1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 /// Structures for resolving old type refs. 118 struct { 119 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 120 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 121 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 122 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 123 } OldTypeRefs; 124 125 LLVMContext &Context; 126 public: 127 BitcodeReaderMetadataList(LLVMContext &C) 128 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 129 130 // vector compatibility methods 131 unsigned size() const { return MetadataPtrs.size(); } 132 void resize(unsigned N) { MetadataPtrs.resize(N); } 133 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 134 void clear() { MetadataPtrs.clear(); } 135 Metadata *back() const { return MetadataPtrs.back(); } 136 void pop_back() { MetadataPtrs.pop_back(); } 137 bool empty() const { return MetadataPtrs.empty(); } 138 139 Metadata *operator[](unsigned i) const { 140 assert(i < MetadataPtrs.size()); 141 return MetadataPtrs[i]; 142 } 143 144 Metadata *lookup(unsigned I) const { 145 if (I < MetadataPtrs.size()) 146 return MetadataPtrs[I]; 147 return nullptr; 148 } 149 150 void shrinkTo(unsigned N) { 151 assert(N <= size() && "Invalid shrinkTo request!"); 152 assert(!AnyFwdRefs && "Unexpected forward refs"); 153 MetadataPtrs.resize(N); 154 } 155 156 /// Return the given metadata, creating a replaceable forward reference if 157 /// necessary. 158 Metadata *getMetadataFwdRef(unsigned Idx); 159 160 /// Return the the given metadata only if it is fully resolved. 161 /// 162 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 163 /// would give \c false. 164 Metadata *getMetadataIfResolved(unsigned Idx); 165 166 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 167 void assignValue(Metadata *MD, unsigned Idx); 168 void tryToResolveCycles(); 169 bool hasFwdRefs() const { return AnyFwdRefs; } 170 171 /// Upgrade a type that had an MDString reference. 172 void addTypeRef(MDString &UUID, DICompositeType &CT); 173 174 /// Upgrade a type that had an MDString reference. 175 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 176 177 /// Upgrade a type ref array that may have MDString references. 178 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 179 180 private: 181 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 182 }; 183 184 class BitcodeReader : public GVMaterializer { 185 LLVMContext &Context; 186 Module *TheModule = nullptr; 187 std::unique_ptr<MemoryBuffer> Buffer; 188 std::unique_ptr<BitstreamReader> StreamFile; 189 BitstreamCursor Stream; 190 // Next offset to start scanning for lazy parsing of function bodies. 191 uint64_t NextUnreadBit = 0; 192 // Last function offset found in the VST. 193 uint64_t LastFunctionBlockBit = 0; 194 bool SeenValueSymbolTable = false; 195 uint64_t VSTOffset = 0; 196 // Contains an arbitrary and optional string identifying the bitcode producer 197 std::string ProducerIdentification; 198 199 std::vector<Type*> TypeList; 200 BitcodeReaderValueList ValueList; 201 BitcodeReaderMetadataList MetadataList; 202 std::vector<Comdat *> ComdatList; 203 SmallVector<Instruction *, 64> InstructionList; 204 205 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 206 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 207 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 209 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 210 211 SmallVector<Instruction*, 64> InstsWithTBAATag; 212 213 bool HasSeenOldLoopTags = false; 214 215 /// The set of attributes by index. Index zero in the file is for null, and 216 /// is thus not represented here. As such all indices are off by one. 217 std::vector<AttributeSet> MAttributes; 218 219 /// The set of attribute groups. 220 std::map<unsigned, AttributeSet> MAttributeGroups; 221 222 /// While parsing a function body, this is a list of the basic blocks for the 223 /// function. 224 std::vector<BasicBlock*> FunctionBBs; 225 226 // When reading the module header, this list is populated with functions that 227 // have bodies later in the file. 228 std::vector<Function*> FunctionsWithBodies; 229 230 // When intrinsic functions are encountered which require upgrading they are 231 // stored here with their replacement function. 232 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 233 UpgradedIntrinsicMap UpgradedIntrinsics; 234 235 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 236 DenseMap<unsigned, unsigned> MDKindMap; 237 238 // Several operations happen after the module header has been read, but 239 // before function bodies are processed. This keeps track of whether 240 // we've done this yet. 241 bool SeenFirstFunctionBody = false; 242 243 /// When function bodies are initially scanned, this map contains info about 244 /// where to find deferred function body in the stream. 245 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 246 247 /// When Metadata block is initially scanned when parsing the module, we may 248 /// choose to defer parsing of the metadata. This vector contains info about 249 /// which Metadata blocks are deferred. 250 std::vector<uint64_t> DeferredMetadataInfo; 251 252 /// These are basic blocks forward-referenced by block addresses. They are 253 /// inserted lazily into functions when they're loaded. The basic block ID is 254 /// its index into the vector. 255 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 256 std::deque<Function *> BasicBlockFwdRefQueue; 257 258 /// Indicates that we are using a new encoding for instruction operands where 259 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 260 /// instruction number, for a more compact encoding. Some instruction 261 /// operands are not relative to the instruction ID: basic block numbers, and 262 /// types. Once the old style function blocks have been phased out, we would 263 /// not need this flag. 264 bool UseRelativeIDs = false; 265 266 /// True if all functions will be materialized, negating the need to process 267 /// (e.g.) blockaddress forward references. 268 bool WillMaterializeAllForwardRefs = false; 269 270 /// True if any Metadata block has been materialized. 271 bool IsMetadataMaterialized = false; 272 273 bool StripDebugInfo = false; 274 275 /// Functions that need to be matched with subprograms when upgrading old 276 /// metadata. 277 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 278 279 std::vector<std::string> BundleTags; 280 281 public: 282 std::error_code error(BitcodeError E, const Twine &Message); 283 std::error_code error(BitcodeError E); 284 std::error_code error(const Twine &Message); 285 286 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 287 BitcodeReader(LLVMContext &Context); 288 ~BitcodeReader() override { freeState(); } 289 290 std::error_code materializeForwardReferencedFunctions(); 291 292 void freeState(); 293 294 void releaseBuffer(); 295 296 std::error_code materialize(GlobalValue *GV) override; 297 std::error_code materializeModule() override; 298 std::vector<StructType *> getIdentifiedStructTypes() const override; 299 300 /// \brief Main interface to parsing a bitcode buffer. 301 /// \returns true if an error occurred. 302 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 303 Module *M, 304 bool ShouldLazyLoadMetadata = false); 305 306 /// \brief Cheap mechanism to just extract module triple 307 /// \returns true if an error occurred. 308 ErrorOr<std::string> parseTriple(); 309 310 /// Cheap mechanism to just extract the identification block out of bitcode. 311 ErrorOr<std::string> parseIdentificationBlock(); 312 313 static uint64_t decodeSignRotatedValue(uint64_t V); 314 315 /// Materialize any deferred Metadata block. 316 std::error_code materializeMetadata() override; 317 318 void setStripDebugInfo() override; 319 320 private: 321 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 322 // ProducerIdentification data member, and do some basic enforcement on the 323 // "epoch" encoded in the bitcode. 324 std::error_code parseBitcodeVersion(); 325 326 std::vector<StructType *> IdentifiedStructTypes; 327 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 328 StructType *createIdentifiedStructType(LLVMContext &Context); 329 330 Type *getTypeByID(unsigned ID); 331 Value *getFnValueByID(unsigned ID, Type *Ty) { 332 if (Ty && Ty->isMetadataTy()) 333 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 334 return ValueList.getValueFwdRef(ID, Ty); 335 } 336 Metadata *getFnMetadataByID(unsigned ID) { 337 return MetadataList.getMetadataFwdRef(ID); 338 } 339 BasicBlock *getBasicBlock(unsigned ID) const { 340 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 341 return FunctionBBs[ID]; 342 } 343 AttributeSet getAttributes(unsigned i) const { 344 if (i-1 < MAttributes.size()) 345 return MAttributes[i-1]; 346 return AttributeSet(); 347 } 348 349 /// Read a value/type pair out of the specified record from slot 'Slot'. 350 /// Increment Slot past the number of slots used in the record. Return true on 351 /// failure. 352 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 353 unsigned InstNum, Value *&ResVal) { 354 if (Slot == Record.size()) return true; 355 unsigned ValNo = (unsigned)Record[Slot++]; 356 // Adjust the ValNo, if it was encoded relative to the InstNum. 357 if (UseRelativeIDs) 358 ValNo = InstNum - ValNo; 359 if (ValNo < InstNum) { 360 // If this is not a forward reference, just return the value we already 361 // have. 362 ResVal = getFnValueByID(ValNo, nullptr); 363 return ResVal == nullptr; 364 } 365 if (Slot == Record.size()) 366 return true; 367 368 unsigned TypeNo = (unsigned)Record[Slot++]; 369 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 370 return ResVal == nullptr; 371 } 372 373 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 374 /// past the number of slots used by the value in the record. Return true if 375 /// there is an error. 376 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 377 unsigned InstNum, Type *Ty, Value *&ResVal) { 378 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 379 return true; 380 // All values currently take a single record slot. 381 ++Slot; 382 return false; 383 } 384 385 /// Like popValue, but does not increment the Slot number. 386 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 387 unsigned InstNum, Type *Ty, Value *&ResVal) { 388 ResVal = getValue(Record, Slot, InstNum, Ty); 389 return ResVal == nullptr; 390 } 391 392 /// Version of getValue that returns ResVal directly, or 0 if there is an 393 /// error. 394 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 395 unsigned InstNum, Type *Ty) { 396 if (Slot == Record.size()) return nullptr; 397 unsigned ValNo = (unsigned)Record[Slot]; 398 // Adjust the ValNo, if it was encoded relative to the InstNum. 399 if (UseRelativeIDs) 400 ValNo = InstNum - ValNo; 401 return getFnValueByID(ValNo, Ty); 402 } 403 404 /// Like getValue, but decodes signed VBRs. 405 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 406 unsigned InstNum, Type *Ty) { 407 if (Slot == Record.size()) return nullptr; 408 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 409 // Adjust the ValNo, if it was encoded relative to the InstNum. 410 if (UseRelativeIDs) 411 ValNo = InstNum - ValNo; 412 return getFnValueByID(ValNo, Ty); 413 } 414 415 /// Converts alignment exponent (i.e. power of two (or zero)) to the 416 /// corresponding alignment to use. If alignment is too large, returns 417 /// a corresponding error code. 418 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 419 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 420 std::error_code parseModule(uint64_t ResumeBit, 421 bool ShouldLazyLoadMetadata = false); 422 std::error_code parseAttributeBlock(); 423 std::error_code parseAttributeGroupBlock(); 424 std::error_code parseTypeTable(); 425 std::error_code parseTypeTableBody(); 426 std::error_code parseOperandBundleTags(); 427 428 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 429 unsigned NameIndex, Triple &TT); 430 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 431 std::error_code parseConstants(); 432 std::error_code rememberAndSkipFunctionBodies(); 433 std::error_code rememberAndSkipFunctionBody(); 434 /// Save the positions of the Metadata blocks and skip parsing the blocks. 435 std::error_code rememberAndSkipMetadata(); 436 std::error_code parseFunctionBody(Function *F); 437 std::error_code globalCleanup(); 438 std::error_code resolveGlobalAndIndirectSymbolInits(); 439 std::error_code parseMetadata(bool ModuleLevel = false); 440 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 441 StringRef Blob, 442 unsigned &NextMetadataNo); 443 std::error_code parseMetadataKinds(); 444 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 445 std::error_code parseMetadataAttachment(Function &F); 446 ErrorOr<std::string> parseModuleTriple(); 447 std::error_code parseUseLists(); 448 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 449 std::error_code initStreamFromBuffer(); 450 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 451 std::error_code findFunctionInStream( 452 Function *F, 453 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 454 }; 455 456 /// Class to manage reading and parsing function summary index bitcode 457 /// files/sections. 458 class ModuleSummaryIndexBitcodeReader { 459 DiagnosticHandlerFunction DiagnosticHandler; 460 461 /// Eventually points to the module index built during parsing. 462 ModuleSummaryIndex *TheIndex = nullptr; 463 464 std::unique_ptr<MemoryBuffer> Buffer; 465 std::unique_ptr<BitstreamReader> StreamFile; 466 BitstreamCursor Stream; 467 468 /// Used to indicate whether caller only wants to check for the presence 469 /// of the global value summary bitcode section. All blocks are skipped, 470 /// but the SeenGlobalValSummary boolean is set. 471 bool CheckGlobalValSummaryPresenceOnly = false; 472 473 /// Indicates whether we have encountered a global value summary section 474 /// yet during parsing, used when checking if file contains global value 475 /// summary section. 476 bool SeenGlobalValSummary = false; 477 478 /// Indicates whether we have already parsed the VST, used for error checking. 479 bool SeenValueSymbolTable = false; 480 481 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 482 /// Used to enable on-demand parsing of the VST. 483 uint64_t VSTOffset = 0; 484 485 // Map to save ValueId to GUID association that was recorded in the 486 // ValueSymbolTable. It is used after the VST is parsed to convert 487 // call graph edges read from the function summary from referencing 488 // callees by their ValueId to using the GUID instead, which is how 489 // they are recorded in the summary index being built. 490 // We save a second GUID which is the same as the first one, but ignoring the 491 // linkage, i.e. for value other than local linkage they are identical. 492 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 493 ValueIdToCallGraphGUIDMap; 494 495 /// Map populated during module path string table parsing, from the 496 /// module ID to a string reference owned by the index's module 497 /// path string table, used to correlate with combined index 498 /// summary records. 499 DenseMap<uint64_t, StringRef> ModuleIdMap; 500 501 /// Original source file name recorded in a bitcode record. 502 std::string SourceFileName; 503 504 public: 505 std::error_code error(BitcodeError E, const Twine &Message); 506 std::error_code error(BitcodeError E); 507 std::error_code error(const Twine &Message); 508 509 ModuleSummaryIndexBitcodeReader( 510 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 511 bool CheckGlobalValSummaryPresenceOnly = false); 512 ModuleSummaryIndexBitcodeReader( 513 DiagnosticHandlerFunction DiagnosticHandler, 514 bool CheckGlobalValSummaryPresenceOnly = false); 515 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 516 517 void freeState(); 518 519 void releaseBuffer(); 520 521 /// Check if the parser has encountered a summary section. 522 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 523 524 /// \brief Main interface to parsing a bitcode buffer. 525 /// \returns true if an error occurred. 526 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 527 ModuleSummaryIndex *I); 528 529 private: 530 std::error_code parseModule(); 531 std::error_code parseValueSymbolTable( 532 uint64_t Offset, 533 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 534 std::error_code parseEntireSummary(); 535 std::error_code parseModuleStringTable(); 536 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 537 std::error_code initStreamFromBuffer(); 538 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 539 std::pair<GlobalValue::GUID, GlobalValue::GUID> 540 getGUIDFromValueId(unsigned ValueId); 541 }; 542 } // end anonymous namespace 543 544 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 545 DiagnosticSeverity Severity, 546 const Twine &Msg) 547 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 548 549 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 550 551 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 552 std::error_code EC, const Twine &Message) { 553 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 554 DiagnosticHandler(DI); 555 return EC; 556 } 557 558 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 559 std::error_code EC) { 560 return error(DiagnosticHandler, EC, EC.message()); 561 } 562 563 static std::error_code error(LLVMContext &Context, std::error_code EC, 564 const Twine &Message) { 565 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 566 Message); 567 } 568 569 static std::error_code error(LLVMContext &Context, std::error_code EC) { 570 return error(Context, EC, EC.message()); 571 } 572 573 static std::error_code error(LLVMContext &Context, const Twine &Message) { 574 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 575 Message); 576 } 577 578 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 579 if (!ProducerIdentification.empty()) { 580 return ::error(Context, make_error_code(E), 581 Message + " (Producer: '" + ProducerIdentification + 582 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 583 } 584 return ::error(Context, make_error_code(E), Message); 585 } 586 587 std::error_code BitcodeReader::error(const Twine &Message) { 588 if (!ProducerIdentification.empty()) { 589 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 590 Message + " (Producer: '" + ProducerIdentification + 591 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 592 } 593 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 594 Message); 595 } 596 597 std::error_code BitcodeReader::error(BitcodeError E) { 598 return ::error(Context, make_error_code(E)); 599 } 600 601 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 602 : Context(Context), Buffer(Buffer), ValueList(Context), 603 MetadataList(Context) {} 604 605 BitcodeReader::BitcodeReader(LLVMContext &Context) 606 : Context(Context), Buffer(nullptr), ValueList(Context), 607 MetadataList(Context) {} 608 609 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 610 if (WillMaterializeAllForwardRefs) 611 return std::error_code(); 612 613 // Prevent recursion. 614 WillMaterializeAllForwardRefs = true; 615 616 while (!BasicBlockFwdRefQueue.empty()) { 617 Function *F = BasicBlockFwdRefQueue.front(); 618 BasicBlockFwdRefQueue.pop_front(); 619 assert(F && "Expected valid function"); 620 if (!BasicBlockFwdRefs.count(F)) 621 // Already materialized. 622 continue; 623 624 // Check for a function that isn't materializable to prevent an infinite 625 // loop. When parsing a blockaddress stored in a global variable, there 626 // isn't a trivial way to check if a function will have a body without a 627 // linear search through FunctionsWithBodies, so just check it here. 628 if (!F->isMaterializable()) 629 return error("Never resolved function from blockaddress"); 630 631 // Try to materialize F. 632 if (std::error_code EC = materialize(F)) 633 return EC; 634 } 635 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 636 637 // Reset state. 638 WillMaterializeAllForwardRefs = false; 639 return std::error_code(); 640 } 641 642 void BitcodeReader::freeState() { 643 Buffer = nullptr; 644 std::vector<Type*>().swap(TypeList); 645 ValueList.clear(); 646 MetadataList.clear(); 647 std::vector<Comdat *>().swap(ComdatList); 648 649 std::vector<AttributeSet>().swap(MAttributes); 650 std::vector<BasicBlock*>().swap(FunctionBBs); 651 std::vector<Function*>().swap(FunctionsWithBodies); 652 DeferredFunctionInfo.clear(); 653 DeferredMetadataInfo.clear(); 654 MDKindMap.clear(); 655 656 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 657 BasicBlockFwdRefQueue.clear(); 658 } 659 660 //===----------------------------------------------------------------------===// 661 // Helper functions to implement forward reference resolution, etc. 662 //===----------------------------------------------------------------------===// 663 664 /// Convert a string from a record into an std::string, return true on failure. 665 template <typename StrTy> 666 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 667 StrTy &Result) { 668 if (Idx > Record.size()) 669 return true; 670 671 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 672 Result += (char)Record[i]; 673 return false; 674 } 675 676 static bool hasImplicitComdat(size_t Val) { 677 switch (Val) { 678 default: 679 return false; 680 case 1: // Old WeakAnyLinkage 681 case 4: // Old LinkOnceAnyLinkage 682 case 10: // Old WeakODRLinkage 683 case 11: // Old LinkOnceODRLinkage 684 return true; 685 } 686 } 687 688 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown/new linkages to external 691 case 0: 692 return GlobalValue::ExternalLinkage; 693 case 2: 694 return GlobalValue::AppendingLinkage; 695 case 3: 696 return GlobalValue::InternalLinkage; 697 case 5: 698 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 699 case 6: 700 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 701 case 7: 702 return GlobalValue::ExternalWeakLinkage; 703 case 8: 704 return GlobalValue::CommonLinkage; 705 case 9: 706 return GlobalValue::PrivateLinkage; 707 case 12: 708 return GlobalValue::AvailableExternallyLinkage; 709 case 13: 710 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 711 case 14: 712 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 713 case 15: 714 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 715 case 1: // Old value with implicit comdat. 716 case 16: 717 return GlobalValue::WeakAnyLinkage; 718 case 10: // Old value with implicit comdat. 719 case 17: 720 return GlobalValue::WeakODRLinkage; 721 case 4: // Old value with implicit comdat. 722 case 18: 723 return GlobalValue::LinkOnceAnyLinkage; 724 case 11: // Old value with implicit comdat. 725 case 19: 726 return GlobalValue::LinkOnceODRLinkage; 727 } 728 } 729 730 // Decode the flags for GlobalValue in the summary 731 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 732 uint64_t Version) { 733 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 734 // like getDecodedLinkage() above. Any future change to the linkage enum and 735 // to getDecodedLinkage() will need to be taken into account here as above. 736 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 737 RawFlags = RawFlags >> 4; 738 auto HasSection = RawFlags & 0x1; // bool 739 return GlobalValueSummary::GVFlags(Linkage, HasSection); 740 } 741 742 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 743 switch (Val) { 744 default: // Map unknown visibilities to default. 745 case 0: return GlobalValue::DefaultVisibility; 746 case 1: return GlobalValue::HiddenVisibility; 747 case 2: return GlobalValue::ProtectedVisibility; 748 } 749 } 750 751 static GlobalValue::DLLStorageClassTypes 752 getDecodedDLLStorageClass(unsigned Val) { 753 switch (Val) { 754 default: // Map unknown values to default. 755 case 0: return GlobalValue::DefaultStorageClass; 756 case 1: return GlobalValue::DLLImportStorageClass; 757 case 2: return GlobalValue::DLLExportStorageClass; 758 } 759 } 760 761 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 762 switch (Val) { 763 case 0: return GlobalVariable::NotThreadLocal; 764 default: // Map unknown non-zero value to general dynamic. 765 case 1: return GlobalVariable::GeneralDynamicTLSModel; 766 case 2: return GlobalVariable::LocalDynamicTLSModel; 767 case 3: return GlobalVariable::InitialExecTLSModel; 768 case 4: return GlobalVariable::LocalExecTLSModel; 769 } 770 } 771 772 static int getDecodedCastOpcode(unsigned Val) { 773 switch (Val) { 774 default: return -1; 775 case bitc::CAST_TRUNC : return Instruction::Trunc; 776 case bitc::CAST_ZEXT : return Instruction::ZExt; 777 case bitc::CAST_SEXT : return Instruction::SExt; 778 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 779 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 780 case bitc::CAST_UITOFP : return Instruction::UIToFP; 781 case bitc::CAST_SITOFP : return Instruction::SIToFP; 782 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 783 case bitc::CAST_FPEXT : return Instruction::FPExt; 784 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 785 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 786 case bitc::CAST_BITCAST : return Instruction::BitCast; 787 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 788 } 789 } 790 791 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 792 bool IsFP = Ty->isFPOrFPVectorTy(); 793 // BinOps are only valid for int/fp or vector of int/fp types 794 if (!IsFP && !Ty->isIntOrIntVectorTy()) 795 return -1; 796 797 switch (Val) { 798 default: 799 return -1; 800 case bitc::BINOP_ADD: 801 return IsFP ? Instruction::FAdd : Instruction::Add; 802 case bitc::BINOP_SUB: 803 return IsFP ? Instruction::FSub : Instruction::Sub; 804 case bitc::BINOP_MUL: 805 return IsFP ? Instruction::FMul : Instruction::Mul; 806 case bitc::BINOP_UDIV: 807 return IsFP ? -1 : Instruction::UDiv; 808 case bitc::BINOP_SDIV: 809 return IsFP ? Instruction::FDiv : Instruction::SDiv; 810 case bitc::BINOP_UREM: 811 return IsFP ? -1 : Instruction::URem; 812 case bitc::BINOP_SREM: 813 return IsFP ? Instruction::FRem : Instruction::SRem; 814 case bitc::BINOP_SHL: 815 return IsFP ? -1 : Instruction::Shl; 816 case bitc::BINOP_LSHR: 817 return IsFP ? -1 : Instruction::LShr; 818 case bitc::BINOP_ASHR: 819 return IsFP ? -1 : Instruction::AShr; 820 case bitc::BINOP_AND: 821 return IsFP ? -1 : Instruction::And; 822 case bitc::BINOP_OR: 823 return IsFP ? -1 : Instruction::Or; 824 case bitc::BINOP_XOR: 825 return IsFP ? -1 : Instruction::Xor; 826 } 827 } 828 829 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 830 switch (Val) { 831 default: return AtomicRMWInst::BAD_BINOP; 832 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 833 case bitc::RMW_ADD: return AtomicRMWInst::Add; 834 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 835 case bitc::RMW_AND: return AtomicRMWInst::And; 836 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 837 case bitc::RMW_OR: return AtomicRMWInst::Or; 838 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 839 case bitc::RMW_MAX: return AtomicRMWInst::Max; 840 case bitc::RMW_MIN: return AtomicRMWInst::Min; 841 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 842 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 843 } 844 } 845 846 static AtomicOrdering getDecodedOrdering(unsigned Val) { 847 switch (Val) { 848 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 849 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 850 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 851 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 852 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 853 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 854 default: // Map unknown orderings to sequentially-consistent. 