1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DataStream.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/ManagedStatic.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Support/StreamingMemoryObject.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <deque> 77 #include <limits> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <system_error> 82 #include <tuple> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 88 static cl::opt<bool> PrintSummaryGUIDs( 89 "print-summary-global-ids", cl::init(false), cl::Hidden, 90 cl::desc( 91 "Print the global id for each value when reading the module summary")); 92 93 namespace { 94 95 enum { 96 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 97 }; 98 99 class BitcodeReaderValueList { 100 std::vector<WeakVH> ValuePtrs; 101 102 /// As we resolve forward-referenced constants, we add information about them 103 /// to this vector. This allows us to resolve them in bulk instead of 104 /// resolving each reference at a time. See the code in 105 /// ResolveConstantForwardRefs for more information about this. 106 /// 107 /// The key of this vector is the placeholder constant, the value is the slot 108 /// number that holds the resolved value. 109 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 110 ResolveConstantsTy ResolveConstants; 111 LLVMContext &Context; 112 113 public: 114 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 115 ~BitcodeReaderValueList() { 116 assert(ResolveConstants.empty() && "Constants not resolved?"); 117 } 118 119 // vector compatibility methods 120 unsigned size() const { return ValuePtrs.size(); } 121 void resize(unsigned N) { ValuePtrs.resize(N); } 122 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 123 124 void clear() { 125 assert(ResolveConstants.empty() && "Constants not resolved?"); 126 ValuePtrs.clear(); 127 } 128 129 Value *operator[](unsigned i) const { 130 assert(i < ValuePtrs.size()); 131 return ValuePtrs[i]; 132 } 133 134 Value *back() const { return ValuePtrs.back(); } 135 void pop_back() { ValuePtrs.pop_back(); } 136 bool empty() const { return ValuePtrs.empty(); } 137 138 void shrinkTo(unsigned N) { 139 assert(N <= size() && "Invalid shrinkTo request!"); 140 ValuePtrs.resize(N); 141 } 142 143 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 144 Value *getValueFwdRef(unsigned Idx, Type *Ty); 145 146 void assignValue(Value *V, unsigned Idx); 147 148 /// Once all constants are read, this method bulk resolves any forward 149 /// references. 150 void resolveConstantForwardRefs(); 151 }; 152 153 class BitcodeReaderMetadataList { 154 unsigned NumFwdRefs; 155 bool AnyFwdRefs; 156 unsigned MinFwdRef; 157 unsigned MaxFwdRef; 158 159 /// Array of metadata references. 160 /// 161 /// Don't use std::vector here. Some versions of libc++ copy (instead of 162 /// move) on resize, and TrackingMDRef is very expensive to copy. 163 SmallVector<TrackingMDRef, 1> MetadataPtrs; 164 165 /// Structures for resolving old type refs. 166 struct { 167 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 168 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 169 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 170 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 171 } OldTypeRefs; 172 173 LLVMContext &Context; 174 175 public: 176 BitcodeReaderMetadataList(LLVMContext &C) 177 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 178 179 // vector compatibility methods 180 unsigned size() const { return MetadataPtrs.size(); } 181 void resize(unsigned N) { MetadataPtrs.resize(N); } 182 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 183 void clear() { MetadataPtrs.clear(); } 184 Metadata *back() const { return MetadataPtrs.back(); } 185 void pop_back() { MetadataPtrs.pop_back(); } 186 bool empty() const { return MetadataPtrs.empty(); } 187 188 Metadata *operator[](unsigned i) const { 189 assert(i < MetadataPtrs.size()); 190 return MetadataPtrs[i]; 191 } 192 193 Metadata *lookup(unsigned I) const { 194 if (I < MetadataPtrs.size()) 195 return MetadataPtrs[I]; 196 return nullptr; 197 } 198 199 void shrinkTo(unsigned N) { 200 assert(N <= size() && "Invalid shrinkTo request!"); 201 assert(!AnyFwdRefs && "Unexpected forward refs"); 202 MetadataPtrs.resize(N); 203 } 204 205 /// Return the given metadata, creating a replaceable forward reference if 206 /// necessary. 207 Metadata *getMetadataFwdRef(unsigned Idx); 208 209 /// Return the the given metadata only if it is fully resolved. 210 /// 211 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 212 /// would give \c false. 213 Metadata *getMetadataIfResolved(unsigned Idx); 214 215 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 216 void assignValue(Metadata *MD, unsigned Idx); 217 void tryToResolveCycles(); 218 bool hasFwdRefs() const { return AnyFwdRefs; } 219 220 /// Upgrade a type that had an MDString reference. 221 void addTypeRef(MDString &UUID, DICompositeType &CT); 222 223 /// Upgrade a type that had an MDString reference. 224 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 225 226 /// Upgrade a type ref array that may have MDString references. 227 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 228 229 private: 230 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 231 }; 232 233 class BitcodeReader : public GVMaterializer { 234 LLVMContext &Context; 235 Module *TheModule = nullptr; 236 std::unique_ptr<MemoryBuffer> Buffer; 237 std::unique_ptr<BitstreamReader> StreamFile; 238 BitstreamCursor Stream; 239 // Next offset to start scanning for lazy parsing of function bodies. 240 uint64_t NextUnreadBit = 0; 241 // Last function offset found in the VST. 242 uint64_t LastFunctionBlockBit = 0; 243 bool SeenValueSymbolTable = false; 244 uint64_t VSTOffset = 0; 245 // Contains an arbitrary and optional string identifying the bitcode producer 246 std::string ProducerIdentification; 247 248 std::vector<Type*> TypeList; 249 BitcodeReaderValueList ValueList; 250 BitcodeReaderMetadataList MetadataList; 251 std::vector<Comdat *> ComdatList; 252 SmallVector<Instruction *, 64> InstructionList; 253 254 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 255 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 256 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 257 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 258 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 259 260 bool HasSeenOldLoopTags = false; 261 262 /// The set of attributes by index. Index zero in the file is for null, and 263 /// is thus not represented here. As such all indices are off by one. 264 std::vector<AttributeSet> MAttributes; 265 266 /// The set of attribute groups. 267 std::map<unsigned, AttributeSet> MAttributeGroups; 268 269 /// While parsing a function body, this is a list of the basic blocks for the 270 /// function. 271 std::vector<BasicBlock*> FunctionBBs; 272 273 // When reading the module header, this list is populated with functions that 274 // have bodies later in the file. 275 std::vector<Function*> FunctionsWithBodies; 276 277 // When intrinsic functions are encountered which require upgrading they are 278 // stored here with their replacement function. 279 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 280 UpdatedIntrinsicMap UpgradedIntrinsics; 281 // Intrinsics which were remangled because of types rename 282 UpdatedIntrinsicMap RemangledIntrinsics; 283 284 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 285 DenseMap<unsigned, unsigned> MDKindMap; 286 287 // Several operations happen after the module header has been read, but 288 // before function bodies are processed. This keeps track of whether 289 // we've done this yet. 290 bool SeenFirstFunctionBody = false; 291 292 /// When function bodies are initially scanned, this map contains info about 293 /// where to find deferred function body in the stream. 294 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 295 296 /// When Metadata block is initially scanned when parsing the module, we may 297 /// choose to defer parsing of the metadata. This vector contains info about 298 /// which Metadata blocks are deferred. 299 std::vector<uint64_t> DeferredMetadataInfo; 300 301 /// These are basic blocks forward-referenced by block addresses. They are 302 /// inserted lazily into functions when they're loaded. The basic block ID is 303 /// its index into the vector. 304 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 305 std::deque<Function *> BasicBlockFwdRefQueue; 306 307 /// Indicates that we are using a new encoding for instruction operands where 308 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 309 /// instruction number, for a more compact encoding. Some instruction 310 /// operands are not relative to the instruction ID: basic block numbers, and 311 /// types. Once the old style function blocks have been phased out, we would 312 /// not need this flag. 313 bool UseRelativeIDs = false; 314 315 /// True if all functions will be materialized, negating the need to process 316 /// (e.g.) blockaddress forward references. 317 bool WillMaterializeAllForwardRefs = false; 318 319 /// True if any Metadata block has been materialized. 320 bool IsMetadataMaterialized = false; 321 322 bool StripDebugInfo = false; 323 324 /// Functions that need to be matched with subprograms when upgrading old 325 /// metadata. 326 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 327 328 std::vector<std::string> BundleTags; 329 330 public: 331 std::error_code error(BitcodeError E, const Twine &Message); 332 std::error_code error(const Twine &Message); 333 334 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 335 BitcodeReader(LLVMContext &Context); 336 ~BitcodeReader() override { freeState(); } 337 338 std::error_code materializeForwardReferencedFunctions(); 339 340 void freeState(); 341 342 void releaseBuffer(); 343 344 std::error_code materialize(GlobalValue *GV) override; 345 std::error_code materializeModule() override; 346 std::vector<StructType *> getIdentifiedStructTypes() const override; 347 348 /// \brief Main interface to parsing a bitcode buffer. 349 /// \returns true if an error occurred. 350 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 351 Module *M, 352 bool ShouldLazyLoadMetadata = false); 353 354 /// \brief Cheap mechanism to just extract module triple 355 /// \returns true if an error occurred. 356 ErrorOr<std::string> parseTriple(); 357 358 /// Cheap mechanism to just extract the identification block out of bitcode. 359 ErrorOr<std::string> parseIdentificationBlock(); 360 361 /// Peak at the module content and return true if any ObjC category or class 362 /// is found. 363 ErrorOr<bool> hasObjCCategory(); 364 365 static uint64_t decodeSignRotatedValue(uint64_t V); 366 367 /// Materialize any deferred Metadata block. 368 std::error_code materializeMetadata() override; 369 370 void setStripDebugInfo() override; 371 372 private: 373 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 374 // ProducerIdentification data member, and do some basic enforcement on the 375 // "epoch" encoded in the bitcode. 376 std::error_code parseBitcodeVersion(); 377 378 std::vector<StructType *> IdentifiedStructTypes; 379 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 380 StructType *createIdentifiedStructType(LLVMContext &Context); 381 382 Type *getTypeByID(unsigned ID); 383 384 Value *getFnValueByID(unsigned ID, Type *Ty) { 385 if (Ty && Ty->isMetadataTy()) 386 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 387 return ValueList.getValueFwdRef(ID, Ty); 388 } 389 390 Metadata *getFnMetadataByID(unsigned ID) { 391 return MetadataList.getMetadataFwdRef(ID); 392 } 393 394 BasicBlock *getBasicBlock(unsigned ID) const { 395 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 396 return FunctionBBs[ID]; 397 } 398 399 AttributeSet getAttributes(unsigned i) const { 400 if (i-1 < MAttributes.size()) 401 return MAttributes[i-1]; 402 return AttributeSet(); 403 } 404 405 /// Read a value/type pair out of the specified record from slot 'Slot'. 406 /// Increment Slot past the number of slots used in the record. Return true on 407 /// failure. 408 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 409 unsigned InstNum, Value *&ResVal) { 410 if (Slot == Record.size()) return true; 411 unsigned ValNo = (unsigned)Record[Slot++]; 412 // Adjust the ValNo, if it was encoded relative to the InstNum. 413 if (UseRelativeIDs) 414 ValNo = InstNum - ValNo; 415 if (ValNo < InstNum) { 416 // If this is not a forward reference, just return the value we already 417 // have. 418 ResVal = getFnValueByID(ValNo, nullptr); 419 return ResVal == nullptr; 420 } 421 if (Slot == Record.size()) 422 return true; 423 424 unsigned TypeNo = (unsigned)Record[Slot++]; 425 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 426 return ResVal == nullptr; 427 } 428 429 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 430 /// past the number of slots used by the value in the record. Return true if 431 /// there is an error. 432 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 433 unsigned InstNum, Type *Ty, Value *&ResVal) { 434 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 435 return true; 436 // All values currently take a single record slot. 437 ++Slot; 438 return false; 439 } 440 441 /// Like popValue, but does not increment the Slot number. 442 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 443 unsigned InstNum, Type *Ty, Value *&ResVal) { 444 ResVal = getValue(Record, Slot, InstNum, Ty); 445 return ResVal == nullptr; 446 } 447 448 /// Version of getValue that returns ResVal directly, or 0 if there is an 449 /// error. 450 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 451 unsigned InstNum, Type *Ty) { 452 if (Slot == Record.size()) return nullptr; 453 unsigned ValNo = (unsigned)Record[Slot]; 454 // Adjust the ValNo, if it was encoded relative to the InstNum. 455 if (UseRelativeIDs) 456 ValNo = InstNum - ValNo; 457 return getFnValueByID(ValNo, Ty); 458 } 459 460 /// Like getValue, but decodes signed VBRs. 461 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 462 unsigned InstNum, Type *Ty) { 463 if (Slot == Record.size()) return nullptr; 464 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 465 // Adjust the ValNo, if it was encoded relative to the InstNum. 466 if (UseRelativeIDs) 467 ValNo = InstNum - ValNo; 468 return getFnValueByID(ValNo, Ty); 469 } 470 471 /// Converts alignment exponent (i.e. power of two (or zero)) to the 472 /// corresponding alignment to use. If alignment is too large, returns 473 /// a corresponding error code. 474 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 475 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 476 std::error_code parseModule(uint64_t ResumeBit, 477 bool ShouldLazyLoadMetadata = false); 478 std::error_code parseAttributeBlock(); 479 std::error_code parseAttributeGroupBlock(); 480 std::error_code parseTypeTable(); 481 std::error_code parseTypeTableBody(); 482 std::error_code parseOperandBundleTags(); 483 484 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 485 unsigned NameIndex, Triple &TT); 486 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 487 std::error_code parseConstants(); 488 std::error_code rememberAndSkipFunctionBodies(); 489 std::error_code rememberAndSkipFunctionBody(); 490 /// Save the positions of the Metadata blocks and skip parsing the blocks. 491 std::error_code rememberAndSkipMetadata(); 492 std::error_code parseFunctionBody(Function *F); 493 std::error_code globalCleanup(); 494 std::error_code resolveGlobalAndIndirectSymbolInits(); 495 std::error_code parseMetadata(bool ModuleLevel = false); 496 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 497 StringRef Blob, 498 unsigned &NextMetadataNo); 499 std::error_code parseMetadataKinds(); 500 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 501 std::error_code 502 parseGlobalObjectAttachment(GlobalObject &GO, 503 ArrayRef<uint64_t> Record); 504 std::error_code parseMetadataAttachment(Function &F); 505 ErrorOr<std::string> parseModuleTriple(); 506 ErrorOr<bool> hasObjCCategoryInModule(); 507 std::error_code parseUseLists(); 508 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 509 std::error_code initStreamFromBuffer(); 510 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 511 std::error_code findFunctionInStream( 512 Function *F, 513 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 514 }; 515 516 /// Class to manage reading and parsing function summary index bitcode 517 /// files/sections. 518 class ModuleSummaryIndexBitcodeReader { 519 DiagnosticHandlerFunction DiagnosticHandler; 520 521 /// Eventually points to the module index built during parsing. 522 ModuleSummaryIndex *TheIndex = nullptr; 523 524 std::unique_ptr<MemoryBuffer> Buffer; 525 std::unique_ptr<BitstreamReader> StreamFile; 526 BitstreamCursor Stream; 527 528 /// Used to indicate whether caller only wants to check for the presence 529 /// of the global value summary bitcode section. All blocks are skipped, 530 /// but the SeenGlobalValSummary boolean is set. 531 bool CheckGlobalValSummaryPresenceOnly = false; 532 533 /// Indicates whether we have encountered a global value summary section 534 /// yet during parsing, used when checking if file contains global value 535 /// summary section. 536 bool SeenGlobalValSummary = false; 537 538 /// Indicates whether we have already parsed the VST, used for error checking. 539 bool SeenValueSymbolTable = false; 540 541 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 542 /// Used to enable on-demand parsing of the VST. 543 uint64_t VSTOffset = 0; 544 545 // Map to save ValueId to GUID association that was recorded in the 546 // ValueSymbolTable. It is used after the VST is parsed to convert 547 // call graph edges read from the function summary from referencing 548 // callees by their ValueId to using the GUID instead, which is how 549 // they are recorded in the summary index being built. 550 // We save a second GUID which is the same as the first one, but ignoring the 551 // linkage, i.e. for value other than local linkage they are identical. 552 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 553 ValueIdToCallGraphGUIDMap; 554 555 /// Map populated during module path string table parsing, from the 556 /// module ID to a string reference owned by the index's module 557 /// path string table, used to correlate with combined index 558 /// summary records. 559 DenseMap<uint64_t, StringRef> ModuleIdMap; 560 561 /// Original source file name recorded in a bitcode record. 562 std::string SourceFileName; 563 564 public: 565 std::error_code error(const Twine &Message); 566 567 ModuleSummaryIndexBitcodeReader( 568 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 569 bool CheckGlobalValSummaryPresenceOnly = false); 570 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 571 572 void freeState(); 573 574 void releaseBuffer(); 575 576 /// Check if the parser has encountered a summary section. 577 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 578 579 /// \brief Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 582 ModuleSummaryIndex *I); 583 584 private: 585 std::error_code parseModule(); 586 std::error_code parseValueSymbolTable( 587 uint64_t Offset, 588 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 589 std::error_code parseEntireSummary(); 590 std::error_code parseModuleStringTable(); 591 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 592 std::error_code initStreamFromBuffer(); 593 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 594 std::pair<GlobalValue::GUID, GlobalValue::GUID> 595 596 getGUIDFromValueId(unsigned ValueId); 597 }; 598 599 } // end anonymous namespace 600 601 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 602 DiagnosticSeverity Severity, 603 const Twine &Msg) 604 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 605 606 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 607 608 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 609 std::error_code EC, const Twine &Message) { 610 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 611 DiagnosticHandler(DI); 612 return EC; 613 } 614 615 static std::error_code error(LLVMContext &Context, std::error_code EC, 616 const Twine &Message) { 617 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 618 Message); 619 } 620 621 static std::error_code error(LLVMContext &Context, const Twine &Message) { 622 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 623 Message); 624 } 625 626 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 627 if (!ProducerIdentification.empty()) { 628 return ::error(Context, make_error_code(E), 629 Message + " (Producer: '" + ProducerIdentification + 630 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 631 } 632 return ::error(Context, make_error_code(E), Message); 633 } 634 635 std::error_code BitcodeReader::error(const Twine &Message) { 636 if (!ProducerIdentification.empty()) { 637 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 638 Message + " (Producer: '" + ProducerIdentification + 639 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 640 } 641 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 642 Message); 643 } 644 645 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 646 : Context(Context), Buffer(Buffer), ValueList(Context), 647 MetadataList(Context) {} 648 649 BitcodeReader::BitcodeReader(LLVMContext &Context) 650 : Context(Context), Buffer(nullptr), ValueList(Context), 651 MetadataList(Context) {} 652 653 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 654 if (WillMaterializeAllForwardRefs) 655 return std::error_code(); 656 657 // Prevent recursion. 658 WillMaterializeAllForwardRefs = true; 659 660 while (!BasicBlockFwdRefQueue.empty()) { 661 Function *F = BasicBlockFwdRefQueue.front(); 662 BasicBlockFwdRefQueue.pop_front(); 663 assert(F && "Expected valid function"); 664 if (!BasicBlockFwdRefs.count(F)) 665 // Already materialized. 666 continue; 667 668 // Check for a function that isn't materializable to prevent an infinite 669 // loop. When parsing a blockaddress stored in a global variable, there 670 // isn't a trivial way to check if a function will have a body without a 671 // linear search through FunctionsWithBodies, so just check it here. 672 if (!F->isMaterializable()) 673 return error("Never resolved function from blockaddress"); 674 675 // Try to materialize F. 676 if (std::error_code EC = materialize(F)) 677 return EC; 678 } 679 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 680 681 // Reset state. 682 WillMaterializeAllForwardRefs = false; 683 return std::error_code(); 684 } 685 686 void BitcodeReader::freeState() { 687 Buffer = nullptr; 688 std::vector<Type*>().swap(TypeList); 689 ValueList.clear(); 690 MetadataList.clear(); 691 std::vector<Comdat *>().swap(ComdatList); 692 693 std::vector<AttributeSet>().swap(MAttributes); 694 std::vector<BasicBlock*>().swap(FunctionBBs); 695 std::vector<Function*>().swap(FunctionsWithBodies); 696 DeferredFunctionInfo.clear(); 697 DeferredMetadataInfo.clear(); 698 MDKindMap.clear(); 699 700 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 701 BasicBlockFwdRefQueue.clear(); 702 } 703 704 //===----------------------------------------------------------------------===// 705 // Helper functions to implement forward reference resolution, etc. 706 //===----------------------------------------------------------------------===// 707 708 /// Convert a string from a record into an std::string, return true on failure. 709 template <typename StrTy> 710 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 711 StrTy &Result) { 712 if (Idx > Record.size()) 713 return true; 714 715 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 716 Result += (char)Record[i]; 717 return false; 718 } 719 720 static bool hasImplicitComdat(size_t Val) { 721 switch (Val) { 722 default: 723 return false; 724 case 1: // Old WeakAnyLinkage 725 case 4: // Old LinkOnceAnyLinkage 726 case 10: // Old WeakODRLinkage 727 case 11: // Old LinkOnceODRLinkage 728 return true; 729 } 730 } 731 732 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 733 switch (Val) { 734 default: // Map unknown/new linkages to external 735 case 0: 736 return GlobalValue::ExternalLinkage; 737 case 2: 738 return GlobalValue::AppendingLinkage; 739 case 3: 740 return GlobalValue::InternalLinkage; 741 case 5: 742 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 743 case 6: 744 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 745 case 7: 746 return GlobalValue::ExternalWeakLinkage; 747 case 8: 748 return GlobalValue::CommonLinkage; 749 case 9: 750 return GlobalValue::PrivateLinkage; 751 case 12: 752 return GlobalValue::AvailableExternallyLinkage; 753 case 13: 754 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 755 case 14: 756 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 757 case 15: 758 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 759 case 1: // Old value with implicit comdat. 760 case 16: 761 return GlobalValue::WeakAnyLinkage; 762 case 10: // Old value with implicit comdat. 763 case 17: 764 return GlobalValue::WeakODRLinkage; 765 case 4: // Old value with implicit comdat. 766 case 18: 767 return GlobalValue::LinkOnceAnyLinkage; 768 case 11: // Old value with implicit comdat. 769 case 19: 770 return GlobalValue::LinkOnceODRLinkage; 771 } 772 } 773 774 /// Decode the flags for GlobalValue in the summary. 775 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 776 uint64_t Version) { 777 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 778 // like getDecodedLinkage() above. Any future change to the linkage enum and 779 // to getDecodedLinkage() will need to be taken into account here as above. 780 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 781 RawFlags = RawFlags >> 4; 782 bool HasSection = RawFlags & 0x1; 783 bool IsNotViableToInline = RawFlags & 0x2; 784 return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline); 785 } 786 787 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 788 switch (Val) { 789 default: // Map unknown visibilities to default. 790 case 0: return GlobalValue::DefaultVisibility; 791 case 1: return GlobalValue::HiddenVisibility; 792 case 2: return GlobalValue::ProtectedVisibility; 793 } 794 } 795 796 static GlobalValue::DLLStorageClassTypes 797 getDecodedDLLStorageClass(unsigned Val) { 798 switch (Val) { 799 default: // Map unknown values to default. 800 case 0: return GlobalValue::DefaultStorageClass; 801 case 1: return GlobalValue::DLLImportStorageClass; 802 case 2: return GlobalValue::DLLExportStorageClass; 803 } 804 } 805 806 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 807 switch (Val) { 808 case 0: return GlobalVariable::NotThreadLocal; 809 default: // Map unknown non-zero value to general dynamic. 810 case 1: return GlobalVariable::GeneralDynamicTLSModel; 811 case 2: return GlobalVariable::LocalDynamicTLSModel; 812 case 3: return GlobalVariable::InitialExecTLSModel; 813 case 4: return GlobalVariable::LocalExecTLSModel; 814 } 815 } 816 817 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 818 switch (Val) { 819 default: // Map unknown to UnnamedAddr::None. 820 case 0: return GlobalVariable::UnnamedAddr::None; 821 case 1: return GlobalVariable::UnnamedAddr::Global; 822 case 2: return GlobalVariable::UnnamedAddr::Local; 823 } 824 } 825 826 static int getDecodedCastOpcode(unsigned Val) { 827 switch (Val) { 828 default: return -1; 829 case bitc::CAST_TRUNC : return Instruction::Trunc; 830 case bitc::CAST_ZEXT : return Instruction::ZExt; 831 case bitc::CAST_SEXT : return Instruction::SExt; 832 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 833 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 834 case bitc::CAST_UITOFP : return Instruction::UIToFP; 835 case bitc::CAST_SITOFP : return Instruction::SIToFP; 836 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 837 case bitc::CAST_FPEXT : return Instruction::FPExt; 838 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 839 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 840 case bitc::CAST_BITCAST : return Instruction::BitCast; 841 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 842 } 843 } 844 845 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 846 bool IsFP = Ty->isFPOrFPVectorTy(); 847 // BinOps are only valid for int/fp or vector of int/fp types 848 if (!IsFP && !Ty->isIntOrIntVectorTy()) 849 return -1; 850 851 switch (Val) { 852 default: 853 return -1; 854 case bitc::BINOP_ADD: 855 return IsFP ? Instruction::FAdd : Instruction::Add; 856 case bitc::BINOP_SUB: 857 return IsFP ? Instruction::FSub : Instruction::Sub; 858 case bitc::BINOP_MUL: 859 return IsFP ? Instruction::FMul : Instruction::Mul; 860 case bitc::BINOP_UDIV: 861 return IsFP ? -1 : Instruction::UDiv; 862 case bitc::BINOP_SDIV: 863 return IsFP ? Instruction::FDiv : Instruction::SDiv; 864 case bitc::BINOP_UREM: 865 return IsFP ? -1 : Instruction::URem; 866 case bitc::BINOP_SREM: 867 return IsFP ? Instruction::FRem : Instruction::SRem; 868 case bitc::BINOP_SHL: 869 return IsFP ? -1 : Instruction::Shl; 870 case bitc::BINOP_LSHR: 871 return IsFP ? -1 : Instruction::LShr; 872 case bitc::BINOP_ASHR: 873 return IsFP ? -1 : Instruction::AShr; 874 case bitc::BINOP_AND: 875 return IsFP ? -1 : Instruction::And; 876 case bitc::BINOP_OR: 877 return IsFP ? -1 : Instruction::Or; 878 case bitc::BINOP_XOR: 879 return IsFP ? -1 : Instruction::Xor; 880 } 881 } 882 883 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 884 switch (Val) { 885 default: return AtomicRMWInst::BAD_BINOP; 886 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 887 case bitc::RMW_ADD: return AtomicRMWInst::Add; 888 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 889 case bitc::RMW_AND: return AtomicRMWInst::And; 890 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 891 case bitc::RMW_OR: return AtomicRMWInst::Or; 892 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 893 case bitc::RMW_MAX: return AtomicRMWInst::Max; 894 case bitc::RMW_MIN: return AtomicRMWInst::Min; 895 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 896 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 897 } 898 } 899 900 static AtomicOrdering getDecodedOrdering(unsigned Val) { 901 switch (Val) { 902 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 903 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 904 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 905 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 906 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 907 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 908 default: // Map unknown orderings to sequentially-consistent. 