1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   bool readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B;
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B;
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else {
1651           assert((Record[i] == 5 || Record[i] == 6) &&
1652                  "Invalid attribute group entry");
1653           bool HasType = Record[i] == 6;
1654           Attribute::AttrKind Kind;
1655           if (Error Err = parseAttrKind(Record[++i], &Kind))
1656             return Err;
1657           if (!Attribute::isTypeAttrKind(Kind))
1658             return error("Not a type attribute");
1659 
1660           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061   return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065                                             Function *F,
2066                                             ArrayRef<uint64_t> Record) {
2067   // Note that we subtract 1 here because the offset is relative to one word
2068   // before the start of the identification or module block, which was
2069   // historically always the start of the regular bitcode header.
2070   uint64_t FuncWordOffset = Record[1] - 1;
2071   uint64_t FuncBitOffset = FuncWordOffset * 32;
2072   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073   // Set the LastFunctionBlockBit to point to the last function block.
2074   // Later when parsing is resumed after function materialization,
2075   // we can simply skip that last function block.
2076   if (FuncBitOffset > LastFunctionBlockBit)
2077     LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082   unsigned FuncBitcodeOffsetDelta =
2083       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086     return Err;
2087 
2088   SmallVector<uint64_t, 64> Record;
2089   while (true) {
2090     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091     if (!MaybeEntry)
2092       return MaybeEntry.takeError();
2093     BitstreamEntry Entry = MaybeEntry.get();
2094 
2095     switch (Entry.Kind) {
2096     case BitstreamEntry::SubBlock:
2097     case BitstreamEntry::Error:
2098       return error("Malformed block");
2099     case BitstreamEntry::EndBlock:
2100       return Error::success();
2101     case BitstreamEntry::Record:
2102       break;
2103     }
2104 
2105     Record.clear();
2106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107     if (!MaybeRecord)
2108       return MaybeRecord.takeError();
2109     switch (MaybeRecord.get()) {
2110     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2111       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2112                               cast<Function>(ValueList[Record[0]]), Record);
2113       break;
2114     }
2115   }
2116 }
2117 
2118 /// Parse the value symbol table at either the current parsing location or
2119 /// at the given bit offset if provided.
2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2121   uint64_t CurrentBit;
2122   // Pass in the Offset to distinguish between calling for the module-level
2123   // VST (where we want to jump to the VST offset) and the function-level
2124   // VST (where we don't).
2125   if (Offset > 0) {
2126     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2127     if (!MaybeCurrentBit)
2128       return MaybeCurrentBit.takeError();
2129     CurrentBit = MaybeCurrentBit.get();
2130     // If this module uses a string table, read this as a module-level VST.
2131     if (UseStrtab) {
2132       if (Error Err = parseGlobalValueSymbolTable())
2133         return Err;
2134       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2135         return JumpFailed;
2136       return Error::success();
2137     }
2138     // Otherwise, the VST will be in a similar format to a function-level VST,
2139     // and will contain symbol names.
2140   }
2141 
2142   // Compute the delta between the bitcode indices in the VST (the word offset
2143   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2144   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2145   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2146   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2147   // just before entering the VST subblock because: 1) the EnterSubBlock
2148   // changes the AbbrevID width; 2) the VST block is nested within the same
2149   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2150   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2151   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2152   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2153   unsigned FuncBitcodeOffsetDelta =
2154       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2155 
2156   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2157     return Err;
2158 
2159   SmallVector<uint64_t, 64> Record;
2160 
2161   Triple TT(TheModule->getTargetTriple());
2162 
2163   // Read all the records for this value table.
2164   SmallString<128> ValueName;
2165 
2166   while (true) {
2167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168     if (!MaybeEntry)
2169       return MaybeEntry.takeError();
2170     BitstreamEntry Entry = MaybeEntry.get();
2171 
2172     switch (Entry.Kind) {
2173     case BitstreamEntry::SubBlock: // Handled for us already.
2174     case BitstreamEntry::Error:
2175       return error("Malformed block");
2176     case BitstreamEntry::EndBlock:
2177       if (Offset > 0)
2178         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2179           return JumpFailed;
2180       return Error::success();
2181     case BitstreamEntry::Record:
2182       // The interesting case.
2183       break;
2184     }
2185 
2186     // Read a record.
2187     Record.clear();
2188     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2189     if (!MaybeRecord)
2190       return MaybeRecord.takeError();
2191     switch (MaybeRecord.get()) {
2192     default:  // Default behavior: unknown type.
2193       break;
2194     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2195       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2196       if (Error Err = ValOrErr.takeError())
2197         return Err;
2198       ValOrErr.get();
2199       break;
2200     }
2201     case bitc::VST_CODE_FNENTRY: {
2202       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2203       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2204       if (Error Err = ValOrErr.takeError())
2205         return Err;
2206       Value *V = ValOrErr.get();
2207 
2208       // Ignore function offsets emitted for aliases of functions in older
2209       // versions of LLVM.
2210       if (auto *F = dyn_cast<Function>(V))
2211         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2212       break;
2213     }
2214     case bitc::VST_CODE_BBENTRY: {
2215       if (convertToString(Record, 1, ValueName))
2216         return error("Invalid record");
2217       BasicBlock *BB = getBasicBlock(Record[0]);
2218       if (!BB)
2219         return error("Invalid record");
2220 
2221       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2222       ValueName.clear();
2223       break;
2224     }
2225     }
2226   }
2227 }
2228 
2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2230 /// encoding.
2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2232   if ((V & 1) == 0)
2233     return V >> 1;
2234   if (V != 1)
2235     return -(V >> 1);
2236   // There is no such thing as -0 with integers.  "-0" really means MININT.
2237   return 1ULL << 63;
2238 }
2239 
2240 /// Resolve all of the initializers for global values and aliases that we can.
2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2242   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2243   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2244   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2245 
2246   GlobalInitWorklist.swap(GlobalInits);
2247   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2248   FunctionOperandWorklist.swap(FunctionOperands);
2249 
2250   while (!GlobalInitWorklist.empty()) {
2251     unsigned ValID = GlobalInitWorklist.back().second;
2252     if (ValID >= ValueList.size()) {
2253       // Not ready to resolve this yet, it requires something later in the file.
2254       GlobalInits.push_back(GlobalInitWorklist.back());
2255     } else {
2256       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2257         GlobalInitWorklist.back().first->setInitializer(C);
2258       else
2259         return error("Expected a constant");
2260     }
2261     GlobalInitWorklist.pop_back();
2262   }
2263 
2264   while (!IndirectSymbolInitWorklist.empty()) {
2265     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2266     if (ValID >= ValueList.size()) {
2267       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2268     } else {
2269       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2270       if (!C)
2271         return error("Expected a constant");
2272       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2273       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2274         if (C->getType() != GV->getType())
2275           return error("Alias and aliasee types don't match");
2276         GA->setAliasee(C);
2277       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2278         Type *ResolverFTy =
2279             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2280         // Transparently fix up the type for compatiblity with older bitcode
2281         GI->setResolver(
2282             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2283       } else {
2284         return error("Expected an alias or an ifunc");
2285       }
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionOperandWorklist.empty()) {
2291     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2292     if (Info.PersonalityFn) {
2293       unsigned ValID = Info.PersonalityFn - 1;
2294       if (ValID < ValueList.size()) {
2295         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296           Info.F->setPersonalityFn(C);
2297         else
2298           return error("Expected a constant");
2299         Info.PersonalityFn = 0;
2300       }
2301     }
2302     if (Info.Prefix) {
2303       unsigned ValID = Info.Prefix - 1;
2304       if (ValID < ValueList.size()) {
2305         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306           Info.F->setPrefixData(C);
2307         else
2308           return error("Expected a constant");
2309         Info.Prefix = 0;
2310       }
2311     }
2312     if (Info.Prologue) {
2313       unsigned ValID = Info.Prologue - 1;
2314       if (ValID < ValueList.size()) {
2315         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2316           Info.F->setPrologueData(C);
2317         else
2318           return error("Expected a constant");
2319         Info.Prologue = 0;
2320       }
2321     }
2322     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2323       FunctionOperands.push_back(Info);
2324     FunctionOperandWorklist.pop_back();
2325   }
2326 
2327   return Error::success();
2328 }
2329 
2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2331   SmallVector<uint64_t, 8> Words(Vals.size());
2332   transform(Vals, Words.begin(),
2333                  BitcodeReader::decodeSignRotatedValue);
2334 
2335   return APInt(TypeBits, Words);
2336 }
2337 
2338 Error BitcodeReader::parseConstants() {
2339   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2340     return Err;
2341 
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   // Read all the records for this value table.
2345   Type *CurTy = Type::getInt32Ty(Context);
2346   unsigned NextCstNo = ValueList.size();
2347 
2348   struct DelayedShufTy {
2349     VectorType *OpTy;
2350     VectorType *RTy;
2351     uint64_t Op0Idx;
2352     uint64_t Op1Idx;
2353     uint64_t Op2Idx;
2354     unsigned CstNo;
2355   };
2356   std::vector<DelayedShufTy> DelayedShuffles;
2357   struct DelayedSelTy {
2358     Type *OpTy;
2359     uint64_t Op0Idx;
2360     uint64_t Op1Idx;
2361     uint64_t Op2Idx;
2362     unsigned CstNo;
2363   };
2364   std::vector<DelayedSelTy> DelayedSelectors;
2365 
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo);
2401       }
2402       for (auto &DelayedSelector : DelayedSelectors) {
2403         Type *OpTy = DelayedSelector.OpTy;
2404         Type *SelectorTy = Type::getInt1Ty(Context);
2405         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2406         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2407         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2408         uint64_t CstNo = DelayedSelector.CstNo;
2409         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2410         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2411         // The selector might be an i1 or an <n x i1>
2412         // Get the type from the ValueList before getting a forward ref.
2413         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2414           Value *V = ValueList[Op0Idx];
2415           assert(V);
2416           if (SelectorTy != V->getType())
2417             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2418         }
2419         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2420         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2421         ValueList.assignValue(V, CstNo);
2422       }
2423 
2424       if (NextCstNo != ValueList.size())
2425         return error("Invalid constant reference");
2426 
2427       ValueList.resolveConstantForwardRefs();
2428       return Error::success();
2429     case BitstreamEntry::Record:
2430       // The interesting case.
2431       break;
2432     }
2433 
2434     // Read a record.
2435     Record.clear();
2436     Type *VoidType = Type::getVoidTy(Context);
2437     Value *V = nullptr;
2438     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2439     if (!MaybeBitCode)
2440       return MaybeBitCode.takeError();
2441     switch (unsigned BitCode = MaybeBitCode.get()) {
2442     default:  // Default behavior: unknown constant
2443     case bitc::CST_CODE_UNDEF:     // UNDEF
2444       V = UndefValue::get(CurTy);
2445       break;
2446     case bitc::CST_CODE_POISON:    // POISON
2447       V = PoisonValue::get(CurTy);
2448       break;
2449     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2450       if (Record.empty())
2451         return error("Invalid record");
2452       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2453         return error("Invalid record");
2454       if (TypeList[Record[0]] == VoidType)
2455         return error("Invalid constant type");
2456       CurTy = TypeList[Record[0]];
2457       continue;  // Skip the ValueList manipulation.
2458     case bitc::CST_CODE_NULL:      // NULL
2459       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2460         return error("Invalid type for a constant null value");
2461       V = Constant::getNullValue(CurTy);
2462       break;
2463     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2464       if (!CurTy->isIntegerTy() || Record.empty())
2465         return error("Invalid record");
2466       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2467       break;
2468     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471 
2472       APInt VInt =
2473           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2474       V = ConstantInt::get(Context, VInt);
2475 
2476       break;
2477     }
2478     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2479       if (Record.empty())
2480         return error("Invalid record");
2481       if (CurTy->isHalfTy())
2482         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2483                                              APInt(16, (uint16_t)Record[0])));
2484       else if (CurTy->isBFloatTy())
2485         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2486                                              APInt(16, (uint32_t)Record[0])));
2487       else if (CurTy->isFloatTy())
2488         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2489                                              APInt(32, (uint32_t)Record[0])));
2490       else if (CurTy->isDoubleTy())
2491         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2492                                              APInt(64, Record[0])));
2493       else if (CurTy->isX86_FP80Ty()) {
2494         // Bits are not stored the same way as a normal i80 APInt, compensate.
2495         uint64_t Rearrange[2];
2496         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2497         Rearrange[1] = Record[0] >> 48;
2498         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2499                                              APInt(80, Rearrange)));
2500       } else if (CurTy->isFP128Ty())
2501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2502                                              APInt(128, Record)));
2503       else if (CurTy->isPPC_FP128Ty())
2504         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2505                                              APInt(128, Record)));
2506       else
2507         V = UndefValue::get(CurTy);
2508       break;
2509     }
2510 
2511     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2512       if (Record.empty())
2513         return error("Invalid record");
2514 
2515       unsigned Size = Record.size();
2516       SmallVector<Constant*, 16> Elts;
2517 
2518       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2519         for (unsigned i = 0; i != Size; ++i)
2520           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2521                                                      STy->getElementType(i)));
2522         V = ConstantStruct::get(STy, Elts);
2523       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2524         Type *EltTy = ATy->getElementType();
2525         for (unsigned i = 0; i != Size; ++i)
2526           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2527         V = ConstantArray::get(ATy, Elts);
2528       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2529         Type *EltTy = VTy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantVector::get(Elts);
2533       } else {
2534         V = UndefValue::get(CurTy);
2535       }
2536       break;
2537     }
2538     case bitc::CST_CODE_STRING:    // STRING: [values]
2539     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2540       if (Record.empty())
2541         return error("Invalid record");
2542 
2543       SmallString<16> Elts(Record.begin(), Record.end());
2544       V = ConstantDataArray::getString(Context, Elts,
2545                                        BitCode == bitc::CST_CODE_CSTRING);
2546       break;
2547     }
2548     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2549       if (Record.empty())
2550         return error("Invalid record");
2551 
2552       Type *EltTy;
2553       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2554         EltTy = Array->getElementType();
2555       else
2556         EltTy = cast<VectorType>(CurTy)->getElementType();
2557       if (EltTy->isIntegerTy(8)) {
2558         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::get(Context, Elts);
2561         else
2562           V = ConstantDataArray::get(Context, Elts);
2563       } else if (EltTy->isIntegerTy(16)) {
2564         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::get(Context, Elts);
2567         else
2568           V = ConstantDataArray::get(Context, Elts);
2569       } else if (EltTy->isIntegerTy(32)) {
2570         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::get(Context, Elts);
2573         else
2574           V = ConstantDataArray::get(Context, Elts);
2575       } else if (EltTy->isIntegerTy(64)) {
2576         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2577         if (isa<VectorType>(CurTy))
2578           V = ConstantDataVector::get(Context, Elts);
2579         else
2580           V = ConstantDataArray::get(Context, Elts);
2581       } else if (EltTy->isHalfTy()) {
2582         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2583         if (isa<VectorType>(CurTy))
2584           V = ConstantDataVector::getFP(EltTy, Elts);
2585         else
2586           V = ConstantDataArray::getFP(EltTy, Elts);
2587       } else if (EltTy->isBFloatTy()) {
2588         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2589         if (isa<VectorType>(CurTy))
2590           V = ConstantDataVector::getFP(EltTy, Elts);
2591         else
2592           V = ConstantDataArray::getFP(EltTy, Elts);
2593       } else if (EltTy->isFloatTy()) {
2594         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2595         if (isa<VectorType>(CurTy))
2596           V = ConstantDataVector::getFP(EltTy, Elts);
2597         else
2598           V = ConstantDataArray::getFP(EltTy, Elts);
2599       } else if (EltTy->isDoubleTy()) {
2600         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2601         if (isa<VectorType>(CurTy))
2602           V = ConstantDataVector::getFP(EltTy, Elts);
2603         else
2604           V = ConstantDataArray::getFP(EltTy, Elts);
2605       } else {
2606         return error("Invalid type for value");
2607       }
2608       break;
2609     }
2610     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2611       if (Record.size() < 2)
2612         return error("Invalid record");
2613       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2614       if (Opc < 0) {
2615         V = UndefValue::get(CurTy);  // Unknown unop.
2616       } else {
2617         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2618         unsigned Flags = 0;
2619         V = ConstantExpr::get(Opc, LHS, Flags);
2620       }
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2627       if (Opc < 0) {
2628         V = UndefValue::get(CurTy);  // Unknown binop.
2629       } else {
2630         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2631         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2632         unsigned Flags = 0;
2633         if (Record.size() >= 4) {
2634           if (Opc == Instruction::Add ||
2635               Opc == Instruction::Sub ||
2636               Opc == Instruction::Mul ||
2637               Opc == Instruction::Shl) {
2638             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2639               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2640             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2641               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2642           } else if (Opc == Instruction::SDiv ||
2643                      Opc == Instruction::UDiv ||
2644                      Opc == Instruction::LShr ||
2645                      Opc == Instruction::AShr) {
2646             if (Record[3] & (1 << bitc::PEO_EXACT))
2647               Flags |= SDivOperator::IsExact;
2648           }
2649         }
2650         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2651       }
2652       break;
2653     }
2654     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2655       if (Record.size() < 3)
2656         return error("Invalid record");
2657       int Opc = getDecodedCastOpcode(Record[0]);
2658       if (Opc < 0) {
2659         V = UndefValue::get(CurTy);  // Unknown cast.
2660       } else {
2661         Type *OpTy = getTypeByID(Record[1]);
2662         if (!OpTy)
2663           return error("Invalid record");
2664         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2665         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2666         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2667       }
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2671     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2672     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2673                                                      // operands]
2674       unsigned OpNum = 0;
2675       Type *PointeeType = nullptr;
2676       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2677           Record.size() % 2)
2678         PointeeType = getTypeByID(Record[OpNum++]);
2679 
2680       bool InBounds = false;
2681       Optional<unsigned> InRangeIndex;
2682       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2683         uint64_t Op = Record[OpNum++];
2684         InBounds = Op & 1;
2685         InRangeIndex = Op >> 1;
2686       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2687         InBounds = true;
2688 
2689       SmallVector<Constant*, 16> Elts;
2690       Type *Elt0FullTy = nullptr;
2691       while (OpNum != Record.size()) {
2692         if (!Elt0FullTy)
2693           Elt0FullTy = getTypeByID(Record[OpNum]);
2694         Type *ElTy = getTypeByID(Record[OpNum++]);
2695         if (!ElTy)
2696           return error("Invalid record");
2697         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2698       }
2699 
2700       if (Elts.size() < 1)
2701         return error("Invalid gep with no operands");
2702 
2703       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2704       if (!PointeeType)
2705         PointeeType = OrigPtrTy->getElementType();
2706       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2707         return error("Explicit gep operator type does not match pointee type "
2708                      "of pointer operand");
2709 
2710       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2711       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2712                                          InBounds, InRangeIndex);
2713       break;
2714     }
2715     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718 
2719       DelayedSelectors.push_back(
2720           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2721       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2722       ++NextCstNo;
2723       continue;
2724     }
2725     case bitc::CST_CODE_CE_EXTRACTELT
2726         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2727       if (Record.size() < 3)
2728         return error("Invalid record");
2729       VectorType *OpTy =
2730         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2731       if (!OpTy)
2732         return error("Invalid record");
2733       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2734       Constant *Op1 = nullptr;
2735       if (Record.size() == 4) {
2736         Type *IdxTy = getTypeByID(Record[2]);
2737         if (!IdxTy)
2738           return error("Invalid record");
2739         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2740       } else {
2741         // Deprecated, but still needed to read old bitcode files.
