1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID.
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID.
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831 
832   std::pair<ValueInfo, GlobalValue::GUID>
833   getValueInfoFromValueId(unsigned ValueId);
834 
835   void addThisModule();
836   ModuleSummaryIndex::ModuleInfo *getThisModule();
837 };
838 
839 } // end anonymous namespace
840 
841 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
842                                                     Error Err) {
843   if (Err) {
844     std::error_code EC;
845     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
846       EC = EIB.convertToErrorCode();
847       Ctx.emitError(EIB.message());
848     });
849     return EC;
850   }
851   return std::error_code();
852 }
853 
854 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
855                              StringRef ProducerIdentification,
856                              LLVMContext &Context)
857     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
858       ValueList(Context) {
859   this->ProducerIdentification = ProducerIdentification;
860 }
861 
862 Error BitcodeReader::materializeForwardReferencedFunctions() {
863   if (WillMaterializeAllForwardRefs)
864     return Error::success();
865 
866   // Prevent recursion.
867   WillMaterializeAllForwardRefs = true;
868 
869   while (!BasicBlockFwdRefQueue.empty()) {
870     Function *F = BasicBlockFwdRefQueue.front();
871     BasicBlockFwdRefQueue.pop_front();
872     assert(F && "Expected valid function");
873     if (!BasicBlockFwdRefs.count(F))
874       // Already materialized.
875       continue;
876 
877     // Check for a function that isn't materializable to prevent an infinite
878     // loop.  When parsing a blockaddress stored in a global variable, there
879     // isn't a trivial way to check if a function will have a body without a
880     // linear search through FunctionsWithBodies, so just check it here.
881     if (!F->isMaterializable())
882       return error("Never resolved function from blockaddress");
883 
884     // Try to materialize F.
885     if (Error Err = materialize(F))
886       return Err;
887   }
888   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
889 
890   // Reset state.
891   WillMaterializeAllForwardRefs = false;
892   return Error::success();
893 }
894 
895 //===----------------------------------------------------------------------===//
896 //  Helper functions to implement forward reference resolution, etc.
897 //===----------------------------------------------------------------------===//
898 
899 static bool hasImplicitComdat(size_t Val) {
900   switch (Val) {
901   default:
902     return false;
903   case 1:  // Old WeakAnyLinkage
904   case 4:  // Old LinkOnceAnyLinkage
905   case 10: // Old WeakODRLinkage
906   case 11: // Old LinkOnceODRLinkage
907     return true;
908   }
909 }
910 
911 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
912   switch (Val) {
913   default: // Map unknown/new linkages to external
914   case 0:
915     return GlobalValue::ExternalLinkage;
916   case 2:
917     return GlobalValue::AppendingLinkage;
918   case 3:
919     return GlobalValue::InternalLinkage;
920   case 5:
921     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
922   case 6:
923     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
924   case 7:
925     return GlobalValue::ExternalWeakLinkage;
926   case 8:
927     return GlobalValue::CommonLinkage;
928   case 9:
929     return GlobalValue::PrivateLinkage;
930   case 12:
931     return GlobalValue::AvailableExternallyLinkage;
932   case 13:
933     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
934   case 14:
935     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
936   case 15:
937     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
938   case 1: // Old value with implicit comdat.
939   case 16:
940     return GlobalValue::WeakAnyLinkage;
941   case 10: // Old value with implicit comdat.
942   case 17:
943     return GlobalValue::WeakODRLinkage;
944   case 4: // Old value with implicit comdat.
945   case 18:
946     return GlobalValue::LinkOnceAnyLinkage;
947   case 11: // Old value with implicit comdat.
948   case 19:
949     return GlobalValue::LinkOnceODRLinkage;
950   }
951 }
952 
953 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
954   FunctionSummary::FFlags Flags;
955   Flags.ReadNone = RawFlags & 0x1;
956   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
957   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
958   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
959   Flags.NoInline = (RawFlags >> 4) & 0x1;
960   return Flags;
961 }
962 
963 /// Decode the flags for GlobalValue in the summary.
964 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
965                                                             uint64_t Version) {
966   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
967   // like getDecodedLinkage() above. Any future change to the linkage enum and
968   // to getDecodedLinkage() will need to be taken into account here as above.
969   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
970   RawFlags = RawFlags >> 4;
971   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
972   // The Live flag wasn't introduced until version 3. For dead stripping
973   // to work correctly on earlier versions, we must conservatively treat all
974   // values as live.
975   bool Live = (RawFlags & 0x2) || Version < 3;
976   bool Local = (RawFlags & 0x4);
977   bool AutoHide = (RawFlags & 0x8);
978 
979   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
980 }
981 
982 // Decode the flags for GlobalVariable in the summary
983 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
984   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
985 }
986 
987 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
988   switch (Val) {
989   default: // Map unknown visibilities to default.
990   case 0: return GlobalValue::DefaultVisibility;
991   case 1: return GlobalValue::HiddenVisibility;
992   case 2: return GlobalValue::ProtectedVisibility;
993   }
994 }
995 
996 static GlobalValue::DLLStorageClassTypes
997 getDecodedDLLStorageClass(unsigned Val) {
998   switch (Val) {
999   default: // Map unknown values to default.
1000   case 0: return GlobalValue::DefaultStorageClass;
1001   case 1: return GlobalValue::DLLImportStorageClass;
1002   case 2: return GlobalValue::DLLExportStorageClass;
1003   }
1004 }
1005 
1006 static bool getDecodedDSOLocal(unsigned Val) {
1007   switch(Val) {
1008   default: // Map unknown values to preemptable.
1009   case 0:  return false;
1010   case 1:  return true;
1011   }
1012 }
1013 
1014 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1015   switch (Val) {
1016     case 0: return GlobalVariable::NotThreadLocal;
1017     default: // Map unknown non-zero value to general dynamic.
1018     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1019     case 2: return GlobalVariable::LocalDynamicTLSModel;
1020     case 3: return GlobalVariable::InitialExecTLSModel;
1021     case 4: return GlobalVariable::LocalExecTLSModel;
1022   }
1023 }
1024 
1025 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1026   switch (Val) {
1027     default: // Map unknown to UnnamedAddr::None.
1028     case 0: return GlobalVariable::UnnamedAddr::None;
1029     case 1: return GlobalVariable::UnnamedAddr::Global;
1030     case 2: return GlobalVariable::UnnamedAddr::Local;
1031   }
1032 }
1033 
1034 static int getDecodedCastOpcode(unsigned Val) {
1035   switch (Val) {
1036   default: return -1;
1037   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1038   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1039   case bitc::CAST_SEXT    : return Instruction::SExt;
1040   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1041   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1042   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1043   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1044   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1045   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1046   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1047   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1048   case bitc::CAST_BITCAST : return Instruction::BitCast;
1049   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1050   }
1051 }
1052 
1053 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1054   bool IsFP = Ty->isFPOrFPVectorTy();
1055   // UnOps are only valid for int/fp or vector of int/fp types
1056   if (!IsFP && !Ty->isIntOrIntVectorTy())
1057     return -1;
1058 
1059   switch (Val) {
1060   default:
1061     return -1;
1062   case bitc::UNOP_NEG:
1063     return IsFP ? Instruction::FNeg : -1;
1064   }
1065 }
1066 
1067 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1068   bool IsFP = Ty->isFPOrFPVectorTy();
1069   // BinOps are only valid for int/fp or vector of int/fp types
1070   if (!IsFP && !Ty->isIntOrIntVectorTy())
1071     return -1;
1072 
1073   switch (Val) {
1074   default:
1075     return -1;
1076   case bitc::BINOP_ADD:
1077     return IsFP ? Instruction::FAdd : Instruction::Add;
1078   case bitc::BINOP_SUB:
1079     return IsFP ? Instruction::FSub : Instruction::Sub;
1080   case bitc::BINOP_MUL:
1081     return IsFP ? Instruction::FMul : Instruction::Mul;
1082   case bitc::BINOP_UDIV:
1083     return IsFP ? -1 : Instruction::UDiv;
1084   case bitc::BINOP_SDIV:
1085     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1086   case bitc::BINOP_UREM:
1087     return IsFP ? -1 : Instruction::URem;
1088   case bitc::BINOP_SREM:
1089     return IsFP ? Instruction::FRem : Instruction::SRem;
1090   case bitc::BINOP_SHL:
1091     return IsFP ? -1 : Instruction::Shl;
1092   case bitc::BINOP_LSHR:
1093     return IsFP ? -1 : Instruction::LShr;
1094   case bitc::BINOP_ASHR:
1095     return IsFP ? -1 : Instruction::AShr;
1096   case bitc::BINOP_AND:
1097     return IsFP ? -1 : Instruction::And;
1098   case bitc::BINOP_OR:
1099     return IsFP ? -1 : Instruction::Or;
1100   case bitc::BINOP_XOR:
1101     return IsFP ? -1 : Instruction::Xor;
1102   }
1103 }
1104 
1105 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1106   switch (Val) {
1107   default: return AtomicRMWInst::BAD_BINOP;
1108   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1109   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1110   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1111   case bitc::RMW_AND: return AtomicRMWInst::And;
1112   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1113   case bitc::RMW_OR: return AtomicRMWInst::Or;
1114   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1115   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1116   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1117   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1118   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1119   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1120   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1121   }
1122 }
1123 
1124 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1125   switch (Val) {
1126   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1127   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1128   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1129   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1130   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1131   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1132   default: // Map unknown orderings to sequentially-consistent.
1133   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1134   }
1135 }
1136 
1137 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1138   switch (Val) {
1139   default: // Map unknown selection kinds to any.
1140   case bitc::COMDAT_SELECTION_KIND_ANY:
1141     return Comdat::Any;
1142   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1143     return Comdat::ExactMatch;
1144   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1145     return Comdat::Largest;
1146   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1147     return Comdat::NoDuplicates;
1148   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1149     return Comdat::SameSize;
1150   }
1151 }
1152 
1153 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1154   FastMathFlags FMF;
1155   if (0 != (Val & bitc::UnsafeAlgebra))
1156     FMF.setFast();
1157   if (0 != (Val & bitc::AllowReassoc))
1158     FMF.setAllowReassoc();
1159   if (0 != (Val & bitc::NoNaNs))
1160     FMF.setNoNaNs();
1161   if (0 != (Val & bitc::NoInfs))
1162     FMF.setNoInfs();
1163   if (0 != (Val & bitc::NoSignedZeros))
1164     FMF.setNoSignedZeros();
1165   if (0 != (Val & bitc::AllowReciprocal))
1166     FMF.setAllowReciprocal();
1167   if (0 != (Val & bitc::AllowContract))
1168     FMF.setAllowContract(true);
1169   if (0 != (Val & bitc::ApproxFunc))
1170     FMF.setApproxFunc();
1171   return FMF;
1172 }
1173 
1174 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1175   switch (Val) {
1176   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1177   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1178   }
1179 }
1180 
1181 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1182   // The type table size is always specified correctly.
1183   if (ID >= TypeList.size())
1184     return nullptr;
1185 
1186   if (Type *Ty = TypeList[ID])
1187     return Ty;
1188 
1189   // If we have a forward reference, the only possible case is when it is to a
1190   // named struct.  Just create a placeholder for now.
1191   return TypeList[ID] = createIdentifiedStructType(Context);
1192 }
1193 
1194 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1195                                                       StringRef Name) {
1196   auto *Ret = StructType::create(Context, Name);
1197   IdentifiedStructTypes.push_back(Ret);
1198   return Ret;
1199 }
1200 
1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1202   auto *Ret = StructType::create(Context);
1203   IdentifiedStructTypes.push_back(Ret);
1204   return Ret;
1205 }
1206 
1207 //===----------------------------------------------------------------------===//
1208 //  Functions for parsing blocks from the bitcode file
1209 //===----------------------------------------------------------------------===//
1210 
1211 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1212   switch (Val) {
1213   case Attribute::EndAttrKinds:
1214     llvm_unreachable("Synthetic enumerators which should never get here");
1215 
1216   case Attribute::None:            return 0;
1217   case Attribute::ZExt:            return 1 << 0;
1218   case Attribute::SExt:            return 1 << 1;
1219   case Attribute::NoReturn:        return 1 << 2;
1220   case Attribute::InReg:           return 1 << 3;
1221   case Attribute::StructRet:       return 1 << 4;
1222   case Attribute::NoUnwind:        return 1 << 5;
1223   case Attribute::NoAlias:         return 1 << 6;
1224   case Attribute::ByVal:           return 1 << 7;
1225   case Attribute::Nest:            return 1 << 8;
1226   case Attribute::ReadNone:        return 1 << 9;
1227   case Attribute::ReadOnly:        return 1 << 10;
1228   case Attribute::NoInline:        return 1 << 11;
1229   case Attribute::AlwaysInline:    return 1 << 12;
1230   case Attribute::OptimizeForSize: return 1 << 13;
1231   case Attribute::StackProtect:    return 1 << 14;
1232   case Attribute::StackProtectReq: return 1 << 15;
1233   case Attribute::Alignment:       return 31 << 16;
1234   case Attribute::NoCapture:       return 1 << 21;
1235   case Attribute::NoRedZone:       return 1 << 22;
1236   case Attribute::NoImplicitFloat: return 1 << 23;
1237   case Attribute::Naked:           return 1 << 24;
1238   case Attribute::InlineHint:      return 1 << 25;
1239   case Attribute::StackAlignment:  return 7 << 26;
1240   case Attribute::ReturnsTwice:    return 1 << 29;
1241   case Attribute::UWTable:         return 1 << 30;
1242   case Attribute::NonLazyBind:     return 1U << 31;
1243   case Attribute::SanitizeAddress: return 1ULL << 32;
1244   case Attribute::MinSize:         return 1ULL << 33;
1245   case Attribute::NoDuplicate:     return 1ULL << 34;
1246   case Attribute::StackProtectStrong: return 1ULL << 35;
1247   case Attribute::SanitizeThread:  return 1ULL << 36;
1248   case Attribute::SanitizeMemory:  return 1ULL << 37;
1249   case Attribute::NoBuiltin:       return 1ULL << 38;
1250   case Attribute::Returned:        return 1ULL << 39;
1251   case Attribute::Cold:            return 1ULL << 40;
1252   case Attribute::Builtin:         return 1ULL << 41;
1253   case Attribute::OptimizeNone:    return 1ULL << 42;
1254   case Attribute::InAlloca:        return 1ULL << 43;
1255   case Attribute::NonNull:         return 1ULL << 44;
1256   case Attribute::JumpTable:       return 1ULL << 45;
1257   case Attribute::Convergent:      return 1ULL << 46;
1258   case Attribute::SafeStack:       return 1ULL << 47;
1259   case Attribute::NoRecurse:       return 1ULL << 48;
1260   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1261   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1262   case Attribute::SwiftSelf:       return 1ULL << 51;
1263   case Attribute::SwiftError:      return 1ULL << 52;
1264   case Attribute::WriteOnly:       return 1ULL << 53;
1265   case Attribute::Speculatable:    return 1ULL << 54;
1266   case Attribute::StrictFP:        return 1ULL << 55;
1267   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1268   case Attribute::NoCfCheck:       return 1ULL << 57;
1269   case Attribute::OptForFuzzing:   return 1ULL << 58;
1270   case Attribute::ShadowCallStack: return 1ULL << 59;
1271   case Attribute::SpeculativeLoadHardening:
1272     return 1ULL << 60;
1273   case Attribute::ImmArg:
1274     return 1ULL << 61;
1275   case Attribute::Dereferenceable:
1276     llvm_unreachable("dereferenceable attribute not supported in raw format");
1277     break;
1278   case Attribute::DereferenceableOrNull:
1279     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1280                      "format");
1281     break;
1282   case Attribute::ArgMemOnly:
1283     llvm_unreachable("argmemonly attribute not supported in raw format");
1284     break;
1285   case Attribute::AllocSize:
1286     llvm_unreachable("allocsize not supported in raw format");
1287     break;
1288   }
1289   llvm_unreachable("Unsupported attribute type");
1290 }
1291 
1292 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1293   if (!Val) return;
1294 
1295   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1296        I = Attribute::AttrKind(I + 1)) {
1297     if (I == Attribute::Dereferenceable ||
1298         I == Attribute::DereferenceableOrNull ||
1299         I == Attribute::ArgMemOnly ||
1300         I == Attribute::AllocSize)
1301       continue;
1302     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1303       if (I == Attribute::Alignment)
1304         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1305       else if (I == Attribute::StackAlignment)
1306         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1307       else
1308         B.addAttribute(I);
1309     }
1310   }
1311 }
1312 
1313 /// This fills an AttrBuilder object with the LLVM attributes that have
1314 /// been decoded from the given integer. This function must stay in sync with
1315 /// 'encodeLLVMAttributesForBitcode'.
1316 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1317                                            uint64_t EncodedAttrs) {
1318   // FIXME: Remove in 4.0.
1319 
1320   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1321   // the bits above 31 down by 11 bits.
1322   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1323   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1324          "Alignment must be a power of two.");
1325 
1326   if (Alignment)
1327     B.addAlignmentAttr(Alignment);
1328   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1329                           (EncodedAttrs & 0xffff));
1330 }
1331 
1332 Error BitcodeReader::parseAttributeBlock() {
1333   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1334     return Err;
1335 
1336   if (!MAttributes.empty())
1337     return error("Invalid multiple blocks");
1338 
1339   SmallVector<uint64_t, 64> Record;
1340 
1341   SmallVector<AttributeList, 8> Attrs;
1342 
1343   // Read all the records.
1344   while (true) {
1345     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1346     if (!MaybeEntry)
1347       return MaybeEntry.takeError();
1348     BitstreamEntry Entry = MaybeEntry.get();
1349 
1350     switch (Entry.Kind) {
1351     case BitstreamEntry::SubBlock: // Handled for us already.
1352     case BitstreamEntry::Error:
1353       return error("Malformed block");
1354     case BitstreamEntry::EndBlock:
1355       return Error::success();
1356     case BitstreamEntry::Record:
1357       // The interesting case.
1358       break;
1359     }
1360 
1361     // Read a record.
1362     Record.clear();
1363     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1364     if (!MaybeRecord)
1365       return MaybeRecord.takeError();
1366     switch (MaybeRecord.get()) {
1367     default:  // Default behavior: ignore.
1368       break;
1369     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1370       // FIXME: Remove in 4.0.
1371       if (Record.size() & 1)
1372         return error("Invalid record");
1373 
1374       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1375         AttrBuilder B;
1376         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1377         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1378       }
1379 
1380       MAttributes.push_back(AttributeList::get(Context, Attrs));
1381       Attrs.clear();
1382       break;
1383     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1384       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1385         Attrs.push_back(MAttributeGroups[Record[i]]);
1386 
1387       MAttributes.push_back(AttributeList::get(Context, Attrs));
1388       Attrs.clear();
1389       break;
1390     }
1391   }
1392 }
1393 
1394 // Returns Attribute::None on unrecognized codes.
1395 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1396   switch (Code) {
1397   default:
1398     return Attribute::None;
1399   case bitc::ATTR_KIND_ALIGNMENT:
1400     return Attribute::Alignment;
1401   case bitc::ATTR_KIND_ALWAYS_INLINE:
1402     return Attribute::AlwaysInline;
1403   case bitc::ATTR_KIND_ARGMEMONLY:
1404     return Attribute::ArgMemOnly;
1405   case bitc::ATTR_KIND_BUILTIN:
1406     return Attribute::Builtin;
1407   case bitc::ATTR_KIND_BY_VAL:
1408     return Attribute::ByVal;
1409   case bitc::ATTR_KIND_IN_ALLOCA:
1410     return Attribute::InAlloca;
1411   case bitc::ATTR_KIND_COLD:
1412     return Attribute::Cold;
1413   case bitc::ATTR_KIND_CONVERGENT:
1414     return Attribute::Convergent;
1415   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1416     return Attribute::InaccessibleMemOnly;
1417   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1418     return Attribute::InaccessibleMemOrArgMemOnly;
1419   case bitc::ATTR_KIND_INLINE_HINT:
1420     return Attribute::InlineHint;
1421   case bitc::ATTR_KIND_IN_REG:
1422     return Attribute::InReg;
1423   case bitc::ATTR_KIND_JUMP_TABLE:
1424     return Attribute::JumpTable;
1425   case bitc::ATTR_KIND_MIN_SIZE:
1426     return Attribute::MinSize;
1427   case bitc::ATTR_KIND_NAKED:
1428     return Attribute::Naked;
1429   case bitc::ATTR_KIND_NEST:
1430     return Attribute::Nest;
1431   case bitc::ATTR_KIND_NO_ALIAS:
1432     return Attribute::NoAlias;
1433   case bitc::ATTR_KIND_NO_BUILTIN:
1434     return Attribute::NoBuiltin;
1435   case bitc::ATTR_KIND_NO_CAPTURE:
1436     return Attribute::NoCapture;
1437   case bitc::ATTR_KIND_NO_DUPLICATE:
1438     return Attribute::NoDuplicate;
1439   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1440     return Attribute::NoImplicitFloat;
1441   case bitc::ATTR_KIND_NO_INLINE:
1442     return Attribute::NoInline;
1443   case bitc::ATTR_KIND_NO_RECURSE:
1444     return Attribute::NoRecurse;
1445   case bitc::ATTR_KIND_NON_LAZY_BIND:
1446     return Attribute::NonLazyBind;
1447   case bitc::ATTR_KIND_NON_NULL:
1448     return Attribute::NonNull;
1449   case bitc::ATTR_KIND_DEREFERENCEABLE:
1450     return Attribute::Dereferenceable;
1451   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1452     return Attribute::DereferenceableOrNull;
1453   case bitc::ATTR_KIND_ALLOC_SIZE:
1454     return Attribute::AllocSize;
1455   case bitc::ATTR_KIND_NO_RED_ZONE:
1456     return Attribute::NoRedZone;
1457   case bitc::ATTR_KIND_NO_RETURN:
1458     return Attribute::NoReturn;
1459   case bitc::ATTR_KIND_NOCF_CHECK:
1460     return Attribute::NoCfCheck;
1461   case bitc::ATTR_KIND_NO_UNWIND:
1462     return Attribute::NoUnwind;
1463   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1464     return Attribute::OptForFuzzing;
1465   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1466     return Attribute::OptimizeForSize;
1467   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1468     return Attribute::OptimizeNone;
1469   case bitc::ATTR_KIND_READ_NONE:
1470     return Attribute::ReadNone;
1471   case bitc::ATTR_KIND_READ_ONLY:
1472     return Attribute::ReadOnly;
1473   case bitc::ATTR_KIND_RETURNED:
1474     return Attribute::Returned;
1475   case bitc::ATTR_KIND_RETURNS_TWICE:
1476     return Attribute::ReturnsTwice;
1477   case bitc::ATTR_KIND_S_EXT:
1478     return Attribute::SExt;
1479   case bitc::ATTR_KIND_SPECULATABLE:
1480     return Attribute::Speculatable;
1481   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1482     return Attribute::StackAlignment;
1483   case bitc::ATTR_KIND_STACK_PROTECT:
1484     return Attribute::StackProtect;
1485   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1486     return Attribute::StackProtectReq;
1487   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1488     return Attribute::StackProtectStrong;
1489   case bitc::ATTR_KIND_SAFESTACK:
1490     return Attribute::SafeStack;
1491   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1492     return Attribute::ShadowCallStack;
1493   case bitc::ATTR_KIND_STRICT_FP:
1494     return Attribute::StrictFP;
1495   case bitc::ATTR_KIND_STRUCT_RET:
1496     return Attribute::StructRet;
1497   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1498     return Attribute::SanitizeAddress;
1499   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1500     return Attribute::SanitizeHWAddress;
1501   case bitc::ATTR_KIND_SANITIZE_THREAD:
1502     return Attribute::SanitizeThread;
1503   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1504     return Attribute::SanitizeMemory;
1505   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1506     return Attribute::SpeculativeLoadHardening;
1507   case bitc::ATTR_KIND_SWIFT_ERROR:
1508     return Attribute::SwiftError;
1509   case bitc::ATTR_KIND_SWIFT_SELF:
1510     return Attribute::SwiftSelf;
1511   case bitc::ATTR_KIND_UW_TABLE:
1512     return Attribute::UWTable;
1513   case bitc::ATTR_KIND_WRITEONLY:
1514     return Attribute::WriteOnly;
1515   case bitc::ATTR_KIND_Z_EXT:
1516     return Attribute::ZExt;
1517   case bitc::ATTR_KIND_IMMARG:
1518     return Attribute::ImmArg;
1519   }
1520 }
1521 
1522 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1523                                          unsigned &Alignment) {
1524   // Note: Alignment in bitcode files is incremented by 1, so that zero
1525   // can be used for default alignment.
