1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 158 std::vector<Type*> TypeList; 159 BitcodeReaderValueList ValueList; 160 BitcodeReaderMDValueList MDValueList; 161 std::vector<Comdat *> ComdatList; 162 SmallVector<Instruction *, 64> InstructionList; 163 164 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 165 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 166 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 168 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 169 170 SmallVector<Instruction*, 64> InstsWithTBAATag; 171 172 /// The set of attributes by index. Index zero in the file is for null, and 173 /// is thus not represented here. As such all indices are off by one. 174 std::vector<AttributeSet> MAttributes; 175 176 /// The set of attribute groups. 177 std::map<unsigned, AttributeSet> MAttributeGroups; 178 179 /// While parsing a function body, this is a list of the basic blocks for the 180 /// function. 181 std::vector<BasicBlock*> FunctionBBs; 182 183 // When reading the module header, this list is populated with functions that 184 // have bodies later in the file. 185 std::vector<Function*> FunctionsWithBodies; 186 187 // When intrinsic functions are encountered which require upgrading they are 188 // stored here with their replacement function. 189 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 190 UpgradedIntrinsicMap UpgradedIntrinsics; 191 192 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 193 DenseMap<unsigned, unsigned> MDKindMap; 194 195 // Several operations happen after the module header has been read, but 196 // before function bodies are processed. This keeps track of whether 197 // we've done this yet. 198 bool SeenFirstFunctionBody = false; 199 200 /// When function bodies are initially scanned, this map contains info about 201 /// where to find deferred function body in the stream. 202 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 203 204 /// When Metadata block is initially scanned when parsing the module, we may 205 /// choose to defer parsing of the metadata. This vector contains info about 206 /// which Metadata blocks are deferred. 207 std::vector<uint64_t> DeferredMetadataInfo; 208 209 /// These are basic blocks forward-referenced by block addresses. They are 210 /// inserted lazily into functions when they're loaded. The basic block ID is 211 /// its index into the vector. 212 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 213 std::deque<Function *> BasicBlockFwdRefQueue; 214 215 /// Indicates that we are using a new encoding for instruction operands where 216 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 217 /// instruction number, for a more compact encoding. Some instruction 218 /// operands are not relative to the instruction ID: basic block numbers, and 219 /// types. Once the old style function blocks have been phased out, we would 220 /// not need this flag. 221 bool UseRelativeIDs = false; 222 223 /// True if all functions will be materialized, negating the need to process 224 /// (e.g.) blockaddress forward references. 225 bool WillMaterializeAllForwardRefs = false; 226 227 /// Functions that have block addresses taken. This is usually empty. 228 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 std::vector<std::string> BundleTags; 236 237 public: 238 std::error_code error(BitcodeError E, const Twine &Message); 239 std::error_code error(BitcodeError E); 240 std::error_code error(const Twine &Message); 241 242 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 243 DiagnosticHandlerFunction DiagnosticHandler); 244 BitcodeReader(LLVMContext &Context, 245 DiagnosticHandlerFunction DiagnosticHandler); 246 ~BitcodeReader() override { freeState(); } 247 248 std::error_code materializeForwardReferencedFunctions(); 249 250 void freeState(); 251 252 void releaseBuffer(); 253 254 bool isDematerializable(const GlobalValue *GV) const override; 255 std::error_code materialize(GlobalValue *GV) override; 256 std::error_code materializeModule(Module *M) override; 257 std::vector<StructType *> getIdentifiedStructTypes() const override; 258 void dematerialize(GlobalValue *GV) override; 259 260 /// \brief Main interface to parsing a bitcode buffer. 261 /// \returns true if an error occurred. 262 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 263 Module *M, 264 bool ShouldLazyLoadMetadata = false); 265 266 /// \brief Cheap mechanism to just extract module triple 267 /// \returns true if an error occurred. 268 ErrorOr<std::string> parseTriple(); 269 270 static uint64_t decodeSignRotatedValue(uint64_t V); 271 272 /// Materialize any deferred Metadata block. 273 std::error_code materializeMetadata() override; 274 275 void setStripDebugInfo() override; 276 277 private: 278 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 279 // ProducerIdentification data member, and do some basic enforcement on the 280 // "epoch" encoded in the bitcode. 281 std::error_code parseBitcodeVersion(); 282 283 std::vector<StructType *> IdentifiedStructTypes; 284 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 285 StructType *createIdentifiedStructType(LLVMContext &Context); 286 287 Type *getTypeByID(unsigned ID); 288 Value *getFnValueByID(unsigned ID, Type *Ty, 289 OperatorConstraint OC = OC_None) { 290 if (Ty && Ty->isMetadataTy()) 291 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 292 return ValueList.getValueFwdRef(ID, Ty, OC); 293 } 294 Metadata *getFnMetadataByID(unsigned ID) { 295 return MDValueList.getValueFwdRef(ID); 296 } 297 BasicBlock *getBasicBlock(unsigned ID) const { 298 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 299 return FunctionBBs[ID]; 300 } 301 AttributeSet getAttributes(unsigned i) const { 302 if (i-1 < MAttributes.size()) 303 return MAttributes[i-1]; 304 return AttributeSet(); 305 } 306 307 /// Read a value/type pair out of the specified record from slot 'Slot'. 308 /// Increment Slot past the number of slots used in the record. Return true on 309 /// failure. 310 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Value *&ResVal) { 312 if (Slot == Record.size()) return true; 313 unsigned ValNo = (unsigned)Record[Slot++]; 314 // Adjust the ValNo, if it was encoded relative to the InstNum. 315 if (UseRelativeIDs) 316 ValNo = InstNum - ValNo; 317 if (ValNo < InstNum) { 318 // If this is not a forward reference, just return the value we already 319 // have. 320 ResVal = getFnValueByID(ValNo, nullptr); 321 return ResVal == nullptr; 322 } 323 if (Slot == Record.size()) 324 return true; 325 326 unsigned TypeNo = (unsigned)Record[Slot++]; 327 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 328 return ResVal == nullptr; 329 } 330 331 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 332 /// past the number of slots used by the value in the record. Return true if 333 /// there is an error. 334 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 335 unsigned InstNum, Type *Ty, Value *&ResVal, 336 OperatorConstraint OC = OC_None) { 337 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 338 return true; 339 // All values currently take a single record slot. 340 ++Slot; 341 return false; 342 } 343 344 /// Like popValue, but does not increment the Slot number. 345 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 346 unsigned InstNum, Type *Ty, Value *&ResVal, 347 OperatorConstraint OC = OC_None) { 348 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty, OC); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty, 367 OperatorConstraint OC = OC_None) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty, OC); 374 } 375 376 /// Converts alignment exponent (i.e. power of two (or zero)) to the 377 /// corresponding alignment to use. If alignment is too large, returns 378 /// a corresponding error code. 379 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 380 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 381 std::error_code parseModule(uint64_t ResumeBit, 382 bool ShouldLazyLoadMetadata = false); 383 std::error_code parseAttributeBlock(); 384 std::error_code parseAttributeGroupBlock(); 385 std::error_code parseTypeTable(); 386 std::error_code parseTypeTableBody(); 387 std::error_code parseOperandBundleTags(); 388 389 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 390 unsigned NameIndex, Triple &TT); 391 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 392 std::error_code parseConstants(); 393 std::error_code rememberAndSkipFunctionBodies(); 394 std::error_code rememberAndSkipFunctionBody(); 395 /// Save the positions of the Metadata blocks and skip parsing the blocks. 396 std::error_code rememberAndSkipMetadata(); 397 std::error_code parseFunctionBody(Function *F); 398 std::error_code globalCleanup(); 399 std::error_code resolveGlobalAndAliasInits(); 400 std::error_code parseMetadata(); 401 std::error_code parseMetadataAttachment(Function &F); 402 ErrorOr<std::string> parseModuleTriple(); 403 std::error_code parseUseLists(); 404 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 405 std::error_code initStreamFromBuffer(); 406 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code findFunctionInStream( 408 Function *F, 409 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 410 }; 411 412 /// Class to manage reading and parsing function summary index bitcode 413 /// files/sections. 414 class FunctionIndexBitcodeReader { 415 DiagnosticHandlerFunction DiagnosticHandler; 416 417 /// Eventually points to the function index built during parsing. 418 FunctionInfoIndex *TheIndex = nullptr; 419 420 std::unique_ptr<MemoryBuffer> Buffer; 421 std::unique_ptr<BitstreamReader> StreamFile; 422 BitstreamCursor Stream; 423 424 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 425 /// 426 /// If false, the summary section is fully parsed into the index during 427 /// the initial parse. Otherwise, if true, the caller is expected to 428 /// invoke \a readFunctionSummary for each summary needed, and the summary 429 /// section is thus parsed lazily. 430 bool IsLazy = false; 431 432 /// Used to indicate whether caller only wants to check for the presence 433 /// of the function summary bitcode section. All blocks are skipped, 434 /// but the SeenFuncSummary boolean is set. 435 bool CheckFuncSummaryPresenceOnly = false; 436 437 /// Indicates whether we have encountered a function summary section 438 /// yet during parsing, used when checking if file contains function 439 /// summary section. 440 bool SeenFuncSummary = false; 441 442 /// \brief Map populated during function summary section parsing, and 443 /// consumed during ValueSymbolTable parsing. 444 /// 445 /// Used to correlate summary records with VST entries. For the per-module 446 /// index this maps the ValueID to the parsed function summary, and 447 /// for the combined index this maps the summary record's bitcode 448 /// offset to the function summary (since in the combined index the 449 /// VST records do not hold value IDs but rather hold the function 450 /// summary record offset). 451 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 452 453 /// Map populated during module path string table parsing, from the 454 /// module ID to a string reference owned by the index's module 455 /// path string table, used to correlate with combined index function 456 /// summary records. 457 DenseMap<uint64_t, StringRef> ModuleIdMap; 458 459 public: 460 std::error_code error(BitcodeError E, const Twine &Message); 461 std::error_code error(BitcodeError E); 462 std::error_code error(const Twine &Message); 463 464 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 465 DiagnosticHandlerFunction DiagnosticHandler, 466 bool IsLazy = false, 467 bool CheckFuncSummaryPresenceOnly = false); 468 FunctionIndexBitcodeReader(LLVMContext &Context, 469 DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 522 const Twine &Message) { 523 return error(DiagnosticHandler, 524 make_error_code(BitcodeError::CorruptedBitcode), Message); 525 } 526 527 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 528 if (!ProducerIdentification.empty()) { 529 return ::error(DiagnosticHandler, make_error_code(E), 530 Message + " (Producer: '" + ProducerIdentification + 531 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 532 } 533 return ::error(DiagnosticHandler, make_error_code(E), Message); 534 } 535 536 std::error_code BitcodeReader::error(const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(DiagnosticHandler, 539 make_error_code(BitcodeError::CorruptedBitcode), 540 Message + " (Producer: '" + ProducerIdentification + 541 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 542 } 543 return ::error(DiagnosticHandler, 544 make_error_code(BitcodeError::CorruptedBitcode), Message); 545 } 546 547 std::error_code BitcodeReader::error(BitcodeError E) { 548 return ::error(DiagnosticHandler, make_error_code(E)); 549 } 550 551 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 552 LLVMContext &C) { 553 if (F) 554 return F; 555 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 556 } 557 558 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 559 DiagnosticHandlerFunction DiagnosticHandler) 560 : Context(Context), 561 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 562 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 563 564 BitcodeReader::BitcodeReader(LLVMContext &Context, 565 DiagnosticHandlerFunction DiagnosticHandler) 566 : Context(Context), 567 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 568 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 569 570 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 571 if (WillMaterializeAllForwardRefs) 572 return std::error_code(); 573 574 // Prevent recursion. 575 WillMaterializeAllForwardRefs = true; 576 577 while (!BasicBlockFwdRefQueue.empty()) { 578 Function *F = BasicBlockFwdRefQueue.front(); 579 BasicBlockFwdRefQueue.pop_front(); 580 assert(F && "Expected valid function"); 581 if (!BasicBlockFwdRefs.count(F)) 582 // Already materialized. 583 continue; 584 585 // Check for a function that isn't materializable to prevent an infinite 586 // loop. When parsing a blockaddress stored in a global variable, there 587 // isn't a trivial way to check if a function will have a body without a 588 // linear search through FunctionsWithBodies, so just check it here. 589 if (!F->isMaterializable()) 590 return error("Never resolved function from blockaddress"); 591 592 // Try to materialize F. 593 if (std::error_code EC = materialize(F)) 594 return EC; 595 } 596 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 597 598 // Reset state. 599 WillMaterializeAllForwardRefs = false; 600 return std::error_code(); 601 } 602 603 void BitcodeReader::freeState() { 604 Buffer = nullptr; 605 std::vector<Type*>().swap(TypeList); 606 ValueList.clear(); 607 MDValueList.clear(); 608 std::vector<Comdat *>().swap(ComdatList); 609 610 std::vector<AttributeSet>().swap(MAttributes); 611 std::vector<BasicBlock*>().swap(FunctionBBs); 612 std::vector<Function*>().swap(FunctionsWithBodies); 613 DeferredFunctionInfo.clear(); 614 DeferredMetadataInfo.clear(); 615 MDKindMap.clear(); 616 617 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 618 BasicBlockFwdRefQueue.clear(); 619 } 620 621 //===----------------------------------------------------------------------===// 622 // Helper functions to implement forward reference resolution, etc. 623 //===----------------------------------------------------------------------===// 624 625 /// Convert a string from a record into an std::string, return true on failure. 626 template <typename StrTy> 627 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 628 StrTy &Result) { 629 if (Idx > Record.size()) 630 return true; 631 632 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 633 Result += (char)Record[i]; 634 return false; 635 } 636 637 static bool hasImplicitComdat(size_t Val) { 638 switch (Val) { 639 default: 640 return false; 641 case 1: // Old WeakAnyLinkage 642 case 4: // Old LinkOnceAnyLinkage 643 case 10: // Old WeakODRLinkage 644 case 11: // Old LinkOnceODRLinkage 645 return true; 646 } 647 } 648 649 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 650 switch (Val) { 651 default: // Map unknown/new linkages to external 652 case 0: 653 return GlobalValue::ExternalLinkage; 654 case 2: 655 return GlobalValue::AppendingLinkage; 656 case 3: 657 return GlobalValue::InternalLinkage; 658 case 5: 659 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 660 case 6: 661 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 662 case 7: 663 return GlobalValue::ExternalWeakLinkage; 664 case 8: 665 return GlobalValue::CommonLinkage; 666 case 9: 667 return GlobalValue::PrivateLinkage; 668 case 12: 669 return GlobalValue::AvailableExternallyLinkage; 670 case 13: 671 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 672 case 14: 673 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 674 case 15: 675 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 676 case 1: // Old value with implicit comdat. 677 case 16: 678 return GlobalValue::WeakAnyLinkage; 679 case 10: // Old value with implicit comdat. 680 case 17: 681 return GlobalValue::WeakODRLinkage; 682 case 4: // Old value with implicit comdat. 683 case 18: 684 return GlobalValue::LinkOnceAnyLinkage; 685 case 11: // Old value with implicit comdat. 686 case 19: 687 return GlobalValue::LinkOnceODRLinkage; 688 } 689 } 690 691 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 692 switch (Val) { 693 default: // Map unknown visibilities to default. 694 case 0: return GlobalValue::DefaultVisibility; 695 case 1: return GlobalValue::HiddenVisibility; 696 case 2: return GlobalValue::ProtectedVisibility; 697 } 698 } 699 700 static GlobalValue::DLLStorageClassTypes 701 getDecodedDLLStorageClass(unsigned Val) { 702 switch (Val) { 703 default: // Map unknown values to default. 704 case 0: return GlobalValue::DefaultStorageClass; 705 case 1: return GlobalValue::DLLImportStorageClass; 706 case 2: return GlobalValue::DLLExportStorageClass; 707 } 708 } 709 710 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 711 switch (Val) { 712 case 0: return GlobalVariable::NotThreadLocal; 713 default: // Map unknown non-zero value to general dynamic. 714 case 1: return GlobalVariable::GeneralDynamicTLSModel; 715 case 2: return GlobalVariable::LocalDynamicTLSModel; 716 case 3: return GlobalVariable::InitialExecTLSModel; 717 case 4: return GlobalVariable::LocalExecTLSModel; 718 } 719 } 720 721 static int getDecodedCastOpcode(unsigned Val) { 722 switch (Val) { 723 default: return -1; 724 case bitc::CAST_TRUNC : return Instruction::Trunc; 725 case bitc::CAST_ZEXT : return Instruction::ZExt; 726 case bitc::CAST_SEXT : return Instruction::SExt; 727 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 728 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 729 case bitc::CAST_UITOFP : return Instruction::UIToFP; 730 case bitc::CAST_SITOFP : return Instruction::SIToFP; 731 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 732 case bitc::CAST_FPEXT : return Instruction::FPExt; 733 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 734 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 735 case bitc::CAST_BITCAST : return Instruction::BitCast; 736 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 737 } 738 } 739 740 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 741 bool IsFP = Ty->isFPOrFPVectorTy(); 742 // BinOps are only valid for int/fp or vector of int/fp types 743 if (!IsFP && !Ty->isIntOrIntVectorTy()) 744 return -1; 745 746 switch (Val) { 747 default: 748 return -1; 749 case bitc::BINOP_ADD: 750 return IsFP ? Instruction::FAdd : Instruction::Add; 751 case bitc::BINOP_SUB: 752 return IsFP ? Instruction::FSub : Instruction::Sub; 753 case bitc::BINOP_MUL: 754 return IsFP ? Instruction::FMul : Instruction::Mul; 755 case bitc::BINOP_UDIV: 756 return IsFP ? -1 : Instruction::UDiv; 757 case bitc::BINOP_SDIV: 758 return IsFP ? Instruction::FDiv : Instruction::SDiv; 759 case bitc::BINOP_UREM: 760 return IsFP ? -1 : Instruction::URem; 761 case bitc::BINOP_SREM: 762 return IsFP ? Instruction::FRem : Instruction::SRem; 763 case bitc::BINOP_SHL: 764 return IsFP ? -1 : Instruction::Shl; 765 case bitc::BINOP_LSHR: 766 return IsFP ? -1 : Instruction::LShr; 767 case bitc::BINOP_ASHR: 768 return IsFP ? -1 : Instruction::AShr; 769 case bitc::BINOP_AND: 770 return IsFP ? -1 : Instruction::And; 771 case bitc::BINOP_OR: 772 return IsFP ? -1 : Instruction::Or; 773 case bitc::BINOP_XOR: 774 return IsFP ? -1 : Instruction::Xor; 775 } 776 } 777 778 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 779 switch (Val) { 780 default: return AtomicRMWInst::BAD_BINOP; 781 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 782 case bitc::RMW_ADD: return AtomicRMWInst::Add; 783 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 784 case bitc::RMW_AND: return AtomicRMWInst::And; 785 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 786 case bitc::RMW_OR: return AtomicRMWInst::Or; 787 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 788 case bitc::RMW_MAX: return AtomicRMWInst::Max; 789 case bitc::RMW_MIN: return AtomicRMWInst::Min; 790 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 791 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 792 } 793 } 794 795 static AtomicOrdering getDecodedOrdering(unsigned Val) { 796 switch (Val) { 797 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 798 case bitc::ORDERING_UNORDERED: return Unordered; 799 case bitc::ORDERING_MONOTONIC: return Monotonic; 800 case bitc::ORDERING_ACQUIRE: return Acquire; 801 case bitc::ORDERING_RELEASE: return Release; 802 case bitc::ORDERING_ACQREL: return AcquireRelease; 803 default: // Map unknown orderings to sequentially-consistent. 804 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 805 } 806 } 807 808 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 809 switch (Val) { 810 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 811 default: // Map unknown scopes to cross-thread. 812 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 813 } 814 } 815 816 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 817 switch (Val) { 818 default: // Map unknown selection kinds to any. 819 case bitc::COMDAT_SELECTION_KIND_ANY: 820 return Comdat::Any; 821 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 822 return Comdat::ExactMatch; 823 case bitc::COMDAT_SELECTION_KIND_LARGEST: 824 return Comdat::Largest; 825 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 826 return Comdat::NoDuplicates; 827 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 828 return Comdat::SameSize; 829 } 830 } 831 832 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 833 FastMathFlags FMF; 834 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 835 FMF.setUnsafeAlgebra(); 836 if (0 != (Val & FastMathFlags::NoNaNs)) 837 FMF.setNoNaNs(); 838 if (0 != (Val & FastMathFlags::NoInfs)) 839 FMF.setNoInfs(); 840 if (0 != (Val & FastMathFlags::NoSignedZeros)) 841 FMF.setNoSignedZeros(); 842 if (0 != (Val & FastMathFlags::AllowReciprocal)) 843 FMF.setAllowReciprocal(); 844 return FMF; 845 } 846 847 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 848 switch (Val) { 849 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 850 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 851 } 852 } 853 854 namespace llvm { 855 namespace { 856 /// \brief A class for maintaining the slot number definition 857 /// as a placeholder for the actual definition for forward constants defs. 858 class ConstantPlaceHolder : public ConstantExpr { 859 void operator=(const ConstantPlaceHolder &) = delete; 860 861 public: 862 // allocate space for exactly one operand 863 void *operator new(size_t s) { return User::operator new(s, 1); } 864 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 865 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 866 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 867 } 868 869 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 870 static bool classof(const Value *V) { 871 return isa<ConstantExpr>(V) && 872 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 873 } 874 875 /// Provide fast operand accessors 876 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 877 }; 878 } 879 880 // FIXME: can we inherit this from ConstantExpr? 