1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = std::string(ProducerIdentification);
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
964   return Flags;
965 }
966 
967 /// Decode the flags for GlobalValue in the summary.
968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
969                                                             uint64_t Version) {
970   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
971   // like getDecodedLinkage() above. Any future change to the linkage enum and
972   // to getDecodedLinkage() will need to be taken into account here as above.
973   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
974   RawFlags = RawFlags >> 4;
975   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
976   // The Live flag wasn't introduced until version 3. For dead stripping
977   // to work correctly on earlier versions, we must conservatively treat all
978   // values as live.
979   bool Live = (RawFlags & 0x2) || Version < 3;
980   bool Local = (RawFlags & 0x4);
981   bool AutoHide = (RawFlags & 0x8);
982 
983   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags(
989       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
990       (RawFlags & 0x4) ? true : false,
991       (GlobalObject::VCallVisibility)(RawFlags >> 3));
992 }
993 
994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
995   switch (Val) {
996   default: // Map unknown visibilities to default.
997   case 0: return GlobalValue::DefaultVisibility;
998   case 1: return GlobalValue::HiddenVisibility;
999   case 2: return GlobalValue::ProtectedVisibility;
1000   }
1001 }
1002 
1003 static GlobalValue::DLLStorageClassTypes
1004 getDecodedDLLStorageClass(unsigned Val) {
1005   switch (Val) {
1006   default: // Map unknown values to default.
1007   case 0: return GlobalValue::DefaultStorageClass;
1008   case 1: return GlobalValue::DLLImportStorageClass;
1009   case 2: return GlobalValue::DLLExportStorageClass;
1010   }
1011 }
1012 
1013 static bool getDecodedDSOLocal(unsigned Val) {
1014   switch(Val) {
1015   default: // Map unknown values to preemptable.
1016   case 0:  return false;
1017   case 1:  return true;
1018   }
1019 }
1020 
1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1022   switch (Val) {
1023     case 0: return GlobalVariable::NotThreadLocal;
1024     default: // Map unknown non-zero value to general dynamic.
1025     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1026     case 2: return GlobalVariable::LocalDynamicTLSModel;
1027     case 3: return GlobalVariable::InitialExecTLSModel;
1028     case 4: return GlobalVariable::LocalExecTLSModel;
1029   }
1030 }
1031 
1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1033   switch (Val) {
1034     default: // Map unknown to UnnamedAddr::None.
1035     case 0: return GlobalVariable::UnnamedAddr::None;
1036     case 1: return GlobalVariable::UnnamedAddr::Global;
1037     case 2: return GlobalVariable::UnnamedAddr::Local;
1038   }
1039 }
1040 
1041 static int getDecodedCastOpcode(unsigned Val) {
1042   switch (Val) {
1043   default: return -1;
1044   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1045   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1046   case bitc::CAST_SEXT    : return Instruction::SExt;
1047   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1048   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1049   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1050   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1051   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1052   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1053   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1054   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1055   case bitc::CAST_BITCAST : return Instruction::BitCast;
1056   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1057   }
1058 }
1059 
1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1061   bool IsFP = Ty->isFPOrFPVectorTy();
1062   // UnOps are only valid for int/fp or vector of int/fp types
1063   if (!IsFP && !Ty->isIntOrIntVectorTy())
1064     return -1;
1065 
1066   switch (Val) {
1067   default:
1068     return -1;
1069   case bitc::UNOP_FNEG:
1070     return IsFP ? Instruction::FNeg : -1;
1071   }
1072 }
1073 
1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1075   bool IsFP = Ty->isFPOrFPVectorTy();
1076   // BinOps are only valid for int/fp or vector of int/fp types
1077   if (!IsFP && !Ty->isIntOrIntVectorTy())
1078     return -1;
1079 
1080   switch (Val) {
1081   default:
1082     return -1;
1083   case bitc::BINOP_ADD:
1084     return IsFP ? Instruction::FAdd : Instruction::Add;
1085   case bitc::BINOP_SUB:
1086     return IsFP ? Instruction::FSub : Instruction::Sub;
1087   case bitc::BINOP_MUL:
1088     return IsFP ? Instruction::FMul : Instruction::Mul;
1089   case bitc::BINOP_UDIV:
1090     return IsFP ? -1 : Instruction::UDiv;
1091   case bitc::BINOP_SDIV:
1092     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1093   case bitc::BINOP_UREM:
1094     return IsFP ? -1 : Instruction::URem;
1095   case bitc::BINOP_SREM:
1096     return IsFP ? Instruction::FRem : Instruction::SRem;
1097   case bitc::BINOP_SHL:
1098     return IsFP ? -1 : Instruction::Shl;
1099   case bitc::BINOP_LSHR:
1100     return IsFP ? -1 : Instruction::LShr;
1101   case bitc::BINOP_ASHR:
1102     return IsFP ? -1 : Instruction::AShr;
1103   case bitc::BINOP_AND:
1104     return IsFP ? -1 : Instruction::And;
1105   case bitc::BINOP_OR:
1106     return IsFP ? -1 : Instruction::Or;
1107   case bitc::BINOP_XOR:
1108     return IsFP ? -1 : Instruction::Xor;
1109   }
1110 }
1111 
1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1113   switch (Val) {
1114   default: return AtomicRMWInst::BAD_BINOP;
1115   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1116   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1117   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1118   case bitc::RMW_AND: return AtomicRMWInst::And;
1119   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1120   case bitc::RMW_OR: return AtomicRMWInst::Or;
1121   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1122   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1123   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1124   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1125   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1126   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1127   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1128   }
1129 }
1130 
1131 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1132   switch (Val) {
1133   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1134   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1135   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1136   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1137   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1138   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1139   default: // Map unknown orderings to sequentially-consistent.
1140   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1141   }
1142 }
1143 
1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1145   switch (Val) {
1146   default: // Map unknown selection kinds to any.
1147   case bitc::COMDAT_SELECTION_KIND_ANY:
1148     return Comdat::Any;
1149   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1150     return Comdat::ExactMatch;
1151   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1152     return Comdat::Largest;
1153   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1154     return Comdat::NoDuplicates;
1155   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1156     return Comdat::SameSize;
1157   }
1158 }
1159 
1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1161   FastMathFlags FMF;
1162   if (0 != (Val & bitc::UnsafeAlgebra))
1163     FMF.setFast();
1164   if (0 != (Val & bitc::AllowReassoc))
1165     FMF.setAllowReassoc();
1166   if (0 != (Val & bitc::NoNaNs))
1167     FMF.setNoNaNs();
1168   if (0 != (Val & bitc::NoInfs))
1169     FMF.setNoInfs();
1170   if (0 != (Val & bitc::NoSignedZeros))
1171     FMF.setNoSignedZeros();
1172   if (0 != (Val & bitc::AllowReciprocal))
1173     FMF.setAllowReciprocal();
1174   if (0 != (Val & bitc::AllowContract))
1175     FMF.setAllowContract(true);
1176   if (0 != (Val & bitc::ApproxFunc))
1177     FMF.setApproxFunc();
1178   return FMF;
1179 }
1180 
1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1182   switch (Val) {
1183   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1184   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1185   }
1186 }
1187 
1188 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1189   // The type table size is always specified correctly.
1190   if (ID >= TypeList.size())
1191     return nullptr;
1192 
1193   if (Type *Ty = TypeList[ID])
1194     return Ty;
1195 
1196   // If we have a forward reference, the only possible case is when it is to a
1197   // named struct.  Just create a placeholder for now.