909 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 910 } 911 } 912 913 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 914 switch (Val) { 915 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 916 default: // Map unknown scopes to cross-thread. 917 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 918 } 919 } 920 921 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 922 switch (Val) { 923 default: // Map unknown selection kinds to any. 924 case bitc::COMDAT_SELECTION_KIND_ANY: 925 return Comdat::Any; 926 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 927 return Comdat::ExactMatch; 928 case bitc::COMDAT_SELECTION_KIND_LARGEST: 929 return Comdat::Largest; 930 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 931 return Comdat::NoDuplicates; 932 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 933 return Comdat::SameSize; 934 } 935 } 936 937 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 938 FastMathFlags FMF; 939 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 940 FMF.setUnsafeAlgebra(); 941 if (0 != (Val & FastMathFlags::NoNaNs)) 942 FMF.setNoNaNs(); 943 if (0 != (Val & FastMathFlags::NoInfs)) 944 FMF.setNoInfs(); 945 if (0 != (Val & FastMathFlags::NoSignedZeros)) 946 FMF.setNoSignedZeros(); 947 if (0 != (Val & FastMathFlags::AllowReciprocal)) 948 FMF.setAllowReciprocal(); 949 return FMF; 950 } 951 952 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 953 switch (Val) { 954 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 955 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 956 } 957 } 958 959 namespace llvm { 960 namespace { 961 962 /// \brief A class for maintaining the slot number definition 963 /// as a placeholder for the actual definition for forward constants defs. 964 class ConstantPlaceHolder : public ConstantExpr { 965 void operator=(const ConstantPlaceHolder &) = delete; 966 967 public: 968 // allocate space for exactly one operand 969 void *operator new(size_t s) { return User::operator new(s, 1); } 970 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 971 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 972 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 973 } 974 975 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 976 static bool classof(const Value *V) { 977 return isa<ConstantExpr>(V) && 978 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 979 } 980 981 /// Provide fast operand accessors 982 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 983 }; 984 985 } // end anonymous namespace 986 987 // FIXME: can we inherit this from ConstantExpr? 988 template <> 989 struct OperandTraits<ConstantPlaceHolder> : 990 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 991 }; 992 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 993 994 } // end namespace llvm 995 996 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 997 if (Idx == size()) { 998 push_back(V); 999 return; 1000 } 1001 1002 if (Idx >= size()) 1003 resize(Idx+1); 1004 1005 WeakVH &OldV = ValuePtrs[Idx]; 1006 if (!OldV) { 1007 OldV = V; 1008 return; 1009 } 1010 1011 // Handle constants and non-constants (e.g. instrs) differently for 1012 // efficiency. 1013 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1014 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1015 OldV = V; 1016 } else { 1017 // If there was a forward reference to this value, replace it. 1018 Value *PrevVal = OldV; 1019 OldV->replaceAllUsesWith(V); 1020 delete PrevVal; 1021 } 1022 } 1023 1024 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1025 Type *Ty) { 1026 if (Idx >= size()) 1027 resize(Idx + 1); 1028 1029 if (Value *V = ValuePtrs[Idx]) { 1030 if (Ty != V->getType()) 1031 report_fatal_error("Type mismatch in constant table!"); 1032 return cast<Constant>(V); 1033 } 1034 1035 // Create and return a placeholder, which will later be RAUW'd. 1036 Constant *C = new ConstantPlaceHolder(Ty, Context); 1037 ValuePtrs[Idx] = C; 1038 return C; 1039 } 1040 1041 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1042 // Bail out for a clearly invalid value. This would make us call resize(0) 1043 if (Idx == std::numeric_limits<unsigned>::max()) 1044 return nullptr; 1045 1046 if (Idx >= size()) 1047 resize(Idx + 1); 1048 1049 if (Value *V = ValuePtrs[Idx]) { 1050 // If the types don't match, it's invalid. 1051 if (Ty && Ty != V->getType()) 1052 return nullptr; 1053 return V; 1054 } 1055 1056 // No type specified, must be invalid reference. 1057 if (!Ty) return nullptr; 1058 1059 // Create and return a placeholder, which will later be RAUW'd. 1060 Value *V = new Argument(Ty); 1061 ValuePtrs[Idx] = V; 1062 return V; 1063 } 1064 1065 /// Once all constants are read, this method bulk resolves any forward 1066 /// references. The idea behind this is that we sometimes get constants (such 1067 /// as large arrays) which reference *many* forward ref constants. Replacing 1068 /// each of these causes a lot of thrashing when building/reuniquing the 1069 /// constant. Instead of doing this, we look at all the uses and rewrite all 1070 /// the place holders at once for any constant that uses a placeholder. 1071 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1072 // Sort the values by-pointer so that they are efficient to look up with a 1073 // binary search. 1074 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1075 1076 SmallVector<Constant*, 64> NewOps; 1077 1078 while (!ResolveConstants.empty()) { 1079 Value *RealVal = operator[](ResolveConstants.back().second); 1080 Constant *Placeholder = ResolveConstants.back().first; 1081 ResolveConstants.pop_back(); 1082 1083 // Loop over all users of the placeholder, updating them to reference the 1084 // new value. If they reference more than one placeholder, update them all 1085 // at once. 1086 while (!Placeholder->use_empty()) { 1087 auto UI = Placeholder->user_begin(); 1088 User *U = *UI; 1089 1090 // If the using object isn't uniqued, just update the operands. This 1091 // handles instructions and initializers for global variables. 1092 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1093 UI.getUse().set(RealVal); 1094 continue; 1095 } 1096 1097 // Otherwise, we have a constant that uses the placeholder. Replace that 1098 // constant with a new constant that has *all* placeholder uses updated. 1099 Constant *UserC = cast<Constant>(U); 1100 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1101 I != E; ++I) { 1102 Value *NewOp; 1103 if (!isa<ConstantPlaceHolder>(*I)) { 1104 // Not a placeholder reference. 1105 NewOp = *I; 1106 } else if (*I == Placeholder) { 1107 // Common case is that it just references this one placeholder. 1108 NewOp = RealVal; 1109 } else { 1110 // Otherwise, look up the placeholder in ResolveConstants. 1111 ResolveConstantsTy::iterator It = 1112 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1113 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1114 0)); 1115 assert(It != ResolveConstants.end() && It->first == *I); 1116 NewOp = operator[](It->second); 1117 } 1118 1119 NewOps.push_back(cast<Constant>(NewOp)); 1120 } 1121 1122 // Make the new constant. 1123 Constant *NewC; 1124 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1125 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1126 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1127 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1128 } else if (isa<ConstantVector>(UserC)) { 1129 NewC = ConstantVector::get(NewOps); 1130 } else { 1131 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1132 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1133 } 1134 1135 UserC->replaceAllUsesWith(NewC); 1136 UserC->destroyConstant(); 1137 NewOps.clear(); 1138 } 1139 1140 // Update all ValueHandles, they should be the only users at this point. 1141 Placeholder->replaceAllUsesWith(RealVal); 1142 delete Placeholder; 1143 } 1144 } 1145 1146 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1147 if (Idx == size()) { 1148 push_back(MD); 1149 return; 1150 } 1151 1152 if (Idx >= size()) 1153 resize(Idx+1); 1154 1155 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1156 if (!OldMD) { 1157 OldMD.reset(MD); 1158 return; 1159 } 1160 1161 // If there was a forward reference to this value, replace it. 1162 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1163 PrevMD->replaceAllUsesWith(MD); 1164 --NumFwdRefs; 1165 } 1166 1167 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1168 if (Idx >= size()) 1169 resize(Idx + 1); 1170 1171 if (Metadata *MD = MetadataPtrs[Idx]) 1172 return MD; 1173 1174 // Track forward refs to be resolved later. 1175 if (AnyFwdRefs) { 1176 MinFwdRef = std::min(MinFwdRef, Idx); 1177 MaxFwdRef = std::max(MaxFwdRef, Idx); 1178 } else { 1179 AnyFwdRefs = true; 1180 MinFwdRef = MaxFwdRef = Idx; 1181 } 1182 ++NumFwdRefs; 1183 1184 // Create and return a placeholder, which will later be RAUW'd. 1185 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1186 MetadataPtrs[Idx].reset(MD); 1187 return MD; 1188 } 1189 1190 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1191 Metadata *MD = lookup(Idx); 1192 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1193 if (!N->isResolved()) 1194 return nullptr; 1195 return MD; 1196 } 1197 1198 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1199 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1200 } 1201 1202 void BitcodeReaderMetadataList::tryToResolveCycles() { 1203 if (NumFwdRefs) 1204 // Still forward references... can't resolve cycles. 1205 return; 1206 1207 bool DidReplaceTypeRefs = false; 1208 1209 // Give up on finding a full definition for any forward decls that remain. 1210 for (const auto &Ref : OldTypeRefs.FwdDecls) 1211 OldTypeRefs.Final.insert(Ref); 1212 OldTypeRefs.FwdDecls.clear(); 1213 1214 // Upgrade from old type ref arrays. In strange cases, this could add to 1215 // OldTypeRefs.Unknown. 1216 for (const auto &Array : OldTypeRefs.Arrays) { 1217 DidReplaceTypeRefs = true; 1218 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1219 } 1220 OldTypeRefs.Arrays.clear(); 1221 1222 // Replace old string-based type refs with the resolved node, if possible. 1223 // If we haven't seen the node, leave it to the verifier to complain about 1224 // the invalid string reference. 1225 for (const auto &Ref : OldTypeRefs.Unknown) { 1226 DidReplaceTypeRefs = true; 1227 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1228 Ref.second->replaceAllUsesWith(CT); 1229 else 1230 Ref.second->replaceAllUsesWith(Ref.first); 1231 } 1232 OldTypeRefs.Unknown.clear(); 1233 1234 // Make sure all the upgraded types are resolved. 1235 if (DidReplaceTypeRefs) { 1236 AnyFwdRefs = true; 1237 MinFwdRef = 0; 1238 MaxFwdRef = MetadataPtrs.size() - 1; 1239 } 1240 1241 if (!AnyFwdRefs) 1242 // Nothing to do. 1243 return; 1244 1245 // Resolve any cycles. 1246 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1247 auto &MD = MetadataPtrs[I]; 1248 auto *N = dyn_cast_or_null<MDNode>(MD); 1249 if (!N) 1250 continue; 1251 1252 assert(!N->isTemporary() && "Unexpected forward reference"); 1253 N->resolveCycles(); 1254 } 1255 1256 // Make sure we return early again until there's another forward ref. 1257 AnyFwdRefs = false; 1258 } 1259 1260 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1261 DICompositeType &CT) { 1262 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1263 if (CT.isForwardDecl()) 1264 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1265 else 1266 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1267 } 1268 1269 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1270 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1271 if (LLVM_LIKELY(!UUID)) 1272 return MaybeUUID; 1273 1274 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1275 return CT; 1276 1277 auto &Ref = OldTypeRefs.Unknown[UUID]; 1278 if (!Ref) 1279 Ref = MDNode::getTemporary(Context, None); 1280 return Ref.get(); 1281 } 1282 1283 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1284 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1285 if (!Tuple || Tuple->isDistinct()) 1286 return MaybeTuple; 1287 1288 // Look through the array immediately if possible. 1289 if (!Tuple->isTemporary()) 1290 return resolveTypeRefArray(Tuple); 1291 1292 // Create and return a placeholder to use for now. Eventually 1293 // resolveTypeRefArrays() will be resolve this forward reference. 1294 OldTypeRefs.Arrays.emplace_back( 1295 std::piecewise_construct, std::forward_as_tuple(Tuple), 1296 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1297 return OldTypeRefs.Arrays.back().second.get(); 1298 } 1299 1300 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1301 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1302 if (!Tuple || Tuple->isDistinct()) 1303 return MaybeTuple; 1304 1305 // Look through the DITypeRefArray, upgrading each DITypeRef. 1306 SmallVector<Metadata *, 32> Ops; 1307 Ops.reserve(Tuple->getNumOperands()); 1308 for (Metadata *MD : Tuple->operands()) 1309 Ops.push_back(upgradeTypeRef(MD)); 1310 1311 return MDTuple::get(Context, Ops); 1312 } 1313 1314 Type *BitcodeReader::getTypeByID(unsigned ID) { 1315 // The type table size is always specified correctly. 1316 if (ID >= TypeList.size()) 1317 return nullptr; 1318 1319 if (Type *Ty = TypeList[ID]) 1320 return Ty; 1321 1322 // If we have a forward reference, the only possible case is when it is to a 1323 // named struct. Just create a placeholder for now. 1324 return TypeList[ID] = createIdentifiedStructType(Context); 1325 } 1326 1327 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1328 StringRef Name) { 1329 auto *Ret = StructType::create(Context, Name); 1330 IdentifiedStructTypes.push_back(Ret); 1331 return Ret; 1332 } 1333 1334 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1335 auto *Ret = StructType::create(Context); 1336 IdentifiedStructTypes.push_back(Ret); 1337 return Ret; 1338 } 1339 1340 //===----------------------------------------------------------------------===// 1341 // Functions for parsing blocks from the bitcode file 1342 //===----------------------------------------------------------------------===// 1343 1344 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1345 /// been decoded from the given integer. This function must stay in sync with 1346 /// 'encodeLLVMAttributesForBitcode'. 1347 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1348 uint64_t EncodedAttrs) { 1349 // FIXME: Remove in 4.0. 1350 1351 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1352 // the bits above 31 down by 11 bits. 1353 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1354 assert((!Alignment || isPowerOf2_32(Alignment)) && 1355 "Alignment must be a power of two."); 1356 1357 if (Alignment) 1358 B.addAlignmentAttr(Alignment); 1359 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1360 (EncodedAttrs & 0xffff)); 1361 } 1362 1363 std::error_code BitcodeReader::parseAttributeBlock() { 1364 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1365 return error("Invalid record"); 1366 1367 if (!MAttributes.empty()) 1368 return error("Invalid multiple blocks"); 1369 1370 SmallVector<uint64_t, 64> Record; 1371 1372 SmallVector<AttributeSet, 8> Attrs; 1373 1374 // Read all the records. 1375 while (true) { 1376 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1377 1378 switch (Entry.Kind) { 1379 case BitstreamEntry::SubBlock: // Handled for us already. 1380 case BitstreamEntry::Error: 1381 return error("Malformed block"); 1382 case BitstreamEntry::EndBlock: 1383 return std::error_code(); 1384 case BitstreamEntry::Record: 1385 // The interesting case. 1386 break; 1387 } 1388 1389 // Read a record. 1390 Record.clear(); 1391 switch (Stream.readRecord(Entry.ID, Record)) { 1392 default: // Default behavior: ignore. 1393 break; 1394 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1395 // FIXME: Remove in 4.0. 1396 if (Record.size() & 1) 1397 return error("Invalid record"); 1398 1399 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1400 AttrBuilder B; 1401 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1402 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1403 } 1404 1405 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1406 Attrs.clear(); 1407 break; 1408 } 1409 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1410 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1411 Attrs.push_back(MAttributeGroups[Record[i]]); 1412 1413 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1414 Attrs.clear(); 1415 break; 1416 } 1417 } 1418 } 1419 } 1420 1421 // Returns Attribute::None on unrecognized codes. 1422 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1423 switch (Code) { 1424 default: 1425 return Attribute::None; 1426 case bitc::ATTR_KIND_ALIGNMENT: 1427 return Attribute::Alignment; 1428 case bitc::ATTR_KIND_ALWAYS_INLINE: 1429 return Attribute::AlwaysInline; 1430 case bitc::ATTR_KIND_ARGMEMONLY: 1431 return Attribute::ArgMemOnly; 1432 case bitc::ATTR_KIND_BUILTIN: 1433 return Attribute::Builtin; 1434 case bitc::ATTR_KIND_BY_VAL: 1435 return Attribute::ByVal; 1436 case bitc::ATTR_KIND_IN_ALLOCA: 1437 return Attribute::InAlloca; 1438 case bitc::ATTR_KIND_COLD: 1439 return Attribute::Cold; 1440 case bitc::ATTR_KIND_CONVERGENT: 1441 return Attribute::Convergent; 1442 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1443 return Attribute::InaccessibleMemOnly; 1444 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1445 return Attribute::InaccessibleMemOrArgMemOnly; 1446 case bitc::ATTR_KIND_INLINE_HINT: 1447 return Attribute::InlineHint; 1448 case bitc::ATTR_KIND_IN_REG: 1449 return Attribute::InReg; 1450 case bitc::ATTR_KIND_JUMP_TABLE: 1451 return Attribute::JumpTable; 1452 case bitc::ATTR_KIND_MIN_SIZE: 1453 return Attribute::MinSize; 1454 case bitc::ATTR_KIND_NAKED: 1455 return Attribute::Naked; 1456 case bitc::ATTR_KIND_NEST: 1457 return Attribute::Nest; 1458 case bitc::ATTR_KIND_NO_ALIAS: 1459 return Attribute::NoAlias; 1460 case bitc::ATTR_KIND_NO_BUILTIN: 1461 return Attribute::NoBuiltin; 1462 case bitc::ATTR_KIND_NO_CAPTURE: 1463 return Attribute::NoCapture; 1464 case bitc::ATTR_KIND_NO_DUPLICATE: 1465 return Attribute::NoDuplicate; 1466 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1467 return Attribute::NoImplicitFloat; 1468 case bitc::ATTR_KIND_NO_INLINE: 1469 return Attribute::NoInline; 1470 case bitc::ATTR_KIND_NO_RECURSE: 1471 return Attribute::NoRecurse; 1472 case bitc::ATTR_KIND_NON_LAZY_BIND: 1473 return Attribute::NonLazyBind; 1474 case bitc::ATTR_KIND_NON_NULL: 1475 return Attribute::NonNull; 1476 case bitc::ATTR_KIND_DEREFERENCEABLE: 1477 return Attribute::Dereferenceable; 1478 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1479 return Attribute::DereferenceableOrNull; 1480 case bitc::ATTR_KIND_ALLOC_SIZE: 1481 return Attribute::AllocSize; 1482 case bitc::ATTR_KIND_NO_RED_ZONE: 1483 return Attribute::NoRedZone; 1484 case bitc::ATTR_KIND_NO_RETURN: 1485 return Attribute::NoReturn; 1486 case bitc::ATTR_KIND_NO_UNWIND: 1487 return Attribute::NoUnwind; 1488 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1489 return Attribute::OptimizeForSize; 1490 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1491 return Attribute::OptimizeNone; 1492 case bitc::ATTR_KIND_READ_NONE: 1493 return Attribute::ReadNone; 1494 case bitc::ATTR_KIND_READ_ONLY: 1495 return Attribute::ReadOnly; 1496 case bitc::ATTR_KIND_RETURNED: 1497 return Attribute::Returned; 1498 case bitc::ATTR_KIND_RETURNS_TWICE: 1499 return Attribute::ReturnsTwice; 1500 case bitc::ATTR_KIND_S_EXT: 1501 return Attribute::SExt; 1502 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1503 return Attribute::StackAlignment; 1504 case bitc::ATTR_KIND_STACK_PROTECT: 1505 return Attribute::StackProtect; 1506 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1507 return Attribute::StackProtectReq; 1508 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1509 return Attribute::StackProtectStrong; 1510 case bitc::ATTR_KIND_SAFESTACK: 1511 return Attribute::SafeStack; 1512 case bitc::ATTR_KIND_STRUCT_RET: 1513 return Attribute::StructRet; 1514 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1515 return Attribute::SanitizeAddress; 1516 case bitc::ATTR_KIND_SANITIZE_THREAD: 1517 return Attribute::SanitizeThread; 1518 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1519 return Attribute::SanitizeMemory; 1520 case bitc::ATTR_KIND_SWIFT_ERROR: 1521 return Attribute::SwiftError; 1522 case bitc::ATTR_KIND_SWIFT_SELF: 1523 return Attribute::SwiftSelf; 1524 case bitc::ATTR_KIND_UW_TABLE: 1525 return Attribute::UWTable; 1526 case bitc::ATTR_KIND_WRITEONLY: 1527 return Attribute::WriteOnly; 1528 case bitc::ATTR_KIND_Z_EXT: 1529 return Attribute::ZExt; 1530 } 1531 } 1532 1533 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1534 unsigned &Alignment) { 1535 // Note: Alignment in bitcode files is incremented by 1, so that zero 1536 // can be used for default alignment. 1537 if (Exponent > Value::MaxAlignmentExponent + 1) 1538 return error("Invalid alignment value"); 1539 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1540 return std::error_code(); 1541 } 1542 1543 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1544 Attribute::AttrKind *Kind) { 1545 *Kind = getAttrFromCode(Code); 1546 if (*Kind == Attribute::None) 1547 return error(BitcodeError::CorruptedBitcode, 1548 "Unknown attribute kind (" + Twine(Code) + ")"); 1549 return std::error_code(); 1550 } 1551 1552 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1553 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return error("Invalid record"); 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1564 1565 switch (Entry.Kind) { 1566 case BitstreamEntry::SubBlock: // Handled for us already. 1567 case BitstreamEntry::Error: 1568 return error("Malformed block"); 1569 case BitstreamEntry::EndBlock: 1570 return std::error_code(); 1571 case BitstreamEntry::Record: 1572 // The interesting case. 1573 break; 1574 } 1575 1576 // Read a record. 1577 Record.clear(); 1578 switch (Stream.readRecord(Entry.ID, Record)) { 1579 default: // Default behavior: ignore. 1580 break; 1581 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1582 if (Record.size() < 3) 1583 return error("Invalid record"); 1584 1585 uint64_t GrpID = Record[0]; 1586 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1587 1588 AttrBuilder B; 1589 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1590 if (Record[i] == 0) { // Enum attribute 1591 Attribute::AttrKind Kind; 1592 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1593 return EC; 1594 1595 B.addAttribute(Kind); 1596 } else if (Record[i] == 1) { // Integer attribute 1597 Attribute::AttrKind Kind; 1598 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1599 return EC; 1600 if (Kind == Attribute::Alignment) 1601 B.addAlignmentAttr(Record[++i]); 1602 else if (Kind == Attribute::StackAlignment) 1603 B.addStackAlignmentAttr(Record[++i]); 1604 else if (Kind == Attribute::Dereferenceable) 1605 B.addDereferenceableAttr(Record[++i]); 1606 else if (Kind == Attribute::DereferenceableOrNull) 1607 B.addDereferenceableOrNullAttr(Record[++i]); 1608 else if (Kind == Attribute::AllocSize) 1609 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1610 } else { // String attribute 1611 assert((Record[i] == 3 || Record[i] == 4) && 1612 "Invalid attribute group entry"); 1613 bool HasValue = (Record[i++] == 4); 1614 SmallString<64> KindStr; 1615 SmallString<64> ValStr; 1616 1617 while (Record[i] != 0 && i != e) 1618 KindStr += Record[i++]; 1619 assert(Record[i] == 0 && "Kind string not null terminated"); 1620 1621 if (HasValue) { 1622 // Has a value associated with it. 1623 ++i; // Skip the '0' that terminates the "kind" string. 1624 while (Record[i] != 0 && i != e) 1625 ValStr += Record[i++]; 1626 assert(Record[i] == 0 && "Value string not null terminated"); 1627 } 1628 1629 B.addAttribute(KindStr.str(), ValStr.str()); 1630 } 1631 } 1632 1633 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1634 break; 1635 } 1636 } 1637 } 1638 } 1639 1640 std::error_code BitcodeReader::parseTypeTable() { 1641 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1642 return error("Invalid record"); 1643 1644 return parseTypeTableBody(); 1645 } 1646 1647 std::error_code BitcodeReader::parseTypeTableBody() { 1648 if (!TypeList.empty()) 1649 return error("Invalid multiple blocks"); 1650 1651 SmallVector<uint64_t, 64> Record; 1652 unsigned NumRecords = 0; 1653 1654 SmallString<64> TypeName; 1655 1656 // Read all the records for this type table. 1657 while (true) { 1658 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1659 1660 switch (Entry.Kind) { 1661 case BitstreamEntry::SubBlock: // Handled for us already. 1662 case BitstreamEntry::Error: 1663 return error("Malformed block"); 1664 case BitstreamEntry::EndBlock: 1665 if (NumRecords != TypeList.size()) 1666 return error("Malformed block"); 1667 return std::error_code(); 1668 case BitstreamEntry::Record: 1669 // The interesting case. 1670 break; 1671 } 1672 1673 // Read a record. 1674 Record.clear(); 1675 Type *ResultTy = nullptr; 1676 switch (Stream.readRecord(Entry.ID, Record)) { 1677 default: 1678 return error("Invalid value"); 1679 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1680 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1681 // type list. This allows us to reserve space. 