881 template <> 882 struct OperandTraits<ConstantPlaceHolder> : 883 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 884 }; 885 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 886 } 887 888 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 889 if (Idx == size()) { 890 push_back(V); 891 return false; 892 } 893 894 if (Idx >= size()) 895 resize(Idx+1); 896 897 WeakVH &OldV = ValuePtrs[Idx]; 898 if (!OldV) { 899 OldV = V; 900 return false; 901 } 902 903 // Handle constants and non-constants (e.g. instrs) differently for 904 // efficiency. 905 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 906 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 907 OldV = V; 908 } else { 909 // If there was a forward reference to this value, replace it. 910 Value *PrevVal = OldV; 911 // Check operator constraints. We only put cleanuppads or catchpads in 912 // the forward value map if the value is constrained to match. 913 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 914 if (!isa<CatchPadInst>(V)) 915 return true; 916 // Delete the dummy basic block that was created with the sentinel 917 // catchpad. 918 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 919 assert(DummyBlock == CatchPad->getNormalDest()); 920 CatchPad->dropAllReferences(); 921 delete DummyBlock; 922 } else if (isa<CleanupPadInst>(PrevVal)) { 923 if (!isa<CleanupPadInst>(V)) 924 return true; 925 } 926 OldV->replaceAllUsesWith(V); 927 delete PrevVal; 928 } 929 930 return false; 931 } 932 933 934 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 935 Type *Ty) { 936 if (Idx >= size()) 937 resize(Idx + 1); 938 939 if (Value *V = ValuePtrs[Idx]) { 940 if (Ty != V->getType()) 941 report_fatal_error("Type mismatch in constant table!"); 942 return cast<Constant>(V); 943 } 944 945 // Create and return a placeholder, which will later be RAUW'd. 946 Constant *C = new ConstantPlaceHolder(Ty, Context); 947 ValuePtrs[Idx] = C; 948 return C; 949 } 950 951 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 952 OperatorConstraint OC) { 953 // Bail out for a clearly invalid value. This would make us call resize(0) 954 if (Idx == UINT_MAX) 955 return nullptr; 956 957 if (Idx >= size()) 958 resize(Idx + 1); 959 960 if (Value *V = ValuePtrs[Idx]) { 961 // If the types don't match, it's invalid. 962 if (Ty && Ty != V->getType()) 963 return nullptr; 964 if (!OC) 965 return V; 966 // Use dyn_cast to enforce operator constraints 967 switch (OC) { 968 case OC_CatchPad: 969 return dyn_cast<CatchPadInst>(V); 970 case OC_CleanupPad: 971 return dyn_cast<CleanupPadInst>(V); 972 default: 973 llvm_unreachable("Unexpected operator constraint"); 974 } 975 } 976 977 // No type specified, must be invalid reference. 978 if (!Ty) return nullptr; 979 980 // Create and return a placeholder, which will later be RAUW'd. 981 Value *V; 982 switch (OC) { 983 case OC_None: 984 V = new Argument(Ty); 985 break; 986 case OC_CatchPad: { 987 BasicBlock *BB = BasicBlock::Create(Context); 988 V = CatchPadInst::Create(BB, BB, {}); 989 break; 990 } 991 default: 992 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 993 V = CleanupPadInst::Create(Context, {}); 994 break; 995 } 996 997 ValuePtrs[Idx] = V; 998 return V; 999 } 1000 1001 /// Once all constants are read, this method bulk resolves any forward 1002 /// references. The idea behind this is that we sometimes get constants (such 1003 /// as large arrays) which reference *many* forward ref constants. Replacing 1004 /// each of these causes a lot of thrashing when building/reuniquing the 1005 /// constant. Instead of doing this, we look at all the uses and rewrite all 1006 /// the place holders at once for any constant that uses a placeholder. 1007 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1008 // Sort the values by-pointer so that they are efficient to look up with a 1009 // binary search. 1010 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1011 1012 SmallVector<Constant*, 64> NewOps; 1013 1014 while (!ResolveConstants.empty()) { 1015 Value *RealVal = operator[](ResolveConstants.back().second); 1016 Constant *Placeholder = ResolveConstants.back().first; 1017 ResolveConstants.pop_back(); 1018 1019 // Loop over all users of the placeholder, updating them to reference the 1020 // new value. If they reference more than one placeholder, update them all 1021 // at once. 1022 while (!Placeholder->use_empty()) { 1023 auto UI = Placeholder->user_begin(); 1024 User *U = *UI; 1025 1026 // If the using object isn't uniqued, just update the operands. This 1027 // handles instructions and initializers for global variables. 1028 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1029 UI.getUse().set(RealVal); 1030 continue; 1031 } 1032 1033 // Otherwise, we have a constant that uses the placeholder. Replace that 1034 // constant with a new constant that has *all* placeholder uses updated. 1035 Constant *UserC = cast<Constant>(U); 1036 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1037 I != E; ++I) { 1038 Value *NewOp; 1039 if (!isa<ConstantPlaceHolder>(*I)) { 1040 // Not a placeholder reference. 1041 NewOp = *I; 1042 } else if (*I == Placeholder) { 1043 // Common case is that it just references this one placeholder. 1044 NewOp = RealVal; 1045 } else { 1046 // Otherwise, look up the placeholder in ResolveConstants. 1047 ResolveConstantsTy::iterator It = 1048 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1049 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1050 0)); 1051 assert(It != ResolveConstants.end() && It->first == *I); 1052 NewOp = operator[](It->second); 1053 } 1054 1055 NewOps.push_back(cast<Constant>(NewOp)); 1056 } 1057 1058 // Make the new constant. 1059 Constant *NewC; 1060 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1061 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1062 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1063 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1064 } else if (isa<ConstantVector>(UserC)) { 1065 NewC = ConstantVector::get(NewOps); 1066 } else { 1067 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1068 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1069 } 1070 1071 UserC->replaceAllUsesWith(NewC); 1072 UserC->destroyConstant(); 1073 NewOps.clear(); 1074 } 1075 1076 // Update all ValueHandles, they should be the only users at this point. 1077 Placeholder->replaceAllUsesWith(RealVal); 1078 delete Placeholder; 1079 } 1080 } 1081 1082 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1083 if (Idx == size()) { 1084 push_back(MD); 1085 return; 1086 } 1087 1088 if (Idx >= size()) 1089 resize(Idx+1); 1090 1091 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1092 if (!OldMD) { 1093 OldMD.reset(MD); 1094 return; 1095 } 1096 1097 // If there was a forward reference to this value, replace it. 1098 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1099 PrevMD->replaceAllUsesWith(MD); 1100 --NumFwdRefs; 1101 } 1102 1103 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1104 if (Idx >= size()) 1105 resize(Idx + 1); 1106 1107 if (Metadata *MD = MDValuePtrs[Idx]) 1108 return MD; 1109 1110 // Track forward refs to be resolved later. 1111 if (AnyFwdRefs) { 1112 MinFwdRef = std::min(MinFwdRef, Idx); 1113 MaxFwdRef = std::max(MaxFwdRef, Idx); 1114 } else { 1115 AnyFwdRefs = true; 1116 MinFwdRef = MaxFwdRef = Idx; 1117 } 1118 ++NumFwdRefs; 1119 1120 // Create and return a placeholder, which will later be RAUW'd. 1121 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1122 MDValuePtrs[Idx].reset(MD); 1123 return MD; 1124 } 1125 1126 void BitcodeReaderMDValueList::tryToResolveCycles() { 1127 if (!AnyFwdRefs) 1128 // Nothing to do. 1129 return; 1130 1131 if (NumFwdRefs) 1132 // Still forward references... can't resolve cycles. 1133 return; 1134 1135 // Resolve any cycles. 1136 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1137 auto &MD = MDValuePtrs[I]; 1138 auto *N = dyn_cast_or_null<MDNode>(MD); 1139 if (!N) 1140 continue; 1141 1142 assert(!N->isTemporary() && "Unexpected forward reference"); 1143 N->resolveCycles(); 1144 } 1145 1146 // Make sure we return early again until there's another forward ref. 1147 AnyFwdRefs = false; 1148 } 1149 1150 Type *BitcodeReader::getTypeByID(unsigned ID) { 1151 // The type table size is always specified correctly. 1152 if (ID >= TypeList.size()) 1153 return nullptr; 1154 1155 if (Type *Ty = TypeList[ID]) 1156 return Ty; 1157 1158 // If we have a forward reference, the only possible case is when it is to a 1159 // named struct. Just create a placeholder for now. 1160 return TypeList[ID] = createIdentifiedStructType(Context); 1161 } 1162 1163 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1164 StringRef Name) { 1165 auto *Ret = StructType::create(Context, Name); 1166 IdentifiedStructTypes.push_back(Ret); 1167 return Ret; 1168 } 1169 1170 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1171 auto *Ret = StructType::create(Context); 1172 IdentifiedStructTypes.push_back(Ret); 1173 return Ret; 1174 } 1175 1176 1177 //===----------------------------------------------------------------------===// 1178 // Functions for parsing blocks from the bitcode file 1179 //===----------------------------------------------------------------------===// 1180 1181 1182 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1183 /// been decoded from the given integer. This function must stay in sync with 1184 /// 'encodeLLVMAttributesForBitcode'. 1185 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1186 uint64_t EncodedAttrs) { 1187 // FIXME: Remove in 4.0. 1188 1189 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1190 // the bits above 31 down by 11 bits. 1191 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1192 assert((!Alignment || isPowerOf2_32(Alignment)) && 1193 "Alignment must be a power of two."); 1194 1195 if (Alignment) 1196 B.addAlignmentAttr(Alignment); 1197 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1198 (EncodedAttrs & 0xffff)); 1199 } 1200 1201 std::error_code BitcodeReader::parseAttributeBlock() { 1202 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1203 return error("Invalid record"); 1204 1205 if (!MAttributes.empty()) 1206 return error("Invalid multiple blocks"); 1207 1208 SmallVector<uint64_t, 64> Record; 1209 1210 SmallVector<AttributeSet, 8> Attrs; 1211 1212 // Read all the records. 1213 while (1) { 1214 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1215 1216 switch (Entry.Kind) { 1217 case BitstreamEntry::SubBlock: // Handled for us already. 1218 case BitstreamEntry::Error: 1219 return error("Malformed block"); 1220 case BitstreamEntry::EndBlock: 1221 return std::error_code(); 1222 case BitstreamEntry::Record: 1223 // The interesting case. 1224 break; 1225 } 1226 1227 // Read a record. 1228 Record.clear(); 1229 switch (Stream.readRecord(Entry.ID, Record)) { 1230 default: // Default behavior: ignore. 1231 break; 1232 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1233 // FIXME: Remove in 4.0. 1234 if (Record.size() & 1) 1235 return error("Invalid record"); 1236 1237 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1238 AttrBuilder B; 1239 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1240 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1241 } 1242 1243 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1244 Attrs.clear(); 1245 break; 1246 } 1247 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1248 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1249 Attrs.push_back(MAttributeGroups[Record[i]]); 1250 1251 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1252 Attrs.clear(); 1253 break; 1254 } 1255 } 1256 } 1257 } 1258 1259 // Returns Attribute::None on unrecognized codes. 1260 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1261 switch (Code) { 1262 default: 1263 return Attribute::None; 1264 case bitc::ATTR_KIND_ALIGNMENT: 1265 return Attribute::Alignment; 1266 case bitc::ATTR_KIND_ALWAYS_INLINE: 1267 return Attribute::AlwaysInline; 1268 case bitc::ATTR_KIND_ARGMEMONLY: 1269 return Attribute::ArgMemOnly; 1270 case bitc::ATTR_KIND_BUILTIN: 1271 return Attribute::Builtin; 1272 case bitc::ATTR_KIND_BY_VAL: 1273 return Attribute::ByVal; 1274 case bitc::ATTR_KIND_IN_ALLOCA: 1275 return Attribute::InAlloca; 1276 case bitc::ATTR_KIND_COLD: 1277 return Attribute::Cold; 1278 case bitc::ATTR_KIND_CONVERGENT: 1279 return Attribute::Convergent; 1280 case bitc::ATTR_KIND_INLINE_HINT: 1281 return Attribute::InlineHint; 1282 case bitc::ATTR_KIND_IN_REG: 1283 return Attribute::InReg; 1284 case bitc::ATTR_KIND_JUMP_TABLE: 1285 return Attribute::JumpTable; 1286 case bitc::ATTR_KIND_MIN_SIZE: 1287 return Attribute::MinSize; 1288 case bitc::ATTR_KIND_NAKED: 1289 return Attribute::Naked; 1290 case bitc::ATTR_KIND_NEST: 1291 return Attribute::Nest; 1292 case bitc::ATTR_KIND_NO_ALIAS: 1293 return Attribute::NoAlias; 1294 case bitc::ATTR_KIND_NO_BUILTIN: 1295 return Attribute::NoBuiltin; 1296 case bitc::ATTR_KIND_NO_CAPTURE: 1297 return Attribute::NoCapture; 1298 case bitc::ATTR_KIND_NO_DUPLICATE: 1299 return Attribute::NoDuplicate; 1300 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1301 return Attribute::NoImplicitFloat; 1302 case bitc::ATTR_KIND_NO_INLINE: 1303 return Attribute::NoInline; 1304 case bitc::ATTR_KIND_NON_LAZY_BIND: 1305 return Attribute::NonLazyBind; 1306 case bitc::ATTR_KIND_NON_NULL: 1307 return Attribute::NonNull; 1308 case bitc::ATTR_KIND_DEREFERENCEABLE: 1309 return Attribute::Dereferenceable; 1310 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1311 return Attribute::DereferenceableOrNull; 1312 case bitc::ATTR_KIND_NO_RED_ZONE: 1313 return Attribute::NoRedZone; 1314 case bitc::ATTR_KIND_NO_RETURN: 1315 return Attribute::NoReturn; 1316 case bitc::ATTR_KIND_NO_UNWIND: 1317 return Attribute::NoUnwind; 1318 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1319 return Attribute::OptimizeForSize; 1320 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1321 return Attribute::OptimizeNone; 1322 case bitc::ATTR_KIND_READ_NONE: 1323 return Attribute::ReadNone; 1324 case bitc::ATTR_KIND_READ_ONLY: 1325 return Attribute::ReadOnly; 1326 case bitc::ATTR_KIND_RETURNED: 1327 return Attribute::Returned; 1328 case bitc::ATTR_KIND_RETURNS_TWICE: 1329 return Attribute::ReturnsTwice; 1330 case bitc::ATTR_KIND_S_EXT: 1331 return Attribute::SExt; 1332 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1333 return Attribute::StackAlignment; 1334 case bitc::ATTR_KIND_STACK_PROTECT: 1335 return Attribute::StackProtect; 1336 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1337 return Attribute::StackProtectReq; 1338 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1339 return Attribute::StackProtectStrong; 1340 case bitc::ATTR_KIND_SAFESTACK: 1341 return Attribute::SafeStack; 1342 case bitc::ATTR_KIND_STRUCT_RET: 1343 return Attribute::StructRet; 1344 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1345 return Attribute::SanitizeAddress; 1346 case bitc::ATTR_KIND_SANITIZE_THREAD: 1347 return Attribute::SanitizeThread; 1348 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1349 return Attribute::SanitizeMemory; 1350 case bitc::ATTR_KIND_UW_TABLE: 1351 return Attribute::UWTable; 1352 case bitc::ATTR_KIND_Z_EXT: 1353 return Attribute::ZExt; 1354 } 1355 } 1356 1357 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1358 unsigned &Alignment) { 1359 // Note: Alignment in bitcode files is incremented by 1, so that zero 1360 // can be used for default alignment. 1361 if (Exponent > Value::MaxAlignmentExponent + 1) 1362 return error("Invalid alignment value"); 1363 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1364 return std::error_code(); 1365 } 1366 1367 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1368 Attribute::AttrKind *Kind) { 1369 *Kind = getAttrFromCode(Code); 1370 if (*Kind == Attribute::None) 1371 return error(BitcodeError::CorruptedBitcode, 1372 "Unknown attribute kind (" + Twine(Code) + ")"); 1373 return std::error_code(); 1374 } 1375 1376 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1377 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1378 return error("Invalid record"); 1379 1380 if (!MAttributeGroups.empty()) 1381 return error("Invalid multiple blocks"); 1382 1383 SmallVector<uint64_t, 64> Record; 1384 1385 // Read all the records. 1386 while (1) { 1387 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1388 1389 switch (Entry.Kind) { 1390 case BitstreamEntry::SubBlock: // Handled for us already. 1391 case BitstreamEntry::Error: 1392 return error("Malformed block"); 1393 case BitstreamEntry::EndBlock: 1394 return std::error_code(); 1395 case BitstreamEntry::Record: 1396 // The interesting case. 1397 break; 1398 } 1399 1400 // Read a record. 1401 Record.clear(); 1402 switch (Stream.readRecord(Entry.ID, Record)) { 1403 default: // Default behavior: ignore. 1404 break; 1405 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1406 if (Record.size() < 3) 1407 return error("Invalid record"); 1408 1409 uint64_t GrpID = Record[0]; 1410 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1411 1412 AttrBuilder B; 1413 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1414 if (Record[i] == 0) { // Enum attribute 1415 Attribute::AttrKind Kind; 1416 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1417 return EC; 1418 1419 B.addAttribute(Kind); 1420 } else if (Record[i] == 1) { // Integer attribute 1421 Attribute::AttrKind Kind; 1422 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1423 return EC; 1424 if (Kind == Attribute::Alignment) 1425 B.addAlignmentAttr(Record[++i]); 1426 else if (Kind == Attribute::StackAlignment) 1427 B.addStackAlignmentAttr(Record[++i]); 1428 else if (Kind == Attribute::Dereferenceable) 1429 B.addDereferenceableAttr(Record[++i]); 1430 else if (Kind == Attribute::DereferenceableOrNull) 1431 B.addDereferenceableOrNullAttr(Record[++i]); 1432 } else { // String attribute 1433 assert((Record[i] == 3 || Record[i] == 4) && 1434 "Invalid attribute group entry"); 1435 bool HasValue = (Record[i++] == 4); 1436 SmallString<64> KindStr; 1437 SmallString<64> ValStr; 1438 1439 while (Record[i] != 0 && i != e) 1440 KindStr += Record[i++]; 1441 assert(Record[i] == 0 && "Kind string not null terminated"); 1442 1443 if (HasValue) { 1444 // Has a value associated with it. 1445 ++i; // Skip the '0' that terminates the "kind" string. 1446 while (Record[i] != 0 && i != e) 1447 ValStr += Record[i++]; 1448 assert(Record[i] == 0 && "Value string not null terminated"); 1449 } 1450 1451 B.addAttribute(KindStr.str(), ValStr.str()); 1452 } 1453 } 1454 1455 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1456 break; 1457 } 1458 } 1459 } 1460 } 1461 1462 std::error_code BitcodeReader::parseTypeTable() { 1463 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1464 return error("Invalid record"); 1465 1466 return parseTypeTableBody(); 1467 } 1468 1469 std::error_code BitcodeReader::parseTypeTableBody() { 1470 if (!TypeList.empty()) 1471 return error("Invalid multiple blocks"); 1472 1473 SmallVector<uint64_t, 64> Record; 1474 unsigned NumRecords = 0; 1475 1476 SmallString<64> TypeName; 1477 1478 // Read all the records for this type table. 1479 while (1) { 1480 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1481 1482 switch (Entry.Kind) { 1483 case BitstreamEntry::SubBlock: // Handled for us already. 1484 case BitstreamEntry::Error: 1485 return error("Malformed block"); 1486 case BitstreamEntry::EndBlock: 1487 if (NumRecords != TypeList.size()) 1488 return error("Malformed block"); 1489 return std::error_code(); 1490 case BitstreamEntry::Record: 1491 // The interesting case. 1492 break; 1493 } 1494 1495 // Read a record. 1496 Record.clear(); 1497 Type *ResultTy = nullptr; 1498 switch (Stream.readRecord(Entry.ID, Record)) { 1499 default: 1500 return error("Invalid value"); 1501 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1502 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1503 // type list. This allows us to reserve space. 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 TypeList.resize(Record[0]); 1507 continue; 1508 case bitc::TYPE_CODE_VOID: // VOID 1509 ResultTy = Type::getVoidTy(Context); 1510 break; 1511 case bitc::TYPE_CODE_HALF: // HALF 1512 ResultTy = Type::getHalfTy(Context); 1513 break; 1514 case bitc::TYPE_CODE_FLOAT: // FLOAT 1515 ResultTy = Type::getFloatTy(Context); 1516 break; 1517 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1518 ResultTy = Type::getDoubleTy(Context); 1519 break; 1520 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1521 ResultTy = Type::getX86_FP80Ty(Context); 1522 break; 1523 case bitc::TYPE_CODE_FP128: // FP128 1524 ResultTy = Type::getFP128Ty(Context); 1525 break; 1526 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1527 ResultTy = Type::getPPC_FP128Ty(Context); 1528 break; 1529 case bitc::TYPE_CODE_LABEL: // LABEL 1530 ResultTy = Type::getLabelTy(Context); 1531 break; 1532 case bitc::TYPE_CODE_METADATA: // METADATA 1533 ResultTy = Type::getMetadataTy(Context); 1534 break; 1535 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1536 ResultTy = Type::getX86_MMXTy(Context); 1537 break; 1538 case bitc::TYPE_CODE_TOKEN: // TOKEN 1539 ResultTy = Type::getTokenTy(Context); 1540 break; 1541 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1542 if (Record.size() < 1) 1543 return error("Invalid record"); 1544 1545 uint64_t NumBits = Record[0]; 1546 if (NumBits < IntegerType::MIN_INT_BITS || 1547 NumBits > IntegerType::MAX_INT_BITS) 1548 return error("Bitwidth for integer type out of range"); 1549 ResultTy = IntegerType::get(Context, NumBits); 1550 break; 1551 } 1552 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1553 // [pointee type, address space] 1554 if (Record.size() < 1) 1555 return error("Invalid record"); 1556 unsigned AddressSpace = 0; 1557 if (Record.size() == 2) 1558 AddressSpace = Record[1]; 1559 ResultTy = getTypeByID(Record[0]); 1560 if (!ResultTy || 1561 !PointerType::isValidElementType(ResultTy)) 1562 return error("Invalid type"); 1563 ResultTy = PointerType::get(ResultTy, AddressSpace); 1564 break; 1565 } 1566 case bitc::TYPE_CODE_FUNCTION_OLD: { 1567 // FIXME: attrid is dead, remove it in LLVM 4.0 1568 // FUNCTION: [vararg, attrid, retty, paramty x N] 1569 if (Record.size() < 3) 1570 return error("Invalid record"); 1571 SmallVector<Type*, 8> ArgTys; 1572 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1573 if (Type *T = getTypeByID(Record[i])) 1574 ArgTys.push_back(T); 1575 else 1576 break; 1577 } 1578 1579 ResultTy = getTypeByID(Record[2]); 1580 if (!ResultTy || ArgTys.size() < Record.size()-3) 1581 return error("Invalid type"); 1582 1583 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1584 break; 1585 } 1586 case bitc::TYPE_CODE_FUNCTION: { 1587 // FUNCTION: [vararg, retty, paramty x N] 1588 if (Record.size() < 2) 1589 return error("Invalid record"); 1590 SmallVector<Type*, 8> ArgTys; 1591 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1592 if (Type *T = getTypeByID(Record[i])) { 1593 if (!FunctionType::isValidArgumentType(T)) 1594 return error("Invalid function argument type"); 1595 ArgTys.push_back(T); 1596 } 1597 else 1598 break; 1599 } 1600 1601 ResultTy = getTypeByID(Record[1]); 1602 if (!ResultTy || ArgTys.size() < Record.size()-2) 1603 return error("Invalid type"); 1604 1605 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1606 break; 1607 } 1608 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1609 if (Record.size() < 1) 1610 return error("Invalid record"); 1611 SmallVector<Type*, 8> EltTys; 1612 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1613 if (Type *T = getTypeByID(Record[i])) 1614 EltTys.push_back(T); 1615 else 1616 break; 1617 } 1618 if (EltTys.size() != Record.size()-1) 1619 return error("Invalid type"); 1620 ResultTy = StructType::get(Context, EltTys, Record[0]); 1621 break; 1622 } 1623 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1624 if (convertToString(Record, 0, TypeName)) 1625 return error("Invalid record"); 1626 continue; 1627 1628 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1629 if (Record.size() < 1) 1630 return error("Invalid record"); 1631 1632 if (NumRecords >= TypeList.size()) 1633 return error("Invalid TYPE table"); 1634 1635 // Check to see if this was forward referenced, if so fill in the temp. 1636 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1637 if (Res) { 1638 Res->setName(TypeName); 1639 TypeList[NumRecords] = nullptr; 1640 } else // Otherwise, create a new struct. 