1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "llvm/ADT/APFloat.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitstreamReader.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 Error error(const Twine &Message) { 232 return make_error<StringError>( 233 Message, make_error_code(BitcodeError::CorruptedBitcode)); 234 } 235 236 /// Helper to read the header common to all bitcode files. 237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 238 // Sniff for the signature. 239 if (!Stream.canSkipToPos(4) || 240 Stream.Read(8) != 'B' || 241 Stream.Read(8) != 'C' || 242 Stream.Read(4) != 0x0 || 243 Stream.Read(4) != 0xC || 244 Stream.Read(4) != 0xE || 245 Stream.Read(4) != 0xD) 246 return false; 247 return true; 248 } 249 250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 251 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 252 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 253 254 if (Buffer.getBufferSize() & 3) 255 return error("Invalid bitcode signature"); 256 257 // If we have a wrapper header, parse it and ignore the non-bc file contents. 258 // The magic number is 0x0B17C0DE stored in little endian. 259 if (isBitcodeWrapper(BufPtr, BufEnd)) 260 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 261 return error("Invalid bitcode wrapper header"); 262 263 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 264 if (!hasValidBitcodeHeader(Stream)) 265 return error("Invalid bitcode signature"); 266 267 return std::move(Stream); 268 } 269 270 /// Convert a string from a record into an std::string, return true on failure. 271 template <typename StrTy> 272 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 273 StrTy &Result) { 274 if (Idx > Record.size()) 275 return true; 276 277 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 278 Result += (char)Record[i]; 279 return false; 280 } 281 282 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 283 /// "epoch" encoded in the bitcode, and return the producer name if any. 284 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 285 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 286 return error("Invalid record"); 287 288 // Read all the records. 289 SmallVector<uint64_t, 64> Record; 290 291 std::string ProducerIdentification; 292 293 while (true) { 294 BitstreamEntry Entry = Stream.advance(); 295 296 switch (Entry.Kind) { 297 default: 298 case BitstreamEntry::Error: 299 return error("Malformed block"); 300 case BitstreamEntry::EndBlock: 301 return ProducerIdentification; 302 case BitstreamEntry::Record: 303 // The interesting case. 304 break; 305 } 306 307 // Read a record. 308 Record.clear(); 309 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 310 switch (BitCode) { 311 default: // Default behavior: reject 312 return error("Invalid value"); 313 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 314 convertToString(Record, 0, ProducerIdentification); 315 break; 316 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 317 unsigned epoch = (unsigned)Record[0]; 318 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 319 return error( 320 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 321 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 322 } 323 } 324 } 325 } 326 } 327 328 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 329 // We expect a number of well-defined blocks, though we don't necessarily 330 // need to understand them all. 331 while (true) { 332 if (Stream.AtEndOfStream()) 333 return ""; 334 335 BitstreamEntry Entry = Stream.advance(); 336 switch (Entry.Kind) { 337 case BitstreamEntry::EndBlock: 338 case BitstreamEntry::Error: 339 return error("Malformed block"); 340 341 case BitstreamEntry::SubBlock: 342 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 343 return readIdentificationBlock(Stream); 344 345 // Ignore other sub-blocks. 346 if (Stream.SkipBlock()) 347 return error("Malformed block"); 348 continue; 349 case BitstreamEntry::Record: 350 Stream.skipRecord(Entry.ID); 351 continue; 352 } 353 } 354 } 355 356 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 357 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 358 return error("Invalid record"); 359 360 SmallVector<uint64_t, 64> Record; 361 // Read all the records for this module. 362 363 while (true) { 364 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 365 366 switch (Entry.Kind) { 367 case BitstreamEntry::SubBlock: // Handled for us already. 368 case BitstreamEntry::Error: 369 return error("Malformed block"); 370 case BitstreamEntry::EndBlock: 371 return false; 372 case BitstreamEntry::Record: 373 // The interesting case. 374 break; 375 } 376 377 // Read a record. 378 switch (Stream.readRecord(Entry.ID, Record)) { 379 default: 380 break; // Default behavior, ignore unknown content. 381 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 382 std::string S; 383 if (convertToString(Record, 0, S)) 384 return error("Invalid record"); 385 // Check for the i386 and other (x86_64, ARM) conventions 386 if (S.find("__DATA, __objc_catlist") != std::string::npos || 387 S.find("__OBJC,__category") != std::string::npos) 388 return true; 389 break; 390 } 391 } 392 Record.clear(); 393 } 394 llvm_unreachable("Exit infinite loop"); 395 } 396 397 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 398 // We expect a number of well-defined blocks, though we don't necessarily 399 // need to understand them all. 400 while (true) { 401 BitstreamEntry Entry = Stream.advance(); 402 403 switch (Entry.Kind) { 404 case BitstreamEntry::Error: 405 return error("Malformed block"); 406 case BitstreamEntry::EndBlock: 407 return false; 408 409 case BitstreamEntry::SubBlock: 410 if (Entry.ID == bitc::MODULE_BLOCK_ID) 411 return hasObjCCategoryInModule(Stream); 412 413 // Ignore other sub-blocks. 414 if (Stream.SkipBlock()) 415 return error("Malformed block"); 416 continue; 417 418 case BitstreamEntry::Record: 419 Stream.skipRecord(Entry.ID); 420 continue; 421 } 422 } 423 } 424 425 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 426 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 427 return error("Invalid record"); 428 429 SmallVector<uint64_t, 64> Record; 430 431 std::string Triple; 432 433 // Read all the records for this module. 434 while (true) { 435 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 436 437 switch (Entry.Kind) { 438 case BitstreamEntry::SubBlock: // Handled for us already. 439 case BitstreamEntry::Error: 440 return error("Malformed block"); 441 case BitstreamEntry::EndBlock: 442 return Triple; 443 case BitstreamEntry::Record: 444 // The interesting case. 445 break; 446 } 447 448 // Read a record. 449 switch (Stream.readRecord(Entry.ID, Record)) { 450 default: break; // Default behavior, ignore unknown content. 451 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 452 std::string S; 453 if (convertToString(Record, 0, S)) 454 return error("Invalid record"); 455 Triple = S; 456 break; 457 } 458 } 459 Record.clear(); 460 } 461 llvm_unreachable("Exit infinite loop"); 462 } 463 464 Expected<std::string> readTriple(BitstreamCursor &Stream) { 465 // We expect a number of well-defined blocks, though we don't necessarily 466 // need to understand them all. 467 while (true) { 468 BitstreamEntry Entry = Stream.advance(); 469 470 switch (Entry.Kind) { 471 case BitstreamEntry::Error: 472 return error("Malformed block"); 473 case BitstreamEntry::EndBlock: 474 return ""; 475 476 case BitstreamEntry::SubBlock: 477 if (Entry.ID == bitc::MODULE_BLOCK_ID) 478 return readModuleTriple(Stream); 479 480 // Ignore other sub-blocks. 481 if (Stream.SkipBlock()) 482 return error("Malformed block"); 483 continue; 484 485 case BitstreamEntry::Record: 486 Stream.skipRecord(Entry.ID); 487 continue; 488 } 489 } 490 } 491 492 class BitcodeReaderBase { 493 protected: 494 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 495 this->Stream.setBlockInfo(&BlockInfo); 496 } 497 498 BitstreamBlockInfo BlockInfo; 499 BitstreamCursor Stream; 500 501 bool readBlockInfo(); 502 503 // Contains an arbitrary and optional string identifying the bitcode producer 504 std::string ProducerIdentification; 505 506 Error error(const Twine &Message); 507 }; 508 509 Error BitcodeReaderBase::error(const Twine &Message) { 510 std::string FullMsg = Message.str(); 511 if (!ProducerIdentification.empty()) 512 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 513 LLVM_VERSION_STRING "')"; 514 return ::error(FullMsg); 515 } 516 517 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 518 LLVMContext &Context; 519 Module *TheModule = nullptr; 520 // Next offset to start scanning for lazy parsing of function bodies. 521 uint64_t NextUnreadBit = 0; 522 // Last function offset found in the VST. 523 uint64_t LastFunctionBlockBit = 0; 524 bool SeenValueSymbolTable = false; 525 uint64_t VSTOffset = 0; 526 527 std::vector<Type*> TypeList; 528 BitcodeReaderValueList ValueList; 529 BitcodeReaderMetadataList MetadataList; 530 std::vector<Comdat *> ComdatList; 531 SmallVector<Instruction *, 64> InstructionList; 532 533 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 534 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 535 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 536 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 537 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 538 539 bool HasSeenOldLoopTags = false; 540 541 /// The set of attributes by index. Index zero in the file is for null, and 542 /// is thus not represented here. As such all indices are off by one. 543 std::vector<AttributeSet> MAttributes; 544 545 /// The set of attribute groups. 546 std::map<unsigned, AttributeSet> MAttributeGroups; 547 548 /// While parsing a function body, this is a list of the basic blocks for the 549 /// function. 550 std::vector<BasicBlock*> FunctionBBs; 551 552 // When reading the module header, this list is populated with functions that 553 // have bodies later in the file. 554 std::vector<Function*> FunctionsWithBodies; 555 556 // When intrinsic functions are encountered which require upgrading they are 557 // stored here with their replacement function. 558 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 559 UpdatedIntrinsicMap UpgradedIntrinsics; 560 // Intrinsics which were remangled because of types rename 561 UpdatedIntrinsicMap RemangledIntrinsics; 562 563 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 564 DenseMap<unsigned, unsigned> MDKindMap; 565 566 // Several operations happen after the module header has been read, but 567 // before function bodies are processed. This keeps track of whether 568 // we've done this yet. 569 bool SeenFirstFunctionBody = false; 570 571 /// When function bodies are initially scanned, this map contains info about 572 /// where to find deferred function body in the stream. 573 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 574 575 /// When Metadata block is initially scanned when parsing the module, we may 576 /// choose to defer parsing of the metadata. This vector contains info about 577 /// which Metadata blocks are deferred. 578 std::vector<uint64_t> DeferredMetadataInfo; 579 580 /// These are basic blocks forward-referenced by block addresses. They are 581 /// inserted lazily into functions when they're loaded. The basic block ID is 582 /// its index into the vector. 583 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 584 std::deque<Function *> BasicBlockFwdRefQueue; 585 586 /// Indicates that we are using a new encoding for instruction operands where 587 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 588 /// instruction number, for a more compact encoding. Some instruction 589 /// operands are not relative to the instruction ID: basic block numbers, and 590 /// types. Once the old style function blocks have been phased out, we would 591 /// not need this flag. 592 bool UseRelativeIDs = false; 593 594 /// True if all functions will be materialized, negating the need to process 595 /// (e.g.) blockaddress forward references. 596 bool WillMaterializeAllForwardRefs = false; 597 598 /// True if any Metadata block has been materialized. 599 bool IsMetadataMaterialized = false; 600 601 bool StripDebugInfo = false; 602 603 /// Functions that need to be matched with subprograms when upgrading old 604 /// metadata. 605 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 606 607 std::vector<std::string> BundleTags; 608 609 public: 610 BitcodeReader(BitstreamCursor Stream, LLVMContext &Context); 611 612 Error materializeForwardReferencedFunctions(); 613 614 Error materialize(GlobalValue *GV) override; 615 Error materializeModule() override; 616 std::vector<StructType *> getIdentifiedStructTypes() const override; 617 618 /// \brief Main interface to parsing a bitcode buffer. 619 /// \returns true if an error occurred. 620 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false); 621 622 static uint64_t decodeSignRotatedValue(uint64_t V); 623 624 /// Materialize any deferred Metadata block. 625 Error materializeMetadata() override; 626 627 void setStripDebugInfo() override; 628 629 private: 630 std::vector<StructType *> IdentifiedStructTypes; 631 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 632 StructType *createIdentifiedStructType(LLVMContext &Context); 633 634 Type *getTypeByID(unsigned ID); 635 636 Value *getFnValueByID(unsigned ID, Type *Ty) { 637 if (Ty && Ty->isMetadataTy()) 638 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 639 return ValueList.getValueFwdRef(ID, Ty); 640 } 641 642 Metadata *getFnMetadataByID(unsigned ID) { 643 return MetadataList.getMetadataFwdRef(ID); 644 } 645 646 BasicBlock *getBasicBlock(unsigned ID) const { 647 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 648 return FunctionBBs[ID]; 649 } 650 651 AttributeSet getAttributes(unsigned i) const { 652 if (i-1 < MAttributes.size()) 653 return MAttributes[i-1]; 654 return AttributeSet(); 655 } 656 657 /// Read a value/type pair out of the specified record from slot 'Slot'. 658 /// Increment Slot past the number of slots used in the record. Return true on 659 /// failure. 660 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 661 unsigned InstNum, Value *&ResVal) { 662 if (Slot == Record.size()) return true; 663 unsigned ValNo = (unsigned)Record[Slot++]; 664 // Adjust the ValNo, if it was encoded relative to the InstNum. 665 if (UseRelativeIDs) 666 ValNo = InstNum - ValNo; 667 if (ValNo < InstNum) { 668 // If this is not a forward reference, just return the value we already 669 // have. 670 ResVal = getFnValueByID(ValNo, nullptr); 671 return ResVal == nullptr; 672 } 673 if (Slot == Record.size()) 674 return true; 675 676 unsigned TypeNo = (unsigned)Record[Slot++]; 677 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 678 return ResVal == nullptr; 679 } 680 681 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 682 /// past the number of slots used by the value in the record. Return true if 683 /// there is an error. 684 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 685 unsigned InstNum, Type *Ty, Value *&ResVal) { 686 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 687 return true; 688 // All values currently take a single record slot. 689 ++Slot; 690 return false; 691 } 692 693 /// Like popValue, but does not increment the Slot number. 694 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 695 unsigned InstNum, Type *Ty, Value *&ResVal) { 696 ResVal = getValue(Record, Slot, InstNum, Ty); 697 return ResVal == nullptr; 698 } 699 700 /// Version of getValue that returns ResVal directly, or 0 if there is an 701 /// error. 702 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 703 unsigned InstNum, Type *Ty) { 704 if (Slot == Record.size()) return nullptr; 705 unsigned ValNo = (unsigned)Record[Slot]; 706 // Adjust the ValNo, if it was encoded relative to the InstNum. 707 if (UseRelativeIDs) 708 ValNo = InstNum - ValNo; 709 return getFnValueByID(ValNo, Ty); 710 } 711 712 /// Like getValue, but decodes signed VBRs. 713 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 714 unsigned InstNum, Type *Ty) { 715 if (Slot == Record.size()) return nullptr; 716 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 717 // Adjust the ValNo, if it was encoded relative to the InstNum. 718 if (UseRelativeIDs) 719 ValNo = InstNum - ValNo; 720 return getFnValueByID(ValNo, Ty); 721 } 722 723 /// Converts alignment exponent (i.e. power of two (or zero)) to the 724 /// corresponding alignment to use. If alignment is too large, returns 725 /// a corresponding error code. 726 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 727 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 728 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 729 Error parseAttributeBlock(); 730 Error parseAttributeGroupBlock(); 731 Error parseTypeTable(); 732 Error parseTypeTableBody(); 733 Error parseOperandBundleTags(); 734 735 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 736 unsigned NameIndex, Triple &TT); 737 Error parseValueSymbolTable(uint64_t Offset = 0); 738 Error parseConstants(); 739 Error rememberAndSkipFunctionBodies(); 740 Error rememberAndSkipFunctionBody(); 741 /// Save the positions of the Metadata blocks and skip parsing the blocks. 742 Error rememberAndSkipMetadata(); 743 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 744 Error parseFunctionBody(Function *F); 745 Error globalCleanup(); 746 Error resolveGlobalAndIndirectSymbolInits(); 747 Error parseMetadata(bool ModuleLevel = false); 748 Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob, 749 unsigned &NextMetadataNo); 750 Error parseMetadataKinds(); 751 Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 752 Error parseGlobalObjectAttachment(GlobalObject &GO, 753 ArrayRef<uint64_t> Record); 754 Error parseMetadataAttachment(Function &F); 755 Error parseUseLists(); 756 Error findFunctionInStream( 757 Function *F, 758 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 759 }; 760 761 /// Class to manage reading and parsing function summary index bitcode 762 /// files/sections. 763 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 764 /// Eventually points to the module index built during parsing. 765 ModuleSummaryIndex *TheIndex = nullptr; 766 767 /// Used to indicate whether caller only wants to check for the presence 768 /// of the global value summary bitcode section. All blocks are skipped, 769 /// but the SeenGlobalValSummary boolean is set. 770 bool CheckGlobalValSummaryPresenceOnly = false; 771 772 /// Indicates whether we have encountered a global value summary section 773 /// yet during parsing, used when checking if file contains global value 774 /// summary section. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to GUID association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the GUID instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a second GUID which is the same as the first one, but ignoring the 790 // linkage, i.e. for value other than local linkage they are identical. 791 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 792 ValueIdToCallGraphGUIDMap; 793 794 /// Map populated during module path string table parsing, from the 795 /// module ID to a string reference owned by the index's module 796 /// path string table, used to correlate with combined index 797 /// summary records. 798 DenseMap<uint64_t, StringRef> ModuleIdMap; 799 800 /// Original source file name recorded in a bitcode record. 801 std::string SourceFileName; 802 803 public: 804 ModuleSummaryIndexBitcodeReader( 805 BitstreamCursor Stream, bool CheckGlobalValSummaryPresenceOnly = false); 806 807 /// Check if the parser has encountered a summary section. 808 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 809 810 /// \brief Main interface to parsing a bitcode buffer. 811 /// \returns true if an error occurred. 812 Error parseSummaryIndexInto(ModuleSummaryIndex *I, StringRef ModulePath); 813 814 private: 815 Error parseModule(StringRef ModulePath); 816 Error parseValueSymbolTable( 817 uint64_t Offset, 818 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 819 Error parseEntireSummary(StringRef ModulePath); 820 Error parseModuleStringTable(); 821 std::pair<GlobalValue::GUID, GlobalValue::GUID> 822 823 getGUIDFromValueId(unsigned ValueId); 824 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 825 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 826 bool IsOldProfileFormat, bool HasProfile); 827 }; 828 829 } // end anonymous namespace 830 831 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 832 Error Err) { 833 if (Err) { 834 std::error_code EC; 835 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 836 EC = EIB.convertToErrorCode(); 837 Ctx.emitError(EIB.message()); 838 }); 839 return EC; 840 } 841 return std::error_code(); 842 } 843 844 BitcodeReader::BitcodeReader(BitstreamCursor Stream, LLVMContext &Context) 845 : BitcodeReaderBase(std::move(Stream)), Context(Context), ValueList(Context), 846 MetadataList(Context) {} 847 848 Error BitcodeReader::materializeForwardReferencedFunctions() { 849 if (WillMaterializeAllForwardRefs) 850 return Error::success(); 851 852 // Prevent recursion. 853 WillMaterializeAllForwardRefs = true; 854 855 while (!BasicBlockFwdRefQueue.empty()) { 856 Function *F = BasicBlockFwdRefQueue.front(); 857 BasicBlockFwdRefQueue.pop_front(); 858 assert(F && "Expected valid function"); 859 if (!BasicBlockFwdRefs.count(F)) 860 // Already materialized. 861 continue; 862 863 // Check for a function that isn't materializable to prevent an infinite 864 // loop. When parsing a blockaddress stored in a global variable, there 865 // isn't a trivial way to check if a function will have a body without a 866 // linear search through FunctionsWithBodies, so just check it here. 867 if (!F->isMaterializable()) 868 return error("Never resolved function from blockaddress"); 869 870 // Try to materialize F. 871 if (Error Err = materialize(F)) 872 return Err; 873 } 874 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 875 876 // Reset state. 877 WillMaterializeAllForwardRefs = false; 878 return Error::success(); 879 } 880 881 //===----------------------------------------------------------------------===// 882 // Helper functions to implement forward reference resolution, etc. 883 //===----------------------------------------------------------------------===// 884 885 static bool hasImplicitComdat(size_t Val) { 886 switch (Val) { 887 default: 888 return false; 889 case 1: // Old WeakAnyLinkage 890 case 4: // Old LinkOnceAnyLinkage 891 case 10: // Old WeakODRLinkage 892 case 11: // Old LinkOnceODRLinkage 893 return true; 894 } 895 } 896 897 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 898 switch (Val) { 899 default: // Map unknown/new linkages to external 900 case 0: 901 return GlobalValue::ExternalLinkage; 902 case 2: 903 return GlobalValue::AppendingLinkage; 904 case 3: 905 return GlobalValue::InternalLinkage; 906 case 5: 907 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 908 case 6: 909 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 910 case 7: 911 return GlobalValue::ExternalWeakLinkage; 912 case 8: 913 return GlobalValue::CommonLinkage; 914 case 9: 915 return GlobalValue::PrivateLinkage; 916 case 12: 917 return GlobalValue::AvailableExternallyLinkage; 918 case 13: 919 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 920 case 14: 921 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 922 case 15: 923 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 924 case 1: // Old value with implicit comdat. 925 case 16: 926 return GlobalValue::WeakAnyLinkage; 927 case 10: // Old value with implicit comdat. 928 case 17: 929 return GlobalValue::WeakODRLinkage; 930 case 4: // Old value with implicit comdat. 931 case 18: 932 return GlobalValue::LinkOnceAnyLinkage; 933 case 11: // Old value with implicit comdat. 934 case 19: 935 return GlobalValue::LinkOnceODRLinkage; 936 } 937 } 938 939 /// Decode the flags for GlobalValue in the summary. 940 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 941 uint64_t Version) { 942 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 943 // like getDecodedLinkage() above. Any future change to the linkage enum and 944 // to getDecodedLinkage() will need to be taken into account here as above. 945 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 946 RawFlags = RawFlags >> 4; 947 bool NoRename = RawFlags & 0x1; 948 bool IsNotViableToInline = RawFlags & 0x2; 949 return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline); 950 } 951 952 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 953 switch (Val) { 954 default: // Map unknown visibilities to default. 955 case 0: return GlobalValue::DefaultVisibility; 956 case 1: return GlobalValue::HiddenVisibility; 957 case 2: return GlobalValue::ProtectedVisibility; 958 } 959 } 960 961 static GlobalValue::DLLStorageClassTypes 962 getDecodedDLLStorageClass(unsigned Val) { 963 switch (Val) { 964 default: // Map unknown values to default. 965 case 0: return GlobalValue::DefaultStorageClass; 966 case 1: return GlobalValue::DLLImportStorageClass; 967 case 2: return GlobalValue::DLLExportStorageClass; 968 } 969 } 970 971 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 972 switch (Val) { 973 case 0: return GlobalVariable::NotThreadLocal; 974 default: // Map unknown non-zero value to general dynamic. 975 case 1: return GlobalVariable::GeneralDynamicTLSModel; 976 case 2: return GlobalVariable::LocalDynamicTLSModel; 977 case 3: return GlobalVariable::InitialExecTLSModel; 978 case 4: return GlobalVariable::LocalExecTLSModel; 979 } 980 } 981 982 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown to UnnamedAddr::None. 985 case 0: return GlobalVariable::UnnamedAddr::None; 986 case 1: return GlobalVariable::UnnamedAddr::Global; 987 case 2: return GlobalVariable::UnnamedAddr::Local; 988 } 989 } 990 991 static int getDecodedCastOpcode(unsigned Val) { 992 switch (Val) { 993 default: return -1; 994 case bitc::CAST_TRUNC : return Instruction::Trunc; 995 case bitc::CAST_ZEXT : return Instruction::ZExt; 996 case bitc::CAST_SEXT : return Instruction::SExt; 997 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 998 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 999 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1000 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1001 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1002 case bitc::CAST_FPEXT : return Instruction::FPExt; 1003 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1004 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1005 case bitc::CAST_BITCAST : return Instruction::BitCast; 1006 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1007 } 1008 } 1009 1010 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1011 bool IsFP = Ty->isFPOrFPVectorTy(); 1012 // BinOps are only valid for int/fp or vector of int/fp types 1013 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1014 return -1; 1015 1016 switch (Val) { 1017 default: 1018 return -1; 1019 case bitc::BINOP_ADD: 1020 return IsFP ? Instruction::FAdd : Instruction::Add; 1021 case bitc::BINOP_SUB: 1022 return IsFP ? Instruction::FSub : Instruction::Sub; 1023 case bitc::BINOP_MUL: 1024 return IsFP ? Instruction::FMul : Instruction::Mul; 1025 case bitc::BINOP_UDIV: 1026 return IsFP ? -1 : Instruction::UDiv; 1027 case bitc::BINOP_SDIV: 1028 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1029 case bitc::BINOP_UREM: 1030 return IsFP ? -1 : Instruction::URem; 1031 case bitc::BINOP_SREM: 1032 return IsFP ? Instruction::FRem : Instruction::SRem; 1033 case bitc::BINOP_SHL: 1034 return IsFP ? -1 : Instruction::Shl; 1035 case bitc::BINOP_LSHR: 1036 return IsFP ? -1 : Instruction::LShr; 1037 case bitc::BINOP_ASHR: 1038 return IsFP ? -1 : Instruction::AShr; 1039 case bitc::BINOP_AND: 1040 return IsFP ? -1 : Instruction::And; 1041 case bitc::BINOP_OR: 1042 return IsFP ? -1 : Instruction::Or; 1043 case bitc::BINOP_XOR: 1044 return IsFP ? -1 : Instruction::Xor; 1045 } 1046 } 1047 1048 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1049 switch (Val) { 1050 default: return AtomicRMWInst::BAD_BINOP; 1051 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1052 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1053 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1054 case bitc::RMW_AND: return AtomicRMWInst::And; 1055 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1056 case bitc::RMW_OR: return AtomicRMWInst::Or; 1057 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1058 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1059 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1060 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1061 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1062 } 1063 } 1064 1065 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1066 switch (Val) { 1067 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1068 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1069 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1070 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1071 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1072 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1073 default: // Map unknown orderings to sequentially-consistent. 