1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getMetadataFwdRef(unsigned Idx); 130 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 131 void assignValue(Metadata *MD, unsigned Idx); 132 void tryToResolveCycles(); 133 }; 134 135 class BitcodeReader : public GVMaterializer { 136 LLVMContext &Context; 137 Module *TheModule = nullptr; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 // Next offset to start scanning for lazy parsing of function bodies. 142 uint64_t NextUnreadBit = 0; 143 // Last function offset found in the VST. 144 uint64_t LastFunctionBlockBit = 0; 145 bool SeenValueSymbolTable = false; 146 uint64_t VSTOffset = 0; 147 // Contains an arbitrary and optional string identifying the bitcode producer 148 std::string ProducerIdentification; 149 150 std::vector<Type*> TypeList; 151 BitcodeReaderValueList ValueList; 152 BitcodeReaderMetadataList MetadataList; 153 std::vector<Comdat *> ComdatList; 154 SmallVector<Instruction *, 64> InstructionList; 155 156 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 157 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 158 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 159 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 160 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 161 162 SmallVector<Instruction*, 64> InstsWithTBAATag; 163 164 bool HasSeenOldLoopTags = false; 165 166 /// The set of attributes by index. Index zero in the file is for null, and 167 /// is thus not represented here. As such all indices are off by one. 168 std::vector<AttributeSet> MAttributes; 169 170 /// The set of attribute groups. 171 std::map<unsigned, AttributeSet> MAttributeGroups; 172 173 /// While parsing a function body, this is a list of the basic blocks for the 174 /// function. 175 std::vector<BasicBlock*> FunctionBBs; 176 177 // When reading the module header, this list is populated with functions that 178 // have bodies later in the file. 179 std::vector<Function*> FunctionsWithBodies; 180 181 // When intrinsic functions are encountered which require upgrading they are 182 // stored here with their replacement function. 183 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 184 UpgradedIntrinsicMap UpgradedIntrinsics; 185 186 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 187 DenseMap<unsigned, unsigned> MDKindMap; 188 189 // Several operations happen after the module header has been read, but 190 // before function bodies are processed. This keeps track of whether 191 // we've done this yet. 192 bool SeenFirstFunctionBody = false; 193 194 /// When function bodies are initially scanned, this map contains info about 195 /// where to find deferred function body in the stream. 196 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 197 198 /// When Metadata block is initially scanned when parsing the module, we may 199 /// choose to defer parsing of the metadata. This vector contains info about 200 /// which Metadata blocks are deferred. 201 std::vector<uint64_t> DeferredMetadataInfo; 202 203 /// These are basic blocks forward-referenced by block addresses. They are 204 /// inserted lazily into functions when they're loaded. The basic block ID is 205 /// its index into the vector. 206 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 207 std::deque<Function *> BasicBlockFwdRefQueue; 208 209 /// Indicates that we are using a new encoding for instruction operands where 210 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 211 /// instruction number, for a more compact encoding. Some instruction 212 /// operands are not relative to the instruction ID: basic block numbers, and 213 /// types. Once the old style function blocks have been phased out, we would 214 /// not need this flag. 215 bool UseRelativeIDs = false; 216 217 /// True if all functions will be materialized, negating the need to process 218 /// (e.g.) blockaddress forward references. 219 bool WillMaterializeAllForwardRefs = false; 220 221 /// True if any Metadata block has been materialized. 222 bool IsMetadataMaterialized = false; 223 224 bool StripDebugInfo = false; 225 226 /// Functions that need to be matched with subprograms when upgrading old 227 /// metadata. 228 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 229 230 std::vector<std::string> BundleTags; 231 232 public: 233 std::error_code error(BitcodeError E, const Twine &Message); 234 std::error_code error(BitcodeError E); 235 std::error_code error(const Twine &Message); 236 237 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 238 BitcodeReader(LLVMContext &Context); 239 ~BitcodeReader() override { freeState(); } 240 241 std::error_code materializeForwardReferencedFunctions(); 242 243 void freeState(); 244 245 void releaseBuffer(); 246 247 std::error_code materialize(GlobalValue *GV) override; 248 std::error_code materializeModule() override; 249 std::vector<StructType *> getIdentifiedStructTypes() const override; 250 251 /// \brief Main interface to parsing a bitcode buffer. 252 /// \returns true if an error occurred. 253 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 254 Module *M, 255 bool ShouldLazyLoadMetadata = false); 256 257 /// \brief Cheap mechanism to just extract module triple 258 /// \returns true if an error occurred. 259 ErrorOr<std::string> parseTriple(); 260 261 /// Cheap mechanism to just extract the identification block out of bitcode. 262 ErrorOr<std::string> parseIdentificationBlock(); 263 264 static uint64_t decodeSignRotatedValue(uint64_t V); 265 266 /// Materialize any deferred Metadata block. 267 std::error_code materializeMetadata() override; 268 269 void setStripDebugInfo() override; 270 271 private: 272 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 273 // ProducerIdentification data member, and do some basic enforcement on the 274 // "epoch" encoded in the bitcode. 275 std::error_code parseBitcodeVersion(); 276 277 std::vector<StructType *> IdentifiedStructTypes; 278 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 279 StructType *createIdentifiedStructType(LLVMContext &Context); 280 281 Type *getTypeByID(unsigned ID); 282 Value *getFnValueByID(unsigned ID, Type *Ty) { 283 if (Ty && Ty->isMetadataTy()) 284 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 285 return ValueList.getValueFwdRef(ID, Ty); 286 } 287 Metadata *getFnMetadataByID(unsigned ID) { 288 return MetadataList.getMetadataFwdRef(ID); 289 } 290 BasicBlock *getBasicBlock(unsigned ID) const { 291 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 292 return FunctionBBs[ID]; 293 } 294 AttributeSet getAttributes(unsigned i) const { 295 if (i-1 < MAttributes.size()) 296 return MAttributes[i-1]; 297 return AttributeSet(); 298 } 299 300 /// Read a value/type pair out of the specified record from slot 'Slot'. 301 /// Increment Slot past the number of slots used in the record. Return true on 302 /// failure. 303 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 304 unsigned InstNum, Value *&ResVal) { 305 if (Slot == Record.size()) return true; 306 unsigned ValNo = (unsigned)Record[Slot++]; 307 // Adjust the ValNo, if it was encoded relative to the InstNum. 308 if (UseRelativeIDs) 309 ValNo = InstNum - ValNo; 310 if (ValNo < InstNum) { 311 // If this is not a forward reference, just return the value we already 312 // have. 313 ResVal = getFnValueByID(ValNo, nullptr); 314 return ResVal == nullptr; 315 } 316 if (Slot == Record.size()) 317 return true; 318 319 unsigned TypeNo = (unsigned)Record[Slot++]; 320 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 321 return ResVal == nullptr; 322 } 323 324 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 325 /// past the number of slots used by the value in the record. Return true if 326 /// there is an error. 327 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 328 unsigned InstNum, Type *Ty, Value *&ResVal) { 329 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 330 return true; 331 // All values currently take a single record slot. 332 ++Slot; 333 return false; 334 } 335 336 /// Like popValue, but does not increment the Slot number. 337 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 338 unsigned InstNum, Type *Ty, Value *&ResVal) { 339 ResVal = getValue(Record, Slot, InstNum, Ty); 340 return ResVal == nullptr; 341 } 342 343 /// Version of getValue that returns ResVal directly, or 0 if there is an 344 /// error. 345 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 346 unsigned InstNum, Type *Ty) { 347 if (Slot == Record.size()) return nullptr; 348 unsigned ValNo = (unsigned)Record[Slot]; 349 // Adjust the ValNo, if it was encoded relative to the InstNum. 350 if (UseRelativeIDs) 351 ValNo = InstNum - ValNo; 352 return getFnValueByID(ValNo, Ty); 353 } 354 355 /// Like getValue, but decodes signed VBRs. 356 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 357 unsigned InstNum, Type *Ty) { 358 if (Slot == Record.size()) return nullptr; 359 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 360 // Adjust the ValNo, if it was encoded relative to the InstNum. 361 if (UseRelativeIDs) 362 ValNo = InstNum - ValNo; 363 return getFnValueByID(ValNo, Ty); 364 } 365 366 /// Converts alignment exponent (i.e. power of two (or zero)) to the 367 /// corresponding alignment to use. If alignment is too large, returns 368 /// a corresponding error code. 369 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 370 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 371 std::error_code parseModule(uint64_t ResumeBit, 372 bool ShouldLazyLoadMetadata = false); 373 std::error_code parseAttributeBlock(); 374 std::error_code parseAttributeGroupBlock(); 375 std::error_code parseTypeTable(); 376 std::error_code parseTypeTableBody(); 377 std::error_code parseOperandBundleTags(); 378 379 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 380 unsigned NameIndex, Triple &TT); 381 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 382 std::error_code parseConstants(); 383 std::error_code rememberAndSkipFunctionBodies(); 384 std::error_code rememberAndSkipFunctionBody(); 385 /// Save the positions of the Metadata blocks and skip parsing the blocks. 386 std::error_code rememberAndSkipMetadata(); 387 std::error_code parseFunctionBody(Function *F); 388 std::error_code globalCleanup(); 389 std::error_code resolveGlobalAndAliasInits(); 390 std::error_code parseMetadata(bool ModuleLevel = false); 391 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 392 StringRef Blob, 393 unsigned &NextMetadataNo); 394 std::error_code parseMetadataKinds(); 395 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 396 std::error_code parseMetadataAttachment(Function &F); 397 ErrorOr<std::string> parseModuleTriple(); 398 std::error_code parseUseLists(); 399 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 400 std::error_code initStreamFromBuffer(); 401 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 402 std::error_code findFunctionInStream( 403 Function *F, 404 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 405 }; 406 407 /// Class to manage reading and parsing function summary index bitcode 408 /// files/sections. 409 class ModuleSummaryIndexBitcodeReader { 410 DiagnosticHandlerFunction DiagnosticHandler; 411 412 /// Eventually points to the module index built during parsing. 413 ModuleSummaryIndex *TheIndex = nullptr; 414 415 std::unique_ptr<MemoryBuffer> Buffer; 416 std::unique_ptr<BitstreamReader> StreamFile; 417 BitstreamCursor Stream; 418 419 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 420 /// 421 /// If false, the summary section is fully parsed into the index during 422 /// the initial parse. Otherwise, if true, the caller is expected to 423 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 424 /// section is thus parsed lazily. 425 bool IsLazy = false; 426 427 /// Used to indicate whether caller only wants to check for the presence 428 /// of the global value summary bitcode section. All blocks are skipped, 429 /// but the SeenGlobalValSummary boolean is set. 430 bool CheckGlobalValSummaryPresenceOnly = false; 431 432 /// Indicates whether we have encountered a global value summary section 433 /// yet during parsing, used when checking if file contains global value 434 /// summary section. 435 bool SeenGlobalValSummary = false; 436 437 /// Indicates whether we have already parsed the VST, used for error checking. 438 bool SeenValueSymbolTable = false; 439 440 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 441 /// Used to enable on-demand parsing of the VST. 442 uint64_t VSTOffset = 0; 443 444 // Map to save ValueId to GUID association that was recorded in the 445 // ValueSymbolTable. It is used after the VST is parsed to convert 446 // call graph edges read from the function summary from referencing 447 // callees by their ValueId to using the GUID instead, which is how 448 // they are recorded in the summary index being built. 449 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 450 451 /// Map to save the association between summary offset in the VST to the 452 /// GlobalValueInfo object created when parsing it. Used to access the 453 /// info object when parsing the summary section. 454 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 455 456 /// Map populated during module path string table parsing, from the 457 /// module ID to a string reference owned by the index's module 458 /// path string table, used to correlate with combined index 459 /// summary records. 460 DenseMap<uint64_t, StringRef> ModuleIdMap; 461 462 /// Original source file name recorded in a bitcode record. 463 std::string SourceFileName; 464 465 public: 466 std::error_code error(BitcodeError E, const Twine &Message); 467 std::error_code error(BitcodeError E); 468 std::error_code error(const Twine &Message); 469 470 ModuleSummaryIndexBitcodeReader( 471 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 472 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 473 ModuleSummaryIndexBitcodeReader( 474 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 475 bool CheckGlobalValSummaryPresenceOnly = false); 476 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 477 478 void freeState(); 479 480 void releaseBuffer(); 481 482 /// Check if the parser has encountered a summary section. 483 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 484 485 /// \brief Main interface to parsing a bitcode buffer. 486 /// \returns true if an error occurred. 487 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 488 ModuleSummaryIndex *I); 489 490 /// \brief Interface for parsing a summary lazily. 491 std::error_code 492 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 493 ModuleSummaryIndex *I, size_t SummaryOffset); 494 495 private: 496 std::error_code parseModule(); 497 std::error_code parseValueSymbolTable( 498 uint64_t Offset, 499 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 500 std::error_code parseEntireSummary(); 501 std::error_code parseModuleStringTable(); 502 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 503 std::error_code initStreamFromBuffer(); 504 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 505 uint64_t getGUIDFromValueId(unsigned ValueId); 506 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 507 }; 508 } // end anonymous namespace 509 510 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 511 DiagnosticSeverity Severity, 512 const Twine &Msg) 513 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 514 515 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 516 517 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 518 std::error_code EC, const Twine &Message) { 519 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 520 DiagnosticHandler(DI); 521 return EC; 522 } 523 524 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 525 std::error_code EC) { 526 return error(DiagnosticHandler, EC, EC.message()); 527 } 528 529 static std::error_code error(LLVMContext &Context, std::error_code EC, 530 const Twine &Message) { 531 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 532 Message); 533 } 534 535 static std::error_code error(LLVMContext &Context, std::error_code EC) { 536 return error(Context, EC, EC.message()); 537 } 538 539 static std::error_code error(LLVMContext &Context, const Twine &Message) { 540 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 541 Message); 542 } 543 544 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 545 if (!ProducerIdentification.empty()) { 546 return ::error(Context, make_error_code(E), 547 Message + " (Producer: '" + ProducerIdentification + 548 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 549 } 550 return ::error(Context, make_error_code(E), Message); 551 } 552 553 std::error_code BitcodeReader::error(const Twine &Message) { 554 if (!ProducerIdentification.empty()) { 555 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 556 Message + " (Producer: '" + ProducerIdentification + 557 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 558 } 559 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 560 Message); 561 } 562 563 std::error_code BitcodeReader::error(BitcodeError E) { 564 return ::error(Context, make_error_code(E)); 565 } 566 567 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 568 : Context(Context), Buffer(Buffer), ValueList(Context), 569 MetadataList(Context) {} 570 571 BitcodeReader::BitcodeReader(LLVMContext &Context) 572 : Context(Context), Buffer(nullptr), ValueList(Context), 573 MetadataList(Context) {} 574 575 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 576 if (WillMaterializeAllForwardRefs) 577 return std::error_code(); 578 579 // Prevent recursion. 580 WillMaterializeAllForwardRefs = true; 581 582 while (!BasicBlockFwdRefQueue.empty()) { 583 Function *F = BasicBlockFwdRefQueue.front(); 584 BasicBlockFwdRefQueue.pop_front(); 585 assert(F && "Expected valid function"); 586 if (!BasicBlockFwdRefs.count(F)) 587 // Already materialized. 588 continue; 589 590 // Check for a function that isn't materializable to prevent an infinite 591 // loop. When parsing a blockaddress stored in a global variable, there 592 // isn't a trivial way to check if a function will have a body without a 593 // linear search through FunctionsWithBodies, so just check it here. 594 if (!F->isMaterializable()) 595 return error("Never resolved function from blockaddress"); 596 597 // Try to materialize F. 598 if (std::error_code EC = materialize(F)) 599 return EC; 600 } 601 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 602 603 // Reset state. 604 WillMaterializeAllForwardRefs = false; 605 return std::error_code(); 606 } 607 608 void BitcodeReader::freeState() { 609 Buffer = nullptr; 610 std::vector<Type*>().swap(TypeList); 611 ValueList.clear(); 612 MetadataList.clear(); 613 std::vector<Comdat *>().swap(ComdatList); 614 615 std::vector<AttributeSet>().swap(MAttributes); 616 std::vector<BasicBlock*>().swap(FunctionBBs); 617 std::vector<Function*>().swap(FunctionsWithBodies); 618 DeferredFunctionInfo.clear(); 619 DeferredMetadataInfo.clear(); 620 MDKindMap.clear(); 621 622 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 623 BasicBlockFwdRefQueue.clear(); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Helper functions to implement forward reference resolution, etc. 628 //===----------------------------------------------------------------------===// 629 630 /// Convert a string from a record into an std::string, return true on failure. 631 template <typename StrTy> 632 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 633 StrTy &Result) { 634 if (Idx > Record.size()) 635 return true; 636 637 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 638 Result += (char)Record[i]; 639 return false; 640 } 641 642 static bool hasImplicitComdat(size_t Val) { 643 switch (Val) { 644 default: 645 return false; 646 case 1: // Old WeakAnyLinkage 647 case 4: // Old LinkOnceAnyLinkage 648 case 10: // Old WeakODRLinkage 649 case 11: // Old LinkOnceODRLinkage 650 return true; 651 } 652 } 653 654 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 655 switch (Val) { 656 default: // Map unknown/new linkages to external 657 case 0: 658 return GlobalValue::ExternalLinkage; 659 case 2: 660 return GlobalValue::AppendingLinkage; 661 case 3: 662 return GlobalValue::InternalLinkage; 663 case 5: 664 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 665 case 6: 666 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 667 case 7: 668 return GlobalValue::ExternalWeakLinkage; 669 case 8: 670 return GlobalValue::CommonLinkage; 671 case 9: 672 return GlobalValue::PrivateLinkage; 673 case 12: 674 return GlobalValue::AvailableExternallyLinkage; 675 case 13: 676 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 677 case 14: 678 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 679 case 15: 680 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 681 case 1: // Old value with implicit comdat. 682 case 16: 683 return GlobalValue::WeakAnyLinkage; 684 case 10: // Old value with implicit comdat. 685 case 17: 686 return GlobalValue::WeakODRLinkage; 687 case 4: // Old value with implicit comdat. 688 case 18: 689 return GlobalValue::LinkOnceAnyLinkage; 690 case 11: // Old value with implicit comdat. 691 case 19: 692 return GlobalValue::LinkOnceODRLinkage; 693 } 694 } 695 696 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 697 switch (Val) { 698 default: // Map unknown visibilities to default. 699 case 0: return GlobalValue::DefaultVisibility; 700 case 1: return GlobalValue::HiddenVisibility; 701 case 2: return GlobalValue::ProtectedVisibility; 702 } 703 } 704 705 static GlobalValue::DLLStorageClassTypes 706 getDecodedDLLStorageClass(unsigned Val) { 707 switch (Val) { 708 default: // Map unknown values to default. 709 case 0: return GlobalValue::DefaultStorageClass; 710 case 1: return GlobalValue::DLLImportStorageClass; 711 case 2: return GlobalValue::DLLExportStorageClass; 712 } 713 } 714 715 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 716 switch (Val) { 717 case 0: return GlobalVariable::NotThreadLocal; 718 default: // Map unknown non-zero value to general dynamic. 719 case 1: return GlobalVariable::GeneralDynamicTLSModel; 720 case 2: return GlobalVariable::LocalDynamicTLSModel; 721 case 3: return GlobalVariable::InitialExecTLSModel; 722 case 4: return GlobalVariable::LocalExecTLSModel; 723 } 724 } 725 726 static int getDecodedCastOpcode(unsigned Val) { 727 switch (Val) { 728 default: return -1; 729 case bitc::CAST_TRUNC : return Instruction::Trunc; 730 case bitc::CAST_ZEXT : return Instruction::ZExt; 731 case bitc::CAST_SEXT : return Instruction::SExt; 732 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 733 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 734 case bitc::CAST_UITOFP : return Instruction::UIToFP; 735 case bitc::CAST_SITOFP : return Instruction::SIToFP; 736 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 737 case bitc::CAST_FPEXT : return Instruction::FPExt; 738 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 739 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 740 case bitc::CAST_BITCAST : return Instruction::BitCast; 741 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 742 } 743 } 744 745 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 746 bool IsFP = Ty->isFPOrFPVectorTy(); 747 // BinOps are only valid for int/fp or vector of int/fp types 748 if (!IsFP && !Ty->isIntOrIntVectorTy()) 749 return -1; 750 751 switch (Val) { 752 default: 753 return -1; 754 case bitc::BINOP_ADD: 755 return IsFP ? Instruction::FAdd : Instruction::Add; 756 case bitc::BINOP_SUB: 757 return IsFP ? Instruction::FSub : Instruction::Sub; 758 case bitc::BINOP_MUL: 759 return IsFP ? Instruction::FMul : Instruction::Mul; 760 case bitc::BINOP_UDIV: 761 return IsFP ? -1 : Instruction::UDiv; 762 case bitc::BINOP_SDIV: 763 return IsFP ? Instruction::FDiv : Instruction::SDiv; 764 case bitc::BINOP_UREM: 765 return IsFP ? -1 : Instruction::URem; 766 case bitc::BINOP_SREM: 767 return IsFP ? Instruction::FRem : Instruction::SRem; 768 case bitc::BINOP_SHL: 769 return IsFP ? -1 : Instruction::Shl; 770 case bitc::BINOP_LSHR: 771 return IsFP ? -1 : Instruction::LShr; 772 case bitc::BINOP_ASHR: 773 return IsFP ? -1 : Instruction::AShr; 774 case bitc::BINOP_AND: 775 return IsFP ? -1 : Instruction::And; 776 case bitc::BINOP_OR: 777 return IsFP ? -1 : Instruction::Or; 778 case bitc::BINOP_XOR: 779 return IsFP ? -1 : Instruction::Xor; 780 } 781 } 782 783 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 784 switch (Val) { 785 default: return AtomicRMWInst::BAD_BINOP; 786 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 787 case bitc::RMW_ADD: return AtomicRMWInst::Add; 788 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 789 case bitc::RMW_AND: return AtomicRMWInst::And; 790 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 791 case bitc::RMW_OR: return AtomicRMWInst::Or; 792 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 793 case bitc::RMW_MAX: return AtomicRMWInst::Max; 794 case bitc::RMW_MIN: return AtomicRMWInst::Min; 795 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 796 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 797 } 798 } 799 800 static AtomicOrdering getDecodedOrdering(unsigned Val) { 801 switch (Val) { 802 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 803 case bitc::ORDERING_UNORDERED: return Unordered; 804 case bitc::ORDERING_MONOTONIC: return Monotonic; 805 case bitc::ORDERING_ACQUIRE: return Acquire; 806 case bitc::ORDERING_RELEASE: return Release; 807 case bitc::ORDERING_ACQREL: return AcquireRelease; 808 default: // Map unknown orderings to sequentially-consistent. 809 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 810 } 811 } 812 813 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 814 switch (Val) { 815 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 816 default: // Map unknown scopes to cross-thread. 