1526   if (Exponent > Value::MaxAlignmentExponent + 1)
1527     return error("Invalid alignment value");
1528   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1529   return Error::success();
1530 }
1531 
1532 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1533   *Kind = getAttrFromCode(Code);
1534   if (*Kind == Attribute::None)
1535     return error("Unknown attribute kind (" + Twine(Code) + ")");
1536   return Error::success();
1537 }
1538 
1539 Error BitcodeReader::parseAttributeGroupBlock() {
1540   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1541     return Err;
1542 
1543   if (!MAttributeGroups.empty())
1544     return error("Invalid multiple blocks");
1545 
1546   SmallVector<uint64_t, 64> Record;
1547 
1548   // Read all the records.
1549   while (true) {
1550     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1551     if (!MaybeEntry)
1552       return MaybeEntry.takeError();
1553     BitstreamEntry Entry = MaybeEntry.get();
1554 
1555     switch (Entry.Kind) {
1556     case BitstreamEntry::SubBlock: // Handled for us already.
1557     case BitstreamEntry::Error:
1558       return error("Malformed block");
1559     case BitstreamEntry::EndBlock:
1560       return Error::success();
1561     case BitstreamEntry::Record:
1562       // The interesting case.
1563       break;
1564     }
1565 
1566     // Read a record.
1567     Record.clear();
1568     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1569     if (!MaybeRecord)
1570       return MaybeRecord.takeError();
1571     switch (MaybeRecord.get()) {
1572     default:  // Default behavior: ignore.
1573       break;
1574     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1575       if (Record.size() < 3)
1576         return error("Invalid record");
1577 
1578       uint64_t GrpID = Record[0];
1579       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1580 
1581       AttrBuilder B;
1582       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1583         if (Record[i] == 0) {        // Enum attribute
1584           Attribute::AttrKind Kind;
1585           if (Error Err = parseAttrKind(Record[++i], &Kind))
1586             return Err;
1587 
1588           // Upgrade old-style byval attribute to one with a type, even if it's
1589           // nullptr. We will have to insert the real type when we associate
1590           // this AttributeList with a function.
1591           if (Kind == Attribute::ByVal)
1592             B.addByValAttr(nullptr);
1593 
1594           B.addAttribute(Kind);
1595         } else if (Record[i] == 1) { // Integer attribute
1596           Attribute::AttrKind Kind;
1597           if (Error Err = parseAttrKind(Record[++i], &Kind))
1598             return Err;
1599           if (Kind == Attribute::Alignment)
1600             B.addAlignmentAttr(Record[++i]);
1601           else if (Kind == Attribute::StackAlignment)
1602             B.addStackAlignmentAttr(Record[++i]);
1603           else if (Kind == Attribute::Dereferenceable)
1604             B.addDereferenceableAttr(Record[++i]);
1605           else if (Kind == Attribute::DereferenceableOrNull)
1606             B.addDereferenceableOrNullAttr(Record[++i]);
1607           else if (Kind == Attribute::AllocSize)
1608             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1609         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1610           bool HasValue = (Record[i++] == 4);
1611           SmallString<64> KindStr;
1612           SmallString<64> ValStr;
1613 
1614           while (Record[i] != 0 && i != e)
1615             KindStr += Record[i++];
1616           assert(Record[i] == 0 && "Kind string not null terminated");
1617 
1618           if (HasValue) {
1619             // Has a value associated with it.
1620             ++i; // Skip the '0' that terminates the "kind" string.
1621             while (Record[i] != 0 && i != e)
1622               ValStr += Record[i++];
1623             assert(Record[i] == 0 && "Value string not null terminated");
1624           }
1625 
1626           B.addAttribute(KindStr.str(), ValStr.str());
1627         } else {
1628           assert((Record[i] == 5 || Record[i] == 6) &&
1629                  "Invalid attribute group entry");
1630           bool HasType = Record[i] == 6;
1631           Attribute::AttrKind Kind;
1632           if (Error Err = parseAttrKind(Record[++i], &Kind))
1633             return Err;
1634           if (Kind == Attribute::ByVal)
1635             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1636         }
1637       }
1638 
1639       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1640       break;
1641     }
1642     }
1643   }
1644 }
1645 
1646 Error BitcodeReader::parseTypeTable() {
1647   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1648     return Err;
1649 
1650   return parseTypeTableBody();
1651 }
1652 
1653 Error BitcodeReader::parseTypeTableBody() {
1654   if (!TypeList.empty())
1655     return error("Invalid multiple blocks");
1656 
1657   SmallVector<uint64_t, 64> Record;
1658   unsigned NumRecords = 0;
1659 
1660   SmallString<64> TypeName;
1661 
1662   // Read all the records for this type table.
1663   while (true) {
1664     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1665     if (!MaybeEntry)
1666       return MaybeEntry.takeError();
1667     BitstreamEntry Entry = MaybeEntry.get();
1668 
1669     switch (Entry.Kind) {
1670     case BitstreamEntry::SubBlock: // Handled for us already.
1671     case BitstreamEntry::Error:
1672       return error("Malformed block");
1673     case BitstreamEntry::EndBlock:
1674       if (NumRecords != TypeList.size())
1675         return error("Malformed block");
1676       return Error::success();
1677     case BitstreamEntry::Record:
1678       // The interesting case.
1679       break;
1680     }
1681 
1682     // Read a record.
1683     Record.clear();
1684     Type *ResultTy = nullptr;
1685     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1686     if (!MaybeRecord)
1687       return MaybeRecord.takeError();
1688     switch (MaybeRecord.get()) {
1689     default:
1690       return error("Invalid value");
1691     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1692       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1693       // type list.  This allows us to reserve space.
1694       if (Record.size() < 1)
1695         return error("Invalid record");
1696       TypeList.resize(Record[0]);
1697       continue;
1698     case bitc::TYPE_CODE_VOID:      // VOID
1699       ResultTy = Type::getVoidTy(Context);
1700       break;
1701     case bitc::TYPE_CODE_HALF:     // HALF
1702       ResultTy = Type::getHalfTy(Context);
1703       break;
1704     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1705       ResultTy = Type::getFloatTy(Context);
1706       break;
1707     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1708       ResultTy = Type::getDoubleTy(Context);
1709       break;
1710     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1711       ResultTy = Type::getX86_FP80Ty(Context);
1712       break;
1713     case bitc::TYPE_CODE_FP128:     // FP128
1714       ResultTy = Type::getFP128Ty(Context);
1715       break;
1716     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1717       ResultTy = Type::getPPC_FP128Ty(Context);
1718       break;
1719     case bitc::TYPE_CODE_LABEL:     // LABEL
1720       ResultTy = Type::getLabelTy(Context);
1721       break;
1722     case bitc::TYPE_CODE_METADATA:  // METADATA
1723       ResultTy = Type::getMetadataTy(Context);
1724       break;
1725     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1726       ResultTy = Type::getX86_MMXTy(Context);
1727       break;
1728     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1729       ResultTy = Type::getTokenTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1732       if (Record.size() < 1)
1733         return error("Invalid record");
1734 
1735       uint64_t NumBits = Record[0];
1736       if (NumBits < IntegerType::MIN_INT_BITS ||
1737           NumBits > IntegerType::MAX_INT_BITS)
1738         return error("Bitwidth for integer type out of range");
1739       ResultTy = IntegerType::get(Context, NumBits);
1740       break;
1741     }
1742     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1743                                     //          [pointee type, address space]
1744       if (Record.size() < 1)
1745         return error("Invalid record");
1746       unsigned AddressSpace = 0;
1747       if (Record.size() == 2)
1748         AddressSpace = Record[1];
1749       ResultTy = getTypeByID(Record[0]);
1750       if (!ResultTy ||
1751           !PointerType::isValidElementType(ResultTy))
1752         return error("Invalid type");
1753       ResultTy = PointerType::get(ResultTy, AddressSpace);
1754       break;
1755     }
1756     case bitc::TYPE_CODE_FUNCTION_OLD: {
1757       // FIXME: attrid is dead, remove it in LLVM 4.0
1758       // FUNCTION: [vararg, attrid, retty, paramty x N]
1759       if (Record.size() < 3)
1760         return error("Invalid record");
1761       SmallVector<Type*, 8> ArgTys;
1762       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1763         if (Type *T = getTypeByID(Record[i]))
1764           ArgTys.push_back(T);
1765         else
1766           break;
1767       }
1768 
1769       ResultTy = getTypeByID(Record[2]);
1770       if (!ResultTy || ArgTys.size() < Record.size()-3)
1771         return error("Invalid type");
1772 
1773       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1774       break;
1775     }
1776     case bitc::TYPE_CODE_FUNCTION: {
1777       // FUNCTION: [vararg, retty, paramty x N]
1778       if (Record.size() < 2)
1779         return error("Invalid record");
1780       SmallVector<Type*, 8> ArgTys;
1781       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1782         if (Type *T = getTypeByID(Record[i])) {
1783           if (!FunctionType::isValidArgumentType(T))
1784             return error("Invalid function argument type");
1785           ArgTys.push_back(T);
1786         }
1787         else
1788           break;
1789       }
1790 
1791       ResultTy = getTypeByID(Record[1]);
1792       if (!ResultTy || ArgTys.size() < Record.size()-2)
1793         return error("Invalid type");
1794 
1795       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1799       if (Record.size() < 1)
1800         return error("Invalid record");
1801       SmallVector<Type*, 8> EltTys;
1802       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1803         if (Type *T = getTypeByID(Record[i]))
1804           EltTys.push_back(T);
1805         else
1806           break;
1807       }
1808       if (EltTys.size() != Record.size()-1)
1809         return error("Invalid type");
1810       ResultTy = StructType::get(Context, EltTys, Record[0]);
1811       break;
1812     }
1813     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1814       if (convertToString(Record, 0, TypeName))
1815         return error("Invalid record");
1816       continue;
1817 
1818     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1819       if (Record.size() < 1)
1820         return error("Invalid record");
1821 
1822       if (NumRecords >= TypeList.size())
1823         return error("Invalid TYPE table");
1824 
1825       // Check to see if this was forward referenced, if so fill in the temp.
1826       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1827       if (Res) {
1828         Res->setName(TypeName);
1829         TypeList[NumRecords] = nullptr;
1830       } else  // Otherwise, create a new struct.
1831         Res = createIdentifiedStructType(Context, TypeName);
1832       TypeName.clear();
1833 
1834       SmallVector<Type*, 8> EltTys;
1835       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1836         if (Type *T = getTypeByID(Record[i]))
1837           EltTys.push_back(T);
1838         else
1839           break;
1840       }
1841       if (EltTys.size() != Record.size()-1)
1842         return error("Invalid record");
1843       Res->setBody(EltTys, Record[0]);
1844       ResultTy = Res;
1845       break;
1846     }
1847     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1848       if (Record.size() != 1)
1849         return error("Invalid record");
1850 
1851       if (NumRecords >= TypeList.size())
1852         return error("Invalid TYPE table");
1853 
1854       // Check to see if this was forward referenced, if so fill in the temp.
1855       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1856       if (Res) {
1857         Res->setName(TypeName);
1858         TypeList[NumRecords] = nullptr;
1859       } else  // Otherwise, create a new struct with no body.
1860         Res = createIdentifiedStructType(Context, TypeName);
1861       TypeName.clear();
1862       ResultTy = Res;
1863       break;
1864     }
1865     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1866       if (Record.size() < 2)
1867         return error("Invalid record");
1868       ResultTy = getTypeByID(Record[1]);
1869       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1870         return error("Invalid type");
1871       ResultTy = ArrayType::get(ResultTy, Record[0]);
1872       break;
1873     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1874       if (Record.size() < 2)
1875         return error("Invalid record");
1876       if (Record[0] == 0)
1877         return error("Invalid vector length");
1878       ResultTy = getTypeByID(Record[1]);
1879       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1880         return error("Invalid type");
1881       ResultTy = VectorType::get(ResultTy, Record[0]);
1882       break;
1883     }
1884 
1885     if (NumRecords >= TypeList.size())
1886       return error("Invalid TYPE table");
1887     if (TypeList[NumRecords])
1888       return error(
1889           "Invalid TYPE table: Only named structs can be forward referenced");
1890     assert(ResultTy && "Didn't read a type?");
1891     TypeList[NumRecords++] = ResultTy;
1892   }
1893 }
1894 
1895 Error BitcodeReader::parseOperandBundleTags() {
1896   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1897     return Err;
1898 
1899   if (!BundleTags.empty())
1900     return error("Invalid multiple blocks");
1901 
1902   SmallVector<uint64_t, 64> Record;
1903 
1904   while (true) {
1905     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1906     if (!MaybeEntry)
1907       return MaybeEntry.takeError();
1908     BitstreamEntry Entry = MaybeEntry.get();
1909 
1910     switch (Entry.Kind) {
1911     case BitstreamEntry::SubBlock: // Handled for us already.
1912     case BitstreamEntry::Error:
1913       return error("Malformed block");
1914     case BitstreamEntry::EndBlock:
1915       return Error::success();
1916     case BitstreamEntry::Record:
1917       // The interesting case.
1918       break;
1919     }
1920 
1921     // Tags are implicitly mapped to integers by their order.
1922 
1923     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1924     if (!MaybeRecord)
1925       return MaybeRecord.takeError();
1926     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1927       return error("Invalid record");
1928 
1929     // OPERAND_BUNDLE_TAG: [strchr x N]
1930     BundleTags.emplace_back();
1931     if (convertToString(Record, 0, BundleTags.back()))
1932       return error("Invalid record");
1933     Record.clear();
1934   }
1935 }
1936 
1937 Error BitcodeReader::parseSyncScopeNames() {
1938   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1939     return Err;
1940 
1941   if (!SSIDs.empty())
1942     return error("Invalid multiple synchronization scope names blocks");
1943 
1944   SmallVector<uint64_t, 64> Record;
1945   while (true) {
1946     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1947     if (!MaybeEntry)
1948       return MaybeEntry.takeError();
1949     BitstreamEntry Entry = MaybeEntry.get();
1950 
1951     switch (Entry.Kind) {
1952     case BitstreamEntry::SubBlock: // Handled for us already.
1953     case BitstreamEntry::Error:
1954       return error("Malformed block");
1955     case BitstreamEntry::EndBlock:
1956       if (SSIDs.empty())
1957         return error("Invalid empty synchronization scope names block");
1958       return Error::success();
1959     case BitstreamEntry::Record:
1960       // The interesting case.
1961       break;
1962     }
1963 
1964     // Synchronization scope names are implicitly mapped to synchronization
1965     // scope IDs by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1971       return error("Invalid record");
1972 
1973     SmallString<16> SSN;
1974     if (convertToString(Record, 0, SSN))
1975       return error("Invalid record");
1976 
1977     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1978     Record.clear();
1979   }
1980 }
1981 
1982 /// Associate a value with its name from the given index in the provided record.
1983 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1984                                              unsigned NameIndex, Triple &TT) {
1985   SmallString<128> ValueName;
1986   if (convertToString(Record, NameIndex, ValueName))
1987     return error("Invalid record");
1988   unsigned ValueID = Record[0];
1989   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1990     return error("Invalid record");
1991   Value *V = ValueList[ValueID];
1992 
1993   StringRef NameStr(ValueName.data(), ValueName.size());
1994   if (NameStr.find_first_of(0) != StringRef::npos)
1995     return error("Invalid value name");
1996   V->setName(NameStr);
1997   auto *GO = dyn_cast<GlobalObject>(V);
1998   if (GO) {
1999     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2000       if (TT.supportsCOMDAT())
2001         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2002       else
2003         GO->setComdat(nullptr);
2004     }
2005   }
2006   return V;
2007 }
2008 
2009 /// Helper to note and return the current location, and jump to the given
2010 /// offset.
2011 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2012                                                  BitstreamCursor &Stream) {
2013   // Save the current parsing location so we can jump back at the end
2014   // of the VST read.
2015   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2016   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2017     return std::move(JumpFailed);
2018   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2019   if (!MaybeEntry)
2020     return MaybeEntry.takeError();
2021   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2022   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2023   return CurrentBit;
2024 }
2025 
2026 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2027                                             Function *F,
2028                                             ArrayRef<uint64_t> Record) {
2029   // Note that we subtract 1 here because the offset is relative to one word
2030   // before the start of the identification or module block, which was
2031   // historically always the start of the regular bitcode header.
2032   uint64_t FuncWordOffset = Record[1] - 1;
2033   uint64_t FuncBitOffset = FuncWordOffset * 32;
2034   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2035   // Set the LastFunctionBlockBit to point to the last function block.
2036   // Later when parsing is resumed after function materialization,
2037   // we can simply skip that last function block.
2038   if (FuncBitOffset > LastFunctionBlockBit)
2039     LastFunctionBlockBit = FuncBitOffset;
2040 }
2041 
2042 /// Read a new-style GlobalValue symbol table.
2043 Error BitcodeReader::parseGlobalValueSymbolTable() {
2044   unsigned FuncBitcodeOffsetDelta =
2045       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2046 
2047   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2048     return Err;
2049 
2050   SmallVector<uint64_t, 64> Record;
2051   while (true) {
2052     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2053     if (!MaybeEntry)
2054       return MaybeEntry.takeError();
2055     BitstreamEntry Entry = MaybeEntry.get();
2056 
2057     switch (Entry.Kind) {
2058     case BitstreamEntry::SubBlock:
2059     case BitstreamEntry::Error:
2060       return error("Malformed block");
2061     case BitstreamEntry::EndBlock:
2062       return Error::success();
2063     case BitstreamEntry::Record:
2064       break;
2065     }
2066 
2067     Record.clear();
2068     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2069     if (!MaybeRecord)
2070       return MaybeRecord.takeError();
2071     switch (MaybeRecord.get()) {
2072     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2073       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2074                               cast<Function>(ValueList[Record[0]]), Record);
2075       break;
2076     }
2077   }
2078 }
2079 
2080 /// Parse the value symbol table at either the current parsing location or
2081 /// at the given bit offset if provided.
2082 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2083   uint64_t CurrentBit;
2084   // Pass in the Offset to distinguish between calling for the module-level
2085   // VST (where we want to jump to the VST offset) and the function-level
2086   // VST (where we don't).
2087   if (Offset > 0) {
2088     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2089     if (!MaybeCurrentBit)
2090       return MaybeCurrentBit.takeError();
2091     CurrentBit = MaybeCurrentBit.get();
2092     // If this module uses a string table, read this as a module-level VST.
2093     if (UseStrtab) {
2094       if (Error Err = parseGlobalValueSymbolTable())
2095         return Err;
2096       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2097         return JumpFailed;
2098       return Error::success();
2099     }
2100     // Otherwise, the VST will be in a similar format to a function-level VST,
2101     // and will contain symbol names.
2102   }
2103 
2104   // Compute the delta between the bitcode indices in the VST (the word offset
2105   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2106   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2107   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2108   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2109   // just before entering the VST subblock because: 1) the EnterSubBlock
2110   // changes the AbbrevID width; 2) the VST block is nested within the same
2111   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2112   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2113   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2114   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2115   unsigned FuncBitcodeOffsetDelta =
2116       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2117 
2118   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2119     return Err;
2120 
2121   SmallVector<uint64_t, 64> Record;
2122 
2123   Triple TT(TheModule->getTargetTriple());
2124 
2125   // Read all the records for this value table.
2126   SmallString<128> ValueName;
2127 
2128   while (true) {
2129     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2130     if (!MaybeEntry)
2131       return MaybeEntry.takeError();
2132     BitstreamEntry Entry = MaybeEntry.get();
2133 
2134     switch (Entry.Kind) {
2135     case BitstreamEntry::SubBlock: // Handled for us already.
2136     case BitstreamEntry::Error:
2137       return error("Malformed block");
2138     case BitstreamEntry::EndBlock:
2139       if (Offset > 0)
2140         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2141           return JumpFailed;
2142       return Error::success();
2143     case BitstreamEntry::Record:
2144       // The interesting case.
2145       break;
2146     }
2147 
2148     // Read a record.
2149     Record.clear();
2150     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2151     if (!MaybeRecord)
2152       return MaybeRecord.takeError();
2153     switch (MaybeRecord.get()) {
2154     default:  // Default behavior: unknown type.
2155       break;
2156     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2157       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2158       if (Error Err = ValOrErr.takeError())
2159         return Err;
2160       ValOrErr.get();
2161       break;
2162     }
2163     case bitc::VST_CODE_FNENTRY: {
2164       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2165       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2166       if (Error Err = ValOrErr.takeError())
2167         return Err;
2168       Value *V = ValOrErr.get();
2169 
2170       // Ignore function offsets emitted for aliases of functions in older
2171       // versions of LLVM.
2172       if (auto *F = dyn_cast<Function>(V))
2173         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2174       break;
2175     }
2176     case bitc::VST_CODE_BBENTRY: {
2177       if (convertToString(Record, 1, ValueName))
2178         return error("Invalid record");
2179       BasicBlock *BB = getBasicBlock(Record[0]);
2180       if (!BB)
2181         return error("Invalid record");
2182 
2183       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2184       ValueName.clear();
2185       break;
2186     }
2187     }
2188   }
2189 }
2190 
2191 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2192 /// encoding.
2193 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2194   if ((V & 1) == 0)
2195     return V >> 1;
2196   if (V != 1)
2197     return -(V >> 1);
2198   // There is no such thing as -0 with integers.  "-0" really means MININT.
2199   return 1ULL << 63;
2200 }
2201 
2202 /// Resolve all of the initializers for global values and aliases that we can.
2203 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2204   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2205   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2206       IndirectSymbolInitWorklist;
2207   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2208   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2209   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2210 
2211   GlobalInitWorklist.swap(GlobalInits);
2212   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2213   FunctionPrefixWorklist.swap(FunctionPrefixes);
2214   FunctionPrologueWorklist.swap(FunctionPrologues);
2215   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2216 
2217   while (!GlobalInitWorklist.empty()) {
2218     unsigned ValID = GlobalInitWorklist.back().second;
2219     if (ValID >= ValueList.size()) {
2220       // Not ready to resolve this yet, it requires something later in the file.