1198   return TypeList[ID] = createIdentifiedStructType(Context);
1199 }
1200 
1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1202                                                       StringRef Name) {
1203   auto *Ret = StructType::create(Context, Name);
1204   IdentifiedStructTypes.push_back(Ret);
1205   return Ret;
1206 }
1207 
1208 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1209   auto *Ret = StructType::create(Context);
1210   IdentifiedStructTypes.push_back(Ret);
1211   return Ret;
1212 }
1213 
1214 //===----------------------------------------------------------------------===//
1215 //  Functions for parsing blocks from the bitcode file
1216 //===----------------------------------------------------------------------===//
1217 
1218 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1219   switch (Val) {
1220   case Attribute::EndAttrKinds:
1221     llvm_unreachable("Synthetic enumerators which should never get here");
1222 
1223   case Attribute::None:            return 0;
1224   case Attribute::ZExt:            return 1 << 0;
1225   case Attribute::SExt:            return 1 << 1;
1226   case Attribute::NoReturn:        return 1 << 2;
1227   case Attribute::InReg:           return 1 << 3;
1228   case Attribute::StructRet:       return 1 << 4;
1229   case Attribute::NoUnwind:        return 1 << 5;
1230   case Attribute::NoAlias:         return 1 << 6;
1231   case Attribute::ByVal:           return 1 << 7;
1232   case Attribute::Nest:            return 1 << 8;
1233   case Attribute::ReadNone:        return 1 << 9;
1234   case Attribute::ReadOnly:        return 1 << 10;
1235   case Attribute::NoInline:        return 1 << 11;
1236   case Attribute::AlwaysInline:    return 1 << 12;
1237   case Attribute::OptimizeForSize: return 1 << 13;
1238   case Attribute::StackProtect:    return 1 << 14;
1239   case Attribute::StackProtectReq: return 1 << 15;
1240   case Attribute::Alignment:       return 31 << 16;
1241   case Attribute::NoCapture:       return 1 << 21;
1242   case Attribute::NoRedZone:       return 1 << 22;
1243   case Attribute::NoImplicitFloat: return 1 << 23;
1244   case Attribute::Naked:           return 1 << 24;
1245   case Attribute::InlineHint:      return 1 << 25;
1246   case Attribute::StackAlignment:  return 7 << 26;
1247   case Attribute::ReturnsTwice:    return 1 << 29;
1248   case Attribute::UWTable:         return 1 << 30;
1249   case Attribute::NonLazyBind:     return 1U << 31;
1250   case Attribute::SanitizeAddress: return 1ULL << 32;
1251   case Attribute::MinSize:         return 1ULL << 33;
1252   case Attribute::NoDuplicate:     return 1ULL << 34;
1253   case Attribute::StackProtectStrong: return 1ULL << 35;
1254   case Attribute::SanitizeThread:  return 1ULL << 36;
1255   case Attribute::SanitizeMemory:  return 1ULL << 37;
1256   case Attribute::NoBuiltin:       return 1ULL << 38;
1257   case Attribute::Returned:        return 1ULL << 39;
1258   case Attribute::Cold:            return 1ULL << 40;
1259   case Attribute::Builtin:         return 1ULL << 41;
1260   case Attribute::OptimizeNone:    return 1ULL << 42;
1261   case Attribute::InAlloca:        return 1ULL << 43;
1262   case Attribute::NonNull:         return 1ULL << 44;
1263   case Attribute::JumpTable:       return 1ULL << 45;
1264   case Attribute::Convergent:      return 1ULL << 46;
1265   case Attribute::SafeStack:       return 1ULL << 47;
1266   case Attribute::NoRecurse:       return 1ULL << 48;
1267   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1268   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1269   case Attribute::SwiftSelf:       return 1ULL << 51;
1270   case Attribute::SwiftError:      return 1ULL << 52;
1271   case Attribute::WriteOnly:       return 1ULL << 53;
1272   case Attribute::Speculatable:    return 1ULL << 54;
1273   case Attribute::StrictFP:        return 1ULL << 55;
1274   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1275   case Attribute::NoCfCheck:       return 1ULL << 57;
1276   case Attribute::OptForFuzzing:   return 1ULL << 58;
1277   case Attribute::ShadowCallStack: return 1ULL << 59;
1278   case Attribute::SpeculativeLoadHardening:
1279     return 1ULL << 60;
1280   case Attribute::ImmArg:
1281     return 1ULL << 61;
1282   case Attribute::WillReturn:
1283     return 1ULL << 62;
1284   case Attribute::NoFree:
1285     return 1ULL << 63;
1286   case Attribute::NoSync:
1287     llvm_unreachable("nosync attribute not supported in raw format");
1288     break;
1289   case Attribute::Dereferenceable:
1290     llvm_unreachable("dereferenceable attribute not supported in raw format");
1291     break;
1292   case Attribute::DereferenceableOrNull:
1293     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1294                      "format");
1295     break;
1296   case Attribute::ArgMemOnly:
1297     llvm_unreachable("argmemonly attribute not supported in raw format");
1298     break;
1299   case Attribute::AllocSize:
1300     llvm_unreachable("allocsize not supported in raw format");
1301     break;
1302   case Attribute::SanitizeMemTag:
1303     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1304     break;
1305   }
1306   llvm_unreachable("Unsupported attribute type");
1307 }
1308 
1309 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1310   if (!Val) return;
1311 
1312   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1313        I = Attribute::AttrKind(I + 1)) {
1314     if (I == Attribute::SanitizeMemTag ||
1315         I == Attribute::Dereferenceable ||
1316         I == Attribute::DereferenceableOrNull ||
1317         I == Attribute::ArgMemOnly ||
1318         I == Attribute::AllocSize ||
1319         I == Attribute::NoSync)
1320       continue;
1321     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1322       if (I == Attribute::Alignment)
1323         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1324       else if (I == Attribute::StackAlignment)
1325         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1326       else
1327         B.addAttribute(I);
1328     }
1329   }
1330 }
1331 
1332 /// This fills an AttrBuilder object with the LLVM attributes that have
1333 /// been decoded from the given integer. This function must stay in sync with
1334 /// 'encodeLLVMAttributesForBitcode'.
1335 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1336                                            uint64_t EncodedAttrs) {
1337   // FIXME: Remove in 4.0.
1338 
1339   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1340   // the bits above 31 down by 11 bits.
1341   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1342   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1343          "Alignment must be a power of two.");
1344 
1345   if (Alignment)
1346     B.addAlignmentAttr(Alignment);
1347   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1348                           (EncodedAttrs & 0xffff));
1349 }
1350 
1351 Error BitcodeReader::parseAttributeBlock() {
1352   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1353     return Err;
1354 
1355   if (!MAttributes.empty())
1356     return error("Invalid multiple blocks");
1357 
1358   SmallVector<uint64_t, 64> Record;
1359 
1360   SmallVector<AttributeList, 8> Attrs;
1361 
1362   // Read all the records.
1363   while (true) {
1364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1365     if (!MaybeEntry)
1366       return MaybeEntry.takeError();
1367     BitstreamEntry Entry = MaybeEntry.get();
1368 
1369     switch (Entry.Kind) {
1370     case BitstreamEntry::SubBlock: // Handled for us already.
1371     case BitstreamEntry::Error:
1372       return error("Malformed block");
1373     case BitstreamEntry::EndBlock:
1374       return Error::success();
1375     case BitstreamEntry::Record:
1376       // The interesting case.
1377       break;
1378     }
1379 
1380     // Read a record.
1381     Record.clear();
1382     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1383     if (!MaybeRecord)
1384       return MaybeRecord.takeError();
1385     switch (MaybeRecord.get()) {
1386     default:  // Default behavior: ignore.
1387       break;
1388     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1389       // FIXME: Remove in 4.0.
1390       if (Record.size() & 1)
1391         return error("Invalid record");
1392 
1393       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1394         AttrBuilder B;
1395         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1396         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1397       }
1398 
1399       MAttributes.push_back(AttributeList::get(Context, Attrs));
1400       Attrs.clear();
1401       break;
1402     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1403       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1404         Attrs.push_back(MAttributeGroups[Record[i]]);
1405 
1406       MAttributes.push_back(AttributeList::get(Context, Attrs));
1407       Attrs.clear();
1408       break;
1409     }
1410   }
1411 }
1412 
1413 // Returns Attribute::None on unrecognized codes.
1414 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1415   switch (Code) {
1416   default:
1417     return Attribute::None;
1418   case bitc::ATTR_KIND_ALIGNMENT:
1419     return Attribute::Alignment;
1420   case bitc::ATTR_KIND_ALWAYS_INLINE:
1421     return Attribute::AlwaysInline;
1422   case bitc::ATTR_KIND_ARGMEMONLY:
1423     return Attribute::ArgMemOnly;
1424   case bitc::ATTR_KIND_BUILTIN:
1425     return Attribute::Builtin;
1426   case bitc::ATTR_KIND_BY_VAL:
1427     return Attribute::ByVal;
1428   case bitc::ATTR_KIND_IN_ALLOCA:
1429     return Attribute::InAlloca;
1430   case bitc::ATTR_KIND_COLD:
1431     return Attribute::Cold;
1432   case bitc::ATTR_KIND_CONVERGENT:
1433     return Attribute::Convergent;
1434   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1435     return Attribute::InaccessibleMemOnly;
1436   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1437     return Attribute::InaccessibleMemOrArgMemOnly;
1438   case bitc::ATTR_KIND_INLINE_HINT:
1439     return Attribute::InlineHint;
1440   case bitc::ATTR_KIND_IN_REG:
1441     return Attribute::InReg;
1442   case bitc::ATTR_KIND_JUMP_TABLE:
1443     return Attribute::JumpTable;
1444   case bitc::ATTR_KIND_MIN_SIZE:
1445     return Attribute::MinSize;
1446   case bitc::ATTR_KIND_NAKED:
1447     return Attribute::Naked;
1448   case bitc::ATTR_KIND_NEST:
1449     return Attribute::Nest;
1450   case bitc::ATTR_KIND_NO_ALIAS:
1451     return Attribute::NoAlias;
1452   case bitc::ATTR_KIND_NO_BUILTIN:
1453     return Attribute::NoBuiltin;
1454   case bitc::ATTR_KIND_NO_CAPTURE:
1455     return Attribute::NoCapture;
1456   case bitc::ATTR_KIND_NO_DUPLICATE:
1457     return Attribute::NoDuplicate;
1458   case bitc::ATTR_KIND_NOFREE:
1459     return Attribute::NoFree;
1460   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1461     return Attribute::NoImplicitFloat;
1462   case bitc::ATTR_KIND_NO_INLINE:
1463     return Attribute::NoInline;
1464   case bitc::ATTR_KIND_NO_RECURSE:
1465     return Attribute::NoRecurse;
1466   case bitc::ATTR_KIND_NON_LAZY_BIND:
1467     return Attribute::NonLazyBind;
1468   case bitc::ATTR_KIND_NON_NULL:
1469     return Attribute::NonNull;
1470   case bitc::ATTR_KIND_DEREFERENCEABLE:
1471     return Attribute::Dereferenceable;
1472   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1473     return Attribute::DereferenceableOrNull;
1474   case bitc::ATTR_KIND_ALLOC_SIZE:
1475     return Attribute::AllocSize;
1476   case bitc::ATTR_KIND_NO_RED_ZONE:
1477     return Attribute::NoRedZone;
1478   case bitc::ATTR_KIND_NO_RETURN:
1479     return Attribute::NoReturn;
1480   case bitc::ATTR_KIND_NOSYNC:
1481     return Attribute::NoSync;
1482   case bitc::ATTR_KIND_NOCF_CHECK:
1483     return Attribute::NoCfCheck;
1484   case bitc::ATTR_KIND_NO_UNWIND:
1485     return Attribute::NoUnwind;
1486   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1487     return Attribute::OptForFuzzing;
1488   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1489     return Attribute::OptimizeForSize;
1490   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1491     return Attribute::OptimizeNone;
1492   case bitc::ATTR_KIND_READ_NONE:
1493     return Attribute::ReadNone;
1494   case bitc::ATTR_KIND_READ_ONLY:
1495     return Attribute::ReadOnly;
1496   case bitc::ATTR_KIND_RETURNED:
1497     return Attribute::Returned;
1498   case bitc::ATTR_KIND_RETURNS_TWICE:
1499     return Attribute::ReturnsTwice;
1500   case bitc::ATTR_KIND_S_EXT:
1501     return Attribute::SExt;
1502   case bitc::ATTR_KIND_SPECULATABLE:
1503     return Attribute::Speculatable;
1504   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1505     return Attribute::StackAlignment;
1506   case bitc::ATTR_KIND_STACK_PROTECT:
1507     return Attribute::StackProtect;
1508   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1509     return Attribute::StackProtectReq;
1510   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1511     return Attribute::StackProtectStrong;
1512   case bitc::ATTR_KIND_SAFESTACK:
1513     return Attribute::SafeStack;
1514   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1515     return Attribute::ShadowCallStack;
1516   case bitc::ATTR_KIND_STRICT_FP:
1517     return Attribute::StrictFP;
1518   case bitc::ATTR_KIND_STRUCT_RET:
1519     return Attribute::StructRet;
1520   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1521     return Attribute::SanitizeAddress;
1522   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1523     return Attribute::SanitizeHWAddress;
1524   case bitc::ATTR_KIND_SANITIZE_THREAD:
1525     return Attribute::SanitizeThread;
1526   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1527     return Attribute::SanitizeMemory;
1528   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1529     return Attribute::SpeculativeLoadHardening;
1530   case bitc::ATTR_KIND_SWIFT_ERROR:
1531     return Attribute::SwiftError;
1532   case bitc::ATTR_KIND_SWIFT_SELF:
1533     return Attribute::SwiftSelf;
1534   case bitc::ATTR_KIND_UW_TABLE:
1535     return Attribute::UWTable;
1536   case bitc::ATTR_KIND_WILLRETURN:
1537     return Attribute::WillReturn;
1538   case bitc::ATTR_KIND_WRITEONLY:
1539     return Attribute::WriteOnly;
1540   case bitc::ATTR_KIND_Z_EXT:
1541     return Attribute::ZExt;
1542   case bitc::ATTR_KIND_IMMARG:
1543     return Attribute::ImmArg;
1544   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1545     return Attribute::SanitizeMemTag;
1546   }
1547 }
1548 
1549 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1550                                          MaybeAlign &Alignment) {
1551   // Note: Alignment in bitcode files is incremented by 1, so that zero
1552   // can be used for default alignment.
