1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMDValueList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MDValuePtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMDValueList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MDValuePtrs.size(); } 111 void resize(unsigned N) { MDValuePtrs.resize(N); } 112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 113 void clear() { MDValuePtrs.clear(); } 114 Metadata *back() const { return MDValuePtrs.back(); } 115 void pop_back() { MDValuePtrs.pop_back(); } 116 bool empty() const { return MDValuePtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MDValuePtrs.size()); 120 return MDValuePtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MDValuePtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void assignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 // Next offset to start scanning for lazy parsing of function bodies. 140 uint64_t NextUnreadBit = 0; 141 // Last function offset found in the VST. 142 uint64_t LastFunctionBlockBit = 0; 143 bool SeenValueSymbolTable = false; 144 uint64_t VSTOffset = 0; 145 // Contains an arbitrary and optional string identifying the bitcode producer 146 std::string ProducerIdentification; 147 // Number of module level metadata records specified by the 148 // MODULE_CODE_METADATA_VALUES record. 149 unsigned NumModuleMDs = 0; 150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 151 bool SeenModuleValuesRecord = false; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMDValueList MDValueList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// Functions that have block addresses taken. This is usually empty. 223 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 224 225 /// True if any Metadata block has been materialized. 226 bool IsMetadataMaterialized = false; 227 228 bool StripDebugInfo = false; 229 230 /// Functions that need to be matched with subprograms when upgrading old 231 /// metadata. 232 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 233 234 std::vector<std::string> BundleTags; 235 236 public: 237 std::error_code error(BitcodeError E, const Twine &Message); 238 std::error_code error(BitcodeError E); 239 std::error_code error(const Twine &Message); 240 241 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 242 BitcodeReader(LLVMContext &Context); 243 ~BitcodeReader() override { freeState(); } 244 245 std::error_code materializeForwardReferencedFunctions(); 246 247 void freeState(); 248 249 void releaseBuffer(); 250 251 bool isDematerializable(const GlobalValue *GV) const override; 252 std::error_code materialize(GlobalValue *GV) override; 253 std::error_code materializeModule(Module *M) override; 254 std::vector<StructType *> getIdentifiedStructTypes() const override; 255 void dematerialize(GlobalValue *GV) override; 256 257 /// \brief Main interface to parsing a bitcode buffer. 258 /// \returns true if an error occurred. 259 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 260 Module *M, 261 bool ShouldLazyLoadMetadata = false); 262 263 /// \brief Cheap mechanism to just extract module triple 264 /// \returns true if an error occurred. 265 ErrorOr<std::string> parseTriple(); 266 267 /// Cheap mechanism to just extract the identification block out of bitcode. 268 ErrorOr<std::string> parseIdentificationBlock(); 269 270 static uint64_t decodeSignRotatedValue(uint64_t V); 271 272 /// Materialize any deferred Metadata block. 273 std::error_code materializeMetadata() override; 274 275 void setStripDebugInfo() override; 276 277 private: 278 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 279 // ProducerIdentification data member, and do some basic enforcement on the 280 // "epoch" encoded in the bitcode. 281 std::error_code parseBitcodeVersion(); 282 283 std::vector<StructType *> IdentifiedStructTypes; 284 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 285 StructType *createIdentifiedStructType(LLVMContext &Context); 286 287 Type *getTypeByID(unsigned ID); 288 Value *getFnValueByID(unsigned ID, Type *Ty) { 289 if (Ty && Ty->isMetadataTy()) 290 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 291 return ValueList.getValueFwdRef(ID, Ty); 292 } 293 Metadata *getFnMetadataByID(unsigned ID) { 294 return MDValueList.getValueFwdRef(ID); 295 } 296 BasicBlock *getBasicBlock(unsigned ID) const { 297 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 298 return FunctionBBs[ID]; 299 } 300 AttributeSet getAttributes(unsigned i) const { 301 if (i-1 < MAttributes.size()) 302 return MAttributes[i-1]; 303 return AttributeSet(); 304 } 305 306 /// Read a value/type pair out of the specified record from slot 'Slot'. 307 /// Increment Slot past the number of slots used in the record. Return true on 308 /// failure. 309 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 310 unsigned InstNum, Value *&ResVal) { 311 if (Slot == Record.size()) return true; 312 unsigned ValNo = (unsigned)Record[Slot++]; 313 // Adjust the ValNo, if it was encoded relative to the InstNum. 314 if (UseRelativeIDs) 315 ValNo = InstNum - ValNo; 316 if (ValNo < InstNum) { 317 // If this is not a forward reference, just return the value we already 318 // have. 319 ResVal = getFnValueByID(ValNo, nullptr); 320 return ResVal == nullptr; 321 } 322 if (Slot == Record.size()) 323 return true; 324 325 unsigned TypeNo = (unsigned)Record[Slot++]; 326 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 327 return ResVal == nullptr; 328 } 329 330 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 331 /// past the number of slots used by the value in the record. Return true if 332 /// there is an error. 333 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 334 unsigned InstNum, Type *Ty, Value *&ResVal) { 335 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 336 return true; 337 // All values currently take a single record slot. 338 ++Slot; 339 return false; 340 } 341 342 /// Like popValue, but does not increment the Slot number. 343 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty, Value *&ResVal) { 345 ResVal = getValue(Record, Slot, InstNum, Ty); 346 return ResVal == nullptr; 347 } 348 349 /// Version of getValue that returns ResVal directly, or 0 if there is an 350 /// error. 351 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 352 unsigned InstNum, Type *Ty) { 353 if (Slot == Record.size()) return nullptr; 354 unsigned ValNo = (unsigned)Record[Slot]; 355 // Adjust the ValNo, if it was encoded relative to the InstNum. 356 if (UseRelativeIDs) 357 ValNo = InstNum - ValNo; 358 return getFnValueByID(ValNo, Ty); 359 } 360 361 /// Like getValue, but decodes signed VBRs. 362 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 363 unsigned InstNum, Type *Ty) { 364 if (Slot == Record.size()) return nullptr; 365 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 366 // Adjust the ValNo, if it was encoded relative to the InstNum. 367 if (UseRelativeIDs) 368 ValNo = InstNum - ValNo; 369 return getFnValueByID(ValNo, Ty); 370 } 371 372 /// Converts alignment exponent (i.e. power of two (or zero)) to the 373 /// corresponding alignment to use. If alignment is too large, returns 374 /// a corresponding error code. 375 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 376 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 377 std::error_code parseModule(uint64_t ResumeBit, 378 bool ShouldLazyLoadMetadata = false); 379 std::error_code parseAttributeBlock(); 380 std::error_code parseAttributeGroupBlock(); 381 std::error_code parseTypeTable(); 382 std::error_code parseTypeTableBody(); 383 std::error_code parseOperandBundleTags(); 384 385 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 386 unsigned NameIndex, Triple &TT); 387 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 388 std::error_code parseConstants(); 389 std::error_code rememberAndSkipFunctionBodies(); 390 std::error_code rememberAndSkipFunctionBody(); 391 /// Save the positions of the Metadata blocks and skip parsing the blocks. 392 std::error_code rememberAndSkipMetadata(); 393 std::error_code parseFunctionBody(Function *F); 394 std::error_code globalCleanup(); 395 std::error_code resolveGlobalAndAliasInits(); 396 std::error_code parseMetadata(bool ModuleLevel = false); 397 std::error_code parseMetadataKinds(); 398 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 399 std::error_code parseMetadataAttachment(Function &F); 400 ErrorOr<std::string> parseModuleTriple(); 401 std::error_code parseUseLists(); 402 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 403 std::error_code initStreamFromBuffer(); 404 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 405 std::error_code findFunctionInStream( 406 Function *F, 407 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 408 }; 409 410 /// Class to manage reading and parsing function summary index bitcode 411 /// files/sections. 412 class FunctionIndexBitcodeReader { 413 DiagnosticHandlerFunction DiagnosticHandler; 414 415 /// Eventually points to the function index built during parsing. 416 FunctionInfoIndex *TheIndex = nullptr; 417 418 std::unique_ptr<MemoryBuffer> Buffer; 419 std::unique_ptr<BitstreamReader> StreamFile; 420 BitstreamCursor Stream; 421 422 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 423 /// 424 /// If false, the summary section is fully parsed into the index during 425 /// the initial parse. Otherwise, if true, the caller is expected to 426 /// invoke \a readFunctionSummary for each summary needed, and the summary 427 /// section is thus parsed lazily. 428 bool IsLazy = false; 429 430 /// Used to indicate whether caller only wants to check for the presence 431 /// of the function summary bitcode section. All blocks are skipped, 432 /// but the SeenFuncSummary boolean is set. 433 bool CheckFuncSummaryPresenceOnly = false; 434 435 /// Indicates whether we have encountered a function summary section 436 /// yet during parsing, used when checking if file contains function 437 /// summary section. 438 bool SeenFuncSummary = false; 439 440 /// \brief Map populated during function summary section parsing, and 441 /// consumed during ValueSymbolTable parsing. 442 /// 443 /// Used to correlate summary records with VST entries. For the per-module 444 /// index this maps the ValueID to the parsed function summary, and 445 /// for the combined index this maps the summary record's bitcode 446 /// offset to the function summary (since in the combined index the 447 /// VST records do not hold value IDs but rather hold the function 448 /// summary record offset). 449 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 450 451 /// Map populated during module path string table parsing, from the 452 /// module ID to a string reference owned by the index's module 453 /// path string table, used to correlate with combined index function 454 /// summary records. 455 DenseMap<uint64_t, StringRef> ModuleIdMap; 456 457 public: 458 std::error_code error(BitcodeError E, const Twine &Message); 459 std::error_code error(BitcodeError E); 460 std::error_code error(const Twine &Message); 461 462 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 463 DiagnosticHandlerFunction DiagnosticHandler, 464 bool IsLazy = false, 465 bool CheckFuncSummaryPresenceOnly = false); 466 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 467 bool IsLazy = false, 468 bool CheckFuncSummaryPresenceOnly = false); 469 ~FunctionIndexBitcodeReader() { freeState(); } 470 471 void freeState(); 472 473 void releaseBuffer(); 474 475 /// Check if the parser has encountered a function summary section. 476 bool foundFuncSummary() { return SeenFuncSummary; } 477 478 /// \brief Main interface to parsing a bitcode buffer. 479 /// \returns true if an error occurred. 480 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 481 FunctionInfoIndex *I); 482 483 /// \brief Interface for parsing a function summary lazily. 484 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 485 FunctionInfoIndex *I, 486 size_t FunctionSummaryOffset); 487 488 private: 489 std::error_code parseModule(); 490 std::error_code parseValueSymbolTable(); 491 std::error_code parseEntireSummary(); 492 std::error_code parseModuleStringTable(); 493 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 494 std::error_code initStreamFromBuffer(); 495 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 496 }; 497 } // namespace 498 499 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 500 DiagnosticSeverity Severity, 501 const Twine &Msg) 502 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 503 504 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 505 506 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 507 std::error_code EC, const Twine &Message) { 508 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 509 DiagnosticHandler(DI); 510 return EC; 511 } 512 513 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 514 std::error_code EC) { 515 return error(DiagnosticHandler, EC, EC.message()); 516 } 517 518 static std::error_code error(LLVMContext &Context, std::error_code EC, 519 const Twine &Message) { 520 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 521 Message); 522 } 523 524 static std::error_code error(LLVMContext &Context, std::error_code EC) { 525 return error(Context, EC, EC.message()); 526 } 527 528 static std::error_code error(LLVMContext &Context, const Twine &Message) { 529 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 530 Message); 531 } 532 533 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 534 if (!ProducerIdentification.empty()) { 535 return ::error(Context, make_error_code(E), 536 Message + " (Producer: '" + ProducerIdentification + 537 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 538 } 539 return ::error(Context, make_error_code(E), Message); 540 } 541 542 std::error_code BitcodeReader::error(const Twine &Message) { 543 if (!ProducerIdentification.empty()) { 544 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 545 Message + " (Producer: '" + ProducerIdentification + 546 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 547 } 548 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 549 Message); 550 } 551 552 std::error_code BitcodeReader::error(BitcodeError E) { 553 return ::error(Context, make_error_code(E)); 554 } 555 556 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 557 : Context(Context), Buffer(Buffer), ValueList(Context), 558 MDValueList(Context) {} 559 560 BitcodeReader::BitcodeReader(LLVMContext &Context) 561 : Context(Context), Buffer(nullptr), ValueList(Context), 562 MDValueList(Context) {} 563 564 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 565 if (WillMaterializeAllForwardRefs) 566 return std::error_code(); 567 568 // Prevent recursion. 569 WillMaterializeAllForwardRefs = true; 570 571 while (!BasicBlockFwdRefQueue.empty()) { 572 Function *F = BasicBlockFwdRefQueue.front(); 573 BasicBlockFwdRefQueue.pop_front(); 574 assert(F && "Expected valid function"); 575 if (!BasicBlockFwdRefs.count(F)) 576 // Already materialized. 577 continue; 578 579 // Check for a function that isn't materializable to prevent an infinite 580 // loop. When parsing a blockaddress stored in a global variable, there 581 // isn't a trivial way to check if a function will have a body without a 582 // linear search through FunctionsWithBodies, so just check it here. 583 if (!F->isMaterializable()) 584 return error("Never resolved function from blockaddress"); 585 586 // Try to materialize F. 587 if (std::error_code EC = materialize(F)) 588 return EC; 589 } 590 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 591 592 // Reset state. 593 WillMaterializeAllForwardRefs = false; 594 return std::error_code(); 595 } 596 597 void BitcodeReader::freeState() { 598 Buffer = nullptr; 599 std::vector<Type*>().swap(TypeList); 600 ValueList.clear(); 601 MDValueList.clear(); 602 std::vector<Comdat *>().swap(ComdatList); 603 604 std::vector<AttributeSet>().swap(MAttributes); 605 std::vector<BasicBlock*>().swap(FunctionBBs); 606 std::vector<Function*>().swap(FunctionsWithBodies); 607 DeferredFunctionInfo.clear(); 608 DeferredMetadataInfo.clear(); 609 MDKindMap.clear(); 610 611 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 612 BasicBlockFwdRefQueue.clear(); 613 } 614 615 //===----------------------------------------------------------------------===// 616 // Helper functions to implement forward reference resolution, etc. 617 //===----------------------------------------------------------------------===// 618 619 /// Convert a string from a record into an std::string, return true on failure. 620 template <typename StrTy> 621 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 622 StrTy &Result) { 623 if (Idx > Record.size()) 624 return true; 625 626 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 627 Result += (char)Record[i]; 628 return false; 629 } 630 631 static bool hasImplicitComdat(size_t Val) { 632 switch (Val) { 633 default: 634 return false; 635 case 1: // Old WeakAnyLinkage 636 case 4: // Old LinkOnceAnyLinkage 637 case 10: // Old WeakODRLinkage 638 case 11: // Old LinkOnceODRLinkage 639 return true; 640 } 641 } 642 643 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 644 switch (Val) { 645 default: // Map unknown/new linkages to external 646 case 0: 647 return GlobalValue::ExternalLinkage; 648 case 2: 649 return GlobalValue::AppendingLinkage; 650 case 3: 651 return GlobalValue::InternalLinkage; 652 case 5: 653 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 654 case 6: 655 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 656 case 7: 657 return GlobalValue::ExternalWeakLinkage; 658 case 8: 659 return GlobalValue::CommonLinkage; 660 case 9: 661 return GlobalValue::PrivateLinkage; 662 case 12: 663 return GlobalValue::AvailableExternallyLinkage; 664 case 13: 665 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 666 case 14: 667 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 668 case 15: 669 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 670 case 1: // Old value with implicit comdat. 671 case 16: 672 return GlobalValue::WeakAnyLinkage; 673 case 10: // Old value with implicit comdat. 674 case 17: 675 return GlobalValue::WeakODRLinkage; 676 case 4: // Old value with implicit comdat. 677 case 18: 678 return GlobalValue::LinkOnceAnyLinkage; 679 case 11: // Old value with implicit comdat. 680 case 19: 681 return GlobalValue::LinkOnceODRLinkage; 682 } 683 } 684 685 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 686 switch (Val) { 687 default: // Map unknown visibilities to default. 688 case 0: return GlobalValue::DefaultVisibility; 689 case 1: return GlobalValue::HiddenVisibility; 690 case 2: return GlobalValue::ProtectedVisibility; 691 } 692 } 693 694 static GlobalValue::DLLStorageClassTypes 695 getDecodedDLLStorageClass(unsigned Val) { 696 switch (Val) { 697 default: // Map unknown values to default. 698 case 0: return GlobalValue::DefaultStorageClass; 699 case 1: return GlobalValue::DLLImportStorageClass; 700 case 2: return GlobalValue::DLLExportStorageClass; 701 } 702 } 703 704 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 705 switch (Val) { 706 case 0: return GlobalVariable::NotThreadLocal; 707 default: // Map unknown non-zero value to general dynamic. 708 case 1: return GlobalVariable::GeneralDynamicTLSModel; 709 case 2: return GlobalVariable::LocalDynamicTLSModel; 710 case 3: return GlobalVariable::InitialExecTLSModel; 711 case 4: return GlobalVariable::LocalExecTLSModel; 712 } 713 } 714 715 static int getDecodedCastOpcode(unsigned Val) { 716 switch (Val) { 717 default: return -1; 718 case bitc::CAST_TRUNC : return Instruction::Trunc; 719 case bitc::CAST_ZEXT : return Instruction::ZExt; 720 case bitc::CAST_SEXT : return Instruction::SExt; 721 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 722 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 723 case bitc::CAST_UITOFP : return Instruction::UIToFP; 724 case bitc::CAST_SITOFP : return Instruction::SIToFP; 725 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 726 case bitc::CAST_FPEXT : return Instruction::FPExt; 727 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 728 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 729 case bitc::CAST_BITCAST : return Instruction::BitCast; 730 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 731 } 732 } 733 734 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 735 bool IsFP = Ty->isFPOrFPVectorTy(); 736 // BinOps are only valid for int/fp or vector of int/fp types 737 if (!IsFP && !Ty->isIntOrIntVectorTy()) 738 return -1; 739 740 switch (Val) { 741 default: 742 return -1; 743 case bitc::BINOP_ADD: 744 return IsFP ? Instruction::FAdd : Instruction::Add; 745 case bitc::BINOP_SUB: 746 return IsFP ? Instruction::FSub : Instruction::Sub; 747 case bitc::BINOP_MUL: 748 return IsFP ? Instruction::FMul : Instruction::Mul; 749 case bitc::BINOP_UDIV: 750 return IsFP ? -1 : Instruction::UDiv; 751 case bitc::BINOP_SDIV: 752 return IsFP ? Instruction::FDiv : Instruction::SDiv; 753 case bitc::BINOP_UREM: 754 return IsFP ? -1 : Instruction::URem; 755 case bitc::BINOP_SREM: 756 return IsFP ? Instruction::FRem : Instruction::SRem; 757 case bitc::BINOP_SHL: 758 return IsFP ? -1 : Instruction::Shl; 759 case bitc::BINOP_LSHR: 760 return IsFP ? -1 : Instruction::LShr; 761 case bitc::BINOP_ASHR: 762 return IsFP ? -1 : Instruction::AShr; 763 case bitc::BINOP_AND: 764 return IsFP ? -1 : Instruction::And; 765 case bitc::BINOP_OR: 766 return IsFP ? -1 : Instruction::Or; 767 case bitc::BINOP_XOR: 768 return IsFP ? -1 : Instruction::Xor; 769 } 770 } 771 772 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 773 switch (Val) { 774 default: return AtomicRMWInst::BAD_BINOP; 775 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 776 case bitc::RMW_ADD: return AtomicRMWInst::Add; 777 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 778 case bitc::RMW_AND: return AtomicRMWInst::And; 779 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 780 case bitc::RMW_OR: return AtomicRMWInst::Or; 781 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 782 case bitc::RMW_MAX: return AtomicRMWInst::Max; 783 case bitc::RMW_MIN: return AtomicRMWInst::Min; 784 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 785 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 786 } 787 } 788 789 static AtomicOrdering getDecodedOrdering(unsigned Val) { 790 switch (Val) { 791 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 792 case bitc::ORDERING_UNORDERED: return Unordered; 793 case bitc::ORDERING_MONOTONIC: return Monotonic; 794 case bitc::ORDERING_ACQUIRE: return Acquire; 795 case bitc::ORDERING_RELEASE: return Release; 796 case bitc::ORDERING_ACQREL: return AcquireRelease; 797 default: // Map unknown orderings to sequentially-consistent. 798 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 799 } 800 } 801 802 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 803 switch (Val) { 804 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 805 default: // Map unknown scopes to cross-thread. 806 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 807 } 808 } 809 810 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 811 switch (Val) { 812 default: // Map unknown selection kinds to any. 813 case bitc::COMDAT_SELECTION_KIND_ANY: 814 return Comdat::Any; 815 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 816 return Comdat::ExactMatch; 817 case bitc::COMDAT_SELECTION_KIND_LARGEST: 818 return Comdat::Largest; 819 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 820 return Comdat::NoDuplicates; 821 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 822 return Comdat::SameSize; 823 } 824 } 825 826 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 827 FastMathFlags FMF; 828 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 829 FMF.setUnsafeAlgebra(); 830 if (0 != (Val & FastMathFlags::NoNaNs)) 831 FMF.setNoNaNs(); 832 if (0 != (Val & FastMathFlags::NoInfs)) 833 FMF.setNoInfs(); 834 if (0 != (Val & FastMathFlags::NoSignedZeros)) 835 FMF.setNoSignedZeros(); 836 if (0 != (Val & FastMathFlags::AllowReciprocal)) 837 FMF.setAllowReciprocal(); 838 return FMF; 839 } 840 841 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 842 switch (Val) { 843 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 844 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 845 } 846 } 847 848 namespace llvm { 849 namespace { 850 /// \brief A class for maintaining the slot number definition 851 /// as a placeholder for the actual definition for forward constants defs. 852 class ConstantPlaceHolder : public ConstantExpr { 853 void operator=(const ConstantPlaceHolder &) = delete; 854 855 public: 856 // allocate space for exactly one operand 857 void *operator new(size_t s) { return User::operator new(s, 1); } 858 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 859 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 860 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 861 } 862 863 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 864 static bool classof(const Value *V) { 865 return isa<ConstantExpr>(V) && 866 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 867 } 868 869 /// Provide fast operand accessors 870 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 871 }; 872 } 873 874 // FIXME: can we inherit this from ConstantExpr? 