1074 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1075 } 1076 } 1077 1078 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 1079 switch (Val) { 1080 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 1081 default: // Map unknown scopes to cross-thread. 1082 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1083 } 1084 } 1085 1086 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1087 switch (Val) { 1088 default: // Map unknown selection kinds to any. 1089 case bitc::COMDAT_SELECTION_KIND_ANY: 1090 return Comdat::Any; 1091 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1092 return Comdat::ExactMatch; 1093 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1094 return Comdat::Largest; 1095 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1096 return Comdat::NoDuplicates; 1097 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1098 return Comdat::SameSize; 1099 } 1100 } 1101 1102 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1103 FastMathFlags FMF; 1104 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1105 FMF.setUnsafeAlgebra(); 1106 if (0 != (Val & FastMathFlags::NoNaNs)) 1107 FMF.setNoNaNs(); 1108 if (0 != (Val & FastMathFlags::NoInfs)) 1109 FMF.setNoInfs(); 1110 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1111 FMF.setNoSignedZeros(); 1112 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1113 FMF.setAllowReciprocal(); 1114 return FMF; 1115 } 1116 1117 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1118 switch (Val) { 1119 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1120 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1121 } 1122 } 1123 1124 namespace llvm { 1125 namespace { 1126 1127 /// \brief A class for maintaining the slot number definition 1128 /// as a placeholder for the actual definition for forward constants defs. 1129 class ConstantPlaceHolder : public ConstantExpr { 1130 void operator=(const ConstantPlaceHolder &) = delete; 1131 1132 public: 1133 // allocate space for exactly one operand 1134 void *operator new(size_t s) { return User::operator new(s, 1); } 1135 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 1136 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 1137 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 1138 } 1139 1140 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 1141 static bool classof(const Value *V) { 1142 return isa<ConstantExpr>(V) && 1143 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 1144 } 1145 1146 /// Provide fast operand accessors 1147 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1148 }; 1149 1150 } // end anonymous namespace 1151 1152 // FIXME: can we inherit this from ConstantExpr? 1153 template <> 1154 struct OperandTraits<ConstantPlaceHolder> : 1155 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 1156 }; 1157 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 1158 1159 } // end namespace llvm 1160 1161 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 1162 if (Idx == size()) { 1163 push_back(V); 1164 return; 1165 } 1166 1167 if (Idx >= size()) 1168 resize(Idx+1); 1169 1170 WeakVH &OldV = ValuePtrs[Idx]; 1171 if (!OldV) { 1172 OldV = V; 1173 return; 1174 } 1175 1176 // Handle constants and non-constants (e.g. instrs) differently for 1177 // efficiency. 1178 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1179 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1180 OldV = V; 1181 } else { 1182 // If there was a forward reference to this value, replace it. 1183 Value *PrevVal = OldV; 1184 OldV->replaceAllUsesWith(V); 1185 delete PrevVal; 1186 } 1187 } 1188 1189 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1190 Type *Ty) { 1191 if (Idx >= size()) 1192 resize(Idx + 1); 1193 1194 if (Value *V = ValuePtrs[Idx]) { 1195 if (Ty != V->getType()) 1196 report_fatal_error("Type mismatch in constant table!"); 1197 return cast<Constant>(V); 1198 } 1199 1200 // Create and return a placeholder, which will later be RAUW'd. 1201 Constant *C = new ConstantPlaceHolder(Ty, Context); 1202 ValuePtrs[Idx] = C; 1203 return C; 1204 } 1205 1206 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1207 // Bail out for a clearly invalid value. This would make us call resize(0) 1208 if (Idx == std::numeric_limits<unsigned>::max()) 1209 return nullptr; 1210 1211 if (Idx >= size()) 1212 resize(Idx + 1); 1213 1214 if (Value *V = ValuePtrs[Idx]) { 1215 // If the types don't match, it's invalid. 1216 if (Ty && Ty != V->getType()) 1217 return nullptr; 1218 return V; 1219 } 1220 1221 // No type specified, must be invalid reference. 1222 if (!Ty) return nullptr; 1223 1224 // Create and return a placeholder, which will later be RAUW'd. 1225 Value *V = new Argument(Ty); 1226 ValuePtrs[Idx] = V; 1227 return V; 1228 } 1229 1230 /// Once all constants are read, this method bulk resolves any forward 1231 /// references. The idea behind this is that we sometimes get constants (such 1232 /// as large arrays) which reference *many* forward ref constants. Replacing 1233 /// each of these causes a lot of thrashing when building/reuniquing the 1234 /// constant. Instead of doing this, we look at all the uses and rewrite all 1235 /// the place holders at once for any constant that uses a placeholder. 1236 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1237 // Sort the values by-pointer so that they are efficient to look up with a 1238 // binary search. 1239 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1240 1241 SmallVector<Constant*, 64> NewOps; 1242 1243 while (!ResolveConstants.empty()) { 1244 Value *RealVal = operator[](ResolveConstants.back().second); 1245 Constant *Placeholder = ResolveConstants.back().first; 1246 ResolveConstants.pop_back(); 1247 1248 // Loop over all users of the placeholder, updating them to reference the 1249 // new value. If they reference more than one placeholder, update them all 1250 // at once. 1251 while (!Placeholder->use_empty()) { 1252 auto UI = Placeholder->user_begin(); 1253 User *U = *UI; 1254 1255 // If the using object isn't uniqued, just update the operands. This 1256 // handles instructions and initializers for global variables. 1257 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1258 UI.getUse().set(RealVal); 1259 continue; 1260 } 1261 1262 // Otherwise, we have a constant that uses the placeholder. Replace that 1263 // constant with a new constant that has *all* placeholder uses updated. 1264 Constant *UserC = cast<Constant>(U); 1265 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1266 I != E; ++I) { 1267 Value *NewOp; 1268 if (!isa<ConstantPlaceHolder>(*I)) { 1269 // Not a placeholder reference. 1270 NewOp = *I; 1271 } else if (*I == Placeholder) { 1272 // Common case is that it just references this one placeholder. 1273 NewOp = RealVal; 1274 } else { 1275 // Otherwise, look up the placeholder in ResolveConstants. 1276 ResolveConstantsTy::iterator It = 1277 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1278 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1279 0)); 1280 assert(It != ResolveConstants.end() && It->first == *I); 1281 NewOp = operator[](It->second); 1282 } 1283 1284 NewOps.push_back(cast<Constant>(NewOp)); 1285 } 1286 1287 // Make the new constant. 1288 Constant *NewC; 1289 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1290 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1291 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1292 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1293 } else if (isa<ConstantVector>(UserC)) { 1294 NewC = ConstantVector::get(NewOps); 1295 } else { 1296 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1297 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1298 } 1299 1300 UserC->replaceAllUsesWith(NewC); 1301 UserC->destroyConstant(); 1302 NewOps.clear(); 1303 } 1304 1305 // Update all ValueHandles, they should be the only users at this point. 1306 Placeholder->replaceAllUsesWith(RealVal); 1307 delete Placeholder; 1308 } 1309 } 1310 1311 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1312 if (Idx == size()) { 1313 push_back(MD); 1314 return; 1315 } 1316 1317 if (Idx >= size()) 1318 resize(Idx+1); 1319 1320 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1321 if (!OldMD) { 1322 OldMD.reset(MD); 1323 return; 1324 } 1325 1326 // If there was a forward reference to this value, replace it. 1327 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1328 PrevMD->replaceAllUsesWith(MD); 1329 --NumFwdRefs; 1330 } 1331 1332 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1333 if (Idx >= size()) 1334 resize(Idx + 1); 1335 1336 if (Metadata *MD = MetadataPtrs[Idx]) 1337 return MD; 1338 1339 // Track forward refs to be resolved later. 1340 if (AnyFwdRefs) { 1341 MinFwdRef = std::min(MinFwdRef, Idx); 1342 MaxFwdRef = std::max(MaxFwdRef, Idx); 1343 } else { 1344 AnyFwdRefs = true; 1345 MinFwdRef = MaxFwdRef = Idx; 1346 } 1347 ++NumFwdRefs; 1348 1349 // Create and return a placeholder, which will later be RAUW'd. 1350 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1351 MetadataPtrs[Idx].reset(MD); 1352 return MD; 1353 } 1354 1355 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1356 Metadata *MD = lookup(Idx); 1357 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1358 if (!N->isResolved()) 1359 return nullptr; 1360 return MD; 1361 } 1362 1363 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1364 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1365 } 1366 1367 void BitcodeReaderMetadataList::tryToResolveCycles() { 1368 if (NumFwdRefs) 1369 // Still forward references... can't resolve cycles. 1370 return; 1371 1372 bool DidReplaceTypeRefs = false; 1373 1374 // Give up on finding a full definition for any forward decls that remain. 1375 for (const auto &Ref : OldTypeRefs.FwdDecls) 1376 OldTypeRefs.Final.insert(Ref); 1377 OldTypeRefs.FwdDecls.clear(); 1378 1379 // Upgrade from old type ref arrays. In strange cases, this could add to 1380 // OldTypeRefs.Unknown. 1381 for (const auto &Array : OldTypeRefs.Arrays) { 1382 DidReplaceTypeRefs = true; 1383 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1384 } 1385 OldTypeRefs.Arrays.clear(); 1386 1387 // Replace old string-based type refs with the resolved node, if possible. 1388 // If we haven't seen the node, leave it to the verifier to complain about 1389 // the invalid string reference. 1390 for (const auto &Ref : OldTypeRefs.Unknown) { 1391 DidReplaceTypeRefs = true; 1392 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1393 Ref.second->replaceAllUsesWith(CT); 1394 else 1395 Ref.second->replaceAllUsesWith(Ref.first); 1396 } 1397 OldTypeRefs.Unknown.clear(); 1398 1399 // Make sure all the upgraded types are resolved. 1400 if (DidReplaceTypeRefs) { 1401 AnyFwdRefs = true; 1402 MinFwdRef = 0; 1403 MaxFwdRef = MetadataPtrs.size() - 1; 1404 } 1405 1406 if (!AnyFwdRefs) 1407 // Nothing to do. 1408 return; 1409 1410 // Resolve any cycles. 1411 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1412 auto &MD = MetadataPtrs[I]; 1413 auto *N = dyn_cast_or_null<MDNode>(MD); 1414 if (!N) 1415 continue; 1416 1417 assert(!N->isTemporary() && "Unexpected forward reference"); 1418 N->resolveCycles(); 1419 } 1420 1421 // Make sure we return early again until there's another forward ref. 1422 AnyFwdRefs = false; 1423 } 1424 1425 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1426 DICompositeType &CT) { 1427 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1428 if (CT.isForwardDecl()) 1429 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1430 else 1431 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1432 } 1433 1434 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1435 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1436 if (LLVM_LIKELY(!UUID)) 1437 return MaybeUUID; 1438 1439 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1440 return CT; 1441 1442 auto &Ref = OldTypeRefs.Unknown[UUID]; 1443 if (!Ref) 1444 Ref = MDNode::getTemporary(Context, None); 1445 return Ref.get(); 1446 } 1447 1448 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1449 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1450 if (!Tuple || Tuple->isDistinct()) 1451 return MaybeTuple; 1452 1453 // Look through the array immediately if possible. 1454 if (!Tuple->isTemporary()) 1455 return resolveTypeRefArray(Tuple); 1456 1457 // Create and return a placeholder to use for now. Eventually 1458 // resolveTypeRefArrays() will be resolve this forward reference. 1459 OldTypeRefs.Arrays.emplace_back( 1460 std::piecewise_construct, std::forward_as_tuple(Tuple), 1461 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1462 return OldTypeRefs.Arrays.back().second.get(); 1463 } 1464 1465 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1466 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1467 if (!Tuple || Tuple->isDistinct()) 1468 return MaybeTuple; 1469 1470 // Look through the DITypeRefArray, upgrading each DITypeRef. 1471 SmallVector<Metadata *, 32> Ops; 1472 Ops.reserve(Tuple->getNumOperands()); 1473 for (Metadata *MD : Tuple->operands()) 1474 Ops.push_back(upgradeTypeRef(MD)); 1475 1476 return MDTuple::get(Context, Ops); 1477 } 1478 1479 Type *BitcodeReader::getTypeByID(unsigned ID) { 1480 // The type table size is always specified correctly. 1481 if (ID >= TypeList.size()) 1482 return nullptr; 1483 1484 if (Type *Ty = TypeList[ID]) 1485 return Ty; 1486 1487 // If we have a forward reference, the only possible case is when it is to a 1488 // named struct. Just create a placeholder for now. 1489 return TypeList[ID] = createIdentifiedStructType(Context); 1490 } 1491 1492 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1493 StringRef Name) { 1494 auto *Ret = StructType::create(Context, Name); 1495 IdentifiedStructTypes.push_back(Ret); 1496 return Ret; 1497 } 1498 1499 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1500 auto *Ret = StructType::create(Context); 1501 IdentifiedStructTypes.push_back(Ret); 1502 return Ret; 1503 } 1504 1505 //===----------------------------------------------------------------------===// 1506 // Functions for parsing blocks from the bitcode file 1507 //===----------------------------------------------------------------------===// 1508 1509 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1510 switch (Val) { 1511 case Attribute::EndAttrKinds: 1512 llvm_unreachable("Synthetic enumerators which should never get here"); 1513 1514 case Attribute::None: return 0; 1515 case Attribute::ZExt: return 1 << 0; 1516 case Attribute::SExt: return 1 << 1; 1517 case Attribute::NoReturn: return 1 << 2; 1518 case Attribute::InReg: return 1 << 3; 1519 case Attribute::StructRet: return 1 << 4; 1520 case Attribute::NoUnwind: return 1 << 5; 1521 case Attribute::NoAlias: return 1 << 6; 1522 case Attribute::ByVal: return 1 << 7; 1523 case Attribute::Nest: return 1 << 8; 1524 case Attribute::ReadNone: return 1 << 9; 1525 case Attribute::ReadOnly: return 1 << 10; 1526 case Attribute::NoInline: return 1 << 11; 1527 case Attribute::AlwaysInline: return 1 << 12; 1528 case Attribute::OptimizeForSize: return 1 << 13; 1529 case Attribute::StackProtect: return 1 << 14; 1530 case Attribute::StackProtectReq: return 1 << 15; 1531 case Attribute::Alignment: return 31 << 16; 1532 case Attribute::NoCapture: return 1 << 21; 1533 case Attribute::NoRedZone: return 1 << 22; 1534 case Attribute::NoImplicitFloat: return 1 << 23; 1535 case Attribute::Naked: return 1 << 24; 1536 case Attribute::InlineHint: return 1 << 25; 1537 case Attribute::StackAlignment: return 7 << 26; 1538 case Attribute::ReturnsTwice: return 1 << 29; 1539 case Attribute::UWTable: return 1 << 30; 1540 case Attribute::NonLazyBind: return 1U << 31; 1541 case Attribute::SanitizeAddress: return 1ULL << 32; 1542 case Attribute::MinSize: return 1ULL << 33; 1543 case Attribute::NoDuplicate: return 1ULL << 34; 1544 case Attribute::StackProtectStrong: return 1ULL << 35; 1545 case Attribute::SanitizeThread: return 1ULL << 36; 1546 case Attribute::SanitizeMemory: return 1ULL << 37; 1547 case Attribute::NoBuiltin: return 1ULL << 38; 1548 case Attribute::Returned: return 1ULL << 39; 1549 case Attribute::Cold: return 1ULL << 40; 1550 case Attribute::Builtin: return 1ULL << 41; 1551 case Attribute::OptimizeNone: return 1ULL << 42; 1552 case Attribute::InAlloca: return 1ULL << 43; 1553 case Attribute::NonNull: return 1ULL << 44; 1554 case Attribute::JumpTable: return 1ULL << 45; 1555 case Attribute::Convergent: return 1ULL << 46; 1556 case Attribute::SafeStack: return 1ULL << 47; 1557 case Attribute::NoRecurse: return 1ULL << 48; 1558 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1559 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1560 case Attribute::SwiftSelf: return 1ULL << 51; 1561 case Attribute::SwiftError: return 1ULL << 52; 1562 case Attribute::WriteOnly: return 1ULL << 53; 1563 case Attribute::Dereferenceable: 1564 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1565 break; 1566 case Attribute::DereferenceableOrNull: 1567 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1568 "format"); 1569 break; 1570 case Attribute::ArgMemOnly: 1571 llvm_unreachable("argmemonly attribute not supported in raw format"); 1572 break; 1573 case Attribute::AllocSize: 1574 llvm_unreachable("allocsize not supported in raw format"); 1575 break; 1576 } 1577 llvm_unreachable("Unsupported attribute type"); 1578 } 1579 1580 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1581 if (!Val) return; 1582 1583 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1584 I = Attribute::AttrKind(I + 1)) { 1585 if (I == Attribute::Dereferenceable || 1586 I == Attribute::DereferenceableOrNull || 1587 I == Attribute::ArgMemOnly || 1588 I == Attribute::AllocSize) 1589 continue; 1590 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1591 if (I == Attribute::Alignment) 1592 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1593 else if (I == Attribute::StackAlignment) 1594 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1595 else 1596 B.addAttribute(I); 1597 } 1598 } 1599 } 1600 1601 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1602 /// been decoded from the given integer. This function must stay in sync with 1603 /// 'encodeLLVMAttributesForBitcode'. 1604 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1605 uint64_t EncodedAttrs) { 1606 // FIXME: Remove in 4.0. 1607 1608 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1609 // the bits above 31 down by 11 bits. 1610 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1611 assert((!Alignment || isPowerOf2_32(Alignment)) && 1612 "Alignment must be a power of two."); 1613 1614 if (Alignment) 1615 B.addAlignmentAttr(Alignment); 1616 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1617 (EncodedAttrs & 0xffff)); 1618 } 1619 1620 Error BitcodeReader::parseAttributeBlock() { 1621 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1622 return error("Invalid record"); 1623 1624 if (!MAttributes.empty()) 1625 return error("Invalid multiple blocks"); 1626 1627 SmallVector<uint64_t, 64> Record; 1628 1629 SmallVector<AttributeSet, 8> Attrs; 1630 1631 // Read all the records. 1632 while (true) { 1633 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1634 1635 switch (Entry.Kind) { 1636 case BitstreamEntry::SubBlock: // Handled for us already. 1637 case BitstreamEntry::Error: 1638 return error("Malformed block"); 1639 case BitstreamEntry::EndBlock: 1640 return Error::success(); 1641 case BitstreamEntry::Record: 1642 // The interesting case. 1643 break; 1644 } 1645 1646 // Read a record. 1647 Record.clear(); 1648 switch (Stream.readRecord(Entry.ID, Record)) { 1649 default: // Default behavior: ignore. 1650 break; 1651 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1652 // FIXME: Remove in 4.0. 1653 if (Record.size() & 1) 1654 return error("Invalid record"); 1655 1656 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1657 AttrBuilder B; 1658 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1659 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1660 } 1661 1662 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1663 Attrs.clear(); 1664 break; 1665 } 1666 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1667 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1668 Attrs.push_back(MAttributeGroups[Record[i]]); 1669 1670 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1671 Attrs.clear(); 1672 break; 1673 } 1674 } 1675 } 1676 } 1677 1678 // Returns Attribute::None on unrecognized codes. 1679 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1680 switch (Code) { 1681 default: 1682 return Attribute::None; 1683 case bitc::ATTR_KIND_ALIGNMENT: 1684 return Attribute::Alignment; 1685 case bitc::ATTR_KIND_ALWAYS_INLINE: 1686 return Attribute::AlwaysInline; 1687 case bitc::ATTR_KIND_ARGMEMONLY: 1688 return Attribute::ArgMemOnly; 1689 case bitc::ATTR_KIND_BUILTIN: 1690 return Attribute::Builtin; 1691 case bitc::ATTR_KIND_BY_VAL: 1692 return Attribute::ByVal; 1693 case bitc::ATTR_KIND_IN_ALLOCA: 1694 return Attribute::InAlloca; 1695 case bitc::ATTR_KIND_COLD: 1696 return Attribute::Cold; 1697 case bitc::ATTR_KIND_CONVERGENT: 1698 return Attribute::Convergent; 1699 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1700 return Attribute::InaccessibleMemOnly; 1701 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1702 return Attribute::InaccessibleMemOrArgMemOnly; 1703 case bitc::ATTR_KIND_INLINE_HINT: 1704 return Attribute::InlineHint; 1705 case bitc::ATTR_KIND_IN_REG: 1706 return Attribute::InReg; 1707 case bitc::ATTR_KIND_JUMP_TABLE: 1708 return Attribute::JumpTable; 1709 case bitc::ATTR_KIND_MIN_SIZE: 1710 return Attribute::MinSize; 1711 case bitc::ATTR_KIND_NAKED: 1712 return Attribute::Naked; 1713 case bitc::ATTR_KIND_NEST: 1714 return Attribute::Nest; 1715 case bitc::ATTR_KIND_NO_ALIAS: 1716 return Attribute::NoAlias; 1717 case bitc::ATTR_KIND_NO_BUILTIN: 1718 return Attribute::NoBuiltin; 1719 case bitc::ATTR_KIND_NO_CAPTURE: 1720 return Attribute::NoCapture; 1721 case bitc::ATTR_KIND_NO_DUPLICATE: 1722 return Attribute::NoDuplicate; 1723 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1724 return Attribute::NoImplicitFloat; 1725 case bitc::ATTR_KIND_NO_INLINE: 1726 return Attribute::NoInline; 1727 case bitc::ATTR_KIND_NO_RECURSE: 1728 return Attribute::NoRecurse; 1729 case bitc::ATTR_KIND_NON_LAZY_BIND: 1730 return Attribute::NonLazyBind; 1731 case bitc::ATTR_KIND_NON_NULL: 1732 return Attribute::NonNull; 1733 case bitc::ATTR_KIND_DEREFERENCEABLE: 1734 return Attribute::Dereferenceable; 1735 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1736 return Attribute::DereferenceableOrNull; 1737 case bitc::ATTR_KIND_ALLOC_SIZE: 1738 return Attribute::AllocSize; 1739 case bitc::ATTR_KIND_NO_RED_ZONE: 1740 return Attribute::NoRedZone; 1741 case bitc::ATTR_KIND_NO_RETURN: 1742 return Attribute::NoReturn; 1743 case bitc::ATTR_KIND_NO_UNWIND: 1744 return Attribute::NoUnwind; 1745 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1746 return Attribute::OptimizeForSize; 1747 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1748 return Attribute::OptimizeNone; 1749 case bitc::ATTR_KIND_READ_NONE: 1750 return Attribute::ReadNone; 1751 case bitc::ATTR_KIND_READ_ONLY: 1752 return Attribute::ReadOnly; 1753 case bitc::ATTR_KIND_RETURNED: 1754 return Attribute::Returned; 1755 case bitc::ATTR_KIND_RETURNS_TWICE: 1756 return Attribute::ReturnsTwice; 1757 case bitc::ATTR_KIND_S_EXT: 1758 return Attribute::SExt; 1759 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1760 return Attribute::StackAlignment; 1761 case bitc::ATTR_KIND_STACK_PROTECT: 1762 return Attribute::StackProtect; 1763 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1764 return Attribute::StackProtectReq; 1765 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1766 return Attribute::StackProtectStrong; 1767 case bitc::ATTR_KIND_SAFESTACK: 1768 return Attribute::SafeStack; 1769 case bitc::ATTR_KIND_STRUCT_RET: 1770 return Attribute::StructRet; 1771 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1772 return Attribute::SanitizeAddress; 1773 case bitc::ATTR_KIND_SANITIZE_THREAD: 1774 return Attribute::SanitizeThread; 1775 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1776 return Attribute::SanitizeMemory; 1777 case bitc::ATTR_KIND_SWIFT_ERROR: 1778 return Attribute::SwiftError; 1779 case bitc::ATTR_KIND_SWIFT_SELF: 1780 return Attribute::SwiftSelf; 1781 case bitc::ATTR_KIND_UW_TABLE: 1782 return Attribute::UWTable; 1783 case bitc::ATTR_KIND_WRITEONLY: 1784 return Attribute::WriteOnly; 1785 case bitc::ATTR_KIND_Z_EXT: 1786 return Attribute::ZExt; 1787 } 1788 } 1789 1790 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1791 unsigned &Alignment) { 1792 // Note: Alignment in bitcode files is incremented by 1, so that zero 1793 // can be used for default alignment. 1794 if (Exponent > Value::MaxAlignmentExponent + 1) 1795 return error("Invalid alignment value"); 1796 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1797 return Error::success(); 1798 } 1799 1800 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1801 *Kind = getAttrFromCode(Code); 1802 if (*Kind == Attribute::None) 1803 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1804 return Error::success(); 1805 } 1806 1807 Error BitcodeReader::parseAttributeGroupBlock() { 1808 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1809 return error("Invalid record"); 1810 1811 if (!MAttributeGroups.empty()) 1812 return error("Invalid multiple blocks"); 1813 1814 SmallVector<uint64_t, 64> Record; 1815 1816 // Read all the records. 1817 while (true) { 1818 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1819 1820 switch (Entry.Kind) { 1821 case BitstreamEntry::SubBlock: // Handled for us already. 1822 case BitstreamEntry::Error: 1823 return error("Malformed block"); 1824 case BitstreamEntry::EndBlock: 1825 return Error::success(); 1826 case BitstreamEntry::Record: 1827 // The interesting case. 1828 break; 1829 } 1830 1831 // Read a record. 1832 Record.clear(); 1833 switch (Stream.readRecord(Entry.ID, Record)) { 1834 default: // Default behavior: ignore. 