1553   if (Exponent > Value::MaxAlignmentExponent + 1)
1554     return error("Invalid alignment value");
1555   Alignment = decodeMaybeAlign(Exponent);
1556   return Error::success();
1557 }
1558 
1559 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1560   *Kind = getAttrFromCode(Code);
1561   if (*Kind == Attribute::None)
1562     return error("Unknown attribute kind (" + Twine(Code) + ")");
1563   return Error::success();
1564 }
1565 
1566 Error BitcodeReader::parseAttributeGroupBlock() {
1567   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1568     return Err;
1569 
1570   if (!MAttributeGroups.empty())
1571     return error("Invalid multiple blocks");
1572 
1573   SmallVector<uint64_t, 64> Record;
1574 
1575   // Read all the records.
1576   while (true) {
1577     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1578     if (!MaybeEntry)
1579       return MaybeEntry.takeError();
1580     BitstreamEntry Entry = MaybeEntry.get();
1581 
1582     switch (Entry.Kind) {
1583     case BitstreamEntry::SubBlock: // Handled for us already.
1584     case BitstreamEntry::Error:
1585       return error("Malformed block");
1586     case BitstreamEntry::EndBlock:
1587       return Error::success();
1588     case BitstreamEntry::Record:
1589       // The interesting case.
1590       break;
1591     }
1592 
1593     // Read a record.
1594     Record.clear();
1595     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1596     if (!MaybeRecord)
1597       return MaybeRecord.takeError();
1598     switch (MaybeRecord.get()) {
1599     default:  // Default behavior: ignore.
1600       break;
1601     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1602       if (Record.size() < 3)
1603         return error("Invalid record");
1604 
1605       uint64_t GrpID = Record[0];
1606       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1607 
1608       AttrBuilder B;
1609       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1610         if (Record[i] == 0) {        // Enum attribute
1611           Attribute::AttrKind Kind;
1612           if (Error Err = parseAttrKind(Record[++i], &Kind))
1613             return Err;
1614 
1615           // Upgrade old-style byval attribute to one with a type, even if it's
1616           // nullptr. We will have to insert the real type when we associate
1617           // this AttributeList with a function.
1618           if (Kind == Attribute::ByVal)
1619             B.addByValAttr(nullptr);
1620 
1621           B.addAttribute(Kind);
1622         } else if (Record[i] == 1) { // Integer attribute
1623           Attribute::AttrKind Kind;
1624           if (Error Err = parseAttrKind(Record[++i], &Kind))
1625             return Err;
1626           if (Kind == Attribute::Alignment)
1627             B.addAlignmentAttr(Record[++i]);
1628           else if (Kind == Attribute::StackAlignment)
1629             B.addStackAlignmentAttr(Record[++i]);
1630           else if (Kind == Attribute::Dereferenceable)
1631             B.addDereferenceableAttr(Record[++i]);
1632           else if (Kind == Attribute::DereferenceableOrNull)
1633             B.addDereferenceableOrNullAttr(Record[++i]);
1634           else if (Kind == Attribute::AllocSize)
1635             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1636         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1637           bool HasValue = (Record[i++] == 4);
1638           SmallString<64> KindStr;
1639           SmallString<64> ValStr;
1640 
1641           while (Record[i] != 0 && i != e)
1642             KindStr += Record[i++];
1643           assert(Record[i] == 0 && "Kind string not null terminated");
1644 
1645           if (HasValue) {
1646             // Has a value associated with it.
1647             ++i; // Skip the '0' that terminates the "kind" string.
1648             while (Record[i] != 0 && i != e)
1649               ValStr += Record[i++];
1650             assert(Record[i] == 0 && "Value string not null terminated");
1651           }
1652 
1653           B.addAttribute(KindStr.str(), ValStr.str());
1654         } else {
1655           assert((Record[i] == 5 || Record[i] == 6) &&
1656                  "Invalid attribute group entry");
1657           bool HasType = Record[i] == 6;
1658           Attribute::AttrKind Kind;
1659           if (Error Err = parseAttrKind(Record[++i], &Kind))
1660             return Err;
1661           if (Kind == Attribute::ByVal)
1662             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1663         }
1664       }
1665 
1666       UpgradeFramePointerAttributes(B);
1667       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1668       break;
1669     }
1670     }
1671   }
1672 }
1673 
1674 Error BitcodeReader::parseTypeTable() {
1675   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1676     return Err;
1677 
1678   return parseTypeTableBody();
1679 }
1680 
1681 Error BitcodeReader::parseTypeTableBody() {
1682   if (!TypeList.empty())
1683     return error("Invalid multiple blocks");
1684 
1685   SmallVector<uint64_t, 64> Record;
1686   unsigned NumRecords = 0;
1687 
1688   SmallString<64> TypeName;
1689 
1690   // Read all the records for this type table.
1691   while (true) {
1692     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1693     if (!MaybeEntry)
1694       return MaybeEntry.takeError();
1695     BitstreamEntry Entry = MaybeEntry.get();
1696 
1697     switch (Entry.Kind) {
1698     case BitstreamEntry::SubBlock: // Handled for us already.
1699     case BitstreamEntry::Error:
1700       return error("Malformed block");
1701     case BitstreamEntry::EndBlock:
1702       if (NumRecords != TypeList.size())
1703         return error("Malformed block");
1704       return Error::success();
1705     case BitstreamEntry::Record:
1706       // The interesting case.
1707       break;
1708     }
1709 
1710     // Read a record.
1711     Record.clear();
1712     Type *ResultTy = nullptr;
1713     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1714     if (!MaybeRecord)
1715       return MaybeRecord.takeError();
1716     switch (MaybeRecord.get()) {
1717     default:
1718       return error("Invalid value");
1719     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1720       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1721       // type list.  This allows us to reserve space.