817 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 818 } 819 } 820 821 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 822 switch (Val) { 823 default: // Map unknown selection kinds to any. 824 case bitc::COMDAT_SELECTION_KIND_ANY: 825 return Comdat::Any; 826 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 827 return Comdat::ExactMatch; 828 case bitc::COMDAT_SELECTION_KIND_LARGEST: 829 return Comdat::Largest; 830 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 831 return Comdat::NoDuplicates; 832 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 833 return Comdat::SameSize; 834 } 835 } 836 837 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 838 FastMathFlags FMF; 839 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 840 FMF.setUnsafeAlgebra(); 841 if (0 != (Val & FastMathFlags::NoNaNs)) 842 FMF.setNoNaNs(); 843 if (0 != (Val & FastMathFlags::NoInfs)) 844 FMF.setNoInfs(); 845 if (0 != (Val & FastMathFlags::NoSignedZeros)) 846 FMF.setNoSignedZeros(); 847 if (0 != (Val & FastMathFlags::AllowReciprocal)) 848 FMF.setAllowReciprocal(); 849 return FMF; 850 } 851 852 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 853 switch (Val) { 854 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 855 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 856 } 857 } 858 859 namespace llvm { 860 namespace { 861 /// \brief A class for maintaining the slot number definition 862 /// as a placeholder for the actual definition for forward constants defs. 863 class ConstantPlaceHolder : public ConstantExpr { 864 void operator=(const ConstantPlaceHolder &) = delete; 865 866 public: 867 // allocate space for exactly one operand 868 void *operator new(size_t s) { return User::operator new(s, 1); } 869 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 870 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 871 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 872 } 873 874 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 875 static bool classof(const Value *V) { 876 return isa<ConstantExpr>(V) && 877 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 878 } 879 880 /// Provide fast operand accessors 881 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 882 }; 883 } // end anonymous namespace 884 885 // FIXME: can we inherit this from ConstantExpr? 886 template <> 887 struct OperandTraits<ConstantPlaceHolder> : 888 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 889 }; 890 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 891 } // end namespace llvm 892 893 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 894 if (Idx == size()) { 895 push_back(V); 896 return; 897 } 898 899 if (Idx >= size()) 900 resize(Idx+1); 901 902 WeakVH &OldV = ValuePtrs[Idx]; 903 if (!OldV) { 904 OldV = V; 905 return; 906 } 907 908 // Handle constants and non-constants (e.g. instrs) differently for 909 // efficiency. 910 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 911 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 912 OldV = V; 913 } else { 914 // If there was a forward reference to this value, replace it. 915 Value *PrevVal = OldV; 916 OldV->replaceAllUsesWith(V); 917 delete PrevVal; 918 } 919 } 920 921 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 922 Type *Ty) { 923 if (Idx >= size()) 924 resize(Idx + 1); 925 926 if (Value *V = ValuePtrs[Idx]) { 927 if (Ty != V->getType()) 928 report_fatal_error("Type mismatch in constant table!"); 929 return cast<Constant>(V); 930 } 931 932 // Create and return a placeholder, which will later be RAUW'd. 933 Constant *C = new ConstantPlaceHolder(Ty, Context); 934 ValuePtrs[Idx] = C; 935 return C; 936 } 937 938 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 939 // Bail out for a clearly invalid value. This would make us call resize(0) 940 if (Idx == UINT_MAX) 941 return nullptr; 942 943 if (Idx >= size()) 944 resize(Idx + 1); 945 946 if (Value *V = ValuePtrs[Idx]) { 947 // If the types don't match, it's invalid. 948 if (Ty && Ty != V->getType()) 949 return nullptr; 950 return V; 951 } 952 953 // No type specified, must be invalid reference. 954 if (!Ty) return nullptr; 955 956 // Create and return a placeholder, which will later be RAUW'd. 957 Value *V = new Argument(Ty); 958 ValuePtrs[Idx] = V; 959 return V; 960 } 961 962 /// Once all constants are read, this method bulk resolves any forward 963 /// references. The idea behind this is that we sometimes get constants (such 964 /// as large arrays) which reference *many* forward ref constants. Replacing 965 /// each of these causes a lot of thrashing when building/reuniquing the 966 /// constant. Instead of doing this, we look at all the uses and rewrite all 967 /// the place holders at once for any constant that uses a placeholder. 968 void BitcodeReaderValueList::resolveConstantForwardRefs() { 969 // Sort the values by-pointer so that they are efficient to look up with a 970 // binary search. 971 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 972 973 SmallVector<Constant*, 64> NewOps; 974 975 while (!ResolveConstants.empty()) { 976 Value *RealVal = operator[](ResolveConstants.back().second); 977 Constant *Placeholder = ResolveConstants.back().first; 978 ResolveConstants.pop_back(); 979 980 // Loop over all users of the placeholder, updating them to reference the 981 // new value. If they reference more than one placeholder, update them all 982 // at once. 983 while (!Placeholder->use_empty()) { 984 auto UI = Placeholder->user_begin(); 985 User *U = *UI; 986 987 // If the using object isn't uniqued, just update the operands. This 988 // handles instructions and initializers for global variables. 989 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 990 UI.getUse().set(RealVal); 991 continue; 992 } 993 994 // Otherwise, we have a constant that uses the placeholder. Replace that 995 // constant with a new constant that has *all* placeholder uses updated. 996 Constant *UserC = cast<Constant>(U); 997 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 998 I != E; ++I) { 999 Value *NewOp; 1000 if (!isa<ConstantPlaceHolder>(*I)) { 1001 // Not a placeholder reference. 1002 NewOp = *I; 1003 } else if (*I == Placeholder) { 1004 // Common case is that it just references this one placeholder. 1005 NewOp = RealVal; 1006 } else { 1007 // Otherwise, look up the placeholder in ResolveConstants. 1008 ResolveConstantsTy::iterator It = 1009 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1010 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1011 0)); 1012 assert(It != ResolveConstants.end() && It->first == *I); 1013 NewOp = operator[](It->second); 1014 } 1015 1016 NewOps.push_back(cast<Constant>(NewOp)); 1017 } 1018 1019 // Make the new constant. 1020 Constant *NewC; 1021 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1022 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1023 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1024 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1025 } else if (isa<ConstantVector>(UserC)) { 1026 NewC = ConstantVector::get(NewOps); 1027 } else { 1028 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1029 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1030 } 1031 1032 UserC->replaceAllUsesWith(NewC); 1033 UserC->destroyConstant(); 1034 NewOps.clear(); 1035 } 1036 1037 // Update all ValueHandles, they should be the only users at this point. 1038 Placeholder->replaceAllUsesWith(RealVal); 1039 delete Placeholder; 1040 } 1041 } 1042 1043 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1044 if (Idx == size()) { 1045 push_back(MD); 1046 return; 1047 } 1048 1049 if (Idx >= size()) 1050 resize(Idx+1); 1051 1052 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1053 if (!OldMD) { 1054 OldMD.reset(MD); 1055 return; 1056 } 1057 1058 // If there was a forward reference to this value, replace it. 1059 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1060 PrevMD->replaceAllUsesWith(MD); 1061 --NumFwdRefs; 1062 } 1063 1064 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1065 if (Idx >= size()) 1066 resize(Idx + 1); 1067 1068 if (Metadata *MD = MetadataPtrs[Idx]) 1069 return MD; 1070 1071 // Track forward refs to be resolved later. 1072 if (AnyFwdRefs) { 1073 MinFwdRef = std::min(MinFwdRef, Idx); 1074 MaxFwdRef = std::max(MaxFwdRef, Idx); 1075 } else { 1076 AnyFwdRefs = true; 1077 MinFwdRef = MaxFwdRef = Idx; 1078 } 1079 ++NumFwdRefs; 1080 1081 // Create and return a placeholder, which will later be RAUW'd. 1082 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1083 MetadataPtrs[Idx].reset(MD); 1084 return MD; 1085 } 1086 1087 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1088 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1089 } 1090 1091 void BitcodeReaderMetadataList::tryToResolveCycles() { 1092 if (!AnyFwdRefs) 1093 // Nothing to do. 1094 return; 1095 1096 if (NumFwdRefs) 1097 // Still forward references... can't resolve cycles. 1098 return; 1099 1100 // Resolve any cycles. 1101 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1102 auto &MD = MetadataPtrs[I]; 1103 auto *N = dyn_cast_or_null<MDNode>(MD); 1104 if (!N) 1105 continue; 1106 1107 assert(!N->isTemporary() && "Unexpected forward reference"); 1108 N->resolveCycles(); 1109 } 1110 1111 // Make sure we return early again until there's another forward ref. 1112 AnyFwdRefs = false; 1113 } 1114 1115 Type *BitcodeReader::getTypeByID(unsigned ID) { 1116 // The type table size is always specified correctly. 1117 if (ID >= TypeList.size()) 1118 return nullptr; 1119 1120 if (Type *Ty = TypeList[ID]) 1121 return Ty; 1122 1123 // If we have a forward reference, the only possible case is when it is to a 1124 // named struct. Just create a placeholder for now. 1125 return TypeList[ID] = createIdentifiedStructType(Context); 1126 } 1127 1128 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1129 StringRef Name) { 1130 auto *Ret = StructType::create(Context, Name); 1131 IdentifiedStructTypes.push_back(Ret); 1132 return Ret; 1133 } 1134 1135 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1136 auto *Ret = StructType::create(Context); 1137 IdentifiedStructTypes.push_back(Ret); 1138 return Ret; 1139 } 1140 1141 //===----------------------------------------------------------------------===// 1142 // Functions for parsing blocks from the bitcode file 1143 //===----------------------------------------------------------------------===// 1144 1145 1146 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1147 /// been decoded from the given integer. This function must stay in sync with 1148 /// 'encodeLLVMAttributesForBitcode'. 1149 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1150 uint64_t EncodedAttrs) { 1151 // FIXME: Remove in 4.0. 1152 1153 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1154 // the bits above 31 down by 11 bits. 1155 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1156 assert((!Alignment || isPowerOf2_32(Alignment)) && 1157 "Alignment must be a power of two."); 1158 1159 if (Alignment) 1160 B.addAlignmentAttr(Alignment); 1161 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1162 (EncodedAttrs & 0xffff)); 1163 } 1164 1165 std::error_code BitcodeReader::parseAttributeBlock() { 1166 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1167 return error("Invalid record"); 1168 1169 if (!MAttributes.empty()) 1170 return error("Invalid multiple blocks"); 1171 1172 SmallVector<uint64_t, 64> Record; 1173 1174 SmallVector<AttributeSet, 8> Attrs; 1175 1176 // Read all the records. 1177 while (1) { 1178 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1179 1180 switch (Entry.Kind) { 1181 case BitstreamEntry::SubBlock: // Handled for us already. 1182 case BitstreamEntry::Error: 1183 return error("Malformed block"); 1184 case BitstreamEntry::EndBlock: 1185 return std::error_code(); 1186 case BitstreamEntry::Record: 1187 // The interesting case. 1188 break; 1189 } 1190 1191 // Read a record. 1192 Record.clear(); 1193 switch (Stream.readRecord(Entry.ID, Record)) { 1194 default: // Default behavior: ignore. 1195 break; 1196 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1197 // FIXME: Remove in 4.0. 1198 if (Record.size() & 1) 1199 return error("Invalid record"); 1200 1201 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1202 AttrBuilder B; 1203 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1204 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1205 } 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1212 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1213 Attrs.push_back(MAttributeGroups[Record[i]]); 1214 1215 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1216 Attrs.clear(); 1217 break; 1218 } 1219 } 1220 } 1221 } 1222 1223 // Returns Attribute::None on unrecognized codes. 1224 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1225 switch (Code) { 1226 default: 1227 return Attribute::None; 1228 case bitc::ATTR_KIND_ALIGNMENT: 1229 return Attribute::Alignment; 1230 case bitc::ATTR_KIND_ALWAYS_INLINE: 1231 return Attribute::AlwaysInline; 1232 case bitc::ATTR_KIND_ARGMEMONLY: 1233 return Attribute::ArgMemOnly; 1234 case bitc::ATTR_KIND_BUILTIN: 1235 return Attribute::Builtin; 1236 case bitc::ATTR_KIND_BY_VAL: 1237 return Attribute::ByVal; 1238 case bitc::ATTR_KIND_IN_ALLOCA: 1239 return Attribute::InAlloca; 1240 case bitc::ATTR_KIND_COLD: 1241 return Attribute::Cold; 1242 case bitc::ATTR_KIND_CONVERGENT: 1243 return Attribute::Convergent; 1244 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1245 return Attribute::InaccessibleMemOnly; 1246 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1247 return Attribute::InaccessibleMemOrArgMemOnly; 1248 case bitc::ATTR_KIND_INLINE_HINT: 1249 return Attribute::InlineHint; 1250 case bitc::ATTR_KIND_IN_REG: 1251 return Attribute::InReg; 1252 case bitc::ATTR_KIND_JUMP_TABLE: 1253 return Attribute::JumpTable; 1254 case bitc::ATTR_KIND_MIN_SIZE: 1255 return Attribute::MinSize; 1256 case bitc::ATTR_KIND_NAKED: 1257 return Attribute::Naked; 1258 case bitc::ATTR_KIND_NEST: 1259 return Attribute::Nest; 1260 case bitc::ATTR_KIND_NO_ALIAS: 1261 return Attribute::NoAlias; 1262 case bitc::ATTR_KIND_NO_BUILTIN: 1263 return Attribute::NoBuiltin; 1264 case bitc::ATTR_KIND_NO_CAPTURE: 1265 return Attribute::NoCapture; 1266 case bitc::ATTR_KIND_NO_DUPLICATE: 1267 return Attribute::NoDuplicate; 1268 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1269 return Attribute::NoImplicitFloat; 1270 case bitc::ATTR_KIND_NO_INLINE: 1271 return Attribute::NoInline; 1272 case bitc::ATTR_KIND_NO_RECURSE: 1273 return Attribute::NoRecurse; 1274 case bitc::ATTR_KIND_NON_LAZY_BIND: 1275 return Attribute::NonLazyBind; 1276 case bitc::ATTR_KIND_NON_NULL: 1277 return Attribute::NonNull; 1278 case bitc::ATTR_KIND_DEREFERENCEABLE: 1279 return Attribute::Dereferenceable; 1280 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1281 return Attribute::DereferenceableOrNull; 1282 case bitc::ATTR_KIND_NO_RED_ZONE: 1283 return Attribute::NoRedZone; 1284 case bitc::ATTR_KIND_NO_RETURN: 1285 return Attribute::NoReturn; 1286 case bitc::ATTR_KIND_NO_UNWIND: 1287 return Attribute::NoUnwind; 1288 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1289 return Attribute::OptimizeForSize; 1290 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1291 return Attribute::OptimizeNone; 1292 case bitc::ATTR_KIND_READ_NONE: 1293 return Attribute::ReadNone; 1294 case bitc::ATTR_KIND_READ_ONLY: 1295 return Attribute::ReadOnly; 1296 case bitc::ATTR_KIND_RETURNED: 1297 return Attribute::Returned; 1298 case bitc::ATTR_KIND_RETURNS_TWICE: 1299 return Attribute::ReturnsTwice; 1300 case bitc::ATTR_KIND_S_EXT: 1301 return Attribute::SExt; 1302 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1303 return Attribute::StackAlignment; 1304 case bitc::ATTR_KIND_STACK_PROTECT: 1305 return Attribute::StackProtect; 1306 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1307 return Attribute::StackProtectReq; 1308 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1309 return Attribute::StackProtectStrong; 1310 case bitc::ATTR_KIND_SAFESTACK: 1311 return Attribute::SafeStack; 1312 case bitc::ATTR_KIND_STRUCT_RET: 1313 return Attribute::StructRet; 1314 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1315 return Attribute::SanitizeAddress; 1316 case bitc::ATTR_KIND_SANITIZE_THREAD: 1317 return Attribute::SanitizeThread; 1318 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1319 return Attribute::SanitizeMemory; 1320 case bitc::ATTR_KIND_SWIFT_ERROR: 1321 return Attribute::SwiftError; 1322 case bitc::ATTR_KIND_SWIFT_SELF: 1323 return Attribute::SwiftSelf; 1324 case bitc::ATTR_KIND_UW_TABLE: 1325 return Attribute::UWTable; 1326 case bitc::ATTR_KIND_Z_EXT: 1327 return Attribute::ZExt; 1328 } 1329 } 1330 1331 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1332 unsigned &Alignment) { 1333 // Note: Alignment in bitcode files is incremented by 1, so that zero 1334 // can be used for default alignment. 1335 if (Exponent > Value::MaxAlignmentExponent + 1) 1336 return error("Invalid alignment value"); 1337 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1338 return std::error_code(); 1339 } 1340 1341 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1342 Attribute::AttrKind *Kind) { 1343 *Kind = getAttrFromCode(Code); 1344 if (*Kind == Attribute::None) 1345 return error(BitcodeError::CorruptedBitcode, 1346 "Unknown attribute kind (" + Twine(Code) + ")"); 1347 return std::error_code(); 1348 } 1349 1350 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1351 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1352 return error("Invalid record"); 1353 1354 if (!MAttributeGroups.empty()) 1355 return error("Invalid multiple blocks"); 1356 1357 SmallVector<uint64_t, 64> Record; 1358 1359 // Read all the records. 1360 while (1) { 1361 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1362 1363 switch (Entry.Kind) { 1364 case BitstreamEntry::SubBlock: // Handled for us already. 1365 case BitstreamEntry::Error: 1366 return error("Malformed block"); 1367 case BitstreamEntry::EndBlock: 1368 return std::error_code(); 1369 case BitstreamEntry::Record: 1370 // The interesting case. 1371 break; 1372 } 1373 1374 // Read a record. 1375 Record.clear(); 1376 switch (Stream.readRecord(Entry.ID, Record)) { 1377 default: // Default behavior: ignore. 1378 break; 1379 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1380 if (Record.size() < 3) 1381 return error("Invalid record"); 1382 1383 uint64_t GrpID = Record[0]; 1384 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1385 1386 AttrBuilder B; 1387 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1388 if (Record[i] == 0) { // Enum attribute 1389 Attribute::AttrKind Kind; 1390 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1391 return EC; 1392 1393 B.addAttribute(Kind); 1394 } else if (Record[i] == 1) { // Integer attribute 1395 Attribute::AttrKind Kind; 1396 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1397 return EC; 1398 if (Kind == Attribute::Alignment) 1399 B.addAlignmentAttr(Record[++i]); 1400 else if (Kind == Attribute::StackAlignment) 1401 B.addStackAlignmentAttr(Record[++i]); 1402 else if (Kind == Attribute::Dereferenceable) 1403 B.addDereferenceableAttr(Record[++i]); 1404 else if (Kind == Attribute::DereferenceableOrNull) 1405 B.addDereferenceableOrNullAttr(Record[++i]); 1406 } else { // String attribute 1407 assert((Record[i] == 3 || Record[i] == 4) && 1408 "Invalid attribute group entry"); 1409 bool HasValue = (Record[i++] == 4); 1410 SmallString<64> KindStr; 1411 SmallString<64> ValStr; 1412 1413 while (Record[i] != 0 && i != e) 1414 KindStr += Record[i++]; 1415 assert(Record[i] == 0 && "Kind string not null terminated"); 1416 1417 if (HasValue) { 1418 // Has a value associated with it. 1419 ++i; // Skip the '0' that terminates the "kind" string. 1420 while (Record[i] != 0 && i != e) 1421 ValStr += Record[i++]; 1422 assert(Record[i] == 0 && "Value string not null terminated"); 1423 } 1424 1425 B.addAttribute(KindStr.str(), ValStr.str()); 1426 } 1427 } 1428 1429 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1430 break; 1431 } 1432 } 1433 } 1434 } 1435 1436 std::error_code BitcodeReader::parseTypeTable() { 1437 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1438 return error("Invalid record"); 1439 1440 return parseTypeTableBody(); 1441 } 1442 1443 std::error_code BitcodeReader::parseTypeTableBody() { 1444 if (!TypeList.empty()) 1445 return error("Invalid multiple blocks"); 1446 1447 SmallVector<uint64_t, 64> Record; 1448 unsigned NumRecords = 0; 1449 1450 SmallString<64> TypeName; 1451 1452 // Read all the records for this type table. 1453 while (1) { 1454 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1455 1456 switch (Entry.Kind) { 1457 case BitstreamEntry::SubBlock: // Handled for us already. 1458 case BitstreamEntry::Error: 1459 return error("Malformed block"); 1460 case BitstreamEntry::EndBlock: 1461 if (NumRecords != TypeList.size()) 1462 return error("Malformed block"); 1463 return std::error_code(); 1464 case BitstreamEntry::Record: 1465 // The interesting case. 1466 break; 1467 } 1468 1469 // Read a record. 1470 Record.clear(); 1471 Type *ResultTy = nullptr; 1472 switch (Stream.readRecord(Entry.ID, Record)) { 1473 default: 1474 return error("Invalid value"); 1475 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1476 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1477 // type list. This allows us to reserve space. 1478 if (Record.size() < 1) 1479 return error("Invalid record"); 1480 TypeList.resize(Record[0]); 1481 continue; 1482 case bitc::TYPE_CODE_VOID: // VOID 1483 ResultTy = Type::getVoidTy(Context); 1484 break; 1485 case bitc::TYPE_CODE_HALF: // HALF 1486 ResultTy = Type::getHalfTy(Context); 1487 break; 1488 case bitc::TYPE_CODE_FLOAT: // FLOAT 1489 ResultTy = Type::getFloatTy(Context); 1490 break; 1491 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1492 ResultTy = Type::getDoubleTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1495 ResultTy = Type::getX86_FP80Ty(Context); 1496 break; 1497 case bitc::TYPE_CODE_FP128: // FP128 1498 ResultTy = Type::getFP128Ty(Context); 1499 break; 1500 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1501 ResultTy = Type::getPPC_FP128Ty(Context); 1502 break; 1503 case bitc::TYPE_CODE_LABEL: // LABEL 1504 ResultTy = Type::getLabelTy(Context); 1505 break; 1506 case bitc::TYPE_CODE_METADATA: // METADATA 1507 ResultTy = Type::getMetadataTy(Context); 1508 break; 1509 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1510 ResultTy = Type::getX86_MMXTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_TOKEN: // TOKEN 1513 ResultTy = Type::getTokenTy(Context); 1514 break; 1515 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 1519 uint64_t NumBits = Record[0]; 1520 if (NumBits < IntegerType::MIN_INT_BITS || 1521 NumBits > IntegerType::MAX_INT_BITS) 1522 return error("Bitwidth for integer type out of range"); 1523 ResultTy = IntegerType::get(Context, NumBits); 1524 break; 1525 } 1526 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1527 // [pointee type, address space] 1528 if (Record.size() < 1) 1529 return error("Invalid record"); 1530 unsigned AddressSpace = 0; 1531 if (Record.size() == 2) 1532 AddressSpace = Record[1]; 1533 ResultTy = getTypeByID(Record[0]); 1534 if (!ResultTy || 1535 !PointerType::isValidElementType(ResultTy)) 1536 return error("Invalid type"); 1537 ResultTy = PointerType::get(ResultTy, AddressSpace); 1538 break; 1539 } 1540 case bitc::TYPE_CODE_FUNCTION_OLD: { 1541 // FIXME: attrid is dead, remove it in LLVM 4.0 1542 // FUNCTION: [vararg, attrid, retty, paramty x N] 1543 if (Record.size() < 3) 1544 return error("Invalid record"); 1545 SmallVector<Type*, 8> ArgTys; 1546 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1547 if (Type *T = getTypeByID(Record[i])) 1548 ArgTys.push_back(T); 1549 else 1550 break; 1551 } 1552 1553 ResultTy = getTypeByID(Record[2]); 1554 if (!ResultTy || ArgTys.size() < Record.size()-3) 1555 return error("Invalid type"); 1556 1557 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1558 break; 1559 } 1560 case bitc::TYPE_CODE_FUNCTION: { 1561 // FUNCTION: [vararg, retty, paramty x N] 1562 if (Record.size() < 2) 1563 return error("Invalid record"); 1564 SmallVector<Type*, 8> ArgTys; 1565 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1566 if (Type *T = getTypeByID(Record[i])) { 1567 if (!FunctionType::isValidArgumentType(T)) 1568 return error("Invalid function argument type"); 1569 ArgTys.push_back(T); 1570 } 1571 else 1572 break; 1573 } 1574 1575 ResultTy = getTypeByID(Record[1]); 1576 if (!ResultTy || ArgTys.size() < Record.size()-2) 1577 return error("Invalid type"); 1578 1579 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1580 break; 1581 } 1582 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1583 if (Record.size() < 1) 1584 return error("Invalid record"); 1585 SmallVector<Type*, 8> EltTys; 1586 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1587 if (Type *T = getTypeByID(Record[i])) 1588 EltTys.push_back(T); 1589 else 1590 break; 1591 } 1592 if (EltTys.size() != Record.size()-1) 1593 return error("Invalid type"); 1594 ResultTy = StructType::get(Context, EltTys, Record[0]); 1595 break; 1596 } 1597 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1598 if (convertToString(Record, 0, TypeName)) 1599 return error("Invalid record"); 1600 continue; 1601 1602 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1603 if (Record.size() < 1) 1604 return error("Invalid record"); 1605 1606 if (NumRecords >= TypeList.size()) 1607 return error("Invalid TYPE table"); 1608 1609 // Check to see if this was forward referenced, if so fill in the temp. 1610 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1611 if (Res) { 1612 Res->setName(TypeName); 1613 TypeList[NumRecords] = nullptr; 1614 } else // Otherwise, create a new struct. 1615 Res = createIdentifiedStructType(Context, TypeName); 1616 TypeName.clear(); 1617 1618 SmallVector<Type*, 8> EltTys; 1619 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1620 if (Type *T = getTypeByID(Record[i])) 1621 EltTys.push_back(T); 1622 else 1623 break; 1624 } 1625 if (EltTys.size() != Record.size()-1) 1626 return error("Invalid record"); 1627 Res->setBody(EltTys, Record[0]); 1628 ResultTy = Res; 1629 break; 1630 } 1631 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1632 if (Record.size() != 1) 1633 return error("Invalid record"); 1634 1635 if (NumRecords >= TypeList.size()) 1636 return error("Invalid TYPE table"); 1637 1638 // Check to see if this was forward referenced, if so fill in the temp. 1639 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1640 if (Res) { 1641 Res->setName(TypeName); 1642 TypeList[NumRecords] = nullptr; 1643 } else // Otherwise, create a new struct with no body. 1644 Res = createIdentifiedStructType(Context, TypeName); 1645 TypeName.clear(); 1646 ResultTy = Res; 1647 break; 1648 } 1649 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1650 if (Record.size() < 2) 1651 return error("Invalid record"); 1652 ResultTy = getTypeByID(Record[1]); 1653 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1654 return error("Invalid type"); 1655 ResultTy = ArrayType::get(ResultTy, Record[0]); 1656 break; 1657 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1658 if (Record.size() < 2) 1659 return error("Invalid record"); 1660 if (Record[0] == 0) 1661 return error("Invalid vector length"); 1662 ResultTy = getTypeByID(Record[1]); 1663 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1664 return error("Invalid type"); 1665 ResultTy = VectorType::get(ResultTy, Record[0]); 1666 break; 1667 } 1668 1669 if (NumRecords >= TypeList.size()) 1670 return error("Invalid TYPE table"); 1671 if (TypeList[NumRecords]) 1672 return error( 1673 "Invalid TYPE table: Only named structs can be forward referenced"); 1674 assert(ResultTy && "Didn't read a type?"); 1675 TypeList[NumRecords++] = ResultTy; 1676 } 1677 } 1678 1679 std::error_code BitcodeReader::parseOperandBundleTags() { 1680 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1681 return error("Invalid record"); 1682 1683 if (!BundleTags.empty()) 1684 return error("Invalid multiple blocks"); 1685 1686 SmallVector<uint64_t, 64> Record; 1687 1688 while (1) { 1689 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1690 1691 switch (Entry.Kind) { 1692 case BitstreamEntry::SubBlock: // Handled for us already. 