be RAUW'd. 411 Value *V = MDNode::getTemporary(Context, None); 412 MDValuePtrs[Idx] = V; 413 return V; 414 } 415 416 Type *BitcodeReader::getTypeByID(unsigned ID) { 417 // The type table size is always specified correctly. 418 if (ID >= TypeList.size()) 419 return 0; 420 421 if (Type *Ty = TypeList[ID]) 422 return Ty; 423 424 // If we have a forward reference, the only possible case is when it is to a 425 // named struct. Just create a placeholder for now. 426 return TypeList[ID] = StructType::create(Context); 427 } 428 429 430 //===----------------------------------------------------------------------===// 431 // Functions for parsing blocks from the bitcode file 432 //===----------------------------------------------------------------------===// 433 434 435 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 436 /// been decoded from the given integer. This function must stay in sync with 437 /// 'encodeLLVMAttributesForBitcode'. 438 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 439 uint64_t EncodedAttrs) { 440 // FIXME: Remove in 4.0. 441 442 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 443 // the bits above 31 down by 11 bits. 444 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 445 assert((!Alignment || isPowerOf2_32(Alignment)) && 446 "Alignment must be a power of two."); 447 448 if (Alignment) 449 B.addAlignmentAttr(Alignment); 450 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 451 (EncodedAttrs & 0xffff)); 452 } 453 454 error_code BitcodeReader::ParseAttributeBlock() { 455 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 456 return Error(InvalidRecord); 457 458 if (!MAttributes.empty()) 459 return Error(InvalidMultipleBlocks); 460 461 SmallVector<uint64_t, 64> Record; 462 463 SmallVector<AttributeSet, 8> Attrs; 464 465 // Read all the records. 466 while (1) { 467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 468 469 switch (Entry.Kind) { 470 case BitstreamEntry::SubBlock: // Handled for us already. 471 case BitstreamEntry::Error: 472 return Error(MalformedBlock); 473 case BitstreamEntry::EndBlock: 474 return error_code::success(); 475 case BitstreamEntry::Record: 476 // The interesting case. 477 break; 478 } 479 480 // Read a record. 481 Record.clear(); 482 switch (Stream.readRecord(Entry.ID, Record)) { 483 default: // Default behavior: ignore. 484 break; 485 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 486 // FIXME: Remove in 4.0. 487 if (Record.size() & 1) 488 return Error(InvalidRecord); 489 490 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 491 AttrBuilder B; 492 decodeLLVMAttributesForBitcode(B, Record[i+1]); 493 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 494 } 495 496 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 497 Attrs.clear(); 498 break; 499 } 500 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 501 for (unsigned i = 0, e = Record.size(); i != e; ++i) 502 Attrs.push_back(MAttributeGroups[Record[i]]); 503 504 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 505 Attrs.clear(); 506 break; 507 } 508 } 509 } 510 } 511 512 // Returns Attribute::None on unrecognized codes. 513 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 514 switch (Code) { 515 default: 516 return Attribute::None; 517 case bitc::ATTR_KIND_ALIGNMENT: 518 return Attribute::Alignment; 519 case bitc::ATTR_KIND_ALWAYS_INLINE: 520 return Attribute::AlwaysInline; 521 case bitc::ATTR_KIND_BUILTIN: 522 return Attribute::Builtin; 523 case bitc::ATTR_KIND_BY_VAL: 524 return Attribute::ByVal; 525 case bitc::ATTR_KIND_IN_ALLOCA: 526 return Attribute::InAlloca; 527 case bitc::ATTR_KIND_COLD: 528 return Attribute::Cold; 529 case bitc::ATTR_KIND_INLINE_HINT: 530 return Attribute::InlineHint; 531 case bitc::ATTR_KIND_IN_REG: 532 return Attribute::InReg; 533 case bitc::ATTR_KIND_MIN_SIZE: 534 return Attribute::MinSize; 535 case bitc::ATTR_KIND_NAKED: 536 return Attribute::Naked; 537 case bitc::ATTR_KIND_NEST: 538 return Attribute::Nest; 539 case bitc::ATTR_KIND_NO_ALIAS: 540 return Attribute::NoAlias; 541 case bitc::ATTR_KIND_NO_BUILTIN: 542 return Attribute::NoBuiltin; 543 case bitc::ATTR_KIND_NO_CAPTURE: 544 return Attribute::NoCapture; 545 case bitc::ATTR_KIND_NO_DUPLICATE: 546 return Attribute::NoDuplicate; 547 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 548 return Attribute::NoImplicitFloat; 549 case bitc::ATTR_KIND_NO_INLINE: 550 return Attribute::NoInline; 551 case bitc::ATTR_KIND_NON_LAZY_BIND: 552 return Attribute::NonLazyBind; 553 case bitc::ATTR_KIND_NO_RED_ZONE: 554 return Attribute::NoRedZone; 555 case bitc::ATTR_KIND_NO_RETURN: 556 return Attribute::NoReturn; 557 case bitc::ATTR_KIND_NO_UNWIND: 558 return Attribute::NoUnwind; 559 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 560 return Attribute::OptimizeForSize; 561 case bitc::ATTR_KIND_OPTIMIZE_NONE: 562 return Attribute::OptimizeNone; 563 case bitc::ATTR_KIND_READ_NONE: 564 return Attribute::ReadNone; 565 case bitc::ATTR_KIND_READ_ONLY: 566 return Attribute::ReadOnly; 567 case bitc::ATTR_KIND_RETURNED: 568 return Attribute::Returned; 569 case bitc::ATTR_KIND_RETURNS_TWICE: 570 return Attribute::ReturnsTwice; 571 case bitc::ATTR_KIND_S_EXT: 572 return Attribute::SExt; 573 case bitc::ATTR_KIND_STACK_ALIGNMENT: 574 return Attribute::StackAlignment; 575 case bitc::ATTR_KIND_STACK_PROTECT: 576 return Attribute::StackProtect; 577 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 578 return Attribute::StackProtectReq; 579 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 580 return Attribute::StackProtectStrong; 581 case bitc::ATTR_KIND_STRUCT_RET: 582 return Attribute::StructRet; 583 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 584 return Attribute::SanitizeAddress; 585 case bitc::ATTR_KIND_SANITIZE_THREAD: 586 return Attribute::SanitizeThread; 587 case bitc::ATTR_KIND_SANITIZE_MEMORY: 588 return Attribute::SanitizeMemory; 589 case bitc::ATTR_KIND_UW_TABLE: 590 return Attribute::UWTable; 591 case bitc::ATTR_KIND_Z_EXT: 592 return Attribute::ZExt; 593 } 594 } 595 596 error_code BitcodeReader::ParseAttrKind(uint64_t Code, 597 Attribute::AttrKind *Kind) { 598 *Kind = GetAttrFromCode(Code); 599 if (*Kind == Attribute::None) 600 return Error(InvalidValue); 601 return error_code::success(); 602 } 603 604 error_code BitcodeReader::ParseAttributeGroupBlock() { 605 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 606 return Error(InvalidRecord); 607 608 if (!MAttributeGroups.empty()) 609 return Error(InvalidMultipleBlocks); 610 611 SmallVector<uint64_t, 64> Record; 612 613 // Read all the records. 614 while (1) { 615 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 616 617 switch (Entry.Kind) { 618 case BitstreamEntry::SubBlock: // Handled for us already. 619 case BitstreamEntry::Error: 620 return Error(MalformedBlock); 621 case BitstreamEntry::EndBlock: 622 return error_code::success(); 623 case BitstreamEntry::Record: 624 // The interesting case. 625 break; 626 } 627 628 // Read a record. 629 Record.clear(); 630 switch (Stream.readRecord(Entry.ID, Record)) { 631 default: // Default behavior: ignore. 632 break; 633 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 634 if (Record.size() < 3) 635 return Error(InvalidRecord); 636 637 uint64_t GrpID = Record[0]; 638 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 639 640 AttrBuilder B; 641 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 642 if (Record[i] == 0) { // Enum attribute 643 Attribute::AttrKind Kind; 644 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 645 return EC; 646 647 B.addAttribute(Kind); 648 } else if (Record[i] == 1) { // Align attribute 649 Attribute::AttrKind Kind; 650 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 651 return EC; 652 if (Kind == Attribute::Alignment) 653 B.addAlignmentAttr(Record[++i]); 654 else 655 B.addStackAlignmentAttr(Record[++i]); 656 } else { // String attribute 657 assert((Record[i] == 3 || Record[i] == 4) && 658 "Invalid attribute group entry"); 659 bool HasValue = (Record[i++] == 4); 660 SmallString<64> KindStr; 661 SmallString<64> ValStr; 662 663 while (Record[i] != 0 && i != e) 664 KindStr += Record[i++]; 665 assert(Record[i] == 0 && "Kind string not null terminated"); 666 667 if (HasValue) { 668 // Has a value associated with it. 669 ++i; // Skip the '0' that terminates the "kind" string. 670 while (Record[i] != 0 && i != e) 671 ValStr += Record[i++]; 672 assert(Record[i] == 0 && "Value string not null terminated"); 673 } 674 675 B.addAttribute(KindStr.str(), ValStr.str()); 676 } 677 } 678 679 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 680 break; 681 } 682 } 683 } 684 } 685 686 error_code BitcodeReader::ParseTypeTable() { 687 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 688 return Error(InvalidRecord); 689 690 return ParseTypeTableBody(); 691 } 692 693 error_code BitcodeReader::ParseTypeTableBody() { 694 if (!TypeList.empty()) 695 return Error(InvalidMultipleBlocks); 696 697 SmallVector<uint64_t, 64> Record; 698 unsigned NumRecords = 0; 699 700 SmallString<64> TypeName; 701 702 // Read all the records for this type table. 703 while (1) { 704 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 705 706 switch (Entry.Kind) { 707 case BitstreamEntry::SubBlock: // Handled for us already. 708 case BitstreamEntry::Error: 709 return Error(MalformedBlock); 710 case BitstreamEntry::EndBlock: 711 if (NumRecords != TypeList.size()) 712 return Error(MalformedBlock); 713 return error_code::success(); 714 case BitstreamEntry::Record: 715 // The interesting case. 716 break; 717 } 718 719 // Read a record. 720 Record.clear(); 721 Type *ResultTy = 0; 722 switch (Stream.readRecord(Entry.ID, Record)) { 723 default: 724 return Error(InvalidValue); 725 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 726 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 727 // type list. This allows us to reserve space. 728 if (Record.size() < 1) 729 return Error(InvalidRecord); 730 TypeList.resize(Record[0]); 731 continue; 732 case bitc::TYPE_CODE_VOID: // VOID 733 ResultTy = Type::getVoidTy(Context); 734 break; 735 case bitc::TYPE_CODE_HALF: // HALF 736 ResultTy = Type::getHalfTy(Context); 737 break; 738 case bitc::TYPE_CODE_FLOAT: // FLOAT 739 ResultTy = Type::getFloatTy(Context); 740 break; 741 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 742 ResultTy = Type::getDoubleTy(Context); 743 break; 744 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 745 ResultTy = Type::getX86_FP80Ty(Context); 746 break; 747 case bitc::TYPE_CODE_FP128: // FP128 748 ResultTy = Type::getFP128Ty(Context); 749 break; 750 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 751 ResultTy = Type::getPPC_FP128Ty(Context); 752 break; 753 case bitc::TYPE_CODE_LABEL: // LABEL 754 ResultTy = Type::getLabelTy(Context); 755 break; 756 case bitc::TYPE_CODE_METADATA: // METADATA 757 ResultTy = Type::getMetadataTy(Context); 758 break; 759 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 760 ResultTy = Type::getX86_MMXTy(Context); 761 break; 762 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 763 if (Record.size() < 1) 764 return Error(InvalidRecord); 765 766 ResultTy = IntegerType::get(Context, Record[0]); 767 break; 768 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 769 // [pointee type, address space] 770 if (Record.size() < 1) 771 return Error(InvalidRecord); 772 unsigned AddressSpace = 0; 773 if (Record.size() == 2) 774 AddressSpace = Record[1]; 775 ResultTy = getTypeByID(Record[0]); 776 if (ResultTy == 0) 777 return Error(InvalidType); 778 ResultTy = PointerType::get(ResultTy, AddressSpace); 779 break; 780 } 781 case bitc::TYPE_CODE_FUNCTION_OLD: { 782 // FIXME: attrid is dead, remove it in LLVM 4.0 783 // FUNCTION: [vararg, attrid, retty, paramty x N] 784 if (Record.size() < 3) 785 return Error(InvalidRecord); 786 SmallVector<Type*, 8> ArgTys; 787 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 788 if (Type *T = getTypeByID(Record[i])) 789 ArgTys.push_back(T); 790 else 791 break; 792 } 793 794 ResultTy = getTypeByID(Record[2]); 795 if (ResultTy == 0 || ArgTys.size() < Record.size()-3) 796 return Error(InvalidType); 797 798 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 799 break; 800 } 801 case bitc::TYPE_CODE_FUNCTION: { 802 // FUNCTION: [vararg, retty, paramty x N] 803 if (Record.size() < 2) 804 return Error(InvalidRecord); 805 SmallVector<Type*, 8> ArgTys; 806 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 807 if (Type *T = getTypeByID(Record[i])) 808 ArgTys.push_back(T); 809 else 810 break; 811 } 812 813 ResultTy = getTypeByID(Record[1]); 814 if (ResultTy == 0 || ArgTys.size() < Record.size()-2) 815 return Error(InvalidType); 816 817 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 818 break; 819 } 820 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 821 if (Record.size() < 1) 822 return Error(InvalidRecord); 823 SmallVector<Type*, 8> EltTys; 824 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 825 if (Type *T = getTypeByID(Record[i])) 826 EltTys.push_back(T); 827 else 828 break; 829 } 830 if (EltTys.size() != Record.size()-1) 831 return Error(InvalidType); 832 ResultTy = StructType::get(Context, EltTys, Record[0]); 833 break; 834 } 835 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 836 if (ConvertToString(Record, 0, TypeName)) 837 return Error(InvalidRecord); 838 continue; 839 840 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 841 if (Record.size() < 1) 842 return Error(InvalidRecord); 843 844 if (NumRecords >= TypeList.size()) 845 return Error(InvalidTYPETable); 846 847 // Check to see if this was forward referenced, if so fill in the temp. 848 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 849 if (Res) { 850 Res->setName(TypeName); 851 TypeList[NumRecords] = 0; 852 } else // Otherwise, create a new struct. 