875 template <> 876 struct OperandTraits<ConstantPlaceHolder> : 877 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 878 }; 879 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 880 } 881 882 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 883 if (Idx == size()) { 884 push_back(V); 885 return; 886 } 887 888 if (Idx >= size()) 889 resize(Idx+1); 890 891 WeakVH &OldV = ValuePtrs[Idx]; 892 if (!OldV) { 893 OldV = V; 894 return; 895 } 896 897 // Handle constants and non-constants (e.g. instrs) differently for 898 // efficiency. 899 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 900 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 901 OldV = V; 902 } else { 903 // If there was a forward reference to this value, replace it. 904 Value *PrevVal = OldV; 905 OldV->replaceAllUsesWith(V); 906 delete PrevVal; 907 } 908 909 return; 910 } 911 912 913 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 914 Type *Ty) { 915 if (Idx >= size()) 916 resize(Idx + 1); 917 918 if (Value *V = ValuePtrs[Idx]) { 919 if (Ty != V->getType()) 920 report_fatal_error("Type mismatch in constant table!"); 921 return cast<Constant>(V); 922 } 923 924 // Create and return a placeholder, which will later be RAUW'd. 925 Constant *C = new ConstantPlaceHolder(Ty, Context); 926 ValuePtrs[Idx] = C; 927 return C; 928 } 929 930 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 931 // Bail out for a clearly invalid value. This would make us call resize(0) 932 if (Idx == UINT_MAX) 933 return nullptr; 934 935 if (Idx >= size()) 936 resize(Idx + 1); 937 938 if (Value *V = ValuePtrs[Idx]) { 939 // If the types don't match, it's invalid. 940 if (Ty && Ty != V->getType()) 941 return nullptr; 942 return V; 943 } 944 945 // No type specified, must be invalid reference. 946 if (!Ty) return nullptr; 947 948 // Create and return a placeholder, which will later be RAUW'd. 949 Value *V = new Argument(Ty); 950 ValuePtrs[Idx] = V; 951 return V; 952 } 953 954 /// Once all constants are read, this method bulk resolves any forward 955 /// references. The idea behind this is that we sometimes get constants (such 956 /// as large arrays) which reference *many* forward ref constants. Replacing 957 /// each of these causes a lot of thrashing when building/reuniquing the 958 /// constant. Instead of doing this, we look at all the uses and rewrite all 959 /// the place holders at once for any constant that uses a placeholder. 960 void BitcodeReaderValueList::resolveConstantForwardRefs() { 961 // Sort the values by-pointer so that they are efficient to look up with a 962 // binary search. 963 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 964 965 SmallVector<Constant*, 64> NewOps; 966 967 while (!ResolveConstants.empty()) { 968 Value *RealVal = operator[](ResolveConstants.back().second); 969 Constant *Placeholder = ResolveConstants.back().first; 970 ResolveConstants.pop_back(); 971 972 // Loop over all users of the placeholder, updating them to reference the 973 // new value. If they reference more than one placeholder, update them all 974 // at once. 975 while (!Placeholder->use_empty()) { 976 auto UI = Placeholder->user_begin(); 977 User *U = *UI; 978 979 // If the using object isn't uniqued, just update the operands. This 980 // handles instructions and initializers for global variables. 981 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 982 UI.getUse().set(RealVal); 983 continue; 984 } 985 986 // Otherwise, we have a constant that uses the placeholder. Replace that 987 // constant with a new constant that has *all* placeholder uses updated. 988 Constant *UserC = cast<Constant>(U); 989 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 990 I != E; ++I) { 991 Value *NewOp; 992 if (!isa<ConstantPlaceHolder>(*I)) { 993 // Not a placeholder reference. 994 NewOp = *I; 995 } else if (*I == Placeholder) { 996 // Common case is that it just references this one placeholder. 997 NewOp = RealVal; 998 } else { 999 // Otherwise, look up the placeholder in ResolveConstants. 1000 ResolveConstantsTy::iterator It = 1001 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1002 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1003 0)); 1004 assert(It != ResolveConstants.end() && It->first == *I); 1005 NewOp = operator[](It->second); 1006 } 1007 1008 NewOps.push_back(cast<Constant>(NewOp)); 1009 } 1010 1011 // Make the new constant. 1012 Constant *NewC; 1013 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1014 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1015 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1016 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1017 } else if (isa<ConstantVector>(UserC)) { 1018 NewC = ConstantVector::get(NewOps); 1019 } else { 1020 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1021 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1022 } 1023 1024 UserC->replaceAllUsesWith(NewC); 1025 UserC->destroyConstant(); 1026 NewOps.clear(); 1027 } 1028 1029 // Update all ValueHandles, they should be the only users at this point. 1030 Placeholder->replaceAllUsesWith(RealVal); 1031 delete Placeholder; 1032 } 1033 } 1034 1035 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1036 if (Idx == size()) { 1037 push_back(MD); 1038 return; 1039 } 1040 1041 if (Idx >= size()) 1042 resize(Idx+1); 1043 1044 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1045 if (!OldMD) { 1046 OldMD.reset(MD); 1047 return; 1048 } 1049 1050 // If there was a forward reference to this value, replace it. 1051 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1052 PrevMD->replaceAllUsesWith(MD); 1053 --NumFwdRefs; 1054 } 1055 1056 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1057 if (Idx >= size()) 1058 resize(Idx + 1); 1059 1060 if (Metadata *MD = MDValuePtrs[Idx]) 1061 return MD; 1062 1063 // Track forward refs to be resolved later. 1064 if (AnyFwdRefs) { 1065 MinFwdRef = std::min(MinFwdRef, Idx); 1066 MaxFwdRef = std::max(MaxFwdRef, Idx); 1067 } else { 1068 AnyFwdRefs = true; 1069 MinFwdRef = MaxFwdRef = Idx; 1070 } 1071 ++NumFwdRefs; 1072 1073 // Create and return a placeholder, which will later be RAUW'd. 1074 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1075 MDValuePtrs[Idx].reset(MD); 1076 return MD; 1077 } 1078 1079 void BitcodeReaderMDValueList::tryToResolveCycles() { 1080 if (!AnyFwdRefs) 1081 // Nothing to do. 1082 return; 1083 1084 if (NumFwdRefs) 1085 // Still forward references... can't resolve cycles. 1086 return; 1087 1088 // Resolve any cycles. 1089 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1090 auto &MD = MDValuePtrs[I]; 1091 auto *N = dyn_cast_or_null<MDNode>(MD); 1092 if (!N) 1093 continue; 1094 1095 assert(!N->isTemporary() && "Unexpected forward reference"); 1096 N->resolveCycles(); 1097 } 1098 1099 // Make sure we return early again until there's another forward ref. 1100 AnyFwdRefs = false; 1101 } 1102 1103 Type *BitcodeReader::getTypeByID(unsigned ID) { 1104 // The type table size is always specified correctly. 1105 if (ID >= TypeList.size()) 1106 return nullptr; 1107 1108 if (Type *Ty = TypeList[ID]) 1109 return Ty; 1110 1111 // If we have a forward reference, the only possible case is when it is to a 1112 // named struct. Just create a placeholder for now. 1113 return TypeList[ID] = createIdentifiedStructType(Context); 1114 } 1115 1116 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1117 StringRef Name) { 1118 auto *Ret = StructType::create(Context, Name); 1119 IdentifiedStructTypes.push_back(Ret); 1120 return Ret; 1121 } 1122 1123 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1124 auto *Ret = StructType::create(Context); 1125 IdentifiedStructTypes.push_back(Ret); 1126 return Ret; 1127 } 1128 1129 1130 //===----------------------------------------------------------------------===// 1131 // Functions for parsing blocks from the bitcode file 1132 //===----------------------------------------------------------------------===// 1133 1134 1135 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1136 /// been decoded from the given integer. This function must stay in sync with 1137 /// 'encodeLLVMAttributesForBitcode'. 1138 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1139 uint64_t EncodedAttrs) { 1140 // FIXME: Remove in 4.0. 1141 1142 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1143 // the bits above 31 down by 11 bits. 1144 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1145 assert((!Alignment || isPowerOf2_32(Alignment)) && 1146 "Alignment must be a power of two."); 1147 1148 if (Alignment) 1149 B.addAlignmentAttr(Alignment); 1150 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1151 (EncodedAttrs & 0xffff)); 1152 } 1153 1154 std::error_code BitcodeReader::parseAttributeBlock() { 1155 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1156 return error("Invalid record"); 1157 1158 if (!MAttributes.empty()) 1159 return error("Invalid multiple blocks"); 1160 1161 SmallVector<uint64_t, 64> Record; 1162 1163 SmallVector<AttributeSet, 8> Attrs; 1164 1165 // Read all the records. 1166 while (1) { 1167 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1168 1169 switch (Entry.Kind) { 1170 case BitstreamEntry::SubBlock: // Handled for us already. 1171 case BitstreamEntry::Error: 1172 return error("Malformed block"); 1173 case BitstreamEntry::EndBlock: 1174 return std::error_code(); 1175 case BitstreamEntry::Record: 1176 // The interesting case. 1177 break; 1178 } 1179 1180 // Read a record. 1181 Record.clear(); 1182 switch (Stream.readRecord(Entry.ID, Record)) { 1183 default: // Default behavior: ignore. 1184 break; 1185 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1186 // FIXME: Remove in 4.0. 1187 if (Record.size() & 1) 1188 return error("Invalid record"); 1189 1190 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1191 AttrBuilder B; 1192 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1193 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1194 } 1195 1196 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1197 Attrs.clear(); 1198 break; 1199 } 1200 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1201 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1202 Attrs.push_back(MAttributeGroups[Record[i]]); 1203 1204 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1205 Attrs.clear(); 1206 break; 1207 } 1208 } 1209 } 1210 } 1211 1212 // Returns Attribute::None on unrecognized codes. 1213 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1214 switch (Code) { 1215 default: 1216 return Attribute::None; 1217 case bitc::ATTR_KIND_ALIGNMENT: 1218 return Attribute::Alignment; 1219 case bitc::ATTR_KIND_ALWAYS_INLINE: 1220 return Attribute::AlwaysInline; 1221 case bitc::ATTR_KIND_ARGMEMONLY: 1222 return Attribute::ArgMemOnly; 1223 case bitc::ATTR_KIND_BUILTIN: 1224 return Attribute::Builtin; 1225 case bitc::ATTR_KIND_BY_VAL: 1226 return Attribute::ByVal; 1227 case bitc::ATTR_KIND_IN_ALLOCA: 1228 return Attribute::InAlloca; 1229 case bitc::ATTR_KIND_COLD: 1230 return Attribute::Cold; 1231 case bitc::ATTR_KIND_CONVERGENT: 1232 return Attribute::Convergent; 1233 case bitc::ATTR_KIND_INLINE_HINT: 1234 return Attribute::InlineHint; 1235 case bitc::ATTR_KIND_IN_REG: 1236 return Attribute::InReg; 1237 case bitc::ATTR_KIND_JUMP_TABLE: 1238 return Attribute::JumpTable; 1239 case bitc::ATTR_KIND_MIN_SIZE: 1240 return Attribute::MinSize; 1241 case bitc::ATTR_KIND_NAKED: 1242 return Attribute::Naked; 1243 case bitc::ATTR_KIND_NEST: 1244 return Attribute::Nest; 1245 case bitc::ATTR_KIND_NO_ALIAS: 1246 return Attribute::NoAlias; 1247 case bitc::ATTR_KIND_NO_BUILTIN: 1248 return Attribute::NoBuiltin; 1249 case bitc::ATTR_KIND_NO_CAPTURE: 1250 return Attribute::NoCapture; 1251 case bitc::ATTR_KIND_NO_DUPLICATE: 1252 return Attribute::NoDuplicate; 1253 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1254 return Attribute::NoImplicitFloat; 1255 case bitc::ATTR_KIND_NO_INLINE: 1256 return Attribute::NoInline; 1257 case bitc::ATTR_KIND_NO_RECURSE: 1258 return Attribute::NoRecurse; 1259 case bitc::ATTR_KIND_NON_LAZY_BIND: 1260 return Attribute::NonLazyBind; 1261 case bitc::ATTR_KIND_NON_NULL: 1262 return Attribute::NonNull; 1263 case bitc::ATTR_KIND_DEREFERENCEABLE: 1264 return Attribute::Dereferenceable; 1265 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1266 return Attribute::DereferenceableOrNull; 1267 case bitc::ATTR_KIND_NO_RED_ZONE: 1268 return Attribute::NoRedZone; 1269 case bitc::ATTR_KIND_NO_RETURN: 1270 return Attribute::NoReturn; 1271 case bitc::ATTR_KIND_NO_UNWIND: 1272 return Attribute::NoUnwind; 1273 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1274 return Attribute::OptimizeForSize; 1275 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1276 return Attribute::OptimizeNone; 1277 case bitc::ATTR_KIND_READ_NONE: 1278 return Attribute::ReadNone; 1279 case bitc::ATTR_KIND_READ_ONLY: 1280 return Attribute::ReadOnly; 1281 case bitc::ATTR_KIND_RETURNED: 1282 return Attribute::Returned; 1283 case bitc::ATTR_KIND_RETURNS_TWICE: 1284 return Attribute::ReturnsTwice; 1285 case bitc::ATTR_KIND_S_EXT: 1286 return Attribute::SExt; 1287 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1288 return Attribute::StackAlignment; 1289 case bitc::ATTR_KIND_STACK_PROTECT: 1290 return Attribute::StackProtect; 1291 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1292 return Attribute::StackProtectReq; 1293 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1294 return Attribute::StackProtectStrong; 1295 case bitc::ATTR_KIND_SAFESTACK: 1296 return Attribute::SafeStack; 1297 case bitc::ATTR_KIND_STRUCT_RET: 1298 return Attribute::StructRet; 1299 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1300 return Attribute::SanitizeAddress; 1301 case bitc::ATTR_KIND_SANITIZE_THREAD: 1302 return Attribute::SanitizeThread; 1303 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1304 return Attribute::SanitizeMemory; 1305 case bitc::ATTR_KIND_UW_TABLE: 1306 return Attribute::UWTable; 1307 case bitc::ATTR_KIND_Z_EXT: 1308 return Attribute::ZExt; 1309 } 1310 } 1311 1312 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1313 unsigned &Alignment) { 1314 // Note: Alignment in bitcode files is incremented by 1, so that zero 1315 // can be used for default alignment. 1316 if (Exponent > Value::MaxAlignmentExponent + 1) 1317 return error("Invalid alignment value"); 1318 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1319 return std::error_code(); 1320 } 1321 1322 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1323 Attribute::AttrKind *Kind) { 1324 *Kind = getAttrFromCode(Code); 1325 if (*Kind == Attribute::None) 1326 return error(BitcodeError::CorruptedBitcode, 1327 "Unknown attribute kind (" + Twine(Code) + ")"); 1328 return std::error_code(); 1329 } 1330 1331 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1332 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1333 return error("Invalid record"); 1334 1335 if (!MAttributeGroups.empty()) 1336 return error("Invalid multiple blocks"); 1337 1338 SmallVector<uint64_t, 64> Record; 1339 1340 // Read all the records. 1341 while (1) { 1342 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1343 1344 switch (Entry.Kind) { 1345 case BitstreamEntry::SubBlock: // Handled for us already. 1346 case BitstreamEntry::Error: 1347 return error("Malformed block"); 1348 case BitstreamEntry::EndBlock: 1349 return std::error_code(); 1350 case BitstreamEntry::Record: 1351 // The interesting case. 1352 break; 1353 } 1354 1355 // Read a record. 1356 Record.clear(); 1357 switch (Stream.readRecord(Entry.ID, Record)) { 1358 default: // Default behavior: ignore. 1359 break; 1360 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1361 if (Record.size() < 3) 1362 return error("Invalid record"); 1363 1364 uint64_t GrpID = Record[0]; 1365 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1366 1367 AttrBuilder B; 1368 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1369 if (Record[i] == 0) { // Enum attribute 1370 Attribute::AttrKind Kind; 1371 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1372 return EC; 1373 1374 B.addAttribute(Kind); 1375 } else if (Record[i] == 1) { // Integer attribute 1376 Attribute::AttrKind Kind; 1377 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1378 return EC; 1379 if (Kind == Attribute::Alignment) 1380 B.addAlignmentAttr(Record[++i]); 1381 else if (Kind == Attribute::StackAlignment) 1382 B.addStackAlignmentAttr(Record[++i]); 1383 else if (Kind == Attribute::Dereferenceable) 1384 B.addDereferenceableAttr(Record[++i]); 1385 else if (Kind == Attribute::DereferenceableOrNull) 1386 B.addDereferenceableOrNullAttr(Record[++i]); 1387 } else { // String attribute 1388 assert((Record[i] == 3 || Record[i] == 4) && 1389 "Invalid attribute group entry"); 1390 bool HasValue = (Record[i++] == 4); 1391 SmallString<64> KindStr; 1392 SmallString<64> ValStr; 1393 1394 while (Record[i] != 0 && i != e) 1395 KindStr += Record[i++]; 1396 assert(Record[i] == 0 && "Kind string not null terminated"); 1397 1398 if (HasValue) { 1399 // Has a value associated with it. 1400 ++i; // Skip the '0' that terminates the "kind" string. 1401 while (Record[i] != 0 && i != e) 1402 ValStr += Record[i++]; 1403 assert(Record[i] == 0 && "Value string not null terminated"); 1404 } 1405 1406 B.addAttribute(KindStr.str(), ValStr.str()); 1407 } 1408 } 1409 1410 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1411 break; 1412 } 1413 } 1414 } 1415 } 1416 1417 std::error_code BitcodeReader::parseTypeTable() { 1418 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1419 return error("Invalid record"); 1420 1421 return parseTypeTableBody(); 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTableBody() { 1425 if (!TypeList.empty()) 1426 return error("Invalid multiple blocks"); 1427 1428 SmallVector<uint64_t, 64> Record; 1429 unsigned NumRecords = 0; 1430 1431 SmallString<64> TypeName; 1432 1433 // Read all the records for this type table. 1434 while (1) { 1435 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1436 1437 switch (Entry.Kind) { 1438 case BitstreamEntry::SubBlock: // Handled for us already. 1439 case BitstreamEntry::Error: 1440 return error("Malformed block"); 1441 case BitstreamEntry::EndBlock: 1442 if (NumRecords != TypeList.size()) 1443 return error("Malformed block"); 1444 return std::error_code(); 1445 case BitstreamEntry::Record: 1446 // The interesting case. 1447 break; 1448 } 1449 1450 // Read a record. 1451 Record.clear(); 1452 Type *ResultTy = nullptr; 1453 switch (Stream.readRecord(Entry.ID, Record)) { 1454 default: 1455 return error("Invalid value"); 1456 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1457 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1458 // type list. This allows us to reserve space. 1459 if (Record.size() < 1) 1460 return error("Invalid record"); 1461 TypeList.resize(Record[0]); 1462 continue; 1463 case bitc::TYPE_CODE_VOID: // VOID 1464 ResultTy = Type::getVoidTy(Context); 1465 break; 1466 case bitc::TYPE_CODE_HALF: // HALF 1467 ResultTy = Type::getHalfTy(Context); 1468 break; 1469 case bitc::TYPE_CODE_FLOAT: // FLOAT 1470 ResultTy = Type::getFloatTy(Context); 1471 break; 1472 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1473 ResultTy = Type::getDoubleTy(Context); 1474 break; 1475 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1476 ResultTy = Type::getX86_FP80Ty(Context); 1477 break; 1478 case bitc::TYPE_CODE_FP128: // FP128 1479 ResultTy = Type::getFP128Ty(Context); 1480 break; 1481 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1482 ResultTy = Type::getPPC_FP128Ty(Context); 1483 break; 1484 case bitc::TYPE_CODE_LABEL: // LABEL 1485 ResultTy = Type::getLabelTy(Context); 1486 break; 1487 case bitc::TYPE_CODE_METADATA: // METADATA 1488 ResultTy = Type::getMetadataTy(Context); 1489 break; 1490 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1491 ResultTy = Type::getX86_MMXTy(Context); 1492 break; 1493 case bitc::TYPE_CODE_TOKEN: // TOKEN 1494 ResultTy = Type::getTokenTy(Context); 1495 break; 1496 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1497 if (Record.size() < 1) 1498 return error("Invalid record"); 1499 1500 uint64_t NumBits = Record[0]; 1501 if (NumBits < IntegerType::MIN_INT_BITS || 1502 NumBits > IntegerType::MAX_INT_BITS) 1503 return error("Bitwidth for integer type out of range"); 1504 ResultTy = IntegerType::get(Context, NumBits); 1505 break; 1506 } 1507 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1508 // [pointee type, address space] 1509 if (Record.size() < 1) 1510 return error("Invalid record"); 1511 unsigned AddressSpace = 0; 1512 if (Record.size() == 2) 1513 AddressSpace = Record[1]; 1514 ResultTy = getTypeByID(Record[0]); 1515 if (!ResultTy || 1516 !PointerType::isValidElementType(ResultTy)) 1517 return error("Invalid type"); 1518 ResultTy = PointerType::get(ResultTy, AddressSpace); 1519 break; 1520 } 1521 case bitc::TYPE_CODE_FUNCTION_OLD: { 1522 // FIXME: attrid is dead, remove it in LLVM 4.0 1523 // FUNCTION: [vararg, attrid, retty, paramty x N] 1524 if (Record.size() < 3) 1525 return error("Invalid record"); 1526 SmallVector<Type*, 8> ArgTys; 1527 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1528 if (Type *T = getTypeByID(Record[i])) 1529 ArgTys.push_back(T); 1530 else 1531 break; 1532 } 1533 1534 ResultTy = getTypeByID(Record[2]); 1535 if (!ResultTy || ArgTys.size() < Record.size()-3) 1536 return error("Invalid type"); 1537 1538 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1539 break; 1540 } 1541 case bitc::TYPE_CODE_FUNCTION: { 1542 // FUNCTION: [vararg, retty, paramty x N] 1543 if (Record.size() < 2) 1544 return error("Invalid record"); 1545 SmallVector<Type*, 8> ArgTys; 1546 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1547 if (Type *T = getTypeByID(Record[i])) { 1548 if (!FunctionType::isValidArgumentType(T)) 1549 return error("Invalid function argument type"); 1550 ArgTys.push_back(T); 1551 } 1552 else 1553 break; 1554 } 1555 1556 ResultTy = getTypeByID(Record[1]); 1557 if (!ResultTy || ArgTys.size() < Record.size()-2) 1558 return error("Invalid type"); 1559 1560 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1561 break; 1562 } 1563 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1564 if (Record.size() < 1) 1565 return error("Invalid record"); 1566 SmallVector<Type*, 8> EltTys; 1567 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1568 if (Type *T = getTypeByID(Record[i])) 1569 EltTys.push_back(T); 1570 else 1571 break; 1572 } 1573 if (EltTys.size() != Record.size()-1) 1574 return error("Invalid type"); 1575 ResultTy = StructType::get(Context, EltTys, Record[0]); 1576 break; 1577 } 1578 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1579 if (convertToString(Record, 0, TypeName)) 1580 return error("Invalid record"); 1581 continue; 1582 1583 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1584 if (Record.size() < 1) 1585 return error("Invalid record"); 1586 1587 if (NumRecords >= TypeList.size()) 1588 return error("Invalid TYPE table"); 1589 1590 // Check to see if this was forward referenced, if so fill in the temp. 1591 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1592 if (Res) { 1593 Res->setName(TypeName); 1594 TypeList[NumRecords] = nullptr; 1595 } else // Otherwise, create a new struct. 