1641 Res = createIdentifiedStructType(Context, TypeName); 1642 TypeName.clear(); 1643 1644 SmallVector<Type*, 8> EltTys; 1645 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1646 if (Type *T = getTypeByID(Record[i])) 1647 EltTys.push_back(T); 1648 else 1649 break; 1650 } 1651 if (EltTys.size() != Record.size()-1) 1652 return error("Invalid record"); 1653 Res->setBody(EltTys, Record[0]); 1654 ResultTy = Res; 1655 break; 1656 } 1657 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1658 if (Record.size() != 1) 1659 return error("Invalid record"); 1660 1661 if (NumRecords >= TypeList.size()) 1662 return error("Invalid TYPE table"); 1663 1664 // Check to see if this was forward referenced, if so fill in the temp. 1665 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1666 if (Res) { 1667 Res->setName(TypeName); 1668 TypeList[NumRecords] = nullptr; 1669 } else // Otherwise, create a new struct with no body. 1670 Res = createIdentifiedStructType(Context, TypeName); 1671 TypeName.clear(); 1672 ResultTy = Res; 1673 break; 1674 } 1675 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1676 if (Record.size() < 2) 1677 return error("Invalid record"); 1678 ResultTy = getTypeByID(Record[1]); 1679 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1680 return error("Invalid type"); 1681 ResultTy = ArrayType::get(ResultTy, Record[0]); 1682 break; 1683 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1684 if (Record.size() < 2) 1685 return error("Invalid record"); 1686 if (Record[0] == 0) 1687 return error("Invalid vector length"); 1688 ResultTy = getTypeByID(Record[1]); 1689 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1690 return error("Invalid type"); 1691 ResultTy = VectorType::get(ResultTy, Record[0]); 1692 break; 1693 } 1694 1695 if (NumRecords >= TypeList.size()) 1696 return error("Invalid TYPE table"); 1697 if (TypeList[NumRecords]) 1698 return error( 1699 "Invalid TYPE table: Only named structs can be forward referenced"); 1700 assert(ResultTy && "Didn't read a type?"); 1701 TypeList[NumRecords++] = ResultTy; 1702 } 1703 } 1704 1705 std::error_code BitcodeReader::parseOperandBundleTags() { 1706 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1707 return error("Invalid record"); 1708 1709 if (!BundleTags.empty()) 1710 return error("Invalid multiple blocks"); 1711 1712 SmallVector<uint64_t, 64> Record; 1713 1714 while (1) { 1715 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1716 1717 switch (Entry.Kind) { 1718 case BitstreamEntry::SubBlock: // Handled for us already. 1719 case BitstreamEntry::Error: 1720 return error("Malformed block"); 1721 case BitstreamEntry::EndBlock: 1722 return std::error_code(); 1723 case BitstreamEntry::Record: 1724 // The interesting case. 1725 break; 1726 } 1727 1728 // Tags are implicitly mapped to integers by their order. 1729 1730 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1731 return error("Invalid record"); 1732 1733 // OPERAND_BUNDLE_TAG: [strchr x N] 1734 BundleTags.emplace_back(); 1735 if (convertToString(Record, 0, BundleTags.back())) 1736 return error("Invalid record"); 1737 Record.clear(); 1738 } 1739 } 1740 1741 /// Associate a value with its name from the given index in the provided record. 1742 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1743 unsigned NameIndex, Triple &TT) { 1744 SmallString<128> ValueName; 1745 if (convertToString(Record, NameIndex, ValueName)) 1746 return error("Invalid record"); 1747 unsigned ValueID = Record[0]; 1748 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1749 return error("Invalid record"); 1750 Value *V = ValueList[ValueID]; 1751 1752 StringRef NameStr(ValueName.data(), ValueName.size()); 1753 if (NameStr.find_first_of(0) != StringRef::npos) 1754 return error("Invalid value name"); 1755 V->setName(NameStr); 1756 auto *GO = dyn_cast<GlobalObject>(V); 1757 if (GO) { 1758 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1759 if (TT.isOSBinFormatMachO()) 1760 GO->setComdat(nullptr); 1761 else 1762 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1763 } 1764 } 1765 return V; 1766 } 1767 1768 /// Parse the value symbol table at either the current parsing location or 1769 /// at the given bit offset if provided. 1770 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1771 uint64_t CurrentBit; 1772 // Pass in the Offset to distinguish between calling for the module-level 1773 // VST (where we want to jump to the VST offset) and the function-level 1774 // VST (where we don't). 1775 if (Offset > 0) { 1776 // Save the current parsing location so we can jump back at the end 1777 // of the VST read. 1778 CurrentBit = Stream.GetCurrentBitNo(); 1779 Stream.JumpToBit(Offset * 32); 1780 #ifndef NDEBUG 1781 // Do some checking if we are in debug mode. 1782 BitstreamEntry Entry = Stream.advance(); 1783 assert(Entry.Kind == BitstreamEntry::SubBlock); 1784 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1785 #else 1786 // In NDEBUG mode ignore the output so we don't get an unused variable 1787 // warning. 1788 Stream.advance(); 1789 #endif 1790 } 1791 1792 // Compute the delta between the bitcode indices in the VST (the word offset 1793 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1794 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1795 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1796 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1797 // just before entering the VST subblock because: 1) the EnterSubBlock 1798 // changes the AbbrevID width; 2) the VST block is nested within the same 1799 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1800 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1801 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1802 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1803 unsigned FuncBitcodeOffsetDelta = 1804 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1805 1806 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1807 return error("Invalid record"); 1808 1809 SmallVector<uint64_t, 64> Record; 1810 1811 Triple TT(TheModule->getTargetTriple()); 1812 1813 // Read all the records for this value table. 1814 SmallString<128> ValueName; 1815 while (1) { 1816 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1817 1818 switch (Entry.Kind) { 1819 case BitstreamEntry::SubBlock: // Handled for us already. 1820 case BitstreamEntry::Error: 1821 return error("Malformed block"); 1822 case BitstreamEntry::EndBlock: 1823 if (Offset > 0) 1824 Stream.JumpToBit(CurrentBit); 1825 return std::error_code(); 1826 case BitstreamEntry::Record: 1827 // The interesting case. 1828 break; 1829 } 1830 1831 // Read a record. 1832 Record.clear(); 1833 switch (Stream.readRecord(Entry.ID, Record)) { 1834 default: // Default behavior: unknown type. 1835 break; 1836 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1837 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1838 if (std::error_code EC = ValOrErr.getError()) 1839 return EC; 1840 ValOrErr.get(); 1841 break; 1842 } 1843 case bitc::VST_CODE_FNENTRY: { 1844 // VST_FNENTRY: [valueid, offset, namechar x N] 1845 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1846 if (std::error_code EC = ValOrErr.getError()) 1847 return EC; 1848 Value *V = ValOrErr.get(); 1849 1850 auto *GO = dyn_cast<GlobalObject>(V); 1851 if (!GO) { 1852 // If this is an alias, need to get the actual Function object 1853 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1854 auto *GA = dyn_cast<GlobalAlias>(V); 1855 if (GA) 1856 GO = GA->getBaseObject(); 1857 assert(GO); 1858 } 1859 1860 uint64_t FuncWordOffset = Record[1]; 1861 Function *F = dyn_cast<Function>(GO); 1862 assert(F); 1863 uint64_t FuncBitOffset = FuncWordOffset * 32; 1864 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1865 // Set the LastFunctionBlockBit to point to the last function block. 1866 // Later when parsing is resumed after function materialization, 1867 // we can simply skip that last function block. 1868 if (FuncBitOffset > LastFunctionBlockBit) 1869 LastFunctionBlockBit = FuncBitOffset; 1870 break; 1871 } 1872 case bitc::VST_CODE_BBENTRY: { 1873 if (convertToString(Record, 1, ValueName)) 1874 return error("Invalid record"); 1875 BasicBlock *BB = getBasicBlock(Record[0]); 1876 if (!BB) 1877 return error("Invalid record"); 1878 1879 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1880 ValueName.clear(); 1881 break; 1882 } 1883 } 1884 } 1885 } 1886 1887 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1888 1889 std::error_code BitcodeReader::parseMetadata() { 1890 IsMetadataMaterialized = true; 1891 unsigned NextMDValueNo = MDValueList.size(); 1892 1893 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1894 return error("Invalid record"); 1895 1896 SmallVector<uint64_t, 64> Record; 1897 1898 auto getMD = 1899 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1900 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1901 if (ID) 1902 return getMD(ID - 1); 1903 return nullptr; 1904 }; 1905 auto getMDString = [&](unsigned ID) -> MDString *{ 1906 // This requires that the ID is not really a forward reference. In 1907 // particular, the MDString must already have been resolved. 1908 return cast_or_null<MDString>(getMDOrNull(ID)); 1909 }; 1910 1911 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1912 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1913 1914 // Read all the records. 1915 while (1) { 1916 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1917 1918 switch (Entry.Kind) { 1919 case BitstreamEntry::SubBlock: // Handled for us already. 1920 case BitstreamEntry::Error: 1921 return error("Malformed block"); 1922 case BitstreamEntry::EndBlock: 1923 MDValueList.tryToResolveCycles(); 1924 return std::error_code(); 1925 case BitstreamEntry::Record: 1926 // The interesting case. 1927 break; 1928 } 1929 1930 // Read a record. 1931 Record.clear(); 1932 unsigned Code = Stream.readRecord(Entry.ID, Record); 1933 bool IsDistinct = false; 1934 switch (Code) { 1935 default: // Default behavior: ignore. 1936 break; 1937 case bitc::METADATA_NAME: { 1938 // Read name of the named metadata. 1939 SmallString<8> Name(Record.begin(), Record.end()); 1940 Record.clear(); 1941 Code = Stream.ReadCode(); 1942 1943 unsigned NextBitCode = Stream.readRecord(Code, Record); 1944 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1945 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1946 1947 // Read named metadata elements. 1948 unsigned Size = Record.size(); 1949 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1950 for (unsigned i = 0; i != Size; ++i) { 1951 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1952 if (!MD) 1953 return error("Invalid record"); 1954 NMD->addOperand(MD); 1955 } 1956 break; 1957 } 1958 case bitc::METADATA_OLD_FN_NODE: { 1959 // FIXME: Remove in 4.0. 1960 // This is a LocalAsMetadata record, the only type of function-local 1961 // metadata. 1962 if (Record.size() % 2 == 1) 1963 return error("Invalid record"); 1964 1965 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1966 // to be legal, but there's no upgrade path. 1967 auto dropRecord = [&] { 1968 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1969 }; 1970 if (Record.size() != 2) { 1971 dropRecord(); 1972 break; 1973 } 1974 1975 Type *Ty = getTypeByID(Record[0]); 1976 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1977 dropRecord(); 1978 break; 1979 } 1980 1981 MDValueList.assignValue( 1982 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1983 NextMDValueNo++); 1984 break; 1985 } 1986 case bitc::METADATA_OLD_NODE: { 1987 // FIXME: Remove in 4.0. 1988 if (Record.size() % 2 == 1) 1989 return error("Invalid record"); 1990 1991 unsigned Size = Record.size(); 1992 SmallVector<Metadata *, 8> Elts; 1993 for (unsigned i = 0; i != Size; i += 2) { 1994 Type *Ty = getTypeByID(Record[i]); 1995 if (!Ty) 1996 return error("Invalid record"); 1997 if (Ty->isMetadataTy()) 1998 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1999 else if (!Ty->isVoidTy()) { 2000 auto *MD = 2001 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2002 assert(isa<ConstantAsMetadata>(MD) && 2003 "Expected non-function-local metadata"); 2004 Elts.push_back(MD); 2005 } else 2006 Elts.push_back(nullptr); 2007 } 2008 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2009 break; 2010 } 2011 case bitc::METADATA_VALUE: { 2012 if (Record.size() != 2) 2013 return error("Invalid record"); 2014 2015 Type *Ty = getTypeByID(Record[0]); 2016 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2017 return error("Invalid record"); 2018 2019 MDValueList.assignValue( 2020 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2021 NextMDValueNo++); 2022 break; 2023 } 2024 case bitc::METADATA_DISTINCT_NODE: 2025 IsDistinct = true; 2026 // fallthrough... 2027 case bitc::METADATA_NODE: { 2028 SmallVector<Metadata *, 8> Elts; 2029 Elts.reserve(Record.size()); 2030 for (unsigned ID : Record) 2031 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2032 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2033 : MDNode::get(Context, Elts), 2034 NextMDValueNo++); 2035 break; 2036 } 2037 case bitc::METADATA_LOCATION: { 2038 if (Record.size() != 5) 2039 return error("Invalid record"); 2040 2041 unsigned Line = Record[1]; 2042 unsigned Column = Record[2]; 2043 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2044 Metadata *InlinedAt = 2045 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2046 MDValueList.assignValue( 2047 GET_OR_DISTINCT(DILocation, Record[0], 2048 (Context, Line, Column, Scope, InlinedAt)), 2049 NextMDValueNo++); 2050 break; 2051 } 2052 case bitc::METADATA_GENERIC_DEBUG: { 2053 if (Record.size() < 4) 2054 return error("Invalid record"); 2055 2056 unsigned Tag = Record[1]; 2057 unsigned Version = Record[2]; 2058 2059 if (Tag >= 1u << 16 || Version != 0) 2060 return error("Invalid record"); 2061 2062 auto *Header = getMDString(Record[3]); 2063 SmallVector<Metadata *, 8> DwarfOps; 2064 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2065 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2066 : nullptr); 2067 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2068 (Context, Tag, Header, DwarfOps)), 2069 NextMDValueNo++); 2070 break; 2071 } 2072 case bitc::METADATA_SUBRANGE: { 2073 if (Record.size() != 3) 2074 return error("Invalid record"); 2075 2076 MDValueList.assignValue( 2077 GET_OR_DISTINCT(DISubrange, Record[0], 2078 (Context, Record[1], unrotateSign(Record[2]))), 2079 NextMDValueNo++); 2080 break; 2081 } 2082 case bitc::METADATA_ENUMERATOR: { 2083 if (Record.size() != 3) 2084 return error("Invalid record"); 2085 2086 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2087 (Context, unrotateSign(Record[1]), 2088 getMDString(Record[2]))), 2089 NextMDValueNo++); 2090 break; 2091 } 2092 case bitc::METADATA_BASIC_TYPE: { 2093 if (Record.size() != 6) 2094 return error("Invalid record"); 2095 2096 MDValueList.assignValue( 2097 GET_OR_DISTINCT(DIBasicType, Record[0], 2098 (Context, Record[1], getMDString(Record[2]), 2099 Record[3], Record[4], Record[5])), 2100 NextMDValueNo++); 2101 break; 2102 } 2103 case bitc::METADATA_DERIVED_TYPE: { 2104 if (Record.size() != 12) 2105 return error("Invalid record"); 2106 2107 MDValueList.assignValue( 2108 GET_OR_DISTINCT(DIDerivedType, Record[0], 2109 (Context, Record[1], getMDString(Record[2]), 2110 getMDOrNull(Record[3]), Record[4], 2111 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2112 Record[7], Record[8], Record[9], Record[10], 2113 getMDOrNull(Record[11]))), 2114 NextMDValueNo++); 2115 break; 2116 } 2117 case bitc::METADATA_COMPOSITE_TYPE: { 2118 if (Record.size() != 16) 2119 return error("Invalid record"); 2120 2121 MDValueList.assignValue( 2122 GET_OR_DISTINCT(DICompositeType, Record[0], 2123 (Context, Record[1], getMDString(Record[2]), 2124 getMDOrNull(Record[3]), Record[4], 2125 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2126 Record[7], Record[8], Record[9], Record[10], 2127 getMDOrNull(Record[11]), Record[12], 2128 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2129 getMDString(Record[15]))), 2130 NextMDValueNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBROUTINE_TYPE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MDValueList.assignValue( 2138 GET_OR_DISTINCT(DISubroutineType, Record[0], 2139 (Context, Record[1], getMDOrNull(Record[2]))), 2140 NextMDValueNo++); 2141 break; 2142 } 2143 2144 case bitc::METADATA_MODULE: { 2145 if (Record.size() != 6) 2146 return error("Invalid record"); 2147 2148 MDValueList.assignValue( 2149 GET_OR_DISTINCT(DIModule, Record[0], 2150 (Context, getMDOrNull(Record[1]), 2151 getMDString(Record[2]), getMDString(Record[3]), 2152 getMDString(Record[4]), getMDString(Record[5]))), 2153 NextMDValueNo++); 2154 break; 2155 } 2156 2157 case bitc::METADATA_FILE: { 2158 if (Record.size() != 3) 2159 return error("Invalid record"); 2160 2161 MDValueList.assignValue( 2162 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2163 getMDString(Record[2]))), 2164 NextMDValueNo++); 2165 break; 2166 } 2167 case bitc::METADATA_COMPILE_UNIT: { 2168 if (Record.size() < 14 || Record.size() > 15) 2169 return error("Invalid record"); 2170 2171 // Ignore Record[1], which indicates whether this compile unit is 2172 // distinct. It's always distinct. 2173 MDValueList.assignValue( 2174 DICompileUnit::getDistinct( 2175 Context, Record[1], getMDOrNull(Record[2]), 2176 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2177 Record[6], getMDString(Record[7]), Record[8], 2178 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2179 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2180 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2181 NextMDValueNo++); 2182 break; 2183 } 2184 case bitc::METADATA_SUBPROGRAM: { 2185 if (Record.size() != 19) 2186 return error("Invalid record"); 2187 2188 MDValueList.assignValue( 2189 GET_OR_DISTINCT( 2190 DISubprogram, 2191 Record[0] || Record[8], // All definitions should be distinct. 2192 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2193 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2194 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2195 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2196 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 2197 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 2198 NextMDValueNo++); 2199 break; 2200 } 2201 case bitc::METADATA_LEXICAL_BLOCK: { 2202 if (Record.size() != 5) 2203 return error("Invalid record"); 2204 2205 MDValueList.assignValue( 2206 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2207 (Context, getMDOrNull(Record[1]), 2208 getMDOrNull(Record[2]), Record[3], Record[4])), 2209 NextMDValueNo++); 2210 break; 2211 } 2212 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2213 if (Record.size() != 4) 2214 return error("Invalid record"); 2215 2216 MDValueList.assignValue( 2217 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2218 (Context, getMDOrNull(Record[1]), 2219 getMDOrNull(Record[2]), Record[3])), 2220 NextMDValueNo++); 2221 break; 2222 } 2223 case bitc::METADATA_NAMESPACE: { 2224 if (Record.size() != 5) 2225 return error("Invalid record"); 2226 2227 MDValueList.assignValue( 2228 GET_OR_DISTINCT(DINamespace, Record[0], 2229 (Context, getMDOrNull(Record[1]), 2230 getMDOrNull(Record[2]), getMDString(Record[3]), 2231 Record[4])), 2232 NextMDValueNo++); 2233 break; 2234 } 2235 case bitc::METADATA_TEMPLATE_TYPE: { 2236 if (Record.size() != 3) 2237 return error("Invalid record"); 2238 2239 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2240 Record[0], 2241 (Context, getMDString(Record[1]), 2242 getMDOrNull(Record[2]))), 2243 NextMDValueNo++); 2244 break; 2245 } 2246 case bitc::METADATA_TEMPLATE_VALUE: { 2247 if (Record.size() != 5) 2248 return error("Invalid record"); 2249 2250 MDValueList.assignValue( 2251 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2252 (Context, Record[1], getMDString(Record[2]), 2253 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2254 NextMDValueNo++); 2255 break; 2256 } 2257 case bitc::METADATA_GLOBAL_VAR: { 2258 if (Record.size() != 11) 2259 return error("Invalid record"); 2260 2261 MDValueList.assignValue( 2262 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2263 (Context, getMDOrNull(Record[1]), 2264 getMDString(Record[2]), getMDString(Record[3]), 2265 getMDOrNull(Record[4]), Record[5], 2266 getMDOrNull(Record[6]), Record[7], Record[8], 2267 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2268 NextMDValueNo++); 2269 break; 2270 } 2271 case bitc::METADATA_LOCAL_VAR: { 2272 // 10th field is for the obseleted 'inlinedAt:' field. 2273 if (Record.size() < 8 || Record.size() > 10) 2274 return error("Invalid record"); 2275 2276 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2277 // DW_TAG_arg_variable. 2278 bool HasTag = Record.size() > 8; 2279 MDValueList.assignValue( 2280 GET_OR_DISTINCT(DILocalVariable, Record[0], 2281 (Context, getMDOrNull(Record[1 + HasTag]), 2282 getMDString(Record[2 + HasTag]), 2283 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2284 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2285 Record[7 + HasTag])), 2286 NextMDValueNo++); 2287 break; 2288 } 2289 case bitc::METADATA_EXPRESSION: { 2290 if (Record.size() < 1) 2291 return error("Invalid record"); 2292 2293 MDValueList.assignValue( 2294 GET_OR_DISTINCT(DIExpression, Record[0], 2295 (Context, makeArrayRef(Record).slice(1))), 2296 NextMDValueNo++); 2297 break; 2298 } 2299 case bitc::METADATA_OBJC_PROPERTY: { 2300 if (Record.size() != 8) 2301 return error("Invalid record"); 2302 2303 MDValueList.assignValue( 2304 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2305 (Context, getMDString(Record[1]), 2306 getMDOrNull(Record[2]), Record[3], 2307 getMDString(Record[4]), getMDString(Record[5]), 2308 Record[6], getMDOrNull(Record[7]))), 2309 NextMDValueNo++); 2310 break; 2311 } 2312 case bitc::METADATA_IMPORTED_ENTITY: { 2313 if (Record.size() != 6) 2314 return error("Invalid record"); 2315 2316 MDValueList.assignValue( 2317 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2318 (Context, Record[1], getMDOrNull(Record[2]), 2319 getMDOrNull(Record[3]), Record[4], 2320 getMDString(Record[5]))), 2321 NextMDValueNo++); 2322 break; 2323 } 2324 case bitc::METADATA_STRING: { 2325 std::string String(Record.begin(), Record.end()); 2326 llvm::UpgradeMDStringConstant(String); 2327 Metadata *MD = MDString::get(Context, String); 2328 MDValueList.assignValue(MD, NextMDValueNo++); 2329 break; 2330 } 2331 case bitc::METADATA_KIND: { 2332 if (Record.size() < 2) 2333 return error("Invalid record"); 2334 2335 unsigned Kind = Record[0]; 2336 SmallString<8> Name(Record.begin()+1, Record.end()); 2337 2338 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2339 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2340 return error("Conflicting METADATA_KIND records"); 2341 break; 2342 } 2343 } 2344 } 2345 #undef GET_OR_DISTINCT 2346 } 2347 2348 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2349 /// encoding. 2350 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2351 if ((V & 1) == 0) 2352 return V >> 1; 2353 if (V != 1) 2354 return -(V >> 1); 2355 // There is no such thing as -0 with integers. "-0" really means MININT. 