1722       if (Record.size() < 1)
1723         return error("Invalid record");
1724       TypeList.resize(Record[0]);
1725       continue;
1726     case bitc::TYPE_CODE_VOID:      // VOID
1727       ResultTy = Type::getVoidTy(Context);
1728       break;
1729     case bitc::TYPE_CODE_HALF:     // HALF
1730       ResultTy = Type::getHalfTy(Context);
1731       break;
1732     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1733       ResultTy = Type::getFloatTy(Context);
1734       break;
1735     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1736       ResultTy = Type::getDoubleTy(Context);
1737       break;
1738     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1739       ResultTy = Type::getX86_FP80Ty(Context);
1740       break;
1741     case bitc::TYPE_CODE_FP128:     // FP128
1742       ResultTy = Type::getFP128Ty(Context);
1743       break;
1744     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1745       ResultTy = Type::getPPC_FP128Ty(Context);
1746       break;
1747     case bitc::TYPE_CODE_LABEL:     // LABEL
1748       ResultTy = Type::getLabelTy(Context);
1749       break;
1750     case bitc::TYPE_CODE_METADATA:  // METADATA
1751       ResultTy = Type::getMetadataTy(Context);
1752       break;
1753     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1754       ResultTy = Type::getX86_MMXTy(Context);
1755       break;
1756     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1757       ResultTy = Type::getTokenTy(Context);
1758       break;
1759     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1760       if (Record.size() < 1)
1761         return error("Invalid record");
1762 
1763       uint64_t NumBits = Record[0];
1764       if (NumBits < IntegerType::MIN_INT_BITS ||
1765           NumBits > IntegerType::MAX_INT_BITS)
1766         return error("Bitwidth for integer type out of range");
1767       ResultTy = IntegerType::get(Context, NumBits);
1768       break;
1769     }
1770     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1771                                     //          [pointee type, address space]
1772       if (Record.size() < 1)
1773         return error("Invalid record");
1774       unsigned AddressSpace = 0;
1775       if (Record.size() == 2)
1776         AddressSpace = Record[1];
1777       ResultTy = getTypeByID(Record[0]);
1778       if (!ResultTy ||
1779           !PointerType::isValidElementType(ResultTy))
1780         return error("Invalid type");
1781       ResultTy = PointerType::get(ResultTy, AddressSpace);
1782       break;
1783     }
1784     case bitc::TYPE_CODE_FUNCTION_OLD: {
1785       // FIXME: attrid is dead, remove it in LLVM 4.0
1786       // FUNCTION: [vararg, attrid, retty, paramty x N]
1787       if (Record.size() < 3)
1788         return error("Invalid record");
1789       SmallVector<Type*, 8> ArgTys;
1790       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1791         if (Type *T = getTypeByID(Record[i]))
1792           ArgTys.push_back(T);
1793         else
1794           break;
1795       }
1796 
1797       ResultTy = getTypeByID(Record[2]);
1798       if (!ResultTy || ArgTys.size() < Record.size()-3)
1799         return error("Invalid type");
1800 
1801       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1802       break;
1803     }
1804     case bitc::TYPE_CODE_FUNCTION: {
1805       // FUNCTION: [vararg, retty, paramty x N]
1806       if (Record.size() < 2)
1807         return error("Invalid record");
1808       SmallVector<Type*, 8> ArgTys;
1809       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1810         if (Type *T = getTypeByID(Record[i])) {
1811           if (!FunctionType::isValidArgumentType(T))
1812             return error("Invalid function argument type");
1813           ArgTys.push_back(T);
1814         }
1815         else
1816           break;
1817       }
1818 
1819       ResultTy = getTypeByID(Record[1]);
1820       if (!ResultTy || ArgTys.size() < Record.size()-2)
1821         return error("Invalid type");
1822 
1823       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1824       break;
1825     }
1826     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1827       if (Record.size() < 1)
1828         return error("Invalid record");
1829       SmallVector<Type*, 8> EltTys;
1830       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1831         if (Type *T = getTypeByID(Record[i]))
1832           EltTys.push_back(T);
1833         else
1834           break;
1835       }
1836       if (EltTys.size() != Record.size()-1)
1837         return error("Invalid type");
1838       ResultTy = StructType::get(Context, EltTys, Record[0]);
1839       break;
1840     }
1841     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1842       if (convertToString(Record, 0, TypeName))
1843         return error("Invalid record");
1844       continue;
1845 
1846     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1847       if (Record.size() < 1)
1848         return error("Invalid record");
1849 
1850       if (NumRecords >= TypeList.size())
1851         return error("Invalid TYPE table");
1852 
1853       // Check to see if this was forward referenced, if so fill in the temp.
1854       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1855       if (Res) {
1856         Res->setName(TypeName);
1857         TypeList[NumRecords] = nullptr;
1858       } else  // Otherwise, create a new struct.
1859         Res = createIdentifiedStructType(Context, TypeName);
1860       TypeName.clear();
1861 
1862       SmallVector<Type*, 8> EltTys;
1863       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1864         if (Type *T = getTypeByID(Record[i]))
1865           EltTys.push_back(T);
1866         else
1867           break;
1868       }
1869       if (EltTys.size() != Record.size()-1)
1870         return error("Invalid record");
1871       Res->setBody(EltTys, Record[0]);
1872       ResultTy = Res;
1873       break;
1874     }
1875     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1876       if (Record.size() != 1)
1877         return error("Invalid record");
1878 
1879       if (NumRecords >= TypeList.size())
1880         return error("Invalid TYPE table");
1881 
1882       // Check to see if this was forward referenced, if so fill in the temp.
1883       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1884       if (Res) {
1885         Res->setName(TypeName);
1886         TypeList[NumRecords] = nullptr;
1887       } else  // Otherwise, create a new struct with no body.
1888         Res = createIdentifiedStructType(Context, TypeName);
1889       TypeName.clear();
1890       ResultTy = Res;
1891       break;
1892     }
1893     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1894       if (Record.size() < 2)
1895         return error("Invalid record");
1896       ResultTy = getTypeByID(Record[1]);
1897       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1898         return error("Invalid type");
1899       ResultTy = ArrayType::get(ResultTy, Record[0]);
1900       break;
1901     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1902                                     //         [numelts, eltty, scalable]
1903       if (Record.size() < 2)
1904         return error("Invalid record");
1905       if (Record[0] == 0)
1906         return error("Invalid vector length");
1907       ResultTy = getTypeByID(Record[1]);
1908       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1909         return error("Invalid type");
1910       bool Scalable = Record.size() > 2 ? Record[2] : false;
1911       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1912       break;
1913     }
1914 
1915     if (NumRecords >= TypeList.size())
1916       return error("Invalid TYPE table");
1917     if (TypeList[NumRecords])
1918       return error(
1919           "Invalid TYPE table: Only named structs can be forward referenced");
1920     assert(ResultTy && "Didn't read a type?");
1921     TypeList[NumRecords++] = ResultTy;
1922   }
1923 }
1924 
1925 Error BitcodeReader::parseOperandBundleTags() {
1926   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1927     return Err;
1928 
1929   if (!BundleTags.empty())
1930     return error("Invalid multiple blocks");
1931 
1932   SmallVector<uint64_t, 64> Record;
1933 
1934   while (true) {
1935     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1936     if (!MaybeEntry)
1937       return MaybeEntry.takeError();
1938     BitstreamEntry Entry = MaybeEntry.get();
1939 
1940     switch (Entry.Kind) {
1941     case BitstreamEntry::SubBlock: // Handled for us already.
1942     case BitstreamEntry::Error:
1943       return error("Malformed block");
1944     case BitstreamEntry::EndBlock:
1945       return Error::success();
1946     case BitstreamEntry::Record:
1947       // The interesting case.
1948       break;
1949     }
1950 
1951     // Tags are implicitly mapped to integers by their order.
1952 
1953     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1954     if (!MaybeRecord)
1955       return MaybeRecord.takeError();
1956     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1957       return error("Invalid record");
1958 
1959     // OPERAND_BUNDLE_TAG: [strchr x N]
1960     BundleTags.emplace_back();
1961     if (convertToString(Record, 0, BundleTags.back()))
1962       return error("Invalid record");
1963     Record.clear();
1964   }
1965 }
1966 
1967 Error BitcodeReader::parseSyncScopeNames() {
1968   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1969     return Err;
1970 
1971   if (!SSIDs.empty())
1972     return error("Invalid multiple synchronization scope names blocks");
1973 
1974   SmallVector<uint64_t, 64> Record;
1975   while (true) {
1976     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1977     if (!MaybeEntry)
1978       return MaybeEntry.takeError();
1979     BitstreamEntry Entry = MaybeEntry.get();
1980 
1981     switch (Entry.Kind) {
1982     case BitstreamEntry::SubBlock: // Handled for us already.
1983     case BitstreamEntry::Error:
1984       return error("Malformed block");
1985     case BitstreamEntry::EndBlock:
1986       if (SSIDs.empty())
1987         return error("Invalid empty synchronization scope names block");
1988       return Error::success();
1989     case BitstreamEntry::Record:
1990       // The interesting case.
1991       break;
1992     }
1993 
1994     // Synchronization scope names are implicitly mapped to synchronization
1995     // scope IDs by their order.
1996 
1997     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1998     if (!MaybeRecord)
1999       return MaybeRecord.takeError();
2000     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2001       return error("Invalid record");
2002 
2003     SmallString<16> SSN;
2004     if (convertToString(Record, 0, SSN))
2005       return error("Invalid record");
2006 
2007     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2008     Record.clear();
2009   }
2010 }
2011 
2012 /// Associate a value with its name from the given index in the provided record.
2013 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2014                                              unsigned NameIndex, Triple &TT) {
2015   SmallString<128> ValueName;
2016   if (convertToString(Record, NameIndex, ValueName))
2017     return error("Invalid record");
2018   unsigned ValueID = Record[0];
2019   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2020     return error("Invalid record");
2021   Value *V = ValueList[ValueID];
2022 
2023   StringRef NameStr(ValueName.data(), ValueName.size());
2024   if (NameStr.find_first_of(0) != StringRef::npos)
2025     return error("Invalid value name");
2026   V->setName(NameStr);
2027   auto *GO = dyn_cast<GlobalObject>(V);
2028   if (GO) {
2029     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2030       if (TT.supportsCOMDAT())
2031         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2032       else
2033         GO->setComdat(nullptr);
2034     }
2035   }
2036   return V;
2037 }
2038 
2039 /// Helper to note and return the current location, and jump to the given
2040 /// offset.
2041 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2042                                                  BitstreamCursor &Stream) {
2043   // Save the current parsing location so we can jump back at the end
2044   // of the VST read.
2045   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2046   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2047     return std::move(JumpFailed);
2048   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2049   if (!MaybeEntry)
2050     return MaybeEntry.takeError();
2051   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2052   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2053   return CurrentBit;
2054 }
2055 
2056 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2057                                             Function *F,
2058                                             ArrayRef<uint64_t> Record) {
2059   // Note that we subtract 1 here because the offset is relative to one word
2060   // before the start of the identification or module block, which was
2061   // historically always the start of the regular bitcode header.