853 Res = StructType::create(Context, TypeName); 854 TypeName.clear(); 855 856 SmallVector<Type*, 8> EltTys; 857 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 858 if (Type *T = getTypeByID(Record[i])) 859 EltTys.push_back(T); 860 else 861 break; 862 } 863 if (EltTys.size() != Record.size()-1) 864 return Error(InvalidRecord); 865 Res->setBody(EltTys, Record[0]); 866 ResultTy = Res; 867 break; 868 } 869 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 870 if (Record.size() != 1) 871 return Error(InvalidRecord); 872 873 if (NumRecords >= TypeList.size()) 874 return Error(InvalidTYPETable); 875 876 // Check to see if this was forward referenced, if so fill in the temp. 877 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 878 if (Res) { 879 Res->setName(TypeName); 880 TypeList[NumRecords] = 0; 881 } else // Otherwise, create a new struct with no body. 882 Res = StructType::create(Context, TypeName); 883 TypeName.clear(); 884 ResultTy = Res; 885 break; 886 } 887 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 888 if (Record.size() < 2) 889 return Error(InvalidRecord); 890 if ((ResultTy = getTypeByID(Record[1]))) 891 ResultTy = ArrayType::get(ResultTy, Record[0]); 892 else 893 return Error(InvalidType); 894 break; 895 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 896 if (Record.size() < 2) 897 return Error(InvalidRecord); 898 if ((ResultTy = getTypeByID(Record[1]))) 899 ResultTy = VectorType::get(ResultTy, Record[0]); 900 else 901 return Error(InvalidType); 902 break; 903 } 904 905 if (NumRecords >= TypeList.size()) 906 return Error(InvalidTYPETable); 907 assert(ResultTy && "Didn't read a type?"); 908 assert(TypeList[NumRecords] == 0 && "Already read type?"); 909 TypeList[NumRecords++] = ResultTy; 910 } 911 } 912 913 error_code BitcodeReader::ParseValueSymbolTable() { 914 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 915 return Error(InvalidRecord); 916 917 SmallVector<uint64_t, 64> Record; 918 919 // Read all the records for this value table. 920 SmallString<128> ValueName; 921 while (1) { 922 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 923 924 switch (Entry.Kind) { 925 case BitstreamEntry::SubBlock: // Handled for us already. 926 case BitstreamEntry::Error: 927 return Error(MalformedBlock); 928 case BitstreamEntry::EndBlock: 929 return error_code::success(); 930 case BitstreamEntry::Record: 931 // The interesting case. 932 break; 933 } 934 935 // Read a record. 936 Record.clear(); 937 switch (Stream.readRecord(Entry.ID, Record)) { 938 default: // Default behavior: unknown type. 939 break; 940 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 941 if (ConvertToString(Record, 1, ValueName)) 942 return Error(InvalidRecord); 943 unsigned ValueID = Record[0]; 944 if (ValueID >= ValueList.size()) 945 return Error(InvalidRecord); 946 Value *V = ValueList[ValueID]; 947 948 V->setName(StringRef(ValueName.data(), ValueName.size())); 949 ValueName.clear(); 950 break; 951 } 952 case bitc::VST_CODE_BBENTRY: { 953 if (ConvertToString(Record, 1, ValueName)) 954 return Error(InvalidRecord); 955 BasicBlock *BB = getBasicBlock(Record[0]); 956 if (BB == 0) 957 return Error(InvalidRecord); 958 959 BB->setName(StringRef(ValueName.data(), ValueName.size())); 960 ValueName.clear(); 961 break; 962 } 963 } 964 } 965 } 966 967 error_code BitcodeReader::ParseMetadata() { 968 unsigned NextMDValueNo = MDValueList.size(); 969 970 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 971 return Error(InvalidRecord); 972 973 SmallVector<uint64_t, 64> Record; 974 975 // Read all the records. 976 while (1) { 977 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 978 979 switch (Entry.Kind) { 980 case BitstreamEntry::SubBlock: // Handled for us already. 981 case BitstreamEntry::Error: 982 return Error(MalformedBlock); 983 case BitstreamEntry::EndBlock: 984 return error_code::success(); 985 case BitstreamEntry::Record: 986 // The interesting case. 987 break; 988 } 989 990 bool IsFunctionLocal = false; 991 // Read a record. 992 Record.clear(); 993 unsigned Code = Stream.readRecord(Entry.ID, Record); 994 switch (Code) { 995 default: // Default behavior: ignore. 996 break; 997 case bitc::METADATA_NAME: { 998 // Read name of the named metadata. 999 SmallString<8> Name(Record.begin(), Record.end()); 1000 Record.clear(); 1001 Code = Stream.ReadCode(); 1002 1003 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1004 unsigned NextBitCode = Stream.readRecord(Code, Record); 1005 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1006 1007 // Read named metadata elements. 1008 unsigned Size = Record.size(); 1009 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1010 for (unsigned i = 0; i != Size; ++i) { 1011 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1012 if (MD == 0) 1013 return Error(InvalidRecord); 1014 NMD->addOperand(MD); 1015 } 1016 break; 1017 } 1018 case bitc::METADATA_FN_NODE: 1019 IsFunctionLocal = true; 1020 // fall-through 1021 case bitc::METADATA_NODE: { 1022 if (Record.size() % 2 == 1) 1023 return Error(InvalidRecord); 1024 1025 unsigned Size = Record.size(); 1026 SmallVector<Value*, 8> Elts; 1027 for (unsigned i = 0; i != Size; i += 2) { 1028 Type *Ty = getTypeByID(Record[i]); 1029 if (!Ty) 1030 return Error(InvalidRecord); 1031 if (Ty->isMetadataTy()) 1032 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1033 else if (!Ty->isVoidTy()) 1034 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1035 else 1036 Elts.push_back(NULL); 1037 } 1038 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1039 IsFunctionLocal = false; 1040 MDValueList.AssignValue(V, NextMDValueNo++); 1041 break; 1042 } 1043 case bitc::METADATA_STRING: { 1044 SmallString<8> String(Record.begin(), Record.end()); 1045 Value *V = MDString::get(Context, String); 1046 MDValueList.AssignValue(V, NextMDValueNo++); 1047 break; 1048 } 1049 case bitc::METADATA_KIND: { 1050 if (Record.size() < 2) 1051 return Error(InvalidRecord); 1052 1053 unsigned Kind = Record[0]; 1054 SmallString<8> Name(Record.begin()+1, Record.end()); 1055 1056 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1057 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1058 return Error(ConflictingMETADATA_KINDRecords); 1059 break; 1060 } 1061 } 1062 } 1063 } 1064 1065 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1066 /// the LSB for dense VBR encoding. 1067 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1068 if ((V & 1) == 0) 1069 return V >> 1; 1070 if (V != 1) 1071 return -(V >> 1); 1072 // There is no such thing as -0 with integers. "-0" really means MININT. 1073 return 1ULL << 63; 1074 } 1075 1076 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1077 /// values and aliases that we can. 1078 error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1079 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1080 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1081 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1082 1083 GlobalInitWorklist.swap(GlobalInits); 1084 AliasInitWorklist.swap(AliasInits); 1085 FunctionPrefixWorklist.swap(FunctionPrefixes); 1086 1087 while (!GlobalInitWorklist.empty()) { 1088 unsigned ValID = GlobalInitWorklist.back().second; 1089 if (ValID >= ValueList.size()) { 1090 // Not ready to resolve this yet, it requires something later in the file. 1091 GlobalInits.push_back(GlobalInitWorklist.back()); 1092 } else { 1093 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 1094 GlobalInitWorklist.back().first->setInitializer(C); 1095 else 1096 return Error(ExpectedConstant); 1097 } 1098 GlobalInitWorklist.pop_back(); 1099 } 1100 1101 while (!AliasInitWorklist.empty()) { 1102 unsigned ValID = AliasInitWorklist.back().second; 1103 if (ValID >= ValueList.size()) { 1104 AliasInits.push_back(AliasInitWorklist.back()); 1105 } else { 1106 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 1107 AliasInitWorklist.back().first->setAliasee(C); 1108 else 1109 return Error(ExpectedConstant); 1110 } 1111 AliasInitWorklist.pop_back(); 1112 } 1113 1114 while (!FunctionPrefixWorklist.empty()) { 1115 unsigned ValID = FunctionPrefixWorklist.back().second; 1116 if (ValID >= ValueList.size()) { 1117 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1118 } else { 1119 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 1120 FunctionPrefixWorklist.back().first->setPrefixData(C); 1121 else 1122 return Error(ExpectedConstant); 1123 } 1124 FunctionPrefixWorklist.pop_back(); 1125 } 1126 1127 return error_code::success(); 1128 } 1129 1130 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1131 SmallVector<uint64_t, 8> Words(Vals.size()); 1132 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1133 BitcodeReader::decodeSignRotatedValue); 1134 1135 return APInt(TypeBits, Words); 1136 } 1137 1138 error_code BitcodeReader::ParseConstants() { 1139 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1140 return Error(InvalidRecord); 1141 1142 SmallVector<uint64_t, 64> Record; 1143 1144 // Read all the records for this value table. 1145 Type *CurTy = Type::getInt32Ty(Context); 1146 unsigned NextCstNo = ValueList.size(); 1147 while (1) { 1148 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1149 1150 switch (Entry.Kind) { 1151 case BitstreamEntry::SubBlock: // Handled for us already. 1152 case BitstreamEntry::Error: 1153 return Error(MalformedBlock); 1154 case BitstreamEntry::EndBlock: 1155 if (NextCstNo != ValueList.size()) 1156 return Error(InvalidConstantReference); 1157 1158 // Once all the constants have been read, go through and resolve forward 1159 // references. 1160 ValueList.ResolveConstantForwardRefs(); 1161 return error_code::success(); 1162 case BitstreamEntry::Record: 1163 // The interesting case. 1164 break; 1165 } 1166 1167 // Read a record. 1168 Record.clear(); 1169 Value *V = 0; 1170 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1171 switch (BitCode) { 1172 default: // Default behavior: unknown constant 1173 case bitc::CST_CODE_UNDEF: // UNDEF 1174 V = UndefValue::get(CurTy); 1175 break; 1176 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1177 if (Record.empty()) 1178 return Error(InvalidRecord); 1179 if (Record[0] >= TypeList.size()) 1180 return Error(InvalidRecord); 1181 CurTy = TypeList[Record[0]]; 1182 continue; // Skip the ValueList manipulation. 