2356 return 1ULL << 63; 2357 } 2358 2359 /// Resolve all of the initializers for global values and aliases that we can. 2360 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2361 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2362 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2363 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2364 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2365 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2366 2367 GlobalInitWorklist.swap(GlobalInits); 2368 AliasInitWorklist.swap(AliasInits); 2369 FunctionPrefixWorklist.swap(FunctionPrefixes); 2370 FunctionPrologueWorklist.swap(FunctionPrologues); 2371 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2372 2373 while (!GlobalInitWorklist.empty()) { 2374 unsigned ValID = GlobalInitWorklist.back().second; 2375 if (ValID >= ValueList.size()) { 2376 // Not ready to resolve this yet, it requires something later in the file. 2377 GlobalInits.push_back(GlobalInitWorklist.back()); 2378 } else { 2379 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2380 GlobalInitWorklist.back().first->setInitializer(C); 2381 else 2382 return error("Expected a constant"); 2383 } 2384 GlobalInitWorklist.pop_back(); 2385 } 2386 2387 while (!AliasInitWorklist.empty()) { 2388 unsigned ValID = AliasInitWorklist.back().second; 2389 if (ValID >= ValueList.size()) { 2390 AliasInits.push_back(AliasInitWorklist.back()); 2391 } else { 2392 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2393 if (!C) 2394 return error("Expected a constant"); 2395 GlobalAlias *Alias = AliasInitWorklist.back().first; 2396 if (C->getType() != Alias->getType()) 2397 return error("Alias and aliasee types don't match"); 2398 Alias->setAliasee(C); 2399 } 2400 AliasInitWorklist.pop_back(); 2401 } 2402 2403 while (!FunctionPrefixWorklist.empty()) { 2404 unsigned ValID = FunctionPrefixWorklist.back().second; 2405 if (ValID >= ValueList.size()) { 2406 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2407 } else { 2408 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2409 FunctionPrefixWorklist.back().first->setPrefixData(C); 2410 else 2411 return error("Expected a constant"); 2412 } 2413 FunctionPrefixWorklist.pop_back(); 2414 } 2415 2416 while (!FunctionPrologueWorklist.empty()) { 2417 unsigned ValID = FunctionPrologueWorklist.back().second; 2418 if (ValID >= ValueList.size()) { 2419 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2420 } else { 2421 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2422 FunctionPrologueWorklist.back().first->setPrologueData(C); 2423 else 2424 return error("Expected a constant"); 2425 } 2426 FunctionPrologueWorklist.pop_back(); 2427 } 2428 2429 while (!FunctionPersonalityFnWorklist.empty()) { 2430 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2431 if (ValID >= ValueList.size()) { 2432 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2433 } else { 2434 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2435 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2436 else 2437 return error("Expected a constant"); 2438 } 2439 FunctionPersonalityFnWorklist.pop_back(); 2440 } 2441 2442 return std::error_code(); 2443 } 2444 2445 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2446 SmallVector<uint64_t, 8> Words(Vals.size()); 2447 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2448 BitcodeReader::decodeSignRotatedValue); 2449 2450 return APInt(TypeBits, Words); 2451 } 2452 2453 std::error_code BitcodeReader::parseConstants() { 2454 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2455 return error("Invalid record"); 2456 2457 SmallVector<uint64_t, 64> Record; 2458 2459 // Read all the records for this value table. 2460 Type *CurTy = Type::getInt32Ty(Context); 2461 unsigned NextCstNo = ValueList.size(); 2462 while (1) { 2463 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2464 2465 switch (Entry.Kind) { 2466 case BitstreamEntry::SubBlock: // Handled for us already. 2467 case BitstreamEntry::Error: 2468 return error("Malformed block"); 2469 case BitstreamEntry::EndBlock: 2470 if (NextCstNo != ValueList.size()) 2471 return error("Invalid ronstant reference"); 2472 2473 // Once all the constants have been read, go through and resolve forward 2474 // references. 2475 ValueList.resolveConstantForwardRefs(); 2476 return std::error_code(); 2477 case BitstreamEntry::Record: 2478 // The interesting case. 2479 break; 2480 } 2481 2482 // Read a record. 2483 Record.clear(); 2484 Value *V = nullptr; 2485 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2486 switch (BitCode) { 2487 default: // Default behavior: unknown constant 2488 case bitc::CST_CODE_UNDEF: // UNDEF 2489 V = UndefValue::get(CurTy); 2490 break; 2491 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2492 if (Record.empty()) 2493 return error("Invalid record"); 2494 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2495 return error("Invalid record"); 2496 CurTy = TypeList[Record[0]]; 2497 continue; // Skip the ValueList manipulation. 2498 case bitc::CST_CODE_NULL: // NULL 2499 V = Constant::getNullValue(CurTy); 2500 break; 2501 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2502 if (!CurTy->isIntegerTy() || Record.empty()) 2503 return error("Invalid record"); 2504 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2505 break; 2506 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2507 if (!CurTy->isIntegerTy() || Record.empty()) 2508 return error("Invalid record"); 2509 2510 APInt VInt = 2511 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2512 V = ConstantInt::get(Context, VInt); 2513 2514 break; 2515 } 2516 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2517 if (Record.empty()) 2518 return error("Invalid record"); 2519 if (CurTy->isHalfTy()) 2520 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2521 APInt(16, (uint16_t)Record[0]))); 2522 else if (CurTy->isFloatTy()) 2523 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2524 APInt(32, (uint32_t)Record[0]))); 2525 else if (CurTy->isDoubleTy()) 2526 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2527 APInt(64, Record[0]))); 2528 else if (CurTy->isX86_FP80Ty()) { 2529 // Bits are not stored the same way as a normal i80 APInt, compensate. 2530 uint64_t Rearrange[2]; 2531 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2532 Rearrange[1] = Record[0] >> 48; 2533 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2534 APInt(80, Rearrange))); 2535 } else if (CurTy->isFP128Ty()) 2536 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2537 APInt(128, Record))); 2538 else if (CurTy->isPPC_FP128Ty()) 2539 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2540 APInt(128, Record))); 2541 else 2542 V = UndefValue::get(CurTy); 2543 break; 2544 } 2545 2546 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2547 if (Record.empty()) 2548 return error("Invalid record"); 2549 2550 unsigned Size = Record.size(); 2551 SmallVector<Constant*, 16> Elts; 2552 2553 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2554 for (unsigned i = 0; i != Size; ++i) 2555 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2556 STy->getElementType(i))); 2557 V = ConstantStruct::get(STy, Elts); 2558 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2559 Type *EltTy = ATy->getElementType(); 2560 for (unsigned i = 0; i != Size; ++i) 2561 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2562 V = ConstantArray::get(ATy, Elts); 2563 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2564 Type *EltTy = VTy->getElementType(); 2565 for (unsigned i = 0; i != Size; ++i) 2566 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2567 V = ConstantVector::get(Elts); 2568 } else { 2569 V = UndefValue::get(CurTy); 2570 } 2571 break; 2572 } 2573 case bitc::CST_CODE_STRING: // STRING: [values] 2574 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2575 if (Record.empty()) 2576 return error("Invalid record"); 2577 2578 SmallString<16> Elts(Record.begin(), Record.end()); 2579 V = ConstantDataArray::getString(Context, Elts, 2580 BitCode == bitc::CST_CODE_CSTRING); 2581 break; 2582 } 2583 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2584 if (Record.empty()) 2585 return error("Invalid record"); 2586 2587 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2588 unsigned Size = Record.size(); 2589 2590 if (EltTy->isIntegerTy(8)) { 2591 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2592 if (isa<VectorType>(CurTy)) 2593 V = ConstantDataVector::get(Context, Elts); 2594 else 2595 V = ConstantDataArray::get(Context, Elts); 2596 } else if (EltTy->isIntegerTy(16)) { 2597 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2598 if (isa<VectorType>(CurTy)) 2599 V = ConstantDataVector::get(Context, Elts); 2600 else 2601 V = ConstantDataArray::get(Context, Elts); 2602 } else if (EltTy->isIntegerTy(32)) { 2603 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2604 if (isa<VectorType>(CurTy)) 2605 V = ConstantDataVector::get(Context, Elts); 2606 else 2607 V = ConstantDataArray::get(Context, Elts); 2608 } else if (EltTy->isIntegerTy(64)) { 2609 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2610 if (isa<VectorType>(CurTy)) 2611 V = ConstantDataVector::get(Context, Elts); 2612 else 2613 V = ConstantDataArray::get(Context, Elts); 2614 } else if (EltTy->isFloatTy()) { 2615 SmallVector<float, 16> Elts(Size); 2616 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2617 if (isa<VectorType>(CurTy)) 2618 V = ConstantDataVector::get(Context, Elts); 2619 else 2620 V = ConstantDataArray::get(Context, Elts); 2621 } else if (EltTy->isDoubleTy()) { 2622 SmallVector<double, 16> Elts(Size); 2623 std::transform(Record.begin(), Record.end(), Elts.begin(), 2624 BitsToDouble); 2625 if (isa<VectorType>(CurTy)) 2626 V = ConstantDataVector::get(Context, Elts); 2627 else 2628 V = ConstantDataArray::get(Context, Elts); 2629 } else { 2630 return error("Invalid type for value"); 2631 } 2632 break; 2633 } 2634 2635 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2636 if (Record.size() < 3) 2637 return error("Invalid record"); 2638 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2639 if (Opc < 0) { 2640 V = UndefValue::get(CurTy); // Unknown binop. 2641 } else { 2642 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2643 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2644 unsigned Flags = 0; 2645 if (Record.size() >= 4) { 2646 if (Opc == Instruction::Add || 2647 Opc == Instruction::Sub || 2648 Opc == Instruction::Mul || 2649 Opc == Instruction::Shl) { 2650 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2651 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2652 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2653 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2654 } else if (Opc == Instruction::SDiv || 2655 Opc == Instruction::UDiv || 2656 Opc == Instruction::LShr || 2657 Opc == Instruction::AShr) { 2658 if (Record[3] & (1 << bitc::PEO_EXACT)) 2659 Flags |= SDivOperator::IsExact; 2660 } 2661 } 2662 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2663 } 2664 break; 2665 } 2666 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2667 if (Record.size() < 3) 2668 return error("Invalid record"); 2669 int Opc = getDecodedCastOpcode(Record[0]); 2670 if (Opc < 0) { 2671 V = UndefValue::get(CurTy); // Unknown cast. 2672 } else { 2673 Type *OpTy = getTypeByID(Record[1]); 2674 if (!OpTy) 2675 return error("Invalid record"); 2676 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2677 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2678 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2679 } 2680 break; 2681 } 2682 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2683 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2684 unsigned OpNum = 0; 2685 Type *PointeeType = nullptr; 2686 if (Record.size() % 2) 2687 PointeeType = getTypeByID(Record[OpNum++]); 2688 SmallVector<Constant*, 16> Elts; 2689 while (OpNum != Record.size()) { 2690 Type *ElTy = getTypeByID(Record[OpNum++]); 2691 if (!ElTy) 2692 return error("Invalid record"); 2693 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2694 } 2695 2696 if (PointeeType && 2697 PointeeType != 2698 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2699 ->getElementType()) 2700 return error("Explicit gep operator type does not match pointee type " 2701 "of pointer operand"); 2702 2703 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2704 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2705 BitCode == 2706 bitc::CST_CODE_CE_INBOUNDS_GEP); 2707 break; 2708 } 2709 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2710 if (Record.size() < 3) 2711 return error("Invalid record"); 2712 2713 Type *SelectorTy = Type::getInt1Ty(Context); 2714 2715 // The selector might be an i1 or an <n x i1> 2716 // Get the type from the ValueList before getting a forward ref. 2717 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2718 if (Value *V = ValueList[Record[0]]) 2719 if (SelectorTy != V->getType()) 2720 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2721 2722 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2723 SelectorTy), 2724 ValueList.getConstantFwdRef(Record[1],CurTy), 2725 ValueList.getConstantFwdRef(Record[2],CurTy)); 2726 break; 2727 } 2728 case bitc::CST_CODE_CE_EXTRACTELT 2729 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2730 if (Record.size() < 3) 2731 return error("Invalid record"); 2732 VectorType *OpTy = 2733 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2734 if (!OpTy) 2735 return error("Invalid record"); 2736 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2737 Constant *Op1 = nullptr; 2738 if (Record.size() == 4) { 2739 Type *IdxTy = getTypeByID(Record[2]); 2740 if (!IdxTy) 2741 return error("Invalid record"); 2742 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2743 } else // TODO: Remove with llvm 4.0 2744 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2745 if (!Op1) 2746 return error("Invalid record"); 2747 V = ConstantExpr::getExtractElement(Op0, Op1); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_INSERTELT 2751 : { // CE_INSERTELT: [opval, opval, opty, opval] 2752 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2753 if (Record.size() < 3 || !OpTy) 2754 return error("Invalid record"); 2755 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2756 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2757 OpTy->getElementType()); 2758 Constant *Op2 = nullptr; 2759 if (Record.size() == 4) { 2760 Type *IdxTy = getTypeByID(Record[2]); 2761 if (!IdxTy) 2762 return error("Invalid record"); 2763 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2764 } else // TODO: Remove with llvm 4.0 2765 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2766 if (!Op2) 2767 return error("Invalid record"); 2768 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2769 break; 2770 } 2771 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2772 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2773 if (Record.size() < 3 || !OpTy) 2774 return error("Invalid record"); 2775 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2776 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2777 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2778 OpTy->getNumElements()); 2779 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2780 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2781 break; 2782 } 2783 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2784 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2785 VectorType *OpTy = 2786 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2787 if (Record.size() < 4 || !RTy || !OpTy) 2788 return error("Invalid record"); 2789 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2790 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2791 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2792 RTy->getNumElements()); 2793 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2794 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2795 break; 2796 } 2797 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2798 if (Record.size() < 4) 2799 return error("Invalid record"); 2800 Type *OpTy = getTypeByID(Record[0]); 2801 if (!OpTy) 2802 return error("Invalid record"); 2803 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2804 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2805 2806 if (OpTy->isFPOrFPVectorTy()) 2807 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2808 else 2809 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2810 break; 2811 } 2812 // This maintains backward compatibility, pre-asm dialect keywords. 2813 // FIXME: Remove with the 4.0 release. 2814 case bitc::CST_CODE_INLINEASM_OLD: { 2815 if (Record.size() < 2) 2816 return error("Invalid record"); 2817 std::string AsmStr, ConstrStr; 2818 bool HasSideEffects = Record[0] & 1; 2819 bool IsAlignStack = Record[0] >> 1; 2820 unsigned AsmStrSize = Record[1]; 2821 if (2+AsmStrSize >= Record.size()) 2822 return error("Invalid record"); 2823 unsigned ConstStrSize = Record[2+AsmStrSize]; 2824 if (3+AsmStrSize+ConstStrSize > Record.size()) 2825 return error("Invalid record"); 2826 2827 for (unsigned i = 0; i != AsmStrSize; ++i) 2828 AsmStr += (char)Record[2+i]; 2829 for (unsigned i = 0; i != ConstStrSize; ++i) 2830 ConstrStr += (char)Record[3+AsmStrSize+i]; 2831 PointerType *PTy = cast<PointerType>(CurTy); 2832 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2833 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2834 break; 2835 } 2836 // This version adds support for the asm dialect keywords (e.g., 2837 // inteldialect). 2838 case bitc::CST_CODE_INLINEASM: { 2839 if (Record.size() < 2) 2840 return error("Invalid record"); 2841 std::string AsmStr, ConstrStr; 2842 bool HasSideEffects = Record[0] & 1; 2843 bool IsAlignStack = (Record[0] >> 1) & 1; 2844 unsigned AsmDialect = Record[0] >> 2; 2845 unsigned AsmStrSize = Record[1]; 2846 if (2+AsmStrSize >= Record.size()) 2847 return error("Invalid record"); 2848 unsigned ConstStrSize = Record[2+AsmStrSize]; 2849 if (3+AsmStrSize+ConstStrSize > Record.size()) 2850 return error("Invalid record"); 2851 2852 for (unsigned i = 0; i != AsmStrSize; ++i) 2853 AsmStr += (char)Record[2+i]; 2854 for (unsigned i = 0; i != ConstStrSize; ++i) 2855 ConstrStr += (char)Record[3+AsmStrSize+i]; 2856 PointerType *PTy = cast<PointerType>(CurTy); 2857 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2858 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2859 InlineAsm::AsmDialect(AsmDialect)); 2860 break; 2861 } 2862 case bitc::CST_CODE_BLOCKADDRESS:{ 2863 if (Record.size() < 3) 2864 return error("Invalid record"); 2865 Type *FnTy = getTypeByID(Record[0]); 2866 if (!FnTy) 2867 return error("Invalid record"); 2868 Function *Fn = 2869 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2870 if (!Fn) 2871 return error("Invalid record"); 2872 2873 // Don't let Fn get dematerialized. 2874 BlockAddressesTaken.insert(Fn); 2875 2876 // If the function is already parsed we can insert the block address right 2877 // away. 2878 BasicBlock *BB; 2879 unsigned BBID = Record[2]; 2880 if (!BBID) 2881 // Invalid reference to entry block. 2882 return error("Invalid ID"); 2883 if (!Fn->empty()) { 2884 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2885 for (size_t I = 0, E = BBID; I != E; ++I) { 2886 if (BBI == BBE) 2887 return error("Invalid ID"); 2888 ++BBI; 2889 } 2890 BB = &*BBI; 2891 } else { 2892 // Otherwise insert a placeholder and remember it so it can be inserted 2893 // when the function is parsed. 2894 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2895 if (FwdBBs.empty()) 2896 BasicBlockFwdRefQueue.push_back(Fn); 2897 if (FwdBBs.size() < BBID + 1) 2898 FwdBBs.resize(BBID + 1); 2899 if (!FwdBBs[BBID]) 2900 FwdBBs[BBID] = BasicBlock::Create(Context); 2901 BB = FwdBBs[BBID]; 2902 } 2903 V = BlockAddress::get(Fn, BB); 2904 break; 2905 } 2906 } 2907 2908 if (ValueList.assignValue(V, NextCstNo)) 2909 return error("Invalid forward reference"); 2910 ++NextCstNo; 2911 } 2912 } 2913 2914 std::error_code BitcodeReader::parseUseLists() { 2915 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2916 return error("Invalid record"); 2917 2918 // Read all the records. 2919 SmallVector<uint64_t, 64> Record; 2920 while (1) { 2921 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2922 2923 switch (Entry.Kind) { 2924 case BitstreamEntry::SubBlock: // Handled for us already. 2925 case BitstreamEntry::Error: 2926 return error("Malformed block"); 2927 case BitstreamEntry::EndBlock: 2928 return std::error_code(); 2929 case BitstreamEntry::Record: 2930 // The interesting case. 2931 break; 2932 } 2933 2934 // Read a use list record. 2935 Record.clear(); 2936 bool IsBB = false; 2937 switch (Stream.readRecord(Entry.ID, Record)) { 2938 default: // Default behavior: unknown type. 2939 break; 2940 case bitc::USELIST_CODE_BB: 2941 IsBB = true; 2942 // fallthrough 2943 case bitc::USELIST_CODE_DEFAULT: { 2944 unsigned RecordLength = Record.size(); 2945 if (RecordLength < 3) 2946 // Records should have at least an ID and two indexes. 2947 return error("Invalid record"); 2948 unsigned ID = Record.back(); 2949 Record.pop_back(); 2950 2951 Value *V; 2952 if (IsBB) { 2953 assert(ID < FunctionBBs.size() && "Basic block not found"); 2954 V = FunctionBBs[ID]; 2955 } else 2956 V = ValueList[ID]; 2957 unsigned NumUses = 0; 2958 SmallDenseMap<const Use *, unsigned, 16> Order; 2959 for (const Use &U : V->uses()) { 2960 if (++NumUses > Record.size()) 2961 break; 2962 Order[&U] = Record[NumUses - 1]; 2963 } 2964 if (Order.size() != Record.size() || NumUses > Record.size()) 2965 // Mismatches can happen if the functions are being materialized lazily 2966 // (out-of-order), or a value has been upgraded. 2967 break; 2968 2969 V->sortUseList([&](const Use &L, const Use &R) { 2970 return Order.lookup(&L) < Order.lookup(&R); 2971 }); 2972 break; 2973 } 2974 } 2975 } 2976 } 2977 2978 /// When we see the block for metadata, remember where it is and then skip it. 2979 /// This lets us lazily deserialize the metadata. 2980 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2981 // Save the current stream state. 2982 uint64_t CurBit = Stream.GetCurrentBitNo(); 2983 DeferredMetadataInfo.push_back(CurBit); 2984 2985 // Skip over the block for now. 2986 if (Stream.SkipBlock()) 2987 return error("Invalid record"); 2988 return std::error_code(); 2989 } 2990 2991 std::error_code BitcodeReader::materializeMetadata() { 2992 for (uint64_t BitPos : DeferredMetadataInfo) { 2993 // Move the bit stream to the saved position. 2994 Stream.JumpToBit(BitPos); 2995 if (std::error_code EC = parseMetadata()) 2996 return EC; 2997 } 2998 DeferredMetadataInfo.clear(); 2999 return std::error_code(); 3000 } 3001 3002 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3003 3004 /// When we see the block for a function body, remember where it is and then 3005 /// skip it. This lets us lazily deserialize the functions. 3006 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3007 // Get the function we are talking about. 3008 if (FunctionsWithBodies.empty()) 3009 return error("Insufficient function protos"); 3010 3011 Function *Fn = FunctionsWithBodies.back(); 3012 FunctionsWithBodies.pop_back(); 3013 3014 // Save the current stream state. 3015 uint64_t CurBit = Stream.GetCurrentBitNo(); 3016 assert( 3017 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3018 "Mismatch between VST and scanned function offsets"); 3019 DeferredFunctionInfo[Fn] = CurBit; 3020 3021 // Skip over the function block for now. 3022 if (Stream.SkipBlock()) 3023 return error("Invalid record"); 3024 return std::error_code(); 3025 } 3026 3027 std::error_code BitcodeReader::globalCleanup() { 3028 // Patch the initializers for globals and aliases up. 3029 resolveGlobalAndAliasInits(); 3030 if (!GlobalInits.empty() || !AliasInits.empty()) 3031 return error("Malformed global initializer set"); 3032 3033 // Look for intrinsic functions which need to be upgraded at some point 3034 for (Function &F : *TheModule) { 3035 Function *NewFn; 3036 if (UpgradeIntrinsicFunction(&F, NewFn)) 3037 UpgradedIntrinsics[&F] = NewFn; 3038 } 3039 3040 // Look for global variables which need to be renamed. 3041 for (GlobalVariable &GV : TheModule->globals()) 3042 UpgradeGlobalVariable(&GV); 3043 3044 // Force deallocation of memory for these vectors to favor the client that 3045 // want lazy deserialization. 3046 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3047 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3048 return std::error_code(); 3049 } 3050 3051 /// Support for lazy parsing of function bodies. This is required if we 3052 /// either have an old bitcode file without a VST forward declaration record, 3053 /// or if we have an anonymous function being materialized, since anonymous 3054 /// functions do not have a name and are therefore not in the VST. 3055 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3056 Stream.JumpToBit(NextUnreadBit); 3057 3058 if (Stream.AtEndOfStream()) 3059 return error("Could not find function in stream"); 3060 3061 if (!SeenFirstFunctionBody) 3062 return error("Trying to materialize functions before seeing function blocks"); 3063 3064 // An old bitcode file with the symbol table at the end would have 3065 // finished the parse greedily. 