1835 break; 1836 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1837 if (Record.size() < 3) 1838 return error("Invalid record"); 1839 1840 uint64_t GrpID = Record[0]; 1841 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1842 1843 AttrBuilder B; 1844 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1845 if (Record[i] == 0) { // Enum attribute 1846 Attribute::AttrKind Kind; 1847 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1848 return Err; 1849 1850 B.addAttribute(Kind); 1851 } else if (Record[i] == 1) { // Integer attribute 1852 Attribute::AttrKind Kind; 1853 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1854 return Err; 1855 if (Kind == Attribute::Alignment) 1856 B.addAlignmentAttr(Record[++i]); 1857 else if (Kind == Attribute::StackAlignment) 1858 B.addStackAlignmentAttr(Record[++i]); 1859 else if (Kind == Attribute::Dereferenceable) 1860 B.addDereferenceableAttr(Record[++i]); 1861 else if (Kind == Attribute::DereferenceableOrNull) 1862 B.addDereferenceableOrNullAttr(Record[++i]); 1863 else if (Kind == Attribute::AllocSize) 1864 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1865 } else { // String attribute 1866 assert((Record[i] == 3 || Record[i] == 4) && 1867 "Invalid attribute group entry"); 1868 bool HasValue = (Record[i++] == 4); 1869 SmallString<64> KindStr; 1870 SmallString<64> ValStr; 1871 1872 while (Record[i] != 0 && i != e) 1873 KindStr += Record[i++]; 1874 assert(Record[i] == 0 && "Kind string not null terminated"); 1875 1876 if (HasValue) { 1877 // Has a value associated with it. 1878 ++i; // Skip the '0' that terminates the "kind" string. 1879 while (Record[i] != 0 && i != e) 1880 ValStr += Record[i++]; 1881 assert(Record[i] == 0 && "Value string not null terminated"); 1882 } 1883 1884 B.addAttribute(KindStr.str(), ValStr.str()); 1885 } 1886 } 1887 1888 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1889 break; 1890 } 1891 } 1892 } 1893 } 1894 1895 Error BitcodeReader::parseTypeTable() { 1896 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1897 return error("Invalid record"); 1898 1899 return parseTypeTableBody(); 1900 } 1901 1902 Error BitcodeReader::parseTypeTableBody() { 1903 if (!TypeList.empty()) 1904 return error("Invalid multiple blocks"); 1905 1906 SmallVector<uint64_t, 64> Record; 1907 unsigned NumRecords = 0; 1908 1909 SmallString<64> TypeName; 1910 1911 // Read all the records for this type table. 1912 while (true) { 1913 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1914 1915 switch (Entry.Kind) { 1916 case BitstreamEntry::SubBlock: // Handled for us already. 1917 case BitstreamEntry::Error: 1918 return error("Malformed block"); 1919 case BitstreamEntry::EndBlock: 1920 if (NumRecords != TypeList.size()) 1921 return error("Malformed block"); 1922 return Error::success(); 1923 case BitstreamEntry::Record: 1924 // The interesting case. 1925 break; 1926 } 1927 1928 // Read a record. 1929 Record.clear(); 1930 Type *ResultTy = nullptr; 1931 switch (Stream.readRecord(Entry.ID, Record)) { 1932 default: 1933 return error("Invalid value"); 1934 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1935 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1936 // type list. This allows us to reserve space. 1937 if (Record.size() < 1) 1938 return error("Invalid record"); 1939 TypeList.resize(Record[0]); 1940 continue; 1941 case bitc::TYPE_CODE_VOID: // VOID 1942 ResultTy = Type::getVoidTy(Context); 1943 break; 1944 case bitc::TYPE_CODE_HALF: // HALF 1945 ResultTy = Type::getHalfTy(Context); 1946 break; 1947 case bitc::TYPE_CODE_FLOAT: // FLOAT 1948 ResultTy = Type::getFloatTy(Context); 1949 break; 1950 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1951 ResultTy = Type::getDoubleTy(Context); 1952 break; 1953 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1954 ResultTy = Type::getX86_FP80Ty(Context); 1955 break; 1956 case bitc::TYPE_CODE_FP128: // FP128 1957 ResultTy = Type::getFP128Ty(Context); 1958 break; 1959 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1960 ResultTy = Type::getPPC_FP128Ty(Context); 1961 break; 1962 case bitc::TYPE_CODE_LABEL: // LABEL 1963 ResultTy = Type::getLabelTy(Context); 1964 break; 1965 case bitc::TYPE_CODE_METADATA: // METADATA 1966 ResultTy = Type::getMetadataTy(Context); 1967 break; 1968 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1969 ResultTy = Type::getX86_MMXTy(Context); 1970 break; 1971 case bitc::TYPE_CODE_TOKEN: // TOKEN 1972 ResultTy = Type::getTokenTy(Context); 1973 break; 1974 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1975 if (Record.size() < 1) 1976 return error("Invalid record"); 1977 1978 uint64_t NumBits = Record[0]; 1979 if (NumBits < IntegerType::MIN_INT_BITS || 1980 NumBits > IntegerType::MAX_INT_BITS) 1981 return error("Bitwidth for integer type out of range"); 1982 ResultTy = IntegerType::get(Context, NumBits); 1983 break; 1984 } 1985 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1986 // [pointee type, address space] 1987 if (Record.size() < 1) 1988 return error("Invalid record"); 1989 unsigned AddressSpace = 0; 1990 if (Record.size() == 2) 1991 AddressSpace = Record[1]; 1992 ResultTy = getTypeByID(Record[0]); 1993 if (!ResultTy || 1994 !PointerType::isValidElementType(ResultTy)) 1995 return error("Invalid type"); 1996 ResultTy = PointerType::get(ResultTy, AddressSpace); 1997 break; 1998 } 1999 case bitc::TYPE_CODE_FUNCTION_OLD: { 2000 // FIXME: attrid is dead, remove it in LLVM 4.0 2001 // FUNCTION: [vararg, attrid, retty, paramty x N] 2002 if (Record.size() < 3) 2003 return error("Invalid record"); 2004 SmallVector<Type*, 8> ArgTys; 2005 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2006 if (Type *T = getTypeByID(Record[i])) 2007 ArgTys.push_back(T); 2008 else 2009 break; 2010 } 2011 2012 ResultTy = getTypeByID(Record[2]); 2013 if (!ResultTy || ArgTys.size() < Record.size()-3) 2014 return error("Invalid type"); 2015 2016 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2017 break; 2018 } 2019 case bitc::TYPE_CODE_FUNCTION: { 2020 // FUNCTION: [vararg, retty, paramty x N] 2021 if (Record.size() < 2) 2022 return error("Invalid record"); 2023 SmallVector<Type*, 8> ArgTys; 2024 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2025 if (Type *T = getTypeByID(Record[i])) { 2026 if (!FunctionType::isValidArgumentType(T)) 2027 return error("Invalid function argument type"); 2028 ArgTys.push_back(T); 2029 } 2030 else 2031 break; 2032 } 2033 2034 ResultTy = getTypeByID(Record[1]); 2035 if (!ResultTy || ArgTys.size() < Record.size()-2) 2036 return error("Invalid type"); 2037 2038 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2039 break; 2040 } 2041 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2042 if (Record.size() < 1) 2043 return error("Invalid record"); 2044 SmallVector<Type*, 8> EltTys; 2045 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2046 if (Type *T = getTypeByID(Record[i])) 2047 EltTys.push_back(T); 2048 else 2049 break; 2050 } 2051 if (EltTys.size() != Record.size()-1) 2052 return error("Invalid type"); 2053 ResultTy = StructType::get(Context, EltTys, Record[0]); 2054 break; 2055 } 2056 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2057 if (convertToString(Record, 0, TypeName)) 2058 return error("Invalid record"); 2059 continue; 2060 2061 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2062 if (Record.size() < 1) 2063 return error("Invalid record"); 2064 2065 if (NumRecords >= TypeList.size()) 2066 return error("Invalid TYPE table"); 2067 2068 // Check to see if this was forward referenced, if so fill in the temp. 2069 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2070 if (Res) { 2071 Res->setName(TypeName); 2072 TypeList[NumRecords] = nullptr; 2073 } else // Otherwise, create a new struct. 2074 Res = createIdentifiedStructType(Context, TypeName); 2075 TypeName.clear(); 2076 2077 SmallVector<Type*, 8> EltTys; 2078 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2079 if (Type *T = getTypeByID(Record[i])) 2080 EltTys.push_back(T); 2081 else 2082 break; 2083 } 2084 if (EltTys.size() != Record.size()-1) 2085 return error("Invalid record"); 2086 Res->setBody(EltTys, Record[0]); 2087 ResultTy = Res; 2088 break; 2089 } 2090 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2091 if (Record.size() != 1) 2092 return error("Invalid record"); 2093 2094 if (NumRecords >= TypeList.size()) 2095 return error("Invalid TYPE table"); 2096 2097 // Check to see if this was forward referenced, if so fill in the temp. 2098 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2099 if (Res) { 2100 Res->setName(TypeName); 2101 TypeList[NumRecords] = nullptr; 2102 } else // Otherwise, create a new struct with no body. 2103 Res = createIdentifiedStructType(Context, TypeName); 2104 TypeName.clear(); 2105 ResultTy = Res; 2106 break; 2107 } 2108 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2109 if (Record.size() < 2) 2110 return error("Invalid record"); 2111 ResultTy = getTypeByID(Record[1]); 2112 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2113 return error("Invalid type"); 2114 ResultTy = ArrayType::get(ResultTy, Record[0]); 2115 break; 2116 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 2117 if (Record.size() < 2) 2118 return error("Invalid record"); 2119 if (Record[0] == 0) 2120 return error("Invalid vector length"); 2121 ResultTy = getTypeByID(Record[1]); 2122 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 2123 return error("Invalid type"); 2124 ResultTy = VectorType::get(ResultTy, Record[0]); 2125 break; 2126 } 2127 2128 if (NumRecords >= TypeList.size()) 2129 return error("Invalid TYPE table"); 2130 if (TypeList[NumRecords]) 2131 return error( 2132 "Invalid TYPE table: Only named structs can be forward referenced"); 2133 assert(ResultTy && "Didn't read a type?"); 2134 TypeList[NumRecords++] = ResultTy; 2135 } 2136 } 2137 2138 Error BitcodeReader::parseOperandBundleTags() { 2139 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2140 return error("Invalid record"); 2141 2142 if (!BundleTags.empty()) 2143 return error("Invalid multiple blocks"); 2144 2145 SmallVector<uint64_t, 64> Record; 2146 2147 while (true) { 2148 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2149 2150 switch (Entry.Kind) { 2151 case BitstreamEntry::SubBlock: // Handled for us already. 2152 case BitstreamEntry::Error: 2153 return error("Malformed block"); 2154 case BitstreamEntry::EndBlock: 2155 return Error::success(); 2156 case BitstreamEntry::Record: 2157 // The interesting case. 2158 break; 2159 } 2160 2161 // Tags are implicitly mapped to integers by their order. 2162 2163 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 2164 return error("Invalid record"); 2165 2166 // OPERAND_BUNDLE_TAG: [strchr x N] 2167 BundleTags.emplace_back(); 2168 if (convertToString(Record, 0, BundleTags.back())) 2169 return error("Invalid record"); 2170 Record.clear(); 2171 } 2172 } 2173 2174 /// Associate a value with its name from the given index in the provided record. 2175 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2176 unsigned NameIndex, Triple &TT) { 2177 SmallString<128> ValueName; 2178 if (convertToString(Record, NameIndex, ValueName)) 2179 return error("Invalid record"); 2180 unsigned ValueID = Record[0]; 2181 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2182 return error("Invalid record"); 2183 Value *V = ValueList[ValueID]; 2184 2185 StringRef NameStr(ValueName.data(), ValueName.size()); 2186 if (NameStr.find_first_of(0) != StringRef::npos) 2187 return error("Invalid value name"); 2188 V->setName(NameStr); 2189 auto *GO = dyn_cast<GlobalObject>(V); 2190 if (GO) { 2191 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2192 if (TT.isOSBinFormatMachO()) 2193 GO->setComdat(nullptr); 2194 else 2195 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2196 } 2197 } 2198 return V; 2199 } 2200 2201 /// Helper to note and return the current location, and jump to the given 2202 /// offset. 2203 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2204 BitstreamCursor &Stream) { 2205 // Save the current parsing location so we can jump back at the end 2206 // of the VST read. 2207 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2208 Stream.JumpToBit(Offset * 32); 2209 #ifndef NDEBUG 2210 // Do some checking if we are in debug mode. 2211 BitstreamEntry Entry = Stream.advance(); 2212 assert(Entry.Kind == BitstreamEntry::SubBlock); 2213 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2214 #else 2215 // In NDEBUG mode ignore the output so we don't get an unused variable 2216 // warning. 2217 Stream.advance(); 2218 #endif 2219 return CurrentBit; 2220 } 2221 2222 /// Parse the value symbol table at either the current parsing location or 2223 /// at the given bit offset if provided. 2224 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2225 uint64_t CurrentBit; 2226 // Pass in the Offset to distinguish between calling for the module-level 2227 // VST (where we want to jump to the VST offset) and the function-level 2228 // VST (where we don't). 2229 if (Offset > 0) 2230 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2231 2232 // Compute the delta between the bitcode indices in the VST (the word offset 2233 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2234 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2235 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2236 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2237 // just before entering the VST subblock because: 1) the EnterSubBlock 2238 // changes the AbbrevID width; 2) the VST block is nested within the same 2239 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2240 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2241 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2242 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2243 unsigned FuncBitcodeOffsetDelta = 2244 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2245 2246 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2247 return error("Invalid record"); 2248 2249 SmallVector<uint64_t, 64> Record; 2250 2251 Triple TT(TheModule->getTargetTriple()); 2252 2253 // Read all the records for this value table. 2254 SmallString<128> ValueName; 2255 2256 while (true) { 2257 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2258 2259 switch (Entry.Kind) { 2260 case BitstreamEntry::SubBlock: // Handled for us already. 2261 case BitstreamEntry::Error: 2262 return error("Malformed block"); 2263 case BitstreamEntry::EndBlock: 2264 if (Offset > 0) 2265 Stream.JumpToBit(CurrentBit); 2266 return Error::success(); 2267 case BitstreamEntry::Record: 2268 // The interesting case. 2269 break; 2270 } 2271 2272 // Read a record. 2273 Record.clear(); 2274 switch (Stream.readRecord(Entry.ID, Record)) { 2275 default: // Default behavior: unknown type. 2276 break; 2277 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2278 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2279 if (Error Err = ValOrErr.takeError()) 2280 return Err; 2281 ValOrErr.get(); 2282 break; 2283 } 2284 case bitc::VST_CODE_FNENTRY: { 2285 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2286 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2287 if (Error Err = ValOrErr.takeError()) 2288 return Err; 2289 Value *V = ValOrErr.get(); 2290 2291 auto *GO = dyn_cast<GlobalObject>(V); 2292 if (!GO) { 2293 // If this is an alias, need to get the actual Function object 2294 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2295 auto *GA = dyn_cast<GlobalAlias>(V); 2296 if (GA) 2297 GO = GA->getBaseObject(); 2298 assert(GO); 2299 } 2300 2301 uint64_t FuncWordOffset = Record[1]; 2302 Function *F = dyn_cast<Function>(GO); 2303 assert(F); 2304 uint64_t FuncBitOffset = FuncWordOffset * 32; 2305 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2306 // Set the LastFunctionBlockBit to point to the last function block. 2307 // Later when parsing is resumed after function materialization, 2308 // we can simply skip that last function block. 2309 if (FuncBitOffset > LastFunctionBlockBit) 2310 LastFunctionBlockBit = FuncBitOffset; 2311 break; 2312 } 2313 case bitc::VST_CODE_BBENTRY: { 2314 if (convertToString(Record, 1, ValueName)) 2315 return error("Invalid record"); 2316 BasicBlock *BB = getBasicBlock(Record[0]); 2317 if (!BB) 2318 return error("Invalid record"); 2319 2320 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2321 ValueName.clear(); 2322 break; 2323 } 2324 } 2325 } 2326 } 2327 2328 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2329 Error BitcodeReader::parseMetadataKindRecord( 2330 SmallVectorImpl<uint64_t> &Record) { 2331 if (Record.size() < 2) 2332 return error("Invalid record"); 2333 2334 unsigned Kind = Record[0]; 2335 SmallString<8> Name(Record.begin() + 1, Record.end()); 2336 2337 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2338 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2339 return error("Conflicting METADATA_KIND records"); 2340 return Error::success(); 2341 } 2342 2343 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2344 2345 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2346 StringRef Blob, 2347 unsigned &NextMetadataNo) { 2348 // All the MDStrings in the block are emitted together in a single 2349 // record. The strings are concatenated and stored in a blob along with 2350 // their sizes. 2351 if (Record.size() != 2) 2352 return error("Invalid record: metadata strings layout"); 2353 2354 unsigned NumStrings = Record[0]; 2355 unsigned StringsOffset = Record[1]; 2356 if (!NumStrings) 2357 return error("Invalid record: metadata strings with no strings"); 2358 if (StringsOffset > Blob.size()) 2359 return error("Invalid record: metadata strings corrupt offset"); 2360 2361 StringRef Lengths = Blob.slice(0, StringsOffset); 2362 SimpleBitstreamCursor R(Lengths); 2363 2364 StringRef Strings = Blob.drop_front(StringsOffset); 2365 do { 2366 if (R.AtEndOfStream()) 2367 return error("Invalid record: metadata strings bad length"); 2368 2369 unsigned Size = R.ReadVBR(6); 2370 if (Strings.size() < Size) 2371 return error("Invalid record: metadata strings truncated chars"); 2372 2373 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2374 NextMetadataNo++); 2375 Strings = Strings.drop_front(Size); 2376 } while (--NumStrings); 2377 2378 return Error::success(); 2379 } 2380 2381 namespace { 2382 2383 class PlaceholderQueue { 2384 // Placeholders would thrash around when moved, so store in a std::deque 2385 // instead of some sort of vector. 2386 std::deque<DistinctMDOperandPlaceholder> PHs; 2387 2388 public: 2389 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2390 void flush(BitcodeReaderMetadataList &MetadataList); 2391 }; 2392 2393 } // end anonymous namespace 2394 2395 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2396 PHs.emplace_back(ID); 2397 return PHs.back(); 2398 } 2399 2400 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2401 while (!PHs.empty()) { 2402 PHs.front().replaceUseWith( 2403 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2404 PHs.pop_front(); 2405 } 2406 } 2407 2408 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2409 /// module level metadata. 2410 Error BitcodeReader::parseMetadata(bool ModuleLevel) { 2411 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2412 "Must read all module-level metadata before function-level"); 2413 2414 IsMetadataMaterialized = true; 2415 unsigned NextMetadataNo = MetadataList.size(); 2416 2417 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2418 return error("Invalid metadata: fwd refs into function blocks"); 2419 2420 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2421 return error("Invalid record"); 2422 2423 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2424 SmallVector<uint64_t, 64> Record; 2425 2426 PlaceholderQueue Placeholders; 2427 bool IsDistinct; 2428 auto getMD = [&](unsigned ID) -> Metadata * { 2429 if (!IsDistinct) 2430 return MetadataList.getMetadataFwdRef(ID); 2431 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2432 return MD; 2433 return &Placeholders.getPlaceholderOp(ID); 2434 }; 2435 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2436 if (ID) 2437 return getMD(ID - 1); 2438 return nullptr; 2439 }; 2440 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2441 if (ID) 2442 return MetadataList.getMetadataFwdRef(ID - 1); 2443 return nullptr; 2444 }; 2445 auto getMDString = [&](unsigned ID) -> MDString *{ 2446 // This requires that the ID is not really a forward reference. In 2447 // particular, the MDString must already have been resolved. 2448 return cast_or_null<MDString>(getMDOrNull(ID)); 2449 }; 2450 2451 // Support for old type refs. 2452 auto getDITypeRefOrNull = [&](unsigned ID) { 2453 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2454 }; 2455 2456 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2457 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2458 2459 // Read all the records. 2460 while (true) { 2461 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2462 2463 switch (Entry.Kind) { 2464 case BitstreamEntry::SubBlock: // Handled for us already. 2465 case BitstreamEntry::Error: 2466 return error("Malformed block"); 2467 case BitstreamEntry::EndBlock: 2468 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2469 for (auto CU_SP : CUSubprograms) 2470 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2471 for (auto &Op : SPs->operands()) 2472 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2473 SP->replaceOperandWith(7, CU_SP.first); 2474 2475 MetadataList.tryToResolveCycles(); 2476 Placeholders.flush(MetadataList); 2477 return Error::success(); 2478 case BitstreamEntry::Record: 2479 // The interesting case. 2480 break; 2481 } 2482 2483 // Read a record. 2484 Record.clear(); 2485 StringRef Blob; 2486 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2487 IsDistinct = false; 2488 switch (Code) { 2489 default: // Default behavior: ignore. 2490 break; 2491 case bitc::METADATA_NAME: { 2492 // Read name of the named metadata. 2493 SmallString<8> Name(Record.begin(), Record.end()); 2494 Record.clear(); 2495 Code = Stream.ReadCode(); 2496 2497 unsigned NextBitCode = Stream.readRecord(Code, Record); 2498 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2499 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2500 2501 // Read named metadata elements. 2502 unsigned Size = Record.size(); 2503 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2504 for (unsigned i = 0; i != Size; ++i) { 2505 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2506 if (!MD) 2507 return error("Invalid record"); 2508 NMD->addOperand(MD); 2509 } 2510 break; 2511 } 2512 case bitc::METADATA_OLD_FN_NODE: { 2513 // FIXME: Remove in 4.0. 2514 // This is a LocalAsMetadata record, the only type of function-local 2515 // metadata. 2516 if (Record.size() % 2 == 1) 2517 return error("Invalid record"); 2518 2519 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2520 // to be legal, but there's no upgrade path. 2521 auto dropRecord = [&] { 2522 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2523 }; 2524 if (Record.size() != 2) { 2525 dropRecord(); 2526 break; 2527 } 2528 2529 Type *Ty = getTypeByID(Record[0]); 2530 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2531 dropRecord(); 2532 break; 2533 } 2534 2535 MetadataList.assignValue( 2536 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2537 NextMetadataNo++); 2538 break; 2539 } 2540 case bitc::METADATA_OLD_NODE: { 2541 // FIXME: Remove in 4.0. 2542 if (Record.size() % 2 == 1) 2543 return error("Invalid record"); 2544 2545 unsigned Size = Record.size(); 2546 SmallVector<Metadata *, 8> Elts; 2547 for (unsigned i = 0; i != Size; i += 2) { 2548 Type *Ty = getTypeByID(Record[i]); 2549 if (!Ty) 2550 return error("Invalid record"); 2551 if (Ty->isMetadataTy()) 2552 Elts.push_back(getMD(Record[i + 1])); 2553 else if (!Ty->isVoidTy()) { 2554 auto *MD = 2555 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2556 assert(isa<ConstantAsMetadata>(MD) && 2557 "Expected non-function-local metadata"); 2558 Elts.push_back(MD); 2559 } else 2560 Elts.push_back(nullptr); 2561 } 2562 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2563 break; 2564 } 2565 case bitc::METADATA_VALUE: { 2566 if (Record.size() != 2) 2567 return error("Invalid record"); 2568 2569 Type *Ty = getTypeByID(Record[0]); 2570 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2571 return error("Invalid record"); 2572 2573 MetadataList.assignValue( 2574 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2575 NextMetadataNo++); 2576 break; 2577 } 2578 case bitc::METADATA_DISTINCT_NODE: 2579 IsDistinct = true; 2580 LLVM_FALLTHROUGH; 2581 case bitc::METADATA_NODE: { 2582 SmallVector<Metadata *, 8> Elts; 2583 Elts.reserve(Record.size()); 2584 for (unsigned ID : Record) 2585 Elts.push_back(getMDOrNull(ID)); 2586 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2587 : MDNode::get(Context, Elts), 2588 NextMetadataNo++); 2589 break; 2590 } 2591 case bitc::METADATA_LOCATION: { 2592 if (Record.size() != 5) 2593 return error("Invalid record"); 2594 2595 IsDistinct = Record[0]; 2596 unsigned Line = Record[1]; 2597 unsigned Column = Record[2]; 2598 Metadata *Scope = getMD(Record[3]); 2599 Metadata *InlinedAt = getMDOrNull(Record[4]); 2600 MetadataList.assignValue( 2601 GET_OR_DISTINCT(DILocation, 2602 (Context, Line, Column, Scope, InlinedAt)), 2603 NextMetadataNo++); 2604 break; 2605 } 2606 case bitc::METADATA_GENERIC_DEBUG: { 2607 if (Record.size() < 4) 2608 return error("Invalid record"); 2609 2610 IsDistinct = Record[0]; 2611 unsigned Tag = Record[1]; 2612 unsigned Version = Record[2]; 2613 2614 if (Tag >= 1u << 16 || Version != 0) 2615 return error("Invalid record"); 2616 2617 auto *Header = getMDString(Record[3]); 2618 SmallVector<Metadata *, 8> DwarfOps; 2619 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2620 DwarfOps.push_back(getMDOrNull(Record[I])); 2621 MetadataList.assignValue( 2622 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2623 NextMetadataNo++); 2624 break; 2625 } 2626 case bitc::METADATA_SUBRANGE: { 2627 if (Record.size() != 3) 2628 return error("Invalid record"); 2629 2630 IsDistinct = Record[0]; 2631 MetadataList.assignValue( 2632 GET_OR_DISTINCT(DISubrange, 2633 (Context, Record[1], unrotateSign(Record[2]))), 2634 NextMetadataNo++); 2635 break; 2636 } 2637 case bitc::METADATA_ENUMERATOR: { 2638 if (Record.size() != 3) 2639 return error("Invalid record"); 2640 2641 IsDistinct = Record[0]; 2642 MetadataList.assignValue( 2643 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2644 getMDString(Record[2]))), 2645 NextMetadataNo++); 2646 break; 2647 } 2648 case bitc::METADATA_BASIC_TYPE: { 2649 if (Record.size() != 6) 2650 return error("Invalid record"); 2651 2652 IsDistinct = Record[0]; 2653 MetadataList.assignValue( 2654 GET_OR_DISTINCT(DIBasicType, 2655 (Context, Record[1], getMDString(Record[2]), 2656 Record[3], Record[4], Record[5])), 2657 NextMetadataNo++); 2658 break; 2659 } 2660 case bitc::METADATA_DERIVED_TYPE: { 2661 if (Record.size() != 12) 2662 return error("Invalid record"); 2663 2664 IsDistinct = Record[0]; 2665 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2666 MetadataList.assignValue( 2667 GET_OR_DISTINCT(DIDerivedType, 2668 (Context, Record[1], getMDString(Record[2]), 2669 getMDOrNull(Record[3]), Record[4], 2670 getDITypeRefOrNull(Record[5]), 2671 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2672 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2673 NextMetadataNo++); 2674 break; 2675 } 2676 case bitc::METADATA_COMPOSITE_TYPE: { 2677 if (Record.size() != 16) 2678 return error("Invalid record"); 2679 2680 // If we have a UUID and this is not a forward declaration, lookup the 2681 // mapping. 