1596 Res = createIdentifiedStructType(Context, TypeName); 1597 TypeName.clear(); 1598 1599 SmallVector<Type*, 8> EltTys; 1600 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1601 if (Type *T = getTypeByID(Record[i])) 1602 EltTys.push_back(T); 1603 else 1604 break; 1605 } 1606 if (EltTys.size() != Record.size()-1) 1607 return error("Invalid record"); 1608 Res->setBody(EltTys, Record[0]); 1609 ResultTy = Res; 1610 break; 1611 } 1612 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1613 if (Record.size() != 1) 1614 return error("Invalid record"); 1615 1616 if (NumRecords >= TypeList.size()) 1617 return error("Invalid TYPE table"); 1618 1619 // Check to see if this was forward referenced, if so fill in the temp. 1620 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1621 if (Res) { 1622 Res->setName(TypeName); 1623 TypeList[NumRecords] = nullptr; 1624 } else // Otherwise, create a new struct with no body. 1625 Res = createIdentifiedStructType(Context, TypeName); 1626 TypeName.clear(); 1627 ResultTy = Res; 1628 break; 1629 } 1630 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1631 if (Record.size() < 2) 1632 return error("Invalid record"); 1633 ResultTy = getTypeByID(Record[1]); 1634 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1635 return error("Invalid type"); 1636 ResultTy = ArrayType::get(ResultTy, Record[0]); 1637 break; 1638 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1639 if (Record.size() < 2) 1640 return error("Invalid record"); 1641 if (Record[0] == 0) 1642 return error("Invalid vector length"); 1643 ResultTy = getTypeByID(Record[1]); 1644 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1645 return error("Invalid type"); 1646 ResultTy = VectorType::get(ResultTy, Record[0]); 1647 break; 1648 } 1649 1650 if (NumRecords >= TypeList.size()) 1651 return error("Invalid TYPE table"); 1652 if (TypeList[NumRecords]) 1653 return error( 1654 "Invalid TYPE table: Only named structs can be forward referenced"); 1655 assert(ResultTy && "Didn't read a type?"); 1656 TypeList[NumRecords++] = ResultTy; 1657 } 1658 } 1659 1660 std::error_code BitcodeReader::parseOperandBundleTags() { 1661 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1662 return error("Invalid record"); 1663 1664 if (!BundleTags.empty()) 1665 return error("Invalid multiple blocks"); 1666 1667 SmallVector<uint64_t, 64> Record; 1668 1669 while (1) { 1670 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1671 1672 switch (Entry.Kind) { 1673 case BitstreamEntry::SubBlock: // Handled for us already. 1674 case BitstreamEntry::Error: 1675 return error("Malformed block"); 1676 case BitstreamEntry::EndBlock: 1677 return std::error_code(); 1678 case BitstreamEntry::Record: 1679 // The interesting case. 1680 break; 1681 } 1682 1683 // Tags are implicitly mapped to integers by their order. 1684 1685 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1686 return error("Invalid record"); 1687 1688 // OPERAND_BUNDLE_TAG: [strchr x N] 1689 BundleTags.emplace_back(); 1690 if (convertToString(Record, 0, BundleTags.back())) 1691 return error("Invalid record"); 1692 Record.clear(); 1693 } 1694 } 1695 1696 /// Associate a value with its name from the given index in the provided record. 1697 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1698 unsigned NameIndex, Triple &TT) { 1699 SmallString<128> ValueName; 1700 if (convertToString(Record, NameIndex, ValueName)) 1701 return error("Invalid record"); 1702 unsigned ValueID = Record[0]; 1703 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1704 return error("Invalid record"); 1705 Value *V = ValueList[ValueID]; 1706 1707 StringRef NameStr(ValueName.data(), ValueName.size()); 1708 if (NameStr.find_first_of(0) != StringRef::npos) 1709 return error("Invalid value name"); 1710 V->setName(NameStr); 1711 auto *GO = dyn_cast<GlobalObject>(V); 1712 if (GO) { 1713 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1714 if (TT.isOSBinFormatMachO()) 1715 GO->setComdat(nullptr); 1716 else 1717 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1718 } 1719 } 1720 return V; 1721 } 1722 1723 /// Parse the value symbol table at either the current parsing location or 1724 /// at the given bit offset if provided. 1725 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1726 uint64_t CurrentBit; 1727 // Pass in the Offset to distinguish between calling for the module-level 1728 // VST (where we want to jump to the VST offset) and the function-level 1729 // VST (where we don't). 1730 if (Offset > 0) { 1731 // Save the current parsing location so we can jump back at the end 1732 // of the VST read. 1733 CurrentBit = Stream.GetCurrentBitNo(); 1734 Stream.JumpToBit(Offset * 32); 1735 #ifndef NDEBUG 1736 // Do some checking if we are in debug mode. 1737 BitstreamEntry Entry = Stream.advance(); 1738 assert(Entry.Kind == BitstreamEntry::SubBlock); 1739 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1740 #else 1741 // In NDEBUG mode ignore the output so we don't get an unused variable 1742 // warning. 1743 Stream.advance(); 1744 #endif 1745 } 1746 1747 // Compute the delta between the bitcode indices in the VST (the word offset 1748 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1749 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1750 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1751 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1752 // just before entering the VST subblock because: 1) the EnterSubBlock 1753 // changes the AbbrevID width; 2) the VST block is nested within the same 1754 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1755 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1756 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1757 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1758 unsigned FuncBitcodeOffsetDelta = 1759 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1760 1761 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1762 return error("Invalid record"); 1763 1764 SmallVector<uint64_t, 64> Record; 1765 1766 Triple TT(TheModule->getTargetTriple()); 1767 1768 // Read all the records for this value table. 1769 SmallString<128> ValueName; 1770 while (1) { 1771 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1772 1773 switch (Entry.Kind) { 1774 case BitstreamEntry::SubBlock: // Handled for us already. 1775 case BitstreamEntry::Error: 1776 return error("Malformed block"); 1777 case BitstreamEntry::EndBlock: 1778 if (Offset > 0) 1779 Stream.JumpToBit(CurrentBit); 1780 return std::error_code(); 1781 case BitstreamEntry::Record: 1782 // The interesting case. 1783 break; 1784 } 1785 1786 // Read a record. 1787 Record.clear(); 1788 switch (Stream.readRecord(Entry.ID, Record)) { 1789 default: // Default behavior: unknown type. 1790 break; 1791 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1792 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1793 if (std::error_code EC = ValOrErr.getError()) 1794 return EC; 1795 ValOrErr.get(); 1796 break; 1797 } 1798 case bitc::VST_CODE_FNENTRY: { 1799 // VST_FNENTRY: [valueid, offset, namechar x N] 1800 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1801 if (std::error_code EC = ValOrErr.getError()) 1802 return EC; 1803 Value *V = ValOrErr.get(); 1804 1805 auto *GO = dyn_cast<GlobalObject>(V); 1806 if (!GO) { 1807 // If this is an alias, need to get the actual Function object 1808 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1809 auto *GA = dyn_cast<GlobalAlias>(V); 1810 if (GA) 1811 GO = GA->getBaseObject(); 1812 assert(GO); 1813 } 1814 1815 uint64_t FuncWordOffset = Record[1]; 1816 Function *F = dyn_cast<Function>(GO); 1817 assert(F); 1818 uint64_t FuncBitOffset = FuncWordOffset * 32; 1819 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1820 // Set the LastFunctionBlockBit to point to the last function block. 1821 // Later when parsing is resumed after function materialization, 1822 // we can simply skip that last function block. 1823 if (FuncBitOffset > LastFunctionBlockBit) 1824 LastFunctionBlockBit = FuncBitOffset; 1825 break; 1826 } 1827 case bitc::VST_CODE_BBENTRY: { 1828 if (convertToString(Record, 1, ValueName)) 1829 return error("Invalid record"); 1830 BasicBlock *BB = getBasicBlock(Record[0]); 1831 if (!BB) 1832 return error("Invalid record"); 1833 1834 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1835 ValueName.clear(); 1836 break; 1837 } 1838 } 1839 } 1840 } 1841 1842 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1843 std::error_code 1844 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1845 if (Record.size() < 2) 1846 return error("Invalid record"); 1847 1848 unsigned Kind = Record[0]; 1849 SmallString<8> Name(Record.begin() + 1, Record.end()); 1850 1851 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1852 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1853 return error("Conflicting METADATA_KIND records"); 1854 return std::error_code(); 1855 } 1856 1857 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1858 1859 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1860 /// module level metadata. 1861 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1862 IsMetadataMaterialized = true; 1863 unsigned NextMDValueNo = MDValueList.size(); 1864 if (ModuleLevel && SeenModuleValuesRecord) { 1865 // Now that we are parsing the module level metadata, we want to restart 1866 // the numbering of the MD values, and replace temp MD created earlier 1867 // with their real values. If we saw a METADATA_VALUE record then we 1868 // would have set the MDValueList size to the number specified in that 1869 // record, to support parsing function-level metadata first, and we need 1870 // to reset back to 0 to fill the MDValueList in with the parsed module 1871 // The function-level metadata parsing should have reset the MDValueList 1872 // size back to the value reported by the METADATA_VALUE record, saved in 1873 // NumModuleMDs. 1874 assert(NumModuleMDs == MDValueList.size() && 1875 "Expected MDValueList to only contain module level values"); 1876 NextMDValueNo = 0; 1877 } 1878 1879 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1880 return error("Invalid record"); 1881 1882 SmallVector<uint64_t, 64> Record; 1883 1884 auto getMD = 1885 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1886 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1887 if (ID) 1888 return getMD(ID - 1); 1889 return nullptr; 1890 }; 1891 auto getMDString = [&](unsigned ID) -> MDString *{ 1892 // This requires that the ID is not really a forward reference. In 1893 // particular, the MDString must already have been resolved. 1894 return cast_or_null<MDString>(getMDOrNull(ID)); 1895 }; 1896 1897 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1898 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1899 1900 // Read all the records. 1901 while (1) { 1902 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1903 1904 switch (Entry.Kind) { 1905 case BitstreamEntry::SubBlock: // Handled for us already. 1906 case BitstreamEntry::Error: 1907 return error("Malformed block"); 1908 case BitstreamEntry::EndBlock: 1909 MDValueList.tryToResolveCycles(); 1910 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1911 NumModuleMDs == MDValueList.size()) && 1912 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1913 return std::error_code(); 1914 case BitstreamEntry::Record: 1915 // The interesting case. 1916 break; 1917 } 1918 1919 // Read a record. 1920 Record.clear(); 1921 unsigned Code = Stream.readRecord(Entry.ID, Record); 1922 bool IsDistinct = false; 1923 switch (Code) { 1924 default: // Default behavior: ignore. 1925 break; 1926 case bitc::METADATA_NAME: { 1927 // Read name of the named metadata. 1928 SmallString<8> Name(Record.begin(), Record.end()); 1929 Record.clear(); 1930 Code = Stream.ReadCode(); 1931 1932 unsigned NextBitCode = Stream.readRecord(Code, Record); 1933 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1934 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1935 1936 // Read named metadata elements. 1937 unsigned Size = Record.size(); 1938 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1939 for (unsigned i = 0; i != Size; ++i) { 1940 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1941 if (!MD) 1942 return error("Invalid record"); 1943 NMD->addOperand(MD); 1944 } 1945 break; 1946 } 1947 case bitc::METADATA_OLD_FN_NODE: { 1948 // FIXME: Remove in 4.0. 1949 // This is a LocalAsMetadata record, the only type of function-local 1950 // metadata. 1951 if (Record.size() % 2 == 1) 1952 return error("Invalid record"); 1953 1954 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1955 // to be legal, but there's no upgrade path. 1956 auto dropRecord = [&] { 1957 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1958 }; 1959 if (Record.size() != 2) { 1960 dropRecord(); 1961 break; 1962 } 1963 1964 Type *Ty = getTypeByID(Record[0]); 1965 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1966 dropRecord(); 1967 break; 1968 } 1969 1970 MDValueList.assignValue( 1971 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1972 NextMDValueNo++); 1973 break; 1974 } 1975 case bitc::METADATA_OLD_NODE: { 1976 // FIXME: Remove in 4.0. 1977 if (Record.size() % 2 == 1) 1978 return error("Invalid record"); 1979 1980 unsigned Size = Record.size(); 1981 SmallVector<Metadata *, 8> Elts; 1982 for (unsigned i = 0; i != Size; i += 2) { 1983 Type *Ty = getTypeByID(Record[i]); 1984 if (!Ty) 1985 return error("Invalid record"); 1986 if (Ty->isMetadataTy()) 1987 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1988 else if (!Ty->isVoidTy()) { 1989 auto *MD = 1990 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1991 assert(isa<ConstantAsMetadata>(MD) && 1992 "Expected non-function-local metadata"); 1993 Elts.push_back(MD); 1994 } else 1995 Elts.push_back(nullptr); 1996 } 1997 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1998 break; 1999 } 2000 case bitc::METADATA_VALUE: { 2001 if (Record.size() != 2) 2002 return error("Invalid record"); 2003 2004 Type *Ty = getTypeByID(Record[0]); 2005 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2006 return error("Invalid record"); 2007 2008 MDValueList.assignValue( 2009 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2010 NextMDValueNo++); 2011 break; 2012 } 2013 case bitc::METADATA_DISTINCT_NODE: 2014 IsDistinct = true; 2015 // fallthrough... 2016 case bitc::METADATA_NODE: { 2017 SmallVector<Metadata *, 8> Elts; 2018 Elts.reserve(Record.size()); 2019 for (unsigned ID : Record) 2020 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2021 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2022 : MDNode::get(Context, Elts), 2023 NextMDValueNo++); 2024 break; 2025 } 2026 case bitc::METADATA_LOCATION: { 2027 if (Record.size() != 5) 2028 return error("Invalid record"); 2029 2030 unsigned Line = Record[1]; 2031 unsigned Column = Record[2]; 2032 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2033 Metadata *InlinedAt = 2034 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2035 MDValueList.assignValue( 2036 GET_OR_DISTINCT(DILocation, Record[0], 2037 (Context, Line, Column, Scope, InlinedAt)), 2038 NextMDValueNo++); 2039 break; 2040 } 2041 case bitc::METADATA_GENERIC_DEBUG: { 2042 if (Record.size() < 4) 2043 return error("Invalid record"); 2044 2045 unsigned Tag = Record[1]; 2046 unsigned Version = Record[2]; 2047 2048 if (Tag >= 1u << 16 || Version != 0) 2049 return error("Invalid record"); 2050 2051 auto *Header = getMDString(Record[3]); 2052 SmallVector<Metadata *, 8> DwarfOps; 2053 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2054 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2055 : nullptr); 2056 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2057 (Context, Tag, Header, DwarfOps)), 2058 NextMDValueNo++); 2059 break; 2060 } 2061 case bitc::METADATA_SUBRANGE: { 2062 if (Record.size() != 3) 2063 return error("Invalid record"); 2064 2065 MDValueList.assignValue( 2066 GET_OR_DISTINCT(DISubrange, Record[0], 2067 (Context, Record[1], unrotateSign(Record[2]))), 2068 NextMDValueNo++); 2069 break; 2070 } 2071 case bitc::METADATA_ENUMERATOR: { 2072 if (Record.size() != 3) 2073 return error("Invalid record"); 2074 2075 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2076 (Context, unrotateSign(Record[1]), 2077 getMDString(Record[2]))), 2078 NextMDValueNo++); 2079 break; 2080 } 2081 case bitc::METADATA_BASIC_TYPE: { 2082 if (Record.size() != 6) 2083 return error("Invalid record"); 2084 2085 MDValueList.assignValue( 2086 GET_OR_DISTINCT(DIBasicType, Record[0], 2087 (Context, Record[1], getMDString(Record[2]), 2088 Record[3], Record[4], Record[5])), 2089 NextMDValueNo++); 2090 break; 2091 } 2092 case bitc::METADATA_DERIVED_TYPE: { 2093 if (Record.size() != 12) 2094 return error("Invalid record"); 2095 2096 MDValueList.assignValue( 2097 GET_OR_DISTINCT(DIDerivedType, Record[0], 2098 (Context, Record[1], getMDString(Record[2]), 2099 getMDOrNull(Record[3]), Record[4], 2100 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2101 Record[7], Record[8], Record[9], Record[10], 2102 getMDOrNull(Record[11]))), 2103 NextMDValueNo++); 2104 break; 2105 } 2106 case bitc::METADATA_COMPOSITE_TYPE: { 2107 if (Record.size() != 16) 2108 return error("Invalid record"); 2109 2110 MDValueList.assignValue( 2111 GET_OR_DISTINCT(DICompositeType, Record[0], 2112 (Context, Record[1], getMDString(Record[2]), 2113 getMDOrNull(Record[3]), Record[4], 2114 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2115 Record[7], Record[8], Record[9], Record[10], 2116 getMDOrNull(Record[11]), Record[12], 2117 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2118 getMDString(Record[15]))), 2119 NextMDValueNo++); 2120 break; 2121 } 2122 case bitc::METADATA_SUBROUTINE_TYPE: { 2123 if (Record.size() != 3) 2124 return error("Invalid record"); 2125 2126 MDValueList.assignValue( 2127 GET_OR_DISTINCT(DISubroutineType, Record[0], 2128 (Context, Record[1], getMDOrNull(Record[2]))), 2129 NextMDValueNo++); 2130 break; 2131 } 2132 2133 case bitc::METADATA_MODULE: { 2134 if (Record.size() != 6) 2135 return error("Invalid record"); 2136 2137 MDValueList.assignValue( 2138 GET_OR_DISTINCT(DIModule, Record[0], 2139 (Context, getMDOrNull(Record[1]), 2140 getMDString(Record[2]), getMDString(Record[3]), 2141 getMDString(Record[4]), getMDString(Record[5]))), 2142 NextMDValueNo++); 2143 break; 2144 } 2145 2146 case bitc::METADATA_FILE: { 2147 if (Record.size() != 3) 2148 return error("Invalid record"); 2149 2150 MDValueList.assignValue( 2151 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2152 getMDString(Record[2]))), 2153 NextMDValueNo++); 2154 break; 2155 } 2156 case bitc::METADATA_COMPILE_UNIT: { 2157 if (Record.size() < 14 || Record.size() > 16) 2158 return error("Invalid record"); 2159 2160 // Ignore Record[0], which indicates whether this compile unit is 2161 // distinct. It's always distinct. 2162 MDValueList.assignValue( 2163 DICompileUnit::getDistinct( 2164 Context, Record[1], getMDOrNull(Record[2]), 2165 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2166 Record[6], getMDString(Record[7]), Record[8], 2167 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2168 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2169 getMDOrNull(Record[13]), 2170 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2171 Record.size() <= 14 ? 0 : Record[14]), 2172 NextMDValueNo++); 2173 break; 2174 } 2175 case bitc::METADATA_SUBPROGRAM: { 2176 if (Record.size() != 18 && Record.size() != 19) 2177 return error("Invalid record"); 2178 2179 bool HasFn = Record.size() == 19; 2180 DISubprogram *SP = GET_OR_DISTINCT( 2181 DISubprogram, 2182 Record[0] || Record[8], // All definitions should be distinct. 2183 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2184 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2185 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2186 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2187 Record[14], getMDOrNull(Record[15 + HasFn]), 2188 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2189 MDValueList.assignValue(SP, NextMDValueNo++); 2190 2191 // Upgrade sp->function mapping to function->sp mapping. 2192 if (HasFn && Record[15]) { 2193 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2194 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2195 if (F->isMaterializable()) 2196 // Defer until materialized; unmaterialized functions may not have 2197 // metadata. 2198 FunctionsWithSPs[F] = SP; 2199 else if (!F->empty()) 2200 F->setSubprogram(SP); 2201 } 2202 } 2203 break; 2204 } 2205 case bitc::METADATA_LEXICAL_BLOCK: { 2206 if (Record.size() != 5) 2207 return error("Invalid record"); 2208 2209 MDValueList.assignValue( 2210 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2211 (Context, getMDOrNull(Record[1]), 2212 getMDOrNull(Record[2]), Record[3], Record[4])), 2213 NextMDValueNo++); 2214 break; 2215 } 2216 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2217 if (Record.size() != 4) 2218 return error("Invalid record"); 2219 2220 MDValueList.assignValue( 2221 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2222 (Context, getMDOrNull(Record[1]), 2223 getMDOrNull(Record[2]), Record[3])), 2224 NextMDValueNo++); 2225 break; 2226 } 2227 case bitc::METADATA_NAMESPACE: { 2228 if (Record.size() != 5) 2229 return error("Invalid record"); 2230 2231 MDValueList.assignValue( 2232 GET_OR_DISTINCT(DINamespace, Record[0], 2233 (Context, getMDOrNull(Record[1]), 2234 getMDOrNull(Record[2]), getMDString(Record[3]), 2235 Record[4])), 2236 NextMDValueNo++); 2237 break; 2238 } 2239 case bitc::METADATA_MACRO: { 2240 if (Record.size() != 5) 2241 return error("Invalid record"); 2242 2243 MDValueList.assignValue( 2244 GET_OR_DISTINCT(DIMacro, Record[0], 2245 (Context, Record[1], Record[2], 2246 getMDString(Record[3]), getMDString(Record[4]))), 2247 NextMDValueNo++); 2248 break; 2249 } 2250 case bitc::METADATA_MACRO_FILE: { 2251 if (Record.size() != 5) 2252 return error("Invalid record"); 2253 2254 MDValueList.assignValue( 2255 GET_OR_DISTINCT(DIMacroFile, Record[0], 2256 (Context, Record[1], Record[2], 2257 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2258 NextMDValueNo++); 2259 break; 2260 } 2261 case bitc::METADATA_TEMPLATE_TYPE: { 2262 if (Record.size() != 3) 2263 return error("Invalid record"); 2264 2265 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2266 Record[0], 2267 (Context, getMDString(Record[1]), 2268 getMDOrNull(Record[2]))), 2269 NextMDValueNo++); 2270 break; 2271 } 2272 case bitc::METADATA_TEMPLATE_VALUE: { 2273 if (Record.size() != 5) 2274 return error("Invalid record"); 2275 2276 MDValueList.assignValue( 2277 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2278 (Context, Record[1], getMDString(Record[2]), 2279 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2280 NextMDValueNo++); 2281 break; 2282 } 2283 case bitc::METADATA_GLOBAL_VAR: { 2284 if (Record.size() != 11) 2285 return error("Invalid record"); 2286 2287 MDValueList.assignValue( 2288 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2289 (Context, getMDOrNull(Record[1]), 2290 getMDString(Record[2]), getMDString(Record[3]), 2291 getMDOrNull(Record[4]), Record[5], 2292 getMDOrNull(Record[6]), Record[7], Record[8], 2293 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2294 NextMDValueNo++); 2295 break; 2296 } 2297 case bitc::METADATA_LOCAL_VAR: { 2298 // 10th field is for the obseleted 'inlinedAt:' field. 2299 if (Record.size() < 8 || Record.size() > 10) 2300 return error("Invalid record"); 2301 2302 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2303 // DW_TAG_arg_variable. 2304 bool HasTag = Record.size() > 8; 2305 MDValueList.assignValue( 2306 GET_OR_DISTINCT(DILocalVariable, Record[0], 2307 (Context, getMDOrNull(Record[1 + HasTag]), 2308 getMDString(Record[2 + HasTag]), 2309 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2310 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2311 Record[7 + HasTag])), 2312 NextMDValueNo++); 2313 break; 2314 } 2315 case bitc::METADATA_EXPRESSION: { 2316 if (Record.size() < 1) 2317 return error("Invalid record"); 2318 2319 MDValueList.assignValue( 2320 GET_OR_DISTINCT(DIExpression, Record[0], 2321 (Context, makeArrayRef(Record).slice(1))), 2322 NextMDValueNo++); 2323 break; 2324 } 2325 case bitc::METADATA_OBJC_PROPERTY: { 2326 if (Record.size() != 8) 2327 return error("Invalid record"); 2328 2329 MDValueList.assignValue( 2330 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2331 (Context, getMDString(Record[1]), 2332 getMDOrNull(Record[2]), Record[3], 2333 getMDString(Record[4]), getMDString(Record[5]), 2334 Record[6], getMDOrNull(Record[7]))), 2335 NextMDValueNo++); 2336 break; 2337 } 2338 case bitc::METADATA_IMPORTED_ENTITY: { 2339 if (Record.size() != 6) 2340 return error("Invalid record"); 2341 2342 MDValueList.assignValue( 2343 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2344 (Context, Record[1], getMDOrNull(Record[2]), 2345 getMDOrNull(Record[3]), Record[4], 2346 getMDString(Record[5]))), 2347 NextMDValueNo++); 2348 break; 2349 } 2350 case bitc::METADATA_STRING: { 2351 std::string String(Record.begin(), Record.end()); 2352 llvm::UpgradeMDStringConstant(String); 2353 Metadata *MD = MDString::get(Context, String); 2354 MDValueList.assignValue(MD, NextMDValueNo++); 2355 break; 2356 } 2357 case bitc::METADATA_KIND: { 2358 // Support older bitcode files that had METADATA_KIND records in a 2359 // block with METADATA_BLOCK_ID. 2360 if (std::error_code EC = parseMetadataKindRecord(Record)) 2361 return EC; 2362 break; 2363 } 2364 } 2365 } 2366 #undef GET_OR_DISTINCT 2367 } 2368 2369 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2370 std::error_code BitcodeReader::parseMetadataKinds() { 2371 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2372 return error("Invalid record"); 2373 2374 SmallVector<uint64_t, 64> Record; 2375 2376 // Read all the records. 2377 while (1) { 2378 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2379 2380 switch (Entry.Kind) { 2381 case BitstreamEntry::SubBlock: // Handled for us already. 