2221       GlobalInits.push_back(GlobalInitWorklist.back());
2222     } else {
2223       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2224         GlobalInitWorklist.back().first->setInitializer(C);
2225       else
2226         return error("Expected a constant");
2227     }
2228     GlobalInitWorklist.pop_back();
2229   }
2230 
2231   while (!IndirectSymbolInitWorklist.empty()) {
2232     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2233     if (ValID >= ValueList.size()) {
2234       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2235     } else {
2236       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2237       if (!C)
2238         return error("Expected a constant");
2239       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2240       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2241         return error("Alias and aliasee types don't match");
2242       GIS->setIndirectSymbol(C);
2243     }
2244     IndirectSymbolInitWorklist.pop_back();
2245   }
2246 
2247   while (!FunctionPrefixWorklist.empty()) {
2248     unsigned ValID = FunctionPrefixWorklist.back().second;
2249     if (ValID >= ValueList.size()) {
2250       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2251     } else {
2252       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2253         FunctionPrefixWorklist.back().first->setPrefixData(C);
2254       else
2255         return error("Expected a constant");
2256     }
2257     FunctionPrefixWorklist.pop_back();
2258   }
2259 
2260   while (!FunctionPrologueWorklist.empty()) {
2261     unsigned ValID = FunctionPrologueWorklist.back().second;
2262     if (ValID >= ValueList.size()) {
2263       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2264     } else {
2265       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2266         FunctionPrologueWorklist.back().first->setPrologueData(C);
2267       else
2268         return error("Expected a constant");
2269     }
2270     FunctionPrologueWorklist.pop_back();
2271   }
2272 
2273   while (!FunctionPersonalityFnWorklist.empty()) {
2274     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2275     if (ValID >= ValueList.size()) {
2276       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2277     } else {
2278       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2279         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2280       else
2281         return error("Expected a constant");
2282     }
2283     FunctionPersonalityFnWorklist.pop_back();
2284   }
2285 
2286   return Error::success();
2287 }
2288 
2289 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2290   SmallVector<uint64_t, 8> Words(Vals.size());
2291   transform(Vals, Words.begin(),
2292                  BitcodeReader::decodeSignRotatedValue);
2293 
2294   return APInt(TypeBits, Words);
2295 }
2296 
2297 Error BitcodeReader::parseConstants() {
2298   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2299     return Err;
2300 
2301   SmallVector<uint64_t, 64> Record;
2302 
2303   // Read all the records for this value table.
2304   Type *CurTy = Type::getInt32Ty(Context);
2305   Type *CurFullTy = Type::getInt32Ty(Context);
2306   unsigned NextCstNo = ValueList.size();
2307 
2308   while (true) {
2309     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2310     if (!MaybeEntry)
2311       return MaybeEntry.takeError();
2312     BitstreamEntry Entry = MaybeEntry.get();
2313 
2314     switch (Entry.Kind) {
2315     case BitstreamEntry::SubBlock: // Handled for us already.
2316     case BitstreamEntry::Error:
2317       return error("Malformed block");
2318     case BitstreamEntry::EndBlock:
2319       if (NextCstNo != ValueList.size())
2320         return error("Invalid constant reference");
2321 
2322       // Once all the constants have been read, go through and resolve forward
2323       // references.
2324       ValueList.resolveConstantForwardRefs();
2325       return Error::success();
2326     case BitstreamEntry::Record:
2327       // The interesting case.
2328       break;
2329     }
2330 
2331     // Read a record.
2332     Record.clear();
2333     Type *VoidType = Type::getVoidTy(Context);
2334     Value *V = nullptr;
2335     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2336     if (!MaybeBitCode)
2337       return MaybeBitCode.takeError();
2338     switch (unsigned BitCode = MaybeBitCode.get()) {
2339     default:  // Default behavior: unknown constant
2340     case bitc::CST_CODE_UNDEF:     // UNDEF
2341       V = UndefValue::get(CurTy);
2342       break;
2343     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2344       if (Record.empty())
2345         return error("Invalid record");
2346       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2347         return error("Invalid record");
2348       if (TypeList[Record[0]] == VoidType)
2349         return error("Invalid constant type");
2350       CurFullTy = TypeList[Record[0]];
2351       CurTy = flattenPointerTypes(CurFullTy);
2352       continue;  // Skip the ValueList manipulation.
2353     case bitc::CST_CODE_NULL:      // NULL
2354       V = Constant::getNullValue(CurTy);
2355       break;
2356     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2357       if (!CurTy->isIntegerTy() || Record.empty())
2358         return error("Invalid record");
2359       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2360       break;
2361     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2362       if (!CurTy->isIntegerTy() || Record.empty())
2363         return error("Invalid record");
2364 
2365       APInt VInt =
2366           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2367       V = ConstantInt::get(Context, VInt);
2368 
2369       break;
2370     }
2371     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2372       if (Record.empty())
2373         return error("Invalid record");
2374       if (CurTy->isHalfTy())
2375         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2376                                              APInt(16, (uint16_t)Record[0])));
2377       else if (CurTy->isFloatTy())
2378         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2379                                              APInt(32, (uint32_t)Record[0])));
2380       else if (CurTy->isDoubleTy())
2381         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2382                                              APInt(64, Record[0])));
2383       else if (CurTy->isX86_FP80Ty()) {
2384         // Bits are not stored the same way as a normal i80 APInt, compensate.
2385         uint64_t Rearrange[2];
2386         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2387         Rearrange[1] = Record[0] >> 48;
2388         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2389                                              APInt(80, Rearrange)));
2390       } else if (CurTy->isFP128Ty())
2391         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2392                                              APInt(128, Record)));
2393       else if (CurTy->isPPC_FP128Ty())
2394         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2395                                              APInt(128, Record)));
2396       else
2397         V = UndefValue::get(CurTy);
2398       break;
2399     }
2400 
2401     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2402       if (Record.empty())
2403         return error("Invalid record");
2404 
2405       unsigned Size = Record.size();
2406       SmallVector<Constant*, 16> Elts;
2407 
2408       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2409         for (unsigned i = 0; i != Size; ++i)
2410           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2411                                                      STy->getElementType(i)));
2412         V = ConstantStruct::get(STy, Elts);
2413       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2414         Type *EltTy = ATy->getElementType();
2415         for (unsigned i = 0; i != Size; ++i)
2416           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2417         V = ConstantArray::get(ATy, Elts);
2418       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2419         Type *EltTy = VTy->getElementType();
2420         for (unsigned i = 0; i != Size; ++i)
2421           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2422         V = ConstantVector::get(Elts);
2423       } else {
2424         V = UndefValue::get(CurTy);
2425       }
2426       break;
2427     }
2428     case bitc::CST_CODE_STRING:    // STRING: [values]
2429     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2430       if (Record.empty())
2431         return error("Invalid record");
2432 
2433       SmallString<16> Elts(Record.begin(), Record.end());
2434       V = ConstantDataArray::getString(Context, Elts,
2435                                        BitCode == bitc::CST_CODE_CSTRING);
2436       break;
2437     }
2438     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2439       if (Record.empty())
2440         return error("Invalid record");
2441 
2442       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2443       if (EltTy->isIntegerTy(8)) {
2444         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2445         if (isa<VectorType>(CurTy))
2446           V = ConstantDataVector::get(Context, Elts);
2447         else
2448           V = ConstantDataArray::get(Context, Elts);
2449       } else if (EltTy->isIntegerTy(16)) {
2450         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2451         if (isa<VectorType>(CurTy))
2452           V = ConstantDataVector::get(Context, Elts);
2453         else
2454           V = ConstantDataArray::get(Context, Elts);
2455       } else if (EltTy->isIntegerTy(32)) {
2456         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2457         if (isa<VectorType>(CurTy))
2458           V = ConstantDataVector::get(Context, Elts);
2459         else
2460           V = ConstantDataArray::get(Context, Elts);
2461       } else if (EltTy->isIntegerTy(64)) {
2462         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2463         if (isa<VectorType>(CurTy))
2464           V = ConstantDataVector::get(Context, Elts);
2465         else
2466           V = ConstantDataArray::get(Context, Elts);
2467       } else if (EltTy->isHalfTy()) {
2468         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2469         if (isa<VectorType>(CurTy))
2470           V = ConstantDataVector::getFP(Context, Elts);
2471         else
2472           V = ConstantDataArray::getFP(Context, Elts);
2473       } else if (EltTy->isFloatTy()) {
2474         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2475         if (isa<VectorType>(CurTy))
2476           V = ConstantDataVector::getFP(Context, Elts);
2477         else
2478           V = ConstantDataArray::getFP(Context, Elts);
2479       } else if (EltTy->isDoubleTy()) {
2480         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2481         if (isa<VectorType>(CurTy))
2482           V = ConstantDataVector::getFP(Context, Elts);
2483         else
2484           V = ConstantDataArray::getFP(Context, Elts);
2485       } else {
2486         return error("Invalid type for value");
2487       }
2488       break;
2489     }
2490     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2491       if (Record.size() < 2)
2492         return error("Invalid record");
2493       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2494       if (Opc < 0) {
2495         V = UndefValue::get(CurTy);  // Unknown unop.
2496       } else {
2497         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2498         unsigned Flags = 0;
2499         V = ConstantExpr::get(Opc, LHS, Flags);
2500       }
2501       break;
2502     }
2503     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2504       if (Record.size() < 3)
2505         return error("Invalid record");
2506       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2507       if (Opc < 0) {
2508         V = UndefValue::get(CurTy);  // Unknown binop.
2509       } else {
2510         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2511         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2512         unsigned Flags = 0;
2513         if (Record.size() >= 4) {
2514           if (Opc == Instruction::Add ||
2515               Opc == Instruction::Sub ||
2516               Opc == Instruction::Mul ||
2517               Opc == Instruction::Shl) {
2518             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2519               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2520             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2521               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2522           } else if (Opc == Instruction::SDiv ||
2523                      Opc == Instruction::UDiv ||
2524                      Opc == Instruction::LShr ||
2525                      Opc == Instruction::AShr) {
2526             if (Record[3] & (1 << bitc::PEO_EXACT))
2527               Flags |= SDivOperator::IsExact;
2528           }
2529         }
2530         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2531       }
2532       break;
2533     }
2534     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2535       if (Record.size() < 3)
2536         return error("Invalid record");
2537       int Opc = getDecodedCastOpcode(Record[0]);
2538       if (Opc < 0) {
2539         V = UndefValue::get(CurTy);  // Unknown cast.
2540       } else {
2541         Type *OpTy = getTypeByID(Record[1]);
2542         if (!OpTy)
2543           return error("Invalid record");
2544         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2545         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2546         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2547       }
2548       break;
2549     }
2550     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2551     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2552     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2553                                                      // operands]
2554       unsigned OpNum = 0;
2555       Type *PointeeType = nullptr;
2556       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2557           Record.size() % 2)
2558         PointeeType = getTypeByID(Record[OpNum++]);
2559 
2560       bool InBounds = false;
2561       Optional<unsigned> InRangeIndex;
2562       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2563         uint64_t Op = Record[OpNum++];
2564         InBounds = Op & 1;
2565         InRangeIndex = Op >> 1;
2566       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2567         InBounds = true;
2568 
2569       SmallVector<Constant*, 16> Elts;
2570       Type *Elt0FullTy = nullptr;
2571       while (OpNum != Record.size()) {
2572         if (!Elt0FullTy)
2573           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2574         Type *ElTy = getTypeByID(Record[OpNum++]);
2575         if (!ElTy)
2576           return error("Invalid record");
2577         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2578       }
2579 
2580       if (Elts.size() < 1)
2581         return error("Invalid gep with no operands");
2582 
2583       Type *ImplicitPointeeType =
2584           getPointerElementFlatType(Elt0FullTy->getScalarType());
2585       if (!PointeeType)
2586         PointeeType = ImplicitPointeeType;
2587       else if (PointeeType != ImplicitPointeeType)
2588         return error("Explicit gep operator type does not match pointee type "
2589                      "of pointer operand");
2590 
2591       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2592       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2593                                          InBounds, InRangeIndex);
2594       break;
2595     }
2596     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2597       if (Record.size() < 3)
2598         return error("Invalid record");
2599 
2600       Type *SelectorTy = Type::getInt1Ty(Context);
2601 
2602       // The selector might be an i1 or an <n x i1>
2603       // Get the type from the ValueList before getting a forward ref.
2604       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2605         if (Value *V = ValueList[Record[0]])
2606           if (SelectorTy != V->getType())
2607             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2608 
2609       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2610                                                               SelectorTy),
2611                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2612                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2613       break;
2614     }
2615     case bitc::CST_CODE_CE_EXTRACTELT
2616         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2617       if (Record.size() < 3)
2618         return error("Invalid record");
2619       VectorType *OpTy =
2620         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2621       if (!OpTy)
2622         return error("Invalid record");
2623       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2624       Constant *Op1 = nullptr;
2625       if (Record.size() == 4) {
2626         Type *IdxTy = getTypeByID(Record[2]);
2627         if (!IdxTy)
2628           return error("Invalid record");
2629         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2630       } else // TODO: Remove with llvm 4.0
2631         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2632       if (!Op1)
2633         return error("Invalid record");
2634       V = ConstantExpr::getExtractElement(Op0, Op1);
2635       break;
2636     }
2637     case bitc::CST_CODE_CE_INSERTELT
2638         : { // CE_INSERTELT: [opval, opval, opty, opval]
2639       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2640       if (Record.size() < 3 || !OpTy)
2641         return error("Invalid record");
2642       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2643       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2644                                                   OpTy->getElementType());
2645       Constant *Op2 = nullptr;
2646       if (Record.size() == 4) {
2647         Type *IdxTy = getTypeByID(Record[2]);
2648         if (!IdxTy)
2649           return error("Invalid record");
2650         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2651       } else // TODO: Remove with llvm 4.0
2652         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2653       if (!Op2)
2654         return error("Invalid record");
2655       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2656       break;
2657     }
2658     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2659       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2660       if (Record.size() < 3 || !OpTy)
2661         return error("Invalid record");
2662       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2663       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2664       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2665                                                  OpTy->getNumElements());
2666       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2667       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2671       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2672       VectorType *OpTy =
2673         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2674       if (Record.size() < 4 || !RTy || !OpTy)
2675         return error("Invalid record");
2676       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2677       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2678       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2679                                                  RTy->getNumElements());
2680       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2681       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2682       break;
2683     }
2684     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2685       if (Record.size() < 4)
2686         return error("Invalid record");
2687       Type *OpTy = getTypeByID(Record[0]);
2688       if (!OpTy)
2689         return error("Invalid record");
2690       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2691       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2692 
2693       if (OpTy->isFPOrFPVectorTy())
2694         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2695       else
2696         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2697       break;
2698     }
2699     // This maintains backward compatibility, pre-asm dialect keywords.
2700     // FIXME: Remove with the 4.0 release.
2701     case bitc::CST_CODE_INLINEASM_OLD: {
2702       if (Record.size() < 2)
2703         return error("Invalid record");
2704       std::string AsmStr, ConstrStr;
2705       bool HasSideEffects = Record[0] & 1;
2706       bool IsAlignStack = Record[0] >> 1;
2707       unsigned AsmStrSize = Record[1];
2708       if (2+AsmStrSize >= Record.size())
2709         return error("Invalid record");
2710       unsigned ConstStrSize = Record[2+AsmStrSize];
2711       if (3+AsmStrSize+ConstStrSize > Record.size())
2712         return error("Invalid record");
2713 
2714       for (unsigned i = 0; i != AsmStrSize; ++i)
2715         AsmStr += (char)Record[2+i];
2716       for (unsigned i = 0; i != ConstStrSize; ++i)
2717         ConstrStr += (char)Record[3+AsmStrSize+i];
2718       UpgradeInlineAsmString(&AsmStr);
2719       V = InlineAsm::get(
2720           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2721           ConstrStr, HasSideEffects, IsAlignStack);
2722       break;
2723     }
2724     // This version adds support for the asm dialect keywords (e.g.,
2725     // inteldialect).
2726     case bitc::CST_CODE_INLINEASM: {
2727       if (Record.size() < 2)
2728         return error("Invalid record");
2729       std::string AsmStr, ConstrStr;
2730       bool HasSideEffects = Record[0] & 1;
2731       bool IsAlignStack = (Record[0] >> 1) & 1;
2732       unsigned AsmDialect = Record[0] >> 2;
2733       unsigned AsmStrSize = Record[1];
2734       if (2+AsmStrSize >= Record.size())
2735         return error("Invalid record");
2736       unsigned ConstStrSize = Record[2+AsmStrSize];
2737       if (3+AsmStrSize+ConstStrSize > Record.size())
2738         return error("Invalid record");
2739 
2740       for (unsigned i = 0; i != AsmStrSize; ++i)
2741         AsmStr += (char)Record[2+i];
2742       for (unsigned i = 0; i != ConstStrSize; ++i)
2743         ConstrStr += (char)Record[3+AsmStrSize+i];
2744       UpgradeInlineAsmString(&AsmStr);
2745       V = InlineAsm::get(
2746           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2747           ConstrStr, HasSideEffects, IsAlignStack,
2748           InlineAsm::AsmDialect(AsmDialect));
2749       break;
2750     }
2751     case bitc::CST_CODE_BLOCKADDRESS:{
2752       if (Record.size() < 3)
2753         return error("Invalid record");
2754       Type *FnTy = getTypeByID(Record[0]);
2755       if (!FnTy)
2756         return error("Invalid record");
2757       Function *Fn =
2758         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2759       if (!Fn)
2760         return error("Invalid record");
2761 
2762       // If the function is already parsed we can insert the block address right
2763       // away.
2764       BasicBlock *BB;
2765       unsigned BBID = Record[2];
2766       if (!BBID)
2767         // Invalid reference to entry block.
2768         return error("Invalid ID");
2769       if (!Fn->empty()) {
2770         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2771         for (size_t I = 0, E = BBID; I != E; ++I) {
2772           if (BBI == BBE)
2773             return error("Invalid ID");
2774           ++BBI;
2775         }
2776         BB = &*BBI;
2777       } else {
2778         // Otherwise insert a placeholder and remember it so it can be inserted
2779         // when the function is parsed.
2780         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2781         if (FwdBBs.empty())
2782           BasicBlockFwdRefQueue.push_back(Fn);
2783         if (FwdBBs.size() < BBID + 1)
2784           FwdBBs.resize(BBID + 1);
2785         if (!FwdBBs[BBID])
2786           FwdBBs[BBID] = BasicBlock::Create(Context);
2787         BB = FwdBBs[BBID];
2788       }
2789       V = BlockAddress::get(Fn, BB);
2790       break;
2791     }
2792     }
2793 
2794     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2795            "Incorrect fully structured type provided for Constant");
2796     ValueList.assignValue(V, NextCstNo, CurFullTy);
2797     ++NextCstNo;
2798   }
2799 }
2800 
2801 Error BitcodeReader::parseUseLists() {
2802   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2803     return Err;
2804 
2805   // Read all the records.
2806   SmallVector<uint64_t, 64> Record;
2807 
2808   while (true) {
2809     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2810     if (!MaybeEntry)
2811       return MaybeEntry.takeError();
2812     BitstreamEntry Entry = MaybeEntry.get();
2813 
2814     switch (Entry.Kind) {
2815     case BitstreamEntry::SubBlock: // Handled for us already.
2816     case BitstreamEntry::Error:
2817       return error("Malformed block");
2818     case BitstreamEntry::EndBlock:
2819       return Error::success();
2820     case BitstreamEntry::Record:
2821       // The interesting case.
2822       break;
2823     }
2824 
2825     // Read a use list record.
2826     Record.clear();
2827     bool IsBB = false;
2828     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2829     if (!MaybeRecord)
2830       return MaybeRecord.takeError();
2831     switch (MaybeRecord.get()) {
2832     default:  // Default behavior: unknown type.
2833       break;
2834     case bitc::USELIST_CODE_BB:
2835       IsBB = true;
2836       LLVM_FALLTHROUGH;
2837     case bitc::USELIST_CODE_DEFAULT: {
2838       unsigned RecordLength = Record.size();
2839       if (RecordLength < 3)
2840         // Records should have at least an ID and two indexes.
2841         return error("Invalid record");
2842       unsigned ID = Record.back();
2843       Record.pop_back();
2844 
2845       Value *V;
2846       if (IsBB) {
2847         assert(ID < FunctionBBs.size() && "Basic block not found");
2848         V = FunctionBBs[ID];
2849       } else
2850         V = ValueList[ID];
2851       unsigned NumUses = 0;
2852       SmallDenseMap<const Use *, unsigned, 16> Order;
2853       for (const Use &U : V->materialized_uses()) {
2854         if (++NumUses > Record.size())
2855           break;
2856         Order[&U] = Record[NumUses - 1];
2857       }
2858       if (Order.size() != Record.size() || NumUses > Record.size())
2859         // Mismatches can happen if the functions are being materialized lazily
2860         // (out-of-order), or a value has been upgraded.
2861         break;
2862 
2863       V->sortUseList([&](const Use &L, const Use &R) {
2864         return Order.lookup(&L) < Order.lookup(&R);
2865       });
2866       break;
2867     }
2868     }
2869   }
2870 }
2871 
2872 /// When we see the block for metadata, remember where it is and then skip it.
2873 /// This lets us lazily deserialize the metadata.
2874 Error BitcodeReader::rememberAndSkipMetadata() {
2875   // Save the current stream state.
2876   uint64_t CurBit = Stream.GetCurrentBitNo();
2877   DeferredMetadataInfo.push_back(CurBit);
2878 
2879   // Skip over the block for now.
2880   if (Error Err = Stream.SkipBlock())
2881     return Err;
2882   return Error::success();
2883 }
2884 
2885 Error BitcodeReader::materializeMetadata() {
2886   for (uint64_t BitPos : DeferredMetadataInfo) {
2887     // Move the bit stream to the saved position.
2888     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2889       return JumpFailed;
2890     if (Error Err = MDLoader->parseModuleMetadata())
2891       return Err;
2892   }
2893 
2894   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2895   // metadata.
2896   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2897     NamedMDNode *LinkerOpts =
2898         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2899     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2900       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2901   }
2902 
2903   DeferredMetadataInfo.clear();
2904   return Error::success();
2905 }
2906 
2907 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2908 
2909 /// When we see the block for a function body, remember where it is and then
2910 /// skip it.  This lets us lazily deserialize the functions.
2911 Error BitcodeReader::rememberAndSkipFunctionBody() {
2912   // Get the function we are talking about.
2913   if (FunctionsWithBodies.empty())
2914     return error("Insufficient function protos");
2915 
2916   Function *Fn = FunctionsWithBodies.back();
2917   FunctionsWithBodies.pop_back();
2918 
2919   // Save the current stream state.
2920   uint64_t CurBit = Stream.GetCurrentBitNo();
2921   assert(
2922       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2923       "Mismatch between VST and scanned function offsets");
2924   DeferredFunctionInfo[Fn] = CurBit;
2925 
2926   // Skip over the function block for now.
2927   if (Error Err = Stream.SkipBlock())
2928     return Err;
2929   return Error::success();
2930 }
2931 
2932 Error BitcodeReader::globalCleanup() {
2933   // Patch the initializers for globals and aliases up.