2742         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2743       }
2744       if (!Op1)
2745         return error("Invalid record");
2746       V = ConstantExpr::getExtractElement(Op0, Op1);
2747       break;
2748     }
2749     case bitc::CST_CODE_CE_INSERTELT
2750         : { // CE_INSERTELT: [opval, opval, opty, opval]
2751       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2752       if (Record.size() < 3 || !OpTy)
2753         return error("Invalid record");
2754       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2755       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2756                                                   OpTy->getElementType());
2757       Constant *Op2 = nullptr;
2758       if (Record.size() == 4) {
2759         Type *IdxTy = getTypeByID(Record[2]);
2760         if (!IdxTy)
2761           return error("Invalid record");
2762         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2763       } else {
2764         // Deprecated, but still needed to read old bitcode files.
2765         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2766       }
2767       if (!Op2)
2768         return error("Invalid record");
2769       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2770       break;
2771     }
2772     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2773       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2774       if (Record.size() < 3 || !OpTy)
2775         return error("Invalid record");
2776       DelayedShuffles.push_back(
2777           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2778       ++NextCstNo;
2779       continue;
2780     }
2781     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2782       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2783       VectorType *OpTy =
2784         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2785       if (Record.size() < 4 || !RTy || !OpTy)
2786         return error("Invalid record");
2787       DelayedShuffles.push_back(
2788           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2789       ++NextCstNo;
2790       continue;
2791     }
2792     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2793       if (Record.size() < 4)
2794         return error("Invalid record");
2795       Type *OpTy = getTypeByID(Record[0]);
2796       if (!OpTy)
2797         return error("Invalid record");
2798       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2799       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2800 
2801       if (OpTy->isFPOrFPVectorTy())
2802         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2803       else
2804         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2805       break;
2806     }
2807     // This maintains backward compatibility, pre-asm dialect keywords.
2808     // Deprecated, but still needed to read old bitcode files.
2809     case bitc::CST_CODE_INLINEASM_OLD: {
2810       if (Record.size() < 2)
2811         return error("Invalid record");
2812       std::string AsmStr, ConstrStr;
2813       bool HasSideEffects = Record[0] & 1;
2814       bool IsAlignStack = Record[0] >> 1;
2815       unsigned AsmStrSize = Record[1];
2816       if (2+AsmStrSize >= Record.size())
2817         return error("Invalid record");
2818       unsigned ConstStrSize = Record[2+AsmStrSize];
2819       if (3+AsmStrSize+ConstStrSize > Record.size())
2820         return error("Invalid record");
2821 
2822       for (unsigned i = 0; i != AsmStrSize; ++i)
2823         AsmStr += (char)Record[2+i];
2824       for (unsigned i = 0; i != ConstStrSize; ++i)
2825         ConstrStr += (char)Record[3+AsmStrSize+i];
2826       UpgradeInlineAsmString(&AsmStr);
2827       V = InlineAsm::get(
2828           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2829           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2830       break;
2831     }
2832     // This version adds support for the asm dialect keywords (e.g.,
2833     // inteldialect).
2834     case bitc::CST_CODE_INLINEASM_OLD2: {
2835       if (Record.size() < 2)
2836         return error("Invalid record");
2837       std::string AsmStr, ConstrStr;
2838       bool HasSideEffects = Record[0] & 1;
2839       bool IsAlignStack = (Record[0] >> 1) & 1;
2840       unsigned AsmDialect = Record[0] >> 2;
2841       unsigned AsmStrSize = Record[1];
2842       if (2+AsmStrSize >= Record.size())
2843         return error("Invalid record");
2844       unsigned ConstStrSize = Record[2+AsmStrSize];
2845       if (3+AsmStrSize+ConstStrSize > Record.size())
2846         return error("Invalid record");
2847 
2848       for (unsigned i = 0; i != AsmStrSize; ++i)
2849         AsmStr += (char)Record[2+i];
2850       for (unsigned i = 0; i != ConstStrSize; ++i)
2851         ConstrStr += (char)Record[3+AsmStrSize+i];
2852       UpgradeInlineAsmString(&AsmStr);
2853       V = InlineAsm::get(
2854           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2855           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2856           InlineAsm::AsmDialect(AsmDialect));
2857       break;
2858     }
2859     // This version adds support for the unwind keyword.
2860     case bitc::CST_CODE_INLINEASM: {
2861       if (Record.size() < 2)
2862         return error("Invalid record");
2863       unsigned OpNum = 0;
2864       std::string AsmStr, ConstrStr;
2865       bool HasSideEffects = Record[OpNum] & 1;
2866       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2867       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2868       bool CanThrow = (Record[OpNum] >> 3) & 1;
2869       ++OpNum;
2870       unsigned AsmStrSize = Record[OpNum];
2871       ++OpNum;
2872       if (OpNum + AsmStrSize >= Record.size())
2873         return error("Invalid record");
2874       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2875       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2876         return error("Invalid record");
2877 
2878       for (unsigned i = 0; i != AsmStrSize; ++i)
2879         AsmStr += (char)Record[OpNum + i];
2880       ++OpNum;
2881       for (unsigned i = 0; i != ConstStrSize; ++i)
2882         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2883       UpgradeInlineAsmString(&AsmStr);
2884       V = InlineAsm::get(
2885           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2886           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2887           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2888       break;
2889     }
2890     case bitc::CST_CODE_BLOCKADDRESS:{
2891       if (Record.size() < 3)
2892         return error("Invalid record");
2893       Type *FnTy = getTypeByID(Record[0]);
2894       if (!FnTy)
2895         return error("Invalid record");
2896       Function *Fn =
2897         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2898       if (!Fn)
2899         return error("Invalid record");
2900 
2901       // If the function is already parsed we can insert the block address right
2902       // away.
2903       BasicBlock *BB;
2904       unsigned BBID = Record[2];
2905       if (!BBID)
2906         // Invalid reference to entry block.
2907         return error("Invalid ID");
2908       if (!Fn->empty()) {
2909         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2910         for (size_t I = 0, E = BBID; I != E; ++I) {
2911           if (BBI == BBE)
2912             return error("Invalid ID");
2913           ++BBI;
2914         }
2915         BB = &*BBI;
2916       } else {
2917         // Otherwise insert a placeholder and remember it so it can be inserted
2918         // when the function is parsed.
2919         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2920         if (FwdBBs.empty())
2921           BasicBlockFwdRefQueue.push_back(Fn);
2922         if (FwdBBs.size() < BBID + 1)
2923           FwdBBs.resize(BBID + 1);
2924         if (!FwdBBs[BBID])
2925           FwdBBs[BBID] = BasicBlock::Create(Context);
2926         BB = FwdBBs[BBID];
2927       }
2928       V = BlockAddress::get(Fn, BB);
2929       break;
2930     }
2931     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2932       if (Record.size() < 2)
2933         return error("Invalid record");
2934       Type *GVTy = getTypeByID(Record[0]);
2935       if (!GVTy)
2936         return error("Invalid record");
2937       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2938           ValueList.getConstantFwdRef(Record[1], GVTy));
2939       if (!GV)
2940         return error("Invalid record");
2941 
2942       V = DSOLocalEquivalent::get(GV);
2943       break;
2944     }
2945     case bitc::CST_CODE_NO_CFI_VALUE: {
2946       if (Record.size() < 2)
2947         return error("Invalid record");
2948       Type *GVTy = getTypeByID(Record[0]);
2949       if (!GVTy)
2950         return error("Invalid record");
2951       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2952           ValueList.getConstantFwdRef(Record[1], GVTy));
2953       if (!GV)
2954         return error("Invalid record");
2955       V = NoCFIValue::get(GV);
2956       break;
2957     }
2958     }
2959 
2960     ValueList.assignValue(V, NextCstNo);
2961     ++NextCstNo;
2962   }
2963 }
2964 
2965 Error BitcodeReader::parseUseLists() {
2966   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2967     return Err;
2968 
2969   // Read all the records.
2970   SmallVector<uint64_t, 64> Record;
2971 
2972   while (true) {
2973     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2974     if (!MaybeEntry)
2975       return MaybeEntry.takeError();
2976     BitstreamEntry Entry = MaybeEntry.get();
2977 
2978     switch (Entry.Kind) {
2979     case BitstreamEntry::SubBlock: // Handled for us already.
2980     case BitstreamEntry::Error:
2981       return error("Malformed block");
2982     case BitstreamEntry::EndBlock:
2983       return Error::success();
2984     case BitstreamEntry::Record:
2985       // The interesting case.
2986       break;
2987     }
2988 
2989     // Read a use list record.
2990     Record.clear();
2991     bool IsBB = false;
2992     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2993     if (!MaybeRecord)
2994       return MaybeRecord.takeError();
2995     switch (MaybeRecord.get()) {
2996     default:  // Default behavior: unknown type.
2997       break;
2998     case bitc::USELIST_CODE_BB:
2999       IsBB = true;
3000       LLVM_FALLTHROUGH;
3001     case bitc::USELIST_CODE_DEFAULT: {
3002       unsigned RecordLength = Record.size();
3003       if (RecordLength < 3)
3004         // Records should have at least an ID and two indexes.
3005         return error("Invalid record");
3006       unsigned ID = Record.pop_back_val();
3007 
3008       Value *V;
3009       if (IsBB) {
3010         assert(ID < FunctionBBs.size() && "Basic block not found");
3011         V = FunctionBBs[ID];
3012       } else
3013         V = ValueList[ID];
3014       unsigned NumUses = 0;
3015       SmallDenseMap<const Use *, unsigned, 16> Order;
3016       for (const Use &U : V->materialized_uses()) {
3017         if (++NumUses > Record.size())
3018           break;
3019         Order[&U] = Record[NumUses - 1];
3020       }
3021       if (Order.size() != Record.size() || NumUses > Record.size())
3022         // Mismatches can happen if the functions are being materialized lazily
3023         // (out-of-order), or a value has been upgraded.
3024         break;
3025 
3026       V->sortUseList([&](const Use &L, const Use &R) {
3027         return Order.lookup(&L) < Order.lookup(&R);
3028       });
3029       break;
3030     }
3031     }
3032   }
3033 }
3034 
3035 /// When we see the block for metadata, remember where it is and then skip it.
3036 /// This lets us lazily deserialize the metadata.
3037 Error BitcodeReader::rememberAndSkipMetadata() {
3038   // Save the current stream state.
3039   uint64_t CurBit = Stream.GetCurrentBitNo();
3040   DeferredMetadataInfo.push_back(CurBit);
3041 
3042   // Skip over the block for now.
3043   if (Error Err = Stream.SkipBlock())
3044     return Err;
3045   return Error::success();
3046 }
3047 
3048 Error BitcodeReader::materializeMetadata() {
3049   for (uint64_t BitPos : DeferredMetadataInfo) {
3050     // Move the bit stream to the saved position.
3051     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3052       return JumpFailed;
3053     if (Error Err = MDLoader->parseModuleMetadata())
3054       return Err;
3055   }
3056 
3057   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3058   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3059   // multiple times.
3060   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3061     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3062       NamedMDNode *LinkerOpts =
3063           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3064       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3065         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3066     }
3067   }
3068 
3069   DeferredMetadataInfo.clear();
3070   return Error::success();
3071 }
3072 
3073 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3074 
3075 /// When we see the block for a function body, remember where it is and then
3076 /// skip it.  This lets us lazily deserialize the functions.
3077 Error BitcodeReader::rememberAndSkipFunctionBody() {
3078   // Get the function we are talking about.
3079   if (FunctionsWithBodies.empty())
3080     return error("Insufficient function protos");
3081 
3082   Function *Fn = FunctionsWithBodies.back();
3083   FunctionsWithBodies.pop_back();
3084 
3085   // Save the current stream state.
3086   uint64_t CurBit = Stream.GetCurrentBitNo();
3087   assert(
3088       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3089       "Mismatch between VST and scanned function offsets");
3090   DeferredFunctionInfo[Fn] = CurBit;
3091 
3092   // Skip over the function block for now.
3093   if (Error Err = Stream.SkipBlock())
3094     return Err;
3095   return Error::success();
3096 }
3097 
3098 Error BitcodeReader::globalCleanup() {
3099   // Patch the initializers for globals and aliases up.
3100   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3101     return Err;
3102   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3103     return error("Malformed global initializer set");
3104 
3105   // Look for intrinsic functions which need to be upgraded at some point
3106   // and functions that need to have their function attributes upgraded.
3107   for (Function &F : *TheModule) {
3108     MDLoader->upgradeDebugIntrinsics(F);
3109     Function *NewFn;
3110     if (UpgradeIntrinsicFunction(&F, NewFn))
3111       UpgradedIntrinsics[&F] = NewFn;
3112     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3113       // Some types could be renamed during loading if several modules are
3114       // loaded in the same LLVMContext (LTO scenario). In this case we should
3115       // remangle intrinsics names as well.
3116       RemangledIntrinsics[&F] = Remangled.getValue();
3117     // Look for functions that rely on old function attribute behavior.
3118     UpgradeFunctionAttributes(F);
3119   }
3120 
3121   // Look for global variables which need to be renamed.
3122   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3123   for (GlobalVariable &GV : TheModule->globals())
3124     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3125       UpgradedVariables.emplace_back(&GV, Upgraded);
3126   for (auto &Pair : UpgradedVariables) {
3127     Pair.first->eraseFromParent();
3128     TheModule->getGlobalList().push_back(Pair.second);
3129   }
3130 
3131   // Force deallocation of memory for these vectors to favor the client that
3132   // want lazy deserialization.
3133   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3134   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3135   return Error::success();
3136 }
3137 
3138 /// Support for lazy parsing of function bodies. This is required if we
3139 /// either have an old bitcode file without a VST forward declaration record,
3140 /// or if we have an anonymous function being materialized, since anonymous
3141 /// functions do not have a name and are therefore not in the VST.
3142 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3143   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3144     return JumpFailed;
3145 
3146   if (Stream.AtEndOfStream())
3147     return error("Could not find function in stream");
3148 
3149   if (!SeenFirstFunctionBody)
3150     return error("Trying to materialize functions before seeing function blocks");
3151 
3152   // An old bitcode file with the symbol table at the end would have
3153   // finished the parse greedily.
3154   assert(SeenValueSymbolTable);
3155 
3156   SmallVector<uint64_t, 64> Record;
3157 
3158   while (true) {
3159     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3160     if (!MaybeEntry)
3161       return MaybeEntry.takeError();
3162     llvm::BitstreamEntry Entry = MaybeEntry.get();
3163 
3164     switch (Entry.Kind) {
3165     default:
3166       return error("Expect SubBlock");
3167     case BitstreamEntry::SubBlock:
3168       switch (Entry.ID) {
3169       default:
3170         return error("Expect function block");
3171       case bitc::FUNCTION_BLOCK_ID:
3172         if (Error Err = rememberAndSkipFunctionBody())
3173           return Err;
3174         NextUnreadBit = Stream.GetCurrentBitNo();
3175         return Error::success();
3176       }
3177     }
3178   }
3179 }
3180 
3181 bool BitcodeReaderBase::readBlockInfo() {
3182   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3183       Stream.ReadBlockInfoBlock();
3184   if (!MaybeNewBlockInfo)
3185     return true; // FIXME Handle the error.
3186   Optional<BitstreamBlockInfo> NewBlockInfo =
3187       std::move(MaybeNewBlockInfo.get());
3188   if (!NewBlockInfo)
3189     return true;
3190   BlockInfo = std::move(*NewBlockInfo);
3191   return false;
3192 }
3193 
3194 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3195   // v1: [selection_kind, name]
3196   // v2: [strtab_offset, strtab_size, selection_kind]
3197   StringRef Name;
3198   std::tie(Name, Record) = readNameFromStrtab(Record);
3199 
3200   if (Record.empty())
3201     return error("Invalid record");
3202   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3203   std::string OldFormatName;
3204   if (!UseStrtab) {
3205     if (Record.size() < 2)
3206       return error("Invalid record");
3207     unsigned ComdatNameSize = Record[1];
3208     OldFormatName.reserve(ComdatNameSize);
3209     for (unsigned i = 0; i != ComdatNameSize; ++i)
3210       OldFormatName += (char)Record[2 + i];
3211     Name = OldFormatName;
3212   }
3213   Comdat *C = TheModule->getOrInsertComdat(Name);
3214   C->setSelectionKind(SK);
3215   ComdatList.push_back(C);
3216   return Error::success();
3217 }
3218 
3219 static void inferDSOLocal(GlobalValue *GV) {
3220   // infer dso_local from linkage and visibility if it is not encoded.
3221   if (GV->hasLocalLinkage() ||
3222       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3223     GV->setDSOLocal(true);
3224 }
3225 
3226 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3227   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3228   // visibility, threadlocal, unnamed_addr, externally_initialized,
3229   // dllstorageclass, comdat, attributes, preemption specifier,
3230   // partition strtab offset, partition strtab size] (name in VST)
3231   // v2: [strtab_offset, strtab_size, v1]
3232   StringRef Name;
3233   std::tie(Name, Record) = readNameFromStrtab(Record);
3234 
3235   if (Record.size() < 6)
3236     return error("Invalid record");
3237   Type *Ty = getTypeByID(Record[0]);
3238   if (!Ty)
3239     return error("Invalid record");
3240   bool isConstant = Record[1] & 1;
3241   bool explicitType = Record[1] & 2;
3242   unsigned AddressSpace;
3243   if (explicitType) {
3244     AddressSpace = Record[1] >> 2;
3245   } else {
3246     if (!Ty->isPointerTy())
3247       return error("Invalid type for value");
3248     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3249     Ty = cast<PointerType>(Ty)->getElementType();
3250   }
3251 
3252   uint64_t RawLinkage = Record[3];
3253   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3254   MaybeAlign Alignment;
3255   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3256     return Err;
3257   std::string Section;
3258   if (Record[5]) {
3259     if (Record[5] - 1 >= SectionTable.size())
3260       return error("Invalid ID");
3261     Section = SectionTable[Record[5] - 1];
3262   }
3263   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3264   // Local linkage must have default visibility.
3265   // auto-upgrade `hidden` and `protected` for old bitcode.
3266   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3267     Visibility = getDecodedVisibility(Record[6]);
3268 
3269   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3270   if (Record.size() > 7)
3271     TLM = getDecodedThreadLocalMode(Record[7]);
3272 
3273   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3274   if (Record.size() > 8)
3275     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3276 
3277   bool ExternallyInitialized = false;
3278   if (Record.size() > 9)
3279     ExternallyInitialized = Record[9];
3280 
3281   GlobalVariable *NewGV =
3282       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3283                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3284   NewGV->setAlignment(Alignment);
3285   if (!Section.empty())
3286     NewGV->setSection(Section);
3287   NewGV->setVisibility(Visibility);
3288   NewGV->setUnnamedAddr(UnnamedAddr);
3289 
3290   if (Record.size() > 10)
3291     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3292   else
3293     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3294 
3295   ValueList.push_back(NewGV);
3296 
3297   // Remember which value to use for the global initializer.
3298   if (unsigned InitID = Record[2])
3299     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3300 
3301   if (Record.size() > 11) {
3302     if (unsigned ComdatID = Record[11]) {
3303       if (ComdatID > ComdatList.size())
3304         return error("Invalid global variable comdat ID");
3305       NewGV->setComdat(ComdatList[ComdatID - 1]);
3306     }
3307   } else if (hasImplicitComdat(RawLinkage)) {
3308     ImplicitComdatObjects.insert(NewGV);
3309   }
3310 
3311   if (Record.size() > 12) {
3312     auto AS = getAttributes(Record[12]).getFnAttrs();
3313     NewGV->setAttributes(AS);
3314   }
3315 
3316   if (Record.size() > 13) {
3317     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3318   }
3319   inferDSOLocal(NewGV);
3320 
3321   // Check whether we have enough values to read a partition name.