3066 assert(SeenValueSymbolTable); 3067 3068 SmallVector<uint64_t, 64> Record; 3069 3070 while (1) { 3071 BitstreamEntry Entry = Stream.advance(); 3072 switch (Entry.Kind) { 3073 default: 3074 return error("Expect SubBlock"); 3075 case BitstreamEntry::SubBlock: 3076 switch (Entry.ID) { 3077 default: 3078 return error("Expect function block"); 3079 case bitc::FUNCTION_BLOCK_ID: 3080 if (std::error_code EC = rememberAndSkipFunctionBody()) 3081 return EC; 3082 NextUnreadBit = Stream.GetCurrentBitNo(); 3083 return std::error_code(); 3084 } 3085 } 3086 } 3087 } 3088 3089 std::error_code BitcodeReader::parseBitcodeVersion() { 3090 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3091 return error("Invalid record"); 3092 3093 // Read all the records. 3094 SmallVector<uint64_t, 64> Record; 3095 while (1) { 3096 BitstreamEntry Entry = Stream.advance(); 3097 3098 switch (Entry.Kind) { 3099 default: 3100 case BitstreamEntry::Error: 3101 return error("Malformed block"); 3102 case BitstreamEntry::EndBlock: 3103 return std::error_code(); 3104 case BitstreamEntry::Record: 3105 // The interesting case. 3106 break; 3107 } 3108 3109 // Read a record. 3110 Record.clear(); 3111 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3112 switch (BitCode) { 3113 default: // Default behavior: reject 3114 return error("Invalid value"); 3115 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3116 // N] 3117 convertToString(Record, 0, ProducerIdentification); 3118 break; 3119 } 3120 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3121 unsigned epoch = (unsigned)Record[0]; 3122 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3123 return error( 3124 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3125 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3126 } 3127 } 3128 } 3129 } 3130 } 3131 3132 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3133 bool ShouldLazyLoadMetadata) { 3134 if (ResumeBit) 3135 Stream.JumpToBit(ResumeBit); 3136 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3137 return error("Invalid record"); 3138 3139 SmallVector<uint64_t, 64> Record; 3140 std::vector<std::string> SectionTable; 3141 std::vector<std::string> GCTable; 3142 3143 // Read all the records for this module. 3144 while (1) { 3145 BitstreamEntry Entry = Stream.advance(); 3146 3147 switch (Entry.Kind) { 3148 case BitstreamEntry::Error: 3149 return error("Malformed block"); 3150 case BitstreamEntry::EndBlock: 3151 return globalCleanup(); 3152 3153 case BitstreamEntry::SubBlock: 3154 switch (Entry.ID) { 3155 default: // Skip unknown content. 3156 if (Stream.SkipBlock()) 3157 return error("Invalid record"); 3158 break; 3159 case bitc::BLOCKINFO_BLOCK_ID: 3160 if (Stream.ReadBlockInfoBlock()) 3161 return error("Malformed block"); 3162 break; 3163 case bitc::PARAMATTR_BLOCK_ID: 3164 if (std::error_code EC = parseAttributeBlock()) 3165 return EC; 3166 break; 3167 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3168 if (std::error_code EC = parseAttributeGroupBlock()) 3169 return EC; 3170 break; 3171 case bitc::TYPE_BLOCK_ID_NEW: 3172 if (std::error_code EC = parseTypeTable()) 3173 return EC; 3174 break; 3175 case bitc::VALUE_SYMTAB_BLOCK_ID: 3176 if (!SeenValueSymbolTable) { 3177 // Either this is an old form VST without function index and an 3178 // associated VST forward declaration record (which would have caused 3179 // the VST to be jumped to and parsed before it was encountered 3180 // normally in the stream), or there were no function blocks to 3181 // trigger an earlier parsing of the VST. 3182 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3183 if (std::error_code EC = parseValueSymbolTable()) 3184 return EC; 3185 SeenValueSymbolTable = true; 3186 } else { 3187 // We must have had a VST forward declaration record, which caused 3188 // the parser to jump to and parse the VST earlier. 3189 assert(VSTOffset > 0); 3190 if (Stream.SkipBlock()) 3191 return error("Invalid record"); 3192 } 3193 break; 3194 case bitc::CONSTANTS_BLOCK_ID: 3195 if (std::error_code EC = parseConstants()) 3196 return EC; 3197 if (std::error_code EC = resolveGlobalAndAliasInits()) 3198 return EC; 3199 break; 3200 case bitc::METADATA_BLOCK_ID: 3201 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3202 if (std::error_code EC = rememberAndSkipMetadata()) 3203 return EC; 3204 break; 3205 } 3206 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3207 if (std::error_code EC = parseMetadata()) 3208 return EC; 3209 break; 3210 case bitc::FUNCTION_BLOCK_ID: 3211 // If this is the first function body we've seen, reverse the 3212 // FunctionsWithBodies list. 3213 if (!SeenFirstFunctionBody) { 3214 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3215 if (std::error_code EC = globalCleanup()) 3216 return EC; 3217 SeenFirstFunctionBody = true; 3218 } 3219 3220 if (VSTOffset > 0) { 3221 // If we have a VST forward declaration record, make sure we 3222 // parse the VST now if we haven't already. It is needed to 3223 // set up the DeferredFunctionInfo vector for lazy reading. 3224 if (!SeenValueSymbolTable) { 3225 if (std::error_code EC = 3226 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3227 return EC; 3228 SeenValueSymbolTable = true; 3229 // Fall through so that we record the NextUnreadBit below. 3230 // This is necessary in case we have an anonymous function that 3231 // is later materialized. Since it will not have a VST entry we 3232 // need to fall back to the lazy parse to find its offset. 3233 } else { 3234 // If we have a VST forward declaration record, but have already 3235 // parsed the VST (just above, when the first function body was 3236 // encountered here), then we are resuming the parse after 3237 // materializing functions. The ResumeBit points to the 3238 // start of the last function block recorded in the 3239 // DeferredFunctionInfo map. Skip it. 3240 if (Stream.SkipBlock()) 3241 return error("Invalid record"); 3242 continue; 3243 } 3244 } 3245 3246 // Support older bitcode files that did not have the function 3247 // index in the VST, nor a VST forward declaration record, as 3248 // well as anonymous functions that do not have VST entries. 3249 // Build the DeferredFunctionInfo vector on the fly. 3250 if (std::error_code EC = rememberAndSkipFunctionBody()) 3251 return EC; 3252 3253 // Suspend parsing when we reach the function bodies. Subsequent 3254 // materialization calls will resume it when necessary. If the bitcode 3255 // file is old, the symbol table will be at the end instead and will not 3256 // have been seen yet. In this case, just finish the parse now. 3257 if (SeenValueSymbolTable) { 3258 NextUnreadBit = Stream.GetCurrentBitNo(); 3259 return std::error_code(); 3260 } 3261 break; 3262 case bitc::USELIST_BLOCK_ID: 3263 if (std::error_code EC = parseUseLists()) 3264 return EC; 3265 break; 3266 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3267 if (std::error_code EC = parseOperandBundleTags()) 3268 return EC; 3269 break; 3270 } 3271 continue; 3272 3273 case BitstreamEntry::Record: 3274 // The interesting case. 3275 break; 3276 } 3277 3278 3279 // Read a record. 3280 auto BitCode = Stream.readRecord(Entry.ID, Record); 3281 switch (BitCode) { 3282 default: break; // Default behavior, ignore unknown content. 3283 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3284 if (Record.size() < 1) 3285 return error("Invalid record"); 3286 // Only version #0 and #1 are supported so far. 3287 unsigned module_version = Record[0]; 3288 switch (module_version) { 3289 default: 3290 return error("Invalid value"); 3291 case 0: 3292 UseRelativeIDs = false; 3293 break; 3294 case 1: 3295 UseRelativeIDs = true; 3296 break; 3297 } 3298 break; 3299 } 3300 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3301 std::string S; 3302 if (convertToString(Record, 0, S)) 3303 return error("Invalid record"); 3304 TheModule->setTargetTriple(S); 3305 break; 3306 } 3307 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3308 std::string S; 3309 if (convertToString(Record, 0, S)) 3310 return error("Invalid record"); 3311 TheModule->setDataLayout(S); 3312 break; 3313 } 3314 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3315 std::string S; 3316 if (convertToString(Record, 0, S)) 3317 return error("Invalid record"); 3318 TheModule->setModuleInlineAsm(S); 3319 break; 3320 } 3321 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3322 // FIXME: Remove in 4.0. 3323 std::string S; 3324 if (convertToString(Record, 0, S)) 3325 return error("Invalid record"); 3326 // Ignore value. 3327 break; 3328 } 3329 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3330 std::string S; 3331 if (convertToString(Record, 0, S)) 3332 return error("Invalid record"); 3333 SectionTable.push_back(S); 3334 break; 3335 } 3336 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3337 std::string S; 3338 if (convertToString(Record, 0, S)) 3339 return error("Invalid record"); 3340 GCTable.push_back(S); 3341 break; 3342 } 3343 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3344 if (Record.size() < 2) 3345 return error("Invalid record"); 3346 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3347 unsigned ComdatNameSize = Record[1]; 3348 std::string ComdatName; 3349 ComdatName.reserve(ComdatNameSize); 3350 for (unsigned i = 0; i != ComdatNameSize; ++i) 3351 ComdatName += (char)Record[2 + i]; 3352 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3353 C->setSelectionKind(SK); 3354 ComdatList.push_back(C); 3355 break; 3356 } 3357 // GLOBALVAR: [pointer type, isconst, initid, 3358 // linkage, alignment, section, visibility, threadlocal, 3359 // unnamed_addr, externally_initialized, dllstorageclass, 3360 // comdat] 3361 case bitc::MODULE_CODE_GLOBALVAR: { 3362 if (Record.size() < 6) 3363 return error("Invalid record"); 3364 Type *Ty = getTypeByID(Record[0]); 3365 if (!Ty) 3366 return error("Invalid record"); 3367 bool isConstant = Record[1] & 1; 3368 bool explicitType = Record[1] & 2; 3369 unsigned AddressSpace; 3370 if (explicitType) { 3371 AddressSpace = Record[1] >> 2; 3372 } else { 3373 if (!Ty->isPointerTy()) 3374 return error("Invalid type for value"); 3375 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3376 Ty = cast<PointerType>(Ty)->getElementType(); 3377 } 3378 3379 uint64_t RawLinkage = Record[3]; 3380 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3381 unsigned Alignment; 3382 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3383 return EC; 3384 std::string Section; 3385 if (Record[5]) { 3386 if (Record[5]-1 >= SectionTable.size()) 3387 return error("Invalid ID"); 3388 Section = SectionTable[Record[5]-1]; 3389 } 3390 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3391 // Local linkage must have default visibility. 3392 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3393 // FIXME: Change to an error if non-default in 4.0. 3394 Visibility = getDecodedVisibility(Record[6]); 3395 3396 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3397 if (Record.size() > 7) 3398 TLM = getDecodedThreadLocalMode(Record[7]); 3399 3400 bool UnnamedAddr = false; 3401 if (Record.size() > 8) 3402 UnnamedAddr = Record[8]; 3403 3404 bool ExternallyInitialized = false; 3405 if (Record.size() > 9) 3406 ExternallyInitialized = Record[9]; 3407 3408 GlobalVariable *NewGV = 3409 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3410 TLM, AddressSpace, ExternallyInitialized); 3411 NewGV->setAlignment(Alignment); 3412 if (!Section.empty()) 3413 NewGV->setSection(Section); 3414 NewGV->setVisibility(Visibility); 3415 NewGV->setUnnamedAddr(UnnamedAddr); 3416 3417 if (Record.size() > 10) 3418 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3419 else 3420 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3421 3422 ValueList.push_back(NewGV); 3423 3424 // Remember which value to use for the global initializer. 3425 if (unsigned InitID = Record[2]) 3426 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3427 3428 if (Record.size() > 11) { 3429 if (unsigned ComdatID = Record[11]) { 3430 if (ComdatID > ComdatList.size()) 3431 return error("Invalid global variable comdat ID"); 3432 NewGV->setComdat(ComdatList[ComdatID - 1]); 3433 } 3434 } else if (hasImplicitComdat(RawLinkage)) { 3435 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3436 } 3437 break; 3438 } 3439 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3440 // alignment, section, visibility, gc, unnamed_addr, 3441 // prologuedata, dllstorageclass, comdat, prefixdata] 3442 case bitc::MODULE_CODE_FUNCTION: { 3443 if (Record.size() < 8) 3444 return error("Invalid record"); 3445 Type *Ty = getTypeByID(Record[0]); 3446 if (!Ty) 3447 return error("Invalid record"); 3448 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3449 Ty = PTy->getElementType(); 3450 auto *FTy = dyn_cast<FunctionType>(Ty); 3451 if (!FTy) 3452 return error("Invalid type for value"); 3453 auto CC = static_cast<CallingConv::ID>(Record[1]); 3454 if (CC & ~CallingConv::MaxID) 3455 return error("Invalid calling convention ID"); 3456 3457 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3458 "", TheModule); 3459 3460 Func->setCallingConv(CC); 3461 bool isProto = Record[2]; 3462 uint64_t RawLinkage = Record[3]; 3463 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3464 Func->setAttributes(getAttributes(Record[4])); 3465 3466 unsigned Alignment; 3467 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3468 return EC; 3469 Func->setAlignment(Alignment); 3470 if (Record[6]) { 3471 if (Record[6]-1 >= SectionTable.size()) 3472 return error("Invalid ID"); 3473 Func->setSection(SectionTable[Record[6]-1]); 3474 } 3475 // Local linkage must have default visibility. 3476 if (!Func->hasLocalLinkage()) 3477 // FIXME: Change to an error if non-default in 4.0. 3478 Func->setVisibility(getDecodedVisibility(Record[7])); 3479 if (Record.size() > 8 && Record[8]) { 3480 if (Record[8]-1 >= GCTable.size()) 3481 return error("Invalid ID"); 3482 Func->setGC(GCTable[Record[8]-1].c_str()); 3483 } 3484 bool UnnamedAddr = false; 3485 if (Record.size() > 9) 3486 UnnamedAddr = Record[9]; 3487 Func->setUnnamedAddr(UnnamedAddr); 3488 if (Record.size() > 10 && Record[10] != 0) 3489 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3490 3491 if (Record.size() > 11) 3492 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3493 else 3494 upgradeDLLImportExportLinkage(Func, RawLinkage); 3495 3496 if (Record.size() > 12) { 3497 if (unsigned ComdatID = Record[12]) { 3498 if (ComdatID > ComdatList.size()) 3499 return error("Invalid function comdat ID"); 3500 Func->setComdat(ComdatList[ComdatID - 1]); 3501 } 3502 } else if (hasImplicitComdat(RawLinkage)) { 3503 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3504 } 3505 3506 if (Record.size() > 13 && Record[13] != 0) 3507 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3508 3509 if (Record.size() > 14 && Record[14] != 0) 3510 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3511 3512 ValueList.push_back(Func); 3513 3514 // If this is a function with a body, remember the prototype we are 3515 // creating now, so that we can match up the body with them later. 3516 if (!isProto) { 3517 Func->setIsMaterializable(true); 3518 FunctionsWithBodies.push_back(Func); 3519 DeferredFunctionInfo[Func] = 0; 3520 } 3521 break; 3522 } 3523 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3524 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3525 case bitc::MODULE_CODE_ALIAS: 3526 case bitc::MODULE_CODE_ALIAS_OLD: { 3527 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3528 if (Record.size() < (3 + (unsigned)NewRecord)) 3529 return error("Invalid record"); 3530 unsigned OpNum = 0; 3531 Type *Ty = getTypeByID(Record[OpNum++]); 3532 if (!Ty) 3533 return error("Invalid record"); 3534 3535 unsigned AddrSpace; 3536 if (!NewRecord) { 3537 auto *PTy = dyn_cast<PointerType>(Ty); 3538 if (!PTy) 3539 return error("Invalid type for value"); 3540 Ty = PTy->getElementType(); 3541 AddrSpace = PTy->getAddressSpace(); 3542 } else { 3543 AddrSpace = Record[OpNum++]; 3544 } 3545 3546 auto Val = Record[OpNum++]; 3547 auto Linkage = Record[OpNum++]; 3548 auto *NewGA = GlobalAlias::create( 3549 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3550 // Old bitcode files didn't have visibility field. 3551 // Local linkage must have default visibility. 3552 if (OpNum != Record.size()) { 3553 auto VisInd = OpNum++; 3554 if (!NewGA->hasLocalLinkage()) 3555 // FIXME: Change to an error if non-default in 4.0. 3556 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3557 } 3558 if (OpNum != Record.size()) 3559 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3560 else 3561 upgradeDLLImportExportLinkage(NewGA, Linkage); 3562 if (OpNum != Record.size()) 3563 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3564 if (OpNum != Record.size()) 3565 NewGA->setUnnamedAddr(Record[OpNum++]); 3566 ValueList.push_back(NewGA); 3567 AliasInits.push_back(std::make_pair(NewGA, Val)); 3568 break; 3569 } 3570 /// MODULE_CODE_PURGEVALS: [numvals] 3571 case bitc::MODULE_CODE_PURGEVALS: 3572 // Trim down the value list to the specified size. 3573 if (Record.size() < 1 || Record[0] > ValueList.size()) 3574 return error("Invalid record"); 3575 ValueList.shrinkTo(Record[0]); 3576 break; 3577 /// MODULE_CODE_VSTOFFSET: [offset] 3578 case bitc::MODULE_CODE_VSTOFFSET: 3579 if (Record.size() < 1) 3580 return error("Invalid record"); 3581 VSTOffset = Record[0]; 3582 break; 3583 } 3584 Record.clear(); 3585 } 3586 } 3587 3588 /// Helper to read the header common to all bitcode files. 3589 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3590 // Sniff for the signature. 3591 if (Stream.Read(8) != 'B' || 3592 Stream.Read(8) != 'C' || 3593 Stream.Read(4) != 0x0 || 3594 Stream.Read(4) != 0xC || 3595 Stream.Read(4) != 0xE || 3596 Stream.Read(4) != 0xD) 3597 return false; 3598 return true; 3599 } 3600 3601 std::error_code 3602 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3603 Module *M, bool ShouldLazyLoadMetadata) { 3604 TheModule = M; 3605 3606 if (std::error_code EC = initStream(std::move(Streamer))) 3607 return EC; 3608 3609 // Sniff for the signature. 3610 if (!hasValidBitcodeHeader(Stream)) 3611 return error("Invalid bitcode signature"); 3612 3613 // We expect a number of well-defined blocks, though we don't necessarily 3614 // need to understand them all. 3615 while (1) { 3616 if (Stream.AtEndOfStream()) { 3617 // We didn't really read a proper Module. 3618 return error("Malformed IR file"); 3619 } 3620 3621 BitstreamEntry Entry = 3622 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3623 3624 if (Entry.Kind != BitstreamEntry::SubBlock) 3625 return error("Malformed block"); 3626 3627 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3628 parseBitcodeVersion(); 3629 continue; 3630 } 3631 3632 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3633 return parseModule(0, ShouldLazyLoadMetadata); 3634 3635 if (Stream.SkipBlock()) 3636 return error("Invalid record"); 3637 } 3638 } 3639 3640 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3641 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3642 return error("Invalid record"); 3643 3644 SmallVector<uint64_t, 64> Record; 3645 3646 std::string Triple; 3647 // Read all the records for this module. 3648 while (1) { 3649 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3650 3651 switch (Entry.Kind) { 3652 case BitstreamEntry::SubBlock: // Handled for us already. 3653 case BitstreamEntry::Error: 3654 return error("Malformed block"); 3655 case BitstreamEntry::EndBlock: 3656 return Triple; 3657 case BitstreamEntry::Record: 3658 // The interesting case. 3659 break; 3660 } 3661 3662 // Read a record. 3663 switch (Stream.readRecord(Entry.ID, Record)) { 3664 default: break; // Default behavior, ignore unknown content. 3665 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3666 std::string S; 3667 if (convertToString(Record, 0, S)) 3668 return error("Invalid record"); 3669 Triple = S; 3670 break; 3671 } 3672 } 3673 Record.clear(); 3674 } 3675 llvm_unreachable("Exit infinite loop"); 3676 } 3677 3678 ErrorOr<std::string> BitcodeReader::parseTriple() { 3679 if (std::error_code EC = initStream(nullptr)) 3680 return EC; 3681 3682 // Sniff for the signature. 3683 if (!hasValidBitcodeHeader(Stream)) 3684 return error("Invalid bitcode signature"); 3685 3686 // We expect a number of well-defined blocks, though we don't necessarily 3687 // need to understand them all. 3688 while (1) { 3689 BitstreamEntry Entry = Stream.advance(); 3690 3691 switch (Entry.Kind) { 3692 case BitstreamEntry::Error: 3693 return error("Malformed block"); 3694 case BitstreamEntry::EndBlock: 3695 return std::error_code(); 3696 3697 case BitstreamEntry::SubBlock: 3698 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3699 return parseModuleTriple(); 3700 3701 // Ignore other sub-blocks. 3702 if (Stream.SkipBlock()) 3703 return error("Malformed block"); 3704 continue; 3705 3706 case BitstreamEntry::Record: 3707 Stream.skipRecord(Entry.ID); 3708 continue; 3709 } 3710 } 3711 } 3712 3713 /// Parse metadata attachments. 3714 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3715 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3716 return error("Invalid record"); 3717 3718 SmallVector<uint64_t, 64> Record; 3719 while (1) { 3720 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3721 3722 switch (Entry.Kind) { 3723 case BitstreamEntry::SubBlock: // Handled for us already. 3724 case BitstreamEntry::Error: 3725 return error("Malformed block"); 3726 case BitstreamEntry::EndBlock: 3727 return std::error_code(); 3728 case BitstreamEntry::Record: 3729 // The interesting case. 3730 break; 3731 } 3732 3733 // Read a metadata attachment record. 3734 Record.clear(); 3735 switch (Stream.readRecord(Entry.ID, Record)) { 3736 default: // Default behavior: ignore. 3737 break; 3738 case bitc::METADATA_ATTACHMENT: { 3739 unsigned RecordLength = Record.size(); 3740 if (Record.empty()) 3741 return error("Invalid record"); 3742 if (RecordLength % 2 == 0) { 3743 // A function attachment. 3744 for (unsigned I = 0; I != RecordLength; I += 2) { 3745 auto K = MDKindMap.find(Record[I]); 3746 if (K == MDKindMap.end()) 3747 return error("Invalid ID"); 3748 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3749 F.setMetadata(K->second, cast<MDNode>(MD)); 3750 } 3751 continue; 3752 } 3753 3754 // An instruction attachment. 3755 Instruction *Inst = InstructionList[Record[0]]; 3756 for (unsigned i = 1; i != RecordLength; i = i+2) { 3757 unsigned Kind = Record[i]; 3758 DenseMap<unsigned, unsigned>::iterator I = 3759 MDKindMap.find(Kind); 3760 if (I == MDKindMap.end()) 3761 return error("Invalid ID"); 3762 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3763 if (isa<LocalAsMetadata>(Node)) 3764 // Drop the attachment. This used to be legal, but there's no 3765 // upgrade path. 3766 break; 3767 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3768 if (I->second == LLVMContext::MD_tbaa) 3769 InstsWithTBAATag.push_back(Inst); 3770 } 3771 break; 3772 } 3773 } 3774 } 3775 } 3776 3777 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3778 Type *ValType, Type *PtrType) { 3779 if (!isa<PointerType>(PtrType)) 3780 return error(DH, "Load/Store operand is not a pointer type"); 3781 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3782 3783 if (ValType && ValType != ElemType) 3784 return error(DH, "Explicit load/store type does not match pointee type of " 3785 "pointer operand"); 3786 if (!PointerType::isLoadableOrStorableType(ElemType)) 3787 return error(DH, "Cannot load/store from pointer"); 3788 return std::error_code(); 3789 } 3790 3791 /// Lazily parse the specified function body block. 