1693 case BitstreamEntry::Error: 1694 return error("Malformed block"); 1695 case BitstreamEntry::EndBlock: 1696 return std::error_code(); 1697 case BitstreamEntry::Record: 1698 // The interesting case. 1699 break; 1700 } 1701 1702 // Tags are implicitly mapped to integers by their order. 1703 1704 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1705 return error("Invalid record"); 1706 1707 // OPERAND_BUNDLE_TAG: [strchr x N] 1708 BundleTags.emplace_back(); 1709 if (convertToString(Record, 0, BundleTags.back())) 1710 return error("Invalid record"); 1711 Record.clear(); 1712 } 1713 } 1714 1715 /// Associate a value with its name from the given index in the provided record. 1716 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1717 unsigned NameIndex, Triple &TT) { 1718 SmallString<128> ValueName; 1719 if (convertToString(Record, NameIndex, ValueName)) 1720 return error("Invalid record"); 1721 unsigned ValueID = Record[0]; 1722 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1723 return error("Invalid record"); 1724 Value *V = ValueList[ValueID]; 1725 1726 StringRef NameStr(ValueName.data(), ValueName.size()); 1727 if (NameStr.find_first_of(0) != StringRef::npos) 1728 return error("Invalid value name"); 1729 V->setName(NameStr); 1730 auto *GO = dyn_cast<GlobalObject>(V); 1731 if (GO) { 1732 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1733 if (TT.isOSBinFormatMachO()) 1734 GO->setComdat(nullptr); 1735 else 1736 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1737 } 1738 } 1739 return V; 1740 } 1741 1742 /// Helper to note and return the current location, and jump to the given 1743 /// offset. 1744 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1745 BitstreamCursor &Stream) { 1746 // Save the current parsing location so we can jump back at the end 1747 // of the VST read. 1748 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1749 Stream.JumpToBit(Offset * 32); 1750 #ifndef NDEBUG 1751 // Do some checking if we are in debug mode. 1752 BitstreamEntry Entry = Stream.advance(); 1753 assert(Entry.Kind == BitstreamEntry::SubBlock); 1754 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1755 #else 1756 // In NDEBUG mode ignore the output so we don't get an unused variable 1757 // warning. 1758 Stream.advance(); 1759 #endif 1760 return CurrentBit; 1761 } 1762 1763 /// Parse the value symbol table at either the current parsing location or 1764 /// at the given bit offset if provided. 1765 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1766 uint64_t CurrentBit; 1767 // Pass in the Offset to distinguish between calling for the module-level 1768 // VST (where we want to jump to the VST offset) and the function-level 1769 // VST (where we don't). 1770 if (Offset > 0) 1771 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1772 1773 // Compute the delta between the bitcode indices in the VST (the word offset 1774 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1775 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1776 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1777 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1778 // just before entering the VST subblock because: 1) the EnterSubBlock 1779 // changes the AbbrevID width; 2) the VST block is nested within the same 1780 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1781 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1782 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1783 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1784 unsigned FuncBitcodeOffsetDelta = 1785 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1786 1787 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1788 return error("Invalid record"); 1789 1790 SmallVector<uint64_t, 64> Record; 1791 1792 Triple TT(TheModule->getTargetTriple()); 1793 1794 // Read all the records for this value table. 1795 SmallString<128> ValueName; 1796 while (1) { 1797 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1798 1799 switch (Entry.Kind) { 1800 case BitstreamEntry::SubBlock: // Handled for us already. 1801 case BitstreamEntry::Error: 1802 return error("Malformed block"); 1803 case BitstreamEntry::EndBlock: 1804 if (Offset > 0) 1805 Stream.JumpToBit(CurrentBit); 1806 return std::error_code(); 1807 case BitstreamEntry::Record: 1808 // The interesting case. 1809 break; 1810 } 1811 1812 // Read a record. 1813 Record.clear(); 1814 switch (Stream.readRecord(Entry.ID, Record)) { 1815 default: // Default behavior: unknown type. 1816 break; 1817 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1818 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1819 if (std::error_code EC = ValOrErr.getError()) 1820 return EC; 1821 ValOrErr.get(); 1822 break; 1823 } 1824 case bitc::VST_CODE_FNENTRY: { 1825 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1826 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1827 if (std::error_code EC = ValOrErr.getError()) 1828 return EC; 1829 Value *V = ValOrErr.get(); 1830 1831 auto *GO = dyn_cast<GlobalObject>(V); 1832 if (!GO) { 1833 // If this is an alias, need to get the actual Function object 1834 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1835 auto *GA = dyn_cast<GlobalAlias>(V); 1836 if (GA) 1837 GO = GA->getBaseObject(); 1838 assert(GO); 1839 } 1840 1841 uint64_t FuncWordOffset = Record[1]; 1842 Function *F = dyn_cast<Function>(GO); 1843 assert(F); 1844 uint64_t FuncBitOffset = FuncWordOffset * 32; 1845 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1846 // Set the LastFunctionBlockBit to point to the last function block. 1847 // Later when parsing is resumed after function materialization, 1848 // we can simply skip that last function block. 1849 if (FuncBitOffset > LastFunctionBlockBit) 1850 LastFunctionBlockBit = FuncBitOffset; 1851 break; 1852 } 1853 case bitc::VST_CODE_BBENTRY: { 1854 if (convertToString(Record, 1, ValueName)) 1855 return error("Invalid record"); 1856 BasicBlock *BB = getBasicBlock(Record[0]); 1857 if (!BB) 1858 return error("Invalid record"); 1859 1860 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1861 ValueName.clear(); 1862 break; 1863 } 1864 } 1865 } 1866 } 1867 1868 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1869 std::error_code 1870 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1871 if (Record.size() < 2) 1872 return error("Invalid record"); 1873 1874 unsigned Kind = Record[0]; 1875 SmallString<8> Name(Record.begin() + 1, Record.end()); 1876 1877 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1878 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1879 return error("Conflicting METADATA_KIND records"); 1880 return std::error_code(); 1881 } 1882 1883 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1884 1885 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1886 StringRef Blob, 1887 unsigned &NextMetadataNo) { 1888 // All the MDStrings in the block are emitted together in a single 1889 // record. The strings are concatenated and stored in a blob along with 1890 // their sizes. 1891 if (Record.size() != 2) 1892 return error("Invalid record: metadata strings layout"); 1893 1894 unsigned NumStrings = Record[0]; 1895 unsigned StringsOffset = Record[1]; 1896 if (!NumStrings) 1897 return error("Invalid record: metadata strings with no strings"); 1898 if (StringsOffset > Blob.size()) 1899 return error("Invalid record: metadata strings corrupt offset"); 1900 1901 StringRef Lengths = Blob.slice(0, StringsOffset); 1902 SimpleBitstreamCursor R(*StreamFile); 1903 R.jumpToPointer(Lengths.begin()); 1904 1905 // Ensure that Blob doesn't get invalidated, even if this is reading from 1906 // a StreamingMemoryObject with corrupt data. 1907 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1908 1909 StringRef Strings = Blob.drop_front(StringsOffset); 1910 do { 1911 if (R.AtEndOfStream()) 1912 return error("Invalid record: metadata strings bad length"); 1913 1914 unsigned Size = R.ReadVBR(6); 1915 if (Strings.size() < Size) 1916 return error("Invalid record: metadata strings truncated chars"); 1917 1918 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1919 NextMetadataNo++); 1920 Strings = Strings.drop_front(Size); 1921 } while (--NumStrings); 1922 1923 return std::error_code(); 1924 } 1925 1926 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1927 /// module level metadata. 1928 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1929 IsMetadataMaterialized = true; 1930 unsigned NextMetadataNo = MetadataList.size(); 1931 1932 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1933 return error("Invalid record"); 1934 1935 SmallVector<uint64_t, 64> Record; 1936 1937 auto getMD = [&](unsigned ID) -> Metadata * { 1938 return MetadataList.getMetadataFwdRef(ID); 1939 }; 1940 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1941 if (ID) 1942 return getMD(ID - 1); 1943 return nullptr; 1944 }; 1945 auto getMDString = [&](unsigned ID) -> MDString *{ 1946 // This requires that the ID is not really a forward reference. In 1947 // particular, the MDString must already have been resolved. 1948 return cast_or_null<MDString>(getMDOrNull(ID)); 1949 }; 1950 1951 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1952 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1953 1954 // Read all the records. 1955 while (1) { 1956 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1957 1958 switch (Entry.Kind) { 1959 case BitstreamEntry::SubBlock: // Handled for us already. 1960 case BitstreamEntry::Error: 1961 return error("Malformed block"); 1962 case BitstreamEntry::EndBlock: 1963 MetadataList.tryToResolveCycles(); 1964 return std::error_code(); 1965 case BitstreamEntry::Record: 1966 // The interesting case. 1967 break; 1968 } 1969 1970 // Read a record. 1971 Record.clear(); 1972 StringRef Blob; 1973 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1974 bool IsDistinct = false; 1975 switch (Code) { 1976 default: // Default behavior: ignore. 1977 break; 1978 case bitc::METADATA_NAME: { 1979 // Read name of the named metadata. 1980 SmallString<8> Name(Record.begin(), Record.end()); 1981 Record.clear(); 1982 Code = Stream.ReadCode(); 1983 1984 unsigned NextBitCode = Stream.readRecord(Code, Record); 1985 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1986 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1987 1988 // Read named metadata elements. 1989 unsigned Size = Record.size(); 1990 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1991 for (unsigned i = 0; i != Size; ++i) { 1992 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 1993 if (!MD) 1994 return error("Invalid record"); 1995 NMD->addOperand(MD); 1996 } 1997 break; 1998 } 1999 case bitc::METADATA_OLD_FN_NODE: { 2000 // FIXME: Remove in 4.0. 2001 // This is a LocalAsMetadata record, the only type of function-local 2002 // metadata. 2003 if (Record.size() % 2 == 1) 2004 return error("Invalid record"); 2005 2006 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2007 // to be legal, but there's no upgrade path. 2008 auto dropRecord = [&] { 2009 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2010 }; 2011 if (Record.size() != 2) { 2012 dropRecord(); 2013 break; 2014 } 2015 2016 Type *Ty = getTypeByID(Record[0]); 2017 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2018 dropRecord(); 2019 break; 2020 } 2021 2022 MetadataList.assignValue( 2023 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2024 NextMetadataNo++); 2025 break; 2026 } 2027 case bitc::METADATA_OLD_NODE: { 2028 // FIXME: Remove in 4.0. 2029 if (Record.size() % 2 == 1) 2030 return error("Invalid record"); 2031 2032 unsigned Size = Record.size(); 2033 SmallVector<Metadata *, 8> Elts; 2034 for (unsigned i = 0; i != Size; i += 2) { 2035 Type *Ty = getTypeByID(Record[i]); 2036 if (!Ty) 2037 return error("Invalid record"); 2038 if (Ty->isMetadataTy()) 2039 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2040 else if (!Ty->isVoidTy()) { 2041 auto *MD = 2042 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2043 assert(isa<ConstantAsMetadata>(MD) && 2044 "Expected non-function-local metadata"); 2045 Elts.push_back(MD); 2046 } else 2047 Elts.push_back(nullptr); 2048 } 2049 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2050 break; 2051 } 2052 case bitc::METADATA_VALUE: { 2053 if (Record.size() != 2) 2054 return error("Invalid record"); 2055 2056 Type *Ty = getTypeByID(Record[0]); 2057 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2058 return error("Invalid record"); 2059 2060 MetadataList.assignValue( 2061 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2062 NextMetadataNo++); 2063 break; 2064 } 2065 case bitc::METADATA_DISTINCT_NODE: 2066 IsDistinct = true; 2067 // fallthrough... 2068 case bitc::METADATA_NODE: { 2069 SmallVector<Metadata *, 8> Elts; 2070 Elts.reserve(Record.size()); 2071 for (unsigned ID : Record) 2072 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2073 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2074 : MDNode::get(Context, Elts), 2075 NextMetadataNo++); 2076 break; 2077 } 2078 case bitc::METADATA_LOCATION: { 2079 if (Record.size() != 5) 2080 return error("Invalid record"); 2081 2082 unsigned Line = Record[1]; 2083 unsigned Column = Record[2]; 2084 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2085 if (!Scope) 2086 return error("Invalid record"); 2087 Metadata *InlinedAt = 2088 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2089 MetadataList.assignValue( 2090 GET_OR_DISTINCT(DILocation, Record[0], 2091 (Context, Line, Column, Scope, InlinedAt)), 2092 NextMetadataNo++); 2093 break; 2094 } 2095 case bitc::METADATA_GENERIC_DEBUG: { 2096 if (Record.size() < 4) 2097 return error("Invalid record"); 2098 2099 unsigned Tag = Record[1]; 2100 unsigned Version = Record[2]; 2101 2102 if (Tag >= 1u << 16 || Version != 0) 2103 return error("Invalid record"); 2104 2105 auto *Header = getMDString(Record[3]); 2106 SmallVector<Metadata *, 8> DwarfOps; 2107 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2108 DwarfOps.push_back(Record[I] 2109 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2110 : nullptr); 2111 MetadataList.assignValue( 2112 GET_OR_DISTINCT(GenericDINode, Record[0], 2113 (Context, Tag, Header, DwarfOps)), 2114 NextMetadataNo++); 2115 break; 2116 } 2117 case bitc::METADATA_SUBRANGE: { 2118 if (Record.size() != 3) 2119 return error("Invalid record"); 2120 2121 MetadataList.assignValue( 2122 GET_OR_DISTINCT(DISubrange, Record[0], 2123 (Context, Record[1], unrotateSign(Record[2]))), 2124 NextMetadataNo++); 2125 break; 2126 } 2127 case bitc::METADATA_ENUMERATOR: { 2128 if (Record.size() != 3) 2129 return error("Invalid record"); 2130 2131 MetadataList.assignValue( 2132 GET_OR_DISTINCT( 2133 DIEnumerator, Record[0], 2134 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2135 NextMetadataNo++); 2136 break; 2137 } 2138 case bitc::METADATA_BASIC_TYPE: { 2139 if (Record.size() != 6) 2140 return error("Invalid record"); 2141 2142 MetadataList.assignValue( 2143 GET_OR_DISTINCT(DIBasicType, Record[0], 2144 (Context, Record[1], getMDString(Record[2]), 2145 Record[3], Record[4], Record[5])), 2146 NextMetadataNo++); 2147 break; 2148 } 2149 case bitc::METADATA_DERIVED_TYPE: { 2150 if (Record.size() != 12) 2151 return error("Invalid record"); 2152 2153 MetadataList.assignValue( 2154 GET_OR_DISTINCT(DIDerivedType, Record[0], 2155 (Context, Record[1], getMDString(Record[2]), 2156 getMDOrNull(Record[3]), Record[4], 2157 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2158 Record[7], Record[8], Record[9], Record[10], 2159 getMDOrNull(Record[11]))), 2160 NextMetadataNo++); 2161 break; 2162 } 2163 case bitc::METADATA_COMPOSITE_TYPE: { 2164 if (Record.size() != 16) 2165 return error("Invalid record"); 2166 2167 MetadataList.assignValue( 2168 GET_OR_DISTINCT(DICompositeType, Record[0], 2169 (Context, Record[1], getMDString(Record[2]), 2170 getMDOrNull(Record[3]), Record[4], 2171 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2172 Record[7], Record[8], Record[9], Record[10], 2173 getMDOrNull(Record[11]), Record[12], 2174 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2175 getMDString(Record[15]))), 2176 NextMetadataNo++); 2177 break; 2178 } 2179 case bitc::METADATA_SUBROUTINE_TYPE: { 2180 if (Record.size() != 3) 2181 return error("Invalid record"); 2182 2183 MetadataList.assignValue( 2184 GET_OR_DISTINCT(DISubroutineType, Record[0], 2185 (Context, Record[1], getMDOrNull(Record[2]))), 2186 NextMetadataNo++); 2187 break; 2188 } 2189 2190 case bitc::METADATA_MODULE: { 2191 if (Record.size() != 6) 2192 return error("Invalid record"); 2193 2194 MetadataList.assignValue( 2195 GET_OR_DISTINCT(DIModule, Record[0], 2196 (Context, getMDOrNull(Record[1]), 2197 getMDString(Record[2]), getMDString(Record[3]), 2198 getMDString(Record[4]), getMDString(Record[5]))), 2199 NextMetadataNo++); 2200 break; 2201 } 2202 2203 case bitc::METADATA_FILE: { 2204 if (Record.size() != 3) 2205 return error("Invalid record"); 2206 2207 MetadataList.assignValue( 2208 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2209 getMDString(Record[2]))), 2210 NextMetadataNo++); 2211 break; 2212 } 2213 case bitc::METADATA_COMPILE_UNIT: { 2214 if (Record.size() < 14 || Record.size() > 16) 2215 return error("Invalid record"); 2216 2217 // Ignore Record[0], which indicates whether this compile unit is 2218 // distinct. It's always distinct. 2219 MetadataList.assignValue( 2220 DICompileUnit::getDistinct( 2221 Context, Record[1], getMDOrNull(Record[2]), 2222 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2223 Record[6], getMDString(Record[7]), Record[8], 2224 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2225 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2226 getMDOrNull(Record[13]), 2227 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2228 Record.size() <= 14 ? 0 : Record[14]), 2229 NextMetadataNo++); 2230 break; 2231 } 2232 case bitc::METADATA_SUBPROGRAM: { 2233 if (Record.size() != 18 && Record.size() != 19) 2234 return error("Invalid record"); 2235 2236 bool HasFn = Record.size() == 19; 2237 DISubprogram *SP = GET_OR_DISTINCT( 2238 DISubprogram, 2239 Record[0] || Record[8], // All definitions should be distinct. 2240 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2241 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2242 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2243 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2244 Record[14], getMDOrNull(Record[15 + HasFn]), 2245 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2246 MetadataList.assignValue(SP, NextMetadataNo++); 2247 2248 // Upgrade sp->function mapping to function->sp mapping. 2249 if (HasFn && Record[15]) { 2250 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2251 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2252 if (F->isMaterializable()) 2253 // Defer until materialized; unmaterialized functions may not have 2254 // metadata. 2255 FunctionsWithSPs[F] = SP; 2256 else if (!F->empty()) 2257 F->setSubprogram(SP); 2258 } 2259 } 2260 break; 2261 } 2262 case bitc::METADATA_LEXICAL_BLOCK: { 2263 if (Record.size() != 5) 2264 return error("Invalid record"); 2265 2266 MetadataList.assignValue( 2267 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2268 (Context, getMDOrNull(Record[1]), 2269 getMDOrNull(Record[2]), Record[3], Record[4])), 2270 NextMetadataNo++); 2271 break; 2272 } 2273 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2274 if (Record.size() != 4) 2275 return error("Invalid record"); 2276 2277 MetadataList.assignValue( 2278 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2279 (Context, getMDOrNull(Record[1]), 2280 getMDOrNull(Record[2]), Record[3])), 2281 NextMetadataNo++); 2282 break; 2283 } 2284 case bitc::METADATA_NAMESPACE: { 2285 if (Record.size() != 5) 2286 return error("Invalid record"); 2287 2288 MetadataList.assignValue( 2289 GET_OR_DISTINCT(DINamespace, Record[0], 2290 (Context, getMDOrNull(Record[1]), 2291 getMDOrNull(Record[2]), getMDString(Record[3]), 2292 Record[4])), 2293 NextMetadataNo++); 2294 break; 2295 } 2296 case bitc::METADATA_MACRO: { 2297 if (Record.size() != 5) 2298 return error("Invalid record"); 2299 2300 MetadataList.assignValue( 2301 GET_OR_DISTINCT(DIMacro, Record[0], 2302 (Context, Record[1], Record[2], 2303 getMDString(Record[3]), getMDString(Record[4]))), 2304 NextMetadataNo++); 2305 break; 2306 } 2307 case bitc::METADATA_MACRO_FILE: { 2308 if (Record.size() != 5) 2309 return error("Invalid record"); 2310 2311 MetadataList.assignValue( 2312 GET_OR_DISTINCT(DIMacroFile, Record[0], 2313 (Context, Record[1], Record[2], 2314 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2315 NextMetadataNo++); 2316 break; 2317 } 2318 case bitc::METADATA_TEMPLATE_TYPE: { 2319 if (Record.size() != 3) 2320 return error("Invalid record"); 2321 2322 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2323 Record[0], 2324 (Context, getMDString(Record[1]), 2325 getMDOrNull(Record[2]))), 2326 NextMetadataNo++); 2327 break; 2328 } 2329 case bitc::METADATA_TEMPLATE_VALUE: { 2330 if (Record.size() != 5) 2331 return error("Invalid record"); 2332 2333 MetadataList.assignValue( 2334 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2335 (Context, Record[1], getMDString(Record[2]), 2336 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2337 NextMetadataNo++); 2338 break; 2339 } 2340 case bitc::METADATA_GLOBAL_VAR: { 2341 if (Record.size() != 11) 2342 return error("Invalid record"); 2343 2344 MetadataList.assignValue( 2345 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2346 (Context, getMDOrNull(Record[1]), 2347 getMDString(Record[2]), getMDString(Record[3]), 2348 getMDOrNull(Record[4]), Record[5], 2349 getMDOrNull(Record[6]), Record[7], Record[8], 2350 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2351 NextMetadataNo++); 2352 break; 2353 } 2354 case bitc::METADATA_LOCAL_VAR: { 2355 // 10th field is for the obseleted 'inlinedAt:' field. 2356 if (Record.size() < 8 || Record.size() > 10) 2357 return error("Invalid record"); 2358 2359 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2360 // DW_TAG_arg_variable. 2361 bool HasTag = Record.size() > 8; 2362 MetadataList.assignValue( 2363 GET_OR_DISTINCT(DILocalVariable, Record[0], 2364 (Context, getMDOrNull(Record[1 + HasTag]), 2365 getMDString(Record[2 + HasTag]), 2366 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2367 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2368 Record[7 + HasTag])), 2369 NextMetadataNo++); 2370 break; 2371 } 2372 case bitc::METADATA_EXPRESSION: { 2373 if (Record.size() < 1) 2374 return error("Invalid record"); 2375 2376 MetadataList.assignValue( 2377 GET_OR_DISTINCT(DIExpression, Record[0], 2378 (Context, makeArrayRef(Record).slice(1))), 2379 NextMetadataNo++); 2380 break; 2381 } 2382 case bitc::METADATA_OBJC_PROPERTY: { 2383 if (Record.size() != 8) 2384 return error("Invalid record"); 2385 2386 MetadataList.assignValue( 2387 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2388 (Context, getMDString(Record[1]), 2389 getMDOrNull(Record[2]), Record[3], 2390 getMDString(Record[4]), getMDString(Record[5]), 2391 Record[6], getMDOrNull(Record[7]))), 2392 NextMetadataNo++); 2393 break; 2394 } 2395 case bitc::METADATA_IMPORTED_ENTITY: { 2396 if (Record.size() != 6) 2397 return error("Invalid record"); 2398 2399 MetadataList.assignValue( 2400 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2401 (Context, Record[1], getMDOrNull(Record[2]), 2402 getMDOrNull(Record[3]), Record[4], 2403 getMDString(Record[5]))), 2404 NextMetadataNo++); 2405 break; 2406 } 2407 case bitc::METADATA_STRING_OLD: { 2408 std::string String(Record.begin(), Record.end()); 2409 2410 // Test for upgrading !llvm.loop. 2411 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2412 2413 Metadata *MD = MDString::get(Context, String); 2414 MetadataList.assignValue(MD, NextMetadataNo++); 2415 break; 2416 } 2417 case bitc::METADATA_STRINGS: 2418 if (std::error_code EC = 2419 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2420 return EC; 2421 break; 2422 case bitc::METADATA_KIND: { 2423 // Support older bitcode files that had METADATA_KIND records in a 2424 // block with METADATA_BLOCK_ID. 2425 if (std::error_code EC = parseMetadataKindRecord(Record)) 2426 return EC; 2427 break; 2428 } 2429 } 2430 } 2431 #undef GET_OR_DISTINCT 2432 } 2433 2434 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2435 std::error_code BitcodeReader::parseMetadataKinds() { 2436 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2437 return error("Invalid record"); 2438 2439 SmallVector<uint64_t, 64> Record; 2440 2441 // Read all the records. 2442 while (1) { 2443 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2444 2445 switch (Entry.Kind) { 2446 case BitstreamEntry::SubBlock: // Handled for us already. 2447 case BitstreamEntry::Error: 2448 return error("Malformed block"); 2449 case BitstreamEntry::EndBlock: 2450 return std::error_code(); 2451 case BitstreamEntry::Record: 2452 // The interesting case. 2453 break; 2454 } 2455 2456 // Read a record. 2457 Record.clear(); 2458 unsigned Code = Stream.readRecord(Entry.ID, Record); 2459 switch (Code) { 2460 default: // Default behavior: ignore. 2461 break; 2462 case bitc::METADATA_KIND: { 2463 if (std::error_code EC = parseMetadataKindRecord(Record)) 2464 return EC; 2465 break; 2466 } 2467 } 2468 } 2469 } 2470 2471 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2472 /// encoding. 2473 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2474 if ((V & 1) == 0) 2475 return V >> 1; 2476 if (V != 1) 2477 return -(V >> 1); 2478 // There is no such thing as -0 with integers. "-0" really means MININT. 