3322   if (Record.size() > 15)
3323     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3324 
3325   return Error::success();
3326 }
3327 
3328 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3329   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3330   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3331   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3332   // v2: [strtab_offset, strtab_size, v1]
3333   StringRef Name;
3334   std::tie(Name, Record) = readNameFromStrtab(Record);
3335 
3336   if (Record.size() < 8)
3337     return error("Invalid record");
3338   Type *FTy = getTypeByID(Record[0]);
3339   if (!FTy)
3340     return error("Invalid record");
3341   if (auto *PTy = dyn_cast<PointerType>(FTy))
3342     FTy = PTy->getElementType();
3343 
3344   if (!isa<FunctionType>(FTy))
3345     return error("Invalid type for value");
3346   auto CC = static_cast<CallingConv::ID>(Record[1]);
3347   if (CC & ~CallingConv::MaxID)
3348     return error("Invalid calling convention ID");
3349 
3350   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3351   if (Record.size() > 16)
3352     AddrSpace = Record[16];
3353 
3354   Function *Func =
3355       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3356                        AddrSpace, Name, TheModule);
3357 
3358   assert(Func->getFunctionType() == FTy &&
3359          "Incorrect fully specified type provided for function");
3360   FunctionTypes[Func] = cast<FunctionType>(FTy);
3361 
3362   Func->setCallingConv(CC);
3363   bool isProto = Record[2];
3364   uint64_t RawLinkage = Record[3];
3365   Func->setLinkage(getDecodedLinkage(RawLinkage));
3366   Func->setAttributes(getAttributes(Record[4]));
3367 
3368   // Upgrade any old-style byval or sret without a type by propagating the
3369   // argument's pointee type. There should be no opaque pointers where the byval
3370   // type is implicit.
3371   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3372     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3373                                      Attribute::InAlloca}) {
3374       if (!Func->hasParamAttribute(i, Kind))
3375         continue;
3376 
3377       if (Func->getParamAttribute(i, Kind).getValueAsType())
3378         continue;
3379 
3380       Func->removeParamAttr(i, Kind);
3381 
3382       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3383       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3384       Attribute NewAttr;
3385       switch (Kind) {
3386       case Attribute::ByVal:
3387         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3388         break;
3389       case Attribute::StructRet:
3390         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3391         break;
3392       case Attribute::InAlloca:
3393         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3394         break;
3395       default:
3396         llvm_unreachable("not an upgraded type attribute");
3397       }
3398 
3399       Func->addParamAttr(i, NewAttr);
3400     }
3401   }
3402 
3403   MaybeAlign Alignment;
3404   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3405     return Err;
3406   Func->setAlignment(Alignment);
3407   if (Record[6]) {
3408     if (Record[6] - 1 >= SectionTable.size())
3409       return error("Invalid ID");
3410     Func->setSection(SectionTable[Record[6] - 1]);
3411   }
3412   // Local linkage must have default visibility.
3413   // auto-upgrade `hidden` and `protected` for old bitcode.
3414   if (!Func->hasLocalLinkage())
3415     Func->setVisibility(getDecodedVisibility(Record[7]));
3416   if (Record.size() > 8 && Record[8]) {
3417     if (Record[8] - 1 >= GCTable.size())
3418       return error("Invalid ID");
3419     Func->setGC(GCTable[Record[8] - 1]);
3420   }
3421   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3422   if (Record.size() > 9)
3423     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3424   Func->setUnnamedAddr(UnnamedAddr);
3425 
3426   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3427   if (Record.size() > 10)
3428     OperandInfo.Prologue = Record[10];
3429 
3430   if (Record.size() > 11)
3431     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3432   else
3433     upgradeDLLImportExportLinkage(Func, RawLinkage);
3434 
3435   if (Record.size() > 12) {
3436     if (unsigned ComdatID = Record[12]) {
3437       if (ComdatID > ComdatList.size())
3438         return error("Invalid function comdat ID");
3439       Func->setComdat(ComdatList[ComdatID - 1]);
3440     }
3441   } else if (hasImplicitComdat(RawLinkage)) {
3442     ImplicitComdatObjects.insert(Func);
3443   }
3444 
3445   if (Record.size() > 13)
3446     OperandInfo.Prefix = Record[13];
3447 
3448   if (Record.size() > 14)
3449     OperandInfo.PersonalityFn = Record[14];
3450 
3451   if (Record.size() > 15) {
3452     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3453   }
3454   inferDSOLocal(Func);
3455 
3456   // Record[16] is the address space number.
3457 
3458   // Check whether we have enough values to read a partition name. Also make
3459   // sure Strtab has enough values.
3460   if (Record.size() > 18 && Strtab.data() &&
3461       Record[17] + Record[18] <= Strtab.size()) {
3462     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3463   }
3464 
3465   ValueList.push_back(Func);
3466 
3467   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3468     FunctionOperands.push_back(OperandInfo);
3469 
3470   // If this is a function with a body, remember the prototype we are
3471   // creating now, so that we can match up the body with them later.
3472   if (!isProto) {
3473     Func->setIsMaterializable(true);
3474     FunctionsWithBodies.push_back(Func);
3475     DeferredFunctionInfo[Func] = 0;
3476   }
3477   return Error::success();
3478 }
3479 
3480 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3481     unsigned BitCode, ArrayRef<uint64_t> Record) {
3482   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3483   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3484   // dllstorageclass, threadlocal, unnamed_addr,
3485   // preemption specifier] (name in VST)
3486   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3487   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3488   // preemption specifier] (name in VST)
3489   // v2: [strtab_offset, strtab_size, v1]
3490   StringRef Name;
3491   std::tie(Name, Record) = readNameFromStrtab(Record);
3492 
3493   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3494   if (Record.size() < (3 + (unsigned)NewRecord))
3495     return error("Invalid record");
3496   unsigned OpNum = 0;
3497   Type *Ty = getTypeByID(Record[OpNum++]);
3498   if (!Ty)
3499     return error("Invalid record");
3500 
3501   unsigned AddrSpace;
3502   if (!NewRecord) {
3503     auto *PTy = dyn_cast<PointerType>(Ty);
3504     if (!PTy)
3505       return error("Invalid type for value");
3506     Ty = PTy->getElementType();
3507     AddrSpace = PTy->getAddressSpace();
3508   } else {
3509     AddrSpace = Record[OpNum++];
3510   }
3511 
3512   auto Val = Record[OpNum++];
3513   auto Linkage = Record[OpNum++];
3514   GlobalValue *NewGA;
3515   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3516       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3517     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3518                                 TheModule);
3519   else
3520     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3521                                 nullptr, TheModule);
3522 
3523   // Local linkage must have default visibility.
3524   // auto-upgrade `hidden` and `protected` for old bitcode.
3525   if (OpNum != Record.size()) {
3526     auto VisInd = OpNum++;
3527     if (!NewGA->hasLocalLinkage())
3528       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3529   }
3530   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3531       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3532     if (OpNum != Record.size())
3533       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3534     else
3535       upgradeDLLImportExportLinkage(NewGA, Linkage);
3536     if (OpNum != Record.size())
3537       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3538     if (OpNum != Record.size())
3539       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3540   }
3541   if (OpNum != Record.size())
3542     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3543   inferDSOLocal(NewGA);
3544 
3545   // Check whether we have enough values to read a partition name.
3546   if (OpNum + 1 < Record.size()) {
3547     NewGA->setPartition(
3548         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3549     OpNum += 2;
3550   }
3551 
3552   ValueList.push_back(NewGA);
3553   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3554   return Error::success();
3555 }
3556 
3557 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3558                                  bool ShouldLazyLoadMetadata,
3559                                  DataLayoutCallbackTy DataLayoutCallback) {
3560   if (ResumeBit) {
3561     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3562       return JumpFailed;
3563   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3564     return Err;
3565 
3566   SmallVector<uint64_t, 64> Record;
3567 
3568   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3569   // finalize the datalayout before we run any of that code.
3570   bool ResolvedDataLayout = false;
3571   auto ResolveDataLayout = [&] {
3572     if (ResolvedDataLayout)
3573       return;
3574 
3575     // datalayout and triple can't be parsed after this point.
3576     ResolvedDataLayout = true;
3577 
3578     // Upgrade data layout string.
3579     std::string DL = llvm::UpgradeDataLayoutString(
3580         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3581     TheModule->setDataLayout(DL);
3582 
3583     if (auto LayoutOverride =
3584             DataLayoutCallback(TheModule->getTargetTriple()))
3585       TheModule->setDataLayout(*LayoutOverride);
3586   };
3587 
3588   // Read all the records for this module.
3589   while (true) {
3590     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3591     if (!MaybeEntry)
3592       return MaybeEntry.takeError();
3593     llvm::BitstreamEntry Entry = MaybeEntry.get();
3594 
3595     switch (Entry.Kind) {
3596     case BitstreamEntry::Error:
3597       return error("Malformed block");
3598     case BitstreamEntry::EndBlock:
3599       ResolveDataLayout();
3600       return globalCleanup();
3601 
3602     case BitstreamEntry::SubBlock:
3603       switch (Entry.ID) {
3604       default:  // Skip unknown content.
3605         if (Error Err = Stream.SkipBlock())
3606           return Err;
3607         break;
3608       case bitc::BLOCKINFO_BLOCK_ID:
3609         if (readBlockInfo())
3610           return error("Malformed block");
3611         break;
3612       case bitc::PARAMATTR_BLOCK_ID:
3613         if (Error Err = parseAttributeBlock())
3614           return Err;
3615         break;
3616       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3617         if (Error Err = parseAttributeGroupBlock())
3618           return Err;
3619         break;
3620       case bitc::TYPE_BLOCK_ID_NEW:
3621         if (Error Err = parseTypeTable())
3622           return Err;
3623         break;
3624       case bitc::VALUE_SYMTAB_BLOCK_ID:
3625         if (!SeenValueSymbolTable) {
3626           // Either this is an old form VST without function index and an
3627           // associated VST forward declaration record (which would have caused
3628           // the VST to be jumped to and parsed before it was encountered
3629           // normally in the stream), or there were no function blocks to
3630           // trigger an earlier parsing of the VST.
3631           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3632           if (Error Err = parseValueSymbolTable())
3633             return Err;
3634           SeenValueSymbolTable = true;
3635         } else {
3636           // We must have had a VST forward declaration record, which caused
3637           // the parser to jump to and parse the VST earlier.
3638           assert(VSTOffset > 0);
3639           if (Error Err = Stream.SkipBlock())
3640             return Err;
3641         }
3642         break;
3643       case bitc::CONSTANTS_BLOCK_ID:
3644         if (Error Err = parseConstants())
3645           return Err;
3646         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3647           return Err;
3648         break;
3649       case bitc::METADATA_BLOCK_ID:
3650         if (ShouldLazyLoadMetadata) {
3651           if (Error Err = rememberAndSkipMetadata())
3652             return Err;
3653           break;
3654         }
3655         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3656         if (Error Err = MDLoader->parseModuleMetadata())
3657           return Err;
3658         break;
3659       case bitc::METADATA_KIND_BLOCK_ID:
3660         if (Error Err = MDLoader->parseMetadataKinds())
3661           return Err;
3662         break;
3663       case bitc::FUNCTION_BLOCK_ID:
3664         ResolveDataLayout();
3665 
3666         // If this is the first function body we've seen, reverse the
3667         // FunctionsWithBodies list.
3668         if (!SeenFirstFunctionBody) {
3669           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3670           if (Error Err = globalCleanup())
3671             return Err;
3672           SeenFirstFunctionBody = true;
3673         }
3674 
3675         if (VSTOffset > 0) {
3676           // If we have a VST forward declaration record, make sure we
3677           // parse the VST now if we haven't already. It is needed to
3678           // set up the DeferredFunctionInfo vector for lazy reading.
3679           if (!SeenValueSymbolTable) {
3680             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3681               return Err;
3682             SeenValueSymbolTable = true;
3683             // Fall through so that we record the NextUnreadBit below.
3684             // This is necessary in case we have an anonymous function that
3685             // is later materialized. Since it will not have a VST entry we
3686             // need to fall back to the lazy parse to find its offset.
3687           } else {
3688             // If we have a VST forward declaration record, but have already
3689             // parsed the VST (just above, when the first function body was
3690             // encountered here), then we are resuming the parse after
3691             // materializing functions. The ResumeBit points to the
3692             // start of the last function block recorded in the
3693             // DeferredFunctionInfo map. Skip it.
3694             if (Error Err = Stream.SkipBlock())
3695               return Err;
3696             continue;
3697           }
3698         }
3699 
3700         // Support older bitcode files that did not have the function
3701         // index in the VST, nor a VST forward declaration record, as
3702         // well as anonymous functions that do not have VST entries.
3703         // Build the DeferredFunctionInfo vector on the fly.
3704         if (Error Err = rememberAndSkipFunctionBody())
3705           return Err;
3706 
3707         // Suspend parsing when we reach the function bodies. Subsequent
3708         // materialization calls will resume it when necessary. If the bitcode
3709         // file is old, the symbol table will be at the end instead and will not
3710         // have been seen yet. In this case, just finish the parse now.
3711         if (SeenValueSymbolTable) {
3712           NextUnreadBit = Stream.GetCurrentBitNo();
3713           // After the VST has been parsed, we need to make sure intrinsic name
3714           // are auto-upgraded.
3715           return globalCleanup();
3716         }
3717         break;
3718       case bitc::USELIST_BLOCK_ID:
3719         if (Error Err = parseUseLists())
3720           return Err;
3721         break;
3722       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3723         if (Error Err = parseOperandBundleTags())
3724           return Err;
3725         break;
3726       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3727         if (Error Err = parseSyncScopeNames())
3728           return Err;
3729         break;
3730       }
3731       continue;
3732 
3733     case BitstreamEntry::Record:
3734       // The interesting case.
3735       break;
3736     }
3737 
3738     // Read a record.
3739     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3740     if (!MaybeBitCode)
3741       return MaybeBitCode.takeError();
3742     switch (unsigned BitCode = MaybeBitCode.get()) {
3743     default: break;  // Default behavior, ignore unknown content.
3744     case bitc::MODULE_CODE_VERSION: {
3745       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3746       if (!VersionOrErr)
3747         return VersionOrErr.takeError();
3748       UseRelativeIDs = *VersionOrErr >= 1;
3749       break;
3750     }
3751     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3752       if (ResolvedDataLayout)
3753         return error("target triple too late in module");
3754       std::string S;
3755       if (convertToString(Record, 0, S))
3756         return error("Invalid record");
3757       TheModule->setTargetTriple(S);
3758       break;
3759     }
3760     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3761       if (ResolvedDataLayout)
3762         return error("datalayout too late in module");
3763       std::string S;
3764       if (convertToString(Record, 0, S))
3765         return error("Invalid record");
3766       TheModule->setDataLayout(S);
3767       break;
3768     }
3769     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3770       std::string S;
3771       if (convertToString(Record, 0, S))
3772         return error("Invalid record");
3773       TheModule->setModuleInlineAsm(S);
3774       break;
3775     }
3776     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3777       // Deprecated, but still needed to read old bitcode files.
3778       std::string S;
3779       if (convertToString(Record, 0, S))
3780         return error("Invalid record");
3781       // Ignore value.
3782       break;
3783     }
3784     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3785       std::string S;
3786       if (convertToString(Record, 0, S))
3787         return error("Invalid record");
3788       SectionTable.push_back(S);
3789       break;
3790     }
3791     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3792       std::string S;
3793       if (convertToString(Record, 0, S))
3794         return error("Invalid record");
3795       GCTable.push_back(S);
3796       break;
3797     }
3798     case bitc::MODULE_CODE_COMDAT:
3799       if (Error Err = parseComdatRecord(Record))
3800         return Err;
3801       break;
3802     case bitc::MODULE_CODE_GLOBALVAR:
3803       if (Error Err = parseGlobalVarRecord(Record))
3804         return Err;
3805       break;
3806     case bitc::MODULE_CODE_FUNCTION:
3807       ResolveDataLayout();
3808       if (Error Err = parseFunctionRecord(Record))
3809         return Err;
3810       break;
3811     case bitc::MODULE_CODE_IFUNC:
3812     case bitc::MODULE_CODE_ALIAS:
3813     case bitc::MODULE_CODE_ALIAS_OLD:
3814       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3815         return Err;
3816       break;
3817     /// MODULE_CODE_VSTOFFSET: [offset]
3818     case bitc::MODULE_CODE_VSTOFFSET:
3819       if (Record.empty())
3820         return error("Invalid record");
3821       // Note that we subtract 1 here because the offset is relative to one word
3822       // before the start of the identification or module block, which was
3823       // historically always the start of the regular bitcode header.
3824       VSTOffset = Record[0] - 1;
3825       break;
3826     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3827     case bitc::MODULE_CODE_SOURCE_FILENAME:
3828       SmallString<128> ValueName;
3829       if (convertToString(Record, 0, ValueName))
3830         return error("Invalid record");
3831       TheModule->setSourceFileName(ValueName);
3832       break;
3833     }
3834     Record.clear();
3835   }
3836 }
3837 
3838 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3839                                       bool IsImporting,
3840                                       DataLayoutCallbackTy DataLayoutCallback) {
3841   TheModule = M;
3842   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3843                             [&](unsigned ID) { return getTypeByID(ID); });
3844   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3845 }
3846 
3847 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3848   if (!isa<PointerType>(PtrType))
3849     return error("Load/Store operand is not a pointer type");
3850 
3851   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3852     return error("Explicit load/store type does not match pointee "
3853                  "type of pointer operand");
3854   if (!PointerType::isLoadableOrStorableType(ValType))
3855     return error("Cannot load/store from pointer");
3856   return Error::success();
3857 }
3858 
3859 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3860                                             ArrayRef<Type *> ArgsTys) {
3861   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3862     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3863                                      Attribute::InAlloca}) {
3864       if (!CB->paramHasAttr(i, Kind) ||
3865           CB->getParamAttr(i, Kind).getValueAsType())
3866         continue;
3867 
3868       CB->removeParamAttr(i, Kind);
3869 
3870       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3871       Attribute NewAttr;
3872       switch (Kind) {
3873       case Attribute::ByVal:
3874         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3875         break;
3876       case Attribute::StructRet:
3877         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3878         break;
3879       case Attribute::InAlloca:
3880         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3881         break;
3882       default:
3883         llvm_unreachable("not an upgraded type attribute");
3884       }
3885 
3886       CB->addParamAttr(i, NewAttr);
3887     }
3888   }
3889 
3890   switch (CB->getIntrinsicID()) {
3891   case Intrinsic::preserve_array_access_index:
3892   case Intrinsic::preserve_struct_access_index:
3893     if (!CB->getAttributes().getParamElementType(0)) {
3894       Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3895       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3896       CB->addParamAttr(0, NewAttr);
3897     }
3898     break;
3899   default:
3900     break;
3901   }
3902 }
3903 
3904 /// Lazily parse the specified function body block.
3905 Error BitcodeReader::parseFunctionBody(Function *F) {
3906   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3907     return Err;
3908 
3909   // Unexpected unresolved metadata when parsing function.
3910   if (MDLoader->hasFwdRefs())
3911     return error("Invalid function metadata: incoming forward references");
3912 
3913   InstructionList.clear();
3914   unsigned ModuleValueListSize = ValueList.size();
3915   unsigned ModuleMDLoaderSize = MDLoader->size();
3916 
3917   // Add all the function arguments to the value table.