855 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 856 } 857 } 858 859 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 860 switch (Val) { 861 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 862 default: // Map unknown scopes to cross-thread. 863 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 864 } 865 } 866 867 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 868 switch (Val) { 869 default: // Map unknown selection kinds to any. 870 case bitc::COMDAT_SELECTION_KIND_ANY: 871 return Comdat::Any; 872 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 873 return Comdat::ExactMatch; 874 case bitc::COMDAT_SELECTION_KIND_LARGEST: 875 return Comdat::Largest; 876 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 877 return Comdat::NoDuplicates; 878 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 879 return Comdat::SameSize; 880 } 881 } 882 883 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 884 FastMathFlags FMF; 885 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 886 FMF.setUnsafeAlgebra(); 887 if (0 != (Val & FastMathFlags::NoNaNs)) 888 FMF.setNoNaNs(); 889 if (0 != (Val & FastMathFlags::NoInfs)) 890 FMF.setNoInfs(); 891 if (0 != (Val & FastMathFlags::NoSignedZeros)) 892 FMF.setNoSignedZeros(); 893 if (0 != (Val & FastMathFlags::AllowReciprocal)) 894 FMF.setAllowReciprocal(); 895 return FMF; 896 } 897 898 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 899 switch (Val) { 900 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 901 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 902 } 903 } 904 905 namespace llvm { 906 namespace { 907 /// \brief A class for maintaining the slot number definition 908 /// as a placeholder for the actual definition for forward constants defs. 909 class ConstantPlaceHolder : public ConstantExpr { 910 void operator=(const ConstantPlaceHolder &) = delete; 911 912 public: 913 // allocate space for exactly one operand 914 void *operator new(size_t s) { return User::operator new(s, 1); } 915 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 916 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 917 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 918 } 919 920 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 921 static bool classof(const Value *V) { 922 return isa<ConstantExpr>(V) && 923 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 924 } 925 926 /// Provide fast operand accessors 927 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 928 }; 929 } // end anonymous namespace 930 931 // FIXME: can we inherit this from ConstantExpr? 932 template <> 933 struct OperandTraits<ConstantPlaceHolder> : 934 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 935 }; 936 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 937 } // end namespace llvm 938 939 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 940 if (Idx == size()) { 941 push_back(V); 942 return; 943 } 944 945 if (Idx >= size()) 946 resize(Idx+1); 947 948 WeakVH &OldV = ValuePtrs[Idx]; 949 if (!OldV) { 950 OldV = V; 951 return; 952 } 953 954 // Handle constants and non-constants (e.g. instrs) differently for 955 // efficiency. 956 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 957 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 958 OldV = V; 959 } else { 960 // If there was a forward reference to this value, replace it. 961 Value *PrevVal = OldV; 962 OldV->replaceAllUsesWith(V); 963 delete PrevVal; 964 } 965 } 966 967 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 968 Type *Ty) { 969 if (Idx >= size()) 970 resize(Idx + 1); 971 972 if (Value *V = ValuePtrs[Idx]) { 973 if (Ty != V->getType()) 974 report_fatal_error("Type mismatch in constant table!"); 975 return cast<Constant>(V); 976 } 977 978 // Create and return a placeholder, which will later be RAUW'd. 979 Constant *C = new ConstantPlaceHolder(Ty, Context); 980 ValuePtrs[Idx] = C; 981 return C; 982 } 983 984 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 985 // Bail out for a clearly invalid value. This would make us call resize(0) 986 if (Idx == UINT_MAX) 987 return nullptr; 988 989 if (Idx >= size()) 990 resize(Idx + 1); 991 992 if (Value *V = ValuePtrs[Idx]) { 993 // If the types don't match, it's invalid. 994 if (Ty && Ty != V->getType()) 995 return nullptr; 996 return V; 997 } 998 999 // No type specified, must be invalid reference. 1000 if (!Ty) return nullptr; 1001 1002 // Create and return a placeholder, which will later be RAUW'd. 1003 Value *V = new Argument(Ty); 1004 ValuePtrs[Idx] = V; 1005 return V; 1006 } 1007 1008 /// Once all constants are read, this method bulk resolves any forward 1009 /// references. The idea behind this is that we sometimes get constants (such 1010 /// as large arrays) which reference *many* forward ref constants. Replacing 1011 /// each of these causes a lot of thrashing when building/reuniquing the 1012 /// constant. Instead of doing this, we look at all the uses and rewrite all 1013 /// the place holders at once for any constant that uses a placeholder. 1014 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1015 // Sort the values by-pointer so that they are efficient to look up with a 1016 // binary search. 1017 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1018 1019 SmallVector<Constant*, 64> NewOps; 1020 1021 while (!ResolveConstants.empty()) { 1022 Value *RealVal = operator[](ResolveConstants.back().second); 1023 Constant *Placeholder = ResolveConstants.back().first; 1024 ResolveConstants.pop_back(); 1025 1026 // Loop over all users of the placeholder, updating them to reference the 1027 // new value. If they reference more than one placeholder, update them all 1028 // at once. 1029 while (!Placeholder->use_empty()) { 1030 auto UI = Placeholder->user_begin(); 1031 User *U = *UI; 1032 1033 // If the using object isn't uniqued, just update the operands. This 1034 // handles instructions and initializers for global variables. 1035 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1036 UI.getUse().set(RealVal); 1037 continue; 1038 } 1039 1040 // Otherwise, we have a constant that uses the placeholder. Replace that 1041 // constant with a new constant that has *all* placeholder uses updated. 1042 Constant *UserC = cast<Constant>(U); 1043 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1044 I != E; ++I) { 1045 Value *NewOp; 1046 if (!isa<ConstantPlaceHolder>(*I)) { 1047 // Not a placeholder reference. 1048 NewOp = *I; 1049 } else if (*I == Placeholder) { 1050 // Common case is that it just references this one placeholder. 1051 NewOp = RealVal; 1052 } else { 1053 // Otherwise, look up the placeholder in ResolveConstants. 1054 ResolveConstantsTy::iterator It = 1055 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1056 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1057 0)); 1058 assert(It != ResolveConstants.end() && It->first == *I); 1059 NewOp = operator[](It->second); 1060 } 1061 1062 NewOps.push_back(cast<Constant>(NewOp)); 1063 } 1064 1065 // Make the new constant. 1066 Constant *NewC; 1067 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1068 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1069 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1070 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1071 } else if (isa<ConstantVector>(UserC)) { 1072 NewC = ConstantVector::get(NewOps); 1073 } else { 1074 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1075 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1076 } 1077 1078 UserC->replaceAllUsesWith(NewC); 1079 UserC->destroyConstant(); 1080 NewOps.clear(); 1081 } 1082 1083 // Update all ValueHandles, they should be the only users at this point. 1084 Placeholder->replaceAllUsesWith(RealVal); 1085 delete Placeholder; 1086 } 1087 } 1088 1089 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1090 if (Idx == size()) { 1091 push_back(MD); 1092 return; 1093 } 1094 1095 if (Idx >= size()) 1096 resize(Idx+1); 1097 1098 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1099 if (!OldMD) { 1100 OldMD.reset(MD); 1101 return; 1102 } 1103 1104 // If there was a forward reference to this value, replace it. 1105 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1106 PrevMD->replaceAllUsesWith(MD); 1107 --NumFwdRefs; 1108 } 1109 1110 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1111 if (Idx >= size()) 1112 resize(Idx + 1); 1113 1114 if (Metadata *MD = MetadataPtrs[Idx]) 1115 return MD; 1116 1117 // Track forward refs to be resolved later. 1118 if (AnyFwdRefs) { 1119 MinFwdRef = std::min(MinFwdRef, Idx); 1120 MaxFwdRef = std::max(MaxFwdRef, Idx); 1121 } else { 1122 AnyFwdRefs = true; 1123 MinFwdRef = MaxFwdRef = Idx; 1124 } 1125 ++NumFwdRefs; 1126 1127 // Create and return a placeholder, which will later be RAUW'd. 1128 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1129 MetadataPtrs[Idx].reset(MD); 1130 return MD; 1131 } 1132 1133 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1134 Metadata *MD = lookup(Idx); 1135 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1136 if (!N->isResolved()) 1137 return nullptr; 1138 return MD; 1139 } 1140 1141 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1142 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1143 } 1144 1145 void BitcodeReaderMetadataList::tryToResolveCycles() { 1146 if (NumFwdRefs) 1147 // Still forward references... can't resolve cycles. 1148 return; 1149 1150 bool DidReplaceTypeRefs = false; 1151 1152 // Give up on finding a full definition for any forward decls that remain. 1153 for (const auto &Ref : OldTypeRefs.FwdDecls) 1154 OldTypeRefs.Final.insert(Ref); 1155 OldTypeRefs.FwdDecls.clear(); 1156 1157 // Upgrade from old type ref arrays. In strange cases, this could add to 1158 // OldTypeRefs.Unknown. 1159 for (const auto &Array : OldTypeRefs.Arrays) { 1160 DidReplaceTypeRefs = true; 1161 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1162 } 1163 OldTypeRefs.Arrays.clear(); 1164 1165 // Replace old string-based type refs with the resolved node, if possible. 1166 // If we haven't seen the node, leave it to the verifier to complain about 1167 // the invalid string reference. 1168 for (const auto &Ref : OldTypeRefs.Unknown) { 1169 DidReplaceTypeRefs = true; 1170 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1171 Ref.second->replaceAllUsesWith(CT); 1172 else 1173 Ref.second->replaceAllUsesWith(Ref.first); 1174 } 1175 OldTypeRefs.Unknown.clear(); 1176 1177 // Make sure all the upgraded types are resolved. 1178 if (DidReplaceTypeRefs) { 1179 AnyFwdRefs = true; 1180 MinFwdRef = 0; 1181 MaxFwdRef = MetadataPtrs.size() - 1; 1182 } 1183 1184 if (!AnyFwdRefs) 1185 // Nothing to do. 1186 return; 1187 1188 // Resolve any cycles. 1189 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1190 auto &MD = MetadataPtrs[I]; 1191 auto *N = dyn_cast_or_null<MDNode>(MD); 1192 if (!N) 1193 continue; 1194 1195 assert(!N->isTemporary() && "Unexpected forward reference"); 1196 N->resolveCycles(); 1197 } 1198 1199 // Make sure we return early again until there's another forward ref. 1200 AnyFwdRefs = false; 1201 } 1202 1203 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1204 DICompositeType &CT) { 1205 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1206 if (CT.isForwardDecl()) 1207 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1208 else 1209 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1210 } 1211 1212 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1213 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1214 if (LLVM_LIKELY(!UUID)) 1215 return MaybeUUID; 1216 1217 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1218 return CT; 1219 1220 auto &Ref = OldTypeRefs.Unknown[UUID]; 1221 if (!Ref) 1222 Ref = MDNode::getTemporary(Context, None); 1223 return Ref.get(); 1224 } 1225 1226 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1227 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1228 if (!Tuple || Tuple->isDistinct()) 1229 return MaybeTuple; 1230 1231 // Look through the array immediately if possible. 1232 if (!Tuple->isTemporary()) 1233 return resolveTypeRefArray(Tuple); 1234 1235 // Create and return a placeholder to use for now. Eventually 1236 // resolveTypeRefArrays() will be resolve this forward reference. 1237 OldTypeRefs.Arrays.emplace_back(); 1238 OldTypeRefs.Arrays.back().first.reset(Tuple); 1239 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1240 return OldTypeRefs.Arrays.back().second.get(); 1241 } 1242 1243 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1244 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1245 if (!Tuple || Tuple->isDistinct()) 1246 return MaybeTuple; 1247 1248 // Look through the DITypeRefArray, upgrading each DITypeRef. 1249 SmallVector<Metadata *, 32> Ops; 1250 Ops.reserve(Tuple->getNumOperands()); 1251 for (Metadata *MD : Tuple->operands()) 1252 Ops.push_back(upgradeTypeRef(MD)); 1253 1254 return MDTuple::get(Context, Ops); 1255 } 1256 1257 Type *BitcodeReader::getTypeByID(unsigned ID) { 1258 // The type table size is always specified correctly. 1259 if (ID >= TypeList.size()) 1260 return nullptr; 1261 1262 if (Type *Ty = TypeList[ID]) 1263 return Ty; 1264 1265 // If we have a forward reference, the only possible case is when it is to a 1266 // named struct. Just create a placeholder for now. 1267 return TypeList[ID] = createIdentifiedStructType(Context); 1268 } 1269 1270 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1271 StringRef Name) { 1272 auto *Ret = StructType::create(Context, Name); 1273 IdentifiedStructTypes.push_back(Ret); 1274 return Ret; 1275 } 1276 1277 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1278 auto *Ret = StructType::create(Context); 1279 IdentifiedStructTypes.push_back(Ret); 1280 return Ret; 1281 } 1282 1283 //===----------------------------------------------------------------------===// 1284 // Functions for parsing blocks from the bitcode file 1285 //===----------------------------------------------------------------------===// 1286 1287 1288 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1289 /// been decoded from the given integer. This function must stay in sync with 1290 /// 'encodeLLVMAttributesForBitcode'. 1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1292 uint64_t EncodedAttrs) { 1293 // FIXME: Remove in 4.0. 1294 1295 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1296 // the bits above 31 down by 11 bits. 1297 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1298 assert((!Alignment || isPowerOf2_32(Alignment)) && 1299 "Alignment must be a power of two."); 1300 1301 if (Alignment) 1302 B.addAlignmentAttr(Alignment); 1303 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1304 (EncodedAttrs & 0xffff)); 1305 } 1306 1307 std::error_code BitcodeReader::parseAttributeBlock() { 1308 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1309 return error("Invalid record"); 1310 1311 if (!MAttributes.empty()) 1312 return error("Invalid multiple blocks"); 1313 1314 SmallVector<uint64_t, 64> Record; 1315 1316 SmallVector<AttributeSet, 8> Attrs; 1317 1318 // Read all the records. 1319 while (1) { 1320 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1321 1322 switch (Entry.Kind) { 1323 case BitstreamEntry::SubBlock: // Handled for us already. 1324 case BitstreamEntry::Error: 1325 return error("Malformed block"); 1326 case BitstreamEntry::EndBlock: 1327 return std::error_code(); 1328 case BitstreamEntry::Record: 1329 // The interesting case. 1330 break; 1331 } 1332 1333 // Read a record. 1334 Record.clear(); 1335 switch (Stream.readRecord(Entry.ID, Record)) { 1336 default: // Default behavior: ignore. 1337 break; 1338 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1339 // FIXME: Remove in 4.0. 1340 if (Record.size() & 1) 1341 return error("Invalid record"); 1342 1343 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1344 AttrBuilder B; 1345 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1346 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1347 } 1348 1349 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1350 Attrs.clear(); 1351 break; 1352 } 1353 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1354 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1355 Attrs.push_back(MAttributeGroups[Record[i]]); 1356 1357 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 } 1361 } 1362 } 1363 } 1364 1365 // Returns Attribute::None on unrecognized codes. 1366 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1367 switch (Code) { 1368 default: 1369 return Attribute::None; 1370 case bitc::ATTR_KIND_ALIGNMENT: 1371 return Attribute::Alignment; 1372 case bitc::ATTR_KIND_ALWAYS_INLINE: 1373 return Attribute::AlwaysInline; 1374 case bitc::ATTR_KIND_ARGMEMONLY: 1375 return Attribute::ArgMemOnly; 1376 case bitc::ATTR_KIND_BUILTIN: 1377 return Attribute::Builtin; 1378 case bitc::ATTR_KIND_BY_VAL: 1379 return Attribute::ByVal; 1380 case bitc::ATTR_KIND_IN_ALLOCA: 1381 return Attribute::InAlloca; 1382 case bitc::ATTR_KIND_COLD: 1383 return Attribute::Cold; 1384 case bitc::ATTR_KIND_CONVERGENT: 1385 return Attribute::Convergent; 1386 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1387 return Attribute::InaccessibleMemOnly; 1388 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1389 return Attribute::InaccessibleMemOrArgMemOnly; 1390 case bitc::ATTR_KIND_INLINE_HINT: 1391 return Attribute::InlineHint; 1392 case bitc::ATTR_KIND_IN_REG: 1393 return Attribute::InReg; 1394 case bitc::ATTR_KIND_JUMP_TABLE: 1395 return Attribute::JumpTable; 1396 case bitc::ATTR_KIND_MIN_SIZE: 1397 return Attribute::MinSize; 1398 case bitc::ATTR_KIND_NAKED: 1399 return Attribute::Naked; 1400 case bitc::ATTR_KIND_NEST: 1401 return Attribute::Nest; 1402 case bitc::ATTR_KIND_NO_ALIAS: 1403 return Attribute::NoAlias; 1404 case bitc::ATTR_KIND_NO_BUILTIN: 1405 return Attribute::NoBuiltin; 1406 case bitc::ATTR_KIND_NO_CAPTURE: 1407 return Attribute::NoCapture; 1408 case bitc::ATTR_KIND_NO_DUPLICATE: 1409 return Attribute::NoDuplicate; 1410 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1411 return Attribute::NoImplicitFloat; 1412 case bitc::ATTR_KIND_NO_INLINE: 1413 return Attribute::NoInline; 1414 case bitc::ATTR_KIND_NO_RECURSE: 1415 return Attribute::NoRecurse; 1416 case bitc::ATTR_KIND_NON_LAZY_BIND: 1417 return Attribute::NonLazyBind; 1418 case bitc::ATTR_KIND_NON_NULL: 1419 return Attribute::NonNull; 1420 case bitc::ATTR_KIND_DEREFERENCEABLE: 1421 return Attribute::Dereferenceable; 1422 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1423 return Attribute::DereferenceableOrNull; 1424 case bitc::ATTR_KIND_ALLOC_SIZE: 1425 return Attribute::AllocSize; 1426 case bitc::ATTR_KIND_NO_RED_ZONE: 1427 return Attribute::NoRedZone; 1428 case bitc::ATTR_KIND_NO_RETURN: 1429 return Attribute::NoReturn; 1430 case bitc::ATTR_KIND_NO_UNWIND: 1431 return Attribute::NoUnwind; 1432 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1433 return Attribute::OptimizeForSize; 1434 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1435 return Attribute::OptimizeNone; 1436 case bitc::ATTR_KIND_READ_NONE: 1437 return Attribute::ReadNone; 1438 case bitc::ATTR_KIND_READ_ONLY: 1439 return Attribute::ReadOnly; 1440 case bitc::ATTR_KIND_RETURNED: 1441 return Attribute::Returned; 1442 case bitc::ATTR_KIND_RETURNS_TWICE: 1443 return Attribute::ReturnsTwice; 1444 case bitc::ATTR_KIND_S_EXT: 1445 return Attribute::SExt; 1446 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1447 return Attribute::StackAlignment; 1448 case bitc::ATTR_KIND_STACK_PROTECT: 1449 return Attribute::StackProtect; 1450 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1451 return Attribute::StackProtectReq; 1452 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1453 return Attribute::StackProtectStrong; 1454 case bitc::ATTR_KIND_SAFESTACK: 1455 return Attribute::SafeStack; 1456 case bitc::ATTR_KIND_STRUCT_RET: 1457 return Attribute::StructRet; 1458 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1459 return Attribute::SanitizeAddress; 1460 case bitc::ATTR_KIND_SANITIZE_THREAD: 1461 return Attribute::SanitizeThread; 1462 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1463 return Attribute::SanitizeMemory; 1464 case bitc::ATTR_KIND_SWIFT_ERROR: 1465 return Attribute::SwiftError; 1466 case bitc::ATTR_KIND_SWIFT_SELF: 1467 return Attribute::SwiftSelf; 1468 case bitc::ATTR_KIND_UW_TABLE: 1469 return Attribute::UWTable; 1470 case bitc::ATTR_KIND_Z_EXT: 1471 return Attribute::ZExt; 1472 } 1473 } 1474 1475 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1476 unsigned &Alignment) { 1477 // Note: Alignment in bitcode files is incremented by 1, so that zero 1478 // can be used for default alignment. 1479 if (Exponent > Value::MaxAlignmentExponent + 1) 1480 return error("Invalid alignment value"); 1481 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1482 return std::error_code(); 1483 } 1484 1485 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1486 Attribute::AttrKind *Kind) { 1487 *Kind = getAttrFromCode(Code); 1488 if (*Kind == Attribute::None) 1489 return error(BitcodeError::CorruptedBitcode, 1490 "Unknown attribute kind (" + Twine(Code) + ")"); 1491 return std::error_code(); 1492 } 1493 1494 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1495 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1496 return error("Invalid record"); 1497 1498 if (!MAttributeGroups.empty()) 1499 return error("Invalid multiple blocks"); 1500 1501 SmallVector<uint64_t, 64> Record; 1502 1503 // Read all the records. 1504 while (1) { 1505 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1506 1507 switch (Entry.Kind) { 1508 case BitstreamEntry::SubBlock: // Handled for us already. 1509 case BitstreamEntry::Error: 1510 return error("Malformed block"); 1511 case BitstreamEntry::EndBlock: 1512 return std::error_code(); 1513 case BitstreamEntry::Record: 1514 // The interesting case. 1515 break; 1516 } 1517 1518 // Read a record. 1519 Record.clear(); 1520 switch (Stream.readRecord(Entry.ID, Record)) { 1521 default: // Default behavior: ignore. 1522 break; 1523 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1524 if (Record.size() < 3) 1525 return error("Invalid record"); 1526 1527 uint64_t GrpID = Record[0]; 1528 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1529 1530 AttrBuilder B; 1531 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1532 if (Record[i] == 0) { // Enum attribute 1533 Attribute::AttrKind Kind; 1534 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1535 return EC; 1536 1537 B.addAttribute(Kind); 1538 } else if (Record[i] == 1) { // Integer attribute 1539 Attribute::AttrKind Kind; 1540 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1541 return EC; 1542 if (Kind == Attribute::Alignment) 1543 B.addAlignmentAttr(Record[++i]); 1544 else if (Kind == Attribute::StackAlignment) 1545 B.addStackAlignmentAttr(Record[++i]); 1546 else if (Kind == Attribute::Dereferenceable) 1547 B.addDereferenceableAttr(Record[++i]); 1548 else if (Kind == Attribute::DereferenceableOrNull) 1549 B.addDereferenceableOrNullAttr(Record[++i]); 1550 else if (Kind == Attribute::AllocSize) 1551 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1552 } else { // String attribute 1553 assert((Record[i] == 3 || Record[i] == 4) && 1554 "Invalid attribute group entry"); 1555 bool HasValue = (Record[i++] == 4); 1556 SmallString<64> KindStr; 1557 SmallString<64> ValStr; 1558 1559 while (Record[i] != 0 && i != e) 1560 KindStr += Record[i++]; 1561 assert(Record[i] == 0 && "Kind string not null terminated"); 1562 1563 if (HasValue) { 1564 // Has a value associated with it. 1565 ++i; // Skip the '0' that terminates the "kind" string. 1566 while (Record[i] != 0 && i != e) 1567 ValStr += Record[i++]; 1568 assert(Record[i] == 0 && "Value string not null terminated"); 1569 } 1570 1571 B.addAttribute(KindStr.str(), ValStr.str()); 1572 } 1573 } 1574 1575 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1576 break; 1577 } 1578 } 1579 } 1580 } 1581 1582 std::error_code BitcodeReader::parseTypeTable() { 1583 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1584 return error("Invalid record"); 1585 1586 return parseTypeTableBody(); 1587 } 1588 1589 std::error_code BitcodeReader::parseTypeTableBody() { 1590 if (!TypeList.empty()) 1591 return error("Invalid multiple blocks"); 1592 1593 SmallVector<uint64_t, 64> Record; 1594 unsigned NumRecords = 0; 1595 1596 SmallString<64> TypeName; 1597 1598 // Read all the records for this type table. 1599 while (1) { 1600 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1601 1602 switch (Entry.Kind) { 1603 case BitstreamEntry::SubBlock: // Handled for us already. 1604 case BitstreamEntry::Error: 1605 return error("Malformed block"); 1606 case BitstreamEntry::EndBlock: 1607 if (NumRecords != TypeList.size()) 1608 return error("Malformed block"); 1609 return std::error_code(); 1610 case BitstreamEntry::Record: 1611 // The interesting case. 1612 break; 1613 } 1614 1615 // Read a record. 1616 Record.clear(); 1617 Type *ResultTy = nullptr; 1618 switch (Stream.readRecord(Entry.ID, Record)) { 1619 default: 1620 return error("Invalid value"); 1621 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1622 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1623 // type list. This allows us to reserve space. 1624 if (Record.size() < 1) 1625 return error("Invalid record"); 1626 TypeList.resize(Record[0]); 1627 continue; 1628 case bitc::TYPE_CODE_VOID: // VOID 1629 ResultTy = Type::getVoidTy(Context); 1630 break; 1631 case bitc::TYPE_CODE_HALF: // HALF 1632 ResultTy = Type::getHalfTy(Context); 1633 break; 1634 case bitc::TYPE_CODE_FLOAT: // FLOAT 1635 ResultTy = Type::getFloatTy(Context); 1636 break; 1637 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1638 ResultTy = Type::getDoubleTy(Context); 1639 break; 1640 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1641 ResultTy = Type::getX86_FP80Ty(Context); 1642 break; 1643 case bitc::TYPE_CODE_FP128: // FP128 1644 ResultTy = Type::getFP128Ty(Context); 1645 break; 1646 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1647 ResultTy = Type::getPPC_FP128Ty(Context); 1648 break; 1649 case bitc::TYPE_CODE_LABEL: // LABEL 1650 ResultTy = Type::getLabelTy(Context); 1651 break; 1652 case bitc::TYPE_CODE_METADATA: // METADATA 1653 ResultTy = Type::getMetadataTy(Context); 1654 break; 1655 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1656 ResultTy = Type::getX86_MMXTy(Context); 1657 break; 1658 case bitc::TYPE_CODE_TOKEN: // TOKEN 1659 ResultTy = Type::getTokenTy(Context); 1660 break; 1661 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1662 if (Record.size() < 1) 1663 return error("Invalid record"); 1664 1665 uint64_t NumBits = Record[0]; 1666 if (NumBits < IntegerType::MIN_INT_BITS || 1667 NumBits > IntegerType::MAX_INT_BITS) 1668 return error("Bitwidth for integer type out of range"); 1669 ResultTy = IntegerType::get(Context, NumBits); 1670 break; 1671 } 1672 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1673 // [pointee type, address space] 1674 if (Record.size() < 1) 1675 return error("Invalid record"); 1676 unsigned AddressSpace = 0; 1677 if (Record.size() == 2) 1678 AddressSpace = Record[1]; 1679 ResultTy = getTypeByID(Record[0]); 1680 if (!ResultTy || 1681 !PointerType::isValidElementType(ResultTy)) 1682 return error("Invalid type"); 1683 ResultTy = PointerType::get(ResultTy, AddressSpace); 1684 break; 1685 } 1686 case bitc::TYPE_CODE_FUNCTION_OLD: { 1687 // FIXME: attrid is dead, remove it in LLVM 4.0 1688 // FUNCTION: [vararg, attrid, retty, paramty x N] 1689 if (Record.size() < 3) 1690 return error("Invalid record"); 1691 SmallVector<Type*, 8> ArgTys; 1692 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1693 if (Type *T = getTypeByID(Record[i])) 1694 ArgTys.push_back(T); 1695 else 1696 break; 1697 } 1698 1699 ResultTy = getTypeByID(Record[2]); 1700 if (!ResultTy || ArgTys.size() < Record.size()-3) 1701 return error("Invalid type"); 1702 1703 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1704 break; 1705 } 1706 case bitc::TYPE_CODE_FUNCTION: { 1707 // FUNCTION: [vararg, retty, paramty x N] 1708 if (Record.size() < 2) 1709 return error("Invalid record"); 1710 SmallVector<Type*, 8> ArgTys; 1711 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1712 if (Type *T = getTypeByID(Record[i])) { 1713 if (!FunctionType::isValidArgumentType(T)) 1714 return error("Invalid function argument type"); 1715 ArgTys.push_back(T); 1716 } 1717 else 1718 break; 1719 } 1720 1721 ResultTy = getTypeByID(Record[1]); 1722 if (!ResultTy || ArgTys.size() < Record.size()-2) 1723 return error("Invalid type"); 1724 1725 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1726 break; 1727 } 1728 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1729 if (Record.size() < 1) 1730 return error("Invalid record"); 1731 SmallVector<Type*, 8> EltTys; 1732 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1733 if (Type *T = getTypeByID(Record[i])) 1734 EltTys.push_back(T); 1735 else 1736 break; 1737 } 1738 if (EltTys.size() != Record.size()-1) 1739 return error("Invalid type"); 1740 ResultTy = StructType::get(Context, EltTys, Record[0]); 1741 break; 1742 } 1743 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1744 if (convertToString(Record, 0, TypeName)) 1745 return error("Invalid record"); 1746 continue; 1747 1748 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1749 if (Record.size() < 1) 1750 return error("Invalid record"); 1751 1752 if (NumRecords >= TypeList.size()) 1753 return error("Invalid TYPE table"); 1754 1755 // Check to see if this was forward referenced, if so fill in the temp. 1756 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1757 if (Res) { 1758 Res->setName(TypeName); 1759 TypeList[NumRecords] = nullptr; 1760 } else // Otherwise, create a new struct. 