2479 return 1ULL << 63; 2480 } 2481 2482 /// Resolve all of the initializers for global values and aliases that we can. 2483 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2484 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2485 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2486 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2487 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2488 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2489 2490 GlobalInitWorklist.swap(GlobalInits); 2491 AliasInitWorklist.swap(AliasInits); 2492 FunctionPrefixWorklist.swap(FunctionPrefixes); 2493 FunctionPrologueWorklist.swap(FunctionPrologues); 2494 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2495 2496 while (!GlobalInitWorklist.empty()) { 2497 unsigned ValID = GlobalInitWorklist.back().second; 2498 if (ValID >= ValueList.size()) { 2499 // Not ready to resolve this yet, it requires something later in the file. 2500 GlobalInits.push_back(GlobalInitWorklist.back()); 2501 } else { 2502 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2503 GlobalInitWorklist.back().first->setInitializer(C); 2504 else 2505 return error("Expected a constant"); 2506 } 2507 GlobalInitWorklist.pop_back(); 2508 } 2509 2510 while (!AliasInitWorklist.empty()) { 2511 unsigned ValID = AliasInitWorklist.back().second; 2512 if (ValID >= ValueList.size()) { 2513 AliasInits.push_back(AliasInitWorklist.back()); 2514 } else { 2515 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2516 if (!C) 2517 return error("Expected a constant"); 2518 GlobalAlias *Alias = AliasInitWorklist.back().first; 2519 if (C->getType() != Alias->getType()) 2520 return error("Alias and aliasee types don't match"); 2521 Alias->setAliasee(C); 2522 } 2523 AliasInitWorklist.pop_back(); 2524 } 2525 2526 while (!FunctionPrefixWorklist.empty()) { 2527 unsigned ValID = FunctionPrefixWorklist.back().second; 2528 if (ValID >= ValueList.size()) { 2529 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2530 } else { 2531 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2532 FunctionPrefixWorklist.back().first->setPrefixData(C); 2533 else 2534 return error("Expected a constant"); 2535 } 2536 FunctionPrefixWorklist.pop_back(); 2537 } 2538 2539 while (!FunctionPrologueWorklist.empty()) { 2540 unsigned ValID = FunctionPrologueWorklist.back().second; 2541 if (ValID >= ValueList.size()) { 2542 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2543 } else { 2544 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2545 FunctionPrologueWorklist.back().first->setPrologueData(C); 2546 else 2547 return error("Expected a constant"); 2548 } 2549 FunctionPrologueWorklist.pop_back(); 2550 } 2551 2552 while (!FunctionPersonalityFnWorklist.empty()) { 2553 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2554 if (ValID >= ValueList.size()) { 2555 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2556 } else { 2557 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2558 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2559 else 2560 return error("Expected a constant"); 2561 } 2562 FunctionPersonalityFnWorklist.pop_back(); 2563 } 2564 2565 return std::error_code(); 2566 } 2567 2568 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2569 SmallVector<uint64_t, 8> Words(Vals.size()); 2570 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2571 BitcodeReader::decodeSignRotatedValue); 2572 2573 return APInt(TypeBits, Words); 2574 } 2575 2576 std::error_code BitcodeReader::parseConstants() { 2577 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2578 return error("Invalid record"); 2579 2580 SmallVector<uint64_t, 64> Record; 2581 2582 // Read all the records for this value table. 2583 Type *CurTy = Type::getInt32Ty(Context); 2584 unsigned NextCstNo = ValueList.size(); 2585 while (1) { 2586 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2587 2588 switch (Entry.Kind) { 2589 case BitstreamEntry::SubBlock: // Handled for us already. 2590 case BitstreamEntry::Error: 2591 return error("Malformed block"); 2592 case BitstreamEntry::EndBlock: 2593 if (NextCstNo != ValueList.size()) 2594 return error("Invalid constant reference"); 2595 2596 // Once all the constants have been read, go through and resolve forward 2597 // references. 2598 ValueList.resolveConstantForwardRefs(); 2599 return std::error_code(); 2600 case BitstreamEntry::Record: 2601 // The interesting case. 2602 break; 2603 } 2604 2605 // Read a record. 2606 Record.clear(); 2607 Value *V = nullptr; 2608 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2609 switch (BitCode) { 2610 default: // Default behavior: unknown constant 2611 case bitc::CST_CODE_UNDEF: // UNDEF 2612 V = UndefValue::get(CurTy); 2613 break; 2614 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2615 if (Record.empty()) 2616 return error("Invalid record"); 2617 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2618 return error("Invalid record"); 2619 CurTy = TypeList[Record[0]]; 2620 continue; // Skip the ValueList manipulation. 2621 case bitc::CST_CODE_NULL: // NULL 2622 V = Constant::getNullValue(CurTy); 2623 break; 2624 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2625 if (!CurTy->isIntegerTy() || Record.empty()) 2626 return error("Invalid record"); 2627 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2628 break; 2629 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2630 if (!CurTy->isIntegerTy() || Record.empty()) 2631 return error("Invalid record"); 2632 2633 APInt VInt = 2634 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2635 V = ConstantInt::get(Context, VInt); 2636 2637 break; 2638 } 2639 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2640 if (Record.empty()) 2641 return error("Invalid record"); 2642 if (CurTy->isHalfTy()) 2643 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2644 APInt(16, (uint16_t)Record[0]))); 2645 else if (CurTy->isFloatTy()) 2646 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2647 APInt(32, (uint32_t)Record[0]))); 2648 else if (CurTy->isDoubleTy()) 2649 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2650 APInt(64, Record[0]))); 2651 else if (CurTy->isX86_FP80Ty()) { 2652 // Bits are not stored the same way as a normal i80 APInt, compensate. 2653 uint64_t Rearrange[2]; 2654 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2655 Rearrange[1] = Record[0] >> 48; 2656 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2657 APInt(80, Rearrange))); 2658 } else if (CurTy->isFP128Ty()) 2659 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2660 APInt(128, Record))); 2661 else if (CurTy->isPPC_FP128Ty()) 2662 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2663 APInt(128, Record))); 2664 else 2665 V = UndefValue::get(CurTy); 2666 break; 2667 } 2668 2669 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2670 if (Record.empty()) 2671 return error("Invalid record"); 2672 2673 unsigned Size = Record.size(); 2674 SmallVector<Constant*, 16> Elts; 2675 2676 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2677 for (unsigned i = 0; i != Size; ++i) 2678 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2679 STy->getElementType(i))); 2680 V = ConstantStruct::get(STy, Elts); 2681 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2682 Type *EltTy = ATy->getElementType(); 2683 for (unsigned i = 0; i != Size; ++i) 2684 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2685 V = ConstantArray::get(ATy, Elts); 2686 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2687 Type *EltTy = VTy->getElementType(); 2688 for (unsigned i = 0; i != Size; ++i) 2689 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2690 V = ConstantVector::get(Elts); 2691 } else { 2692 V = UndefValue::get(CurTy); 2693 } 2694 break; 2695 } 2696 case bitc::CST_CODE_STRING: // STRING: [values] 2697 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2698 if (Record.empty()) 2699 return error("Invalid record"); 2700 2701 SmallString<16> Elts(Record.begin(), Record.end()); 2702 V = ConstantDataArray::getString(Context, Elts, 2703 BitCode == bitc::CST_CODE_CSTRING); 2704 break; 2705 } 2706 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2707 if (Record.empty()) 2708 return error("Invalid record"); 2709 2710 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2711 if (EltTy->isIntegerTy(8)) { 2712 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2713 if (isa<VectorType>(CurTy)) 2714 V = ConstantDataVector::get(Context, Elts); 2715 else 2716 V = ConstantDataArray::get(Context, Elts); 2717 } else if (EltTy->isIntegerTy(16)) { 2718 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2719 if (isa<VectorType>(CurTy)) 2720 V = ConstantDataVector::get(Context, Elts); 2721 else 2722 V = ConstantDataArray::get(Context, Elts); 2723 } else if (EltTy->isIntegerTy(32)) { 2724 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2725 if (isa<VectorType>(CurTy)) 2726 V = ConstantDataVector::get(Context, Elts); 2727 else 2728 V = ConstantDataArray::get(Context, Elts); 2729 } else if (EltTy->isIntegerTy(64)) { 2730 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2731 if (isa<VectorType>(CurTy)) 2732 V = ConstantDataVector::get(Context, Elts); 2733 else 2734 V = ConstantDataArray::get(Context, Elts); 2735 } else if (EltTy->isHalfTy()) { 2736 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2737 if (isa<VectorType>(CurTy)) 2738 V = ConstantDataVector::getFP(Context, Elts); 2739 else 2740 V = ConstantDataArray::getFP(Context, Elts); 2741 } else if (EltTy->isFloatTy()) { 2742 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2743 if (isa<VectorType>(CurTy)) 2744 V = ConstantDataVector::getFP(Context, Elts); 2745 else 2746 V = ConstantDataArray::getFP(Context, Elts); 2747 } else if (EltTy->isDoubleTy()) { 2748 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2749 if (isa<VectorType>(CurTy)) 2750 V = ConstantDataVector::getFP(Context, Elts); 2751 else 2752 V = ConstantDataArray::getFP(Context, Elts); 2753 } else { 2754 return error("Invalid type for value"); 2755 } 2756 break; 2757 } 2758 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2759 if (Record.size() < 3) 2760 return error("Invalid record"); 2761 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2762 if (Opc < 0) { 2763 V = UndefValue::get(CurTy); // Unknown binop. 2764 } else { 2765 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2766 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2767 unsigned Flags = 0; 2768 if (Record.size() >= 4) { 2769 if (Opc == Instruction::Add || 2770 Opc == Instruction::Sub || 2771 Opc == Instruction::Mul || 2772 Opc == Instruction::Shl) { 2773 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2774 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2775 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2776 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2777 } else if (Opc == Instruction::SDiv || 2778 Opc == Instruction::UDiv || 2779 Opc == Instruction::LShr || 2780 Opc == Instruction::AShr) { 2781 if (Record[3] & (1 << bitc::PEO_EXACT)) 2782 Flags |= SDivOperator::IsExact; 2783 } 2784 } 2785 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2786 } 2787 break; 2788 } 2789 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2790 if (Record.size() < 3) 2791 return error("Invalid record"); 2792 int Opc = getDecodedCastOpcode(Record[0]); 2793 if (Opc < 0) { 2794 V = UndefValue::get(CurTy); // Unknown cast. 2795 } else { 2796 Type *OpTy = getTypeByID(Record[1]); 2797 if (!OpTy) 2798 return error("Invalid record"); 2799 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2800 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2801 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2802 } 2803 break; 2804 } 2805 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2806 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2807 unsigned OpNum = 0; 2808 Type *PointeeType = nullptr; 2809 if (Record.size() % 2) 2810 PointeeType = getTypeByID(Record[OpNum++]); 2811 SmallVector<Constant*, 16> Elts; 2812 while (OpNum != Record.size()) { 2813 Type *ElTy = getTypeByID(Record[OpNum++]); 2814 if (!ElTy) 2815 return error("Invalid record"); 2816 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2817 } 2818 2819 if (PointeeType && 2820 PointeeType != 2821 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2822 ->getElementType()) 2823 return error("Explicit gep operator type does not match pointee type " 2824 "of pointer operand"); 2825 2826 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2827 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2828 BitCode == 2829 bitc::CST_CODE_CE_INBOUNDS_GEP); 2830 break; 2831 } 2832 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2833 if (Record.size() < 3) 2834 return error("Invalid record"); 2835 2836 Type *SelectorTy = Type::getInt1Ty(Context); 2837 2838 // The selector might be an i1 or an <n x i1> 2839 // Get the type from the ValueList before getting a forward ref. 2840 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2841 if (Value *V = ValueList[Record[0]]) 2842 if (SelectorTy != V->getType()) 2843 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2844 2845 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2846 SelectorTy), 2847 ValueList.getConstantFwdRef(Record[1],CurTy), 2848 ValueList.getConstantFwdRef(Record[2],CurTy)); 2849 break; 2850 } 2851 case bitc::CST_CODE_CE_EXTRACTELT 2852 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2853 if (Record.size() < 3) 2854 return error("Invalid record"); 2855 VectorType *OpTy = 2856 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2857 if (!OpTy) 2858 return error("Invalid record"); 2859 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2860 Constant *Op1 = nullptr; 2861 if (Record.size() == 4) { 2862 Type *IdxTy = getTypeByID(Record[2]); 2863 if (!IdxTy) 2864 return error("Invalid record"); 2865 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2866 } else // TODO: Remove with llvm 4.0 2867 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2868 if (!Op1) 2869 return error("Invalid record"); 2870 V = ConstantExpr::getExtractElement(Op0, Op1); 2871 break; 2872 } 2873 case bitc::CST_CODE_CE_INSERTELT 2874 : { // CE_INSERTELT: [opval, opval, opty, opval] 2875 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2876 if (Record.size() < 3 || !OpTy) 2877 return error("Invalid record"); 2878 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2879 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2880 OpTy->getElementType()); 2881 Constant *Op2 = nullptr; 2882 if (Record.size() == 4) { 2883 Type *IdxTy = getTypeByID(Record[2]); 2884 if (!IdxTy) 2885 return error("Invalid record"); 2886 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2887 } else // TODO: Remove with llvm 4.0 2888 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2889 if (!Op2) 2890 return error("Invalid record"); 2891 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2892 break; 2893 } 2894 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2895 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2896 if (Record.size() < 3 || !OpTy) 2897 return error("Invalid record"); 2898 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2899 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2900 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2901 OpTy->getNumElements()); 2902 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2903 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2904 break; 2905 } 2906 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2907 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2908 VectorType *OpTy = 2909 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2910 if (Record.size() < 4 || !RTy || !OpTy) 2911 return error("Invalid record"); 2912 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2913 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2914 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2915 RTy->getNumElements()); 2916 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2917 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2918 break; 2919 } 2920 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2921 if (Record.size() < 4) 2922 return error("Invalid record"); 2923 Type *OpTy = getTypeByID(Record[0]); 2924 if (!OpTy) 2925 return error("Invalid record"); 2926 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2927 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2928 2929 if (OpTy->isFPOrFPVectorTy()) 2930 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2931 else 2932 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2933 break; 2934 } 2935 // This maintains backward compatibility, pre-asm dialect keywords. 2936 // FIXME: Remove with the 4.0 release. 2937 case bitc::CST_CODE_INLINEASM_OLD: { 2938 if (Record.size() < 2) 2939 return error("Invalid record"); 2940 std::string AsmStr, ConstrStr; 2941 bool HasSideEffects = Record[0] & 1; 2942 bool IsAlignStack = Record[0] >> 1; 2943 unsigned AsmStrSize = Record[1]; 2944 if (2+AsmStrSize >= Record.size()) 2945 return error("Invalid record"); 2946 unsigned ConstStrSize = Record[2+AsmStrSize]; 2947 if (3+AsmStrSize+ConstStrSize > Record.size()) 2948 return error("Invalid record"); 2949 2950 for (unsigned i = 0; i != AsmStrSize; ++i) 2951 AsmStr += (char)Record[2+i]; 2952 for (unsigned i = 0; i != ConstStrSize; ++i) 2953 ConstrStr += (char)Record[3+AsmStrSize+i]; 2954 PointerType *PTy = cast<PointerType>(CurTy); 2955 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2956 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2957 break; 2958 } 2959 // This version adds support for the asm dialect keywords (e.g., 2960 // inteldialect). 2961 case bitc::CST_CODE_INLINEASM: { 2962 if (Record.size() < 2) 2963 return error("Invalid record"); 2964 std::string AsmStr, ConstrStr; 2965 bool HasSideEffects = Record[0] & 1; 2966 bool IsAlignStack = (Record[0] >> 1) & 1; 2967 unsigned AsmDialect = Record[0] >> 2; 2968 unsigned AsmStrSize = Record[1]; 2969 if (2+AsmStrSize >= Record.size()) 2970 return error("Invalid record"); 2971 unsigned ConstStrSize = Record[2+AsmStrSize]; 2972 if (3+AsmStrSize+ConstStrSize > Record.size()) 2973 return error("Invalid record"); 2974 2975 for (unsigned i = 0; i != AsmStrSize; ++i) 2976 AsmStr += (char)Record[2+i]; 2977 for (unsigned i = 0; i != ConstStrSize; ++i) 2978 ConstrStr += (char)Record[3+AsmStrSize+i]; 2979 PointerType *PTy = cast<PointerType>(CurTy); 2980 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2981 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2982 InlineAsm::AsmDialect(AsmDialect)); 2983 break; 2984 } 2985 case bitc::CST_CODE_BLOCKADDRESS:{ 2986 if (Record.size() < 3) 2987 return error("Invalid record"); 2988 Type *FnTy = getTypeByID(Record[0]); 2989 if (!FnTy) 2990 return error("Invalid record"); 2991 Function *Fn = 2992 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2993 if (!Fn) 2994 return error("Invalid record"); 2995 2996 // If the function is already parsed we can insert the block address right 2997 // away. 2998 BasicBlock *BB; 2999 unsigned BBID = Record[2]; 3000 if (!BBID) 3001 // Invalid reference to entry block. 3002 return error("Invalid ID"); 3003 if (!Fn->empty()) { 3004 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3005 for (size_t I = 0, E = BBID; I != E; ++I) { 3006 if (BBI == BBE) 3007 return error("Invalid ID"); 3008 ++BBI; 3009 } 3010 BB = &*BBI; 3011 } else { 3012 // Otherwise insert a placeholder and remember it so it can be inserted 3013 // when the function is parsed. 3014 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3015 if (FwdBBs.empty()) 3016 BasicBlockFwdRefQueue.push_back(Fn); 3017 if (FwdBBs.size() < BBID + 1) 3018 FwdBBs.resize(BBID + 1); 3019 if (!FwdBBs[BBID]) 3020 FwdBBs[BBID] = BasicBlock::Create(Context); 3021 BB = FwdBBs[BBID]; 3022 } 3023 V = BlockAddress::get(Fn, BB); 3024 break; 3025 } 3026 } 3027 3028 ValueList.assignValue(V, NextCstNo); 3029 ++NextCstNo; 3030 } 3031 } 3032 3033 std::error_code BitcodeReader::parseUseLists() { 3034 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3035 return error("Invalid record"); 3036 3037 // Read all the records. 3038 SmallVector<uint64_t, 64> Record; 3039 while (1) { 3040 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3041 3042 switch (Entry.Kind) { 3043 case BitstreamEntry::SubBlock: // Handled for us already. 3044 case BitstreamEntry::Error: 3045 return error("Malformed block"); 3046 case BitstreamEntry::EndBlock: 3047 return std::error_code(); 3048 case BitstreamEntry::Record: 3049 // The interesting case. 3050 break; 3051 } 3052 3053 // Read a use list record. 3054 Record.clear(); 3055 bool IsBB = false; 3056 switch (Stream.readRecord(Entry.ID, Record)) { 3057 default: // Default behavior: unknown type. 3058 break; 3059 case bitc::USELIST_CODE_BB: 3060 IsBB = true; 3061 // fallthrough 3062 case bitc::USELIST_CODE_DEFAULT: { 3063 unsigned RecordLength = Record.size(); 3064 if (RecordLength < 3) 3065 // Records should have at least an ID and two indexes. 3066 return error("Invalid record"); 3067 unsigned ID = Record.back(); 3068 Record.pop_back(); 3069 3070 Value *V; 3071 if (IsBB) { 3072 assert(ID < FunctionBBs.size() && "Basic block not found"); 3073 V = FunctionBBs[ID]; 3074 } else 3075 V = ValueList[ID]; 3076 unsigned NumUses = 0; 3077 SmallDenseMap<const Use *, unsigned, 16> Order; 3078 for (const Use &U : V->materialized_uses()) { 3079 if (++NumUses > Record.size()) 3080 break; 3081 Order[&U] = Record[NumUses - 1]; 3082 } 3083 if (Order.size() != Record.size() || NumUses > Record.size()) 3084 // Mismatches can happen if the functions are being materialized lazily 3085 // (out-of-order), or a value has been upgraded. 3086 break; 3087 3088 V->sortUseList([&](const Use &L, const Use &R) { 3089 return Order.lookup(&L) < Order.lookup(&R); 3090 }); 3091 break; 3092 } 3093 } 3094 } 3095 } 3096 3097 /// When we see the block for metadata, remember where it is and then skip it. 3098 /// This lets us lazily deserialize the metadata. 3099 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3100 // Save the current stream state. 3101 uint64_t CurBit = Stream.GetCurrentBitNo(); 3102 DeferredMetadataInfo.push_back(CurBit); 3103 3104 // Skip over the block for now. 3105 if (Stream.SkipBlock()) 3106 return error("Invalid record"); 3107 return std::error_code(); 3108 } 3109 3110 std::error_code BitcodeReader::materializeMetadata() { 3111 for (uint64_t BitPos : DeferredMetadataInfo) { 3112 // Move the bit stream to the saved position. 3113 Stream.JumpToBit(BitPos); 3114 if (std::error_code EC = parseMetadata(true)) 3115 return EC; 3116 } 3117 DeferredMetadataInfo.clear(); 3118 return std::error_code(); 3119 } 3120 3121 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3122 3123 /// When we see the block for a function body, remember where it is and then 3124 /// skip it. This lets us lazily deserialize the functions. 3125 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3126 // Get the function we are talking about. 3127 if (FunctionsWithBodies.empty()) 3128 return error("Insufficient function protos"); 3129 3130 Function *Fn = FunctionsWithBodies.back(); 3131 FunctionsWithBodies.pop_back(); 3132 3133 // Save the current stream state. 3134 uint64_t CurBit = Stream.GetCurrentBitNo(); 3135 assert( 3136 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3137 "Mismatch between VST and scanned function offsets"); 3138 DeferredFunctionInfo[Fn] = CurBit; 3139 3140 // Skip over the function block for now. 3141 if (Stream.SkipBlock()) 3142 return error("Invalid record"); 3143 return std::error_code(); 3144 } 3145 3146 std::error_code BitcodeReader::globalCleanup() { 3147 // Patch the initializers for globals and aliases up. 3148 resolveGlobalAndAliasInits(); 3149 if (!GlobalInits.empty() || !AliasInits.empty()) 3150 return error("Malformed global initializer set"); 3151 3152 // Look for intrinsic functions which need to be upgraded at some point 3153 for (Function &F : *TheModule) { 3154 Function *NewFn; 3155 if (UpgradeIntrinsicFunction(&F, NewFn)) 3156 UpgradedIntrinsics[&F] = NewFn; 3157 } 3158 3159 // Look for global variables which need to be renamed. 3160 for (GlobalVariable &GV : TheModule->globals()) 3161 UpgradeGlobalVariable(&GV); 3162 3163 // Force deallocation of memory for these vectors to favor the client that 3164 // want lazy deserialization. 3165 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3166 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3167 return std::error_code(); 3168 } 3169 3170 /// Support for lazy parsing of function bodies. This is required if we 3171 /// either have an old bitcode file without a VST forward declaration record, 3172 /// or if we have an anonymous function being materialized, since anonymous 3173 /// functions do not have a name and are therefore not in the VST. 3174 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3175 Stream.JumpToBit(NextUnreadBit); 3176 3177 if (Stream.AtEndOfStream()) 3178 return error("Could not find function in stream"); 3179 3180 if (!SeenFirstFunctionBody) 3181 return error("Trying to materialize functions before seeing function blocks"); 3182 3183 // An old bitcode file with the symbol table at the end would have 3184 // finished the parse greedily. 3185 assert(SeenValueSymbolTable); 3186 3187 SmallVector<uint64_t, 64> Record; 3188 3189 while (1) { 3190 BitstreamEntry Entry = Stream.advance(); 3191 switch (Entry.Kind) { 3192 default: 3193 return error("Expect SubBlock"); 3194 case BitstreamEntry::SubBlock: 3195 switch (Entry.ID) { 3196 default: 3197 return error("Expect function block"); 3198 case bitc::FUNCTION_BLOCK_ID: 3199 if (std::error_code EC = rememberAndSkipFunctionBody()) 3200 return EC; 3201 NextUnreadBit = Stream.GetCurrentBitNo(); 3202 return std::error_code(); 3203 } 3204 } 3205 } 3206 } 3207 3208 std::error_code BitcodeReader::parseBitcodeVersion() { 3209 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3210 return error("Invalid record"); 3211 3212 // Read all the records. 3213 SmallVector<uint64_t, 64> Record; 3214 while (1) { 3215 BitstreamEntry Entry = Stream.advance(); 3216 3217 switch (Entry.Kind) { 3218 default: 3219 case BitstreamEntry::Error: 3220 return error("Malformed block"); 3221 case BitstreamEntry::EndBlock: 3222 return std::error_code(); 3223 case BitstreamEntry::Record: 3224 // The interesting case. 3225 break; 3226 } 3227 3228 // Read a record. 