3918 #ifndef NDEBUG
3919   unsigned ArgNo = 0;
3920   FunctionType *FTy = FunctionTypes[F];
3921 #endif
3922   for (Argument &I : F->args()) {
3923     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3924            "Incorrect fully specified type for Function Argument");
3925     ValueList.push_back(&I);
3926   }
3927   unsigned NextValueNo = ValueList.size();
3928   BasicBlock *CurBB = nullptr;
3929   unsigned CurBBNo = 0;
3930 
3931   DebugLoc LastLoc;
3932   auto getLastInstruction = [&]() -> Instruction * {
3933     if (CurBB && !CurBB->empty())
3934       return &CurBB->back();
3935     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3936              !FunctionBBs[CurBBNo - 1]->empty())
3937       return &FunctionBBs[CurBBNo - 1]->back();
3938     return nullptr;
3939   };
3940 
3941   std::vector<OperandBundleDef> OperandBundles;
3942 
3943   // Read all the records.
3944   SmallVector<uint64_t, 64> Record;
3945 
3946   while (true) {
3947     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3948     if (!MaybeEntry)
3949       return MaybeEntry.takeError();
3950     llvm::BitstreamEntry Entry = MaybeEntry.get();
3951 
3952     switch (Entry.Kind) {
3953     case BitstreamEntry::Error:
3954       return error("Malformed block");
3955     case BitstreamEntry::EndBlock:
3956       goto OutOfRecordLoop;
3957 
3958     case BitstreamEntry::SubBlock:
3959       switch (Entry.ID) {
3960       default:  // Skip unknown content.
3961         if (Error Err = Stream.SkipBlock())
3962           return Err;
3963         break;
3964       case bitc::CONSTANTS_BLOCK_ID:
3965         if (Error Err = parseConstants())
3966           return Err;
3967         NextValueNo = ValueList.size();
3968         break;
3969       case bitc::VALUE_SYMTAB_BLOCK_ID:
3970         if (Error Err = parseValueSymbolTable())
3971           return Err;
3972         break;
3973       case bitc::METADATA_ATTACHMENT_ID:
3974         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3975           return Err;
3976         break;
3977       case bitc::METADATA_BLOCK_ID:
3978         assert(DeferredMetadataInfo.empty() &&
3979                "Must read all module-level metadata before function-level");
3980         if (Error Err = MDLoader->parseFunctionMetadata())
3981           return Err;
3982         break;
3983       case bitc::USELIST_BLOCK_ID:
3984         if (Error Err = parseUseLists())
3985           return Err;
3986         break;
3987       }
3988       continue;
3989 
3990     case BitstreamEntry::Record:
3991       // The interesting case.
3992       break;
3993     }
3994 
3995     // Read a record.
3996     Record.clear();
3997     Instruction *I = nullptr;
3998     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3999     if (!MaybeBitCode)
4000       return MaybeBitCode.takeError();
4001     switch (unsigned BitCode = MaybeBitCode.get()) {
4002     default: // Default behavior: reject
4003       return error("Invalid value");
4004     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4005       if (Record.empty() || Record[0] == 0)
4006         return error("Invalid record");
4007       // Create all the basic blocks for the function.
4008       FunctionBBs.resize(Record[0]);
4009 
4010       // See if anything took the address of blocks in this function.
4011       auto BBFRI = BasicBlockFwdRefs.find(F);
4012       if (BBFRI == BasicBlockFwdRefs.end()) {
4013         for (BasicBlock *&BB : FunctionBBs)
4014           BB = BasicBlock::Create(Context, "", F);
4015       } else {
4016         auto &BBRefs = BBFRI->second;
4017         // Check for invalid basic block references.
4018         if (BBRefs.size() > FunctionBBs.size())
4019           return error("Invalid ID");
4020         assert(!BBRefs.empty() && "Unexpected empty array");
4021         assert(!BBRefs.front() && "Invalid reference to entry block");
4022         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4023              ++I)
4024           if (I < RE && BBRefs[I]) {
4025             BBRefs[I]->insertInto(F);
4026             FunctionBBs[I] = BBRefs[I];
4027           } else {
4028             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4029           }
4030 
4031         // Erase from the table.
4032         BasicBlockFwdRefs.erase(BBFRI);
4033       }
4034 
4035       CurBB = FunctionBBs[0];
4036       continue;
4037     }
4038 
4039     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4040       // This record indicates that the last instruction is at the same
4041       // location as the previous instruction with a location.
4042       I = getLastInstruction();
4043 
4044       if (!I)
4045         return error("Invalid record");
4046       I->setDebugLoc(LastLoc);
4047       I = nullptr;
4048       continue;
4049 
4050     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4051       I = getLastInstruction();
4052       if (!I || Record.size() < 4)
4053         return error("Invalid record");
4054 
4055       unsigned Line = Record[0], Col = Record[1];
4056       unsigned ScopeID = Record[2], IAID = Record[3];
4057       bool isImplicitCode = Record.size() == 5 && Record[4];
4058 
4059       MDNode *Scope = nullptr, *IA = nullptr;
4060       if (ScopeID) {
4061         Scope = dyn_cast_or_null<MDNode>(
4062             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4063         if (!Scope)
4064           return error("Invalid record");
4065       }
4066       if (IAID) {
4067         IA = dyn_cast_or_null<MDNode>(
4068             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4069         if (!IA)
4070           return error("Invalid record");
4071       }
4072       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4073                                 isImplicitCode);
4074       I->setDebugLoc(LastLoc);
4075       I = nullptr;
4076       continue;
4077     }
4078     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4079       unsigned OpNum = 0;
4080       Value *LHS;
4081       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4082           OpNum+1 > Record.size())
4083         return error("Invalid record");
4084 
4085       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4086       if (Opc == -1)
4087         return error("Invalid record");
4088       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4089       InstructionList.push_back(I);
4090       if (OpNum < Record.size()) {
4091         if (isa<FPMathOperator>(I)) {
4092           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4093           if (FMF.any())
4094             I->setFastMathFlags(FMF);
4095         }
4096       }
4097       break;
4098     }
4099     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4100       unsigned OpNum = 0;
4101       Value *LHS, *RHS;
4102       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4103           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4104           OpNum+1 > Record.size())
4105         return error("Invalid record");
4106 
4107       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4108       if (Opc == -1)
4109         return error("Invalid record");
4110       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4111       InstructionList.push_back(I);
4112       if (OpNum < Record.size()) {
4113         if (Opc == Instruction::Add ||
4114             Opc == Instruction::Sub ||
4115             Opc == Instruction::Mul ||
4116             Opc == Instruction::Shl) {
4117           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4118             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4119           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4120             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4121         } else if (Opc == Instruction::SDiv ||
4122                    Opc == Instruction::UDiv ||
4123                    Opc == Instruction::LShr ||
4124                    Opc == Instruction::AShr) {
4125           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4126             cast<BinaryOperator>(I)->setIsExact(true);
4127         } else if (isa<FPMathOperator>(I)) {
4128           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4129           if (FMF.any())
4130             I->setFastMathFlags(FMF);
4131         }
4132 
4133       }
4134       break;
4135     }
4136     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4137       unsigned OpNum = 0;
4138       Value *Op;
4139       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4140           OpNum+2 != Record.size())
4141         return error("Invalid record");
4142 
4143       Type *ResTy = getTypeByID(Record[OpNum]);
4144       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4145       if (Opc == -1 || !ResTy)
4146         return error("Invalid record");
4147       Instruction *Temp = nullptr;
4148       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4149         if (Temp) {
4150           InstructionList.push_back(Temp);
4151           assert(CurBB && "No current BB?");
4152           CurBB->getInstList().push_back(Temp);
4153         }
4154       } else {
4155         auto CastOp = (Instruction::CastOps)Opc;
4156         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4157           return error("Invalid cast");
4158         I = CastInst::Create(CastOp, Op, ResTy);
4159       }
4160       InstructionList.push_back(I);
4161       break;
4162     }
4163     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4164     case bitc::FUNC_CODE_INST_GEP_OLD:
4165     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4166       unsigned OpNum = 0;
4167 
4168       Type *Ty;
4169       bool InBounds;
4170 
4171       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4172         InBounds = Record[OpNum++];
4173         Ty = getTypeByID(Record[OpNum++]);
4174       } else {
4175         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4176         Ty = nullptr;
4177       }
4178 
4179       Value *BasePtr;
4180       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4181         return error("Invalid record");
4182 
4183       if (!Ty) {
4184         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4185                  ->getElementType();
4186       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4187                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4188         return error(
4189             "Explicit gep type does not match pointee type of pointer operand");
4190       }
4191 
4192       SmallVector<Value*, 16> GEPIdx;
4193       while (OpNum != Record.size()) {
4194         Value *Op;
4195         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4196           return error("Invalid record");
4197         GEPIdx.push_back(Op);
4198       }
4199 
4200       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4201 
4202       InstructionList.push_back(I);
4203       if (InBounds)
4204         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4205       break;
4206     }
4207 
4208     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4209                                        // EXTRACTVAL: [opty, opval, n x indices]
4210       unsigned OpNum = 0;
4211       Value *Agg;
4212       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4213         return error("Invalid record");
4214       Type *Ty = Agg->getType();
4215 
4216       unsigned RecSize = Record.size();
4217       if (OpNum == RecSize)
4218         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4219 
4220       SmallVector<unsigned, 4> EXTRACTVALIdx;
4221       for (; OpNum != RecSize; ++OpNum) {
4222         bool IsArray = Ty->isArrayTy();
4223         bool IsStruct = Ty->isStructTy();
4224         uint64_t Index = Record[OpNum];
4225 
4226         if (!IsStruct && !IsArray)
4227           return error("EXTRACTVAL: Invalid type");
4228         if ((unsigned)Index != Index)
4229           return error("Invalid value");
4230         if (IsStruct && Index >= Ty->getStructNumElements())
4231           return error("EXTRACTVAL: Invalid struct index");
4232         if (IsArray && Index >= Ty->getArrayNumElements())
4233           return error("EXTRACTVAL: Invalid array index");
4234         EXTRACTVALIdx.push_back((unsigned)Index);
4235 
4236         if (IsStruct)
4237           Ty = Ty->getStructElementType(Index);
4238         else
4239           Ty = Ty->getArrayElementType();
4240       }
4241 
4242       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4243       InstructionList.push_back(I);
4244       break;
4245     }
4246 
4247     case bitc::FUNC_CODE_INST_INSERTVAL: {
4248                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4249       unsigned OpNum = 0;
4250       Value *Agg;
4251       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4252         return error("Invalid record");
4253       Value *Val;
4254       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4255         return error("Invalid record");
4256 
4257       unsigned RecSize = Record.size();
4258       if (OpNum == RecSize)
4259         return error("INSERTVAL: Invalid instruction with 0 indices");
4260 
4261       SmallVector<unsigned, 4> INSERTVALIdx;
4262       Type *CurTy = Agg->getType();
4263       for (; OpNum != RecSize; ++OpNum) {
4264         bool IsArray = CurTy->isArrayTy();
4265         bool IsStruct = CurTy->isStructTy();
4266         uint64_t Index = Record[OpNum];
4267 
4268         if (!IsStruct && !IsArray)
4269           return error("INSERTVAL: Invalid type");
4270         if ((unsigned)Index != Index)
4271           return error("Invalid value");
4272         if (IsStruct && Index >= CurTy->getStructNumElements())
4273           return error("INSERTVAL: Invalid struct index");
4274         if (IsArray && Index >= CurTy->getArrayNumElements())
4275           return error("INSERTVAL: Invalid array index");
4276 
4277         INSERTVALIdx.push_back((unsigned)Index);
4278         if (IsStruct)
4279           CurTy = CurTy->getStructElementType(Index);
4280         else
4281           CurTy = CurTy->getArrayElementType();
4282       }
4283 
4284       if (CurTy != Val->getType())
4285         return error("Inserted value type doesn't match aggregate type");
4286 
4287       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4288       InstructionList.push_back(I);
4289       break;
4290     }
4291 
4292     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4293       // obsolete form of select
4294       // handles select i1 ... in old bitcode
4295       unsigned OpNum = 0;
4296       Value *TrueVal, *FalseVal, *Cond;
4297       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4298           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4299           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4300         return error("Invalid record");
4301 
4302       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4303       InstructionList.push_back(I);
4304       break;
4305     }
4306 
4307     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4308       // new form of select
4309       // handles select i1 or select [N x i1]
4310       unsigned OpNum = 0;
4311       Value *TrueVal, *FalseVal, *Cond;
4312       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4313           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4314           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4315         return error("Invalid record");
4316 
4317       // select condition can be either i1 or [N x i1]
4318       if (VectorType* vector_type =
4319           dyn_cast<VectorType>(Cond->getType())) {
4320         // expect <n x i1>
4321         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4322           return error("Invalid type for value");
4323       } else {
4324         // expect i1
4325         if (Cond->getType() != Type::getInt1Ty(Context))
4326           return error("Invalid type for value");
4327       }
4328 
4329       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4330       InstructionList.push_back(I);
4331       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4332         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4333         if (FMF.any())
4334           I->setFastMathFlags(FMF);
4335       }
4336       break;
4337     }
4338 
4339     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4340       unsigned OpNum = 0;
4341       Value *Vec, *Idx;
4342       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4343           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4344         return error("Invalid record");
4345       if (!Vec->getType()->isVectorTy())
4346         return error("Invalid type for value");
4347       I = ExtractElementInst::Create(Vec, Idx);
4348       InstructionList.push_back(I);
4349       break;
4350     }
4351 
4352     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4353       unsigned OpNum = 0;
4354       Value *Vec, *Elt, *Idx;
4355       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4356         return error("Invalid record");
4357       if (!Vec->getType()->isVectorTy())
4358         return error("Invalid type for value");
4359       if (popValue(Record, OpNum, NextValueNo,
4360                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4361           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4362         return error("Invalid record");
4363       I = InsertElementInst::Create(Vec, Elt, Idx);
4364       InstructionList.push_back(I);
4365       break;
4366     }
4367 
4368     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4369       unsigned OpNum = 0;
4370       Value *Vec1, *Vec2, *Mask;
4371       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4372           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4373         return error("Invalid record");
4374 
4375       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4376         return error("Invalid record");
4377       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4378         return error("Invalid type for value");
4379 
4380       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4381       InstructionList.push_back(I);
4382       break;
4383     }
4384 
4385     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4386       // Old form of ICmp/FCmp returning bool
4387       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4388       // both legal on vectors but had different behaviour.
4389     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4390       // FCmp/ICmp returning bool or vector of bool
4391 
4392       unsigned OpNum = 0;
4393       Value *LHS, *RHS;
4394       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4395           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4396         return error("Invalid record");
4397 
4398       if (OpNum >= Record.size())
4399         return error(
4400             "Invalid record: operand number exceeded available operands");
4401 
4402       unsigned PredVal = Record[OpNum];
4403       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4404       FastMathFlags FMF;
4405       if (IsFP && Record.size() > OpNum+1)
4406         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4407 
4408       if (OpNum+1 != Record.size())
4409         return error("Invalid record");
4410 
4411       if (LHS->getType()->isFPOrFPVectorTy())
4412         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4413       else
4414         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4415 
4416       if (FMF.any())
4417         I->setFastMathFlags(FMF);
4418       InstructionList.push_back(I);
4419       break;
4420     }
4421 
4422     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4423       {
4424         unsigned Size = Record.size();
4425         if (Size == 0) {
4426           I = ReturnInst::Create(Context);
4427           InstructionList.push_back(I);
4428           break;
4429         }
4430 
4431         unsigned OpNum = 0;
4432         Value *Op = nullptr;
4433         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4434           return error("Invalid record");
4435         if (OpNum != Record.size())
4436           return error("Invalid record");
4437 
4438         I = ReturnInst::Create(Context, Op);
4439         InstructionList.push_back(I);
4440         break;
4441       }
4442     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4443       if (Record.size() != 1 && Record.size() != 3)
4444         return error("Invalid record");
4445       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4446       if (!TrueDest)
4447         return error("Invalid record");
4448 
4449       if (Record.size() == 1) {
4450         I = BranchInst::Create(TrueDest);
4451         InstructionList.push_back(I);
4452       }
4453       else {
4454         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4455         Value *Cond = getValue(Record, 2, NextValueNo,
4456                                Type::getInt1Ty(Context));
4457         if (!FalseDest || !Cond)
4458           return error("Invalid record");
4459         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4460         InstructionList.push_back(I);
4461       }
4462       break;
4463     }
4464     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4465       if (Record.size() != 1 && Record.size() != 2)
4466         return error("Invalid record");
4467       unsigned Idx = 0;
4468       Value *CleanupPad =
4469           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4470       if (!CleanupPad)
4471         return error("Invalid record");
4472       BasicBlock *UnwindDest = nullptr;
4473       if (Record.size() == 2) {
4474         UnwindDest = getBasicBlock(Record[Idx++]);
4475         if (!UnwindDest)
4476           return error("Invalid record");
4477       }
4478 
4479       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4480       InstructionList.push_back(I);
4481       break;
4482     }
4483     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4484       if (Record.size() != 2)
4485         return error("Invalid record");
4486       unsigned Idx = 0;
4487       Value *CatchPad =
4488           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4489       if (!CatchPad)
4490         return error("Invalid record");
4491       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4492       if (!BB)
4493         return error("Invalid record");
4494 
4495       I = CatchReturnInst::Create(CatchPad, BB);
4496       InstructionList.push_back(I);
4497       break;
4498     }
4499     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4500       // We must have, at minimum, the outer scope and the number of arguments.
4501       if (Record.size() < 2)
4502         return error("Invalid record");
4503 
4504       unsigned Idx = 0;
4505 
4506       Value *ParentPad =
4507           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4508 
4509       unsigned NumHandlers = Record[Idx++];
4510 
4511       SmallVector<BasicBlock *, 2> Handlers;
4512       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4513         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4514         if (!BB)
4515           return error("Invalid record");
4516         Handlers.push_back(BB);
4517       }
4518 
4519       BasicBlock *UnwindDest = nullptr;
4520       if (Idx + 1 == Record.size()) {
4521         UnwindDest = getBasicBlock(Record[Idx++]);
4522         if (!UnwindDest)
4523           return error("Invalid record");
4524       }
4525 
4526       if (Record.size() != Idx)
4527         return error("Invalid record");
4528 
4529       auto *CatchSwitch =
4530           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4531       for (BasicBlock *Handler : Handlers)
4532         CatchSwitch->addHandler(Handler);
4533       I = CatchSwitch;
4534       InstructionList.push_back(I);
4535       break;
4536     }
4537     case bitc::FUNC_CODE_INST_CATCHPAD:
4538     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4539       // We must have, at minimum, the outer scope and the number of arguments.
4540       if (Record.size() < 2)
4541         return error("Invalid record");
4542 
4543       unsigned Idx = 0;
4544 
4545       Value *ParentPad =
4546           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4547 
4548       unsigned NumArgOperands = Record[Idx++];
4549 
4550       SmallVector<Value *, 2> Args;
4551       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4552         Value *Val;
4553         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4554           return error("Invalid record");
4555         Args.push_back(Val);
4556       }
4557 
4558       if (Record.size() != Idx)
4559         return error("Invalid record");
4560 
4561       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4562         I = CleanupPadInst::Create(ParentPad, Args);
4563       else
4564         I = CatchPadInst::Create(ParentPad, Args);
4565       InstructionList.push_back(I);
4566       break;
4567     }
4568     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4569       // Check magic
4570       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4571         // "New" SwitchInst format with case ranges. The changes to write this
4572         // format were reverted but we still recognize bitcode that uses it.
4573         // Hopefully someday we will have support for case ranges and can use
4574         // this format again.