2382 case BitstreamEntry::Error: 2383 return error("Malformed block"); 2384 case BitstreamEntry::EndBlock: 2385 return std::error_code(); 2386 case BitstreamEntry::Record: 2387 // The interesting case. 2388 break; 2389 } 2390 2391 // Read a record. 2392 Record.clear(); 2393 unsigned Code = Stream.readRecord(Entry.ID, Record); 2394 switch (Code) { 2395 default: // Default behavior: ignore. 2396 break; 2397 case bitc::METADATA_KIND: { 2398 if (std::error_code EC = parseMetadataKindRecord(Record)) 2399 return EC; 2400 break; 2401 } 2402 } 2403 } 2404 } 2405 2406 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2407 /// encoding. 2408 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2409 if ((V & 1) == 0) 2410 return V >> 1; 2411 if (V != 1) 2412 return -(V >> 1); 2413 // There is no such thing as -0 with integers. "-0" really means MININT. 2414 return 1ULL << 63; 2415 } 2416 2417 /// Resolve all of the initializers for global values and aliases that we can. 2418 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2419 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2420 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2421 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2422 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2423 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2424 2425 GlobalInitWorklist.swap(GlobalInits); 2426 AliasInitWorklist.swap(AliasInits); 2427 FunctionPrefixWorklist.swap(FunctionPrefixes); 2428 FunctionPrologueWorklist.swap(FunctionPrologues); 2429 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2430 2431 while (!GlobalInitWorklist.empty()) { 2432 unsigned ValID = GlobalInitWorklist.back().second; 2433 if (ValID >= ValueList.size()) { 2434 // Not ready to resolve this yet, it requires something later in the file. 2435 GlobalInits.push_back(GlobalInitWorklist.back()); 2436 } else { 2437 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2438 GlobalInitWorklist.back().first->setInitializer(C); 2439 else 2440 return error("Expected a constant"); 2441 } 2442 GlobalInitWorklist.pop_back(); 2443 } 2444 2445 while (!AliasInitWorklist.empty()) { 2446 unsigned ValID = AliasInitWorklist.back().second; 2447 if (ValID >= ValueList.size()) { 2448 AliasInits.push_back(AliasInitWorklist.back()); 2449 } else { 2450 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2451 if (!C) 2452 return error("Expected a constant"); 2453 GlobalAlias *Alias = AliasInitWorklist.back().first; 2454 if (C->getType() != Alias->getType()) 2455 return error("Alias and aliasee types don't match"); 2456 Alias->setAliasee(C); 2457 } 2458 AliasInitWorklist.pop_back(); 2459 } 2460 2461 while (!FunctionPrefixWorklist.empty()) { 2462 unsigned ValID = FunctionPrefixWorklist.back().second; 2463 if (ValID >= ValueList.size()) { 2464 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2465 } else { 2466 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2467 FunctionPrefixWorklist.back().first->setPrefixData(C); 2468 else 2469 return error("Expected a constant"); 2470 } 2471 FunctionPrefixWorklist.pop_back(); 2472 } 2473 2474 while (!FunctionPrologueWorklist.empty()) { 2475 unsigned ValID = FunctionPrologueWorklist.back().second; 2476 if (ValID >= ValueList.size()) { 2477 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2478 } else { 2479 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2480 FunctionPrologueWorklist.back().first->setPrologueData(C); 2481 else 2482 return error("Expected a constant"); 2483 } 2484 FunctionPrologueWorklist.pop_back(); 2485 } 2486 2487 while (!FunctionPersonalityFnWorklist.empty()) { 2488 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2489 if (ValID >= ValueList.size()) { 2490 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2491 } else { 2492 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2493 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2494 else 2495 return error("Expected a constant"); 2496 } 2497 FunctionPersonalityFnWorklist.pop_back(); 2498 } 2499 2500 return std::error_code(); 2501 } 2502 2503 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2504 SmallVector<uint64_t, 8> Words(Vals.size()); 2505 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2506 BitcodeReader::decodeSignRotatedValue); 2507 2508 return APInt(TypeBits, Words); 2509 } 2510 2511 std::error_code BitcodeReader::parseConstants() { 2512 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2513 return error("Invalid record"); 2514 2515 SmallVector<uint64_t, 64> Record; 2516 2517 // Read all the records for this value table. 2518 Type *CurTy = Type::getInt32Ty(Context); 2519 unsigned NextCstNo = ValueList.size(); 2520 while (1) { 2521 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2522 2523 switch (Entry.Kind) { 2524 case BitstreamEntry::SubBlock: // Handled for us already. 2525 case BitstreamEntry::Error: 2526 return error("Malformed block"); 2527 case BitstreamEntry::EndBlock: 2528 if (NextCstNo != ValueList.size()) 2529 return error("Invalid ronstant reference"); 2530 2531 // Once all the constants have been read, go through and resolve forward 2532 // references. 2533 ValueList.resolveConstantForwardRefs(); 2534 return std::error_code(); 2535 case BitstreamEntry::Record: 2536 // The interesting case. 2537 break; 2538 } 2539 2540 // Read a record. 2541 Record.clear(); 2542 Value *V = nullptr; 2543 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2544 switch (BitCode) { 2545 default: // Default behavior: unknown constant 2546 case bitc::CST_CODE_UNDEF: // UNDEF 2547 V = UndefValue::get(CurTy); 2548 break; 2549 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2550 if (Record.empty()) 2551 return error("Invalid record"); 2552 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2553 return error("Invalid record"); 2554 CurTy = TypeList[Record[0]]; 2555 continue; // Skip the ValueList manipulation. 2556 case bitc::CST_CODE_NULL: // NULL 2557 V = Constant::getNullValue(CurTy); 2558 break; 2559 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2560 if (!CurTy->isIntegerTy() || Record.empty()) 2561 return error("Invalid record"); 2562 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2563 break; 2564 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2565 if (!CurTy->isIntegerTy() || Record.empty()) 2566 return error("Invalid record"); 2567 2568 APInt VInt = 2569 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2570 V = ConstantInt::get(Context, VInt); 2571 2572 break; 2573 } 2574 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2575 if (Record.empty()) 2576 return error("Invalid record"); 2577 if (CurTy->isHalfTy()) 2578 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2579 APInt(16, (uint16_t)Record[0]))); 2580 else if (CurTy->isFloatTy()) 2581 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2582 APInt(32, (uint32_t)Record[0]))); 2583 else if (CurTy->isDoubleTy()) 2584 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2585 APInt(64, Record[0]))); 2586 else if (CurTy->isX86_FP80Ty()) { 2587 // Bits are not stored the same way as a normal i80 APInt, compensate. 2588 uint64_t Rearrange[2]; 2589 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2590 Rearrange[1] = Record[0] >> 48; 2591 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2592 APInt(80, Rearrange))); 2593 } else if (CurTy->isFP128Ty()) 2594 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2595 APInt(128, Record))); 2596 else if (CurTy->isPPC_FP128Ty()) 2597 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2598 APInt(128, Record))); 2599 else 2600 V = UndefValue::get(CurTy); 2601 break; 2602 } 2603 2604 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2605 if (Record.empty()) 2606 return error("Invalid record"); 2607 2608 unsigned Size = Record.size(); 2609 SmallVector<Constant*, 16> Elts; 2610 2611 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2612 for (unsigned i = 0; i != Size; ++i) 2613 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2614 STy->getElementType(i))); 2615 V = ConstantStruct::get(STy, Elts); 2616 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2617 Type *EltTy = ATy->getElementType(); 2618 for (unsigned i = 0; i != Size; ++i) 2619 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2620 V = ConstantArray::get(ATy, Elts); 2621 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2622 Type *EltTy = VTy->getElementType(); 2623 for (unsigned i = 0; i != Size; ++i) 2624 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2625 V = ConstantVector::get(Elts); 2626 } else { 2627 V = UndefValue::get(CurTy); 2628 } 2629 break; 2630 } 2631 case bitc::CST_CODE_STRING: // STRING: [values] 2632 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2633 if (Record.empty()) 2634 return error("Invalid record"); 2635 2636 SmallString<16> Elts(Record.begin(), Record.end()); 2637 V = ConstantDataArray::getString(Context, Elts, 2638 BitCode == bitc::CST_CODE_CSTRING); 2639 break; 2640 } 2641 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2642 if (Record.empty()) 2643 return error("Invalid record"); 2644 2645 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2646 unsigned Size = Record.size(); 2647 2648 if (EltTy->isIntegerTy(8)) { 2649 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2650 if (isa<VectorType>(CurTy)) 2651 V = ConstantDataVector::get(Context, Elts); 2652 else 2653 V = ConstantDataArray::get(Context, Elts); 2654 } else if (EltTy->isIntegerTy(16)) { 2655 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2656 if (isa<VectorType>(CurTy)) 2657 V = ConstantDataVector::get(Context, Elts); 2658 else 2659 V = ConstantDataArray::get(Context, Elts); 2660 } else if (EltTy->isIntegerTy(32)) { 2661 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2662 if (isa<VectorType>(CurTy)) 2663 V = ConstantDataVector::get(Context, Elts); 2664 else 2665 V = ConstantDataArray::get(Context, Elts); 2666 } else if (EltTy->isIntegerTy(64)) { 2667 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2668 if (isa<VectorType>(CurTy)) 2669 V = ConstantDataVector::get(Context, Elts); 2670 else 2671 V = ConstantDataArray::get(Context, Elts); 2672 } else if (EltTy->isFloatTy()) { 2673 SmallVector<float, 16> Elts(Size); 2674 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2675 if (isa<VectorType>(CurTy)) 2676 V = ConstantDataVector::get(Context, Elts); 2677 else 2678 V = ConstantDataArray::get(Context, Elts); 2679 } else if (EltTy->isDoubleTy()) { 2680 SmallVector<double, 16> Elts(Size); 2681 std::transform(Record.begin(), Record.end(), Elts.begin(), 2682 BitsToDouble); 2683 if (isa<VectorType>(CurTy)) 2684 V = ConstantDataVector::get(Context, Elts); 2685 else 2686 V = ConstantDataArray::get(Context, Elts); 2687 } else { 2688 return error("Invalid type for value"); 2689 } 2690 break; 2691 } 2692 2693 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2694 if (Record.size() < 3) 2695 return error("Invalid record"); 2696 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2697 if (Opc < 0) { 2698 V = UndefValue::get(CurTy); // Unknown binop. 2699 } else { 2700 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2701 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2702 unsigned Flags = 0; 2703 if (Record.size() >= 4) { 2704 if (Opc == Instruction::Add || 2705 Opc == Instruction::Sub || 2706 Opc == Instruction::Mul || 2707 Opc == Instruction::Shl) { 2708 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2709 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2710 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2711 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2712 } else if (Opc == Instruction::SDiv || 2713 Opc == Instruction::UDiv || 2714 Opc == Instruction::LShr || 2715 Opc == Instruction::AShr) { 2716 if (Record[3] & (1 << bitc::PEO_EXACT)) 2717 Flags |= SDivOperator::IsExact; 2718 } 2719 } 2720 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2721 } 2722 break; 2723 } 2724 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2725 if (Record.size() < 3) 2726 return error("Invalid record"); 2727 int Opc = getDecodedCastOpcode(Record[0]); 2728 if (Opc < 0) { 2729 V = UndefValue::get(CurTy); // Unknown cast. 2730 } else { 2731 Type *OpTy = getTypeByID(Record[1]); 2732 if (!OpTy) 2733 return error("Invalid record"); 2734 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2735 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2736 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2737 } 2738 break; 2739 } 2740 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2741 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2742 unsigned OpNum = 0; 2743 Type *PointeeType = nullptr; 2744 if (Record.size() % 2) 2745 PointeeType = getTypeByID(Record[OpNum++]); 2746 SmallVector<Constant*, 16> Elts; 2747 while (OpNum != Record.size()) { 2748 Type *ElTy = getTypeByID(Record[OpNum++]); 2749 if (!ElTy) 2750 return error("Invalid record"); 2751 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2752 } 2753 2754 if (PointeeType && 2755 PointeeType != 2756 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2757 ->getElementType()) 2758 return error("Explicit gep operator type does not match pointee type " 2759 "of pointer operand"); 2760 2761 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2762 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2763 BitCode == 2764 bitc::CST_CODE_CE_INBOUNDS_GEP); 2765 break; 2766 } 2767 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2768 if (Record.size() < 3) 2769 return error("Invalid record"); 2770 2771 Type *SelectorTy = Type::getInt1Ty(Context); 2772 2773 // The selector might be an i1 or an <n x i1> 2774 // Get the type from the ValueList before getting a forward ref. 2775 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2776 if (Value *V = ValueList[Record[0]]) 2777 if (SelectorTy != V->getType()) 2778 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2779 2780 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2781 SelectorTy), 2782 ValueList.getConstantFwdRef(Record[1],CurTy), 2783 ValueList.getConstantFwdRef(Record[2],CurTy)); 2784 break; 2785 } 2786 case bitc::CST_CODE_CE_EXTRACTELT 2787 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2788 if (Record.size() < 3) 2789 return error("Invalid record"); 2790 VectorType *OpTy = 2791 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2792 if (!OpTy) 2793 return error("Invalid record"); 2794 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2795 Constant *Op1 = nullptr; 2796 if (Record.size() == 4) { 2797 Type *IdxTy = getTypeByID(Record[2]); 2798 if (!IdxTy) 2799 return error("Invalid record"); 2800 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2801 } else // TODO: Remove with llvm 4.0 2802 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2803 if (!Op1) 2804 return error("Invalid record"); 2805 V = ConstantExpr::getExtractElement(Op0, Op1); 2806 break; 2807 } 2808 case bitc::CST_CODE_CE_INSERTELT 2809 : { // CE_INSERTELT: [opval, opval, opty, opval] 2810 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2811 if (Record.size() < 3 || !OpTy) 2812 return error("Invalid record"); 2813 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2814 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2815 OpTy->getElementType()); 2816 Constant *Op2 = nullptr; 2817 if (Record.size() == 4) { 2818 Type *IdxTy = getTypeByID(Record[2]); 2819 if (!IdxTy) 2820 return error("Invalid record"); 2821 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2822 } else // TODO: Remove with llvm 4.0 2823 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2824 if (!Op2) 2825 return error("Invalid record"); 2826 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2827 break; 2828 } 2829 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2830 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2831 if (Record.size() < 3 || !OpTy) 2832 return error("Invalid record"); 2833 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2834 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2835 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2836 OpTy->getNumElements()); 2837 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2838 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2839 break; 2840 } 2841 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2842 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2843 VectorType *OpTy = 2844 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2845 if (Record.size() < 4 || !RTy || !OpTy) 2846 return error("Invalid record"); 2847 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2848 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2849 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2850 RTy->getNumElements()); 2851 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2852 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2853 break; 2854 } 2855 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2856 if (Record.size() < 4) 2857 return error("Invalid record"); 2858 Type *OpTy = getTypeByID(Record[0]); 2859 if (!OpTy) 2860 return error("Invalid record"); 2861 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2862 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2863 2864 if (OpTy->isFPOrFPVectorTy()) 2865 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2866 else 2867 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2868 break; 2869 } 2870 // This maintains backward compatibility, pre-asm dialect keywords. 2871 // FIXME: Remove with the 4.0 release. 2872 case bitc::CST_CODE_INLINEASM_OLD: { 2873 if (Record.size() < 2) 2874 return error("Invalid record"); 2875 std::string AsmStr, ConstrStr; 2876 bool HasSideEffects = Record[0] & 1; 2877 bool IsAlignStack = Record[0] >> 1; 2878 unsigned AsmStrSize = Record[1]; 2879 if (2+AsmStrSize >= Record.size()) 2880 return error("Invalid record"); 2881 unsigned ConstStrSize = Record[2+AsmStrSize]; 2882 if (3+AsmStrSize+ConstStrSize > Record.size()) 2883 return error("Invalid record"); 2884 2885 for (unsigned i = 0; i != AsmStrSize; ++i) 2886 AsmStr += (char)Record[2+i]; 2887 for (unsigned i = 0; i != ConstStrSize; ++i) 2888 ConstrStr += (char)Record[3+AsmStrSize+i]; 2889 PointerType *PTy = cast<PointerType>(CurTy); 2890 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2891 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2892 break; 2893 } 2894 // This version adds support for the asm dialect keywords (e.g., 2895 // inteldialect). 2896 case bitc::CST_CODE_INLINEASM: { 2897 if (Record.size() < 2) 2898 return error("Invalid record"); 2899 std::string AsmStr, ConstrStr; 2900 bool HasSideEffects = Record[0] & 1; 2901 bool IsAlignStack = (Record[0] >> 1) & 1; 2902 unsigned AsmDialect = Record[0] >> 2; 2903 unsigned AsmStrSize = Record[1]; 2904 if (2+AsmStrSize >= Record.size()) 2905 return error("Invalid record"); 2906 unsigned ConstStrSize = Record[2+AsmStrSize]; 2907 if (3+AsmStrSize+ConstStrSize > Record.size()) 2908 return error("Invalid record"); 2909 2910 for (unsigned i = 0; i != AsmStrSize; ++i) 2911 AsmStr += (char)Record[2+i]; 2912 for (unsigned i = 0; i != ConstStrSize; ++i) 2913 ConstrStr += (char)Record[3+AsmStrSize+i]; 2914 PointerType *PTy = cast<PointerType>(CurTy); 2915 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2916 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2917 InlineAsm::AsmDialect(AsmDialect)); 2918 break; 2919 } 2920 case bitc::CST_CODE_BLOCKADDRESS:{ 2921 if (Record.size() < 3) 2922 return error("Invalid record"); 2923 Type *FnTy = getTypeByID(Record[0]); 2924 if (!FnTy) 2925 return error("Invalid record"); 2926 Function *Fn = 2927 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2928 if (!Fn) 2929 return error("Invalid record"); 2930 2931 // Don't let Fn get dematerialized. 2932 BlockAddressesTaken.insert(Fn); 2933 2934 // If the function is already parsed we can insert the block address right 2935 // away. 2936 BasicBlock *BB; 2937 unsigned BBID = Record[2]; 2938 if (!BBID) 2939 // Invalid reference to entry block. 2940 return error("Invalid ID"); 2941 if (!Fn->empty()) { 2942 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2943 for (size_t I = 0, E = BBID; I != E; ++I) { 2944 if (BBI == BBE) 2945 return error("Invalid ID"); 2946 ++BBI; 2947 } 2948 BB = &*BBI; 2949 } else { 2950 // Otherwise insert a placeholder and remember it so it can be inserted 2951 // when the function is parsed. 2952 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2953 if (FwdBBs.empty()) 2954 BasicBlockFwdRefQueue.push_back(Fn); 2955 if (FwdBBs.size() < BBID + 1) 2956 FwdBBs.resize(BBID + 1); 2957 if (!FwdBBs[BBID]) 2958 FwdBBs[BBID] = BasicBlock::Create(Context); 2959 BB = FwdBBs[BBID]; 2960 } 2961 V = BlockAddress::get(Fn, BB); 2962 break; 2963 } 2964 } 2965 2966 ValueList.assignValue(V, NextCstNo); 2967 ++NextCstNo; 2968 } 2969 } 2970 2971 std::error_code BitcodeReader::parseUseLists() { 2972 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2973 return error("Invalid record"); 2974 2975 // Read all the records. 2976 SmallVector<uint64_t, 64> Record; 2977 while (1) { 2978 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2979 2980 switch (Entry.Kind) { 2981 case BitstreamEntry::SubBlock: // Handled for us already. 2982 case BitstreamEntry::Error: 2983 return error("Malformed block"); 2984 case BitstreamEntry::EndBlock: 2985 return std::error_code(); 2986 case BitstreamEntry::Record: 2987 // The interesting case. 2988 break; 2989 } 2990 2991 // Read a use list record. 2992 Record.clear(); 2993 bool IsBB = false; 2994 switch (Stream.readRecord(Entry.ID, Record)) { 2995 default: // Default behavior: unknown type. 2996 break; 2997 case bitc::USELIST_CODE_BB: 2998 IsBB = true; 2999 // fallthrough 3000 case bitc::USELIST_CODE_DEFAULT: { 3001 unsigned RecordLength = Record.size(); 3002 if (RecordLength < 3) 3003 // Records should have at least an ID and two indexes. 3004 return error("Invalid record"); 3005 unsigned ID = Record.back(); 3006 Record.pop_back(); 3007 3008 Value *V; 3009 if (IsBB) { 3010 assert(ID < FunctionBBs.size() && "Basic block not found"); 3011 V = FunctionBBs[ID]; 3012 } else 3013 V = ValueList[ID]; 3014 unsigned NumUses = 0; 3015 SmallDenseMap<const Use *, unsigned, 16> Order; 3016 for (const Use &U : V->uses()) { 3017 if (++NumUses > Record.size()) 3018 break; 3019 Order[&U] = Record[NumUses - 1]; 3020 } 3021 if (Order.size() != Record.size() || NumUses > Record.size()) 3022 // Mismatches can happen if the functions are being materialized lazily 3023 // (out-of-order), or a value has been upgraded. 3024 break; 3025 3026 V->sortUseList([&](const Use &L, const Use &R) { 3027 return Order.lookup(&L) < Order.lookup(&R); 3028 }); 3029 break; 3030 } 3031 } 3032 } 3033 } 3034 3035 /// When we see the block for metadata, remember where it is and then skip it. 3036 /// This lets us lazily deserialize the metadata. 3037 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3038 // Save the current stream state. 3039 uint64_t CurBit = Stream.GetCurrentBitNo(); 3040 DeferredMetadataInfo.push_back(CurBit); 3041 3042 // Skip over the block for now. 3043 if (Stream.SkipBlock()) 3044 return error("Invalid record"); 3045 return std::error_code(); 3046 } 3047 3048 std::error_code BitcodeReader::materializeMetadata() { 3049 for (uint64_t BitPos : DeferredMetadataInfo) { 3050 // Move the bit stream to the saved position. 3051 Stream.JumpToBit(BitPos); 3052 if (std::error_code EC = parseMetadata(true)) 3053 return EC; 3054 } 3055 DeferredMetadataInfo.clear(); 3056 return std::error_code(); 3057 } 3058 3059 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3060 3061 /// When we see the block for a function body, remember where it is and then 3062 /// skip it. This lets us lazily deserialize the functions. 3063 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3064 // Get the function we are talking about. 3065 if (FunctionsWithBodies.empty()) 3066 return error("Insufficient function protos"); 3067 3068 Function *Fn = FunctionsWithBodies.back(); 3069 FunctionsWithBodies.pop_back(); 3070 3071 // Save the current stream state. 3072 uint64_t CurBit = Stream.GetCurrentBitNo(); 3073 assert( 3074 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3075 "Mismatch between VST and scanned function offsets"); 3076 DeferredFunctionInfo[Fn] = CurBit; 3077 3078 // Skip over the function block for now. 3079 if (Stream.SkipBlock()) 3080 return error("Invalid record"); 3081 return std::error_code(); 3082 } 3083 3084 std::error_code BitcodeReader::globalCleanup() { 3085 // Patch the initializers for globals and aliases up. 3086 resolveGlobalAndAliasInits(); 3087 if (!GlobalInits.empty() || !AliasInits.empty()) 3088 return error("Malformed global initializer set"); 3089 3090 // Look for intrinsic functions which need to be upgraded at some point 3091 for (Function &F : *TheModule) { 3092 Function *NewFn; 3093 if (UpgradeIntrinsicFunction(&F, NewFn)) 3094 UpgradedIntrinsics[&F] = NewFn; 3095 } 3096 3097 // Look for global variables which need to be renamed. 