2682 IsDistinct = Record[0] & 0x1; 2683 bool IsNotUsedInTypeRef = Record[0] >= 2; 2684 unsigned Tag = Record[1]; 2685 MDString *Name = getMDString(Record[2]); 2686 Metadata *File = getMDOrNull(Record[3]); 2687 unsigned Line = Record[4]; 2688 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2689 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2690 uint64_t SizeInBits = Record[7]; 2691 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2692 return error("Alignment value is too large"); 2693 uint32_t AlignInBits = Record[8]; 2694 uint64_t OffsetInBits = Record[9]; 2695 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2696 Metadata *Elements = getMDOrNull(Record[11]); 2697 unsigned RuntimeLang = Record[12]; 2698 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2699 Metadata *TemplateParams = getMDOrNull(Record[14]); 2700 auto *Identifier = getMDString(Record[15]); 2701 DICompositeType *CT = nullptr; 2702 if (Identifier) 2703 CT = DICompositeType::buildODRType( 2704 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2705 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2706 VTableHolder, TemplateParams); 2707 2708 // Create a node if we didn't get a lazy ODR type. 2709 if (!CT) 2710 CT = GET_OR_DISTINCT(DICompositeType, 2711 (Context, Tag, Name, File, Line, Scope, BaseType, 2712 SizeInBits, AlignInBits, OffsetInBits, Flags, 2713 Elements, RuntimeLang, VTableHolder, 2714 TemplateParams, Identifier)); 2715 if (!IsNotUsedInTypeRef && Identifier) 2716 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2717 2718 MetadataList.assignValue(CT, NextMetadataNo++); 2719 break; 2720 } 2721 case bitc::METADATA_SUBROUTINE_TYPE: { 2722 if (Record.size() < 3 || Record.size() > 4) 2723 return error("Invalid record"); 2724 bool IsOldTypeRefArray = Record[0] < 2; 2725 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2726 2727 IsDistinct = Record[0] & 0x1; 2728 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2729 Metadata *Types = getMDOrNull(Record[2]); 2730 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2731 Types = MetadataList.upgradeTypeRefArray(Types); 2732 2733 MetadataList.assignValue( 2734 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2735 NextMetadataNo++); 2736 break; 2737 } 2738 2739 case bitc::METADATA_MODULE: { 2740 if (Record.size() != 6) 2741 return error("Invalid record"); 2742 2743 IsDistinct = Record[0]; 2744 MetadataList.assignValue( 2745 GET_OR_DISTINCT(DIModule, 2746 (Context, getMDOrNull(Record[1]), 2747 getMDString(Record[2]), getMDString(Record[3]), 2748 getMDString(Record[4]), getMDString(Record[5]))), 2749 NextMetadataNo++); 2750 break; 2751 } 2752 2753 case bitc::METADATA_FILE: { 2754 if (Record.size() != 3) 2755 return error("Invalid record"); 2756 2757 IsDistinct = Record[0]; 2758 MetadataList.assignValue( 2759 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2760 getMDString(Record[2]))), 2761 NextMetadataNo++); 2762 break; 2763 } 2764 case bitc::METADATA_COMPILE_UNIT: { 2765 if (Record.size() < 14 || Record.size() > 17) 2766 return error("Invalid record"); 2767 2768 // Ignore Record[0], which indicates whether this compile unit is 2769 // distinct. It's always distinct. 2770 IsDistinct = true; 2771 auto *CU = DICompileUnit::getDistinct( 2772 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2773 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2774 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2775 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2776 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2777 Record.size() <= 14 ? 0 : Record[14], 2778 Record.size() <= 16 ? true : Record[16]); 2779 2780 MetadataList.assignValue(CU, NextMetadataNo++); 2781 2782 // Move the Upgrade the list of subprograms. 2783 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2784 CUSubprograms.push_back({CU, SPs}); 2785 break; 2786 } 2787 case bitc::METADATA_SUBPROGRAM: { 2788 if (Record.size() < 18 || Record.size() > 20) 2789 return error("Invalid record"); 2790 2791 IsDistinct = 2792 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2793 // Version 1 has a Function as Record[15]. 2794 // Version 2 has removed Record[15]. 2795 // Version 3 has the Unit as Record[15]. 2796 // Version 4 added thisAdjustment. 2797 bool HasUnit = Record[0] >= 2; 2798 if (HasUnit && Record.size() < 19) 2799 return error("Invalid record"); 2800 Metadata *CUorFn = getMDOrNull(Record[15]); 2801 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2802 bool HasFn = Offset && !HasUnit; 2803 bool HasThisAdj = Record.size() >= 20; 2804 DISubprogram *SP = GET_OR_DISTINCT( 2805 DISubprogram, (Context, 2806 getDITypeRefOrNull(Record[1]), // scope 2807 getMDString(Record[2]), // name 2808 getMDString(Record[3]), // linkageName 2809 getMDOrNull(Record[4]), // file 2810 Record[5], // line 2811 getMDOrNull(Record[6]), // type 2812 Record[7], // isLocal 2813 Record[8], // isDefinition 2814 Record[9], // scopeLine 2815 getDITypeRefOrNull(Record[10]), // containingType 2816 Record[11], // virtuality 2817 Record[12], // virtualIndex 2818 HasThisAdj ? Record[19] : 0, // thisAdjustment 2819 static_cast<DINode::DIFlags>(Record[13] // flags 2820 ), 2821 Record[14], // isOptimized 2822 HasUnit ? CUorFn : nullptr, // unit 2823 getMDOrNull(Record[15 + Offset]), // templateParams 2824 getMDOrNull(Record[16 + Offset]), // declaration 2825 getMDOrNull(Record[17 + Offset]) // variables 2826 )); 2827 MetadataList.assignValue(SP, NextMetadataNo++); 2828 2829 // Upgrade sp->function mapping to function->sp mapping. 2830 if (HasFn) { 2831 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2832 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2833 if (F->isMaterializable()) 2834 // Defer until materialized; unmaterialized functions may not have 2835 // metadata. 2836 FunctionsWithSPs[F] = SP; 2837 else if (!F->empty()) 2838 F->setSubprogram(SP); 2839 } 2840 } 2841 break; 2842 } 2843 case bitc::METADATA_LEXICAL_BLOCK: { 2844 if (Record.size() != 5) 2845 return error("Invalid record"); 2846 2847 IsDistinct = Record[0]; 2848 MetadataList.assignValue( 2849 GET_OR_DISTINCT(DILexicalBlock, 2850 (Context, getMDOrNull(Record[1]), 2851 getMDOrNull(Record[2]), Record[3], Record[4])), 2852 NextMetadataNo++); 2853 break; 2854 } 2855 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2856 if (Record.size() != 4) 2857 return error("Invalid record"); 2858 2859 IsDistinct = Record[0]; 2860 MetadataList.assignValue( 2861 GET_OR_DISTINCT(DILexicalBlockFile, 2862 (Context, getMDOrNull(Record[1]), 2863 getMDOrNull(Record[2]), Record[3])), 2864 NextMetadataNo++); 2865 break; 2866 } 2867 case bitc::METADATA_NAMESPACE: { 2868 if (Record.size() != 5) 2869 return error("Invalid record"); 2870 2871 IsDistinct = Record[0] & 1; 2872 bool ExportSymbols = Record[0] & 2; 2873 MetadataList.assignValue( 2874 GET_OR_DISTINCT(DINamespace, 2875 (Context, getMDOrNull(Record[1]), 2876 getMDOrNull(Record[2]), getMDString(Record[3]), 2877 Record[4], ExportSymbols)), 2878 NextMetadataNo++); 2879 break; 2880 } 2881 case bitc::METADATA_MACRO: { 2882 if (Record.size() != 5) 2883 return error("Invalid record"); 2884 2885 IsDistinct = Record[0]; 2886 MetadataList.assignValue( 2887 GET_OR_DISTINCT(DIMacro, 2888 (Context, Record[1], Record[2], 2889 getMDString(Record[3]), getMDString(Record[4]))), 2890 NextMetadataNo++); 2891 break; 2892 } 2893 case bitc::METADATA_MACRO_FILE: { 2894 if (Record.size() != 5) 2895 return error("Invalid record"); 2896 2897 IsDistinct = Record[0]; 2898 MetadataList.assignValue( 2899 GET_OR_DISTINCT(DIMacroFile, 2900 (Context, Record[1], Record[2], 2901 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2902 NextMetadataNo++); 2903 break; 2904 } 2905 case bitc::METADATA_TEMPLATE_TYPE: { 2906 if (Record.size() != 3) 2907 return error("Invalid record"); 2908 2909 IsDistinct = Record[0]; 2910 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2911 (Context, getMDString(Record[1]), 2912 getDITypeRefOrNull(Record[2]))), 2913 NextMetadataNo++); 2914 break; 2915 } 2916 case bitc::METADATA_TEMPLATE_VALUE: { 2917 if (Record.size() != 5) 2918 return error("Invalid record"); 2919 2920 IsDistinct = Record[0]; 2921 MetadataList.assignValue( 2922 GET_OR_DISTINCT(DITemplateValueParameter, 2923 (Context, Record[1], getMDString(Record[2]), 2924 getDITypeRefOrNull(Record[3]), 2925 getMDOrNull(Record[4]))), 2926 NextMetadataNo++); 2927 break; 2928 } 2929 case bitc::METADATA_GLOBAL_VAR: { 2930 if (Record.size() < 11 || Record.size() > 12) 2931 return error("Invalid record"); 2932 2933 IsDistinct = Record[0]; 2934 2935 // Upgrade old metadata, which stored a global variable reference or a 2936 // ConstantInt here. 2937 Metadata *Expr = getMDOrNull(Record[9]); 2938 uint32_t AlignInBits = 0; 2939 if (Record.size() > 11) { 2940 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2941 return error("Alignment value is too large"); 2942 AlignInBits = Record[11]; 2943 } 2944 GlobalVariable *Attach = nullptr; 2945 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2946 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2947 Attach = GV; 2948 Expr = nullptr; 2949 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2950 Expr = DIExpression::get(Context, 2951 {dwarf::DW_OP_constu, CI->getZExtValue(), 2952 dwarf::DW_OP_stack_value}); 2953 } else { 2954 Expr = nullptr; 2955 } 2956 } 2957 2958 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2959 DIGlobalVariable, 2960 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2961 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2962 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2963 getMDOrNull(Record[10]), AlignInBits)); 2964 MetadataList.assignValue(DGV, NextMetadataNo++); 2965 2966 if (Attach) 2967 Attach->addDebugInfo(DGV); 2968 2969 break; 2970 } 2971 case bitc::METADATA_LOCAL_VAR: { 2972 // 10th field is for the obseleted 'inlinedAt:' field. 2973 if (Record.size() < 8 || Record.size() > 10) 2974 return error("Invalid record"); 2975 2976 IsDistinct = Record[0] & 1; 2977 bool HasAlignment = Record[0] & 2; 2978 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2979 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2980 // this is newer version of record which doesn't have artifical tag. 2981 bool HasTag = !HasAlignment && Record.size() > 8; 2982 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2983 uint32_t AlignInBits = 0; 2984 if (HasAlignment) { 2985 if (Record[8 + HasTag] > 2986 (uint64_t)std::numeric_limits<uint32_t>::max()) 2987 return error("Alignment value is too large"); 2988 AlignInBits = Record[8 + HasTag]; 2989 } 2990 MetadataList.assignValue( 2991 GET_OR_DISTINCT(DILocalVariable, 2992 (Context, getMDOrNull(Record[1 + HasTag]), 2993 getMDString(Record[2 + HasTag]), 2994 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2995 getDITypeRefOrNull(Record[5 + HasTag]), 2996 Record[6 + HasTag], Flags, AlignInBits)), 2997 NextMetadataNo++); 2998 break; 2999 } 3000 case bitc::METADATA_EXPRESSION: { 3001 if (Record.size() < 1) 3002 return error("Invalid record"); 3003 3004 IsDistinct = Record[0]; 3005 MetadataList.assignValue( 3006 GET_OR_DISTINCT(DIExpression, 3007 (Context, makeArrayRef(Record).slice(1))), 3008 NextMetadataNo++); 3009 break; 3010 } 3011 case bitc::METADATA_OBJC_PROPERTY: { 3012 if (Record.size() != 8) 3013 return error("Invalid record"); 3014 3015 IsDistinct = Record[0]; 3016 MetadataList.assignValue( 3017 GET_OR_DISTINCT(DIObjCProperty, 3018 (Context, getMDString(Record[1]), 3019 getMDOrNull(Record[2]), Record[3], 3020 getMDString(Record[4]), getMDString(Record[5]), 3021 Record[6], getDITypeRefOrNull(Record[7]))), 3022 NextMetadataNo++); 3023 break; 3024 } 3025 case bitc::METADATA_IMPORTED_ENTITY: { 3026 if (Record.size() != 6) 3027 return error("Invalid record"); 3028 3029 IsDistinct = Record[0]; 3030 MetadataList.assignValue( 3031 GET_OR_DISTINCT(DIImportedEntity, 3032 (Context, Record[1], getMDOrNull(Record[2]), 3033 getDITypeRefOrNull(Record[3]), Record[4], 3034 getMDString(Record[5]))), 3035 NextMetadataNo++); 3036 break; 3037 } 3038 case bitc::METADATA_STRING_OLD: { 3039 std::string String(Record.begin(), Record.end()); 3040 3041 // Test for upgrading !llvm.loop. 3042 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 3043 3044 Metadata *MD = MDString::get(Context, String); 3045 MetadataList.assignValue(MD, NextMetadataNo++); 3046 break; 3047 } 3048 case bitc::METADATA_STRINGS: 3049 if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo)) 3050 return Err; 3051 break; 3052 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 3053 if (Record.size() % 2 == 0) 3054 return error("Invalid record"); 3055 unsigned ValueID = Record[0]; 3056 if (ValueID >= ValueList.size()) 3057 return error("Invalid record"); 3058 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 3059 if (Error Err = parseGlobalObjectAttachment( 3060 *GO, ArrayRef<uint64_t>(Record).slice(1))) 3061 return Err; 3062 break; 3063 } 3064 case bitc::METADATA_KIND: { 3065 // Support older bitcode files that had METADATA_KIND records in a 3066 // block with METADATA_BLOCK_ID. 3067 if (Error Err = parseMetadataKindRecord(Record)) 3068 return Err; 3069 break; 3070 } 3071 } 3072 } 3073 3074 #undef GET_OR_DISTINCT 3075 } 3076 3077 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 3078 Error BitcodeReader::parseMetadataKinds() { 3079 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 3080 return error("Invalid record"); 3081 3082 SmallVector<uint64_t, 64> Record; 3083 3084 // Read all the records. 3085 while (true) { 3086 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3087 3088 switch (Entry.Kind) { 3089 case BitstreamEntry::SubBlock: // Handled for us already. 3090 case BitstreamEntry::Error: 3091 return error("Malformed block"); 3092 case BitstreamEntry::EndBlock: 3093 return Error::success(); 3094 case BitstreamEntry::Record: 3095 // The interesting case. 3096 break; 3097 } 3098 3099 // Read a record. 3100 Record.clear(); 3101 unsigned Code = Stream.readRecord(Entry.ID, Record); 3102 switch (Code) { 3103 default: // Default behavior: ignore. 3104 break; 3105 case bitc::METADATA_KIND: { 3106 if (Error Err = parseMetadataKindRecord(Record)) 3107 return Err; 3108 break; 3109 } 3110 } 3111 } 3112 } 3113 3114 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3115 /// encoding. 3116 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3117 if ((V & 1) == 0) 3118 return V >> 1; 3119 if (V != 1) 3120 return -(V >> 1); 3121 // There is no such thing as -0 with integers. "-0" really means MININT. 3122 return 1ULL << 63; 3123 } 3124 3125 /// Resolve all of the initializers for global values and aliases that we can. 3126 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3127 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 3128 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 3129 IndirectSymbolInitWorklist; 3130 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 3131 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 3132 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 3133 3134 GlobalInitWorklist.swap(GlobalInits); 3135 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3136 FunctionPrefixWorklist.swap(FunctionPrefixes); 3137 FunctionPrologueWorklist.swap(FunctionPrologues); 3138 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 3139 3140 while (!GlobalInitWorklist.empty()) { 3141 unsigned ValID = GlobalInitWorklist.back().second; 3142 if (ValID >= ValueList.size()) { 3143 // Not ready to resolve this yet, it requires something later in the file. 3144 GlobalInits.push_back(GlobalInitWorklist.back()); 3145 } else { 3146 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3147 GlobalInitWorklist.back().first->setInitializer(C); 3148 else 3149 return error("Expected a constant"); 3150 } 3151 GlobalInitWorklist.pop_back(); 3152 } 3153 3154 while (!IndirectSymbolInitWorklist.empty()) { 3155 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3156 if (ValID >= ValueList.size()) { 3157 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3158 } else { 3159 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 3160 if (!C) 3161 return error("Expected a constant"); 3162 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 3163 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 3164 return error("Alias and aliasee types don't match"); 3165 GIS->setIndirectSymbol(C); 3166 } 3167 IndirectSymbolInitWorklist.pop_back(); 3168 } 3169 3170 while (!FunctionPrefixWorklist.empty()) { 3171 unsigned ValID = FunctionPrefixWorklist.back().second; 3172 if (ValID >= ValueList.size()) { 3173 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 3174 } else { 3175 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3176 FunctionPrefixWorklist.back().first->setPrefixData(C); 3177 else 3178 return error("Expected a constant"); 3179 } 3180 FunctionPrefixWorklist.pop_back(); 3181 } 3182 3183 while (!FunctionPrologueWorklist.empty()) { 3184 unsigned ValID = FunctionPrologueWorklist.back().second; 3185 if (ValID >= ValueList.size()) { 3186 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 3187 } else { 3188 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3189 FunctionPrologueWorklist.back().first->setPrologueData(C); 3190 else 3191 return error("Expected a constant"); 3192 } 3193 FunctionPrologueWorklist.pop_back(); 3194 } 3195 3196 while (!FunctionPersonalityFnWorklist.empty()) { 3197 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 3198 if (ValID >= ValueList.size()) { 3199 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 3200 } else { 3201 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3202 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 3203 else 3204 return error("Expected a constant"); 3205 } 3206 FunctionPersonalityFnWorklist.pop_back(); 3207 } 3208 3209 return Error::success(); 3210 } 3211 3212 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3213 SmallVector<uint64_t, 8> Words(Vals.size()); 3214 transform(Vals, Words.begin(), 3215 BitcodeReader::decodeSignRotatedValue); 3216 3217 return APInt(TypeBits, Words); 3218 } 3219 3220 Error BitcodeReader::parseConstants() { 3221 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3222 return error("Invalid record"); 3223 3224 SmallVector<uint64_t, 64> Record; 3225 3226 // Read all the records for this value table. 3227 Type *CurTy = Type::getInt32Ty(Context); 3228 unsigned NextCstNo = ValueList.size(); 3229 3230 while (true) { 3231 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3232 3233 switch (Entry.Kind) { 3234 case BitstreamEntry::SubBlock: // Handled for us already. 3235 case BitstreamEntry::Error: 3236 return error("Malformed block"); 3237 case BitstreamEntry::EndBlock: 3238 if (NextCstNo != ValueList.size()) 3239 return error("Invalid constant reference"); 3240 3241 // Once all the constants have been read, go through and resolve forward 3242 // references. 3243 ValueList.resolveConstantForwardRefs(); 3244 return Error::success(); 3245 case BitstreamEntry::Record: 3246 // The interesting case. 3247 break; 3248 } 3249 3250 // Read a record. 3251 Record.clear(); 3252 Type *VoidType = Type::getVoidTy(Context); 3253 Value *V = nullptr; 3254 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3255 switch (BitCode) { 3256 default: // Default behavior: unknown constant 3257 case bitc::CST_CODE_UNDEF: // UNDEF 3258 V = UndefValue::get(CurTy); 3259 break; 3260 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3261 if (Record.empty()) 3262 return error("Invalid record"); 3263 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3264 return error("Invalid record"); 3265 if (TypeList[Record[0]] == VoidType) 3266 return error("Invalid constant type"); 3267 CurTy = TypeList[Record[0]]; 3268 continue; // Skip the ValueList manipulation. 3269 case bitc::CST_CODE_NULL: // NULL 3270 V = Constant::getNullValue(CurTy); 3271 break; 3272 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3273 if (!CurTy->isIntegerTy() || Record.empty()) 3274 return error("Invalid record"); 3275 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3276 break; 3277 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3278 if (!CurTy->isIntegerTy() || Record.empty()) 3279 return error("Invalid record"); 3280 3281 APInt VInt = 3282 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3283 V = ConstantInt::get(Context, VInt); 3284 3285 break; 3286 } 3287 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3288 if (Record.empty()) 3289 return error("Invalid record"); 3290 if (CurTy->isHalfTy()) 3291 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3292 APInt(16, (uint16_t)Record[0]))); 3293 else if (CurTy->isFloatTy()) 3294 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3295 APInt(32, (uint32_t)Record[0]))); 3296 else if (CurTy->isDoubleTy()) 3297 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3298 APInt(64, Record[0]))); 3299 else if (CurTy->isX86_FP80Ty()) { 3300 // Bits are not stored the same way as a normal i80 APInt, compensate. 3301 uint64_t Rearrange[2]; 3302 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3303 Rearrange[1] = Record[0] >> 48; 3304 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3305 APInt(80, Rearrange))); 3306 } else if (CurTy->isFP128Ty()) 3307 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3308 APInt(128, Record))); 3309 else if (CurTy->isPPC_FP128Ty()) 3310 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3311 APInt(128, Record))); 3312 else 3313 V = UndefValue::get(CurTy); 3314 break; 3315 } 3316 3317 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3318 if (Record.empty()) 3319 return error("Invalid record"); 3320 3321 unsigned Size = Record.size(); 3322 SmallVector<Constant*, 16> Elts; 3323 3324 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3325 for (unsigned i = 0; i != Size; ++i) 3326 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3327 STy->getElementType(i))); 3328 V = ConstantStruct::get(STy, Elts); 3329 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3330 Type *EltTy = ATy->getElementType(); 3331 for (unsigned i = 0; i != Size; ++i) 3332 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3333 V = ConstantArray::get(ATy, Elts); 3334 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3335 Type *EltTy = VTy->getElementType(); 3336 for (unsigned i = 0; i != Size; ++i) 3337 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3338 V = ConstantVector::get(Elts); 3339 } else { 3340 V = UndefValue::get(CurTy); 3341 } 3342 break; 3343 } 3344 case bitc::CST_CODE_STRING: // STRING: [values] 3345 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3346 if (Record.empty()) 3347 return error("Invalid record"); 3348 3349 SmallString<16> Elts(Record.begin(), Record.end()); 3350 V = ConstantDataArray::getString(Context, Elts, 3351 BitCode == bitc::CST_CODE_CSTRING); 3352 break; 3353 } 3354 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3355 if (Record.empty()) 3356 return error("Invalid record"); 3357 3358 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3359 if (EltTy->isIntegerTy(8)) { 3360 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3361 if (isa<VectorType>(CurTy)) 3362 V = ConstantDataVector::get(Context, Elts); 3363 else 3364 V = ConstantDataArray::get(Context, Elts); 3365 } else if (EltTy->isIntegerTy(16)) { 3366 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3367 if (isa<VectorType>(CurTy)) 3368 V = ConstantDataVector::get(Context, Elts); 3369 else 3370 V = ConstantDataArray::get(Context, Elts); 3371 } else if (EltTy->isIntegerTy(32)) { 3372 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3373 if (isa<VectorType>(CurTy)) 3374 V = ConstantDataVector::get(Context, Elts); 3375 else 3376 V = ConstantDataArray::get(Context, Elts); 3377 } else if (EltTy->isIntegerTy(64)) { 3378 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3379 if (isa<VectorType>(CurTy)) 3380 V = ConstantDataVector::get(Context, Elts); 3381 else 3382 V = ConstantDataArray::get(Context, Elts); 3383 } else if (EltTy->isHalfTy()) { 3384 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3385 if (isa<VectorType>(CurTy)) 3386 V = ConstantDataVector::getFP(Context, Elts); 3387 else 3388 V = ConstantDataArray::getFP(Context, Elts); 3389 } else if (EltTy->isFloatTy()) { 3390 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3391 if (isa<VectorType>(CurTy)) 3392 V = ConstantDataVector::getFP(Context, Elts); 3393 else 3394 V = ConstantDataArray::getFP(Context, Elts); 3395 } else if (EltTy->isDoubleTy()) { 3396 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3397 if (isa<VectorType>(CurTy)) 3398 V = ConstantDataVector::getFP(Context, Elts); 3399 else 3400 V = ConstantDataArray::getFP(Context, Elts); 3401 } else { 3402 return error("Invalid type for value"); 3403 } 3404 break; 3405 } 3406 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3407 if (Record.size() < 3) 3408 return error("Invalid record"); 3409 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3410 if (Opc < 0) { 3411 V = UndefValue::get(CurTy); // Unknown binop. 