2934   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2935     return Err;
2936   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2937     return error("Malformed global initializer set");
2938 
2939   // Look for intrinsic functions which need to be upgraded at some point
2940   for (Function &F : *TheModule) {
2941     MDLoader->upgradeDebugIntrinsics(F);
2942     Function *NewFn;
2943     if (UpgradeIntrinsicFunction(&F, NewFn))
2944       UpgradedIntrinsics[&F] = NewFn;
2945     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2946       // Some types could be renamed during loading if several modules are
2947       // loaded in the same LLVMContext (LTO scenario). In this case we should
2948       // remangle intrinsics names as well.
2949       RemangledIntrinsics[&F] = Remangled.getValue();
2950   }
2951 
2952   // Look for global variables which need to be renamed.
2953   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2954   for (GlobalVariable &GV : TheModule->globals())
2955     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2956       UpgradedVariables.emplace_back(&GV, Upgraded);
2957   for (auto &Pair : UpgradedVariables) {
2958     Pair.first->eraseFromParent();
2959     TheModule->getGlobalList().push_back(Pair.second);
2960   }
2961 
2962   // Force deallocation of memory for these vectors to favor the client that
2963   // want lazy deserialization.
2964   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2965   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2966       IndirectSymbolInits);
2967   return Error::success();
2968 }
2969 
2970 /// Support for lazy parsing of function bodies. This is required if we
2971 /// either have an old bitcode file without a VST forward declaration record,
2972 /// or if we have an anonymous function being materialized, since anonymous
2973 /// functions do not have a name and are therefore not in the VST.
2974 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2975   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
2976     return JumpFailed;
2977 
2978   if (Stream.AtEndOfStream())
2979     return error("Could not find function in stream");
2980 
2981   if (!SeenFirstFunctionBody)
2982     return error("Trying to materialize functions before seeing function blocks");
2983 
2984   // An old bitcode file with the symbol table at the end would have
2985   // finished the parse greedily.
2986   assert(SeenValueSymbolTable);
2987 
2988   SmallVector<uint64_t, 64> Record;
2989 
2990   while (true) {
2991     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
2992     if (!MaybeEntry)
2993       return MaybeEntry.takeError();
2994     llvm::BitstreamEntry Entry = MaybeEntry.get();
2995 
2996     switch (Entry.Kind) {
2997     default:
2998       return error("Expect SubBlock");
2999     case BitstreamEntry::SubBlock:
3000       switch (Entry.ID) {
3001       default:
3002         return error("Expect function block");
3003       case bitc::FUNCTION_BLOCK_ID:
3004         if (Error Err = rememberAndSkipFunctionBody())
3005           return Err;
3006         NextUnreadBit = Stream.GetCurrentBitNo();
3007         return Error::success();
3008       }
3009     }
3010   }
3011 }
3012 
3013 bool BitcodeReaderBase::readBlockInfo() {
3014   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3015       Stream.ReadBlockInfoBlock();
3016   if (!MaybeNewBlockInfo)
3017     return true; // FIXME Handle the error.
3018   Optional<BitstreamBlockInfo> NewBlockInfo =
3019       std::move(MaybeNewBlockInfo.get());
3020   if (!NewBlockInfo)
3021     return true;
3022   BlockInfo = std::move(*NewBlockInfo);
3023   return false;
3024 }
3025 
3026 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3027   // v1: [selection_kind, name]
3028   // v2: [strtab_offset, strtab_size, selection_kind]
3029   StringRef Name;
3030   std::tie(Name, Record) = readNameFromStrtab(Record);
3031 
3032   if (Record.empty())
3033     return error("Invalid record");
3034   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3035   std::string OldFormatName;
3036   if (!UseStrtab) {
3037     if (Record.size() < 2)
3038       return error("Invalid record");
3039     unsigned ComdatNameSize = Record[1];
3040     OldFormatName.reserve(ComdatNameSize);
3041     for (unsigned i = 0; i != ComdatNameSize; ++i)
3042       OldFormatName += (char)Record[2 + i];
3043     Name = OldFormatName;
3044   }
3045   Comdat *C = TheModule->getOrInsertComdat(Name);
3046   C->setSelectionKind(SK);
3047   ComdatList.push_back(C);
3048   return Error::success();
3049 }
3050 
3051 static void inferDSOLocal(GlobalValue *GV) {
3052   // infer dso_local from linkage and visibility if it is not encoded.
3053   if (GV->hasLocalLinkage() ||
3054       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3055     GV->setDSOLocal(true);
3056 }
3057 
3058 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3059   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3060   // visibility, threadlocal, unnamed_addr, externally_initialized,
3061   // dllstorageclass, comdat, attributes, preemption specifier,
3062   // partition strtab offset, partition strtab size] (name in VST)
3063   // v2: [strtab_offset, strtab_size, v1]
3064   StringRef Name;
3065   std::tie(Name, Record) = readNameFromStrtab(Record);
3066 
3067   if (Record.size() < 6)
3068     return error("Invalid record");
3069   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3070   Type *Ty = flattenPointerTypes(FullTy);
3071   if (!Ty)
3072     return error("Invalid record");
3073   bool isConstant = Record[1] & 1;
3074   bool explicitType = Record[1] & 2;
3075   unsigned AddressSpace;
3076   if (explicitType) {
3077     AddressSpace = Record[1] >> 2;
3078   } else {
3079     if (!Ty->isPointerTy())
3080       return error("Invalid type for value");
3081     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3082     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3083   }
3084 
3085   uint64_t RawLinkage = Record[3];
3086   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3087   unsigned Alignment;
3088   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3089     return Err;
3090   std::string Section;
3091   if (Record[5]) {
3092     if (Record[5] - 1 >= SectionTable.size())
3093       return error("Invalid ID");
3094     Section = SectionTable[Record[5] - 1];
3095   }
3096   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3097   // Local linkage must have default visibility.
3098   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3099     // FIXME: Change to an error if non-default in 4.0.
3100     Visibility = getDecodedVisibility(Record[6]);
3101 
3102   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3103   if (Record.size() > 7)
3104     TLM = getDecodedThreadLocalMode(Record[7]);
3105 
3106   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3107   if (Record.size() > 8)
3108     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3109 
3110   bool ExternallyInitialized = false;
3111   if (Record.size() > 9)
3112     ExternallyInitialized = Record[9];
3113 
3114   GlobalVariable *NewGV =
3115       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3116                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3117   NewGV->setAlignment(Alignment);
3118   if (!Section.empty())
3119     NewGV->setSection(Section);
3120   NewGV->setVisibility(Visibility);
3121   NewGV->setUnnamedAddr(UnnamedAddr);
3122 
3123   if (Record.size() > 10)
3124     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3125   else
3126     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3127 
3128   FullTy = PointerType::get(FullTy, AddressSpace);
3129   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3130          "Incorrect fully specified type for GlobalVariable");
3131   ValueList.push_back(NewGV, FullTy);
3132 
3133   // Remember which value to use for the global initializer.
3134   if (unsigned InitID = Record[2])
3135     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3136 
3137   if (Record.size() > 11) {
3138     if (unsigned ComdatID = Record[11]) {
3139       if (ComdatID > ComdatList.size())
3140         return error("Invalid global variable comdat ID");
3141       NewGV->setComdat(ComdatList[ComdatID - 1]);
3142     }
3143   } else if (hasImplicitComdat(RawLinkage)) {
3144     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3145   }
3146 
3147   if (Record.size() > 12) {
3148     auto AS = getAttributes(Record[12]).getFnAttributes();
3149     NewGV->setAttributes(AS);
3150   }
3151 
3152   if (Record.size() > 13) {
3153     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3154   }
3155   inferDSOLocal(NewGV);
3156 
3157   // Check whether we have enough values to read a partition name.
3158   if (Record.size() > 15)
3159     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3160 
3161   return Error::success();
3162 }
3163 
3164 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3165   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3166   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3167   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3168   // v2: [strtab_offset, strtab_size, v1]
3169   StringRef Name;
3170   std::tie(Name, Record) = readNameFromStrtab(Record);
3171 
3172   if (Record.size() < 8)
3173     return error("Invalid record");
3174   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3175   Type *FTy = flattenPointerTypes(FullFTy);
3176   if (!FTy)
3177     return error("Invalid record");
3178   if (isa<PointerType>(FTy))
3179     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3180 
3181   if (!isa<FunctionType>(FTy))
3182     return error("Invalid type for value");
3183   auto CC = static_cast<CallingConv::ID>(Record[1]);
3184   if (CC & ~CallingConv::MaxID)
3185     return error("Invalid calling convention ID");
3186 
3187   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3188   if (Record.size() > 16)
3189     AddrSpace = Record[16];
3190 
3191   Function *Func =
3192       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3193                        AddrSpace, Name, TheModule);
3194 
3195   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3196          "Incorrect fully specified type provided for function");
3197   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3198 
3199   Func->setCallingConv(CC);
3200   bool isProto = Record[2];
3201   uint64_t RawLinkage = Record[3];
3202   Func->setLinkage(getDecodedLinkage(RawLinkage));
3203   Func->setAttributes(getAttributes(Record[4]));
3204 
3205   // Upgrade any old-style byval without a type by propagating the argument's
3206   // pointee type. There should be no opaque pointers where the byval type is
3207   // implicit.
3208   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3209     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3210       continue;
3211 
3212     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3213     Func->removeParamAttr(i, Attribute::ByVal);
3214     Func->addParamAttr(i, Attribute::getWithByValType(
3215                               Context, getPointerElementFlatType(PTy)));
3216   }
3217 
3218   unsigned Alignment;
3219   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3220     return Err;
3221   Func->setAlignment(Alignment);
3222   if (Record[6]) {
3223     if (Record[6] - 1 >= SectionTable.size())
3224       return error("Invalid ID");
3225     Func->setSection(SectionTable[Record[6] - 1]);
3226   }
3227   // Local linkage must have default visibility.
3228   if (!Func->hasLocalLinkage())
3229     // FIXME: Change to an error if non-default in 4.0.
3230     Func->setVisibility(getDecodedVisibility(Record[7]));
3231   if (Record.size() > 8 && Record[8]) {
3232     if (Record[8] - 1 >= GCTable.size())
3233       return error("Invalid ID");
3234     Func->setGC(GCTable[Record[8] - 1]);
3235   }
3236   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3237   if (Record.size() > 9)
3238     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3239   Func->setUnnamedAddr(UnnamedAddr);
3240   if (Record.size() > 10 && Record[10] != 0)
3241     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3242 
3243   if (Record.size() > 11)
3244     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3245   else
3246     upgradeDLLImportExportLinkage(Func, RawLinkage);
3247 
3248   if (Record.size() > 12) {
3249     if (unsigned ComdatID = Record[12]) {
3250       if (ComdatID > ComdatList.size())
3251         return error("Invalid function comdat ID");
3252       Func->setComdat(ComdatList[ComdatID - 1]);
3253     }
3254   } else if (hasImplicitComdat(RawLinkage)) {
3255     Func->setComdat(reinterpret_cast<Comdat *>(1));
3256   }
3257 
3258   if (Record.size() > 13 && Record[13] != 0)
3259     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3260 
3261   if (Record.size() > 14 && Record[14] != 0)
3262     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3263 
3264   if (Record.size() > 15) {
3265     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3266   }
3267   inferDSOLocal(Func);
3268 
3269   // Record[16] is the address space number.
3270 
3271   // Check whether we have enough values to read a partition name.
3272   if (Record.size() > 18)
3273     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3274 
3275   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3276   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3277          "Incorrect fully specified type provided for Function");
3278   ValueList.push_back(Func, FullTy);
3279 
3280   // If this is a function with a body, remember the prototype we are
3281   // creating now, so that we can match up the body with them later.
3282   if (!isProto) {
3283     Func->setIsMaterializable(true);
3284     FunctionsWithBodies.push_back(Func);
3285     DeferredFunctionInfo[Func] = 0;
3286   }
3287   return Error::success();
3288 }
3289 
3290 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3291     unsigned BitCode, ArrayRef<uint64_t> Record) {
3292   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3293   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3294   // dllstorageclass, threadlocal, unnamed_addr,
3295   // preemption specifier] (name in VST)
3296   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3297   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3298   // preemption specifier] (name in VST)
3299   // v2: [strtab_offset, strtab_size, v1]
3300   StringRef Name;
3301   std::tie(Name, Record) = readNameFromStrtab(Record);
3302 
3303   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3304   if (Record.size() < (3 + (unsigned)NewRecord))
3305     return error("Invalid record");
3306   unsigned OpNum = 0;
3307   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3308   Type *Ty = flattenPointerTypes(FullTy);
3309   if (!Ty)
3310     return error("Invalid record");
3311 
3312   unsigned AddrSpace;
3313   if (!NewRecord) {
3314     auto *PTy = dyn_cast<PointerType>(Ty);
3315     if (!PTy)
3316       return error("Invalid type for value");
3317     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3318     AddrSpace = PTy->getAddressSpace();
3319   } else {
3320     AddrSpace = Record[OpNum++];
3321   }
3322 
3323   auto Val = Record[OpNum++];
3324   auto Linkage = Record[OpNum++];
3325   GlobalIndirectSymbol *NewGA;
3326   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3327       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3328     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3329                                 TheModule);
3330   else
3331     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3332                                 nullptr, TheModule);
3333 
3334   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3335          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3336   // Old bitcode files didn't have visibility field.
3337   // Local linkage must have default visibility.
3338   if (OpNum != Record.size()) {
3339     auto VisInd = OpNum++;
3340     if (!NewGA->hasLocalLinkage())
3341       // FIXME: Change to an error if non-default in 4.0.
3342       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3343   }
3344   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3345       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3346     if (OpNum != Record.size())
3347       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3348     else
3349       upgradeDLLImportExportLinkage(NewGA, Linkage);
3350     if (OpNum != Record.size())
3351       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3352     if (OpNum != Record.size())
3353       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3354   }
3355   if (OpNum != Record.size())
3356     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3357   inferDSOLocal(NewGA);
3358 
3359   // Check whether we have enough values to read a partition name.
3360   if (OpNum + 1 < Record.size()) {
3361     NewGA->setPartition(
3362         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3363     OpNum += 2;
3364   }
3365 
3366   FullTy = PointerType::get(FullTy, AddrSpace);
3367   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3368          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3369   ValueList.push_back(NewGA, FullTy);
3370   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3371   return Error::success();
3372 }
3373 
3374 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3375                                  bool ShouldLazyLoadMetadata) {
3376   if (ResumeBit) {
3377     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3378       return JumpFailed;
3379   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3380     return Err;
3381 
3382   SmallVector<uint64_t, 64> Record;
3383 
3384   // Read all the records for this module.
3385   while (true) {
3386     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3387     if (!MaybeEntry)
3388       return MaybeEntry.takeError();
3389     llvm::BitstreamEntry Entry = MaybeEntry.get();
3390 
3391     switch (Entry.Kind) {
3392     case BitstreamEntry::Error:
3393       return error("Malformed block");
3394     case BitstreamEntry::EndBlock:
3395       return globalCleanup();
3396 
3397     case BitstreamEntry::SubBlock:
3398       switch (Entry.ID) {
3399       default:  // Skip unknown content.
3400         if (Error Err = Stream.SkipBlock())
3401           return Err;
3402         break;
3403       case bitc::BLOCKINFO_BLOCK_ID:
3404         if (readBlockInfo())
3405           return error("Malformed block");
3406         break;
3407       case bitc::PARAMATTR_BLOCK_ID:
3408         if (Error Err = parseAttributeBlock())
3409           return Err;
3410         break;
3411       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3412         if (Error Err = parseAttributeGroupBlock())
3413           return Err;
3414         break;
3415       case bitc::TYPE_BLOCK_ID_NEW:
3416         if (Error Err = parseTypeTable())
3417           return Err;
3418         break;
3419       case bitc::VALUE_SYMTAB_BLOCK_ID:
3420         if (!SeenValueSymbolTable) {
3421           // Either this is an old form VST without function index and an
3422           // associated VST forward declaration record (which would have caused
3423           // the VST to be jumped to and parsed before it was encountered
3424           // normally in the stream), or there were no function blocks to
3425           // trigger an earlier parsing of the VST.
3426           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3427           if (Error Err = parseValueSymbolTable())
3428             return Err;
3429           SeenValueSymbolTable = true;
3430         } else {
3431           // We must have had a VST forward declaration record, which caused
3432           // the parser to jump to and parse the VST earlier.
3433           assert(VSTOffset > 0);
3434           if (Error Err = Stream.SkipBlock())
3435             return Err;
3436         }
3437         break;
3438       case bitc::CONSTANTS_BLOCK_ID:
3439         if (Error Err = parseConstants())
3440           return Err;
3441         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3442           return Err;
3443         break;
3444       case bitc::METADATA_BLOCK_ID:
3445         if (ShouldLazyLoadMetadata) {
3446           if (Error Err = rememberAndSkipMetadata())
3447             return Err;
3448           break;
3449         }
3450         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3451         if (Error Err = MDLoader->parseModuleMetadata())
3452           return Err;
3453         break;
3454       case bitc::METADATA_KIND_BLOCK_ID:
3455         if (Error Err = MDLoader->parseMetadataKinds())
3456           return Err;
3457         break;
3458       case bitc::FUNCTION_BLOCK_ID:
3459         // If this is the first function body we've seen, reverse the
3460         // FunctionsWithBodies list.
3461         if (!SeenFirstFunctionBody) {
3462           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3463           if (Error Err = globalCleanup())
3464             return Err;
3465           SeenFirstFunctionBody = true;
3466         }
3467 
3468         if (VSTOffset > 0) {
3469           // If we have a VST forward declaration record, make sure we
3470           // parse the VST now if we haven't already. It is needed to
3471           // set up the DeferredFunctionInfo vector for lazy reading.
3472           if (!SeenValueSymbolTable) {
3473             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3474               return Err;
3475             SeenValueSymbolTable = true;
3476             // Fall through so that we record the NextUnreadBit below.
3477             // This is necessary in case we have an anonymous function that
3478             // is later materialized. Since it will not have a VST entry we
3479             // need to fall back to the lazy parse to find its offset.
3480           } else {
3481             // If we have a VST forward declaration record, but have already
3482             // parsed the VST (just above, when the first function body was
3483             // encountered here), then we are resuming the parse after
3484             // materializing functions. The ResumeBit points to the
3485             // start of the last function block recorded in the
3486             // DeferredFunctionInfo map. Skip it.
3487             if (Error Err = Stream.SkipBlock())
3488               return Err;
3489             continue;
3490           }
3491         }
3492 
3493         // Support older bitcode files that did not have the function
3494         // index in the VST, nor a VST forward declaration record, as
3495         // well as anonymous functions that do not have VST entries.
3496         // Build the DeferredFunctionInfo vector on the fly.
3497         if (Error Err = rememberAndSkipFunctionBody())
3498           return Err;
3499 
3500         // Suspend parsing when we reach the function bodies. Subsequent
3501         // materialization calls will resume it when necessary. If the bitcode
3502         // file is old, the symbol table will be at the end instead and will not
3503         // have been seen yet. In this case, just finish the parse now.
3504         if (SeenValueSymbolTable) {
3505           NextUnreadBit = Stream.GetCurrentBitNo();
3506           // After the VST has been parsed, we need to make sure intrinsic name
3507           // are auto-upgraded.
3508           return globalCleanup();
3509         }
3510         break;
3511       case bitc::USELIST_BLOCK_ID:
3512         if (Error Err = parseUseLists())
3513           return Err;
3514         break;
3515       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3516         if (Error Err = parseOperandBundleTags())
3517           return Err;
3518         break;
3519       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3520         if (Error Err = parseSyncScopeNames())
3521           return Err;
3522         break;
3523       }
3524       continue;
3525 
3526     case BitstreamEntry::Record:
3527       // The interesting case.
3528       break;
3529     }
3530 
3531     // Read a record.
3532     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3533     if (!MaybeBitCode)
3534       return MaybeBitCode.takeError();
3535     switch (unsigned BitCode = MaybeBitCode.get()) {
3536     default: break;  // Default behavior, ignore unknown content.
3537     case bitc::MODULE_CODE_VERSION: {
3538       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3539       if (!VersionOrErr)
3540         return VersionOrErr.takeError();
3541       UseRelativeIDs = *VersionOrErr >= 1;
3542       break;
3543     }
3544     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3545       std::string S;
3546       if (convertToString(Record, 0, S))
3547         return error("Invalid record");
3548       TheModule->setTargetTriple(S);
3549       break;
3550     }
3551     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3552       std::string S;
3553       if (convertToString(Record, 0, S))
3554         return error("Invalid record");
3555       TheModule->setDataLayout(S);
3556       break;
3557     }
3558     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3559       std::string S;
3560       if (convertToString(Record, 0, S))
3561         return error("Invalid record");
3562       TheModule->setModuleInlineAsm(S);
3563       break;
3564     }
3565     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3566       // FIXME: Remove in 4.0.
3567       std::string S;
3568       if (convertToString(Record, 0, S))
3569         return error("Invalid record");
3570       // Ignore value.
3571       break;
3572     }
3573     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3574       std::string S;
3575       if (convertToString(Record, 0, S))
3576         return error("Invalid record");
3577       SectionTable.push_back(S);
3578       break;
3579     }
3580     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3581       std::string S;
3582       if (convertToString(Record, 0, S))
3583         return error("Invalid record");
3584       GCTable.push_back(S);
3585       break;
3586     }
3587     case bitc::MODULE_CODE_COMDAT:
3588       if (Error Err = parseComdatRecord(Record))
3589         return Err;
3590       break;
3591     case bitc::MODULE_CODE_GLOBALVAR:
3592       if (Error Err = parseGlobalVarRecord(Record))
3593         return Err;
3594       break;
3595     case bitc::MODULE_CODE_FUNCTION:
3596       if (Error Err = parseFunctionRecord(Record))
3597         return Err;
3598       break;
3599     case bitc::MODULE_CODE_IFUNC:
3600     case bitc::MODULE_CODE_ALIAS:
3601     case bitc::MODULE_CODE_ALIAS_OLD:
3602       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3603         return Err;
3604       break;
3605     /// MODULE_CODE_VSTOFFSET: [offset]
3606     case bitc::MODULE_CODE_VSTOFFSET:
3607       if (Record.size() < 1)
3608         return error("Invalid record");
3609       // Note that we subtract 1 here because the offset is relative to one word
3610       // before the start of the identification or module block, which was
3611       // historically always the start of the regular bitcode header.
3612       VSTOffset = Record[0] - 1;
3613       break;
3614     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3615     case bitc::MODULE_CODE_SOURCE_FILENAME:
3616       SmallString<128> ValueName;
3617       if (convertToString(Record, 0, ValueName))
3618         return error("Invalid record");
3619       TheModule->setSourceFileName(ValueName);
3620       break;
3621     }
3622     Record.clear();
3623   }
3624 }
3625 
3626 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3627                                       bool IsImporting) {
3628   TheModule = M;
3629   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3630                             [&](unsigned ID) { return getTypeByID(ID); });
3631   return parseModule(0, ShouldLazyLoadMetadata);
3632 }
3633 
3634 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3635   if (!isa<PointerType>(PtrType))
3636     return error("Load/Store operand is not a pointer type");
3637   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3638 
3639   if (ValType && ValType != ElemType)
3640     return error("Explicit load/store type does not match pointee "
3641                  "type of pointer operand");
3642   if (!PointerType::isLoadableOrStorableType(ElemType))
3643     return error("Cannot load/store from pointer");
3644   return Error::success();
3645 }
3646 
3647 void BitcodeReader::propagateByValTypes(CallBase *CB,
3648                                         ArrayRef<Type *> ArgsFullTys) {
3649   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3650     if (!CB->paramHasAttr(i, Attribute::ByVal))
3651       continue;
3652 
3653     CB->removeParamAttr(i, Attribute::ByVal);
3654     CB->addParamAttr(
3655         i, Attribute::getWithByValType(
3656                Context, getPointerElementFlatType(ArgsFullTys[i])));
3657   }
3658 }
3659 
3660 /// Lazily parse the specified function body block.