3229 Record.clear(); 3230 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3231 switch (BitCode) { 3232 default: // Default behavior: reject 3233 return error("Invalid value"); 3234 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3235 // N] 3236 convertToString(Record, 0, ProducerIdentification); 3237 break; 3238 } 3239 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3240 unsigned epoch = (unsigned)Record[0]; 3241 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3242 return error( 3243 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3244 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3245 } 3246 } 3247 } 3248 } 3249 } 3250 3251 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3252 bool ShouldLazyLoadMetadata) { 3253 if (ResumeBit) 3254 Stream.JumpToBit(ResumeBit); 3255 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3256 return error("Invalid record"); 3257 3258 SmallVector<uint64_t, 64> Record; 3259 std::vector<std::string> SectionTable; 3260 std::vector<std::string> GCTable; 3261 3262 // Read all the records for this module. 3263 while (1) { 3264 BitstreamEntry Entry = Stream.advance(); 3265 3266 switch (Entry.Kind) { 3267 case BitstreamEntry::Error: 3268 return error("Malformed block"); 3269 case BitstreamEntry::EndBlock: 3270 return globalCleanup(); 3271 3272 case BitstreamEntry::SubBlock: 3273 switch (Entry.ID) { 3274 default: // Skip unknown content. 3275 if (Stream.SkipBlock()) 3276 return error("Invalid record"); 3277 break; 3278 case bitc::BLOCKINFO_BLOCK_ID: 3279 if (Stream.ReadBlockInfoBlock()) 3280 return error("Malformed block"); 3281 break; 3282 case bitc::PARAMATTR_BLOCK_ID: 3283 if (std::error_code EC = parseAttributeBlock()) 3284 return EC; 3285 break; 3286 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3287 if (std::error_code EC = parseAttributeGroupBlock()) 3288 return EC; 3289 break; 3290 case bitc::TYPE_BLOCK_ID_NEW: 3291 if (std::error_code EC = parseTypeTable()) 3292 return EC; 3293 break; 3294 case bitc::VALUE_SYMTAB_BLOCK_ID: 3295 if (!SeenValueSymbolTable) { 3296 // Either this is an old form VST without function index and an 3297 // associated VST forward declaration record (which would have caused 3298 // the VST to be jumped to and parsed before it was encountered 3299 // normally in the stream), or there were no function blocks to 3300 // trigger an earlier parsing of the VST. 3301 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3302 if (std::error_code EC = parseValueSymbolTable()) 3303 return EC; 3304 SeenValueSymbolTable = true; 3305 } else { 3306 // We must have had a VST forward declaration record, which caused 3307 // the parser to jump to and parse the VST earlier. 3308 assert(VSTOffset > 0); 3309 if (Stream.SkipBlock()) 3310 return error("Invalid record"); 3311 } 3312 break; 3313 case bitc::CONSTANTS_BLOCK_ID: 3314 if (std::error_code EC = parseConstants()) 3315 return EC; 3316 if (std::error_code EC = resolveGlobalAndAliasInits()) 3317 return EC; 3318 break; 3319 case bitc::METADATA_BLOCK_ID: 3320 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3321 if (std::error_code EC = rememberAndSkipMetadata()) 3322 return EC; 3323 break; 3324 } 3325 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3326 if (std::error_code EC = parseMetadata(true)) 3327 return EC; 3328 break; 3329 case bitc::METADATA_KIND_BLOCK_ID: 3330 if (std::error_code EC = parseMetadataKinds()) 3331 return EC; 3332 break; 3333 case bitc::FUNCTION_BLOCK_ID: 3334 // If this is the first function body we've seen, reverse the 3335 // FunctionsWithBodies list. 3336 if (!SeenFirstFunctionBody) { 3337 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3338 if (std::error_code EC = globalCleanup()) 3339 return EC; 3340 SeenFirstFunctionBody = true; 3341 } 3342 3343 if (VSTOffset > 0) { 3344 // If we have a VST forward declaration record, make sure we 3345 // parse the VST now if we haven't already. It is needed to 3346 // set up the DeferredFunctionInfo vector for lazy reading. 3347 if (!SeenValueSymbolTable) { 3348 if (std::error_code EC = 3349 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3350 return EC; 3351 SeenValueSymbolTable = true; 3352 // Fall through so that we record the NextUnreadBit below. 3353 // This is necessary in case we have an anonymous function that 3354 // is later materialized. Since it will not have a VST entry we 3355 // need to fall back to the lazy parse to find its offset. 3356 } else { 3357 // If we have a VST forward declaration record, but have already 3358 // parsed the VST (just above, when the first function body was 3359 // encountered here), then we are resuming the parse after 3360 // materializing functions. The ResumeBit points to the 3361 // start of the last function block recorded in the 3362 // DeferredFunctionInfo map. Skip it. 3363 if (Stream.SkipBlock()) 3364 return error("Invalid record"); 3365 continue; 3366 } 3367 } 3368 3369 // Support older bitcode files that did not have the function 3370 // index in the VST, nor a VST forward declaration record, as 3371 // well as anonymous functions that do not have VST entries. 3372 // Build the DeferredFunctionInfo vector on the fly. 3373 if (std::error_code EC = rememberAndSkipFunctionBody()) 3374 return EC; 3375 3376 // Suspend parsing when we reach the function bodies. Subsequent 3377 // materialization calls will resume it when necessary. If the bitcode 3378 // file is old, the symbol table will be at the end instead and will not 3379 // have been seen yet. In this case, just finish the parse now. 3380 if (SeenValueSymbolTable) { 3381 NextUnreadBit = Stream.GetCurrentBitNo(); 3382 return std::error_code(); 3383 } 3384 break; 3385 case bitc::USELIST_BLOCK_ID: 3386 if (std::error_code EC = parseUseLists()) 3387 return EC; 3388 break; 3389 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3390 if (std::error_code EC = parseOperandBundleTags()) 3391 return EC; 3392 break; 3393 } 3394 continue; 3395 3396 case BitstreamEntry::Record: 3397 // The interesting case. 3398 break; 3399 } 3400 3401 // Read a record. 3402 auto BitCode = Stream.readRecord(Entry.ID, Record); 3403 switch (BitCode) { 3404 default: break; // Default behavior, ignore unknown content. 3405 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3406 if (Record.size() < 1) 3407 return error("Invalid record"); 3408 // Only version #0 and #1 are supported so far. 3409 unsigned module_version = Record[0]; 3410 switch (module_version) { 3411 default: 3412 return error("Invalid value"); 3413 case 0: 3414 UseRelativeIDs = false; 3415 break; 3416 case 1: 3417 UseRelativeIDs = true; 3418 break; 3419 } 3420 break; 3421 } 3422 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3423 std::string S; 3424 if (convertToString(Record, 0, S)) 3425 return error("Invalid record"); 3426 TheModule->setTargetTriple(S); 3427 break; 3428 } 3429 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3430 std::string S; 3431 if (convertToString(Record, 0, S)) 3432 return error("Invalid record"); 3433 TheModule->setDataLayout(S); 3434 break; 3435 } 3436 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3437 std::string S; 3438 if (convertToString(Record, 0, S)) 3439 return error("Invalid record"); 3440 TheModule->setModuleInlineAsm(S); 3441 break; 3442 } 3443 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3444 // FIXME: Remove in 4.0. 3445 std::string S; 3446 if (convertToString(Record, 0, S)) 3447 return error("Invalid record"); 3448 // Ignore value. 3449 break; 3450 } 3451 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3452 std::string S; 3453 if (convertToString(Record, 0, S)) 3454 return error("Invalid record"); 3455 SectionTable.push_back(S); 3456 break; 3457 } 3458 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3459 std::string S; 3460 if (convertToString(Record, 0, S)) 3461 return error("Invalid record"); 3462 GCTable.push_back(S); 3463 break; 3464 } 3465 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3466 if (Record.size() < 2) 3467 return error("Invalid record"); 3468 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3469 unsigned ComdatNameSize = Record[1]; 3470 std::string ComdatName; 3471 ComdatName.reserve(ComdatNameSize); 3472 for (unsigned i = 0; i != ComdatNameSize; ++i) 3473 ComdatName += (char)Record[2 + i]; 3474 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3475 C->setSelectionKind(SK); 3476 ComdatList.push_back(C); 3477 break; 3478 } 3479 // GLOBALVAR: [pointer type, isconst, initid, 3480 // linkage, alignment, section, visibility, threadlocal, 3481 // unnamed_addr, externally_initialized, dllstorageclass, 3482 // comdat] 3483 case bitc::MODULE_CODE_GLOBALVAR: { 3484 if (Record.size() < 6) 3485 return error("Invalid record"); 3486 Type *Ty = getTypeByID(Record[0]); 3487 if (!Ty) 3488 return error("Invalid record"); 3489 bool isConstant = Record[1] & 1; 3490 bool explicitType = Record[1] & 2; 3491 unsigned AddressSpace; 3492 if (explicitType) { 3493 AddressSpace = Record[1] >> 2; 3494 } else { 3495 if (!Ty->isPointerTy()) 3496 return error("Invalid type for value"); 3497 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3498 Ty = cast<PointerType>(Ty)->getElementType(); 3499 } 3500 3501 uint64_t RawLinkage = Record[3]; 3502 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3503 unsigned Alignment; 3504 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3505 return EC; 3506 std::string Section; 3507 if (Record[5]) { 3508 if (Record[5]-1 >= SectionTable.size()) 3509 return error("Invalid ID"); 3510 Section = SectionTable[Record[5]-1]; 3511 } 3512 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3513 // Local linkage must have default visibility. 3514 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3515 // FIXME: Change to an error if non-default in 4.0. 3516 Visibility = getDecodedVisibility(Record[6]); 3517 3518 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3519 if (Record.size() > 7) 3520 TLM = getDecodedThreadLocalMode(Record[7]); 3521 3522 bool UnnamedAddr = false; 3523 if (Record.size() > 8) 3524 UnnamedAddr = Record[8]; 3525 3526 bool ExternallyInitialized = false; 3527 if (Record.size() > 9) 3528 ExternallyInitialized = Record[9]; 3529 3530 GlobalVariable *NewGV = 3531 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3532 TLM, AddressSpace, ExternallyInitialized); 3533 NewGV->setAlignment(Alignment); 3534 if (!Section.empty()) 3535 NewGV->setSection(Section); 3536 NewGV->setVisibility(Visibility); 3537 NewGV->setUnnamedAddr(UnnamedAddr); 3538 3539 if (Record.size() > 10) 3540 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3541 else 3542 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3543 3544 ValueList.push_back(NewGV); 3545 3546 // Remember which value to use for the global initializer. 3547 if (unsigned InitID = Record[2]) 3548 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3549 3550 if (Record.size() > 11) { 3551 if (unsigned ComdatID = Record[11]) { 3552 if (ComdatID > ComdatList.size()) 3553 return error("Invalid global variable comdat ID"); 3554 NewGV->setComdat(ComdatList[ComdatID - 1]); 3555 } 3556 } else if (hasImplicitComdat(RawLinkage)) { 3557 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3558 } 3559 break; 3560 } 3561 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3562 // alignment, section, visibility, gc, unnamed_addr, 3563 // prologuedata, dllstorageclass, comdat, prefixdata] 3564 case bitc::MODULE_CODE_FUNCTION: { 3565 if (Record.size() < 8) 3566 return error("Invalid record"); 3567 Type *Ty = getTypeByID(Record[0]); 3568 if (!Ty) 3569 return error("Invalid record"); 3570 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3571 Ty = PTy->getElementType(); 3572 auto *FTy = dyn_cast<FunctionType>(Ty); 3573 if (!FTy) 3574 return error("Invalid type for value"); 3575 auto CC = static_cast<CallingConv::ID>(Record[1]); 3576 if (CC & ~CallingConv::MaxID) 3577 return error("Invalid calling convention ID"); 3578 3579 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3580 "", TheModule); 3581 3582 Func->setCallingConv(CC); 3583 bool isProto = Record[2]; 3584 uint64_t RawLinkage = Record[3]; 3585 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3586 Func->setAttributes(getAttributes(Record[4])); 3587 3588 unsigned Alignment; 3589 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3590 return EC; 3591 Func->setAlignment(Alignment); 3592 if (Record[6]) { 3593 if (Record[6]-1 >= SectionTable.size()) 3594 return error("Invalid ID"); 3595 Func->setSection(SectionTable[Record[6]-1]); 3596 } 3597 // Local linkage must have default visibility. 3598 if (!Func->hasLocalLinkage()) 3599 // FIXME: Change to an error if non-default in 4.0. 3600 Func->setVisibility(getDecodedVisibility(Record[7])); 3601 if (Record.size() > 8 && Record[8]) { 3602 if (Record[8]-1 >= GCTable.size()) 3603 return error("Invalid ID"); 3604 Func->setGC(GCTable[Record[8]-1].c_str()); 3605 } 3606 bool UnnamedAddr = false; 3607 if (Record.size() > 9) 3608 UnnamedAddr = Record[9]; 3609 Func->setUnnamedAddr(UnnamedAddr); 3610 if (Record.size() > 10 && Record[10] != 0) 3611 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3612 3613 if (Record.size() > 11) 3614 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3615 else 3616 upgradeDLLImportExportLinkage(Func, RawLinkage); 3617 3618 if (Record.size() > 12) { 3619 if (unsigned ComdatID = Record[12]) { 3620 if (ComdatID > ComdatList.size()) 3621 return error("Invalid function comdat ID"); 3622 Func->setComdat(ComdatList[ComdatID - 1]); 3623 } 3624 } else if (hasImplicitComdat(RawLinkage)) { 3625 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3626 } 3627 3628 if (Record.size() > 13 && Record[13] != 0) 3629 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3630 3631 if (Record.size() > 14 && Record[14] != 0) 3632 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3633 3634 ValueList.push_back(Func); 3635 3636 // If this is a function with a body, remember the prototype we are 3637 // creating now, so that we can match up the body with them later. 3638 if (!isProto) { 3639 Func->setIsMaterializable(true); 3640 FunctionsWithBodies.push_back(Func); 3641 DeferredFunctionInfo[Func] = 0; 3642 } 3643 break; 3644 } 3645 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3646 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3647 case bitc::MODULE_CODE_ALIAS: 3648 case bitc::MODULE_CODE_ALIAS_OLD: { 3649 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3650 if (Record.size() < (3 + (unsigned)NewRecord)) 3651 return error("Invalid record"); 3652 unsigned OpNum = 0; 3653 Type *Ty = getTypeByID(Record[OpNum++]); 3654 if (!Ty) 3655 return error("Invalid record"); 3656 3657 unsigned AddrSpace; 3658 if (!NewRecord) { 3659 auto *PTy = dyn_cast<PointerType>(Ty); 3660 if (!PTy) 3661 return error("Invalid type for value"); 3662 Ty = PTy->getElementType(); 3663 AddrSpace = PTy->getAddressSpace(); 3664 } else { 3665 AddrSpace = Record[OpNum++]; 3666 } 3667 3668 auto Val = Record[OpNum++]; 3669 auto Linkage = Record[OpNum++]; 3670 auto *NewGA = GlobalAlias::create( 3671 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3672 // Old bitcode files didn't have visibility field. 3673 // Local linkage must have default visibility. 3674 if (OpNum != Record.size()) { 3675 auto VisInd = OpNum++; 3676 if (!NewGA->hasLocalLinkage()) 3677 // FIXME: Change to an error if non-default in 4.0. 3678 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3679 } 3680 if (OpNum != Record.size()) 3681 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3682 else 3683 upgradeDLLImportExportLinkage(NewGA, Linkage); 3684 if (OpNum != Record.size()) 3685 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3686 if (OpNum != Record.size()) 3687 NewGA->setUnnamedAddr(Record[OpNum++]); 3688 ValueList.push_back(NewGA); 3689 AliasInits.push_back(std::make_pair(NewGA, Val)); 3690 break; 3691 } 3692 /// MODULE_CODE_PURGEVALS: [numvals] 3693 case bitc::MODULE_CODE_PURGEVALS: 3694 // Trim down the value list to the specified size. 3695 if (Record.size() < 1 || Record[0] > ValueList.size()) 3696 return error("Invalid record"); 3697 ValueList.shrinkTo(Record[0]); 3698 break; 3699 /// MODULE_CODE_VSTOFFSET: [offset] 3700 case bitc::MODULE_CODE_VSTOFFSET: 3701 if (Record.size() < 1) 3702 return error("Invalid record"); 3703 VSTOffset = Record[0]; 3704 break; 3705 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3706 case bitc::MODULE_CODE_SOURCE_FILENAME: 3707 SmallString<128> ValueName; 3708 if (convertToString(Record, 0, ValueName)) 3709 return error("Invalid record"); 3710 TheModule->setSourceFileName(ValueName); 3711 break; 3712 } 3713 Record.clear(); 3714 } 3715 } 3716 3717 /// Helper to read the header common to all bitcode files. 3718 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3719 // Sniff for the signature. 3720 if (Stream.Read(8) != 'B' || 3721 Stream.Read(8) != 'C' || 3722 Stream.Read(4) != 0x0 || 3723 Stream.Read(4) != 0xC || 3724 Stream.Read(4) != 0xE || 3725 Stream.Read(4) != 0xD) 3726 return false; 3727 return true; 3728 } 3729 3730 std::error_code 3731 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3732 Module *M, bool ShouldLazyLoadMetadata) { 3733 TheModule = M; 3734 3735 if (std::error_code EC = initStream(std::move(Streamer))) 3736 return EC; 3737 3738 // Sniff for the signature. 3739 if (!hasValidBitcodeHeader(Stream)) 3740 return error("Invalid bitcode signature"); 3741 3742 // We expect a number of well-defined blocks, though we don't necessarily 3743 // need to understand them all. 3744 while (1) { 3745 if (Stream.AtEndOfStream()) { 3746 // We didn't really read a proper Module. 3747 return error("Malformed IR file"); 3748 } 3749 3750 BitstreamEntry Entry = 3751 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3752 3753 if (Entry.Kind != BitstreamEntry::SubBlock) 3754 return error("Malformed block"); 3755 3756 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3757 parseBitcodeVersion(); 3758 continue; 3759 } 3760 3761 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3762 return parseModule(0, ShouldLazyLoadMetadata); 3763 3764 if (Stream.SkipBlock()) 3765 return error("Invalid record"); 3766 } 3767 } 3768 3769 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3770 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3771 return error("Invalid record"); 3772 3773 SmallVector<uint64_t, 64> Record; 3774 3775 std::string Triple; 3776 // Read all the records for this module. 3777 while (1) { 3778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3779 3780 switch (Entry.Kind) { 3781 case BitstreamEntry::SubBlock: // Handled for us already. 3782 case BitstreamEntry::Error: 3783 return error("Malformed block"); 3784 case BitstreamEntry::EndBlock: 3785 return Triple; 3786 case BitstreamEntry::Record: 3787 // The interesting case. 3788 break; 3789 } 3790 3791 // Read a record. 3792 switch (Stream.readRecord(Entry.ID, Record)) { 3793 default: break; // Default behavior, ignore unknown content. 3794 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3795 std::string S; 3796 if (convertToString(Record, 0, S)) 3797 return error("Invalid record"); 3798 Triple = S; 3799 break; 3800 } 3801 } 3802 Record.clear(); 3803 } 3804 llvm_unreachable("Exit infinite loop"); 3805 } 3806 3807 ErrorOr<std::string> BitcodeReader::parseTriple() { 3808 if (std::error_code EC = initStream(nullptr)) 3809 return EC; 3810 3811 // Sniff for the signature. 3812 if (!hasValidBitcodeHeader(Stream)) 3813 return error("Invalid bitcode signature"); 3814 3815 // We expect a number of well-defined blocks, though we don't necessarily 3816 // need to understand them all. 3817 while (1) { 3818 BitstreamEntry Entry = Stream.advance(); 3819 3820 switch (Entry.Kind) { 3821 case BitstreamEntry::Error: 3822 return error("Malformed block"); 3823 case BitstreamEntry::EndBlock: 3824 return std::error_code(); 3825 3826 case BitstreamEntry::SubBlock: 3827 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3828 return parseModuleTriple(); 3829 3830 // Ignore other sub-blocks. 3831 if (Stream.SkipBlock()) 3832 return error("Malformed block"); 3833 continue; 3834 3835 case BitstreamEntry::Record: 3836 Stream.skipRecord(Entry.ID); 3837 continue; 3838 } 3839 } 3840 } 3841 3842 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3843 if (std::error_code EC = initStream(nullptr)) 3844 return EC; 3845 3846 // Sniff for the signature. 3847 if (!hasValidBitcodeHeader(Stream)) 3848 return error("Invalid bitcode signature"); 3849 3850 // We expect a number of well-defined blocks, though we don't necessarily 3851 // need to understand them all. 3852 while (1) { 3853 BitstreamEntry Entry = Stream.advance(); 3854 switch (Entry.Kind) { 3855 case BitstreamEntry::Error: 3856 return error("Malformed block"); 3857 case BitstreamEntry::EndBlock: 3858 return std::error_code(); 3859 3860 case BitstreamEntry::SubBlock: 3861 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3862 if (std::error_code EC = parseBitcodeVersion()) 3863 return EC; 3864 return ProducerIdentification; 3865 } 3866 // Ignore other sub-blocks. 3867 if (Stream.SkipBlock()) 3868 return error("Malformed block"); 3869 continue; 3870 case BitstreamEntry::Record: 3871 Stream.skipRecord(Entry.ID); 3872 continue; 3873 } 3874 } 3875 } 3876 3877 /// Parse metadata attachments. 3878 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3879 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3880 return error("Invalid record"); 3881 3882 SmallVector<uint64_t, 64> Record; 3883 while (1) { 3884 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3885 3886 switch (Entry.Kind) { 3887 case BitstreamEntry::SubBlock: // Handled for us already. 3888 case BitstreamEntry::Error: 3889 return error("Malformed block"); 3890 case BitstreamEntry::EndBlock: 3891 return std::error_code(); 3892 case BitstreamEntry::Record: 3893 // The interesting case. 3894 break; 3895 } 3896 3897 // Read a metadata attachment record. 3898 Record.clear(); 3899 switch (Stream.readRecord(Entry.ID, Record)) { 3900 default: // Default behavior: ignore. 3901 break; 3902 case bitc::METADATA_ATTACHMENT: { 3903 unsigned RecordLength = Record.size(); 3904 if (Record.empty()) 3905 return error("Invalid record"); 3906 if (RecordLength % 2 == 0) { 3907 // A function attachment. 3908 for (unsigned I = 0; I != RecordLength; I += 2) { 3909 auto K = MDKindMap.find(Record[I]); 3910 if (K == MDKindMap.end()) 3911 return error("Invalid ID"); 3912 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3913 if (!MD) 3914 return error("Invalid metadata attachment"); 3915 F.setMetadata(K->second, MD); 3916 } 3917 continue; 3918 } 3919 3920 // An instruction attachment. 3921 Instruction *Inst = InstructionList[Record[0]]; 3922 for (unsigned i = 1; i != RecordLength; i = i+2) { 3923 unsigned Kind = Record[i]; 3924 DenseMap<unsigned, unsigned>::iterator I = 3925 MDKindMap.find(Kind); 3926 if (I == MDKindMap.end()) 3927 return error("Invalid ID"); 3928 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3929 if (isa<LocalAsMetadata>(Node)) 3930 // Drop the attachment. This used to be legal, but there's no 3931 // upgrade path. 3932 break; 3933 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3934 if (!MD) 3935 return error("Invalid metadata attachment"); 3936 3937 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3938 MD = upgradeInstructionLoopAttachment(*MD); 3939 3940 Inst->setMetadata(I->second, MD); 3941 if (I->second == LLVMContext::MD_tbaa) { 3942 InstsWithTBAATag.push_back(Inst); 3943 continue; 3944 } 3945 } 3946 break; 3947 } 3948 } 3949 } 3950 } 3951 3952 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3953 LLVMContext &Context = PtrType->getContext(); 3954 if (!isa<PointerType>(PtrType)) 3955 return error(Context, "Load/Store operand is not a pointer type"); 3956 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3957 3958 if (ValType && ValType != ElemType) 3959 return error(Context, "Explicit load/store type does not match pointee " 3960 "type of pointer operand"); 3961 if (!PointerType::isLoadableOrStorableType(ElemType)) 3962 return error(Context, "Cannot load/store from pointer"); 3963 return std::error_code(); 3964 } 3965 3966 /// Lazily parse the specified function body block. 3967 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3968 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3969 return error("Invalid record"); 3970 3971 InstructionList.clear(); 3972 unsigned ModuleValueListSize = ValueList.size(); 3973 unsigned ModuleMetadataListSize = MetadataList.size(); 3974 3975 // Add all the function arguments to the value table. 3976 for (Argument &I : F->args()) 3977 ValueList.push_back(&I); 3978 3979 unsigned NextValueNo = ValueList.size(); 3980 BasicBlock *CurBB = nullptr; 3981 unsigned CurBBNo = 0; 3982 3983 DebugLoc LastLoc; 3984 auto getLastInstruction = [&]() -> Instruction * { 3985 if (CurBB && !CurBB->empty()) 3986 return &CurBB->back(); 3987 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3988 !FunctionBBs[CurBBNo - 1]->empty()) 3989 return &FunctionBBs[CurBBNo - 1]->back(); 3990 return nullptr; 3991 }; 3992 3993 std::vector<OperandBundleDef> OperandBundles; 3994 3995 // Read all the records. 3996 SmallVector<uint64_t, 64> Record; 3997 while (1) { 3998 BitstreamEntry Entry = Stream.advance(); 3999 4000 switch (Entry.Kind) { 4001 case BitstreamEntry::Error: 4002 return error("Malformed block"); 4003 case BitstreamEntry::EndBlock: 4004 goto OutOfRecordLoop; 4005 4006 case BitstreamEntry::SubBlock: 4007 switch (Entry.ID) { 4008 default: // Skip unknown content. 4009 if (Stream.SkipBlock()) 4010 return error("Invalid record"); 4011 break; 4012 case bitc::CONSTANTS_BLOCK_ID: 4013 if (std::error_code EC = parseConstants()) 4014 return EC; 4015 NextValueNo = ValueList.size(); 4016 break; 4017 case bitc::VALUE_SYMTAB_BLOCK_ID: 4018 if (std::error_code EC = parseValueSymbolTable()) 4019 return EC; 4020 break; 4021 case bitc::METADATA_ATTACHMENT_ID: 4022 if (std::error_code EC = parseMetadataAttachment(*F)) 4023 return EC; 4024 break; 4025 case bitc::METADATA_BLOCK_ID: 4026 if (std::error_code EC = parseMetadata()) 4027 return EC; 4028 break; 4029 case bitc::USELIST_BLOCK_ID: 4030 if (std::error_code EC = parseUseLists()) 4031 return EC; 4032 break; 4033 } 4034 continue; 4035 4036 case BitstreamEntry::Record: 4037 // The interesting case. 4038 break; 4039 } 4040 4041 // Read a record. 4042 Record.clear(); 4043 Instruction *I = nullptr; 4044 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4045 switch (BitCode) { 4046 default: // Default behavior: reject 4047 return error("Invalid value"); 4048 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4049 if (Record.size() < 1 || Record[0] == 0) 4050 return error("Invalid record"); 4051 // Create all the basic blocks for the function. 