1183 case bitc::CST_CODE_NULL: // NULL 1184 V = Constant::getNullValue(CurTy); 1185 break; 1186 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1187 if (!CurTy->isIntegerTy() || Record.empty()) 1188 return Error(InvalidRecord); 1189 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1190 break; 1191 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1192 if (!CurTy->isIntegerTy() || Record.empty()) 1193 return Error(InvalidRecord); 1194 1195 APInt VInt = ReadWideAPInt(Record, 1196 cast<IntegerType>(CurTy)->getBitWidth()); 1197 V = ConstantInt::get(Context, VInt); 1198 1199 break; 1200 } 1201 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1202 if (Record.empty()) 1203 return Error(InvalidRecord); 1204 if (CurTy->isHalfTy()) 1205 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1206 APInt(16, (uint16_t)Record[0]))); 1207 else if (CurTy->isFloatTy()) 1208 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1209 APInt(32, (uint32_t)Record[0]))); 1210 else if (CurTy->isDoubleTy()) 1211 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1212 APInt(64, Record[0]))); 1213 else if (CurTy->isX86_FP80Ty()) { 1214 // Bits are not stored the same way as a normal i80 APInt, compensate. 1215 uint64_t Rearrange[2]; 1216 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1217 Rearrange[1] = Record[0] >> 48; 1218 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1219 APInt(80, Rearrange))); 1220 } else if (CurTy->isFP128Ty()) 1221 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1222 APInt(128, Record))); 1223 else if (CurTy->isPPC_FP128Ty()) 1224 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1225 APInt(128, Record))); 1226 else 1227 V = UndefValue::get(CurTy); 1228 break; 1229 } 1230 1231 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1232 if (Record.empty()) 1233 return Error(InvalidRecord); 1234 1235 unsigned Size = Record.size(); 1236 SmallVector<Constant*, 16> Elts; 1237 1238 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1239 for (unsigned i = 0; i != Size; ++i) 1240 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1241 STy->getElementType(i))); 1242 V = ConstantStruct::get(STy, Elts); 1243 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1244 Type *EltTy = ATy->getElementType(); 1245 for (unsigned i = 0; i != Size; ++i) 1246 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1247 V = ConstantArray::get(ATy, Elts); 1248 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1249 Type *EltTy = VTy->getElementType(); 1250 for (unsigned i = 0; i != Size; ++i) 1251 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1252 V = ConstantVector::get(Elts); 1253 } else { 1254 V = UndefValue::get(CurTy); 1255 } 1256 break; 1257 } 1258 case bitc::CST_CODE_STRING: // STRING: [values] 1259 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1260 if (Record.empty()) 1261 return Error(InvalidRecord); 1262 1263 SmallString<16> Elts(Record.begin(), Record.end()); 1264 V = ConstantDataArray::getString(Context, Elts, 1265 BitCode == bitc::CST_CODE_CSTRING); 1266 break; 1267 } 1268 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1269 if (Record.empty()) 1270 return Error(InvalidRecord); 1271 1272 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1273 unsigned Size = Record.size(); 1274 1275 if (EltTy->isIntegerTy(8)) { 1276 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1277 if (isa<VectorType>(CurTy)) 1278 V = ConstantDataVector::get(Context, Elts); 1279 else 1280 V = ConstantDataArray::get(Context, Elts); 1281 } else if (EltTy->isIntegerTy(16)) { 1282 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1283 if (isa<VectorType>(CurTy)) 1284 V = ConstantDataVector::get(Context, Elts); 1285 else 1286 V = ConstantDataArray::get(Context, Elts); 1287 } else if (EltTy->isIntegerTy(32)) { 1288 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1289 if (isa<VectorType>(CurTy)) 1290 V = ConstantDataVector::get(Context, Elts); 1291 else 1292 V = ConstantDataArray::get(Context, Elts); 1293 } else if (EltTy->isIntegerTy(64)) { 1294 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1295 if (isa<VectorType>(CurTy)) 1296 V = ConstantDataVector::get(Context, Elts); 1297 else 1298 V = ConstantDataArray::get(Context, Elts); 1299 } else if (EltTy->isFloatTy()) { 1300 SmallVector<float, 16> Elts(Size); 1301 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1302 if (isa<VectorType>(CurTy)) 1303 V = ConstantDataVector::get(Context, Elts); 1304 else 1305 V = ConstantDataArray::get(Context, Elts); 1306 } else if (EltTy->isDoubleTy()) { 1307 SmallVector<double, 16> Elts(Size); 1308 std::transform(Record.begin(), Record.end(), Elts.begin(), 1309 BitsToDouble); 1310 if (isa<VectorType>(CurTy)) 1311 V = ConstantDataVector::get(Context, Elts); 1312 else 1313 V = ConstantDataArray::get(Context, Elts); 1314 } else { 1315 return Error(InvalidTypeForValue); 1316 } 1317 break; 1318 } 1319 1320 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1321 if (Record.size() < 3) 1322 return Error(InvalidRecord); 1323 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1324 if (Opc < 0) { 1325 V = UndefValue::get(CurTy); // Unknown binop. 1326 } else { 1327 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1328 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1329 unsigned Flags = 0; 1330 if (Record.size() >= 4) { 1331 if (Opc == Instruction::Add || 1332 Opc == Instruction::Sub || 1333 Opc == Instruction::Mul || 1334 Opc == Instruction::Shl) { 1335 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1336 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1337 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1338 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1339 } else if (Opc == Instruction::SDiv || 1340 Opc == Instruction::UDiv || 1341 Opc == Instruction::LShr || 1342 Opc == Instruction::AShr) { 1343 if (Record[3] & (1 << bitc::PEO_EXACT)) 1344 Flags |= SDivOperator::IsExact; 1345 } 1346 } 1347 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1348 } 1349 break; 1350 } 1351 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1352 if (Record.size() < 3) 1353 return Error(InvalidRecord); 1354 int Opc = GetDecodedCastOpcode(Record[0]); 1355 if (Opc < 0) { 1356 V = UndefValue::get(CurTy); // Unknown cast. 1357 } else { 1358 Type *OpTy = getTypeByID(Record[1]); 1359 if (!OpTy) 1360 return Error(InvalidRecord); 1361 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1362 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1363 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1364 } 1365 break; 1366 } 1367 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1368 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1369 if (Record.size() & 1) 1370 return Error(InvalidRecord); 1371 SmallVector<Constant*, 16> Elts; 1372 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1373 Type *ElTy = getTypeByID(Record[i]); 1374 if (!ElTy) 1375 return Error(InvalidRecord); 1376 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1377 } 1378 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1379 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1380 BitCode == 1381 bitc::CST_CODE_CE_INBOUNDS_GEP); 1382 break; 1383 } 1384 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1385 if (Record.size() < 3) 1386 return Error(InvalidRecord); 1387 1388 Type *SelectorTy = Type::getInt1Ty(Context); 1389 1390 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1391 // vector. Otherwise, it must be a single bit. 1392 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1393 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1394 VTy->getNumElements()); 1395 1396 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1397 SelectorTy), 1398 ValueList.getConstantFwdRef(Record[1],CurTy), 1399 ValueList.getConstantFwdRef(Record[2],CurTy)); 1400 break; 1401 } 1402 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1403 if (Record.size() < 3) 1404 return Error(InvalidRecord); 1405 VectorType *OpTy = 1406 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1407 if (OpTy == 0) 1408 return Error(InvalidRecord); 1409 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1410 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 1411 Type::getInt32Ty(Context)); 1412 V = ConstantExpr::getExtractElement(Op0, Op1); 1413 break; 1414 } 1415 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1416 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1417 if (Record.size() < 3 || OpTy == 0) 1418 return Error(InvalidRecord); 1419 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1420 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1421 OpTy->getElementType()); 1422 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], 1423 Type::getInt32Ty(Context)); 1424 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1425 break; 1426 } 1427 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1428 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1429 if (Record.size() < 3 || OpTy == 0) 1430 return Error(InvalidRecord); 1431 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1432 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1433 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1434 OpTy->getNumElements()); 1435 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1436 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1437 break; 1438 } 1439 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1440 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1441 VectorType *OpTy = 1442 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1443 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1444 return Error(InvalidRecord); 1445 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1446 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1447 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1448 RTy->getNumElements()); 1449 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1450 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1451 break; 1452 } 1453 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1454 if (Record.size() < 4) 1455 return Error(InvalidRecord); 1456 Type *OpTy = getTypeByID(Record[0]); 1457 if (OpTy == 0) 1458 return Error(InvalidRecord); 1459 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1460 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1461 1462 if (OpTy->isFPOrFPVectorTy()) 1463 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1464 else 1465 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1466 break; 1467 } 1468 // This maintains backward compatibility, pre-asm dialect keywords. 1469 // FIXME: Remove with the 4.0 release. 1470 case bitc::CST_CODE_INLINEASM_OLD: { 1471 if (Record.size() < 2) 1472 return Error(InvalidRecord); 1473 std::string AsmStr, ConstrStr; 1474 bool HasSideEffects = Record[0] & 1; 1475 bool IsAlignStack = Record[0] >> 1; 1476 unsigned AsmStrSize = Record[1]; 1477 if (2+AsmStrSize >= Record.size()) 1478 return Error(InvalidRecord); 1479 unsigned ConstStrSize = Record[2+AsmStrSize]; 1480 if (3+AsmStrSize+ConstStrSize > Record.size()) 1481 return Error(InvalidRecord); 1482 1483 for (unsigned i = 0; i != AsmStrSize; ++i) 1484 AsmStr += (char)Record[2+i]; 1485 for (unsigned i = 0; i != ConstStrSize; ++i) 1486 ConstrStr += (char)Record[3+AsmStrSize+i]; 1487 PointerType *PTy = cast<PointerType>(CurTy); 1488 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1489 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1490 break; 1491 } 1492 // This version adds support for the asm dialect keywords (e.g., 1493 // inteldialect). 