1682 if (Record.size() < 1) 1683 return error("Invalid record"); 1684 TypeList.resize(Record[0]); 1685 continue; 1686 case bitc::TYPE_CODE_VOID: // VOID 1687 ResultTy = Type::getVoidTy(Context); 1688 break; 1689 case bitc::TYPE_CODE_HALF: // HALF 1690 ResultTy = Type::getHalfTy(Context); 1691 break; 1692 case bitc::TYPE_CODE_FLOAT: // FLOAT 1693 ResultTy = Type::getFloatTy(Context); 1694 break; 1695 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1696 ResultTy = Type::getDoubleTy(Context); 1697 break; 1698 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1699 ResultTy = Type::getX86_FP80Ty(Context); 1700 break; 1701 case bitc::TYPE_CODE_FP128: // FP128 1702 ResultTy = Type::getFP128Ty(Context); 1703 break; 1704 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1705 ResultTy = Type::getPPC_FP128Ty(Context); 1706 break; 1707 case bitc::TYPE_CODE_LABEL: // LABEL 1708 ResultTy = Type::getLabelTy(Context); 1709 break; 1710 case bitc::TYPE_CODE_METADATA: // METADATA 1711 ResultTy = Type::getMetadataTy(Context); 1712 break; 1713 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1714 ResultTy = Type::getX86_MMXTy(Context); 1715 break; 1716 case bitc::TYPE_CODE_TOKEN: // TOKEN 1717 ResultTy = Type::getTokenTy(Context); 1718 break; 1719 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1720 if (Record.size() < 1) 1721 return error("Invalid record"); 1722 1723 uint64_t NumBits = Record[0]; 1724 if (NumBits < IntegerType::MIN_INT_BITS || 1725 NumBits > IntegerType::MAX_INT_BITS) 1726 return error("Bitwidth for integer type out of range"); 1727 ResultTy = IntegerType::get(Context, NumBits); 1728 break; 1729 } 1730 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1731 // [pointee type, address space] 1732 if (Record.size() < 1) 1733 return error("Invalid record"); 1734 unsigned AddressSpace = 0; 1735 if (Record.size() == 2) 1736 AddressSpace = Record[1]; 1737 ResultTy = getTypeByID(Record[0]); 1738 if (!ResultTy || 1739 !PointerType::isValidElementType(ResultTy)) 1740 return error("Invalid type"); 1741 ResultTy = PointerType::get(ResultTy, AddressSpace); 1742 break; 1743 } 1744 case bitc::TYPE_CODE_FUNCTION_OLD: { 1745 // FIXME: attrid is dead, remove it in LLVM 4.0 1746 // FUNCTION: [vararg, attrid, retty, paramty x N] 1747 if (Record.size() < 3) 1748 return error("Invalid record"); 1749 SmallVector<Type*, 8> ArgTys; 1750 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1751 if (Type *T = getTypeByID(Record[i])) 1752 ArgTys.push_back(T); 1753 else 1754 break; 1755 } 1756 1757 ResultTy = getTypeByID(Record[2]); 1758 if (!ResultTy || ArgTys.size() < Record.size()-3) 1759 return error("Invalid type"); 1760 1761 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1762 break; 1763 } 1764 case bitc::TYPE_CODE_FUNCTION: { 1765 // FUNCTION: [vararg, retty, paramty x N] 1766 if (Record.size() < 2) 1767 return error("Invalid record"); 1768 SmallVector<Type*, 8> ArgTys; 1769 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1770 if (Type *T = getTypeByID(Record[i])) { 1771 if (!FunctionType::isValidArgumentType(T)) 1772 return error("Invalid function argument type"); 1773 ArgTys.push_back(T); 1774 } 1775 else 1776 break; 1777 } 1778 1779 ResultTy = getTypeByID(Record[1]); 1780 if (!ResultTy || ArgTys.size() < Record.size()-2) 1781 return error("Invalid type"); 1782 1783 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1784 break; 1785 } 1786 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1787 if (Record.size() < 1) 1788 return error("Invalid record"); 1789 SmallVector<Type*, 8> EltTys; 1790 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1791 if (Type *T = getTypeByID(Record[i])) 1792 EltTys.push_back(T); 1793 else 1794 break; 1795 } 1796 if (EltTys.size() != Record.size()-1) 1797 return error("Invalid type"); 1798 ResultTy = StructType::get(Context, EltTys, Record[0]); 1799 break; 1800 } 1801 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1802 if (convertToString(Record, 0, TypeName)) 1803 return error("Invalid record"); 1804 continue; 1805 1806 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1807 if (Record.size() < 1) 1808 return error("Invalid record"); 1809 1810 if (NumRecords >= TypeList.size()) 1811 return error("Invalid TYPE table"); 1812 1813 // Check to see if this was forward referenced, if so fill in the temp. 1814 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1815 if (Res) { 1816 Res->setName(TypeName); 1817 TypeList[NumRecords] = nullptr; 1818 } else // Otherwise, create a new struct. 1819 Res = createIdentifiedStructType(Context, TypeName); 1820 TypeName.clear(); 1821 1822 SmallVector<Type*, 8> EltTys; 1823 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) 1825 EltTys.push_back(T); 1826 else 1827 break; 1828 } 1829 if (EltTys.size() != Record.size()-1) 1830 return error("Invalid record"); 1831 Res->setBody(EltTys, Record[0]); 1832 ResultTy = Res; 1833 break; 1834 } 1835 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1836 if (Record.size() != 1) 1837 return error("Invalid record"); 1838 1839 if (NumRecords >= TypeList.size()) 1840 return error("Invalid TYPE table"); 1841 1842 // Check to see if this was forward referenced, if so fill in the temp. 1843 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1844 if (Res) { 1845 Res->setName(TypeName); 1846 TypeList[NumRecords] = nullptr; 1847 } else // Otherwise, create a new struct with no body. 1848 Res = createIdentifiedStructType(Context, TypeName); 1849 TypeName.clear(); 1850 ResultTy = Res; 1851 break; 1852 } 1853 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1854 if (Record.size() < 2) 1855 return error("Invalid record"); 1856 ResultTy = getTypeByID(Record[1]); 1857 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1858 return error("Invalid type"); 1859 ResultTy = ArrayType::get(ResultTy, Record[0]); 1860 break; 1861 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1862 if (Record.size() < 2) 1863 return error("Invalid record"); 1864 if (Record[0] == 0) 1865 return error("Invalid vector length"); 1866 ResultTy = getTypeByID(Record[1]); 1867 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1868 return error("Invalid type"); 1869 ResultTy = VectorType::get(ResultTy, Record[0]); 1870 break; 1871 } 1872 1873 if (NumRecords >= TypeList.size()) 1874 return error("Invalid TYPE table"); 1875 if (TypeList[NumRecords]) 1876 return error( 1877 "Invalid TYPE table: Only named structs can be forward referenced"); 1878 assert(ResultTy && "Didn't read a type?"); 1879 TypeList[NumRecords++] = ResultTy; 1880 } 1881 } 1882 1883 std::error_code BitcodeReader::parseOperandBundleTags() { 1884 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1885 return error("Invalid record"); 1886 1887 if (!BundleTags.empty()) 1888 return error("Invalid multiple blocks"); 1889 1890 SmallVector<uint64_t, 64> Record; 1891 1892 while (true) { 1893 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1894 1895 switch (Entry.Kind) { 1896 case BitstreamEntry::SubBlock: // Handled for us already. 1897 case BitstreamEntry::Error: 1898 return error("Malformed block"); 1899 case BitstreamEntry::EndBlock: 1900 return std::error_code(); 1901 case BitstreamEntry::Record: 1902 // The interesting case. 1903 break; 1904 } 1905 1906 // Tags are implicitly mapped to integers by their order. 1907 1908 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1909 return error("Invalid record"); 1910 1911 // OPERAND_BUNDLE_TAG: [strchr x N] 1912 BundleTags.emplace_back(); 1913 if (convertToString(Record, 0, BundleTags.back())) 1914 return error("Invalid record"); 1915 Record.clear(); 1916 } 1917 } 1918 1919 /// Associate a value with its name from the given index in the provided record. 1920 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1921 unsigned NameIndex, Triple &TT) { 1922 SmallString<128> ValueName; 1923 if (convertToString(Record, NameIndex, ValueName)) 1924 return error("Invalid record"); 1925 unsigned ValueID = Record[0]; 1926 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1927 return error("Invalid record"); 1928 Value *V = ValueList[ValueID]; 1929 1930 StringRef NameStr(ValueName.data(), ValueName.size()); 1931 if (NameStr.find_first_of(0) != StringRef::npos) 1932 return error("Invalid value name"); 1933 V->setName(NameStr); 1934 auto *GO = dyn_cast<GlobalObject>(V); 1935 if (GO) { 1936 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1937 if (TT.isOSBinFormatMachO()) 1938 GO->setComdat(nullptr); 1939 else 1940 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1941 } 1942 } 1943 return V; 1944 } 1945 1946 /// Helper to note and return the current location, and jump to the given 1947 /// offset. 1948 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1949 BitstreamCursor &Stream) { 1950 // Save the current parsing location so we can jump back at the end 1951 // of the VST read. 1952 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1953 Stream.JumpToBit(Offset * 32); 1954 #ifndef NDEBUG 1955 // Do some checking if we are in debug mode. 1956 BitstreamEntry Entry = Stream.advance(); 1957 assert(Entry.Kind == BitstreamEntry::SubBlock); 1958 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1959 #else 1960 // In NDEBUG mode ignore the output so we don't get an unused variable 1961 // warning. 1962 Stream.advance(); 1963 #endif 1964 return CurrentBit; 1965 } 1966 1967 /// Parse the value symbol table at either the current parsing location or 1968 /// at the given bit offset if provided. 1969 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1970 uint64_t CurrentBit; 1971 // Pass in the Offset to distinguish between calling for the module-level 1972 // VST (where we want to jump to the VST offset) and the function-level 1973 // VST (where we don't). 1974 if (Offset > 0) 1975 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1976 1977 // Compute the delta between the bitcode indices in the VST (the word offset 1978 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1979 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1980 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1981 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1982 // just before entering the VST subblock because: 1) the EnterSubBlock 1983 // changes the AbbrevID width; 2) the VST block is nested within the same 1984 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1985 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1986 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1987 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1988 unsigned FuncBitcodeOffsetDelta = 1989 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1990 1991 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1992 return error("Invalid record"); 1993 1994 SmallVector<uint64_t, 64> Record; 1995 1996 Triple TT(TheModule->getTargetTriple()); 1997 1998 // Read all the records for this value table. 1999 SmallString<128> ValueName; 2000 2001 while (true) { 2002 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2003 2004 switch (Entry.Kind) { 2005 case BitstreamEntry::SubBlock: // Handled for us already. 2006 case BitstreamEntry::Error: 2007 return error("Malformed block"); 2008 case BitstreamEntry::EndBlock: 2009 if (Offset > 0) 2010 Stream.JumpToBit(CurrentBit); 2011 return std::error_code(); 2012 case BitstreamEntry::Record: 2013 // The interesting case. 2014 break; 2015 } 2016 2017 // Read a record. 2018 Record.clear(); 2019 switch (Stream.readRecord(Entry.ID, Record)) { 2020 default: // Default behavior: unknown type. 2021 break; 2022 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2023 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2024 if (std::error_code EC = ValOrErr.getError()) 2025 return EC; 2026 ValOrErr.get(); 2027 break; 2028 } 2029 case bitc::VST_CODE_FNENTRY: { 2030 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2031 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2032 if (std::error_code EC = ValOrErr.getError()) 2033 return EC; 2034 Value *V = ValOrErr.get(); 2035 2036 auto *GO = dyn_cast<GlobalObject>(V); 2037 if (!GO) { 2038 // If this is an alias, need to get the actual Function object 2039 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2040 auto *GA = dyn_cast<GlobalAlias>(V); 2041 if (GA) 2042 GO = GA->getBaseObject(); 2043 assert(GO); 2044 } 2045 2046 uint64_t FuncWordOffset = Record[1]; 2047 Function *F = dyn_cast<Function>(GO); 2048 assert(F); 2049 uint64_t FuncBitOffset = FuncWordOffset * 32; 2050 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2051 // Set the LastFunctionBlockBit to point to the last function block. 2052 // Later when parsing is resumed after function materialization, 2053 // we can simply skip that last function block. 2054 if (FuncBitOffset > LastFunctionBlockBit) 2055 LastFunctionBlockBit = FuncBitOffset; 2056 break; 2057 } 2058 case bitc::VST_CODE_BBENTRY: { 2059 if (convertToString(Record, 1, ValueName)) 2060 return error("Invalid record"); 2061 BasicBlock *BB = getBasicBlock(Record[0]); 2062 if (!BB) 2063 return error("Invalid record"); 2064 2065 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2066 ValueName.clear(); 2067 break; 2068 } 2069 } 2070 } 2071 } 2072 2073 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2074 std::error_code 2075 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2076 if (Record.size() < 2) 2077 return error("Invalid record"); 2078 2079 unsigned Kind = Record[0]; 2080 SmallString<8> Name(Record.begin() + 1, Record.end()); 2081 2082 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2083 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2084 return error("Conflicting METADATA_KIND records"); 2085 return std::error_code(); 2086 } 2087 2088 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2089 2090 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2091 StringRef Blob, 2092 unsigned &NextMetadataNo) { 2093 // All the MDStrings in the block are emitted together in a single 2094 // record. The strings are concatenated and stored in a blob along with 2095 // their sizes. 2096 if (Record.size() != 2) 2097 return error("Invalid record: metadata strings layout"); 2098 2099 unsigned NumStrings = Record[0]; 2100 unsigned StringsOffset = Record[1]; 2101 if (!NumStrings) 2102 return error("Invalid record: metadata strings with no strings"); 2103 if (StringsOffset > Blob.size()) 2104 return error("Invalid record: metadata strings corrupt offset"); 2105 2106 StringRef Lengths = Blob.slice(0, StringsOffset); 2107 SimpleBitstreamCursor R(*StreamFile); 2108 R.jumpToPointer(Lengths.begin()); 2109 2110 // Ensure that Blob doesn't get invalidated, even if this is reading from 2111 // a StreamingMemoryObject with corrupt data. 2112 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2113 2114 StringRef Strings = Blob.drop_front(StringsOffset); 2115 do { 2116 if (R.AtEndOfStream()) 2117 return error("Invalid record: metadata strings bad length"); 2118 2119 unsigned Size = R.ReadVBR(6); 2120 if (Strings.size() < Size) 2121 return error("Invalid record: metadata strings truncated chars"); 2122 2123 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2124 NextMetadataNo++); 2125 Strings = Strings.drop_front(Size); 2126 } while (--NumStrings); 2127 2128 return std::error_code(); 2129 } 2130 2131 namespace { 2132 2133 class PlaceholderQueue { 2134 // Placeholders would thrash around when moved, so store in a std::deque 2135 // instead of some sort of vector. 2136 std::deque<DistinctMDOperandPlaceholder> PHs; 2137 2138 public: 2139 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2140 void flush(BitcodeReaderMetadataList &MetadataList); 2141 }; 2142 2143 } // end anonymous namespace 2144 2145 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2146 PHs.emplace_back(ID); 2147 return PHs.back(); 2148 } 2149 2150 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2151 while (!PHs.empty()) { 2152 PHs.front().replaceUseWith( 2153 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2154 PHs.pop_front(); 2155 } 2156 } 2157 2158 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2159 /// module level metadata. 2160 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2161 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2162 "Must read all module-level metadata before function-level"); 2163 2164 IsMetadataMaterialized = true; 2165 unsigned NextMetadataNo = MetadataList.size(); 2166 2167 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2168 return error("Invalid metadata: fwd refs into function blocks"); 2169 2170 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2171 return error("Invalid record"); 2172 2173 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2174 SmallVector<uint64_t, 64> Record; 2175 2176 PlaceholderQueue Placeholders; 2177 bool IsDistinct; 2178 auto getMD = [&](unsigned ID) -> Metadata * { 2179 if (!IsDistinct) 2180 return MetadataList.getMetadataFwdRef(ID); 2181 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2182 return MD; 2183 return &Placeholders.getPlaceholderOp(ID); 2184 }; 2185 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2186 if (ID) 2187 return getMD(ID - 1); 2188 return nullptr; 2189 }; 2190 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2191 if (ID) 2192 return MetadataList.getMetadataFwdRef(ID - 1); 2193 return nullptr; 2194 }; 2195 auto getMDString = [&](unsigned ID) -> MDString *{ 2196 // This requires that the ID is not really a forward reference. In 2197 // particular, the MDString must already have been resolved. 2198 return cast_or_null<MDString>(getMDOrNull(ID)); 2199 }; 2200 2201 // Support for old type refs. 2202 auto getDITypeRefOrNull = [&](unsigned ID) { 2203 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2204 }; 2205 2206 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2207 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2208 2209 // Read all the records. 2210 while (true) { 2211 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2212 2213 switch (Entry.Kind) { 2214 case BitstreamEntry::SubBlock: // Handled for us already. 2215 case BitstreamEntry::Error: 2216 return error("Malformed block"); 2217 case BitstreamEntry::EndBlock: 2218 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2219 for (auto CU_SP : CUSubprograms) 2220 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2221 for (auto &Op : SPs->operands()) 2222 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2223 SP->replaceOperandWith(7, CU_SP.first); 2224 2225 MetadataList.tryToResolveCycles(); 2226 Placeholders.flush(MetadataList); 2227 return std::error_code(); 2228 case BitstreamEntry::Record: 2229 // The interesting case. 2230 break; 2231 } 2232 2233 // Read a record. 2234 Record.clear(); 2235 StringRef Blob; 2236 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2237 IsDistinct = false; 2238 switch (Code) { 2239 default: // Default behavior: ignore. 2240 break; 2241 case bitc::METADATA_NAME: { 2242 // Read name of the named metadata. 2243 SmallString<8> Name(Record.begin(), Record.end()); 2244 Record.clear(); 2245 Code = Stream.ReadCode(); 2246 2247 unsigned NextBitCode = Stream.readRecord(Code, Record); 2248 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2249 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2250 2251 // Read named metadata elements. 2252 unsigned Size = Record.size(); 2253 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2254 for (unsigned i = 0; i != Size; ++i) { 2255 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2256 if (!MD) 2257 return error("Invalid record"); 2258 NMD->addOperand(MD); 2259 } 2260 break; 2261 } 2262 case bitc::METADATA_OLD_FN_NODE: { 2263 // FIXME: Remove in 4.0. 2264 // This is a LocalAsMetadata record, the only type of function-local 2265 // metadata. 2266 if (Record.size() % 2 == 1) 2267 return error("Invalid record"); 2268 2269 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2270 // to be legal, but there's no upgrade path. 2271 auto dropRecord = [&] { 2272 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2273 }; 2274 if (Record.size() != 2) { 2275 dropRecord(); 2276 break; 2277 } 2278 2279 Type *Ty = getTypeByID(Record[0]); 2280 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2281 dropRecord(); 2282 break; 2283 } 2284 2285 MetadataList.assignValue( 2286 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2287 NextMetadataNo++); 2288 break; 2289 } 2290 case bitc::METADATA_OLD_NODE: { 2291 // FIXME: Remove in 4.0. 2292 if (Record.size() % 2 == 1) 2293 return error("Invalid record"); 2294 2295 unsigned Size = Record.size(); 2296 SmallVector<Metadata *, 8> Elts; 2297 for (unsigned i = 0; i != Size; i += 2) { 2298 Type *Ty = getTypeByID(Record[i]); 2299 if (!Ty) 2300 return error("Invalid record"); 2301 if (Ty->isMetadataTy()) 2302 Elts.push_back(getMD(Record[i + 1])); 2303 else if (!Ty->isVoidTy()) { 2304 auto *MD = 2305 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2306 assert(isa<ConstantAsMetadata>(MD) && 2307 "Expected non-function-local metadata"); 2308 Elts.push_back(MD); 2309 } else 2310 Elts.push_back(nullptr); 2311 } 2312 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2313 break; 2314 } 2315 case bitc::METADATA_VALUE: { 2316 if (Record.size() != 2) 2317 return error("Invalid record"); 2318 2319 Type *Ty = getTypeByID(Record[0]); 2320 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2321 return error("Invalid record"); 2322 2323 MetadataList.assignValue( 2324 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2325 NextMetadataNo++); 2326 break; 2327 } 2328 case bitc::METADATA_DISTINCT_NODE: 2329 IsDistinct = true; 2330 LLVM_FALLTHROUGH; 2331 case bitc::METADATA_NODE: { 2332 SmallVector<Metadata *, 8> Elts; 2333 Elts.reserve(Record.size()); 2334 for (unsigned ID : Record) 2335 Elts.push_back(getMDOrNull(ID)); 2336 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2337 : MDNode::get(Context, Elts), 2338 NextMetadataNo++); 2339 break; 2340 } 2341 case bitc::METADATA_LOCATION: { 2342 if (Record.size() != 5) 2343 return error("Invalid record"); 2344 2345 IsDistinct = Record[0]; 2346 unsigned Line = Record[1]; 2347 unsigned Column = Record[2]; 2348 Metadata *Scope = getMD(Record[3]); 2349 Metadata *InlinedAt = getMDOrNull(Record[4]); 2350 MetadataList.assignValue( 2351 GET_OR_DISTINCT(DILocation, 2352 (Context, Line, Column, Scope, InlinedAt)), 2353 NextMetadataNo++); 2354 break; 2355 } 2356 case bitc::METADATA_GENERIC_DEBUG: { 2357 if (Record.size() < 4) 2358 return error("Invalid record"); 2359 2360 IsDistinct = Record[0]; 2361 unsigned Tag = Record[1]; 2362 unsigned Version = Record[2]; 2363 2364 if (Tag >= 1u << 16 || Version != 0) 2365 return error("Invalid record"); 2366 2367 auto *Header = getMDString(Record[3]); 2368 SmallVector<Metadata *, 8> DwarfOps; 2369 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2370 DwarfOps.push_back(getMDOrNull(Record[I])); 2371 MetadataList.assignValue( 2372 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2373 NextMetadataNo++); 2374 break; 2375 } 2376 case bitc::METADATA_SUBRANGE: { 2377 if (Record.size() != 3) 2378 return error("Invalid record"); 2379 2380 IsDistinct = Record[0]; 2381 MetadataList.assignValue( 2382 GET_OR_DISTINCT(DISubrange, 2383 (Context, Record[1], unrotateSign(Record[2]))), 2384 NextMetadataNo++); 2385 break; 2386 } 2387 case bitc::METADATA_ENUMERATOR: { 2388 if (Record.size() != 3) 2389 return error("Invalid record"); 2390 2391 IsDistinct = Record[0]; 2392 MetadataList.assignValue( 2393 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2394 getMDString(Record[2]))), 2395 NextMetadataNo++); 2396 break; 2397 } 2398 case bitc::METADATA_BASIC_TYPE: { 2399 if (Record.size() != 6) 2400 return error("Invalid record"); 2401 2402 IsDistinct = Record[0]; 2403 MetadataList.assignValue( 2404 GET_OR_DISTINCT(DIBasicType, 2405 (Context, Record[1], getMDString(Record[2]), 2406 Record[3], Record[4], Record[5])), 2407 NextMetadataNo++); 2408 break; 2409 } 2410 case bitc::METADATA_DERIVED_TYPE: { 2411 if (Record.size() != 12) 2412 return error("Invalid record"); 2413 2414 IsDistinct = Record[0]; 2415 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2416 MetadataList.assignValue( 2417 GET_OR_DISTINCT(DIDerivedType, 2418 (Context, Record[1], getMDString(Record[2]), 2419 getMDOrNull(Record[3]), Record[4], 2420 getDITypeRefOrNull(Record[5]), 2421 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2422 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2423 NextMetadataNo++); 2424 break; 2425 } 2426 case bitc::METADATA_COMPOSITE_TYPE: { 2427 if (Record.size() != 16) 2428 return error("Invalid record"); 2429 2430 // If we have a UUID and this is not a forward declaration, lookup the 2431 // mapping. 2432 IsDistinct = Record[0] & 0x1; 2433 bool IsNotUsedInTypeRef = Record[0] >= 2; 2434 unsigned Tag = Record[1]; 2435 MDString *Name = getMDString(Record[2]); 2436 Metadata *File = getMDOrNull(Record[3]); 2437 unsigned Line = Record[4]; 2438 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2439 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2440 uint64_t SizeInBits = Record[7]; 2441 uint64_t AlignInBits = Record[8]; 2442 uint64_t OffsetInBits = Record[9]; 2443 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2444 Metadata *Elements = getMDOrNull(Record[11]); 2445 unsigned RuntimeLang = Record[12]; 2446 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2447 Metadata *TemplateParams = getMDOrNull(Record[14]); 2448 auto *Identifier = getMDString(Record[15]); 2449 DICompositeType *CT = nullptr; 2450 if (Identifier) 2451 CT = DICompositeType::buildODRType( 2452 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2453 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2454 VTableHolder, TemplateParams); 2455 2456 // Create a node if we didn't get a lazy ODR type. 2457 if (!CT) 2458 CT = GET_OR_DISTINCT(DICompositeType, 2459 (Context, Tag, Name, File, Line, Scope, BaseType, 2460 SizeInBits, AlignInBits, OffsetInBits, Flags, 2461 Elements, RuntimeLang, VTableHolder, 2462 TemplateParams, Identifier)); 2463 if (!IsNotUsedInTypeRef && Identifier) 2464 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2465 2466 MetadataList.assignValue(CT, NextMetadataNo++); 2467 break; 2468 } 2469 case bitc::METADATA_SUBROUTINE_TYPE: { 2470 if (Record.size() < 3 || Record.size() > 4) 2471 return error("Invalid record"); 2472 bool IsOldTypeRefArray = Record[0] < 2; 2473 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2474 2475 IsDistinct = Record[0] & 0x1; 2476 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2477 Metadata *Types = getMDOrNull(Record[2]); 2478 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2479 Types = MetadataList.upgradeTypeRefArray(Types); 2480 2481 MetadataList.assignValue( 2482 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2483 NextMetadataNo++); 2484 break; 2485 } 2486 2487 case bitc::METADATA_MODULE: { 2488 if (Record.size() != 6) 2489 return error("Invalid record"); 2490 2491 IsDistinct = Record[0]; 2492 MetadataList.assignValue( 2493 GET_OR_DISTINCT(DIModule, 2494 (Context, getMDOrNull(Record[1]), 2495 getMDString(Record[2]), getMDString(Record[3]), 2496 getMDString(Record[4]), getMDString(Record[5]))), 2497 NextMetadataNo++); 2498 break; 2499 } 2500 2501 case bitc::METADATA_FILE: { 2502 if (Record.size() != 3) 2503 return error("Invalid record"); 2504 2505 IsDistinct = Record[0]; 2506 MetadataList.assignValue( 2507 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2508 getMDString(Record[2]))), 2509 NextMetadataNo++); 2510 break; 2511 } 2512 case bitc::METADATA_COMPILE_UNIT: { 2513 if (Record.size() < 14 || Record.size() > 17) 2514 return error("Invalid record"); 2515 2516 // Ignore Record[0], which indicates whether this compile unit is 2517 // distinct. It's always distinct. 2518 IsDistinct = true; 2519 auto *CU = DICompileUnit::getDistinct( 2520 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2521 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2522 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2523 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2524 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2525 Record.size() <= 14 ? 0 : Record[14], 2526 Record.size() <= 16 ? true : Record[16]); 2527 2528 MetadataList.assignValue(CU, NextMetadataNo++); 2529 2530 // Move the Upgrade the list of subprograms. 2531 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2532 CUSubprograms.push_back({CU, SPs}); 2533 break; 2534 } 2535 case bitc::METADATA_SUBPROGRAM: { 2536 if (Record.size() < 18 || Record.size() > 20) 2537 return error("Invalid record"); 2538 2539 IsDistinct = 2540 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2541 // Version 1 has a Function as Record[15]. 2542 // Version 2 has removed Record[15]. 2543 // Version 3 has the Unit as Record[15]. 2544 // Version 4 added thisAdjustment. 2545 bool HasUnit = Record[0] >= 2; 2546 if (HasUnit && Record.size() < 19) 2547 return error("Invalid record"); 2548 Metadata *CUorFn = getMDOrNull(Record[15]); 2549 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2550 bool HasFn = Offset && !HasUnit; 2551 bool HasThisAdj = Record.size() >= 20; 2552 DISubprogram *SP = GET_OR_DISTINCT( 2553 DISubprogram, (Context, 2554 getDITypeRefOrNull(Record[1]), // scope 2555 getMDString(Record[2]), // name 2556 getMDString(Record[3]), // linkageName 2557 getMDOrNull(Record[4]), // file 2558 Record[5], // line 2559 getMDOrNull(Record[6]), // type 2560 Record[7], // isLocal 2561 Record[8], // isDefinition 2562 Record[9], // scopeLine 2563 getDITypeRefOrNull(Record[10]), // containingType 2564 Record[11], // virtuality 2565 Record[12], // virtualIndex 2566 HasThisAdj ? Record[19] : 0, // thisAdjustment 2567 static_cast<DINode::DIFlags>(Record[13] // flags 2568 ), 2569 Record[14], // isOptimized 2570 HasUnit ? CUorFn : nullptr, // unit 2571 getMDOrNull(Record[15 + Offset]), // templateParams 2572 getMDOrNull(Record[16 + Offset]), // declaration 2573 getMDOrNull(Record[17 + Offset]) // variables 2574 )); 2575 MetadataList.assignValue(SP, NextMetadataNo++); 2576 2577 // Upgrade sp->function mapping to function->sp mapping. 2578 if (HasFn) { 2579 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2580 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2581 if (F->isMaterializable()) 2582 // Defer until materialized; unmaterialized functions may not have 2583 // metadata. 