2062   uint64_t FuncWordOffset = Record[1] - 1;
2063   uint64_t FuncBitOffset = FuncWordOffset * 32;
2064   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2065   // Set the LastFunctionBlockBit to point to the last function block.
2066   // Later when parsing is resumed after function materialization,
2067   // we can simply skip that last function block.
2068   if (FuncBitOffset > LastFunctionBlockBit)
2069     LastFunctionBlockBit = FuncBitOffset;
2070 }
2071 
2072 /// Read a new-style GlobalValue symbol table.
2073 Error BitcodeReader::parseGlobalValueSymbolTable() {
2074   unsigned FuncBitcodeOffsetDelta =
2075       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2076 
2077   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2078     return Err;
2079 
2080   SmallVector<uint64_t, 64> Record;
2081   while (true) {
2082     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2083     if (!MaybeEntry)
2084       return MaybeEntry.takeError();
2085     BitstreamEntry Entry = MaybeEntry.get();
2086 
2087     switch (Entry.Kind) {
2088     case BitstreamEntry::SubBlock:
2089     case BitstreamEntry::Error:
2090       return error("Malformed block");
2091     case BitstreamEntry::EndBlock:
2092       return Error::success();
2093     case BitstreamEntry::Record:
2094       break;
2095     }
2096 
2097     Record.clear();
2098     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2099     if (!MaybeRecord)
2100       return MaybeRecord.takeError();
2101     switch (MaybeRecord.get()) {
2102     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2103       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2104                               cast<Function>(ValueList[Record[0]]), Record);
2105       break;
2106     }
2107   }
2108 }
2109 
2110 /// Parse the value symbol table at either the current parsing location or
2111 /// at the given bit offset if provided.
2112 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2113   uint64_t CurrentBit;
2114   // Pass in the Offset to distinguish between calling for the module-level
2115   // VST (where we want to jump to the VST offset) and the function-level
2116   // VST (where we don't).
2117   if (Offset > 0) {
2118     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2119     if (!MaybeCurrentBit)
2120       return MaybeCurrentBit.takeError();
2121     CurrentBit = MaybeCurrentBit.get();
2122     // If this module uses a string table, read this as a module-level VST.
2123     if (UseStrtab) {
2124       if (Error Err = parseGlobalValueSymbolTable())
2125         return Err;
2126       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2127         return JumpFailed;
2128       return Error::success();
2129     }
2130     // Otherwise, the VST will be in a similar format to a function-level VST,
2131     // and will contain symbol names.
2132   }
2133 
2134   // Compute the delta between the bitcode indices in the VST (the word offset
2135   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2136   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2137   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2138   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2139   // just before entering the VST subblock because: 1) the EnterSubBlock
2140   // changes the AbbrevID width; 2) the VST block is nested within the same
2141   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2142   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2143   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2144   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2145   unsigned FuncBitcodeOffsetDelta =
2146       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2147 
2148   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2149     return Err;
2150 
2151   SmallVector<uint64_t, 64> Record;
2152 
2153   Triple TT(TheModule->getTargetTriple());
2154 
2155   // Read all the records for this value table.
2156   SmallString<128> ValueName;
2157 
2158   while (true) {
2159     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2160     if (!MaybeEntry)
2161       return MaybeEntry.takeError();
2162     BitstreamEntry Entry = MaybeEntry.get();
2163 
2164     switch (Entry.Kind) {
2165     case BitstreamEntry::SubBlock: // Handled for us already.
2166     case BitstreamEntry::Error:
2167       return error("Malformed block");
2168     case BitstreamEntry::EndBlock:
2169       if (Offset > 0)
2170         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2171           return JumpFailed;
2172       return Error::success();
2173     case BitstreamEntry::Record:
2174       // The interesting case.
2175       break;
2176     }
2177 
2178     // Read a record.
2179     Record.clear();
2180     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2181     if (!MaybeRecord)
2182       return MaybeRecord.takeError();
2183     switch (MaybeRecord.get()) {
2184     default:  // Default behavior: unknown type.
2185       break;
2186     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2187       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2188       if (Error Err = ValOrErr.takeError())
2189         return Err;
2190       ValOrErr.get();
2191       break;
2192     }
2193     case bitc::VST_CODE_FNENTRY: {
2194       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2195       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2196       if (Error Err = ValOrErr.takeError())
2197         return Err;
2198       Value *V = ValOrErr.get();
2199 
2200       // Ignore function offsets emitted for aliases of functions in older
2201       // versions of LLVM.
2202       if (auto *F = dyn_cast<Function>(V))
2203         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2204       break;
2205     }
2206     case bitc::VST_CODE_BBENTRY: {
2207       if (convertToString(Record, 1, ValueName))
2208         return error("Invalid record");
2209       BasicBlock *BB = getBasicBlock(Record[0]);
2210       if (!BB)
2211         return error("Invalid record");
2212 
2213       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2214       ValueName.clear();
2215       break;
2216     }
2217     }
2218   }
2219 }
2220 
2221 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2222 /// encoding.
2223 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2224   if ((V & 1) == 0)
2225     return V >> 1;
2226   if (V != 1)
2227     return -(V >> 1);
2228   // There is no such thing as -0 with integers.  "-0" really means MININT.
2229   return 1ULL << 63;
2230 }
2231 
2232 /// Resolve all of the initializers for global values and aliases that we can.
2233 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2234   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2235   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2236       IndirectSymbolInitWorklist;
2237   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2238   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2239   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2240 
2241   GlobalInitWorklist.swap(GlobalInits);
2242   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2243   FunctionPrefixWorklist.swap(FunctionPrefixes);
2244   FunctionPrologueWorklist.swap(FunctionPrologues);
2245   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2246 
2247   while (!GlobalInitWorklist.empty()) {
2248     unsigned ValID = GlobalInitWorklist.back().second;
2249     if (ValID >= ValueList.size()) {
2250       // Not ready to resolve this yet, it requires something later in the file.
2251       GlobalInits.push_back(GlobalInitWorklist.back());
2252     } else {
2253       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2254         GlobalInitWorklist.back().first->setInitializer(C);
2255       else
2256         return error("Expected a constant");
2257     }
2258     GlobalInitWorklist.pop_back();
2259   }
2260 
2261   while (!IndirectSymbolInitWorklist.empty()) {
2262     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2263     if (ValID >= ValueList.size()) {
2264       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2265     } else {
2266       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2267       if (!C)
2268         return error("Expected a constant");
2269       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2270       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2271         return error("Alias and aliasee types don't match");
2272       GIS->setIndirectSymbol(C);
2273     }
2274     IndirectSymbolInitWorklist.pop_back();
2275   }
2276 
2277   while (!FunctionPrefixWorklist.empty()) {
2278     unsigned ValID = FunctionPrefixWorklist.back().second;
2279     if (ValID >= ValueList.size()) {
2280       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2281     } else {
2282       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2283         FunctionPrefixWorklist.back().first->setPrefixData(C);
2284       else
2285         return error("Expected a constant");
2286     }
2287     FunctionPrefixWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionPrologueWorklist.empty()) {
2291     unsigned ValID = FunctionPrologueWorklist.back().second;
2292     if (ValID >= ValueList.size()) {
2293       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2294     } else {
2295       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296         FunctionPrologueWorklist.back().first->setPrologueData(C);
2297       else
2298         return error("Expected a constant");
2299     }
2300     FunctionPrologueWorklist.pop_back();
2301   }
2302 
2303   while (!FunctionPersonalityFnWorklist.empty()) {
2304     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2305     if (ValID >= ValueList.size()) {
2306       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2307     } else {
2308       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2309         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2310       else
2311         return error("Expected a constant");
2312     }
2313     FunctionPersonalityFnWorklist.pop_back();
2314   }
2315 
2316   return Error::success();
2317 }
2318 
2319 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2320   SmallVector<uint64_t, 8> Words(Vals.size());
2321   transform(Vals, Words.begin(),
2322                  BitcodeReader::decodeSignRotatedValue);
2323 
2324   return APInt(TypeBits, Words);
2325 }
2326 
2327 Error BitcodeReader::parseConstants() {
2328   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2329     return Err;
2330 
2331   SmallVector<uint64_t, 64> Record;
2332 
2333   // Read all the records for this value table.
2334   Type *CurTy = Type::getInt32Ty(Context);
2335   Type *CurFullTy = Type::getInt32Ty(Context);
2336   unsigned NextCstNo = ValueList.size();
2337 
2338   while (true) {
2339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2340     if (!MaybeEntry)
2341       return MaybeEntry.takeError();
2342     BitstreamEntry Entry = MaybeEntry.get();
2343 
2344     switch (Entry.Kind) {
2345     case BitstreamEntry::SubBlock: // Handled for us already.
2346     case BitstreamEntry::Error:
2347       return error("Malformed block");
2348     case BitstreamEntry::EndBlock:
2349       if (NextCstNo != ValueList.size())
2350         return error("Invalid constant reference");
2351 
2352       // Once all the constants have been read, go through and resolve forward
2353       // references.
2354       ValueList.resolveConstantForwardRefs();
2355       return Error::success();
2356     case BitstreamEntry::Record:
2357       // The interesting case.
2358       break;
2359     }
2360 
2361     // Read a record.
2362     Record.clear();
2363     Type *VoidType = Type::getVoidTy(Context);
2364     Value *V = nullptr;
2365     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2366     if (!MaybeBitCode)
2367       return MaybeBitCode.takeError();
2368     switch (unsigned BitCode = MaybeBitCode.get()) {
2369     default:  // Default behavior: unknown constant
2370     case bitc::CST_CODE_UNDEF:     // UNDEF
2371       V = UndefValue::get(CurTy);
2372       break;
2373     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2374       if (Record.empty())
2375         return error("Invalid record");
2376       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2377         return error("Invalid record");
2378       if (TypeList[Record[0]] == VoidType)
2379         return error("Invalid constant type");
2380       CurFullTy = TypeList[Record[0]];
2381       CurTy = flattenPointerTypes(CurFullTy);
2382       continue;  // Skip the ValueList manipulation.