3412 } else { 3413 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3414 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3415 unsigned Flags = 0; 3416 if (Record.size() >= 4) { 3417 if (Opc == Instruction::Add || 3418 Opc == Instruction::Sub || 3419 Opc == Instruction::Mul || 3420 Opc == Instruction::Shl) { 3421 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3422 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3423 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3424 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3425 } else if (Opc == Instruction::SDiv || 3426 Opc == Instruction::UDiv || 3427 Opc == Instruction::LShr || 3428 Opc == Instruction::AShr) { 3429 if (Record[3] & (1 << bitc::PEO_EXACT)) 3430 Flags |= SDivOperator::IsExact; 3431 } 3432 } 3433 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3434 } 3435 break; 3436 } 3437 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3438 if (Record.size() < 3) 3439 return error("Invalid record"); 3440 int Opc = getDecodedCastOpcode(Record[0]); 3441 if (Opc < 0) { 3442 V = UndefValue::get(CurTy); // Unknown cast. 3443 } else { 3444 Type *OpTy = getTypeByID(Record[1]); 3445 if (!OpTy) 3446 return error("Invalid record"); 3447 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3448 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3449 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3450 } 3451 break; 3452 } 3453 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3454 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3455 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3456 // operands] 3457 unsigned OpNum = 0; 3458 Type *PointeeType = nullptr; 3459 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3460 Record.size() % 2) 3461 PointeeType = getTypeByID(Record[OpNum++]); 3462 3463 bool InBounds = false; 3464 Optional<unsigned> InRangeIndex; 3465 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3466 uint64_t Op = Record[OpNum++]; 3467 InBounds = Op & 1; 3468 InRangeIndex = Op >> 1; 3469 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3470 InBounds = true; 3471 3472 SmallVector<Constant*, 16> Elts; 3473 while (OpNum != Record.size()) { 3474 Type *ElTy = getTypeByID(Record[OpNum++]); 3475 if (!ElTy) 3476 return error("Invalid record"); 3477 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3478 } 3479 3480 if (PointeeType && 3481 PointeeType != 3482 cast<PointerType>(Elts[0]->getType()->getScalarType()) 3483 ->getElementType()) 3484 return error("Explicit gep operator type does not match pointee type " 3485 "of pointer operand"); 3486 3487 if (Elts.size() < 1) 3488 return error("Invalid gep with no operands"); 3489 3490 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3491 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3492 InBounds, InRangeIndex); 3493 break; 3494 } 3495 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3496 if (Record.size() < 3) 3497 return error("Invalid record"); 3498 3499 Type *SelectorTy = Type::getInt1Ty(Context); 3500 3501 // The selector might be an i1 or an <n x i1> 3502 // Get the type from the ValueList before getting a forward ref. 3503 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3504 if (Value *V = ValueList[Record[0]]) 3505 if (SelectorTy != V->getType()) 3506 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3507 3508 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3509 SelectorTy), 3510 ValueList.getConstantFwdRef(Record[1],CurTy), 3511 ValueList.getConstantFwdRef(Record[2],CurTy)); 3512 break; 3513 } 3514 case bitc::CST_CODE_CE_EXTRACTELT 3515 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3516 if (Record.size() < 3) 3517 return error("Invalid record"); 3518 VectorType *OpTy = 3519 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3520 if (!OpTy) 3521 return error("Invalid record"); 3522 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3523 Constant *Op1 = nullptr; 3524 if (Record.size() == 4) { 3525 Type *IdxTy = getTypeByID(Record[2]); 3526 if (!IdxTy) 3527 return error("Invalid record"); 3528 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3529 } else // TODO: Remove with llvm 4.0 3530 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3531 if (!Op1) 3532 return error("Invalid record"); 3533 V = ConstantExpr::getExtractElement(Op0, Op1); 3534 break; 3535 } 3536 case bitc::CST_CODE_CE_INSERTELT 3537 : { // CE_INSERTELT: [opval, opval, opty, opval] 3538 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3539 if (Record.size() < 3 || !OpTy) 3540 return error("Invalid record"); 3541 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3542 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3543 OpTy->getElementType()); 3544 Constant *Op2 = nullptr; 3545 if (Record.size() == 4) { 3546 Type *IdxTy = getTypeByID(Record[2]); 3547 if (!IdxTy) 3548 return error("Invalid record"); 3549 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3550 } else // TODO: Remove with llvm 4.0 3551 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3552 if (!Op2) 3553 return error("Invalid record"); 3554 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3555 break; 3556 } 3557 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3558 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3559 if (Record.size() < 3 || !OpTy) 3560 return error("Invalid record"); 3561 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3562 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3563 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3564 OpTy->getNumElements()); 3565 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3566 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3567 break; 3568 } 3569 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3570 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3571 VectorType *OpTy = 3572 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3573 if (Record.size() < 4 || !RTy || !OpTy) 3574 return error("Invalid record"); 3575 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3576 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3577 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3578 RTy->getNumElements()); 3579 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3580 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3581 break; 3582 } 3583 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3584 if (Record.size() < 4) 3585 return error("Invalid record"); 3586 Type *OpTy = getTypeByID(Record[0]); 3587 if (!OpTy) 3588 return error("Invalid record"); 3589 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3590 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3591 3592 if (OpTy->isFPOrFPVectorTy()) 3593 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3594 else 3595 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3596 break; 3597 } 3598 // This maintains backward compatibility, pre-asm dialect keywords. 3599 // FIXME: Remove with the 4.0 release. 3600 case bitc::CST_CODE_INLINEASM_OLD: { 3601 if (Record.size() < 2) 3602 return error("Invalid record"); 3603 std::string AsmStr, ConstrStr; 3604 bool HasSideEffects = Record[0] & 1; 3605 bool IsAlignStack = Record[0] >> 1; 3606 unsigned AsmStrSize = Record[1]; 3607 if (2+AsmStrSize >= Record.size()) 3608 return error("Invalid record"); 3609 unsigned ConstStrSize = Record[2+AsmStrSize]; 3610 if (3+AsmStrSize+ConstStrSize > Record.size()) 3611 return error("Invalid record"); 3612 3613 for (unsigned i = 0; i != AsmStrSize; ++i) 3614 AsmStr += (char)Record[2+i]; 3615 for (unsigned i = 0; i != ConstStrSize; ++i) 3616 ConstrStr += (char)Record[3+AsmStrSize+i]; 3617 PointerType *PTy = cast<PointerType>(CurTy); 3618 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3619 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3620 break; 3621 } 3622 // This version adds support for the asm dialect keywords (e.g., 3623 // inteldialect). 3624 case bitc::CST_CODE_INLINEASM: { 3625 if (Record.size() < 2) 3626 return error("Invalid record"); 3627 std::string AsmStr, ConstrStr; 3628 bool HasSideEffects = Record[0] & 1; 3629 bool IsAlignStack = (Record[0] >> 1) & 1; 3630 unsigned AsmDialect = Record[0] >> 2; 3631 unsigned AsmStrSize = Record[1]; 3632 if (2+AsmStrSize >= Record.size()) 3633 return error("Invalid record"); 3634 unsigned ConstStrSize = Record[2+AsmStrSize]; 3635 if (3+AsmStrSize+ConstStrSize > Record.size()) 3636 return error("Invalid record"); 3637 3638 for (unsigned i = 0; i != AsmStrSize; ++i) 3639 AsmStr += (char)Record[2+i]; 3640 for (unsigned i = 0; i != ConstStrSize; ++i) 3641 ConstrStr += (char)Record[3+AsmStrSize+i]; 3642 PointerType *PTy = cast<PointerType>(CurTy); 3643 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3644 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3645 InlineAsm::AsmDialect(AsmDialect)); 3646 break; 3647 } 3648 case bitc::CST_CODE_BLOCKADDRESS:{ 3649 if (Record.size() < 3) 3650 return error("Invalid record"); 3651 Type *FnTy = getTypeByID(Record[0]); 3652 if (!FnTy) 3653 return error("Invalid record"); 3654 Function *Fn = 3655 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3656 if (!Fn) 3657 return error("Invalid record"); 3658 3659 // If the function is already parsed we can insert the block address right 3660 // away. 3661 BasicBlock *BB; 3662 unsigned BBID = Record[2]; 3663 if (!BBID) 3664 // Invalid reference to entry block. 3665 return error("Invalid ID"); 3666 if (!Fn->empty()) { 3667 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3668 for (size_t I = 0, E = BBID; I != E; ++I) { 3669 if (BBI == BBE) 3670 return error("Invalid ID"); 3671 ++BBI; 3672 } 3673 BB = &*BBI; 3674 } else { 3675 // Otherwise insert a placeholder and remember it so it can be inserted 3676 // when the function is parsed. 3677 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3678 if (FwdBBs.empty()) 3679 BasicBlockFwdRefQueue.push_back(Fn); 3680 if (FwdBBs.size() < BBID + 1) 3681 FwdBBs.resize(BBID + 1); 3682 if (!FwdBBs[BBID]) 3683 FwdBBs[BBID] = BasicBlock::Create(Context); 3684 BB = FwdBBs[BBID]; 3685 } 3686 V = BlockAddress::get(Fn, BB); 3687 break; 3688 } 3689 } 3690 3691 ValueList.assignValue(V, NextCstNo); 3692 ++NextCstNo; 3693 } 3694 } 3695 3696 Error BitcodeReader::parseUseLists() { 3697 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3698 return error("Invalid record"); 3699 3700 // Read all the records. 3701 SmallVector<uint64_t, 64> Record; 3702 3703 while (true) { 3704 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3705 3706 switch (Entry.Kind) { 3707 case BitstreamEntry::SubBlock: // Handled for us already. 3708 case BitstreamEntry::Error: 3709 return error("Malformed block"); 3710 case BitstreamEntry::EndBlock: 3711 return Error::success(); 3712 case BitstreamEntry::Record: 3713 // The interesting case. 3714 break; 3715 } 3716 3717 // Read a use list record. 3718 Record.clear(); 3719 bool IsBB = false; 3720 switch (Stream.readRecord(Entry.ID, Record)) { 3721 default: // Default behavior: unknown type. 3722 break; 3723 case bitc::USELIST_CODE_BB: 3724 IsBB = true; 3725 LLVM_FALLTHROUGH; 3726 case bitc::USELIST_CODE_DEFAULT: { 3727 unsigned RecordLength = Record.size(); 3728 if (RecordLength < 3) 3729 // Records should have at least an ID and two indexes. 3730 return error("Invalid record"); 3731 unsigned ID = Record.back(); 3732 Record.pop_back(); 3733 3734 Value *V; 3735 if (IsBB) { 3736 assert(ID < FunctionBBs.size() && "Basic block not found"); 3737 V = FunctionBBs[ID]; 3738 } else 3739 V = ValueList[ID]; 3740 unsigned NumUses = 0; 3741 SmallDenseMap<const Use *, unsigned, 16> Order; 3742 for (const Use &U : V->materialized_uses()) { 3743 if (++NumUses > Record.size()) 3744 break; 3745 Order[&U] = Record[NumUses - 1]; 3746 } 3747 if (Order.size() != Record.size() || NumUses > Record.size()) 3748 // Mismatches can happen if the functions are being materialized lazily 3749 // (out-of-order), or a value has been upgraded. 3750 break; 3751 3752 V->sortUseList([&](const Use &L, const Use &R) { 3753 return Order.lookup(&L) < Order.lookup(&R); 3754 }); 3755 break; 3756 } 3757 } 3758 } 3759 } 3760 3761 /// When we see the block for metadata, remember where it is and then skip it. 3762 /// This lets us lazily deserialize the metadata. 3763 Error BitcodeReader::rememberAndSkipMetadata() { 3764 // Save the current stream state. 3765 uint64_t CurBit = Stream.GetCurrentBitNo(); 3766 DeferredMetadataInfo.push_back(CurBit); 3767 3768 // Skip over the block for now. 3769 if (Stream.SkipBlock()) 3770 return error("Invalid record"); 3771 return Error::success(); 3772 } 3773 3774 Error BitcodeReader::materializeMetadata() { 3775 for (uint64_t BitPos : DeferredMetadataInfo) { 3776 // Move the bit stream to the saved position. 3777 Stream.JumpToBit(BitPos); 3778 if (Error Err = parseMetadata(true)) 3779 return Err; 3780 } 3781 DeferredMetadataInfo.clear(); 3782 return Error::success(); 3783 } 3784 3785 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3786 3787 /// When we see the block for a function body, remember where it is and then 3788 /// skip it. This lets us lazily deserialize the functions. 3789 Error BitcodeReader::rememberAndSkipFunctionBody() { 3790 // Get the function we are talking about. 3791 if (FunctionsWithBodies.empty()) 3792 return error("Insufficient function protos"); 3793 3794 Function *Fn = FunctionsWithBodies.back(); 3795 FunctionsWithBodies.pop_back(); 3796 3797 // Save the current stream state. 3798 uint64_t CurBit = Stream.GetCurrentBitNo(); 3799 assert( 3800 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3801 "Mismatch between VST and scanned function offsets"); 3802 DeferredFunctionInfo[Fn] = CurBit; 3803 3804 // Skip over the function block for now. 3805 if (Stream.SkipBlock()) 3806 return error("Invalid record"); 3807 return Error::success(); 3808 } 3809 3810 Error BitcodeReader::globalCleanup() { 3811 // Patch the initializers for globals and aliases up. 3812 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3813 return Err; 3814 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3815 return error("Malformed global initializer set"); 3816 3817 // Look for intrinsic functions which need to be upgraded at some point 3818 for (Function &F : *TheModule) { 3819 Function *NewFn; 3820 if (UpgradeIntrinsicFunction(&F, NewFn)) 3821 UpgradedIntrinsics[&F] = NewFn; 3822 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3823 // Some types could be renamed during loading if several modules are 3824 // loaded in the same LLVMContext (LTO scenario). In this case we should 3825 // remangle intrinsics names as well. 3826 RemangledIntrinsics[&F] = Remangled.getValue(); 3827 } 3828 3829 // Look for global variables which need to be renamed. 3830 for (GlobalVariable &GV : TheModule->globals()) 3831 UpgradeGlobalVariable(&GV); 3832 3833 // Force deallocation of memory for these vectors to favor the client that 3834 // want lazy deserialization. 3835 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3836 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3837 IndirectSymbolInits); 3838 return Error::success(); 3839 } 3840 3841 /// Support for lazy parsing of function bodies. This is required if we 3842 /// either have an old bitcode file without a VST forward declaration record, 3843 /// or if we have an anonymous function being materialized, since anonymous 3844 /// functions do not have a name and are therefore not in the VST. 3845 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3846 Stream.JumpToBit(NextUnreadBit); 3847 3848 if (Stream.AtEndOfStream()) 3849 return error("Could not find function in stream"); 3850 3851 if (!SeenFirstFunctionBody) 3852 return error("Trying to materialize functions before seeing function blocks"); 3853 3854 // An old bitcode file with the symbol table at the end would have 3855 // finished the parse greedily. 3856 assert(SeenValueSymbolTable); 3857 3858 SmallVector<uint64_t, 64> Record; 3859 3860 while (true) { 3861 BitstreamEntry Entry = Stream.advance(); 3862 switch (Entry.Kind) { 3863 default: 3864 return error("Expect SubBlock"); 3865 case BitstreamEntry::SubBlock: 3866 switch (Entry.ID) { 3867 default: 3868 return error("Expect function block"); 3869 case bitc::FUNCTION_BLOCK_ID: 3870 if (Error Err = rememberAndSkipFunctionBody()) 3871 return Err; 3872 NextUnreadBit = Stream.GetCurrentBitNo(); 3873 return Error::success(); 3874 } 3875 } 3876 } 3877 } 3878 3879 bool BitcodeReaderBase::readBlockInfo() { 3880 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 3881 if (!NewBlockInfo) 3882 return true; 3883 BlockInfo = std::move(*NewBlockInfo); 3884 return false; 3885 } 3886 3887 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3888 bool ShouldLazyLoadMetadata) { 3889 if (ResumeBit) 3890 Stream.JumpToBit(ResumeBit); 3891 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3892 return error("Invalid record"); 3893 3894 SmallVector<uint64_t, 64> Record; 3895 std::vector<std::string> SectionTable; 3896 std::vector<std::string> GCTable; 3897 3898 // Read all the records for this module. 3899 while (true) { 3900 BitstreamEntry Entry = Stream.advance(); 3901 3902 switch (Entry.Kind) { 3903 case BitstreamEntry::Error: 3904 return error("Malformed block"); 3905 case BitstreamEntry::EndBlock: 3906 return globalCleanup(); 3907 3908 case BitstreamEntry::SubBlock: 3909 switch (Entry.ID) { 3910 default: // Skip unknown content. 3911 if (Stream.SkipBlock()) 3912 return error("Invalid record"); 3913 break; 3914 case bitc::BLOCKINFO_BLOCK_ID: 3915 if (readBlockInfo()) 3916 return error("Malformed block"); 3917 break; 3918 case bitc::PARAMATTR_BLOCK_ID: 3919 if (Error Err = parseAttributeBlock()) 3920 return Err; 3921 break; 3922 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3923 if (Error Err = parseAttributeGroupBlock()) 3924 return Err; 3925 break; 3926 case bitc::TYPE_BLOCK_ID_NEW: 3927 if (Error Err = parseTypeTable()) 3928 return Err; 3929 break; 3930 case bitc::VALUE_SYMTAB_BLOCK_ID: 3931 if (!SeenValueSymbolTable) { 3932 // Either this is an old form VST without function index and an 3933 // associated VST forward declaration record (which would have caused 3934 // the VST to be jumped to and parsed before it was encountered 3935 // normally in the stream), or there were no function blocks to 3936 // trigger an earlier parsing of the VST. 3937 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3938 if (Error Err = parseValueSymbolTable()) 3939 return Err; 3940 SeenValueSymbolTable = true; 3941 } else { 3942 // We must have had a VST forward declaration record, which caused 3943 // the parser to jump to and parse the VST earlier. 3944 assert(VSTOffset > 0); 3945 if (Stream.SkipBlock()) 3946 return error("Invalid record"); 3947 } 3948 break; 3949 case bitc::CONSTANTS_BLOCK_ID: 3950 if (Error Err = parseConstants()) 3951 return Err; 3952 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3953 return Err; 3954 break; 3955 case bitc::METADATA_BLOCK_ID: 3956 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3957 if (Error Err = rememberAndSkipMetadata()) 3958 return Err; 3959 break; 3960 } 3961 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3962 if (Error Err = parseMetadata(true)) 3963 return Err; 3964 break; 3965 case bitc::METADATA_KIND_BLOCK_ID: 3966 if (Error Err = parseMetadataKinds()) 3967 return Err; 3968 break; 3969 case bitc::FUNCTION_BLOCK_ID: 3970 // If this is the first function body we've seen, reverse the 3971 // FunctionsWithBodies list. 3972 if (!SeenFirstFunctionBody) { 3973 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3974 if (Error Err = globalCleanup()) 3975 return Err; 3976 SeenFirstFunctionBody = true; 3977 } 3978 3979 if (VSTOffset > 0) { 3980 // If we have a VST forward declaration record, make sure we 3981 // parse the VST now if we haven't already. It is needed to 3982 // set up the DeferredFunctionInfo vector for lazy reading. 3983 if (!SeenValueSymbolTable) { 3984 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3985 return Err; 3986 SeenValueSymbolTable = true; 3987 // Fall through so that we record the NextUnreadBit below. 3988 // This is necessary in case we have an anonymous function that 3989 // is later materialized. Since it will not have a VST entry we 3990 // need to fall back to the lazy parse to find its offset. 3991 } else { 3992 // If we have a VST forward declaration record, but have already 3993 // parsed the VST (just above, when the first function body was 3994 // encountered here), then we are resuming the parse after 3995 // materializing functions. The ResumeBit points to the 3996 // start of the last function block recorded in the 3997 // DeferredFunctionInfo map. Skip it. 3998 if (Stream.SkipBlock()) 3999 return error("Invalid record"); 4000 continue; 4001 } 4002 } 4003 4004 // Support older bitcode files that did not have the function 4005 // index in the VST, nor a VST forward declaration record, as 4006 // well as anonymous functions that do not have VST entries. 4007 // Build the DeferredFunctionInfo vector on the fly. 4008 if (Error Err = rememberAndSkipFunctionBody()) 4009 return Err; 4010 4011 // Suspend parsing when we reach the function bodies. Subsequent 4012 // materialization calls will resume it when necessary. If the bitcode 4013 // file is old, the symbol table will be at the end instead and will not 4014 // have been seen yet. In this case, just finish the parse now. 4015 if (SeenValueSymbolTable) { 4016 NextUnreadBit = Stream.GetCurrentBitNo(); 4017 // After the VST has been parsed, we need to make sure intrinsic name 4018 // are auto-upgraded. 4019 return globalCleanup(); 4020 } 4021 break; 4022 case bitc::USELIST_BLOCK_ID: 4023 if (Error Err = parseUseLists()) 4024 return Err; 4025 break; 4026 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4027 if (Error Err = parseOperandBundleTags()) 4028 return Err; 4029 break; 4030 } 4031 continue; 4032 4033 case BitstreamEntry::Record: 4034 // The interesting case. 4035 break; 4036 } 4037 4038 // Read a record. 4039 auto BitCode = Stream.readRecord(Entry.ID, Record); 4040 switch (BitCode) { 4041 default: break; // Default behavior, ignore unknown content. 4042 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 4043 if (Record.size() < 1) 4044 return error("Invalid record"); 4045 // Only version #0 and #1 are supported so far. 4046 unsigned module_version = Record[0]; 4047 switch (module_version) { 4048 default: 4049 return error("Invalid value"); 4050 case 0: 4051 UseRelativeIDs = false; 4052 break; 4053 case 1: 4054 UseRelativeIDs = true; 4055 break; 4056 } 4057 break; 4058 } 4059 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4060 std::string S; 4061 if (convertToString(Record, 0, S)) 4062 return error("Invalid record"); 4063 TheModule->setTargetTriple(S); 4064 break; 4065 } 4066 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4067 std::string S; 4068 if (convertToString(Record, 0, S)) 4069 return error("Invalid record"); 4070 TheModule->setDataLayout(S); 4071 break; 4072 } 4073 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4074 std::string S; 4075 if (convertToString(Record, 0, S)) 4076 return error("Invalid record"); 4077 TheModule->setModuleInlineAsm(S); 4078 break; 4079 } 4080 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4081 // FIXME: Remove in 4.0. 4082 std::string S; 4083 if (convertToString(Record, 0, S)) 4084 return error("Invalid record"); 4085 // Ignore value. 4086 break; 4087 } 4088 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4089 std::string S; 4090 if (convertToString(Record, 0, S)) 4091 return error("Invalid record"); 4092 SectionTable.push_back(S); 4093 break; 4094 } 4095 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4096 std::string S; 4097 if (convertToString(Record, 0, S)) 4098 return error("Invalid record"); 4099 GCTable.push_back(S); 4100 break; 4101 } 4102 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 4103 if (Record.size() < 2) 4104 return error("Invalid record"); 4105 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4106 unsigned ComdatNameSize = Record[1]; 4107 std::string ComdatName; 4108 ComdatName.reserve(ComdatNameSize); 4109 for (unsigned i = 0; i != ComdatNameSize; ++i) 4110 ComdatName += (char)Record[2 + i]; 4111 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 4112 C->setSelectionKind(SK); 4113 ComdatList.push_back(C); 4114 break; 4115 } 4116 // GLOBALVAR: [pointer type, isconst, initid, 4117 // linkage, alignment, section, visibility, threadlocal, 4118 // unnamed_addr, externally_initialized, dllstorageclass, 4119 // comdat] 4120 case bitc::MODULE_CODE_GLOBALVAR: { 4121 if (Record.size() < 6) 4122 return error("Invalid record"); 4123 Type *Ty = getTypeByID(Record[0]); 4124 if (!Ty) 4125 return error("Invalid record"); 4126 bool isConstant = Record[1] & 1; 4127 bool explicitType = Record[1] & 2; 4128 unsigned AddressSpace; 4129 if (explicitType) { 4130 AddressSpace = Record[1] >> 2; 4131 } else { 4132 if (!Ty->isPointerTy()) 4133 return error("Invalid type for value"); 4134 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4135 Ty = cast<PointerType>(Ty)->getElementType(); 4136 } 4137 4138 uint64_t RawLinkage = Record[3]; 4139 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4140 unsigned Alignment; 4141 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4142 return Err; 4143 std::string Section; 4144 if (Record[5]) { 4145 if (Record[5]-1 >= SectionTable.size()) 4146 return error("Invalid ID"); 4147 Section = SectionTable[Record[5]-1]; 4148 } 4149 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4150 // Local linkage must have default visibility. 4151 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4152 // FIXME: Change to an error if non-default in 4.0. 4153 Visibility = getDecodedVisibility(Record[6]); 4154 4155 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4156 if (Record.size() > 7) 4157 TLM = getDecodedThreadLocalMode(Record[7]); 4158 4159 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4160 if (Record.size() > 8) 4161 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4162 4163 bool ExternallyInitialized = false; 4164 if (Record.size() > 9) 4165 ExternallyInitialized = Record[9]; 4166 4167 GlobalVariable *NewGV = 4168 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 4169 TLM, AddressSpace, ExternallyInitialized); 4170 NewGV->setAlignment(Alignment); 4171 if (!Section.empty()) 4172 NewGV->setSection(Section); 4173 NewGV->setVisibility(Visibility); 4174 NewGV->setUnnamedAddr(UnnamedAddr); 4175 4176 if (Record.size() > 10) 4177 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4178 else 4179 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4180 4181 ValueList.push_back(NewGV); 4182 4183 // Remember which value to use for the global initializer. 4184 if (unsigned InitID = Record[2]) 4185 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 4186 4187 if (Record.size() > 11) { 4188 if (unsigned ComdatID = Record[11]) { 4189 if (ComdatID > ComdatList.size()) 4190 return error("Invalid global variable comdat ID"); 4191 NewGV->setComdat(ComdatList[ComdatID - 1]); 4192 } 4193 } else if (hasImplicitComdat(RawLinkage)) { 4194 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4195 } 4196 4197 break; 4198 } 4199 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4200 // alignment, section, visibility, gc, unnamed_addr, 4201 // prologuedata, dllstorageclass, comdat, prefixdata] 4202 case bitc::MODULE_CODE_FUNCTION: { 4203 if (Record.size() < 8) 4204 return error("Invalid record"); 4205 Type *Ty = getTypeByID(Record[0]); 4206 if (!Ty) 4207 return error("Invalid record"); 4208 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4209 Ty = PTy->getElementType(); 4210 auto *FTy = dyn_cast<FunctionType>(Ty); 4211 if (!FTy) 4212 return error("Invalid type for value"); 4213 auto CC = static_cast<CallingConv::ID>(Record[1]); 4214 if (CC & ~CallingConv::MaxID) 4215 return error("Invalid calling convention ID"); 4216 4217 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4218 "", TheModule); 4219 4220 Func->setCallingConv(CC); 4221 bool isProto = Record[2]; 4222 uint64_t RawLinkage = Record[3]; 4223 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4224 Func->setAttributes(getAttributes(Record[4])); 4225 4226 unsigned Alignment; 4227 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4228 return Err; 4229 Func->setAlignment(Alignment); 4230 if (Record[6]) { 4231 if (Record[6]-1 >= SectionTable.size()) 4232 return error("Invalid ID"); 4233 Func->setSection(SectionTable[Record[6]-1]); 4234 } 4235 // Local linkage must have default visibility. 4236 if (!Func->hasLocalLinkage()) 4237 // FIXME: Change to an error if non-default in 4.0. 4238 Func->setVisibility(getDecodedVisibility(Record[7])); 4239 if (Record.size() > 8 && Record[8]) { 4240 if (Record[8]-1 >= GCTable.size()) 4241 return error("Invalid ID"); 4242 Func->setGC(GCTable[Record[8] - 1]); 4243 } 4244 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4245 if (Record.size() > 9) 4246 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4247 Func->setUnnamedAddr(UnnamedAddr); 4248 if (Record.size() > 10 && Record[10] != 0) 4249 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4250 4251 if (Record.size() > 11) 4252 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4253 else 4254 upgradeDLLImportExportLinkage(Func, RawLinkage); 4255 4256 if (Record.size() > 12) { 4257 if (unsigned ComdatID = Record[12]) { 4258 if (ComdatID > ComdatList.size()) 4259 return error("Invalid function comdat ID"); 4260 Func->setComdat(ComdatList[ComdatID - 1]); 4261 } 4262 } else if (hasImplicitComdat(RawLinkage)) { 4263 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4264 } 4265 4266 if (Record.size() > 13 && Record[13] != 0) 4267 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4268 4269 if (Record.size() > 14 && Record[14] != 0) 4270 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4271 4272 ValueList.push_back(Func); 4273 4274 // If this is a function with a body, remember the prototype we are 4275 // creating now, so that we can match up the body with them later. 4276 if (!isProto) { 4277 Func->setIsMaterializable(true); 4278 FunctionsWithBodies.push_back(Func); 4279 DeferredFunctionInfo[Func] = 0; 4280 } 4281 break; 4282 } 4283 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4284 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4285 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4286 case bitc::MODULE_CODE_IFUNC: 4287 case bitc::MODULE_CODE_ALIAS: 4288 case bitc::MODULE_CODE_ALIAS_OLD: { 4289 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4290 if (Record.size() < (3 + (unsigned)NewRecord)) 4291 return error("Invalid record"); 4292 unsigned OpNum = 0; 4293 Type *Ty = getTypeByID(Record[OpNum++]); 4294 if (!Ty) 4295 return error("Invalid record"); 4296 4297 unsigned AddrSpace; 4298 if (!NewRecord) { 4299 auto *PTy = dyn_cast<PointerType>(Ty); 4300 if (!PTy) 4301 return error("Invalid type for value"); 4302 Ty = PTy->getElementType(); 4303 AddrSpace = PTy->getAddressSpace(); 4304 } else { 4305 AddrSpace = Record[OpNum++]; 4306 } 4307 4308 auto Val = Record[OpNum++]; 4309 auto Linkage = Record[OpNum++]; 4310 GlobalIndirectSymbol *NewGA; 4311 if (BitCode == bitc::MODULE_CODE_ALIAS || 4312 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4313 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4314 "", TheModule); 4315 else 4316 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4317 "", nullptr, TheModule); 4318 // Old bitcode files didn't have visibility field. 