1494 case bitc::CST_CODE_INLINEASM: { 1495 if (Record.size() < 2) 1496 return Error(InvalidRecord); 1497 std::string AsmStr, ConstrStr; 1498 bool HasSideEffects = Record[0] & 1; 1499 bool IsAlignStack = (Record[0] >> 1) & 1; 1500 unsigned AsmDialect = Record[0] >> 2; 1501 unsigned AsmStrSize = Record[1]; 1502 if (2+AsmStrSize >= Record.size()) 1503 return Error(InvalidRecord); 1504 unsigned ConstStrSize = Record[2+AsmStrSize]; 1505 if (3+AsmStrSize+ConstStrSize > Record.size()) 1506 return Error(InvalidRecord); 1507 1508 for (unsigned i = 0; i != AsmStrSize; ++i) 1509 AsmStr += (char)Record[2+i]; 1510 for (unsigned i = 0; i != ConstStrSize; ++i) 1511 ConstrStr += (char)Record[3+AsmStrSize+i]; 1512 PointerType *PTy = cast<PointerType>(CurTy); 1513 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1514 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1515 InlineAsm::AsmDialect(AsmDialect)); 1516 break; 1517 } 1518 case bitc::CST_CODE_BLOCKADDRESS:{ 1519 if (Record.size() < 3) 1520 return Error(InvalidRecord); 1521 Type *FnTy = getTypeByID(Record[0]); 1522 if (FnTy == 0) 1523 return Error(InvalidRecord); 1524 Function *Fn = 1525 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1526 if (Fn == 0) 1527 return Error(InvalidRecord); 1528 1529 // If the function is already parsed we can insert the block address right 1530 // away. 1531 if (!Fn->empty()) { 1532 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1533 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1534 if (BBI == BBE) 1535 return Error(InvalidID); 1536 ++BBI; 1537 } 1538 V = BlockAddress::get(Fn, BBI); 1539 } else { 1540 // Otherwise insert a placeholder and remember it so it can be inserted 1541 // when the function is parsed. 1542 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1543 Type::getInt8Ty(Context), 1544 false, GlobalValue::InternalLinkage, 1545 0, ""); 1546 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1547 V = FwdRef; 1548 } 1549 break; 1550 } 1551 } 1552 1553 ValueList.AssignValue(V, NextCstNo); 1554 ++NextCstNo; 1555 } 1556 } 1557 1558 error_code BitcodeReader::ParseUseLists() { 1559 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1560 return Error(InvalidRecord); 1561 1562 SmallVector<uint64_t, 64> Record; 1563 1564 // Read all the records. 1565 while (1) { 1566 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return Error(MalformedBlock); 1572 case BitstreamEntry::EndBlock: 1573 return error_code::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a use list record. 1580 Record.clear(); 1581 switch (Stream.readRecord(Entry.ID, Record)) { 1582 default: // Default behavior: unknown type. 1583 break; 1584 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1585 unsigned RecordLength = Record.size(); 1586 if (RecordLength < 1) 1587 return Error(InvalidRecord); 1588 UseListRecords.push_back(Record); 1589 break; 1590 } 1591 } 1592 } 1593 } 1594 1595 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1596 /// remember where it is and then skip it. This lets us lazily deserialize the 1597 /// functions. 1598 error_code BitcodeReader::RememberAndSkipFunctionBody() { 1599 // Get the function we are talking about. 1600 if (FunctionsWithBodies.empty()) 1601 return Error(InsufficientFunctionProtos); 1602 1603 Function *Fn = FunctionsWithBodies.back(); 1604 FunctionsWithBodies.pop_back(); 1605 1606 // Save the current stream state. 1607 uint64_t CurBit = Stream.GetCurrentBitNo(); 1608 DeferredFunctionInfo[Fn] = CurBit; 1609 1610 // Skip over the function block for now. 1611 if (Stream.SkipBlock()) 1612 return Error(InvalidRecord); 1613 return error_code::success(); 1614 } 1615 1616 error_code BitcodeReader::GlobalCleanup() { 1617 // Patch the initializers for globals and aliases up. 1618 ResolveGlobalAndAliasInits(); 1619 if (!GlobalInits.empty() || !AliasInits.empty()) 1620 return Error(MalformedGlobalInitializerSet); 1621 1622 // Look for intrinsic functions which need to be upgraded at some point 1623 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1624 FI != FE; ++FI) { 1625 Function *NewFn; 1626 if (UpgradeIntrinsicFunction(FI, NewFn)) 1627 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1628 } 1629 1630 // Look for global variables which need to be renamed. 1631 for (Module::global_iterator 1632 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1633 GI != GE; ++GI) 1634 UpgradeGlobalVariable(GI); 1635 // Force deallocation of memory for these vectors to favor the client that 1636 // want lazy deserialization. 1637 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1638 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1639 return error_code::success(); 1640 } 1641 1642 error_code BitcodeReader::ParseModule(bool Resume) { 1643 if (Resume) 1644 Stream.JumpToBit(NextUnreadBit); 1645 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1646 return Error(InvalidRecord); 1647 1648 SmallVector<uint64_t, 64> Record; 1649 std::vector<std::string> SectionTable; 1650 std::vector<std::string> GCTable; 1651 1652 // Read all the records for this module. 1653 while (1) { 1654 BitstreamEntry Entry = Stream.advance(); 1655 1656 switch (Entry.Kind) { 1657 case BitstreamEntry::Error: 1658 return Error(MalformedBlock); 1659 case BitstreamEntry::EndBlock: 1660 return GlobalCleanup(); 1661 1662 case BitstreamEntry::SubBlock: 1663 switch (Entry.ID) { 1664 default: // Skip unknown content. 1665 if (Stream.SkipBlock()) 1666 return Error(InvalidRecord); 1667 break; 1668 case bitc::BLOCKINFO_BLOCK_ID: 1669 if (Stream.ReadBlockInfoBlock()) 1670 return Error(MalformedBlock); 1671 break; 1672 case bitc::PARAMATTR_BLOCK_ID: 1673 if (error_code EC = ParseAttributeBlock()) 1674 return EC; 1675 break; 1676 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1677 if (error_code EC = ParseAttributeGroupBlock()) 1678 return EC; 1679 break; 1680 case bitc::TYPE_BLOCK_ID_NEW: 1681 if (error_code EC = ParseTypeTable()) 1682 return EC; 1683 break; 1684 case bitc::VALUE_SYMTAB_BLOCK_ID: 1685 if (error_code EC = ParseValueSymbolTable()) 1686 return EC; 1687 SeenValueSymbolTable = true; 1688 break; 1689 case bitc::CONSTANTS_BLOCK_ID: 1690 if (error_code EC = ParseConstants()) 1691 return EC; 1692 if (error_code EC = ResolveGlobalAndAliasInits()) 1693 return EC; 1694 break; 1695 case bitc::METADATA_BLOCK_ID: 1696 if (error_code EC = ParseMetadata()) 1697 return EC; 1698 break; 1699 case bitc::FUNCTION_BLOCK_ID: 1700 // If this is the first function body we've seen, reverse the 1701 // FunctionsWithBodies list. 1702 if (!SeenFirstFunctionBody) { 1703 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1704 if (error_code EC = GlobalCleanup()) 1705 return EC; 1706 SeenFirstFunctionBody = true; 1707 } 1708 1709 if (error_code EC = RememberAndSkipFunctionBody()) 1710 return EC; 1711 // For streaming bitcode, suspend parsing when we reach the function 1712 // bodies. Subsequent materialization calls will resume it when 1713 // necessary. For streaming, the function bodies must be at the end of 1714 // the bitcode. If the bitcode file is old, the symbol table will be 1715 // at the end instead and will not have been seen yet. In this case, 1716 // just finish the parse now. 1717 if (LazyStreamer && SeenValueSymbolTable) { 1718 NextUnreadBit = Stream.GetCurrentBitNo(); 1719 return error_code::success(); 1720 } 1721 break; 1722 case bitc::USELIST_BLOCK_ID: 1723 if (error_code EC = ParseUseLists()) 1724 return EC; 1725 break; 1726 } 1727 continue; 1728 1729 case BitstreamEntry::Record: 1730 // The interesting case. 1731 break; 1732 } 1733 1734 1735 // Read a record. 1736 switch (Stream.readRecord(Entry.ID, Record)) { 1737 default: break; // Default behavior, ignore unknown content. 1738 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1739 if (Record.size() < 1) 1740 return Error(InvalidRecord); 1741 // Only version #0 and #1 are supported so far. 1742 unsigned module_version = Record[0]; 1743 switch (module_version) { 1744 default: 1745 return Error(InvalidValue); 1746 case 0: 1747 UseRelativeIDs = false; 1748 break; 1749 case 1: 1750 UseRelativeIDs = true; 1751 break; 1752 } 1753 break; 1754 } 1755 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1756 std::string S; 1757 if (ConvertToString(Record, 0, S)) 1758 return Error(InvalidRecord); 1759 TheModule->setTargetTriple(S); 1760 break; 1761 } 1762 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1763 std::string S; 1764 if (ConvertToString(Record, 0, S)) 1765 return Error(InvalidRecord); 1766 TheModule->setDataLayout(S); 1767 break; 1768 } 1769 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1770 std::string S; 1771 if (ConvertToString(Record, 0, S)) 1772 return Error(InvalidRecord); 1773 TheModule->setModuleInlineAsm(S); 1774 break; 1775 } 1776 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1777 // FIXME: Remove in 4.0. 1778 std::string S; 1779 if (ConvertToString(Record, 0, S)) 1780 return Error(InvalidRecord); 1781 // Ignore value. 1782 break; 1783 } 1784 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1785 std::string S; 1786 if (ConvertToString(Record, 0, S)) 1787 return Error(InvalidRecord); 1788 SectionTable.push_back(S); 1789 break; 1790 } 1791 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1792 std::string S; 1793 if (ConvertToString(Record, 0, S)) 1794 return Error(InvalidRecord); 1795 GCTable.push_back(S); 1796 break; 1797 } 1798 // GLOBALVAR: [pointer type, isconst, initid, 1799 // linkage, alignment, section, visibility, threadlocal, 1800 // unnamed_addr] 1801 case bitc::MODULE_CODE_GLOBALVAR: { 1802 if (Record.size() < 6) 1803 return Error(InvalidRecord); 1804 Type *Ty = getTypeByID(Record[0]); 1805 if (!Ty) 1806 return Error(InvalidRecord); 1807 if (!Ty->isPointerTy()) 1808 return Error(InvalidTypeForValue); 1809 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1810 Ty = cast<PointerType>(Ty)->getElementType(); 1811 1812 bool isConstant = Record[1]; 1813 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1814 unsigned Alignment = (1 << Record[4]) >> 1; 1815 std::string Section; 1816 if (Record[5]) { 1817 if (Record[5]-1 >= SectionTable.size()) 1818 return Error(InvalidID); 1819 Section = SectionTable[Record[5]-1]; 1820 } 1821 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1822 if (Record.size() > 6) 1823 Visibility = GetDecodedVisibility(Record[6]); 1824 1825 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1826 if (Record.size() > 7) 1827 TLM = GetDecodedThreadLocalMode(Record[7]); 1828 1829 bool UnnamedAddr = false; 1830 if (Record.size() > 8) 1831 UnnamedAddr = Record[8]; 1832 1833 bool ExternallyInitialized = false; 1834 if (Record.size() > 9) 1835 ExternallyInitialized = Record[9]; 1836 1837 GlobalVariable *NewGV = 1838 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1839 TLM, AddressSpace, ExternallyInitialized); 1840 NewGV->setAlignment(Alignment); 1841 if (!Section.empty()) 1842 NewGV->setSection(Section); 1843 NewGV->setVisibility(Visibility); 1844 NewGV->setUnnamedAddr(UnnamedAddr); 1845 1846 ValueList.push_back(NewGV); 1847 1848 // Remember which value to use for the global initializer. 1849 if (unsigned InitID = Record[2]) 1850 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1851 break; 1852 } 1853 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1854 // alignment, section, visibility, gc, unnamed_addr] 1855 case bitc::MODULE_CODE_FUNCTION: { 1856 if (Record.size() < 8) 1857 return Error(InvalidRecord); 1858 Type *Ty = getTypeByID(Record[0]); 1859 if (!Ty) 1860 return Error(InvalidRecord); 1861 if (!Ty->isPointerTy()) 1862 return Error(InvalidTypeForValue); 1863 FunctionType *FTy = 1864 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1865 if (!FTy) 1866 return Error(InvalidTypeForValue); 1867 1868 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1869 "", TheModule); 1870 1871 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1872 bool isProto = Record[2]; 1873 Func->setLinkage(GetDecodedLinkage(Record[3])); 1874 Func->setAttributes(getAttributes(Record[4])); 1875 1876 Func->setAlignment((1 << Record[5]) >> 1); 1877 if (Record[6]) { 1878 if (Record[6]-1 >= SectionTable.size()) 1879 return Error(InvalidID); 1880 Func->setSection(SectionTable[Record[6]-1]); 1881 } 1882 Func->setVisibility(GetDecodedVisibility(Record[7])); 1883 if (Record.size() > 8 && Record[8]) { 1884 if (Record[8]-1 > GCTable.size()) 1885 return Error(InvalidID); 1886 Func->setGC(GCTable[Record[8]-1].c_str()); 1887 } 1888 bool UnnamedAddr = false; 1889 if (Record.size() > 9) 1890 UnnamedAddr = Record[9]; 1891 Func->setUnnamedAddr(UnnamedAddr); 1892 if (Record.size() > 10 && Record[10] != 0) 1893 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1894 ValueList.push_back(Func); 1895 1896 // If this is a function with a body, remember the prototype we are 1897 // creating now, so that we can match up the body with them later. 