2383     case bitc::CST_CODE_NULL:      // NULL
2384       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2385         return error("Invalid type for a constant null value");
2386       V = Constant::getNullValue(CurTy);
2387       break;
2388     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2389       if (!CurTy->isIntegerTy() || Record.empty())
2390         return error("Invalid record");
2391       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2392       break;
2393     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2394       if (!CurTy->isIntegerTy() || Record.empty())
2395         return error("Invalid record");
2396 
2397       APInt VInt =
2398           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2399       V = ConstantInt::get(Context, VInt);
2400 
2401       break;
2402     }
2403     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2404       if (Record.empty())
2405         return error("Invalid record");
2406       if (CurTy->isHalfTy())
2407         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2408                                              APInt(16, (uint16_t)Record[0])));
2409       else if (CurTy->isFloatTy())
2410         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2411                                              APInt(32, (uint32_t)Record[0])));
2412       else if (CurTy->isDoubleTy())
2413         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2414                                              APInt(64, Record[0])));
2415       else if (CurTy->isX86_FP80Ty()) {
2416         // Bits are not stored the same way as a normal i80 APInt, compensate.
2417         uint64_t Rearrange[2];
2418         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2419         Rearrange[1] = Record[0] >> 48;
2420         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2421                                              APInt(80, Rearrange)));
2422       } else if (CurTy->isFP128Ty())
2423         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2424                                              APInt(128, Record)));
2425       else if (CurTy->isPPC_FP128Ty())
2426         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2427                                              APInt(128, Record)));
2428       else
2429         V = UndefValue::get(CurTy);
2430       break;
2431     }
2432 
2433     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2434       if (Record.empty())
2435         return error("Invalid record");
2436 
2437       unsigned Size = Record.size();
2438       SmallVector<Constant*, 16> Elts;
2439 
2440       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2441         for (unsigned i = 0; i != Size; ++i)
2442           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2443                                                      STy->getElementType(i)));
2444         V = ConstantStruct::get(STy, Elts);
2445       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2446         Type *EltTy = ATy->getElementType();
2447         for (unsigned i = 0; i != Size; ++i)
2448           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2449         V = ConstantArray::get(ATy, Elts);
2450       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2451         Type *EltTy = VTy->getElementType();
2452         for (unsigned i = 0; i != Size; ++i)
2453           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2454         V = ConstantVector::get(Elts);
2455       } else {
2456         V = UndefValue::get(CurTy);
2457       }
2458       break;
2459     }
2460     case bitc::CST_CODE_STRING:    // STRING: [values]
2461     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2462       if (Record.empty())
2463         return error("Invalid record");
2464 
2465       SmallString<16> Elts(Record.begin(), Record.end());
2466       V = ConstantDataArray::getString(Context, Elts,
2467                                        BitCode == bitc::CST_CODE_CSTRING);
2468       break;
2469     }
2470     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2471       if (Record.empty())
2472         return error("Invalid record");
2473 
2474       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2475       if (EltTy->isIntegerTy(8)) {
2476         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2477         if (isa<VectorType>(CurTy))
2478           V = ConstantDataVector::get(Context, Elts);
2479         else
2480           V = ConstantDataArray::get(Context, Elts);
2481       } else if (EltTy->isIntegerTy(16)) {
2482         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2483         if (isa<VectorType>(CurTy))
2484           V = ConstantDataVector::get(Context, Elts);
2485         else
2486           V = ConstantDataArray::get(Context, Elts);
2487       } else if (EltTy->isIntegerTy(32)) {
2488         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2489         if (isa<VectorType>(CurTy))
2490           V = ConstantDataVector::get(Context, Elts);
2491         else
2492           V = ConstantDataArray::get(Context, Elts);
2493       } else if (EltTy->isIntegerTy(64)) {
2494         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2495         if (isa<VectorType>(CurTy))
2496           V = ConstantDataVector::get(Context, Elts);
2497         else
2498           V = ConstantDataArray::get(Context, Elts);
2499       } else if (EltTy->isHalfTy()) {
2500         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2501         if (isa<VectorType>(CurTy))
2502           V = ConstantDataVector::getFP(Context, Elts);
2503         else
2504           V = ConstantDataArray::getFP(Context, Elts);
2505       } else if (EltTy->isFloatTy()) {
2506         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2507         if (isa<VectorType>(CurTy))
2508           V = ConstantDataVector::getFP(Context, Elts);
2509         else
2510           V = ConstantDataArray::getFP(Context, Elts);
2511       } else if (EltTy->isDoubleTy()) {
2512         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2513         if (isa<VectorType>(CurTy))
2514           V = ConstantDataVector::getFP(Context, Elts);
2515         else
2516           V = ConstantDataArray::getFP(Context, Elts);
2517       } else {
2518         return error("Invalid type for value");
2519       }
2520       break;
2521     }
2522     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2523       if (Record.size() < 2)
2524         return error("Invalid record");
2525       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2526       if (Opc < 0) {
2527         V = UndefValue::get(CurTy);  // Unknown unop.
2528       } else {
2529         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2530         unsigned Flags = 0;
2531         V = ConstantExpr::get(Opc, LHS, Flags);
2532       }
2533       break;
2534     }
2535     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2536       if (Record.size() < 3)
2537         return error("Invalid record");
2538       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2539       if (Opc < 0) {
2540         V = UndefValue::get(CurTy);  // Unknown binop.
2541       } else {
2542         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2543         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2544         unsigned Flags = 0;
2545         if (Record.size() >= 4) {
2546           if (Opc == Instruction::Add ||
2547               Opc == Instruction::Sub ||
2548               Opc == Instruction::Mul ||
2549               Opc == Instruction::Shl) {
2550             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2551               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2552             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2553               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2554           } else if (Opc == Instruction::SDiv ||
2555                      Opc == Instruction::UDiv ||
2556                      Opc == Instruction::LShr ||
2557                      Opc == Instruction::AShr) {
2558             if (Record[3] & (1 << bitc::PEO_EXACT))
2559               Flags |= SDivOperator::IsExact;
2560           }
2561         }
2562         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2563       }
2564       break;
2565     }
2566     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2567       if (Record.size() < 3)
2568         return error("Invalid record");
2569       int Opc = getDecodedCastOpcode(Record[0]);
2570       if (Opc < 0) {
2571         V = UndefValue::get(CurTy);  // Unknown cast.
2572       } else {
2573         Type *OpTy = getTypeByID(Record[1]);
2574         if (!OpTy)
2575           return error("Invalid record");
2576         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2577         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2578         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2579       }
2580       break;
2581     }
2582     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2583     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2584     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2585                                                      // operands]
2586       unsigned OpNum = 0;
2587       Type *PointeeType = nullptr;
2588       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2589           Record.size() % 2)
2590         PointeeType = getTypeByID(Record[OpNum++]);
2591 
2592       bool InBounds = false;
2593       Optional<unsigned> InRangeIndex;
2594       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2595         uint64_t Op = Record[OpNum++];
2596         InBounds = Op & 1;
2597         InRangeIndex = Op >> 1;
2598       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2599         InBounds = true;
2600 
2601       SmallVector<Constant*, 16> Elts;
2602       Type *Elt0FullTy = nullptr;
2603       while (OpNum != Record.size()) {
2604         if (!Elt0FullTy)
2605           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2606         Type *ElTy = getTypeByID(Record[OpNum++]);
2607         if (!ElTy)
2608           return error("Invalid record");
2609         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2610       }
2611 
2612       if (Elts.size() < 1)
2613         return error("Invalid gep with no operands");
2614 
2615       Type *ImplicitPointeeType =
2616           getPointerElementFlatType(Elt0FullTy->getScalarType());
2617       if (!PointeeType)
2618         PointeeType = ImplicitPointeeType;
2619       else if (PointeeType != ImplicitPointeeType)
2620         return error("Explicit gep operator type does not match pointee type "
2621                      "of pointer operand");
2622 
2623       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2624       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2625                                          InBounds, InRangeIndex);
2626       break;
2627     }
2628     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2629       if (Record.size() < 3)
2630         return error("Invalid record");
2631 
2632       Type *SelectorTy = Type::getInt1Ty(Context);
2633 
2634       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2635       // Get the type from the ValueList before getting a forward ref.