4052 FunctionBBs.resize(Record[0]); 4053 4054 // See if anything took the address of blocks in this function. 4055 auto BBFRI = BasicBlockFwdRefs.find(F); 4056 if (BBFRI == BasicBlockFwdRefs.end()) { 4057 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4058 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4059 } else { 4060 auto &BBRefs = BBFRI->second; 4061 // Check for invalid basic block references. 4062 if (BBRefs.size() > FunctionBBs.size()) 4063 return error("Invalid ID"); 4064 assert(!BBRefs.empty() && "Unexpected empty array"); 4065 assert(!BBRefs.front() && "Invalid reference to entry block"); 4066 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4067 ++I) 4068 if (I < RE && BBRefs[I]) { 4069 BBRefs[I]->insertInto(F); 4070 FunctionBBs[I] = BBRefs[I]; 4071 } else { 4072 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4073 } 4074 4075 // Erase from the table. 4076 BasicBlockFwdRefs.erase(BBFRI); 4077 } 4078 4079 CurBB = FunctionBBs[0]; 4080 continue; 4081 } 4082 4083 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4084 // This record indicates that the last instruction is at the same 4085 // location as the previous instruction with a location. 4086 I = getLastInstruction(); 4087 4088 if (!I) 4089 return error("Invalid record"); 4090 I->setDebugLoc(LastLoc); 4091 I = nullptr; 4092 continue; 4093 4094 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4095 I = getLastInstruction(); 4096 if (!I || Record.size() < 4) 4097 return error("Invalid record"); 4098 4099 unsigned Line = Record[0], Col = Record[1]; 4100 unsigned ScopeID = Record[2], IAID = Record[3]; 4101 4102 MDNode *Scope = nullptr, *IA = nullptr; 4103 if (ScopeID) { 4104 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4105 if (!Scope) 4106 return error("Invalid record"); 4107 } 4108 if (IAID) { 4109 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4110 if (!IA) 4111 return error("Invalid record"); 4112 } 4113 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4114 I->setDebugLoc(LastLoc); 4115 I = nullptr; 4116 continue; 4117 } 4118 4119 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4120 unsigned OpNum = 0; 4121 Value *LHS, *RHS; 4122 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4123 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4124 OpNum+1 > Record.size()) 4125 return error("Invalid record"); 4126 4127 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4128 if (Opc == -1) 4129 return error("Invalid record"); 4130 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4131 InstructionList.push_back(I); 4132 if (OpNum < Record.size()) { 4133 if (Opc == Instruction::Add || 4134 Opc == Instruction::Sub || 4135 Opc == Instruction::Mul || 4136 Opc == Instruction::Shl) { 4137 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4138 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4139 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4140 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4141 } else if (Opc == Instruction::SDiv || 4142 Opc == Instruction::UDiv || 4143 Opc == Instruction::LShr || 4144 Opc == Instruction::AShr) { 4145 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4146 cast<BinaryOperator>(I)->setIsExact(true); 4147 } else if (isa<FPMathOperator>(I)) { 4148 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4149 if (FMF.any()) 4150 I->setFastMathFlags(FMF); 4151 } 4152 4153 } 4154 break; 4155 } 4156 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4157 unsigned OpNum = 0; 4158 Value *Op; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4160 OpNum+2 != Record.size()) 4161 return error("Invalid record"); 4162 4163 Type *ResTy = getTypeByID(Record[OpNum]); 4164 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4165 if (Opc == -1 || !ResTy) 4166 return error("Invalid record"); 4167 Instruction *Temp = nullptr; 4168 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4169 if (Temp) { 4170 InstructionList.push_back(Temp); 4171 CurBB->getInstList().push_back(Temp); 4172 } 4173 } else { 4174 auto CastOp = (Instruction::CastOps)Opc; 4175 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4176 return error("Invalid cast"); 4177 I = CastInst::Create(CastOp, Op, ResTy); 4178 } 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4183 case bitc::FUNC_CODE_INST_GEP_OLD: 4184 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4185 unsigned OpNum = 0; 4186 4187 Type *Ty; 4188 bool InBounds; 4189 4190 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4191 InBounds = Record[OpNum++]; 4192 Ty = getTypeByID(Record[OpNum++]); 4193 } else { 4194 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4195 Ty = nullptr; 4196 } 4197 4198 Value *BasePtr; 4199 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4200 return error("Invalid record"); 4201 4202 if (!Ty) 4203 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4204 ->getElementType(); 4205 else if (Ty != 4206 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4207 ->getElementType()) 4208 return error( 4209 "Explicit gep type does not match pointee type of pointer operand"); 4210 4211 SmallVector<Value*, 16> GEPIdx; 4212 while (OpNum != Record.size()) { 4213 Value *Op; 4214 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4215 return error("Invalid record"); 4216 GEPIdx.push_back(Op); 4217 } 4218 4219 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4220 4221 InstructionList.push_back(I); 4222 if (InBounds) 4223 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4224 break; 4225 } 4226 4227 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4228 // EXTRACTVAL: [opty, opval, n x indices] 4229 unsigned OpNum = 0; 4230 Value *Agg; 4231 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4232 return error("Invalid record"); 4233 4234 unsigned RecSize = Record.size(); 4235 if (OpNum == RecSize) 4236 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4237 4238 SmallVector<unsigned, 4> EXTRACTVALIdx; 4239 Type *CurTy = Agg->getType(); 4240 for (; OpNum != RecSize; ++OpNum) { 4241 bool IsArray = CurTy->isArrayTy(); 4242 bool IsStruct = CurTy->isStructTy(); 4243 uint64_t Index = Record[OpNum]; 4244 4245 if (!IsStruct && !IsArray) 4246 return error("EXTRACTVAL: Invalid type"); 4247 if ((unsigned)Index != Index) 4248 return error("Invalid value"); 4249 if (IsStruct && Index >= CurTy->subtypes().size()) 4250 return error("EXTRACTVAL: Invalid struct index"); 4251 if (IsArray && Index >= CurTy->getArrayNumElements()) 4252 return error("EXTRACTVAL: Invalid array index"); 4253 EXTRACTVALIdx.push_back((unsigned)Index); 4254 4255 if (IsStruct) 4256 CurTy = CurTy->subtypes()[Index]; 4257 else 4258 CurTy = CurTy->subtypes()[0]; 4259 } 4260 4261 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4262 InstructionList.push_back(I); 4263 break; 4264 } 4265 4266 case bitc::FUNC_CODE_INST_INSERTVAL: { 4267 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4268 unsigned OpNum = 0; 4269 Value *Agg; 4270 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4271 return error("Invalid record"); 4272 Value *Val; 4273 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4274 return error("Invalid record"); 4275 4276 unsigned RecSize = Record.size(); 4277 if (OpNum == RecSize) 4278 return error("INSERTVAL: Invalid instruction with 0 indices"); 4279 4280 SmallVector<unsigned, 4> INSERTVALIdx; 4281 Type *CurTy = Agg->getType(); 4282 for (; OpNum != RecSize; ++OpNum) { 4283 bool IsArray = CurTy->isArrayTy(); 4284 bool IsStruct = CurTy->isStructTy(); 4285 uint64_t Index = Record[OpNum]; 4286 4287 if (!IsStruct && !IsArray) 4288 return error("INSERTVAL: Invalid type"); 4289 if ((unsigned)Index != Index) 4290 return error("Invalid value"); 4291 if (IsStruct && Index >= CurTy->subtypes().size()) 4292 return error("INSERTVAL: Invalid struct index"); 4293 if (IsArray && Index >= CurTy->getArrayNumElements()) 4294 return error("INSERTVAL: Invalid array index"); 4295 4296 INSERTVALIdx.push_back((unsigned)Index); 4297 if (IsStruct) 4298 CurTy = CurTy->subtypes()[Index]; 4299 else 4300 CurTy = CurTy->subtypes()[0]; 4301 } 4302 4303 if (CurTy != Val->getType()) 4304 return error("Inserted value type doesn't match aggregate type"); 4305 4306 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4307 InstructionList.push_back(I); 4308 break; 4309 } 4310 4311 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4312 // obsolete form of select 4313 // handles select i1 ... in old bitcode 4314 unsigned OpNum = 0; 4315 Value *TrueVal, *FalseVal, *Cond; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4317 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4318 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4319 return error("Invalid record"); 4320 4321 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4322 InstructionList.push_back(I); 4323 break; 4324 } 4325 4326 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4327 // new form of select 4328 // handles select i1 or select [N x i1] 4329 unsigned OpNum = 0; 4330 Value *TrueVal, *FalseVal, *Cond; 4331 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4332 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4333 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4334 return error("Invalid record"); 4335 4336 // select condition can be either i1 or [N x i1] 4337 if (VectorType* vector_type = 4338 dyn_cast<VectorType>(Cond->getType())) { 4339 // expect <n x i1> 4340 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4341 return error("Invalid type for value"); 4342 } else { 4343 // expect i1 4344 if (Cond->getType() != Type::getInt1Ty(Context)) 4345 return error("Invalid type for value"); 4346 } 4347 4348 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4349 InstructionList.push_back(I); 4350 break; 4351 } 4352 4353 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4354 unsigned OpNum = 0; 4355 Value *Vec, *Idx; 4356 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4357 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4358 return error("Invalid record"); 4359 if (!Vec->getType()->isVectorTy()) 4360 return error("Invalid type for value"); 4361 I = ExtractElementInst::Create(Vec, Idx); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 4366 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4367 unsigned OpNum = 0; 4368 Value *Vec, *Elt, *Idx; 4369 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4370 return error("Invalid record"); 4371 if (!Vec->getType()->isVectorTy()) 4372 return error("Invalid type for value"); 4373 if (popValue(Record, OpNum, NextValueNo, 4374 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4375 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4376 return error("Invalid record"); 4377 I = InsertElementInst::Create(Vec, Elt, Idx); 4378 InstructionList.push_back(I); 4379 break; 4380 } 4381 4382 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4383 unsigned OpNum = 0; 4384 Value *Vec1, *Vec2, *Mask; 4385 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4386 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4387 return error("Invalid record"); 4388 4389 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4390 return error("Invalid record"); 4391 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4392 return error("Invalid type for value"); 4393 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4394 InstructionList.push_back(I); 4395 break; 4396 } 4397 4398 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4399 // Old form of ICmp/FCmp returning bool 4400 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4401 // both legal on vectors but had different behaviour. 4402 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4403 // FCmp/ICmp returning bool or vector of bool 4404 4405 unsigned OpNum = 0; 4406 Value *LHS, *RHS; 4407 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4408 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4409 return error("Invalid record"); 4410 4411 unsigned PredVal = Record[OpNum]; 4412 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4413 FastMathFlags FMF; 4414 if (IsFP && Record.size() > OpNum+1) 4415 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4416 4417 if (OpNum+1 != Record.size()) 4418 return error("Invalid record"); 4419 4420 if (LHS->getType()->isFPOrFPVectorTy()) 4421 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4422 else 4423 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4424 4425 if (FMF.any()) 4426 I->setFastMathFlags(FMF); 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 4431 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4432 { 4433 unsigned Size = Record.size(); 4434 if (Size == 0) { 4435 I = ReturnInst::Create(Context); 4436 InstructionList.push_back(I); 4437 break; 4438 } 4439 4440 unsigned OpNum = 0; 4441 Value *Op = nullptr; 4442 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4443 return error("Invalid record"); 4444 if (OpNum != Record.size()) 4445 return error("Invalid record"); 4446 4447 I = ReturnInst::Create(Context, Op); 4448 InstructionList.push_back(I); 4449 break; 4450 } 4451 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4452 if (Record.size() != 1 && Record.size() != 3) 4453 return error("Invalid record"); 4454 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4455 if (!TrueDest) 4456 return error("Invalid record"); 4457 4458 if (Record.size() == 1) { 4459 I = BranchInst::Create(TrueDest); 4460 InstructionList.push_back(I); 4461 } 4462 else { 4463 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4464 Value *Cond = getValue(Record, 2, NextValueNo, 4465 Type::getInt1Ty(Context)); 4466 if (!FalseDest || !Cond) 4467 return error("Invalid record"); 4468 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4469 InstructionList.push_back(I); 4470 } 4471 break; 4472 } 4473 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4474 if (Record.size() != 1 && Record.size() != 2) 4475 return error("Invalid record"); 4476 unsigned Idx = 0; 4477 Value *CleanupPad = 4478 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4479 if (!CleanupPad) 4480 return error("Invalid record"); 4481 BasicBlock *UnwindDest = nullptr; 4482 if (Record.size() == 2) { 4483 UnwindDest = getBasicBlock(Record[Idx++]); 4484 if (!UnwindDest) 4485 return error("Invalid record"); 4486 } 4487 4488 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4489 InstructionList.push_back(I); 4490 break; 4491 } 4492 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4493 if (Record.size() != 2) 4494 return error("Invalid record"); 4495 unsigned Idx = 0; 4496 Value *CatchPad = 4497 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4498 if (!CatchPad) 4499 return error("Invalid record"); 4500 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4501 if (!BB) 4502 return error("Invalid record"); 4503 4504 I = CatchReturnInst::Create(CatchPad, BB); 4505 InstructionList.push_back(I); 4506 break; 4507 } 4508 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4509 // We must have, at minimum, the outer scope and the number of arguments. 4510 if (Record.size() < 2) 4511 return error("Invalid record"); 4512 4513 unsigned Idx = 0; 4514 4515 Value *ParentPad = 4516 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4517 4518 unsigned NumHandlers = Record[Idx++]; 4519 4520 SmallVector<BasicBlock *, 2> Handlers; 4521 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4522 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4523 if (!BB) 4524 return error("Invalid record"); 4525 Handlers.push_back(BB); 4526 } 4527 4528 BasicBlock *UnwindDest = nullptr; 4529 if (Idx + 1 == Record.size()) { 4530 UnwindDest = getBasicBlock(Record[Idx++]); 4531 if (!UnwindDest) 4532 return error("Invalid record"); 4533 } 4534 4535 if (Record.size() != Idx) 4536 return error("Invalid record"); 4537 4538 auto *CatchSwitch = 4539 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4540 for (BasicBlock *Handler : Handlers) 4541 CatchSwitch->addHandler(Handler); 4542 I = CatchSwitch; 4543 InstructionList.push_back(I); 4544 break; 4545 } 4546 case bitc::FUNC_CODE_INST_CATCHPAD: 4547 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4548 // We must have, at minimum, the outer scope and the number of arguments. 4549 if (Record.size() < 2) 4550 return error("Invalid record"); 4551 4552 unsigned Idx = 0; 4553 4554 Value *ParentPad = 4555 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4556 4557 unsigned NumArgOperands = Record[Idx++]; 4558 4559 SmallVector<Value *, 2> Args; 4560 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4561 Value *Val; 4562 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4563 return error("Invalid record"); 4564 Args.push_back(Val); 4565 } 4566 4567 if (Record.size() != Idx) 4568 return error("Invalid record"); 4569 4570 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4571 I = CleanupPadInst::Create(ParentPad, Args); 4572 else 4573 I = CatchPadInst::Create(ParentPad, Args); 4574 InstructionList.push_back(I); 4575 break; 4576 } 4577 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4578 // Check magic 4579 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4580 // "New" SwitchInst format with case ranges. The changes to write this 4581 // format were reverted but we still recognize bitcode that uses it. 4582 // Hopefully someday we will have support for case ranges and can use 4583 // this format again. 4584 4585 Type *OpTy = getTypeByID(Record[1]); 4586 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4587 4588 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4589 BasicBlock *Default = getBasicBlock(Record[3]); 4590 if (!OpTy || !Cond || !Default) 4591 return error("Invalid record"); 4592 4593 unsigned NumCases = Record[4]; 4594 4595 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4596 InstructionList.push_back(SI); 4597 4598 unsigned CurIdx = 5; 4599 for (unsigned i = 0; i != NumCases; ++i) { 4600 SmallVector<ConstantInt*, 1> CaseVals; 4601 unsigned NumItems = Record[CurIdx++]; 4602 for (unsigned ci = 0; ci != NumItems; ++ci) { 4603 bool isSingleNumber = Record[CurIdx++]; 4604 4605 APInt Low; 4606 unsigned ActiveWords = 1; 4607 if (ValueBitWidth > 64) 4608 ActiveWords = Record[CurIdx++]; 4609 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4610 ValueBitWidth); 4611 CurIdx += ActiveWords; 4612 4613 if (!isSingleNumber) { 4614 ActiveWords = 1; 4615 if (ValueBitWidth > 64) 4616 ActiveWords = Record[CurIdx++]; 4617 APInt High = readWideAPInt( 4618 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4619 CurIdx += ActiveWords; 4620 4621 // FIXME: It is not clear whether values in the range should be 4622 // compared as signed or unsigned values. The partially 4623 // implemented changes that used this format in the past used 4624 // unsigned comparisons. 4625 for ( ; Low.ule(High); ++Low) 4626 CaseVals.push_back(ConstantInt::get(Context, Low)); 4627 } else 4628 CaseVals.push_back(ConstantInt::get(Context, Low)); 4629 } 4630 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4631 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4632 cve = CaseVals.end(); cvi != cve; ++cvi) 4633 SI->addCase(*cvi, DestBB); 4634 } 4635 I = SI; 4636 break; 4637 } 4638 4639 // Old SwitchInst format without case ranges. 4640 4641 if (Record.size() < 3 || (Record.size() & 1) == 0) 4642 return error("Invalid record"); 4643 Type *OpTy = getTypeByID(Record[0]); 4644 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4645 BasicBlock *Default = getBasicBlock(Record[2]); 4646 if (!OpTy || !Cond || !Default) 4647 return error("Invalid record"); 4648 unsigned NumCases = (Record.size()-3)/2; 4649 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4650 InstructionList.push_back(SI); 4651 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4652 ConstantInt *CaseVal = 4653 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4654 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4655 if (!CaseVal || !DestBB) { 4656 delete SI; 4657 return error("Invalid record"); 4658 } 4659 SI->addCase(CaseVal, DestBB); 4660 } 4661 I = SI; 4662 break; 4663 } 4664 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4665 if (Record.size() < 2) 4666 return error("Invalid record"); 4667 Type *OpTy = getTypeByID(Record[0]); 4668 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4669 if (!OpTy || !Address) 4670 return error("Invalid record"); 4671 unsigned NumDests = Record.size()-2; 4672 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4673 InstructionList.push_back(IBI); 4674 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4675 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4676 IBI->addDestination(DestBB); 4677 } else { 4678 delete IBI; 4679 return error("Invalid record"); 4680 } 4681 } 4682 I = IBI; 4683 break; 4684 } 4685 4686 case bitc::FUNC_CODE_INST_INVOKE: { 4687 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4688 if (Record.size() < 4) 4689 return error("Invalid record"); 4690 unsigned OpNum = 0; 4691 AttributeSet PAL = getAttributes(Record[OpNum++]); 4692 unsigned CCInfo = Record[OpNum++]; 4693 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4694 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4695 4696 FunctionType *FTy = nullptr; 4697 if (CCInfo >> 13 & 1 && 4698 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4699 return error("Explicit invoke type is not a function type"); 4700 4701 Value *Callee; 4702 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4703 return error("Invalid record"); 4704 4705 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4706 if (!CalleeTy) 4707 return error("Callee is not a pointer"); 4708 if (!FTy) { 4709 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4710 if (!FTy) 4711 return error("Callee is not of pointer to function type"); 4712 } else if (CalleeTy->getElementType() != FTy) 4713 return error("Explicit invoke type does not match pointee type of " 4714 "callee operand"); 4715 if (Record.size() < FTy->getNumParams() + OpNum) 4716 return error("Insufficient operands to call"); 4717 4718 SmallVector<Value*, 16> Ops; 4719 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4720 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4721 FTy->getParamType(i))); 4722 if (!Ops.back()) 4723 return error("Invalid record"); 4724 } 4725 4726 if (!FTy->isVarArg()) { 4727 if (Record.size() != OpNum) 4728 return error("Invalid record"); 4729 } else { 4730 // Read type/value pairs for varargs params. 4731 while (OpNum != Record.size()) { 4732 Value *Op; 4733 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4734 return error("Invalid record"); 4735 Ops.push_back(Op); 4736 } 4737 } 4738 4739 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4740 OperandBundles.clear(); 4741 InstructionList.push_back(I); 4742 cast<InvokeInst>(I)->setCallingConv( 4743 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4744 cast<InvokeInst>(I)->setAttributes(PAL); 4745 break; 4746 } 4747 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4748 unsigned Idx = 0; 4749 Value *Val = nullptr; 4750 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4751 return error("Invalid record"); 4752 I = ResumeInst::Create(Val); 4753 InstructionList.push_back(I); 4754 break; 4755 } 4756 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4757 I = new UnreachableInst(Context); 4758 InstructionList.push_back(I); 4759 break; 4760 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4761 if (Record.size() < 1 || ((Record.size()-1)&1)) 4762 return error("Invalid record"); 4763 Type *Ty = getTypeByID(Record[0]); 4764 if (!Ty) 4765 return error("Invalid record"); 4766 4767 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4768 InstructionList.push_back(PN); 4769 4770 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4771 Value *V; 4772 // With the new function encoding, it is possible that operands have 4773 // negative IDs (for forward references). Use a signed VBR 4774 // representation to keep the encoding small. 