1898 if (!isProto) { 1899 FunctionsWithBodies.push_back(Func); 1900 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1901 } 1902 break; 1903 } 1904 // ALIAS: [alias type, aliasee val#, linkage] 1905 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1906 case bitc::MODULE_CODE_ALIAS: { 1907 if (Record.size() < 3) 1908 return Error(InvalidRecord); 1909 Type *Ty = getTypeByID(Record[0]); 1910 if (!Ty) 1911 return Error(InvalidRecord); 1912 if (!Ty->isPointerTy()) 1913 return Error(InvalidTypeForValue); 1914 1915 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1916 "", 0, TheModule); 1917 // Old bitcode files didn't have visibility field. 1918 if (Record.size() > 3) 1919 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1920 ValueList.push_back(NewGA); 1921 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1922 break; 1923 } 1924 /// MODULE_CODE_PURGEVALS: [numvals] 1925 case bitc::MODULE_CODE_PURGEVALS: 1926 // Trim down the value list to the specified size. 1927 if (Record.size() < 1 || Record[0] > ValueList.size()) 1928 return Error(InvalidRecord); 1929 ValueList.shrinkTo(Record[0]); 1930 break; 1931 } 1932 Record.clear(); 1933 } 1934 } 1935 1936 error_code BitcodeReader::ParseBitcodeInto(Module *M) { 1937 TheModule = 0; 1938 1939 if (error_code EC = InitStream()) 1940 return EC; 1941 1942 // Sniff for the signature. 1943 if (Stream.Read(8) != 'B' || 1944 Stream.Read(8) != 'C' || 1945 Stream.Read(4) != 0x0 || 1946 Stream.Read(4) != 0xC || 1947 Stream.Read(4) != 0xE || 1948 Stream.Read(4) != 0xD) 1949 return Error(InvalidBitcodeSignature); 1950 1951 // We expect a number of well-defined blocks, though we don't necessarily 1952 // need to understand them all. 1953 while (1) { 1954 if (Stream.AtEndOfStream()) 1955 return error_code::success(); 1956 1957 BitstreamEntry Entry = 1958 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 1959 1960 switch (Entry.Kind) { 1961 case BitstreamEntry::Error: 1962 return Error(MalformedBlock); 1963 case BitstreamEntry::EndBlock: 1964 return error_code::success(); 1965 1966 case BitstreamEntry::SubBlock: 1967 switch (Entry.ID) { 1968 case bitc::BLOCKINFO_BLOCK_ID: 1969 if (Stream.ReadBlockInfoBlock()) 1970 return Error(MalformedBlock); 1971 break; 1972 case bitc::MODULE_BLOCK_ID: 1973 // Reject multiple MODULE_BLOCK's in a single bitstream. 1974 if (TheModule) 1975 return Error(InvalidMultipleBlocks); 1976 TheModule = M; 1977 if (error_code EC = ParseModule(false)) 1978 return EC; 1979 if (LazyStreamer) 1980 return error_code::success(); 1981 break; 1982 default: 1983 if (Stream.SkipBlock()) 1984 return Error(InvalidRecord); 1985 break; 1986 } 1987 continue; 1988 case BitstreamEntry::Record: 1989 // There should be no records in the top-level of blocks. 1990 1991 // The ranlib in Xcode 4 will align archive members by appending newlines 1992 // to the end of them. If this file size is a multiple of 4 but not 8, we 1993 // have to read and ignore these final 4 bytes :-( 1994 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 1995 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 1996 Stream.AtEndOfStream()) 1997 return error_code::success(); 1998 1999 return Error(InvalidRecord); 2000 } 2001 } 2002 } 2003 2004 error_code BitcodeReader::ParseModuleTriple(std::string &Triple) { 2005 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2006 return Error(InvalidRecord); 2007 2008 SmallVector<uint64_t, 64> Record; 2009 2010 // Read all the records for this module. 2011 while (1) { 2012 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2013 2014 switch (Entry.Kind) { 2015 case BitstreamEntry::SubBlock: // Handled for us already. 2016 case BitstreamEntry::Error: 2017 return Error(MalformedBlock); 2018 case BitstreamEntry::EndBlock: 2019 return error_code::success(); 2020 case BitstreamEntry::Record: 2021 // The interesting case. 2022 break; 2023 } 2024 2025 // Read a record. 2026 switch (Stream.readRecord(Entry.ID, Record)) { 2027 default: break; // Default behavior, ignore unknown content. 2028 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2029 std::string S; 2030 if (ConvertToString(Record, 0, S)) 2031 return Error(InvalidRecord); 2032 Triple = S; 2033 break; 2034 } 2035 } 2036 Record.clear(); 2037 } 2038 } 2039 2040 error_code BitcodeReader::ParseTriple(std::string &Triple) { 2041 if (error_code EC = InitStream()) 2042 return EC; 2043 2044 // Sniff for the signature. 2045 if (Stream.Read(8) != 'B' || 2046 Stream.Read(8) != 'C' || 2047 Stream.Read(4) != 0x0 || 2048 Stream.Read(4) != 0xC || 2049 Stream.Read(4) != 0xE || 2050 Stream.Read(4) != 0xD) 2051 return Error(InvalidBitcodeSignature); 2052 2053 // We expect a number of well-defined blocks, though we don't necessarily 2054 // need to understand them all. 2055 while (1) { 2056 BitstreamEntry Entry = Stream.advance(); 2057 2058 switch (Entry.Kind) { 2059 case BitstreamEntry::Error: 2060 return Error(MalformedBlock); 2061 case BitstreamEntry::EndBlock: 2062 return error_code::success(); 2063 2064 case BitstreamEntry::SubBlock: 2065 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2066 return ParseModuleTriple(Triple); 2067 2068 // Ignore other sub-blocks. 2069 if (Stream.SkipBlock()) 2070 return Error(MalformedBlock); 2071 continue; 2072 2073 case BitstreamEntry::Record: 2074 Stream.skipRecord(Entry.ID); 2075 continue; 2076 } 2077 } 2078 } 2079 2080 /// ParseMetadataAttachment - Parse metadata attachments. 2081 error_code BitcodeReader::ParseMetadataAttachment() { 2082 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2083 return Error(InvalidRecord); 2084 2085 SmallVector<uint64_t, 64> Record; 2086 while (1) { 2087 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2088 2089 switch (Entry.Kind) { 2090 case BitstreamEntry::SubBlock: // Handled for us already. 2091 case BitstreamEntry::Error: 2092 return Error(MalformedBlock); 2093 case BitstreamEntry::EndBlock: 2094 return error_code::success(); 2095 case BitstreamEntry::Record: 2096 // The interesting case. 2097 break; 2098 } 2099 2100 // Read a metadata attachment record. 2101 Record.clear(); 2102 switch (Stream.readRecord(Entry.ID, Record)) { 2103 default: // Default behavior: ignore. 2104 break; 2105 case bitc::METADATA_ATTACHMENT: { 2106 unsigned RecordLength = Record.size(); 2107 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2108 return Error(InvalidRecord); 2109 Instruction *Inst = InstructionList[Record[0]]; 2110 for (unsigned i = 1; i != RecordLength; i = i+2) { 2111 unsigned Kind = Record[i]; 2112 DenseMap<unsigned, unsigned>::iterator I = 2113 MDKindMap.find(Kind); 2114 if (I == MDKindMap.end()) 2115 return Error(InvalidID); 2116 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2117 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2118 if (I->second == LLVMContext::MD_tbaa) 2119 InstsWithTBAATag.push_back(Inst); 2120 } 2121 break; 2122 } 2123 } 2124 } 2125 } 2126 2127 /// ParseFunctionBody - Lazily parse the specified function body block. 2128 error_code BitcodeReader::ParseFunctionBody(Function *F) { 2129 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2130 return Error(InvalidRecord); 2131 2132 InstructionList.clear(); 2133 unsigned ModuleValueListSize = ValueList.size(); 2134 unsigned ModuleMDValueListSize = MDValueList.size(); 2135 2136 // Add all the function arguments to the value table. 2137 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2138 ValueList.push_back(I); 2139 2140 unsigned NextValueNo = ValueList.size(); 2141 BasicBlock *CurBB = 0; 2142 unsigned CurBBNo = 0; 2143 2144 DebugLoc LastLoc; 2145 2146 // Read all the records. 2147 SmallVector<uint64_t, 64> Record; 2148 while (1) { 2149 BitstreamEntry Entry = Stream.advance(); 2150 2151 switch (Entry.Kind) { 2152 case BitstreamEntry::Error: 2153 return Error(MalformedBlock); 2154 case BitstreamEntry::EndBlock: 2155 goto OutOfRecordLoop; 2156 2157 case BitstreamEntry::SubBlock: 2158 switch (Entry.ID) { 2159 default: // Skip unknown content. 2160 if (Stream.SkipBlock()) 2161 return Error(InvalidRecord); 2162 break; 2163 case bitc::CONSTANTS_BLOCK_ID: 2164 if (error_code EC = ParseConstants()) 2165 return EC; 2166 NextValueNo = ValueList.size(); 2167 break; 2168 case bitc::VALUE_SYMTAB_BLOCK_ID: 2169 if (error_code EC = ParseValueSymbolTable()) 2170 return EC; 2171 break; 2172 case bitc::METADATA_ATTACHMENT_ID: 2173 if (error_code EC = ParseMetadataAttachment()) 2174 return EC; 2175 break; 2176 case bitc::METADATA_BLOCK_ID: 2177 if (error_code EC = ParseMetadata()) 2178 return EC; 2179 break; 2180 } 2181 continue; 2182 2183 case BitstreamEntry::Record: 2184 // The interesting case. 2185 break; 2186 } 2187 2188 // Read a record. 2189 Record.clear(); 2190 Instruction *I = 0; 2191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2192 switch (BitCode) { 2193 default: // Default behavior: reject 2194 return Error(InvalidValue); 2195 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2196 if (Record.size() < 1 || Record[0] == 0) 2197 return Error(InvalidRecord); 2198 // Create all the basic blocks for the function. 2199 FunctionBBs.resize(Record[0]); 2200 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2201 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2202 CurBB = FunctionBBs[0]; 2203 continue; 2204 2205 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2206 // This record indicates that the last instruction is at the same 2207 // location as the previous instruction with a location. 2208 I = 0; 2209 2210 // Get the last instruction emitted. 2211 if (CurBB && !CurBB->empty()) 2212 I = &CurBB->back(); 2213 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2214 !FunctionBBs[CurBBNo-1]->empty()) 2215 I = &FunctionBBs[CurBBNo-1]->back(); 2216 2217 if (I == 0) 2218 return Error(InvalidRecord); 2219 I->setDebugLoc(LastLoc); 2220 I = 0; 2221 continue; 2222 2223 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2224 I = 0; // Get the last instruction emitted. 2225 if (CurBB && !CurBB->empty()) 2226 I = &CurBB->back(); 2227 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2228 !FunctionBBs[CurBBNo-1]->empty()) 2229 I = &FunctionBBs[CurBBNo-1]->back(); 2230 if (I == 0 || Record.size() < 4) 2231 return Error(InvalidRecord); 2232 2233 unsigned Line = Record[0], Col = Record[1]; 2234 unsigned ScopeID = Record[2], IAID = Record[3]; 2235 2236 MDNode *Scope = 0, *IA = 0; 2237 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2238 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2239 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2240 I->setDebugLoc(LastLoc); 2241 I = 0; 2242 continue; 2243 } 2244 2245 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2246 unsigned OpNum = 0; 2247 Value *LHS, *RHS; 2248 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2249 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2250 OpNum+1 > Record.size()) 2251 return Error(InvalidRecord); 2252 2253 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2254 if (Opc == -1) 2255 return Error(InvalidRecord); 2256 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2257 InstructionList.push_back(I); 2258 if (OpNum < Record.size()) { 2259 if (Opc == Instruction::Add || 2260 Opc == Instruction::Sub || 2261 Opc == Instruction::Mul || 2262 Opc == Instruction::Shl) { 2263 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2264 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2265 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2266 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2267 } else if (Opc == Instruction::SDiv || 2268 Opc == Instruction::UDiv || 2269 Opc == Instruction::LShr || 2270 Opc == Instruction::AShr) { 2271 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2272 cast<BinaryOperator>(I)->setIsExact(true); 2273 } else if (isa<FPMathOperator>(I)) { 2274 FastMathFlags FMF; 2275 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2276 FMF.setUnsafeAlgebra(); 2277 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2278 FMF.setNoNaNs(); 2279 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2280 FMF.setNoInfs(); 2281 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2282 FMF.setNoSignedZeros(); 2283 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2284 FMF.setAllowReciprocal(); 2285 if (FMF.any()) 2286 I->setFastMathFlags(FMF); 