1761 Res = createIdentifiedStructType(Context, TypeName); 1762 TypeName.clear(); 1763 1764 SmallVector<Type*, 8> EltTys; 1765 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1766 if (Type *T = getTypeByID(Record[i])) 1767 EltTys.push_back(T); 1768 else 1769 break; 1770 } 1771 if (EltTys.size() != Record.size()-1) 1772 return error("Invalid record"); 1773 Res->setBody(EltTys, Record[0]); 1774 ResultTy = Res; 1775 break; 1776 } 1777 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1778 if (Record.size() != 1) 1779 return error("Invalid record"); 1780 1781 if (NumRecords >= TypeList.size()) 1782 return error("Invalid TYPE table"); 1783 1784 // Check to see if this was forward referenced, if so fill in the temp. 1785 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1786 if (Res) { 1787 Res->setName(TypeName); 1788 TypeList[NumRecords] = nullptr; 1789 } else // Otherwise, create a new struct with no body. 1790 Res = createIdentifiedStructType(Context, TypeName); 1791 TypeName.clear(); 1792 ResultTy = Res; 1793 break; 1794 } 1795 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1796 if (Record.size() < 2) 1797 return error("Invalid record"); 1798 ResultTy = getTypeByID(Record[1]); 1799 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1800 return error("Invalid type"); 1801 ResultTy = ArrayType::get(ResultTy, Record[0]); 1802 break; 1803 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1804 if (Record.size() < 2) 1805 return error("Invalid record"); 1806 if (Record[0] == 0) 1807 return error("Invalid vector length"); 1808 ResultTy = getTypeByID(Record[1]); 1809 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1810 return error("Invalid type"); 1811 ResultTy = VectorType::get(ResultTy, Record[0]); 1812 break; 1813 } 1814 1815 if (NumRecords >= TypeList.size()) 1816 return error("Invalid TYPE table"); 1817 if (TypeList[NumRecords]) 1818 return error( 1819 "Invalid TYPE table: Only named structs can be forward referenced"); 1820 assert(ResultTy && "Didn't read a type?"); 1821 TypeList[NumRecords++] = ResultTy; 1822 } 1823 } 1824 1825 std::error_code BitcodeReader::parseOperandBundleTags() { 1826 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1827 return error("Invalid record"); 1828 1829 if (!BundleTags.empty()) 1830 return error("Invalid multiple blocks"); 1831 1832 SmallVector<uint64_t, 64> Record; 1833 1834 while (1) { 1835 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1836 1837 switch (Entry.Kind) { 1838 case BitstreamEntry::SubBlock: // Handled for us already. 1839 case BitstreamEntry::Error: 1840 return error("Malformed block"); 1841 case BitstreamEntry::EndBlock: 1842 return std::error_code(); 1843 case BitstreamEntry::Record: 1844 // The interesting case. 1845 break; 1846 } 1847 1848 // Tags are implicitly mapped to integers by their order. 1849 1850 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1851 return error("Invalid record"); 1852 1853 // OPERAND_BUNDLE_TAG: [strchr x N] 1854 BundleTags.emplace_back(); 1855 if (convertToString(Record, 0, BundleTags.back())) 1856 return error("Invalid record"); 1857 Record.clear(); 1858 } 1859 } 1860 1861 /// Associate a value with its name from the given index in the provided record. 1862 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1863 unsigned NameIndex, Triple &TT) { 1864 SmallString<128> ValueName; 1865 if (convertToString(Record, NameIndex, ValueName)) 1866 return error("Invalid record"); 1867 unsigned ValueID = Record[0]; 1868 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1869 return error("Invalid record"); 1870 Value *V = ValueList[ValueID]; 1871 1872 StringRef NameStr(ValueName.data(), ValueName.size()); 1873 if (NameStr.find_first_of(0) != StringRef::npos) 1874 return error("Invalid value name"); 1875 V->setName(NameStr); 1876 auto *GO = dyn_cast<GlobalObject>(V); 1877 if (GO) { 1878 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1879 if (TT.isOSBinFormatMachO()) 1880 GO->setComdat(nullptr); 1881 else 1882 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1883 } 1884 } 1885 return V; 1886 } 1887 1888 /// Helper to note and return the current location, and jump to the given 1889 /// offset. 1890 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1891 BitstreamCursor &Stream) { 1892 // Save the current parsing location so we can jump back at the end 1893 // of the VST read. 1894 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1895 Stream.JumpToBit(Offset * 32); 1896 #ifndef NDEBUG 1897 // Do some checking if we are in debug mode. 1898 BitstreamEntry Entry = Stream.advance(); 1899 assert(Entry.Kind == BitstreamEntry::SubBlock); 1900 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1901 #else 1902 // In NDEBUG mode ignore the output so we don't get an unused variable 1903 // warning. 1904 Stream.advance(); 1905 #endif 1906 return CurrentBit; 1907 } 1908 1909 /// Parse the value symbol table at either the current parsing location or 1910 /// at the given bit offset if provided. 1911 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1912 uint64_t CurrentBit; 1913 // Pass in the Offset to distinguish between calling for the module-level 1914 // VST (where we want to jump to the VST offset) and the function-level 1915 // VST (where we don't). 1916 if (Offset > 0) 1917 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1918 1919 // Compute the delta between the bitcode indices in the VST (the word offset 1920 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1921 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1922 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1923 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1924 // just before entering the VST subblock because: 1) the EnterSubBlock 1925 // changes the AbbrevID width; 2) the VST block is nested within the same 1926 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1927 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1928 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1929 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1930 unsigned FuncBitcodeOffsetDelta = 1931 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1932 1933 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1934 return error("Invalid record"); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 Triple TT(TheModule->getTargetTriple()); 1939 1940 // Read all the records for this value table. 1941 SmallString<128> ValueName; 1942 while (1) { 1943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1944 1945 switch (Entry.Kind) { 1946 case BitstreamEntry::SubBlock: // Handled for us already. 1947 case BitstreamEntry::Error: 1948 return error("Malformed block"); 1949 case BitstreamEntry::EndBlock: 1950 if (Offset > 0) 1951 Stream.JumpToBit(CurrentBit); 1952 return std::error_code(); 1953 case BitstreamEntry::Record: 1954 // The interesting case. 1955 break; 1956 } 1957 1958 // Read a record. 1959 Record.clear(); 1960 switch (Stream.readRecord(Entry.ID, Record)) { 1961 default: // Default behavior: unknown type. 1962 break; 1963 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1964 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1965 if (std::error_code EC = ValOrErr.getError()) 1966 return EC; 1967 ValOrErr.get(); 1968 break; 1969 } 1970 case bitc::VST_CODE_FNENTRY: { 1971 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1972 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1973 if (std::error_code EC = ValOrErr.getError()) 1974 return EC; 1975 Value *V = ValOrErr.get(); 1976 1977 auto *GO = dyn_cast<GlobalObject>(V); 1978 if (!GO) { 1979 // If this is an alias, need to get the actual Function object 1980 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1981 auto *GA = dyn_cast<GlobalAlias>(V); 1982 if (GA) 1983 GO = GA->getBaseObject(); 1984 assert(GO); 1985 } 1986 1987 uint64_t FuncWordOffset = Record[1]; 1988 Function *F = dyn_cast<Function>(GO); 1989 assert(F); 1990 uint64_t FuncBitOffset = FuncWordOffset * 32; 1991 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1992 // Set the LastFunctionBlockBit to point to the last function block. 1993 // Later when parsing is resumed after function materialization, 1994 // we can simply skip that last function block. 1995 if (FuncBitOffset > LastFunctionBlockBit) 1996 LastFunctionBlockBit = FuncBitOffset; 1997 break; 1998 } 1999 case bitc::VST_CODE_BBENTRY: { 2000 if (convertToString(Record, 1, ValueName)) 2001 return error("Invalid record"); 2002 BasicBlock *BB = getBasicBlock(Record[0]); 2003 if (!BB) 2004 return error("Invalid record"); 2005 2006 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2007 ValueName.clear(); 2008 break; 2009 } 2010 } 2011 } 2012 } 2013 2014 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2015 std::error_code 2016 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2017 if (Record.size() < 2) 2018 return error("Invalid record"); 2019 2020 unsigned Kind = Record[0]; 2021 SmallString<8> Name(Record.begin() + 1, Record.end()); 2022 2023 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2024 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2025 return error("Conflicting METADATA_KIND records"); 2026 return std::error_code(); 2027 } 2028 2029 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2030 2031 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2032 StringRef Blob, 2033 unsigned &NextMetadataNo) { 2034 // All the MDStrings in the block are emitted together in a single 2035 // record. The strings are concatenated and stored in a blob along with 2036 // their sizes. 2037 if (Record.size() != 2) 2038 return error("Invalid record: metadata strings layout"); 2039 2040 unsigned NumStrings = Record[0]; 2041 unsigned StringsOffset = Record[1]; 2042 if (!NumStrings) 2043 return error("Invalid record: metadata strings with no strings"); 2044 if (StringsOffset > Blob.size()) 2045 return error("Invalid record: metadata strings corrupt offset"); 2046 2047 StringRef Lengths = Blob.slice(0, StringsOffset); 2048 SimpleBitstreamCursor R(*StreamFile); 2049 R.jumpToPointer(Lengths.begin()); 2050 2051 // Ensure that Blob doesn't get invalidated, even if this is reading from 2052 // a StreamingMemoryObject with corrupt data. 2053 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2054 2055 StringRef Strings = Blob.drop_front(StringsOffset); 2056 do { 2057 if (R.AtEndOfStream()) 2058 return error("Invalid record: metadata strings bad length"); 2059 2060 unsigned Size = R.ReadVBR(6); 2061 if (Strings.size() < Size) 2062 return error("Invalid record: metadata strings truncated chars"); 2063 2064 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2065 NextMetadataNo++); 2066 Strings = Strings.drop_front(Size); 2067 } while (--NumStrings); 2068 2069 return std::error_code(); 2070 } 2071 2072 namespace { 2073 class PlaceholderQueue { 2074 // Placeholders would thrash around when moved, so store in a std::deque 2075 // instead of some sort of vector. 2076 std::deque<DistinctMDOperandPlaceholder> PHs; 2077 2078 public: 2079 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2080 void flush(BitcodeReaderMetadataList &MetadataList); 2081 }; 2082 } // end namespace 2083 2084 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2085 PHs.emplace_back(ID); 2086 return PHs.back(); 2087 } 2088 2089 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2090 while (!PHs.empty()) { 2091 PHs.front().replaceUseWith( 2092 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2093 PHs.pop_front(); 2094 } 2095 } 2096 2097 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2098 /// module level metadata. 2099 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2100 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2101 "Must read all module-level metadata before function-level"); 2102 2103 IsMetadataMaterialized = true; 2104 unsigned NextMetadataNo = MetadataList.size(); 2105 2106 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2107 return error("Invalid metadata: fwd refs into function blocks"); 2108 2109 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2110 return error("Invalid record"); 2111 2112 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2113 SmallVector<uint64_t, 64> Record; 2114 2115 PlaceholderQueue Placeholders; 2116 bool IsDistinct; 2117 auto getMD = [&](unsigned ID) -> Metadata * { 2118 if (!IsDistinct) 2119 return MetadataList.getMetadataFwdRef(ID); 2120 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2121 return MD; 2122 return &Placeholders.getPlaceholderOp(ID); 2123 }; 2124 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2125 if (ID) 2126 return getMD(ID - 1); 2127 return nullptr; 2128 }; 2129 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2130 if (ID) 2131 return MetadataList.getMetadataFwdRef(ID - 1); 2132 return nullptr; 2133 }; 2134 auto getMDString = [&](unsigned ID) -> MDString *{ 2135 // This requires that the ID is not really a forward reference. In 2136 // particular, the MDString must already have been resolved. 2137 return cast_or_null<MDString>(getMDOrNull(ID)); 2138 }; 2139 2140 // Support for old type refs. 2141 auto getDITypeRefOrNull = [&](unsigned ID) { 2142 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2143 }; 2144 2145 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2146 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2147 2148 // Read all the records. 2149 while (1) { 2150 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2151 2152 switch (Entry.Kind) { 2153 case BitstreamEntry::SubBlock: // Handled for us already. 2154 case BitstreamEntry::Error: 2155 return error("Malformed block"); 2156 case BitstreamEntry::EndBlock: 2157 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2158 for (auto CU_SP : CUSubprograms) 2159 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2160 for (auto &Op : SPs->operands()) 2161 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2162 SP->replaceOperandWith(7, CU_SP.first); 2163 2164 MetadataList.tryToResolveCycles(); 2165 Placeholders.flush(MetadataList); 2166 return std::error_code(); 2167 case BitstreamEntry::Record: 2168 // The interesting case. 2169 break; 2170 } 2171 2172 // Read a record. 2173 Record.clear(); 2174 StringRef Blob; 2175 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2176 IsDistinct = false; 2177 switch (Code) { 2178 default: // Default behavior: ignore. 2179 break; 2180 case bitc::METADATA_NAME: { 2181 // Read name of the named metadata. 2182 SmallString<8> Name(Record.begin(), Record.end()); 2183 Record.clear(); 2184 Code = Stream.ReadCode(); 2185 2186 unsigned NextBitCode = Stream.readRecord(Code, Record); 2187 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2188 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2189 2190 // Read named metadata elements. 2191 unsigned Size = Record.size(); 2192 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2193 for (unsigned i = 0; i != Size; ++i) { 2194 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2195 if (!MD) 2196 return error("Invalid record"); 2197 NMD->addOperand(MD); 2198 } 2199 break; 2200 } 2201 case bitc::METADATA_OLD_FN_NODE: { 2202 // FIXME: Remove in 4.0. 2203 // This is a LocalAsMetadata record, the only type of function-local 2204 // metadata. 2205 if (Record.size() % 2 == 1) 2206 return error("Invalid record"); 2207 2208 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2209 // to be legal, but there's no upgrade path. 2210 auto dropRecord = [&] { 2211 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2212 }; 2213 if (Record.size() != 2) { 2214 dropRecord(); 2215 break; 2216 } 2217 2218 Type *Ty = getTypeByID(Record[0]); 2219 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2220 dropRecord(); 2221 break; 2222 } 2223 2224 MetadataList.assignValue( 2225 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2226 NextMetadataNo++); 2227 break; 2228 } 2229 case bitc::METADATA_OLD_NODE: { 2230 // FIXME: Remove in 4.0. 2231 if (Record.size() % 2 == 1) 2232 return error("Invalid record"); 2233 2234 unsigned Size = Record.size(); 2235 SmallVector<Metadata *, 8> Elts; 2236 for (unsigned i = 0; i != Size; i += 2) { 2237 Type *Ty = getTypeByID(Record[i]); 2238 if (!Ty) 2239 return error("Invalid record"); 2240 if (Ty->isMetadataTy()) 2241 Elts.push_back(getMD(Record[i + 1])); 2242 else if (!Ty->isVoidTy()) { 2243 auto *MD = 2244 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2245 assert(isa<ConstantAsMetadata>(MD) && 2246 "Expected non-function-local metadata"); 2247 Elts.push_back(MD); 2248 } else 2249 Elts.push_back(nullptr); 2250 } 2251 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2252 break; 2253 } 2254 case bitc::METADATA_VALUE: { 2255 if (Record.size() != 2) 2256 return error("Invalid record"); 2257 2258 Type *Ty = getTypeByID(Record[0]); 2259 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2260 return error("Invalid record"); 2261 2262 MetadataList.assignValue( 2263 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2264 NextMetadataNo++); 2265 break; 2266 } 2267 case bitc::METADATA_DISTINCT_NODE: 2268 IsDistinct = true; 2269 // fallthrough... 2270 case bitc::METADATA_NODE: { 2271 SmallVector<Metadata *, 8> Elts; 2272 Elts.reserve(Record.size()); 2273 for (unsigned ID : Record) 2274 Elts.push_back(getMDOrNull(ID)); 2275 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2276 : MDNode::get(Context, Elts), 2277 NextMetadataNo++); 2278 break; 2279 } 2280 case bitc::METADATA_LOCATION: { 2281 if (Record.size() != 5) 2282 return error("Invalid record"); 2283 2284 IsDistinct = Record[0]; 2285 unsigned Line = Record[1]; 2286 unsigned Column = Record[2]; 2287 Metadata *Scope = getMD(Record[3]); 2288 Metadata *InlinedAt = getMDOrNull(Record[4]); 2289 MetadataList.assignValue( 2290 GET_OR_DISTINCT(DILocation, 2291 (Context, Line, Column, Scope, InlinedAt)), 2292 NextMetadataNo++); 2293 break; 2294 } 2295 case bitc::METADATA_GENERIC_DEBUG: { 2296 if (Record.size() < 4) 2297 return error("Invalid record"); 2298 2299 IsDistinct = Record[0]; 2300 unsigned Tag = Record[1]; 2301 unsigned Version = Record[2]; 2302 2303 if (Tag >= 1u << 16 || Version != 0) 2304 return error("Invalid record"); 2305 2306 auto *Header = getMDString(Record[3]); 2307 SmallVector<Metadata *, 8> DwarfOps; 2308 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2309 DwarfOps.push_back(getMDOrNull(Record[I])); 2310 MetadataList.assignValue( 2311 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2312 NextMetadataNo++); 2313 break; 2314 } 2315 case bitc::METADATA_SUBRANGE: { 2316 if (Record.size() != 3) 2317 return error("Invalid record"); 2318 2319 IsDistinct = Record[0]; 2320 MetadataList.assignValue( 2321 GET_OR_DISTINCT(DISubrange, 2322 (Context, Record[1], unrotateSign(Record[2]))), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_ENUMERATOR: { 2327 if (Record.size() != 3) 2328 return error("Invalid record"); 2329 2330 IsDistinct = Record[0]; 2331 MetadataList.assignValue( 2332 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2333 getMDString(Record[2]))), 2334 NextMetadataNo++); 2335 break; 2336 } 2337 case bitc::METADATA_BASIC_TYPE: { 2338 if (Record.size() != 6) 2339 return error("Invalid record"); 2340 2341 IsDistinct = Record[0]; 2342 MetadataList.assignValue( 2343 GET_OR_DISTINCT(DIBasicType, 2344 (Context, Record[1], getMDString(Record[2]), 2345 Record[3], Record[4], Record[5])), 2346 NextMetadataNo++); 2347 break; 2348 } 2349 case bitc::METADATA_DERIVED_TYPE: { 2350 if (Record.size() != 12) 2351 return error("Invalid record"); 2352 2353 IsDistinct = Record[0]; 2354 MetadataList.assignValue( 2355 GET_OR_DISTINCT( 2356 DIDerivedType, 2357 (Context, Record[1], getMDString(Record[2]), 2358 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2359 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2360 Record[10], getDITypeRefOrNull(Record[11]))), 2361 NextMetadataNo++); 2362 break; 2363 } 2364 case bitc::METADATA_COMPOSITE_TYPE: { 2365 if (Record.size() != 16) 2366 return error("Invalid record"); 2367 2368 // If we have a UUID and this is not a forward declaration, lookup the 2369 // mapping. 2370 IsDistinct = Record[0] & 0x1; 2371 bool IsNotUsedInTypeRef = Record[0] >= 2; 2372 unsigned Tag = Record[1]; 2373 MDString *Name = getMDString(Record[2]); 2374 Metadata *File = getMDOrNull(Record[3]); 2375 unsigned Line = Record[4]; 2376 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2377 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2378 uint64_t SizeInBits = Record[7]; 2379 uint64_t AlignInBits = Record[8]; 2380 uint64_t OffsetInBits = Record[9]; 2381 unsigned Flags = Record[10]; 2382 Metadata *Elements = getMDOrNull(Record[11]); 2383 unsigned RuntimeLang = Record[12]; 2384 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2385 Metadata *TemplateParams = getMDOrNull(Record[14]); 2386 auto *Identifier = getMDString(Record[15]); 2387 DICompositeType *CT = nullptr; 2388 if (Identifier) 2389 CT = DICompositeType::buildODRType( 2390 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2391 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2392 VTableHolder, TemplateParams); 2393 2394 // Create a node if we didn't get a lazy ODR type. 2395 if (!CT) 2396 CT = GET_OR_DISTINCT(DICompositeType, 2397 (Context, Tag, Name, File, Line, Scope, BaseType, 2398 SizeInBits, AlignInBits, OffsetInBits, Flags, 2399 Elements, RuntimeLang, VTableHolder, 2400 TemplateParams, Identifier)); 2401 if (!IsNotUsedInTypeRef && Identifier) 2402 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2403 2404 MetadataList.assignValue(CT, NextMetadataNo++); 2405 break; 2406 } 2407 case bitc::METADATA_SUBROUTINE_TYPE: { 2408 if (Record.size() != 3) 2409 return error("Invalid record"); 2410 2411 IsDistinct = Record[0] & 0x1; 2412 bool IsOldTypeRefArray = Record[0] < 2; 2413 Metadata *Types = getMDOrNull(Record[2]); 2414 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2415 Types = MetadataList.upgradeTypeRefArray(Types); 2416 2417 MetadataList.assignValue( 2418 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2419 NextMetadataNo++); 2420 break; 2421 } 2422 2423 case bitc::METADATA_MODULE: { 2424 if (Record.size() != 6) 2425 return error("Invalid record"); 2426 2427 IsDistinct = Record[0]; 2428 MetadataList.assignValue( 2429 GET_OR_DISTINCT(DIModule, 2430 (Context, getMDOrNull(Record[1]), 2431 getMDString(Record[2]), getMDString(Record[3]), 2432 getMDString(Record[4]), getMDString(Record[5]))), 2433 NextMetadataNo++); 2434 break; 2435 } 2436 2437 case bitc::METADATA_FILE: { 2438 if (Record.size() != 3) 2439 return error("Invalid record"); 2440 2441 IsDistinct = Record[0]; 2442 MetadataList.assignValue( 2443 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2444 getMDString(Record[2]))), 2445 NextMetadataNo++); 2446 break; 2447 } 2448 case bitc::METADATA_COMPILE_UNIT: { 2449 if (Record.size() < 14 || Record.size() > 16) 2450 return error("Invalid record"); 2451 2452 // Ignore Record[0], which indicates whether this compile unit is 2453 // distinct. It's always distinct. 2454 IsDistinct = true; 2455 auto *CU = DICompileUnit::getDistinct( 2456 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2457 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2458 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2459 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2460 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2461 Record.size() <= 14 ? 0 : Record[14]); 2462 2463 MetadataList.assignValue(CU, NextMetadataNo++); 2464 2465 // Move the Upgrade the list of subprograms. 2466 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2467 CUSubprograms.push_back({CU, SPs}); 2468 break; 2469 } 2470 case bitc::METADATA_SUBPROGRAM: { 2471 if (Record.size() != 18 && Record.size() != 19) 2472 return error("Invalid record"); 2473 2474 IsDistinct = 2475 Record[0] || Record[8]; // All definitions should be distinct. 2476 // Version 1 has a Function as Record[15]. 2477 // Version 2 has removed Record[15]. 2478 // Version 3 has the Unit as Record[15]. 2479 Metadata *CUorFn = getMDOrNull(Record[15]); 2480 unsigned Offset = Record.size() == 19 ? 1 : 0; 2481 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2482 bool HasCU = Offset && !HasFn; 2483 DISubprogram *SP = GET_OR_DISTINCT( 2484 DISubprogram, 2485 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2486 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2487 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2488 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2489 Record[14], HasCU ? CUorFn : nullptr, 2490 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2491 getMDOrNull(Record[17 + Offset]))); 2492 MetadataList.assignValue(SP, NextMetadataNo++); 2493 2494 // Upgrade sp->function mapping to function->sp mapping. 2495 if (HasFn) { 2496 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2497 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2498 if (F->isMaterializable()) 2499 // Defer until materialized; unmaterialized functions may not have 2500 // metadata. 