4575 
4576         Type *OpTy = getTypeByID(Record[1]);
4577         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4578 
4579         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4580         BasicBlock *Default = getBasicBlock(Record[3]);
4581         if (!OpTy || !Cond || !Default)
4582           return error("Invalid record");
4583 
4584         unsigned NumCases = Record[4];
4585 
4586         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4587         InstructionList.push_back(SI);
4588 
4589         unsigned CurIdx = 5;
4590         for (unsigned i = 0; i != NumCases; ++i) {
4591           SmallVector<ConstantInt*, 1> CaseVals;
4592           unsigned NumItems = Record[CurIdx++];
4593           for (unsigned ci = 0; ci != NumItems; ++ci) {
4594             bool isSingleNumber = Record[CurIdx++];
4595 
4596             APInt Low;
4597             unsigned ActiveWords = 1;
4598             if (ValueBitWidth > 64)
4599               ActiveWords = Record[CurIdx++];
4600             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4601                                 ValueBitWidth);
4602             CurIdx += ActiveWords;
4603 
4604             if (!isSingleNumber) {
4605               ActiveWords = 1;
4606               if (ValueBitWidth > 64)
4607                 ActiveWords = Record[CurIdx++];
4608               APInt High = readWideAPInt(
4609                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4610               CurIdx += ActiveWords;
4611 
4612               // FIXME: It is not clear whether values in the range should be
4613               // compared as signed or unsigned values. The partially
4614               // implemented changes that used this format in the past used
4615               // unsigned comparisons.
4616               for ( ; Low.ule(High); ++Low)
4617                 CaseVals.push_back(ConstantInt::get(Context, Low));
4618             } else
4619               CaseVals.push_back(ConstantInt::get(Context, Low));
4620           }
4621           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4622           for (ConstantInt *Cst : CaseVals)
4623             SI->addCase(Cst, DestBB);
4624         }
4625         I = SI;
4626         break;
4627       }
4628 
4629       // Old SwitchInst format without case ranges.
4630 
4631       if (Record.size() < 3 || (Record.size() & 1) == 0)
4632         return error("Invalid record");
4633       Type *OpTy = getTypeByID(Record[0]);
4634       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4635       BasicBlock *Default = getBasicBlock(Record[2]);
4636       if (!OpTy || !Cond || !Default)
4637         return error("Invalid record");
4638       unsigned NumCases = (Record.size()-3)/2;
4639       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4640       InstructionList.push_back(SI);
4641       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4642         ConstantInt *CaseVal =
4643           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4644         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4645         if (!CaseVal || !DestBB) {
4646           delete SI;
4647           return error("Invalid record");
4648         }
4649         SI->addCase(CaseVal, DestBB);
4650       }
4651       I = SI;
4652       break;
4653     }
4654     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4655       if (Record.size() < 2)
4656         return error("Invalid record");
4657       Type *OpTy = getTypeByID(Record[0]);
4658       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4659       if (!OpTy || !Address)
4660         return error("Invalid record");
4661       unsigned NumDests = Record.size()-2;
4662       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4663       InstructionList.push_back(IBI);
4664       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4665         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4666           IBI->addDestination(DestBB);
4667         } else {
4668           delete IBI;
4669           return error("Invalid record");
4670         }
4671       }
4672       I = IBI;
4673       break;
4674     }
4675 
4676     case bitc::FUNC_CODE_INST_INVOKE: {
4677       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4678       if (Record.size() < 4)
4679         return error("Invalid record");
4680       unsigned OpNum = 0;
4681       AttributeList PAL = getAttributes(Record[OpNum++]);
4682       unsigned CCInfo = Record[OpNum++];
4683       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4684       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4685 
4686       FunctionType *FTy = nullptr;
4687       if ((CCInfo >> 13) & 1) {
4688         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4689         if (!FTy)
4690           return error("Explicit invoke type is not a function type");
4691       }
4692 
4693       Value *Callee;
4694       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4695         return error("Invalid record");
4696 
4697       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4698       if (!CalleeTy)
4699         return error("Callee is not a pointer");
4700       if (!FTy) {
4701         FTy = dyn_cast<FunctionType>(
4702             cast<PointerType>(Callee->getType())->getElementType());
4703         if (!FTy)
4704           return error("Callee is not of pointer to function type");
4705       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4706         return error("Explicit invoke type does not match pointee type of "
4707                      "callee operand");
4708       if (Record.size() < FTy->getNumParams() + OpNum)
4709         return error("Insufficient operands to call");
4710 
4711       SmallVector<Value*, 16> Ops;
4712       SmallVector<Type *, 16> ArgsTys;
4713       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4714         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4715                                FTy->getParamType(i)));
4716         ArgsTys.push_back(FTy->getParamType(i));
4717         if (!Ops.back())
4718           return error("Invalid record");
4719       }
4720 
4721       if (!FTy->isVarArg()) {
4722         if (Record.size() != OpNum)
4723           return error("Invalid record");
4724       } else {
4725         // Read type/value pairs for varargs params.
4726         while (OpNum != Record.size()) {
4727           Value *Op;
4728           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4729             return error("Invalid record");
4730           Ops.push_back(Op);
4731           ArgsTys.push_back(Op->getType());
4732         }
4733       }
4734 
4735       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4736                              OperandBundles);
4737       OperandBundles.clear();
4738       InstructionList.push_back(I);
4739       cast<InvokeInst>(I)->setCallingConv(
4740           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4741       cast<InvokeInst>(I)->setAttributes(PAL);
4742       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4743 
4744       break;
4745     }
4746     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4747       unsigned Idx = 0;
4748       Value *Val = nullptr;
4749       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4750         return error("Invalid record");
4751       I = ResumeInst::Create(Val);
4752       InstructionList.push_back(I);
4753       break;
4754     }
4755     case bitc::FUNC_CODE_INST_CALLBR: {
4756       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4757       unsigned OpNum = 0;
4758       AttributeList PAL = getAttributes(Record[OpNum++]);
4759       unsigned CCInfo = Record[OpNum++];
4760 
4761       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4762       unsigned NumIndirectDests = Record[OpNum++];
4763       SmallVector<BasicBlock *, 16> IndirectDests;
4764       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4765         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4766 
4767       FunctionType *FTy = nullptr;
4768       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4769         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4770         if (!FTy)
4771           return error("Explicit call type is not a function type");
4772       }
4773 
4774       Value *Callee;
4775       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4776         return error("Invalid record");
4777 
4778       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4779       if (!OpTy)
4780         return error("Callee is not a pointer type");
4781       if (!FTy) {
4782         FTy = dyn_cast<FunctionType>(
4783             cast<PointerType>(Callee->getType())->getElementType());
4784         if (!FTy)
4785           return error("Callee is not of pointer to function type");
4786       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4787         return error("Explicit call type does not match pointee type of "
4788                      "callee operand");
4789       if (Record.size() < FTy->getNumParams() + OpNum)
4790         return error("Insufficient operands to call");
4791 
4792       SmallVector<Value*, 16> Args;
4793       // Read the fixed params.
4794       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4795         if (FTy->getParamType(i)->isLabelTy())
4796           Args.push_back(getBasicBlock(Record[OpNum]));
4797         else
4798           Args.push_back(getValue(Record, OpNum, NextValueNo,
4799                                   FTy->getParamType(i)));
4800         if (!Args.back())
4801           return error("Invalid record");
4802       }
4803 
4804       // Read type/value pairs for varargs params.
4805       if (!FTy->isVarArg()) {
4806         if (OpNum != Record.size())
4807           return error("Invalid record");
4808       } else {
4809         while (OpNum != Record.size()) {
4810           Value *Op;
4811           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4812             return error("Invalid record");
4813           Args.push_back(Op);
4814         }
4815       }
4816 
4817       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4818                              OperandBundles);
4819       OperandBundles.clear();
4820       InstructionList.push_back(I);
4821       cast<CallBrInst>(I)->setCallingConv(
4822           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4823       cast<CallBrInst>(I)->setAttributes(PAL);
4824       break;
4825     }
4826     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4827       I = new UnreachableInst(Context);
4828       InstructionList.push_back(I);
4829       break;
4830     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4831       if (Record.empty())
4832         return error("Invalid record");
4833       // The first record specifies the type.
4834       Type *Ty = getTypeByID(Record[0]);
4835       if (!Ty)
4836         return error("Invalid record");
4837 
4838       // Phi arguments are pairs of records of [value, basic block].
4839       // There is an optional final record for fast-math-flags if this phi has a
4840       // floating-point type.
4841       size_t NumArgs = (Record.size() - 1) / 2;
4842       PHINode *PN = PHINode::Create(Ty, NumArgs);
4843       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4844         return error("Invalid record");
4845       InstructionList.push_back(PN);
4846 
4847       for (unsigned i = 0; i != NumArgs; i++) {
4848         Value *V;
4849         // With the new function encoding, it is possible that operands have
4850         // negative IDs (for forward references).  Use a signed VBR
4851         // representation to keep the encoding small.
4852         if (UseRelativeIDs)
4853           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4854         else
4855           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4856         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4857         if (!V || !BB)
4858           return error("Invalid record");
4859         PN->addIncoming(V, BB);
4860       }
4861       I = PN;
4862 
4863       // If there are an even number of records, the final record must be FMF.
4864       if (Record.size() % 2 == 0) {
4865         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4866         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4867         if (FMF.any())
4868           I->setFastMathFlags(FMF);
4869       }
4870 
4871       break;
4872     }
4873 
4874     case bitc::FUNC_CODE_INST_LANDINGPAD:
4875     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4876       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4877       unsigned Idx = 0;
4878       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4879         if (Record.size() < 3)
4880           return error("Invalid record");
4881       } else {
4882         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4883         if (Record.size() < 4)
4884           return error("Invalid record");
4885       }
4886       Type *Ty = getTypeByID(Record[Idx++]);
4887       if (!Ty)
4888         return error("Invalid record");
4889       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4890         Value *PersFn = nullptr;
4891         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4892           return error("Invalid record");
4893 
4894         if (!F->hasPersonalityFn())
4895           F->setPersonalityFn(cast<Constant>(PersFn));
4896         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4897           return error("Personality function mismatch");
4898       }
4899 
4900       bool IsCleanup = !!Record[Idx++];
4901       unsigned NumClauses = Record[Idx++];
4902       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4903       LP->setCleanup(IsCleanup);
4904       for (unsigned J = 0; J != NumClauses; ++J) {
4905         LandingPadInst::ClauseType CT =
4906           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4907         Value *Val;
4908 
4909         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4910           delete LP;
4911           return error("Invalid record");
4912         }
4913 
4914         assert((CT != LandingPadInst::Catch ||
4915                 !isa<ArrayType>(Val->getType())) &&
4916                "Catch clause has a invalid type!");
4917         assert((CT != LandingPadInst::Filter ||
4918                 isa<ArrayType>(Val->getType())) &&
4919                "Filter clause has invalid type!");
4920         LP->addClause(cast<Constant>(Val));
4921       }
4922 
4923       I = LP;
4924       InstructionList.push_back(I);
4925       break;
4926     }
4927 
4928     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4929       if (Record.size() != 4)
4930         return error("Invalid record");
4931       using APV = AllocaPackedValues;
4932       const uint64_t Rec = Record[3];
4933       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4934       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4935       Type *Ty = getTypeByID(Record[0]);
4936       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4937         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4938         if (!PTy)
4939           return error("Old-style alloca with a non-pointer type");
4940         Ty = PTy->getElementType();
4941       }
4942       Type *OpTy = getTypeByID(Record[1]);
4943       Value *Size = getFnValueByID(Record[2], OpTy);
4944       MaybeAlign Align;
4945       uint64_t AlignExp =
4946           Bitfield::get<APV::AlignLower>(Rec) |
4947           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
4948       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
4949         return Err;
4950       }
4951       if (!Ty || !Size)
4952         return error("Invalid record");
4953 
4954       // FIXME: Make this an optional field.
4955       const DataLayout &DL = TheModule->getDataLayout();
4956       unsigned AS = DL.getAllocaAddrSpace();
4957 
4958       SmallPtrSet<Type *, 4> Visited;
4959       if (!Align && !Ty->isSized(&Visited))
4960         return error("alloca of unsized type");
4961       if (!Align)
4962         Align = DL.getPrefTypeAlign(Ty);
4963 
4964       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4965       AI->setUsedWithInAlloca(InAlloca);
4966       AI->setSwiftError(SwiftError);
4967       I = AI;
4968       InstructionList.push_back(I);
4969       break;
4970     }
4971     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4972       unsigned OpNum = 0;
4973       Value *Op;
4974       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4975           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4976         return error("Invalid record");
4977 
4978       if (!isa<PointerType>(Op->getType()))
4979         return error("Load operand is not a pointer type");
4980 
4981       Type *Ty = nullptr;
4982       if (OpNum + 3 == Record.size()) {
4983         Ty = getTypeByID(Record[OpNum++]);
4984       } else {
4985         Ty = cast<PointerType>(Op->getType())->getElementType();
4986       }
4987 
4988       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4989         return Err;
4990 
4991       MaybeAlign Align;
4992       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4993         return Err;
4994       SmallPtrSet<Type *, 4> Visited;
4995       if (!Align && !Ty->isSized(&Visited))
4996         return error("load of unsized type");
4997       if (!Align)
4998         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4999       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5000       InstructionList.push_back(I);
5001       break;
5002     }
5003     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5004        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5005       unsigned OpNum = 0;
5006       Value *Op;
5007       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5008           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5009         return error("Invalid record");
5010 
5011       if (!isa<PointerType>(Op->getType()))
5012         return error("Load operand is not a pointer type");
5013 
5014       Type *Ty = nullptr;
5015       if (OpNum + 5 == Record.size()) {
5016         Ty = getTypeByID(Record[OpNum++]);
5017       } else {
5018         Ty = cast<PointerType>(Op->getType())->getElementType();
5019       }
5020 
5021       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5022         return Err;
5023 
5024       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5025       if (Ordering == AtomicOrdering::NotAtomic ||
5026           Ordering == AtomicOrdering::Release ||
5027           Ordering == AtomicOrdering::AcquireRelease)
5028         return error("Invalid record");
5029       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5030         return error("Invalid record");
5031       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5032 
5033       MaybeAlign Align;
5034       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5035         return Err;
5036       if (!Align)
5037         return error("Alignment missing from atomic load");
5038       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5039       InstructionList.push_back(I);
5040       break;
5041     }
5042     case bitc::FUNC_CODE_INST_STORE:
5043     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5044       unsigned OpNum = 0;
5045       Value *Val, *Ptr;
5046       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5047           (BitCode == bitc::FUNC_CODE_INST_STORE
5048                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5049                : popValue(Record, OpNum, NextValueNo,
5050                           cast<PointerType>(Ptr->getType())->getElementType(),
5051                           Val)) ||
5052           OpNum + 2 != Record.size())
5053         return error("Invalid record");
5054 
5055       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5056         return Err;
5057       MaybeAlign Align;
5058       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5059         return Err;
5060       SmallPtrSet<Type *, 4> Visited;
5061       if (!Align && !Val->getType()->isSized(&Visited))
5062         return error("store of unsized type");
5063       if (!Align)
5064         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5065       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5066       InstructionList.push_back(I);
5067       break;
5068     }
5069     case bitc::FUNC_CODE_INST_STOREATOMIC:
5070     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5071       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5072       unsigned OpNum = 0;
5073       Value *Val, *Ptr;
5074       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5075           !isa<PointerType>(Ptr->getType()) ||
5076           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5077                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5078                : popValue(Record, OpNum, NextValueNo,
5079                           cast<PointerType>(Ptr->getType())->getElementType(),
5080                           Val)) ||
5081           OpNum + 4 != Record.size())
5082         return error("Invalid record");
5083 
5084       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5085         return Err;
5086       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5087       if (Ordering == AtomicOrdering::NotAtomic ||
5088           Ordering == AtomicOrdering::Acquire ||
5089           Ordering == AtomicOrdering::AcquireRelease)
5090         return error("Invalid record");
5091       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5092       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5093         return error("Invalid record");
5094 
5095       MaybeAlign Align;
5096       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5097         return Err;
5098       if (!Align)
5099         return error("Alignment missing from atomic store");
5100       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5101       InstructionList.push_back(I);
5102       break;
5103     }
5104     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5105       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5106       // failure_ordering?, weak?]
5107       const size_t NumRecords = Record.size();
5108       unsigned OpNum = 0;
5109       Value *Ptr = nullptr;
5110       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5111         return error("Invalid record");
5112 
5113       if (!isa<PointerType>(Ptr->getType()))
5114         return error("Cmpxchg operand is not a pointer type");
5115 
5116       Value *Cmp = nullptr;
5117       if (popValue(Record, OpNum, NextValueNo,
5118                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5119                    Cmp))
5120         return error("Invalid record");
5121 
5122       Value *New = nullptr;
5123       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5124           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5125         return error("Invalid record");
5126 
5127       const AtomicOrdering SuccessOrdering =
5128           getDecodedOrdering(Record[OpNum + 1]);
5129       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5130           SuccessOrdering == AtomicOrdering::Unordered)
5131         return error("Invalid record");
5132 
5133       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5134 
5135       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5136         return Err;
5137 
5138       const AtomicOrdering FailureOrdering =
5139           NumRecords < 7
5140               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5141               : getDecodedOrdering(Record[OpNum + 3]);
5142 
5143       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5144           FailureOrdering == AtomicOrdering::Unordered)
5145         return error("Invalid record");
5146 
5147       const Align Alignment(
5148           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5149 
5150       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5151                                 FailureOrdering, SSID);
5152       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5153 
5154       if (NumRecords < 8) {
5155         // Before weak cmpxchgs existed, the instruction simply returned the
5156         // value loaded from memory, so bitcode files from that era will be
5157         // expecting the first component of a modern cmpxchg.
5158         CurBB->getInstList().push_back(I);
5159         I = ExtractValueInst::Create(I, 0);
5160       } else {
5161         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5162       }
5163 
5164       InstructionList.push_back(I);
5165       break;
5166     }
5167     case bitc::FUNC_CODE_INST_CMPXCHG: {
5168       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5169       // failure_ordering, weak, align?]