2287 } 2288 2289 } 2290 break; 2291 } 2292 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2293 unsigned OpNum = 0; 2294 Value *Op; 2295 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2296 OpNum+2 != Record.size()) 2297 return Error(InvalidRecord); 2298 2299 Type *ResTy = getTypeByID(Record[OpNum]); 2300 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2301 if (Opc == -1 || ResTy == 0) 2302 return Error(InvalidRecord); 2303 Instruction *Temp = 0; 2304 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2305 if (Temp) { 2306 InstructionList.push_back(Temp); 2307 CurBB->getInstList().push_back(Temp); 2308 } 2309 } else { 2310 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2311 } 2312 InstructionList.push_back(I); 2313 break; 2314 } 2315 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2316 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2317 unsigned OpNum = 0; 2318 Value *BasePtr; 2319 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2320 return Error(InvalidRecord); 2321 2322 SmallVector<Value*, 16> GEPIdx; 2323 while (OpNum != Record.size()) { 2324 Value *Op; 2325 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2326 return Error(InvalidRecord); 2327 GEPIdx.push_back(Op); 2328 } 2329 2330 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2331 InstructionList.push_back(I); 2332 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2333 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2334 break; 2335 } 2336 2337 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2338 // EXTRACTVAL: [opty, opval, n x indices] 2339 unsigned OpNum = 0; 2340 Value *Agg; 2341 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2342 return Error(InvalidRecord); 2343 2344 SmallVector<unsigned, 4> EXTRACTVALIdx; 2345 for (unsigned RecSize = Record.size(); 2346 OpNum != RecSize; ++OpNum) { 2347 uint64_t Index = Record[OpNum]; 2348 if ((unsigned)Index != Index) 2349 return Error(InvalidValue); 2350 EXTRACTVALIdx.push_back((unsigned)Index); 2351 } 2352 2353 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2354 InstructionList.push_back(I); 2355 break; 2356 } 2357 2358 case bitc::FUNC_CODE_INST_INSERTVAL: { 2359 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2360 unsigned OpNum = 0; 2361 Value *Agg; 2362 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2363 return Error(InvalidRecord); 2364 Value *Val; 2365 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2366 return Error(InvalidRecord); 2367 2368 SmallVector<unsigned, 4> INSERTVALIdx; 2369 for (unsigned RecSize = Record.size(); 2370 OpNum != RecSize; ++OpNum) { 2371 uint64_t Index = Record[OpNum]; 2372 if ((unsigned)Index != Index) 2373 return Error(InvalidValue); 2374 INSERTVALIdx.push_back((unsigned)Index); 2375 } 2376 2377 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2378 InstructionList.push_back(I); 2379 break; 2380 } 2381 2382 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2383 // obsolete form of select 2384 // handles select i1 ... in old bitcode 2385 unsigned OpNum = 0; 2386 Value *TrueVal, *FalseVal, *Cond; 2387 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2388 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2389 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2390 return Error(InvalidRecord); 2391 2392 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2393 InstructionList.push_back(I); 2394 break; 2395 } 2396 2397 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2398 // new form of select 2399 // handles select i1 or select [N x i1] 2400 unsigned OpNum = 0; 2401 Value *TrueVal, *FalseVal, *Cond; 2402 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2403 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2404 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2405 return Error(InvalidRecord); 2406 2407 // select condition can be either i1 or [N x i1] 2408 if (VectorType* vector_type = 2409 dyn_cast<VectorType>(Cond->getType())) { 2410 // expect <n x i1> 2411 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2412 return Error(InvalidTypeForValue); 2413 } else { 2414 // expect i1 2415 if (Cond->getType() != Type::getInt1Ty(Context)) 2416 return Error(InvalidTypeForValue); 2417 } 2418 2419 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2420 InstructionList.push_back(I); 2421 break; 2422 } 2423 2424 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2425 unsigned OpNum = 0; 2426 Value *Vec, *Idx; 2427 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2428 popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx)) 2429 return Error(InvalidRecord); 2430 I = ExtractElementInst::Create(Vec, Idx); 2431 InstructionList.push_back(I); 2432 break; 2433 } 2434 2435 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2436 unsigned OpNum = 0; 2437 Value *Vec, *Elt, *Idx; 2438 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2439 popValue(Record, OpNum, NextValueNo, 2440 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2441 popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx)) 2442 return Error(InvalidRecord); 2443 I = InsertElementInst::Create(Vec, Elt, Idx); 2444 InstructionList.push_back(I); 2445 break; 2446 } 2447 2448 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2449 unsigned OpNum = 0; 2450 Value *Vec1, *Vec2, *Mask; 2451 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2452 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2453 return Error(InvalidRecord); 2454 2455 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2456 return Error(InvalidRecord); 2457 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2458 InstructionList.push_back(I); 2459 break; 2460 } 2461 2462 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2463 // Old form of ICmp/FCmp returning bool 2464 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2465 // both legal on vectors but had different behaviour. 2466 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2467 // FCmp/ICmp returning bool or vector of bool 2468 2469 unsigned OpNum = 0; 2470 Value *LHS, *RHS; 2471 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2472 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2473 OpNum+1 != Record.size()) 2474 return Error(InvalidRecord); 2475 2476 if (LHS->getType()->isFPOrFPVectorTy()) 2477 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2478 else 2479 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2480 InstructionList.push_back(I); 2481 break; 2482 } 2483 2484 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2485 { 2486 unsigned Size = Record.size(); 2487 if (Size == 0) { 2488 I = ReturnInst::Create(Context); 2489 InstructionList.push_back(I); 2490 break; 2491 } 2492 2493 unsigned OpNum = 0; 2494 Value *Op = NULL; 2495 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2496 return Error(InvalidRecord); 2497 if (OpNum != Record.size()) 2498 return Error(InvalidRecord); 2499 2500 I = ReturnInst::Create(Context, Op); 2501 InstructionList.push_back(I); 2502 break; 2503 } 2504 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2505 if (Record.size() != 1 && Record.size() != 3) 2506 return Error(InvalidRecord); 2507 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2508 if (TrueDest == 0) 2509 return Error(InvalidRecord); 2510 2511 if (Record.size() == 1) { 2512 I = BranchInst::Create(TrueDest); 2513 InstructionList.push_back(I); 2514 } 2515 else { 2516 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2517 Value *Cond = getValue(Record, 2, NextValueNo, 2518 Type::getInt1Ty(Context)); 2519 if (FalseDest == 0 || Cond == 0) 2520 return Error(InvalidRecord); 2521 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2522 InstructionList.push_back(I); 2523 } 2524 break; 2525 } 2526 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2527 // Check magic 2528 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2529 // "New" SwitchInst format with case ranges. The changes to write this 2530 // format were reverted but we still recognize bitcode that uses it. 2531 // Hopefully someday we will have support for case ranges and can use 2532 // this format again. 2533 2534 Type *OpTy = getTypeByID(Record[1]); 2535 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2536 2537 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2538 BasicBlock *Default = getBasicBlock(Record[3]); 2539 if (OpTy == 0 || Cond == 0 || Default == 0) 2540 return Error(InvalidRecord); 2541 2542 unsigned NumCases = Record[4]; 2543 2544 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2545 InstructionList.push_back(SI); 2546 2547 unsigned CurIdx = 5; 2548 for (unsigned i = 0; i != NumCases; ++i) { 2549 SmallVector<ConstantInt*, 1> CaseVals; 2550 unsigned NumItems = Record[CurIdx++]; 2551 for (unsigned ci = 0; ci != NumItems; ++ci) { 2552 bool isSingleNumber = Record[CurIdx++]; 2553 2554 APInt Low; 2555 unsigned ActiveWords = 1; 2556 if (ValueBitWidth > 64) 2557 ActiveWords = Record[CurIdx++]; 2558 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2559 ValueBitWidth); 2560 CurIdx += ActiveWords; 2561 2562 if (!isSingleNumber) { 2563 ActiveWords = 1; 2564 if (ValueBitWidth > 64) 2565 ActiveWords = Record[CurIdx++]; 2566 APInt High = 2567 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2568 ValueBitWidth); 2569 CurIdx += ActiveWords; 2570 2571 // FIXME: It is not clear whether values in the range should be 2572 // compared as signed or unsigned values. The partially 2573 // implemented changes that used this format in the past used 2574 // unsigned comparisons. 2575 for ( ; Low.ule(High); ++Low) 2576 CaseVals.push_back(ConstantInt::get(Context, Low)); 2577 } else 2578 CaseVals.push_back(ConstantInt::get(Context, Low)); 2579 } 2580 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2581 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2582 cve = CaseVals.end(); cvi != cve; ++cvi) 2583 SI->addCase(*cvi, DestBB); 2584 } 2585 I = SI; 2586 break; 2587 } 2588 2589 // Old SwitchInst format without case ranges. 2590 2591 if (Record.size() < 3 || (Record.size() & 1) == 0) 2592 return Error(InvalidRecord); 2593 Type *OpTy = getTypeByID(Record[0]); 2594 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2595 BasicBlock *Default = getBasicBlock(Record[2]); 2596 if (OpTy == 0 || Cond == 0 || Default == 0) 2597 return Error(InvalidRecord); 2598 unsigned NumCases = (Record.size()-3)/2; 2599 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2600 InstructionList.push_back(SI); 2601 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2602 ConstantInt *CaseVal = 2603 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2604 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2605 if (CaseVal == 0 || DestBB == 0) { 2606 delete SI; 2607 return Error(InvalidRecord); 2608 } 2609 SI->addCase(CaseVal, DestBB); 2610 } 2611 I = SI; 2612 break; 2613 } 2614 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2615 if (Record.size() < 2) 2616 return Error(InvalidRecord); 2617 Type *OpTy = getTypeByID(Record[0]); 2618 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2619 if (OpTy == 0 || Address == 0) 2620 return Error(InvalidRecord); 2621 unsigned NumDests = Record.size()-2; 2622 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2623 InstructionList.push_back(IBI); 2624 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2625 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2626 IBI->addDestination(DestBB); 2627 } else { 2628 delete IBI; 2629 return Error(InvalidRecord); 2630 } 2631 } 2632 I = IBI; 2633 break; 2634 } 2635 2636 case bitc::FUNC_CODE_INST_INVOKE: { 2637 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2638 if (Record.size() < 4) 2639 return Error(InvalidRecord); 2640 AttributeSet PAL = getAttributes(Record[0]); 2641 unsigned CCInfo = Record[1]; 2642 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2643 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2644 2645 unsigned OpNum = 4; 2646 Value *Callee; 2647 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2648 return Error(InvalidRecord); 2649 2650 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2651 FunctionType *FTy = !CalleeTy ? 