2584 FunctionsWithSPs[F] = SP; 2585 else if (!F->empty()) 2586 F->setSubprogram(SP); 2587 } 2588 } 2589 break; 2590 } 2591 case bitc::METADATA_LEXICAL_BLOCK: { 2592 if (Record.size() != 5) 2593 return error("Invalid record"); 2594 2595 IsDistinct = Record[0]; 2596 MetadataList.assignValue( 2597 GET_OR_DISTINCT(DILexicalBlock, 2598 (Context, getMDOrNull(Record[1]), 2599 getMDOrNull(Record[2]), Record[3], Record[4])), 2600 NextMetadataNo++); 2601 break; 2602 } 2603 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2604 if (Record.size() != 4) 2605 return error("Invalid record"); 2606 2607 IsDistinct = Record[0]; 2608 MetadataList.assignValue( 2609 GET_OR_DISTINCT(DILexicalBlockFile, 2610 (Context, getMDOrNull(Record[1]), 2611 getMDOrNull(Record[2]), Record[3])), 2612 NextMetadataNo++); 2613 break; 2614 } 2615 case bitc::METADATA_NAMESPACE: { 2616 if (Record.size() != 5) 2617 return error("Invalid record"); 2618 2619 IsDistinct = Record[0]; 2620 MetadataList.assignValue( 2621 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2622 getMDOrNull(Record[2]), 2623 getMDString(Record[3]), Record[4])), 2624 NextMetadataNo++); 2625 break; 2626 } 2627 case bitc::METADATA_MACRO: { 2628 if (Record.size() != 5) 2629 return error("Invalid record"); 2630 2631 IsDistinct = Record[0]; 2632 MetadataList.assignValue( 2633 GET_OR_DISTINCT(DIMacro, 2634 (Context, Record[1], Record[2], 2635 getMDString(Record[3]), getMDString(Record[4]))), 2636 NextMetadataNo++); 2637 break; 2638 } 2639 case bitc::METADATA_MACRO_FILE: { 2640 if (Record.size() != 5) 2641 return error("Invalid record"); 2642 2643 IsDistinct = Record[0]; 2644 MetadataList.assignValue( 2645 GET_OR_DISTINCT(DIMacroFile, 2646 (Context, Record[1], Record[2], 2647 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2648 NextMetadataNo++); 2649 break; 2650 } 2651 case bitc::METADATA_TEMPLATE_TYPE: { 2652 if (Record.size() != 3) 2653 return error("Invalid record"); 2654 2655 IsDistinct = Record[0]; 2656 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2657 (Context, getMDString(Record[1]), 2658 getDITypeRefOrNull(Record[2]))), 2659 NextMetadataNo++); 2660 break; 2661 } 2662 case bitc::METADATA_TEMPLATE_VALUE: { 2663 if (Record.size() != 5) 2664 return error("Invalid record"); 2665 2666 IsDistinct = Record[0]; 2667 MetadataList.assignValue( 2668 GET_OR_DISTINCT(DITemplateValueParameter, 2669 (Context, Record[1], getMDString(Record[2]), 2670 getDITypeRefOrNull(Record[3]), 2671 getMDOrNull(Record[4]))), 2672 NextMetadataNo++); 2673 break; 2674 } 2675 case bitc::METADATA_GLOBAL_VAR: { 2676 if (Record.size() != 11) 2677 return error("Invalid record"); 2678 2679 IsDistinct = Record[0]; 2680 2681 // Upgrade old metadata, which stored a global variable reference or a 2682 // ConstantInt here. 2683 Metadata *Expr = getMDOrNull(Record[9]); 2684 GlobalVariable *Attach = nullptr; 2685 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2686 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2687 Attach = GV; 2688 Expr = nullptr; 2689 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2690 Expr = DIExpression::get(Context, 2691 {dwarf::DW_OP_constu, CI->getZExtValue(), 2692 dwarf::DW_OP_stack_value}); 2693 } else { 2694 Expr = nullptr; 2695 } 2696 } 2697 2698 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2699 DIGlobalVariable, 2700 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2701 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2702 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2703 getMDOrNull(Record[10]))); 2704 MetadataList.assignValue(DGV, NextMetadataNo++); 2705 2706 if (Attach) 2707 Attach->addDebugInfo(DGV); 2708 2709 break; 2710 } 2711 case bitc::METADATA_LOCAL_VAR: { 2712 // 10th field is for the obseleted 'inlinedAt:' field. 2713 if (Record.size() < 8 || Record.size() > 10) 2714 return error("Invalid record"); 2715 2716 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2717 // DW_TAG_arg_variable. 2718 IsDistinct = Record[0]; 2719 bool HasTag = Record.size() > 8; 2720 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2721 MetadataList.assignValue( 2722 GET_OR_DISTINCT(DILocalVariable, 2723 (Context, getMDOrNull(Record[1 + HasTag]), 2724 getMDString(Record[2 + HasTag]), 2725 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2726 getDITypeRefOrNull(Record[5 + HasTag]), 2727 Record[6 + HasTag], Flags)), 2728 NextMetadataNo++); 2729 break; 2730 } 2731 case bitc::METADATA_EXPRESSION: { 2732 if (Record.size() < 1) 2733 return error("Invalid record"); 2734 2735 IsDistinct = Record[0]; 2736 MetadataList.assignValue( 2737 GET_OR_DISTINCT(DIExpression, 2738 (Context, makeArrayRef(Record).slice(1))), 2739 NextMetadataNo++); 2740 break; 2741 } 2742 case bitc::METADATA_OBJC_PROPERTY: { 2743 if (Record.size() != 8) 2744 return error("Invalid record"); 2745 2746 IsDistinct = Record[0]; 2747 MetadataList.assignValue( 2748 GET_OR_DISTINCT(DIObjCProperty, 2749 (Context, getMDString(Record[1]), 2750 getMDOrNull(Record[2]), Record[3], 2751 getMDString(Record[4]), getMDString(Record[5]), 2752 Record[6], getDITypeRefOrNull(Record[7]))), 2753 NextMetadataNo++); 2754 break; 2755 } 2756 case bitc::METADATA_IMPORTED_ENTITY: { 2757 if (Record.size() != 6) 2758 return error("Invalid record"); 2759 2760 IsDistinct = Record[0]; 2761 MetadataList.assignValue( 2762 GET_OR_DISTINCT(DIImportedEntity, 2763 (Context, Record[1], getMDOrNull(Record[2]), 2764 getDITypeRefOrNull(Record[3]), Record[4], 2765 getMDString(Record[5]))), 2766 NextMetadataNo++); 2767 break; 2768 } 2769 case bitc::METADATA_STRING_OLD: { 2770 std::string String(Record.begin(), Record.end()); 2771 2772 // Test for upgrading !llvm.loop. 2773 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2774 2775 Metadata *MD = MDString::get(Context, String); 2776 MetadataList.assignValue(MD, NextMetadataNo++); 2777 break; 2778 } 2779 case bitc::METADATA_STRINGS: 2780 if (std::error_code EC = 2781 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2782 return EC; 2783 break; 2784 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2785 if (Record.size() % 2 == 0) 2786 return error("Invalid record"); 2787 unsigned ValueID = Record[0]; 2788 if (ValueID >= ValueList.size()) 2789 return error("Invalid record"); 2790 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2791 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2792 break; 2793 } 2794 case bitc::METADATA_KIND: { 2795 // Support older bitcode files that had METADATA_KIND records in a 2796 // block with METADATA_BLOCK_ID. 2797 if (std::error_code EC = parseMetadataKindRecord(Record)) 2798 return EC; 2799 break; 2800 } 2801 } 2802 } 2803 2804 #undef GET_OR_DISTINCT 2805 } 2806 2807 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2808 std::error_code BitcodeReader::parseMetadataKinds() { 2809 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2810 return error("Invalid record"); 2811 2812 SmallVector<uint64_t, 64> Record; 2813 2814 // Read all the records. 2815 while (true) { 2816 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2817 2818 switch (Entry.Kind) { 2819 case BitstreamEntry::SubBlock: // Handled for us already. 2820 case BitstreamEntry::Error: 2821 return error("Malformed block"); 2822 case BitstreamEntry::EndBlock: 2823 return std::error_code(); 2824 case BitstreamEntry::Record: 2825 // The interesting case. 2826 break; 2827 } 2828 2829 // Read a record. 2830 Record.clear(); 2831 unsigned Code = Stream.readRecord(Entry.ID, Record); 2832 switch (Code) { 2833 default: // Default behavior: ignore. 2834 break; 2835 case bitc::METADATA_KIND: { 2836 if (std::error_code EC = parseMetadataKindRecord(Record)) 2837 return EC; 2838 break; 2839 } 2840 } 2841 } 2842 } 2843 2844 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2845 /// encoding. 2846 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2847 if ((V & 1) == 0) 2848 return V >> 1; 2849 if (V != 1) 2850 return -(V >> 1); 2851 // There is no such thing as -0 with integers. "-0" really means MININT. 2852 return 1ULL << 63; 2853 } 2854 2855 /// Resolve all of the initializers for global values and aliases that we can. 2856 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2857 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2858 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2859 IndirectSymbolInitWorklist; 2860 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2861 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2862 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2863 2864 GlobalInitWorklist.swap(GlobalInits); 2865 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2866 FunctionPrefixWorklist.swap(FunctionPrefixes); 2867 FunctionPrologueWorklist.swap(FunctionPrologues); 2868 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2869 2870 while (!GlobalInitWorklist.empty()) { 2871 unsigned ValID = GlobalInitWorklist.back().second; 2872 if (ValID >= ValueList.size()) { 2873 // Not ready to resolve this yet, it requires something later in the file. 2874 GlobalInits.push_back(GlobalInitWorklist.back()); 2875 } else { 2876 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2877 GlobalInitWorklist.back().first->setInitializer(C); 2878 else 2879 return error("Expected a constant"); 2880 } 2881 GlobalInitWorklist.pop_back(); 2882 } 2883 2884 while (!IndirectSymbolInitWorklist.empty()) { 2885 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2886 if (ValID >= ValueList.size()) { 2887 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2888 } else { 2889 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2890 if (!C) 2891 return error("Expected a constant"); 2892 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2893 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2894 return error("Alias and aliasee types don't match"); 2895 GIS->setIndirectSymbol(C); 2896 } 2897 IndirectSymbolInitWorklist.pop_back(); 2898 } 2899 2900 while (!FunctionPrefixWorklist.empty()) { 2901 unsigned ValID = FunctionPrefixWorklist.back().second; 2902 if (ValID >= ValueList.size()) { 2903 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2904 } else { 2905 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2906 FunctionPrefixWorklist.back().first->setPrefixData(C); 2907 else 2908 return error("Expected a constant"); 2909 } 2910 FunctionPrefixWorklist.pop_back(); 2911 } 2912 2913 while (!FunctionPrologueWorklist.empty()) { 2914 unsigned ValID = FunctionPrologueWorklist.back().second; 2915 if (ValID >= ValueList.size()) { 2916 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2917 } else { 2918 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2919 FunctionPrologueWorklist.back().first->setPrologueData(C); 2920 else 2921 return error("Expected a constant"); 2922 } 2923 FunctionPrologueWorklist.pop_back(); 2924 } 2925 2926 while (!FunctionPersonalityFnWorklist.empty()) { 2927 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2928 if (ValID >= ValueList.size()) { 2929 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2930 } else { 2931 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2932 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2933 else 2934 return error("Expected a constant"); 2935 } 2936 FunctionPersonalityFnWorklist.pop_back(); 2937 } 2938 2939 return std::error_code(); 2940 } 2941 2942 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2943 SmallVector<uint64_t, 8> Words(Vals.size()); 2944 transform(Vals, Words.begin(), 2945 BitcodeReader::decodeSignRotatedValue); 2946 2947 return APInt(TypeBits, Words); 2948 } 2949 2950 std::error_code BitcodeReader::parseConstants() { 2951 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2952 return error("Invalid record"); 2953 2954 SmallVector<uint64_t, 64> Record; 2955 2956 // Read all the records for this value table. 2957 Type *CurTy = Type::getInt32Ty(Context); 2958 unsigned NextCstNo = ValueList.size(); 2959 2960 while (true) { 2961 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2962 2963 switch (Entry.Kind) { 2964 case BitstreamEntry::SubBlock: // Handled for us already. 2965 case BitstreamEntry::Error: 2966 return error("Malformed block"); 2967 case BitstreamEntry::EndBlock: 2968 if (NextCstNo != ValueList.size()) 2969 return error("Invalid constant reference"); 2970 2971 // Once all the constants have been read, go through and resolve forward 2972 // references. 2973 ValueList.resolveConstantForwardRefs(); 2974 return std::error_code(); 2975 case BitstreamEntry::Record: 2976 // The interesting case. 2977 break; 2978 } 2979 2980 // Read a record. 2981 Record.clear(); 2982 Type *VoidType = Type::getVoidTy(Context); 2983 Value *V = nullptr; 2984 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2985 switch (BitCode) { 2986 default: // Default behavior: unknown constant 2987 case bitc::CST_CODE_UNDEF: // UNDEF 2988 V = UndefValue::get(CurTy); 2989 break; 2990 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2991 if (Record.empty()) 2992 return error("Invalid record"); 2993 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2994 return error("Invalid record"); 2995 if (TypeList[Record[0]] == VoidType) 2996 return error("Invalid constant type"); 2997 CurTy = TypeList[Record[0]]; 2998 continue; // Skip the ValueList manipulation. 2999 case bitc::CST_CODE_NULL: // NULL 3000 V = Constant::getNullValue(CurTy); 3001 break; 3002 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3003 if (!CurTy->isIntegerTy() || Record.empty()) 3004 return error("Invalid record"); 3005 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3006 break; 3007 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3008 if (!CurTy->isIntegerTy() || Record.empty()) 3009 return error("Invalid record"); 3010 3011 APInt VInt = 3012 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3013 V = ConstantInt::get(Context, VInt); 3014 3015 break; 3016 } 3017 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3018 if (Record.empty()) 3019 return error("Invalid record"); 3020 if (CurTy->isHalfTy()) 3021 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3022 APInt(16, (uint16_t)Record[0]))); 3023 else if (CurTy->isFloatTy()) 3024 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3025 APInt(32, (uint32_t)Record[0]))); 3026 else if (CurTy->isDoubleTy()) 3027 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3028 APInt(64, Record[0]))); 3029 else if (CurTy->isX86_FP80Ty()) { 3030 // Bits are not stored the same way as a normal i80 APInt, compensate. 3031 uint64_t Rearrange[2]; 3032 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3033 Rearrange[1] = Record[0] >> 48; 3034 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3035 APInt(80, Rearrange))); 3036 } else if (CurTy->isFP128Ty()) 3037 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3038 APInt(128, Record))); 3039 else if (CurTy->isPPC_FP128Ty()) 3040 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3041 APInt(128, Record))); 3042 else 3043 V = UndefValue::get(CurTy); 3044 break; 3045 } 3046 3047 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3048 if (Record.empty()) 3049 return error("Invalid record"); 3050 3051 unsigned Size = Record.size(); 3052 SmallVector<Constant*, 16> Elts; 3053 3054 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3055 for (unsigned i = 0; i != Size; ++i) 3056 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3057 STy->getElementType(i))); 3058 V = ConstantStruct::get(STy, Elts); 3059 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3060 Type *EltTy = ATy->getElementType(); 3061 for (unsigned i = 0; i != Size; ++i) 3062 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3063 V = ConstantArray::get(ATy, Elts); 3064 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3065 Type *EltTy = VTy->getElementType(); 3066 for (unsigned i = 0; i != Size; ++i) 3067 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3068 V = ConstantVector::get(Elts); 3069 } else { 3070 V = UndefValue::get(CurTy); 3071 } 3072 break; 3073 } 3074 case bitc::CST_CODE_STRING: // STRING: [values] 3075 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3076 if (Record.empty()) 3077 return error("Invalid record"); 3078 3079 SmallString<16> Elts(Record.begin(), Record.end()); 3080 V = ConstantDataArray::getString(Context, Elts, 3081 BitCode == bitc::CST_CODE_CSTRING); 3082 break; 3083 } 3084 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3085 if (Record.empty()) 3086 return error("Invalid record"); 3087 3088 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3089 if (EltTy->isIntegerTy(8)) { 3090 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3091 if (isa<VectorType>(CurTy)) 3092 V = ConstantDataVector::get(Context, Elts); 3093 else 3094 V = ConstantDataArray::get(Context, Elts); 3095 } else if (EltTy->isIntegerTy(16)) { 3096 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3097 if (isa<VectorType>(CurTy)) 3098 V = ConstantDataVector::get(Context, Elts); 3099 else 3100 V = ConstantDataArray::get(Context, Elts); 3101 } else if (EltTy->isIntegerTy(32)) { 3102 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3103 if (isa<VectorType>(CurTy)) 3104 V = ConstantDataVector::get(Context, Elts); 3105 else 3106 V = ConstantDataArray::get(Context, Elts); 3107 } else if (EltTy->isIntegerTy(64)) { 3108 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3109 if (isa<VectorType>(CurTy)) 3110 V = ConstantDataVector::get(Context, Elts); 3111 else 3112 V = ConstantDataArray::get(Context, Elts); 3113 } else if (EltTy->isHalfTy()) { 3114 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3115 if (isa<VectorType>(CurTy)) 3116 V = ConstantDataVector::getFP(Context, Elts); 3117 else 3118 V = ConstantDataArray::getFP(Context, Elts); 3119 } else if (EltTy->isFloatTy()) { 3120 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3121 if (isa<VectorType>(CurTy)) 3122 V = ConstantDataVector::getFP(Context, Elts); 3123 else 3124 V = ConstantDataArray::getFP(Context, Elts); 3125 } else if (EltTy->isDoubleTy()) { 3126 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3127 if (isa<VectorType>(CurTy)) 3128 V = ConstantDataVector::getFP(Context, Elts); 3129 else 3130 V = ConstantDataArray::getFP(Context, Elts); 3131 } else { 3132 return error("Invalid type for value"); 3133 } 3134 break; 3135 } 3136 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3137 if (Record.size() < 3) 3138 return error("Invalid record"); 3139 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3140 if (Opc < 0) { 3141 V = UndefValue::get(CurTy); // Unknown binop. 3142 } else { 3143 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3144 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3145 unsigned Flags = 0; 3146 if (Record.size() >= 4) { 3147 if (Opc == Instruction::Add || 3148 Opc == Instruction::Sub || 3149 Opc == Instruction::Mul || 3150 Opc == Instruction::Shl) { 3151 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3152 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3153 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3154 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3155 } else if (Opc == Instruction::SDiv || 3156 Opc == Instruction::UDiv || 3157 Opc == Instruction::LShr || 3158 Opc == Instruction::AShr) { 3159 if (Record[3] & (1 << bitc::PEO_EXACT)) 3160 Flags |= SDivOperator::IsExact; 3161 } 3162 } 3163 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3164 } 3165 break; 3166 } 3167 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3168 if (Record.size() < 3) 3169 return error("Invalid record"); 3170 int Opc = getDecodedCastOpcode(Record[0]); 3171 if (Opc < 0) { 3172 V = UndefValue::get(CurTy); // Unknown cast. 3173 } else { 3174 Type *OpTy = getTypeByID(Record[1]); 3175 if (!OpTy) 3176 return error("Invalid record"); 3177 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3178 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3179 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3180 } 3181 break; 3182 } 3183 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3184 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3185 unsigned OpNum = 0; 3186 Type *PointeeType = nullptr; 3187 if (Record.size() % 2) 3188 PointeeType = getTypeByID(Record[OpNum++]); 3189 SmallVector<Constant*, 16> Elts; 3190 while (OpNum != Record.size()) { 3191 Type *ElTy = getTypeByID(Record[OpNum++]); 3192 if (!ElTy) 3193 return error("Invalid record"); 3194 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3195 } 3196 3197 if (PointeeType && 3198 PointeeType != 3199 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3200 ->getElementType()) 3201 return error("Explicit gep operator type does not match pointee type " 3202 "of pointer operand"); 3203 3204 if (Elts.size() < 1) 3205 return error("Invalid gep with no operands"); 3206 3207 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3208 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3209 BitCode == 3210 bitc::CST_CODE_CE_INBOUNDS_GEP); 3211 break; 3212 } 3213 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3214 if (Record.size() < 3) 3215 return error("Invalid record"); 3216 3217 Type *SelectorTy = Type::getInt1Ty(Context); 3218 3219 // The selector might be an i1 or an <n x i1> 3220 // Get the type from the ValueList before getting a forward ref. 3221 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3222 if (Value *V = ValueList[Record[0]]) 3223 if (SelectorTy != V->getType()) 3224 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3225 3226 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3227 SelectorTy), 3228 ValueList.getConstantFwdRef(Record[1],CurTy), 3229 ValueList.getConstantFwdRef(Record[2],CurTy)); 3230 break; 3231 } 3232 case bitc::CST_CODE_CE_EXTRACTELT 3233 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3234 if (Record.size() < 3) 3235 return error("Invalid record"); 3236 VectorType *OpTy = 3237 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3238 if (!OpTy) 3239 return error("Invalid record"); 3240 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3241 Constant *Op1 = nullptr; 3242 if (Record.size() == 4) { 3243 Type *IdxTy = getTypeByID(Record[2]); 3244 if (!IdxTy) 3245 return error("Invalid record"); 3246 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3247 } else // TODO: Remove with llvm 4.0 3248 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3249 if (!Op1) 3250 return error("Invalid record"); 3251 V = ConstantExpr::getExtractElement(Op0, Op1); 3252 break; 3253 } 3254 case bitc::CST_CODE_CE_INSERTELT 3255 : { // CE_INSERTELT: [opval, opval, opty, opval] 3256 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3257 if (Record.size() < 3 || !OpTy) 3258 return error("Invalid record"); 3259 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3260 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3261 OpTy->getElementType()); 3262 Constant *Op2 = nullptr; 3263 if (Record.size() == 4) { 3264 Type *IdxTy = getTypeByID(Record[2]); 3265 if (!IdxTy) 3266 return error("Invalid record"); 3267 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3268 } else // TODO: Remove with llvm 4.0 3269 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3270 if (!Op2) 3271 return error("Invalid record"); 3272 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3273 break; 3274 } 3275 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3276 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3277 if (Record.size() < 3 || !OpTy) 3278 return error("Invalid record"); 3279 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3280 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3281 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3282 OpTy->getNumElements()); 3283 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3284 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3285 break; 3286 } 3287 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3288 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3289 VectorType *OpTy = 3290 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3291 if (Record.size() < 4 || !RTy || !OpTy) 3292 return error("Invalid record"); 3293 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3294 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3295 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3296 RTy->getNumElements()); 3297 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3298 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3299 break; 3300 } 3301 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3302 if (Record.size() < 4) 3303 return error("Invalid record"); 3304 Type *OpTy = getTypeByID(Record[0]); 3305 if (!OpTy) 3306 return error("Invalid record"); 3307 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3308 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3309 3310 if (OpTy->isFPOrFPVectorTy()) 3311 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3312 else 3313 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3314 break; 3315 } 3316 // This maintains backward compatibility, pre-asm dialect keywords. 3317 // FIXME: Remove with the 4.0 release. 3318 case bitc::CST_CODE_INLINEASM_OLD: { 3319 if (Record.size() < 2) 3320 return error("Invalid record"); 3321 std::string AsmStr, ConstrStr; 3322 bool HasSideEffects = Record[0] & 1; 3323 bool IsAlignStack = Record[0] >> 1; 3324 unsigned AsmStrSize = Record[1]; 3325 if (2+AsmStrSize >= Record.size()) 3326 return error("Invalid record"); 3327 unsigned ConstStrSize = Record[2+AsmStrSize]; 3328 if (3+AsmStrSize+ConstStrSize > Record.size()) 3329 return error("Invalid record"); 3330 3331 for (unsigned i = 0; i != AsmStrSize; ++i) 3332 AsmStr += (char)Record[2+i]; 3333 for (unsigned i = 0; i != ConstStrSize; ++i) 3334 ConstrStr += (char)Record[3+AsmStrSize+i]; 3335 PointerType *PTy = cast<PointerType>(CurTy); 3336 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3337 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3338 break; 3339 } 3340 // This version adds support for the asm dialect keywords (e.g., 3341 // inteldialect). 3342 case bitc::CST_CODE_INLINEASM: { 3343 if (Record.size() < 2) 3344 return error("Invalid record"); 3345 std::string AsmStr, ConstrStr; 3346 bool HasSideEffects = Record[0] & 1; 3347 bool IsAlignStack = (Record[0] >> 1) & 1; 3348 unsigned AsmDialect = Record[0] >> 2; 3349 unsigned AsmStrSize = Record[1]; 3350 if (2+AsmStrSize >= Record.size()) 3351 return error("Invalid record"); 3352 unsigned ConstStrSize = Record[2+AsmStrSize]; 3353 if (3+AsmStrSize+ConstStrSize > Record.size()) 3354 return error("Invalid record"); 3355 3356 for (unsigned i = 0; i != AsmStrSize; ++i) 3357 AsmStr += (char)Record[2+i]; 3358 for (unsigned i = 0; i != ConstStrSize; ++i) 3359 ConstrStr += (char)Record[3+AsmStrSize+i]; 3360 PointerType *PTy = cast<PointerType>(CurTy); 3361 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3362 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3363 InlineAsm::AsmDialect(AsmDialect)); 3364 break; 3365 } 3366 case bitc::CST_CODE_BLOCKADDRESS:{ 3367 if (Record.size() < 3) 3368 return error("Invalid record"); 3369 Type *FnTy = getTypeByID(Record[0]); 3370 if (!FnTy) 3371 return error("Invalid record"); 3372 Function *Fn = 3373 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3374 if (!Fn) 3375 return error("Invalid record"); 3376 3377 // If the function is already parsed we can insert the block address right 3378 // away. 3379 BasicBlock *BB; 3380 unsigned BBID = Record[2]; 3381 if (!BBID) 3382 // Invalid reference to entry block. 3383 return error("Invalid ID"); 3384 if (!Fn->empty()) { 3385 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3386 for (size_t I = 0, E = BBID; I != E; ++I) { 3387 if (BBI == BBE) 3388 return error("Invalid ID"); 3389 ++BBI; 3390 } 3391 BB = &*BBI; 3392 } else { 3393 // Otherwise insert a placeholder and remember it so it can be inserted 3394 // when the function is parsed. 3395 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3396 if (FwdBBs.empty()) 3397 BasicBlockFwdRefQueue.push_back(Fn); 3398 if (FwdBBs.size() < BBID + 1) 3399 FwdBBs.resize(BBID + 1); 3400 if (!FwdBBs[BBID]) 3401 FwdBBs[BBID] = BasicBlock::Create(Context); 3402 BB = FwdBBs[BBID]; 3403 } 3404 V = BlockAddress::get(Fn, BB); 3405 break; 3406 } 3407 } 3408 3409 ValueList.assignValue(V, NextCstNo); 3410 ++NextCstNo; 3411 } 3412 } 3413 3414 std::error_code BitcodeReader::parseUseLists() { 3415 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3416 return error("Invalid record"); 3417 3418 // Read all the records. 3419 SmallVector<uint64_t, 64> Record; 3420 3421 while (true) { 3422 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3423 3424 switch (Entry.Kind) { 3425 case BitstreamEntry::SubBlock: // Handled for us already. 3426 case BitstreamEntry::Error: 3427 return error("Malformed block"); 3428 case BitstreamEntry::EndBlock: 3429 return std::error_code(); 3430 case BitstreamEntry::Record: 3431 // The interesting case. 3432 break; 3433 } 3434 3435 // Read a use list record. 3436 Record.clear(); 3437 bool IsBB = false; 3438 switch (Stream.readRecord(Entry.ID, Record)) { 3439 default: // Default behavior: unknown type. 3440 break; 3441 case bitc::USELIST_CODE_BB: 3442 IsBB = true; 3443 LLVM_FALLTHROUGH; 3444 case bitc::USELIST_CODE_DEFAULT: { 3445 unsigned RecordLength = Record.size(); 3446 if (RecordLength < 3) 3447 // Records should have at least an ID and two indexes. 