5170       const size_t NumRecords = Record.size();
5171       unsigned OpNum = 0;
5172       Value *Ptr = nullptr;
5173       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5174         return error("Invalid record");
5175 
5176       if (!isa<PointerType>(Ptr->getType()))
5177         return error("Cmpxchg operand is not a pointer type");
5178 
5179       Value *Cmp = nullptr;
5180       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5181         return error("Invalid record");
5182 
5183       Value *Val = nullptr;
5184       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5185         return error("Invalid record");
5186 
5187       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5188         return error("Invalid record");
5189 
5190       const bool IsVol = Record[OpNum];
5191 
5192       const AtomicOrdering SuccessOrdering =
5193           getDecodedOrdering(Record[OpNum + 1]);
5194       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5195         return error("Invalid cmpxchg success ordering");
5196 
5197       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5198 
5199       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5200         return Err;
5201 
5202       const AtomicOrdering FailureOrdering =
5203           getDecodedOrdering(Record[OpNum + 3]);
5204       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5205         return error("Invalid cmpxchg failure ordering");
5206 
5207       const bool IsWeak = Record[OpNum + 4];
5208 
5209       MaybeAlign Alignment;
5210 
5211       if (NumRecords == (OpNum + 6)) {
5212         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5213           return Err;
5214       }
5215       if (!Alignment)
5216         Alignment =
5217             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5218 
5219       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5220                                 FailureOrdering, SSID);
5221       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5222       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5223 
5224       InstructionList.push_back(I);
5225       break;
5226     }
5227     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5228     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5229       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5230       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5231       const size_t NumRecords = Record.size();
5232       unsigned OpNum = 0;
5233 
5234       Value *Ptr = nullptr;
5235       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5236         return error("Invalid record");
5237 
5238       if (!isa<PointerType>(Ptr->getType()))
5239         return error("Invalid record");
5240 
5241       Value *Val = nullptr;
5242       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5243         if (popValue(Record, OpNum, NextValueNo,
5244                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5245                      Val))
5246           return error("Invalid record");
5247       } else {
5248         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5249           return error("Invalid record");
5250       }
5251 
5252       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5253         return error("Invalid record");
5254 
5255       const AtomicRMWInst::BinOp Operation =
5256           getDecodedRMWOperation(Record[OpNum]);
5257       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5258           Operation > AtomicRMWInst::LAST_BINOP)
5259         return error("Invalid record");
5260 
5261       const bool IsVol = Record[OpNum + 1];
5262 
5263       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5264       if (Ordering == AtomicOrdering::NotAtomic ||
5265           Ordering == AtomicOrdering::Unordered)
5266         return error("Invalid record");
5267 
5268       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5269 
5270       MaybeAlign Alignment;
5271 
5272       if (NumRecords == (OpNum + 5)) {
5273         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5274           return Err;
5275       }
5276 
5277       if (!Alignment)
5278         Alignment =
5279             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5280 
5281       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5282       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5283 
5284       InstructionList.push_back(I);
5285       break;
5286     }
5287     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5288       if (2 != Record.size())
5289         return error("Invalid record");
5290       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5291       if (Ordering == AtomicOrdering::NotAtomic ||
5292           Ordering == AtomicOrdering::Unordered ||
5293           Ordering == AtomicOrdering::Monotonic)
5294         return error("Invalid record");
5295       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5296       I = new FenceInst(Context, Ordering, SSID);
5297       InstructionList.push_back(I);
5298       break;
5299     }
5300     case bitc::FUNC_CODE_INST_CALL: {
5301       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5302       if (Record.size() < 3)
5303         return error("Invalid record");
5304 
5305       unsigned OpNum = 0;
5306       AttributeList PAL = getAttributes(Record[OpNum++]);
5307       unsigned CCInfo = Record[OpNum++];
5308 
5309       FastMathFlags FMF;
5310       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5311         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5312         if (!FMF.any())
5313           return error("Fast math flags indicator set for call with no FMF");
5314       }
5315 
5316       FunctionType *FTy = nullptr;
5317       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5318         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5319         if (!FTy)
5320           return error("Explicit call type is not a function type");
5321       }
5322 
5323       Value *Callee;
5324       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5325         return error("Invalid record");
5326 
5327       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5328       if (!OpTy)
5329         return error("Callee is not a pointer type");
5330       if (!FTy) {
5331         FTy = dyn_cast<FunctionType>(
5332             cast<PointerType>(Callee->getType())->getElementType());
5333         if (!FTy)
5334           return error("Callee is not of pointer to function type");
5335       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5336         return error("Explicit call type does not match pointee type of "
5337                      "callee operand");
5338       if (Record.size() < FTy->getNumParams() + OpNum)
5339         return error("Insufficient operands to call");
5340 
5341       SmallVector<Value*, 16> Args;
5342       SmallVector<Type *, 16> ArgsTys;
5343       // Read the fixed params.
5344       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5345         if (FTy->getParamType(i)->isLabelTy())
5346           Args.push_back(getBasicBlock(Record[OpNum]));
5347         else
5348           Args.push_back(getValue(Record, OpNum, NextValueNo,
5349                                   FTy->getParamType(i)));
5350         ArgsTys.push_back(FTy->getParamType(i));
5351         if (!Args.back())
5352           return error("Invalid record");
5353       }
5354 
5355       // Read type/value pairs for varargs params.
5356       if (!FTy->isVarArg()) {
5357         if (OpNum != Record.size())
5358           return error("Invalid record");
5359       } else {
5360         while (OpNum != Record.size()) {
5361           Value *Op;
5362           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5363             return error("Invalid record");
5364           Args.push_back(Op);
5365           ArgsTys.push_back(Op->getType());
5366         }
5367       }
5368 
5369       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5370       OperandBundles.clear();
5371       InstructionList.push_back(I);
5372       cast<CallInst>(I)->setCallingConv(
5373           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5374       CallInst::TailCallKind TCK = CallInst::TCK_None;
5375       if (CCInfo & 1 << bitc::CALL_TAIL)
5376         TCK = CallInst::TCK_Tail;
5377       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5378         TCK = CallInst::TCK_MustTail;
5379       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5380         TCK = CallInst::TCK_NoTail;
5381       cast<CallInst>(I)->setTailCallKind(TCK);
5382       cast<CallInst>(I)->setAttributes(PAL);
5383       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5384       if (FMF.any()) {
5385         if (!isa<FPMathOperator>(I))
5386           return error("Fast-math-flags specified for call without "
5387                        "floating-point scalar or vector return type");
5388         I->setFastMathFlags(FMF);
5389       }
5390       break;
5391     }
5392     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5393       if (Record.size() < 3)
5394         return error("Invalid record");
5395       Type *OpTy = getTypeByID(Record[0]);
5396       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5397       Type *ResTy = getTypeByID(Record[2]);
5398       if (!OpTy || !Op || !ResTy)
5399         return error("Invalid record");
5400       I = new VAArgInst(Op, ResTy);
5401       InstructionList.push_back(I);
5402       break;
5403     }
5404 
5405     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5406       // A call or an invoke can be optionally prefixed with some variable
5407       // number of operand bundle blocks.  These blocks are read into
5408       // OperandBundles and consumed at the next call or invoke instruction.
5409 
5410       if (Record.empty() || Record[0] >= BundleTags.size())
5411         return error("Invalid record");
5412 
5413       std::vector<Value *> Inputs;
5414 
5415       unsigned OpNum = 1;
5416       while (OpNum != Record.size()) {
5417         Value *Op;
5418         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5419           return error("Invalid record");
5420         Inputs.push_back(Op);
5421       }
5422 
5423       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5424       continue;
5425     }
5426 
5427     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5428       unsigned OpNum = 0;
5429       Value *Op = nullptr;
5430       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5431         return error("Invalid record");
5432       if (OpNum != Record.size())
5433         return error("Invalid record");
5434 
5435       I = new FreezeInst(Op);
5436       InstructionList.push_back(I);
5437       break;
5438     }
5439     }
5440 
5441     // Add instruction to end of current BB.  If there is no current BB, reject
5442     // this file.
5443     if (!CurBB) {
5444       I->deleteValue();
5445       return error("Invalid instruction with no BB");
5446     }
5447     if (!OperandBundles.empty()) {
5448       I->deleteValue();
5449       return error("Operand bundles found with no consumer");
5450     }
5451     CurBB->getInstList().push_back(I);
5452 
5453     // If this was a terminator instruction, move to the next block.
5454     if (I->isTerminator()) {
5455       ++CurBBNo;
5456       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5457     }
5458 
5459     // Non-void values get registered in the value table for future use.
5460     if (!I->getType()->isVoidTy())
5461       ValueList.assignValue(I, NextValueNo++);
5462   }
5463 
5464 OutOfRecordLoop:
5465 
5466   if (!OperandBundles.empty())
5467     return error("Operand bundles found with no consumer");
5468 
5469   // Check the function list for unresolved values.
5470   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5471     if (!A->getParent()) {
5472       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5473       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5474         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5475           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5476           delete A;
5477         }
5478       }
5479       return error("Never resolved value found in function");
5480     }
5481   }
5482 
5483   // Unexpected unresolved metadata about to be dropped.
5484   if (MDLoader->hasFwdRefs())
5485     return error("Invalid function metadata: outgoing forward refs");
5486 
5487   // Trim the value list down to the size it was before we parsed this function.
5488   ValueList.shrinkTo(ModuleValueListSize);
5489   MDLoader->shrinkTo(ModuleMDLoaderSize);
5490   std::vector<BasicBlock*>().swap(FunctionBBs);
5491   return Error::success();
5492 }
5493 
5494 /// Find the function body in the bitcode stream
5495 Error BitcodeReader::findFunctionInStream(
5496     Function *F,
5497     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5498   while (DeferredFunctionInfoIterator->second == 0) {
5499     // This is the fallback handling for the old format bitcode that
5500     // didn't contain the function index in the VST, or when we have
5501     // an anonymous function which would not have a VST entry.
5502     // Assert that we have one of those two cases.
5503     assert(VSTOffset == 0 || !F->hasName());
5504     // Parse the next body in the stream and set its position in the
5505     // DeferredFunctionInfo map.
5506     if (Error Err = rememberAndSkipFunctionBodies())
5507       return Err;
5508   }
5509   return Error::success();
5510 }
5511 
5512 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5513   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5514     return SyncScope::ID(Val);
5515   if (Val >= SSIDs.size())
5516     return SyncScope::System; // Map unknown synchronization scopes to system.
5517   return SSIDs[Val];
5518 }
5519 
5520 //===----------------------------------------------------------------------===//
5521 // GVMaterializer implementation
5522 //===----------------------------------------------------------------------===//
5523 
5524 Error BitcodeReader::materialize(GlobalValue *GV) {
5525   Function *F = dyn_cast<Function>(GV);
5526   // If it's not a function or is already material, ignore the request.
5527   if (!F || !F->isMaterializable())
5528     return Error::success();
5529 
5530   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5531   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5532   // If its position is recorded as 0, its body is somewhere in the stream
5533   // but we haven't seen it yet.
5534   if (DFII->second == 0)
5535     if (Error Err = findFunctionInStream(F, DFII))
5536       return Err;
5537 
5538   // Materialize metadata before parsing any function bodies.
5539   if (Error Err = materializeMetadata())
5540     return Err;
5541 
5542   // Move the bit stream to the saved position of the deferred function body.
5543   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5544     return JumpFailed;
5545   if (Error Err = parseFunctionBody(F))
5546     return Err;
5547   F->setIsMaterializable(false);
5548 
5549   if (StripDebugInfo)
5550     stripDebugInfo(*F);
5551 
5552   // Upgrade any old intrinsic calls in the function.
5553   for (auto &I : UpgradedIntrinsics) {
5554     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5555       if (CallInst *CI = dyn_cast<CallInst>(U))
5556         UpgradeIntrinsicCall(CI, I.second);
5557   }
5558 
5559   // Update calls to the remangled intrinsics
5560   for (auto &I : RemangledIntrinsics)
5561     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5562       // Don't expect any other users than call sites
5563       cast<CallBase>(U)->setCalledFunction(I.second);
5564 
5565   // Finish fn->subprogram upgrade for materialized functions.
5566   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5567     F->setSubprogram(SP);
5568 
5569   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5570   if (!MDLoader->isStrippingTBAA()) {
5571     for (auto &I : instructions(F)) {
5572       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5573       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5574         continue;
5575       MDLoader->setStripTBAA(true);
5576       stripTBAA(F->getParent());
5577     }
5578   }
5579 
5580   for (auto &I : instructions(F)) {
5581     // "Upgrade" older incorrect branch weights by dropping them.
5582     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5583       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5584         MDString *MDS = cast<MDString>(MD->getOperand(0));
5585         StringRef ProfName = MDS->getString();
5586         // Check consistency of !prof branch_weights metadata.
5587         if (!ProfName.equals("branch_weights"))
5588           continue;
5589         unsigned ExpectedNumOperands = 0;
5590         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5591           ExpectedNumOperands = BI->getNumSuccessors();
5592         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5593           ExpectedNumOperands = SI->getNumSuccessors();
5594         else if (isa<CallInst>(&I))
5595           ExpectedNumOperands = 1;
5596         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5597           ExpectedNumOperands = IBI->getNumDestinations();
5598         else if (isa<SelectInst>(&I))
5599           ExpectedNumOperands = 2;
5600         else
5601           continue; // ignore and continue.
5602 
5603         // If branch weight doesn't match, just strip branch weight.
5604         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5605           I.setMetadata(LLVMContext::MD_prof, nullptr);
5606       }
5607     }
5608 
5609     // Remove incompatible attributes on function calls.
5610     if (auto *CI = dyn_cast<CallBase>(&I)) {
5611       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5612           CI->getFunctionType()->getReturnType()));
5613 
5614       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5615         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5616                                         CI->getArgOperand(ArgNo)->getType()));
5617     }
5618   }
5619 
5620   // Look for functions that rely on old function attribute behavior.
5621   UpgradeFunctionAttributes(*F);
5622 
5623   // Bring in any functions that this function forward-referenced via
5624   // blockaddresses.
5625   return materializeForwardReferencedFunctions();
5626 }
5627 
5628 Error BitcodeReader::materializeModule() {
5629   if (Error Err = materializeMetadata())
5630     return Err;
5631 
5632   // Promise to materialize all forward references.
5633   WillMaterializeAllForwardRefs = true;
5634 
5635   // Iterate over the module, deserializing any functions that are still on
5636   // disk.
5637   for (Function &F : *TheModule) {
5638     if (Error Err = materialize(&F))
5639       return Err;
5640   }
5641   // At this point, if there are any function bodies, parse the rest of
5642   // the bits in the module past the last function block we have recorded
5643   // through either lazy scanning or the VST.
5644   if (LastFunctionBlockBit || NextUnreadBit)
5645     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5646                                     ? LastFunctionBlockBit
5647                                     : NextUnreadBit))
5648       return Err;
5649 
5650   // Check that all block address forward references got resolved (as we
5651   // promised above).
5652   if (!BasicBlockFwdRefs.empty())
5653     return error("Never resolved function from blockaddress");
5654 
5655   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5656   // delete the old functions to clean up. We can't do this unless the entire
5657   // module is materialized because there could always be another function body
5658   // with calls to the old function.
5659   for (auto &I : UpgradedIntrinsics) {
5660     for (auto *U : I.first->users()) {
5661       if (CallInst *CI = dyn_cast<CallInst>(U))
5662         UpgradeIntrinsicCall(CI, I.second);
5663     }
5664     if (!I.first->use_empty())
5665       I.first->replaceAllUsesWith(I.second);
5666     I.first->eraseFromParent();
5667   }
5668   UpgradedIntrinsics.clear();
5669   // Do the same for remangled intrinsics
5670   for (auto &I : RemangledIntrinsics) {
5671     I.first->replaceAllUsesWith(I.second);
5672     I.first->eraseFromParent();
5673   }
5674   RemangledIntrinsics.clear();
5675 
5676   UpgradeDebugInfo(*TheModule);
5677 
5678   UpgradeModuleFlags(*TheModule);
5679 
5680   UpgradeARCRuntime(*TheModule);
5681 
5682   return Error::success();
5683 }
5684 
5685 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5686   return IdentifiedStructTypes;
5687 }
5688 
5689 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5690     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5691     StringRef ModulePath, unsigned ModuleId)
5692     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5693       ModulePath(ModulePath), ModuleId(ModuleId) {}
5694 
5695 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5696   TheIndex.addModule(ModulePath, ModuleId);
5697 }
5698 
5699 ModuleSummaryIndex::ModuleInfo *
5700 ModuleSummaryIndexBitcodeReader::getThisModule() {
5701   return TheIndex.getModule(ModulePath);
5702 }
5703 
5704 std::pair<ValueInfo, GlobalValue::GUID>
5705 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5706   auto VGI = ValueIdToValueInfoMap[ValueId];
5707   assert(VGI.first);
5708   return VGI;
5709 }
5710 
5711 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5712     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5713     StringRef SourceFileName) {
5714   std::string GlobalId =
5715       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5716   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5717   auto OriginalNameID = ValueGUID;
5718   if (GlobalValue::isLocalLinkage(Linkage))
5719     OriginalNameID = GlobalValue::getGUID(ValueName);
5720   if (PrintSummaryGUIDs)
5721     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5722            << ValueName << "\n";
5723 
5724   // UseStrtab is false for legacy summary formats and value names are
5725   // created on stack. In that case we save the name in a string saver in
5726   // the index so that the value name can be recorded.
5727   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5728       TheIndex.getOrInsertValueInfo(
5729           ValueGUID,
5730           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5731       OriginalNameID);
5732 }
5733 
5734 // Specialized value symbol table parser used when reading module index
5735 // blocks where we don't actually create global values. The parsed information
5736 // is saved in the bitcode reader for use when later parsing summaries.
5737 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5738     uint64_t Offset,
5739     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5740   // With a strtab the VST is not required to parse the summary.
5741   if (UseStrtab)
5742     return Error::success();
5743 
5744   assert(Offset > 0 && "Expected non-zero VST offset");
5745   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5746   if (!MaybeCurrentBit)
5747     return MaybeCurrentBit.takeError();
5748   uint64_t CurrentBit = MaybeCurrentBit.get();
5749 
5750   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5751     return Err;
5752 
5753   SmallVector<uint64_t, 64> Record;
5754 
5755   // Read all the records for this value table.
5756   SmallString<128> ValueName;
5757 
5758   while (true) {
5759     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5760     if (!MaybeEntry)
5761       return MaybeEntry.takeError();
5762     BitstreamEntry Entry = MaybeEntry.get();
5763 
5764     switch (Entry.Kind) {
5765     case BitstreamEntry::SubBlock: // Handled for us already.
5766     case BitstreamEntry::Error:
5767       return error("Malformed block");
5768     case BitstreamEntry::EndBlock:
5769       // Done parsing VST, jump back to wherever we came from.
5770       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5771         return JumpFailed;
5772       return Error::success();
5773     case BitstreamEntry::Record:
5774       // The interesting case.
5775       break;
5776     }
5777 
5778     // Read a record.
5779     Record.clear();
5780     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5781     if (!MaybeRecord)
5782       return MaybeRecord.takeError();
5783     switch (MaybeRecord.get()) {
5784     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5785       break;
5786     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5787       if (convertToString(Record, 1, ValueName))
5788         return error("Invalid record");
5789       unsigned ValueID = Record[0];
5790       assert(!SourceFileName.empty());
5791       auto VLI = ValueIdToLinkageMap.find(ValueID);
5792       assert(VLI != ValueIdToLinkageMap.end() &&
5793              "No linkage found for VST entry?");
5794       auto Linkage = VLI->second;
5795       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5796       ValueName.clear();
5797       break;
5798     }
5799     case bitc::VST_CODE_FNENTRY: {
5800       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5801       if (convertToString(Record, 2, ValueName))
5802         return error("Invalid record");
5803       unsigned ValueID = Record[0];
5804       assert(!SourceFileName.empty());
5805       auto VLI = ValueIdToLinkageMap.find(ValueID);
5806       assert(VLI != ValueIdToLinkageMap.end() &&
5807              "No linkage found for VST entry?");
5808       auto Linkage = VLI->second;
5809       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5810       ValueName.clear();
5811       break;
5812     }
5813     case bitc::VST_CODE_COMBINED_ENTRY: {
5814       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5815       unsigned ValueID = Record[0];
5816       GlobalValue::GUID RefGUID = Record[1];
5817       // The "original name", which is the second value of the pair will be
5818       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5819       ValueIdToValueInfoMap[ValueID] =
5820           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5821       break;
5822     }
5823     }
5824   }
5825 }
5826 
5827 // Parse just the blocks needed for building the index out of the module.
5828 // At the end of this routine the module Index is populated with a map
5829 // from global value id to GlobalValueSummary objects.
5830 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5831   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5832     return Err;
5833 
5834   SmallVector<uint64_t, 64> Record;
5835   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5836   unsigned ValueId = 0;
5837 
5838   // Read the index for this module.
5839   while (true) {
5840     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5841     if (!MaybeEntry)
5842       return MaybeEntry.takeError();
5843     llvm::BitstreamEntry Entry = MaybeEntry.get();
5844 
5845     switch (Entry.Kind) {
5846     case BitstreamEntry::Error:
5847       return error("Malformed block");
5848     case BitstreamEntry::EndBlock:
5849       return Error::success();
5850 
5851     case BitstreamEntry::SubBlock:
5852       switch (Entry.ID) {
5853       default: // Skip unknown content.