3792 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3793 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3794 return error("Invalid record"); 3795 3796 InstructionList.clear(); 3797 unsigned ModuleValueListSize = ValueList.size(); 3798 unsigned ModuleMDValueListSize = MDValueList.size(); 3799 3800 // Add all the function arguments to the value table. 3801 for (Argument &I : F->args()) 3802 ValueList.push_back(&I); 3803 3804 unsigned NextValueNo = ValueList.size(); 3805 BasicBlock *CurBB = nullptr; 3806 unsigned CurBBNo = 0; 3807 3808 DebugLoc LastLoc; 3809 auto getLastInstruction = [&]() -> Instruction * { 3810 if (CurBB && !CurBB->empty()) 3811 return &CurBB->back(); 3812 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3813 !FunctionBBs[CurBBNo - 1]->empty()) 3814 return &FunctionBBs[CurBBNo - 1]->back(); 3815 return nullptr; 3816 }; 3817 3818 std::vector<OperandBundleDef> OperandBundles; 3819 3820 // Read all the records. 3821 SmallVector<uint64_t, 64> Record; 3822 while (1) { 3823 BitstreamEntry Entry = Stream.advance(); 3824 3825 switch (Entry.Kind) { 3826 case BitstreamEntry::Error: 3827 return error("Malformed block"); 3828 case BitstreamEntry::EndBlock: 3829 goto OutOfRecordLoop; 3830 3831 case BitstreamEntry::SubBlock: 3832 switch (Entry.ID) { 3833 default: // Skip unknown content. 3834 if (Stream.SkipBlock()) 3835 return error("Invalid record"); 3836 break; 3837 case bitc::CONSTANTS_BLOCK_ID: 3838 if (std::error_code EC = parseConstants()) 3839 return EC; 3840 NextValueNo = ValueList.size(); 3841 break; 3842 case bitc::VALUE_SYMTAB_BLOCK_ID: 3843 if (std::error_code EC = parseValueSymbolTable()) 3844 return EC; 3845 break; 3846 case bitc::METADATA_ATTACHMENT_ID: 3847 if (std::error_code EC = parseMetadataAttachment(*F)) 3848 return EC; 3849 break; 3850 case bitc::METADATA_BLOCK_ID: 3851 if (std::error_code EC = parseMetadata()) 3852 return EC; 3853 break; 3854 case bitc::USELIST_BLOCK_ID: 3855 if (std::error_code EC = parseUseLists()) 3856 return EC; 3857 break; 3858 } 3859 continue; 3860 3861 case BitstreamEntry::Record: 3862 // The interesting case. 3863 break; 3864 } 3865 3866 // Read a record. 3867 Record.clear(); 3868 Instruction *I = nullptr; 3869 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3870 switch (BitCode) { 3871 default: // Default behavior: reject 3872 return error("Invalid value"); 3873 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3874 if (Record.size() < 1 || Record[0] == 0) 3875 return error("Invalid record"); 3876 // Create all the basic blocks for the function. 3877 FunctionBBs.resize(Record[0]); 3878 3879 // See if anything took the address of blocks in this function. 3880 auto BBFRI = BasicBlockFwdRefs.find(F); 3881 if (BBFRI == BasicBlockFwdRefs.end()) { 3882 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3883 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3884 } else { 3885 auto &BBRefs = BBFRI->second; 3886 // Check for invalid basic block references. 3887 if (BBRefs.size() > FunctionBBs.size()) 3888 return error("Invalid ID"); 3889 assert(!BBRefs.empty() && "Unexpected empty array"); 3890 assert(!BBRefs.front() && "Invalid reference to entry block"); 3891 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3892 ++I) 3893 if (I < RE && BBRefs[I]) { 3894 BBRefs[I]->insertInto(F); 3895 FunctionBBs[I] = BBRefs[I]; 3896 } else { 3897 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3898 } 3899 3900 // Erase from the table. 3901 BasicBlockFwdRefs.erase(BBFRI); 3902 } 3903 3904 CurBB = FunctionBBs[0]; 3905 continue; 3906 } 3907 3908 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3909 // This record indicates that the last instruction is at the same 3910 // location as the previous instruction with a location. 3911 I = getLastInstruction(); 3912 3913 if (!I) 3914 return error("Invalid record"); 3915 I->setDebugLoc(LastLoc); 3916 I = nullptr; 3917 continue; 3918 3919 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3920 I = getLastInstruction(); 3921 if (!I || Record.size() < 4) 3922 return error("Invalid record"); 3923 3924 unsigned Line = Record[0], Col = Record[1]; 3925 unsigned ScopeID = Record[2], IAID = Record[3]; 3926 3927 MDNode *Scope = nullptr, *IA = nullptr; 3928 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3929 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3930 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3931 I->setDebugLoc(LastLoc); 3932 I = nullptr; 3933 continue; 3934 } 3935 3936 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3937 unsigned OpNum = 0; 3938 Value *LHS, *RHS; 3939 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3940 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3941 OpNum+1 > Record.size()) 3942 return error("Invalid record"); 3943 3944 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3945 if (Opc == -1) 3946 return error("Invalid record"); 3947 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3948 InstructionList.push_back(I); 3949 if (OpNum < Record.size()) { 3950 if (Opc == Instruction::Add || 3951 Opc == Instruction::Sub || 3952 Opc == Instruction::Mul || 3953 Opc == Instruction::Shl) { 3954 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3955 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3956 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3957 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3958 } else if (Opc == Instruction::SDiv || 3959 Opc == Instruction::UDiv || 3960 Opc == Instruction::LShr || 3961 Opc == Instruction::AShr) { 3962 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3963 cast<BinaryOperator>(I)->setIsExact(true); 3964 } else if (isa<FPMathOperator>(I)) { 3965 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3966 if (FMF.any()) 3967 I->setFastMathFlags(FMF); 3968 } 3969 3970 } 3971 break; 3972 } 3973 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3974 unsigned OpNum = 0; 3975 Value *Op; 3976 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3977 OpNum+2 != Record.size()) 3978 return error("Invalid record"); 3979 3980 Type *ResTy = getTypeByID(Record[OpNum]); 3981 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3982 if (Opc == -1 || !ResTy) 3983 return error("Invalid record"); 3984 Instruction *Temp = nullptr; 3985 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3986 if (Temp) { 3987 InstructionList.push_back(Temp); 3988 CurBB->getInstList().push_back(Temp); 3989 } 3990 } else { 3991 auto CastOp = (Instruction::CastOps)Opc; 3992 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3993 return error("Invalid cast"); 3994 I = CastInst::Create(CastOp, Op, ResTy); 3995 } 3996 InstructionList.push_back(I); 3997 break; 3998 } 3999 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4000 case bitc::FUNC_CODE_INST_GEP_OLD: 4001 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4002 unsigned OpNum = 0; 4003 4004 Type *Ty; 4005 bool InBounds; 4006 4007 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4008 InBounds = Record[OpNum++]; 4009 Ty = getTypeByID(Record[OpNum++]); 4010 } else { 4011 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4012 Ty = nullptr; 4013 } 4014 4015 Value *BasePtr; 4016 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4017 return error("Invalid record"); 4018 4019 if (!Ty) 4020 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4021 ->getElementType(); 4022 else if (Ty != 4023 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4024 ->getElementType()) 4025 return error( 4026 "Explicit gep type does not match pointee type of pointer operand"); 4027 4028 SmallVector<Value*, 16> GEPIdx; 4029 while (OpNum != Record.size()) { 4030 Value *Op; 4031 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4032 return error("Invalid record"); 4033 GEPIdx.push_back(Op); 4034 } 4035 4036 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4037 4038 InstructionList.push_back(I); 4039 if (InBounds) 4040 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4041 break; 4042 } 4043 4044 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4045 // EXTRACTVAL: [opty, opval, n x indices] 4046 unsigned OpNum = 0; 4047 Value *Agg; 4048 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4049 return error("Invalid record"); 4050 4051 unsigned RecSize = Record.size(); 4052 if (OpNum == RecSize) 4053 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4054 4055 SmallVector<unsigned, 4> EXTRACTVALIdx; 4056 Type *CurTy = Agg->getType(); 4057 for (; OpNum != RecSize; ++OpNum) { 4058 bool IsArray = CurTy->isArrayTy(); 4059 bool IsStruct = CurTy->isStructTy(); 4060 uint64_t Index = Record[OpNum]; 4061 4062 if (!IsStruct && !IsArray) 4063 return error("EXTRACTVAL: Invalid type"); 4064 if ((unsigned)Index != Index) 4065 return error("Invalid value"); 4066 if (IsStruct && Index >= CurTy->subtypes().size()) 4067 return error("EXTRACTVAL: Invalid struct index"); 4068 if (IsArray && Index >= CurTy->getArrayNumElements()) 4069 return error("EXTRACTVAL: Invalid array index"); 4070 EXTRACTVALIdx.push_back((unsigned)Index); 4071 4072 if (IsStruct) 4073 CurTy = CurTy->subtypes()[Index]; 4074 else 4075 CurTy = CurTy->subtypes()[0]; 4076 } 4077 4078 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4079 InstructionList.push_back(I); 4080 break; 4081 } 4082 4083 case bitc::FUNC_CODE_INST_INSERTVAL: { 4084 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4085 unsigned OpNum = 0; 4086 Value *Agg; 4087 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4088 return error("Invalid record"); 4089 Value *Val; 4090 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4091 return error("Invalid record"); 4092 4093 unsigned RecSize = Record.size(); 4094 if (OpNum == RecSize) 4095 return error("INSERTVAL: Invalid instruction with 0 indices"); 4096 4097 SmallVector<unsigned, 4> INSERTVALIdx; 4098 Type *CurTy = Agg->getType(); 4099 for (; OpNum != RecSize; ++OpNum) { 4100 bool IsArray = CurTy->isArrayTy(); 4101 bool IsStruct = CurTy->isStructTy(); 4102 uint64_t Index = Record[OpNum]; 4103 4104 if (!IsStruct && !IsArray) 4105 return error("INSERTVAL: Invalid type"); 4106 if ((unsigned)Index != Index) 4107 return error("Invalid value"); 4108 if (IsStruct && Index >= CurTy->subtypes().size()) 4109 return error("INSERTVAL: Invalid struct index"); 4110 if (IsArray && Index >= CurTy->getArrayNumElements()) 4111 return error("INSERTVAL: Invalid array index"); 4112 4113 INSERTVALIdx.push_back((unsigned)Index); 4114 if (IsStruct) 4115 CurTy = CurTy->subtypes()[Index]; 4116 else 4117 CurTy = CurTy->subtypes()[0]; 4118 } 4119 4120 if (CurTy != Val->getType()) 4121 return error("Inserted value type doesn't match aggregate type"); 4122 4123 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4124 InstructionList.push_back(I); 4125 break; 4126 } 4127 4128 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4129 // obsolete form of select 4130 // handles select i1 ... in old bitcode 4131 unsigned OpNum = 0; 4132 Value *TrueVal, *FalseVal, *Cond; 4133 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4134 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4135 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4136 return error("Invalid record"); 4137 4138 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4139 InstructionList.push_back(I); 4140 break; 4141 } 4142 4143 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4144 // new form of select 4145 // handles select i1 or select [N x i1] 4146 unsigned OpNum = 0; 4147 Value *TrueVal, *FalseVal, *Cond; 4148 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4149 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4150 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4151 return error("Invalid record"); 4152 4153 // select condition can be either i1 or [N x i1] 4154 if (VectorType* vector_type = 4155 dyn_cast<VectorType>(Cond->getType())) { 4156 // expect <n x i1> 4157 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4158 return error("Invalid type for value"); 4159 } else { 4160 // expect i1 4161 if (Cond->getType() != Type::getInt1Ty(Context)) 4162 return error("Invalid type for value"); 4163 } 4164 4165 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4166 InstructionList.push_back(I); 4167 break; 4168 } 4169 4170 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4171 unsigned OpNum = 0; 4172 Value *Vec, *Idx; 4173 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4174 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4175 return error("Invalid record"); 4176 if (!Vec->getType()->isVectorTy()) 4177 return error("Invalid type for value"); 4178 I = ExtractElementInst::Create(Vec, Idx); 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 4183 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4184 unsigned OpNum = 0; 4185 Value *Vec, *Elt, *Idx; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4187 return error("Invalid record"); 4188 if (!Vec->getType()->isVectorTy()) 4189 return error("Invalid type for value"); 4190 if (popValue(Record, OpNum, NextValueNo, 4191 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4192 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4193 return error("Invalid record"); 4194 I = InsertElementInst::Create(Vec, Elt, Idx); 4195 InstructionList.push_back(I); 4196 break; 4197 } 4198 4199 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4200 unsigned OpNum = 0; 4201 Value *Vec1, *Vec2, *Mask; 4202 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4203 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4204 return error("Invalid record"); 4205 4206 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4207 return error("Invalid record"); 4208 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4209 return error("Invalid type for value"); 4210 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4211 InstructionList.push_back(I); 4212 break; 4213 } 4214 4215 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4216 // Old form of ICmp/FCmp returning bool 4217 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4218 // both legal on vectors but had different behaviour. 4219 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4220 // FCmp/ICmp returning bool or vector of bool 4221 4222 unsigned OpNum = 0; 4223 Value *LHS, *RHS; 4224 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4225 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4226 return error("Invalid record"); 4227 4228 unsigned PredVal = Record[OpNum]; 4229 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4230 FastMathFlags FMF; 4231 if (IsFP && Record.size() > OpNum+1) 4232 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4233 4234 if (OpNum+1 != Record.size()) 4235 return error("Invalid record"); 4236 4237 if (LHS->getType()->isFPOrFPVectorTy()) 4238 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4239 else 4240 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4241 4242 if (FMF.any()) 4243 I->setFastMathFlags(FMF); 4244 InstructionList.push_back(I); 4245 break; 4246 } 4247 4248 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4249 { 4250 unsigned Size = Record.size(); 4251 if (Size == 0) { 4252 I = ReturnInst::Create(Context); 4253 InstructionList.push_back(I); 4254 break; 4255 } 4256 4257 unsigned OpNum = 0; 4258 Value *Op = nullptr; 4259 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4260 return error("Invalid record"); 4261 if (OpNum != Record.size()) 4262 return error("Invalid record"); 4263 4264 I = ReturnInst::Create(Context, Op); 4265 InstructionList.push_back(I); 4266 break; 4267 } 4268 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4269 if (Record.size() != 1 && Record.size() != 3) 4270 return error("Invalid record"); 4271 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4272 if (!TrueDest) 4273 return error("Invalid record"); 4274 4275 if (Record.size() == 1) { 4276 I = BranchInst::Create(TrueDest); 4277 InstructionList.push_back(I); 4278 } 4279 else { 4280 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4281 Value *Cond = getValue(Record, 2, NextValueNo, 4282 Type::getInt1Ty(Context)); 4283 if (!FalseDest || !Cond) 4284 return error("Invalid record"); 4285 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4286 InstructionList.push_back(I); 4287 } 4288 break; 4289 } 4290 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4291 if (Record.size() != 1 && Record.size() != 2) 4292 return error("Invalid record"); 4293 unsigned Idx = 0; 4294 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4295 Type::getTokenTy(Context), OC_CleanupPad); 4296 if (!CleanupPad) 4297 return error("Invalid record"); 4298 BasicBlock *UnwindDest = nullptr; 4299 if (Record.size() == 2) { 4300 UnwindDest = getBasicBlock(Record[Idx++]); 4301 if (!UnwindDest) 4302 return error("Invalid record"); 4303 } 4304 4305 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4306 UnwindDest); 4307 InstructionList.push_back(I); 4308 break; 4309 } 4310 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4311 if (Record.size() != 2) 4312 return error("Invalid record"); 4313 unsigned Idx = 0; 4314 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4315 Type::getTokenTy(Context), OC_CatchPad); 4316 if (!CatchPad) 4317 return error("Invalid record"); 4318 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4319 if (!BB) 4320 return error("Invalid record"); 4321 4322 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4323 InstructionList.push_back(I); 4324 break; 4325 } 4326 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4327 if (Record.size() < 3) 4328 return error("Invalid record"); 4329 unsigned Idx = 0; 4330 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4331 if (!NormalBB) 4332 return error("Invalid record"); 4333 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4334 if (!UnwindBB) 4335 return error("Invalid record"); 4336 unsigned NumArgOperands = Record[Idx++]; 4337 SmallVector<Value *, 2> Args; 4338 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4339 Value *Val; 4340 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4341 return error("Invalid record"); 4342 Args.push_back(Val); 4343 } 4344 if (Record.size() != Idx) 4345 return error("Invalid record"); 4346 4347 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4348 InstructionList.push_back(I); 4349 break; 4350 } 4351 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4352 if (Record.size() < 1) 4353 return error("Invalid record"); 4354 unsigned Idx = 0; 4355 bool HasUnwindDest = !!Record[Idx++]; 4356 BasicBlock *UnwindDest = nullptr; 4357 if (HasUnwindDest) { 4358 if (Idx == Record.size()) 4359 return error("Invalid record"); 4360 UnwindDest = getBasicBlock(Record[Idx++]); 4361 if (!UnwindDest) 4362 return error("Invalid record"); 4363 } 4364 unsigned NumArgOperands = Record[Idx++]; 4365 SmallVector<Value *, 2> Args; 4366 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4367 Value *Val; 4368 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4369 return error("Invalid record"); 4370 Args.push_back(Val); 4371 } 4372 if (Record.size() != Idx) 4373 return error("Invalid record"); 4374 4375 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4380 if (Record.size() < 1) 4381 return error("Invalid record"); 4382 unsigned Idx = 0; 4383 unsigned NumArgOperands = Record[Idx++]; 4384 SmallVector<Value *, 2> Args; 4385 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4386 Value *Val; 4387 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4388 return error("Invalid record"); 4389 Args.push_back(Val); 4390 } 4391 if (Record.size() != Idx) 4392 return error("Invalid record"); 4393 4394 I = CleanupPadInst::Create(Context, Args); 4395 InstructionList.push_back(I); 4396 break; 4397 } 4398 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4399 if (Record.size() > 1) 4400 return error("Invalid record"); 4401 BasicBlock *BB = nullptr; 4402 if (Record.size() == 1) { 4403 BB = getBasicBlock(Record[0]); 4404 if (!BB) 4405 return error("Invalid record"); 4406 } 4407 I = CatchEndPadInst::Create(Context, BB); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4412 if (Record.size() != 1 && Record.size() != 2) 4413 return error("Invalid record"); 4414 unsigned Idx = 0; 4415 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4416 Type::getTokenTy(Context), OC_CleanupPad); 4417 if (!CleanupPad) 4418 return error("Invalid record"); 4419 4420 BasicBlock *BB = nullptr; 4421 if (Record.size() == 2) { 4422 BB = getBasicBlock(Record[Idx++]); 4423 if (!BB) 4424 return error("Invalid record"); 4425 } 4426 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4431 // Check magic 4432 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4433 // "New" SwitchInst format with case ranges. The changes to write this 4434 // format were reverted but we still recognize bitcode that uses it. 4435 // Hopefully someday we will have support for case ranges and can use 4436 // this format again. 4437 4438 Type *OpTy = getTypeByID(Record[1]); 4439 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4440 4441 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4442 BasicBlock *Default = getBasicBlock(Record[3]); 4443 if (!OpTy || !Cond || !Default) 4444 return error("Invalid record"); 4445 4446 unsigned NumCases = Record[4]; 4447 4448 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4449 InstructionList.push_back(SI); 4450 4451 unsigned CurIdx = 5; 4452 for (unsigned i = 0; i != NumCases; ++i) { 4453 SmallVector<ConstantInt*, 1> CaseVals; 4454 unsigned NumItems = Record[CurIdx++]; 4455 for (unsigned ci = 0; ci != NumItems; ++ci) { 4456 bool isSingleNumber = Record[CurIdx++]; 4457 4458 APInt Low; 4459 unsigned ActiveWords = 1; 4460 if (ValueBitWidth > 64) 4461 ActiveWords = Record[CurIdx++]; 4462 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4463 ValueBitWidth); 4464 CurIdx += ActiveWords; 4465 4466 if (!isSingleNumber) { 4467 ActiveWords = 1; 4468 if (ValueBitWidth > 64) 4469 ActiveWords = Record[CurIdx++]; 4470 APInt High = readWideAPInt( 4471 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4472 CurIdx += ActiveWords; 4473 4474 // FIXME: It is not clear whether values in the range should be 4475 // compared as signed or unsigned values. The partially 4476 // implemented changes that used this format in the past used 4477 // unsigned comparisons. 4478 for ( ; Low.ule(High); ++Low) 4479 CaseVals.push_back(ConstantInt::get(Context, Low)); 4480 } else 4481 CaseVals.push_back(ConstantInt::get(Context, Low)); 4482 } 4483 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4484 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4485 cve = CaseVals.end(); cvi != cve; ++cvi) 4486 SI->addCase(*cvi, DestBB); 4487 } 4488 I = SI; 4489 break; 4490 } 4491 4492 // Old SwitchInst format without case ranges. 4493 4494 if (Record.size() < 3 || (Record.size() & 1) == 0) 4495 return error("Invalid record"); 4496 Type *OpTy = getTypeByID(Record[0]); 4497 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4498 BasicBlock *Default = getBasicBlock(Record[2]); 4499 if (!OpTy || !Cond || !Default) 4500 return error("Invalid record"); 4501 unsigned NumCases = (Record.size()-3)/2; 4502 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4503 InstructionList.push_back(SI); 4504 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4505 ConstantInt *CaseVal = 4506 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4507 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4508 if (!CaseVal || !DestBB) { 4509 delete SI; 4510 return error("Invalid record"); 4511 } 4512 SI->addCase(CaseVal, DestBB); 4513 } 4514 I = SI; 4515 break; 4516 } 4517 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4518 if (Record.size() < 2) 4519 return error("Invalid record"); 4520 Type *OpTy = getTypeByID(Record[0]); 4521 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4522 if (!OpTy || !Address) 4523 return error("Invalid record"); 4524 unsigned NumDests = Record.size()-2; 4525 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4526 InstructionList.push_back(IBI); 4527 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4528 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4529 IBI->addDestination(DestBB); 4530 } else { 4531 delete IBI; 4532 return error("Invalid record"); 4533 } 4534 } 4535 I = IBI; 4536 break; 4537 } 4538 4539 case bitc::FUNC_CODE_INST_INVOKE: { 4540 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4541 if (Record.size() < 4) 4542 return error("Invalid record"); 4543 unsigned OpNum = 0; 4544 AttributeSet PAL = getAttributes(Record[OpNum++]); 4545 unsigned CCInfo = Record[OpNum++]; 4546 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4547 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4548 4549 FunctionType *FTy = nullptr; 4550 if (CCInfo >> 13 & 1 && 4551 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4552 return error("Explicit invoke type is not a function type"); 4553 4554 Value *Callee; 4555 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4556 return error("Invalid record"); 4557 4558 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4559 if (!CalleeTy) 4560 return error("Callee is not a pointer"); 4561 if (!FTy) { 4562 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4563 if (!FTy) 4564 return error("Callee is not of pointer to function type"); 4565 } else if (CalleeTy->getElementType() != FTy) 4566 return error("Explicit invoke type does not match pointee type of " 4567 "callee operand"); 4568 if (Record.size() < FTy->getNumParams() + OpNum) 4569 return error("Insufficient operands to call"); 4570 4571 SmallVector<Value*, 16> Ops; 4572 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4573 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4574 FTy->getParamType(i))); 4575 if (!Ops.back()) 4576 return error("Invalid record"); 4577 } 4578 4579 if (!FTy->isVarArg()) { 4580 if (Record.size() != OpNum) 4581 return error("Invalid record"); 4582 } else { 4583 // Read type/value pairs for varargs params. 