3661 Error BitcodeReader::parseFunctionBody(Function *F) {
3662   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3663     return Err;
3664 
3665   // Unexpected unresolved metadata when parsing function.
3666   if (MDLoader->hasFwdRefs())
3667     return error("Invalid function metadata: incoming forward references");
3668 
3669   InstructionList.clear();
3670   unsigned ModuleValueListSize = ValueList.size();
3671   unsigned ModuleMDLoaderSize = MDLoader->size();
3672 
3673   // Add all the function arguments to the value table.
3674   unsigned ArgNo = 0;
3675   FunctionType *FullFTy = FunctionTypes[F];
3676   for (Argument &I : F->args()) {
3677     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3678            "Incorrect fully specified type for Function Argument");
3679     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3680   }
3681   unsigned NextValueNo = ValueList.size();
3682   BasicBlock *CurBB = nullptr;
3683   unsigned CurBBNo = 0;
3684 
3685   DebugLoc LastLoc;
3686   auto getLastInstruction = [&]() -> Instruction * {
3687     if (CurBB && !CurBB->empty())
3688       return &CurBB->back();
3689     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3690              !FunctionBBs[CurBBNo - 1]->empty())
3691       return &FunctionBBs[CurBBNo - 1]->back();
3692     return nullptr;
3693   };
3694 
3695   std::vector<OperandBundleDef> OperandBundles;
3696 
3697   // Read all the records.
3698   SmallVector<uint64_t, 64> Record;
3699 
3700   while (true) {
3701     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3702     if (!MaybeEntry)
3703       return MaybeEntry.takeError();
3704     llvm::BitstreamEntry Entry = MaybeEntry.get();
3705 
3706     switch (Entry.Kind) {
3707     case BitstreamEntry::Error:
3708       return error("Malformed block");
3709     case BitstreamEntry::EndBlock:
3710       goto OutOfRecordLoop;
3711 
3712     case BitstreamEntry::SubBlock:
3713       switch (Entry.ID) {
3714       default:  // Skip unknown content.
3715         if (Error Err = Stream.SkipBlock())
3716           return Err;
3717         break;
3718       case bitc::CONSTANTS_BLOCK_ID:
3719         if (Error Err = parseConstants())
3720           return Err;
3721         NextValueNo = ValueList.size();
3722         break;
3723       case bitc::VALUE_SYMTAB_BLOCK_ID:
3724         if (Error Err = parseValueSymbolTable())
3725           return Err;
3726         break;
3727       case bitc::METADATA_ATTACHMENT_ID:
3728         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3729           return Err;
3730         break;
3731       case bitc::METADATA_BLOCK_ID:
3732         assert(DeferredMetadataInfo.empty() &&
3733                "Must read all module-level metadata before function-level");
3734         if (Error Err = MDLoader->parseFunctionMetadata())
3735           return Err;
3736         break;
3737       case bitc::USELIST_BLOCK_ID:
3738         if (Error Err = parseUseLists())
3739           return Err;
3740         break;
3741       }
3742       continue;
3743 
3744     case BitstreamEntry::Record:
3745       // The interesting case.
3746       break;
3747     }
3748 
3749     // Read a record.
3750     Record.clear();
3751     Instruction *I = nullptr;
3752     Type *FullTy = nullptr;
3753     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3754     if (!MaybeBitCode)
3755       return MaybeBitCode.takeError();
3756     switch (unsigned BitCode = MaybeBitCode.get()) {
3757     default: // Default behavior: reject
3758       return error("Invalid value");
3759     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3760       if (Record.size() < 1 || Record[0] == 0)
3761         return error("Invalid record");
3762       // Create all the basic blocks for the function.
3763       FunctionBBs.resize(Record[0]);
3764 
3765       // See if anything took the address of blocks in this function.
3766       auto BBFRI = BasicBlockFwdRefs.find(F);
3767       if (BBFRI == BasicBlockFwdRefs.end()) {
3768         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3769           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3770       } else {
3771         auto &BBRefs = BBFRI->second;
3772         // Check for invalid basic block references.
3773         if (BBRefs.size() > FunctionBBs.size())
3774           return error("Invalid ID");
3775         assert(!BBRefs.empty() && "Unexpected empty array");
3776         assert(!BBRefs.front() && "Invalid reference to entry block");
3777         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3778              ++I)
3779           if (I < RE && BBRefs[I]) {
3780             BBRefs[I]->insertInto(F);
3781             FunctionBBs[I] = BBRefs[I];
3782           } else {
3783             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3784           }
3785 
3786         // Erase from the table.
3787         BasicBlockFwdRefs.erase(BBFRI);
3788       }
3789 
3790       CurBB = FunctionBBs[0];
3791       continue;
3792     }
3793 
3794     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3795       // This record indicates that the last instruction is at the same
3796       // location as the previous instruction with a location.
3797       I = getLastInstruction();
3798 
3799       if (!I)
3800         return error("Invalid record");
3801       I->setDebugLoc(LastLoc);
3802       I = nullptr;
3803       continue;
3804 
3805     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3806       I = getLastInstruction();
3807       if (!I || Record.size() < 4)
3808         return error("Invalid record");
3809 
3810       unsigned Line = Record[0], Col = Record[1];
3811       unsigned ScopeID = Record[2], IAID = Record[3];
3812       bool isImplicitCode = Record.size() == 5 && Record[4];
3813 
3814       MDNode *Scope = nullptr, *IA = nullptr;
3815       if (ScopeID) {
3816         Scope = dyn_cast_or_null<MDNode>(
3817             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3818         if (!Scope)
3819           return error("Invalid record");
3820       }
3821       if (IAID) {
3822         IA = dyn_cast_or_null<MDNode>(
3823             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3824         if (!IA)
3825           return error("Invalid record");
3826       }
3827       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3828       I->setDebugLoc(LastLoc);
3829       I = nullptr;
3830       continue;
3831     }
3832     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3833       unsigned OpNum = 0;
3834       Value *LHS;
3835       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3836           OpNum+1 > Record.size())
3837         return error("Invalid record");
3838 
3839       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3840       if (Opc == -1)
3841         return error("Invalid record");
3842       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3843       InstructionList.push_back(I);
3844       if (OpNum < Record.size()) {
3845         if (isa<FPMathOperator>(I)) {
3846           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3847           if (FMF.any())
3848             I->setFastMathFlags(FMF);
3849         }
3850       }
3851       break;
3852     }
3853     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3854       unsigned OpNum = 0;
3855       Value *LHS, *RHS;
3856       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3857           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3858           OpNum+1 > Record.size())
3859         return error("Invalid record");
3860 
3861       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3862       if (Opc == -1)
3863         return error("Invalid record");
3864       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3865       InstructionList.push_back(I);
3866       if (OpNum < Record.size()) {
3867         if (Opc == Instruction::Add ||
3868             Opc == Instruction::Sub ||
3869             Opc == Instruction::Mul ||
3870             Opc == Instruction::Shl) {
3871           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3872             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3873           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3874             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3875         } else if (Opc == Instruction::SDiv ||
3876                    Opc == Instruction::UDiv ||
3877                    Opc == Instruction::LShr ||
3878                    Opc == Instruction::AShr) {
3879           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3880             cast<BinaryOperator>(I)->setIsExact(true);
3881         } else if (isa<FPMathOperator>(I)) {
3882           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3883           if (FMF.any())
3884             I->setFastMathFlags(FMF);
3885         }
3886 
3887       }
3888       break;
3889     }
3890     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3891       unsigned OpNum = 0;
3892       Value *Op;
3893       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3894           OpNum+2 != Record.size())
3895         return error("Invalid record");
3896 
3897       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3898       Type *ResTy = flattenPointerTypes(FullTy);
3899       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3900       if (Opc == -1 || !ResTy)
3901         return error("Invalid record");
3902       Instruction *Temp = nullptr;
3903       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3904         if (Temp) {
3905           InstructionList.push_back(Temp);
3906           CurBB->getInstList().push_back(Temp);
3907         }
3908       } else {
3909         auto CastOp = (Instruction::CastOps)Opc;
3910         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3911           return error("Invalid cast");
3912         I = CastInst::Create(CastOp, Op, ResTy);
3913       }
3914       InstructionList.push_back(I);
3915       break;
3916     }
3917     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3918     case bitc::FUNC_CODE_INST_GEP_OLD:
3919     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3920       unsigned OpNum = 0;
3921 
3922       Type *Ty;
3923       bool InBounds;
3924 
3925       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3926         InBounds = Record[OpNum++];
3927         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3928         Ty = flattenPointerTypes(FullTy);
3929       } else {
3930         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3931         Ty = nullptr;
3932       }
3933 
3934       Value *BasePtr;
3935       Type *FullBaseTy = nullptr;
3936       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3937         return error("Invalid record");
3938 
3939       if (!Ty) {
3940         std::tie(FullTy, Ty) =
3941             getPointerElementTypes(FullBaseTy->getScalarType());
3942       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3943         return error(
3944             "Explicit gep type does not match pointee type of pointer operand");
3945 
3946       SmallVector<Value*, 16> GEPIdx;
3947       while (OpNum != Record.size()) {
3948         Value *Op;
3949         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3950           return error("Invalid record");
3951         GEPIdx.push_back(Op);
3952       }
3953 
3954       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3955       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3956 
3957       InstructionList.push_back(I);
3958       if (InBounds)
3959         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3960       break;
3961     }
3962 
3963     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3964                                        // EXTRACTVAL: [opty, opval, n x indices]
3965       unsigned OpNum = 0;
3966       Value *Agg;
3967       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
3968         return error("Invalid record");
3969 
3970       unsigned RecSize = Record.size();
3971       if (OpNum == RecSize)
3972         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3973 
3974       SmallVector<unsigned, 4> EXTRACTVALIdx;
3975       for (; OpNum != RecSize; ++OpNum) {
3976         bool IsArray = FullTy->isArrayTy();
3977         bool IsStruct = FullTy->isStructTy();
3978         uint64_t Index = Record[OpNum];
3979 
3980         if (!IsStruct && !IsArray)
3981           return error("EXTRACTVAL: Invalid type");
3982         if ((unsigned)Index != Index)
3983           return error("Invalid value");
3984         if (IsStruct && Index >= FullTy->getStructNumElements())
3985           return error("EXTRACTVAL: Invalid struct index");
3986         if (IsArray && Index >= FullTy->getArrayNumElements())
3987           return error("EXTRACTVAL: Invalid array index");
3988         EXTRACTVALIdx.push_back((unsigned)Index);
3989 
3990         if (IsStruct)
3991           FullTy = FullTy->getStructElementType(Index);
3992         else
3993           FullTy = FullTy->getArrayElementType();
3994       }
3995 
3996       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3997       InstructionList.push_back(I);
3998       break;
3999     }
4000 
4001     case bitc::FUNC_CODE_INST_INSERTVAL: {
4002                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4003       unsigned OpNum = 0;
4004       Value *Agg;
4005       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4006         return error("Invalid record");
4007       Value *Val;
4008       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4009         return error("Invalid record");
4010 
4011       unsigned RecSize = Record.size();
4012       if (OpNum == RecSize)
4013         return error("INSERTVAL: Invalid instruction with 0 indices");
4014 
4015       SmallVector<unsigned, 4> INSERTVALIdx;
4016       Type *CurTy = Agg->getType();
4017       for (; OpNum != RecSize; ++OpNum) {
4018         bool IsArray = CurTy->isArrayTy();
4019         bool IsStruct = CurTy->isStructTy();
4020         uint64_t Index = Record[OpNum];
4021 
4022         if (!IsStruct && !IsArray)
4023           return error("INSERTVAL: Invalid type");
4024         if ((unsigned)Index != Index)
4025           return error("Invalid value");
4026         if (IsStruct && Index >= CurTy->getStructNumElements())
4027           return error("INSERTVAL: Invalid struct index");
4028         if (IsArray && Index >= CurTy->getArrayNumElements())
4029           return error("INSERTVAL: Invalid array index");
4030 
4031         INSERTVALIdx.push_back((unsigned)Index);
4032         if (IsStruct)
4033           CurTy = CurTy->getStructElementType(Index);
4034         else
4035           CurTy = CurTy->getArrayElementType();
4036       }
4037 
4038       if (CurTy != Val->getType())
4039         return error("Inserted value type doesn't match aggregate type");
4040 
4041       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4042       InstructionList.push_back(I);
4043       break;
4044     }
4045 
4046     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4047       // obsolete form of select
4048       // handles select i1 ... in old bitcode
4049       unsigned OpNum = 0;
4050       Value *TrueVal, *FalseVal, *Cond;
4051       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4052           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4053           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4054         return error("Invalid record");
4055 
4056       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4057       InstructionList.push_back(I);
4058       break;
4059     }
4060 
4061     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4062       // new form of select
4063       // handles select i1 or select [N x i1]
4064       unsigned OpNum = 0;
4065       Value *TrueVal, *FalseVal, *Cond;
4066       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4067           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4068           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4069         return error("Invalid record");
4070 
4071       // select condition can be either i1 or [N x i1]
4072       if (VectorType* vector_type =
4073           dyn_cast<VectorType>(Cond->getType())) {
4074         // expect <n x i1>
4075         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4076           return error("Invalid type for value");
4077       } else {
4078         // expect i1
4079         if (Cond->getType() != Type::getInt1Ty(Context))
4080           return error("Invalid type for value");
4081       }
4082 
4083       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4084       InstructionList.push_back(I);
4085       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4086         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4087         if (FMF.any())
4088           I->setFastMathFlags(FMF);
4089       }
4090       break;
4091     }
4092 
4093     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4094       unsigned OpNum = 0;
4095       Value *Vec, *Idx;
4096       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4097           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4098         return error("Invalid record");
4099       if (!Vec->getType()->isVectorTy())
4100         return error("Invalid type for value");
4101       I = ExtractElementInst::Create(Vec, Idx);
4102       FullTy = FullTy->getVectorElementType();
4103       InstructionList.push_back(I);
4104       break;
4105     }
4106 
4107     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4108       unsigned OpNum = 0;
4109       Value *Vec, *Elt, *Idx;
4110       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4111         return error("Invalid record");
4112       if (!Vec->getType()->isVectorTy())
4113         return error("Invalid type for value");
4114       if (popValue(Record, OpNum, NextValueNo,
4115                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4116           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4117         return error("Invalid record");
4118       I = InsertElementInst::Create(Vec, Elt, Idx);
4119       InstructionList.push_back(I);
4120       break;
4121     }
4122 
4123     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4124       unsigned OpNum = 0;
4125       Value *Vec1, *Vec2, *Mask;
4126       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4127           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4128         return error("Invalid record");
4129 
4130       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4131         return error("Invalid record");
4132       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4133         return error("Invalid type for value");
4134       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4135       FullTy = VectorType::get(FullTy->getVectorElementType(),
4136                                Mask->getType()->getVectorNumElements());
4137       InstructionList.push_back(I);
4138       break;
4139     }
4140 
4141     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4142       // Old form of ICmp/FCmp returning bool
4143       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4144       // both legal on vectors but had different behaviour.
4145     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4146       // FCmp/ICmp returning bool or vector of bool
4147 
4148       unsigned OpNum = 0;
4149       Value *LHS, *RHS;
4150       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4151           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4152         return error("Invalid record");
4153 
4154       unsigned PredVal = Record[OpNum];
4155       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4156       FastMathFlags FMF;
4157       if (IsFP && Record.size() > OpNum+1)
4158         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4159 
4160       if (OpNum+1 != Record.size())
4161         return error("Invalid record");
4162 
4163       if (LHS->getType()->isFPOrFPVectorTy())
4164         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4165       else
4166         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4167 
4168       if (FMF.any())
4169         I->setFastMathFlags(FMF);
4170       InstructionList.push_back(I);
4171       break;
4172     }
4173 
4174     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4175       {
4176         unsigned Size = Record.size();
4177         if (Size == 0) {
4178           I = ReturnInst::Create(Context);
4179           InstructionList.push_back(I);
4180           break;
4181         }
4182 
4183         unsigned OpNum = 0;
4184         Value *Op = nullptr;
4185         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4186           return error("Invalid record");
4187         if (OpNum != Record.size())
4188           return error("Invalid record");
4189 
4190         I = ReturnInst::Create(Context, Op);
4191         InstructionList.push_back(I);
4192         break;
4193       }
4194     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4195       if (Record.size() != 1 && Record.size() != 3)
4196         return error("Invalid record");
4197       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4198       if (!TrueDest)
4199         return error("Invalid record");
4200 
4201       if (Record.size() == 1) {
4202         I = BranchInst::Create(TrueDest);
4203         InstructionList.push_back(I);
4204       }
4205       else {
4206         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4207         Value *Cond = getValue(Record, 2, NextValueNo,
4208                                Type::getInt1Ty(Context));
4209         if (!FalseDest || !Cond)
4210           return error("Invalid record");
4211         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4212         InstructionList.push_back(I);
4213       }
4214       break;
4215     }
4216     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4217       if (Record.size() != 1 && Record.size() != 2)
4218         return error("Invalid record");
4219       unsigned Idx = 0;
4220       Value *CleanupPad =
4221           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4222       if (!CleanupPad)
4223         return error("Invalid record");
4224       BasicBlock *UnwindDest = nullptr;
4225       if (Record.size() == 2) {
4226         UnwindDest = getBasicBlock(Record[Idx++]);
4227         if (!UnwindDest)
4228           return error("Invalid record");
4229       }
4230 
4231       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4232       InstructionList.push_back(I);
4233       break;
4234     }
4235     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4236       if (Record.size() != 2)
4237         return error("Invalid record");
4238       unsigned Idx = 0;
4239       Value *CatchPad =
4240           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4241       if (!CatchPad)
4242         return error("Invalid record");
4243       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4244       if (!BB)
4245         return error("Invalid record");
4246 
4247       I = CatchReturnInst::Create(CatchPad, BB);
4248       InstructionList.push_back(I);
4249       break;
4250     }
4251     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4252       // We must have, at minimum, the outer scope and the number of arguments.
4253       if (Record.size() < 2)
4254         return error("Invalid record");
4255 
4256       unsigned Idx = 0;
4257 
4258       Value *ParentPad =
4259           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4260 
4261       unsigned NumHandlers = Record[Idx++];
4262 
4263       SmallVector<BasicBlock *, 2> Handlers;
4264       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4265         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4266         if (!BB)
4267           return error("Invalid record");
4268         Handlers.push_back(BB);
4269       }
4270 
4271       BasicBlock *UnwindDest = nullptr;
4272       if (Idx + 1 == Record.size()) {
4273         UnwindDest = getBasicBlock(Record[Idx++]);
4274         if (!UnwindDest)
4275           return error("Invalid record");
4276       }
4277 
4278       if (Record.size() != Idx)
4279         return error("Invalid record");
4280 
4281       auto *CatchSwitch =
4282           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4283       for (BasicBlock *Handler : Handlers)
4284         CatchSwitch->addHandler(Handler);
4285       I = CatchSwitch;
4286       InstructionList.push_back(I);
4287       break;
4288     }
4289     case bitc::FUNC_CODE_INST_CATCHPAD:
4290     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4291       // We must have, at minimum, the outer scope and the number of arguments.
4292       if (Record.size() < 2)
4293         return error("Invalid record");
4294 
4295       unsigned Idx = 0;
4296 
4297       Value *ParentPad =
4298           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4299 
4300       unsigned NumArgOperands = Record[Idx++];
4301 
4302       SmallVector<Value *, 2> Args;
4303       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4304         Value *Val;
4305         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4306           return error("Invalid record");
4307         Args.push_back(Val);
4308       }
4309 
4310       if (Record.size() != Idx)
4311         return error("Invalid record");
4312 
4313       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4314         I = CleanupPadInst::Create(ParentPad, Args);
4315       else
4316         I = CatchPadInst::Create(ParentPad, Args);
4317       InstructionList.push_back(I);
4318       break;
4319     }
4320     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4321       // Check magic
4322       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4323         // "New" SwitchInst format with case ranges. The changes to write this
4324         // format were reverted but we still recognize bitcode that uses it.
4325         // Hopefully someday we will have support for case ranges and can use
4326         // this format again.
4327 
4328         Type *OpTy = getTypeByID(Record[1]);
4329         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4330 
4331         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4332         BasicBlock *Default = getBasicBlock(Record[3]);
4333         if (!OpTy || !Cond || !Default)
4334           return error("Invalid record");
4335 
4336         unsigned NumCases = Record[4];
4337 
4338         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4339         InstructionList.push_back(SI);
4340 
4341         unsigned CurIdx = 5;
4342         for (unsigned i = 0; i != NumCases; ++i) {
4343           SmallVector<ConstantInt*, 1> CaseVals;
4344           unsigned NumItems = Record[CurIdx++];
4345           for (unsigned ci = 0; ci != NumItems; ++ci) {
4346             bool isSingleNumber = Record[CurIdx++];
4347 
4348             APInt Low;
4349             unsigned ActiveWords = 1;
4350             if (ValueBitWidth > 64)
4351               ActiveWords = Record[CurIdx++];
4352             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4353                                 ValueBitWidth);
4354             CurIdx += ActiveWords;
4355 
4356             if (!isSingleNumber) {
4357               ActiveWords = 1;
4358               if (ValueBitWidth > 64)
4359                 ActiveWords = Record[CurIdx++];
4360               APInt High = readWideAPInt(
4361                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4362               CurIdx += ActiveWords;
4363 
4364               // FIXME: It is not clear whether values in the range should be
4365               // compared as signed or unsigned values. The partially
4366               // implemented changes that used this format in the past used
4367               // unsigned comparisons.
4368               for ( ; Low.ule(High); ++Low)
4369                 CaseVals.push_back(ConstantInt::get(Context, Low));
4370             } else
4371               CaseVals.push_back(ConstantInt::get(Context, Low));
4372           }
4373           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4374           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4375                  cve = CaseVals.end(); cvi != cve; ++cvi)
4376             SI->addCase(*cvi, DestBB);
4377         }
4378         I = SI;
4379         break;
4380       }
4381 
4382       // Old SwitchInst format without case ranges.