2501 FunctionsWithSPs[F] = SP; 2502 else if (!F->empty()) 2503 F->setSubprogram(SP); 2504 } 2505 } 2506 break; 2507 } 2508 case bitc::METADATA_LEXICAL_BLOCK: { 2509 if (Record.size() != 5) 2510 return error("Invalid record"); 2511 2512 IsDistinct = Record[0]; 2513 MetadataList.assignValue( 2514 GET_OR_DISTINCT(DILexicalBlock, 2515 (Context, getMDOrNull(Record[1]), 2516 getMDOrNull(Record[2]), Record[3], Record[4])), 2517 NextMetadataNo++); 2518 break; 2519 } 2520 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2521 if (Record.size() != 4) 2522 return error("Invalid record"); 2523 2524 IsDistinct = Record[0]; 2525 MetadataList.assignValue( 2526 GET_OR_DISTINCT(DILexicalBlockFile, 2527 (Context, getMDOrNull(Record[1]), 2528 getMDOrNull(Record[2]), Record[3])), 2529 NextMetadataNo++); 2530 break; 2531 } 2532 case bitc::METADATA_NAMESPACE: { 2533 if (Record.size() != 5) 2534 return error("Invalid record"); 2535 2536 IsDistinct = Record[0]; 2537 MetadataList.assignValue( 2538 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2539 getMDOrNull(Record[2]), 2540 getMDString(Record[3]), Record[4])), 2541 NextMetadataNo++); 2542 break; 2543 } 2544 case bitc::METADATA_MACRO: { 2545 if (Record.size() != 5) 2546 return error("Invalid record"); 2547 2548 IsDistinct = Record[0]; 2549 MetadataList.assignValue( 2550 GET_OR_DISTINCT(DIMacro, 2551 (Context, Record[1], Record[2], 2552 getMDString(Record[3]), getMDString(Record[4]))), 2553 NextMetadataNo++); 2554 break; 2555 } 2556 case bitc::METADATA_MACRO_FILE: { 2557 if (Record.size() != 5) 2558 return error("Invalid record"); 2559 2560 IsDistinct = Record[0]; 2561 MetadataList.assignValue( 2562 GET_OR_DISTINCT(DIMacroFile, 2563 (Context, Record[1], Record[2], 2564 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2565 NextMetadataNo++); 2566 break; 2567 } 2568 case bitc::METADATA_TEMPLATE_TYPE: { 2569 if (Record.size() != 3) 2570 return error("Invalid record"); 2571 2572 IsDistinct = Record[0]; 2573 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2574 (Context, getMDString(Record[1]), 2575 getDITypeRefOrNull(Record[2]))), 2576 NextMetadataNo++); 2577 break; 2578 } 2579 case bitc::METADATA_TEMPLATE_VALUE: { 2580 if (Record.size() != 5) 2581 return error("Invalid record"); 2582 2583 IsDistinct = Record[0]; 2584 MetadataList.assignValue( 2585 GET_OR_DISTINCT(DITemplateValueParameter, 2586 (Context, Record[1], getMDString(Record[2]), 2587 getDITypeRefOrNull(Record[3]), 2588 getMDOrNull(Record[4]))), 2589 NextMetadataNo++); 2590 break; 2591 } 2592 case bitc::METADATA_GLOBAL_VAR: { 2593 if (Record.size() != 11) 2594 return error("Invalid record"); 2595 2596 IsDistinct = Record[0]; 2597 MetadataList.assignValue( 2598 GET_OR_DISTINCT(DIGlobalVariable, 2599 (Context, getMDOrNull(Record[1]), 2600 getMDString(Record[2]), getMDString(Record[3]), 2601 getMDOrNull(Record[4]), Record[5], 2602 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2603 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2604 NextMetadataNo++); 2605 break; 2606 } 2607 case bitc::METADATA_LOCAL_VAR: { 2608 // 10th field is for the obseleted 'inlinedAt:' field. 2609 if (Record.size() < 8 || Record.size() > 10) 2610 return error("Invalid record"); 2611 2612 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2613 // DW_TAG_arg_variable. 2614 IsDistinct = Record[0]; 2615 bool HasTag = Record.size() > 8; 2616 MetadataList.assignValue( 2617 GET_OR_DISTINCT(DILocalVariable, 2618 (Context, getMDOrNull(Record[1 + HasTag]), 2619 getMDString(Record[2 + HasTag]), 2620 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2621 getDITypeRefOrNull(Record[5 + HasTag]), 2622 Record[6 + HasTag], Record[7 + HasTag])), 2623 NextMetadataNo++); 2624 break; 2625 } 2626 case bitc::METADATA_EXPRESSION: { 2627 if (Record.size() < 1) 2628 return error("Invalid record"); 2629 2630 IsDistinct = Record[0]; 2631 MetadataList.assignValue( 2632 GET_OR_DISTINCT(DIExpression, 2633 (Context, makeArrayRef(Record).slice(1))), 2634 NextMetadataNo++); 2635 break; 2636 } 2637 case bitc::METADATA_OBJC_PROPERTY: { 2638 if (Record.size() != 8) 2639 return error("Invalid record"); 2640 2641 IsDistinct = Record[0]; 2642 MetadataList.assignValue( 2643 GET_OR_DISTINCT(DIObjCProperty, 2644 (Context, getMDString(Record[1]), 2645 getMDOrNull(Record[2]), Record[3], 2646 getMDString(Record[4]), getMDString(Record[5]), 2647 Record[6], getDITypeRefOrNull(Record[7]))), 2648 NextMetadataNo++); 2649 break; 2650 } 2651 case bitc::METADATA_IMPORTED_ENTITY: { 2652 if (Record.size() != 6) 2653 return error("Invalid record"); 2654 2655 IsDistinct = Record[0]; 2656 MetadataList.assignValue( 2657 GET_OR_DISTINCT(DIImportedEntity, 2658 (Context, Record[1], getMDOrNull(Record[2]), 2659 getDITypeRefOrNull(Record[3]), Record[4], 2660 getMDString(Record[5]))), 2661 NextMetadataNo++); 2662 break; 2663 } 2664 case bitc::METADATA_STRING_OLD: { 2665 std::string String(Record.begin(), Record.end()); 2666 2667 // Test for upgrading !llvm.loop. 2668 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2669 2670 Metadata *MD = MDString::get(Context, String); 2671 MetadataList.assignValue(MD, NextMetadataNo++); 2672 break; 2673 } 2674 case bitc::METADATA_STRINGS: 2675 if (std::error_code EC = 2676 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2677 return EC; 2678 break; 2679 case bitc::METADATA_KIND: { 2680 // Support older bitcode files that had METADATA_KIND records in a 2681 // block with METADATA_BLOCK_ID. 2682 if (std::error_code EC = parseMetadataKindRecord(Record)) 2683 return EC; 2684 break; 2685 } 2686 } 2687 } 2688 #undef GET_OR_DISTINCT 2689 } 2690 2691 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2692 std::error_code BitcodeReader::parseMetadataKinds() { 2693 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2694 return error("Invalid record"); 2695 2696 SmallVector<uint64_t, 64> Record; 2697 2698 // Read all the records. 2699 while (1) { 2700 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2701 2702 switch (Entry.Kind) { 2703 case BitstreamEntry::SubBlock: // Handled for us already. 2704 case BitstreamEntry::Error: 2705 return error("Malformed block"); 2706 case BitstreamEntry::EndBlock: 2707 return std::error_code(); 2708 case BitstreamEntry::Record: 2709 // The interesting case. 2710 break; 2711 } 2712 2713 // Read a record. 2714 Record.clear(); 2715 unsigned Code = Stream.readRecord(Entry.ID, Record); 2716 switch (Code) { 2717 default: // Default behavior: ignore. 2718 break; 2719 case bitc::METADATA_KIND: { 2720 if (std::error_code EC = parseMetadataKindRecord(Record)) 2721 return EC; 2722 break; 2723 } 2724 } 2725 } 2726 } 2727 2728 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2729 /// encoding. 2730 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2731 if ((V & 1) == 0) 2732 return V >> 1; 2733 if (V != 1) 2734 return -(V >> 1); 2735 // There is no such thing as -0 with integers. "-0" really means MININT. 2736 return 1ULL << 63; 2737 } 2738 2739 /// Resolve all of the initializers for global values and aliases that we can. 2740 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2741 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2742 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2743 IndirectSymbolInitWorklist; 2744 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2745 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2746 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2747 2748 GlobalInitWorklist.swap(GlobalInits); 2749 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2750 FunctionPrefixWorklist.swap(FunctionPrefixes); 2751 FunctionPrologueWorklist.swap(FunctionPrologues); 2752 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2753 2754 while (!GlobalInitWorklist.empty()) { 2755 unsigned ValID = GlobalInitWorklist.back().second; 2756 if (ValID >= ValueList.size()) { 2757 // Not ready to resolve this yet, it requires something later in the file. 2758 GlobalInits.push_back(GlobalInitWorklist.back()); 2759 } else { 2760 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2761 GlobalInitWorklist.back().first->setInitializer(C); 2762 else 2763 return error("Expected a constant"); 2764 } 2765 GlobalInitWorklist.pop_back(); 2766 } 2767 2768 while (!IndirectSymbolInitWorklist.empty()) { 2769 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2770 if (ValID >= ValueList.size()) { 2771 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2772 } else { 2773 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2774 if (!C) 2775 return error("Expected a constant"); 2776 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2777 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2778 return error("Alias and aliasee types don't match"); 2779 GIS->setIndirectSymbol(C); 2780 } 2781 IndirectSymbolInitWorklist.pop_back(); 2782 } 2783 2784 while (!FunctionPrefixWorklist.empty()) { 2785 unsigned ValID = FunctionPrefixWorklist.back().second; 2786 if (ValID >= ValueList.size()) { 2787 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2788 } else { 2789 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2790 FunctionPrefixWorklist.back().first->setPrefixData(C); 2791 else 2792 return error("Expected a constant"); 2793 } 2794 FunctionPrefixWorklist.pop_back(); 2795 } 2796 2797 while (!FunctionPrologueWorklist.empty()) { 2798 unsigned ValID = FunctionPrologueWorklist.back().second; 2799 if (ValID >= ValueList.size()) { 2800 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2801 } else { 2802 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2803 FunctionPrologueWorklist.back().first->setPrologueData(C); 2804 else 2805 return error("Expected a constant"); 2806 } 2807 FunctionPrologueWorklist.pop_back(); 2808 } 2809 2810 while (!FunctionPersonalityFnWorklist.empty()) { 2811 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2812 if (ValID >= ValueList.size()) { 2813 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2814 } else { 2815 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2816 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2817 else 2818 return error("Expected a constant"); 2819 } 2820 FunctionPersonalityFnWorklist.pop_back(); 2821 } 2822 2823 return std::error_code(); 2824 } 2825 2826 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2827 SmallVector<uint64_t, 8> Words(Vals.size()); 2828 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2829 BitcodeReader::decodeSignRotatedValue); 2830 2831 return APInt(TypeBits, Words); 2832 } 2833 2834 std::error_code BitcodeReader::parseConstants() { 2835 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2836 return error("Invalid record"); 2837 2838 SmallVector<uint64_t, 64> Record; 2839 2840 // Read all the records for this value table. 2841 Type *CurTy = Type::getInt32Ty(Context); 2842 unsigned NextCstNo = ValueList.size(); 2843 while (1) { 2844 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2845 2846 switch (Entry.Kind) { 2847 case BitstreamEntry::SubBlock: // Handled for us already. 2848 case BitstreamEntry::Error: 2849 return error("Malformed block"); 2850 case BitstreamEntry::EndBlock: 2851 if (NextCstNo != ValueList.size()) 2852 return error("Invalid constant reference"); 2853 2854 // Once all the constants have been read, go through and resolve forward 2855 // references. 2856 ValueList.resolveConstantForwardRefs(); 2857 return std::error_code(); 2858 case BitstreamEntry::Record: 2859 // The interesting case. 2860 break; 2861 } 2862 2863 // Read a record. 2864 Record.clear(); 2865 Value *V = nullptr; 2866 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2867 switch (BitCode) { 2868 default: // Default behavior: unknown constant 2869 case bitc::CST_CODE_UNDEF: // UNDEF 2870 V = UndefValue::get(CurTy); 2871 break; 2872 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2873 if (Record.empty()) 2874 return error("Invalid record"); 2875 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2876 return error("Invalid record"); 2877 CurTy = TypeList[Record[0]]; 2878 continue; // Skip the ValueList manipulation. 2879 case bitc::CST_CODE_NULL: // NULL 2880 V = Constant::getNullValue(CurTy); 2881 break; 2882 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2883 if (!CurTy->isIntegerTy() || Record.empty()) 2884 return error("Invalid record"); 2885 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2886 break; 2887 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2888 if (!CurTy->isIntegerTy() || Record.empty()) 2889 return error("Invalid record"); 2890 2891 APInt VInt = 2892 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2893 V = ConstantInt::get(Context, VInt); 2894 2895 break; 2896 } 2897 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2898 if (Record.empty()) 2899 return error("Invalid record"); 2900 if (CurTy->isHalfTy()) 2901 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2902 APInt(16, (uint16_t)Record[0]))); 2903 else if (CurTy->isFloatTy()) 2904 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2905 APInt(32, (uint32_t)Record[0]))); 2906 else if (CurTy->isDoubleTy()) 2907 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2908 APInt(64, Record[0]))); 2909 else if (CurTy->isX86_FP80Ty()) { 2910 // Bits are not stored the same way as a normal i80 APInt, compensate. 2911 uint64_t Rearrange[2]; 2912 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2913 Rearrange[1] = Record[0] >> 48; 2914 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2915 APInt(80, Rearrange))); 2916 } else if (CurTy->isFP128Ty()) 2917 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2918 APInt(128, Record))); 2919 else if (CurTy->isPPC_FP128Ty()) 2920 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2921 APInt(128, Record))); 2922 else 2923 V = UndefValue::get(CurTy); 2924 break; 2925 } 2926 2927 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2928 if (Record.empty()) 2929 return error("Invalid record"); 2930 2931 unsigned Size = Record.size(); 2932 SmallVector<Constant*, 16> Elts; 2933 2934 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2935 for (unsigned i = 0; i != Size; ++i) 2936 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2937 STy->getElementType(i))); 2938 V = ConstantStruct::get(STy, Elts); 2939 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2940 Type *EltTy = ATy->getElementType(); 2941 for (unsigned i = 0; i != Size; ++i) 2942 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2943 V = ConstantArray::get(ATy, Elts); 2944 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2945 Type *EltTy = VTy->getElementType(); 2946 for (unsigned i = 0; i != Size; ++i) 2947 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2948 V = ConstantVector::get(Elts); 2949 } else { 2950 V = UndefValue::get(CurTy); 2951 } 2952 break; 2953 } 2954 case bitc::CST_CODE_STRING: // STRING: [values] 2955 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2956 if (Record.empty()) 2957 return error("Invalid record"); 2958 2959 SmallString<16> Elts(Record.begin(), Record.end()); 2960 V = ConstantDataArray::getString(Context, Elts, 2961 BitCode == bitc::CST_CODE_CSTRING); 2962 break; 2963 } 2964 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2965 if (Record.empty()) 2966 return error("Invalid record"); 2967 2968 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2969 if (EltTy->isIntegerTy(8)) { 2970 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2971 if (isa<VectorType>(CurTy)) 2972 V = ConstantDataVector::get(Context, Elts); 2973 else 2974 V = ConstantDataArray::get(Context, Elts); 2975 } else if (EltTy->isIntegerTy(16)) { 2976 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2977 if (isa<VectorType>(CurTy)) 2978 V = ConstantDataVector::get(Context, Elts); 2979 else 2980 V = ConstantDataArray::get(Context, Elts); 2981 } else if (EltTy->isIntegerTy(32)) { 2982 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2983 if (isa<VectorType>(CurTy)) 2984 V = ConstantDataVector::get(Context, Elts); 2985 else 2986 V = ConstantDataArray::get(Context, Elts); 2987 } else if (EltTy->isIntegerTy(64)) { 2988 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2989 if (isa<VectorType>(CurTy)) 2990 V = ConstantDataVector::get(Context, Elts); 2991 else 2992 V = ConstantDataArray::get(Context, Elts); 2993 } else if (EltTy->isHalfTy()) { 2994 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2995 if (isa<VectorType>(CurTy)) 2996 V = ConstantDataVector::getFP(Context, Elts); 2997 else 2998 V = ConstantDataArray::getFP(Context, Elts); 2999 } else if (EltTy->isFloatTy()) { 3000 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3001 if (isa<VectorType>(CurTy)) 3002 V = ConstantDataVector::getFP(Context, Elts); 3003 else 3004 V = ConstantDataArray::getFP(Context, Elts); 3005 } else if (EltTy->isDoubleTy()) { 3006 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3007 if (isa<VectorType>(CurTy)) 3008 V = ConstantDataVector::getFP(Context, Elts); 3009 else 3010 V = ConstantDataArray::getFP(Context, Elts); 3011 } else { 3012 return error("Invalid type for value"); 3013 } 3014 break; 3015 } 3016 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3017 if (Record.size() < 3) 3018 return error("Invalid record"); 3019 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3020 if (Opc < 0) { 3021 V = UndefValue::get(CurTy); // Unknown binop. 3022 } else { 3023 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3024 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3025 unsigned Flags = 0; 3026 if (Record.size() >= 4) { 3027 if (Opc == Instruction::Add || 3028 Opc == Instruction::Sub || 3029 Opc == Instruction::Mul || 3030 Opc == Instruction::Shl) { 3031 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3032 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3033 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3034 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3035 } else if (Opc == Instruction::SDiv || 3036 Opc == Instruction::UDiv || 3037 Opc == Instruction::LShr || 3038 Opc == Instruction::AShr) { 3039 if (Record[3] & (1 << bitc::PEO_EXACT)) 3040 Flags |= SDivOperator::IsExact; 3041 } 3042 } 3043 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3044 } 3045 break; 3046 } 3047 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3048 if (Record.size() < 3) 3049 return error("Invalid record"); 3050 int Opc = getDecodedCastOpcode(Record[0]); 3051 if (Opc < 0) { 3052 V = UndefValue::get(CurTy); // Unknown cast. 3053 } else { 3054 Type *OpTy = getTypeByID(Record[1]); 3055 if (!OpTy) 3056 return error("Invalid record"); 3057 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3058 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3059 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3060 } 3061 break; 3062 } 3063 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3064 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3065 unsigned OpNum = 0; 3066 Type *PointeeType = nullptr; 3067 if (Record.size() % 2) 3068 PointeeType = getTypeByID(Record[OpNum++]); 3069 SmallVector<Constant*, 16> Elts; 3070 while (OpNum != Record.size()) { 3071 Type *ElTy = getTypeByID(Record[OpNum++]); 3072 if (!ElTy) 3073 return error("Invalid record"); 3074 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3075 } 3076 3077 if (PointeeType && 3078 PointeeType != 3079 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3080 ->getElementType()) 3081 return error("Explicit gep operator type does not match pointee type " 3082 "of pointer operand"); 3083 3084 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3085 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3086 BitCode == 3087 bitc::CST_CODE_CE_INBOUNDS_GEP); 3088 break; 3089 } 3090 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3091 if (Record.size() < 3) 3092 return error("Invalid record"); 3093 3094 Type *SelectorTy = Type::getInt1Ty(Context); 3095 3096 // The selector might be an i1 or an <n x i1> 3097 // Get the type from the ValueList before getting a forward ref. 3098 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3099 if (Value *V = ValueList[Record[0]]) 3100 if (SelectorTy != V->getType()) 3101 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3102 3103 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3104 SelectorTy), 3105 ValueList.getConstantFwdRef(Record[1],CurTy), 3106 ValueList.getConstantFwdRef(Record[2],CurTy)); 3107 break; 3108 } 3109 case bitc::CST_CODE_CE_EXTRACTELT 3110 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3111 if (Record.size() < 3) 3112 return error("Invalid record"); 3113 VectorType *OpTy = 3114 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3115 if (!OpTy) 3116 return error("Invalid record"); 3117 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3118 Constant *Op1 = nullptr; 3119 if (Record.size() == 4) { 3120 Type *IdxTy = getTypeByID(Record[2]); 3121 if (!IdxTy) 3122 return error("Invalid record"); 3123 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3124 } else // TODO: Remove with llvm 4.0 3125 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3126 if (!Op1) 3127 return error("Invalid record"); 3128 V = ConstantExpr::getExtractElement(Op0, Op1); 3129 break; 3130 } 3131 case bitc::CST_CODE_CE_INSERTELT 3132 : { // CE_INSERTELT: [opval, opval, opty, opval] 3133 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3134 if (Record.size() < 3 || !OpTy) 3135 return error("Invalid record"); 3136 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3137 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3138 OpTy->getElementType()); 3139 Constant *Op2 = nullptr; 3140 if (Record.size() == 4) { 3141 Type *IdxTy = getTypeByID(Record[2]); 3142 if (!IdxTy) 3143 return error("Invalid record"); 3144 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3145 } else // TODO: Remove with llvm 4.0 3146 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3147 if (!Op2) 3148 return error("Invalid record"); 3149 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3150 break; 3151 } 3152 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3153 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3154 if (Record.size() < 3 || !OpTy) 3155 return error("Invalid record"); 3156 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3157 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3158 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3159 OpTy->getNumElements()); 3160 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3161 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3162 break; 3163 } 3164 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3165 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3166 VectorType *OpTy = 3167 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3168 if (Record.size() < 4 || !RTy || !OpTy) 3169 return error("Invalid record"); 3170 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3171 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3172 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3173 RTy->getNumElements()); 3174 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3175 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3176 break; 3177 } 3178 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3179 if (Record.size() < 4) 3180 return error("Invalid record"); 3181 Type *OpTy = getTypeByID(Record[0]); 3182 if (!OpTy) 3183 return error("Invalid record"); 3184 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3185 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3186 3187 if (OpTy->isFPOrFPVectorTy()) 3188 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3189 else 3190 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3191 break; 3192 } 3193 // This maintains backward compatibility, pre-asm dialect keywords. 3194 // FIXME: Remove with the 4.0 release. 3195 case bitc::CST_CODE_INLINEASM_OLD: { 3196 if (Record.size() < 2) 3197 return error("Invalid record"); 3198 std::string AsmStr, ConstrStr; 3199 bool HasSideEffects = Record[0] & 1; 3200 bool IsAlignStack = Record[0] >> 1; 3201 unsigned AsmStrSize = Record[1]; 3202 if (2+AsmStrSize >= Record.size()) 3203 return error("Invalid record"); 3204 unsigned ConstStrSize = Record[2+AsmStrSize]; 3205 if (3+AsmStrSize+ConstStrSize > Record.size()) 3206 return error("Invalid record"); 3207 3208 for (unsigned i = 0; i != AsmStrSize; ++i) 3209 AsmStr += (char)Record[2+i]; 3210 for (unsigned i = 0; i != ConstStrSize; ++i) 3211 ConstrStr += (char)Record[3+AsmStrSize+i]; 3212 PointerType *PTy = cast<PointerType>(CurTy); 3213 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3214 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3215 break; 3216 } 3217 // This version adds support for the asm dialect keywords (e.g., 3218 // inteldialect). 3219 case bitc::CST_CODE_INLINEASM: { 3220 if (Record.size() < 2) 3221 return error("Invalid record"); 3222 std::string AsmStr, ConstrStr; 3223 bool HasSideEffects = Record[0] & 1; 3224 bool IsAlignStack = (Record[0] >> 1) & 1; 3225 unsigned AsmDialect = Record[0] >> 2; 3226 unsigned AsmStrSize = Record[1]; 3227 if (2+AsmStrSize >= Record.size()) 3228 return error("Invalid record"); 3229 unsigned ConstStrSize = Record[2+AsmStrSize]; 3230 if (3+AsmStrSize+ConstStrSize > Record.size()) 3231 return error("Invalid record"); 3232 3233 for (unsigned i = 0; i != AsmStrSize; ++i) 3234 AsmStr += (char)Record[2+i]; 3235 for (unsigned i = 0; i != ConstStrSize; ++i) 3236 ConstrStr += (char)Record[3+AsmStrSize+i]; 3237 PointerType *PTy = cast<PointerType>(CurTy); 3238 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3239 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3240 InlineAsm::AsmDialect(AsmDialect)); 3241 break; 3242 } 3243 case bitc::CST_CODE_BLOCKADDRESS:{ 3244 if (Record.size() < 3) 3245 return error("Invalid record"); 3246 Type *FnTy = getTypeByID(Record[0]); 3247 if (!FnTy) 3248 return error("Invalid record"); 3249 Function *Fn = 3250 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3251 if (!Fn) 3252 return error("Invalid record"); 3253 3254 // If the function is already parsed we can insert the block address right 3255 // away. 3256 BasicBlock *BB; 3257 unsigned BBID = Record[2]; 3258 if (!BBID) 3259 // Invalid reference to entry block. 3260 return error("Invalid ID"); 3261 if (!Fn->empty()) { 3262 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3263 for (size_t I = 0, E = BBID; I != E; ++I) { 3264 if (BBI == BBE) 3265 return error("Invalid ID"); 3266 ++BBI; 3267 } 3268 BB = &*BBI; 3269 } else { 3270 // Otherwise insert a placeholder and remember it so it can be inserted 3271 // when the function is parsed. 3272 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3273 if (FwdBBs.empty()) 3274 BasicBlockFwdRefQueue.push_back(Fn); 3275 if (FwdBBs.size() < BBID + 1) 3276 FwdBBs.resize(BBID + 1); 3277 if (!FwdBBs[BBID]) 3278 FwdBBs[BBID] = BasicBlock::Create(Context); 3279 BB = FwdBBs[BBID]; 3280 } 3281 V = BlockAddress::get(Fn, BB); 3282 break; 3283 } 3284 } 3285 3286 ValueList.assignValue(V, NextCstNo); 3287 ++NextCstNo; 3288 } 3289 } 3290 3291 std::error_code BitcodeReader::parseUseLists() { 3292 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3293 return error("Invalid record"); 3294 3295 // Read all the records. 3296 SmallVector<uint64_t, 64> Record; 3297 while (1) { 3298 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3299 3300 switch (Entry.Kind) { 3301 case BitstreamEntry::SubBlock: // Handled for us already. 3302 case BitstreamEntry::Error: 3303 return error("Malformed block"); 3304 case BitstreamEntry::EndBlock: 3305 return std::error_code(); 3306 case BitstreamEntry::Record: 3307 // The interesting case. 3308 break; 3309 } 3310 3311 // Read a use list record. 3312 Record.clear(); 3313 bool IsBB = false; 3314 switch (Stream.readRecord(Entry.ID, Record)) { 3315 default: // Default behavior: unknown type. 3316 break; 3317 case bitc::USELIST_CODE_BB: 3318 IsBB = true; 3319 // fallthrough 3320 case bitc::USELIST_CODE_DEFAULT: { 3321 unsigned RecordLength = Record.size(); 3322 if (RecordLength < 3) 3323 // Records should have at least an ID and two indexes. 3324 return error("Invalid record"); 3325 unsigned ID = Record.back(); 3326 Record.pop_back(); 3327 3328 Value *V; 3329 if (IsBB) { 3330 assert(ID < FunctionBBs.size() && "Basic block not found"); 3331 V = FunctionBBs[ID]; 3332 } else 3333 V = ValueList[ID]; 3334 unsigned NumUses = 0; 3335 SmallDenseMap<const Use *, unsigned, 16> Order; 3336 for (const Use &U : V->materialized_uses()) { 3337 if (++NumUses > Record.size()) 3338 break; 3339 Order[&U] = Record[NumUses - 1]; 3340 } 3341 if (Order.size() != Record.size() || NumUses > Record.size()) 3342 // Mismatches can happen if the functions are being materialized lazily 3343 // (out-of-order), or a value has been upgraded. 