3448 return error("Invalid record"); 3449 unsigned ID = Record.back(); 3450 Record.pop_back(); 3451 3452 Value *V; 3453 if (IsBB) { 3454 assert(ID < FunctionBBs.size() && "Basic block not found"); 3455 V = FunctionBBs[ID]; 3456 } else 3457 V = ValueList[ID]; 3458 unsigned NumUses = 0; 3459 SmallDenseMap<const Use *, unsigned, 16> Order; 3460 for (const Use &U : V->materialized_uses()) { 3461 if (++NumUses > Record.size()) 3462 break; 3463 Order[&U] = Record[NumUses - 1]; 3464 } 3465 if (Order.size() != Record.size() || NumUses > Record.size()) 3466 // Mismatches can happen if the functions are being materialized lazily 3467 // (out-of-order), or a value has been upgraded. 3468 break; 3469 3470 V->sortUseList([&](const Use &L, const Use &R) { 3471 return Order.lookup(&L) < Order.lookup(&R); 3472 }); 3473 break; 3474 } 3475 } 3476 } 3477 } 3478 3479 /// When we see the block for metadata, remember where it is and then skip it. 3480 /// This lets us lazily deserialize the metadata. 3481 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3482 // Save the current stream state. 3483 uint64_t CurBit = Stream.GetCurrentBitNo(); 3484 DeferredMetadataInfo.push_back(CurBit); 3485 3486 // Skip over the block for now. 3487 if (Stream.SkipBlock()) 3488 return error("Invalid record"); 3489 return std::error_code(); 3490 } 3491 3492 std::error_code BitcodeReader::materializeMetadata() { 3493 for (uint64_t BitPos : DeferredMetadataInfo) { 3494 // Move the bit stream to the saved position. 3495 Stream.JumpToBit(BitPos); 3496 if (std::error_code EC = parseMetadata(true)) 3497 return EC; 3498 } 3499 DeferredMetadataInfo.clear(); 3500 return std::error_code(); 3501 } 3502 3503 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3504 3505 /// When we see the block for a function body, remember where it is and then 3506 /// skip it. This lets us lazily deserialize the functions. 3507 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3508 // Get the function we are talking about. 3509 if (FunctionsWithBodies.empty()) 3510 return error("Insufficient function protos"); 3511 3512 Function *Fn = FunctionsWithBodies.back(); 3513 FunctionsWithBodies.pop_back(); 3514 3515 // Save the current stream state. 3516 uint64_t CurBit = Stream.GetCurrentBitNo(); 3517 assert( 3518 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3519 "Mismatch between VST and scanned function offsets"); 3520 DeferredFunctionInfo[Fn] = CurBit; 3521 3522 // Skip over the function block for now. 3523 if (Stream.SkipBlock()) 3524 return error("Invalid record"); 3525 return std::error_code(); 3526 } 3527 3528 std::error_code BitcodeReader::globalCleanup() { 3529 // Patch the initializers for globals and aliases up. 3530 resolveGlobalAndIndirectSymbolInits(); 3531 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3532 return error("Malformed global initializer set"); 3533 3534 // Look for intrinsic functions which need to be upgraded at some point 3535 for (Function &F : *TheModule) { 3536 Function *NewFn; 3537 if (UpgradeIntrinsicFunction(&F, NewFn)) 3538 UpgradedIntrinsics[&F] = NewFn; 3539 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3540 // Some types could be renamed during loading if several modules are 3541 // loaded in the same LLVMContext (LTO scenario). In this case we should 3542 // remangle intrinsics names as well. 3543 RemangledIntrinsics[&F] = Remangled.getValue(); 3544 } 3545 3546 // Look for global variables which need to be renamed. 3547 for (GlobalVariable &GV : TheModule->globals()) 3548 UpgradeGlobalVariable(&GV); 3549 3550 // Force deallocation of memory for these vectors to favor the client that 3551 // want lazy deserialization. 3552 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3553 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3554 IndirectSymbolInits); 3555 return std::error_code(); 3556 } 3557 3558 /// Support for lazy parsing of function bodies. This is required if we 3559 /// either have an old bitcode file without a VST forward declaration record, 3560 /// or if we have an anonymous function being materialized, since anonymous 3561 /// functions do not have a name and are therefore not in the VST. 3562 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3563 Stream.JumpToBit(NextUnreadBit); 3564 3565 if (Stream.AtEndOfStream()) 3566 return error("Could not find function in stream"); 3567 3568 if (!SeenFirstFunctionBody) 3569 return error("Trying to materialize functions before seeing function blocks"); 3570 3571 // An old bitcode file with the symbol table at the end would have 3572 // finished the parse greedily. 3573 assert(SeenValueSymbolTable); 3574 3575 SmallVector<uint64_t, 64> Record; 3576 3577 while (true) { 3578 BitstreamEntry Entry = Stream.advance(); 3579 switch (Entry.Kind) { 3580 default: 3581 return error("Expect SubBlock"); 3582 case BitstreamEntry::SubBlock: 3583 switch (Entry.ID) { 3584 default: 3585 return error("Expect function block"); 3586 case bitc::FUNCTION_BLOCK_ID: 3587 if (std::error_code EC = rememberAndSkipFunctionBody()) 3588 return EC; 3589 NextUnreadBit = Stream.GetCurrentBitNo(); 3590 return std::error_code(); 3591 } 3592 } 3593 } 3594 } 3595 3596 std::error_code BitcodeReader::parseBitcodeVersion() { 3597 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3598 return error("Invalid record"); 3599 3600 // Read all the records. 3601 SmallVector<uint64_t, 64> Record; 3602 3603 while (true) { 3604 BitstreamEntry Entry = Stream.advance(); 3605 3606 switch (Entry.Kind) { 3607 default: 3608 case BitstreamEntry::Error: 3609 return error("Malformed block"); 3610 case BitstreamEntry::EndBlock: 3611 return std::error_code(); 3612 case BitstreamEntry::Record: 3613 // The interesting case. 3614 break; 3615 } 3616 3617 // Read a record. 3618 Record.clear(); 3619 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3620 switch (BitCode) { 3621 default: // Default behavior: reject 3622 return error("Invalid value"); 3623 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3624 // N] 3625 convertToString(Record, 0, ProducerIdentification); 3626 break; 3627 } 3628 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3629 unsigned epoch = (unsigned)Record[0]; 3630 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3631 return error( 3632 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3633 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3634 } 3635 } 3636 } 3637 } 3638 } 3639 3640 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3641 bool ShouldLazyLoadMetadata) { 3642 if (ResumeBit) 3643 Stream.JumpToBit(ResumeBit); 3644 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3645 return error("Invalid record"); 3646 3647 SmallVector<uint64_t, 64> Record; 3648 std::vector<std::string> SectionTable; 3649 std::vector<std::string> GCTable; 3650 3651 // Read all the records for this module. 3652 while (true) { 3653 BitstreamEntry Entry = Stream.advance(); 3654 3655 switch (Entry.Kind) { 3656 case BitstreamEntry::Error: 3657 return error("Malformed block"); 3658 case BitstreamEntry::EndBlock: 3659 return globalCleanup(); 3660 3661 case BitstreamEntry::SubBlock: 3662 switch (Entry.ID) { 3663 default: // Skip unknown content. 3664 if (Stream.SkipBlock()) 3665 return error("Invalid record"); 3666 break; 3667 case bitc::BLOCKINFO_BLOCK_ID: 3668 if (Stream.ReadBlockInfoBlock()) 3669 return error("Malformed block"); 3670 break; 3671 case bitc::PARAMATTR_BLOCK_ID: 3672 if (std::error_code EC = parseAttributeBlock()) 3673 return EC; 3674 break; 3675 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3676 if (std::error_code EC = parseAttributeGroupBlock()) 3677 return EC; 3678 break; 3679 case bitc::TYPE_BLOCK_ID_NEW: 3680 if (std::error_code EC = parseTypeTable()) 3681 return EC; 3682 break; 3683 case bitc::VALUE_SYMTAB_BLOCK_ID: 3684 if (!SeenValueSymbolTable) { 3685 // Either this is an old form VST without function index and an 3686 // associated VST forward declaration record (which would have caused 3687 // the VST to be jumped to and parsed before it was encountered 3688 // normally in the stream), or there were no function blocks to 3689 // trigger an earlier parsing of the VST. 3690 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3691 if (std::error_code EC = parseValueSymbolTable()) 3692 return EC; 3693 SeenValueSymbolTable = true; 3694 } else { 3695 // We must have had a VST forward declaration record, which caused 3696 // the parser to jump to and parse the VST earlier. 3697 assert(VSTOffset > 0); 3698 if (Stream.SkipBlock()) 3699 return error("Invalid record"); 3700 } 3701 break; 3702 case bitc::CONSTANTS_BLOCK_ID: 3703 if (std::error_code EC = parseConstants()) 3704 return EC; 3705 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3706 return EC; 3707 break; 3708 case bitc::METADATA_BLOCK_ID: 3709 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3710 if (std::error_code EC = rememberAndSkipMetadata()) 3711 return EC; 3712 break; 3713 } 3714 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3715 if (std::error_code EC = parseMetadata(true)) 3716 return EC; 3717 break; 3718 case bitc::METADATA_KIND_BLOCK_ID: 3719 if (std::error_code EC = parseMetadataKinds()) 3720 return EC; 3721 break; 3722 case bitc::FUNCTION_BLOCK_ID: 3723 // If this is the first function body we've seen, reverse the 3724 // FunctionsWithBodies list. 3725 if (!SeenFirstFunctionBody) { 3726 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3727 if (std::error_code EC = globalCleanup()) 3728 return EC; 3729 SeenFirstFunctionBody = true; 3730 } 3731 3732 if (VSTOffset > 0) { 3733 // If we have a VST forward declaration record, make sure we 3734 // parse the VST now if we haven't already. It is needed to 3735 // set up the DeferredFunctionInfo vector for lazy reading. 3736 if (!SeenValueSymbolTable) { 3737 if (std::error_code EC = 3738 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3739 return EC; 3740 SeenValueSymbolTable = true; 3741 // Fall through so that we record the NextUnreadBit below. 3742 // This is necessary in case we have an anonymous function that 3743 // is later materialized. Since it will not have a VST entry we 3744 // need to fall back to the lazy parse to find its offset. 3745 } else { 3746 // If we have a VST forward declaration record, but have already 3747 // parsed the VST (just above, when the first function body was 3748 // encountered here), then we are resuming the parse after 3749 // materializing functions. The ResumeBit points to the 3750 // start of the last function block recorded in the 3751 // DeferredFunctionInfo map. Skip it. 3752 if (Stream.SkipBlock()) 3753 return error("Invalid record"); 3754 continue; 3755 } 3756 } 3757 3758 // Support older bitcode files that did not have the function 3759 // index in the VST, nor a VST forward declaration record, as 3760 // well as anonymous functions that do not have VST entries. 3761 // Build the DeferredFunctionInfo vector on the fly. 3762 if (std::error_code EC = rememberAndSkipFunctionBody()) 3763 return EC; 3764 3765 // Suspend parsing when we reach the function bodies. Subsequent 3766 // materialization calls will resume it when necessary. If the bitcode 3767 // file is old, the symbol table will be at the end instead and will not 3768 // have been seen yet. In this case, just finish the parse now. 3769 if (SeenValueSymbolTable) { 3770 NextUnreadBit = Stream.GetCurrentBitNo(); 3771 // After the VST has been parsed, we need to make sure intrinsic name 3772 // are auto-upgraded. 3773 return globalCleanup(); 3774 } 3775 break; 3776 case bitc::USELIST_BLOCK_ID: 3777 if (std::error_code EC = parseUseLists()) 3778 return EC; 3779 break; 3780 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3781 if (std::error_code EC = parseOperandBundleTags()) 3782 return EC; 3783 break; 3784 } 3785 continue; 3786 3787 case BitstreamEntry::Record: 3788 // The interesting case. 3789 break; 3790 } 3791 3792 // Read a record. 3793 auto BitCode = Stream.readRecord(Entry.ID, Record); 3794 switch (BitCode) { 3795 default: break; // Default behavior, ignore unknown content. 3796 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3797 if (Record.size() < 1) 3798 return error("Invalid record"); 3799 // Only version #0 and #1 are supported so far. 3800 unsigned module_version = Record[0]; 3801 switch (module_version) { 3802 default: 3803 return error("Invalid value"); 3804 case 0: 3805 UseRelativeIDs = false; 3806 break; 3807 case 1: 3808 UseRelativeIDs = true; 3809 break; 3810 } 3811 break; 3812 } 3813 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3814 std::string S; 3815 if (convertToString(Record, 0, S)) 3816 return error("Invalid record"); 3817 TheModule->setTargetTriple(S); 3818 break; 3819 } 3820 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3821 std::string S; 3822 if (convertToString(Record, 0, S)) 3823 return error("Invalid record"); 3824 TheModule->setDataLayout(S); 3825 break; 3826 } 3827 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3828 std::string S; 3829 if (convertToString(Record, 0, S)) 3830 return error("Invalid record"); 3831 TheModule->setModuleInlineAsm(S); 3832 break; 3833 } 3834 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3835 // FIXME: Remove in 4.0. 3836 std::string S; 3837 if (convertToString(Record, 0, S)) 3838 return error("Invalid record"); 3839 // Ignore value. 3840 break; 3841 } 3842 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3843 std::string S; 3844 if (convertToString(Record, 0, S)) 3845 return error("Invalid record"); 3846 SectionTable.push_back(S); 3847 break; 3848 } 3849 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3850 std::string S; 3851 if (convertToString(Record, 0, S)) 3852 return error("Invalid record"); 3853 GCTable.push_back(S); 3854 break; 3855 } 3856 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3857 if (Record.size() < 2) 3858 return error("Invalid record"); 3859 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3860 unsigned ComdatNameSize = Record[1]; 3861 std::string ComdatName; 3862 ComdatName.reserve(ComdatNameSize); 3863 for (unsigned i = 0; i != ComdatNameSize; ++i) 3864 ComdatName += (char)Record[2 + i]; 3865 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3866 C->setSelectionKind(SK); 3867 ComdatList.push_back(C); 3868 break; 3869 } 3870 // GLOBALVAR: [pointer type, isconst, initid, 3871 // linkage, alignment, section, visibility, threadlocal, 3872 // unnamed_addr, externally_initialized, dllstorageclass, 3873 // comdat] 3874 case bitc::MODULE_CODE_GLOBALVAR: { 3875 if (Record.size() < 6) 3876 return error("Invalid record"); 3877 Type *Ty = getTypeByID(Record[0]); 3878 if (!Ty) 3879 return error("Invalid record"); 3880 bool isConstant = Record[1] & 1; 3881 bool explicitType = Record[1] & 2; 3882 unsigned AddressSpace; 3883 if (explicitType) { 3884 AddressSpace = Record[1] >> 2; 3885 } else { 3886 if (!Ty->isPointerTy()) 3887 return error("Invalid type for value"); 3888 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3889 Ty = cast<PointerType>(Ty)->getElementType(); 3890 } 3891 3892 uint64_t RawLinkage = Record[3]; 3893 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3894 unsigned Alignment; 3895 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3896 return EC; 3897 std::string Section; 3898 if (Record[5]) { 3899 if (Record[5]-1 >= SectionTable.size()) 3900 return error("Invalid ID"); 3901 Section = SectionTable[Record[5]-1]; 3902 } 3903 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3904 // Local linkage must have default visibility. 3905 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3906 // FIXME: Change to an error if non-default in 4.0. 3907 Visibility = getDecodedVisibility(Record[6]); 3908 3909 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3910 if (Record.size() > 7) 3911 TLM = getDecodedThreadLocalMode(Record[7]); 3912 3913 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3914 if (Record.size() > 8) 3915 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3916 3917 bool ExternallyInitialized = false; 3918 if (Record.size() > 9) 3919 ExternallyInitialized = Record[9]; 3920 3921 GlobalVariable *NewGV = 3922 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3923 TLM, AddressSpace, ExternallyInitialized); 3924 NewGV->setAlignment(Alignment); 3925 if (!Section.empty()) 3926 NewGV->setSection(Section); 3927 NewGV->setVisibility(Visibility); 3928 NewGV->setUnnamedAddr(UnnamedAddr); 3929 3930 if (Record.size() > 10) 3931 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3932 else 3933 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3934 3935 ValueList.push_back(NewGV); 3936 3937 // Remember which value to use for the global initializer. 3938 if (unsigned InitID = Record[2]) 3939 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3940 3941 if (Record.size() > 11) { 3942 if (unsigned ComdatID = Record[11]) { 3943 if (ComdatID > ComdatList.size()) 3944 return error("Invalid global variable comdat ID"); 3945 NewGV->setComdat(ComdatList[ComdatID - 1]); 3946 } 3947 } else if (hasImplicitComdat(RawLinkage)) { 3948 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3949 } 3950 3951 break; 3952 } 3953 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3954 // alignment, section, visibility, gc, unnamed_addr, 3955 // prologuedata, dllstorageclass, comdat, prefixdata] 3956 case bitc::MODULE_CODE_FUNCTION: { 3957 if (Record.size() < 8) 3958 return error("Invalid record"); 3959 Type *Ty = getTypeByID(Record[0]); 3960 if (!Ty) 3961 return error("Invalid record"); 3962 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3963 Ty = PTy->getElementType(); 3964 auto *FTy = dyn_cast<FunctionType>(Ty); 3965 if (!FTy) 3966 return error("Invalid type for value"); 3967 auto CC = static_cast<CallingConv::ID>(Record[1]); 3968 if (CC & ~CallingConv::MaxID) 3969 return error("Invalid calling convention ID"); 3970 3971 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3972 "", TheModule); 3973 3974 Func->setCallingConv(CC); 3975 bool isProto = Record[2]; 3976 uint64_t RawLinkage = Record[3]; 3977 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3978 Func->setAttributes(getAttributes(Record[4])); 3979 3980 unsigned Alignment; 3981 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3982 return EC; 3983 Func->setAlignment(Alignment); 3984 if (Record[6]) { 3985 if (Record[6]-1 >= SectionTable.size()) 3986 return error("Invalid ID"); 3987 Func->setSection(SectionTable[Record[6]-1]); 3988 } 3989 // Local linkage must have default visibility. 3990 if (!Func->hasLocalLinkage()) 3991 // FIXME: Change to an error if non-default in 4.0. 3992 Func->setVisibility(getDecodedVisibility(Record[7])); 3993 if (Record.size() > 8 && Record[8]) { 3994 if (Record[8]-1 >= GCTable.size()) 3995 return error("Invalid ID"); 3996 Func->setGC(GCTable[Record[8] - 1]); 3997 } 3998 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3999 if (Record.size() > 9) 4000 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4001 Func->setUnnamedAddr(UnnamedAddr); 4002 if (Record.size() > 10 && Record[10] != 0) 4003 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4004 4005 if (Record.size() > 11) 4006 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4007 else 4008 upgradeDLLImportExportLinkage(Func, RawLinkage); 4009 4010 if (Record.size() > 12) { 4011 if (unsigned ComdatID = Record[12]) { 4012 if (ComdatID > ComdatList.size()) 4013 return error("Invalid function comdat ID"); 4014 Func->setComdat(ComdatList[ComdatID - 1]); 4015 } 4016 } else if (hasImplicitComdat(RawLinkage)) { 4017 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4018 } 4019 4020 if (Record.size() > 13 && Record[13] != 0) 4021 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4022 4023 if (Record.size() > 14 && Record[14] != 0) 4024 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4025 4026 ValueList.push_back(Func); 4027 4028 // If this is a function with a body, remember the prototype we are 4029 // creating now, so that we can match up the body with them later. 4030 if (!isProto) { 4031 Func->setIsMaterializable(true); 4032 FunctionsWithBodies.push_back(Func); 4033 DeferredFunctionInfo[Func] = 0; 4034 } 4035 break; 4036 } 4037 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4038 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4039 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4040 case bitc::MODULE_CODE_IFUNC: 4041 case bitc::MODULE_CODE_ALIAS: 4042 case bitc::MODULE_CODE_ALIAS_OLD: { 4043 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4044 if (Record.size() < (3 + (unsigned)NewRecord)) 4045 return error("Invalid record"); 4046 unsigned OpNum = 0; 4047 Type *Ty = getTypeByID(Record[OpNum++]); 4048 if (!Ty) 4049 return error("Invalid record"); 4050 4051 unsigned AddrSpace; 4052 if (!NewRecord) { 4053 auto *PTy = dyn_cast<PointerType>(Ty); 4054 if (!PTy) 4055 return error("Invalid type for value"); 4056 Ty = PTy->getElementType(); 4057 AddrSpace = PTy->getAddressSpace(); 4058 } else { 4059 AddrSpace = Record[OpNum++]; 4060 } 4061 4062 auto Val = Record[OpNum++]; 4063 auto Linkage = Record[OpNum++]; 4064 GlobalIndirectSymbol *NewGA; 4065 if (BitCode == bitc::MODULE_CODE_ALIAS || 4066 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4067 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4068 "", TheModule); 4069 else 4070 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4071 "", nullptr, TheModule); 4072 // Old bitcode files didn't have visibility field. 4073 // Local linkage must have default visibility. 4074 if (OpNum != Record.size()) { 4075 auto VisInd = OpNum++; 4076 if (!NewGA->hasLocalLinkage()) 4077 // FIXME: Change to an error if non-default in 4.0. 4078 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4079 } 4080 if (OpNum != Record.size()) 4081 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4082 else 4083 upgradeDLLImportExportLinkage(NewGA, Linkage); 4084 if (OpNum != Record.size()) 4085 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4086 if (OpNum != Record.size()) 4087 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4088 ValueList.push_back(NewGA); 4089 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4090 break; 4091 } 4092 /// MODULE_CODE_PURGEVALS: [numvals] 4093 case bitc::MODULE_CODE_PURGEVALS: 4094 // Trim down the value list to the specified size. 4095 if (Record.size() < 1 || Record[0] > ValueList.size()) 4096 return error("Invalid record"); 4097 ValueList.shrinkTo(Record[0]); 4098 break; 4099 /// MODULE_CODE_VSTOFFSET: [offset] 4100 case bitc::MODULE_CODE_VSTOFFSET: 4101 if (Record.size() < 1) 4102 return error("Invalid record"); 4103 VSTOffset = Record[0]; 4104 break; 4105 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4106 case bitc::MODULE_CODE_SOURCE_FILENAME: 4107 SmallString<128> ValueName; 4108 if (convertToString(Record, 0, ValueName)) 4109 return error("Invalid record"); 4110 TheModule->setSourceFileName(ValueName); 4111 break; 4112 } 4113 Record.clear(); 4114 } 4115 } 4116 4117 /// Helper to read the header common to all bitcode files. 4118 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4119 // Sniff for the signature. 4120 if (Stream.Read(8) != 'B' || 4121 Stream.Read(8) != 'C' || 4122 Stream.Read(4) != 0x0 || 4123 Stream.Read(4) != 0xC || 4124 Stream.Read(4) != 0xE || 4125 Stream.Read(4) != 0xD) 4126 return false; 4127 return true; 4128 } 4129 4130 std::error_code 4131 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4132 Module *M, bool ShouldLazyLoadMetadata) { 4133 TheModule = M; 4134 4135 if (std::error_code EC = initStream(std::move(Streamer))) 4136 return EC; 4137 4138 // Sniff for the signature. 4139 if (!hasValidBitcodeHeader(Stream)) 4140 return error("Invalid bitcode signature"); 4141 4142 // We expect a number of well-defined blocks, though we don't necessarily 4143 // need to understand them all. 4144 while (true) { 4145 if (Stream.AtEndOfStream()) { 4146 // We didn't really read a proper Module. 4147 return error("Malformed IR file"); 4148 } 4149 4150 BitstreamEntry Entry = 4151 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4152 4153 if (Entry.Kind != BitstreamEntry::SubBlock) 4154 return error("Malformed block"); 4155 4156 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4157 parseBitcodeVersion(); 4158 continue; 4159 } 4160 4161 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4162 return parseModule(0, ShouldLazyLoadMetadata); 4163 4164 if (Stream.SkipBlock()) 4165 return error("Invalid record"); 4166 } 4167 } 4168 4169 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4170 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4171 return error("Invalid record"); 4172 4173 SmallVector<uint64_t, 64> Record; 4174 4175 std::string Triple; 4176 4177 // Read all the records for this module. 4178 while (true) { 4179 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4180 4181 switch (Entry.Kind) { 4182 case BitstreamEntry::SubBlock: // Handled for us already. 4183 case BitstreamEntry::Error: 4184 return error("Malformed block"); 4185 case BitstreamEntry::EndBlock: 4186 return Triple; 4187 case BitstreamEntry::Record: 4188 // The interesting case. 4189 break; 4190 } 4191 4192 // Read a record. 4193 switch (Stream.readRecord(Entry.ID, Record)) { 4194 default: break; // Default behavior, ignore unknown content. 4195 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4196 std::string S; 4197 if (convertToString(Record, 0, S)) 4198 return error("Invalid record"); 4199 Triple = S; 4200 break; 4201 } 4202 } 4203 Record.clear(); 4204 } 4205 llvm_unreachable("Exit infinite loop"); 4206 } 4207 4208 ErrorOr<std::string> BitcodeReader::parseTriple() { 4209 if (std::error_code EC = initStream(nullptr)) 4210 return EC; 4211 4212 // Sniff for the signature. 4213 if (!hasValidBitcodeHeader(Stream)) 4214 return error("Invalid bitcode signature"); 4215 4216 // We expect a number of well-defined blocks, though we don't necessarily 4217 // need to understand them all. 4218 while (true) { 4219 BitstreamEntry Entry = Stream.advance(); 4220 4221 switch (Entry.Kind) { 4222 case BitstreamEntry::Error: 4223 return error("Malformed block"); 4224 case BitstreamEntry::EndBlock: 4225 return std::error_code(); 4226 4227 case BitstreamEntry::SubBlock: 4228 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4229 return parseModuleTriple(); 4230 4231 // Ignore other sub-blocks. 4232 if (Stream.SkipBlock()) 4233 return error("Malformed block"); 4234 continue; 4235 4236 case BitstreamEntry::Record: 4237 Stream.skipRecord(Entry.ID); 4238 continue; 4239 } 4240 } 4241 } 4242 4243 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4244 if (std::error_code EC = initStream(nullptr)) 4245 return EC; 4246 4247 // Sniff for the signature. 4248 if (!hasValidBitcodeHeader(Stream)) 4249 return error("Invalid bitcode signature"); 4250 4251 // We expect a number of well-defined blocks, though we don't necessarily 4252 // need to understand them all. 4253 while (true) { 4254 BitstreamEntry Entry = Stream.advance(); 4255 switch (Entry.Kind) { 4256 case BitstreamEntry::Error: 4257 return error("Malformed block"); 4258 case BitstreamEntry::EndBlock: 4259 return std::error_code(); 4260 4261 case BitstreamEntry::SubBlock: 4262 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4263 if (std::error_code EC = parseBitcodeVersion()) 4264 return EC; 4265 return ProducerIdentification; 4266 } 4267 // Ignore other sub-blocks. 4268 if (Stream.SkipBlock()) 4269 return error("Malformed block"); 4270 continue; 4271 case BitstreamEntry::Record: 4272 Stream.skipRecord(Entry.ID); 4273 continue; 4274 } 4275 } 4276 } 4277 4278 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4279 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4280 assert(Record.size() % 2 == 0); 4281 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4282 auto K = MDKindMap.find(Record[I]); 4283 if (K == MDKindMap.end()) 4284 return error("Invalid ID"); 4285 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4286 if (!MD) 4287 return error("Invalid metadata attachment"); 4288 GO.addMetadata(K->second, *MD); 4289 } 4290 return std::error_code(); 4291 } 4292 4293 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4294 if (std::error_code EC = initStream(nullptr)) 4295 return EC; 4296 4297 // Sniff for the signature. 4298 if (!hasValidBitcodeHeader(Stream)) 4299 return error("Invalid bitcode signature"); 4300 4301 // We expect a number of well-defined blocks, though we don't necessarily 4302 // need to understand them all. 4303 while (true) { 4304 BitstreamEntry Entry = Stream.advance(); 4305 4306 switch (Entry.Kind) { 4307 case BitstreamEntry::Error: 4308 return error("Malformed block"); 4309 case BitstreamEntry::EndBlock: 4310 return std::error_code(); 4311 4312 case BitstreamEntry::SubBlock: 4313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4314 return hasObjCCategoryInModule(); 4315 4316 // Ignore other sub-blocks. 