2636       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2637         if (Value *V = ValueList[Record[0]])
2638           if (SelectorTy != V->getType())
2639             SelectorTy = VectorType::get(SelectorTy,
2640                                          VTy->getElementCount());
2641 
2642       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2643                                                               SelectorTy),
2644                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2645                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2646       break;
2647     }
2648     case bitc::CST_CODE_CE_EXTRACTELT
2649         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2650       if (Record.size() < 3)
2651         return error("Invalid record");
2652       VectorType *OpTy =
2653         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2654       if (!OpTy)
2655         return error("Invalid record");
2656       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2657       Constant *Op1 = nullptr;
2658       if (Record.size() == 4) {
2659         Type *IdxTy = getTypeByID(Record[2]);
2660         if (!IdxTy)
2661           return error("Invalid record");
2662         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2663       } else // TODO: Remove with llvm 4.0
2664         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2665       if (!Op1)
2666         return error("Invalid record");
2667       V = ConstantExpr::getExtractElement(Op0, Op1);
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_INSERTELT
2671         : { // CE_INSERTELT: [opval, opval, opty, opval]
2672       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2673       if (Record.size() < 3 || !OpTy)
2674         return error("Invalid record");
2675       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2676       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2677                                                   OpTy->getElementType());
2678       Constant *Op2 = nullptr;
2679       if (Record.size() == 4) {
2680         Type *IdxTy = getTypeByID(Record[2]);
2681         if (!IdxTy)
2682           return error("Invalid record");
2683         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2684       } else // TODO: Remove with llvm 4.0
2685         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2686       if (!Op2)
2687         return error("Invalid record");
2688       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2689       break;
2690     }
2691     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2692       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2693       if (Record.size() < 3 || !OpTy)
2694         return error("Invalid record");
2695       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2696       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2697       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2698                                      OpTy->getElementCount());
2699       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2700       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2701       break;
2702     }
2703     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2704       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2705       VectorType *OpTy =
2706         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2707       if (Record.size() < 4 || !RTy || !OpTy)
2708         return error("Invalid record");
2709       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2710       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2711       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2712                                      RTy->getElementCount());
2713       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2714       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2715       break;
2716     }
2717     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2718       if (Record.size() < 4)
2719         return error("Invalid record");
2720       Type *OpTy = getTypeByID(Record[0]);
2721       if (!OpTy)
2722         return error("Invalid record");
2723       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2724       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2725 
2726       if (OpTy->isFPOrFPVectorTy())
2727         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2728       else
2729         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2730       break;
2731     }
2732     // This maintains backward compatibility, pre-asm dialect keywords.
2733     // FIXME: Remove with the 4.0 release.
2734     case bitc::CST_CODE_INLINEASM_OLD: {
2735       if (Record.size() < 2)
2736         return error("Invalid record");
2737       std::string AsmStr, ConstrStr;
2738       bool HasSideEffects = Record[0] & 1;
2739       bool IsAlignStack = Record[0] >> 1;
2740       unsigned AsmStrSize = Record[1];
2741       if (2+AsmStrSize >= Record.size())
2742         return error("Invalid record");
2743       unsigned ConstStrSize = Record[2+AsmStrSize];
2744       if (3+AsmStrSize+ConstStrSize > Record.size())
2745         return error("Invalid record");
2746 
2747       for (unsigned i = 0; i != AsmStrSize; ++i)
2748         AsmStr += (char)Record[2+i];
2749       for (unsigned i = 0; i != ConstStrSize; ++i)
2750         ConstrStr += (char)Record[3+AsmStrSize+i];
2751       UpgradeInlineAsmString(&AsmStr);
2752       V = InlineAsm::get(
2753           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2754           ConstrStr, HasSideEffects, IsAlignStack);
2755       break;
2756     }
2757     // This version adds support for the asm dialect keywords (e.g.,
2758     // inteldialect).
2759     case bitc::CST_CODE_INLINEASM: {
2760       if (Record.size() < 2)
2761         return error("Invalid record");
2762       std::string AsmStr, ConstrStr;
2763       bool HasSideEffects = Record[0] & 1;
2764       bool IsAlignStack = (Record[0] >> 1) & 1;
2765       unsigned AsmDialect = Record[0] >> 2;
2766       unsigned AsmStrSize = Record[1];
2767       if (2+AsmStrSize >= Record.size())
2768         return error("Invalid record");
2769       unsigned ConstStrSize = Record[2+AsmStrSize];
2770       if (3+AsmStrSize+ConstStrSize > Record.size())
2771         return error("Invalid record");
2772 
2773       for (unsigned i = 0; i != AsmStrSize; ++i)
2774         AsmStr += (char)Record[2+i];
2775       for (unsigned i = 0; i != ConstStrSize; ++i)
2776         ConstrStr += (char)Record[3+AsmStrSize+i];
2777       UpgradeInlineAsmString(&AsmStr);
2778       V = InlineAsm::get(
2779           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2780           ConstrStr, HasSideEffects, IsAlignStack,
2781           InlineAsm::AsmDialect(AsmDialect));
2782       break;
2783     }
2784     case bitc::CST_CODE_BLOCKADDRESS:{
2785       if (Record.size() < 3)
2786         return error("Invalid record");
2787       Type *FnTy = getTypeByID(Record[0]);
2788       if (!FnTy)
2789         return error("Invalid record");
2790       Function *Fn =
2791         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2792       if (!Fn)
2793         return error("Invalid record");
2794 
2795       // If the function is already parsed we can insert the block address right
2796       // away.
2797       BasicBlock *BB;
2798       unsigned BBID = Record[2];
2799       if (!BBID)
2800         // Invalid reference to entry block.
2801         return error("Invalid ID");
2802       if (!Fn->empty()) {
2803         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2804         for (size_t I = 0, E = BBID; I != E; ++I) {
2805           if (BBI == BBE)
2806             return error("Invalid ID");
2807           ++BBI;
2808         }
2809         BB = &*BBI;
2810       } else {
2811         // Otherwise insert a placeholder and remember it so it can be inserted
2812         // when the function is parsed.
2813         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2814         if (FwdBBs.empty())
2815           BasicBlockFwdRefQueue.push_back(Fn);
2816         if (FwdBBs.size() < BBID + 1)
2817           FwdBBs.resize(BBID + 1);
2818         if (!FwdBBs[BBID])
2819           FwdBBs[BBID] = BasicBlock::Create(Context);
2820         BB = FwdBBs[BBID];
2821       }
2822       V = BlockAddress::get(Fn, BB);
2823       break;
2824     }
2825     }
2826 
2827     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2828            "Incorrect fully structured type provided for Constant");
2829     ValueList.assignValue(V, NextCstNo, CurFullTy);
2830     ++NextCstNo;
2831   }
2832 }
2833 
2834 Error BitcodeReader::parseUseLists() {
2835   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2836     return Err;
2837 
2838   // Read all the records.
2839   SmallVector<uint64_t, 64> Record;
2840 
2841   while (true) {
2842     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2843     if (!MaybeEntry)
2844       return MaybeEntry.takeError();
2845     BitstreamEntry Entry = MaybeEntry.get();
2846 
2847     switch (Entry.Kind) {
2848     case BitstreamEntry::SubBlock: // Handled for us already.
2849     case BitstreamEntry::Error:
2850       return error("Malformed block");
2851     case BitstreamEntry::EndBlock:
2852       return Error::success();
2853     case BitstreamEntry::Record:
2854       // The interesting case.
2855       break;
2856     }
2857 
2858     // Read a use list record.
2859     Record.clear();
2860     bool IsBB = false;
2861     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2862     if (!MaybeRecord)
2863       return MaybeRecord.takeError();
2864     switch (MaybeRecord.get()) {
2865     default:  // Default behavior: unknown type.
2866       break;
2867     case bitc::USELIST_CODE_BB:
2868       IsBB = true;
2869       LLVM_FALLTHROUGH;
2870     case bitc::USELIST_CODE_DEFAULT: {
2871       unsigned RecordLength = Record.size();
2872       if (RecordLength < 3)
2873         // Records should have at least an ID and two indexes.
2874         return error("Invalid record");
2875       unsigned ID = Record.back();
2876       Record.pop_back();
2877 
2878       Value *V;
2879       if (IsBB) {
2880         assert(ID < FunctionBBs.size() && "Basic block not found");
2881         V = FunctionBBs[ID];
2882       } else
2883         V = ValueList[ID];
2884       unsigned NumUses = 0;
2885       SmallDenseMap<const Use *, unsigned, 16> Order;
2886       for (const Use &U : V->materialized_uses()) {
2887         if (++NumUses > Record.size())
2888           break;
2889         Order[&U] = Record[NumUses - 1];
2890       }
2891       if (Order.size() != Record.size() || NumUses > Record.size())
2892         // Mismatches can happen if the functions are being materialized lazily
2893         // (out-of-order), or a value has been upgraded.
2894         break;
2895 
2896       V->sortUseList([&](const Use &L, const Use &R) {
2897         return Order.lookup(&L) < Order.lookup(&R);
2898       });
2899       break;
2900     }
2901     }
2902   }
2903 }
2904 
2905 /// When we see the block for metadata, remember where it is and then skip it.
2906 /// This lets us lazily deserialize the metadata.
2907 Error BitcodeReader::rememberAndSkipMetadata() {
2908   // Save the current stream state.
2909   uint64_t CurBit = Stream.GetCurrentBitNo();
2910   DeferredMetadataInfo.push_back(CurBit);
2911 
2912   // Skip over the block for now.
2913   if (Error Err = Stream.SkipBlock())
2914     return Err;
2915   return Error::success();
2916 }
2917 
2918 Error BitcodeReader::materializeMetadata() {
2919   for (uint64_t BitPos : DeferredMetadataInfo) {
2920     // Move the bit stream to the saved position.
2921     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2922       return JumpFailed;
2923     if (Error Err = MDLoader->parseModuleMetadata())
2924       return Err;
2925   }
2926 
2927   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2928   // metadata.
2929   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2930     NamedMDNode *LinkerOpts =
2931         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2932     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2933       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2934   }
2935 
2936   DeferredMetadataInfo.clear();
2937   return Error::success();
2938 }
2939 
2940 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2941 
2942 /// When we see the block for a function body, remember where it is and then
2943 /// skip it.  This lets us lazily deserialize the functions.
2944 Error BitcodeReader::rememberAndSkipFunctionBody() {
2945   // Get the function we are talking about.
2946   if (FunctionsWithBodies.empty())
2947     return error("Insufficient function protos");
2948 
2949   Function *Fn = FunctionsWithBodies.back();
2950   FunctionsWithBodies.pop_back();
2951 
2952   // Save the current stream state.
2953   uint64_t CurBit = Stream.GetCurrentBitNo();
2954   assert(
2955       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2956       "Mismatch between VST and scanned function offsets");
2957   DeferredFunctionInfo[Fn] = CurBit;
2958 
2959   // Skip over the function block for now.