4775 if (UseRelativeIDs) 4776 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4777 else 4778 V = getValue(Record, 1+i, NextValueNo, Ty); 4779 BasicBlock *BB = getBasicBlock(Record[2+i]); 4780 if (!V || !BB) 4781 return error("Invalid record"); 4782 PN->addIncoming(V, BB); 4783 } 4784 I = PN; 4785 break; 4786 } 4787 4788 case bitc::FUNC_CODE_INST_LANDINGPAD: 4789 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4790 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4791 unsigned Idx = 0; 4792 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4793 if (Record.size() < 3) 4794 return error("Invalid record"); 4795 } else { 4796 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4797 if (Record.size() < 4) 4798 return error("Invalid record"); 4799 } 4800 Type *Ty = getTypeByID(Record[Idx++]); 4801 if (!Ty) 4802 return error("Invalid record"); 4803 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4804 Value *PersFn = nullptr; 4805 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4806 return error("Invalid record"); 4807 4808 if (!F->hasPersonalityFn()) 4809 F->setPersonalityFn(cast<Constant>(PersFn)); 4810 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4811 return error("Personality function mismatch"); 4812 } 4813 4814 bool IsCleanup = !!Record[Idx++]; 4815 unsigned NumClauses = Record[Idx++]; 4816 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4817 LP->setCleanup(IsCleanup); 4818 for (unsigned J = 0; J != NumClauses; ++J) { 4819 LandingPadInst::ClauseType CT = 4820 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4821 Value *Val; 4822 4823 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4824 delete LP; 4825 return error("Invalid record"); 4826 } 4827 4828 assert((CT != LandingPadInst::Catch || 4829 !isa<ArrayType>(Val->getType())) && 4830 "Catch clause has a invalid type!"); 4831 assert((CT != LandingPadInst::Filter || 4832 isa<ArrayType>(Val->getType())) && 4833 "Filter clause has invalid type!"); 4834 LP->addClause(cast<Constant>(Val)); 4835 } 4836 4837 I = LP; 4838 InstructionList.push_back(I); 4839 break; 4840 } 4841 4842 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4843 if (Record.size() != 4) 4844 return error("Invalid record"); 4845 uint64_t AlignRecord = Record[3]; 4846 const uint64_t InAllocaMask = uint64_t(1) << 5; 4847 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4848 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4849 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4850 SwiftErrorMask; 4851 bool InAlloca = AlignRecord & InAllocaMask; 4852 bool SwiftError = AlignRecord & SwiftErrorMask; 4853 Type *Ty = getTypeByID(Record[0]); 4854 if ((AlignRecord & ExplicitTypeMask) == 0) { 4855 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4856 if (!PTy) 4857 return error("Old-style alloca with a non-pointer type"); 4858 Ty = PTy->getElementType(); 4859 } 4860 Type *OpTy = getTypeByID(Record[1]); 4861 Value *Size = getFnValueByID(Record[2], OpTy); 4862 unsigned Align; 4863 if (std::error_code EC = 4864 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4865 return EC; 4866 } 4867 if (!Ty || !Size) 4868 return error("Invalid record"); 4869 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4870 AI->setUsedWithInAlloca(InAlloca); 4871 AI->setSwiftError(SwiftError); 4872 I = AI; 4873 InstructionList.push_back(I); 4874 break; 4875 } 4876 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4877 unsigned OpNum = 0; 4878 Value *Op; 4879 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4880 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4881 return error("Invalid record"); 4882 4883 Type *Ty = nullptr; 4884 if (OpNum + 3 == Record.size()) 4885 Ty = getTypeByID(Record[OpNum++]); 4886 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4887 return EC; 4888 if (!Ty) 4889 Ty = cast<PointerType>(Op->getType())->getElementType(); 4890 4891 unsigned Align; 4892 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4893 return EC; 4894 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4895 4896 InstructionList.push_back(I); 4897 break; 4898 } 4899 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4900 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4901 unsigned OpNum = 0; 4902 Value *Op; 4903 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4904 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4905 return error("Invalid record"); 4906 4907 Type *Ty = nullptr; 4908 if (OpNum + 5 == Record.size()) 4909 Ty = getTypeByID(Record[OpNum++]); 4910 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4911 return EC; 4912 if (!Ty) 4913 Ty = cast<PointerType>(Op->getType())->getElementType(); 4914 4915 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4916 if (Ordering == NotAtomic || Ordering == Release || 4917 Ordering == AcquireRelease) 4918 return error("Invalid record"); 4919 if (Ordering != NotAtomic && Record[OpNum] == 0) 4920 return error("Invalid record"); 4921 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4922 4923 unsigned Align; 4924 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4925 return EC; 4926 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4927 4928 InstructionList.push_back(I); 4929 break; 4930 } 4931 case bitc::FUNC_CODE_INST_STORE: 4932 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4933 unsigned OpNum = 0; 4934 Value *Val, *Ptr; 4935 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4936 (BitCode == bitc::FUNC_CODE_INST_STORE 4937 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4938 : popValue(Record, OpNum, NextValueNo, 4939 cast<PointerType>(Ptr->getType())->getElementType(), 4940 Val)) || 4941 OpNum + 2 != Record.size()) 4942 return error("Invalid record"); 4943 4944 if (std::error_code EC = 4945 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4946 return EC; 4947 unsigned Align; 4948 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4949 return EC; 4950 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4951 InstructionList.push_back(I); 4952 break; 4953 } 4954 case bitc::FUNC_CODE_INST_STOREATOMIC: 4955 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4956 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4957 unsigned OpNum = 0; 4958 Value *Val, *Ptr; 4959 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4960 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4961 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4962 : popValue(Record, OpNum, NextValueNo, 4963 cast<PointerType>(Ptr->getType())->getElementType(), 4964 Val)) || 4965 OpNum + 4 != Record.size()) 4966 return error("Invalid record"); 4967 4968 if (std::error_code EC = 4969 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4970 return EC; 4971 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4972 if (Ordering == NotAtomic || Ordering == Acquire || 4973 Ordering == AcquireRelease) 4974 return error("Invalid record"); 4975 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4976 if (Ordering != NotAtomic && Record[OpNum] == 0) 4977 return error("Invalid record"); 4978 4979 unsigned Align; 4980 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4981 return EC; 4982 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4983 InstructionList.push_back(I); 4984 break; 4985 } 4986 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4987 case bitc::FUNC_CODE_INST_CMPXCHG: { 4988 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4989 // failureordering?, isweak?] 4990 unsigned OpNum = 0; 4991 Value *Ptr, *Cmp, *New; 4992 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4993 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4994 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4995 : popValue(Record, OpNum, NextValueNo, 4996 cast<PointerType>(Ptr->getType())->getElementType(), 4997 Cmp)) || 4998 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4999 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5000 return error("Invalid record"); 5001 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5002 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5003 return error("Invalid record"); 5004 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5005 5006 if (std::error_code EC = 5007 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5008 return EC; 5009 AtomicOrdering FailureOrdering; 5010 if (Record.size() < 7) 5011 FailureOrdering = 5012 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5013 else 5014 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5015 5016 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5017 SynchScope); 5018 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5019 5020 if (Record.size() < 8) { 5021 // Before weak cmpxchgs existed, the instruction simply returned the 5022 // value loaded from memory, so bitcode files from that era will be 5023 // expecting the first component of a modern cmpxchg. 5024 CurBB->getInstList().push_back(I); 5025 I = ExtractValueInst::Create(I, 0); 5026 } else { 5027 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5028 } 5029 5030 InstructionList.push_back(I); 5031 break; 5032 } 5033 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5034 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5035 unsigned OpNum = 0; 5036 Value *Ptr, *Val; 5037 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5038 popValue(Record, OpNum, NextValueNo, 5039 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5040 OpNum+4 != Record.size()) 5041 return error("Invalid record"); 5042 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5043 if (Operation < AtomicRMWInst::FIRST_BINOP || 5044 Operation > AtomicRMWInst::LAST_BINOP) 5045 return error("Invalid record"); 5046 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5047 if (Ordering == NotAtomic || Ordering == Unordered) 5048 return error("Invalid record"); 5049 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5050 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5051 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5052 InstructionList.push_back(I); 5053 break; 5054 } 5055 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5056 if (2 != Record.size()) 5057 return error("Invalid record"); 5058 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5059 if (Ordering == NotAtomic || Ordering == Unordered || 5060 Ordering == Monotonic) 5061 return error("Invalid record"); 5062 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5063 I = new FenceInst(Context, Ordering, SynchScope); 5064 InstructionList.push_back(I); 5065 break; 5066 } 5067 case bitc::FUNC_CODE_INST_CALL: { 5068 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5069 if (Record.size() < 3) 5070 return error("Invalid record"); 5071 5072 unsigned OpNum = 0; 5073 AttributeSet PAL = getAttributes(Record[OpNum++]); 5074 unsigned CCInfo = Record[OpNum++]; 5075 5076 FastMathFlags FMF; 5077 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5078 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5079 if (!FMF.any()) 5080 return error("Fast math flags indicator set for call with no FMF"); 5081 } 5082 5083 FunctionType *FTy = nullptr; 5084 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5085 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5086 return error("Explicit call type is not a function type"); 5087 5088 Value *Callee; 5089 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5090 return error("Invalid record"); 5091 5092 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5093 if (!OpTy) 5094 return error("Callee is not a pointer type"); 5095 if (!FTy) { 5096 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5097 if (!FTy) 5098 return error("Callee is not of pointer to function type"); 5099 } else if (OpTy->getElementType() != FTy) 5100 return error("Explicit call type does not match pointee type of " 5101 "callee operand"); 5102 if (Record.size() < FTy->getNumParams() + OpNum) 5103 return error("Insufficient operands to call"); 5104 5105 SmallVector<Value*, 16> Args; 5106 // Read the fixed params. 5107 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5108 if (FTy->getParamType(i)->isLabelTy()) 5109 Args.push_back(getBasicBlock(Record[OpNum])); 5110 else 5111 Args.push_back(getValue(Record, OpNum, NextValueNo, 5112 FTy->getParamType(i))); 5113 if (!Args.back()) 5114 return error("Invalid record"); 5115 } 5116 5117 // Read type/value pairs for varargs params. 5118 if (!FTy->isVarArg()) { 5119 if (OpNum != Record.size()) 5120 return error("Invalid record"); 5121 } else { 5122 while (OpNum != Record.size()) { 5123 Value *Op; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5125 return error("Invalid record"); 5126 Args.push_back(Op); 5127 } 5128 } 5129 5130 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5131 OperandBundles.clear(); 5132 InstructionList.push_back(I); 5133 cast<CallInst>(I)->setCallingConv( 5134 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5135 CallInst::TailCallKind TCK = CallInst::TCK_None; 5136 if (CCInfo & 1 << bitc::CALL_TAIL) 5137 TCK = CallInst::TCK_Tail; 5138 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5139 TCK = CallInst::TCK_MustTail; 5140 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5141 TCK = CallInst::TCK_NoTail; 5142 cast<CallInst>(I)->setTailCallKind(TCK); 5143 cast<CallInst>(I)->setAttributes(PAL); 5144 if (FMF.any()) { 5145 if (!isa<FPMathOperator>(I)) 5146 return error("Fast-math-flags specified for call without " 5147 "floating-point scalar or vector return type"); 5148 I->setFastMathFlags(FMF); 5149 } 5150 break; 5151 } 5152 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5153 if (Record.size() < 3) 5154 return error("Invalid record"); 5155 Type *OpTy = getTypeByID(Record[0]); 5156 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5157 Type *ResTy = getTypeByID(Record[2]); 5158 if (!OpTy || !Op || !ResTy) 5159 return error("Invalid record"); 5160 I = new VAArgInst(Op, ResTy); 5161 InstructionList.push_back(I); 5162 break; 5163 } 5164 5165 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5166 // A call or an invoke can be optionally prefixed with some variable 5167 // number of operand bundle blocks. These blocks are read into 5168 // OperandBundles and consumed at the next call or invoke instruction. 5169 5170 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5171 return error("Invalid record"); 5172 5173 std::vector<Value *> Inputs; 5174 5175 unsigned OpNum = 1; 5176 while (OpNum != Record.size()) { 5177 Value *Op; 5178 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5179 return error("Invalid record"); 5180 Inputs.push_back(Op); 5181 } 5182 5183 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5184 continue; 5185 } 5186 } 5187 5188 // Add instruction to end of current BB. If there is no current BB, reject 5189 // this file. 5190 if (!CurBB) { 5191 delete I; 5192 return error("Invalid instruction with no BB"); 5193 } 5194 if (!OperandBundles.empty()) { 5195 delete I; 5196 return error("Operand bundles found with no consumer"); 5197 } 5198 CurBB->getInstList().push_back(I); 5199 5200 // If this was a terminator instruction, move to the next block. 5201 if (isa<TerminatorInst>(I)) { 5202 ++CurBBNo; 5203 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5204 } 5205 5206 // Non-void values get registered in the value table for future use. 5207 if (I && !I->getType()->isVoidTy()) 5208 ValueList.assignValue(I, NextValueNo++); 5209 } 5210 5211 OutOfRecordLoop: 5212 5213 if (!OperandBundles.empty()) 5214 return error("Operand bundles found with no consumer"); 5215 5216 // Check the function list for unresolved values. 5217 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5218 if (!A->getParent()) { 5219 // We found at least one unresolved value. Nuke them all to avoid leaks. 5220 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5221 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5222 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5223 delete A; 5224 } 5225 } 5226 return error("Never resolved value found in function"); 5227 } 5228 } 5229 5230 // FIXME: Check for unresolved forward-declared metadata references 5231 // and clean up leaks. 5232 5233 // Trim the value list down to the size it was before we parsed this function. 5234 ValueList.shrinkTo(ModuleValueListSize); 5235 MetadataList.shrinkTo(ModuleMetadataListSize); 5236 std::vector<BasicBlock*>().swap(FunctionBBs); 5237 return std::error_code(); 5238 } 5239 5240 /// Find the function body in the bitcode stream 5241 std::error_code BitcodeReader::findFunctionInStream( 5242 Function *F, 5243 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5244 while (DeferredFunctionInfoIterator->second == 0) { 5245 // This is the fallback handling for the old format bitcode that 5246 // didn't contain the function index in the VST, or when we have 5247 // an anonymous function which would not have a VST entry. 5248 // Assert that we have one of those two cases. 5249 assert(VSTOffset == 0 || !F->hasName()); 5250 // Parse the next body in the stream and set its position in the 5251 // DeferredFunctionInfo map. 5252 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5253 return EC; 5254 } 5255 return std::error_code(); 5256 } 5257 5258 //===----------------------------------------------------------------------===// 5259 // GVMaterializer implementation 5260 //===----------------------------------------------------------------------===// 5261 5262 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5263 5264 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5265 if (std::error_code EC = materializeMetadata()) 5266 return EC; 5267 5268 Function *F = dyn_cast<Function>(GV); 5269 // If it's not a function or is already material, ignore the request. 5270 if (!F || !F->isMaterializable()) 5271 return std::error_code(); 5272 5273 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5274 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5275 // If its position is recorded as 0, its body is somewhere in the stream 5276 // but we haven't seen it yet. 5277 if (DFII->second == 0) 5278 if (std::error_code EC = findFunctionInStream(F, DFII)) 5279 return EC; 5280 5281 // Move the bit stream to the saved position of the deferred function body. 5282 Stream.JumpToBit(DFII->second); 5283 5284 if (std::error_code EC = parseFunctionBody(F)) 5285 return EC; 5286 F->setIsMaterializable(false); 5287 5288 if (StripDebugInfo) 5289 stripDebugInfo(*F); 5290 5291 // Upgrade any old intrinsic calls in the function. 5292 for (auto &I : UpgradedIntrinsics) { 5293 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5294 UI != UE;) { 5295 User *U = *UI; 5296 ++UI; 5297 if (CallInst *CI = dyn_cast<CallInst>(U)) 5298 UpgradeIntrinsicCall(CI, I.second); 5299 } 5300 } 5301 5302 // Finish fn->subprogram upgrade for materialized functions. 5303 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5304 F->setSubprogram(SP); 5305 5306 // Bring in any functions that this function forward-referenced via 5307 // blockaddresses. 5308 return materializeForwardReferencedFunctions(); 5309 } 5310 5311 std::error_code BitcodeReader::materializeModule() { 5312 if (std::error_code EC = materializeMetadata()) 5313 return EC; 5314 5315 // Promise to materialize all forward references. 5316 WillMaterializeAllForwardRefs = true; 5317 5318 // Iterate over the module, deserializing any functions that are still on 5319 // disk. 5320 for (Function &F : *TheModule) { 5321 if (std::error_code EC = materialize(&F)) 5322 return EC; 5323 } 5324 // At this point, if there are any function bodies, parse the rest of 5325 // the bits in the module past the last function block we have recorded 5326 // through either lazy scanning or the VST. 5327 if (LastFunctionBlockBit || NextUnreadBit) 5328 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5329 : NextUnreadBit); 5330 5331 // Check that all block address forward references got resolved (as we 5332 // promised above). 5333 if (!BasicBlockFwdRefs.empty()) 5334 return error("Never resolved function from blockaddress"); 5335 5336 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5337 // to prevent this instructions with TBAA tags should be upgraded first. 5338 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5339 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5340 5341 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5342 // delete the old functions to clean up. We can't do this unless the entire 5343 // module is materialized because there could always be another function body 5344 // with calls to the old function. 5345 for (auto &I : UpgradedIntrinsics) { 5346 for (auto *U : I.first->users()) { 5347 if (CallInst *CI = dyn_cast<CallInst>(U)) 5348 UpgradeIntrinsicCall(CI, I.second); 5349 } 5350 if (!I.first->use_empty()) 5351 I.first->replaceAllUsesWith(I.second); 5352 I.first->eraseFromParent(); 5353 } 5354 UpgradedIntrinsics.clear(); 5355 5356 UpgradeDebugInfo(*TheModule); 5357 return std::error_code(); 5358 } 5359 5360 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5361 return IdentifiedStructTypes; 5362 } 5363 5364 std::error_code 5365 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5366 if (Streamer) 5367 return initLazyStream(std::move(Streamer)); 5368 return initStreamFromBuffer(); 5369 } 5370 5371 std::error_code BitcodeReader::initStreamFromBuffer() { 5372 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5373 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5374 5375 if (Buffer->getBufferSize() & 3) 5376 return error("Invalid bitcode signature"); 5377 5378 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5379 // The magic number is 0x0B17C0DE stored in little endian. 5380 if (isBitcodeWrapper(BufPtr, BufEnd)) 5381 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5382 return error("Invalid bitcode wrapper header"); 5383 5384 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5385 Stream.init(&*StreamFile); 5386 5387 return std::error_code(); 5388 } 5389 5390 std::error_code 5391 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5392 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5393 // see it. 5394 auto OwnedBytes = 5395 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5396 StreamingMemoryObject &Bytes = *OwnedBytes; 5397 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5398 Stream.init(&*StreamFile); 5399 5400 unsigned char buf[16]; 5401 if (Bytes.readBytes(buf, 16, 0) != 16) 5402 return error("Invalid bitcode signature"); 5403 5404 if (!isBitcode(buf, buf + 16)) 5405 return error("Invalid bitcode signature"); 5406 5407 if (isBitcodeWrapper(buf, buf + 4)) { 5408 const unsigned char *bitcodeStart = buf; 5409 const unsigned char *bitcodeEnd = buf + 16; 5410 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5411 Bytes.dropLeadingBytes(bitcodeStart - buf); 5412 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5413 } 5414 return std::error_code(); 5415 } 5416 5417 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5418 const Twine &Message) { 5419 return ::error(DiagnosticHandler, make_error_code(E), Message); 5420 } 5421 5422 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5423 return ::error(DiagnosticHandler, 5424 make_error_code(BitcodeError::CorruptedBitcode), Message); 5425 } 5426 5427 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5428 return ::error(DiagnosticHandler, make_error_code(E)); 5429 } 5430 5431 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5432 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5433 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5434 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5435 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5436 5437 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5438 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5439 bool CheckGlobalValSummaryPresenceOnly) 5440 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5441 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5442 5443 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5444 5445 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5446 5447 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5448 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5449 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5450 return VGI->second; 5451 } 5452 5453 GlobalValueInfo * 5454 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5455 auto I = SummaryOffsetToInfoMap.find(Offset); 5456 assert(I != SummaryOffsetToInfoMap.end()); 5457 return I->second; 5458 } 5459 5460 // Specialized value symbol table parser used when reading module index 5461 // blocks where we don't actually create global values. 5462 // At the end of this routine the module index is populated with a map 5463 // from global value name to GlobalValueInfo. The global value info contains 5464 // the function block's bitcode offset (if applicable), or the offset into the 5465 // summary section for the combined index. 5466 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5467 uint64_t Offset, 5468 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5469 assert(Offset > 0 && "Expected non-zero VST offset"); 5470 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5471 5472 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5473 return error("Invalid record"); 5474 5475 SmallVector<uint64_t, 64> Record; 5476 5477 // Read all the records for this value table. 5478 SmallString<128> ValueName; 5479 while (1) { 5480 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5481 5482 switch (Entry.Kind) { 5483 case BitstreamEntry::SubBlock: // Handled for us already. 5484 case BitstreamEntry::Error: 5485 return error("Malformed block"); 5486 case BitstreamEntry::EndBlock: 5487 // Done parsing VST, jump back to wherever we came from. 5488 Stream.JumpToBit(CurrentBit); 5489 return std::error_code(); 5490 case BitstreamEntry::Record: 5491 // The interesting case. 5492 break; 5493 } 5494 5495 // Read a record. 5496 Record.clear(); 5497 switch (Stream.readRecord(Entry.ID, Record)) { 5498 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5499 break; 5500 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5501 if (convertToString(Record, 1, ValueName)) 5502 return error("Invalid record"); 5503 unsigned ValueID = Record[0]; 5504 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5505 llvm::make_unique<GlobalValueInfo>(); 5506 assert(!SourceFileName.empty()); 5507 auto VLI = ValueIdToLinkageMap.find(ValueID); 5508 assert(VLI != ValueIdToLinkageMap.end() && 5509 "No linkage found for VST entry?"); 5510 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5511 ValueName, VLI->second, SourceFileName); 5512 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5513 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5514 ValueName.clear(); 5515 break; 5516 } 5517 case bitc::VST_CODE_FNENTRY: { 5518 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5519 if (convertToString(Record, 2, ValueName)) 5520 return error("Invalid record"); 5521 unsigned ValueID = Record[0]; 5522 uint64_t FuncOffset = Record[1]; 5523 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5524 std::unique_ptr<GlobalValueInfo> FuncInfo = 5525 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5526 assert(!SourceFileName.empty()); 5527 auto VLI = ValueIdToLinkageMap.find(ValueID); 5528 assert(VLI != ValueIdToLinkageMap.end() && 5529 "No linkage found for VST entry?"); 5530 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5531 ValueName, VLI->second, SourceFileName); 5532 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5533 ValueIdToCallGraphGUIDMap[ValueID] = 5534 GlobalValue::getGUID(FunctionGlobalId); 5535 5536 ValueName.clear(); 5537 break; 5538 } 5539 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5540 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5541 unsigned ValueID = Record[0]; 5542 uint64_t GlobalValSummaryOffset = Record[1]; 5543 uint64_t GlobalValGUID = Record[2]; 5544 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5545 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5546 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5547 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5548 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5549 break; 5550 } 5551 case bitc::VST_CODE_COMBINED_ENTRY: { 5552 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5553 unsigned ValueID = Record[0]; 5554 uint64_t RefGUID = Record[1]; 5555 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5556 break; 5557 } 5558 } 5559 } 5560 } 5561 5562 // Parse just the blocks needed for building the index out of the module. 5563 // At the end of this routine the module Index is populated with a map 5564 // from global value name to GlobalValueInfo. The global value info contains 5565 // either the parsed summary information (when parsing summaries 5566 // eagerly), or just to the summary record's offset 5567 // if parsing lazily (IsLazy). 5568 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5569 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5570 return error("Invalid record"); 5571 5572 SmallVector<uint64_t, 64> Record; 5573 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5574 unsigned ValueId = 0; 5575 5576 // Read the index for this module. 