4317 if (Stream.SkipBlock()) 4318 return error("Malformed block"); 4319 continue; 4320 4321 case BitstreamEntry::Record: 4322 Stream.skipRecord(Entry.ID); 4323 continue; 4324 } 4325 } 4326 } 4327 4328 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4329 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4330 return error("Invalid record"); 4331 4332 SmallVector<uint64_t, 64> Record; 4333 // Read all the records for this module. 4334 4335 while (true) { 4336 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4337 4338 switch (Entry.Kind) { 4339 case BitstreamEntry::SubBlock: // Handled for us already. 4340 case BitstreamEntry::Error: 4341 return error("Malformed block"); 4342 case BitstreamEntry::EndBlock: 4343 return false; 4344 case BitstreamEntry::Record: 4345 // The interesting case. 4346 break; 4347 } 4348 4349 // Read a record. 4350 switch (Stream.readRecord(Entry.ID, Record)) { 4351 default: 4352 break; // Default behavior, ignore unknown content. 4353 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4354 std::string S; 4355 if (convertToString(Record, 0, S)) 4356 return error("Invalid record"); 4357 // Check for the i386 and other (x86_64, ARM) conventions 4358 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4359 S.find("__OBJC,__category") != std::string::npos) 4360 return true; 4361 break; 4362 } 4363 } 4364 Record.clear(); 4365 } 4366 llvm_unreachable("Exit infinite loop"); 4367 } 4368 4369 /// Parse metadata attachments. 4370 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4371 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4372 return error("Invalid record"); 4373 4374 SmallVector<uint64_t, 64> Record; 4375 4376 while (true) { 4377 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4378 4379 switch (Entry.Kind) { 4380 case BitstreamEntry::SubBlock: // Handled for us already. 4381 case BitstreamEntry::Error: 4382 return error("Malformed block"); 4383 case BitstreamEntry::EndBlock: 4384 return std::error_code(); 4385 case BitstreamEntry::Record: 4386 // The interesting case. 4387 break; 4388 } 4389 4390 // Read a metadata attachment record. 4391 Record.clear(); 4392 switch (Stream.readRecord(Entry.ID, Record)) { 4393 default: // Default behavior: ignore. 4394 break; 4395 case bitc::METADATA_ATTACHMENT: { 4396 unsigned RecordLength = Record.size(); 4397 if (Record.empty()) 4398 return error("Invalid record"); 4399 if (RecordLength % 2 == 0) { 4400 // A function attachment. 4401 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4402 return EC; 4403 continue; 4404 } 4405 4406 // An instruction attachment. 4407 Instruction *Inst = InstructionList[Record[0]]; 4408 for (unsigned i = 1; i != RecordLength; i = i+2) { 4409 unsigned Kind = Record[i]; 4410 DenseMap<unsigned, unsigned>::iterator I = 4411 MDKindMap.find(Kind); 4412 if (I == MDKindMap.end()) 4413 return error("Invalid ID"); 4414 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4415 if (isa<LocalAsMetadata>(Node)) 4416 // Drop the attachment. This used to be legal, but there's no 4417 // upgrade path. 4418 break; 4419 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4420 if (!MD) 4421 return error("Invalid metadata attachment"); 4422 4423 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4424 MD = upgradeInstructionLoopAttachment(*MD); 4425 4426 if (I->second == LLVMContext::MD_tbaa) { 4427 assert(!MD->isTemporary() && "should load MDs before attachments"); 4428 MD = UpgradeTBAANode(*MD); 4429 } 4430 Inst->setMetadata(I->second, MD); 4431 } 4432 break; 4433 } 4434 } 4435 } 4436 } 4437 4438 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4439 LLVMContext &Context = PtrType->getContext(); 4440 if (!isa<PointerType>(PtrType)) 4441 return error(Context, "Load/Store operand is not a pointer type"); 4442 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4443 4444 if (ValType && ValType != ElemType) 4445 return error(Context, "Explicit load/store type does not match pointee " 4446 "type of pointer operand"); 4447 if (!PointerType::isLoadableOrStorableType(ElemType)) 4448 return error(Context, "Cannot load/store from pointer"); 4449 return std::error_code(); 4450 } 4451 4452 /// Lazily parse the specified function body block. 4453 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4454 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4455 return error("Invalid record"); 4456 4457 // Unexpected unresolved metadata when parsing function. 4458 if (MetadataList.hasFwdRefs()) 4459 return error("Invalid function metadata: incoming forward references"); 4460 4461 InstructionList.clear(); 4462 unsigned ModuleValueListSize = ValueList.size(); 4463 unsigned ModuleMetadataListSize = MetadataList.size(); 4464 4465 // Add all the function arguments to the value table. 4466 for (Argument &I : F->args()) 4467 ValueList.push_back(&I); 4468 4469 unsigned NextValueNo = ValueList.size(); 4470 BasicBlock *CurBB = nullptr; 4471 unsigned CurBBNo = 0; 4472 4473 DebugLoc LastLoc; 4474 auto getLastInstruction = [&]() -> Instruction * { 4475 if (CurBB && !CurBB->empty()) 4476 return &CurBB->back(); 4477 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4478 !FunctionBBs[CurBBNo - 1]->empty()) 4479 return &FunctionBBs[CurBBNo - 1]->back(); 4480 return nullptr; 4481 }; 4482 4483 std::vector<OperandBundleDef> OperandBundles; 4484 4485 // Read all the records. 4486 SmallVector<uint64_t, 64> Record; 4487 4488 while (true) { 4489 BitstreamEntry Entry = Stream.advance(); 4490 4491 switch (Entry.Kind) { 4492 case BitstreamEntry::Error: 4493 return error("Malformed block"); 4494 case BitstreamEntry::EndBlock: 4495 goto OutOfRecordLoop; 4496 4497 case BitstreamEntry::SubBlock: 4498 switch (Entry.ID) { 4499 default: // Skip unknown content. 4500 if (Stream.SkipBlock()) 4501 return error("Invalid record"); 4502 break; 4503 case bitc::CONSTANTS_BLOCK_ID: 4504 if (std::error_code EC = parseConstants()) 4505 return EC; 4506 NextValueNo = ValueList.size(); 4507 break; 4508 case bitc::VALUE_SYMTAB_BLOCK_ID: 4509 if (std::error_code EC = parseValueSymbolTable()) 4510 return EC; 4511 break; 4512 case bitc::METADATA_ATTACHMENT_ID: 4513 if (std::error_code EC = parseMetadataAttachment(*F)) 4514 return EC; 4515 break; 4516 case bitc::METADATA_BLOCK_ID: 4517 if (std::error_code EC = parseMetadata()) 4518 return EC; 4519 break; 4520 case bitc::USELIST_BLOCK_ID: 4521 if (std::error_code EC = parseUseLists()) 4522 return EC; 4523 break; 4524 } 4525 continue; 4526 4527 case BitstreamEntry::Record: 4528 // The interesting case. 4529 break; 4530 } 4531 4532 // Read a record. 4533 Record.clear(); 4534 Instruction *I = nullptr; 4535 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4536 switch (BitCode) { 4537 default: // Default behavior: reject 4538 return error("Invalid value"); 4539 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4540 if (Record.size() < 1 || Record[0] == 0) 4541 return error("Invalid record"); 4542 // Create all the basic blocks for the function. 4543 FunctionBBs.resize(Record[0]); 4544 4545 // See if anything took the address of blocks in this function. 4546 auto BBFRI = BasicBlockFwdRefs.find(F); 4547 if (BBFRI == BasicBlockFwdRefs.end()) { 4548 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4549 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4550 } else { 4551 auto &BBRefs = BBFRI->second; 4552 // Check for invalid basic block references. 4553 if (BBRefs.size() > FunctionBBs.size()) 4554 return error("Invalid ID"); 4555 assert(!BBRefs.empty() && "Unexpected empty array"); 4556 assert(!BBRefs.front() && "Invalid reference to entry block"); 4557 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4558 ++I) 4559 if (I < RE && BBRefs[I]) { 4560 BBRefs[I]->insertInto(F); 4561 FunctionBBs[I] = BBRefs[I]; 4562 } else { 4563 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4564 } 4565 4566 // Erase from the table. 4567 BasicBlockFwdRefs.erase(BBFRI); 4568 } 4569 4570 CurBB = FunctionBBs[0]; 4571 continue; 4572 } 4573 4574 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4575 // This record indicates that the last instruction is at the same 4576 // location as the previous instruction with a location. 4577 I = getLastInstruction(); 4578 4579 if (!I) 4580 return error("Invalid record"); 4581 I->setDebugLoc(LastLoc); 4582 I = nullptr; 4583 continue; 4584 4585 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4586 I = getLastInstruction(); 4587 if (!I || Record.size() < 4) 4588 return error("Invalid record"); 4589 4590 unsigned Line = Record[0], Col = Record[1]; 4591 unsigned ScopeID = Record[2], IAID = Record[3]; 4592 4593 MDNode *Scope = nullptr, *IA = nullptr; 4594 if (ScopeID) { 4595 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4596 if (!Scope) 4597 return error("Invalid record"); 4598 } 4599 if (IAID) { 4600 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4601 if (!IA) 4602 return error("Invalid record"); 4603 } 4604 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4605 I->setDebugLoc(LastLoc); 4606 I = nullptr; 4607 continue; 4608 } 4609 4610 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4611 unsigned OpNum = 0; 4612 Value *LHS, *RHS; 4613 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4614 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4615 OpNum+1 > Record.size()) 4616 return error("Invalid record"); 4617 4618 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4619 if (Opc == -1) 4620 return error("Invalid record"); 4621 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4622 InstructionList.push_back(I); 4623 if (OpNum < Record.size()) { 4624 if (Opc == Instruction::Add || 4625 Opc == Instruction::Sub || 4626 Opc == Instruction::Mul || 4627 Opc == Instruction::Shl) { 4628 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4629 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4630 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4631 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4632 } else if (Opc == Instruction::SDiv || 4633 Opc == Instruction::UDiv || 4634 Opc == Instruction::LShr || 4635 Opc == Instruction::AShr) { 4636 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4637 cast<BinaryOperator>(I)->setIsExact(true); 4638 } else if (isa<FPMathOperator>(I)) { 4639 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4640 if (FMF.any()) 4641 I->setFastMathFlags(FMF); 4642 } 4643 4644 } 4645 break; 4646 } 4647 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4648 unsigned OpNum = 0; 4649 Value *Op; 4650 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4651 OpNum+2 != Record.size()) 4652 return error("Invalid record"); 4653 4654 Type *ResTy = getTypeByID(Record[OpNum]); 4655 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4656 if (Opc == -1 || !ResTy) 4657 return error("Invalid record"); 4658 Instruction *Temp = nullptr; 4659 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4660 if (Temp) { 4661 InstructionList.push_back(Temp); 4662 CurBB->getInstList().push_back(Temp); 4663 } 4664 } else { 4665 auto CastOp = (Instruction::CastOps)Opc; 4666 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4667 return error("Invalid cast"); 4668 I = CastInst::Create(CastOp, Op, ResTy); 4669 } 4670 InstructionList.push_back(I); 4671 break; 4672 } 4673 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4674 case bitc::FUNC_CODE_INST_GEP_OLD: 4675 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4676 unsigned OpNum = 0; 4677 4678 Type *Ty; 4679 bool InBounds; 4680 4681 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4682 InBounds = Record[OpNum++]; 4683 Ty = getTypeByID(Record[OpNum++]); 4684 } else { 4685 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4686 Ty = nullptr; 4687 } 4688 4689 Value *BasePtr; 4690 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4691 return error("Invalid record"); 4692 4693 if (!Ty) 4694 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4695 ->getElementType(); 4696 else if (Ty != 4697 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4698 ->getElementType()) 4699 return error( 4700 "Explicit gep type does not match pointee type of pointer operand"); 4701 4702 SmallVector<Value*, 16> GEPIdx; 4703 while (OpNum != Record.size()) { 4704 Value *Op; 4705 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4706 return error("Invalid record"); 4707 GEPIdx.push_back(Op); 4708 } 4709 4710 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4711 4712 InstructionList.push_back(I); 4713 if (InBounds) 4714 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4715 break; 4716 } 4717 4718 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4719 // EXTRACTVAL: [opty, opval, n x indices] 4720 unsigned OpNum = 0; 4721 Value *Agg; 4722 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4723 return error("Invalid record"); 4724 4725 unsigned RecSize = Record.size(); 4726 if (OpNum == RecSize) 4727 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4728 4729 SmallVector<unsigned, 4> EXTRACTVALIdx; 4730 Type *CurTy = Agg->getType(); 4731 for (; OpNum != RecSize; ++OpNum) { 4732 bool IsArray = CurTy->isArrayTy(); 4733 bool IsStruct = CurTy->isStructTy(); 4734 uint64_t Index = Record[OpNum]; 4735 4736 if (!IsStruct && !IsArray) 4737 return error("EXTRACTVAL: Invalid type"); 4738 if ((unsigned)Index != Index) 4739 return error("Invalid value"); 4740 if (IsStruct && Index >= CurTy->subtypes().size()) 4741 return error("EXTRACTVAL: Invalid struct index"); 4742 if (IsArray && Index >= CurTy->getArrayNumElements()) 4743 return error("EXTRACTVAL: Invalid array index"); 4744 EXTRACTVALIdx.push_back((unsigned)Index); 4745 4746 if (IsStruct) 4747 CurTy = CurTy->subtypes()[Index]; 4748 else 4749 CurTy = CurTy->subtypes()[0]; 4750 } 4751 4752 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4753 InstructionList.push_back(I); 4754 break; 4755 } 4756 4757 case bitc::FUNC_CODE_INST_INSERTVAL: { 4758 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4759 unsigned OpNum = 0; 4760 Value *Agg; 4761 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4762 return error("Invalid record"); 4763 Value *Val; 4764 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4765 return error("Invalid record"); 4766 4767 unsigned RecSize = Record.size(); 4768 if (OpNum == RecSize) 4769 return error("INSERTVAL: Invalid instruction with 0 indices"); 4770 4771 SmallVector<unsigned, 4> INSERTVALIdx; 4772 Type *CurTy = Agg->getType(); 4773 for (; OpNum != RecSize; ++OpNum) { 4774 bool IsArray = CurTy->isArrayTy(); 4775 bool IsStruct = CurTy->isStructTy(); 4776 uint64_t Index = Record[OpNum]; 4777 4778 if (!IsStruct && !IsArray) 4779 return error("INSERTVAL: Invalid type"); 4780 if ((unsigned)Index != Index) 4781 return error("Invalid value"); 4782 if (IsStruct && Index >= CurTy->subtypes().size()) 4783 return error("INSERTVAL: Invalid struct index"); 4784 if (IsArray && Index >= CurTy->getArrayNumElements()) 4785 return error("INSERTVAL: Invalid array index"); 4786 4787 INSERTVALIdx.push_back((unsigned)Index); 4788 if (IsStruct) 4789 CurTy = CurTy->subtypes()[Index]; 4790 else 4791 CurTy = CurTy->subtypes()[0]; 4792 } 4793 4794 if (CurTy != Val->getType()) 4795 return error("Inserted value type doesn't match aggregate type"); 4796 4797 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4798 InstructionList.push_back(I); 4799 break; 4800 } 4801 4802 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4803 // obsolete form of select 4804 // handles select i1 ... in old bitcode 4805 unsigned OpNum = 0; 4806 Value *TrueVal, *FalseVal, *Cond; 4807 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4808 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4809 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4810 return error("Invalid record"); 4811 4812 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4813 InstructionList.push_back(I); 4814 break; 4815 } 4816 4817 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4818 // new form of select 4819 // handles select i1 or select [N x i1] 4820 unsigned OpNum = 0; 4821 Value *TrueVal, *FalseVal, *Cond; 4822 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4823 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4824 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4825 return error("Invalid record"); 4826 4827 // select condition can be either i1 or [N x i1] 4828 if (VectorType* vector_type = 4829 dyn_cast<VectorType>(Cond->getType())) { 4830 // expect <n x i1> 4831 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4832 return error("Invalid type for value"); 4833 } else { 4834 // expect i1 4835 if (Cond->getType() != Type::getInt1Ty(Context)) 4836 return error("Invalid type for value"); 4837 } 4838 4839 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4840 InstructionList.push_back(I); 4841 break; 4842 } 4843 4844 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4845 unsigned OpNum = 0; 4846 Value *Vec, *Idx; 4847 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4848 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4849 return error("Invalid record"); 4850 if (!Vec->getType()->isVectorTy()) 4851 return error("Invalid type for value"); 4852 I = ExtractElementInst::Create(Vec, Idx); 4853 InstructionList.push_back(I); 4854 break; 4855 } 4856 4857 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4858 unsigned OpNum = 0; 4859 Value *Vec, *Elt, *Idx; 4860 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4861 return error("Invalid record"); 4862 if (!Vec->getType()->isVectorTy()) 4863 return error("Invalid type for value"); 4864 if (popValue(Record, OpNum, NextValueNo, 4865 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4866 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4867 return error("Invalid record"); 4868 I = InsertElementInst::Create(Vec, Elt, Idx); 4869 InstructionList.push_back(I); 4870 break; 4871 } 4872 4873 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4874 unsigned OpNum = 0; 4875 Value *Vec1, *Vec2, *Mask; 4876 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4877 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4878 return error("Invalid record"); 4879 4880 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4881 return error("Invalid record"); 4882 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4883 return error("Invalid type for value"); 4884 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4885 InstructionList.push_back(I); 4886 break; 4887 } 4888 4889 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4890 // Old form of ICmp/FCmp returning bool 4891 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4892 // both legal on vectors but had different behaviour. 4893 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4894 // FCmp/ICmp returning bool or vector of bool 4895 4896 unsigned OpNum = 0; 4897 Value *LHS, *RHS; 4898 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4899 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4900 return error("Invalid record"); 4901 4902 unsigned PredVal = Record[OpNum]; 4903 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4904 FastMathFlags FMF; 4905 if (IsFP && Record.size() > OpNum+1) 4906 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4907 4908 if (OpNum+1 != Record.size()) 4909 return error("Invalid record"); 4910 4911 if (LHS->getType()->isFPOrFPVectorTy()) 4912 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4913 else 4914 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4915 4916 if (FMF.any()) 4917 I->setFastMathFlags(FMF); 4918 InstructionList.push_back(I); 4919 break; 4920 } 4921 4922 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4923 { 4924 unsigned Size = Record.size(); 4925 if (Size == 0) { 4926 I = ReturnInst::Create(Context); 4927 InstructionList.push_back(I); 4928 break; 4929 } 4930 4931 unsigned OpNum = 0; 4932 Value *Op = nullptr; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4934 return error("Invalid record"); 4935 if (OpNum != Record.size()) 4936 return error("Invalid record"); 4937 4938 I = ReturnInst::Create(Context, Op); 4939 InstructionList.push_back(I); 4940 break; 4941 } 4942 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4943 if (Record.size() != 1 && Record.size() != 3) 4944 return error("Invalid record"); 4945 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4946 if (!TrueDest) 4947 return error("Invalid record"); 4948 4949 if (Record.size() == 1) { 4950 I = BranchInst::Create(TrueDest); 4951 InstructionList.push_back(I); 4952 } 4953 else { 4954 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4955 Value *Cond = getValue(Record, 2, NextValueNo, 4956 Type::getInt1Ty(Context)); 4957 if (!FalseDest || !Cond) 4958 return error("Invalid record"); 4959 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4960 InstructionList.push_back(I); 4961 } 4962 break; 4963 } 4964 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4965 if (Record.size() != 1 && Record.size() != 2) 4966 return error("Invalid record"); 4967 unsigned Idx = 0; 4968 Value *CleanupPad = 4969 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4970 if (!CleanupPad) 4971 return error("Invalid record"); 4972 BasicBlock *UnwindDest = nullptr; 4973 if (Record.size() == 2) { 4974 UnwindDest = getBasicBlock(Record[Idx++]); 4975 if (!UnwindDest) 4976 return error("Invalid record"); 4977 } 4978 4979 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4980 InstructionList.push_back(I); 4981 break; 4982 } 4983 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4984 if (Record.size() != 2) 4985 return error("Invalid record"); 4986 unsigned Idx = 0; 4987 Value *CatchPad = 4988 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4989 if (!CatchPad) 4990 return error("Invalid record"); 4991 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4992 if (!BB) 4993 return error("Invalid record"); 4994 4995 I = CatchReturnInst::Create(CatchPad, BB); 4996 InstructionList.push_back(I); 4997 break; 4998 } 4999 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5000 // We must have, at minimum, the outer scope and the number of arguments. 5001 if (Record.size() < 2) 5002 return error("Invalid record"); 5003 5004 unsigned Idx = 0; 5005 5006 Value *ParentPad = 5007 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5008 5009 unsigned NumHandlers = Record[Idx++]; 5010 5011 SmallVector<BasicBlock *, 2> Handlers; 5012 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5013 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5014 if (!BB) 5015 return error("Invalid record"); 5016 Handlers.push_back(BB); 5017 } 5018 5019 BasicBlock *UnwindDest = nullptr; 5020 if (Idx + 1 == Record.size()) { 5021 UnwindDest = getBasicBlock(Record[Idx++]); 5022 if (!UnwindDest) 5023 return error("Invalid record"); 5024 } 5025 5026 if (Record.size() != Idx) 5027 return error("Invalid record"); 5028 5029 auto *CatchSwitch = 5030 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5031 for (BasicBlock *Handler : Handlers) 5032 CatchSwitch->addHandler(Handler); 5033 I = CatchSwitch; 5034 InstructionList.push_back(I); 5035 break; 5036 } 5037 case bitc::FUNC_CODE_INST_CATCHPAD: 5038 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5039 // We must have, at minimum, the outer scope and the number of arguments. 5040 if (Record.size() < 2) 5041 return error("Invalid record"); 5042 5043 unsigned Idx = 0; 5044 5045 Value *ParentPad = 5046 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5047 5048 unsigned NumArgOperands = Record[Idx++]; 5049 5050 SmallVector<Value *, 2> Args; 5051 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5052 Value *Val; 5053 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5054 return error("Invalid record"); 5055 Args.push_back(Val); 5056 } 5057 5058 if (Record.size() != Idx) 5059 return error("Invalid record"); 5060 5061 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5062 I = CleanupPadInst::Create(ParentPad, Args); 5063 else 5064 I = CatchPadInst::Create(ParentPad, Args); 5065 InstructionList.push_back(I); 5066 break; 5067 } 5068 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5069 // Check magic 5070 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5071 // "New" SwitchInst format with case ranges. The changes to write this 5072 // format were reverted but we still recognize bitcode that uses it. 5073 // Hopefully someday we will have support for case ranges and can use 5074 // this format again. 5075 5076 Type *OpTy = getTypeByID(Record[1]); 5077 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5078 5079 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5080 BasicBlock *Default = getBasicBlock(Record[3]); 5081 if (!OpTy || !Cond || !Default) 5082 return error("Invalid record"); 5083 5084 unsigned NumCases = Record[4]; 5085 5086 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5087 InstructionList.push_back(SI); 5088 5089 unsigned CurIdx = 5; 5090 for (unsigned i = 0; i != NumCases; ++i) { 5091 SmallVector<ConstantInt*, 1> CaseVals; 5092 unsigned NumItems = Record[CurIdx++]; 5093 for (unsigned ci = 0; ci != NumItems; ++ci) { 5094 bool isSingleNumber = Record[CurIdx++]; 5095 5096 APInt Low; 5097 unsigned ActiveWords = 1; 5098 if (ValueBitWidth > 64) 5099 ActiveWords = Record[CurIdx++]; 5100 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5101 ValueBitWidth); 5102 CurIdx += ActiveWords; 5103 5104 if (!isSingleNumber) { 5105 ActiveWords = 1; 5106 if (ValueBitWidth > 64) 5107 ActiveWords = Record[CurIdx++]; 5108 APInt High = readWideAPInt( 5109 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5110 CurIdx += ActiveWords; 5111 5112 // FIXME: It is not clear whether values in the range should be 5113 // compared as signed or unsigned values. The partially 5114 // implemented changes that used this format in the past used 5115 // unsigned comparisons. 5116 for ( ; Low.ule(High); ++Low) 5117 CaseVals.push_back(ConstantInt::get(Context, Low)); 5118 } else 5119 CaseVals.push_back(ConstantInt::get(Context, Low)); 5120 } 5121 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5122 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5123 cve = CaseVals.end(); cvi != cve; ++cvi) 5124 SI->addCase(*cvi, DestBB); 5125 } 5126 I = SI; 5127 break; 5128 } 5129 5130 // Old SwitchInst format without case ranges. 5131 5132 if (Record.size() < 3 || (Record.size() & 1) == 0) 5133 return error("Invalid record"); 5134 Type *OpTy = getTypeByID(Record[0]); 5135 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5136 BasicBlock *Default = getBasicBlock(Record[2]); 5137 if (!OpTy || !Cond || !Default) 5138 return error("Invalid record"); 5139 unsigned NumCases = (Record.size()-3)/2; 5140 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5141 InstructionList.push_back(SI); 5142 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5143 ConstantInt *CaseVal = 5144 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5145 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5146 if (!CaseVal || !DestBB) { 5147 delete SI; 5148 return error("Invalid record"); 5149 } 5150 SI->addCase(CaseVal, DestBB); 5151 } 5152 I = SI; 5153 break; 5154 } 5155 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5156 if (Record.size() < 2) 5157 return error("Invalid record"); 5158 Type *OpTy = getTypeByID(Record[0]); 5159 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5160 if (!OpTy || !Address) 5161 return error("Invalid record"); 5162 unsigned NumDests = Record.size()-2; 5163 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5164 InstructionList.push_back(IBI); 5165 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5166 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5167 IBI->addDestination(DestBB); 5168 } else { 5169 delete IBI; 5170 return error("Invalid record"); 5171 } 5172 } 5173 I = IBI; 5174 break; 5175 } 5176 5177 case bitc::FUNC_CODE_INST_INVOKE: { 5178 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5179 if (Record.size() < 4) 5180 return error("Invalid record"); 5181 unsigned OpNum = 0; 5182 AttributeSet PAL = getAttributes(Record[OpNum++]); 5183 unsigned CCInfo = Record[OpNum++]; 5184 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5185 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5186 5187 FunctionType *FTy = nullptr; 5188 if (CCInfo >> 13 & 1 && 5189 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5190 return error("Explicit invoke type is not a function type"); 5191 5192 Value *Callee; 5193 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5194 return error("Invalid record"); 5195 5196 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5197 if (!CalleeTy) 5198 return error("Callee is not a pointer"); 5199 if (!FTy) { 5200 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5201 if (!FTy) 5202 return error("Callee is not of pointer to function type"); 5203 } else if (CalleeTy->getElementType() != FTy) 5204 return error("Explicit invoke type does not match pointee type of " 5205 "callee operand"); 5206 if (Record.size() < FTy->getNumParams() + OpNum) 5207 return error("Insufficient operands to call"); 5208 5209 SmallVector<Value*, 16> Ops; 5210 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5211 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5212 FTy->getParamType(i))); 5213 if (!Ops.back()) 5214 return error("Invalid record"); 5215 } 5216 5217 if (!FTy->isVarArg()) { 5218 if (Record.size() != OpNum) 5219 return error("Invalid record"); 5220 } else { 5221 // Read type/value pairs for varargs params. 