4319 // Local linkage must have default visibility. 4320 if (OpNum != Record.size()) { 4321 auto VisInd = OpNum++; 4322 if (!NewGA->hasLocalLinkage()) 4323 // FIXME: Change to an error if non-default in 4.0. 4324 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4325 } 4326 if (OpNum != Record.size()) 4327 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4328 else 4329 upgradeDLLImportExportLinkage(NewGA, Linkage); 4330 if (OpNum != Record.size()) 4331 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4332 if (OpNum != Record.size()) 4333 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4334 ValueList.push_back(NewGA); 4335 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4336 break; 4337 } 4338 /// MODULE_CODE_PURGEVALS: [numvals] 4339 case bitc::MODULE_CODE_PURGEVALS: 4340 // Trim down the value list to the specified size. 4341 if (Record.size() < 1 || Record[0] > ValueList.size()) 4342 return error("Invalid record"); 4343 ValueList.shrinkTo(Record[0]); 4344 break; 4345 /// MODULE_CODE_VSTOFFSET: [offset] 4346 case bitc::MODULE_CODE_VSTOFFSET: 4347 if (Record.size() < 1) 4348 return error("Invalid record"); 4349 VSTOffset = Record[0]; 4350 break; 4351 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4352 case bitc::MODULE_CODE_SOURCE_FILENAME: 4353 SmallString<128> ValueName; 4354 if (convertToString(Record, 0, ValueName)) 4355 return error("Invalid record"); 4356 TheModule->setSourceFileName(ValueName); 4357 break; 4358 } 4359 Record.clear(); 4360 } 4361 } 4362 4363 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) { 4364 TheModule = M; 4365 4366 // We expect a number of well-defined blocks, though we don't necessarily 4367 // need to understand them all. 4368 while (true) { 4369 if (Stream.AtEndOfStream()) { 4370 // We didn't really read a proper Module. 4371 return error("Malformed IR file"); 4372 } 4373 4374 BitstreamEntry Entry = 4375 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4376 4377 if (Entry.Kind != BitstreamEntry::SubBlock) 4378 return error("Malformed block"); 4379 4380 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4381 Expected<std::string> ProducerIdentificationOrErr = 4382 readIdentificationBlock(Stream); 4383 if (!ProducerIdentificationOrErr) 4384 return ProducerIdentificationOrErr.takeError(); 4385 ProducerIdentification = *ProducerIdentificationOrErr; 4386 continue; 4387 } 4388 4389 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4390 return parseModule(0, ShouldLazyLoadMetadata); 4391 4392 if (Stream.SkipBlock()) 4393 return error("Invalid record"); 4394 } 4395 } 4396 4397 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO, 4398 ArrayRef<uint64_t> Record) { 4399 assert(Record.size() % 2 == 0); 4400 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4401 auto K = MDKindMap.find(Record[I]); 4402 if (K == MDKindMap.end()) 4403 return error("Invalid ID"); 4404 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4405 if (!MD) 4406 return error("Invalid metadata attachment"); 4407 GO.addMetadata(K->second, *MD); 4408 } 4409 return Error::success(); 4410 } 4411 4412 /// Parse metadata attachments. 4413 Error BitcodeReader::parseMetadataAttachment(Function &F) { 4414 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4415 return error("Invalid record"); 4416 4417 SmallVector<uint64_t, 64> Record; 4418 4419 while (true) { 4420 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4421 4422 switch (Entry.Kind) { 4423 case BitstreamEntry::SubBlock: // Handled for us already. 4424 case BitstreamEntry::Error: 4425 return error("Malformed block"); 4426 case BitstreamEntry::EndBlock: 4427 return Error::success(); 4428 case BitstreamEntry::Record: 4429 // The interesting case. 4430 break; 4431 } 4432 4433 // Read a metadata attachment record. 4434 Record.clear(); 4435 switch (Stream.readRecord(Entry.ID, Record)) { 4436 default: // Default behavior: ignore. 4437 break; 4438 case bitc::METADATA_ATTACHMENT: { 4439 unsigned RecordLength = Record.size(); 4440 if (Record.empty()) 4441 return error("Invalid record"); 4442 if (RecordLength % 2 == 0) { 4443 // A function attachment. 4444 if (Error Err = parseGlobalObjectAttachment(F, Record)) 4445 return Err; 4446 continue; 4447 } 4448 4449 // An instruction attachment. 4450 Instruction *Inst = InstructionList[Record[0]]; 4451 for (unsigned i = 1; i != RecordLength; i = i+2) { 4452 unsigned Kind = Record[i]; 4453 DenseMap<unsigned, unsigned>::iterator I = 4454 MDKindMap.find(Kind); 4455 if (I == MDKindMap.end()) 4456 return error("Invalid ID"); 4457 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4458 if (isa<LocalAsMetadata>(Node)) 4459 // Drop the attachment. This used to be legal, but there's no 4460 // upgrade path. 4461 break; 4462 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4463 if (!MD) 4464 return error("Invalid metadata attachment"); 4465 4466 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4467 MD = upgradeInstructionLoopAttachment(*MD); 4468 4469 if (I->second == LLVMContext::MD_tbaa) { 4470 assert(!MD->isTemporary() && "should load MDs before attachments"); 4471 MD = UpgradeTBAANode(*MD); 4472 } 4473 Inst->setMetadata(I->second, MD); 4474 } 4475 break; 4476 } 4477 } 4478 } 4479 } 4480 4481 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4482 if (!isa<PointerType>(PtrType)) 4483 return error("Load/Store operand is not a pointer type"); 4484 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4485 4486 if (ValType && ValType != ElemType) 4487 return error("Explicit load/store type does not match pointee " 4488 "type of pointer operand"); 4489 if (!PointerType::isLoadableOrStorableType(ElemType)) 4490 return error("Cannot load/store from pointer"); 4491 return Error::success(); 4492 } 4493 4494 /// Lazily parse the specified function body block. 4495 Error BitcodeReader::parseFunctionBody(Function *F) { 4496 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4497 return error("Invalid record"); 4498 4499 // Unexpected unresolved metadata when parsing function. 4500 if (MetadataList.hasFwdRefs()) 4501 return error("Invalid function metadata: incoming forward references"); 4502 4503 InstructionList.clear(); 4504 unsigned ModuleValueListSize = ValueList.size(); 4505 unsigned ModuleMetadataListSize = MetadataList.size(); 4506 4507 // Add all the function arguments to the value table. 4508 for (Argument &I : F->args()) 4509 ValueList.push_back(&I); 4510 4511 unsigned NextValueNo = ValueList.size(); 4512 BasicBlock *CurBB = nullptr; 4513 unsigned CurBBNo = 0; 4514 4515 DebugLoc LastLoc; 4516 auto getLastInstruction = [&]() -> Instruction * { 4517 if (CurBB && !CurBB->empty()) 4518 return &CurBB->back(); 4519 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4520 !FunctionBBs[CurBBNo - 1]->empty()) 4521 return &FunctionBBs[CurBBNo - 1]->back(); 4522 return nullptr; 4523 }; 4524 4525 std::vector<OperandBundleDef> OperandBundles; 4526 4527 // Read all the records. 4528 SmallVector<uint64_t, 64> Record; 4529 4530 while (true) { 4531 BitstreamEntry Entry = Stream.advance(); 4532 4533 switch (Entry.Kind) { 4534 case BitstreamEntry::Error: 4535 return error("Malformed block"); 4536 case BitstreamEntry::EndBlock: 4537 goto OutOfRecordLoop; 4538 4539 case BitstreamEntry::SubBlock: 4540 switch (Entry.ID) { 4541 default: // Skip unknown content. 4542 if (Stream.SkipBlock()) 4543 return error("Invalid record"); 4544 break; 4545 case bitc::CONSTANTS_BLOCK_ID: 4546 if (Error Err = parseConstants()) 4547 return Err; 4548 NextValueNo = ValueList.size(); 4549 break; 4550 case bitc::VALUE_SYMTAB_BLOCK_ID: 4551 if (Error Err = parseValueSymbolTable()) 4552 return Err; 4553 break; 4554 case bitc::METADATA_ATTACHMENT_ID: 4555 if (Error Err = parseMetadataAttachment(*F)) 4556 return Err; 4557 break; 4558 case bitc::METADATA_BLOCK_ID: 4559 if (Error Err = parseMetadata()) 4560 return Err; 4561 break; 4562 case bitc::USELIST_BLOCK_ID: 4563 if (Error Err = parseUseLists()) 4564 return Err; 4565 break; 4566 } 4567 continue; 4568 4569 case BitstreamEntry::Record: 4570 // The interesting case. 4571 break; 4572 } 4573 4574 // Read a record. 4575 Record.clear(); 4576 Instruction *I = nullptr; 4577 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4578 switch (BitCode) { 4579 default: // Default behavior: reject 4580 return error("Invalid value"); 4581 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4582 if (Record.size() < 1 || Record[0] == 0) 4583 return error("Invalid record"); 4584 // Create all the basic blocks for the function. 4585 FunctionBBs.resize(Record[0]); 4586 4587 // See if anything took the address of blocks in this function. 4588 auto BBFRI = BasicBlockFwdRefs.find(F); 4589 if (BBFRI == BasicBlockFwdRefs.end()) { 4590 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4591 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4592 } else { 4593 auto &BBRefs = BBFRI->second; 4594 // Check for invalid basic block references. 4595 if (BBRefs.size() > FunctionBBs.size()) 4596 return error("Invalid ID"); 4597 assert(!BBRefs.empty() && "Unexpected empty array"); 4598 assert(!BBRefs.front() && "Invalid reference to entry block"); 4599 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4600 ++I) 4601 if (I < RE && BBRefs[I]) { 4602 BBRefs[I]->insertInto(F); 4603 FunctionBBs[I] = BBRefs[I]; 4604 } else { 4605 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4606 } 4607 4608 // Erase from the table. 4609 BasicBlockFwdRefs.erase(BBFRI); 4610 } 4611 4612 CurBB = FunctionBBs[0]; 4613 continue; 4614 } 4615 4616 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4617 // This record indicates that the last instruction is at the same 4618 // location as the previous instruction with a location. 4619 I = getLastInstruction(); 4620 4621 if (!I) 4622 return error("Invalid record"); 4623 I->setDebugLoc(LastLoc); 4624 I = nullptr; 4625 continue; 4626 4627 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4628 I = getLastInstruction(); 4629 if (!I || Record.size() < 4) 4630 return error("Invalid record"); 4631 4632 unsigned Line = Record[0], Col = Record[1]; 4633 unsigned ScopeID = Record[2], IAID = Record[3]; 4634 4635 MDNode *Scope = nullptr, *IA = nullptr; 4636 if (ScopeID) { 4637 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4638 if (!Scope) 4639 return error("Invalid record"); 4640 } 4641 if (IAID) { 4642 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4643 if (!IA) 4644 return error("Invalid record"); 4645 } 4646 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4647 I->setDebugLoc(LastLoc); 4648 I = nullptr; 4649 continue; 4650 } 4651 4652 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4653 unsigned OpNum = 0; 4654 Value *LHS, *RHS; 4655 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4656 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4657 OpNum+1 > Record.size()) 4658 return error("Invalid record"); 4659 4660 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4661 if (Opc == -1) 4662 return error("Invalid record"); 4663 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4664 InstructionList.push_back(I); 4665 if (OpNum < Record.size()) { 4666 if (Opc == Instruction::Add || 4667 Opc == Instruction::Sub || 4668 Opc == Instruction::Mul || 4669 Opc == Instruction::Shl) { 4670 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4671 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4672 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4673 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4674 } else if (Opc == Instruction::SDiv || 4675 Opc == Instruction::UDiv || 4676 Opc == Instruction::LShr || 4677 Opc == Instruction::AShr) { 4678 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4679 cast<BinaryOperator>(I)->setIsExact(true); 4680 } else if (isa<FPMathOperator>(I)) { 4681 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4682 if (FMF.any()) 4683 I->setFastMathFlags(FMF); 4684 } 4685 4686 } 4687 break; 4688 } 4689 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4690 unsigned OpNum = 0; 4691 Value *Op; 4692 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4693 OpNum+2 != Record.size()) 4694 return error("Invalid record"); 4695 4696 Type *ResTy = getTypeByID(Record[OpNum]); 4697 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4698 if (Opc == -1 || !ResTy) 4699 return error("Invalid record"); 4700 Instruction *Temp = nullptr; 4701 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4702 if (Temp) { 4703 InstructionList.push_back(Temp); 4704 CurBB->getInstList().push_back(Temp); 4705 } 4706 } else { 4707 auto CastOp = (Instruction::CastOps)Opc; 4708 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4709 return error("Invalid cast"); 4710 I = CastInst::Create(CastOp, Op, ResTy); 4711 } 4712 InstructionList.push_back(I); 4713 break; 4714 } 4715 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4716 case bitc::FUNC_CODE_INST_GEP_OLD: 4717 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4718 unsigned OpNum = 0; 4719 4720 Type *Ty; 4721 bool InBounds; 4722 4723 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4724 InBounds = Record[OpNum++]; 4725 Ty = getTypeByID(Record[OpNum++]); 4726 } else { 4727 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4728 Ty = nullptr; 4729 } 4730 4731 Value *BasePtr; 4732 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4733 return error("Invalid record"); 4734 4735 if (!Ty) 4736 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4737 ->getElementType(); 4738 else if (Ty != 4739 cast<PointerType>(BasePtr->getType()->getScalarType()) 4740 ->getElementType()) 4741 return error( 4742 "Explicit gep type does not match pointee type of pointer operand"); 4743 4744 SmallVector<Value*, 16> GEPIdx; 4745 while (OpNum != Record.size()) { 4746 Value *Op; 4747 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4748 return error("Invalid record"); 4749 GEPIdx.push_back(Op); 4750 } 4751 4752 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4753 4754 InstructionList.push_back(I); 4755 if (InBounds) 4756 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4757 break; 4758 } 4759 4760 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4761 // EXTRACTVAL: [opty, opval, n x indices] 4762 unsigned OpNum = 0; 4763 Value *Agg; 4764 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4765 return error("Invalid record"); 4766 4767 unsigned RecSize = Record.size(); 4768 if (OpNum == RecSize) 4769 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4770 4771 SmallVector<unsigned, 4> EXTRACTVALIdx; 4772 Type *CurTy = Agg->getType(); 4773 for (; OpNum != RecSize; ++OpNum) { 4774 bool IsArray = CurTy->isArrayTy(); 4775 bool IsStruct = CurTy->isStructTy(); 4776 uint64_t Index = Record[OpNum]; 4777 4778 if (!IsStruct && !IsArray) 4779 return error("EXTRACTVAL: Invalid type"); 4780 if ((unsigned)Index != Index) 4781 return error("Invalid value"); 4782 if (IsStruct && Index >= CurTy->subtypes().size()) 4783 return error("EXTRACTVAL: Invalid struct index"); 4784 if (IsArray && Index >= CurTy->getArrayNumElements()) 4785 return error("EXTRACTVAL: Invalid array index"); 4786 EXTRACTVALIdx.push_back((unsigned)Index); 4787 4788 if (IsStruct) 4789 CurTy = CurTy->subtypes()[Index]; 4790 else 4791 CurTy = CurTy->subtypes()[0]; 4792 } 4793 4794 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4795 InstructionList.push_back(I); 4796 break; 4797 } 4798 4799 case bitc::FUNC_CODE_INST_INSERTVAL: { 4800 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4801 unsigned OpNum = 0; 4802 Value *Agg; 4803 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4804 return error("Invalid record"); 4805 Value *Val; 4806 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4807 return error("Invalid record"); 4808 4809 unsigned RecSize = Record.size(); 4810 if (OpNum == RecSize) 4811 return error("INSERTVAL: Invalid instruction with 0 indices"); 4812 4813 SmallVector<unsigned, 4> INSERTVALIdx; 4814 Type *CurTy = Agg->getType(); 4815 for (; OpNum != RecSize; ++OpNum) { 4816 bool IsArray = CurTy->isArrayTy(); 4817 bool IsStruct = CurTy->isStructTy(); 4818 uint64_t Index = Record[OpNum]; 4819 4820 if (!IsStruct && !IsArray) 4821 return error("INSERTVAL: Invalid type"); 4822 if ((unsigned)Index != Index) 4823 return error("Invalid value"); 4824 if (IsStruct && Index >= CurTy->subtypes().size()) 4825 return error("INSERTVAL: Invalid struct index"); 4826 if (IsArray && Index >= CurTy->getArrayNumElements()) 4827 return error("INSERTVAL: Invalid array index"); 4828 4829 INSERTVALIdx.push_back((unsigned)Index); 4830 if (IsStruct) 4831 CurTy = CurTy->subtypes()[Index]; 4832 else 4833 CurTy = CurTy->subtypes()[0]; 4834 } 4835 4836 if (CurTy != Val->getType()) 4837 return error("Inserted value type doesn't match aggregate type"); 4838 4839 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4840 InstructionList.push_back(I); 4841 break; 4842 } 4843 4844 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4845 // obsolete form of select 4846 // handles select i1 ... in old bitcode 4847 unsigned OpNum = 0; 4848 Value *TrueVal, *FalseVal, *Cond; 4849 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4850 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4851 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4852 return error("Invalid record"); 4853 4854 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4855 InstructionList.push_back(I); 4856 break; 4857 } 4858 4859 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4860 // new form of select 4861 // handles select i1 or select [N x i1] 4862 unsigned OpNum = 0; 4863 Value *TrueVal, *FalseVal, *Cond; 4864 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4865 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4866 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4867 return error("Invalid record"); 4868 4869 // select condition can be either i1 or [N x i1] 4870 if (VectorType* vector_type = 4871 dyn_cast<VectorType>(Cond->getType())) { 4872 // expect <n x i1> 4873 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4874 return error("Invalid type for value"); 4875 } else { 4876 // expect i1 4877 if (Cond->getType() != Type::getInt1Ty(Context)) 4878 return error("Invalid type for value"); 4879 } 4880 4881 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4882 InstructionList.push_back(I); 4883 break; 4884 } 4885 4886 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4887 unsigned OpNum = 0; 4888 Value *Vec, *Idx; 4889 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4890 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4891 return error("Invalid record"); 4892 if (!Vec->getType()->isVectorTy()) 4893 return error("Invalid type for value"); 4894 I = ExtractElementInst::Create(Vec, Idx); 4895 InstructionList.push_back(I); 4896 break; 4897 } 4898 4899 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4900 unsigned OpNum = 0; 4901 Value *Vec, *Elt, *Idx; 4902 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4903 return error("Invalid record"); 4904 if (!Vec->getType()->isVectorTy()) 4905 return error("Invalid type for value"); 4906 if (popValue(Record, OpNum, NextValueNo, 4907 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4908 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4909 return error("Invalid record"); 4910 I = InsertElementInst::Create(Vec, Elt, Idx); 4911 InstructionList.push_back(I); 4912 break; 4913 } 4914 4915 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4916 unsigned OpNum = 0; 4917 Value *Vec1, *Vec2, *Mask; 4918 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4919 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4920 return error("Invalid record"); 4921 4922 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4923 return error("Invalid record"); 4924 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4925 return error("Invalid type for value"); 4926 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4927 InstructionList.push_back(I); 4928 break; 4929 } 4930 4931 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4932 // Old form of ICmp/FCmp returning bool 4933 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4934 // both legal on vectors but had different behaviour. 4935 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4936 // FCmp/ICmp returning bool or vector of bool 4937 4938 unsigned OpNum = 0; 4939 Value *LHS, *RHS; 4940 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4941 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4942 return error("Invalid record"); 4943 4944 unsigned PredVal = Record[OpNum]; 4945 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4946 FastMathFlags FMF; 4947 if (IsFP && Record.size() > OpNum+1) 4948 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4949 4950 if (OpNum+1 != Record.size()) 4951 return error("Invalid record"); 4952 4953 if (LHS->getType()->isFPOrFPVectorTy()) 4954 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4955 else 4956 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4957 4958 if (FMF.any()) 4959 I->setFastMathFlags(FMF); 4960 InstructionList.push_back(I); 4961 break; 4962 } 4963 4964 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4965 { 4966 unsigned Size = Record.size(); 4967 if (Size == 0) { 4968 I = ReturnInst::Create(Context); 4969 InstructionList.push_back(I); 4970 break; 4971 } 4972 4973 unsigned OpNum = 0; 4974 Value *Op = nullptr; 4975 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4976 return error("Invalid record"); 4977 if (OpNum != Record.size()) 4978 return error("Invalid record"); 4979 4980 I = ReturnInst::Create(Context, Op); 4981 InstructionList.push_back(I); 4982 break; 4983 } 4984 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4985 if (Record.size() != 1 && Record.size() != 3) 4986 return error("Invalid record"); 4987 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4988 if (!TrueDest) 4989 return error("Invalid record"); 4990 4991 if (Record.size() == 1) { 4992 I = BranchInst::Create(TrueDest); 4993 InstructionList.push_back(I); 4994 } 4995 else { 4996 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4997 Value *Cond = getValue(Record, 2, NextValueNo, 4998 Type::getInt1Ty(Context)); 4999 if (!FalseDest || !Cond) 5000 return error("Invalid record"); 5001 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5002 InstructionList.push_back(I); 5003 } 5004 break; 5005 } 5006 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5007 if (Record.size() != 1 && Record.size() != 2) 5008 return error("Invalid record"); 5009 unsigned Idx = 0; 5010 Value *CleanupPad = 5011 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5012 if (!CleanupPad) 5013 return error("Invalid record"); 5014 BasicBlock *UnwindDest = nullptr; 5015 if (Record.size() == 2) { 5016 UnwindDest = getBasicBlock(Record[Idx++]); 5017 if (!UnwindDest) 5018 return error("Invalid record"); 5019 } 5020 5021 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5022 InstructionList.push_back(I); 5023 break; 5024 } 5025 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5026 if (Record.size() != 2) 5027 return error("Invalid record"); 5028 unsigned Idx = 0; 5029 Value *CatchPad = 5030 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5031 if (!CatchPad) 5032 return error("Invalid record"); 5033 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5034 if (!BB) 5035 return error("Invalid record"); 5036 5037 I = CatchReturnInst::Create(CatchPad, BB); 5038 InstructionList.push_back(I); 5039 break; 5040 } 5041 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5042 // We must have, at minimum, the outer scope and the number of arguments. 5043 if (Record.size() < 2) 5044 return error("Invalid record"); 5045 5046 unsigned Idx = 0; 5047 5048 Value *ParentPad = 5049 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5050 5051 unsigned NumHandlers = Record[Idx++]; 5052 5053 SmallVector<BasicBlock *, 2> Handlers; 5054 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5055 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5056 if (!BB) 5057 return error("Invalid record"); 5058 Handlers.push_back(BB); 5059 } 5060 5061 BasicBlock *UnwindDest = nullptr; 5062 if (Idx + 1 == Record.size()) { 5063 UnwindDest = getBasicBlock(Record[Idx++]); 5064 if (!UnwindDest) 5065 return error("Invalid record"); 5066 } 5067 5068 if (Record.size() != Idx) 5069 return error("Invalid record"); 5070 5071 auto *CatchSwitch = 5072 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5073 for (BasicBlock *Handler : Handlers) 5074 CatchSwitch->addHandler(Handler); 5075 I = CatchSwitch; 5076 InstructionList.push_back(I); 5077 break; 5078 } 5079 case bitc::FUNC_CODE_INST_CATCHPAD: 5080 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5081 // We must have, at minimum, the outer scope and the number of arguments. 5082 if (Record.size() < 2) 5083 return error("Invalid record"); 5084 5085 unsigned Idx = 0; 5086 5087 Value *ParentPad = 5088 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5089 5090 unsigned NumArgOperands = Record[Idx++]; 5091 5092 SmallVector<Value *, 2> Args; 5093 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5094 Value *Val; 5095 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5096 return error("Invalid record"); 5097 Args.push_back(Val); 5098 } 5099 5100 if (Record.size() != Idx) 5101 return error("Invalid record"); 5102 5103 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5104 I = CleanupPadInst::Create(ParentPad, Args); 5105 else 5106 I = CatchPadInst::Create(ParentPad, Args); 5107 InstructionList.push_back(I); 5108 break; 5109 } 5110 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5111 // Check magic 5112 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5113 // "New" SwitchInst format with case ranges. The changes to write this 5114 // format were reverted but we still recognize bitcode that uses it. 5115 // Hopefully someday we will have support for case ranges and can use 5116 // this format again. 5117 5118 Type *OpTy = getTypeByID(Record[1]); 5119 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5120 5121 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5122 BasicBlock *Default = getBasicBlock(Record[3]); 5123 if (!OpTy || !Cond || !Default) 5124 return error("Invalid record"); 5125 5126 unsigned NumCases = Record[4]; 5127 5128 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5129 InstructionList.push_back(SI); 5130 5131 unsigned CurIdx = 5; 5132 for (unsigned i = 0; i != NumCases; ++i) { 5133 SmallVector<ConstantInt*, 1> CaseVals; 5134 unsigned NumItems = Record[CurIdx++]; 5135 for (unsigned ci = 0; ci != NumItems; ++ci) { 5136 bool isSingleNumber = Record[CurIdx++]; 5137 5138 APInt Low; 5139 unsigned ActiveWords = 1; 5140 if (ValueBitWidth > 64) 5141 ActiveWords = Record[CurIdx++]; 5142 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5143 ValueBitWidth); 5144 CurIdx += ActiveWords; 5145 5146 if (!isSingleNumber) { 5147 ActiveWords = 1; 5148 if (ValueBitWidth > 64) 5149 ActiveWords = Record[CurIdx++]; 5150 APInt High = readWideAPInt( 5151 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5152 CurIdx += ActiveWords; 5153 5154 // FIXME: It is not clear whether values in the range should be 5155 // compared as signed or unsigned values. The partially 5156 // implemented changes that used this format in the past used 5157 // unsigned comparisons. 