5854         if (Error Err = Stream.SkipBlock())
5855           return Err;
5856         break;
5857       case bitc::BLOCKINFO_BLOCK_ID:
5858         // Need to parse these to get abbrev ids (e.g. for VST)
5859         if (readBlockInfo())
5860           return error("Malformed block");
5861         break;
5862       case bitc::VALUE_SYMTAB_BLOCK_ID:
5863         // Should have been parsed earlier via VSTOffset, unless there
5864         // is no summary section.
5865         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5866                 !SeenGlobalValSummary) &&
5867                "Expected early VST parse via VSTOffset record");
5868         if (Error Err = Stream.SkipBlock())
5869           return Err;
5870         break;
5871       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5872       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5873         // Add the module if it is a per-module index (has a source file name).
5874         if (!SourceFileName.empty())
5875           addThisModule();
5876         assert(!SeenValueSymbolTable &&
5877                "Already read VST when parsing summary block?");
5878         // We might not have a VST if there were no values in the
5879         // summary. An empty summary block generated when we are
5880         // performing ThinLTO compiles so we don't later invoke
5881         // the regular LTO process on them.
5882         if (VSTOffset > 0) {
5883           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5884             return Err;
5885           SeenValueSymbolTable = true;
5886         }
5887         SeenGlobalValSummary = true;
5888         if (Error Err = parseEntireSummary(Entry.ID))
5889           return Err;
5890         break;
5891       case bitc::MODULE_STRTAB_BLOCK_ID:
5892         if (Error Err = parseModuleStringTable())
5893           return Err;
5894         break;
5895       }
5896       continue;
5897 
5898     case BitstreamEntry::Record: {
5899         Record.clear();
5900         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5901         if (!MaybeBitCode)
5902           return MaybeBitCode.takeError();
5903         switch (MaybeBitCode.get()) {
5904         default:
5905           break; // Default behavior, ignore unknown content.
5906         case bitc::MODULE_CODE_VERSION: {
5907           if (Error Err = parseVersionRecord(Record).takeError())
5908             return Err;
5909           break;
5910         }
5911         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5912         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5913           SmallString<128> ValueName;
5914           if (convertToString(Record, 0, ValueName))
5915             return error("Invalid record");
5916           SourceFileName = ValueName.c_str();
5917           break;
5918         }
5919         /// MODULE_CODE_HASH: [5*i32]
5920         case bitc::MODULE_CODE_HASH: {
5921           if (Record.size() != 5)
5922             return error("Invalid hash length " + Twine(Record.size()).str());
5923           auto &Hash = getThisModule()->second.second;
5924           int Pos = 0;
5925           for (auto &Val : Record) {
5926             assert(!(Val >> 32) && "Unexpected high bits set");
5927             Hash[Pos++] = Val;
5928           }
5929           break;
5930         }
5931         /// MODULE_CODE_VSTOFFSET: [offset]
5932         case bitc::MODULE_CODE_VSTOFFSET:
5933           if (Record.empty())
5934             return error("Invalid record");
5935           // Note that we subtract 1 here because the offset is relative to one
5936           // word before the start of the identification or module block, which
5937           // was historically always the start of the regular bitcode header.
5938           VSTOffset = Record[0] - 1;
5939           break;
5940         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5941         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5942         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5943         // v2: [strtab offset, strtab size, v1]
5944         case bitc::MODULE_CODE_GLOBALVAR:
5945         case bitc::MODULE_CODE_FUNCTION:
5946         case bitc::MODULE_CODE_ALIAS: {
5947           StringRef Name;
5948           ArrayRef<uint64_t> GVRecord;
5949           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5950           if (GVRecord.size() <= 3)
5951             return error("Invalid record");
5952           uint64_t RawLinkage = GVRecord[3];
5953           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5954           if (!UseStrtab) {
5955             ValueIdToLinkageMap[ValueId++] = Linkage;
5956             break;
5957           }
5958 
5959           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5960           break;
5961         }
5962         }
5963       }
5964       continue;
5965     }
5966   }
5967 }
5968 
5969 std::vector<ValueInfo>
5970 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5971   std::vector<ValueInfo> Ret;
5972   Ret.reserve(Record.size());
5973   for (uint64_t RefValueId : Record)
5974     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5975   return Ret;
5976 }
5977 
5978 std::vector<FunctionSummary::EdgeTy>
5979 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5980                                               bool IsOldProfileFormat,
5981                                               bool HasProfile, bool HasRelBF) {
5982   std::vector<FunctionSummary::EdgeTy> Ret;
5983   Ret.reserve(Record.size());
5984   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5985     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5986     uint64_t RelBF = 0;
5987     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5988     if (IsOldProfileFormat) {
5989       I += 1; // Skip old callsitecount field
5990       if (HasProfile)
5991         I += 1; // Skip old profilecount field
5992     } else if (HasProfile)
5993       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5994     else if (HasRelBF)
5995       RelBF = Record[++I];
5996     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5997   }
5998   return Ret;
5999 }
6000 
6001 static void
6002 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6003                                        WholeProgramDevirtResolution &Wpd) {
6004   uint64_t ArgNum = Record[Slot++];
6005   WholeProgramDevirtResolution::ByArg &B =
6006       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6007   Slot += ArgNum;
6008 
6009   B.TheKind =
6010       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6011   B.Info = Record[Slot++];
6012   B.Byte = Record[Slot++];
6013   B.Bit = Record[Slot++];
6014 }
6015 
6016 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6017                                               StringRef Strtab, size_t &Slot,
6018                                               TypeIdSummary &TypeId) {
6019   uint64_t Id = Record[Slot++];
6020   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6021 
6022   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6023   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6024                         static_cast<size_t>(Record[Slot + 1])};
6025   Slot += 2;
6026 
6027   uint64_t ResByArgNum = Record[Slot++];
6028   for (uint64_t I = 0; I != ResByArgNum; ++I)
6029     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6030 }
6031 
6032 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6033                                      StringRef Strtab,
6034                                      ModuleSummaryIndex &TheIndex) {
6035   size_t Slot = 0;
6036   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6037       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6038   Slot += 2;
6039 
6040   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6041   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6042   TypeId.TTRes.AlignLog2 = Record[Slot++];
6043   TypeId.TTRes.SizeM1 = Record[Slot++];
6044   TypeId.TTRes.BitMask = Record[Slot++];
6045   TypeId.TTRes.InlineBits = Record[Slot++];
6046 
6047   while (Slot < Record.size())
6048     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6049 }
6050 
6051 std::vector<FunctionSummary::ParamAccess>
6052 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6053   auto ReadRange = [&]() {
6054     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6055                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6056     Record = Record.drop_front();
6057     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6058                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6059     Record = Record.drop_front();
6060     ConstantRange Range{Lower, Upper};
6061     assert(!Range.isFullSet());
6062     assert(!Range.isUpperSignWrapped());
6063     return Range;
6064   };
6065 
6066   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6067   while (!Record.empty()) {
6068     PendingParamAccesses.emplace_back();
6069     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6070     ParamAccess.ParamNo = Record.front();
6071     Record = Record.drop_front();
6072     ParamAccess.Use = ReadRange();
6073     ParamAccess.Calls.resize(Record.front());
6074     Record = Record.drop_front();
6075     for (auto &Call : ParamAccess.Calls) {
6076       Call.ParamNo = Record.front();
6077       Record = Record.drop_front();
6078       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6079       Record = Record.drop_front();
6080       Call.Offsets = ReadRange();
6081     }
6082   }
6083   return PendingParamAccesses;
6084 }
6085 
6086 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6087     ArrayRef<uint64_t> Record, size_t &Slot,
6088     TypeIdCompatibleVtableInfo &TypeId) {
6089   uint64_t Offset = Record[Slot++];
6090   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6091   TypeId.push_back({Offset, Callee});
6092 }
6093 
6094 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6095     ArrayRef<uint64_t> Record) {
6096   size_t Slot = 0;
6097   TypeIdCompatibleVtableInfo &TypeId =
6098       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6099           {Strtab.data() + Record[Slot],
6100            static_cast<size_t>(Record[Slot + 1])});
6101   Slot += 2;
6102 
6103   while (Slot < Record.size())
6104     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6105 }
6106 
6107 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6108                            unsigned WOCnt) {
6109   // Readonly and writeonly refs are in the end of the refs list.
6110   assert(ROCnt + WOCnt <= Refs.size());
6111   unsigned FirstWORef = Refs.size() - WOCnt;
6112   unsigned RefNo = FirstWORef - ROCnt;
6113   for (; RefNo < FirstWORef; ++RefNo)
6114     Refs[RefNo].setReadOnly();
6115   for (; RefNo < Refs.size(); ++RefNo)
6116     Refs[RefNo].setWriteOnly();
6117 }
6118 
6119 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6120 // objects in the index.
6121 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6122   if (Error Err = Stream.EnterSubBlock(ID))
6123     return Err;
6124   SmallVector<uint64_t, 64> Record;
6125 
6126   // Parse version
6127   {
6128     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6129     if (!MaybeEntry)
6130       return MaybeEntry.takeError();
6131     BitstreamEntry Entry = MaybeEntry.get();
6132 
6133     if (Entry.Kind != BitstreamEntry::Record)
6134       return error("Invalid Summary Block: record for version expected");
6135     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6136     if (!MaybeRecord)
6137       return MaybeRecord.takeError();
6138     if (MaybeRecord.get() != bitc::FS_VERSION)
6139       return error("Invalid Summary Block: version expected");
6140   }
6141   const uint64_t Version = Record[0];
6142   const bool IsOldProfileFormat = Version == 1;
6143   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6144     return error("Invalid summary version " + Twine(Version) +
6145                  ". Version should be in the range [1-" +
6146                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6147                  "].");
6148   Record.clear();
6149 
6150   // Keep around the last seen summary to be used when we see an optional
6151   // "OriginalName" attachement.
6152   GlobalValueSummary *LastSeenSummary = nullptr;
6153   GlobalValue::GUID LastSeenGUID = 0;
6154 
6155   // We can expect to see any number of type ID information records before
6156   // each function summary records; these variables store the information
6157   // collected so far so that it can be used to create the summary object.
6158   std::vector<GlobalValue::GUID> PendingTypeTests;
6159   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6160       PendingTypeCheckedLoadVCalls;
6161   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6162       PendingTypeCheckedLoadConstVCalls;
6163   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6164 
6165   while (true) {
6166     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6167     if (!MaybeEntry)
6168       return MaybeEntry.takeError();
6169     BitstreamEntry Entry = MaybeEntry.get();
6170 
6171     switch (Entry.Kind) {
6172     case BitstreamEntry::SubBlock: // Handled for us already.
6173     case BitstreamEntry::Error:
6174       return error("Malformed block");
6175     case BitstreamEntry::EndBlock:
6176       return Error::success();
6177     case BitstreamEntry::Record:
6178       // The interesting case.
6179       break;
6180     }
6181 
6182     // Read a record. The record format depends on whether this
6183     // is a per-module index or a combined index file. In the per-module
6184     // case the records contain the associated value's ID for correlation
6185     // with VST entries. In the combined index the correlation is done
6186     // via the bitcode offset of the summary records (which were saved
6187     // in the combined index VST entries). The records also contain
6188     // information used for ThinLTO renaming and importing.
6189     Record.clear();
6190     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6191     if (!MaybeBitCode)
6192       return MaybeBitCode.takeError();
6193     switch (unsigned BitCode = MaybeBitCode.get()) {
6194     default: // Default behavior: ignore.
6195       break;
6196     case bitc::FS_FLAGS: {  // [flags]
6197       TheIndex.setFlags(Record[0]);
6198       break;
6199     }
6200     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6201       uint64_t ValueID = Record[0];
6202       GlobalValue::GUID RefGUID = Record[1];
6203       ValueIdToValueInfoMap[ValueID] =
6204           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6205       break;
6206     }
6207     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6208     //                numrefs x valueid, n x (valueid)]
6209     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6210     //                        numrefs x valueid,
6211     //                        n x (valueid, hotness)]
6212     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6213     //                      numrefs x valueid,
6214     //                      n x (valueid, relblockfreq)]
6215     case bitc::FS_PERMODULE:
6216     case bitc::FS_PERMODULE_RELBF:
6217     case bitc::FS_PERMODULE_PROFILE: {
6218       unsigned ValueID = Record[0];
6219       uint64_t RawFlags = Record[1];
6220       unsigned InstCount = Record[2];
6221       uint64_t RawFunFlags = 0;
6222       unsigned NumRefs = Record[3];
6223       unsigned NumRORefs = 0, NumWORefs = 0;
6224       int RefListStartIndex = 4;
6225       if (Version >= 4) {
6226         RawFunFlags = Record[3];
6227         NumRefs = Record[4];
6228         RefListStartIndex = 5;
6229         if (Version >= 5) {
6230           NumRORefs = Record[5];
6231           RefListStartIndex = 6;
6232           if (Version >= 7) {
6233             NumWORefs = Record[6];
6234             RefListStartIndex = 7;
6235           }
6236         }
6237       }
6238 
6239       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6240       // The module path string ref set in the summary must be owned by the
6241       // index's module string table. Since we don't have a module path
6242       // string table section in the per-module index, we create a single
6243       // module path string table entry with an empty (0) ID to take
6244       // ownership.
6245       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6246       assert(Record.size() >= RefListStartIndex + NumRefs &&
6247              "Record size inconsistent with number of references");
6248       std::vector<ValueInfo> Refs = makeRefList(
6249           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6250       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6251       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6252       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6253           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6254           IsOldProfileFormat, HasProfile, HasRelBF);
6255       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6256       auto FS = std::make_unique<FunctionSummary>(
6257           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6258           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6259           std::move(PendingTypeTestAssumeVCalls),
6260           std::move(PendingTypeCheckedLoadVCalls),
6261           std::move(PendingTypeTestAssumeConstVCalls),
6262           std::move(PendingTypeCheckedLoadConstVCalls),
6263           std::move(PendingParamAccesses));
6264       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6265       FS->setModulePath(getThisModule()->first());
6266       FS->setOriginalName(VIAndOriginalGUID.second);
6267       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6268       break;
6269     }
6270     // FS_ALIAS: [valueid, flags, valueid]
6271     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6272     // they expect all aliasee summaries to be available.
6273     case bitc::FS_ALIAS: {
6274       unsigned ValueID = Record[0];
6275       uint64_t RawFlags = Record[1];
6276       unsigned AliaseeID = Record[2];
6277       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6278       auto AS = std::make_unique<AliasSummary>(Flags);
6279       // The module path string ref set in the summary must be owned by the
6280       // index's module string table. Since we don't have a module path
6281       // string table section in the per-module index, we create a single
6282       // module path string table entry with an empty (0) ID to take
6283       // ownership.
6284       AS->setModulePath(getThisModule()->first());
6285 
6286       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6287       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6288       if (!AliaseeInModule)
6289         return error("Alias expects aliasee summary to be parsed");
6290       AS->setAliasee(AliaseeVI, AliaseeInModule);
6291 
6292       auto GUID = getValueInfoFromValueId(ValueID);
6293       AS->setOriginalName(GUID.second);
6294       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6295       break;
6296     }
6297     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6298     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6299       unsigned ValueID = Record[0];
6300       uint64_t RawFlags = Record[1];
6301       unsigned RefArrayStart = 2;
6302       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6303                                       /* WriteOnly */ false,
6304                                       /* Constant */ false,
6305                                       GlobalObject::VCallVisibilityPublic);
6306       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6307       if (Version >= 5) {
6308         GVF = getDecodedGVarFlags(Record[2]);
6309         RefArrayStart = 3;
6310       }
6311       std::vector<ValueInfo> Refs =
6312           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6313       auto FS =
6314           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6315       FS->setModulePath(getThisModule()->first());
6316       auto GUID = getValueInfoFromValueId(ValueID);
6317       FS->setOriginalName(GUID.second);
6318       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6319       break;
6320     }
6321     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6322     //                        numrefs, numrefs x valueid,
6323     //                        n x (valueid, offset)]
6324     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6325       unsigned ValueID = Record[0];
6326       uint64_t RawFlags = Record[1];
6327       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6328       unsigned NumRefs = Record[3];
6329       unsigned RefListStartIndex = 4;
6330       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6331       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6332       std::vector<ValueInfo> Refs = makeRefList(
6333           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6334       VTableFuncList VTableFuncs;
6335       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6336         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6337         uint64_t Offset = Record[++I];
6338         VTableFuncs.push_back({Callee, Offset});
6339       }
6340       auto VS =
6341           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6342       VS->setModulePath(getThisModule()->first());
6343       VS->setVTableFuncs(VTableFuncs);
6344       auto GUID = getValueInfoFromValueId(ValueID);
6345       VS->setOriginalName(GUID.second);
6346       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6347       break;
6348     }
6349     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6350     //               numrefs x valueid, n x (valueid)]
6351     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6352     //                       numrefs x valueid, n x (valueid, hotness)]
6353     case bitc::FS_COMBINED:
6354     case bitc::FS_COMBINED_PROFILE: {
6355       unsigned ValueID = Record[0];
6356       uint64_t ModuleId = Record[1];
6357       uint64_t RawFlags = Record[2];
6358       unsigned InstCount = Record[3];
6359       uint64_t RawFunFlags = 0;
6360       uint64_t EntryCount = 0;
6361       unsigned NumRefs = Record[4];
6362       unsigned NumRORefs = 0, NumWORefs = 0;
6363       int RefListStartIndex = 5;
6364 
6365       if (Version >= 4) {
6366         RawFunFlags = Record[4];
6367         RefListStartIndex = 6;
6368         size_t NumRefsIndex = 5;
6369         if (Version >= 5) {
6370           unsigned NumRORefsOffset = 1;
6371           RefListStartIndex = 7;
6372           if (Version >= 6) {
6373             NumRefsIndex = 6;
6374             EntryCount = Record[5];
6375             RefListStartIndex = 8;
6376             if (Version >= 7) {
6377               RefListStartIndex = 9;
6378               NumWORefs = Record[8];
6379               NumRORefsOffset = 2;
6380             }
6381           }
6382           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6383         }
6384         NumRefs = Record[NumRefsIndex];
6385       }
6386 
6387       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6388       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6389       assert(Record.size() >= RefListStartIndex + NumRefs &&
6390              "Record size inconsistent with number of references");
6391       std::vector<ValueInfo> Refs = makeRefList(
6392           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6393       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6394       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6395           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6396           IsOldProfileFormat, HasProfile, false);
6397       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6398       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6399       auto FS = std::make_unique<FunctionSummary>(
6400           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6401           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6402           std::move(PendingTypeTestAssumeVCalls),
6403           std::move(PendingTypeCheckedLoadVCalls),
6404           std::move(PendingTypeTestAssumeConstVCalls),
6405           std::move(PendingTypeCheckedLoadConstVCalls),
6406           std::move(PendingParamAccesses));
6407       LastSeenSummary = FS.get();
6408       LastSeenGUID = VI.getGUID();
6409       FS->setModulePath(ModuleIdMap[ModuleId]);
6410       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6411       break;
6412     }
6413     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6414     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6415     // they expect all aliasee summaries to be available.