5222 while (OpNum != Record.size()) { 5223 Value *Op; 5224 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5225 return error("Invalid record"); 5226 Ops.push_back(Op); 5227 } 5228 } 5229 5230 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5231 OperandBundles.clear(); 5232 InstructionList.push_back(I); 5233 cast<InvokeInst>(I)->setCallingConv( 5234 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5235 cast<InvokeInst>(I)->setAttributes(PAL); 5236 break; 5237 } 5238 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5239 unsigned Idx = 0; 5240 Value *Val = nullptr; 5241 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5242 return error("Invalid record"); 5243 I = ResumeInst::Create(Val); 5244 InstructionList.push_back(I); 5245 break; 5246 } 5247 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5248 I = new UnreachableInst(Context); 5249 InstructionList.push_back(I); 5250 break; 5251 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5252 if (Record.size() < 1 || ((Record.size()-1)&1)) 5253 return error("Invalid record"); 5254 Type *Ty = getTypeByID(Record[0]); 5255 if (!Ty) 5256 return error("Invalid record"); 5257 5258 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5259 InstructionList.push_back(PN); 5260 5261 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5262 Value *V; 5263 // With the new function encoding, it is possible that operands have 5264 // negative IDs (for forward references). Use a signed VBR 5265 // representation to keep the encoding small. 5266 if (UseRelativeIDs) 5267 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5268 else 5269 V = getValue(Record, 1+i, NextValueNo, Ty); 5270 BasicBlock *BB = getBasicBlock(Record[2+i]); 5271 if (!V || !BB) 5272 return error("Invalid record"); 5273 PN->addIncoming(V, BB); 5274 } 5275 I = PN; 5276 break; 5277 } 5278 5279 case bitc::FUNC_CODE_INST_LANDINGPAD: 5280 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5281 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5282 unsigned Idx = 0; 5283 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5284 if (Record.size() < 3) 5285 return error("Invalid record"); 5286 } else { 5287 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5288 if (Record.size() < 4) 5289 return error("Invalid record"); 5290 } 5291 Type *Ty = getTypeByID(Record[Idx++]); 5292 if (!Ty) 5293 return error("Invalid record"); 5294 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5295 Value *PersFn = nullptr; 5296 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5297 return error("Invalid record"); 5298 5299 if (!F->hasPersonalityFn()) 5300 F->setPersonalityFn(cast<Constant>(PersFn)); 5301 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5302 return error("Personality function mismatch"); 5303 } 5304 5305 bool IsCleanup = !!Record[Idx++]; 5306 unsigned NumClauses = Record[Idx++]; 5307 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5308 LP->setCleanup(IsCleanup); 5309 for (unsigned J = 0; J != NumClauses; ++J) { 5310 LandingPadInst::ClauseType CT = 5311 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5312 Value *Val; 5313 5314 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5315 delete LP; 5316 return error("Invalid record"); 5317 } 5318 5319 assert((CT != LandingPadInst::Catch || 5320 !isa<ArrayType>(Val->getType())) && 5321 "Catch clause has a invalid type!"); 5322 assert((CT != LandingPadInst::Filter || 5323 isa<ArrayType>(Val->getType())) && 5324 "Filter clause has invalid type!"); 5325 LP->addClause(cast<Constant>(Val)); 5326 } 5327 5328 I = LP; 5329 InstructionList.push_back(I); 5330 break; 5331 } 5332 5333 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5334 if (Record.size() != 4) 5335 return error("Invalid record"); 5336 uint64_t AlignRecord = Record[3]; 5337 const uint64_t InAllocaMask = uint64_t(1) << 5; 5338 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5339 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5340 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5341 SwiftErrorMask; 5342 bool InAlloca = AlignRecord & InAllocaMask; 5343 bool SwiftError = AlignRecord & SwiftErrorMask; 5344 Type *Ty = getTypeByID(Record[0]); 5345 if ((AlignRecord & ExplicitTypeMask) == 0) { 5346 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5347 if (!PTy) 5348 return error("Old-style alloca with a non-pointer type"); 5349 Ty = PTy->getElementType(); 5350 } 5351 Type *OpTy = getTypeByID(Record[1]); 5352 Value *Size = getFnValueByID(Record[2], OpTy); 5353 unsigned Align; 5354 if (std::error_code EC = 5355 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5356 return EC; 5357 } 5358 if (!Ty || !Size) 5359 return error("Invalid record"); 5360 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5361 AI->setUsedWithInAlloca(InAlloca); 5362 AI->setSwiftError(SwiftError); 5363 I = AI; 5364 InstructionList.push_back(I); 5365 break; 5366 } 5367 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5368 unsigned OpNum = 0; 5369 Value *Op; 5370 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5371 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5372 return error("Invalid record"); 5373 5374 Type *Ty = nullptr; 5375 if (OpNum + 3 == Record.size()) 5376 Ty = getTypeByID(Record[OpNum++]); 5377 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5378 return EC; 5379 if (!Ty) 5380 Ty = cast<PointerType>(Op->getType())->getElementType(); 5381 5382 unsigned Align; 5383 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5384 return EC; 5385 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5386 5387 InstructionList.push_back(I); 5388 break; 5389 } 5390 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5391 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5392 unsigned OpNum = 0; 5393 Value *Op; 5394 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5395 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5396 return error("Invalid record"); 5397 5398 Type *Ty = nullptr; 5399 if (OpNum + 5 == Record.size()) 5400 Ty = getTypeByID(Record[OpNum++]); 5401 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5402 return EC; 5403 if (!Ty) 5404 Ty = cast<PointerType>(Op->getType())->getElementType(); 5405 5406 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5407 if (Ordering == AtomicOrdering::NotAtomic || 5408 Ordering == AtomicOrdering::Release || 5409 Ordering == AtomicOrdering::AcquireRelease) 5410 return error("Invalid record"); 5411 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5412 return error("Invalid record"); 5413 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5414 5415 unsigned Align; 5416 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5417 return EC; 5418 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5419 5420 InstructionList.push_back(I); 5421 break; 5422 } 5423 case bitc::FUNC_CODE_INST_STORE: 5424 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5425 unsigned OpNum = 0; 5426 Value *Val, *Ptr; 5427 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5428 (BitCode == bitc::FUNC_CODE_INST_STORE 5429 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5430 : popValue(Record, OpNum, NextValueNo, 5431 cast<PointerType>(Ptr->getType())->getElementType(), 5432 Val)) || 5433 OpNum + 2 != Record.size()) 5434 return error("Invalid record"); 5435 5436 if (std::error_code EC = 5437 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5438 return EC; 5439 unsigned Align; 5440 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5441 return EC; 5442 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5443 InstructionList.push_back(I); 5444 break; 5445 } 5446 case bitc::FUNC_CODE_INST_STOREATOMIC: 5447 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5448 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5449 unsigned OpNum = 0; 5450 Value *Val, *Ptr; 5451 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5452 !isa<PointerType>(Ptr->getType()) || 5453 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5454 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5455 : popValue(Record, OpNum, NextValueNo, 5456 cast<PointerType>(Ptr->getType())->getElementType(), 5457 Val)) || 5458 OpNum + 4 != Record.size()) 5459 return error("Invalid record"); 5460 5461 if (std::error_code EC = 5462 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5463 return EC; 5464 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5465 if (Ordering == AtomicOrdering::NotAtomic || 5466 Ordering == AtomicOrdering::Acquire || 5467 Ordering == AtomicOrdering::AcquireRelease) 5468 return error("Invalid record"); 5469 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5470 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5471 return error("Invalid record"); 5472 5473 unsigned Align; 5474 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5475 return EC; 5476 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5477 InstructionList.push_back(I); 5478 break; 5479 } 5480 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5481 case bitc::FUNC_CODE_INST_CMPXCHG: { 5482 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5483 // failureordering?, isweak?] 5484 unsigned OpNum = 0; 5485 Value *Ptr, *Cmp, *New; 5486 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5487 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5488 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5489 : popValue(Record, OpNum, NextValueNo, 5490 cast<PointerType>(Ptr->getType())->getElementType(), 5491 Cmp)) || 5492 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5493 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5494 return error("Invalid record"); 5495 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5496 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5497 SuccessOrdering == AtomicOrdering::Unordered) 5498 return error("Invalid record"); 5499 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5500 5501 if (std::error_code EC = 5502 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5503 return EC; 5504 AtomicOrdering FailureOrdering; 5505 if (Record.size() < 7) 5506 FailureOrdering = 5507 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5508 else 5509 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5510 5511 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5512 SynchScope); 5513 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5514 5515 if (Record.size() < 8) { 5516 // Before weak cmpxchgs existed, the instruction simply returned the 5517 // value loaded from memory, so bitcode files from that era will be 5518 // expecting the first component of a modern cmpxchg. 5519 CurBB->getInstList().push_back(I); 5520 I = ExtractValueInst::Create(I, 0); 5521 } else { 5522 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5523 } 5524 5525 InstructionList.push_back(I); 5526 break; 5527 } 5528 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5529 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5530 unsigned OpNum = 0; 5531 Value *Ptr, *Val; 5532 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5533 !isa<PointerType>(Ptr->getType()) || 5534 popValue(Record, OpNum, NextValueNo, 5535 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5536 OpNum+4 != Record.size()) 5537 return error("Invalid record"); 5538 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5539 if (Operation < AtomicRMWInst::FIRST_BINOP || 5540 Operation > AtomicRMWInst::LAST_BINOP) 5541 return error("Invalid record"); 5542 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5543 if (Ordering == AtomicOrdering::NotAtomic || 5544 Ordering == AtomicOrdering::Unordered) 5545 return error("Invalid record"); 5546 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5547 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5548 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5549 InstructionList.push_back(I); 5550 break; 5551 } 5552 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5553 if (2 != Record.size()) 5554 return error("Invalid record"); 5555 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5556 if (Ordering == AtomicOrdering::NotAtomic || 5557 Ordering == AtomicOrdering::Unordered || 5558 Ordering == AtomicOrdering::Monotonic) 5559 return error("Invalid record"); 5560 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5561 I = new FenceInst(Context, Ordering, SynchScope); 5562 InstructionList.push_back(I); 5563 break; 5564 } 5565 case bitc::FUNC_CODE_INST_CALL: { 5566 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5567 if (Record.size() < 3) 5568 return error("Invalid record"); 5569 5570 unsigned OpNum = 0; 5571 AttributeSet PAL = getAttributes(Record[OpNum++]); 5572 unsigned CCInfo = Record[OpNum++]; 5573 5574 FastMathFlags FMF; 5575 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5576 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5577 if (!FMF.any()) 5578 return error("Fast math flags indicator set for call with no FMF"); 5579 } 5580 5581 FunctionType *FTy = nullptr; 5582 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5583 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5584 return error("Explicit call type is not a function type"); 5585 5586 Value *Callee; 5587 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5588 return error("Invalid record"); 5589 5590 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5591 if (!OpTy) 5592 return error("Callee is not a pointer type"); 5593 if (!FTy) { 5594 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5595 if (!FTy) 5596 return error("Callee is not of pointer to function type"); 5597 } else if (OpTy->getElementType() != FTy) 5598 return error("Explicit call type does not match pointee type of " 5599 "callee operand"); 5600 if (Record.size() < FTy->getNumParams() + OpNum) 5601 return error("Insufficient operands to call"); 5602 5603 SmallVector<Value*, 16> Args; 5604 // Read the fixed params. 5605 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5606 if (FTy->getParamType(i)->isLabelTy()) 5607 Args.push_back(getBasicBlock(Record[OpNum])); 5608 else 5609 Args.push_back(getValue(Record, OpNum, NextValueNo, 5610 FTy->getParamType(i))); 5611 if (!Args.back()) 5612 return error("Invalid record"); 5613 } 5614 5615 // Read type/value pairs for varargs params. 5616 if (!FTy->isVarArg()) { 5617 if (OpNum != Record.size()) 5618 return error("Invalid record"); 5619 } else { 5620 while (OpNum != Record.size()) { 5621 Value *Op; 5622 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5623 return error("Invalid record"); 5624 Args.push_back(Op); 5625 } 5626 } 5627 5628 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5629 OperandBundles.clear(); 5630 InstructionList.push_back(I); 5631 cast<CallInst>(I)->setCallingConv( 5632 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5633 CallInst::TailCallKind TCK = CallInst::TCK_None; 5634 if (CCInfo & 1 << bitc::CALL_TAIL) 5635 TCK = CallInst::TCK_Tail; 5636 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5637 TCK = CallInst::TCK_MustTail; 5638 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5639 TCK = CallInst::TCK_NoTail; 5640 cast<CallInst>(I)->setTailCallKind(TCK); 5641 cast<CallInst>(I)->setAttributes(PAL); 5642 if (FMF.any()) { 5643 if (!isa<FPMathOperator>(I)) 5644 return error("Fast-math-flags specified for call without " 5645 "floating-point scalar or vector return type"); 5646 I->setFastMathFlags(FMF); 5647 } 5648 break; 5649 } 5650 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5651 if (Record.size() < 3) 5652 return error("Invalid record"); 5653 Type *OpTy = getTypeByID(Record[0]); 5654 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5655 Type *ResTy = getTypeByID(Record[2]); 5656 if (!OpTy || !Op || !ResTy) 5657 return error("Invalid record"); 5658 I = new VAArgInst(Op, ResTy); 5659 InstructionList.push_back(I); 5660 break; 5661 } 5662 5663 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5664 // A call or an invoke can be optionally prefixed with some variable 5665 // number of operand bundle blocks. These blocks are read into 5666 // OperandBundles and consumed at the next call or invoke instruction. 5667 5668 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5669 return error("Invalid record"); 5670 5671 std::vector<Value *> Inputs; 5672 5673 unsigned OpNum = 1; 5674 while (OpNum != Record.size()) { 5675 Value *Op; 5676 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5677 return error("Invalid record"); 5678 Inputs.push_back(Op); 5679 } 5680 5681 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5682 continue; 5683 } 5684 } 5685 5686 // Add instruction to end of current BB. If there is no current BB, reject 5687 // this file. 5688 if (!CurBB) { 5689 delete I; 5690 return error("Invalid instruction with no BB"); 5691 } 5692 if (!OperandBundles.empty()) { 5693 delete I; 5694 return error("Operand bundles found with no consumer"); 5695 } 5696 CurBB->getInstList().push_back(I); 5697 5698 // If this was a terminator instruction, move to the next block. 5699 if (isa<TerminatorInst>(I)) { 5700 ++CurBBNo; 5701 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5702 } 5703 5704 // Non-void values get registered in the value table for future use. 5705 if (I && !I->getType()->isVoidTy()) 5706 ValueList.assignValue(I, NextValueNo++); 5707 } 5708 5709 OutOfRecordLoop: 5710 5711 if (!OperandBundles.empty()) 5712 return error("Operand bundles found with no consumer"); 5713 5714 // Check the function list for unresolved values. 5715 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5716 if (!A->getParent()) { 5717 // We found at least one unresolved value. Nuke them all to avoid leaks. 5718 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5719 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5720 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5721 delete A; 5722 } 5723 } 5724 return error("Never resolved value found in function"); 5725 } 5726 } 5727 5728 // Unexpected unresolved metadata about to be dropped. 5729 if (MetadataList.hasFwdRefs()) 5730 return error("Invalid function metadata: outgoing forward refs"); 5731 5732 // Trim the value list down to the size it was before we parsed this function. 5733 ValueList.shrinkTo(ModuleValueListSize); 5734 MetadataList.shrinkTo(ModuleMetadataListSize); 5735 std::vector<BasicBlock*>().swap(FunctionBBs); 5736 return std::error_code(); 5737 } 5738 5739 /// Find the function body in the bitcode stream 5740 std::error_code BitcodeReader::findFunctionInStream( 5741 Function *F, 5742 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5743 while (DeferredFunctionInfoIterator->second == 0) { 5744 // This is the fallback handling for the old format bitcode that 5745 // didn't contain the function index in the VST, or when we have 5746 // an anonymous function which would not have a VST entry. 5747 // Assert that we have one of those two cases. 5748 assert(VSTOffset == 0 || !F->hasName()); 5749 // Parse the next body in the stream and set its position in the 5750 // DeferredFunctionInfo map. 5751 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5752 return EC; 5753 } 5754 return std::error_code(); 5755 } 5756 5757 //===----------------------------------------------------------------------===// 5758 // GVMaterializer implementation 5759 //===----------------------------------------------------------------------===// 5760 5761 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5762 5763 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5764 Function *F = dyn_cast<Function>(GV); 5765 // If it's not a function or is already material, ignore the request. 5766 if (!F || !F->isMaterializable()) 5767 return std::error_code(); 5768 5769 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5770 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5771 // If its position is recorded as 0, its body is somewhere in the stream 5772 // but we haven't seen it yet. 5773 if (DFII->second == 0) 5774 if (std::error_code EC = findFunctionInStream(F, DFII)) 5775 return EC; 5776 5777 // Materialize metadata before parsing any function bodies. 5778 if (std::error_code EC = materializeMetadata()) 5779 return EC; 5780 5781 // Move the bit stream to the saved position of the deferred function body. 5782 Stream.JumpToBit(DFII->second); 5783 5784 if (std::error_code EC = parseFunctionBody(F)) 5785 return EC; 5786 F->setIsMaterializable(false); 5787 5788 if (StripDebugInfo) 5789 stripDebugInfo(*F); 5790 5791 // Upgrade any old intrinsic calls in the function. 5792 for (auto &I : UpgradedIntrinsics) { 5793 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5794 UI != UE;) { 5795 User *U = *UI; 5796 ++UI; 5797 if (CallInst *CI = dyn_cast<CallInst>(U)) 5798 UpgradeIntrinsicCall(CI, I.second); 5799 } 5800 } 5801 5802 // Update calls to the remangled intrinsics 5803 for (auto &I : RemangledIntrinsics) 5804 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5805 UI != UE;) 5806 // Don't expect any other users than call sites 5807 CallSite(*UI++).setCalledFunction(I.second); 5808 5809 // Finish fn->subprogram upgrade for materialized functions. 5810 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5811 F->setSubprogram(SP); 5812 5813 // Bring in any functions that this function forward-referenced via 5814 // blockaddresses. 5815 return materializeForwardReferencedFunctions(); 5816 } 5817 5818 std::error_code BitcodeReader::materializeModule() { 5819 if (std::error_code EC = materializeMetadata()) 5820 return EC; 5821 5822 // Promise to materialize all forward references. 5823 WillMaterializeAllForwardRefs = true; 5824 5825 // Iterate over the module, deserializing any functions that are still on 5826 // disk. 5827 for (Function &F : *TheModule) { 5828 if (std::error_code EC = materialize(&F)) 5829 return EC; 5830 } 5831 // At this point, if there are any function bodies, parse the rest of 5832 // the bits in the module past the last function block we have recorded 5833 // through either lazy scanning or the VST. 5834 if (LastFunctionBlockBit || NextUnreadBit) 5835 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5836 : NextUnreadBit); 5837 5838 // Check that all block address forward references got resolved (as we 5839 // promised above). 5840 if (!BasicBlockFwdRefs.empty()) 5841 return error("Never resolved function from blockaddress"); 5842 5843 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5844 // delete the old functions to clean up. We can't do this unless the entire 5845 // module is materialized because there could always be another function body 5846 // with calls to the old function. 5847 for (auto &I : UpgradedIntrinsics) { 5848 for (auto *U : I.first->users()) { 5849 if (CallInst *CI = dyn_cast<CallInst>(U)) 5850 UpgradeIntrinsicCall(CI, I.second); 5851 } 5852 if (!I.first->use_empty()) 5853 I.first->replaceAllUsesWith(I.second); 5854 I.first->eraseFromParent(); 5855 } 5856 UpgradedIntrinsics.clear(); 5857 // Do the same for remangled intrinsics 5858 for (auto &I : RemangledIntrinsics) { 5859 I.first->replaceAllUsesWith(I.second); 5860 I.first->eraseFromParent(); 5861 } 5862 RemangledIntrinsics.clear(); 5863 5864 UpgradeDebugInfo(*TheModule); 5865 5866 UpgradeModuleFlags(*TheModule); 5867 return std::error_code(); 5868 } 5869 5870 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5871 return IdentifiedStructTypes; 5872 } 5873 5874 std::error_code 5875 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5876 if (Streamer) 5877 return initLazyStream(std::move(Streamer)); 5878 return initStreamFromBuffer(); 5879 } 5880 5881 std::error_code BitcodeReader::initStreamFromBuffer() { 5882 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5883 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5884 5885 if (Buffer->getBufferSize() & 3) 5886 return error("Invalid bitcode signature"); 5887 5888 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5889 // The magic number is 0x0B17C0DE stored in little endian. 5890 if (isBitcodeWrapper(BufPtr, BufEnd)) 5891 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5892 return error("Invalid bitcode wrapper header"); 5893 5894 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5895 Stream.init(&*StreamFile); 5896 5897 return std::error_code(); 5898 } 5899 5900 std::error_code 5901 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5902 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5903 // see it. 5904 auto OwnedBytes = 5905 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5906 StreamingMemoryObject &Bytes = *OwnedBytes; 5907 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5908 Stream.init(&*StreamFile); 5909 5910 unsigned char buf[16]; 5911 if (Bytes.readBytes(buf, 16, 0) != 16) 5912 return error("Invalid bitcode signature"); 5913 5914 if (!isBitcode(buf, buf + 16)) 5915 return error("Invalid bitcode signature"); 5916 5917 if (isBitcodeWrapper(buf, buf + 4)) { 5918 const unsigned char *bitcodeStart = buf; 5919 const unsigned char *bitcodeEnd = buf + 16; 5920 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5921 Bytes.dropLeadingBytes(bitcodeStart - buf); 5922 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5923 } 5924 return std::error_code(); 5925 } 5926 5927 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5928 return ::error(DiagnosticHandler, 5929 make_error_code(BitcodeError::CorruptedBitcode), Message); 5930 } 5931 5932 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5933 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5934 bool CheckGlobalValSummaryPresenceOnly) 5935 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5936 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5937 5938 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5939 5940 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5941 5942 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5943 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5944 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5945 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5946 return VGI->second; 5947 } 5948 5949 // Specialized value symbol table parser used when reading module index 5950 // blocks where we don't actually create global values. The parsed information 5951 // is saved in the bitcode reader for use when later parsing summaries. 5952 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5953 uint64_t Offset, 5954 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5955 assert(Offset > 0 && "Expected non-zero VST offset"); 5956 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5957 5958 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5959 return error("Invalid record"); 5960 5961 SmallVector<uint64_t, 64> Record; 5962 5963 // Read all the records for this value table. 5964 SmallString<128> ValueName; 5965 5966 while (true) { 5967 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5968 5969 switch (Entry.Kind) { 5970 case BitstreamEntry::SubBlock: // Handled for us already. 5971 case BitstreamEntry::Error: 5972 return error("Malformed block"); 5973 case BitstreamEntry::EndBlock: 5974 // Done parsing VST, jump back to wherever we came from. 5975 Stream.JumpToBit(CurrentBit); 5976 return std::error_code(); 5977 case BitstreamEntry::Record: 5978 // The interesting case. 5979 break; 5980 } 5981 5982 // Read a record. 