4383 
4384       if (Record.size() < 3 || (Record.size() & 1) == 0)
4385         return error("Invalid record");
4386       Type *OpTy = getTypeByID(Record[0]);
4387       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4388       BasicBlock *Default = getBasicBlock(Record[2]);
4389       if (!OpTy || !Cond || !Default)
4390         return error("Invalid record");
4391       unsigned NumCases = (Record.size()-3)/2;
4392       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4393       InstructionList.push_back(SI);
4394       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4395         ConstantInt *CaseVal =
4396           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4397         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4398         if (!CaseVal || !DestBB) {
4399           delete SI;
4400           return error("Invalid record");
4401         }
4402         SI->addCase(CaseVal, DestBB);
4403       }
4404       I = SI;
4405       break;
4406     }
4407     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4408       if (Record.size() < 2)
4409         return error("Invalid record");
4410       Type *OpTy = getTypeByID(Record[0]);
4411       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4412       if (!OpTy || !Address)
4413         return error("Invalid record");
4414       unsigned NumDests = Record.size()-2;
4415       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4416       InstructionList.push_back(IBI);
4417       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4418         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4419           IBI->addDestination(DestBB);
4420         } else {
4421           delete IBI;
4422           return error("Invalid record");
4423         }
4424       }
4425       I = IBI;
4426       break;
4427     }
4428 
4429     case bitc::FUNC_CODE_INST_INVOKE: {
4430       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4431       if (Record.size() < 4)
4432         return error("Invalid record");
4433       unsigned OpNum = 0;
4434       AttributeList PAL = getAttributes(Record[OpNum++]);
4435       unsigned CCInfo = Record[OpNum++];
4436       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4437       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4438 
4439       FunctionType *FTy = nullptr;
4440       FunctionType *FullFTy = nullptr;
4441       if ((CCInfo >> 13) & 1) {
4442         FullFTy =
4443             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4444         if (!FullFTy)
4445           return error("Explicit invoke type is not a function type");
4446         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4447       }
4448 
4449       Value *Callee;
4450       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4451         return error("Invalid record");
4452 
4453       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4454       if (!CalleeTy)
4455         return error("Callee is not a pointer");
4456       if (!FTy) {
4457         FullFTy =
4458             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4459         if (!FullFTy)
4460           return error("Callee is not of pointer to function type");
4461         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4462       } else if (getPointerElementFlatType(FullTy) != FTy)
4463         return error("Explicit invoke type does not match pointee type of "
4464                      "callee operand");
4465       if (Record.size() < FTy->getNumParams() + OpNum)
4466         return error("Insufficient operands to call");
4467 
4468       SmallVector<Value*, 16> Ops;
4469       SmallVector<Type *, 16> ArgsFullTys;
4470       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4471         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4472                                FTy->getParamType(i)));
4473         ArgsFullTys.push_back(FullFTy->getParamType(i));
4474         if (!Ops.back())
4475           return error("Invalid record");
4476       }
4477 
4478       if (!FTy->isVarArg()) {
4479         if (Record.size() != OpNum)
4480           return error("Invalid record");
4481       } else {
4482         // Read type/value pairs for varargs params.
4483         while (OpNum != Record.size()) {
4484           Value *Op;
4485           Type *FullTy;
4486           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4487             return error("Invalid record");
4488           Ops.push_back(Op);
4489           ArgsFullTys.push_back(FullTy);
4490         }
4491       }
4492 
4493       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4494                              OperandBundles);
4495       FullTy = FullFTy->getReturnType();
4496       OperandBundles.clear();
4497       InstructionList.push_back(I);
4498       cast<InvokeInst>(I)->setCallingConv(
4499           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4500       cast<InvokeInst>(I)->setAttributes(PAL);
4501       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4502 
4503       break;
4504     }
4505     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4506       unsigned Idx = 0;
4507       Value *Val = nullptr;
4508       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4509         return error("Invalid record");
4510       I = ResumeInst::Create(Val);
4511       InstructionList.push_back(I);
4512       break;
4513     }
4514     case bitc::FUNC_CODE_INST_CALLBR: {
4515       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4516       unsigned OpNum = 0;
4517       AttributeList PAL = getAttributes(Record[OpNum++]);
4518       unsigned CCInfo = Record[OpNum++];
4519 
4520       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4521       unsigned NumIndirectDests = Record[OpNum++];
4522       SmallVector<BasicBlock *, 16> IndirectDests;
4523       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4524         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4525 
4526       FunctionType *FTy = nullptr;
4527       FunctionType *FullFTy = nullptr;
4528       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4529         FullFTy =
4530             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4531         if (!FullFTy)
4532           return error("Explicit call type is not a function type");
4533         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4534       }
4535 
4536       Value *Callee;
4537       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4538         return error("Invalid record");
4539 
4540       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4541       if (!OpTy)
4542         return error("Callee is not a pointer type");
4543       if (!FTy) {
4544         FullFTy =
4545             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4546         if (!FullFTy)
4547           return error("Callee is not of pointer to function type");
4548         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4549       } else if (getPointerElementFlatType(FullTy) != FTy)
4550         return error("Explicit call type does not match pointee type of "
4551                      "callee operand");
4552       if (Record.size() < FTy->getNumParams() + OpNum)
4553         return error("Insufficient operands to call");
4554 
4555       SmallVector<Value*, 16> Args;
4556       // Read the fixed params.
4557       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4558         if (FTy->getParamType(i)->isLabelTy())
4559           Args.push_back(getBasicBlock(Record[OpNum]));
4560         else
4561           Args.push_back(getValue(Record, OpNum, NextValueNo,
4562                                   FTy->getParamType(i)));
4563         if (!Args.back())
4564           return error("Invalid record");
4565       }
4566 
4567       // Read type/value pairs for varargs params.
4568       if (!FTy->isVarArg()) {
4569         if (OpNum != Record.size())
4570           return error("Invalid record");
4571       } else {
4572         while (OpNum != Record.size()) {
4573           Value *Op;
4574           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4575             return error("Invalid record");
4576           Args.push_back(Op);
4577         }
4578       }
4579 
4580       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4581                              OperandBundles);
4582       FullTy = FullFTy->getReturnType();
4583       OperandBundles.clear();
4584       InstructionList.push_back(I);
4585       cast<CallBrInst>(I)->setCallingConv(
4586           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4587       cast<CallBrInst>(I)->setAttributes(PAL);
4588       break;
4589     }
4590     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4591       I = new UnreachableInst(Context);
4592       InstructionList.push_back(I);
4593       break;
4594     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4595       if (Record.size() < 1 || ((Record.size()-1)&1))
4596         return error("Invalid record");
4597       FullTy = getFullyStructuredTypeByID(Record[0]);
4598       Type *Ty = flattenPointerTypes(FullTy);
4599       if (!Ty)
4600         return error("Invalid record");
4601 
4602       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4603       InstructionList.push_back(PN);
4604 
4605       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4606         Value *V;
4607         // With the new function encoding, it is possible that operands have
4608         // negative IDs (for forward references).  Use a signed VBR
4609         // representation to keep the encoding small.
4610         if (UseRelativeIDs)
4611           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4612         else
4613           V = getValue(Record, 1+i, NextValueNo, Ty);
4614         BasicBlock *BB = getBasicBlock(Record[2+i]);
4615         if (!V || !BB)
4616           return error("Invalid record");
4617         PN->addIncoming(V, BB);
4618       }
4619       I = PN;
4620       break;
4621     }
4622 
4623     case bitc::FUNC_CODE_INST_LANDINGPAD:
4624     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4625       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4626       unsigned Idx = 0;
4627       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4628         if (Record.size() < 3)
4629           return error("Invalid record");
4630       } else {
4631         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4632         if (Record.size() < 4)
4633           return error("Invalid record");
4634       }
4635       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4636       Type *Ty = flattenPointerTypes(FullTy);
4637       if (!Ty)
4638         return error("Invalid record");
4639       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4640         Value *PersFn = nullptr;
4641         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4642           return error("Invalid record");
4643 
4644         if (!F->hasPersonalityFn())
4645           F->setPersonalityFn(cast<Constant>(PersFn));
4646         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4647           return error("Personality function mismatch");
4648       }
4649 
4650       bool IsCleanup = !!Record[Idx++];
4651       unsigned NumClauses = Record[Idx++];
4652       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4653       LP->setCleanup(IsCleanup);
4654       for (unsigned J = 0; J != NumClauses; ++J) {
4655         LandingPadInst::ClauseType CT =
4656           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4657         Value *Val;
4658 
4659         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4660           delete LP;
4661           return error("Invalid record");
4662         }
4663 
4664         assert((CT != LandingPadInst::Catch ||
4665                 !isa<ArrayType>(Val->getType())) &&
4666                "Catch clause has a invalid type!");
4667         assert((CT != LandingPadInst::Filter ||
4668                 isa<ArrayType>(Val->getType())) &&
4669                "Filter clause has invalid type!");
4670         LP->addClause(cast<Constant>(Val));
4671       }
4672 
4673       I = LP;
4674       InstructionList.push_back(I);
4675       break;
4676     }
4677 
4678     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4679       if (Record.size() != 4)
4680         return error("Invalid record");
4681       uint64_t AlignRecord = Record[3];
4682       const uint64_t InAllocaMask = uint64_t(1) << 5;
4683       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4684       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4685       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4686                                 SwiftErrorMask;
4687       bool InAlloca = AlignRecord & InAllocaMask;
4688       bool SwiftError = AlignRecord & SwiftErrorMask;
4689       FullTy = getFullyStructuredTypeByID(Record[0]);
4690       Type *Ty = flattenPointerTypes(FullTy);
4691       if ((AlignRecord & ExplicitTypeMask) == 0) {
4692         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4693         if (!PTy)
4694           return error("Old-style alloca with a non-pointer type");
4695         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4696       }
4697       Type *OpTy = getTypeByID(Record[1]);
4698       Value *Size = getFnValueByID(Record[2], OpTy);
4699       unsigned Align;
4700       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4701         return Err;
4702       }
4703       if (!Ty || !Size)
4704         return error("Invalid record");
4705 
4706       // FIXME: Make this an optional field.
4707       const DataLayout &DL = TheModule->getDataLayout();
4708       unsigned AS = DL.getAllocaAddrSpace();
4709 
4710       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4711       AI->setUsedWithInAlloca(InAlloca);
4712       AI->setSwiftError(SwiftError);
4713       I = AI;
4714       FullTy = PointerType::get(FullTy, AS);
4715       InstructionList.push_back(I);
4716       break;
4717     }
4718     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4719       unsigned OpNum = 0;
4720       Value *Op;
4721       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4722           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4723         return error("Invalid record");
4724 
4725       if (!isa<PointerType>(Op->getType()))
4726         return error("Load operand is not a pointer type");
4727 
4728       Type *Ty = nullptr;
4729       if (OpNum + 3 == Record.size()) {
4730         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4731         Ty = flattenPointerTypes(FullTy);
4732       } else
4733         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4734 
4735       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4736         return Err;
4737 
4738       unsigned Align;
4739       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4740         return Err;
4741       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4742       InstructionList.push_back(I);
4743       break;
4744     }
4745     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4746        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4747       unsigned OpNum = 0;
4748       Value *Op;
4749       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4750           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4751         return error("Invalid record");
4752 
4753       if (!isa<PointerType>(Op->getType()))
4754         return error("Load operand is not a pointer type");
4755 
4756       Type *Ty = nullptr;
4757       if (OpNum + 5 == Record.size()) {
4758         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4759         Ty = flattenPointerTypes(FullTy);
4760       } else
4761         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4762 
4763       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4764         return Err;
4765 
4766       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4767       if (Ordering == AtomicOrdering::NotAtomic ||
4768           Ordering == AtomicOrdering::Release ||
4769           Ordering == AtomicOrdering::AcquireRelease)
4770         return error("Invalid record");
4771       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4772         return error("Invalid record");
4773       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4774 
4775       unsigned Align;
4776       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4777         return Err;
4778       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4779       InstructionList.push_back(I);
4780       break;
4781     }
4782     case bitc::FUNC_CODE_INST_STORE:
4783     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4784       unsigned OpNum = 0;
4785       Value *Val, *Ptr;
4786       Type *FullTy;
4787       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4788           (BitCode == bitc::FUNC_CODE_INST_STORE
4789                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4790                : popValue(Record, OpNum, NextValueNo,
4791                           getPointerElementFlatType(FullTy), Val)) ||
4792           OpNum + 2 != Record.size())
4793         return error("Invalid record");
4794 
4795       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4796         return Err;
4797       unsigned Align;
4798       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4799         return Err;
4800       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4801       InstructionList.push_back(I);
4802       break;
4803     }
4804     case bitc::FUNC_CODE_INST_STOREATOMIC:
4805     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4806       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4807       unsigned OpNum = 0;
4808       Value *Val, *Ptr;
4809       Type *FullTy;
4810       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4811           !isa<PointerType>(Ptr->getType()) ||
4812           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4813                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4814                : popValue(Record, OpNum, NextValueNo,
4815                           getPointerElementFlatType(FullTy), Val)) ||
4816           OpNum + 4 != Record.size())
4817         return error("Invalid record");
4818 
4819       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4820         return Err;
4821       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4822       if (Ordering == AtomicOrdering::NotAtomic ||
4823           Ordering == AtomicOrdering::Acquire ||
4824           Ordering == AtomicOrdering::AcquireRelease)
4825         return error("Invalid record");
4826       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4827       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4828         return error("Invalid record");
4829 
4830       unsigned Align;
4831       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4832         return Err;
4833       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4834       InstructionList.push_back(I);
4835       break;
4836     }
4837     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4838     case bitc::FUNC_CODE_INST_CMPXCHG: {
4839       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4840       //          failureordering?, isweak?]
4841       unsigned OpNum = 0;
4842       Value *Ptr, *Cmp, *New;
4843       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4844         return error("Invalid record");
4845 
4846       if (!isa<PointerType>(Ptr->getType()))
4847         return error("Cmpxchg operand is not a pointer type");
4848 
4849       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4850         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4851           return error("Invalid record");
4852       } else if (popValue(Record, OpNum, NextValueNo,
4853                           getPointerElementFlatType(FullTy), Cmp))
4854         return error("Invalid record");
4855       else
4856         FullTy = cast<PointerType>(FullTy)->getElementType();
4857 
4858       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4859           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4860         return error("Invalid record");
4861 
4862       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4863       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4864           SuccessOrdering == AtomicOrdering::Unordered)
4865         return error("Invalid record");
4866       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4867 
4868       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4869         return Err;
4870       AtomicOrdering FailureOrdering;
4871       if (Record.size() < 7)
4872         FailureOrdering =
4873             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4874       else
4875         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4876 
4877       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4878                                 SSID);
4879       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4880       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4881 
4882       if (Record.size() < 8) {
4883         // Before weak cmpxchgs existed, the instruction simply returned the
4884         // value loaded from memory, so bitcode files from that era will be
4885         // expecting the first component of a modern cmpxchg.
4886         CurBB->getInstList().push_back(I);
4887         I = ExtractValueInst::Create(I, 0);
4888         FullTy = cast<StructType>(FullTy)->getElementType(0);
4889       } else {
4890         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4891       }
4892 
4893       InstructionList.push_back(I);
4894       break;
4895     }
4896     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4897       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4898       unsigned OpNum = 0;
4899       Value *Ptr, *Val;
4900       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4901           !isa<PointerType>(Ptr->getType()) ||
4902           popValue(Record, OpNum, NextValueNo,
4903                    getPointerElementFlatType(FullTy), Val) ||
4904           OpNum + 4 != Record.size())
4905         return error("Invalid record");
4906       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4907       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4908           Operation > AtomicRMWInst::LAST_BINOP)
4909         return error("Invalid record");
4910       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4911       if (Ordering == AtomicOrdering::NotAtomic ||
4912           Ordering == AtomicOrdering::Unordered)
4913         return error("Invalid record");
4914       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4915       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4916       FullTy = getPointerElementFlatType(FullTy);
4917       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4918       InstructionList.push_back(I);
4919       break;
4920     }
4921     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4922       if (2 != Record.size())
4923         return error("Invalid record");
4924       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4925       if (Ordering == AtomicOrdering::NotAtomic ||
4926           Ordering == AtomicOrdering::Unordered ||
4927           Ordering == AtomicOrdering::Monotonic)
4928         return error("Invalid record");
4929       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4930       I = new FenceInst(Context, Ordering, SSID);
4931       InstructionList.push_back(I);
4932       break;
4933     }
4934     case bitc::FUNC_CODE_INST_CALL: {
4935       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4936       if (Record.size() < 3)
4937         return error("Invalid record");
4938 
4939       unsigned OpNum = 0;
4940       AttributeList PAL = getAttributes(Record[OpNum++]);
4941       unsigned CCInfo = Record[OpNum++];
4942 
4943       FastMathFlags FMF;
4944       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4945         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4946         if (!FMF.any())
4947           return error("Fast math flags indicator set for call with no FMF");
4948       }
4949 
4950       FunctionType *FTy = nullptr;
4951       FunctionType *FullFTy = nullptr;
4952       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4953         FullFTy =
4954             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4955         if (!FullFTy)
4956           return error("Explicit call type is not a function type");
4957         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4958       }
4959 
4960       Value *Callee;
4961       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4962         return error("Invalid record");
4963 
4964       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4965       if (!OpTy)
4966         return error("Callee is not a pointer type");
4967       if (!FTy) {
4968         FullFTy =
4969             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4970         if (!FullFTy)
4971           return error("Callee is not of pointer to function type");
4972         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4973       } else if (getPointerElementFlatType(FullTy) != FTy)
4974         return error("Explicit call type does not match pointee type of "
4975                      "callee operand");
4976       if (Record.size() < FTy->getNumParams() + OpNum)
4977         return error("Insufficient operands to call");
4978 
4979       SmallVector<Value*, 16> Args;
4980       SmallVector<Type*, 16> ArgsFullTys;
4981       // Read the fixed params.
4982       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4983         if (FTy->getParamType(i)->isLabelTy())
4984           Args.push_back(getBasicBlock(Record[OpNum]));
4985         else
4986           Args.push_back(getValue(Record, OpNum, NextValueNo,
4987                                   FTy->getParamType(i)));
4988         ArgsFullTys.push_back(FullFTy->getParamType(i));
4989         if (!Args.back())
4990           return error("Invalid record");
4991       }
4992 
4993       // Read type/value pairs for varargs params.
4994       if (!FTy->isVarArg()) {
4995         if (OpNum != Record.size())
4996           return error("Invalid record");
4997       } else {
4998         while (OpNum != Record.size()) {
4999           Value *Op;
5000           Type *FullTy;
5001           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5002             return error("Invalid record");
5003           Args.push_back(Op);
5004           ArgsFullTys.push_back(FullTy);
5005         }
5006       }
5007 
5008       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5009       FullTy = FullFTy->getReturnType();
5010       OperandBundles.clear();
5011       InstructionList.push_back(I);
5012       cast<CallInst>(I)->setCallingConv(
5013           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5014       CallInst::TailCallKind TCK = CallInst::TCK_None;
5015       if (CCInfo & 1 << bitc::CALL_TAIL)
5016         TCK = CallInst::TCK_Tail;
5017       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5018         TCK = CallInst::TCK_MustTail;
5019       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5020         TCK = CallInst::TCK_NoTail;
5021       cast<CallInst>(I)->setTailCallKind(TCK);
5022       cast<CallInst>(I)->setAttributes(PAL);
5023       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5024       if (FMF.any()) {
5025         if (!isa<FPMathOperator>(I))
5026           return error("Fast-math-flags specified for call without "
5027                        "floating-point scalar or vector return type");
5028         I->setFastMathFlags(FMF);
5029       }
5030       break;
5031     }
5032     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5033       if (Record.size() < 3)
5034         return error("Invalid record");
5035       Type *OpTy = getTypeByID(Record[0]);
5036       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5037       FullTy = getFullyStructuredTypeByID(Record[2]);
5038       Type *ResTy = flattenPointerTypes(FullTy);
5039       if (!OpTy || !Op || !ResTy)
5040         return error("Invalid record");
5041       I = new VAArgInst(Op, ResTy);
5042       InstructionList.push_back(I);
5043       break;
5044     }
5045 
5046     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5047       // A call or an invoke can be optionally prefixed with some variable
5048       // number of operand bundle blocks.  These blocks are read into
5049       // OperandBundles and consumed at the next call or invoke instruction.
5050 
5051       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5052         return error("Invalid record");
5053 
5054       std::vector<Value *> Inputs;
5055 
5056       unsigned OpNum = 1;
5057       while (OpNum != Record.size()) {
5058         Value *Op;
5059         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5060           return error("Invalid record");
5061         Inputs.push_back(Op);
5062       }
5063 
5064       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5065       continue;
5066     }
5067     }
5068 
5069     // Add instruction to end of current BB.  If there is no current BB, reject
5070     // this file.
5071     if (!CurBB) {
5072       I->deleteValue();
5073       return error("Invalid instruction with no BB");
5074     }
5075     if (!OperandBundles.empty()) {
5076       I->deleteValue();
5077       return error("Operand bundles found with no consumer");
5078     }
5079     CurBB->getInstList().push_back(I);
5080 
5081     // If this was a terminator instruction, move to the next block.
5082     if (I->isTerminator()) {
5083       ++CurBBNo;
5084       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5085     }
5086 
5087     // Non-void values get registered in the value table for future use.
5088     if (I && !I->getType()->isVoidTy()) {
5089       if (!FullTy) {
5090         FullTy = I->getType();
5091         assert(
5092             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5093             !isa<ArrayType>(FullTy) &&
5094             (!isa<VectorType>(FullTy) ||
5095              FullTy->getVectorElementType()->isFloatingPointTy() ||
5096              FullTy->getVectorElementType()->isIntegerTy()) &&
5097             "Structured types must be assigned with corresponding non-opaque "
5098             "pointer type");
5099       }
5100 
5101       assert(I->getType() == flattenPointerTypes(FullTy) &&
5102              "Incorrect fully structured type provided for Instruction");
5103       ValueList.assignValue(I, NextValueNo++, FullTy);
5104     }
5105   }
5106 
5107 OutOfRecordLoop:
5108 
5109   if (!OperandBundles.empty())
5110     return error("Operand bundles found with no consumer");
5111 
5112   // Check the function list for unresolved values.
5113   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5114     if (!A->getParent()) {
5115       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5116       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5117         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5118           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5119           delete A;
5120         }
5121       }
5122       return error("Never resolved value found in function");
5123     }
5124   }
5125 
5126   // Unexpected unresolved metadata about to be dropped.
5127   if (MDLoader->hasFwdRefs())
5128     return error("Invalid function metadata: outgoing forward refs");
5129 
5130   // Trim the value list down to the size it was before we parsed this function.
5131   ValueList.shrinkTo(ModuleValueListSize);
5132   MDLoader->shrinkTo(ModuleMDLoaderSize);
5133   std::vector<BasicBlock*>().swap(FunctionBBs);
5134   return Error::success();
5135 }
5136 
5137 /// Find the function body in the bitcode stream
5138 Error BitcodeReader::findFunctionInStream(
5139     Function *F,
5140     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5141   while (DeferredFunctionInfoIterator->second == 0) {
5142     // This is the fallback handling for the old format bitcode that
5143     // didn't contain the function index in the VST, or when we have
5144     // an anonymous function which would not have a VST entry.
5145     // Assert that we have one of those two cases.
5146     assert(VSTOffset == 0 || !F->hasName());
5147     // Parse the next body in the stream and set its position in the
5148     // DeferredFunctionInfo map.
5149     if (Error Err = rememberAndSkipFunctionBodies())
5150       return Err;
5151   }
5152   return Error::success();
5153 }
5154 
5155 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5156   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5157     return SyncScope::ID(Val);
5158   if (Val >= SSIDs.size())
5159     return SyncScope::System; // Map unknown synchronization scopes to system.