3098 for (GlobalVariable &GV : TheModule->globals()) 3099 UpgradeGlobalVariable(&GV); 3100 3101 // Force deallocation of memory for these vectors to favor the client that 3102 // want lazy deserialization. 3103 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3104 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3105 return std::error_code(); 3106 } 3107 3108 /// Support for lazy parsing of function bodies. This is required if we 3109 /// either have an old bitcode file without a VST forward declaration record, 3110 /// or if we have an anonymous function being materialized, since anonymous 3111 /// functions do not have a name and are therefore not in the VST. 3112 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3113 Stream.JumpToBit(NextUnreadBit); 3114 3115 if (Stream.AtEndOfStream()) 3116 return error("Could not find function in stream"); 3117 3118 if (!SeenFirstFunctionBody) 3119 return error("Trying to materialize functions before seeing function blocks"); 3120 3121 // An old bitcode file with the symbol table at the end would have 3122 // finished the parse greedily. 3123 assert(SeenValueSymbolTable); 3124 3125 SmallVector<uint64_t, 64> Record; 3126 3127 while (1) { 3128 BitstreamEntry Entry = Stream.advance(); 3129 switch (Entry.Kind) { 3130 default: 3131 return error("Expect SubBlock"); 3132 case BitstreamEntry::SubBlock: 3133 switch (Entry.ID) { 3134 default: 3135 return error("Expect function block"); 3136 case bitc::FUNCTION_BLOCK_ID: 3137 if (std::error_code EC = rememberAndSkipFunctionBody()) 3138 return EC; 3139 NextUnreadBit = Stream.GetCurrentBitNo(); 3140 return std::error_code(); 3141 } 3142 } 3143 } 3144 } 3145 3146 std::error_code BitcodeReader::parseBitcodeVersion() { 3147 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3148 return error("Invalid record"); 3149 3150 // Read all the records. 3151 SmallVector<uint64_t, 64> Record; 3152 while (1) { 3153 BitstreamEntry Entry = Stream.advance(); 3154 3155 switch (Entry.Kind) { 3156 default: 3157 case BitstreamEntry::Error: 3158 return error("Malformed block"); 3159 case BitstreamEntry::EndBlock: 3160 return std::error_code(); 3161 case BitstreamEntry::Record: 3162 // The interesting case. 3163 break; 3164 } 3165 3166 // Read a record. 3167 Record.clear(); 3168 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3169 switch (BitCode) { 3170 default: // Default behavior: reject 3171 return error("Invalid value"); 3172 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3173 // N] 3174 convertToString(Record, 0, ProducerIdentification); 3175 break; 3176 } 3177 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3178 unsigned epoch = (unsigned)Record[0]; 3179 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3180 return error( 3181 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3182 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3183 } 3184 } 3185 } 3186 } 3187 } 3188 3189 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3190 bool ShouldLazyLoadMetadata) { 3191 if (ResumeBit) 3192 Stream.JumpToBit(ResumeBit); 3193 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3194 return error("Invalid record"); 3195 3196 SmallVector<uint64_t, 64> Record; 3197 std::vector<std::string> SectionTable; 3198 std::vector<std::string> GCTable; 3199 3200 // Read all the records for this module. 3201 while (1) { 3202 BitstreamEntry Entry = Stream.advance(); 3203 3204 switch (Entry.Kind) { 3205 case BitstreamEntry::Error: 3206 return error("Malformed block"); 3207 case BitstreamEntry::EndBlock: 3208 return globalCleanup(); 3209 3210 case BitstreamEntry::SubBlock: 3211 switch (Entry.ID) { 3212 default: // Skip unknown content. 3213 if (Stream.SkipBlock()) 3214 return error("Invalid record"); 3215 break; 3216 case bitc::BLOCKINFO_BLOCK_ID: 3217 if (Stream.ReadBlockInfoBlock()) 3218 return error("Malformed block"); 3219 break; 3220 case bitc::PARAMATTR_BLOCK_ID: 3221 if (std::error_code EC = parseAttributeBlock()) 3222 return EC; 3223 break; 3224 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3225 if (std::error_code EC = parseAttributeGroupBlock()) 3226 return EC; 3227 break; 3228 case bitc::TYPE_BLOCK_ID_NEW: 3229 if (std::error_code EC = parseTypeTable()) 3230 return EC; 3231 break; 3232 case bitc::VALUE_SYMTAB_BLOCK_ID: 3233 if (!SeenValueSymbolTable) { 3234 // Either this is an old form VST without function index and an 3235 // associated VST forward declaration record (which would have caused 3236 // the VST to be jumped to and parsed before it was encountered 3237 // normally in the stream), or there were no function blocks to 3238 // trigger an earlier parsing of the VST. 3239 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3240 if (std::error_code EC = parseValueSymbolTable()) 3241 return EC; 3242 SeenValueSymbolTable = true; 3243 } else { 3244 // We must have had a VST forward declaration record, which caused 3245 // the parser to jump to and parse the VST earlier. 3246 assert(VSTOffset > 0); 3247 if (Stream.SkipBlock()) 3248 return error("Invalid record"); 3249 } 3250 break; 3251 case bitc::CONSTANTS_BLOCK_ID: 3252 if (std::error_code EC = parseConstants()) 3253 return EC; 3254 if (std::error_code EC = resolveGlobalAndAliasInits()) 3255 return EC; 3256 break; 3257 case bitc::METADATA_BLOCK_ID: 3258 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3259 if (std::error_code EC = rememberAndSkipMetadata()) 3260 return EC; 3261 break; 3262 } 3263 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3264 if (std::error_code EC = parseMetadata(true)) 3265 return EC; 3266 break; 3267 case bitc::METADATA_KIND_BLOCK_ID: 3268 if (std::error_code EC = parseMetadataKinds()) 3269 return EC; 3270 break; 3271 case bitc::FUNCTION_BLOCK_ID: 3272 // If this is the first function body we've seen, reverse the 3273 // FunctionsWithBodies list. 3274 if (!SeenFirstFunctionBody) { 3275 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3276 if (std::error_code EC = globalCleanup()) 3277 return EC; 3278 SeenFirstFunctionBody = true; 3279 } 3280 3281 if (VSTOffset > 0) { 3282 // If we have a VST forward declaration record, make sure we 3283 // parse the VST now if we haven't already. It is needed to 3284 // set up the DeferredFunctionInfo vector for lazy reading. 3285 if (!SeenValueSymbolTable) { 3286 if (std::error_code EC = 3287 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3288 return EC; 3289 SeenValueSymbolTable = true; 3290 // Fall through so that we record the NextUnreadBit below. 3291 // This is necessary in case we have an anonymous function that 3292 // is later materialized. Since it will not have a VST entry we 3293 // need to fall back to the lazy parse to find its offset. 3294 } else { 3295 // If we have a VST forward declaration record, but have already 3296 // parsed the VST (just above, when the first function body was 3297 // encountered here), then we are resuming the parse after 3298 // materializing functions. The ResumeBit points to the 3299 // start of the last function block recorded in the 3300 // DeferredFunctionInfo map. Skip it. 3301 if (Stream.SkipBlock()) 3302 return error("Invalid record"); 3303 continue; 3304 } 3305 } 3306 3307 // Support older bitcode files that did not have the function 3308 // index in the VST, nor a VST forward declaration record, as 3309 // well as anonymous functions that do not have VST entries. 3310 // Build the DeferredFunctionInfo vector on the fly. 3311 if (std::error_code EC = rememberAndSkipFunctionBody()) 3312 return EC; 3313 3314 // Suspend parsing when we reach the function bodies. Subsequent 3315 // materialization calls will resume it when necessary. If the bitcode 3316 // file is old, the symbol table will be at the end instead and will not 3317 // have been seen yet. In this case, just finish the parse now. 3318 if (SeenValueSymbolTable) { 3319 NextUnreadBit = Stream.GetCurrentBitNo(); 3320 return std::error_code(); 3321 } 3322 break; 3323 case bitc::USELIST_BLOCK_ID: 3324 if (std::error_code EC = parseUseLists()) 3325 return EC; 3326 break; 3327 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3328 if (std::error_code EC = parseOperandBundleTags()) 3329 return EC; 3330 break; 3331 } 3332 continue; 3333 3334 case BitstreamEntry::Record: 3335 // The interesting case. 3336 break; 3337 } 3338 3339 3340 // Read a record. 3341 auto BitCode = Stream.readRecord(Entry.ID, Record); 3342 switch (BitCode) { 3343 default: break; // Default behavior, ignore unknown content. 3344 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3345 if (Record.size() < 1) 3346 return error("Invalid record"); 3347 // Only version #0 and #1 are supported so far. 3348 unsigned module_version = Record[0]; 3349 switch (module_version) { 3350 default: 3351 return error("Invalid value"); 3352 case 0: 3353 UseRelativeIDs = false; 3354 break; 3355 case 1: 3356 UseRelativeIDs = true; 3357 break; 3358 } 3359 break; 3360 } 3361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3362 std::string S; 3363 if (convertToString(Record, 0, S)) 3364 return error("Invalid record"); 3365 TheModule->setTargetTriple(S); 3366 break; 3367 } 3368 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3369 std::string S; 3370 if (convertToString(Record, 0, S)) 3371 return error("Invalid record"); 3372 TheModule->setDataLayout(S); 3373 break; 3374 } 3375 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3376 std::string S; 3377 if (convertToString(Record, 0, S)) 3378 return error("Invalid record"); 3379 TheModule->setModuleInlineAsm(S); 3380 break; 3381 } 3382 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3383 // FIXME: Remove in 4.0. 3384 std::string S; 3385 if (convertToString(Record, 0, S)) 3386 return error("Invalid record"); 3387 // Ignore value. 3388 break; 3389 } 3390 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3391 std::string S; 3392 if (convertToString(Record, 0, S)) 3393 return error("Invalid record"); 3394 SectionTable.push_back(S); 3395 break; 3396 } 3397 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3398 std::string S; 3399 if (convertToString(Record, 0, S)) 3400 return error("Invalid record"); 3401 GCTable.push_back(S); 3402 break; 3403 } 3404 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3405 if (Record.size() < 2) 3406 return error("Invalid record"); 3407 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3408 unsigned ComdatNameSize = Record[1]; 3409 std::string ComdatName; 3410 ComdatName.reserve(ComdatNameSize); 3411 for (unsigned i = 0; i != ComdatNameSize; ++i) 3412 ComdatName += (char)Record[2 + i]; 3413 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3414 C->setSelectionKind(SK); 3415 ComdatList.push_back(C); 3416 break; 3417 } 3418 // GLOBALVAR: [pointer type, isconst, initid, 3419 // linkage, alignment, section, visibility, threadlocal, 3420 // unnamed_addr, externally_initialized, dllstorageclass, 3421 // comdat] 3422 case bitc::MODULE_CODE_GLOBALVAR: { 3423 if (Record.size() < 6) 3424 return error("Invalid record"); 3425 Type *Ty = getTypeByID(Record[0]); 3426 if (!Ty) 3427 return error("Invalid record"); 3428 bool isConstant = Record[1] & 1; 3429 bool explicitType = Record[1] & 2; 3430 unsigned AddressSpace; 3431 if (explicitType) { 3432 AddressSpace = Record[1] >> 2; 3433 } else { 3434 if (!Ty->isPointerTy()) 3435 return error("Invalid type for value"); 3436 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3437 Ty = cast<PointerType>(Ty)->getElementType(); 3438 } 3439 3440 uint64_t RawLinkage = Record[3]; 3441 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3442 unsigned Alignment; 3443 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3444 return EC; 3445 std::string Section; 3446 if (Record[5]) { 3447 if (Record[5]-1 >= SectionTable.size()) 3448 return error("Invalid ID"); 3449 Section = SectionTable[Record[5]-1]; 3450 } 3451 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3452 // Local linkage must have default visibility. 3453 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3454 // FIXME: Change to an error if non-default in 4.0. 3455 Visibility = getDecodedVisibility(Record[6]); 3456 3457 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3458 if (Record.size() > 7) 3459 TLM = getDecodedThreadLocalMode(Record[7]); 3460 3461 bool UnnamedAddr = false; 3462 if (Record.size() > 8) 3463 UnnamedAddr = Record[8]; 3464 3465 bool ExternallyInitialized = false; 3466 if (Record.size() > 9) 3467 ExternallyInitialized = Record[9]; 3468 3469 GlobalVariable *NewGV = 3470 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3471 TLM, AddressSpace, ExternallyInitialized); 3472 NewGV->setAlignment(Alignment); 3473 if (!Section.empty()) 3474 NewGV->setSection(Section); 3475 NewGV->setVisibility(Visibility); 3476 NewGV->setUnnamedAddr(UnnamedAddr); 3477 3478 if (Record.size() > 10) 3479 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3480 else 3481 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3482 3483 ValueList.push_back(NewGV); 3484 3485 // Remember which value to use for the global initializer. 3486 if (unsigned InitID = Record[2]) 3487 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3488 3489 if (Record.size() > 11) { 3490 if (unsigned ComdatID = Record[11]) { 3491 if (ComdatID > ComdatList.size()) 3492 return error("Invalid global variable comdat ID"); 3493 NewGV->setComdat(ComdatList[ComdatID - 1]); 3494 } 3495 } else if (hasImplicitComdat(RawLinkage)) { 3496 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3497 } 3498 break; 3499 } 3500 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3501 // alignment, section, visibility, gc, unnamed_addr, 3502 // prologuedata, dllstorageclass, comdat, prefixdata] 3503 case bitc::MODULE_CODE_FUNCTION: { 3504 if (Record.size() < 8) 3505 return error("Invalid record"); 3506 Type *Ty = getTypeByID(Record[0]); 3507 if (!Ty) 3508 return error("Invalid record"); 3509 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3510 Ty = PTy->getElementType(); 3511 auto *FTy = dyn_cast<FunctionType>(Ty); 3512 if (!FTy) 3513 return error("Invalid type for value"); 3514 auto CC = static_cast<CallingConv::ID>(Record[1]); 3515 if (CC & ~CallingConv::MaxID) 3516 return error("Invalid calling convention ID"); 3517 3518 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3519 "", TheModule); 3520 3521 Func->setCallingConv(CC); 3522 bool isProto = Record[2]; 3523 uint64_t RawLinkage = Record[3]; 3524 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3525 Func->setAttributes(getAttributes(Record[4])); 3526 3527 unsigned Alignment; 3528 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3529 return EC; 3530 Func->setAlignment(Alignment); 3531 if (Record[6]) { 3532 if (Record[6]-1 >= SectionTable.size()) 3533 return error("Invalid ID"); 3534 Func->setSection(SectionTable[Record[6]-1]); 3535 } 3536 // Local linkage must have default visibility. 3537 if (!Func->hasLocalLinkage()) 3538 // FIXME: Change to an error if non-default in 4.0. 3539 Func->setVisibility(getDecodedVisibility(Record[7])); 3540 if (Record.size() > 8 && Record[8]) { 3541 if (Record[8]-1 >= GCTable.size()) 3542 return error("Invalid ID"); 3543 Func->setGC(GCTable[Record[8]-1].c_str()); 3544 } 3545 bool UnnamedAddr = false; 3546 if (Record.size() > 9) 3547 UnnamedAddr = Record[9]; 3548 Func->setUnnamedAddr(UnnamedAddr); 3549 if (Record.size() > 10 && Record[10] != 0) 3550 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3551 3552 if (Record.size() > 11) 3553 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3554 else 3555 upgradeDLLImportExportLinkage(Func, RawLinkage); 3556 3557 if (Record.size() > 12) { 3558 if (unsigned ComdatID = Record[12]) { 3559 if (ComdatID > ComdatList.size()) 3560 return error("Invalid function comdat ID"); 3561 Func->setComdat(ComdatList[ComdatID - 1]); 3562 } 3563 } else if (hasImplicitComdat(RawLinkage)) { 3564 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3565 } 3566 3567 if (Record.size() > 13 && Record[13] != 0) 3568 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3569 3570 if (Record.size() > 14 && Record[14] != 0) 3571 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3572 3573 ValueList.push_back(Func); 3574 3575 // If this is a function with a body, remember the prototype we are 3576 // creating now, so that we can match up the body with them later. 3577 if (!isProto) { 3578 Func->setIsMaterializable(true); 3579 FunctionsWithBodies.push_back(Func); 3580 DeferredFunctionInfo[Func] = 0; 3581 } 3582 break; 3583 } 3584 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3585 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3586 case bitc::MODULE_CODE_ALIAS: 3587 case bitc::MODULE_CODE_ALIAS_OLD: { 3588 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3589 if (Record.size() < (3 + (unsigned)NewRecord)) 3590 return error("Invalid record"); 3591 unsigned OpNum = 0; 3592 Type *Ty = getTypeByID(Record[OpNum++]); 3593 if (!Ty) 3594 return error("Invalid record"); 3595 3596 unsigned AddrSpace; 3597 if (!NewRecord) { 3598 auto *PTy = dyn_cast<PointerType>(Ty); 3599 if (!PTy) 3600 return error("Invalid type for value"); 3601 Ty = PTy->getElementType(); 3602 AddrSpace = PTy->getAddressSpace(); 3603 } else { 3604 AddrSpace = Record[OpNum++]; 3605 } 3606 3607 auto Val = Record[OpNum++]; 3608 auto Linkage = Record[OpNum++]; 3609 auto *NewGA = GlobalAlias::create( 3610 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3611 // Old bitcode files didn't have visibility field. 3612 // Local linkage must have default visibility. 3613 if (OpNum != Record.size()) { 3614 auto VisInd = OpNum++; 3615 if (!NewGA->hasLocalLinkage()) 3616 // FIXME: Change to an error if non-default in 4.0. 3617 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3618 } 3619 if (OpNum != Record.size()) 3620 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3621 else 3622 upgradeDLLImportExportLinkage(NewGA, Linkage); 3623 if (OpNum != Record.size()) 3624 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3625 if (OpNum != Record.size()) 3626 NewGA->setUnnamedAddr(Record[OpNum++]); 3627 ValueList.push_back(NewGA); 3628 AliasInits.push_back(std::make_pair(NewGA, Val)); 3629 break; 3630 } 3631 /// MODULE_CODE_PURGEVALS: [numvals] 3632 case bitc::MODULE_CODE_PURGEVALS: 3633 // Trim down the value list to the specified size. 3634 if (Record.size() < 1 || Record[0] > ValueList.size()) 3635 return error("Invalid record"); 3636 ValueList.shrinkTo(Record[0]); 3637 break; 3638 /// MODULE_CODE_VSTOFFSET: [offset] 3639 case bitc::MODULE_CODE_VSTOFFSET: 3640 if (Record.size() < 1) 3641 return error("Invalid record"); 3642 VSTOffset = Record[0]; 3643 break; 3644 /// MODULE_CODE_METADATA_VALUES: [numvals] 3645 case bitc::MODULE_CODE_METADATA_VALUES: 3646 if (Record.size() < 1) 3647 return error("Invalid record"); 3648 assert(!IsMetadataMaterialized); 3649 // This record contains the number of metadata values in the module-level 3650 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3651 // a postpass, where we will parse function-level metadata first. 3652 // This is needed because the ids of metadata are assigned implicitly 3653 // based on their ordering in the bitcode, with the function-level 3654 // metadata ids starting after the module-level metadata ids. Otherwise, 3655 // we would have to parse the module-level metadata block to prime the 3656 // MDValueList when we are lazy loading metadata during function 3657 // importing. Initialize the MDValueList size here based on the 3658 // record value, regardless of whether we are doing lazy metadata 3659 // loading, so that we have consistent handling and assertion 3660 // checking in parseMetadata for module-level metadata. 3661 NumModuleMDs = Record[0]; 3662 SeenModuleValuesRecord = true; 3663 assert(MDValueList.size() == 0); 3664 MDValueList.resize(NumModuleMDs); 3665 break; 3666 } 3667 Record.clear(); 3668 } 3669 } 3670 3671 /// Helper to read the header common to all bitcode files. 3672 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3673 // Sniff for the signature. 3674 if (Stream.Read(8) != 'B' || 3675 Stream.Read(8) != 'C' || 3676 Stream.Read(4) != 0x0 || 3677 Stream.Read(4) != 0xC || 3678 Stream.Read(4) != 0xE || 3679 Stream.Read(4) != 0xD) 3680 return false; 3681 return true; 3682 } 3683 3684 std::error_code 3685 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3686 Module *M, bool ShouldLazyLoadMetadata) { 3687 TheModule = M; 3688 3689 if (std::error_code EC = initStream(std::move(Streamer))) 3690 return EC; 3691 3692 // Sniff for the signature. 3693 if (!hasValidBitcodeHeader(Stream)) 3694 return error("Invalid bitcode signature"); 3695 3696 // We expect a number of well-defined blocks, though we don't necessarily 3697 // need to understand them all. 3698 while (1) { 3699 if (Stream.AtEndOfStream()) { 3700 // We didn't really read a proper Module. 3701 return error("Malformed IR file"); 3702 } 3703 3704 BitstreamEntry Entry = 3705 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3706 3707 if (Entry.Kind != BitstreamEntry::SubBlock) 3708 return error("Malformed block"); 3709 3710 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3711 parseBitcodeVersion(); 3712 continue; 3713 } 3714 3715 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3716 return parseModule(0, ShouldLazyLoadMetadata); 3717 3718 if (Stream.SkipBlock()) 3719 return error("Invalid record"); 3720 } 3721 } 3722 3723 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3724 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3725 return error("Invalid record"); 3726 3727 SmallVector<uint64_t, 64> Record; 3728 3729 std::string Triple; 3730 // Read all the records for this module. 3731 while (1) { 3732 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3733 3734 switch (Entry.Kind) { 3735 case BitstreamEntry::SubBlock: // Handled for us already. 3736 case BitstreamEntry::Error: 3737 return error("Malformed block"); 3738 case BitstreamEntry::EndBlock: 3739 return Triple; 3740 case BitstreamEntry::Record: 3741 // The interesting case. 3742 break; 3743 } 3744 3745 // Read a record. 3746 switch (Stream.readRecord(Entry.ID, Record)) { 3747 default: break; // Default behavior, ignore unknown content. 3748 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3749 std::string S; 3750 if (convertToString(Record, 0, S)) 3751 return error("Invalid record"); 3752 Triple = S; 3753 break; 3754 } 3755 } 3756 Record.clear(); 3757 } 3758 llvm_unreachable("Exit infinite loop"); 3759 } 3760 3761 ErrorOr<std::string> BitcodeReader::parseTriple() { 3762 if (std::error_code EC = initStream(nullptr)) 3763 return EC; 3764 3765 // Sniff for the signature. 3766 if (!hasValidBitcodeHeader(Stream)) 3767 return error("Invalid bitcode signature"); 3768 3769 // We expect a number of well-defined blocks, though we don't necessarily 3770 // need to understand them all. 3771 while (1) { 3772 BitstreamEntry Entry = Stream.advance(); 3773 3774 switch (Entry.Kind) { 3775 case BitstreamEntry::Error: 3776 return error("Malformed block"); 3777 case BitstreamEntry::EndBlock: 3778 return std::error_code(); 3779 3780 case BitstreamEntry::SubBlock: 3781 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3782 return parseModuleTriple(); 3783 3784 // Ignore other sub-blocks. 3785 if (Stream.SkipBlock()) 3786 return error("Malformed block"); 3787 continue; 3788 3789 case BitstreamEntry::Record: 3790 Stream.skipRecord(Entry.ID); 3791 continue; 3792 } 3793 } 3794 } 3795 3796 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3797 if (std::error_code EC = initStream(nullptr)) 3798 return EC; 3799 3800 // Sniff for the signature. 3801 if (!hasValidBitcodeHeader(Stream)) 3802 return error("Invalid bitcode signature"); 3803 3804 // We expect a number of well-defined blocks, though we don't necessarily 3805 // need to understand them all. 3806 while (1) { 3807 BitstreamEntry Entry = Stream.advance(); 3808 switch (Entry.Kind) { 3809 case BitstreamEntry::Error: 3810 return error("Malformed block"); 3811 case BitstreamEntry::EndBlock: 3812 return std::error_code(); 3813 3814 case BitstreamEntry::SubBlock: 3815 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3816 if (std::error_code EC = parseBitcodeVersion()) 3817 return EC; 3818 return ProducerIdentification; 3819 } 3820 // Ignore other sub-blocks. 3821 if (Stream.SkipBlock()) 3822 return error("Malformed block"); 3823 continue; 3824 case BitstreamEntry::Record: 3825 Stream.skipRecord(Entry.ID); 3826 continue; 3827 } 3828 } 3829 } 3830 3831 /// Parse metadata attachments. 3832 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3833 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3834 return error("Invalid record"); 3835 3836 SmallVector<uint64_t, 64> Record; 3837 while (1) { 3838 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3839 3840 switch (Entry.Kind) { 3841 case BitstreamEntry::SubBlock: // Handled for us already. 