5158 for ( ; Low.ule(High); ++Low) 5159 CaseVals.push_back(ConstantInt::get(Context, Low)); 5160 } else 5161 CaseVals.push_back(ConstantInt::get(Context, Low)); 5162 } 5163 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5164 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5165 cve = CaseVals.end(); cvi != cve; ++cvi) 5166 SI->addCase(*cvi, DestBB); 5167 } 5168 I = SI; 5169 break; 5170 } 5171 5172 // Old SwitchInst format without case ranges. 5173 5174 if (Record.size() < 3 || (Record.size() & 1) == 0) 5175 return error("Invalid record"); 5176 Type *OpTy = getTypeByID(Record[0]); 5177 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5178 BasicBlock *Default = getBasicBlock(Record[2]); 5179 if (!OpTy || !Cond || !Default) 5180 return error("Invalid record"); 5181 unsigned NumCases = (Record.size()-3)/2; 5182 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5183 InstructionList.push_back(SI); 5184 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5185 ConstantInt *CaseVal = 5186 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5187 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5188 if (!CaseVal || !DestBB) { 5189 delete SI; 5190 return error("Invalid record"); 5191 } 5192 SI->addCase(CaseVal, DestBB); 5193 } 5194 I = SI; 5195 break; 5196 } 5197 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5198 if (Record.size() < 2) 5199 return error("Invalid record"); 5200 Type *OpTy = getTypeByID(Record[0]); 5201 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5202 if (!OpTy || !Address) 5203 return error("Invalid record"); 5204 unsigned NumDests = Record.size()-2; 5205 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5206 InstructionList.push_back(IBI); 5207 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5208 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5209 IBI->addDestination(DestBB); 5210 } else { 5211 delete IBI; 5212 return error("Invalid record"); 5213 } 5214 } 5215 I = IBI; 5216 break; 5217 } 5218 5219 case bitc::FUNC_CODE_INST_INVOKE: { 5220 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5221 if (Record.size() < 4) 5222 return error("Invalid record"); 5223 unsigned OpNum = 0; 5224 AttributeSet PAL = getAttributes(Record[OpNum++]); 5225 unsigned CCInfo = Record[OpNum++]; 5226 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5227 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5228 5229 FunctionType *FTy = nullptr; 5230 if (CCInfo >> 13 & 1 && 5231 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5232 return error("Explicit invoke type is not a function type"); 5233 5234 Value *Callee; 5235 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5236 return error("Invalid record"); 5237 5238 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5239 if (!CalleeTy) 5240 return error("Callee is not a pointer"); 5241 if (!FTy) { 5242 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5243 if (!FTy) 5244 return error("Callee is not of pointer to function type"); 5245 } else if (CalleeTy->getElementType() != FTy) 5246 return error("Explicit invoke type does not match pointee type of " 5247 "callee operand"); 5248 if (Record.size() < FTy->getNumParams() + OpNum) 5249 return error("Insufficient operands to call"); 5250 5251 SmallVector<Value*, 16> Ops; 5252 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5253 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5254 FTy->getParamType(i))); 5255 if (!Ops.back()) 5256 return error("Invalid record"); 5257 } 5258 5259 if (!FTy->isVarArg()) { 5260 if (Record.size() != OpNum) 5261 return error("Invalid record"); 5262 } else { 5263 // Read type/value pairs for varargs params. 5264 while (OpNum != Record.size()) { 5265 Value *Op; 5266 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5267 return error("Invalid record"); 5268 Ops.push_back(Op); 5269 } 5270 } 5271 5272 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5273 OperandBundles.clear(); 5274 InstructionList.push_back(I); 5275 cast<InvokeInst>(I)->setCallingConv( 5276 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5277 cast<InvokeInst>(I)->setAttributes(PAL); 5278 break; 5279 } 5280 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5281 unsigned Idx = 0; 5282 Value *Val = nullptr; 5283 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5284 return error("Invalid record"); 5285 I = ResumeInst::Create(Val); 5286 InstructionList.push_back(I); 5287 break; 5288 } 5289 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5290 I = new UnreachableInst(Context); 5291 InstructionList.push_back(I); 5292 break; 5293 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5294 if (Record.size() < 1 || ((Record.size()-1)&1)) 5295 return error("Invalid record"); 5296 Type *Ty = getTypeByID(Record[0]); 5297 if (!Ty) 5298 return error("Invalid record"); 5299 5300 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5301 InstructionList.push_back(PN); 5302 5303 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5304 Value *V; 5305 // With the new function encoding, it is possible that operands have 5306 // negative IDs (for forward references). Use a signed VBR 5307 // representation to keep the encoding small. 5308 if (UseRelativeIDs) 5309 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5310 else 5311 V = getValue(Record, 1+i, NextValueNo, Ty); 5312 BasicBlock *BB = getBasicBlock(Record[2+i]); 5313 if (!V || !BB) 5314 return error("Invalid record"); 5315 PN->addIncoming(V, BB); 5316 } 5317 I = PN; 5318 break; 5319 } 5320 5321 case bitc::FUNC_CODE_INST_LANDINGPAD: 5322 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5323 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5324 unsigned Idx = 0; 5325 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5326 if (Record.size() < 3) 5327 return error("Invalid record"); 5328 } else { 5329 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5330 if (Record.size() < 4) 5331 return error("Invalid record"); 5332 } 5333 Type *Ty = getTypeByID(Record[Idx++]); 5334 if (!Ty) 5335 return error("Invalid record"); 5336 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5337 Value *PersFn = nullptr; 5338 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5339 return error("Invalid record"); 5340 5341 if (!F->hasPersonalityFn()) 5342 F->setPersonalityFn(cast<Constant>(PersFn)); 5343 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5344 return error("Personality function mismatch"); 5345 } 5346 5347 bool IsCleanup = !!Record[Idx++]; 5348 unsigned NumClauses = Record[Idx++]; 5349 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5350 LP->setCleanup(IsCleanup); 5351 for (unsigned J = 0; J != NumClauses; ++J) { 5352 LandingPadInst::ClauseType CT = 5353 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5354 Value *Val; 5355 5356 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5357 delete LP; 5358 return error("Invalid record"); 5359 } 5360 5361 assert((CT != LandingPadInst::Catch || 5362 !isa<ArrayType>(Val->getType())) && 5363 "Catch clause has a invalid type!"); 5364 assert((CT != LandingPadInst::Filter || 5365 isa<ArrayType>(Val->getType())) && 5366 "Filter clause has invalid type!"); 5367 LP->addClause(cast<Constant>(Val)); 5368 } 5369 5370 I = LP; 5371 InstructionList.push_back(I); 5372 break; 5373 } 5374 5375 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5376 if (Record.size() != 4) 5377 return error("Invalid record"); 5378 uint64_t AlignRecord = Record[3]; 5379 const uint64_t InAllocaMask = uint64_t(1) << 5; 5380 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5381 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5382 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5383 SwiftErrorMask; 5384 bool InAlloca = AlignRecord & InAllocaMask; 5385 bool SwiftError = AlignRecord & SwiftErrorMask; 5386 Type *Ty = getTypeByID(Record[0]); 5387 if ((AlignRecord & ExplicitTypeMask) == 0) { 5388 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5389 if (!PTy) 5390 return error("Old-style alloca with a non-pointer type"); 5391 Ty = PTy->getElementType(); 5392 } 5393 Type *OpTy = getTypeByID(Record[1]); 5394 Value *Size = getFnValueByID(Record[2], OpTy); 5395 unsigned Align; 5396 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5397 return Err; 5398 } 5399 if (!Ty || !Size) 5400 return error("Invalid record"); 5401 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5402 AI->setUsedWithInAlloca(InAlloca); 5403 AI->setSwiftError(SwiftError); 5404 I = AI; 5405 InstructionList.push_back(I); 5406 break; 5407 } 5408 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5409 unsigned OpNum = 0; 5410 Value *Op; 5411 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5412 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5413 return error("Invalid record"); 5414 5415 Type *Ty = nullptr; 5416 if (OpNum + 3 == Record.size()) 5417 Ty = getTypeByID(Record[OpNum++]); 5418 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5419 return Err; 5420 if (!Ty) 5421 Ty = cast<PointerType>(Op->getType())->getElementType(); 5422 5423 unsigned Align; 5424 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5425 return Err; 5426 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5427 5428 InstructionList.push_back(I); 5429 break; 5430 } 5431 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5432 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5433 unsigned OpNum = 0; 5434 Value *Op; 5435 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5436 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5437 return error("Invalid record"); 5438 5439 Type *Ty = nullptr; 5440 if (OpNum + 5 == Record.size()) 5441 Ty = getTypeByID(Record[OpNum++]); 5442 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5443 return Err; 5444 if (!Ty) 5445 Ty = cast<PointerType>(Op->getType())->getElementType(); 5446 5447 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5448 if (Ordering == AtomicOrdering::NotAtomic || 5449 Ordering == AtomicOrdering::Release || 5450 Ordering == AtomicOrdering::AcquireRelease) 5451 return error("Invalid record"); 5452 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5453 return error("Invalid record"); 5454 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5455 5456 unsigned Align; 5457 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5458 return Err; 5459 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5460 5461 InstructionList.push_back(I); 5462 break; 5463 } 5464 case bitc::FUNC_CODE_INST_STORE: 5465 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5466 unsigned OpNum = 0; 5467 Value *Val, *Ptr; 5468 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5469 (BitCode == bitc::FUNC_CODE_INST_STORE 5470 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5471 : popValue(Record, OpNum, NextValueNo, 5472 cast<PointerType>(Ptr->getType())->getElementType(), 5473 Val)) || 5474 OpNum + 2 != Record.size()) 5475 return error("Invalid record"); 5476 5477 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5478 return Err; 5479 unsigned Align; 5480 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5481 return Err; 5482 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5483 InstructionList.push_back(I); 5484 break; 5485 } 5486 case bitc::FUNC_CODE_INST_STOREATOMIC: 5487 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5488 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5489 unsigned OpNum = 0; 5490 Value *Val, *Ptr; 5491 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5492 !isa<PointerType>(Ptr->getType()) || 5493 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5494 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5495 : popValue(Record, OpNum, NextValueNo, 5496 cast<PointerType>(Ptr->getType())->getElementType(), 5497 Val)) || 5498 OpNum + 4 != Record.size()) 5499 return error("Invalid record"); 5500 5501 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5502 return Err; 5503 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5504 if (Ordering == AtomicOrdering::NotAtomic || 5505 Ordering == AtomicOrdering::Acquire || 5506 Ordering == AtomicOrdering::AcquireRelease) 5507 return error("Invalid record"); 5508 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5509 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5510 return error("Invalid record"); 5511 5512 unsigned Align; 5513 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5514 return Err; 5515 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5516 InstructionList.push_back(I); 5517 break; 5518 } 5519 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5520 case bitc::FUNC_CODE_INST_CMPXCHG: { 5521 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5522 // failureordering?, isweak?] 5523 unsigned OpNum = 0; 5524 Value *Ptr, *Cmp, *New; 5525 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5526 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5527 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5528 : popValue(Record, OpNum, NextValueNo, 5529 cast<PointerType>(Ptr->getType())->getElementType(), 5530 Cmp)) || 5531 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5532 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5533 return error("Invalid record"); 5534 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5535 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5536 SuccessOrdering == AtomicOrdering::Unordered) 5537 return error("Invalid record"); 5538 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5539 5540 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5541 return Err; 5542 AtomicOrdering FailureOrdering; 5543 if (Record.size() < 7) 5544 FailureOrdering = 5545 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5546 else 5547 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5548 5549 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5550 SynchScope); 5551 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5552 5553 if (Record.size() < 8) { 5554 // Before weak cmpxchgs existed, the instruction simply returned the 5555 // value loaded from memory, so bitcode files from that era will be 5556 // expecting the first component of a modern cmpxchg. 5557 CurBB->getInstList().push_back(I); 5558 I = ExtractValueInst::Create(I, 0); 5559 } else { 5560 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5561 } 5562 5563 InstructionList.push_back(I); 5564 break; 5565 } 5566 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5567 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5568 unsigned OpNum = 0; 5569 Value *Ptr, *Val; 5570 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5571 !isa<PointerType>(Ptr->getType()) || 5572 popValue(Record, OpNum, NextValueNo, 5573 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5574 OpNum+4 != Record.size()) 5575 return error("Invalid record"); 5576 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5577 if (Operation < AtomicRMWInst::FIRST_BINOP || 5578 Operation > AtomicRMWInst::LAST_BINOP) 5579 return error("Invalid record"); 5580 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5581 if (Ordering == AtomicOrdering::NotAtomic || 5582 Ordering == AtomicOrdering::Unordered) 5583 return error("Invalid record"); 5584 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5585 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5586 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5587 InstructionList.push_back(I); 5588 break; 5589 } 5590 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5591 if (2 != Record.size()) 5592 return error("Invalid record"); 5593 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5594 if (Ordering == AtomicOrdering::NotAtomic || 5595 Ordering == AtomicOrdering::Unordered || 5596 Ordering == AtomicOrdering::Monotonic) 5597 return error("Invalid record"); 5598 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5599 I = new FenceInst(Context, Ordering, SynchScope); 5600 InstructionList.push_back(I); 5601 break; 5602 } 5603 case bitc::FUNC_CODE_INST_CALL: { 5604 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5605 if (Record.size() < 3) 5606 return error("Invalid record"); 5607 5608 unsigned OpNum = 0; 5609 AttributeSet PAL = getAttributes(Record[OpNum++]); 5610 unsigned CCInfo = Record[OpNum++]; 5611 5612 FastMathFlags FMF; 5613 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5614 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5615 if (!FMF.any()) 5616 return error("Fast math flags indicator set for call with no FMF"); 5617 } 5618 5619 FunctionType *FTy = nullptr; 5620 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5621 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5622 return error("Explicit call type is not a function type"); 5623 5624 Value *Callee; 5625 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5626 return error("Invalid record"); 5627 5628 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5629 if (!OpTy) 5630 return error("Callee is not a pointer type"); 5631 if (!FTy) { 5632 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5633 if (!FTy) 5634 return error("Callee is not of pointer to function type"); 5635 } else if (OpTy->getElementType() != FTy) 5636 return error("Explicit call type does not match pointee type of " 5637 "callee operand"); 5638 if (Record.size() < FTy->getNumParams() + OpNum) 5639 return error("Insufficient operands to call"); 5640 5641 SmallVector<Value*, 16> Args; 5642 // Read the fixed params. 5643 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5644 if (FTy->getParamType(i)->isLabelTy()) 5645 Args.push_back(getBasicBlock(Record[OpNum])); 5646 else 5647 Args.push_back(getValue(Record, OpNum, NextValueNo, 5648 FTy->getParamType(i))); 5649 if (!Args.back()) 5650 return error("Invalid record"); 5651 } 5652 5653 // Read type/value pairs for varargs params. 5654 if (!FTy->isVarArg()) { 5655 if (OpNum != Record.size()) 5656 return error("Invalid record"); 5657 } else { 5658 while (OpNum != Record.size()) { 5659 Value *Op; 5660 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5661 return error("Invalid record"); 5662 Args.push_back(Op); 5663 } 5664 } 5665 5666 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5667 OperandBundles.clear(); 5668 InstructionList.push_back(I); 5669 cast<CallInst>(I)->setCallingConv( 5670 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5671 CallInst::TailCallKind TCK = CallInst::TCK_None; 5672 if (CCInfo & 1 << bitc::CALL_TAIL) 5673 TCK = CallInst::TCK_Tail; 5674 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5675 TCK = CallInst::TCK_MustTail; 5676 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5677 TCK = CallInst::TCK_NoTail; 5678 cast<CallInst>(I)->setTailCallKind(TCK); 5679 cast<CallInst>(I)->setAttributes(PAL); 5680 if (FMF.any()) { 5681 if (!isa<FPMathOperator>(I)) 5682 return error("Fast-math-flags specified for call without " 5683 "floating-point scalar or vector return type"); 5684 I->setFastMathFlags(FMF); 5685 } 5686 break; 5687 } 5688 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5689 if (Record.size() < 3) 5690 return error("Invalid record"); 5691 Type *OpTy = getTypeByID(Record[0]); 5692 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5693 Type *ResTy = getTypeByID(Record[2]); 5694 if (!OpTy || !Op || !ResTy) 5695 return error("Invalid record"); 5696 I = new VAArgInst(Op, ResTy); 5697 InstructionList.push_back(I); 5698 break; 5699 } 5700 5701 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5702 // A call or an invoke can be optionally prefixed with some variable 5703 // number of operand bundle blocks. These blocks are read into 5704 // OperandBundles and consumed at the next call or invoke instruction. 5705 5706 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5707 return error("Invalid record"); 5708 5709 std::vector<Value *> Inputs; 5710 5711 unsigned OpNum = 1; 5712 while (OpNum != Record.size()) { 5713 Value *Op; 5714 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5715 return error("Invalid record"); 5716 Inputs.push_back(Op); 5717 } 5718 5719 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5720 continue; 5721 } 5722 } 5723 5724 // Add instruction to end of current BB. If there is no current BB, reject 5725 // this file. 5726 if (!CurBB) { 5727 delete I; 5728 return error("Invalid instruction with no BB"); 5729 } 5730 if (!OperandBundles.empty()) { 5731 delete I; 5732 return error("Operand bundles found with no consumer"); 5733 } 5734 CurBB->getInstList().push_back(I); 5735 5736 // If this was a terminator instruction, move to the next block. 5737 if (isa<TerminatorInst>(I)) { 5738 ++CurBBNo; 5739 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5740 } 5741 5742 // Non-void values get registered in the value table for future use. 5743 if (I && !I->getType()->isVoidTy()) 5744 ValueList.assignValue(I, NextValueNo++); 5745 } 5746 5747 OutOfRecordLoop: 5748 5749 if (!OperandBundles.empty()) 5750 return error("Operand bundles found with no consumer"); 5751 5752 // Check the function list for unresolved values. 5753 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5754 if (!A->getParent()) { 5755 // We found at least one unresolved value. Nuke them all to avoid leaks. 5756 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5757 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5758 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5759 delete A; 5760 } 5761 } 5762 return error("Never resolved value found in function"); 5763 } 5764 } 5765 5766 // Unexpected unresolved metadata about to be dropped. 5767 if (MetadataList.hasFwdRefs()) 5768 return error("Invalid function metadata: outgoing forward refs"); 5769 5770 // Trim the value list down to the size it was before we parsed this function. 5771 ValueList.shrinkTo(ModuleValueListSize); 5772 MetadataList.shrinkTo(ModuleMetadataListSize); 5773 std::vector<BasicBlock*>().swap(FunctionBBs); 5774 return Error::success(); 5775 } 5776 5777 /// Find the function body in the bitcode stream 5778 Error BitcodeReader::findFunctionInStream( 5779 Function *F, 5780 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5781 while (DeferredFunctionInfoIterator->second == 0) { 5782 // This is the fallback handling for the old format bitcode that 5783 // didn't contain the function index in the VST, or when we have 5784 // an anonymous function which would not have a VST entry. 5785 // Assert that we have one of those two cases. 5786 assert(VSTOffset == 0 || !F->hasName()); 5787 // Parse the next body in the stream and set its position in the 5788 // DeferredFunctionInfo map. 5789 if (Error Err = rememberAndSkipFunctionBodies()) 5790 return Err; 5791 } 5792 return Error::success(); 5793 } 5794 5795 //===----------------------------------------------------------------------===// 5796 // GVMaterializer implementation 5797 //===----------------------------------------------------------------------===// 5798 5799 Error BitcodeReader::materialize(GlobalValue *GV) { 5800 Function *F = dyn_cast<Function>(GV); 5801 // If it's not a function or is already material, ignore the request. 5802 if (!F || !F->isMaterializable()) 5803 return Error::success(); 5804 5805 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5806 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5807 // If its position is recorded as 0, its body is somewhere in the stream 5808 // but we haven't seen it yet. 5809 if (DFII->second == 0) 5810 if (Error Err = findFunctionInStream(F, DFII)) 5811 return Err; 5812 5813 // Materialize metadata before parsing any function bodies. 5814 if (Error Err = materializeMetadata()) 5815 return Err; 5816 5817 // Move the bit stream to the saved position of the deferred function body. 5818 Stream.JumpToBit(DFII->second); 5819 5820 if (Error Err = parseFunctionBody(F)) 5821 return Err; 5822 F->setIsMaterializable(false); 5823 5824 if (StripDebugInfo) 5825 stripDebugInfo(*F); 5826 5827 // Upgrade any old intrinsic calls in the function. 5828 for (auto &I : UpgradedIntrinsics) { 5829 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5830 UI != UE;) { 5831 User *U = *UI; 5832 ++UI; 5833 if (CallInst *CI = dyn_cast<CallInst>(U)) 5834 UpgradeIntrinsicCall(CI, I.second); 5835 } 5836 } 5837 5838 // Update calls to the remangled intrinsics 5839 for (auto &I : RemangledIntrinsics) 5840 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5841 UI != UE;) 5842 // Don't expect any other users than call sites 5843 CallSite(*UI++).setCalledFunction(I.second); 5844 5845 // Finish fn->subprogram upgrade for materialized functions. 5846 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5847 F->setSubprogram(SP); 5848 5849 // Bring in any functions that this function forward-referenced via 5850 // blockaddresses. 5851 return materializeForwardReferencedFunctions(); 5852 } 5853 5854 Error BitcodeReader::materializeModule() { 5855 if (Error Err = materializeMetadata()) 5856 return Err; 5857 5858 // Promise to materialize all forward references. 5859 WillMaterializeAllForwardRefs = true; 5860 5861 // Iterate over the module, deserializing any functions that are still on 5862 // disk. 5863 for (Function &F : *TheModule) { 5864 if (Error Err = materialize(&F)) 5865 return Err; 5866 } 5867 // At this point, if there are any function bodies, parse the rest of 5868 // the bits in the module past the last function block we have recorded 5869 // through either lazy scanning or the VST. 5870 if (LastFunctionBlockBit || NextUnreadBit) 5871 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5872 ? LastFunctionBlockBit 5873 : NextUnreadBit)) 5874 return Err; 5875 5876 // Check that all block address forward references got resolved (as we 5877 // promised above). 5878 if (!BasicBlockFwdRefs.empty()) 5879 return error("Never resolved function from blockaddress"); 5880 5881 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5882 // delete the old functions to clean up. We can't do this unless the entire 5883 // module is materialized because there could always be another function body 5884 // with calls to the old function. 5885 for (auto &I : UpgradedIntrinsics) { 5886 for (auto *U : I.first->users()) { 5887 if (CallInst *CI = dyn_cast<CallInst>(U)) 5888 UpgradeIntrinsicCall(CI, I.second); 5889 } 5890 if (!I.first->use_empty()) 5891 I.first->replaceAllUsesWith(I.second); 5892 I.first->eraseFromParent(); 5893 } 5894 UpgradedIntrinsics.clear(); 5895 // Do the same for remangled intrinsics 5896 for (auto &I : RemangledIntrinsics) { 5897 I.first->replaceAllUsesWith(I.second); 5898 I.first->eraseFromParent(); 5899 } 5900 RemangledIntrinsics.clear(); 5901 5902 UpgradeDebugInfo(*TheModule); 5903 5904 UpgradeModuleFlags(*TheModule); 5905 return Error::success(); 5906 } 5907 5908 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5909 return IdentifiedStructTypes; 5910 } 5911 5912 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5913 BitstreamCursor Cursor, bool CheckGlobalValSummaryPresenceOnly) 5914 : BitcodeReaderBase(std::move(Cursor)), 5915 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5916 5917 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5918 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5919 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5920 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5921 return VGI->second; 5922 } 5923 5924 // Specialized value symbol table parser used when reading module index 5925 // blocks where we don't actually create global values. The parsed information 5926 // is saved in the bitcode reader for use when later parsing summaries. 5927 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5928 uint64_t Offset, 5929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5930 assert(Offset > 0 && "Expected non-zero VST offset"); 5931 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5932 5933 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5934 return error("Invalid record"); 5935 5936 SmallVector<uint64_t, 64> Record; 5937 5938 // Read all the records for this value table. 