4584 while (OpNum != Record.size()) { 4585 Value *Op; 4586 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4587 return error("Invalid record"); 4588 Ops.push_back(Op); 4589 } 4590 } 4591 4592 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4593 OperandBundles.clear(); 4594 InstructionList.push_back(I); 4595 cast<InvokeInst>(I)->setCallingConv( 4596 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4597 cast<InvokeInst>(I)->setAttributes(PAL); 4598 break; 4599 } 4600 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4601 unsigned Idx = 0; 4602 Value *Val = nullptr; 4603 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4604 return error("Invalid record"); 4605 I = ResumeInst::Create(Val); 4606 InstructionList.push_back(I); 4607 break; 4608 } 4609 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4610 I = new UnreachableInst(Context); 4611 InstructionList.push_back(I); 4612 break; 4613 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4614 if (Record.size() < 1 || ((Record.size()-1)&1)) 4615 return error("Invalid record"); 4616 Type *Ty = getTypeByID(Record[0]); 4617 if (!Ty) 4618 return error("Invalid record"); 4619 4620 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4621 InstructionList.push_back(PN); 4622 4623 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4624 Value *V; 4625 // With the new function encoding, it is possible that operands have 4626 // negative IDs (for forward references). Use a signed VBR 4627 // representation to keep the encoding small. 4628 if (UseRelativeIDs) 4629 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4630 else 4631 V = getValue(Record, 1+i, NextValueNo, Ty); 4632 BasicBlock *BB = getBasicBlock(Record[2+i]); 4633 if (!V || !BB) 4634 return error("Invalid record"); 4635 PN->addIncoming(V, BB); 4636 } 4637 I = PN; 4638 break; 4639 } 4640 4641 case bitc::FUNC_CODE_INST_LANDINGPAD: 4642 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4643 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4644 unsigned Idx = 0; 4645 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4646 if (Record.size() < 3) 4647 return error("Invalid record"); 4648 } else { 4649 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4650 if (Record.size() < 4) 4651 return error("Invalid record"); 4652 } 4653 Type *Ty = getTypeByID(Record[Idx++]); 4654 if (!Ty) 4655 return error("Invalid record"); 4656 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4657 Value *PersFn = nullptr; 4658 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4659 return error("Invalid record"); 4660 4661 if (!F->hasPersonalityFn()) 4662 F->setPersonalityFn(cast<Constant>(PersFn)); 4663 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4664 return error("Personality function mismatch"); 4665 } 4666 4667 bool IsCleanup = !!Record[Idx++]; 4668 unsigned NumClauses = Record[Idx++]; 4669 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4670 LP->setCleanup(IsCleanup); 4671 for (unsigned J = 0; J != NumClauses; ++J) { 4672 LandingPadInst::ClauseType CT = 4673 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4674 Value *Val; 4675 4676 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4677 delete LP; 4678 return error("Invalid record"); 4679 } 4680 4681 assert((CT != LandingPadInst::Catch || 4682 !isa<ArrayType>(Val->getType())) && 4683 "Catch clause has a invalid type!"); 4684 assert((CT != LandingPadInst::Filter || 4685 isa<ArrayType>(Val->getType())) && 4686 "Filter clause has invalid type!"); 4687 LP->addClause(cast<Constant>(Val)); 4688 } 4689 4690 I = LP; 4691 InstructionList.push_back(I); 4692 break; 4693 } 4694 4695 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4696 if (Record.size() != 4) 4697 return error("Invalid record"); 4698 uint64_t AlignRecord = Record[3]; 4699 const uint64_t InAllocaMask = uint64_t(1) << 5; 4700 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4701 // Reserve bit 7 for SwiftError flag. 4702 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4703 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4704 bool InAlloca = AlignRecord & InAllocaMask; 4705 Type *Ty = getTypeByID(Record[0]); 4706 if ((AlignRecord & ExplicitTypeMask) == 0) { 4707 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4708 if (!PTy) 4709 return error("Old-style alloca with a non-pointer type"); 4710 Ty = PTy->getElementType(); 4711 } 4712 Type *OpTy = getTypeByID(Record[1]); 4713 Value *Size = getFnValueByID(Record[2], OpTy); 4714 unsigned Align; 4715 if (std::error_code EC = 4716 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4717 return EC; 4718 } 4719 if (!Ty || !Size) 4720 return error("Invalid record"); 4721 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4722 AI->setUsedWithInAlloca(InAlloca); 4723 I = AI; 4724 InstructionList.push_back(I); 4725 break; 4726 } 4727 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4728 unsigned OpNum = 0; 4729 Value *Op; 4730 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4731 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4732 return error("Invalid record"); 4733 4734 Type *Ty = nullptr; 4735 if (OpNum + 3 == Record.size()) 4736 Ty = getTypeByID(Record[OpNum++]); 4737 if (std::error_code EC = 4738 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4739 return EC; 4740 if (!Ty) 4741 Ty = cast<PointerType>(Op->getType())->getElementType(); 4742 4743 unsigned Align; 4744 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4745 return EC; 4746 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4747 4748 InstructionList.push_back(I); 4749 break; 4750 } 4751 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4752 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4753 unsigned OpNum = 0; 4754 Value *Op; 4755 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4756 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4757 return error("Invalid record"); 4758 4759 Type *Ty = nullptr; 4760 if (OpNum + 5 == Record.size()) 4761 Ty = getTypeByID(Record[OpNum++]); 4762 if (std::error_code EC = 4763 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4764 return EC; 4765 if (!Ty) 4766 Ty = cast<PointerType>(Op->getType())->getElementType(); 4767 4768 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4769 if (Ordering == NotAtomic || Ordering == Release || 4770 Ordering == AcquireRelease) 4771 return error("Invalid record"); 4772 if (Ordering != NotAtomic && Record[OpNum] == 0) 4773 return error("Invalid record"); 4774 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4775 4776 unsigned Align; 4777 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4778 return EC; 4779 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4780 4781 InstructionList.push_back(I); 4782 break; 4783 } 4784 case bitc::FUNC_CODE_INST_STORE: 4785 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4786 unsigned OpNum = 0; 4787 Value *Val, *Ptr; 4788 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4789 (BitCode == bitc::FUNC_CODE_INST_STORE 4790 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4791 : popValue(Record, OpNum, NextValueNo, 4792 cast<PointerType>(Ptr->getType())->getElementType(), 4793 Val)) || 4794 OpNum + 2 != Record.size()) 4795 return error("Invalid record"); 4796 4797 if (std::error_code EC = typeCheckLoadStoreInst( 4798 DiagnosticHandler, Val->getType(), Ptr->getType())) 4799 return EC; 4800 unsigned Align; 4801 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4802 return EC; 4803 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4804 InstructionList.push_back(I); 4805 break; 4806 } 4807 case bitc::FUNC_CODE_INST_STOREATOMIC: 4808 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4809 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4810 unsigned OpNum = 0; 4811 Value *Val, *Ptr; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4813 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4814 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4815 : popValue(Record, OpNum, NextValueNo, 4816 cast<PointerType>(Ptr->getType())->getElementType(), 4817 Val)) || 4818 OpNum + 4 != Record.size()) 4819 return error("Invalid record"); 4820 4821 if (std::error_code EC = typeCheckLoadStoreInst( 4822 DiagnosticHandler, Val->getType(), Ptr->getType())) 4823 return EC; 4824 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4825 if (Ordering == NotAtomic || Ordering == Acquire || 4826 Ordering == AcquireRelease) 4827 return error("Invalid record"); 4828 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4829 if (Ordering != NotAtomic && Record[OpNum] == 0) 4830 return error("Invalid record"); 4831 4832 unsigned Align; 4833 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4834 return EC; 4835 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4836 InstructionList.push_back(I); 4837 break; 4838 } 4839 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4840 case bitc::FUNC_CODE_INST_CMPXCHG: { 4841 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4842 // failureordering?, isweak?] 4843 unsigned OpNum = 0; 4844 Value *Ptr, *Cmp, *New; 4845 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4846 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4847 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4848 : popValue(Record, OpNum, NextValueNo, 4849 cast<PointerType>(Ptr->getType())->getElementType(), 4850 Cmp)) || 4851 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4852 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4853 return error("Invalid record"); 4854 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4855 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4856 return error("Invalid record"); 4857 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4858 4859 if (std::error_code EC = typeCheckLoadStoreInst( 4860 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4861 return EC; 4862 AtomicOrdering FailureOrdering; 4863 if (Record.size() < 7) 4864 FailureOrdering = 4865 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4866 else 4867 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4868 4869 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4870 SynchScope); 4871 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4872 4873 if (Record.size() < 8) { 4874 // Before weak cmpxchgs existed, the instruction simply returned the 4875 // value loaded from memory, so bitcode files from that era will be 4876 // expecting the first component of a modern cmpxchg. 4877 CurBB->getInstList().push_back(I); 4878 I = ExtractValueInst::Create(I, 0); 4879 } else { 4880 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4881 } 4882 4883 InstructionList.push_back(I); 4884 break; 4885 } 4886 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4887 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4888 unsigned OpNum = 0; 4889 Value *Ptr, *Val; 4890 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4891 popValue(Record, OpNum, NextValueNo, 4892 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4893 OpNum+4 != Record.size()) 4894 return error("Invalid record"); 4895 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4896 if (Operation < AtomicRMWInst::FIRST_BINOP || 4897 Operation > AtomicRMWInst::LAST_BINOP) 4898 return error("Invalid record"); 4899 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4900 if (Ordering == NotAtomic || Ordering == Unordered) 4901 return error("Invalid record"); 4902 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4903 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4904 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4905 InstructionList.push_back(I); 4906 break; 4907 } 4908 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4909 if (2 != Record.size()) 4910 return error("Invalid record"); 4911 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4912 if (Ordering == NotAtomic || Ordering == Unordered || 4913 Ordering == Monotonic) 4914 return error("Invalid record"); 4915 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4916 I = new FenceInst(Context, Ordering, SynchScope); 4917 InstructionList.push_back(I); 4918 break; 4919 } 4920 case bitc::FUNC_CODE_INST_CALL: { 4921 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4922 if (Record.size() < 3) 4923 return error("Invalid record"); 4924 4925 unsigned OpNum = 0; 4926 AttributeSet PAL = getAttributes(Record[OpNum++]); 4927 unsigned CCInfo = Record[OpNum++]; 4928 4929 FunctionType *FTy = nullptr; 4930 if (CCInfo >> 15 & 1 && 4931 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4932 return error("Explicit call type is not a function type"); 4933 4934 Value *Callee; 4935 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4936 return error("Invalid record"); 4937 4938 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4939 if (!OpTy) 4940 return error("Callee is not a pointer type"); 4941 if (!FTy) { 4942 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4943 if (!FTy) 4944 return error("Callee is not of pointer to function type"); 4945 } else if (OpTy->getElementType() != FTy) 4946 return error("Explicit call type does not match pointee type of " 4947 "callee operand"); 4948 if (Record.size() < FTy->getNumParams() + OpNum) 4949 return error("Insufficient operands to call"); 4950 4951 SmallVector<Value*, 16> Args; 4952 // Read the fixed params. 4953 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4954 if (FTy->getParamType(i)->isLabelTy()) 4955 Args.push_back(getBasicBlock(Record[OpNum])); 4956 else 4957 Args.push_back(getValue(Record, OpNum, NextValueNo, 4958 FTy->getParamType(i))); 4959 if (!Args.back()) 4960 return error("Invalid record"); 4961 } 4962 4963 // Read type/value pairs for varargs params. 4964 if (!FTy->isVarArg()) { 4965 if (OpNum != Record.size()) 4966 return error("Invalid record"); 4967 } else { 4968 while (OpNum != Record.size()) { 4969 Value *Op; 4970 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4971 return error("Invalid record"); 4972 Args.push_back(Op); 4973 } 4974 } 4975 4976 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4977 OperandBundles.clear(); 4978 InstructionList.push_back(I); 4979 cast<CallInst>(I)->setCallingConv( 4980 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> 1)); 4981 CallInst::TailCallKind TCK = CallInst::TCK_None; 4982 if (CCInfo & 1) 4983 TCK = CallInst::TCK_Tail; 4984 if (CCInfo & (1 << 14)) 4985 TCK = CallInst::TCK_MustTail; 4986 cast<CallInst>(I)->setTailCallKind(TCK); 4987 cast<CallInst>(I)->setAttributes(PAL); 4988 break; 4989 } 4990 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4991 if (Record.size() < 3) 4992 return error("Invalid record"); 4993 Type *OpTy = getTypeByID(Record[0]); 4994 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4995 Type *ResTy = getTypeByID(Record[2]); 4996 if (!OpTy || !Op || !ResTy) 4997 return error("Invalid record"); 4998 I = new VAArgInst(Op, ResTy); 4999 InstructionList.push_back(I); 5000 break; 5001 } 5002 5003 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5004 // A call or an invoke can be optionally prefixed with some variable 5005 // number of operand bundle blocks. These blocks are read into 5006 // OperandBundles and consumed at the next call or invoke instruction. 5007 5008 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5009 return error("Invalid record"); 5010 5011 OperandBundles.emplace_back(); 5012 OperandBundles.back().Tag = BundleTags[Record[0]]; 5013 5014 std::vector<Value *> &Inputs = OperandBundles.back().Inputs; 5015 5016 unsigned OpNum = 1; 5017 while (OpNum != Record.size()) { 5018 Value *Op; 5019 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5020 return error("Invalid record"); 5021 Inputs.push_back(Op); 5022 } 5023 5024 continue; 5025 } 5026 } 5027 5028 // Add instruction to end of current BB. If there is no current BB, reject 5029 // this file. 5030 if (!CurBB) { 5031 delete I; 5032 return error("Invalid instruction with no BB"); 5033 } 5034 if (!OperandBundles.empty()) { 5035 delete I; 5036 return error("Operand bundles found with no consumer"); 5037 } 5038 CurBB->getInstList().push_back(I); 5039 5040 // If this was a terminator instruction, move to the next block. 5041 if (isa<TerminatorInst>(I)) { 5042 ++CurBBNo; 5043 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5044 } 5045 5046 // Non-void values get registered in the value table for future use. 5047 if (I && !I->getType()->isVoidTy()) 5048 if (ValueList.assignValue(I, NextValueNo++)) 5049 return error("Invalid forward reference"); 5050 } 5051 5052 OutOfRecordLoop: 5053 5054 if (!OperandBundles.empty()) 5055 return error("Operand bundles found with no consumer"); 5056 5057 // Check the function list for unresolved values. 5058 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5059 if (!A->getParent()) { 5060 // We found at least one unresolved value. Nuke them all to avoid leaks. 5061 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5062 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5063 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5064 delete A; 5065 } 5066 } 5067 return error("Never resolved value found in function"); 5068 } 5069 } 5070 5071 // FIXME: Check for unresolved forward-declared metadata references 5072 // and clean up leaks. 5073 5074 // Trim the value list down to the size it was before we parsed this function. 5075 ValueList.shrinkTo(ModuleValueListSize); 5076 MDValueList.shrinkTo(ModuleMDValueListSize); 5077 std::vector<BasicBlock*>().swap(FunctionBBs); 5078 return std::error_code(); 5079 } 5080 5081 /// Find the function body in the bitcode stream 5082 std::error_code BitcodeReader::findFunctionInStream( 5083 Function *F, 5084 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5085 while (DeferredFunctionInfoIterator->second == 0) { 5086 // This is the fallback handling for the old format bitcode that 5087 // didn't contain the function index in the VST, or when we have 5088 // an anonymous function which would not have a VST entry. 5089 // Assert that we have one of those two cases. 5090 assert(VSTOffset == 0 || !F->hasName()); 5091 // Parse the next body in the stream and set its position in the 5092 // DeferredFunctionInfo map. 5093 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5094 return EC; 5095 } 5096 return std::error_code(); 5097 } 5098 5099 //===----------------------------------------------------------------------===// 5100 // GVMaterializer implementation 5101 //===----------------------------------------------------------------------===// 5102 5103 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5104 5105 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5106 if (std::error_code EC = materializeMetadata()) 5107 return EC; 5108 5109 Function *F = dyn_cast<Function>(GV); 5110 // If it's not a function or is already material, ignore the request. 5111 if (!F || !F->isMaterializable()) 5112 return std::error_code(); 5113 5114 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5115 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5116 // If its position is recorded as 0, its body is somewhere in the stream 5117 // but we haven't seen it yet. 5118 if (DFII->second == 0) 5119 if (std::error_code EC = findFunctionInStream(F, DFII)) 5120 return EC; 5121 5122 // Move the bit stream to the saved position of the deferred function body. 5123 Stream.JumpToBit(DFII->second); 5124 5125 if (std::error_code EC = parseFunctionBody(F)) 5126 return EC; 5127 F->setIsMaterializable(false); 5128 5129 if (StripDebugInfo) 5130 stripDebugInfo(*F); 5131 5132 // Upgrade any old intrinsic calls in the function. 5133 for (auto &I : UpgradedIntrinsics) { 5134 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5135 User *U = *UI; 5136 ++UI; 5137 if (CallInst *CI = dyn_cast<CallInst>(U)) 5138 UpgradeIntrinsicCall(CI, I.second); 5139 } 5140 } 5141 5142 // Bring in any functions that this function forward-referenced via 5143 // blockaddresses. 5144 return materializeForwardReferencedFunctions(); 5145 } 5146 5147 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5148 const Function *F = dyn_cast<Function>(GV); 5149 if (!F || F->isDeclaration()) 5150 return false; 5151 5152 // Dematerializing F would leave dangling references that wouldn't be 5153 // reconnected on re-materialization. 5154 if (BlockAddressesTaken.count(F)) 5155 return false; 5156 5157 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5158 } 5159 5160 void BitcodeReader::dematerialize(GlobalValue *GV) { 5161 Function *F = dyn_cast<Function>(GV); 5162 // If this function isn't dematerializable, this is a noop. 5163 if (!F || !isDematerializable(F)) 5164 return; 5165 5166 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5167 5168 // Just forget the function body, we can remat it later. 5169 F->dropAllReferences(); 5170 F->setIsMaterializable(true); 5171 } 5172 5173 std::error_code BitcodeReader::materializeModule(Module *M) { 5174 assert(M == TheModule && 5175 "Can only Materialize the Module this BitcodeReader is attached to."); 5176 5177 if (std::error_code EC = materializeMetadata()) 5178 return EC; 5179 5180 // Promise to materialize all forward references. 5181 WillMaterializeAllForwardRefs = true; 5182 5183 // Iterate over the module, deserializing any functions that are still on 5184 // disk. 5185 for (Function &F : *TheModule) { 5186 if (std::error_code EC = materialize(&F)) 5187 return EC; 5188 } 5189 // At this point, if there are any function bodies, parse the rest of 5190 // the bits in the module past the last function block we have recorded 5191 // through either lazy scanning or the VST. 5192 if (LastFunctionBlockBit || NextUnreadBit) 5193 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5194 : NextUnreadBit); 5195 5196 // Check that all block address forward references got resolved (as we 5197 // promised above). 5198 if (!BasicBlockFwdRefs.empty()) 5199 return error("Never resolved function from blockaddress"); 5200 5201 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5202 // delete the old functions to clean up. We can't do this unless the entire 5203 // module is materialized because there could always be another function body 5204 // with calls to the old function. 