3842 case BitstreamEntry::Error: 3843 return error("Malformed block"); 3844 case BitstreamEntry::EndBlock: 3845 return std::error_code(); 3846 case BitstreamEntry::Record: 3847 // The interesting case. 3848 break; 3849 } 3850 3851 // Read a metadata attachment record. 3852 Record.clear(); 3853 switch (Stream.readRecord(Entry.ID, Record)) { 3854 default: // Default behavior: ignore. 3855 break; 3856 case bitc::METADATA_ATTACHMENT: { 3857 unsigned RecordLength = Record.size(); 3858 if (Record.empty()) 3859 return error("Invalid record"); 3860 if (RecordLength % 2 == 0) { 3861 // A function attachment. 3862 for (unsigned I = 0; I != RecordLength; I += 2) { 3863 auto K = MDKindMap.find(Record[I]); 3864 if (K == MDKindMap.end()) 3865 return error("Invalid ID"); 3866 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3867 F.setMetadata(K->second, cast<MDNode>(MD)); 3868 } 3869 continue; 3870 } 3871 3872 // An instruction attachment. 3873 Instruction *Inst = InstructionList[Record[0]]; 3874 for (unsigned i = 1; i != RecordLength; i = i+2) { 3875 unsigned Kind = Record[i]; 3876 DenseMap<unsigned, unsigned>::iterator I = 3877 MDKindMap.find(Kind); 3878 if (I == MDKindMap.end()) 3879 return error("Invalid ID"); 3880 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3881 if (isa<LocalAsMetadata>(Node)) 3882 // Drop the attachment. This used to be legal, but there's no 3883 // upgrade path. 3884 break; 3885 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3886 if (I->second == LLVMContext::MD_tbaa) 3887 InstsWithTBAATag.push_back(Inst); 3888 } 3889 break; 3890 } 3891 } 3892 } 3893 } 3894 3895 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3896 LLVMContext &Context = PtrType->getContext(); 3897 if (!isa<PointerType>(PtrType)) 3898 return error(Context, "Load/Store operand is not a pointer type"); 3899 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3900 3901 if (ValType && ValType != ElemType) 3902 return error(Context, "Explicit load/store type does not match pointee " 3903 "type of pointer operand"); 3904 if (!PointerType::isLoadableOrStorableType(ElemType)) 3905 return error(Context, "Cannot load/store from pointer"); 3906 return std::error_code(); 3907 } 3908 3909 /// Lazily parse the specified function body block. 3910 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3911 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3912 return error("Invalid record"); 3913 3914 InstructionList.clear(); 3915 unsigned ModuleValueListSize = ValueList.size(); 3916 unsigned ModuleMDValueListSize = MDValueList.size(); 3917 3918 // Add all the function arguments to the value table. 3919 for (Argument &I : F->args()) 3920 ValueList.push_back(&I); 3921 3922 unsigned NextValueNo = ValueList.size(); 3923 BasicBlock *CurBB = nullptr; 3924 unsigned CurBBNo = 0; 3925 3926 DebugLoc LastLoc; 3927 auto getLastInstruction = [&]() -> Instruction * { 3928 if (CurBB && !CurBB->empty()) 3929 return &CurBB->back(); 3930 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3931 !FunctionBBs[CurBBNo - 1]->empty()) 3932 return &FunctionBBs[CurBBNo - 1]->back(); 3933 return nullptr; 3934 }; 3935 3936 std::vector<OperandBundleDef> OperandBundles; 3937 3938 // Read all the records. 3939 SmallVector<uint64_t, 64> Record; 3940 while (1) { 3941 BitstreamEntry Entry = Stream.advance(); 3942 3943 switch (Entry.Kind) { 3944 case BitstreamEntry::Error: 3945 return error("Malformed block"); 3946 case BitstreamEntry::EndBlock: 3947 goto OutOfRecordLoop; 3948 3949 case BitstreamEntry::SubBlock: 3950 switch (Entry.ID) { 3951 default: // Skip unknown content. 3952 if (Stream.SkipBlock()) 3953 return error("Invalid record"); 3954 break; 3955 case bitc::CONSTANTS_BLOCK_ID: 3956 if (std::error_code EC = parseConstants()) 3957 return EC; 3958 NextValueNo = ValueList.size(); 3959 break; 3960 case bitc::VALUE_SYMTAB_BLOCK_ID: 3961 if (std::error_code EC = parseValueSymbolTable()) 3962 return EC; 3963 break; 3964 case bitc::METADATA_ATTACHMENT_ID: 3965 if (std::error_code EC = parseMetadataAttachment(*F)) 3966 return EC; 3967 break; 3968 case bitc::METADATA_BLOCK_ID: 3969 if (std::error_code EC = parseMetadata()) 3970 return EC; 3971 break; 3972 case bitc::USELIST_BLOCK_ID: 3973 if (std::error_code EC = parseUseLists()) 3974 return EC; 3975 break; 3976 } 3977 continue; 3978 3979 case BitstreamEntry::Record: 3980 // The interesting case. 3981 break; 3982 } 3983 3984 // Read a record. 3985 Record.clear(); 3986 Instruction *I = nullptr; 3987 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3988 switch (BitCode) { 3989 default: // Default behavior: reject 3990 return error("Invalid value"); 3991 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3992 if (Record.size() < 1 || Record[0] == 0) 3993 return error("Invalid record"); 3994 // Create all the basic blocks for the function. 3995 FunctionBBs.resize(Record[0]); 3996 3997 // See if anything took the address of blocks in this function. 3998 auto BBFRI = BasicBlockFwdRefs.find(F); 3999 if (BBFRI == BasicBlockFwdRefs.end()) { 4000 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4001 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4002 } else { 4003 auto &BBRefs = BBFRI->second; 4004 // Check for invalid basic block references. 4005 if (BBRefs.size() > FunctionBBs.size()) 4006 return error("Invalid ID"); 4007 assert(!BBRefs.empty() && "Unexpected empty array"); 4008 assert(!BBRefs.front() && "Invalid reference to entry block"); 4009 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4010 ++I) 4011 if (I < RE && BBRefs[I]) { 4012 BBRefs[I]->insertInto(F); 4013 FunctionBBs[I] = BBRefs[I]; 4014 } else { 4015 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4016 } 4017 4018 // Erase from the table. 4019 BasicBlockFwdRefs.erase(BBFRI); 4020 } 4021 4022 CurBB = FunctionBBs[0]; 4023 continue; 4024 } 4025 4026 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4027 // This record indicates that the last instruction is at the same 4028 // location as the previous instruction with a location. 4029 I = getLastInstruction(); 4030 4031 if (!I) 4032 return error("Invalid record"); 4033 I->setDebugLoc(LastLoc); 4034 I = nullptr; 4035 continue; 4036 4037 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4038 I = getLastInstruction(); 4039 if (!I || Record.size() < 4) 4040 return error("Invalid record"); 4041 4042 unsigned Line = Record[0], Col = Record[1]; 4043 unsigned ScopeID = Record[2], IAID = Record[3]; 4044 4045 MDNode *Scope = nullptr, *IA = nullptr; 4046 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4047 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4048 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4049 I->setDebugLoc(LastLoc); 4050 I = nullptr; 4051 continue; 4052 } 4053 4054 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4055 unsigned OpNum = 0; 4056 Value *LHS, *RHS; 4057 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4058 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4059 OpNum+1 > Record.size()) 4060 return error("Invalid record"); 4061 4062 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4063 if (Opc == -1) 4064 return error("Invalid record"); 4065 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4066 InstructionList.push_back(I); 4067 if (OpNum < Record.size()) { 4068 if (Opc == Instruction::Add || 4069 Opc == Instruction::Sub || 4070 Opc == Instruction::Mul || 4071 Opc == Instruction::Shl) { 4072 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4073 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4074 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4075 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4076 } else if (Opc == Instruction::SDiv || 4077 Opc == Instruction::UDiv || 4078 Opc == Instruction::LShr || 4079 Opc == Instruction::AShr) { 4080 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4081 cast<BinaryOperator>(I)->setIsExact(true); 4082 } else if (isa<FPMathOperator>(I)) { 4083 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4084 if (FMF.any()) 4085 I->setFastMathFlags(FMF); 4086 } 4087 4088 } 4089 break; 4090 } 4091 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4092 unsigned OpNum = 0; 4093 Value *Op; 4094 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4095 OpNum+2 != Record.size()) 4096 return error("Invalid record"); 4097 4098 Type *ResTy = getTypeByID(Record[OpNum]); 4099 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4100 if (Opc == -1 || !ResTy) 4101 return error("Invalid record"); 4102 Instruction *Temp = nullptr; 4103 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4104 if (Temp) { 4105 InstructionList.push_back(Temp); 4106 CurBB->getInstList().push_back(Temp); 4107 } 4108 } else { 4109 auto CastOp = (Instruction::CastOps)Opc; 4110 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4111 return error("Invalid cast"); 4112 I = CastInst::Create(CastOp, Op, ResTy); 4113 } 4114 InstructionList.push_back(I); 4115 break; 4116 } 4117 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4118 case bitc::FUNC_CODE_INST_GEP_OLD: 4119 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4120 unsigned OpNum = 0; 4121 4122 Type *Ty; 4123 bool InBounds; 4124 4125 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4126 InBounds = Record[OpNum++]; 4127 Ty = getTypeByID(Record[OpNum++]); 4128 } else { 4129 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4130 Ty = nullptr; 4131 } 4132 4133 Value *BasePtr; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4135 return error("Invalid record"); 4136 4137 if (!Ty) 4138 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4139 ->getElementType(); 4140 else if (Ty != 4141 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4142 ->getElementType()) 4143 return error( 4144 "Explicit gep type does not match pointee type of pointer operand"); 4145 4146 SmallVector<Value*, 16> GEPIdx; 4147 while (OpNum != Record.size()) { 4148 Value *Op; 4149 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4150 return error("Invalid record"); 4151 GEPIdx.push_back(Op); 4152 } 4153 4154 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4155 4156 InstructionList.push_back(I); 4157 if (InBounds) 4158 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4159 break; 4160 } 4161 4162 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4163 // EXTRACTVAL: [opty, opval, n x indices] 4164 unsigned OpNum = 0; 4165 Value *Agg; 4166 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4167 return error("Invalid record"); 4168 4169 unsigned RecSize = Record.size(); 4170 if (OpNum == RecSize) 4171 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4172 4173 SmallVector<unsigned, 4> EXTRACTVALIdx; 4174 Type *CurTy = Agg->getType(); 4175 for (; OpNum != RecSize; ++OpNum) { 4176 bool IsArray = CurTy->isArrayTy(); 4177 bool IsStruct = CurTy->isStructTy(); 4178 uint64_t Index = Record[OpNum]; 4179 4180 if (!IsStruct && !IsArray) 4181 return error("EXTRACTVAL: Invalid type"); 4182 if ((unsigned)Index != Index) 4183 return error("Invalid value"); 4184 if (IsStruct && Index >= CurTy->subtypes().size()) 4185 return error("EXTRACTVAL: Invalid struct index"); 4186 if (IsArray && Index >= CurTy->getArrayNumElements()) 4187 return error("EXTRACTVAL: Invalid array index"); 4188 EXTRACTVALIdx.push_back((unsigned)Index); 4189 4190 if (IsStruct) 4191 CurTy = CurTy->subtypes()[Index]; 4192 else 4193 CurTy = CurTy->subtypes()[0]; 4194 } 4195 4196 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4197 InstructionList.push_back(I); 4198 break; 4199 } 4200 4201 case bitc::FUNC_CODE_INST_INSERTVAL: { 4202 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4203 unsigned OpNum = 0; 4204 Value *Agg; 4205 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4206 return error("Invalid record"); 4207 Value *Val; 4208 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4209 return error("Invalid record"); 4210 4211 unsigned RecSize = Record.size(); 4212 if (OpNum == RecSize) 4213 return error("INSERTVAL: Invalid instruction with 0 indices"); 4214 4215 SmallVector<unsigned, 4> INSERTVALIdx; 4216 Type *CurTy = Agg->getType(); 4217 for (; OpNum != RecSize; ++OpNum) { 4218 bool IsArray = CurTy->isArrayTy(); 4219 bool IsStruct = CurTy->isStructTy(); 4220 uint64_t Index = Record[OpNum]; 4221 4222 if (!IsStruct && !IsArray) 4223 return error("INSERTVAL: Invalid type"); 4224 if ((unsigned)Index != Index) 4225 return error("Invalid value"); 4226 if (IsStruct && Index >= CurTy->subtypes().size()) 4227 return error("INSERTVAL: Invalid struct index"); 4228 if (IsArray && Index >= CurTy->getArrayNumElements()) 4229 return error("INSERTVAL: Invalid array index"); 4230 4231 INSERTVALIdx.push_back((unsigned)Index); 4232 if (IsStruct) 4233 CurTy = CurTy->subtypes()[Index]; 4234 else 4235 CurTy = CurTy->subtypes()[0]; 4236 } 4237 4238 if (CurTy != Val->getType()) 4239 return error("Inserted value type doesn't match aggregate type"); 4240 4241 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4242 InstructionList.push_back(I); 4243 break; 4244 } 4245 4246 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4247 // obsolete form of select 4248 // handles select i1 ... in old bitcode 4249 unsigned OpNum = 0; 4250 Value *TrueVal, *FalseVal, *Cond; 4251 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4252 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4253 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4254 return error("Invalid record"); 4255 4256 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4257 InstructionList.push_back(I); 4258 break; 4259 } 4260 4261 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4262 // new form of select 4263 // handles select i1 or select [N x i1] 4264 unsigned OpNum = 0; 4265 Value *TrueVal, *FalseVal, *Cond; 4266 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4267 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4268 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4269 return error("Invalid record"); 4270 4271 // select condition can be either i1 or [N x i1] 4272 if (VectorType* vector_type = 4273 dyn_cast<VectorType>(Cond->getType())) { 4274 // expect <n x i1> 4275 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4276 return error("Invalid type for value"); 4277 } else { 4278 // expect i1 4279 if (Cond->getType() != Type::getInt1Ty(Context)) 4280 return error("Invalid type for value"); 4281 } 4282 4283 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4284 InstructionList.push_back(I); 4285 break; 4286 } 4287 4288 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4289 unsigned OpNum = 0; 4290 Value *Vec, *Idx; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4292 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4293 return error("Invalid record"); 4294 if (!Vec->getType()->isVectorTy()) 4295 return error("Invalid type for value"); 4296 I = ExtractElementInst::Create(Vec, Idx); 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 4301 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4302 unsigned OpNum = 0; 4303 Value *Vec, *Elt, *Idx; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4305 return error("Invalid record"); 4306 if (!Vec->getType()->isVectorTy()) 4307 return error("Invalid type for value"); 4308 if (popValue(Record, OpNum, NextValueNo, 4309 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4310 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4311 return error("Invalid record"); 4312 I = InsertElementInst::Create(Vec, Elt, Idx); 4313 InstructionList.push_back(I); 4314 break; 4315 } 4316 4317 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4318 unsigned OpNum = 0; 4319 Value *Vec1, *Vec2, *Mask; 4320 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4321 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4322 return error("Invalid record"); 4323 4324 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4325 return error("Invalid record"); 4326 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4327 return error("Invalid type for value"); 4328 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4329 InstructionList.push_back(I); 4330 break; 4331 } 4332 4333 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4334 // Old form of ICmp/FCmp returning bool 4335 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4336 // both legal on vectors but had different behaviour. 4337 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4338 // FCmp/ICmp returning bool or vector of bool 4339 4340 unsigned OpNum = 0; 4341 Value *LHS, *RHS; 4342 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4343 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4344 return error("Invalid record"); 4345 4346 unsigned PredVal = Record[OpNum]; 4347 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4348 FastMathFlags FMF; 4349 if (IsFP && Record.size() > OpNum+1) 4350 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4351 4352 if (OpNum+1 != Record.size()) 4353 return error("Invalid record"); 4354 4355 if (LHS->getType()->isFPOrFPVectorTy()) 4356 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4357 else 4358 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4359 4360 if (FMF.any()) 4361 I->setFastMathFlags(FMF); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 4366 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4367 { 4368 unsigned Size = Record.size(); 4369 if (Size == 0) { 4370 I = ReturnInst::Create(Context); 4371 InstructionList.push_back(I); 4372 break; 4373 } 4374 4375 unsigned OpNum = 0; 4376 Value *Op = nullptr; 4377 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4378 return error("Invalid record"); 4379 if (OpNum != Record.size()) 4380 return error("Invalid record"); 4381 4382 I = ReturnInst::Create(Context, Op); 4383 InstructionList.push_back(I); 4384 break; 4385 } 4386 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4387 if (Record.size() != 1 && Record.size() != 3) 4388 return error("Invalid record"); 4389 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4390 if (!TrueDest) 4391 return error("Invalid record"); 4392 4393 if (Record.size() == 1) { 4394 I = BranchInst::Create(TrueDest); 4395 InstructionList.push_back(I); 4396 } 4397 else { 4398 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4399 Value *Cond = getValue(Record, 2, NextValueNo, 4400 Type::getInt1Ty(Context)); 4401 if (!FalseDest || !Cond) 4402 return error("Invalid record"); 4403 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4404 InstructionList.push_back(I); 4405 } 4406 break; 4407 } 4408 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4409 if (Record.size() != 1 && Record.size() != 2) 4410 return error("Invalid record"); 4411 unsigned Idx = 0; 4412 Value *CleanupPad = 4413 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4414 if (!CleanupPad) 4415 return error("Invalid record"); 4416 BasicBlock *UnwindDest = nullptr; 4417 if (Record.size() == 2) { 4418 UnwindDest = getBasicBlock(Record[Idx++]); 4419 if (!UnwindDest) 4420 return error("Invalid record"); 4421 } 4422 4423 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4424 InstructionList.push_back(I); 4425 break; 4426 } 4427 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4428 if (Record.size() != 2) 4429 return error("Invalid record"); 4430 unsigned Idx = 0; 4431 Value *CatchPad = 4432 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4433 if (!CatchPad) 4434 return error("Invalid record"); 4435 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4436 if (!BB) 4437 return error("Invalid record"); 4438 4439 I = CatchReturnInst::Create(CatchPad, BB); 4440 InstructionList.push_back(I); 4441 break; 4442 } 4443 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4444 // We must have, at minimum, the outer scope and the number of arguments. 4445 if (Record.size() < 2) 4446 return error("Invalid record"); 4447 4448 unsigned Idx = 0; 4449 4450 Value *ParentPad = 4451 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4452 4453 unsigned NumHandlers = Record[Idx++]; 4454 4455 SmallVector<BasicBlock *, 2> Handlers; 4456 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4457 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4458 if (!BB) 4459 return error("Invalid record"); 4460 Handlers.push_back(BB); 4461 } 4462 4463 BasicBlock *UnwindDest = nullptr; 4464 if (Idx + 1 == Record.size()) { 4465 UnwindDest = getBasicBlock(Record[Idx++]); 4466 if (!UnwindDest) 4467 return error("Invalid record"); 4468 } 4469 4470 if (Record.size() != Idx) 4471 return error("Invalid record"); 4472 4473 auto *CatchSwitch = 4474 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4475 for (BasicBlock *Handler : Handlers) 4476 CatchSwitch->addHandler(Handler); 4477 I = CatchSwitch; 4478 InstructionList.push_back(I); 4479 break; 4480 } 4481 case bitc::FUNC_CODE_INST_CATCHPAD: 4482 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4483 // We must have, at minimum, the outer scope and the number of arguments. 4484 if (Record.size() < 2) 4485 return error("Invalid record"); 4486 4487 unsigned Idx = 0; 4488 4489 Value *ParentPad = 4490 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4491 4492 unsigned NumArgOperands = Record[Idx++]; 4493 4494 SmallVector<Value *, 2> Args; 4495 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4496 Value *Val; 4497 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4498 return error("Invalid record"); 4499 Args.push_back(Val); 4500 } 4501 4502 if (Record.size() != Idx) 4503 return error("Invalid record"); 4504 4505 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4506 I = CleanupPadInst::Create(ParentPad, Args); 4507 else 4508 I = CatchPadInst::Create(ParentPad, Args); 4509 InstructionList.push_back(I); 4510 break; 4511 } 4512 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4513 // Check magic 4514 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4515 // "New" SwitchInst format with case ranges. The changes to write this 4516 // format were reverted but we still recognize bitcode that uses it. 4517 // Hopefully someday we will have support for case ranges and can use 4518 // this format again. 4519 4520 Type *OpTy = getTypeByID(Record[1]); 4521 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4522 4523 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4524 BasicBlock *Default = getBasicBlock(Record[3]); 4525 if (!OpTy || !Cond || !Default) 4526 return error("Invalid record"); 4527 4528 unsigned NumCases = Record[4]; 4529 4530 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4531 InstructionList.push_back(SI); 4532 4533 unsigned CurIdx = 5; 4534 for (unsigned i = 0; i != NumCases; ++i) { 4535 SmallVector<ConstantInt*, 1> CaseVals; 4536 unsigned NumItems = Record[CurIdx++]; 4537 for (unsigned ci = 0; ci != NumItems; ++ci) { 4538 bool isSingleNumber = Record[CurIdx++]; 4539 4540 APInt Low; 4541 unsigned ActiveWords = 1; 4542 if (ValueBitWidth > 64) 4543 ActiveWords = Record[CurIdx++]; 4544 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4545 ValueBitWidth); 4546 CurIdx += ActiveWords; 4547 4548 if (!isSingleNumber) { 4549 ActiveWords = 1; 4550 if (ValueBitWidth > 64) 4551 ActiveWords = Record[CurIdx++]; 4552 APInt High = readWideAPInt( 4553 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4554 CurIdx += ActiveWords; 4555 4556 // FIXME: It is not clear whether values in the range should be 4557 // compared as signed or unsigned values. The partially 4558 // implemented changes that used this format in the past used 4559 // unsigned comparisons. 4560 for ( ; Low.ule(High); ++Low) 4561 CaseVals.push_back(ConstantInt::get(Context, Low)); 4562 } else 4563 CaseVals.push_back(ConstantInt::get(Context, Low)); 4564 } 4565 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4566 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4567 cve = CaseVals.end(); cvi != cve; ++cvi) 4568 SI->addCase(*cvi, DestBB); 4569 } 4570 I = SI; 4571 break; 4572 } 4573 4574 // Old SwitchInst format without case ranges. 