3344 break; 3345 3346 V->sortUseList([&](const Use &L, const Use &R) { 3347 return Order.lookup(&L) < Order.lookup(&R); 3348 }); 3349 break; 3350 } 3351 } 3352 } 3353 } 3354 3355 /// When we see the block for metadata, remember where it is and then skip it. 3356 /// This lets us lazily deserialize the metadata. 3357 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3358 // Save the current stream state. 3359 uint64_t CurBit = Stream.GetCurrentBitNo(); 3360 DeferredMetadataInfo.push_back(CurBit); 3361 3362 // Skip over the block for now. 3363 if (Stream.SkipBlock()) 3364 return error("Invalid record"); 3365 return std::error_code(); 3366 } 3367 3368 std::error_code BitcodeReader::materializeMetadata() { 3369 for (uint64_t BitPos : DeferredMetadataInfo) { 3370 // Move the bit stream to the saved position. 3371 Stream.JumpToBit(BitPos); 3372 if (std::error_code EC = parseMetadata(true)) 3373 return EC; 3374 } 3375 DeferredMetadataInfo.clear(); 3376 return std::error_code(); 3377 } 3378 3379 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3380 3381 /// When we see the block for a function body, remember where it is and then 3382 /// skip it. This lets us lazily deserialize the functions. 3383 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3384 // Get the function we are talking about. 3385 if (FunctionsWithBodies.empty()) 3386 return error("Insufficient function protos"); 3387 3388 Function *Fn = FunctionsWithBodies.back(); 3389 FunctionsWithBodies.pop_back(); 3390 3391 // Save the current stream state. 3392 uint64_t CurBit = Stream.GetCurrentBitNo(); 3393 assert( 3394 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3395 "Mismatch between VST and scanned function offsets"); 3396 DeferredFunctionInfo[Fn] = CurBit; 3397 3398 // Skip over the function block for now. 3399 if (Stream.SkipBlock()) 3400 return error("Invalid record"); 3401 return std::error_code(); 3402 } 3403 3404 std::error_code BitcodeReader::globalCleanup() { 3405 // Patch the initializers for globals and aliases up. 3406 resolveGlobalAndIndirectSymbolInits(); 3407 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3408 return error("Malformed global initializer set"); 3409 3410 // Look for intrinsic functions which need to be upgraded at some point 3411 for (Function &F : *TheModule) { 3412 Function *NewFn; 3413 if (UpgradeIntrinsicFunction(&F, NewFn)) 3414 UpgradedIntrinsics[&F] = NewFn; 3415 } 3416 3417 // Look for global variables which need to be renamed. 3418 for (GlobalVariable &GV : TheModule->globals()) 3419 UpgradeGlobalVariable(&GV); 3420 3421 // Force deallocation of memory for these vectors to favor the client that 3422 // want lazy deserialization. 3423 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3424 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3425 IndirectSymbolInits); 3426 return std::error_code(); 3427 } 3428 3429 /// Support for lazy parsing of function bodies. This is required if we 3430 /// either have an old bitcode file without a VST forward declaration record, 3431 /// or if we have an anonymous function being materialized, since anonymous 3432 /// functions do not have a name and are therefore not in the VST. 3433 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3434 Stream.JumpToBit(NextUnreadBit); 3435 3436 if (Stream.AtEndOfStream()) 3437 return error("Could not find function in stream"); 3438 3439 if (!SeenFirstFunctionBody) 3440 return error("Trying to materialize functions before seeing function blocks"); 3441 3442 // An old bitcode file with the symbol table at the end would have 3443 // finished the parse greedily. 3444 assert(SeenValueSymbolTable); 3445 3446 SmallVector<uint64_t, 64> Record; 3447 3448 while (1) { 3449 BitstreamEntry Entry = Stream.advance(); 3450 switch (Entry.Kind) { 3451 default: 3452 return error("Expect SubBlock"); 3453 case BitstreamEntry::SubBlock: 3454 switch (Entry.ID) { 3455 default: 3456 return error("Expect function block"); 3457 case bitc::FUNCTION_BLOCK_ID: 3458 if (std::error_code EC = rememberAndSkipFunctionBody()) 3459 return EC; 3460 NextUnreadBit = Stream.GetCurrentBitNo(); 3461 return std::error_code(); 3462 } 3463 } 3464 } 3465 } 3466 3467 std::error_code BitcodeReader::parseBitcodeVersion() { 3468 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3469 return error("Invalid record"); 3470 3471 // Read all the records. 3472 SmallVector<uint64_t, 64> Record; 3473 while (1) { 3474 BitstreamEntry Entry = Stream.advance(); 3475 3476 switch (Entry.Kind) { 3477 default: 3478 case BitstreamEntry::Error: 3479 return error("Malformed block"); 3480 case BitstreamEntry::EndBlock: 3481 return std::error_code(); 3482 case BitstreamEntry::Record: 3483 // The interesting case. 3484 break; 3485 } 3486 3487 // Read a record. 3488 Record.clear(); 3489 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3490 switch (BitCode) { 3491 default: // Default behavior: reject 3492 return error("Invalid value"); 3493 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3494 // N] 3495 convertToString(Record, 0, ProducerIdentification); 3496 break; 3497 } 3498 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3499 unsigned epoch = (unsigned)Record[0]; 3500 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3501 return error( 3502 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3503 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3504 } 3505 } 3506 } 3507 } 3508 } 3509 3510 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3511 bool ShouldLazyLoadMetadata) { 3512 if (ResumeBit) 3513 Stream.JumpToBit(ResumeBit); 3514 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3515 return error("Invalid record"); 3516 3517 SmallVector<uint64_t, 64> Record; 3518 std::vector<std::string> SectionTable; 3519 std::vector<std::string> GCTable; 3520 3521 // Read all the records for this module. 3522 while (1) { 3523 BitstreamEntry Entry = Stream.advance(); 3524 3525 switch (Entry.Kind) { 3526 case BitstreamEntry::Error: 3527 return error("Malformed block"); 3528 case BitstreamEntry::EndBlock: 3529 return globalCleanup(); 3530 3531 case BitstreamEntry::SubBlock: 3532 switch (Entry.ID) { 3533 default: // Skip unknown content. 3534 if (Stream.SkipBlock()) 3535 return error("Invalid record"); 3536 break; 3537 case bitc::BLOCKINFO_BLOCK_ID: 3538 if (Stream.ReadBlockInfoBlock()) 3539 return error("Malformed block"); 3540 break; 3541 case bitc::PARAMATTR_BLOCK_ID: 3542 if (std::error_code EC = parseAttributeBlock()) 3543 return EC; 3544 break; 3545 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3546 if (std::error_code EC = parseAttributeGroupBlock()) 3547 return EC; 3548 break; 3549 case bitc::TYPE_BLOCK_ID_NEW: 3550 if (std::error_code EC = parseTypeTable()) 3551 return EC; 3552 break; 3553 case bitc::VALUE_SYMTAB_BLOCK_ID: 3554 if (!SeenValueSymbolTable) { 3555 // Either this is an old form VST without function index and an 3556 // associated VST forward declaration record (which would have caused 3557 // the VST to be jumped to and parsed before it was encountered 3558 // normally in the stream), or there were no function blocks to 3559 // trigger an earlier parsing of the VST. 3560 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3561 if (std::error_code EC = parseValueSymbolTable()) 3562 return EC; 3563 SeenValueSymbolTable = true; 3564 } else { 3565 // We must have had a VST forward declaration record, which caused 3566 // the parser to jump to and parse the VST earlier. 3567 assert(VSTOffset > 0); 3568 if (Stream.SkipBlock()) 3569 return error("Invalid record"); 3570 } 3571 break; 3572 case bitc::CONSTANTS_BLOCK_ID: 3573 if (std::error_code EC = parseConstants()) 3574 return EC; 3575 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3576 return EC; 3577 break; 3578 case bitc::METADATA_BLOCK_ID: 3579 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3580 if (std::error_code EC = rememberAndSkipMetadata()) 3581 return EC; 3582 break; 3583 } 3584 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3585 if (std::error_code EC = parseMetadata(true)) 3586 return EC; 3587 break; 3588 case bitc::METADATA_KIND_BLOCK_ID: 3589 if (std::error_code EC = parseMetadataKinds()) 3590 return EC; 3591 break; 3592 case bitc::FUNCTION_BLOCK_ID: 3593 // If this is the first function body we've seen, reverse the 3594 // FunctionsWithBodies list. 3595 if (!SeenFirstFunctionBody) { 3596 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3597 if (std::error_code EC = globalCleanup()) 3598 return EC; 3599 SeenFirstFunctionBody = true; 3600 } 3601 3602 if (VSTOffset > 0) { 3603 // If we have a VST forward declaration record, make sure we 3604 // parse the VST now if we haven't already. It is needed to 3605 // set up the DeferredFunctionInfo vector for lazy reading. 3606 if (!SeenValueSymbolTable) { 3607 if (std::error_code EC = 3608 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3609 return EC; 3610 SeenValueSymbolTable = true; 3611 // Fall through so that we record the NextUnreadBit below. 3612 // This is necessary in case we have an anonymous function that 3613 // is later materialized. Since it will not have a VST entry we 3614 // need to fall back to the lazy parse to find its offset. 3615 } else { 3616 // If we have a VST forward declaration record, but have already 3617 // parsed the VST (just above, when the first function body was 3618 // encountered here), then we are resuming the parse after 3619 // materializing functions. The ResumeBit points to the 3620 // start of the last function block recorded in the 3621 // DeferredFunctionInfo map. Skip it. 3622 if (Stream.SkipBlock()) 3623 return error("Invalid record"); 3624 continue; 3625 } 3626 } 3627 3628 // Support older bitcode files that did not have the function 3629 // index in the VST, nor a VST forward declaration record, as 3630 // well as anonymous functions that do not have VST entries. 3631 // Build the DeferredFunctionInfo vector on the fly. 3632 if (std::error_code EC = rememberAndSkipFunctionBody()) 3633 return EC; 3634 3635 // Suspend parsing when we reach the function bodies. Subsequent 3636 // materialization calls will resume it when necessary. If the bitcode 3637 // file is old, the symbol table will be at the end instead and will not 3638 // have been seen yet. In this case, just finish the parse now. 3639 if (SeenValueSymbolTable) { 3640 NextUnreadBit = Stream.GetCurrentBitNo(); 3641 return std::error_code(); 3642 } 3643 break; 3644 case bitc::USELIST_BLOCK_ID: 3645 if (std::error_code EC = parseUseLists()) 3646 return EC; 3647 break; 3648 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3649 if (std::error_code EC = parseOperandBundleTags()) 3650 return EC; 3651 break; 3652 } 3653 continue; 3654 3655 case BitstreamEntry::Record: 3656 // The interesting case. 3657 break; 3658 } 3659 3660 // Read a record. 3661 auto BitCode = Stream.readRecord(Entry.ID, Record); 3662 switch (BitCode) { 3663 default: break; // Default behavior, ignore unknown content. 3664 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3665 if (Record.size() < 1) 3666 return error("Invalid record"); 3667 // Only version #0 and #1 are supported so far. 3668 unsigned module_version = Record[0]; 3669 switch (module_version) { 3670 default: 3671 return error("Invalid value"); 3672 case 0: 3673 UseRelativeIDs = false; 3674 break; 3675 case 1: 3676 UseRelativeIDs = true; 3677 break; 3678 } 3679 break; 3680 } 3681 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3682 std::string S; 3683 if (convertToString(Record, 0, S)) 3684 return error("Invalid record"); 3685 TheModule->setTargetTriple(S); 3686 break; 3687 } 3688 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3689 std::string S; 3690 if (convertToString(Record, 0, S)) 3691 return error("Invalid record"); 3692 TheModule->setDataLayout(S); 3693 break; 3694 } 3695 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3696 std::string S; 3697 if (convertToString(Record, 0, S)) 3698 return error("Invalid record"); 3699 TheModule->setModuleInlineAsm(S); 3700 break; 3701 } 3702 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3703 // FIXME: Remove in 4.0. 3704 std::string S; 3705 if (convertToString(Record, 0, S)) 3706 return error("Invalid record"); 3707 // Ignore value. 3708 break; 3709 } 3710 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3711 std::string S; 3712 if (convertToString(Record, 0, S)) 3713 return error("Invalid record"); 3714 SectionTable.push_back(S); 3715 break; 3716 } 3717 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3718 std::string S; 3719 if (convertToString(Record, 0, S)) 3720 return error("Invalid record"); 3721 GCTable.push_back(S); 3722 break; 3723 } 3724 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3725 if (Record.size() < 2) 3726 return error("Invalid record"); 3727 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3728 unsigned ComdatNameSize = Record[1]; 3729 std::string ComdatName; 3730 ComdatName.reserve(ComdatNameSize); 3731 for (unsigned i = 0; i != ComdatNameSize; ++i) 3732 ComdatName += (char)Record[2 + i]; 3733 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3734 C->setSelectionKind(SK); 3735 ComdatList.push_back(C); 3736 break; 3737 } 3738 // GLOBALVAR: [pointer type, isconst, initid, 3739 // linkage, alignment, section, visibility, threadlocal, 3740 // unnamed_addr, externally_initialized, dllstorageclass, 3741 // comdat] 3742 case bitc::MODULE_CODE_GLOBALVAR: { 3743 if (Record.size() < 6) 3744 return error("Invalid record"); 3745 Type *Ty = getTypeByID(Record[0]); 3746 if (!Ty) 3747 return error("Invalid record"); 3748 bool isConstant = Record[1] & 1; 3749 bool explicitType = Record[1] & 2; 3750 unsigned AddressSpace; 3751 if (explicitType) { 3752 AddressSpace = Record[1] >> 2; 3753 } else { 3754 if (!Ty->isPointerTy()) 3755 return error("Invalid type for value"); 3756 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3757 Ty = cast<PointerType>(Ty)->getElementType(); 3758 } 3759 3760 uint64_t RawLinkage = Record[3]; 3761 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3762 unsigned Alignment; 3763 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3764 return EC; 3765 std::string Section; 3766 if (Record[5]) { 3767 if (Record[5]-1 >= SectionTable.size()) 3768 return error("Invalid ID"); 3769 Section = SectionTable[Record[5]-1]; 3770 } 3771 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3772 // Local linkage must have default visibility. 3773 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3774 // FIXME: Change to an error if non-default in 4.0. 3775 Visibility = getDecodedVisibility(Record[6]); 3776 3777 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3778 if (Record.size() > 7) 3779 TLM = getDecodedThreadLocalMode(Record[7]); 3780 3781 bool UnnamedAddr = false; 3782 if (Record.size() > 8) 3783 UnnamedAddr = Record[8]; 3784 3785 bool ExternallyInitialized = false; 3786 if (Record.size() > 9) 3787 ExternallyInitialized = Record[9]; 3788 3789 GlobalVariable *NewGV = 3790 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3791 TLM, AddressSpace, ExternallyInitialized); 3792 NewGV->setAlignment(Alignment); 3793 if (!Section.empty()) 3794 NewGV->setSection(Section); 3795 NewGV->setVisibility(Visibility); 3796 NewGV->setUnnamedAddr(UnnamedAddr); 3797 3798 if (Record.size() > 10) 3799 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3800 else 3801 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3802 3803 ValueList.push_back(NewGV); 3804 3805 // Remember which value to use for the global initializer. 3806 if (unsigned InitID = Record[2]) 3807 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3808 3809 if (Record.size() > 11) { 3810 if (unsigned ComdatID = Record[11]) { 3811 if (ComdatID > ComdatList.size()) 3812 return error("Invalid global variable comdat ID"); 3813 NewGV->setComdat(ComdatList[ComdatID - 1]); 3814 } 3815 } else if (hasImplicitComdat(RawLinkage)) { 3816 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3817 } 3818 break; 3819 } 3820 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3821 // alignment, section, visibility, gc, unnamed_addr, 3822 // prologuedata, dllstorageclass, comdat, prefixdata] 3823 case bitc::MODULE_CODE_FUNCTION: { 3824 if (Record.size() < 8) 3825 return error("Invalid record"); 3826 Type *Ty = getTypeByID(Record[0]); 3827 if (!Ty) 3828 return error("Invalid record"); 3829 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3830 Ty = PTy->getElementType(); 3831 auto *FTy = dyn_cast<FunctionType>(Ty); 3832 if (!FTy) 3833 return error("Invalid type for value"); 3834 auto CC = static_cast<CallingConv::ID>(Record[1]); 3835 if (CC & ~CallingConv::MaxID) 3836 return error("Invalid calling convention ID"); 3837 3838 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3839 "", TheModule); 3840 3841 Func->setCallingConv(CC); 3842 bool isProto = Record[2]; 3843 uint64_t RawLinkage = Record[3]; 3844 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3845 Func->setAttributes(getAttributes(Record[4])); 3846 3847 unsigned Alignment; 3848 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3849 return EC; 3850 Func->setAlignment(Alignment); 3851 if (Record[6]) { 3852 if (Record[6]-1 >= SectionTable.size()) 3853 return error("Invalid ID"); 3854 Func->setSection(SectionTable[Record[6]-1]); 3855 } 3856 // Local linkage must have default visibility. 3857 if (!Func->hasLocalLinkage()) 3858 // FIXME: Change to an error if non-default in 4.0. 3859 Func->setVisibility(getDecodedVisibility(Record[7])); 3860 if (Record.size() > 8 && Record[8]) { 3861 if (Record[8]-1 >= GCTable.size()) 3862 return error("Invalid ID"); 3863 Func->setGC(GCTable[Record[8]-1].c_str()); 3864 } 3865 bool UnnamedAddr = false; 3866 if (Record.size() > 9) 3867 UnnamedAddr = Record[9]; 3868 Func->setUnnamedAddr(UnnamedAddr); 3869 if (Record.size() > 10 && Record[10] != 0) 3870 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3871 3872 if (Record.size() > 11) 3873 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3874 else 3875 upgradeDLLImportExportLinkage(Func, RawLinkage); 3876 3877 if (Record.size() > 12) { 3878 if (unsigned ComdatID = Record[12]) { 3879 if (ComdatID > ComdatList.size()) 3880 return error("Invalid function comdat ID"); 3881 Func->setComdat(ComdatList[ComdatID - 1]); 3882 } 3883 } else if (hasImplicitComdat(RawLinkage)) { 3884 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3885 } 3886 3887 if (Record.size() > 13 && Record[13] != 0) 3888 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3889 3890 if (Record.size() > 14 && Record[14] != 0) 3891 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3892 3893 ValueList.push_back(Func); 3894 3895 // If this is a function with a body, remember the prototype we are 3896 // creating now, so that we can match up the body with them later. 3897 if (!isProto) { 3898 Func->setIsMaterializable(true); 3899 FunctionsWithBodies.push_back(Func); 3900 DeferredFunctionInfo[Func] = 0; 3901 } 3902 break; 3903 } 3904 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3905 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3906 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3907 case bitc::MODULE_CODE_IFUNC: 3908 case bitc::MODULE_CODE_ALIAS: 3909 case bitc::MODULE_CODE_ALIAS_OLD: { 3910 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3911 if (Record.size() < (3 + (unsigned)NewRecord)) 3912 return error("Invalid record"); 3913 unsigned OpNum = 0; 3914 Type *Ty = getTypeByID(Record[OpNum++]); 3915 if (!Ty) 3916 return error("Invalid record"); 3917 3918 unsigned AddrSpace; 3919 if (!NewRecord) { 3920 auto *PTy = dyn_cast<PointerType>(Ty); 3921 if (!PTy) 3922 return error("Invalid type for value"); 3923 Ty = PTy->getElementType(); 3924 AddrSpace = PTy->getAddressSpace(); 3925 } else { 3926 AddrSpace = Record[OpNum++]; 3927 } 3928 3929 auto Val = Record[OpNum++]; 3930 auto Linkage = Record[OpNum++]; 3931 GlobalIndirectSymbol *NewGA; 3932 if (BitCode == bitc::MODULE_CODE_ALIAS || 3933 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3934 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3935 "", TheModule); 3936 else 3937 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3938 "", nullptr, TheModule); 3939 // Old bitcode files didn't have visibility field. 3940 // Local linkage must have default visibility. 3941 if (OpNum != Record.size()) { 3942 auto VisInd = OpNum++; 3943 if (!NewGA->hasLocalLinkage()) 3944 // FIXME: Change to an error if non-default in 4.0. 3945 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3946 } 3947 if (OpNum != Record.size()) 3948 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3949 else 3950 upgradeDLLImportExportLinkage(NewGA, Linkage); 3951 if (OpNum != Record.size()) 3952 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3953 if (OpNum != Record.size()) 3954 NewGA->setUnnamedAddr(Record[OpNum++]); 3955 ValueList.push_back(NewGA); 3956 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3957 break; 3958 } 3959 /// MODULE_CODE_PURGEVALS: [numvals] 3960 case bitc::MODULE_CODE_PURGEVALS: 3961 // Trim down the value list to the specified size. 3962 if (Record.size() < 1 || Record[0] > ValueList.size()) 3963 return error("Invalid record"); 3964 ValueList.shrinkTo(Record[0]); 3965 break; 3966 /// MODULE_CODE_VSTOFFSET: [offset] 3967 case bitc::MODULE_CODE_VSTOFFSET: 3968 if (Record.size() < 1) 3969 return error("Invalid record"); 3970 VSTOffset = Record[0]; 3971 break; 3972 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3973 case bitc::MODULE_CODE_SOURCE_FILENAME: 3974 SmallString<128> ValueName; 3975 if (convertToString(Record, 0, ValueName)) 3976 return error("Invalid record"); 3977 TheModule->setSourceFileName(ValueName); 3978 break; 3979 } 3980 Record.clear(); 3981 } 3982 } 3983 3984 /// Helper to read the header common to all bitcode files. 3985 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3986 // Sniff for the signature. 3987 if (Stream.Read(8) != 'B' || 3988 Stream.Read(8) != 'C' || 3989 Stream.Read(4) != 0x0 || 3990 Stream.Read(4) != 0xC || 3991 Stream.Read(4) != 0xE || 3992 Stream.Read(4) != 0xD) 3993 return false; 3994 return true; 3995 } 3996 3997 std::error_code 3998 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3999 Module *M, bool ShouldLazyLoadMetadata) { 4000 TheModule = M; 4001 4002 if (std::error_code EC = initStream(std::move(Streamer))) 4003 return EC; 4004 4005 // Sniff for the signature. 4006 if (!hasValidBitcodeHeader(Stream)) 4007 return error("Invalid bitcode signature"); 4008 4009 // We expect a number of well-defined blocks, though we don't necessarily 4010 // need to understand them all. 4011 while (1) { 4012 if (Stream.AtEndOfStream()) { 4013 // We didn't really read a proper Module. 4014 return error("Malformed IR file"); 4015 } 4016 4017 BitstreamEntry Entry = 4018 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4019 4020 if (Entry.Kind != BitstreamEntry::SubBlock) 4021 return error("Malformed block"); 4022 4023 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4024 parseBitcodeVersion(); 4025 continue; 4026 } 4027 4028 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4029 return parseModule(0, ShouldLazyLoadMetadata); 4030 4031 if (Stream.SkipBlock()) 4032 return error("Invalid record"); 4033 } 4034 } 4035 4036 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4037 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4038 return error("Invalid record"); 4039 4040 SmallVector<uint64_t, 64> Record; 4041 4042 std::string Triple; 4043 // Read all the records for this module. 4044 while (1) { 4045 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4046 4047 switch (Entry.Kind) { 4048 case BitstreamEntry::SubBlock: // Handled for us already. 4049 case BitstreamEntry::Error: 4050 return error("Malformed block"); 4051 case BitstreamEntry::EndBlock: 4052 return Triple; 4053 case BitstreamEntry::Record: 4054 // The interesting case. 4055 break; 4056 } 4057 4058 // Read a record. 4059 switch (Stream.readRecord(Entry.ID, Record)) { 4060 default: break; // Default behavior, ignore unknown content. 4061 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4062 std::string S; 4063 if (convertToString(Record, 0, S)) 4064 return error("Invalid record"); 4065 Triple = S; 4066 break; 4067 } 4068 } 4069 Record.clear(); 4070 } 4071 llvm_unreachable("Exit infinite loop"); 4072 } 4073 4074 ErrorOr<std::string> BitcodeReader::parseTriple() { 4075 if (std::error_code EC = initStream(nullptr)) 4076 return EC; 4077 4078 // Sniff for the signature. 4079 if (!hasValidBitcodeHeader(Stream)) 4080 return error("Invalid bitcode signature"); 4081 4082 // We expect a number of well-defined blocks, though we don't necessarily 4083 // need to understand them all. 4084 while (1) { 4085 BitstreamEntry Entry = Stream.advance(); 4086 4087 switch (Entry.Kind) { 4088 case BitstreamEntry::Error: 4089 return error("Malformed block"); 4090 case BitstreamEntry::EndBlock: 4091 return std::error_code(); 4092 4093 case BitstreamEntry::SubBlock: 4094 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4095 return parseModuleTriple(); 4096 4097 // Ignore other sub-blocks. 4098 if (Stream.SkipBlock()) 4099 return error("Malformed block"); 4100 continue; 4101 4102 case BitstreamEntry::Record: 4103 Stream.skipRecord(Entry.ID); 4104 continue; 4105 } 4106 } 4107 } 4108 4109 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4110 if (std::error_code EC = initStream(nullptr)) 4111 return EC; 4112 4113 // Sniff for the signature. 4114 if (!hasValidBitcodeHeader(Stream)) 4115 return error("Invalid bitcode signature"); 4116 4117 // We expect a number of well-defined blocks, though we don't necessarily 4118 // need to understand them all. 4119 while (1) { 4120 BitstreamEntry Entry = Stream.advance(); 4121 switch (Entry.Kind) { 4122 case BitstreamEntry::Error: 4123 return error("Malformed block"); 4124 case BitstreamEntry::EndBlock: 4125 return std::error_code(); 4126 4127 case BitstreamEntry::SubBlock: 4128 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4129 if (std::error_code EC = parseBitcodeVersion()) 4130 return EC; 4131 return ProducerIdentification; 4132 } 4133 // Ignore other sub-blocks. 4134 if (Stream.SkipBlock()) 4135 return error("Malformed block"); 4136 continue; 4137 case BitstreamEntry::Record: 4138 Stream.skipRecord(Entry.ID); 4139 continue; 4140 } 4141 } 4142 } 4143 4144 /// Parse metadata attachments. 4145 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4146 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4147 return error("Invalid record"); 4148 4149 SmallVector<uint64_t, 64> Record; 4150 while (1) { 4151 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4152 4153 switch (Entry.Kind) { 4154 case BitstreamEntry::SubBlock: // Handled for us already. 4155 case BitstreamEntry::Error: 4156 return error("Malformed block"); 4157 case BitstreamEntry::EndBlock: 4158 return std::error_code(); 4159 case BitstreamEntry::Record: 4160 // The interesting case. 4161 break; 4162 } 4163 4164 // Read a metadata attachment record. 4165 Record.clear(); 4166 switch (Stream.readRecord(Entry.ID, Record)) { 4167 default: // Default behavior: ignore. 4168 break; 4169 case bitc::METADATA_ATTACHMENT: { 4170 unsigned RecordLength = Record.size(); 4171 if (Record.empty()) 4172 return error("Invalid record"); 4173 if (RecordLength % 2 == 0) { 4174 // A function attachment. 4175 for (unsigned I = 0; I != RecordLength; I += 2) { 4176 auto K = MDKindMap.find(Record[I]); 4177 if (K == MDKindMap.end()) 4178 return error("Invalid ID"); 4179 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4180 if (!MD) 4181 return error("Invalid metadata attachment"); 4182 F.setMetadata(K->second, MD); 4183 } 4184 continue; 4185 } 4186 4187 // An instruction attachment. 