6416     case bitc::FS_COMBINED_ALIAS: {
6417       unsigned ValueID = Record[0];
6418       uint64_t ModuleId = Record[1];
6419       uint64_t RawFlags = Record[2];
6420       unsigned AliaseeValueId = Record[3];
6421       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6422       auto AS = std::make_unique<AliasSummary>(Flags);
6423       LastSeenSummary = AS.get();
6424       AS->setModulePath(ModuleIdMap[ModuleId]);
6425 
6426       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6427       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6428       AS->setAliasee(AliaseeVI, AliaseeInModule);
6429 
6430       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6431       LastSeenGUID = VI.getGUID();
6432       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6433       break;
6434     }
6435     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6436     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6437       unsigned ValueID = Record[0];
6438       uint64_t ModuleId = Record[1];
6439       uint64_t RawFlags = Record[2];
6440       unsigned RefArrayStart = 3;
6441       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6442                                       /* WriteOnly */ false,
6443                                       /* Constant */ false,
6444                                       GlobalObject::VCallVisibilityPublic);
6445       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6446       if (Version >= 5) {
6447         GVF = getDecodedGVarFlags(Record[3]);
6448         RefArrayStart = 4;
6449       }
6450       std::vector<ValueInfo> Refs =
6451           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6452       auto FS =
6453           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6454       LastSeenSummary = FS.get();
6455       FS->setModulePath(ModuleIdMap[ModuleId]);
6456       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6457       LastSeenGUID = VI.getGUID();
6458       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6459       break;
6460     }
6461     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6462     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6463       uint64_t OriginalName = Record[0];
6464       if (!LastSeenSummary)
6465         return error("Name attachment that does not follow a combined record");
6466       LastSeenSummary->setOriginalName(OriginalName);
6467       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6468       // Reset the LastSeenSummary
6469       LastSeenSummary = nullptr;
6470       LastSeenGUID = 0;
6471       break;
6472     }
6473     case bitc::FS_TYPE_TESTS:
6474       assert(PendingTypeTests.empty());
6475       llvm::append_range(PendingTypeTests, Record);
6476       break;
6477 
6478     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6479       assert(PendingTypeTestAssumeVCalls.empty());
6480       for (unsigned I = 0; I != Record.size(); I += 2)
6481         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6482       break;
6483 
6484     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6485       assert(PendingTypeCheckedLoadVCalls.empty());
6486       for (unsigned I = 0; I != Record.size(); I += 2)
6487         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6488       break;
6489 
6490     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6491       PendingTypeTestAssumeConstVCalls.push_back(
6492           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6493       break;
6494 
6495     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6496       PendingTypeCheckedLoadConstVCalls.push_back(
6497           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6498       break;
6499 
6500     case bitc::FS_CFI_FUNCTION_DEFS: {
6501       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6502       for (unsigned I = 0; I != Record.size(); I += 2)
6503         CfiFunctionDefs.insert(
6504             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6505       break;
6506     }
6507 
6508     case bitc::FS_CFI_FUNCTION_DECLS: {
6509       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6510       for (unsigned I = 0; I != Record.size(); I += 2)
6511         CfiFunctionDecls.insert(
6512             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6513       break;
6514     }
6515 
6516     case bitc::FS_TYPE_ID:
6517       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6518       break;
6519 
6520     case bitc::FS_TYPE_ID_METADATA:
6521       parseTypeIdCompatibleVtableSummaryRecord(Record);
6522       break;
6523 
6524     case bitc::FS_BLOCK_COUNT:
6525       TheIndex.addBlockCount(Record[0]);
6526       break;
6527 
6528     case bitc::FS_PARAM_ACCESS: {
6529       PendingParamAccesses = parseParamAccesses(Record);
6530       break;
6531     }
6532     }
6533   }
6534   llvm_unreachable("Exit infinite loop");
6535 }
6536 
6537 // Parse the  module string table block into the Index.
6538 // This populates the ModulePathStringTable map in the index.
6539 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6540   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6541     return Err;
6542 
6543   SmallVector<uint64_t, 64> Record;
6544 
6545   SmallString<128> ModulePath;
6546   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6547 
6548   while (true) {
6549     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6550     if (!MaybeEntry)
6551       return MaybeEntry.takeError();
6552     BitstreamEntry Entry = MaybeEntry.get();
6553 
6554     switch (Entry.Kind) {
6555     case BitstreamEntry::SubBlock: // Handled for us already.
6556     case BitstreamEntry::Error:
6557       return error("Malformed block");
6558     case BitstreamEntry::EndBlock:
6559       return Error::success();
6560     case BitstreamEntry::Record:
6561       // The interesting case.
6562       break;
6563     }
6564 
6565     Record.clear();
6566     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6567     if (!MaybeRecord)
6568       return MaybeRecord.takeError();
6569     switch (MaybeRecord.get()) {
6570     default: // Default behavior: ignore.
6571       break;
6572     case bitc::MST_CODE_ENTRY: {
6573       // MST_ENTRY: [modid, namechar x N]
6574       uint64_t ModuleId = Record[0];
6575 
6576       if (convertToString(Record, 1, ModulePath))
6577         return error("Invalid record");
6578 
6579       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6580       ModuleIdMap[ModuleId] = LastSeenModule->first();
6581 
6582       ModulePath.clear();
6583       break;
6584     }
6585     /// MST_CODE_HASH: [5*i32]
6586     case bitc::MST_CODE_HASH: {
6587       if (Record.size() != 5)
6588         return error("Invalid hash length " + Twine(Record.size()).str());
6589       if (!LastSeenModule)
6590         return error("Invalid hash that does not follow a module path");
6591       int Pos = 0;
6592       for (auto &Val : Record) {
6593         assert(!(Val >> 32) && "Unexpected high bits set");
6594         LastSeenModule->second.second[Pos++] = Val;
6595       }
6596       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6597       LastSeenModule = nullptr;
6598       break;
6599     }
6600     }
6601   }
6602   llvm_unreachable("Exit infinite loop");
6603 }
6604 
6605 namespace {
6606 
6607 // FIXME: This class is only here to support the transition to llvm::Error. It
6608 // will be removed once this transition is complete. Clients should prefer to
6609 // deal with the Error value directly, rather than converting to error_code.
6610 class BitcodeErrorCategoryType : public std::error_category {
6611   const char *name() const noexcept override {
6612     return "llvm.bitcode";
6613   }
6614 
6615   std::string message(int IE) const override {
6616     BitcodeError E = static_cast<BitcodeError>(IE);
6617     switch (E) {
6618     case BitcodeError::CorruptedBitcode:
6619       return "Corrupted bitcode";
6620     }
6621     llvm_unreachable("Unknown error type!");
6622   }
6623 };
6624 
6625 } // end anonymous namespace
6626 
6627 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6628 
6629 const std::error_category &llvm::BitcodeErrorCategory() {
6630   return *ErrorCategory;
6631 }
6632 
6633 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6634                                             unsigned Block, unsigned RecordID) {
6635   if (Error Err = Stream.EnterSubBlock(Block))
6636     return std::move(Err);
6637 
6638   StringRef Strtab;
6639   while (true) {
6640     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6641     if (!MaybeEntry)
6642       return MaybeEntry.takeError();
6643     llvm::BitstreamEntry Entry = MaybeEntry.get();
6644 
6645     switch (Entry.Kind) {
6646     case BitstreamEntry::EndBlock:
6647       return Strtab;
6648 
6649     case BitstreamEntry::Error:
6650       return error("Malformed block");
6651 
6652     case BitstreamEntry::SubBlock:
6653       if (Error Err = Stream.SkipBlock())
6654         return std::move(Err);
6655       break;
6656 
6657     case BitstreamEntry::Record:
6658       StringRef Blob;
6659       SmallVector<uint64_t, 1> Record;
6660       Expected<unsigned> MaybeRecord =
6661           Stream.readRecord(Entry.ID, Record, &Blob);
6662       if (!MaybeRecord)
6663         return MaybeRecord.takeError();
6664       if (MaybeRecord.get() == RecordID)
6665         Strtab = Blob;
6666       break;
6667     }
6668   }
6669 }
6670 
6671 //===----------------------------------------------------------------------===//
6672 // External interface
6673 //===----------------------------------------------------------------------===//
6674 
6675 Expected<std::vector<BitcodeModule>>
6676 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6677   auto FOrErr = getBitcodeFileContents(Buffer);
6678   if (!FOrErr)
6679     return FOrErr.takeError();
6680   return std::move(FOrErr->Mods);
6681 }
6682 
6683 Expected<BitcodeFileContents>
6684 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6685   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6686   if (!StreamOrErr)
6687     return StreamOrErr.takeError();
6688   BitstreamCursor &Stream = *StreamOrErr;
6689 
6690   BitcodeFileContents F;
6691   while (true) {
6692     uint64_t BCBegin = Stream.getCurrentByteNo();
6693 
6694     // We may be consuming bitcode from a client that leaves garbage at the end
6695     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6696     // the end that there cannot possibly be another module, stop looking.
6697     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6698       return F;
6699 
6700     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6701     if (!MaybeEntry)
6702       return MaybeEntry.takeError();
6703     llvm::BitstreamEntry Entry = MaybeEntry.get();
6704 
6705     switch (Entry.Kind) {
6706     case BitstreamEntry::EndBlock:
6707     case BitstreamEntry::Error:
6708       return error("Malformed block");
6709 
6710     case BitstreamEntry::SubBlock: {
6711       uint64_t IdentificationBit = -1ull;
6712       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6713         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6714         if (Error Err = Stream.SkipBlock())
6715           return std::move(Err);
6716 
6717         {
6718           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6719           if (!MaybeEntry)
6720             return MaybeEntry.takeError();
6721           Entry = MaybeEntry.get();
6722         }
6723 
6724         if (Entry.Kind != BitstreamEntry::SubBlock ||
6725             Entry.ID != bitc::MODULE_BLOCK_ID)
6726           return error("Malformed block");
6727       }
6728 
6729       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6730         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6731         if (Error Err = Stream.SkipBlock())
6732           return std::move(Err);
6733 
6734         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6735                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6736                           Buffer.getBufferIdentifier(), IdentificationBit,
6737                           ModuleBit});
6738         continue;
6739       }
6740 
6741       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6742         Expected<StringRef> Strtab =
6743             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6744         if (!Strtab)
6745           return Strtab.takeError();
6746         // This string table is used by every preceding bitcode module that does
6747         // not have its own string table. A bitcode file may have multiple
6748         // string tables if it was created by binary concatenation, for example
6749         // with "llvm-cat -b".
6750         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6751           if (!I.Strtab.empty())
6752             break;
6753           I.Strtab = *Strtab;
6754         }
6755         // Similarly, the string table is used by every preceding symbol table;
6756         // normally there will be just one unless the bitcode file was created
6757         // by binary concatenation.
6758         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6759           F.StrtabForSymtab = *Strtab;
6760         continue;
6761       }
6762 
6763       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6764         Expected<StringRef> SymtabOrErr =
6765             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6766         if (!SymtabOrErr)
6767           return SymtabOrErr.takeError();
6768 
6769         // We can expect the bitcode file to have multiple symbol tables if it
6770         // was created by binary concatenation. In that case we silently
6771         // ignore any subsequent symbol tables, which is fine because this is a
6772         // low level function. The client is expected to notice that the number
6773         // of modules in the symbol table does not match the number of modules
6774         // in the input file and regenerate the symbol table.
6775         if (F.Symtab.empty())
6776           F.Symtab = *SymtabOrErr;
6777         continue;
6778       }
6779 
6780       if (Error Err = Stream.SkipBlock())
6781         return std::move(Err);
6782       continue;
6783     }
6784     case BitstreamEntry::Record:
6785       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6786         return std::move(E);
6787       continue;
6788     }
6789   }
6790 }
6791 
6792 /// Get a lazy one-at-time loading module from bitcode.
6793 ///
6794 /// This isn't always used in a lazy context.  In particular, it's also used by
6795 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6796 /// in forward-referenced functions from block address references.
6797 ///
6798 /// \param[in] MaterializeAll Set to \c true if we should materialize
6799 /// everything.
6800 Expected<std::unique_ptr<Module>>
6801 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6802                              bool ShouldLazyLoadMetadata, bool IsImporting,
6803                              DataLayoutCallbackTy DataLayoutCallback) {
6804   BitstreamCursor Stream(Buffer);
6805 
6806   std::string ProducerIdentification;
6807   if (IdentificationBit != -1ull) {
6808     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6809       return std::move(JumpFailed);
6810     if (Error E =
6811             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6812       return std::move(E);
6813   }
6814 
6815   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6816     return std::move(JumpFailed);
6817   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6818                               Context);
6819 
6820   std::unique_ptr<Module> M =
6821       std::make_unique<Module>(ModuleIdentifier, Context);
6822   M->setMaterializer(R);
6823 
6824   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6825   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6826                                       IsImporting, DataLayoutCallback))
6827     return std::move(Err);
6828 
6829   if (MaterializeAll) {
6830     // Read in the entire module, and destroy the BitcodeReader.
6831     if (Error Err = M->materializeAll())
6832       return std::move(Err);
6833   } else {
6834     // Resolve forward references from blockaddresses.
6835     if (Error Err = R->materializeForwardReferencedFunctions())
6836       return std::move(Err);
6837   }
6838   return std::move(M);
6839 }
6840 
6841 Expected<std::unique_ptr<Module>>
6842 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6843                              bool IsImporting) {
6844   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6845                        [](StringRef) { return None; });
6846 }
6847 
6848 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6849 // We don't use ModuleIdentifier here because the client may need to control the
6850 // module path used in the combined summary (e.g. when reading summaries for
6851 // regular LTO modules).
6852 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6853                                  StringRef ModulePath, uint64_t ModuleId) {
6854   BitstreamCursor Stream(Buffer);
6855   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6856     return JumpFailed;
6857 
6858   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6859                                     ModulePath, ModuleId);
6860   return R.parseModule();
6861 }
6862 
6863 // Parse the specified bitcode buffer, returning the function info index.
6864 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6865   BitstreamCursor Stream(Buffer);
6866   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6867     return std::move(JumpFailed);
6868 
6869   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6870   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6871                                     ModuleIdentifier, 0);
6872 
6873   if (Error Err = R.parseModule())
6874     return std::move(Err);
6875 
6876   return std::move(Index);
6877 }
6878 
6879 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6880                                                 unsigned ID) {
6881   if (Error Err = Stream.EnterSubBlock(ID))
6882     return std::move(Err);
6883   SmallVector<uint64_t, 64> Record;
6884 
6885   while (true) {
6886     BitstreamEntry Entry;
6887     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6888       return std::move(E);
6889 
6890     switch (Entry.Kind) {
6891     case BitstreamEntry::SubBlock: // Handled for us already.
6892     case BitstreamEntry::Error:
6893       return error("Malformed block");
6894     case BitstreamEntry::EndBlock:
6895       // If no flags record found, conservatively return true to mimic
6896       // behavior before this flag was added.
6897       return true;
6898     case BitstreamEntry::Record:
6899       // The interesting case.
6900       break;
6901     }
6902 
6903     // Look for the FS_FLAGS record.
6904     Record.clear();
6905     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6906     if (!MaybeBitCode)
6907       return MaybeBitCode.takeError();
6908     switch (MaybeBitCode.get()) {
6909     default: // Default behavior: ignore.
6910       break;
6911     case bitc::FS_FLAGS: { // [flags]
6912       uint64_t Flags = Record[0];
6913       // Scan flags.
6914       assert(Flags <= 0x7f && "Unexpected bits in flag");
6915 
6916       return Flags & 0x8;
6917     }
6918     }
6919   }
6920   llvm_unreachable("Exit infinite loop");
6921 }
6922 
6923 // Check if the given bitcode buffer contains a global value summary block.
6924 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6925   BitstreamCursor Stream(Buffer);
6926   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6927     return std::move(JumpFailed);
6928 
6929   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6930     return std::move(Err);
6931 
6932   while (true) {
6933     llvm::BitstreamEntry Entry;
6934     if (Error E = Stream.advance().moveInto(Entry))
6935       return std::move(E);
6936 
6937     switch (Entry.Kind) {
6938     case BitstreamEntry::Error:
6939       return error("Malformed block");
6940     case BitstreamEntry::EndBlock:
6941       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6942                             /*EnableSplitLTOUnit=*/false};
6943 
6944     case BitstreamEntry::SubBlock:
6945       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6946         Expected<bool> EnableSplitLTOUnit =
6947             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6948         if (!EnableSplitLTOUnit)
6949           return EnableSplitLTOUnit.takeError();
6950         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6951                               *EnableSplitLTOUnit};
6952       }
6953 
6954       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6955         Expected<bool> EnableSplitLTOUnit =
6956             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6957         if (!EnableSplitLTOUnit)
6958           return EnableSplitLTOUnit.takeError();
6959         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6960                               *EnableSplitLTOUnit};
6961       }
6962 
6963       // Ignore other sub-blocks.
6964       if (Error Err = Stream.SkipBlock())
6965         return std::move(Err);
6966       continue;
6967 
6968     case BitstreamEntry::Record:
6969       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6970         continue;
6971       else
6972         return StreamFailed.takeError();
6973     }
6974   }
6975 }
6976 
6977 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6978   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6979   if (!MsOrErr)
6980     return MsOrErr.takeError();
6981 
6982   if (MsOrErr->size() != 1)
6983     return error("Expected a single module");
6984 
6985   return (*MsOrErr)[0];
6986 }
6987 
6988 Expected<std::unique_ptr<Module>>
6989 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6990                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6991   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6992   if (!BM)
6993     return BM.takeError();
6994 
6995   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6996 }
6997 
6998 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6999     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7000     bool ShouldLazyLoadMetadata, bool IsImporting) {
7001   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7002                                      IsImporting);
7003   if (MOrErr)
7004     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7005   return MOrErr;
7006 }
7007 
7008 Expected<std::unique_ptr<Module>>
7009 BitcodeModule::parseModule(LLVMContext &Context,
7010                            DataLayoutCallbackTy DataLayoutCallback) {
7011   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7012   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7013   // written.  We must defer until the Module has been fully materialized.
7014 }
7015 
7016 Expected<std::unique_ptr<Module>>
7017 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7018                        DataLayoutCallbackTy DataLayoutCallback) {
7019   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7020   if (!BM)
7021     return BM.takeError();
7022 
7023   return BM->parseModule(Context, DataLayoutCallback);
7024 }
7025 
7026 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7027   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7028   if (!StreamOrErr)
7029     return StreamOrErr.takeError();
7030 
7031   return readTriple(*StreamOrErr);
7032 }
7033 
7034 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7035   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7036   if (!StreamOrErr)
7037     return StreamOrErr.takeError();
7038 
7039   return hasObjCCategory(*StreamOrErr);
7040 }
7041 
7042 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7043   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7044   if (!StreamOrErr)
7045     return StreamOrErr.takeError();
7046 
7047   return readIdentificationCode(*StreamOrErr);
7048 }
7049 
7050 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7051                                    ModuleSummaryIndex &CombinedIndex,
7052                                    uint64_t ModuleId) {
7053   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7054   if (!BM)
7055     return BM.takeError();
7056 
7057   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7058 }
7059 
7060 Expected<std::unique_ptr<ModuleSummaryIndex>>
7061 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7062   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7063   if (!BM)
7064     return BM.takeError();
7065 
7066   return BM->getSummary();
7067 }
7068 
7069 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7070   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7071   if (!BM)
7072     return BM.takeError();
7073 
7074   return BM->getLTOInfo();
7075 }
7076 
7077 Expected<std::unique_ptr<ModuleSummaryIndex>>
7078 llvm::getModuleSummaryIndexForFile(StringRef Path,
7079                                    bool IgnoreEmptyThinLTOIndexFile) {
7080   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7081       MemoryBuffer::getFileOrSTDIN(Path);
7082   if (!FileOrErr)
7083     return errorCodeToError(FileOrErr.getError());
7084   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7085     return nullptr;
7086   return getModuleSummaryIndex(**FileOrErr);
7087 }
7088