4575 4576 if (Record.size() < 3 || (Record.size() & 1) == 0) 4577 return error("Invalid record"); 4578 Type *OpTy = getTypeByID(Record[0]); 4579 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4580 BasicBlock *Default = getBasicBlock(Record[2]); 4581 if (!OpTy || !Cond || !Default) 4582 return error("Invalid record"); 4583 unsigned NumCases = (Record.size()-3)/2; 4584 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4585 InstructionList.push_back(SI); 4586 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4587 ConstantInt *CaseVal = 4588 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4589 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4590 if (!CaseVal || !DestBB) { 4591 delete SI; 4592 return error("Invalid record"); 4593 } 4594 SI->addCase(CaseVal, DestBB); 4595 } 4596 I = SI; 4597 break; 4598 } 4599 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4600 if (Record.size() < 2) 4601 return error("Invalid record"); 4602 Type *OpTy = getTypeByID(Record[0]); 4603 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4604 if (!OpTy || !Address) 4605 return error("Invalid record"); 4606 unsigned NumDests = Record.size()-2; 4607 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4608 InstructionList.push_back(IBI); 4609 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4610 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4611 IBI->addDestination(DestBB); 4612 } else { 4613 delete IBI; 4614 return error("Invalid record"); 4615 } 4616 } 4617 I = IBI; 4618 break; 4619 } 4620 4621 case bitc::FUNC_CODE_INST_INVOKE: { 4622 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4623 if (Record.size() < 4) 4624 return error("Invalid record"); 4625 unsigned OpNum = 0; 4626 AttributeSet PAL = getAttributes(Record[OpNum++]); 4627 unsigned CCInfo = Record[OpNum++]; 4628 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4629 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4630 4631 FunctionType *FTy = nullptr; 4632 if (CCInfo >> 13 & 1 && 4633 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4634 return error("Explicit invoke type is not a function type"); 4635 4636 Value *Callee; 4637 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4638 return error("Invalid record"); 4639 4640 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4641 if (!CalleeTy) 4642 return error("Callee is not a pointer"); 4643 if (!FTy) { 4644 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4645 if (!FTy) 4646 return error("Callee is not of pointer to function type"); 4647 } else if (CalleeTy->getElementType() != FTy) 4648 return error("Explicit invoke type does not match pointee type of " 4649 "callee operand"); 4650 if (Record.size() < FTy->getNumParams() + OpNum) 4651 return error("Insufficient operands to call"); 4652 4653 SmallVector<Value*, 16> Ops; 4654 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4655 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4656 FTy->getParamType(i))); 4657 if (!Ops.back()) 4658 return error("Invalid record"); 4659 } 4660 4661 if (!FTy->isVarArg()) { 4662 if (Record.size() != OpNum) 4663 return error("Invalid record"); 4664 } else { 4665 // Read type/value pairs for varargs params. 4666 while (OpNum != Record.size()) { 4667 Value *Op; 4668 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4669 return error("Invalid record"); 4670 Ops.push_back(Op); 4671 } 4672 } 4673 4674 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4675 OperandBundles.clear(); 4676 InstructionList.push_back(I); 4677 cast<InvokeInst>(I)->setCallingConv( 4678 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4679 cast<InvokeInst>(I)->setAttributes(PAL); 4680 break; 4681 } 4682 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4683 unsigned Idx = 0; 4684 Value *Val = nullptr; 4685 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4686 return error("Invalid record"); 4687 I = ResumeInst::Create(Val); 4688 InstructionList.push_back(I); 4689 break; 4690 } 4691 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4692 I = new UnreachableInst(Context); 4693 InstructionList.push_back(I); 4694 break; 4695 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4696 if (Record.size() < 1 || ((Record.size()-1)&1)) 4697 return error("Invalid record"); 4698 Type *Ty = getTypeByID(Record[0]); 4699 if (!Ty) 4700 return error("Invalid record"); 4701 4702 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4703 InstructionList.push_back(PN); 4704 4705 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4706 Value *V; 4707 // With the new function encoding, it is possible that operands have 4708 // negative IDs (for forward references). Use a signed VBR 4709 // representation to keep the encoding small. 4710 if (UseRelativeIDs) 4711 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4712 else 4713 V = getValue(Record, 1+i, NextValueNo, Ty); 4714 BasicBlock *BB = getBasicBlock(Record[2+i]); 4715 if (!V || !BB) 4716 return error("Invalid record"); 4717 PN->addIncoming(V, BB); 4718 } 4719 I = PN; 4720 break; 4721 } 4722 4723 case bitc::FUNC_CODE_INST_LANDINGPAD: 4724 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4725 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4726 unsigned Idx = 0; 4727 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4728 if (Record.size() < 3) 4729 return error("Invalid record"); 4730 } else { 4731 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4732 if (Record.size() < 4) 4733 return error("Invalid record"); 4734 } 4735 Type *Ty = getTypeByID(Record[Idx++]); 4736 if (!Ty) 4737 return error("Invalid record"); 4738 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4739 Value *PersFn = nullptr; 4740 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4741 return error("Invalid record"); 4742 4743 if (!F->hasPersonalityFn()) 4744 F->setPersonalityFn(cast<Constant>(PersFn)); 4745 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4746 return error("Personality function mismatch"); 4747 } 4748 4749 bool IsCleanup = !!Record[Idx++]; 4750 unsigned NumClauses = Record[Idx++]; 4751 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4752 LP->setCleanup(IsCleanup); 4753 for (unsigned J = 0; J != NumClauses; ++J) { 4754 LandingPadInst::ClauseType CT = 4755 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4756 Value *Val; 4757 4758 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4759 delete LP; 4760 return error("Invalid record"); 4761 } 4762 4763 assert((CT != LandingPadInst::Catch || 4764 !isa<ArrayType>(Val->getType())) && 4765 "Catch clause has a invalid type!"); 4766 assert((CT != LandingPadInst::Filter || 4767 isa<ArrayType>(Val->getType())) && 4768 "Filter clause has invalid type!"); 4769 LP->addClause(cast<Constant>(Val)); 4770 } 4771 4772 I = LP; 4773 InstructionList.push_back(I); 4774 break; 4775 } 4776 4777 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4778 if (Record.size() != 4) 4779 return error("Invalid record"); 4780 uint64_t AlignRecord = Record[3]; 4781 const uint64_t InAllocaMask = uint64_t(1) << 5; 4782 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4783 // Reserve bit 7 for SwiftError flag. 4784 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4785 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4786 bool InAlloca = AlignRecord & InAllocaMask; 4787 Type *Ty = getTypeByID(Record[0]); 4788 if ((AlignRecord & ExplicitTypeMask) == 0) { 4789 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4790 if (!PTy) 4791 return error("Old-style alloca with a non-pointer type"); 4792 Ty = PTy->getElementType(); 4793 } 4794 Type *OpTy = getTypeByID(Record[1]); 4795 Value *Size = getFnValueByID(Record[2], OpTy); 4796 unsigned Align; 4797 if (std::error_code EC = 4798 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4799 return EC; 4800 } 4801 if (!Ty || !Size) 4802 return error("Invalid record"); 4803 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4804 AI->setUsedWithInAlloca(InAlloca); 4805 I = AI; 4806 InstructionList.push_back(I); 4807 break; 4808 } 4809 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4810 unsigned OpNum = 0; 4811 Value *Op; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4813 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4814 return error("Invalid record"); 4815 4816 Type *Ty = nullptr; 4817 if (OpNum + 3 == Record.size()) 4818 Ty = getTypeByID(Record[OpNum++]); 4819 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4820 return EC; 4821 if (!Ty) 4822 Ty = cast<PointerType>(Op->getType())->getElementType(); 4823 4824 unsigned Align; 4825 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4826 return EC; 4827 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4828 4829 InstructionList.push_back(I); 4830 break; 4831 } 4832 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4833 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4834 unsigned OpNum = 0; 4835 Value *Op; 4836 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4837 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4838 return error("Invalid record"); 4839 4840 Type *Ty = nullptr; 4841 if (OpNum + 5 == Record.size()) 4842 Ty = getTypeByID(Record[OpNum++]); 4843 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4844 return EC; 4845 if (!Ty) 4846 Ty = cast<PointerType>(Op->getType())->getElementType(); 4847 4848 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4849 if (Ordering == NotAtomic || Ordering == Release || 4850 Ordering == AcquireRelease) 4851 return error("Invalid record"); 4852 if (Ordering != NotAtomic && Record[OpNum] == 0) 4853 return error("Invalid record"); 4854 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4855 4856 unsigned Align; 4857 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4858 return EC; 4859 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4860 4861 InstructionList.push_back(I); 4862 break; 4863 } 4864 case bitc::FUNC_CODE_INST_STORE: 4865 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4866 unsigned OpNum = 0; 4867 Value *Val, *Ptr; 4868 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4869 (BitCode == bitc::FUNC_CODE_INST_STORE 4870 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4871 : popValue(Record, OpNum, NextValueNo, 4872 cast<PointerType>(Ptr->getType())->getElementType(), 4873 Val)) || 4874 OpNum + 2 != Record.size()) 4875 return error("Invalid record"); 4876 4877 if (std::error_code EC = 4878 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4879 return EC; 4880 unsigned Align; 4881 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4882 return EC; 4883 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4884 InstructionList.push_back(I); 4885 break; 4886 } 4887 case bitc::FUNC_CODE_INST_STOREATOMIC: 4888 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4889 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4890 unsigned OpNum = 0; 4891 Value *Val, *Ptr; 4892 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4893 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4894 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4895 : popValue(Record, OpNum, NextValueNo, 4896 cast<PointerType>(Ptr->getType())->getElementType(), 4897 Val)) || 4898 OpNum + 4 != Record.size()) 4899 return error("Invalid record"); 4900 4901 if (std::error_code EC = 4902 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4903 return EC; 4904 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4905 if (Ordering == NotAtomic || Ordering == Acquire || 4906 Ordering == AcquireRelease) 4907 return error("Invalid record"); 4908 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4909 if (Ordering != NotAtomic && Record[OpNum] == 0) 4910 return error("Invalid record"); 4911 4912 unsigned Align; 4913 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4914 return EC; 4915 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4916 InstructionList.push_back(I); 4917 break; 4918 } 4919 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4920 case bitc::FUNC_CODE_INST_CMPXCHG: { 4921 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4922 // failureordering?, isweak?] 4923 unsigned OpNum = 0; 4924 Value *Ptr, *Cmp, *New; 4925 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4926 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4927 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4928 : popValue(Record, OpNum, NextValueNo, 4929 cast<PointerType>(Ptr->getType())->getElementType(), 4930 Cmp)) || 4931 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4932 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4933 return error("Invalid record"); 4934 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4935 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4936 return error("Invalid record"); 4937 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4938 4939 if (std::error_code EC = 4940 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4941 return EC; 4942 AtomicOrdering FailureOrdering; 4943 if (Record.size() < 7) 4944 FailureOrdering = 4945 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4946 else 4947 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4948 4949 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4950 SynchScope); 4951 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4952 4953 if (Record.size() < 8) { 4954 // Before weak cmpxchgs existed, the instruction simply returned the 4955 // value loaded from memory, so bitcode files from that era will be 4956 // expecting the first component of a modern cmpxchg. 4957 CurBB->getInstList().push_back(I); 4958 I = ExtractValueInst::Create(I, 0); 4959 } else { 4960 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4961 } 4962 4963 InstructionList.push_back(I); 4964 break; 4965 } 4966 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4967 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4968 unsigned OpNum = 0; 4969 Value *Ptr, *Val; 4970 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4971 popValue(Record, OpNum, NextValueNo, 4972 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4973 OpNum+4 != Record.size()) 4974 return error("Invalid record"); 4975 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4976 if (Operation < AtomicRMWInst::FIRST_BINOP || 4977 Operation > AtomicRMWInst::LAST_BINOP) 4978 return error("Invalid record"); 4979 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4980 if (Ordering == NotAtomic || Ordering == Unordered) 4981 return error("Invalid record"); 4982 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4983 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4984 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4985 InstructionList.push_back(I); 4986 break; 4987 } 4988 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4989 if (2 != Record.size()) 4990 return error("Invalid record"); 4991 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4992 if (Ordering == NotAtomic || Ordering == Unordered || 4993 Ordering == Monotonic) 4994 return error("Invalid record"); 4995 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4996 I = new FenceInst(Context, Ordering, SynchScope); 4997 InstructionList.push_back(I); 4998 break; 4999 } 5000 case bitc::FUNC_CODE_INST_CALL: { 5001 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5002 if (Record.size() < 3) 5003 return error("Invalid record"); 5004 5005 unsigned OpNum = 0; 5006 AttributeSet PAL = getAttributes(Record[OpNum++]); 5007 unsigned CCInfo = Record[OpNum++]; 5008 5009 FastMathFlags FMF; 5010 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5011 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5012 if (!FMF.any()) 5013 return error("Fast math flags indicator set for call with no FMF"); 5014 } 5015 5016 FunctionType *FTy = nullptr; 5017 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5018 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5019 return error("Explicit call type is not a function type"); 5020 5021 Value *Callee; 5022 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5023 return error("Invalid record"); 5024 5025 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5026 if (!OpTy) 5027 return error("Callee is not a pointer type"); 5028 if (!FTy) { 5029 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5030 if (!FTy) 5031 return error("Callee is not of pointer to function type"); 5032 } else if (OpTy->getElementType() != FTy) 5033 return error("Explicit call type does not match pointee type of " 5034 "callee operand"); 5035 if (Record.size() < FTy->getNumParams() + OpNum) 5036 return error("Insufficient operands to call"); 5037 5038 SmallVector<Value*, 16> Args; 5039 // Read the fixed params. 5040 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5041 if (FTy->getParamType(i)->isLabelTy()) 5042 Args.push_back(getBasicBlock(Record[OpNum])); 5043 else 5044 Args.push_back(getValue(Record, OpNum, NextValueNo, 5045 FTy->getParamType(i))); 5046 if (!Args.back()) 5047 return error("Invalid record"); 5048 } 5049 5050 // Read type/value pairs for varargs params. 5051 if (!FTy->isVarArg()) { 5052 if (OpNum != Record.size()) 5053 return error("Invalid record"); 5054 } else { 5055 while (OpNum != Record.size()) { 5056 Value *Op; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5058 return error("Invalid record"); 5059 Args.push_back(Op); 5060 } 5061 } 5062 5063 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5064 OperandBundles.clear(); 5065 InstructionList.push_back(I); 5066 cast<CallInst>(I)->setCallingConv( 5067 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5068 CallInst::TailCallKind TCK = CallInst::TCK_None; 5069 if (CCInfo & 1 << bitc::CALL_TAIL) 5070 TCK = CallInst::TCK_Tail; 5071 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5072 TCK = CallInst::TCK_MustTail; 5073 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5074 TCK = CallInst::TCK_NoTail; 5075 cast<CallInst>(I)->setTailCallKind(TCK); 5076 cast<CallInst>(I)->setAttributes(PAL); 5077 if (FMF.any()) { 5078 if (!isa<FPMathOperator>(I)) 5079 return error("Fast-math-flags specified for call without " 5080 "floating-point scalar or vector return type"); 5081 I->setFastMathFlags(FMF); 5082 } 5083 break; 5084 } 5085 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5086 if (Record.size() < 3) 5087 return error("Invalid record"); 5088 Type *OpTy = getTypeByID(Record[0]); 5089 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5090 Type *ResTy = getTypeByID(Record[2]); 5091 if (!OpTy || !Op || !ResTy) 5092 return error("Invalid record"); 5093 I = new VAArgInst(Op, ResTy); 5094 InstructionList.push_back(I); 5095 break; 5096 } 5097 5098 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5099 // A call or an invoke can be optionally prefixed with some variable 5100 // number of operand bundle blocks. These blocks are read into 5101 // OperandBundles and consumed at the next call or invoke instruction. 5102 5103 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5104 return error("Invalid record"); 5105 5106 std::vector<Value *> Inputs; 5107 5108 unsigned OpNum = 1; 5109 while (OpNum != Record.size()) { 5110 Value *Op; 5111 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5112 return error("Invalid record"); 5113 Inputs.push_back(Op); 5114 } 5115 5116 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5117 continue; 5118 } 5119 } 5120 5121 // Add instruction to end of current BB. If there is no current BB, reject 5122 // this file. 5123 if (!CurBB) { 5124 delete I; 5125 return error("Invalid instruction with no BB"); 5126 } 5127 if (!OperandBundles.empty()) { 5128 delete I; 5129 return error("Operand bundles found with no consumer"); 5130 } 5131 CurBB->getInstList().push_back(I); 5132 5133 // If this was a terminator instruction, move to the next block. 5134 if (isa<TerminatorInst>(I)) { 5135 ++CurBBNo; 5136 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5137 } 5138 5139 // Non-void values get registered in the value table for future use. 5140 if (I && !I->getType()->isVoidTy()) 5141 ValueList.assignValue(I, NextValueNo++); 5142 } 5143 5144 OutOfRecordLoop: 5145 5146 if (!OperandBundles.empty()) 5147 return error("Operand bundles found with no consumer"); 5148 5149 // Check the function list for unresolved values. 5150 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5151 if (!A->getParent()) { 5152 // We found at least one unresolved value. Nuke them all to avoid leaks. 5153 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5154 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5155 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5156 delete A; 5157 } 5158 } 5159 return error("Never resolved value found in function"); 5160 } 5161 } 5162 5163 // FIXME: Check for unresolved forward-declared metadata references 5164 // and clean up leaks. 5165 5166 // Trim the value list down to the size it was before we parsed this function. 5167 ValueList.shrinkTo(ModuleValueListSize); 5168 MDValueList.shrinkTo(ModuleMDValueListSize); 5169 std::vector<BasicBlock*>().swap(FunctionBBs); 5170 return std::error_code(); 5171 } 5172 5173 /// Find the function body in the bitcode stream 5174 std::error_code BitcodeReader::findFunctionInStream( 5175 Function *F, 5176 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5177 while (DeferredFunctionInfoIterator->second == 0) { 5178 // This is the fallback handling for the old format bitcode that 5179 // didn't contain the function index in the VST, or when we have 5180 // an anonymous function which would not have a VST entry. 5181 // Assert that we have one of those two cases. 5182 assert(VSTOffset == 0 || !F->hasName()); 5183 // Parse the next body in the stream and set its position in the 5184 // DeferredFunctionInfo map. 5185 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5186 return EC; 5187 } 5188 return std::error_code(); 5189 } 5190 5191 //===----------------------------------------------------------------------===// 5192 // GVMaterializer implementation 5193 //===----------------------------------------------------------------------===// 5194 5195 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5196 5197 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5198 // In older bitcode we must materialize the metadata before parsing 5199 // any functions, in order to set up the MDValueList properly. 5200 if (!SeenModuleValuesRecord) { 5201 if (std::error_code EC = materializeMetadata()) 5202 return EC; 5203 } 5204 5205 Function *F = dyn_cast<Function>(GV); 5206 // If it's not a function or is already material, ignore the request. 5207 if (!F || !F->isMaterializable()) 5208 return std::error_code(); 5209 5210 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5211 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5212 // If its position is recorded as 0, its body is somewhere in the stream 5213 // but we haven't seen it yet. 5214 if (DFII->second == 0) 5215 if (std::error_code EC = findFunctionInStream(F, DFII)) 5216 return EC; 5217 5218 // Move the bit stream to the saved position of the deferred function body. 5219 Stream.JumpToBit(DFII->second); 5220 5221 if (std::error_code EC = parseFunctionBody(F)) 5222 return EC; 5223 F->setIsMaterializable(false); 5224 5225 if (StripDebugInfo) 5226 stripDebugInfo(*F); 5227 5228 // Upgrade any old intrinsic calls in the function. 5229 for (auto &I : UpgradedIntrinsics) { 5230 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5231 User *U = *UI; 5232 ++UI; 5233 if (CallInst *CI = dyn_cast<CallInst>(U)) 5234 UpgradeIntrinsicCall(CI, I.second); 5235 } 5236 } 5237 5238 // Finish fn->subprogram upgrade for materialized functions. 5239 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5240 F->setSubprogram(SP); 5241 5242 // Bring in any functions that this function forward-referenced via 5243 // blockaddresses. 5244 return materializeForwardReferencedFunctions(); 5245 } 5246 5247 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5248 const Function *F = dyn_cast<Function>(GV); 5249 if (!F || F->isDeclaration()) 5250 return false; 5251 5252 // Dematerializing F would leave dangling references that wouldn't be 5253 // reconnected on re-materialization. 5254 if (BlockAddressesTaken.count(F)) 5255 return false; 5256 5257 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5258 } 5259 5260 void BitcodeReader::dematerialize(GlobalValue *GV) { 5261 Function *F = dyn_cast<Function>(GV); 5262 // If this function isn't dematerializable, this is a noop. 5263 if (!F || !isDematerializable(F)) 5264 return; 5265 5266 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5267 5268 // Just forget the function body, we can remat it later. 5269 F->dropAllReferences(); 5270 F->setIsMaterializable(true); 5271 } 5272 5273 std::error_code BitcodeReader::materializeModule(Module *M) { 5274 assert(M == TheModule && 5275 "Can only Materialize the Module this BitcodeReader is attached to."); 5276 5277 if (std::error_code EC = materializeMetadata()) 5278 return EC; 5279 5280 // Promise to materialize all forward references. 5281 WillMaterializeAllForwardRefs = true; 5282 5283 // Iterate over the module, deserializing any functions that are still on 5284 // disk. 5285 for (Function &F : *TheModule) { 5286 if (std::error_code EC = materialize(&F)) 5287 return EC; 5288 } 5289 // At this point, if there are any function bodies, parse the rest of 5290 // the bits in the module past the last function block we have recorded 5291 // through either lazy scanning or the VST. 5292 if (LastFunctionBlockBit || NextUnreadBit) 5293 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5294 : NextUnreadBit); 5295 5296 // Check that all block address forward references got resolved (as we 5297 // promised above). 