5160   return SSIDs[Val];
5161 }
5162 
5163 //===----------------------------------------------------------------------===//
5164 // GVMaterializer implementation
5165 //===----------------------------------------------------------------------===//
5166 
5167 Error BitcodeReader::materialize(GlobalValue *GV) {
5168   Function *F = dyn_cast<Function>(GV);
5169   // If it's not a function or is already material, ignore the request.
5170   if (!F || !F->isMaterializable())
5171     return Error::success();
5172 
5173   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5174   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5175   // If its position is recorded as 0, its body is somewhere in the stream
5176   // but we haven't seen it yet.
5177   if (DFII->second == 0)
5178     if (Error Err = findFunctionInStream(F, DFII))
5179       return Err;
5180 
5181   // Materialize metadata before parsing any function bodies.
5182   if (Error Err = materializeMetadata())
5183     return Err;
5184 
5185   // Move the bit stream to the saved position of the deferred function body.
5186   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5187     return JumpFailed;
5188   if (Error Err = parseFunctionBody(F))
5189     return Err;
5190   F->setIsMaterializable(false);
5191 
5192   if (StripDebugInfo)
5193     stripDebugInfo(*F);
5194 
5195   // Upgrade any old intrinsic calls in the function.
5196   for (auto &I : UpgradedIntrinsics) {
5197     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5198          UI != UE;) {
5199       User *U = *UI;
5200       ++UI;
5201       if (CallInst *CI = dyn_cast<CallInst>(U))
5202         UpgradeIntrinsicCall(CI, I.second);
5203     }
5204   }
5205 
5206   // Update calls to the remangled intrinsics
5207   for (auto &I : RemangledIntrinsics)
5208     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5209          UI != UE;)
5210       // Don't expect any other users than call sites
5211       CallSite(*UI++).setCalledFunction(I.second);
5212 
5213   // Finish fn->subprogram upgrade for materialized functions.
5214   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5215     F->setSubprogram(SP);
5216 
5217   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5218   if (!MDLoader->isStrippingTBAA()) {
5219     for (auto &I : instructions(F)) {
5220       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5221       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5222         continue;
5223       MDLoader->setStripTBAA(true);
5224       stripTBAA(F->getParent());
5225     }
5226   }
5227 
5228   // Bring in any functions that this function forward-referenced via
5229   // blockaddresses.
5230   return materializeForwardReferencedFunctions();
5231 }
5232 
5233 Error BitcodeReader::materializeModule() {
5234   if (Error Err = materializeMetadata())
5235     return Err;
5236 
5237   // Promise to materialize all forward references.
5238   WillMaterializeAllForwardRefs = true;
5239 
5240   // Iterate over the module, deserializing any functions that are still on
5241   // disk.
5242   for (Function &F : *TheModule) {
5243     if (Error Err = materialize(&F))
5244       return Err;
5245   }
5246   // At this point, if there are any function bodies, parse the rest of
5247   // the bits in the module past the last function block we have recorded
5248   // through either lazy scanning or the VST.
5249   if (LastFunctionBlockBit || NextUnreadBit)
5250     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5251                                     ? LastFunctionBlockBit
5252                                     : NextUnreadBit))
5253       return Err;
5254 
5255   // Check that all block address forward references got resolved (as we
5256   // promised above).
5257   if (!BasicBlockFwdRefs.empty())
5258     return error("Never resolved function from blockaddress");
5259 
5260   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5261   // delete the old functions to clean up. We can't do this unless the entire
5262   // module is materialized because there could always be another function body
5263   // with calls to the old function.
5264   for (auto &I : UpgradedIntrinsics) {
5265     for (auto *U : I.first->users()) {
5266       if (CallInst *CI = dyn_cast<CallInst>(U))
5267         UpgradeIntrinsicCall(CI, I.second);
5268     }
5269     if (!I.first->use_empty())
5270       I.first->replaceAllUsesWith(I.second);
5271     I.first->eraseFromParent();
5272   }
5273   UpgradedIntrinsics.clear();
5274   // Do the same for remangled intrinsics
5275   for (auto &I : RemangledIntrinsics) {
5276     I.first->replaceAllUsesWith(I.second);
5277     I.first->eraseFromParent();
5278   }
5279   RemangledIntrinsics.clear();
5280 
5281   UpgradeDebugInfo(*TheModule);
5282 
5283   UpgradeModuleFlags(*TheModule);
5284 
5285   UpgradeRetainReleaseMarker(*TheModule);
5286 
5287   return Error::success();
5288 }
5289 
5290 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5291   return IdentifiedStructTypes;
5292 }
5293 
5294 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5295     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5296     StringRef ModulePath, unsigned ModuleId)
5297     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5298       ModulePath(ModulePath), ModuleId(ModuleId) {}
5299 
5300 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5301   TheIndex.addModule(ModulePath, ModuleId);
5302 }
5303 
5304 ModuleSummaryIndex::ModuleInfo *
5305 ModuleSummaryIndexBitcodeReader::getThisModule() {
5306   return TheIndex.getModule(ModulePath);
5307 }
5308 
5309 std::pair<ValueInfo, GlobalValue::GUID>
5310 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5311   auto VGI = ValueIdToValueInfoMap[ValueId];
5312   assert(VGI.first);
5313   return VGI;
5314 }
5315 
5316 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5317     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5318     StringRef SourceFileName) {
5319   std::string GlobalId =
5320       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5321   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5322   auto OriginalNameID = ValueGUID;
5323   if (GlobalValue::isLocalLinkage(Linkage))
5324     OriginalNameID = GlobalValue::getGUID(ValueName);
5325   if (PrintSummaryGUIDs)
5326     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5327            << ValueName << "\n";
5328 
5329   // UseStrtab is false for legacy summary formats and value names are
5330   // created on stack. In that case we save the name in a string saver in
5331   // the index so that the value name can be recorded.
5332   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5333       TheIndex.getOrInsertValueInfo(
5334           ValueGUID,
5335           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5336       OriginalNameID);
5337 }
5338 
5339 // Specialized value symbol table parser used when reading module index
5340 // blocks where we don't actually create global values. The parsed information
5341 // is saved in the bitcode reader for use when later parsing summaries.
5342 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5343     uint64_t Offset,
5344     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5345   // With a strtab the VST is not required to parse the summary.
5346   if (UseStrtab)
5347     return Error::success();
5348 
5349   assert(Offset > 0 && "Expected non-zero VST offset");
5350   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5351   if (!MaybeCurrentBit)
5352     return MaybeCurrentBit.takeError();
5353   uint64_t CurrentBit = MaybeCurrentBit.get();
5354 
5355   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5356     return Err;
5357 
5358   SmallVector<uint64_t, 64> Record;
5359 
5360   // Read all the records for this value table.
5361   SmallString<128> ValueName;
5362 
5363   while (true) {
5364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5365     if (!MaybeEntry)
5366       return MaybeEntry.takeError();
5367     BitstreamEntry Entry = MaybeEntry.get();
5368 
5369     switch (Entry.Kind) {
5370     case BitstreamEntry::SubBlock: // Handled for us already.
5371     case BitstreamEntry::Error:
5372       return error("Malformed block");
5373     case BitstreamEntry::EndBlock:
5374       // Done parsing VST, jump back to wherever we came from.
5375       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5376         return JumpFailed;
5377       return Error::success();
5378     case BitstreamEntry::Record:
5379       // The interesting case.
5380       break;
5381     }
5382 
5383     // Read a record.
5384     Record.clear();
5385     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5386     if (!MaybeRecord)
5387       return MaybeRecord.takeError();
5388     switch (MaybeRecord.get()) {
5389     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5390       break;
5391     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5392       if (convertToString(Record, 1, ValueName))
5393         return error("Invalid record");
5394       unsigned ValueID = Record[0];
5395       assert(!SourceFileName.empty());
5396       auto VLI = ValueIdToLinkageMap.find(ValueID);
5397       assert(VLI != ValueIdToLinkageMap.end() &&
5398              "No linkage found for VST entry?");
5399       auto Linkage = VLI->second;
5400       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5401       ValueName.clear();
5402       break;
5403     }
5404     case bitc::VST_CODE_FNENTRY: {
5405       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5406       if (convertToString(Record, 2, ValueName))
5407         return error("Invalid record");
5408       unsigned ValueID = Record[0];
5409       assert(!SourceFileName.empty());
5410       auto VLI = ValueIdToLinkageMap.find(ValueID);
5411       assert(VLI != ValueIdToLinkageMap.end() &&
5412              "No linkage found for VST entry?");
5413       auto Linkage = VLI->second;
5414       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5415       ValueName.clear();
5416       break;
5417     }
5418     case bitc::VST_CODE_COMBINED_ENTRY: {
5419       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5420       unsigned ValueID = Record[0];
5421       GlobalValue::GUID RefGUID = Record[1];
5422       // The "original name", which is the second value of the pair will be
5423       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5424       ValueIdToValueInfoMap[ValueID] =
5425           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5426       break;
5427     }
5428     }
5429   }
5430 }
5431 
5432 // Parse just the blocks needed for building the index out of the module.
5433 // At the end of this routine the module Index is populated with a map
5434 // from global value id to GlobalValueSummary objects.
5435 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5436   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5437     return Err;
5438 
5439   SmallVector<uint64_t, 64> Record;
5440   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5441   unsigned ValueId = 0;
5442 
5443   // Read the index for this module.
5444   while (true) {
5445     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5446     if (!MaybeEntry)
5447       return MaybeEntry.takeError();
5448     llvm::BitstreamEntry Entry = MaybeEntry.get();
5449 
5450     switch (Entry.Kind) {
5451     case BitstreamEntry::Error:
5452       return error("Malformed block");
5453     case BitstreamEntry::EndBlock:
5454       return Error::success();
5455 
5456     case BitstreamEntry::SubBlock:
5457       switch (Entry.ID) {
5458       default: // Skip unknown content.
5459         if (Error Err = Stream.SkipBlock())
5460           return Err;
5461         break;
5462       case bitc::BLOCKINFO_BLOCK_ID:
5463         // Need to parse these to get abbrev ids (e.g. for VST)
5464         if (readBlockInfo())
5465           return error("Malformed block");
5466         break;
5467       case bitc::VALUE_SYMTAB_BLOCK_ID:
5468         // Should have been parsed earlier via VSTOffset, unless there
5469         // is no summary section.
5470         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5471                 !SeenGlobalValSummary) &&
5472                "Expected early VST parse via VSTOffset record");
5473         if (Error Err = Stream.SkipBlock())
5474           return Err;
5475         break;
5476       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5477       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5478         // Add the module if it is a per-module index (has a source file name).
5479         if (!SourceFileName.empty())
5480           addThisModule();
5481         assert(!SeenValueSymbolTable &&
5482                "Already read VST when parsing summary block?");
5483         // We might not have a VST if there were no values in the
5484         // summary. An empty summary block generated when we are
5485         // performing ThinLTO compiles so we don't later invoke
5486         // the regular LTO process on them.
5487         if (VSTOffset > 0) {
5488           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5489             return Err;
5490           SeenValueSymbolTable = true;
5491         }
5492         SeenGlobalValSummary = true;
5493         if (Error Err = parseEntireSummary(Entry.ID))
5494           return Err;
5495         break;
5496       case bitc::MODULE_STRTAB_BLOCK_ID:
5497         if (Error Err = parseModuleStringTable())
5498           return Err;
5499         break;
5500       }
5501       continue;
5502 
5503     case BitstreamEntry::Record: {
5504         Record.clear();
5505         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5506         if (!MaybeBitCode)
5507           return MaybeBitCode.takeError();
5508         switch (MaybeBitCode.get()) {
5509         default:
5510           break; // Default behavior, ignore unknown content.
5511         case bitc::MODULE_CODE_VERSION: {
5512           if (Error Err = parseVersionRecord(Record).takeError())
5513             return Err;
5514           break;
5515         }
5516         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5517         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5518           SmallString<128> ValueName;
5519           if (convertToString(Record, 0, ValueName))
5520             return error("Invalid record");
5521           SourceFileName = ValueName.c_str();
5522           break;
5523         }
5524         /// MODULE_CODE_HASH: [5*i32]
5525         case bitc::MODULE_CODE_HASH: {
5526           if (Record.size() != 5)
5527             return error("Invalid hash length " + Twine(Record.size()).str());
5528           auto &Hash = getThisModule()->second.second;
5529           int Pos = 0;
5530           for (auto &Val : Record) {
5531             assert(!(Val >> 32) && "Unexpected high bits set");
5532             Hash[Pos++] = Val;
5533           }
5534           break;
5535         }
5536         /// MODULE_CODE_VSTOFFSET: [offset]
5537         case bitc::MODULE_CODE_VSTOFFSET:
5538           if (Record.size() < 1)
5539             return error("Invalid record");
5540           // Note that we subtract 1 here because the offset is relative to one
5541           // word before the start of the identification or module block, which
5542           // was historically always the start of the regular bitcode header.
5543           VSTOffset = Record[0] - 1;
5544           break;
5545         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5546         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5547         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5548         // v2: [strtab offset, strtab size, v1]
5549         case bitc::MODULE_CODE_GLOBALVAR:
5550         case bitc::MODULE_CODE_FUNCTION:
5551         case bitc::MODULE_CODE_ALIAS: {
5552           StringRef Name;
5553           ArrayRef<uint64_t> GVRecord;
5554           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5555           if (GVRecord.size() <= 3)
5556             return error("Invalid record");
5557           uint64_t RawLinkage = GVRecord[3];
5558           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5559           if (!UseStrtab) {
5560             ValueIdToLinkageMap[ValueId++] = Linkage;
5561             break;
5562           }
5563 
5564           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5565           break;
5566         }
5567         }
5568       }
5569       continue;
5570     }
5571   }
5572 }
5573 
5574 std::vector<ValueInfo>
5575 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5576   std::vector<ValueInfo> Ret;
5577   Ret.reserve(Record.size());
5578   for (uint64_t RefValueId : Record)
5579     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5580   return Ret;
5581 }
5582 
5583 std::vector<FunctionSummary::EdgeTy>
5584 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5585                                               bool IsOldProfileFormat,
5586                                               bool HasProfile, bool HasRelBF) {
5587   std::vector<FunctionSummary::EdgeTy> Ret;
5588   Ret.reserve(Record.size());
5589   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5590     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5591     uint64_t RelBF = 0;
5592     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5593     if (IsOldProfileFormat) {
5594       I += 1; // Skip old callsitecount field
5595       if (HasProfile)
5596         I += 1; // Skip old profilecount field
5597     } else if (HasProfile)
5598       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5599     else if (HasRelBF)
5600       RelBF = Record[++I];
5601     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5602   }
5603   return Ret;
5604 }
5605 
5606 static void
5607 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5608                                        WholeProgramDevirtResolution &Wpd) {
5609   uint64_t ArgNum = Record[Slot++];
5610   WholeProgramDevirtResolution::ByArg &B =
5611       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5612   Slot += ArgNum;
5613 
5614   B.TheKind =
5615       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5616   B.Info = Record[Slot++];
5617   B.Byte = Record[Slot++];
5618   B.Bit = Record[Slot++];
5619 }
5620 
5621 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5622                                               StringRef Strtab, size_t &Slot,
5623                                               TypeIdSummary &TypeId) {
5624   uint64_t Id = Record[Slot++];
5625   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5626 
5627   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5628   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5629                         static_cast<size_t>(Record[Slot + 1])};
5630   Slot += 2;
5631 
5632   uint64_t ResByArgNum = Record[Slot++];
5633   for (uint64_t I = 0; I != ResByArgNum; ++I)
5634     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5635 }
5636 
5637 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5638                                      StringRef Strtab,
5639                                      ModuleSummaryIndex &TheIndex) {
5640   size_t Slot = 0;
5641   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5642       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5643   Slot += 2;
5644 
5645   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5646   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5647   TypeId.TTRes.AlignLog2 = Record[Slot++];
5648   TypeId.TTRes.SizeM1 = Record[Slot++];
5649   TypeId.TTRes.BitMask = Record[Slot++];
5650   TypeId.TTRes.InlineBits = Record[Slot++];
5651 
5652   while (Slot < Record.size())
5653     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5654 }
5655 
5656 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5657   // Read-only refs are in the end of the refs list.
5658   for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5659     Refs[RefNo].setReadOnly();
5660 }
5661 
5662 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5663 // objects in the index.
5664 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5665   if (Error Err = Stream.EnterSubBlock(ID))
5666     return Err;
5667   SmallVector<uint64_t, 64> Record;
5668 
5669   // Parse version
5670   {
5671     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5672     if (!MaybeEntry)
5673       return MaybeEntry.takeError();
5674     BitstreamEntry Entry = MaybeEntry.get();
5675 
5676     if (Entry.Kind != BitstreamEntry::Record)
5677       return error("Invalid Summary Block: record for version expected");
5678     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5679     if (!MaybeRecord)
5680       return MaybeRecord.takeError();
5681     if (MaybeRecord.get() != bitc::FS_VERSION)
5682       return error("Invalid Summary Block: version expected");
5683   }
5684   const uint64_t Version = Record[0];
5685   const bool IsOldProfileFormat = Version == 1;
5686   if (Version < 1 || Version > 6)
5687     return error("Invalid summary version " + Twine(Version) +
5688                  ". Version should be in the range [1-6].");
5689   Record.clear();
5690 
5691   // Keep around the last seen summary to be used when we see an optional
5692   // "OriginalName" attachement.
5693   GlobalValueSummary *LastSeenSummary = nullptr;
5694   GlobalValue::GUID LastSeenGUID = 0;
5695 
5696   // We can expect to see any number of type ID information records before
5697   // each function summary records; these variables store the information
5698   // collected so far so that it can be used to create the summary object.
5699   std::vector<GlobalValue::GUID> PendingTypeTests;
5700   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5701       PendingTypeCheckedLoadVCalls;
5702   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5703       PendingTypeCheckedLoadConstVCalls;
5704 
5705   while (true) {
5706     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5707     if (!MaybeEntry)
5708       return MaybeEntry.takeError();
5709     BitstreamEntry Entry = MaybeEntry.get();
5710 
5711     switch (Entry.Kind) {
5712     case BitstreamEntry::SubBlock: // Handled for us already.
5713     case BitstreamEntry::Error:
5714       return error("Malformed block");
5715     case BitstreamEntry::EndBlock:
5716       return Error::success();
5717     case BitstreamEntry::Record:
5718       // The interesting case.
5719       break;
5720     }
5721 
5722     // Read a record. The record format depends on whether this
5723     // is a per-module index or a combined index file. In the per-module
5724     // case the records contain the associated value's ID for correlation
5725     // with VST entries. In the combined index the correlation is done
5726     // via the bitcode offset of the summary records (which were saved
5727     // in the combined index VST entries). The records also contain
5728     // information used for ThinLTO renaming and importing.
5729     Record.clear();
5730     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5731     if (!MaybeBitCode)
5732       return MaybeBitCode.takeError();
5733     switch (unsigned BitCode = MaybeBitCode.get()) {
5734     default: // Default behavior: ignore.
5735       break;
5736     case bitc::FS_FLAGS: {  // [flags]
5737       uint64_t Flags = Record[0];
5738       // Scan flags.
5739       assert(Flags <= 0x1f && "Unexpected bits in flag");
5740 
5741       // 1 bit: WithGlobalValueDeadStripping flag.
5742       // Set on combined index only.
5743       if (Flags & 0x1)
5744         TheIndex.setWithGlobalValueDeadStripping();
5745       // 1 bit: SkipModuleByDistributedBackend flag.
5746       // Set on combined index only.
5747       if (Flags & 0x2)
5748         TheIndex.setSkipModuleByDistributedBackend();
5749       // 1 bit: HasSyntheticEntryCounts flag.
5750       // Set on combined index only.
5751       if (Flags & 0x4)
5752         TheIndex.setHasSyntheticEntryCounts();
5753       // 1 bit: DisableSplitLTOUnit flag.
5754       // Set on per module indexes. It is up to the client to validate
5755       // the consistency of this flag across modules being linked.
5756       if (Flags & 0x8)
5757         TheIndex.setEnableSplitLTOUnit();
5758       // 1 bit: PartiallySplitLTOUnits flag.
5759       // Set on combined index only.
5760       if (Flags & 0x10)
5761         TheIndex.setPartiallySplitLTOUnits();
5762       break;
5763     }
5764     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5765       uint64_t ValueID = Record[0];
5766       GlobalValue::GUID RefGUID = Record[1];
5767       ValueIdToValueInfoMap[ValueID] =
5768           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5769       break;
5770     }
5771     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5772     //                numrefs x valueid, n x (valueid)]
5773     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5774     //                        numrefs x valueid,
5775     //                        n x (valueid, hotness)]
5776     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5777     //                      numrefs x valueid,
5778     //                      n x (valueid, relblockfreq)]
5779     case bitc::FS_PERMODULE:
5780     case bitc::FS_PERMODULE_RELBF:
5781     case bitc::FS_PERMODULE_PROFILE: {
5782       unsigned ValueID = Record[0];
5783       uint64_t RawFlags = Record[1];
5784       unsigned InstCount = Record[2];
5785       uint64_t RawFunFlags = 0;
5786       unsigned NumRefs = Record[3];
5787       unsigned NumImmutableRefs = 0;
5788       int RefListStartIndex = 4;
5789       if (Version >= 4) {
5790         RawFunFlags = Record[3];
5791         NumRefs = Record[4];
5792         RefListStartIndex = 5;
5793         if (Version >= 5) {
5794           NumImmutableRefs = Record[5];
5795           RefListStartIndex = 6;
5796         }
5797       }
5798 
5799       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5800       // The module path string ref set in the summary must be owned by the
5801       // index's module string table. Since we don't have a module path
5802       // string table section in the per-module index, we create a single
5803       // module path string table entry with an empty (0) ID to take
5804       // ownership.
5805       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5806       assert(Record.size() >= RefListStartIndex + NumRefs &&
5807              "Record size inconsistent with number of references");
5808       std::vector<ValueInfo> Refs = makeRefList(
5809           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5810       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5811       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5812       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5813           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5814           IsOldProfileFormat, HasProfile, HasRelBF);
5815       setImmutableRefs(Refs, NumImmutableRefs);
5816       auto FS = llvm::make_unique<FunctionSummary>(
5817           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5818           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5819           std::move(PendingTypeTestAssumeVCalls),
5820           std::move(PendingTypeCheckedLoadVCalls),
5821           std::move(PendingTypeTestAssumeConstVCalls),
5822           std::move(PendingTypeCheckedLoadConstVCalls));
5823       PendingTypeTests.clear();
5824       PendingTypeTestAssumeVCalls.clear();
5825       PendingTypeCheckedLoadVCalls.clear();
5826       PendingTypeTestAssumeConstVCalls.clear();
5827       PendingTypeCheckedLoadConstVCalls.clear();
5828       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5829       FS->setModulePath(getThisModule()->first());
5830       FS->setOriginalName(VIAndOriginalGUID.second);
5831       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5832       break;
5833     }
5834     // FS_ALIAS: [valueid, flags, valueid]
5835     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5836     // they expect all aliasee summaries to be available.