0 : 2652 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2653 2654 // Check that the right number of fixed parameters are here. 2655 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2656 Record.size() < OpNum+FTy->getNumParams()) 2657 return Error(InvalidRecord); 2658 2659 SmallVector<Value*, 16> Ops; 2660 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2661 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2662 FTy->getParamType(i))); 2663 if (Ops.back() == 0) 2664 return Error(InvalidRecord); 2665 } 2666 2667 if (!FTy->isVarArg()) { 2668 if (Record.size() != OpNum) 2669 return Error(InvalidRecord); 2670 } else { 2671 // Read type/value pairs for varargs params. 2672 while (OpNum != Record.size()) { 2673 Value *Op; 2674 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2675 return Error(InvalidRecord); 2676 Ops.push_back(Op); 2677 } 2678 } 2679 2680 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2681 InstructionList.push_back(I); 2682 cast<InvokeInst>(I)->setCallingConv( 2683 static_cast<CallingConv::ID>(CCInfo)); 2684 cast<InvokeInst>(I)->setAttributes(PAL); 2685 break; 2686 } 2687 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2688 unsigned Idx = 0; 2689 Value *Val = 0; 2690 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2691 return Error(InvalidRecord); 2692 I = ResumeInst::Create(Val); 2693 InstructionList.push_back(I); 2694 break; 2695 } 2696 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2697 I = new UnreachableInst(Context); 2698 InstructionList.push_back(I); 2699 break; 2700 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2701 if (Record.size() < 1 || ((Record.size()-1)&1)) 2702 return Error(InvalidRecord); 2703 Type *Ty = getTypeByID(Record[0]); 2704 if (!Ty) 2705 return Error(InvalidRecord); 2706 2707 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2708 InstructionList.push_back(PN); 2709 2710 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2711 Value *V; 2712 // With the new function encoding, it is possible that operands have 2713 // negative IDs (for forward references). Use a signed VBR 2714 // representation to keep the encoding small. 2715 if (UseRelativeIDs) 2716 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2717 else 2718 V = getValue(Record, 1+i, NextValueNo, Ty); 2719 BasicBlock *BB = getBasicBlock(Record[2+i]); 2720 if (!V || !BB) 2721 return Error(InvalidRecord); 2722 PN->addIncoming(V, BB); 2723 } 2724 I = PN; 2725 break; 2726 } 2727 2728 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2729 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2730 unsigned Idx = 0; 2731 if (Record.size() < 4) 2732 return Error(InvalidRecord); 2733 Type *Ty = getTypeByID(Record[Idx++]); 2734 if (!Ty) 2735 return Error(InvalidRecord); 2736 Value *PersFn = 0; 2737 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2738 return Error(InvalidRecord); 2739 2740 bool IsCleanup = !!Record[Idx++]; 2741 unsigned NumClauses = Record[Idx++]; 2742 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2743 LP->setCleanup(IsCleanup); 2744 for (unsigned J = 0; J != NumClauses; ++J) { 2745 LandingPadInst::ClauseType CT = 2746 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2747 Value *Val; 2748 2749 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2750 delete LP; 2751 return Error(InvalidRecord); 2752 } 2753 2754 assert((CT != LandingPadInst::Catch || 2755 !isa<ArrayType>(Val->getType())) && 2756 "Catch clause has a invalid type!"); 2757 assert((CT != LandingPadInst::Filter || 2758 isa<ArrayType>(Val->getType())) && 2759 "Filter clause has invalid type!"); 2760 LP->addClause(Val); 2761 } 2762 2763 I = LP; 2764 InstructionList.push_back(I); 2765 break; 2766 } 2767 2768 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2769 if (Record.size() != 4) 2770 return Error(InvalidRecord); 2771 PointerType *Ty = 2772 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2773 Type *OpTy = getTypeByID(Record[1]); 2774 Value *Size = getFnValueByID(Record[2], OpTy); 2775 unsigned Align = Record[3]; 2776 if (!Ty || !Size) 2777 return Error(InvalidRecord); 2778 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2779 InstructionList.push_back(I); 2780 break; 2781 } 2782 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2783 unsigned OpNum = 0; 2784 Value *Op; 2785 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2786 OpNum+2 != Record.size()) 2787 return Error(InvalidRecord); 2788 2789 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2790 InstructionList.push_back(I); 2791 break; 2792 } 2793 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2794 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2795 unsigned OpNum = 0; 2796 Value *Op; 2797 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2798 OpNum+4 != Record.size()) 2799 return Error(InvalidRecord); 2800 2801 2802 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2803 if (Ordering == NotAtomic || Ordering == Release || 2804 Ordering == AcquireRelease) 2805 return Error(InvalidRecord); 2806 if (Ordering != NotAtomic && Record[OpNum] == 0) 2807 return Error(InvalidRecord); 2808 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2809 2810 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2811 Ordering, SynchScope); 2812 InstructionList.push_back(I); 2813 break; 2814 } 2815 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2816 unsigned OpNum = 0; 2817 Value *Val, *Ptr; 2818 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2819 popValue(Record, OpNum, NextValueNo, 2820 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2821 OpNum+2 != Record.size()) 2822 return Error(InvalidRecord); 2823 2824 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2825 InstructionList.push_back(I); 2826 break; 2827 } 2828 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2829 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2830 unsigned OpNum = 0; 2831 Value *Val, *Ptr; 2832 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2833 popValue(Record, OpNum, NextValueNo, 2834 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2835 OpNum+4 != Record.size()) 2836 return Error(InvalidRecord); 2837 2838 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2839 if (Ordering == NotAtomic || Ordering == Acquire || 2840 Ordering == AcquireRelease) 2841 return Error(InvalidRecord); 2842 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2843 if (Ordering != NotAtomic && Record[OpNum] == 0) 2844 return Error(InvalidRecord); 2845 2846 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2847 Ordering, SynchScope); 2848 InstructionList.push_back(I); 2849 break; 2850 } 2851 case bitc::FUNC_CODE_INST_CMPXCHG: { 2852 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope] 2853 unsigned OpNum = 0; 2854 Value *Ptr, *Cmp, *New; 2855 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2856 popValue(Record, OpNum, NextValueNo, 2857 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2858 popValue(Record, OpNum, NextValueNo, 2859 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2860 OpNum+3 != Record.size()) 2861 return Error(InvalidRecord); 2862 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]); 2863 if (Ordering == NotAtomic || Ordering == Unordered) 2864 return Error(InvalidRecord); 2865 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2866 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope); 2867 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2868 InstructionList.push_back(I); 2869 break; 2870 } 2871 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2872 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2873 unsigned OpNum = 0; 2874 Value *Ptr, *Val; 2875 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2876 popValue(Record, OpNum, NextValueNo, 2877 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2878 OpNum+4 != Record.size()) 2879 return Error(InvalidRecord); 2880 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2881 if (Operation < AtomicRMWInst::FIRST_BINOP || 2882 Operation > AtomicRMWInst::LAST_BINOP) 2883 return Error(InvalidRecord); 2884 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2885 if (Ordering == NotAtomic || Ordering == Unordered) 2886 return Error(InvalidRecord); 2887 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2888 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2889 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2890 InstructionList.push_back(I); 2891 break; 2892 } 2893 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2894 if (2 != Record.size()) 2895 return Error(InvalidRecord); 2896 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2897 if (Ordering == NotAtomic || Ordering == Unordered || 2898 Ordering == Monotonic) 2899 return Error(InvalidRecord); 2900 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2901 I = new FenceInst(Context, Ordering, SynchScope); 2902 InstructionList.push_back(I); 2903 break; 2904 } 2905 case bitc::FUNC_CODE_INST_CALL: { 2906 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2907 if (Record.size() < 3) 2908 return Error(InvalidRecord); 2909 2910 AttributeSet PAL = getAttributes(Record[0]); 2911 unsigned CCInfo = Record[1]; 2912 2913 unsigned OpNum = 2; 2914 Value *Callee; 2915 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2916 return Error(InvalidRecord); 2917 2918 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2919 FunctionType *FTy = 0; 2920 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2921 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2922 return Error(InvalidRecord); 2923 2924 SmallVector<Value*, 16> Args; 2925 // Read the fixed params. 2926 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2927 if (FTy->getParamType(i)->isLabelTy()) 2928 Args.push_back(getBasicBlock(Record[OpNum])); 2929 else 2930 Args.push_back(getValue(Record, OpNum, NextValueNo, 2931 FTy->getParamType(i))); 2932 if (Args.back() == 0) 2933 return Error(InvalidRecord); 2934 } 2935 2936 // Read type/value pairs for varargs params. 2937 if (!FTy->isVarArg()) { 2938 if (OpNum != Record.size()) 2939 return Error(InvalidRecord); 2940 } else { 2941 while (OpNum != Record.size()) { 2942 Value *Op; 2943 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2944 return Error(InvalidRecord); 2945 Args.push_back(Op); 2946 } 2947 } 2948 2949 I = CallInst::Create(Callee, Args); 2950 InstructionList.push_back(I); 2951 cast<CallInst>(I)->setCallingConv( 2952 static_cast<CallingConv::ID>(CCInfo>>1)); 2953 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2954 cast<CallInst>(I)->setAttributes(PAL); 2955 break; 2956 } 2957 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2958 if (Record.size() < 3) 2959 return Error(InvalidRecord); 2960 Type *OpTy = getTypeByID(Record[0]); 2961 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 2962 Type *ResTy = getTypeByID(Record[2]); 2963 if (!OpTy || !Op || !ResTy) 2964 return Error(InvalidRecord); 2965 I = new VAArgInst(Op, ResTy); 2966 InstructionList.push_back(I); 2967 break; 2968 } 2969 } 2970 2971 // Add instruction to end of current BB. If there is no current BB, reject 2972 // this file. 2973 if (CurBB == 0) { 2974 delete I; 2975 return Error(InvalidInstructionWithNoBB); 2976 } 2977 CurBB->getInstList().push_back(I); 2978 2979 // If this was a terminator instruction, move to the next block. 2980 if (isa<TerminatorInst>(I)) { 2981 ++CurBBNo; 2982 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2983 } 2984 2985 // Non-void values get registered in the value table for future use. 2986 if (I && !I->getType()->isVoidTy()) 2987 ValueList.AssignValue(I, NextValueNo++); 2988 } 2989 2990 OutOfRecordLoop: 2991 2992 // Check the function list for unresolved values. 2993 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2994 if (A->getParent() == 0) { 2995 // We found at least one unresolved value. Nuke them all to avoid leaks. 2996 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2997 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2998 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2999 delete A; 3000 } 3001 } 3002 return Error(NeverResolvedValueFoundInFunction); 3003 } 3004 } 3005 3006 // FIXME: Check for unresolved forward-declared metadata references 3007 // and clean up leaks. 