5983 Record.clear(); 5984 switch (Stream.readRecord(Entry.ID, Record)) { 5985 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5986 break; 5987 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5988 if (convertToString(Record, 1, ValueName)) 5989 return error("Invalid record"); 5990 unsigned ValueID = Record[0]; 5991 assert(!SourceFileName.empty()); 5992 auto VLI = ValueIdToLinkageMap.find(ValueID); 5993 assert(VLI != ValueIdToLinkageMap.end() && 5994 "No linkage found for VST entry?"); 5995 auto Linkage = VLI->second; 5996 std::string GlobalId = 5997 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5998 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5999 auto OriginalNameID = ValueGUID; 6000 if (GlobalValue::isLocalLinkage(Linkage)) 6001 OriginalNameID = GlobalValue::getGUID(ValueName); 6002 if (PrintSummaryGUIDs) 6003 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6004 << ValueName << "\n"; 6005 ValueIdToCallGraphGUIDMap[ValueID] = 6006 std::make_pair(ValueGUID, OriginalNameID); 6007 ValueName.clear(); 6008 break; 6009 } 6010 case bitc::VST_CODE_FNENTRY: { 6011 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6012 if (convertToString(Record, 2, ValueName)) 6013 return error("Invalid record"); 6014 unsigned ValueID = Record[0]; 6015 assert(!SourceFileName.empty()); 6016 auto VLI = ValueIdToLinkageMap.find(ValueID); 6017 assert(VLI != ValueIdToLinkageMap.end() && 6018 "No linkage found for VST entry?"); 6019 auto Linkage = VLI->second; 6020 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6021 ValueName, VLI->second, SourceFileName); 6022 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6023 auto OriginalNameID = FunctionGUID; 6024 if (GlobalValue::isLocalLinkage(Linkage)) 6025 OriginalNameID = GlobalValue::getGUID(ValueName); 6026 if (PrintSummaryGUIDs) 6027 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6028 << ValueName << "\n"; 6029 ValueIdToCallGraphGUIDMap[ValueID] = 6030 std::make_pair(FunctionGUID, OriginalNameID); 6031 6032 ValueName.clear(); 6033 break; 6034 } 6035 case bitc::VST_CODE_COMBINED_ENTRY: { 6036 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6037 unsigned ValueID = Record[0]; 6038 GlobalValue::GUID RefGUID = Record[1]; 6039 // The "original name", which is the second value of the pair will be 6040 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6041 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6042 break; 6043 } 6044 } 6045 } 6046 } 6047 6048 // Parse just the blocks needed for building the index out of the module. 6049 // At the end of this routine the module Index is populated with a map 6050 // from global value id to GlobalValueSummary objects. 6051 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6052 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6053 return error("Invalid record"); 6054 6055 SmallVector<uint64_t, 64> Record; 6056 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6057 unsigned ValueId = 0; 6058 6059 // Read the index for this module. 6060 while (true) { 6061 BitstreamEntry Entry = Stream.advance(); 6062 6063 switch (Entry.Kind) { 6064 case BitstreamEntry::Error: 6065 return error("Malformed block"); 6066 case BitstreamEntry::EndBlock: 6067 return std::error_code(); 6068 6069 case BitstreamEntry::SubBlock: 6070 if (CheckGlobalValSummaryPresenceOnly) { 6071 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6072 SeenGlobalValSummary = true; 6073 // No need to parse the rest since we found the summary. 6074 return std::error_code(); 6075 } 6076 if (Stream.SkipBlock()) 6077 return error("Invalid record"); 6078 continue; 6079 } 6080 switch (Entry.ID) { 6081 default: // Skip unknown content. 6082 if (Stream.SkipBlock()) 6083 return error("Invalid record"); 6084 break; 6085 case bitc::BLOCKINFO_BLOCK_ID: 6086 // Need to parse these to get abbrev ids (e.g. for VST) 6087 if (Stream.ReadBlockInfoBlock()) 6088 return error("Malformed block"); 6089 break; 6090 case bitc::VALUE_SYMTAB_BLOCK_ID: 6091 // Should have been parsed earlier via VSTOffset, unless there 6092 // is no summary section. 6093 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6094 !SeenGlobalValSummary) && 6095 "Expected early VST parse via VSTOffset record"); 6096 if (Stream.SkipBlock()) 6097 return error("Invalid record"); 6098 break; 6099 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6100 assert(!SeenValueSymbolTable && 6101 "Already read VST when parsing summary block?"); 6102 // We might not have a VST if there were no values in the 6103 // summary. An empty summary block generated when we are 6104 // performing ThinLTO compiles so we don't later invoke 6105 // the regular LTO process on them. 6106 if (VSTOffset > 0) { 6107 if (std::error_code EC = 6108 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6109 return EC; 6110 SeenValueSymbolTable = true; 6111 } 6112 SeenGlobalValSummary = true; 6113 if (std::error_code EC = parseEntireSummary()) 6114 return EC; 6115 break; 6116 case bitc::MODULE_STRTAB_BLOCK_ID: 6117 if (std::error_code EC = parseModuleStringTable()) 6118 return EC; 6119 break; 6120 } 6121 continue; 6122 6123 case BitstreamEntry::Record: { 6124 Record.clear(); 6125 auto BitCode = Stream.readRecord(Entry.ID, Record); 6126 switch (BitCode) { 6127 default: 6128 break; // Default behavior, ignore unknown content. 6129 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6130 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6131 SmallString<128> ValueName; 6132 if (convertToString(Record, 0, ValueName)) 6133 return error("Invalid record"); 6134 SourceFileName = ValueName.c_str(); 6135 break; 6136 } 6137 /// MODULE_CODE_HASH: [5*i32] 6138 case bitc::MODULE_CODE_HASH: { 6139 if (Record.size() != 5) 6140 return error("Invalid hash length " + Twine(Record.size()).str()); 6141 if (!TheIndex) 6142 break; 6143 if (TheIndex->modulePaths().empty()) 6144 // Does not have any summary emitted. 6145 break; 6146 if (TheIndex->modulePaths().size() != 1) 6147 return error("Don't expect multiple modules defined?"); 6148 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6149 int Pos = 0; 6150 for (auto &Val : Record) { 6151 assert(!(Val >> 32) && "Unexpected high bits set"); 6152 Hash[Pos++] = Val; 6153 } 6154 break; 6155 } 6156 /// MODULE_CODE_VSTOFFSET: [offset] 6157 case bitc::MODULE_CODE_VSTOFFSET: 6158 if (Record.size() < 1) 6159 return error("Invalid record"); 6160 VSTOffset = Record[0]; 6161 break; 6162 // GLOBALVAR: [pointer type, isconst, initid, 6163 // linkage, alignment, section, visibility, threadlocal, 6164 // unnamed_addr, externally_initialized, dllstorageclass, 6165 // comdat] 6166 case bitc::MODULE_CODE_GLOBALVAR: { 6167 if (Record.size() < 6) 6168 return error("Invalid record"); 6169 uint64_t RawLinkage = Record[3]; 6170 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6171 ValueIdToLinkageMap[ValueId++] = Linkage; 6172 break; 6173 } 6174 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6175 // alignment, section, visibility, gc, unnamed_addr, 6176 // prologuedata, dllstorageclass, comdat, prefixdata] 6177 case bitc::MODULE_CODE_FUNCTION: { 6178 if (Record.size() < 8) 6179 return error("Invalid record"); 6180 uint64_t RawLinkage = Record[3]; 6181 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6182 ValueIdToLinkageMap[ValueId++] = Linkage; 6183 break; 6184 } 6185 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6186 // dllstorageclass] 6187 case bitc::MODULE_CODE_ALIAS: { 6188 if (Record.size() < 6) 6189 return error("Invalid record"); 6190 uint64_t RawLinkage = Record[3]; 6191 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6192 ValueIdToLinkageMap[ValueId++] = Linkage; 6193 break; 6194 } 6195 } 6196 } 6197 continue; 6198 } 6199 } 6200 } 6201 6202 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6203 // objects in the index. 6204 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6205 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6206 return error("Invalid record"); 6207 SmallVector<uint64_t, 64> Record; 6208 6209 // Parse version 6210 { 6211 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6212 if (Entry.Kind != BitstreamEntry::Record) 6213 return error("Invalid Summary Block: record for version expected"); 6214 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6215 return error("Invalid Summary Block: version expected"); 6216 } 6217 const uint64_t Version = Record[0]; 6218 if (Version != 1) 6219 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6220 Record.clear(); 6221 6222 // Keep around the last seen summary to be used when we see an optional 6223 // "OriginalName" attachement. 6224 GlobalValueSummary *LastSeenSummary = nullptr; 6225 bool Combined = false; 6226 6227 while (true) { 6228 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6229 6230 switch (Entry.Kind) { 6231 case BitstreamEntry::SubBlock: // Handled for us already. 6232 case BitstreamEntry::Error: 6233 return error("Malformed block"); 6234 case BitstreamEntry::EndBlock: 6235 // For a per-module index, remove any entries that still have empty 6236 // summaries. The VST parsing creates entries eagerly for all symbols, 6237 // but not all have associated summaries (e.g. it doesn't know how to 6238 // distinguish between VST_CODE_ENTRY for function declarations vs global 6239 // variables with initializers that end up with a summary). Remove those 6240 // entries now so that we don't need to rely on the combined index merger 6241 // to clean them up (especially since that may not run for the first 6242 // module's index if we merge into that). 6243 if (!Combined) 6244 TheIndex->removeEmptySummaryEntries(); 6245 return std::error_code(); 6246 case BitstreamEntry::Record: 6247 // The interesting case. 6248 break; 6249 } 6250 6251 // Read a record. The record format depends on whether this 6252 // is a per-module index or a combined index file. In the per-module 6253 // case the records contain the associated value's ID for correlation 6254 // with VST entries. In the combined index the correlation is done 6255 // via the bitcode offset of the summary records (which were saved 6256 // in the combined index VST entries). The records also contain 6257 // information used for ThinLTO renaming and importing. 6258 Record.clear(); 6259 auto BitCode = Stream.readRecord(Entry.ID, Record); 6260 switch (BitCode) { 6261 default: // Default behavior: ignore. 6262 break; 6263 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6264 // n x (valueid, callsitecount)] 6265 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6266 // numrefs x valueid, 6267 // n x (valueid, callsitecount, profilecount)] 6268 case bitc::FS_PERMODULE: 6269 case bitc::FS_PERMODULE_PROFILE: { 6270 unsigned ValueID = Record[0]; 6271 uint64_t RawFlags = Record[1]; 6272 unsigned InstCount = Record[2]; 6273 unsigned NumRefs = Record[3]; 6274 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6275 std::unique_ptr<FunctionSummary> FS = 6276 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6277 // The module path string ref set in the summary must be owned by the 6278 // index's module string table. Since we don't have a module path 6279 // string table section in the per-module index, we create a single 6280 // module path string table entry with an empty (0) ID to take 6281 // ownership. 6282 FS->setModulePath( 6283 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6284 static int RefListStartIndex = 4; 6285 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6286 assert(Record.size() >= RefListStartIndex + NumRefs && 6287 "Record size inconsistent with number of references"); 6288 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6289 unsigned RefValueId = Record[I]; 6290 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6291 FS->addRefEdge(RefGUID); 6292 } 6293 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6294 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6295 ++I) { 6296 unsigned CalleeValueId = Record[I]; 6297 unsigned CallsiteCount = Record[++I]; 6298 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6299 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6300 FS->addCallGraphEdge(CalleeGUID, 6301 CalleeInfo(CallsiteCount, ProfileCount)); 6302 } 6303 auto GUID = getGUIDFromValueId(ValueID); 6304 FS->setOriginalName(GUID.second); 6305 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6306 break; 6307 } 6308 // FS_ALIAS: [valueid, flags, valueid] 6309 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6310 // they expect all aliasee summaries to be available. 6311 case bitc::FS_ALIAS: { 6312 unsigned ValueID = Record[0]; 6313 uint64_t RawFlags = Record[1]; 6314 unsigned AliaseeID = Record[2]; 6315 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6316 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6317 // The module path string ref set in the summary must be owned by the 6318 // index's module string table. Since we don't have a module path 6319 // string table section in the per-module index, we create a single 6320 // module path string table entry with an empty (0) ID to take 6321 // ownership. 6322 AS->setModulePath( 6323 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6324 6325 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6326 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6327 if (!AliaseeSummary) 6328 return error("Alias expects aliasee summary to be parsed"); 6329 AS->setAliasee(AliaseeSummary); 6330 6331 auto GUID = getGUIDFromValueId(ValueID); 6332 AS->setOriginalName(GUID.second); 6333 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6334 break; 6335 } 6336 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6337 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6338 unsigned ValueID = Record[0]; 6339 uint64_t RawFlags = Record[1]; 6340 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6341 std::unique_ptr<GlobalVarSummary> FS = 6342 llvm::make_unique<GlobalVarSummary>(Flags); 6343 FS->setModulePath( 6344 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6345 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6346 unsigned RefValueId = Record[I]; 6347 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6348 FS->addRefEdge(RefGUID); 6349 } 6350 auto GUID = getGUIDFromValueId(ValueID); 6351 FS->setOriginalName(GUID.second); 6352 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6353 break; 6354 } 6355 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6356 // numrefs x valueid, n x (valueid, callsitecount)] 6357 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6358 // numrefs x valueid, 6359 // n x (valueid, callsitecount, profilecount)] 6360 case bitc::FS_COMBINED: 6361 case bitc::FS_COMBINED_PROFILE: { 6362 unsigned ValueID = Record[0]; 6363 uint64_t ModuleId = Record[1]; 6364 uint64_t RawFlags = Record[2]; 6365 unsigned InstCount = Record[3]; 6366 unsigned NumRefs = Record[4]; 6367 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6368 std::unique_ptr<FunctionSummary> FS = 6369 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6370 LastSeenSummary = FS.get(); 6371 FS->setModulePath(ModuleIdMap[ModuleId]); 6372 static int RefListStartIndex = 5; 6373 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6374 assert(Record.size() >= RefListStartIndex + NumRefs && 6375 "Record size inconsistent with number of references"); 6376 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6377 ++I) { 6378 unsigned RefValueId = Record[I]; 6379 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6380 FS->addRefEdge(RefGUID); 6381 } 6382 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6383 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6384 ++I) { 6385 unsigned CalleeValueId = Record[I]; 6386 unsigned CallsiteCount = Record[++I]; 6387 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6388 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6389 FS->addCallGraphEdge(CalleeGUID, 6390 CalleeInfo(CallsiteCount, ProfileCount)); 6391 } 6392 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6393 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6394 Combined = true; 6395 break; 6396 } 6397 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6398 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6399 // they expect all aliasee summaries to be available. 6400 case bitc::FS_COMBINED_ALIAS: { 6401 unsigned ValueID = Record[0]; 6402 uint64_t ModuleId = Record[1]; 6403 uint64_t RawFlags = Record[2]; 6404 unsigned AliaseeValueId = Record[3]; 6405 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6406 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6407 LastSeenSummary = AS.get(); 6408 AS->setModulePath(ModuleIdMap[ModuleId]); 6409 6410 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6411 auto AliaseeInModule = 6412 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6413 if (!AliaseeInModule) 6414 return error("Alias expects aliasee summary to be parsed"); 6415 AS->setAliasee(AliaseeInModule); 6416 6417 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6418 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6419 Combined = true; 6420 break; 6421 } 6422 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6423 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6424 unsigned ValueID = Record[0]; 6425 uint64_t ModuleId = Record[1]; 6426 uint64_t RawFlags = Record[2]; 6427 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6428 std::unique_ptr<GlobalVarSummary> FS = 6429 llvm::make_unique<GlobalVarSummary>(Flags); 6430 LastSeenSummary = FS.get(); 6431 FS->setModulePath(ModuleIdMap[ModuleId]); 6432 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6433 unsigned RefValueId = Record[I]; 6434 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6435 FS->addRefEdge(RefGUID); 6436 } 6437 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6438 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6439 Combined = true; 6440 break; 6441 } 6442 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6443 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6444 uint64_t OriginalName = Record[0]; 6445 if (!LastSeenSummary) 6446 return error("Name attachment that does not follow a combined record"); 6447 LastSeenSummary->setOriginalName(OriginalName); 6448 // Reset the LastSeenSummary 6449 LastSeenSummary = nullptr; 6450 } 6451 } 6452 } 6453 llvm_unreachable("Exit infinite loop"); 6454 } 6455 6456 // Parse the module string table block into the Index. 6457 // This populates the ModulePathStringTable map in the index. 6458 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6459 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6460 return error("Invalid record"); 6461 6462 SmallVector<uint64_t, 64> Record; 6463 6464 SmallString<128> ModulePath; 6465 ModulePathStringTableTy::iterator LastSeenModulePath; 6466 6467 while (true) { 6468 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6469 6470 switch (Entry.Kind) { 6471 case BitstreamEntry::SubBlock: // Handled for us already. 6472 case BitstreamEntry::Error: 6473 return error("Malformed block"); 6474 case BitstreamEntry::EndBlock: 6475 return std::error_code(); 6476 case BitstreamEntry::Record: 6477 // The interesting case. 6478 break; 6479 } 6480 6481 Record.clear(); 6482 switch (Stream.readRecord(Entry.ID, Record)) { 6483 default: // Default behavior: ignore. 6484 break; 6485 case bitc::MST_CODE_ENTRY: { 6486 // MST_ENTRY: [modid, namechar x N] 6487 uint64_t ModuleId = Record[0]; 6488 6489 if (convertToString(Record, 1, ModulePath)) 6490 return error("Invalid record"); 6491 6492 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6493 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6494 6495 ModulePath.clear(); 6496 break; 6497 } 6498 /// MST_CODE_HASH: [5*i32] 6499 case bitc::MST_CODE_HASH: { 6500 if (Record.size() != 5) 6501 return error("Invalid hash length " + Twine(Record.size()).str()); 6502 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6503 return error("Invalid hash that does not follow a module path"); 6504 int Pos = 0; 6505 for (auto &Val : Record) { 6506 assert(!(Val >> 32) && "Unexpected high bits set"); 6507 LastSeenModulePath->second.second[Pos++] = Val; 6508 } 6509 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6510 LastSeenModulePath = TheIndex->modulePaths().end(); 6511 break; 6512 } 6513 } 6514 } 6515 llvm_unreachable("Exit infinite loop"); 6516 } 6517 6518 // Parse the function info index from the bitcode streamer into the given index. 6519 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6520 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6521 TheIndex = I; 6522 6523 if (std::error_code EC = initStream(std::move(Streamer))) 6524 return EC; 6525 6526 // Sniff for the signature. 6527 if (!hasValidBitcodeHeader(Stream)) 6528 return error("Invalid bitcode signature"); 6529 6530 // We expect a number of well-defined blocks, though we don't necessarily 6531 // need to understand them all. 6532 while (true) { 6533 if (Stream.AtEndOfStream()) { 6534 // We didn't really read a proper Module block. 6535 return error("Malformed block"); 6536 } 6537 6538 BitstreamEntry Entry = 6539 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6540 6541 if (Entry.Kind != BitstreamEntry::SubBlock) 6542 return error("Malformed block"); 6543 6544 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6545 // building the function summary index. 6546 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6547 return parseModule(); 6548 6549 if (Stream.SkipBlock()) 6550 return error("Invalid record"); 6551 } 6552 } 6553 6554 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6555 std::unique_ptr<DataStreamer> Streamer) { 6556 if (Streamer) 6557 return initLazyStream(std::move(Streamer)); 6558 return initStreamFromBuffer(); 6559 } 6560 6561 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6562 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6563 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6564 6565 if (Buffer->getBufferSize() & 3) 6566 return error("Invalid bitcode signature"); 6567 6568 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6569 // The magic number is 0x0B17C0DE stored in little endian. 6570 if (isBitcodeWrapper(BufPtr, BufEnd)) 6571 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6572 return error("Invalid bitcode wrapper header"); 6573 6574 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6575 Stream.init(&*StreamFile); 6576 6577 return std::error_code(); 6578 } 6579 6580 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6581 std::unique_ptr<DataStreamer> Streamer) { 6582 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6583 // see it. 6584 auto OwnedBytes = 6585 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6586 StreamingMemoryObject &Bytes = *OwnedBytes; 6587 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6588 Stream.init(&*StreamFile); 6589 6590 unsigned char buf[16]; 6591 if (Bytes.readBytes(buf, 16, 0) != 16) 6592 return error("Invalid bitcode signature"); 6593 6594 if (!isBitcode(buf, buf + 16)) 6595 return error("Invalid bitcode signature"); 6596 6597 if (isBitcodeWrapper(buf, buf + 4)) { 6598 const unsigned char *bitcodeStart = buf; 6599 const unsigned char *bitcodeEnd = buf + 16; 6600 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6601 Bytes.dropLeadingBytes(bitcodeStart - buf); 6602 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6603 } 6604 return std::error_code(); 6605 } 6606 6607 namespace { 6608 6609 // FIXME: This class is only here to support the transition to llvm::Error. It 6610 // will be removed once this transition is complete. Clients should prefer to 6611 // deal with the Error value directly, rather than converting to error_code. 6612 class BitcodeErrorCategoryType : public std::error_category { 6613 const char *name() const LLVM_NOEXCEPT override { 6614 return "llvm.bitcode"; 6615 } 6616 std::string message(int IE) const override { 6617 BitcodeError E = static_cast<BitcodeError>(IE); 6618 switch (E) { 6619 case BitcodeError::InvalidBitcodeSignature: 6620 return "Invalid bitcode signature"; 6621 case BitcodeError::CorruptedBitcode: 6622 return "Corrupted bitcode"; 6623 } 6624 llvm_unreachable("Unknown error type!"); 6625 } 6626 }; 6627 6628 } // end anonymous namespace 6629 6630 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6631 6632 const std::error_category &llvm::BitcodeErrorCategory() { 6633 return *ErrorCategory; 6634 } 6635 6636 //===----------------------------------------------------------------------===// 6637 // External interface 6638 //===----------------------------------------------------------------------===// 6639 6640 static ErrorOr<std::unique_ptr<Module>> 6641 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6642 BitcodeReader *R, LLVMContext &Context, 6643 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6644 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6645 M->setMaterializer(R); 6646 6647 auto cleanupOnError = [&](std::error_code EC) { 6648 R->releaseBuffer(); // Never take ownership on error. 6649 return EC; 6650 }; 6651 6652 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6653 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6654 ShouldLazyLoadMetadata)) 6655 return cleanupOnError(EC); 6656 6657 if (MaterializeAll) { 6658 // Read in the entire module, and destroy the BitcodeReader. 6659 if (std::error_code EC = M->materializeAll()) 6660 return cleanupOnError(EC); 6661 } else { 6662 // Resolve forward references from blockaddresses. 6663 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6664 return cleanupOnError(EC); 6665 } 6666 return std::move(M); 6667 } 6668 6669 /// \brief Get a lazy one-at-time loading module from bitcode. 6670 /// 6671 /// This isn't always used in a lazy context. In particular, it's also used by 6672 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6673 /// in forward-referenced functions from block address references. 6674 /// 6675 /// \param[in] MaterializeAll Set to \c true if we should materialize 6676 /// everything. 6677 static ErrorOr<std::unique_ptr<Module>> 6678 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6679 LLVMContext &Context, bool MaterializeAll, 6680 bool ShouldLazyLoadMetadata = false) { 6681 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6682 6683 ErrorOr<std::unique_ptr<Module>> Ret = 6684 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6685 MaterializeAll, ShouldLazyLoadMetadata); 6686 if (!Ret) 6687 return Ret; 6688 6689 Buffer.release(); // The BitcodeReader owns it now. 6690 return Ret; 6691 } 6692 6693 ErrorOr<std::unique_ptr<Module>> 6694 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6695 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6696 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6697 ShouldLazyLoadMetadata); 6698 } 6699 6700 ErrorOr<std::unique_ptr<Module>> 6701 llvm::getStreamedBitcodeModule(StringRef Name, 6702 std::unique_ptr<DataStreamer> Streamer, 6703 LLVMContext &Context) { 6704 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6705 BitcodeReader *R = new BitcodeReader(Context); 6706 6707 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6708 false); 6709 } 6710 6711 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6712 LLVMContext &Context) { 6713 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6714 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6715 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6716 // written. We must defer until the Module has been fully materialized. 6717 } 6718 6719 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6720 LLVMContext &Context) { 6721 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6722 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6723 ErrorOr<std::string> Triple = R->parseTriple(); 6724 if (Triple.getError()) 6725 return ""; 6726 return Triple.get(); 6727 } 6728 6729 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6730 LLVMContext &Context) { 6731 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6732 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6733 ErrorOr<bool> hasObjCCategory = R->hasObjCCategory(); 6734 if (hasObjCCategory.getError()) 6735 return false; 6736 return hasObjCCategory.get(); 6737 } 6738 6739 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6740 LLVMContext &Context) { 6741 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6742 BitcodeReader R(Buf.release(), Context); 6743 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6744 if (ProducerString.getError()) 6745 return ""; 6746 return ProducerString.get(); 6747 } 6748 6749 // Parse the specified bitcode buffer, returning the function info index. 6750 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6751 MemoryBufferRef Buffer, 6752 const DiagnosticHandlerFunction &DiagnosticHandler) { 6753 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6754 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6755 6756 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6757 6758 auto cleanupOnError = [&](std::error_code EC) { 6759 R.releaseBuffer(); // Never take ownership on error. 6760 return EC; 6761 }; 6762 6763 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6764 return cleanupOnError(EC); 6765 6766 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6767 return std::move(Index); 6768 } 6769 6770 // Check if the given bitcode buffer contains a global value summary block. 6771 bool llvm::hasGlobalValueSummary( 6772 MemoryBufferRef Buffer, 6773 const DiagnosticHandlerFunction &DiagnosticHandler) { 6774 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6775 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6776 6777 auto cleanupOnError = [&](std::error_code EC) { 6778 R.releaseBuffer(); // Never take ownership on error. 6779 return false; 6780 }; 6781 6782 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6783 return cleanupOnError(EC); 6784 6785 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6786 return R.foundGlobalValSummary(); 6787 } 6788