5837     case bitc::FS_ALIAS: {
5838       unsigned ValueID = Record[0];
5839       uint64_t RawFlags = Record[1];
5840       unsigned AliaseeID = Record[2];
5841       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5842       auto AS = llvm::make_unique<AliasSummary>(Flags);
5843       // The module path string ref set in the summary must be owned by the
5844       // index's module string table. Since we don't have a module path
5845       // string table section in the per-module index, we create a single
5846       // module path string table entry with an empty (0) ID to take
5847       // ownership.
5848       AS->setModulePath(getThisModule()->first());
5849 
5850       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5851       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5852       if (!AliaseeInModule)
5853         return error("Alias expects aliasee summary to be parsed");
5854       AS->setAliasee(AliaseeVI, AliaseeInModule);
5855 
5856       auto GUID = getValueInfoFromValueId(ValueID);
5857       AS->setOriginalName(GUID.second);
5858       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5859       break;
5860     }
5861     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5862     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5863       unsigned ValueID = Record[0];
5864       uint64_t RawFlags = Record[1];
5865       unsigned RefArrayStart = 2;
5866       GlobalVarSummary::GVarFlags GVF;
5867       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5868       if (Version >= 5) {
5869         GVF = getDecodedGVarFlags(Record[2]);
5870         RefArrayStart = 3;
5871       }
5872       std::vector<ValueInfo> Refs =
5873           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5874       auto FS =
5875           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5876       FS->setModulePath(getThisModule()->first());
5877       auto GUID = getValueInfoFromValueId(ValueID);
5878       FS->setOriginalName(GUID.second);
5879       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5880       break;
5881     }
5882     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5883     //               numrefs x valueid, n x (valueid)]
5884     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5885     //                       numrefs x valueid, n x (valueid, hotness)]
5886     case bitc::FS_COMBINED:
5887     case bitc::FS_COMBINED_PROFILE: {
5888       unsigned ValueID = Record[0];
5889       uint64_t ModuleId = Record[1];
5890       uint64_t RawFlags = Record[2];
5891       unsigned InstCount = Record[3];
5892       uint64_t RawFunFlags = 0;
5893       uint64_t EntryCount = 0;
5894       unsigned NumRefs = Record[4];
5895       unsigned NumImmutableRefs = 0;
5896       int RefListStartIndex = 5;
5897 
5898       if (Version >= 4) {
5899         RawFunFlags = Record[4];
5900         RefListStartIndex = 6;
5901         size_t NumRefsIndex = 5;
5902         if (Version >= 5) {
5903           RefListStartIndex = 7;
5904           if (Version >= 6) {
5905             NumRefsIndex = 6;
5906             EntryCount = Record[5];
5907             RefListStartIndex = 8;
5908           }
5909           NumImmutableRefs = Record[RefListStartIndex - 1];
5910         }
5911         NumRefs = Record[NumRefsIndex];
5912       }
5913 
5914       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5915       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5916       assert(Record.size() >= RefListStartIndex + NumRefs &&
5917              "Record size inconsistent with number of references");
5918       std::vector<ValueInfo> Refs = makeRefList(
5919           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5920       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5921       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5922           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5923           IsOldProfileFormat, HasProfile, false);
5924       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5925       setImmutableRefs(Refs, NumImmutableRefs);
5926       auto FS = llvm::make_unique<FunctionSummary>(
5927           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5928           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5929           std::move(PendingTypeTestAssumeVCalls),
5930           std::move(PendingTypeCheckedLoadVCalls),
5931           std::move(PendingTypeTestAssumeConstVCalls),
5932           std::move(PendingTypeCheckedLoadConstVCalls));
5933       PendingTypeTests.clear();
5934       PendingTypeTestAssumeVCalls.clear();
5935       PendingTypeCheckedLoadVCalls.clear();
5936       PendingTypeTestAssumeConstVCalls.clear();
5937       PendingTypeCheckedLoadConstVCalls.clear();
5938       LastSeenSummary = FS.get();
5939       LastSeenGUID = VI.getGUID();
5940       FS->setModulePath(ModuleIdMap[ModuleId]);
5941       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5942       break;
5943     }
5944     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5945     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5946     // they expect all aliasee summaries to be available.
5947     case bitc::FS_COMBINED_ALIAS: {
5948       unsigned ValueID = Record[0];
5949       uint64_t ModuleId = Record[1];
5950       uint64_t RawFlags = Record[2];
5951       unsigned AliaseeValueId = Record[3];
5952       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5953       auto AS = llvm::make_unique<AliasSummary>(Flags);
5954       LastSeenSummary = AS.get();
5955       AS->setModulePath(ModuleIdMap[ModuleId]);
5956 
5957       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
5958       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
5959       AS->setAliasee(AliaseeVI, AliaseeInModule);
5960 
5961       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5962       LastSeenGUID = VI.getGUID();
5963       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5964       break;
5965     }
5966     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5967     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5968       unsigned ValueID = Record[0];
5969       uint64_t ModuleId = Record[1];
5970       uint64_t RawFlags = Record[2];
5971       unsigned RefArrayStart = 3;
5972       GlobalVarSummary::GVarFlags GVF;
5973       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5974       if (Version >= 5) {
5975         GVF = getDecodedGVarFlags(Record[3]);
5976         RefArrayStart = 4;
5977       }
5978       std::vector<ValueInfo> Refs =
5979           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5980       auto FS =
5981           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5982       LastSeenSummary = FS.get();
5983       FS->setModulePath(ModuleIdMap[ModuleId]);
5984       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5985       LastSeenGUID = VI.getGUID();
5986       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5987       break;
5988     }
5989     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5990     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5991       uint64_t OriginalName = Record[0];
5992       if (!LastSeenSummary)
5993         return error("Name attachment that does not follow a combined record");
5994       LastSeenSummary->setOriginalName(OriginalName);
5995       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5996       // Reset the LastSeenSummary
5997       LastSeenSummary = nullptr;
5998       LastSeenGUID = 0;
5999       break;
6000     }
6001     case bitc::FS_TYPE_TESTS:
6002       assert(PendingTypeTests.empty());
6003       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6004                               Record.end());
6005       break;
6006 
6007     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6008       assert(PendingTypeTestAssumeVCalls.empty());
6009       for (unsigned I = 0; I != Record.size(); I += 2)
6010         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6011       break;
6012 
6013     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6014       assert(PendingTypeCheckedLoadVCalls.empty());
6015       for (unsigned I = 0; I != Record.size(); I += 2)
6016         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6017       break;
6018 
6019     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6020       PendingTypeTestAssumeConstVCalls.push_back(
6021           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6022       break;
6023 
6024     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6025       PendingTypeCheckedLoadConstVCalls.push_back(
6026           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6027       break;
6028 
6029     case bitc::FS_CFI_FUNCTION_DEFS: {
6030       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6031       for (unsigned I = 0; I != Record.size(); I += 2)
6032         CfiFunctionDefs.insert(
6033             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6034       break;
6035     }
6036 
6037     case bitc::FS_CFI_FUNCTION_DECLS: {
6038       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6039       for (unsigned I = 0; I != Record.size(); I += 2)
6040         CfiFunctionDecls.insert(
6041             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6042       break;
6043     }
6044 
6045     case bitc::FS_TYPE_ID:
6046       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6047       break;
6048     }
6049   }
6050   llvm_unreachable("Exit infinite loop");
6051 }
6052 
6053 // Parse the  module string table block into the Index.
6054 // This populates the ModulePathStringTable map in the index.
6055 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6056   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6057     return Err;
6058 
6059   SmallVector<uint64_t, 64> Record;
6060 
6061   SmallString<128> ModulePath;
6062   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6063 
6064   while (true) {
6065     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6066     if (!MaybeEntry)
6067       return MaybeEntry.takeError();
6068     BitstreamEntry Entry = MaybeEntry.get();
6069 
6070     switch (Entry.Kind) {
6071     case BitstreamEntry::SubBlock: // Handled for us already.
6072     case BitstreamEntry::Error:
6073       return error("Malformed block");
6074     case BitstreamEntry::EndBlock:
6075       return Error::success();
6076     case BitstreamEntry::Record:
6077       // The interesting case.
6078       break;
6079     }
6080 
6081     Record.clear();
6082     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6083     if (!MaybeRecord)
6084       return MaybeRecord.takeError();
6085     switch (MaybeRecord.get()) {
6086     default: // Default behavior: ignore.
6087       break;
6088     case bitc::MST_CODE_ENTRY: {
6089       // MST_ENTRY: [modid, namechar x N]
6090       uint64_t ModuleId = Record[0];
6091 
6092       if (convertToString(Record, 1, ModulePath))
6093         return error("Invalid record");
6094 
6095       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6096       ModuleIdMap[ModuleId] = LastSeenModule->first();
6097 
6098       ModulePath.clear();
6099       break;
6100     }
6101     /// MST_CODE_HASH: [5*i32]
6102     case bitc::MST_CODE_HASH: {
6103       if (Record.size() != 5)
6104         return error("Invalid hash length " + Twine(Record.size()).str());
6105       if (!LastSeenModule)
6106         return error("Invalid hash that does not follow a module path");
6107       int Pos = 0;
6108       for (auto &Val : Record) {
6109         assert(!(Val >> 32) && "Unexpected high bits set");
6110         LastSeenModule->second.second[Pos++] = Val;
6111       }
6112       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6113       LastSeenModule = nullptr;
6114       break;
6115     }
6116     }
6117   }
6118   llvm_unreachable("Exit infinite loop");
6119 }
6120 
6121 namespace {
6122 
6123 // FIXME: This class is only here to support the transition to llvm::Error. It
6124 // will be removed once this transition is complete. Clients should prefer to
6125 // deal with the Error value directly, rather than converting to error_code.
6126 class BitcodeErrorCategoryType : public std::error_category {
6127   const char *name() const noexcept override {
6128     return "llvm.bitcode";
6129   }
6130 
6131   std::string message(int IE) const override {
6132     BitcodeError E = static_cast<BitcodeError>(IE);
6133     switch (E) {
6134     case BitcodeError::CorruptedBitcode:
6135       return "Corrupted bitcode";
6136     }
6137     llvm_unreachable("Unknown error type!");
6138   }
6139 };
6140 
6141 } // end anonymous namespace
6142 
6143 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6144 
6145 const std::error_category &llvm::BitcodeErrorCategory() {
6146   return *ErrorCategory;
6147 }
6148 
6149 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6150                                             unsigned Block, unsigned RecordID) {
6151   if (Error Err = Stream.EnterSubBlock(Block))
6152     return std::move(Err);
6153 
6154   StringRef Strtab;
6155   while (true) {
6156     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6157     if (!MaybeEntry)
6158       return MaybeEntry.takeError();
6159     llvm::BitstreamEntry Entry = MaybeEntry.get();
6160 
6161     switch (Entry.Kind) {
6162     case BitstreamEntry::EndBlock:
6163       return Strtab;
6164 
6165     case BitstreamEntry::Error:
6166       return error("Malformed block");
6167 
6168     case BitstreamEntry::SubBlock:
6169       if (Error Err = Stream.SkipBlock())
6170         return std::move(Err);
6171       break;
6172 
6173     case BitstreamEntry::Record:
6174       StringRef Blob;
6175       SmallVector<uint64_t, 1> Record;
6176       Expected<unsigned> MaybeRecord =
6177           Stream.readRecord(Entry.ID, Record, &Blob);
6178       if (!MaybeRecord)
6179         return MaybeRecord.takeError();
6180       if (MaybeRecord.get() == RecordID)
6181         Strtab = Blob;
6182       break;
6183     }
6184   }
6185 }
6186 
6187 //===----------------------------------------------------------------------===//
6188 // External interface
6189 //===----------------------------------------------------------------------===//
6190 
6191 Expected<std::vector<BitcodeModule>>
6192 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6193   auto FOrErr = getBitcodeFileContents(Buffer);
6194   if (!FOrErr)
6195     return FOrErr.takeError();
6196   return std::move(FOrErr->Mods);
6197 }
6198 
6199 Expected<BitcodeFileContents>
6200 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6201   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6202   if (!StreamOrErr)
6203     return StreamOrErr.takeError();
6204   BitstreamCursor &Stream = *StreamOrErr;
6205 
6206   BitcodeFileContents F;
6207   while (true) {
6208     uint64_t BCBegin = Stream.getCurrentByteNo();
6209 
6210     // We may be consuming bitcode from a client that leaves garbage at the end
6211     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6212     // the end that there cannot possibly be another module, stop looking.
6213     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6214       return F;
6215 
6216     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6217     if (!MaybeEntry)
6218       return MaybeEntry.takeError();
6219     llvm::BitstreamEntry Entry = MaybeEntry.get();
6220 
6221     switch (Entry.Kind) {
6222     case BitstreamEntry::EndBlock:
6223     case BitstreamEntry::Error:
6224       return error("Malformed block");
6225 
6226     case BitstreamEntry::SubBlock: {
6227       uint64_t IdentificationBit = -1ull;
6228       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6229         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6230         if (Error Err = Stream.SkipBlock())
6231           return std::move(Err);
6232 
6233         {
6234           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6235           if (!MaybeEntry)
6236             return MaybeEntry.takeError();
6237           Entry = MaybeEntry.get();
6238         }
6239 
6240         if (Entry.Kind != BitstreamEntry::SubBlock ||
6241             Entry.ID != bitc::MODULE_BLOCK_ID)
6242           return error("Malformed block");
6243       }
6244 
6245       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6246         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6247         if (Error Err = Stream.SkipBlock())
6248           return std::move(Err);
6249 
6250         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6251                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6252                           Buffer.getBufferIdentifier(), IdentificationBit,
6253                           ModuleBit});
6254         continue;
6255       }
6256 
6257       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6258         Expected<StringRef> Strtab =
6259             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6260         if (!Strtab)
6261           return Strtab.takeError();
6262         // This string table is used by every preceding bitcode module that does
6263         // not have its own string table. A bitcode file may have multiple
6264         // string tables if it was created by binary concatenation, for example
6265         // with "llvm-cat -b".
6266         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6267           if (!I->Strtab.empty())
6268             break;
6269           I->Strtab = *Strtab;
6270         }
6271         // Similarly, the string table is used by every preceding symbol table;
6272         // normally there will be just one unless the bitcode file was created
6273         // by binary concatenation.
6274         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6275           F.StrtabForSymtab = *Strtab;
6276         continue;
6277       }
6278 
6279       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6280         Expected<StringRef> SymtabOrErr =
6281             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6282         if (!SymtabOrErr)
6283           return SymtabOrErr.takeError();
6284 
6285         // We can expect the bitcode file to have multiple symbol tables if it
6286         // was created by binary concatenation. In that case we silently
6287         // ignore any subsequent symbol tables, which is fine because this is a
6288         // low level function. The client is expected to notice that the number
6289         // of modules in the symbol table does not match the number of modules
6290         // in the input file and regenerate the symbol table.
6291         if (F.Symtab.empty())
6292           F.Symtab = *SymtabOrErr;
6293         continue;
6294       }
6295 
6296       if (Error Err = Stream.SkipBlock())
6297         return std::move(Err);
6298       continue;
6299     }
6300     case BitstreamEntry::Record:
6301       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6302         continue;
6303       else
6304         return StreamFailed.takeError();
6305     }
6306   }
6307 }
6308 
6309 /// Get a lazy one-at-time loading module from bitcode.
6310 ///
6311 /// This isn't always used in a lazy context.  In particular, it's also used by
6312 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6313 /// in forward-referenced functions from block address references.
6314 ///
6315 /// \param[in] MaterializeAll Set to \c true if we should materialize
6316 /// everything.
6317 Expected<std::unique_ptr<Module>>
6318 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6319                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6320   BitstreamCursor Stream(Buffer);
6321 
6322   std::string ProducerIdentification;
6323   if (IdentificationBit != -1ull) {
6324     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6325       return std::move(JumpFailed);
6326     Expected<std::string> ProducerIdentificationOrErr =
6327         readIdentificationBlock(Stream);
6328     if (!ProducerIdentificationOrErr)
6329       return ProducerIdentificationOrErr.takeError();
6330 
6331     ProducerIdentification = *ProducerIdentificationOrErr;
6332   }
6333 
6334   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6335     return std::move(JumpFailed);
6336   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6337                               Context);
6338 
6339   std::unique_ptr<Module> M =
6340       llvm::make_unique<Module>(ModuleIdentifier, Context);
6341   M->setMaterializer(R);
6342 
6343   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6344   if (Error Err =
6345           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6346     return std::move(Err);
6347 
6348   if (MaterializeAll) {
6349     // Read in the entire module, and destroy the BitcodeReader.
6350     if (Error Err = M->materializeAll())
6351       return std::move(Err);
6352   } else {
6353     // Resolve forward references from blockaddresses.
6354     if (Error Err = R->materializeForwardReferencedFunctions())
6355       return std::move(Err);
6356   }
6357   return std::move(M);
6358 }
6359 
6360 Expected<std::unique_ptr<Module>>
6361 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6362                              bool IsImporting) {
6363   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6364 }
6365 
6366 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6367 // We don't use ModuleIdentifier here because the client may need to control the
6368 // module path used in the combined summary (e.g. when reading summaries for
6369 // regular LTO modules).
6370 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6371                                  StringRef ModulePath, uint64_t ModuleId) {
6372   BitstreamCursor Stream(Buffer);
6373   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6374     return JumpFailed;
6375 
6376   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6377                                     ModulePath, ModuleId);
6378   return R.parseModule();
6379 }
6380 
6381 // Parse the specified bitcode buffer, returning the function info index.
6382 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6383   BitstreamCursor Stream(Buffer);
6384   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6385     return std::move(JumpFailed);
6386 
6387   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6388   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6389                                     ModuleIdentifier, 0);
6390 
6391   if (Error Err = R.parseModule())
6392     return std::move(Err);
6393 
6394   return std::move(Index);
6395 }
6396 
6397 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6398                                                 unsigned ID) {
6399   if (Error Err = Stream.EnterSubBlock(ID))
6400     return std::move(Err);
6401   SmallVector<uint64_t, 64> Record;
6402 
6403   while (true) {
6404     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6405     if (!MaybeEntry)
6406       return MaybeEntry.takeError();
6407     BitstreamEntry Entry = MaybeEntry.get();
6408 
6409     switch (Entry.Kind) {
6410     case BitstreamEntry::SubBlock: // Handled for us already.
6411     case BitstreamEntry::Error:
6412       return error("Malformed block");
6413     case BitstreamEntry::EndBlock:
6414       // If no flags record found, conservatively return true to mimic
6415       // behavior before this flag was added.
6416       return true;
6417     case BitstreamEntry::Record:
6418       // The interesting case.
6419       break;
6420     }
6421 
6422     // Look for the FS_FLAGS record.
6423     Record.clear();
6424     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6425     if (!MaybeBitCode)
6426       return MaybeBitCode.takeError();
6427     switch (MaybeBitCode.get()) {
6428     default: // Default behavior: ignore.
6429       break;
6430     case bitc::FS_FLAGS: { // [flags]
6431       uint64_t Flags = Record[0];
6432       // Scan flags.
6433       assert(Flags <= 0x1f && "Unexpected bits in flag");
6434 
6435       return Flags & 0x8;
6436     }
6437     }
6438   }
6439   llvm_unreachable("Exit infinite loop");
6440 }
6441 
6442 // Check if the given bitcode buffer contains a global value summary block.
6443 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6444   BitstreamCursor Stream(Buffer);
6445   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6446     return std::move(JumpFailed);
6447 
6448   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6449     return std::move(Err);
6450 
6451   while (true) {
6452     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6453     if (!MaybeEntry)
6454       return MaybeEntry.takeError();
6455     llvm::BitstreamEntry Entry = MaybeEntry.get();
6456 
6457     switch (Entry.Kind) {
6458     case BitstreamEntry::Error:
6459       return error("Malformed block");
6460     case BitstreamEntry::EndBlock:
6461       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6462                             /*EnableSplitLTOUnit=*/false};
6463 
6464     case BitstreamEntry::SubBlock:
6465       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6466         Expected<bool> EnableSplitLTOUnit =
6467             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6468         if (!EnableSplitLTOUnit)
6469           return EnableSplitLTOUnit.takeError();
6470         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6471                               *EnableSplitLTOUnit};
6472       }
6473 
6474       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6475         Expected<bool> EnableSplitLTOUnit =
6476             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6477         if (!EnableSplitLTOUnit)
6478           return EnableSplitLTOUnit.takeError();
6479         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6480                               *EnableSplitLTOUnit};
6481       }
6482 
6483       // Ignore other sub-blocks.
6484       if (Error Err = Stream.SkipBlock())
6485         return std::move(Err);
6486       continue;
6487 
6488     case BitstreamEntry::Record:
6489       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6490         continue;
6491       else
6492         return StreamFailed.takeError();
6493     }
6494   }
6495 }
6496 
6497 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6498   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6499   if (!MsOrErr)
6500     return MsOrErr.takeError();
6501 
6502   if (MsOrErr->size() != 1)
6503     return error("Expected a single module");
6504 
6505   return (*MsOrErr)[0];
6506 }
6507 
6508 Expected<std::unique_ptr<Module>>
6509 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6510                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6511   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6512   if (!BM)
6513     return BM.takeError();
6514 
6515   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6516 }
6517 
6518 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6519     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6520     bool ShouldLazyLoadMetadata, bool IsImporting) {
6521   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6522                                      IsImporting);
6523   if (MOrErr)
6524     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6525   return MOrErr;
6526 }
6527 
6528 Expected<std::unique_ptr<Module>>
6529 BitcodeModule::parseModule(LLVMContext &Context) {
6530   return getModuleImpl(Context, true, false, false);
6531   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6532   // written.  We must defer until the Module has been fully materialized.
6533 }
6534 
6535 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6536                                                          LLVMContext &Context) {
6537   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6538   if (!BM)
6539     return BM.takeError();
6540 
6541   return BM->parseModule(Context);
6542 }
6543 
6544 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6545   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6546   if (!StreamOrErr)
6547     return StreamOrErr.takeError();
6548 
6549   return readTriple(*StreamOrErr);
6550 }
6551 
6552 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6553   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6554   if (!StreamOrErr)
6555     return StreamOrErr.takeError();
6556 
6557   return hasObjCCategory(*StreamOrErr);
6558 }
6559 
6560 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6561   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6562   if (!StreamOrErr)
6563     return StreamOrErr.takeError();
6564 
6565   return readIdentificationCode(*StreamOrErr);
6566 }
6567 
6568 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6569                                    ModuleSummaryIndex &CombinedIndex,
6570                                    uint64_t ModuleId) {
6571   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6572   if (!BM)
6573     return BM.takeError();
6574 
6575   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6576 }
6577 
6578 Expected<std::unique_ptr<ModuleSummaryIndex>>
6579 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6580   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6581   if (!BM)
6582     return BM.takeError();
6583 
6584   return BM->getSummary();
6585 }
6586 
6587 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6588   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6589   if (!BM)
6590     return BM.takeError();
6591 
6592   return BM->getLTOInfo();
6593 }
6594 
6595 Expected<std::unique_ptr<ModuleSummaryIndex>>
6596 llvm::getModuleSummaryIndexForFile(StringRef Path,
6597                                    bool IgnoreEmptyThinLTOIndexFile) {
6598   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6599       MemoryBuffer::getFileOrSTDIN(Path);
6600   if (!FileOrErr)
6601     return errorCodeToError(FileOrErr.getError());
6602   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6603     return nullptr;
6604   return getModuleSummaryIndex(**FileOrErr);
6605 }
6606