3008 3009 // See if anything took the address of blocks in this function. If so, 3010 // resolve them now. 3011 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 3012 BlockAddrFwdRefs.find(F); 3013 if (BAFRI != BlockAddrFwdRefs.end()) { 3014 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 3015 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3016 unsigned BlockIdx = RefList[i].first; 3017 if (BlockIdx >= FunctionBBs.size()) 3018 return Error(InvalidID); 3019 3020 GlobalVariable *FwdRef = RefList[i].second; 3021 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3022 FwdRef->eraseFromParent(); 3023 } 3024 3025 BlockAddrFwdRefs.erase(BAFRI); 3026 } 3027 3028 // Trim the value list down to the size it was before we parsed this function. 3029 ValueList.shrinkTo(ModuleValueListSize); 3030 MDValueList.shrinkTo(ModuleMDValueListSize); 3031 std::vector<BasicBlock*>().swap(FunctionBBs); 3032 return error_code::success(); 3033 } 3034 3035 /// Find the function body in the bitcode stream 3036 error_code BitcodeReader::FindFunctionInStream(Function *F, 3037 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { 3038 while (DeferredFunctionInfoIterator->second == 0) { 3039 if (Stream.AtEndOfStream()) 3040 return Error(CouldNotFindFunctionInStream); 3041 // ParseModule will parse the next body in the stream and set its 3042 // position in the DeferredFunctionInfo map. 3043 if (error_code EC = ParseModule(true)) 3044 return EC; 3045 } 3046 return error_code::success(); 3047 } 3048 3049 //===----------------------------------------------------------------------===// 3050 // GVMaterializer implementation 3051 //===----------------------------------------------------------------------===// 3052 3053 3054 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3055 if (const Function *F = dyn_cast<Function>(GV)) { 3056 return F->isDeclaration() && 3057 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3058 } 3059 return false; 3060 } 3061 3062 error_code BitcodeReader::Materialize(GlobalValue *GV) { 3063 Function *F = dyn_cast<Function>(GV); 3064 // If it's not a function or is already material, ignore the request. 3065 if (!F || !F->isMaterializable()) 3066 return error_code::success(); 3067 3068 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3069 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3070 // If its position is recorded as 0, its body is somewhere in the stream 3071 // but we haven't seen it yet. 3072 if (DFII->second == 0 && LazyStreamer) 3073 if (error_code EC = FindFunctionInStream(F, DFII)) 3074 return EC; 3075 3076 // Move the bit stream to the saved position of the deferred function body. 3077 Stream.JumpToBit(DFII->second); 3078 3079 if (error_code EC = ParseFunctionBody(F)) 3080 return EC; 3081 3082 // Upgrade any old intrinsic calls in the function. 3083 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3084 E = UpgradedIntrinsics.end(); I != E; ++I) { 3085 if (I->first != I->second) { 3086 for (Value::use_iterator UI = I->first->use_begin(), 3087 UE = I->first->use_end(); UI != UE; ) { 3088 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3089 UpgradeIntrinsicCall(CI, I->second); 3090 } 3091 } 3092 } 3093 3094 return error_code::success(); 3095 } 3096 3097 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3098 const Function *F = dyn_cast<Function>(GV); 3099 if (!F || F->isDeclaration()) 3100 return false; 3101 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3102 } 3103 3104 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3105 Function *F = dyn_cast<Function>(GV); 3106 // If this function isn't dematerializable, this is a noop. 3107 if (!F || !isDematerializable(F)) 3108 return; 3109 3110 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3111 3112 // Just forget the function body, we can remat it later. 3113 F->deleteBody(); 3114 } 3115 3116 3117 error_code BitcodeReader::MaterializeModule(Module *M) { 3118 assert(M == TheModule && 3119 "Can only Materialize the Module this BitcodeReader is attached to."); 3120 // Iterate over the module, deserializing any functions that are still on 3121 // disk. 3122 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3123 F != E; ++F) { 3124 if (F->isMaterializable()) { 3125 if (error_code EC = Materialize(F)) 3126 return EC; 3127 } 3128 } 3129 // At this point, if there are any function bodies, the current bit is 3130 // pointing to the END_BLOCK record after them. Now make sure the rest 3131 // of the bits in the module have been read. 3132 if (NextUnreadBit) 3133 ParseModule(true); 3134 3135 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3136 // delete the old functions to clean up. We can't do this unless the entire 3137 // module is materialized because there could always be another function body 3138 // with calls to the old function. 3139 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3140 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3141 if (I->first != I->second) { 3142 for (Value::use_iterator UI = I->first->use_begin(), 3143 UE = I->first->use_end(); UI != UE; ) { 3144 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3145 UpgradeIntrinsicCall(CI, I->second); 3146 } 3147 if (!I->first->use_empty()) 3148 I->first->replaceAllUsesWith(I->second); 3149 I->first->eraseFromParent(); 3150 } 3151 } 3152 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3153 3154 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3155 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3156 3157 UpgradeDebugInfo(*M); 3158 return error_code::success(); 3159 } 3160 3161 error_code BitcodeReader::InitStream() { 3162 if (LazyStreamer) 3163 return InitLazyStream(); 3164 return InitStreamFromBuffer(); 3165 } 3166 3167 error_code BitcodeReader::InitStreamFromBuffer() { 3168 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3169 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3170 3171 if (Buffer->getBufferSize() & 3) { 3172 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3173 return Error(InvalidBitcodeSignature); 3174 else 3175 return Error(BitcodeStreamInvalidSize); 3176 } 3177 3178 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3179 // The magic number is 0x0B17C0DE stored in little endian. 3180 if (isBitcodeWrapper(BufPtr, BufEnd)) 3181 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3182 return Error(InvalidBitcodeWrapperHeader); 3183 3184 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3185 Stream.init(*StreamFile); 3186 3187 return error_code::success(); 3188 } 3189 3190 error_code BitcodeReader::InitLazyStream() { 3191 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3192 // see it. 3193 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3194 StreamFile.reset(new BitstreamReader(Bytes)); 3195 Stream.init(*StreamFile); 3196 3197 unsigned char buf[16]; 3198 if (Bytes->readBytes(0, 16, buf) == -1) 3199 return Error(BitcodeStreamInvalidSize); 3200 3201 if (!isBitcode(buf, buf + 16)) 3202 return Error(InvalidBitcodeSignature); 3203 3204 if (isBitcodeWrapper(buf, buf + 4)) { 3205 const unsigned char *bitcodeStart = buf; 3206 const unsigned char *bitcodeEnd = buf + 16; 3207 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3208 Bytes->dropLeadingBytes(bitcodeStart - buf); 3209 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3210 } 3211 return error_code::success(); 3212 } 3213 3214 namespace { 3215 class BitcodeErrorCategoryType : public _do_message { 3216 const char *name() const LLVM_OVERRIDE { 3217 return "llvm.bitcode"; 3218 } 3219 std::string message(int IE) const LLVM_OVERRIDE { 3220 BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); 3221 switch (E) { 3222 case BitcodeReader::BitcodeStreamInvalidSize: 3223 return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; 3224 case BitcodeReader::ConflictingMETADATA_KINDRecords: 3225 return "Conflicting METADATA_KIND records"; 3226 case BitcodeReader::CouldNotFindFunctionInStream: 3227 return "Could not find function in stream"; 3228 case BitcodeReader::ExpectedConstant: 3229 return "Expected a constant"; 3230 case BitcodeReader::InsufficientFunctionProtos: 3231 return "Insufficient function protos"; 3232 case BitcodeReader::InvalidBitcodeSignature: 3233 return "Invalid bitcode signature"; 3234 case BitcodeReader::InvalidBitcodeWrapperHeader: 3235 return "Invalid bitcode wrapper header"; 3236 case BitcodeReader::InvalidConstantReference: 3237 return "Invalid ronstant reference"; 3238 case BitcodeReader::InvalidID: 3239 return "Invalid ID"; 3240 case BitcodeReader::InvalidInstructionWithNoBB: 3241 return "Invalid instruction with no BB"; 3242 case BitcodeReader::InvalidRecord: 3243 return "Invalid record"; 3244 case BitcodeReader::InvalidTypeForValue: 3245 return "Invalid type for value"; 3246 case BitcodeReader::InvalidTYPETable: 3247 return "Invalid TYPE table"; 3248 case BitcodeReader::InvalidType: 3249 return "Invalid type"; 3250 case BitcodeReader::MalformedBlock: 3251 return "Malformed block"; 3252 case BitcodeReader::MalformedGlobalInitializerSet: 3253 return "Malformed global initializer set"; 3254 case BitcodeReader::InvalidMultipleBlocks: 3255 return "Invalid multiple blocks"; 3256 case BitcodeReader::NeverResolvedValueFoundInFunction: 3257 return "Never resolved value found in function"; 3258 case BitcodeReader::InvalidValue: 3259 return "Invalid value"; 3260 } 3261 llvm_unreachable("Unknown error type!"); 3262 } 3263 }; 3264 } 3265 3266 const error_category &BitcodeReader::BitcodeErrorCategory() { 3267 static BitcodeErrorCategoryType O; 3268 return O; 3269 } 3270 3271 //===----------------------------------------------------------------------===// 3272 // External interface 3273 //===----------------------------------------------------------------------===// 3274 3275 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3276 /// 3277 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3278 LLVMContext& Context, 3279 std::string *ErrMsg) { 3280 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3281 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3282 M->setMaterializer(R); 3283 if (error_code EC = R->ParseBitcodeInto(M)) { 3284 if (ErrMsg) 3285 *ErrMsg = EC.message(); 3286 3287 delete M; // Also deletes R. 3288 return 0; 3289 } 3290 // Have the BitcodeReader dtor delete 'Buffer'. 3291 R->setBufferOwned(true); 3292 3293 R->materializeForwardReferencedFunctions(); 3294 3295 return M; 3296 } 3297 3298 3299 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3300 DataStreamer *streamer, 3301 LLVMContext &Context, 3302 std::string *ErrMsg) { 3303 Module *M = new Module(name, Context); 3304 BitcodeReader *R = new BitcodeReader(streamer, Context); 3305 M->setMaterializer(R); 3306 if (error_code EC = R->ParseBitcodeInto(M)) { 3307 if (ErrMsg) 3308 *ErrMsg = EC.message(); 3309 delete M; // Also deletes R. 3310 return 0; 3311 } 3312 R->setBufferOwned(false); // no buffer to delete 3313 return M; 3314 } 3315 3316 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 3317 /// If an error occurs, return null and fill in *ErrMsg if non-null. 3318 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 3319 std::string *ErrMsg){ 3320 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 3321 if (!M) return 0; 3322 3323 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 3324 // there was an error. 3325 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 3326 3327 // Read in the entire module, and destroy the BitcodeReader. 3328 if (M->MaterializeAllPermanently(ErrMsg)) { 3329 delete M; 3330 return 0; 3331 } 3332 3333 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3334 // written. We must defer until the Module has been fully materialized. 3335 3336 return M; 3337 } 3338 3339 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3340 LLVMContext& Context, 3341 std::string *ErrMsg) { 3342 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3343 // Don't let the BitcodeReader dtor delete 'Buffer'. 3344 R->setBufferOwned(false); 3345 3346 std::string Triple(""); 3347 if (error_code EC = R->ParseTriple(Triple)) 3348 if (ErrMsg) 3349 *ErrMsg = EC.message(); 3350 3351 delete R; 3352 return Triple; 3353 } 3354