5577 while (1) { 5578 BitstreamEntry Entry = Stream.advance(); 5579 5580 switch (Entry.Kind) { 5581 case BitstreamEntry::Error: 5582 return error("Malformed block"); 5583 case BitstreamEntry::EndBlock: 5584 return std::error_code(); 5585 5586 case BitstreamEntry::SubBlock: 5587 if (CheckGlobalValSummaryPresenceOnly) { 5588 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5589 SeenGlobalValSummary = true; 5590 // No need to parse the rest since we found the summary. 5591 return std::error_code(); 5592 } 5593 if (Stream.SkipBlock()) 5594 return error("Invalid record"); 5595 continue; 5596 } 5597 switch (Entry.ID) { 5598 default: // Skip unknown content. 5599 if (Stream.SkipBlock()) 5600 return error("Invalid record"); 5601 break; 5602 case bitc::BLOCKINFO_BLOCK_ID: 5603 // Need to parse these to get abbrev ids (e.g. for VST) 5604 if (Stream.ReadBlockInfoBlock()) 5605 return error("Malformed block"); 5606 break; 5607 case bitc::VALUE_SYMTAB_BLOCK_ID: 5608 // Should have been parsed earlier via VSTOffset, unless there 5609 // is no summary section. 5610 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5611 !SeenGlobalValSummary) && 5612 "Expected early VST parse via VSTOffset record"); 5613 if (Stream.SkipBlock()) 5614 return error("Invalid record"); 5615 break; 5616 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5617 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5618 assert(!SeenValueSymbolTable && 5619 "Already read VST when parsing summary block?"); 5620 if (std::error_code EC = 5621 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5622 return EC; 5623 SeenValueSymbolTable = true; 5624 SeenGlobalValSummary = true; 5625 if (IsLazy) { 5626 // Lazy parsing of summary info, skip it. 5627 if (Stream.SkipBlock()) 5628 return error("Invalid record"); 5629 } else if (std::error_code EC = parseEntireSummary()) 5630 return EC; 5631 break; 5632 case bitc::MODULE_STRTAB_BLOCK_ID: 5633 if (std::error_code EC = parseModuleStringTable()) 5634 return EC; 5635 break; 5636 } 5637 continue; 5638 5639 case BitstreamEntry::Record: { 5640 Record.clear(); 5641 auto BitCode = Stream.readRecord(Entry.ID, Record); 5642 switch (BitCode) { 5643 default: 5644 break; // Default behavior, ignore unknown content. 5645 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5646 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5647 SmallString<128> ValueName; 5648 if (convertToString(Record, 0, ValueName)) 5649 return error("Invalid record"); 5650 SourceFileName = ValueName.c_str(); 5651 break; 5652 } 5653 /// MODULE_CODE_HASH: [5*i32] 5654 case bitc::MODULE_CODE_HASH: { 5655 if (Record.size() != 5) 5656 return error("Invalid hash length " + Twine(Record.size()).str()); 5657 if (!TheIndex) 5658 break; 5659 if (TheIndex->modulePaths().empty()) 5660 // Does not have any summary emitted. 5661 break; 5662 if (TheIndex->modulePaths().size() != 1) 5663 return error("Don't expect multiple modules defined?"); 5664 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5665 int Pos = 0; 5666 for (auto &Val : Record) { 5667 assert(!(Val >> 32) && "Unexpected high bits set"); 5668 Hash[Pos++] = Val; 5669 } 5670 break; 5671 } 5672 /// MODULE_CODE_VSTOFFSET: [offset] 5673 case bitc::MODULE_CODE_VSTOFFSET: 5674 if (Record.size() < 1) 5675 return error("Invalid record"); 5676 VSTOffset = Record[0]; 5677 break; 5678 // GLOBALVAR: [pointer type, isconst, initid, 5679 // linkage, alignment, section, visibility, threadlocal, 5680 // unnamed_addr, externally_initialized, dllstorageclass, 5681 // comdat] 5682 case bitc::MODULE_CODE_GLOBALVAR: { 5683 if (Record.size() < 6) 5684 return error("Invalid record"); 5685 uint64_t RawLinkage = Record[3]; 5686 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5687 ValueIdToLinkageMap[ValueId++] = Linkage; 5688 break; 5689 } 5690 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5691 // alignment, section, visibility, gc, unnamed_addr, 5692 // prologuedata, dllstorageclass, comdat, prefixdata] 5693 case bitc::MODULE_CODE_FUNCTION: { 5694 if (Record.size() < 8) 5695 return error("Invalid record"); 5696 uint64_t RawLinkage = Record[3]; 5697 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5698 ValueIdToLinkageMap[ValueId++] = Linkage; 5699 break; 5700 } 5701 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5702 // dllstorageclass] 5703 case bitc::MODULE_CODE_ALIAS: { 5704 if (Record.size() < 6) 5705 return error("Invalid record"); 5706 uint64_t RawLinkage = Record[3]; 5707 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5708 ValueIdToLinkageMap[ValueId++] = Linkage; 5709 break; 5710 } 5711 } 5712 } 5713 continue; 5714 } 5715 } 5716 } 5717 5718 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5719 // objects in the index. 5720 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5721 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5722 return error("Invalid record"); 5723 5724 SmallVector<uint64_t, 64> Record; 5725 5726 bool Combined = false; 5727 while (1) { 5728 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5729 5730 switch (Entry.Kind) { 5731 case BitstreamEntry::SubBlock: // Handled for us already. 5732 case BitstreamEntry::Error: 5733 return error("Malformed block"); 5734 case BitstreamEntry::EndBlock: 5735 // For a per-module index, remove any entries that still have empty 5736 // summaries. The VST parsing creates entries eagerly for all symbols, 5737 // but not all have associated summaries (e.g. it doesn't know how to 5738 // distinguish between VST_CODE_ENTRY for function declarations vs global 5739 // variables with initializers that end up with a summary). Remove those 5740 // entries now so that we don't need to rely on the combined index merger 5741 // to clean them up (especially since that may not run for the first 5742 // module's index if we merge into that). 5743 if (!Combined) 5744 TheIndex->removeEmptySummaryEntries(); 5745 return std::error_code(); 5746 case BitstreamEntry::Record: 5747 // The interesting case. 5748 break; 5749 } 5750 5751 // Read a record. The record format depends on whether this 5752 // is a per-module index or a combined index file. In the per-module 5753 // case the records contain the associated value's ID for correlation 5754 // with VST entries. In the combined index the correlation is done 5755 // via the bitcode offset of the summary records (which were saved 5756 // in the combined index VST entries). The records also contain 5757 // information used for ThinLTO renaming and importing. 5758 Record.clear(); 5759 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5760 auto BitCode = Stream.readRecord(Entry.ID, Record); 5761 switch (BitCode) { 5762 default: // Default behavior: ignore. 5763 break; 5764 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5765 // n x (valueid, callsitecount)] 5766 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5767 // numrefs x valueid, 5768 // n x (valueid, callsitecount, profilecount)] 5769 case bitc::FS_PERMODULE: 5770 case bitc::FS_PERMODULE_PROFILE: { 5771 unsigned ValueID = Record[0]; 5772 uint64_t RawLinkage = Record[1]; 5773 unsigned InstCount = Record[2]; 5774 unsigned NumRefs = Record[3]; 5775 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5776 getDecodedLinkage(RawLinkage), InstCount); 5777 // The module path string ref set in the summary must be owned by the 5778 // index's module string table. Since we don't have a module path 5779 // string table section in the per-module index, we create a single 5780 // module path string table entry with an empty (0) ID to take 5781 // ownership. 5782 FS->setModulePath( 5783 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5784 static int RefListStartIndex = 4; 5785 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5786 assert(Record.size() >= RefListStartIndex + NumRefs && 5787 "Record size inconsistent with number of references"); 5788 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5789 unsigned RefValueId = Record[I]; 5790 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5791 FS->addRefEdge(RefGUID); 5792 } 5793 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5794 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5795 ++I) { 5796 unsigned CalleeValueId = Record[I]; 5797 unsigned CallsiteCount = Record[++I]; 5798 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5799 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5800 FS->addCallGraphEdge(CalleeGUID, 5801 CalleeInfo(CallsiteCount, ProfileCount)); 5802 } 5803 uint64_t GUID = getGUIDFromValueId(ValueID); 5804 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5805 assert(InfoList != TheIndex->end() && 5806 "Expected VST parse to create GlobalValueInfo entry"); 5807 assert(InfoList->second.size() == 1 && 5808 "Expected a single GlobalValueInfo per GUID in module"); 5809 auto &Info = InfoList->second[0]; 5810 assert(!Info->summary() && "Expected a single summary per VST entry"); 5811 Info->setSummary(std::move(FS)); 5812 break; 5813 } 5814 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5815 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5816 unsigned ValueID = Record[0]; 5817 uint64_t RawLinkage = Record[1]; 5818 std::unique_ptr<GlobalVarSummary> FS = 5819 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5820 FS->setModulePath( 5821 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5822 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5823 unsigned RefValueId = Record[I]; 5824 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5825 FS->addRefEdge(RefGUID); 5826 } 5827 uint64_t GUID = getGUIDFromValueId(ValueID); 5828 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5829 assert(InfoList != TheIndex->end() && 5830 "Expected VST parse to create GlobalValueInfo entry"); 5831 assert(InfoList->second.size() == 1 && 5832 "Expected a single GlobalValueInfo per GUID in module"); 5833 auto &Info = InfoList->second[0]; 5834 assert(!Info->summary() && "Expected a single summary per VST entry"); 5835 Info->setSummary(std::move(FS)); 5836 break; 5837 } 5838 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5839 // n x (valueid, callsitecount)] 5840 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5841 // numrefs x valueid, 5842 // n x (valueid, callsitecount, profilecount)] 5843 case bitc::FS_COMBINED: 5844 case bitc::FS_COMBINED_PROFILE: { 5845 uint64_t ModuleId = Record[0]; 5846 uint64_t RawLinkage = Record[1]; 5847 unsigned InstCount = Record[2]; 5848 unsigned NumRefs = Record[3]; 5849 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5850 getDecodedLinkage(RawLinkage), InstCount); 5851 FS->setModulePath(ModuleIdMap[ModuleId]); 5852 static int RefListStartIndex = 4; 5853 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5854 assert(Record.size() >= RefListStartIndex + NumRefs && 5855 "Record size inconsistent with number of references"); 5856 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5857 unsigned RefValueId = Record[I]; 5858 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5859 FS->addRefEdge(RefGUID); 5860 } 5861 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5862 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5863 ++I) { 5864 unsigned CalleeValueId = Record[I]; 5865 unsigned CallsiteCount = Record[++I]; 5866 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5867 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5868 FS->addCallGraphEdge(CalleeGUID, 5869 CalleeInfo(CallsiteCount, ProfileCount)); 5870 } 5871 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5872 assert(!Info->summary() && "Expected a single summary per VST entry"); 5873 Info->setSummary(std::move(FS)); 5874 Combined = true; 5875 break; 5876 } 5877 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5878 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5879 uint64_t ModuleId = Record[0]; 5880 uint64_t RawLinkage = Record[1]; 5881 std::unique_ptr<GlobalVarSummary> FS = 5882 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5883 FS->setModulePath(ModuleIdMap[ModuleId]); 5884 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5885 unsigned RefValueId = Record[I]; 5886 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5887 FS->addRefEdge(RefGUID); 5888 } 5889 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5890 assert(!Info->summary() && "Expected a single summary per VST entry"); 5891 Info->setSummary(std::move(FS)); 5892 Combined = true; 5893 break; 5894 } 5895 } 5896 } 5897 llvm_unreachable("Exit infinite loop"); 5898 } 5899 5900 // Parse the module string table block into the Index. 5901 // This populates the ModulePathStringTable map in the index. 5902 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5903 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5904 return error("Invalid record"); 5905 5906 SmallVector<uint64_t, 64> Record; 5907 5908 SmallString<128> ModulePath; 5909 ModulePathStringTableTy::iterator LastSeenModulePath; 5910 while (1) { 5911 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5912 5913 switch (Entry.Kind) { 5914 case BitstreamEntry::SubBlock: // Handled for us already. 5915 case BitstreamEntry::Error: 5916 return error("Malformed block"); 5917 case BitstreamEntry::EndBlock: 5918 return std::error_code(); 5919 case BitstreamEntry::Record: 5920 // The interesting case. 5921 break; 5922 } 5923 5924 Record.clear(); 5925 switch (Stream.readRecord(Entry.ID, Record)) { 5926 default: // Default behavior: ignore. 5927 break; 5928 case bitc::MST_CODE_ENTRY: { 5929 // MST_ENTRY: [modid, namechar x N] 5930 uint64_t ModuleId = Record[0]; 5931 5932 if (convertToString(Record, 1, ModulePath)) 5933 return error("Invalid record"); 5934 5935 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 5936 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5937 5938 ModulePath.clear(); 5939 break; 5940 } 5941 /// MST_CODE_HASH: [5*i32] 5942 case bitc::MST_CODE_HASH: { 5943 if (Record.size() != 5) 5944 return error("Invalid hash length " + Twine(Record.size()).str()); 5945 if (LastSeenModulePath == TheIndex->modulePaths().end()) 5946 return error("Invalid hash that does not follow a module path"); 5947 int Pos = 0; 5948 for (auto &Val : Record) { 5949 assert(!(Val >> 32) && "Unexpected high bits set"); 5950 LastSeenModulePath->second.second[Pos++] = Val; 5951 } 5952 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5953 LastSeenModulePath = TheIndex->modulePaths().end(); 5954 break; 5955 } 5956 } 5957 } 5958 llvm_unreachable("Exit infinite loop"); 5959 } 5960 5961 // Parse the function info index from the bitcode streamer into the given index. 5962 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5963 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5964 TheIndex = I; 5965 5966 if (std::error_code EC = initStream(std::move(Streamer))) 5967 return EC; 5968 5969 // Sniff for the signature. 5970 if (!hasValidBitcodeHeader(Stream)) 5971 return error("Invalid bitcode signature"); 5972 5973 // We expect a number of well-defined blocks, though we don't necessarily 5974 // need to understand them all. 5975 while (1) { 5976 if (Stream.AtEndOfStream()) { 5977 // We didn't really read a proper Module block. 5978 return error("Malformed block"); 5979 } 5980 5981 BitstreamEntry Entry = 5982 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5983 5984 if (Entry.Kind != BitstreamEntry::SubBlock) 5985 return error("Malformed block"); 5986 5987 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5988 // building the function summary index. 5989 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5990 return parseModule(); 5991 5992 if (Stream.SkipBlock()) 5993 return error("Invalid record"); 5994 } 5995 } 5996 5997 // Parse the summary information at the given offset in the buffer into 5998 // the index. Used to support lazy parsing of summaries from the 5999 // combined index during importing. 6000 // TODO: This function is not yet complete as it won't have a consumer 6001 // until ThinLTO function importing is added. 6002 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6003 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6004 size_t SummaryOffset) { 6005 TheIndex = I; 6006 6007 if (std::error_code EC = initStream(std::move(Streamer))) 6008 return EC; 6009 6010 // Sniff for the signature. 6011 if (!hasValidBitcodeHeader(Stream)) 6012 return error("Invalid bitcode signature"); 6013 6014 Stream.JumpToBit(SummaryOffset); 6015 6016 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6017 6018 switch (Entry.Kind) { 6019 default: 6020 return error("Malformed block"); 6021 case BitstreamEntry::Record: 6022 // The expected case. 6023 break; 6024 } 6025 6026 // TODO: Read a record. This interface will be completed when ThinLTO 6027 // importing is added so that it can be tested. 6028 SmallVector<uint64_t, 64> Record; 6029 switch (Stream.readRecord(Entry.ID, Record)) { 6030 case bitc::FS_COMBINED: 6031 case bitc::FS_COMBINED_PROFILE: 6032 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6033 default: 6034 return error("Invalid record"); 6035 } 6036 6037 return std::error_code(); 6038 } 6039 6040 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6041 std::unique_ptr<DataStreamer> Streamer) { 6042 if (Streamer) 6043 return initLazyStream(std::move(Streamer)); 6044 return initStreamFromBuffer(); 6045 } 6046 6047 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6048 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6049 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6050 6051 if (Buffer->getBufferSize() & 3) 6052 return error("Invalid bitcode signature"); 6053 6054 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6055 // The magic number is 0x0B17C0DE stored in little endian. 6056 if (isBitcodeWrapper(BufPtr, BufEnd)) 6057 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6058 return error("Invalid bitcode wrapper header"); 6059 6060 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6061 Stream.init(&*StreamFile); 6062 6063 return std::error_code(); 6064 } 6065 6066 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6067 std::unique_ptr<DataStreamer> Streamer) { 6068 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6069 // see it. 6070 auto OwnedBytes = 6071 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6072 StreamingMemoryObject &Bytes = *OwnedBytes; 6073 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6074 Stream.init(&*StreamFile); 6075 6076 unsigned char buf[16]; 6077 if (Bytes.readBytes(buf, 16, 0) != 16) 6078 return error("Invalid bitcode signature"); 6079 6080 if (!isBitcode(buf, buf + 16)) 6081 return error("Invalid bitcode signature"); 6082 6083 if (isBitcodeWrapper(buf, buf + 4)) { 6084 const unsigned char *bitcodeStart = buf; 6085 const unsigned char *bitcodeEnd = buf + 16; 6086 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6087 Bytes.dropLeadingBytes(bitcodeStart - buf); 6088 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6089 } 6090 return std::error_code(); 6091 } 6092 6093 namespace { 6094 class BitcodeErrorCategoryType : public std::error_category { 6095 const char *name() const LLVM_NOEXCEPT override { 6096 return "llvm.bitcode"; 6097 } 6098 std::string message(int IE) const override { 6099 BitcodeError E = static_cast<BitcodeError>(IE); 6100 switch (E) { 6101 case BitcodeError::InvalidBitcodeSignature: 6102 return "Invalid bitcode signature"; 6103 case BitcodeError::CorruptedBitcode: 6104 return "Corrupted bitcode"; 6105 } 6106 llvm_unreachable("Unknown error type!"); 6107 } 6108 }; 6109 } // end anonymous namespace 6110 6111 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6112 6113 const std::error_category &llvm::BitcodeErrorCategory() { 6114 return *ErrorCategory; 6115 } 6116 6117 //===----------------------------------------------------------------------===// 6118 // External interface 6119 //===----------------------------------------------------------------------===// 6120 6121 static ErrorOr<std::unique_ptr<Module>> 6122 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6123 BitcodeReader *R, LLVMContext &Context, 6124 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6125 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6126 M->setMaterializer(R); 6127 6128 auto cleanupOnError = [&](std::error_code EC) { 6129 R->releaseBuffer(); // Never take ownership on error. 6130 return EC; 6131 }; 6132 6133 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6134 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6135 ShouldLazyLoadMetadata)) 6136 return cleanupOnError(EC); 6137 6138 if (MaterializeAll) { 6139 // Read in the entire module, and destroy the BitcodeReader. 6140 if (std::error_code EC = M->materializeAll()) 6141 return cleanupOnError(EC); 6142 } else { 6143 // Resolve forward references from blockaddresses. 6144 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6145 return cleanupOnError(EC); 6146 } 6147 return std::move(M); 6148 } 6149 6150 /// \brief Get a lazy one-at-time loading module from bitcode. 6151 /// 6152 /// This isn't always used in a lazy context. In particular, it's also used by 6153 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6154 /// in forward-referenced functions from block address references. 6155 /// 6156 /// \param[in] MaterializeAll Set to \c true if we should materialize 6157 /// everything. 6158 static ErrorOr<std::unique_ptr<Module>> 6159 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6160 LLVMContext &Context, bool MaterializeAll, 6161 bool ShouldLazyLoadMetadata = false) { 6162 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6163 6164 ErrorOr<std::unique_ptr<Module>> Ret = 6165 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6166 MaterializeAll, ShouldLazyLoadMetadata); 6167 if (!Ret) 6168 return Ret; 6169 6170 Buffer.release(); // The BitcodeReader owns it now. 6171 return Ret; 6172 } 6173 6174 ErrorOr<std::unique_ptr<Module>> 6175 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6176 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6177 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6178 ShouldLazyLoadMetadata); 6179 } 6180 6181 ErrorOr<std::unique_ptr<Module>> 6182 llvm::getStreamedBitcodeModule(StringRef Name, 6183 std::unique_ptr<DataStreamer> Streamer, 6184 LLVMContext &Context) { 6185 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6186 BitcodeReader *R = new BitcodeReader(Context); 6187 6188 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6189 false); 6190 } 6191 6192 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6193 LLVMContext &Context) { 6194 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6195 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6196 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6197 // written. We must defer until the Module has been fully materialized. 6198 } 6199 6200 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6201 LLVMContext &Context) { 6202 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6203 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6204 ErrorOr<std::string> Triple = R->parseTriple(); 6205 if (Triple.getError()) 6206 return ""; 6207 return Triple.get(); 6208 } 6209 6210 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6211 LLVMContext &Context) { 6212 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6213 BitcodeReader R(Buf.release(), Context); 6214 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6215 if (ProducerString.getError()) 6216 return ""; 6217 return ProducerString.get(); 6218 } 6219 6220 // Parse the specified bitcode buffer, returning the function info index. 6221 // If IsLazy is false, parse the entire function summary into 6222 // the index. Otherwise skip the function summary section, and only create 6223 // an index object with a map from function name to function summary offset. 6224 // The index is used to perform lazy function summary reading later. 6225 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6226 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6227 DiagnosticHandlerFunction DiagnosticHandler, 6228 bool IsLazy) { 6229 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6230 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6231 6232 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6233 6234 auto cleanupOnError = [&](std::error_code EC) { 6235 R.releaseBuffer(); // Never take ownership on error. 6236 return EC; 6237 }; 6238 6239 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6240 return cleanupOnError(EC); 6241 6242 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6243 return std::move(Index); 6244 } 6245 6246 // Check if the given bitcode buffer contains a global value summary block. 6247 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6248 DiagnosticHandlerFunction DiagnosticHandler) { 6249 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6250 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6251 6252 auto cleanupOnError = [&](std::error_code EC) { 6253 R.releaseBuffer(); // Never take ownership on error. 6254 return false; 6255 }; 6256 6257 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6258 return cleanupOnError(EC); 6259 6260 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6261 return R.foundGlobalValSummary(); 6262 } 6263 6264 // This method supports lazy reading of summary data from the combined 6265 // index during ThinLTO function importing. When reading the combined index 6266 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6267 // Then this method is called for each value considered for importing, 6268 // to parse the summary information for the given value name into 6269 // the index. 6270 std::error_code llvm::readGlobalValueSummary( 6271 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6272 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6273 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6274 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6275 6276 auto cleanupOnError = [&](std::error_code EC) { 6277 R.releaseBuffer(); // Never take ownership on error. 6278 return EC; 6279 }; 6280 6281 // Lookup the given value name in the GlobalValueMap, which may 6282 // contain a list of global value infos in the case of a COMDAT. Walk through 6283 // and parse each summary info at the summary offset 6284 // recorded when parsing the value symbol table. 6285 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6286 size_t SummaryOffset = FI->bitcodeIndex(); 6287 if (std::error_code EC = 6288 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6289 return cleanupOnError(EC); 6290 } 6291 6292 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6293 return std::error_code(); 6294 } 6295