4188 Instruction *Inst = InstructionList[Record[0]]; 4189 for (unsigned i = 1; i != RecordLength; i = i+2) { 4190 unsigned Kind = Record[i]; 4191 DenseMap<unsigned, unsigned>::iterator I = 4192 MDKindMap.find(Kind); 4193 if (I == MDKindMap.end()) 4194 return error("Invalid ID"); 4195 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4196 if (isa<LocalAsMetadata>(Node)) 4197 // Drop the attachment. This used to be legal, but there's no 4198 // upgrade path. 4199 break; 4200 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4201 if (!MD) 4202 return error("Invalid metadata attachment"); 4203 4204 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4205 MD = upgradeInstructionLoopAttachment(*MD); 4206 4207 Inst->setMetadata(I->second, MD); 4208 if (I->second == LLVMContext::MD_tbaa) { 4209 InstsWithTBAATag.push_back(Inst); 4210 continue; 4211 } 4212 } 4213 break; 4214 } 4215 } 4216 } 4217 } 4218 4219 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4220 LLVMContext &Context = PtrType->getContext(); 4221 if (!isa<PointerType>(PtrType)) 4222 return error(Context, "Load/Store operand is not a pointer type"); 4223 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4224 4225 if (ValType && ValType != ElemType) 4226 return error(Context, "Explicit load/store type does not match pointee " 4227 "type of pointer operand"); 4228 if (!PointerType::isLoadableOrStorableType(ElemType)) 4229 return error(Context, "Cannot load/store from pointer"); 4230 return std::error_code(); 4231 } 4232 4233 /// Lazily parse the specified function body block. 4234 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4235 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4236 return error("Invalid record"); 4237 4238 // Unexpected unresolved metadata when parsing function. 4239 if (MetadataList.hasFwdRefs()) 4240 return error("Invalid function metadata: incoming forward references"); 4241 4242 InstructionList.clear(); 4243 unsigned ModuleValueListSize = ValueList.size(); 4244 unsigned ModuleMetadataListSize = MetadataList.size(); 4245 4246 // Add all the function arguments to the value table. 4247 for (Argument &I : F->args()) 4248 ValueList.push_back(&I); 4249 4250 unsigned NextValueNo = ValueList.size(); 4251 BasicBlock *CurBB = nullptr; 4252 unsigned CurBBNo = 0; 4253 4254 DebugLoc LastLoc; 4255 auto getLastInstruction = [&]() -> Instruction * { 4256 if (CurBB && !CurBB->empty()) 4257 return &CurBB->back(); 4258 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4259 !FunctionBBs[CurBBNo - 1]->empty()) 4260 return &FunctionBBs[CurBBNo - 1]->back(); 4261 return nullptr; 4262 }; 4263 4264 std::vector<OperandBundleDef> OperandBundles; 4265 4266 // Read all the records. 4267 SmallVector<uint64_t, 64> Record; 4268 while (1) { 4269 BitstreamEntry Entry = Stream.advance(); 4270 4271 switch (Entry.Kind) { 4272 case BitstreamEntry::Error: 4273 return error("Malformed block"); 4274 case BitstreamEntry::EndBlock: 4275 goto OutOfRecordLoop; 4276 4277 case BitstreamEntry::SubBlock: 4278 switch (Entry.ID) { 4279 default: // Skip unknown content. 4280 if (Stream.SkipBlock()) 4281 return error("Invalid record"); 4282 break; 4283 case bitc::CONSTANTS_BLOCK_ID: 4284 if (std::error_code EC = parseConstants()) 4285 return EC; 4286 NextValueNo = ValueList.size(); 4287 break; 4288 case bitc::VALUE_SYMTAB_BLOCK_ID: 4289 if (std::error_code EC = parseValueSymbolTable()) 4290 return EC; 4291 break; 4292 case bitc::METADATA_ATTACHMENT_ID: 4293 if (std::error_code EC = parseMetadataAttachment(*F)) 4294 return EC; 4295 break; 4296 case bitc::METADATA_BLOCK_ID: 4297 if (std::error_code EC = parseMetadata()) 4298 return EC; 4299 break; 4300 case bitc::USELIST_BLOCK_ID: 4301 if (std::error_code EC = parseUseLists()) 4302 return EC; 4303 break; 4304 } 4305 continue; 4306 4307 case BitstreamEntry::Record: 4308 // The interesting case. 4309 break; 4310 } 4311 4312 // Read a record. 4313 Record.clear(); 4314 Instruction *I = nullptr; 4315 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4316 switch (BitCode) { 4317 default: // Default behavior: reject 4318 return error("Invalid value"); 4319 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4320 if (Record.size() < 1 || Record[0] == 0) 4321 return error("Invalid record"); 4322 // Create all the basic blocks for the function. 4323 FunctionBBs.resize(Record[0]); 4324 4325 // See if anything took the address of blocks in this function. 4326 auto BBFRI = BasicBlockFwdRefs.find(F); 4327 if (BBFRI == BasicBlockFwdRefs.end()) { 4328 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4329 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4330 } else { 4331 auto &BBRefs = BBFRI->second; 4332 // Check for invalid basic block references. 4333 if (BBRefs.size() > FunctionBBs.size()) 4334 return error("Invalid ID"); 4335 assert(!BBRefs.empty() && "Unexpected empty array"); 4336 assert(!BBRefs.front() && "Invalid reference to entry block"); 4337 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4338 ++I) 4339 if (I < RE && BBRefs[I]) { 4340 BBRefs[I]->insertInto(F); 4341 FunctionBBs[I] = BBRefs[I]; 4342 } else { 4343 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4344 } 4345 4346 // Erase from the table. 4347 BasicBlockFwdRefs.erase(BBFRI); 4348 } 4349 4350 CurBB = FunctionBBs[0]; 4351 continue; 4352 } 4353 4354 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4355 // This record indicates that the last instruction is at the same 4356 // location as the previous instruction with a location. 4357 I = getLastInstruction(); 4358 4359 if (!I) 4360 return error("Invalid record"); 4361 I->setDebugLoc(LastLoc); 4362 I = nullptr; 4363 continue; 4364 4365 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4366 I = getLastInstruction(); 4367 if (!I || Record.size() < 4) 4368 return error("Invalid record"); 4369 4370 unsigned Line = Record[0], Col = Record[1]; 4371 unsigned ScopeID = Record[2], IAID = Record[3]; 4372 4373 MDNode *Scope = nullptr, *IA = nullptr; 4374 if (ScopeID) { 4375 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4376 if (!Scope) 4377 return error("Invalid record"); 4378 } 4379 if (IAID) { 4380 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4381 if (!IA) 4382 return error("Invalid record"); 4383 } 4384 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4385 I->setDebugLoc(LastLoc); 4386 I = nullptr; 4387 continue; 4388 } 4389 4390 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4391 unsigned OpNum = 0; 4392 Value *LHS, *RHS; 4393 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4394 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4395 OpNum+1 > Record.size()) 4396 return error("Invalid record"); 4397 4398 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4399 if (Opc == -1) 4400 return error("Invalid record"); 4401 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4402 InstructionList.push_back(I); 4403 if (OpNum < Record.size()) { 4404 if (Opc == Instruction::Add || 4405 Opc == Instruction::Sub || 4406 Opc == Instruction::Mul || 4407 Opc == Instruction::Shl) { 4408 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4409 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4410 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4411 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4412 } else if (Opc == Instruction::SDiv || 4413 Opc == Instruction::UDiv || 4414 Opc == Instruction::LShr || 4415 Opc == Instruction::AShr) { 4416 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4417 cast<BinaryOperator>(I)->setIsExact(true); 4418 } else if (isa<FPMathOperator>(I)) { 4419 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4420 if (FMF.any()) 4421 I->setFastMathFlags(FMF); 4422 } 4423 4424 } 4425 break; 4426 } 4427 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4428 unsigned OpNum = 0; 4429 Value *Op; 4430 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4431 OpNum+2 != Record.size()) 4432 return error("Invalid record"); 4433 4434 Type *ResTy = getTypeByID(Record[OpNum]); 4435 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4436 if (Opc == -1 || !ResTy) 4437 return error("Invalid record"); 4438 Instruction *Temp = nullptr; 4439 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4440 if (Temp) { 4441 InstructionList.push_back(Temp); 4442 CurBB->getInstList().push_back(Temp); 4443 } 4444 } else { 4445 auto CastOp = (Instruction::CastOps)Opc; 4446 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4447 return error("Invalid cast"); 4448 I = CastInst::Create(CastOp, Op, ResTy); 4449 } 4450 InstructionList.push_back(I); 4451 break; 4452 } 4453 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4454 case bitc::FUNC_CODE_INST_GEP_OLD: 4455 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4456 unsigned OpNum = 0; 4457 4458 Type *Ty; 4459 bool InBounds; 4460 4461 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4462 InBounds = Record[OpNum++]; 4463 Ty = getTypeByID(Record[OpNum++]); 4464 } else { 4465 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4466 Ty = nullptr; 4467 } 4468 4469 Value *BasePtr; 4470 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4471 return error("Invalid record"); 4472 4473 if (!Ty) 4474 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4475 ->getElementType(); 4476 else if (Ty != 4477 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4478 ->getElementType()) 4479 return error( 4480 "Explicit gep type does not match pointee type of pointer operand"); 4481 4482 SmallVector<Value*, 16> GEPIdx; 4483 while (OpNum != Record.size()) { 4484 Value *Op; 4485 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4486 return error("Invalid record"); 4487 GEPIdx.push_back(Op); 4488 } 4489 4490 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4491 4492 InstructionList.push_back(I); 4493 if (InBounds) 4494 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4495 break; 4496 } 4497 4498 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4499 // EXTRACTVAL: [opty, opval, n x indices] 4500 unsigned OpNum = 0; 4501 Value *Agg; 4502 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4503 return error("Invalid record"); 4504 4505 unsigned RecSize = Record.size(); 4506 if (OpNum == RecSize) 4507 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4508 4509 SmallVector<unsigned, 4> EXTRACTVALIdx; 4510 Type *CurTy = Agg->getType(); 4511 for (; OpNum != RecSize; ++OpNum) { 4512 bool IsArray = CurTy->isArrayTy(); 4513 bool IsStruct = CurTy->isStructTy(); 4514 uint64_t Index = Record[OpNum]; 4515 4516 if (!IsStruct && !IsArray) 4517 return error("EXTRACTVAL: Invalid type"); 4518 if ((unsigned)Index != Index) 4519 return error("Invalid value"); 4520 if (IsStruct && Index >= CurTy->subtypes().size()) 4521 return error("EXTRACTVAL: Invalid struct index"); 4522 if (IsArray && Index >= CurTy->getArrayNumElements()) 4523 return error("EXTRACTVAL: Invalid array index"); 4524 EXTRACTVALIdx.push_back((unsigned)Index); 4525 4526 if (IsStruct) 4527 CurTy = CurTy->subtypes()[Index]; 4528 else 4529 CurTy = CurTy->subtypes()[0]; 4530 } 4531 4532 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4533 InstructionList.push_back(I); 4534 break; 4535 } 4536 4537 case bitc::FUNC_CODE_INST_INSERTVAL: { 4538 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4539 unsigned OpNum = 0; 4540 Value *Agg; 4541 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4542 return error("Invalid record"); 4543 Value *Val; 4544 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4545 return error("Invalid record"); 4546 4547 unsigned RecSize = Record.size(); 4548 if (OpNum == RecSize) 4549 return error("INSERTVAL: Invalid instruction with 0 indices"); 4550 4551 SmallVector<unsigned, 4> INSERTVALIdx; 4552 Type *CurTy = Agg->getType(); 4553 for (; OpNum != RecSize; ++OpNum) { 4554 bool IsArray = CurTy->isArrayTy(); 4555 bool IsStruct = CurTy->isStructTy(); 4556 uint64_t Index = Record[OpNum]; 4557 4558 if (!IsStruct && !IsArray) 4559 return error("INSERTVAL: Invalid type"); 4560 if ((unsigned)Index != Index) 4561 return error("Invalid value"); 4562 if (IsStruct && Index >= CurTy->subtypes().size()) 4563 return error("INSERTVAL: Invalid struct index"); 4564 if (IsArray && Index >= CurTy->getArrayNumElements()) 4565 return error("INSERTVAL: Invalid array index"); 4566 4567 INSERTVALIdx.push_back((unsigned)Index); 4568 if (IsStruct) 4569 CurTy = CurTy->subtypes()[Index]; 4570 else 4571 CurTy = CurTy->subtypes()[0]; 4572 } 4573 4574 if (CurTy != Val->getType()) 4575 return error("Inserted value type doesn't match aggregate type"); 4576 4577 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4578 InstructionList.push_back(I); 4579 break; 4580 } 4581 4582 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4583 // obsolete form of select 4584 // handles select i1 ... in old bitcode 4585 unsigned OpNum = 0; 4586 Value *TrueVal, *FalseVal, *Cond; 4587 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4588 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4589 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4590 return error("Invalid record"); 4591 4592 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4593 InstructionList.push_back(I); 4594 break; 4595 } 4596 4597 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4598 // new form of select 4599 // handles select i1 or select [N x i1] 4600 unsigned OpNum = 0; 4601 Value *TrueVal, *FalseVal, *Cond; 4602 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4603 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4604 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4605 return error("Invalid record"); 4606 4607 // select condition can be either i1 or [N x i1] 4608 if (VectorType* vector_type = 4609 dyn_cast<VectorType>(Cond->getType())) { 4610 // expect <n x i1> 4611 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4612 return error("Invalid type for value"); 4613 } else { 4614 // expect i1 4615 if (Cond->getType() != Type::getInt1Ty(Context)) 4616 return error("Invalid type for value"); 4617 } 4618 4619 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4620 InstructionList.push_back(I); 4621 break; 4622 } 4623 4624 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4625 unsigned OpNum = 0; 4626 Value *Vec, *Idx; 4627 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4628 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4629 return error("Invalid record"); 4630 if (!Vec->getType()->isVectorTy()) 4631 return error("Invalid type for value"); 4632 I = ExtractElementInst::Create(Vec, Idx); 4633 InstructionList.push_back(I); 4634 break; 4635 } 4636 4637 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4638 unsigned OpNum = 0; 4639 Value *Vec, *Elt, *Idx; 4640 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4641 return error("Invalid record"); 4642 if (!Vec->getType()->isVectorTy()) 4643 return error("Invalid type for value"); 4644 if (popValue(Record, OpNum, NextValueNo, 4645 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4646 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4647 return error("Invalid record"); 4648 I = InsertElementInst::Create(Vec, Elt, Idx); 4649 InstructionList.push_back(I); 4650 break; 4651 } 4652 4653 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4654 unsigned OpNum = 0; 4655 Value *Vec1, *Vec2, *Mask; 4656 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4657 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4658 return error("Invalid record"); 4659 4660 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4661 return error("Invalid record"); 4662 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4663 return error("Invalid type for value"); 4664 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4665 InstructionList.push_back(I); 4666 break; 4667 } 4668 4669 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4670 // Old form of ICmp/FCmp returning bool 4671 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4672 // both legal on vectors but had different behaviour. 4673 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4674 // FCmp/ICmp returning bool or vector of bool 4675 4676 unsigned OpNum = 0; 4677 Value *LHS, *RHS; 4678 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4679 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4680 return error("Invalid record"); 4681 4682 unsigned PredVal = Record[OpNum]; 4683 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4684 FastMathFlags FMF; 4685 if (IsFP && Record.size() > OpNum+1) 4686 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4687 4688 if (OpNum+1 != Record.size()) 4689 return error("Invalid record"); 4690 4691 if (LHS->getType()->isFPOrFPVectorTy()) 4692 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4693 else 4694 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4695 4696 if (FMF.any()) 4697 I->setFastMathFlags(FMF); 4698 InstructionList.push_back(I); 4699 break; 4700 } 4701 4702 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4703 { 4704 unsigned Size = Record.size(); 4705 if (Size == 0) { 4706 I = ReturnInst::Create(Context); 4707 InstructionList.push_back(I); 4708 break; 4709 } 4710 4711 unsigned OpNum = 0; 4712 Value *Op = nullptr; 4713 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4714 return error("Invalid record"); 4715 if (OpNum != Record.size()) 4716 return error("Invalid record"); 4717 4718 I = ReturnInst::Create(Context, Op); 4719 InstructionList.push_back(I); 4720 break; 4721 } 4722 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4723 if (Record.size() != 1 && Record.size() != 3) 4724 return error("Invalid record"); 4725 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4726 if (!TrueDest) 4727 return error("Invalid record"); 4728 4729 if (Record.size() == 1) { 4730 I = BranchInst::Create(TrueDest); 4731 InstructionList.push_back(I); 4732 } 4733 else { 4734 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4735 Value *Cond = getValue(Record, 2, NextValueNo, 4736 Type::getInt1Ty(Context)); 4737 if (!FalseDest || !Cond) 4738 return error("Invalid record"); 4739 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4740 InstructionList.push_back(I); 4741 } 4742 break; 4743 } 4744 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4745 if (Record.size() != 1 && Record.size() != 2) 4746 return error("Invalid record"); 4747 unsigned Idx = 0; 4748 Value *CleanupPad = 4749 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4750 if (!CleanupPad) 4751 return error("Invalid record"); 4752 BasicBlock *UnwindDest = nullptr; 4753 if (Record.size() == 2) { 4754 UnwindDest = getBasicBlock(Record[Idx++]); 4755 if (!UnwindDest) 4756 return error("Invalid record"); 4757 } 4758 4759 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4760 InstructionList.push_back(I); 4761 break; 4762 } 4763 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4764 if (Record.size() != 2) 4765 return error("Invalid record"); 4766 unsigned Idx = 0; 4767 Value *CatchPad = 4768 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4769 if (!CatchPad) 4770 return error("Invalid record"); 4771 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4772 if (!BB) 4773 return error("Invalid record"); 4774 4775 I = CatchReturnInst::Create(CatchPad, BB); 4776 InstructionList.push_back(I); 4777 break; 4778 } 4779 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4780 // We must have, at minimum, the outer scope and the number of arguments. 4781 if (Record.size() < 2) 4782 return error("Invalid record"); 4783 4784 unsigned Idx = 0; 4785 4786 Value *ParentPad = 4787 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4788 4789 unsigned NumHandlers = Record[Idx++]; 4790 4791 SmallVector<BasicBlock *, 2> Handlers; 4792 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4793 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4794 if (!BB) 4795 return error("Invalid record"); 4796 Handlers.push_back(BB); 4797 } 4798 4799 BasicBlock *UnwindDest = nullptr; 4800 if (Idx + 1 == Record.size()) { 4801 UnwindDest = getBasicBlock(Record[Idx++]); 4802 if (!UnwindDest) 4803 return error("Invalid record"); 4804 } 4805 4806 if (Record.size() != Idx) 4807 return error("Invalid record"); 4808 4809 auto *CatchSwitch = 4810 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4811 for (BasicBlock *Handler : Handlers) 4812 CatchSwitch->addHandler(Handler); 4813 I = CatchSwitch; 4814 InstructionList.push_back(I); 4815 break; 4816 } 4817 case bitc::FUNC_CODE_INST_CATCHPAD: 4818 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4819 // We must have, at minimum, the outer scope and the number of arguments. 4820 if (Record.size() < 2) 4821 return error("Invalid record"); 4822 4823 unsigned Idx = 0; 4824 4825 Value *ParentPad = 4826 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4827 4828 unsigned NumArgOperands = Record[Idx++]; 4829 4830 SmallVector<Value *, 2> Args; 4831 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4832 Value *Val; 4833 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4834 return error("Invalid record"); 4835 Args.push_back(Val); 4836 } 4837 4838 if (Record.size() != Idx) 4839 return error("Invalid record"); 4840 4841 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4842 I = CleanupPadInst::Create(ParentPad, Args); 4843 else 4844 I = CatchPadInst::Create(ParentPad, Args); 4845 InstructionList.push_back(I); 4846 break; 4847 } 4848 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4849 // Check magic 4850 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4851 // "New" SwitchInst format with case ranges. The changes to write this 4852 // format were reverted but we still recognize bitcode that uses it. 4853 // Hopefully someday we will have support for case ranges and can use 4854 // this format again. 4855 4856 Type *OpTy = getTypeByID(Record[1]); 4857 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4858 4859 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4860 BasicBlock *Default = getBasicBlock(Record[3]); 4861 if (!OpTy || !Cond || !Default) 4862 return error("Invalid record"); 4863 4864 unsigned NumCases = Record[4]; 4865 4866 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4867 InstructionList.push_back(SI); 4868 4869 unsigned CurIdx = 5; 4870 for (unsigned i = 0; i != NumCases; ++i) { 4871 SmallVector<ConstantInt*, 1> CaseVals; 4872 unsigned NumItems = Record[CurIdx++]; 4873 for (unsigned ci = 0; ci != NumItems; ++ci) { 4874 bool isSingleNumber = Record[CurIdx++]; 4875 4876 APInt Low; 4877 unsigned ActiveWords = 1; 4878 if (ValueBitWidth > 64) 4879 ActiveWords = Record[CurIdx++]; 4880 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4881 ValueBitWidth); 4882 CurIdx += ActiveWords; 4883 4884 if (!isSingleNumber) { 4885 ActiveWords = 1; 4886 if (ValueBitWidth > 64) 4887 ActiveWords = Record[CurIdx++]; 4888 APInt High = readWideAPInt( 4889 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4890 CurIdx += ActiveWords; 4891 4892 // FIXME: It is not clear whether values in the range should be 4893 // compared as signed or unsigned values. The partially 4894 // implemented changes that used this format in the past used 4895 // unsigned comparisons. 4896 for ( ; Low.ule(High); ++Low) 4897 CaseVals.push_back(ConstantInt::get(Context, Low)); 4898 } else 4899 CaseVals.push_back(ConstantInt::get(Context, Low)); 4900 } 4901 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4902 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4903 cve = CaseVals.end(); cvi != cve; ++cvi) 4904 SI->addCase(*cvi, DestBB); 4905 } 4906 I = SI; 4907 break; 4908 } 4909 4910 // Old SwitchInst format without case ranges. 4911 4912 if (Record.size() < 3 || (Record.size() & 1) == 0) 4913 return error("Invalid record"); 4914 Type *OpTy = getTypeByID(Record[0]); 4915 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4916 BasicBlock *Default = getBasicBlock(Record[2]); 4917 if (!OpTy || !Cond || !Default) 4918 return error("Invalid record"); 4919 unsigned NumCases = (Record.size()-3)/2; 4920 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4921 InstructionList.push_back(SI); 4922 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4923 ConstantInt *CaseVal = 4924 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4925 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4926 if (!CaseVal || !DestBB) { 4927 delete SI; 4928 return error("Invalid record"); 4929 } 4930 SI->addCase(CaseVal, DestBB); 4931 } 4932 I = SI; 4933 break; 4934 } 4935 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4936 if (Record.size() < 2) 4937 return error("Invalid record"); 4938 Type *OpTy = getTypeByID(Record[0]); 4939 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4940 if (!OpTy || !Address) 4941 return error("Invalid record"); 4942 unsigned NumDests = Record.size()-2; 4943 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4944 InstructionList.push_back(IBI); 4945 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4946 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4947 IBI->addDestination(DestBB); 4948 } else { 4949 delete IBI; 4950 return error("Invalid record"); 4951 } 4952 } 4953 I = IBI; 4954 break; 4955 } 4956 4957 case bitc::FUNC_CODE_INST_INVOKE: { 4958 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4959 if (Record.size() < 4) 4960 return error("Invalid record"); 4961 unsigned OpNum = 0; 4962 AttributeSet PAL = getAttributes(Record[OpNum++]); 4963 unsigned CCInfo = Record[OpNum++]; 4964 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4965 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4966 4967 FunctionType *FTy = nullptr; 4968 if (CCInfo >> 13 & 1 && 4969 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4970 return error("Explicit invoke type is not a function type"); 4971 4972 Value *Callee; 4973 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4974 return error("Invalid record"); 4975 4976 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4977 if (!CalleeTy) 4978 return error("Callee is not a pointer"); 4979 if (!FTy) { 4980 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4981 if (!FTy) 4982 return error("Callee is not of pointer to function type"); 4983 } else if (CalleeTy->getElementType() != FTy) 4984 return error("Explicit invoke type does not match pointee type of " 4985 "callee operand"); 4986 if (Record.size() < FTy->getNumParams() + OpNum) 4987 return error("Insufficient operands to call"); 4988 4989 SmallVector<Value*, 16> Ops; 4990 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4991 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4992 FTy->getParamType(i))); 4993 if (!Ops.back()) 4994 return error("Invalid record"); 4995 } 4996 4997 if (!FTy->isVarArg()) { 4998 if (Record.size() != OpNum) 4999 return error("Invalid record"); 5000 } else { 5001 // Read type/value pairs for varargs params. 5002 while (OpNum != Record.size()) { 5003 Value *Op; 5004 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5005 return error("Invalid record"); 5006 Ops.push_back(Op); 5007 } 5008 } 5009 5010 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5011 OperandBundles.clear(); 5012 InstructionList.push_back(I); 5013 cast<InvokeInst>(I)->setCallingConv( 5014 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5015 cast<InvokeInst>(I)->setAttributes(PAL); 5016 break; 5017 } 5018 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5019 unsigned Idx = 0; 5020 Value *Val = nullptr; 5021 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5022 return error("Invalid record"); 5023 I = ResumeInst::Create(Val); 5024 InstructionList.push_back(I); 5025 break; 5026 } 5027 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5028 I = new UnreachableInst(Context); 5029 InstructionList.push_back(I); 5030 break; 5031 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5032 if (Record.size() < 1 || ((Record.size()-1)&1)) 5033 return error("Invalid record"); 5034 Type *Ty = getTypeByID(Record[0]); 5035 if (!Ty) 5036 return error("Invalid record"); 5037 5038 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5039 InstructionList.push_back(PN); 5040 5041 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5042 Value *V; 5043 // With the new function encoding, it is possible that operands have 5044 // negative IDs (for forward references). Use a signed VBR 5045 // representation to keep the encoding small. 