5205 for (auto &I : UpgradedIntrinsics) { 5206 for (auto *U : I.first->users()) { 5207 if (CallInst *CI = dyn_cast<CallInst>(U)) 5208 UpgradeIntrinsicCall(CI, I.second); 5209 } 5210 if (!I.first->use_empty()) 5211 I.first->replaceAllUsesWith(I.second); 5212 I.first->eraseFromParent(); 5213 } 5214 UpgradedIntrinsics.clear(); 5215 5216 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5217 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5218 5219 UpgradeDebugInfo(*M); 5220 return std::error_code(); 5221 } 5222 5223 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5224 return IdentifiedStructTypes; 5225 } 5226 5227 std::error_code 5228 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5229 if (Streamer) 5230 return initLazyStream(std::move(Streamer)); 5231 return initStreamFromBuffer(); 5232 } 5233 5234 std::error_code BitcodeReader::initStreamFromBuffer() { 5235 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5236 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5237 5238 if (Buffer->getBufferSize() & 3) 5239 return error("Invalid bitcode signature"); 5240 5241 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5242 // The magic number is 0x0B17C0DE stored in little endian. 5243 if (isBitcodeWrapper(BufPtr, BufEnd)) 5244 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5245 return error("Invalid bitcode wrapper header"); 5246 5247 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5248 Stream.init(&*StreamFile); 5249 5250 return std::error_code(); 5251 } 5252 5253 std::error_code 5254 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5255 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5256 // see it. 5257 auto OwnedBytes = 5258 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5259 StreamingMemoryObject &Bytes = *OwnedBytes; 5260 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5261 Stream.init(&*StreamFile); 5262 5263 unsigned char buf[16]; 5264 if (Bytes.readBytes(buf, 16, 0) != 16) 5265 return error("Invalid bitcode signature"); 5266 5267 if (!isBitcode(buf, buf + 16)) 5268 return error("Invalid bitcode signature"); 5269 5270 if (isBitcodeWrapper(buf, buf + 4)) { 5271 const unsigned char *bitcodeStart = buf; 5272 const unsigned char *bitcodeEnd = buf + 16; 5273 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5274 Bytes.dropLeadingBytes(bitcodeStart - buf); 5275 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5276 } 5277 return std::error_code(); 5278 } 5279 5280 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5281 const Twine &Message) { 5282 return ::error(DiagnosticHandler, make_error_code(E), Message); 5283 } 5284 5285 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5286 return ::error(DiagnosticHandler, 5287 make_error_code(BitcodeError::CorruptedBitcode), Message); 5288 } 5289 5290 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5291 return ::error(DiagnosticHandler, make_error_code(E)); 5292 } 5293 5294 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5295 MemoryBuffer *Buffer, LLVMContext &Context, 5296 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5297 bool CheckFuncSummaryPresenceOnly) 5298 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5299 Buffer(Buffer), IsLazy(IsLazy), 5300 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5301 5302 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5303 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler, 5304 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5305 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5306 Buffer(nullptr), IsLazy(IsLazy), 5307 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5308 5309 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5310 5311 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5312 5313 // Specialized value symbol table parser used when reading function index 5314 // blocks where we don't actually create global values. 5315 // At the end of this routine the function index is populated with a map 5316 // from function name to FunctionInfo. The function info contains 5317 // the function block's bitcode offset as well as the offset into the 5318 // function summary section. 5319 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5320 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5321 return error("Invalid record"); 5322 5323 SmallVector<uint64_t, 64> Record; 5324 5325 // Read all the records for this value table. 5326 SmallString<128> ValueName; 5327 while (1) { 5328 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5329 5330 switch (Entry.Kind) { 5331 case BitstreamEntry::SubBlock: // Handled for us already. 5332 case BitstreamEntry::Error: 5333 return error("Malformed block"); 5334 case BitstreamEntry::EndBlock: 5335 return std::error_code(); 5336 case BitstreamEntry::Record: 5337 // The interesting case. 5338 break; 5339 } 5340 5341 // Read a record. 5342 Record.clear(); 5343 switch (Stream.readRecord(Entry.ID, Record)) { 5344 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5345 break; 5346 case bitc::VST_CODE_FNENTRY: { 5347 // VST_FNENTRY: [valueid, offset, namechar x N] 5348 if (convertToString(Record, 2, ValueName)) 5349 return error("Invalid record"); 5350 unsigned ValueID = Record[0]; 5351 uint64_t FuncOffset = Record[1]; 5352 std::unique_ptr<FunctionInfo> FuncInfo = 5353 llvm::make_unique<FunctionInfo>(FuncOffset); 5354 if (foundFuncSummary() && !IsLazy) { 5355 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5356 SummaryMap.find(ValueID); 5357 assert(SMI != SummaryMap.end() && "Summary info not found"); 5358 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5359 } 5360 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5361 5362 ValueName.clear(); 5363 break; 5364 } 5365 case bitc::VST_CODE_COMBINED_FNENTRY: { 5366 // VST_FNENTRY: [offset, namechar x N] 5367 if (convertToString(Record, 1, ValueName)) 5368 return error("Invalid record"); 5369 uint64_t FuncSummaryOffset = Record[0]; 5370 std::unique_ptr<FunctionInfo> FuncInfo = 5371 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5372 if (foundFuncSummary() && !IsLazy) { 5373 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5374 SummaryMap.find(FuncSummaryOffset); 5375 assert(SMI != SummaryMap.end() && "Summary info not found"); 5376 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5377 } 5378 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5379 5380 ValueName.clear(); 5381 break; 5382 } 5383 } 5384 } 5385 } 5386 5387 // Parse just the blocks needed for function index building out of the module. 5388 // At the end of this routine the function Index is populated with a map 5389 // from function name to FunctionInfo. The function info contains 5390 // either the parsed function summary information (when parsing summaries 5391 // eagerly), or just to the function summary record's offset 5392 // if parsing lazily (IsLazy). 5393 std::error_code FunctionIndexBitcodeReader::parseModule() { 5394 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5395 return error("Invalid record"); 5396 5397 // Read the function index for this module. 5398 while (1) { 5399 BitstreamEntry Entry = Stream.advance(); 5400 5401 switch (Entry.Kind) { 5402 case BitstreamEntry::Error: 5403 return error("Malformed block"); 5404 case BitstreamEntry::EndBlock: 5405 return std::error_code(); 5406 5407 case BitstreamEntry::SubBlock: 5408 if (CheckFuncSummaryPresenceOnly) { 5409 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5410 SeenFuncSummary = true; 5411 if (Stream.SkipBlock()) 5412 return error("Invalid record"); 5413 // No need to parse the rest since we found the summary. 5414 return std::error_code(); 5415 } 5416 switch (Entry.ID) { 5417 default: // Skip unknown content. 5418 if (Stream.SkipBlock()) 5419 return error("Invalid record"); 5420 break; 5421 case bitc::BLOCKINFO_BLOCK_ID: 5422 // Need to parse these to get abbrev ids (e.g. for VST) 5423 if (Stream.ReadBlockInfoBlock()) 5424 return error("Malformed block"); 5425 break; 5426 case bitc::VALUE_SYMTAB_BLOCK_ID: 5427 if (std::error_code EC = parseValueSymbolTable()) 5428 return EC; 5429 break; 5430 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5431 SeenFuncSummary = true; 5432 if (IsLazy) { 5433 // Lazy parsing of summary info, skip it. 5434 if (Stream.SkipBlock()) 5435 return error("Invalid record"); 5436 } else if (std::error_code EC = parseEntireSummary()) 5437 return EC; 5438 break; 5439 case bitc::MODULE_STRTAB_BLOCK_ID: 5440 if (std::error_code EC = parseModuleStringTable()) 5441 return EC; 5442 break; 5443 } 5444 continue; 5445 5446 case BitstreamEntry::Record: 5447 Stream.skipRecord(Entry.ID); 5448 continue; 5449 } 5450 } 5451 } 5452 5453 // Eagerly parse the entire function summary block (i.e. for all functions 5454 // in the index). This populates the FunctionSummary objects in 5455 // the index. 5456 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5457 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5458 return error("Invalid record"); 5459 5460 SmallVector<uint64_t, 64> Record; 5461 5462 while (1) { 5463 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5464 5465 switch (Entry.Kind) { 5466 case BitstreamEntry::SubBlock: // Handled for us already. 5467 case BitstreamEntry::Error: 5468 return error("Malformed block"); 5469 case BitstreamEntry::EndBlock: 5470 return std::error_code(); 5471 case BitstreamEntry::Record: 5472 // The interesting case. 5473 break; 5474 } 5475 5476 // Read a record. The record format depends on whether this 5477 // is a per-module index or a combined index file. In the per-module 5478 // case the records contain the associated value's ID for correlation 5479 // with VST entries. In the combined index the correlation is done 5480 // via the bitcode offset of the summary records (which were saved 5481 // in the combined index VST entries). The records also contain 5482 // information used for ThinLTO renaming and importing. 5483 Record.clear(); 5484 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5485 switch (Stream.readRecord(Entry.ID, Record)) { 5486 default: // Default behavior: ignore. 5487 break; 5488 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5489 case bitc::FS_CODE_PERMODULE_ENTRY: { 5490 unsigned ValueID = Record[0]; 5491 bool IsLocal = Record[1]; 5492 unsigned InstCount = Record[2]; 5493 std::unique_ptr<FunctionSummary> FS = 5494 llvm::make_unique<FunctionSummary>(InstCount); 5495 FS->setLocalFunction(IsLocal); 5496 // The module path string ref set in the summary must be owned by the 5497 // index's module string table. Since we don't have a module path 5498 // string table section in the per-module index, we create a single 5499 // module path string table entry with an empty (0) ID to take 5500 // ownership. 5501 FS->setModulePath( 5502 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5503 SummaryMap[ValueID] = std::move(FS); 5504 } 5505 // FS_COMBINED_ENTRY: [modid, instcount] 5506 case bitc::FS_CODE_COMBINED_ENTRY: { 5507 uint64_t ModuleId = Record[0]; 5508 unsigned InstCount = Record[1]; 5509 std::unique_ptr<FunctionSummary> FS = 5510 llvm::make_unique<FunctionSummary>(InstCount); 5511 FS->setModulePath(ModuleIdMap[ModuleId]); 5512 SummaryMap[CurRecordBit] = std::move(FS); 5513 } 5514 } 5515 } 5516 llvm_unreachable("Exit infinite loop"); 5517 } 5518 5519 // Parse the module string table block into the Index. 5520 // This populates the ModulePathStringTable map in the index. 5521 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5522 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5523 return error("Invalid record"); 5524 5525 SmallVector<uint64_t, 64> Record; 5526 5527 SmallString<128> ModulePath; 5528 while (1) { 5529 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5530 5531 switch (Entry.Kind) { 5532 case BitstreamEntry::SubBlock: // Handled for us already. 5533 case BitstreamEntry::Error: 5534 return error("Malformed block"); 5535 case BitstreamEntry::EndBlock: 5536 return std::error_code(); 5537 case BitstreamEntry::Record: 5538 // The interesting case. 5539 break; 5540 } 5541 5542 Record.clear(); 5543 switch (Stream.readRecord(Entry.ID, Record)) { 5544 default: // Default behavior: ignore. 5545 break; 5546 case bitc::MST_CODE_ENTRY: { 5547 // MST_ENTRY: [modid, namechar x N] 5548 if (convertToString(Record, 1, ModulePath)) 5549 return error("Invalid record"); 5550 uint64_t ModuleId = Record[0]; 5551 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5552 ModuleIdMap[ModuleId] = ModulePathInMap; 5553 ModulePath.clear(); 5554 break; 5555 } 5556 } 5557 } 5558 llvm_unreachable("Exit infinite loop"); 5559 } 5560 5561 // Parse the function info index from the bitcode streamer into the given index. 5562 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5563 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5564 TheIndex = I; 5565 5566 if (std::error_code EC = initStream(std::move(Streamer))) 5567 return EC; 5568 5569 // Sniff for the signature. 5570 if (!hasValidBitcodeHeader(Stream)) 5571 return error("Invalid bitcode signature"); 5572 5573 // We expect a number of well-defined blocks, though we don't necessarily 5574 // need to understand them all. 5575 while (1) { 5576 if (Stream.AtEndOfStream()) { 5577 // We didn't really read a proper Module block. 5578 return error("Malformed block"); 5579 } 5580 5581 BitstreamEntry Entry = 5582 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5583 5584 if (Entry.Kind != BitstreamEntry::SubBlock) 5585 return error("Malformed block"); 5586 5587 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5588 // building the function summary index. 5589 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5590 return parseModule(); 5591 5592 if (Stream.SkipBlock()) 5593 return error("Invalid record"); 5594 } 5595 } 5596 5597 // Parse the function information at the given offset in the buffer into 5598 // the index. Used to support lazy parsing of function summaries from the 5599 // combined index during importing. 5600 // TODO: This function is not yet complete as it won't have a consumer 5601 // until ThinLTO function importing is added. 5602 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5603 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5604 size_t FunctionSummaryOffset) { 5605 TheIndex = I; 5606 5607 if (std::error_code EC = initStream(std::move(Streamer))) 5608 return EC; 5609 5610 // Sniff for the signature. 5611 if (!hasValidBitcodeHeader(Stream)) 5612 return error("Invalid bitcode signature"); 5613 5614 Stream.JumpToBit(FunctionSummaryOffset); 5615 5616 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5617 5618 switch (Entry.Kind) { 5619 default: 5620 return error("Malformed block"); 5621 case BitstreamEntry::Record: 5622 // The expected case. 5623 break; 5624 } 5625 5626 // TODO: Read a record. This interface will be completed when ThinLTO 5627 // importing is added so that it can be tested. 5628 SmallVector<uint64_t, 64> Record; 5629 switch (Stream.readRecord(Entry.ID, Record)) { 5630 case bitc::FS_CODE_COMBINED_ENTRY: 5631 default: 5632 return error("Invalid record"); 5633 } 5634 5635 return std::error_code(); 5636 } 5637 5638 std::error_code 5639 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5640 if (Streamer) 5641 return initLazyStream(std::move(Streamer)); 5642 return initStreamFromBuffer(); 5643 } 5644 5645 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5646 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5647 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5648 5649 if (Buffer->getBufferSize() & 3) 5650 return error("Invalid bitcode signature"); 5651 5652 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5653 // The magic number is 0x0B17C0DE stored in little endian. 5654 if (isBitcodeWrapper(BufPtr, BufEnd)) 5655 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5656 return error("Invalid bitcode wrapper header"); 5657 5658 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5659 Stream.init(&*StreamFile); 5660 5661 return std::error_code(); 5662 } 5663 5664 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5665 std::unique_ptr<DataStreamer> Streamer) { 5666 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5667 // see it. 5668 auto OwnedBytes = 5669 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5670 StreamingMemoryObject &Bytes = *OwnedBytes; 5671 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5672 Stream.init(&*StreamFile); 5673 5674 unsigned char buf[16]; 5675 if (Bytes.readBytes(buf, 16, 0) != 16) 5676 return error("Invalid bitcode signature"); 5677 5678 if (!isBitcode(buf, buf + 16)) 5679 return error("Invalid bitcode signature"); 5680 5681 if (isBitcodeWrapper(buf, buf + 4)) { 5682 const unsigned char *bitcodeStart = buf; 5683 const unsigned char *bitcodeEnd = buf + 16; 5684 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5685 Bytes.dropLeadingBytes(bitcodeStart - buf); 5686 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5687 } 5688 return std::error_code(); 5689 } 5690 5691 namespace { 5692 class BitcodeErrorCategoryType : public std::error_category { 5693 const char *name() const LLVM_NOEXCEPT override { 5694 return "llvm.bitcode"; 5695 } 5696 std::string message(int IE) const override { 5697 BitcodeError E = static_cast<BitcodeError>(IE); 5698 switch (E) { 5699 case BitcodeError::InvalidBitcodeSignature: 5700 return "Invalid bitcode signature"; 5701 case BitcodeError::CorruptedBitcode: 5702 return "Corrupted bitcode"; 5703 } 5704 llvm_unreachable("Unknown error type!"); 5705 } 5706 }; 5707 } 5708 5709 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5710 5711 const std::error_category &llvm::BitcodeErrorCategory() { 5712 return *ErrorCategory; 5713 } 5714 5715 //===----------------------------------------------------------------------===// 5716 // External interface 5717 //===----------------------------------------------------------------------===// 5718 5719 static ErrorOr<std::unique_ptr<Module>> 5720 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5721 BitcodeReader *R, LLVMContext &Context, 5722 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5723 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5724 M->setMaterializer(R); 5725 5726 auto cleanupOnError = [&](std::error_code EC) { 5727 R->releaseBuffer(); // Never take ownership on error. 5728 return EC; 5729 }; 5730 5731 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5732 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5733 ShouldLazyLoadMetadata)) 5734 return cleanupOnError(EC); 5735 5736 if (MaterializeAll) { 5737 // Read in the entire module, and destroy the BitcodeReader. 5738 if (std::error_code EC = M->materializeAllPermanently()) 5739 return cleanupOnError(EC); 5740 } else { 5741 // Resolve forward references from blockaddresses. 5742 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5743 return cleanupOnError(EC); 5744 } 5745 return std::move(M); 5746 } 5747 5748 /// \brief Get a lazy one-at-time loading module from bitcode. 5749 /// 5750 /// This isn't always used in a lazy context. In particular, it's also used by 5751 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5752 /// in forward-referenced functions from block address references. 5753 /// 5754 /// \param[in] MaterializeAll Set to \c true if we should materialize 5755 /// everything. 5756 static ErrorOr<std::unique_ptr<Module>> 5757 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5758 LLVMContext &Context, bool MaterializeAll, 5759 DiagnosticHandlerFunction DiagnosticHandler, 5760 bool ShouldLazyLoadMetadata = false) { 5761 BitcodeReader *R = 5762 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5763 5764 ErrorOr<std::unique_ptr<Module>> Ret = 5765 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5766 MaterializeAll, ShouldLazyLoadMetadata); 5767 if (!Ret) 5768 return Ret; 5769 5770 Buffer.release(); // The BitcodeReader owns it now. 5771 return Ret; 5772 } 5773 5774 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5775 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5776 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5777 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5778 DiagnosticHandler, ShouldLazyLoadMetadata); 5779 } 5780 5781 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5782 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5783 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5784 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5785 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5786 5787 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5788 false); 5789 } 5790 5791 ErrorOr<std::unique_ptr<Module>> 5792 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5793 DiagnosticHandlerFunction DiagnosticHandler) { 5794 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5795 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5796 DiagnosticHandler); 5797 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5798 // written. We must defer until the Module has been fully materialized. 5799 } 5800 5801 std::string 5802 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5803 DiagnosticHandlerFunction DiagnosticHandler) { 5804 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5805 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5806 DiagnosticHandler); 5807 ErrorOr<std::string> Triple = R->parseTriple(); 5808 if (Triple.getError()) 5809 return ""; 5810 return Triple.get(); 5811 } 5812 5813 // Parse the specified bitcode buffer, returning the function info index. 5814 // If IsLazy is false, parse the entire function summary into 5815 // the index. Otherwise skip the function summary section, and only create 5816 // an index object with a map from function name to function summary offset. 5817 // The index is used to perform lazy function summary reading later. 5818 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5819 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, LLVMContext &Context, 5820 DiagnosticHandlerFunction DiagnosticHandler, 5821 const Module *ExportingModule, bool IsLazy) { 5822 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5823 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy); 5824 5825 std::unique_ptr<FunctionInfoIndex> Index = 5826 llvm::make_unique<FunctionInfoIndex>(ExportingModule); 5827 5828 auto cleanupOnError = [&](std::error_code EC) { 5829 R.releaseBuffer(); // Never take ownership on error. 5830 return EC; 5831 }; 5832 5833 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5834 return cleanupOnError(EC); 5835 5836 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5837 return std::move(Index); 5838 } 5839 5840 // Check if the given bitcode buffer contains a function summary block. 5841 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5842 DiagnosticHandlerFunction DiagnosticHandler) { 5843 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5844 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false, 5845 true); 5846 5847 auto cleanupOnError = [&](std::error_code EC) { 5848 R.releaseBuffer(); // Never take ownership on error. 5849 return false; 5850 }; 5851 5852 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5853 return cleanupOnError(EC); 5854 5855 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5856 return R.foundFuncSummary(); 5857 } 5858 5859 // This method supports lazy reading of function summary data from the combined 5860 // index during ThinLTO function importing. When reading the combined index 5861 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5862 // Then this method is called for each function considered for importing, 5863 // to parse the summary information for the given function name into 5864 // the index. 5865 std::error_code 5866 llvm::readFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5867 DiagnosticHandlerFunction DiagnosticHandler, 5868 StringRef FunctionName, 5869 std::unique_ptr<FunctionInfoIndex> Index) { 5870 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5871 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler); 5872 5873 auto cleanupOnError = [&](std::error_code EC) { 5874 R.releaseBuffer(); // Never take ownership on error. 5875 return EC; 5876 }; 5877 5878 // Lookup the given function name in the FunctionMap, which may 5879 // contain a list of function infos in the case of a COMDAT. Walk through 5880 // and parse each function summary info at the function summary offset 5881 // recorded when parsing the value symbol table. 5882 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5883 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5884 if (std::error_code EC = 5885 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5886 return cleanupOnError(EC); 5887 } 5888 5889 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5890 return std::error_code(); 5891 } 5892