5939 SmallString<128> ValueName; 5940 5941 while (true) { 5942 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5943 5944 switch (Entry.Kind) { 5945 case BitstreamEntry::SubBlock: // Handled for us already. 5946 case BitstreamEntry::Error: 5947 return error("Malformed block"); 5948 case BitstreamEntry::EndBlock: 5949 // Done parsing VST, jump back to wherever we came from. 5950 Stream.JumpToBit(CurrentBit); 5951 return Error::success(); 5952 case BitstreamEntry::Record: 5953 // The interesting case. 5954 break; 5955 } 5956 5957 // Read a record. 5958 Record.clear(); 5959 switch (Stream.readRecord(Entry.ID, Record)) { 5960 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5961 break; 5962 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5963 if (convertToString(Record, 1, ValueName)) 5964 return error("Invalid record"); 5965 unsigned ValueID = Record[0]; 5966 assert(!SourceFileName.empty()); 5967 auto VLI = ValueIdToLinkageMap.find(ValueID); 5968 assert(VLI != ValueIdToLinkageMap.end() && 5969 "No linkage found for VST entry?"); 5970 auto Linkage = VLI->second; 5971 std::string GlobalId = 5972 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5973 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5974 auto OriginalNameID = ValueGUID; 5975 if (GlobalValue::isLocalLinkage(Linkage)) 5976 OriginalNameID = GlobalValue::getGUID(ValueName); 5977 if (PrintSummaryGUIDs) 5978 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5979 << ValueName << "\n"; 5980 ValueIdToCallGraphGUIDMap[ValueID] = 5981 std::make_pair(ValueGUID, OriginalNameID); 5982 ValueName.clear(); 5983 break; 5984 } 5985 case bitc::VST_CODE_FNENTRY: { 5986 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5987 if (convertToString(Record, 2, ValueName)) 5988 return error("Invalid record"); 5989 unsigned ValueID = Record[0]; 5990 assert(!SourceFileName.empty()); 5991 auto VLI = ValueIdToLinkageMap.find(ValueID); 5992 assert(VLI != ValueIdToLinkageMap.end() && 5993 "No linkage found for VST entry?"); 5994 auto Linkage = VLI->second; 5995 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5996 ValueName, VLI->second, SourceFileName); 5997 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5998 auto OriginalNameID = FunctionGUID; 5999 if (GlobalValue::isLocalLinkage(Linkage)) 6000 OriginalNameID = GlobalValue::getGUID(ValueName); 6001 if (PrintSummaryGUIDs) 6002 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6003 << ValueName << "\n"; 6004 ValueIdToCallGraphGUIDMap[ValueID] = 6005 std::make_pair(FunctionGUID, OriginalNameID); 6006 6007 ValueName.clear(); 6008 break; 6009 } 6010 case bitc::VST_CODE_COMBINED_ENTRY: { 6011 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6012 unsigned ValueID = Record[0]; 6013 GlobalValue::GUID RefGUID = Record[1]; 6014 // The "original name", which is the second value of the pair will be 6015 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6016 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6017 break; 6018 } 6019 } 6020 } 6021 } 6022 6023 // Parse just the blocks needed for building the index out of the module. 6024 // At the end of this routine the module Index is populated with a map 6025 // from global value id to GlobalValueSummary objects. 6026 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 6027 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6028 return error("Invalid record"); 6029 6030 SmallVector<uint64_t, 64> Record; 6031 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6032 unsigned ValueId = 0; 6033 6034 // Read the index for this module. 6035 while (true) { 6036 BitstreamEntry Entry = Stream.advance(); 6037 6038 switch (Entry.Kind) { 6039 case BitstreamEntry::Error: 6040 return error("Malformed block"); 6041 case BitstreamEntry::EndBlock: 6042 return Error::success(); 6043 6044 case BitstreamEntry::SubBlock: 6045 if (CheckGlobalValSummaryPresenceOnly) { 6046 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6047 SeenGlobalValSummary = true; 6048 // No need to parse the rest since we found the summary. 6049 return Error::success(); 6050 } 6051 if (Stream.SkipBlock()) 6052 return error("Invalid record"); 6053 continue; 6054 } 6055 switch (Entry.ID) { 6056 default: // Skip unknown content. 6057 if (Stream.SkipBlock()) 6058 return error("Invalid record"); 6059 break; 6060 case bitc::BLOCKINFO_BLOCK_ID: 6061 // Need to parse these to get abbrev ids (e.g. for VST) 6062 if (readBlockInfo()) 6063 return error("Malformed block"); 6064 break; 6065 case bitc::VALUE_SYMTAB_BLOCK_ID: 6066 // Should have been parsed earlier via VSTOffset, unless there 6067 // is no summary section. 6068 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6069 !SeenGlobalValSummary) && 6070 "Expected early VST parse via VSTOffset record"); 6071 if (Stream.SkipBlock()) 6072 return error("Invalid record"); 6073 break; 6074 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6075 assert(!SeenValueSymbolTable && 6076 "Already read VST when parsing summary block?"); 6077 // We might not have a VST if there were no values in the 6078 // summary. An empty summary block generated when we are 6079 // performing ThinLTO compiles so we don't later invoke 6080 // the regular LTO process on them. 6081 if (VSTOffset > 0) { 6082 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6083 return Err; 6084 SeenValueSymbolTable = true; 6085 } 6086 SeenGlobalValSummary = true; 6087 if (Error Err = parseEntireSummary(ModulePath)) 6088 return Err; 6089 break; 6090 case bitc::MODULE_STRTAB_BLOCK_ID: 6091 if (Error Err = parseModuleStringTable()) 6092 return Err; 6093 break; 6094 } 6095 continue; 6096 6097 case BitstreamEntry::Record: { 6098 Record.clear(); 6099 auto BitCode = Stream.readRecord(Entry.ID, Record); 6100 switch (BitCode) { 6101 default: 6102 break; // Default behavior, ignore unknown content. 6103 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6104 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6105 SmallString<128> ValueName; 6106 if (convertToString(Record, 0, ValueName)) 6107 return error("Invalid record"); 6108 SourceFileName = ValueName.c_str(); 6109 break; 6110 } 6111 /// MODULE_CODE_HASH: [5*i32] 6112 case bitc::MODULE_CODE_HASH: { 6113 if (Record.size() != 5) 6114 return error("Invalid hash length " + Twine(Record.size()).str()); 6115 if (!TheIndex) 6116 break; 6117 if (TheIndex->modulePaths().empty()) 6118 // We always seed the index with the module. 6119 TheIndex->addModulePath(ModulePath, 0); 6120 if (TheIndex->modulePaths().size() != 1) 6121 return error("Don't expect multiple modules defined?"); 6122 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6123 int Pos = 0; 6124 for (auto &Val : Record) { 6125 assert(!(Val >> 32) && "Unexpected high bits set"); 6126 Hash[Pos++] = Val; 6127 } 6128 break; 6129 } 6130 /// MODULE_CODE_VSTOFFSET: [offset] 6131 case bitc::MODULE_CODE_VSTOFFSET: 6132 if (Record.size() < 1) 6133 return error("Invalid record"); 6134 VSTOffset = Record[0]; 6135 break; 6136 // GLOBALVAR: [pointer type, isconst, initid, 6137 // linkage, alignment, section, visibility, threadlocal, 6138 // unnamed_addr, externally_initialized, dllstorageclass, 6139 // comdat] 6140 case bitc::MODULE_CODE_GLOBALVAR: { 6141 if (Record.size() < 6) 6142 return error("Invalid record"); 6143 uint64_t RawLinkage = Record[3]; 6144 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6145 ValueIdToLinkageMap[ValueId++] = Linkage; 6146 break; 6147 } 6148 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6149 // alignment, section, visibility, gc, unnamed_addr, 6150 // prologuedata, dllstorageclass, comdat, prefixdata] 6151 case bitc::MODULE_CODE_FUNCTION: { 6152 if (Record.size() < 8) 6153 return error("Invalid record"); 6154 uint64_t RawLinkage = Record[3]; 6155 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6156 ValueIdToLinkageMap[ValueId++] = Linkage; 6157 break; 6158 } 6159 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6160 // dllstorageclass] 6161 case bitc::MODULE_CODE_ALIAS: { 6162 if (Record.size() < 6) 6163 return error("Invalid record"); 6164 uint64_t RawLinkage = Record[3]; 6165 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6166 ValueIdToLinkageMap[ValueId++] = Linkage; 6167 break; 6168 } 6169 } 6170 } 6171 continue; 6172 } 6173 } 6174 } 6175 6176 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6177 // objects in the index. 6178 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 6179 StringRef ModulePath) { 6180 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6181 return error("Invalid record"); 6182 SmallVector<uint64_t, 64> Record; 6183 6184 // Parse version 6185 { 6186 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6187 if (Entry.Kind != BitstreamEntry::Record) 6188 return error("Invalid Summary Block: record for version expected"); 6189 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6190 return error("Invalid Summary Block: version expected"); 6191 } 6192 const uint64_t Version = Record[0]; 6193 const bool IsOldProfileFormat = Version == 1; 6194 if (!IsOldProfileFormat && Version != 2) 6195 return error("Invalid summary version " + Twine(Version) + 6196 ", 1 or 2 expected"); 6197 Record.clear(); 6198 6199 // Keep around the last seen summary to be used when we see an optional 6200 // "OriginalName" attachement. 6201 GlobalValueSummary *LastSeenSummary = nullptr; 6202 bool Combined = false; 6203 6204 while (true) { 6205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6206 6207 switch (Entry.Kind) { 6208 case BitstreamEntry::SubBlock: // Handled for us already. 6209 case BitstreamEntry::Error: 6210 return error("Malformed block"); 6211 case BitstreamEntry::EndBlock: 6212 // For a per-module index, remove any entries that still have empty 6213 // summaries. The VST parsing creates entries eagerly for all symbols, 6214 // but not all have associated summaries (e.g. it doesn't know how to 6215 // distinguish between VST_CODE_ENTRY for function declarations vs global 6216 // variables with initializers that end up with a summary). Remove those 6217 // entries now so that we don't need to rely on the combined index merger 6218 // to clean them up (especially since that may not run for the first 6219 // module's index if we merge into that). 6220 if (!Combined) 6221 TheIndex->removeEmptySummaryEntries(); 6222 return Error::success(); 6223 case BitstreamEntry::Record: 6224 // The interesting case. 6225 break; 6226 } 6227 6228 // Read a record. The record format depends on whether this 6229 // is a per-module index or a combined index file. In the per-module 6230 // case the records contain the associated value's ID for correlation 6231 // with VST entries. In the combined index the correlation is done 6232 // via the bitcode offset of the summary records (which were saved 6233 // in the combined index VST entries). The records also contain 6234 // information used for ThinLTO renaming and importing. 6235 Record.clear(); 6236 auto BitCode = Stream.readRecord(Entry.ID, Record); 6237 switch (BitCode) { 6238 default: // Default behavior: ignore. 6239 break; 6240 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6241 // n x (valueid)] 6242 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6243 // numrefs x valueid, 6244 // n x (valueid, hotness)] 6245 case bitc::FS_PERMODULE: 6246 case bitc::FS_PERMODULE_PROFILE: { 6247 unsigned ValueID = Record[0]; 6248 uint64_t RawFlags = Record[1]; 6249 unsigned InstCount = Record[2]; 6250 unsigned NumRefs = Record[3]; 6251 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6252 std::unique_ptr<FunctionSummary> FS = 6253 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6254 // The module path string ref set in the summary must be owned by the 6255 // index's module string table. Since we don't have a module path 6256 // string table section in the per-module index, we create a single 6257 // module path string table entry with an empty (0) ID to take 6258 // ownership. 6259 FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6260 static int RefListStartIndex = 4; 6261 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6262 assert(Record.size() >= RefListStartIndex + NumRefs && 6263 "Record size inconsistent with number of references"); 6264 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6265 unsigned RefValueId = Record[I]; 6266 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6267 FS->addRefEdge(RefGUID); 6268 } 6269 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6270 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6271 ++I) { 6272 CalleeInfo::HotnessType Hotness; 6273 GlobalValue::GUID CalleeGUID; 6274 std::tie(CalleeGUID, Hotness) = 6275 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6276 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6277 } 6278 auto GUID = getGUIDFromValueId(ValueID); 6279 FS->setOriginalName(GUID.second); 6280 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6281 break; 6282 } 6283 // FS_ALIAS: [valueid, flags, valueid] 6284 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6285 // they expect all aliasee summaries to be available. 6286 case bitc::FS_ALIAS: { 6287 unsigned ValueID = Record[0]; 6288 uint64_t RawFlags = Record[1]; 6289 unsigned AliaseeID = Record[2]; 6290 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6291 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6292 // The module path string ref set in the summary must be owned by the 6293 // index's module string table. Since we don't have a module path 6294 // string table section in the per-module index, we create a single 6295 // module path string table entry with an empty (0) ID to take 6296 // ownership. 6297 AS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6298 6299 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6300 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6301 if (!AliaseeSummary) 6302 return error("Alias expects aliasee summary to be parsed"); 6303 AS->setAliasee(AliaseeSummary); 6304 6305 auto GUID = getGUIDFromValueId(ValueID); 6306 AS->setOriginalName(GUID.second); 6307 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6308 break; 6309 } 6310 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6311 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6312 unsigned ValueID = Record[0]; 6313 uint64_t RawFlags = Record[1]; 6314 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6315 std::unique_ptr<GlobalVarSummary> FS = 6316 llvm::make_unique<GlobalVarSummary>(Flags); 6317 FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6318 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6319 unsigned RefValueId = Record[I]; 6320 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6321 FS->addRefEdge(RefGUID); 6322 } 6323 auto GUID = getGUIDFromValueId(ValueID); 6324 FS->setOriginalName(GUID.second); 6325 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6326 break; 6327 } 6328 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6329 // numrefs x valueid, n x (valueid)] 6330 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6331 // numrefs x valueid, n x (valueid, hotness)] 6332 case bitc::FS_COMBINED: 6333 case bitc::FS_COMBINED_PROFILE: { 6334 unsigned ValueID = Record[0]; 6335 uint64_t ModuleId = Record[1]; 6336 uint64_t RawFlags = Record[2]; 6337 unsigned InstCount = Record[3]; 6338 unsigned NumRefs = Record[4]; 6339 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6340 std::unique_ptr<FunctionSummary> FS = 6341 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6342 LastSeenSummary = FS.get(); 6343 FS->setModulePath(ModuleIdMap[ModuleId]); 6344 static int RefListStartIndex = 5; 6345 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6346 assert(Record.size() >= RefListStartIndex + NumRefs && 6347 "Record size inconsistent with number of references"); 6348 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6349 ++I) { 6350 unsigned RefValueId = Record[I]; 6351 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6352 FS->addRefEdge(RefGUID); 6353 } 6354 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6355 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6356 ++I) { 6357 CalleeInfo::HotnessType Hotness; 6358 GlobalValue::GUID CalleeGUID; 6359 std::tie(CalleeGUID, Hotness) = 6360 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6361 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6362 } 6363 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6364 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6365 Combined = true; 6366 break; 6367 } 6368 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6369 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6370 // they expect all aliasee summaries to be available. 6371 case bitc::FS_COMBINED_ALIAS: { 6372 unsigned ValueID = Record[0]; 6373 uint64_t ModuleId = Record[1]; 6374 uint64_t RawFlags = Record[2]; 6375 unsigned AliaseeValueId = Record[3]; 6376 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6377 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6378 LastSeenSummary = AS.get(); 6379 AS->setModulePath(ModuleIdMap[ModuleId]); 6380 6381 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6382 auto AliaseeInModule = 6383 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6384 if (!AliaseeInModule) 6385 return error("Alias expects aliasee summary to be parsed"); 6386 AS->setAliasee(AliaseeInModule); 6387 6388 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6389 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6390 Combined = true; 6391 break; 6392 } 6393 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6394 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6395 unsigned ValueID = Record[0]; 6396 uint64_t ModuleId = Record[1]; 6397 uint64_t RawFlags = Record[2]; 6398 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6399 std::unique_ptr<GlobalVarSummary> FS = 6400 llvm::make_unique<GlobalVarSummary>(Flags); 6401 LastSeenSummary = FS.get(); 6402 FS->setModulePath(ModuleIdMap[ModuleId]); 6403 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6404 unsigned RefValueId = Record[I]; 6405 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6406 FS->addRefEdge(RefGUID); 6407 } 6408 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6409 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6410 Combined = true; 6411 break; 6412 } 6413 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6414 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6415 uint64_t OriginalName = Record[0]; 6416 if (!LastSeenSummary) 6417 return error("Name attachment that does not follow a combined record"); 6418 LastSeenSummary->setOriginalName(OriginalName); 6419 // Reset the LastSeenSummary 6420 LastSeenSummary = nullptr; 6421 } 6422 } 6423 } 6424 llvm_unreachable("Exit infinite loop"); 6425 } 6426 6427 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6428 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6429 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6430 const bool IsOldProfileFormat, const bool HasProfile) { 6431 6432 auto Hotness = CalleeInfo::HotnessType::Unknown; 6433 unsigned CalleeValueId = Record[I]; 6434 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6435 if (IsOldProfileFormat) { 6436 I += 1; // Skip old callsitecount field 6437 if (HasProfile) 6438 I += 1; // Skip old profilecount field 6439 } else if (HasProfile) 6440 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6441 return {CalleeGUID, Hotness}; 6442 } 6443 6444 // Parse the module string table block into the Index. 6445 // This populates the ModulePathStringTable map in the index. 6446 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6447 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6448 return error("Invalid record"); 6449 6450 SmallVector<uint64_t, 64> Record; 6451 6452 SmallString<128> ModulePath; 6453 ModulePathStringTableTy::iterator LastSeenModulePath; 6454 6455 while (true) { 6456 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6457 6458 switch (Entry.Kind) { 6459 case BitstreamEntry::SubBlock: // Handled for us already. 6460 case BitstreamEntry::Error: 6461 return error("Malformed block"); 6462 case BitstreamEntry::EndBlock: 6463 return Error::success(); 6464 case BitstreamEntry::Record: 6465 // The interesting case. 6466 break; 6467 } 6468 6469 Record.clear(); 6470 switch (Stream.readRecord(Entry.ID, Record)) { 6471 default: // Default behavior: ignore. 6472 break; 6473 case bitc::MST_CODE_ENTRY: { 6474 // MST_ENTRY: [modid, namechar x N] 6475 uint64_t ModuleId = Record[0]; 6476 6477 if (convertToString(Record, 1, ModulePath)) 6478 return error("Invalid record"); 6479 6480 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6481 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6482 6483 ModulePath.clear(); 6484 break; 6485 } 6486 /// MST_CODE_HASH: [5*i32] 6487 case bitc::MST_CODE_HASH: { 6488 if (Record.size() != 5) 6489 return error("Invalid hash length " + Twine(Record.size()).str()); 6490 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6491 return error("Invalid hash that does not follow a module path"); 6492 int Pos = 0; 6493 for (auto &Val : Record) { 6494 assert(!(Val >> 32) && "Unexpected high bits set"); 6495 LastSeenModulePath->second.second[Pos++] = Val; 6496 } 6497 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6498 LastSeenModulePath = TheIndex->modulePaths().end(); 6499 break; 6500 } 6501 } 6502 } 6503 llvm_unreachable("Exit infinite loop"); 6504 } 6505 6506 // Parse the function info index from the bitcode streamer into the given index. 6507 Error ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6508 ModuleSummaryIndex *I, StringRef ModulePath) { 6509 TheIndex = I; 6510 6511 // We expect a number of well-defined blocks, though we don't necessarily 6512 // need to understand them all. 6513 while (true) { 6514 if (Stream.AtEndOfStream()) { 6515 // We didn't really read a proper Module block. 6516 return error("Malformed block"); 6517 } 6518 6519 BitstreamEntry Entry = 6520 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6521 6522 if (Entry.Kind != BitstreamEntry::SubBlock) 6523 return error("Malformed block"); 6524 6525 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6526 // building the function summary index. 6527 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6528 return parseModule(ModulePath); 6529 6530 if (Stream.SkipBlock()) 6531 return error("Invalid record"); 6532 } 6533 } 6534 6535 namespace { 6536 6537 // FIXME: This class is only here to support the transition to llvm::Error. It 6538 // will be removed once this transition is complete. Clients should prefer to 6539 // deal with the Error value directly, rather than converting to error_code. 6540 class BitcodeErrorCategoryType : public std::error_category { 6541 const char *name() const noexcept override { 6542 return "llvm.bitcode"; 6543 } 6544 std::string message(int IE) const override { 6545 BitcodeError E = static_cast<BitcodeError>(IE); 6546 switch (E) { 6547 case BitcodeError::CorruptedBitcode: 6548 return "Corrupted bitcode"; 6549 } 6550 llvm_unreachable("Unknown error type!"); 6551 } 6552 }; 6553 6554 } // end anonymous namespace 6555 6556 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6557 6558 const std::error_category &llvm::BitcodeErrorCategory() { 6559 return *ErrorCategory; 6560 } 6561 6562 //===----------------------------------------------------------------------===// 6563 // External interface 6564 //===----------------------------------------------------------------------===// 6565 6566 /// \brief Get a lazy one-at-time loading module from bitcode. 6567 /// 6568 /// This isn't always used in a lazy context. In particular, it's also used by 6569 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6570 /// in forward-referenced functions from block address references. 6571 /// 6572 /// \param[in] MaterializeAll Set to \c true if we should materialize 6573 /// everything. 6574 static ErrorOr<std::unique_ptr<Module>> 6575 getLazyBitcodeModuleImpl(MemoryBufferRef Buffer, LLVMContext &Context, 6576 bool MaterializeAll, 6577 bool ShouldLazyLoadMetadata = false) { 6578 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6579 if (!StreamOrErr) 6580 return errorToErrorCodeAndEmitErrors(Context, StreamOrErr.takeError()); 6581 6582 BitcodeReader *R = new BitcodeReader(std::move(*StreamOrErr), Context); 6583 6584 std::unique_ptr<Module> M = 6585 llvm::make_unique<Module>(Buffer.getBufferIdentifier(), Context); 6586 M->setMaterializer(R); 6587 6588 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6589 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6590 return errorToErrorCodeAndEmitErrors(Context, std::move(Err)); 6591 6592 if (MaterializeAll) { 6593 // Read in the entire module, and destroy the BitcodeReader. 6594 if (Error Err = M->materializeAll()) 6595 return errorToErrorCodeAndEmitErrors(Context, std::move(Err)); 6596 } else { 6597 // Resolve forward references from blockaddresses. 6598 if (Error Err = R->materializeForwardReferencedFunctions()) 6599 return errorToErrorCodeAndEmitErrors(Context, std::move(Err)); 6600 } 6601 return std::move(M); 6602 } 6603 6604 ErrorOr<std::unique_ptr<Module>> 6605 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 6606 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6607 return getLazyBitcodeModuleImpl(Buffer, Context, false, 6608 ShouldLazyLoadMetadata); 6609 } 6610 6611 ErrorOr<std::unique_ptr<Module>> 6612 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6613 LLVMContext &Context, 6614 bool ShouldLazyLoadMetadata) { 6615 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 6616 if (MOrErr) 6617 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6618 return MOrErr; 6619 } 6620 6621 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6622 LLVMContext &Context) { 6623 return getLazyBitcodeModuleImpl(Buffer, Context, true); 6624 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6625 // written. We must defer until the Module has been fully materialized. 6626 } 6627 6628 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6629 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6630 if (!StreamOrErr) 6631 return StreamOrErr.takeError(); 6632 6633 return readTriple(*StreamOrErr); 6634 } 6635 6636 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6637 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6638 if (!StreamOrErr) 6639 return StreamOrErr.takeError(); 6640 6641 return hasObjCCategory(*StreamOrErr); 6642 } 6643 6644 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6645 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6646 if (!StreamOrErr) 6647 return StreamOrErr.takeError(); 6648 6649 return readIdentificationCode(*StreamOrErr); 6650 } 6651 6652 // Parse the specified bitcode buffer, returning the function info index. 6653 Expected<std::unique_ptr<ModuleSummaryIndex>> 6654 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6655 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6656 if (!StreamOrErr) 6657 return StreamOrErr.takeError(); 6658 6659 ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr)); 6660 6661 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6662 6663 if (Error Err = 6664 R.parseSummaryIndexInto(Index.get(), Buffer.getBufferIdentifier())) 6665 return std::move(Err); 6666 6667 return std::move(Index); 6668 } 6669 6670 // Check if the given bitcode buffer contains a global value summary block. 6671 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 6672 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6673 if (!StreamOrErr) 6674 return StreamOrErr.takeError(); 6675 6676 ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr), true); 6677 6678 if (Error Err = 6679 R.parseSummaryIndexInto(nullptr, Buffer.getBufferIdentifier())) 6680 return std::move(Err); 6681 6682 return R.foundGlobalValSummary(); 6683 } 6684