5046 if (UseRelativeIDs) 5047 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5048 else 5049 V = getValue(Record, 1+i, NextValueNo, Ty); 5050 BasicBlock *BB = getBasicBlock(Record[2+i]); 5051 if (!V || !BB) 5052 return error("Invalid record"); 5053 PN->addIncoming(V, BB); 5054 } 5055 I = PN; 5056 break; 5057 } 5058 5059 case bitc::FUNC_CODE_INST_LANDINGPAD: 5060 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5061 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5062 unsigned Idx = 0; 5063 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5064 if (Record.size() < 3) 5065 return error("Invalid record"); 5066 } else { 5067 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5068 if (Record.size() < 4) 5069 return error("Invalid record"); 5070 } 5071 Type *Ty = getTypeByID(Record[Idx++]); 5072 if (!Ty) 5073 return error("Invalid record"); 5074 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5075 Value *PersFn = nullptr; 5076 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5077 return error("Invalid record"); 5078 5079 if (!F->hasPersonalityFn()) 5080 F->setPersonalityFn(cast<Constant>(PersFn)); 5081 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5082 return error("Personality function mismatch"); 5083 } 5084 5085 bool IsCleanup = !!Record[Idx++]; 5086 unsigned NumClauses = Record[Idx++]; 5087 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5088 LP->setCleanup(IsCleanup); 5089 for (unsigned J = 0; J != NumClauses; ++J) { 5090 LandingPadInst::ClauseType CT = 5091 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5092 Value *Val; 5093 5094 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5095 delete LP; 5096 return error("Invalid record"); 5097 } 5098 5099 assert((CT != LandingPadInst::Catch || 5100 !isa<ArrayType>(Val->getType())) && 5101 "Catch clause has a invalid type!"); 5102 assert((CT != LandingPadInst::Filter || 5103 isa<ArrayType>(Val->getType())) && 5104 "Filter clause has invalid type!"); 5105 LP->addClause(cast<Constant>(Val)); 5106 } 5107 5108 I = LP; 5109 InstructionList.push_back(I); 5110 break; 5111 } 5112 5113 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5114 if (Record.size() != 4) 5115 return error("Invalid record"); 5116 uint64_t AlignRecord = Record[3]; 5117 const uint64_t InAllocaMask = uint64_t(1) << 5; 5118 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5119 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5120 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5121 SwiftErrorMask; 5122 bool InAlloca = AlignRecord & InAllocaMask; 5123 bool SwiftError = AlignRecord & SwiftErrorMask; 5124 Type *Ty = getTypeByID(Record[0]); 5125 if ((AlignRecord & ExplicitTypeMask) == 0) { 5126 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5127 if (!PTy) 5128 return error("Old-style alloca with a non-pointer type"); 5129 Ty = PTy->getElementType(); 5130 } 5131 Type *OpTy = getTypeByID(Record[1]); 5132 Value *Size = getFnValueByID(Record[2], OpTy); 5133 unsigned Align; 5134 if (std::error_code EC = 5135 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5136 return EC; 5137 } 5138 if (!Ty || !Size) 5139 return error("Invalid record"); 5140 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5141 AI->setUsedWithInAlloca(InAlloca); 5142 AI->setSwiftError(SwiftError); 5143 I = AI; 5144 InstructionList.push_back(I); 5145 break; 5146 } 5147 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5148 unsigned OpNum = 0; 5149 Value *Op; 5150 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5151 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5152 return error("Invalid record"); 5153 5154 Type *Ty = nullptr; 5155 if (OpNum + 3 == Record.size()) 5156 Ty = getTypeByID(Record[OpNum++]); 5157 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5158 return EC; 5159 if (!Ty) 5160 Ty = cast<PointerType>(Op->getType())->getElementType(); 5161 5162 unsigned Align; 5163 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5164 return EC; 5165 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5166 5167 InstructionList.push_back(I); 5168 break; 5169 } 5170 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5171 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5172 unsigned OpNum = 0; 5173 Value *Op; 5174 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5175 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5176 return error("Invalid record"); 5177 5178 Type *Ty = nullptr; 5179 if (OpNum + 5 == Record.size()) 5180 Ty = getTypeByID(Record[OpNum++]); 5181 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5182 return EC; 5183 if (!Ty) 5184 Ty = cast<PointerType>(Op->getType())->getElementType(); 5185 5186 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5187 if (Ordering == AtomicOrdering::NotAtomic || 5188 Ordering == AtomicOrdering::Release || 5189 Ordering == AtomicOrdering::AcquireRelease) 5190 return error("Invalid record"); 5191 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5192 return error("Invalid record"); 5193 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5194 5195 unsigned Align; 5196 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5197 return EC; 5198 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5199 5200 InstructionList.push_back(I); 5201 break; 5202 } 5203 case bitc::FUNC_CODE_INST_STORE: 5204 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5205 unsigned OpNum = 0; 5206 Value *Val, *Ptr; 5207 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5208 (BitCode == bitc::FUNC_CODE_INST_STORE 5209 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5210 : popValue(Record, OpNum, NextValueNo, 5211 cast<PointerType>(Ptr->getType())->getElementType(), 5212 Val)) || 5213 OpNum + 2 != Record.size()) 5214 return error("Invalid record"); 5215 5216 if (std::error_code EC = 5217 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5218 return EC; 5219 unsigned Align; 5220 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5221 return EC; 5222 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5223 InstructionList.push_back(I); 5224 break; 5225 } 5226 case bitc::FUNC_CODE_INST_STOREATOMIC: 5227 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5228 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5229 unsigned OpNum = 0; 5230 Value *Val, *Ptr; 5231 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5232 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5233 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5234 : popValue(Record, OpNum, NextValueNo, 5235 cast<PointerType>(Ptr->getType())->getElementType(), 5236 Val)) || 5237 OpNum + 4 != Record.size()) 5238 return error("Invalid record"); 5239 5240 if (std::error_code EC = 5241 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5242 return EC; 5243 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5244 if (Ordering == AtomicOrdering::NotAtomic || 5245 Ordering == AtomicOrdering::Acquire || 5246 Ordering == AtomicOrdering::AcquireRelease) 5247 return error("Invalid record"); 5248 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5249 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5250 return error("Invalid record"); 5251 5252 unsigned Align; 5253 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5254 return EC; 5255 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5256 InstructionList.push_back(I); 5257 break; 5258 } 5259 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5260 case bitc::FUNC_CODE_INST_CMPXCHG: { 5261 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5262 // failureordering?, isweak?] 5263 unsigned OpNum = 0; 5264 Value *Ptr, *Cmp, *New; 5265 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5266 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5267 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5268 : popValue(Record, OpNum, NextValueNo, 5269 cast<PointerType>(Ptr->getType())->getElementType(), 5270 Cmp)) || 5271 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5272 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5273 return error("Invalid record"); 5274 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5275 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5276 SuccessOrdering == AtomicOrdering::Unordered) 5277 return error("Invalid record"); 5278 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5279 5280 if (std::error_code EC = 5281 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5282 return EC; 5283 AtomicOrdering FailureOrdering; 5284 if (Record.size() < 7) 5285 FailureOrdering = 5286 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5287 else 5288 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5289 5290 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5291 SynchScope); 5292 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5293 5294 if (Record.size() < 8) { 5295 // Before weak cmpxchgs existed, the instruction simply returned the 5296 // value loaded from memory, so bitcode files from that era will be 5297 // expecting the first component of a modern cmpxchg. 5298 CurBB->getInstList().push_back(I); 5299 I = ExtractValueInst::Create(I, 0); 5300 } else { 5301 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5302 } 5303 5304 InstructionList.push_back(I); 5305 break; 5306 } 5307 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5308 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5309 unsigned OpNum = 0; 5310 Value *Ptr, *Val; 5311 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5312 popValue(Record, OpNum, NextValueNo, 5313 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5314 OpNum+4 != Record.size()) 5315 return error("Invalid record"); 5316 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5317 if (Operation < AtomicRMWInst::FIRST_BINOP || 5318 Operation > AtomicRMWInst::LAST_BINOP) 5319 return error("Invalid record"); 5320 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5321 if (Ordering == AtomicOrdering::NotAtomic || 5322 Ordering == AtomicOrdering::Unordered) 5323 return error("Invalid record"); 5324 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5325 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5326 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5327 InstructionList.push_back(I); 5328 break; 5329 } 5330 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5331 if (2 != Record.size()) 5332 return error("Invalid record"); 5333 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5334 if (Ordering == AtomicOrdering::NotAtomic || 5335 Ordering == AtomicOrdering::Unordered || 5336 Ordering == AtomicOrdering::Monotonic) 5337 return error("Invalid record"); 5338 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5339 I = new FenceInst(Context, Ordering, SynchScope); 5340 InstructionList.push_back(I); 5341 break; 5342 } 5343 case bitc::FUNC_CODE_INST_CALL: { 5344 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5345 if (Record.size() < 3) 5346 return error("Invalid record"); 5347 5348 unsigned OpNum = 0; 5349 AttributeSet PAL = getAttributes(Record[OpNum++]); 5350 unsigned CCInfo = Record[OpNum++]; 5351 5352 FastMathFlags FMF; 5353 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5354 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5355 if (!FMF.any()) 5356 return error("Fast math flags indicator set for call with no FMF"); 5357 } 5358 5359 FunctionType *FTy = nullptr; 5360 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5361 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5362 return error("Explicit call type is not a function type"); 5363 5364 Value *Callee; 5365 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5366 return error("Invalid record"); 5367 5368 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5369 if (!OpTy) 5370 return error("Callee is not a pointer type"); 5371 if (!FTy) { 5372 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5373 if (!FTy) 5374 return error("Callee is not of pointer to function type"); 5375 } else if (OpTy->getElementType() != FTy) 5376 return error("Explicit call type does not match pointee type of " 5377 "callee operand"); 5378 if (Record.size() < FTy->getNumParams() + OpNum) 5379 return error("Insufficient operands to call"); 5380 5381 SmallVector<Value*, 16> Args; 5382 // Read the fixed params. 5383 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5384 if (FTy->getParamType(i)->isLabelTy()) 5385 Args.push_back(getBasicBlock(Record[OpNum])); 5386 else 5387 Args.push_back(getValue(Record, OpNum, NextValueNo, 5388 FTy->getParamType(i))); 5389 if (!Args.back()) 5390 return error("Invalid record"); 5391 } 5392 5393 // Read type/value pairs for varargs params. 5394 if (!FTy->isVarArg()) { 5395 if (OpNum != Record.size()) 5396 return error("Invalid record"); 5397 } else { 5398 while (OpNum != Record.size()) { 5399 Value *Op; 5400 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5401 return error("Invalid record"); 5402 Args.push_back(Op); 5403 } 5404 } 5405 5406 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5407 OperandBundles.clear(); 5408 InstructionList.push_back(I); 5409 cast<CallInst>(I)->setCallingConv( 5410 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5411 CallInst::TailCallKind TCK = CallInst::TCK_None; 5412 if (CCInfo & 1 << bitc::CALL_TAIL) 5413 TCK = CallInst::TCK_Tail; 5414 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5415 TCK = CallInst::TCK_MustTail; 5416 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5417 TCK = CallInst::TCK_NoTail; 5418 cast<CallInst>(I)->setTailCallKind(TCK); 5419 cast<CallInst>(I)->setAttributes(PAL); 5420 if (FMF.any()) { 5421 if (!isa<FPMathOperator>(I)) 5422 return error("Fast-math-flags specified for call without " 5423 "floating-point scalar or vector return type"); 5424 I->setFastMathFlags(FMF); 5425 } 5426 break; 5427 } 5428 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5429 if (Record.size() < 3) 5430 return error("Invalid record"); 5431 Type *OpTy = getTypeByID(Record[0]); 5432 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5433 Type *ResTy = getTypeByID(Record[2]); 5434 if (!OpTy || !Op || !ResTy) 5435 return error("Invalid record"); 5436 I = new VAArgInst(Op, ResTy); 5437 InstructionList.push_back(I); 5438 break; 5439 } 5440 5441 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5442 // A call or an invoke can be optionally prefixed with some variable 5443 // number of operand bundle blocks. These blocks are read into 5444 // OperandBundles and consumed at the next call or invoke instruction. 5445 5446 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5447 return error("Invalid record"); 5448 5449 std::vector<Value *> Inputs; 5450 5451 unsigned OpNum = 1; 5452 while (OpNum != Record.size()) { 5453 Value *Op; 5454 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5455 return error("Invalid record"); 5456 Inputs.push_back(Op); 5457 } 5458 5459 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5460 continue; 5461 } 5462 } 5463 5464 // Add instruction to end of current BB. If there is no current BB, reject 5465 // this file. 5466 if (!CurBB) { 5467 delete I; 5468 return error("Invalid instruction with no BB"); 5469 } 5470 if (!OperandBundles.empty()) { 5471 delete I; 5472 return error("Operand bundles found with no consumer"); 5473 } 5474 CurBB->getInstList().push_back(I); 5475 5476 // If this was a terminator instruction, move to the next block. 5477 if (isa<TerminatorInst>(I)) { 5478 ++CurBBNo; 5479 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5480 } 5481 5482 // Non-void values get registered in the value table for future use. 5483 if (I && !I->getType()->isVoidTy()) 5484 ValueList.assignValue(I, NextValueNo++); 5485 } 5486 5487 OutOfRecordLoop: 5488 5489 if (!OperandBundles.empty()) 5490 return error("Operand bundles found with no consumer"); 5491 5492 // Check the function list for unresolved values. 5493 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5494 if (!A->getParent()) { 5495 // We found at least one unresolved value. Nuke them all to avoid leaks. 5496 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5497 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5498 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5499 delete A; 5500 } 5501 } 5502 return error("Never resolved value found in function"); 5503 } 5504 } 5505 5506 // Unexpected unresolved metadata about to be dropped. 5507 if (MetadataList.hasFwdRefs()) 5508 return error("Invalid function metadata: outgoing forward refs"); 5509 5510 // Trim the value list down to the size it was before we parsed this function. 5511 ValueList.shrinkTo(ModuleValueListSize); 5512 MetadataList.shrinkTo(ModuleMetadataListSize); 5513 std::vector<BasicBlock*>().swap(FunctionBBs); 5514 return std::error_code(); 5515 } 5516 5517 /// Find the function body in the bitcode stream 5518 std::error_code BitcodeReader::findFunctionInStream( 5519 Function *F, 5520 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5521 while (DeferredFunctionInfoIterator->second == 0) { 5522 // This is the fallback handling for the old format bitcode that 5523 // didn't contain the function index in the VST, or when we have 5524 // an anonymous function which would not have a VST entry. 5525 // Assert that we have one of those two cases. 5526 assert(VSTOffset == 0 || !F->hasName()); 5527 // Parse the next body in the stream and set its position in the 5528 // DeferredFunctionInfo map. 5529 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5530 return EC; 5531 } 5532 return std::error_code(); 5533 } 5534 5535 //===----------------------------------------------------------------------===// 5536 // GVMaterializer implementation 5537 //===----------------------------------------------------------------------===// 5538 5539 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5540 5541 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5542 Function *F = dyn_cast<Function>(GV); 5543 // If it's not a function or is already material, ignore the request. 5544 if (!F || !F->isMaterializable()) 5545 return std::error_code(); 5546 5547 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5548 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5549 // If its position is recorded as 0, its body is somewhere in the stream 5550 // but we haven't seen it yet. 5551 if (DFII->second == 0) 5552 if (std::error_code EC = findFunctionInStream(F, DFII)) 5553 return EC; 5554 5555 // Materialize metadata before parsing any function bodies. 5556 if (std::error_code EC = materializeMetadata()) 5557 return EC; 5558 5559 // Move the bit stream to the saved position of the deferred function body. 5560 Stream.JumpToBit(DFII->second); 5561 5562 if (std::error_code EC = parseFunctionBody(F)) 5563 return EC; 5564 F->setIsMaterializable(false); 5565 5566 if (StripDebugInfo) 5567 stripDebugInfo(*F); 5568 5569 // Upgrade any old intrinsic calls in the function. 5570 for (auto &I : UpgradedIntrinsics) { 5571 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5572 UI != UE;) { 5573 User *U = *UI; 5574 ++UI; 5575 if (CallInst *CI = dyn_cast<CallInst>(U)) 5576 UpgradeIntrinsicCall(CI, I.second); 5577 } 5578 } 5579 5580 // Finish fn->subprogram upgrade for materialized functions. 5581 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5582 F->setSubprogram(SP); 5583 5584 // Bring in any functions that this function forward-referenced via 5585 // blockaddresses. 5586 return materializeForwardReferencedFunctions(); 5587 } 5588 5589 std::error_code BitcodeReader::materializeModule() { 5590 if (std::error_code EC = materializeMetadata()) 5591 return EC; 5592 5593 // Promise to materialize all forward references. 5594 WillMaterializeAllForwardRefs = true; 5595 5596 // Iterate over the module, deserializing any functions that are still on 5597 // disk. 5598 for (Function &F : *TheModule) { 5599 if (std::error_code EC = materialize(&F)) 5600 return EC; 5601 } 5602 // At this point, if there are any function bodies, parse the rest of 5603 // the bits in the module past the last function block we have recorded 5604 // through either lazy scanning or the VST. 5605 if (LastFunctionBlockBit || NextUnreadBit) 5606 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5607 : NextUnreadBit); 5608 5609 // Check that all block address forward references got resolved (as we 5610 // promised above). 5611 if (!BasicBlockFwdRefs.empty()) 5612 return error("Never resolved function from blockaddress"); 5613 5614 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5615 // to prevent this instructions with TBAA tags should be upgraded first. 5616 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5617 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5618 5619 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5620 // delete the old functions to clean up. We can't do this unless the entire 5621 // module is materialized because there could always be another function body 5622 // with calls to the old function. 5623 for (auto &I : UpgradedIntrinsics) { 5624 for (auto *U : I.first->users()) { 5625 if (CallInst *CI = dyn_cast<CallInst>(U)) 5626 UpgradeIntrinsicCall(CI, I.second); 5627 } 5628 if (!I.first->use_empty()) 5629 I.first->replaceAllUsesWith(I.second); 5630 I.first->eraseFromParent(); 5631 } 5632 UpgradedIntrinsics.clear(); 5633 5634 UpgradeDebugInfo(*TheModule); 5635 return std::error_code(); 5636 } 5637 5638 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5639 return IdentifiedStructTypes; 5640 } 5641 5642 std::error_code 5643 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5644 if (Streamer) 5645 return initLazyStream(std::move(Streamer)); 5646 return initStreamFromBuffer(); 5647 } 5648 5649 std::error_code BitcodeReader::initStreamFromBuffer() { 5650 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5651 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5652 5653 if (Buffer->getBufferSize() & 3) 5654 return error("Invalid bitcode signature"); 5655 5656 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5657 // The magic number is 0x0B17C0DE stored in little endian. 5658 if (isBitcodeWrapper(BufPtr, BufEnd)) 5659 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5660 return error("Invalid bitcode wrapper header"); 5661 5662 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5663 Stream.init(&*StreamFile); 5664 5665 return std::error_code(); 5666 } 5667 5668 std::error_code 5669 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5670 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5671 // see it. 5672 auto OwnedBytes = 5673 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5674 StreamingMemoryObject &Bytes = *OwnedBytes; 5675 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5676 Stream.init(&*StreamFile); 5677 5678 unsigned char buf[16]; 5679 if (Bytes.readBytes(buf, 16, 0) != 16) 5680 return error("Invalid bitcode signature"); 5681 5682 if (!isBitcode(buf, buf + 16)) 5683 return error("Invalid bitcode signature"); 5684 5685 if (isBitcodeWrapper(buf, buf + 4)) { 5686 const unsigned char *bitcodeStart = buf; 5687 const unsigned char *bitcodeEnd = buf + 16; 5688 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5689 Bytes.dropLeadingBytes(bitcodeStart - buf); 5690 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5691 } 5692 return std::error_code(); 5693 } 5694 5695 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5696 const Twine &Message) { 5697 return ::error(DiagnosticHandler, make_error_code(E), Message); 5698 } 5699 5700 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5701 return ::error(DiagnosticHandler, 5702 make_error_code(BitcodeError::CorruptedBitcode), Message); 5703 } 5704 5705 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5706 return ::error(DiagnosticHandler, make_error_code(E)); 5707 } 5708 5709 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5710 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5711 bool CheckGlobalValSummaryPresenceOnly) 5712 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5713 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5714 5715 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5716 DiagnosticHandlerFunction DiagnosticHandler, 5717 bool CheckGlobalValSummaryPresenceOnly) 5718 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5719 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5720 5721 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5722 5723 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5724 5725 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5726 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5727 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5728 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5729 return VGI->second; 5730 } 5731 5732 // Specialized value symbol table parser used when reading module index 5733 // blocks where we don't actually create global values. The parsed information 5734 // is saved in the bitcode reader for use when later parsing summaries. 5735 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5736 uint64_t Offset, 5737 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5738 assert(Offset > 0 && "Expected non-zero VST offset"); 5739 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5740 5741 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5742 return error("Invalid record"); 5743 5744 SmallVector<uint64_t, 64> Record; 5745 5746 // Read all the records for this value table. 5747 SmallString<128> ValueName; 5748 while (1) { 5749 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5750 5751 switch (Entry.Kind) { 5752 case BitstreamEntry::SubBlock: // Handled for us already. 5753 case BitstreamEntry::Error: 5754 return error("Malformed block"); 5755 case BitstreamEntry::EndBlock: 5756 // Done parsing VST, jump back to wherever we came from. 5757 Stream.JumpToBit(CurrentBit); 5758 return std::error_code(); 5759 case BitstreamEntry::Record: 5760 // The interesting case. 5761 break; 5762 } 5763 5764 // Read a record. 5765 Record.clear(); 5766 switch (Stream.readRecord(Entry.ID, Record)) { 5767 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5768 break; 5769 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5770 if (convertToString(Record, 1, ValueName)) 5771 return error("Invalid record"); 5772 unsigned ValueID = Record[0]; 5773 assert(!SourceFileName.empty()); 5774 auto VLI = ValueIdToLinkageMap.find(ValueID); 5775 assert(VLI != ValueIdToLinkageMap.end() && 5776 "No linkage found for VST entry?"); 5777 auto Linkage = VLI->second; 5778 std::string GlobalId = 5779 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5780 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5781 auto OriginalNameID = ValueGUID; 5782 if (GlobalValue::isLocalLinkage(Linkage)) 5783 OriginalNameID = GlobalValue::getGUID(ValueName); 5784 if (PrintSummaryGUIDs) 5785 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5786 << ValueName << "\n"; 5787 ValueIdToCallGraphGUIDMap[ValueID] = 5788 std::make_pair(ValueGUID, OriginalNameID); 5789 ValueName.clear(); 5790 break; 5791 } 5792 case bitc::VST_CODE_FNENTRY: { 5793 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5794 if (convertToString(Record, 2, ValueName)) 5795 return error("Invalid record"); 5796 unsigned ValueID = Record[0]; 5797 assert(!SourceFileName.empty()); 5798 auto VLI = ValueIdToLinkageMap.find(ValueID); 5799 assert(VLI != ValueIdToLinkageMap.end() && 5800 "No linkage found for VST entry?"); 5801 auto Linkage = VLI->second; 5802 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5803 ValueName, VLI->second, SourceFileName); 5804 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5805 auto OriginalNameID = FunctionGUID; 5806 if (GlobalValue::isLocalLinkage(Linkage)) 5807 OriginalNameID = GlobalValue::getGUID(ValueName); 5808 if (PrintSummaryGUIDs) 5809 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5810 << ValueName << "\n"; 5811 ValueIdToCallGraphGUIDMap[ValueID] = 5812 std::make_pair(FunctionGUID, OriginalNameID); 5813 5814 ValueName.clear(); 5815 break; 5816 } 5817 case bitc::VST_CODE_COMBINED_ENTRY: { 5818 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5819 unsigned ValueID = Record[0]; 5820 GlobalValue::GUID RefGUID = Record[1]; 5821 // The "original name", which is the second value of the pair will be 5822 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5823 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5824 break; 5825 } 5826 } 5827 } 5828 } 5829 5830 // Parse just the blocks needed for building the index out of the module. 