5298 if (!BasicBlockFwdRefs.empty()) 5299 return error("Never resolved function from blockaddress"); 5300 5301 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5302 // delete the old functions to clean up. We can't do this unless the entire 5303 // module is materialized because there could always be another function body 5304 // with calls to the old function. 5305 for (auto &I : UpgradedIntrinsics) { 5306 for (auto *U : I.first->users()) { 5307 if (CallInst *CI = dyn_cast<CallInst>(U)) 5308 UpgradeIntrinsicCall(CI, I.second); 5309 } 5310 if (!I.first->use_empty()) 5311 I.first->replaceAllUsesWith(I.second); 5312 I.first->eraseFromParent(); 5313 } 5314 UpgradedIntrinsics.clear(); 5315 5316 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5317 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5318 5319 UpgradeDebugInfo(*M); 5320 return std::error_code(); 5321 } 5322 5323 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5324 return IdentifiedStructTypes; 5325 } 5326 5327 std::error_code 5328 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5329 if (Streamer) 5330 return initLazyStream(std::move(Streamer)); 5331 return initStreamFromBuffer(); 5332 } 5333 5334 std::error_code BitcodeReader::initStreamFromBuffer() { 5335 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5336 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5337 5338 if (Buffer->getBufferSize() & 3) 5339 return error("Invalid bitcode signature"); 5340 5341 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5342 // The magic number is 0x0B17C0DE stored in little endian. 5343 if (isBitcodeWrapper(BufPtr, BufEnd)) 5344 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5345 return error("Invalid bitcode wrapper header"); 5346 5347 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5348 Stream.init(&*StreamFile); 5349 5350 return std::error_code(); 5351 } 5352 5353 std::error_code 5354 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5355 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5356 // see it. 5357 auto OwnedBytes = 5358 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5359 StreamingMemoryObject &Bytes = *OwnedBytes; 5360 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5361 Stream.init(&*StreamFile); 5362 5363 unsigned char buf[16]; 5364 if (Bytes.readBytes(buf, 16, 0) != 16) 5365 return error("Invalid bitcode signature"); 5366 5367 if (!isBitcode(buf, buf + 16)) 5368 return error("Invalid bitcode signature"); 5369 5370 if (isBitcodeWrapper(buf, buf + 4)) { 5371 const unsigned char *bitcodeStart = buf; 5372 const unsigned char *bitcodeEnd = buf + 16; 5373 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5374 Bytes.dropLeadingBytes(bitcodeStart - buf); 5375 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5376 } 5377 return std::error_code(); 5378 } 5379 5380 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5381 const Twine &Message) { 5382 return ::error(DiagnosticHandler, make_error_code(E), Message); 5383 } 5384 5385 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5386 return ::error(DiagnosticHandler, 5387 make_error_code(BitcodeError::CorruptedBitcode), Message); 5388 } 5389 5390 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5391 return ::error(DiagnosticHandler, make_error_code(E)); 5392 } 5393 5394 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5395 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5396 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5397 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5398 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5399 5400 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5401 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5402 bool CheckFuncSummaryPresenceOnly) 5403 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5404 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5405 5406 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5407 5408 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5409 5410 // Specialized value symbol table parser used when reading function index 5411 // blocks where we don't actually create global values. 5412 // At the end of this routine the function index is populated with a map 5413 // from function name to FunctionInfo. The function info contains 5414 // the function block's bitcode offset as well as the offset into the 5415 // function summary section. 5416 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5417 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5418 return error("Invalid record"); 5419 5420 SmallVector<uint64_t, 64> Record; 5421 5422 // Read all the records for this value table. 5423 SmallString<128> ValueName; 5424 while (1) { 5425 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5426 5427 switch (Entry.Kind) { 5428 case BitstreamEntry::SubBlock: // Handled for us already. 5429 case BitstreamEntry::Error: 5430 return error("Malformed block"); 5431 case BitstreamEntry::EndBlock: 5432 return std::error_code(); 5433 case BitstreamEntry::Record: 5434 // The interesting case. 5435 break; 5436 } 5437 5438 // Read a record. 5439 Record.clear(); 5440 switch (Stream.readRecord(Entry.ID, Record)) { 5441 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5442 break; 5443 case bitc::VST_CODE_FNENTRY: { 5444 // VST_FNENTRY: [valueid, offset, namechar x N] 5445 if (convertToString(Record, 2, ValueName)) 5446 return error("Invalid record"); 5447 unsigned ValueID = Record[0]; 5448 uint64_t FuncOffset = Record[1]; 5449 std::unique_ptr<FunctionInfo> FuncInfo = 5450 llvm::make_unique<FunctionInfo>(FuncOffset); 5451 if (foundFuncSummary() && !IsLazy) { 5452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5453 SummaryMap.find(ValueID); 5454 assert(SMI != SummaryMap.end() && "Summary info not found"); 5455 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5456 } 5457 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5458 5459 ValueName.clear(); 5460 break; 5461 } 5462 case bitc::VST_CODE_COMBINED_FNENTRY: { 5463 // VST_FNENTRY: [offset, namechar x N] 5464 if (convertToString(Record, 1, ValueName)) 5465 return error("Invalid record"); 5466 uint64_t FuncSummaryOffset = Record[0]; 5467 std::unique_ptr<FunctionInfo> FuncInfo = 5468 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5469 if (foundFuncSummary() && !IsLazy) { 5470 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5471 SummaryMap.find(FuncSummaryOffset); 5472 assert(SMI != SummaryMap.end() && "Summary info not found"); 5473 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5474 } 5475 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5476 5477 ValueName.clear(); 5478 break; 5479 } 5480 } 5481 } 5482 } 5483 5484 // Parse just the blocks needed for function index building out of the module. 5485 // At the end of this routine the function Index is populated with a map 5486 // from function name to FunctionInfo. The function info contains 5487 // either the parsed function summary information (when parsing summaries 5488 // eagerly), or just to the function summary record's offset 5489 // if parsing lazily (IsLazy). 5490 std::error_code FunctionIndexBitcodeReader::parseModule() { 5491 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5492 return error("Invalid record"); 5493 5494 // Read the function index for this module. 5495 while (1) { 5496 BitstreamEntry Entry = Stream.advance(); 5497 5498 switch (Entry.Kind) { 5499 case BitstreamEntry::Error: 5500 return error("Malformed block"); 5501 case BitstreamEntry::EndBlock: 5502 return std::error_code(); 5503 5504 case BitstreamEntry::SubBlock: 5505 if (CheckFuncSummaryPresenceOnly) { 5506 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5507 SeenFuncSummary = true; 5508 // No need to parse the rest since we found the summary. 5509 return std::error_code(); 5510 } 5511 if (Stream.SkipBlock()) 5512 return error("Invalid record"); 5513 continue; 5514 } 5515 switch (Entry.ID) { 5516 default: // Skip unknown content. 5517 if (Stream.SkipBlock()) 5518 return error("Invalid record"); 5519 break; 5520 case bitc::BLOCKINFO_BLOCK_ID: 5521 // Need to parse these to get abbrev ids (e.g. for VST) 5522 if (Stream.ReadBlockInfoBlock()) 5523 return error("Malformed block"); 5524 break; 5525 case bitc::VALUE_SYMTAB_BLOCK_ID: 5526 if (std::error_code EC = parseValueSymbolTable()) 5527 return EC; 5528 break; 5529 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5530 SeenFuncSummary = true; 5531 if (IsLazy) { 5532 // Lazy parsing of summary info, skip it. 5533 if (Stream.SkipBlock()) 5534 return error("Invalid record"); 5535 } else if (std::error_code EC = parseEntireSummary()) 5536 return EC; 5537 break; 5538 case bitc::MODULE_STRTAB_BLOCK_ID: 5539 if (std::error_code EC = parseModuleStringTable()) 5540 return EC; 5541 break; 5542 } 5543 continue; 5544 5545 case BitstreamEntry::Record: 5546 Stream.skipRecord(Entry.ID); 5547 continue; 5548 } 5549 } 5550 } 5551 5552 // Eagerly parse the entire function summary block (i.e. for all functions 5553 // in the index). This populates the FunctionSummary objects in 5554 // the index. 5555 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5556 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5557 return error("Invalid record"); 5558 5559 SmallVector<uint64_t, 64> Record; 5560 5561 while (1) { 5562 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5563 5564 switch (Entry.Kind) { 5565 case BitstreamEntry::SubBlock: // Handled for us already. 5566 case BitstreamEntry::Error: 5567 return error("Malformed block"); 5568 case BitstreamEntry::EndBlock: 5569 return std::error_code(); 5570 case BitstreamEntry::Record: 5571 // The interesting case. 5572 break; 5573 } 5574 5575 // Read a record. The record format depends on whether this 5576 // is a per-module index or a combined index file. In the per-module 5577 // case the records contain the associated value's ID for correlation 5578 // with VST entries. In the combined index the correlation is done 5579 // via the bitcode offset of the summary records (which were saved 5580 // in the combined index VST entries). The records also contain 5581 // information used for ThinLTO renaming and importing. 5582 Record.clear(); 5583 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5584 switch (Stream.readRecord(Entry.ID, Record)) { 5585 default: // Default behavior: ignore. 5586 break; 5587 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5588 case bitc::FS_CODE_PERMODULE_ENTRY: { 5589 unsigned ValueID = Record[0]; 5590 bool IsLocal = Record[1]; 5591 unsigned InstCount = Record[2]; 5592 std::unique_ptr<FunctionSummary> FS = 5593 llvm::make_unique<FunctionSummary>(InstCount); 5594 FS->setLocalFunction(IsLocal); 5595 // The module path string ref set in the summary must be owned by the 5596 // index's module string table. Since we don't have a module path 5597 // string table section in the per-module index, we create a single 5598 // module path string table entry with an empty (0) ID to take 5599 // ownership. 5600 FS->setModulePath( 5601 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5602 SummaryMap[ValueID] = std::move(FS); 5603 } 5604 // FS_COMBINED_ENTRY: [modid, instcount] 5605 case bitc::FS_CODE_COMBINED_ENTRY: { 5606 uint64_t ModuleId = Record[0]; 5607 unsigned InstCount = Record[1]; 5608 std::unique_ptr<FunctionSummary> FS = 5609 llvm::make_unique<FunctionSummary>(InstCount); 5610 FS->setModulePath(ModuleIdMap[ModuleId]); 5611 SummaryMap[CurRecordBit] = std::move(FS); 5612 } 5613 } 5614 } 5615 llvm_unreachable("Exit infinite loop"); 5616 } 5617 5618 // Parse the module string table block into the Index. 5619 // This populates the ModulePathStringTable map in the index. 5620 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5621 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5622 return error("Invalid record"); 5623 5624 SmallVector<uint64_t, 64> Record; 5625 5626 SmallString<128> ModulePath; 5627 while (1) { 5628 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5629 5630 switch (Entry.Kind) { 5631 case BitstreamEntry::SubBlock: // Handled for us already. 5632 case BitstreamEntry::Error: 5633 return error("Malformed block"); 5634 case BitstreamEntry::EndBlock: 5635 return std::error_code(); 5636 case BitstreamEntry::Record: 5637 // The interesting case. 5638 break; 5639 } 5640 5641 Record.clear(); 5642 switch (Stream.readRecord(Entry.ID, Record)) { 5643 default: // Default behavior: ignore. 5644 break; 5645 case bitc::MST_CODE_ENTRY: { 5646 // MST_ENTRY: [modid, namechar x N] 5647 if (convertToString(Record, 1, ModulePath)) 5648 return error("Invalid record"); 5649 uint64_t ModuleId = Record[0]; 5650 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5651 ModuleIdMap[ModuleId] = ModulePathInMap; 5652 ModulePath.clear(); 5653 break; 5654 } 5655 } 5656 } 5657 llvm_unreachable("Exit infinite loop"); 5658 } 5659 5660 // Parse the function info index from the bitcode streamer into the given index. 5661 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5662 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5663 TheIndex = I; 5664 5665 if (std::error_code EC = initStream(std::move(Streamer))) 5666 return EC; 5667 5668 // Sniff for the signature. 5669 if (!hasValidBitcodeHeader(Stream)) 5670 return error("Invalid bitcode signature"); 5671 5672 // We expect a number of well-defined blocks, though we don't necessarily 5673 // need to understand them all. 5674 while (1) { 5675 if (Stream.AtEndOfStream()) { 5676 // We didn't really read a proper Module block. 5677 return error("Malformed block"); 5678 } 5679 5680 BitstreamEntry Entry = 5681 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5682 5683 if (Entry.Kind != BitstreamEntry::SubBlock) 5684 return error("Malformed block"); 5685 5686 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5687 // building the function summary index. 5688 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5689 return parseModule(); 5690 5691 if (Stream.SkipBlock()) 5692 return error("Invalid record"); 5693 } 5694 } 5695 5696 // Parse the function information at the given offset in the buffer into 5697 // the index. Used to support lazy parsing of function summaries from the 5698 // combined index during importing. 5699 // TODO: This function is not yet complete as it won't have a consumer 5700 // until ThinLTO function importing is added. 5701 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5702 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5703 size_t FunctionSummaryOffset) { 5704 TheIndex = I; 5705 5706 if (std::error_code EC = initStream(std::move(Streamer))) 5707 return EC; 5708 5709 // Sniff for the signature. 5710 if (!hasValidBitcodeHeader(Stream)) 5711 return error("Invalid bitcode signature"); 5712 5713 Stream.JumpToBit(FunctionSummaryOffset); 5714 5715 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5716 5717 switch (Entry.Kind) { 5718 default: 5719 return error("Malformed block"); 5720 case BitstreamEntry::Record: 5721 // The expected case. 5722 break; 5723 } 5724 5725 // TODO: Read a record. This interface will be completed when ThinLTO 5726 // importing is added so that it can be tested. 5727 SmallVector<uint64_t, 64> Record; 5728 switch (Stream.readRecord(Entry.ID, Record)) { 5729 case bitc::FS_CODE_COMBINED_ENTRY: 5730 default: 5731 return error("Invalid record"); 5732 } 5733 5734 return std::error_code(); 5735 } 5736 5737 std::error_code 5738 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5739 if (Streamer) 5740 return initLazyStream(std::move(Streamer)); 5741 return initStreamFromBuffer(); 5742 } 5743 5744 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5745 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5746 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5747 5748 if (Buffer->getBufferSize() & 3) 5749 return error("Invalid bitcode signature"); 5750 5751 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5752 // The magic number is 0x0B17C0DE stored in little endian. 5753 if (isBitcodeWrapper(BufPtr, BufEnd)) 5754 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5755 return error("Invalid bitcode wrapper header"); 5756 5757 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5758 Stream.init(&*StreamFile); 5759 5760 return std::error_code(); 5761 } 5762 5763 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5764 std::unique_ptr<DataStreamer> Streamer) { 5765 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5766 // see it. 5767 auto OwnedBytes = 5768 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5769 StreamingMemoryObject &Bytes = *OwnedBytes; 5770 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5771 Stream.init(&*StreamFile); 5772 5773 unsigned char buf[16]; 5774 if (Bytes.readBytes(buf, 16, 0) != 16) 5775 return error("Invalid bitcode signature"); 5776 5777 if (!isBitcode(buf, buf + 16)) 5778 return error("Invalid bitcode signature"); 5779 5780 if (isBitcodeWrapper(buf, buf + 4)) { 5781 const unsigned char *bitcodeStart = buf; 5782 const unsigned char *bitcodeEnd = buf + 16; 5783 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5784 Bytes.dropLeadingBytes(bitcodeStart - buf); 5785 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5786 } 5787 return std::error_code(); 5788 } 5789 5790 namespace { 5791 class BitcodeErrorCategoryType : public std::error_category { 5792 const char *name() const LLVM_NOEXCEPT override { 5793 return "llvm.bitcode"; 5794 } 5795 std::string message(int IE) const override { 5796 BitcodeError E = static_cast<BitcodeError>(IE); 5797 switch (E) { 5798 case BitcodeError::InvalidBitcodeSignature: 5799 return "Invalid bitcode signature"; 5800 case BitcodeError::CorruptedBitcode: 5801 return "Corrupted bitcode"; 5802 } 5803 llvm_unreachable("Unknown error type!"); 5804 } 5805 }; 5806 } 5807 5808 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5809 5810 const std::error_category &llvm::BitcodeErrorCategory() { 5811 return *ErrorCategory; 5812 } 5813 5814 //===----------------------------------------------------------------------===// 5815 // External interface 5816 //===----------------------------------------------------------------------===// 5817 5818 static ErrorOr<std::unique_ptr<Module>> 5819 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5820 BitcodeReader *R, LLVMContext &Context, 5821 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5822 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5823 M->setMaterializer(R); 5824 5825 auto cleanupOnError = [&](std::error_code EC) { 5826 R->releaseBuffer(); // Never take ownership on error. 5827 return EC; 5828 }; 5829 5830 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5831 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5832 ShouldLazyLoadMetadata)) 5833 return cleanupOnError(EC); 5834 5835 if (MaterializeAll) { 5836 // Read in the entire module, and destroy the BitcodeReader. 5837 if (std::error_code EC = M->materializeAllPermanently()) 5838 return cleanupOnError(EC); 5839 } else { 5840 // Resolve forward references from blockaddresses. 5841 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5842 return cleanupOnError(EC); 5843 } 5844 return std::move(M); 5845 } 5846 5847 /// \brief Get a lazy one-at-time loading module from bitcode. 5848 /// 5849 /// This isn't always used in a lazy context. In particular, it's also used by 5850 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5851 /// in forward-referenced functions from block address references. 5852 /// 5853 /// \param[in] MaterializeAll Set to \c true if we should materialize 5854 /// everything. 5855 static ErrorOr<std::unique_ptr<Module>> 5856 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5857 LLVMContext &Context, bool MaterializeAll, 5858 bool ShouldLazyLoadMetadata = false) { 5859 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5860 5861 ErrorOr<std::unique_ptr<Module>> Ret = 5862 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5863 MaterializeAll, ShouldLazyLoadMetadata); 5864 if (!Ret) 5865 return Ret; 5866 5867 Buffer.release(); // The BitcodeReader owns it now. 5868 return Ret; 5869 } 5870 5871 ErrorOr<std::unique_ptr<Module>> 5872 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5873 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5874 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5875 ShouldLazyLoadMetadata); 5876 } 5877 5878 ErrorOr<std::unique_ptr<Module>> 5879 llvm::getStreamedBitcodeModule(StringRef Name, 5880 std::unique_ptr<DataStreamer> Streamer, 5881 LLVMContext &Context) { 5882 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5883 BitcodeReader *R = new BitcodeReader(Context); 5884 5885 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5886 false); 5887 } 5888 5889 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5890 LLVMContext &Context) { 5891 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5892 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5893 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5894 // written. We must defer until the Module has been fully materialized. 5895 } 5896 5897 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5898 LLVMContext &Context) { 5899 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5900 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5901 ErrorOr<std::string> Triple = R->parseTriple(); 5902 if (Triple.getError()) 5903 return ""; 5904 return Triple.get(); 5905 } 5906 5907 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5908 LLVMContext &Context) { 5909 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5910 BitcodeReader R(Buf.release(), Context); 5911 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5912 if (ProducerString.getError()) 5913 return ""; 5914 return ProducerString.get(); 5915 } 5916 5917 // Parse the specified bitcode buffer, returning the function info index. 5918 // If IsLazy is false, parse the entire function summary into 5919 // the index. Otherwise skip the function summary section, and only create 5920 // an index object with a map from function name to function summary offset. 5921 // The index is used to perform lazy function summary reading later. 5922 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5923 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5924 DiagnosticHandlerFunction DiagnosticHandler, 5925 bool IsLazy) { 5926 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5927 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5928 5929 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5930 5931 auto cleanupOnError = [&](std::error_code EC) { 5932 R.releaseBuffer(); // Never take ownership on error. 5933 return EC; 5934 }; 5935 5936 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5937 return cleanupOnError(EC); 5938 5939 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5940 return std::move(Index); 5941 } 5942 5943 // Check if the given bitcode buffer contains a function summary block. 5944 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5945 DiagnosticHandlerFunction DiagnosticHandler) { 5946 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5947 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5948 5949 auto cleanupOnError = [&](std::error_code EC) { 5950 R.releaseBuffer(); // Never take ownership on error. 5951 return false; 5952 }; 5953 5954 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5955 return cleanupOnError(EC); 5956 5957 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5958 return R.foundFuncSummary(); 5959 } 5960 5961 // This method supports lazy reading of function summary data from the combined 5962 // index during ThinLTO function importing. When reading the combined index 5963 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5964 // Then this method is called for each function considered for importing, 5965 // to parse the summary information for the given function name into 5966 // the index. 5967 std::error_code llvm::readFunctionSummary( 5968 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5969 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5970 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5971 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5972 5973 auto cleanupOnError = [&](std::error_code EC) { 5974 R.releaseBuffer(); // Never take ownership on error. 5975 return EC; 5976 }; 5977 5978 // Lookup the given function name in the FunctionMap, which may 5979 // contain a list of function infos in the case of a COMDAT. Walk through 5980 // and parse each function summary info at the function summary offset 5981 // recorded when parsing the value symbol table. 5982 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5983 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5984 if (std::error_code EC = 5985 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5986 return cleanupOnError(EC); 5987 } 5988 5989 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5990 return std::error_code(); 5991 } 5992