5831 // At the end of this routine the module Index is populated with a map 5832 // from global value id to GlobalValueSummary objects. 5833 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5834 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5835 return error("Invalid record"); 5836 5837 SmallVector<uint64_t, 64> Record; 5838 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5839 unsigned ValueId = 0; 5840 5841 // Read the index for this module. 5842 while (1) { 5843 BitstreamEntry Entry = Stream.advance(); 5844 5845 switch (Entry.Kind) { 5846 case BitstreamEntry::Error: 5847 return error("Malformed block"); 5848 case BitstreamEntry::EndBlock: 5849 return std::error_code(); 5850 5851 case BitstreamEntry::SubBlock: 5852 if (CheckGlobalValSummaryPresenceOnly) { 5853 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5854 SeenGlobalValSummary = true; 5855 // No need to parse the rest since we found the summary. 5856 return std::error_code(); 5857 } 5858 if (Stream.SkipBlock()) 5859 return error("Invalid record"); 5860 continue; 5861 } 5862 switch (Entry.ID) { 5863 default: // Skip unknown content. 5864 if (Stream.SkipBlock()) 5865 return error("Invalid record"); 5866 break; 5867 case bitc::BLOCKINFO_BLOCK_ID: 5868 // Need to parse these to get abbrev ids (e.g. for VST) 5869 if (Stream.ReadBlockInfoBlock()) 5870 return error("Malformed block"); 5871 break; 5872 case bitc::VALUE_SYMTAB_BLOCK_ID: 5873 // Should have been parsed earlier via VSTOffset, unless there 5874 // is no summary section. 5875 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5876 !SeenGlobalValSummary) && 5877 "Expected early VST parse via VSTOffset record"); 5878 if (Stream.SkipBlock()) 5879 return error("Invalid record"); 5880 break; 5881 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5882 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5883 assert(!SeenValueSymbolTable && 5884 "Already read VST when parsing summary block?"); 5885 if (std::error_code EC = 5886 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5887 return EC; 5888 SeenValueSymbolTable = true; 5889 SeenGlobalValSummary = true; 5890 if (std::error_code EC = parseEntireSummary()) 5891 return EC; 5892 break; 5893 case bitc::MODULE_STRTAB_BLOCK_ID: 5894 if (std::error_code EC = parseModuleStringTable()) 5895 return EC; 5896 break; 5897 } 5898 continue; 5899 5900 case BitstreamEntry::Record: { 5901 Record.clear(); 5902 auto BitCode = Stream.readRecord(Entry.ID, Record); 5903 switch (BitCode) { 5904 default: 5905 break; // Default behavior, ignore unknown content. 5906 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5907 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5908 SmallString<128> ValueName; 5909 if (convertToString(Record, 0, ValueName)) 5910 return error("Invalid record"); 5911 SourceFileName = ValueName.c_str(); 5912 break; 5913 } 5914 /// MODULE_CODE_HASH: [5*i32] 5915 case bitc::MODULE_CODE_HASH: { 5916 if (Record.size() != 5) 5917 return error("Invalid hash length " + Twine(Record.size()).str()); 5918 if (!TheIndex) 5919 break; 5920 if (TheIndex->modulePaths().empty()) 5921 // Does not have any summary emitted. 5922 break; 5923 if (TheIndex->modulePaths().size() != 1) 5924 return error("Don't expect multiple modules defined?"); 5925 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5926 int Pos = 0; 5927 for (auto &Val : Record) { 5928 assert(!(Val >> 32) && "Unexpected high bits set"); 5929 Hash[Pos++] = Val; 5930 } 5931 break; 5932 } 5933 /// MODULE_CODE_VSTOFFSET: [offset] 5934 case bitc::MODULE_CODE_VSTOFFSET: 5935 if (Record.size() < 1) 5936 return error("Invalid record"); 5937 VSTOffset = Record[0]; 5938 break; 5939 // GLOBALVAR: [pointer type, isconst, initid, 5940 // linkage, alignment, section, visibility, threadlocal, 5941 // unnamed_addr, externally_initialized, dllstorageclass, 5942 // comdat] 5943 case bitc::MODULE_CODE_GLOBALVAR: { 5944 if (Record.size() < 6) 5945 return error("Invalid record"); 5946 uint64_t RawLinkage = Record[3]; 5947 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5948 ValueIdToLinkageMap[ValueId++] = Linkage; 5949 break; 5950 } 5951 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5952 // alignment, section, visibility, gc, unnamed_addr, 5953 // prologuedata, dllstorageclass, comdat, prefixdata] 5954 case bitc::MODULE_CODE_FUNCTION: { 5955 if (Record.size() < 8) 5956 return error("Invalid record"); 5957 uint64_t RawLinkage = Record[3]; 5958 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5959 ValueIdToLinkageMap[ValueId++] = Linkage; 5960 break; 5961 } 5962 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5963 // dllstorageclass] 5964 case bitc::MODULE_CODE_ALIAS: { 5965 if (Record.size() < 6) 5966 return error("Invalid record"); 5967 uint64_t RawLinkage = Record[3]; 5968 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5969 ValueIdToLinkageMap[ValueId++] = Linkage; 5970 break; 5971 } 5972 } 5973 } 5974 continue; 5975 } 5976 } 5977 } 5978 5979 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5980 // objects in the index. 5981 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5982 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5983 return error("Invalid record"); 5984 SmallVector<uint64_t, 64> Record; 5985 5986 // Parse version 5987 { 5988 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5989 if (Entry.Kind != BitstreamEntry::Record) 5990 return error("Invalid Summary Block: record for version expected"); 5991 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5992 return error("Invalid Summary Block: version expected"); 5993 } 5994 const uint64_t Version = Record[0]; 5995 if (Version != 1) 5996 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 5997 Record.clear(); 5998 5999 // Keep around the last seen summary to be used when we see an optional 6000 // "OriginalName" attachement. 6001 GlobalValueSummary *LastSeenSummary = nullptr; 6002 bool Combined = false; 6003 while (1) { 6004 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6005 6006 switch (Entry.Kind) { 6007 case BitstreamEntry::SubBlock: // Handled for us already. 6008 case BitstreamEntry::Error: 6009 return error("Malformed block"); 6010 case BitstreamEntry::EndBlock: 6011 // For a per-module index, remove any entries that still have empty 6012 // summaries. The VST parsing creates entries eagerly for all symbols, 6013 // but not all have associated summaries (e.g. it doesn't know how to 6014 // distinguish between VST_CODE_ENTRY for function declarations vs global 6015 // variables with initializers that end up with a summary). Remove those 6016 // entries now so that we don't need to rely on the combined index merger 6017 // to clean them up (especially since that may not run for the first 6018 // module's index if we merge into that). 6019 if (!Combined) 6020 TheIndex->removeEmptySummaryEntries(); 6021 return std::error_code(); 6022 case BitstreamEntry::Record: 6023 // The interesting case. 6024 break; 6025 } 6026 6027 // Read a record. The record format depends on whether this 6028 // is a per-module index or a combined index file. In the per-module 6029 // case the records contain the associated value's ID for correlation 6030 // with VST entries. In the combined index the correlation is done 6031 // via the bitcode offset of the summary records (which were saved 6032 // in the combined index VST entries). The records also contain 6033 // information used for ThinLTO renaming and importing. 6034 Record.clear(); 6035 auto BitCode = Stream.readRecord(Entry.ID, Record); 6036 switch (BitCode) { 6037 default: // Default behavior: ignore. 6038 break; 6039 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6040 // n x (valueid, callsitecount)] 6041 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6042 // numrefs x valueid, 6043 // n x (valueid, callsitecount, profilecount)] 6044 case bitc::FS_PERMODULE: 6045 case bitc::FS_PERMODULE_PROFILE: { 6046 unsigned ValueID = Record[0]; 6047 uint64_t RawFlags = Record[1]; 6048 unsigned InstCount = Record[2]; 6049 unsigned NumRefs = Record[3]; 6050 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6051 std::unique_ptr<FunctionSummary> FS = 6052 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6053 // The module path string ref set in the summary must be owned by the 6054 // index's module string table. Since we don't have a module path 6055 // string table section in the per-module index, we create a single 6056 // module path string table entry with an empty (0) ID to take 6057 // ownership. 6058 FS->setModulePath( 6059 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6060 static int RefListStartIndex = 4; 6061 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6062 assert(Record.size() >= RefListStartIndex + NumRefs && 6063 "Record size inconsistent with number of references"); 6064 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6065 unsigned RefValueId = Record[I]; 6066 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6067 FS->addRefEdge(RefGUID); 6068 } 6069 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6070 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6071 ++I) { 6072 unsigned CalleeValueId = Record[I]; 6073 unsigned CallsiteCount = Record[++I]; 6074 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6075 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6076 FS->addCallGraphEdge(CalleeGUID, 6077 CalleeInfo(CallsiteCount, ProfileCount)); 6078 } 6079 auto GUID = getGUIDFromValueId(ValueID); 6080 FS->setOriginalName(GUID.second); 6081 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6082 break; 6083 } 6084 // FS_ALIAS: [valueid, flags, valueid] 6085 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6086 // they expect all aliasee summaries to be available. 6087 case bitc::FS_ALIAS: { 6088 unsigned ValueID = Record[0]; 6089 uint64_t RawFlags = Record[1]; 6090 unsigned AliaseeID = Record[2]; 6091 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6092 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6093 // The module path string ref set in the summary must be owned by the 6094 // index's module string table. Since we don't have a module path 6095 // string table section in the per-module index, we create a single 6096 // module path string table entry with an empty (0) ID to take 6097 // ownership. 6098 AS->setModulePath( 6099 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6100 6101 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6102 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6103 if (!AliaseeSummary) 6104 return error("Alias expects aliasee summary to be parsed"); 6105 AS->setAliasee(AliaseeSummary); 6106 6107 auto GUID = getGUIDFromValueId(ValueID); 6108 AS->setOriginalName(GUID.second); 6109 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6110 break; 6111 } 6112 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6113 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6114 unsigned ValueID = Record[0]; 6115 uint64_t RawFlags = Record[1]; 6116 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6117 std::unique_ptr<GlobalVarSummary> FS = 6118 llvm::make_unique<GlobalVarSummary>(Flags); 6119 FS->setModulePath( 6120 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6121 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6122 unsigned RefValueId = Record[I]; 6123 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6124 FS->addRefEdge(RefGUID); 6125 } 6126 auto GUID = getGUIDFromValueId(ValueID); 6127 FS->setOriginalName(GUID.second); 6128 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6129 break; 6130 } 6131 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6132 // numrefs x valueid, n x (valueid, callsitecount)] 6133 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6134 // numrefs x valueid, 6135 // n x (valueid, callsitecount, profilecount)] 6136 case bitc::FS_COMBINED: 6137 case bitc::FS_COMBINED_PROFILE: { 6138 unsigned ValueID = Record[0]; 6139 uint64_t ModuleId = Record[1]; 6140 uint64_t RawFlags = Record[2]; 6141 unsigned InstCount = Record[3]; 6142 unsigned NumRefs = Record[4]; 6143 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6144 std::unique_ptr<FunctionSummary> FS = 6145 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6146 LastSeenSummary = FS.get(); 6147 FS->setModulePath(ModuleIdMap[ModuleId]); 6148 static int RefListStartIndex = 5; 6149 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6150 assert(Record.size() >= RefListStartIndex + NumRefs && 6151 "Record size inconsistent with number of references"); 6152 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6153 ++I) { 6154 unsigned RefValueId = Record[I]; 6155 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6156 FS->addRefEdge(RefGUID); 6157 } 6158 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6159 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6160 ++I) { 6161 unsigned CalleeValueId = Record[I]; 6162 unsigned CallsiteCount = Record[++I]; 6163 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6164 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6165 FS->addCallGraphEdge(CalleeGUID, 6166 CalleeInfo(CallsiteCount, ProfileCount)); 6167 } 6168 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6169 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6170 Combined = true; 6171 break; 6172 } 6173 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6174 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6175 // they expect all aliasee summaries to be available. 6176 case bitc::FS_COMBINED_ALIAS: { 6177 unsigned ValueID = Record[0]; 6178 uint64_t ModuleId = Record[1]; 6179 uint64_t RawFlags = Record[2]; 6180 unsigned AliaseeValueId = Record[3]; 6181 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6182 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6183 LastSeenSummary = AS.get(); 6184 AS->setModulePath(ModuleIdMap[ModuleId]); 6185 6186 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6187 auto AliaseeInModule = 6188 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6189 if (!AliaseeInModule) 6190 return error("Alias expects aliasee summary to be parsed"); 6191 AS->setAliasee(AliaseeInModule); 6192 6193 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6194 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6195 Combined = true; 6196 break; 6197 } 6198 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6199 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6200 unsigned ValueID = Record[0]; 6201 uint64_t ModuleId = Record[1]; 6202 uint64_t RawFlags = Record[2]; 6203 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6204 std::unique_ptr<GlobalVarSummary> FS = 6205 llvm::make_unique<GlobalVarSummary>(Flags); 6206 LastSeenSummary = FS.get(); 6207 FS->setModulePath(ModuleIdMap[ModuleId]); 6208 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6209 unsigned RefValueId = Record[I]; 6210 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6211 FS->addRefEdge(RefGUID); 6212 } 6213 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6214 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6215 Combined = true; 6216 break; 6217 } 6218 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6219 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6220 uint64_t OriginalName = Record[0]; 6221 if (!LastSeenSummary) 6222 return error("Name attachment that does not follow a combined record"); 6223 LastSeenSummary->setOriginalName(OriginalName); 6224 // Reset the LastSeenSummary 6225 LastSeenSummary = nullptr; 6226 } 6227 } 6228 } 6229 llvm_unreachable("Exit infinite loop"); 6230 } 6231 6232 // Parse the module string table block into the Index. 6233 // This populates the ModulePathStringTable map in the index. 6234 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6235 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6236 return error("Invalid record"); 6237 6238 SmallVector<uint64_t, 64> Record; 6239 6240 SmallString<128> ModulePath; 6241 ModulePathStringTableTy::iterator LastSeenModulePath; 6242 while (1) { 6243 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6244 6245 switch (Entry.Kind) { 6246 case BitstreamEntry::SubBlock: // Handled for us already. 6247 case BitstreamEntry::Error: 6248 return error("Malformed block"); 6249 case BitstreamEntry::EndBlock: 6250 return std::error_code(); 6251 case BitstreamEntry::Record: 6252 // The interesting case. 6253 break; 6254 } 6255 6256 Record.clear(); 6257 switch (Stream.readRecord(Entry.ID, Record)) { 6258 default: // Default behavior: ignore. 6259 break; 6260 case bitc::MST_CODE_ENTRY: { 6261 // MST_ENTRY: [modid, namechar x N] 6262 uint64_t ModuleId = Record[0]; 6263 6264 if (convertToString(Record, 1, ModulePath)) 6265 return error("Invalid record"); 6266 6267 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6268 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6269 6270 ModulePath.clear(); 6271 break; 6272 } 6273 /// MST_CODE_HASH: [5*i32] 6274 case bitc::MST_CODE_HASH: { 6275 if (Record.size() != 5) 6276 return error("Invalid hash length " + Twine(Record.size()).str()); 6277 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6278 return error("Invalid hash that does not follow a module path"); 6279 int Pos = 0; 6280 for (auto &Val : Record) { 6281 assert(!(Val >> 32) && "Unexpected high bits set"); 6282 LastSeenModulePath->second.second[Pos++] = Val; 6283 } 6284 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6285 LastSeenModulePath = TheIndex->modulePaths().end(); 6286 break; 6287 } 6288 } 6289 } 6290 llvm_unreachable("Exit infinite loop"); 6291 } 6292 6293 // Parse the function info index from the bitcode streamer into the given index. 6294 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6295 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6296 TheIndex = I; 6297 6298 if (std::error_code EC = initStream(std::move(Streamer))) 6299 return EC; 6300 6301 // Sniff for the signature. 6302 if (!hasValidBitcodeHeader(Stream)) 6303 return error("Invalid bitcode signature"); 6304 6305 // We expect a number of well-defined blocks, though we don't necessarily 6306 // need to understand them all. 6307 while (1) { 6308 if (Stream.AtEndOfStream()) { 6309 // We didn't really read a proper Module block. 6310 return error("Malformed block"); 6311 } 6312 6313 BitstreamEntry Entry = 6314 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6315 6316 if (Entry.Kind != BitstreamEntry::SubBlock) 6317 return error("Malformed block"); 6318 6319 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6320 // building the function summary index. 6321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6322 return parseModule(); 6323 6324 if (Stream.SkipBlock()) 6325 return error("Invalid record"); 6326 } 6327 } 6328 6329 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6330 std::unique_ptr<DataStreamer> Streamer) { 6331 if (Streamer) 6332 return initLazyStream(std::move(Streamer)); 6333 return initStreamFromBuffer(); 6334 } 6335 6336 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6337 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6338 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6339 6340 if (Buffer->getBufferSize() & 3) 6341 return error("Invalid bitcode signature"); 6342 6343 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6344 // The magic number is 0x0B17C0DE stored in little endian. 6345 if (isBitcodeWrapper(BufPtr, BufEnd)) 6346 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6347 return error("Invalid bitcode wrapper header"); 6348 6349 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6350 Stream.init(&*StreamFile); 6351 6352 return std::error_code(); 6353 } 6354 6355 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6356 std::unique_ptr<DataStreamer> Streamer) { 6357 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6358 // see it. 6359 auto OwnedBytes = 6360 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6361 StreamingMemoryObject &Bytes = *OwnedBytes; 6362 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6363 Stream.init(&*StreamFile); 6364 6365 unsigned char buf[16]; 6366 if (Bytes.readBytes(buf, 16, 0) != 16) 6367 return error("Invalid bitcode signature"); 6368 6369 if (!isBitcode(buf, buf + 16)) 6370 return error("Invalid bitcode signature"); 6371 6372 if (isBitcodeWrapper(buf, buf + 4)) { 6373 const unsigned char *bitcodeStart = buf; 6374 const unsigned char *bitcodeEnd = buf + 16; 6375 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6376 Bytes.dropLeadingBytes(bitcodeStart - buf); 6377 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6378 } 6379 return std::error_code(); 6380 } 6381 6382 namespace { 6383 class BitcodeErrorCategoryType : public std::error_category { 6384 const char *name() const LLVM_NOEXCEPT override { 6385 return "llvm.bitcode"; 6386 } 6387 std::string message(int IE) const override { 6388 BitcodeError E = static_cast<BitcodeError>(IE); 6389 switch (E) { 6390 case BitcodeError::InvalidBitcodeSignature: 6391 return "Invalid bitcode signature"; 6392 case BitcodeError::CorruptedBitcode: 6393 return "Corrupted bitcode"; 6394 } 6395 llvm_unreachable("Unknown error type!"); 6396 } 6397 }; 6398 } // end anonymous namespace 6399 6400 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6401 6402 const std::error_category &llvm::BitcodeErrorCategory() { 6403 return *ErrorCategory; 6404 } 6405 6406 //===----------------------------------------------------------------------===// 6407 // External interface 6408 //===----------------------------------------------------------------------===// 6409 6410 static ErrorOr<std::unique_ptr<Module>> 6411 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6412 BitcodeReader *R, LLVMContext &Context, 6413 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6414 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6415 M->setMaterializer(R); 6416 6417 auto cleanupOnError = [&](std::error_code EC) { 6418 R->releaseBuffer(); // Never take ownership on error. 6419 return EC; 6420 }; 6421 6422 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6423 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6424 ShouldLazyLoadMetadata)) 6425 return cleanupOnError(EC); 6426 6427 if (MaterializeAll) { 6428 // Read in the entire module, and destroy the BitcodeReader. 6429 if (std::error_code EC = M->materializeAll()) 6430 return cleanupOnError(EC); 6431 } else { 6432 // Resolve forward references from blockaddresses. 6433 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6434 return cleanupOnError(EC); 6435 } 6436 return std::move(M); 6437 } 6438 6439 /// \brief Get a lazy one-at-time loading module from bitcode. 6440 /// 6441 /// This isn't always used in a lazy context. In particular, it's also used by 6442 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6443 /// in forward-referenced functions from block address references. 6444 /// 6445 /// \param[in] MaterializeAll Set to \c true if we should materialize 6446 /// everything. 6447 static ErrorOr<std::unique_ptr<Module>> 6448 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6449 LLVMContext &Context, bool MaterializeAll, 6450 bool ShouldLazyLoadMetadata = false) { 6451 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6452 6453 ErrorOr<std::unique_ptr<Module>> Ret = 6454 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6455 MaterializeAll, ShouldLazyLoadMetadata); 6456 if (!Ret) 6457 return Ret; 6458 6459 Buffer.release(); // The BitcodeReader owns it now. 6460 return Ret; 6461 } 6462 6463 ErrorOr<std::unique_ptr<Module>> 6464 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6465 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6466 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6467 ShouldLazyLoadMetadata); 6468 } 6469 6470 ErrorOr<std::unique_ptr<Module>> 6471 llvm::getStreamedBitcodeModule(StringRef Name, 6472 std::unique_ptr<DataStreamer> Streamer, 6473 LLVMContext &Context) { 6474 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6475 BitcodeReader *R = new BitcodeReader(Context); 6476 6477 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6478 false); 6479 } 6480 6481 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6482 LLVMContext &Context) { 6483 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6484 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6485 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6486 // written. We must defer until the Module has been fully materialized. 6487 } 6488 6489 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6490 LLVMContext &Context) { 6491 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6492 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6493 ErrorOr<std::string> Triple = R->parseTriple(); 6494 if (Triple.getError()) 6495 return ""; 6496 return Triple.get(); 6497 } 6498 6499 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6500 LLVMContext &Context) { 6501 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6502 BitcodeReader R(Buf.release(), Context); 6503 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6504 if (ProducerString.getError()) 6505 return ""; 6506 return ProducerString.get(); 6507 } 6508 6509 // Parse the specified bitcode buffer, returning the function info index. 6510 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6511 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6512 DiagnosticHandlerFunction DiagnosticHandler) { 6513 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6514 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6515 6516 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6517 6518 auto cleanupOnError = [&](std::error_code EC) { 6519 R.releaseBuffer(); // Never take ownership on error. 6520 return EC; 6521 }; 6522 6523 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6524 return cleanupOnError(EC); 6525 6526 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6527 return std::move(Index); 6528 } 6529 6530 // Check if the given bitcode buffer contains a global value summary block. 6531 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6532 DiagnosticHandlerFunction DiagnosticHandler) { 6533 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6534 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6535 6536 auto cleanupOnError = [&](std::error_code EC) { 6537 R.releaseBuffer(); // Never take ownership on error. 6538 return false; 6539 }; 6540 6541 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6542 return cleanupOnError(EC); 6543 6544 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6545 return R.foundGlobalValSummary(); 6546 } 6547