2960   if (Error Err = Stream.SkipBlock())
2961     return Err;
2962   return Error::success();
2963 }
2964 
2965 Error BitcodeReader::globalCleanup() {
2966   // Patch the initializers for globals and aliases up.
2967   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2968     return Err;
2969   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2970     return error("Malformed global initializer set");
2971 
2972   // Look for intrinsic functions which need to be upgraded at some point
2973   for (Function &F : *TheModule) {
2974     MDLoader->upgradeDebugIntrinsics(F);
2975     Function *NewFn;
2976     if (UpgradeIntrinsicFunction(&F, NewFn))
2977       UpgradedIntrinsics[&F] = NewFn;
2978     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2979       // Some types could be renamed during loading if several modules are
2980       // loaded in the same LLVMContext (LTO scenario). In this case we should
2981       // remangle intrinsics names as well.
2982       RemangledIntrinsics[&F] = Remangled.getValue();
2983   }
2984 
2985   // Look for global variables which need to be renamed.
2986   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2987   for (GlobalVariable &GV : TheModule->globals())
2988     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2989       UpgradedVariables.emplace_back(&GV, Upgraded);
2990   for (auto &Pair : UpgradedVariables) {
2991     Pair.first->eraseFromParent();
2992     TheModule->getGlobalList().push_back(Pair.second);
2993   }
2994 
2995   // Force deallocation of memory for these vectors to favor the client that
2996   // want lazy deserialization.
2997   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2998   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2999       IndirectSymbolInits);
3000   return Error::success();
3001 }
3002 
3003 /// Support for lazy parsing of function bodies. This is required if we
3004 /// either have an old bitcode file without a VST forward declaration record,
3005 /// or if we have an anonymous function being materialized, since anonymous
3006 /// functions do not have a name and are therefore not in the VST.
3007 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3008   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3009     return JumpFailed;
3010 
3011   if (Stream.AtEndOfStream())
3012     return error("Could not find function in stream");
3013 
3014   if (!SeenFirstFunctionBody)
3015     return error("Trying to materialize functions before seeing function blocks");
3016 
3017   // An old bitcode file with the symbol table at the end would have
3018   // finished the parse greedily.
3019   assert(SeenValueSymbolTable);
3020 
3021   SmallVector<uint64_t, 64> Record;
3022 
3023   while (true) {
3024     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3025     if (!MaybeEntry)
3026       return MaybeEntry.takeError();
3027     llvm::BitstreamEntry Entry = MaybeEntry.get();
3028 
3029     switch (Entry.Kind) {
3030     default:
3031       return error("Expect SubBlock");
3032     case BitstreamEntry::SubBlock:
3033       switch (Entry.ID) {
3034       default:
3035         return error("Expect function block");
3036       case bitc::FUNCTION_BLOCK_ID:
3037         if (Error Err = rememberAndSkipFunctionBody())
3038           return Err;
3039         NextUnreadBit = Stream.GetCurrentBitNo();
3040         return Error::success();
3041       }
3042     }
3043   }
3044 }
3045 
3046 bool BitcodeReaderBase::readBlockInfo() {
3047   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3048       Stream.ReadBlockInfoBlock();
3049   if (!MaybeNewBlockInfo)
3050     return true; // FIXME Handle the error.
3051   Optional<BitstreamBlockInfo> NewBlockInfo =
3052       std::move(MaybeNewBlockInfo.get());
3053   if (!NewBlockInfo)
3054     return true;
3055   BlockInfo = std::move(*NewBlockInfo);
3056   return false;
3057 }
3058 
3059 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3060   // v1: [selection_kind, name]
3061   // v2: [strtab_offset, strtab_size, selection_kind]
3062   StringRef Name;
3063   std::tie(Name, Record) = readNameFromStrtab(Record);
3064 
3065   if (Record.empty())
3066     return error("Invalid record");
3067   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3068   std::string OldFormatName;
3069   if (!UseStrtab) {
3070     if (Record.size() < 2)
3071       return error("Invalid record");
3072     unsigned ComdatNameSize = Record[1];
3073     OldFormatName.reserve(ComdatNameSize);
3074     for (unsigned i = 0; i != ComdatNameSize; ++i)
3075       OldFormatName += (char)Record[2 + i];
3076     Name = OldFormatName;
3077   }
3078   Comdat *C = TheModule->getOrInsertComdat(Name);
3079   C->setSelectionKind(SK);
3080   ComdatList.push_back(C);
3081   return Error::success();
3082 }
3083 
3084 static void inferDSOLocal(GlobalValue *GV) {
3085   // infer dso_local from linkage and visibility if it is not encoded.
3086   if (GV->hasLocalLinkage() ||
3087       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3088     GV->setDSOLocal(true);
3089 }
3090 
3091 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3092   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3093   // visibility, threadlocal, unnamed_addr, externally_initialized,
3094   // dllstorageclass, comdat, attributes, preemption specifier,
3095   // partition strtab offset, partition strtab size] (name in VST)
3096   // v2: [strtab_offset, strtab_size, v1]
3097   StringRef Name;
3098   std::tie(Name, Record) = readNameFromStrtab(Record);
3099 
3100   if (Record.size() < 6)
3101     return error("Invalid record");
3102   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3103   Type *Ty = flattenPointerTypes(FullTy);
3104   if (!Ty)
3105     return error("Invalid record");
3106   bool isConstant = Record[1] & 1;
3107   bool explicitType = Record[1] & 2;
3108   unsigned AddressSpace;
3109   if (explicitType) {
3110     AddressSpace = Record[1] >> 2;
3111   } else {
3112     if (!Ty->isPointerTy())
3113       return error("Invalid type for value");
3114     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3115     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3116   }
3117 
3118   uint64_t RawLinkage = Record[3];
3119   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3120   MaybeAlign Alignment;
3121   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3122     return Err;
3123   std::string Section;
3124   if (Record[5]) {
3125     if (Record[5] - 1 >= SectionTable.size())
3126       return error("Invalid ID");
3127     Section = SectionTable[Record[5] - 1];
3128   }
3129   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3130   // Local linkage must have default visibility.
3131   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3132     // FIXME: Change to an error if non-default in 4.0.
3133     Visibility = getDecodedVisibility(Record[6]);
3134 
3135   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3136   if (Record.size() > 7)
3137     TLM = getDecodedThreadLocalMode(Record[7]);
3138 
3139   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3140   if (Record.size() > 8)
3141     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3142 
3143   bool ExternallyInitialized = false;
3144   if (Record.size() > 9)
3145     ExternallyInitialized = Record[9];
3146 
3147   GlobalVariable *NewGV =
3148       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3149                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3150   NewGV->setAlignment(Alignment);
3151   if (!Section.empty())
3152     NewGV->setSection(Section);
3153   NewGV->setVisibility(Visibility);
3154   NewGV->setUnnamedAddr(UnnamedAddr);
3155 
3156   if (Record.size() > 10)
3157     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3158   else
3159     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3160 
3161   FullTy = PointerType::get(FullTy, AddressSpace);
3162   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3163          "Incorrect fully specified type for GlobalVariable");
3164   ValueList.push_back(NewGV, FullTy);
3165 
3166   // Remember which value to use for the global initializer.
3167   if (unsigned InitID = Record[2])
3168     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3169 
3170   if (Record.size() > 11) {
3171     if (unsigned ComdatID = Record[11]) {
3172       if (ComdatID > ComdatList.size())
3173         return error("Invalid global variable comdat ID");
3174       NewGV->setComdat(ComdatList[ComdatID - 1]);
3175     }
3176   } else if (hasImplicitComdat(RawLinkage)) {
3177     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3178   }
3179 
3180   if (Record.size() > 12) {
3181     auto AS = getAttributes(Record[12]).getFnAttributes();
3182     NewGV->setAttributes(AS);
3183   }
3184 
3185   if (Record.size() > 13) {
3186     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3187   }
3188   inferDSOLocal(NewGV);
3189 
3190   // Check whether we have enough values to read a partition name.
3191   if (Record.size() > 15)
3192     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3193 
3194   return Error::success();
3195 }
3196 
3197 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3198   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3199   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3200   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3201   // v2: [strtab_offset, strtab_size, v1]
3202   StringRef Name;
3203   std::tie(Name, Record) = readNameFromStrtab(Record);
3204 
3205   if (Record.size() < 8)
3206     return error("Invalid record");
3207   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3208   Type *FTy = flattenPointerTypes(FullFTy);
3209   if (!FTy)
3210     return error("Invalid record");
3211   if (isa<PointerType>(FTy))
3212     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3213 
3214   if (!isa<FunctionType>(FTy))
3215     return error("Invalid type for value");
3216   auto CC = static_cast<CallingConv::ID>(Record[1]);
3217   if (CC & ~CallingConv::MaxID)
3218     return error("Invalid calling convention ID");
3219 
3220   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3221   if (Record.size() > 16)
3222     AddrSpace = Record[16];
3223 
3224   Function *Func =
3225       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3226                        AddrSpace, Name, TheModule);
3227 
3228   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3229          "Incorrect fully specified type provided for function");
3230   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3231 
3232   Func->setCallingConv(CC);
3233   bool isProto = Record[2];
3234   uint64_t RawLinkage = Record[3];
3235   Func->setLinkage(getDecodedLinkage(RawLinkage));
3236   Func->setAttributes(getAttributes(Record[4]));
3237 
3238   // Upgrade any old-style byval without a type by propagating the argument's
3239   // pointee type. There should be no opaque pointers where the byval type is
3240   // implicit.
3241   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3242     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3243       continue;
3244 
3245     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3246     Func->removeParamAttr(i, Attribute::ByVal);
3247     Func->addParamAttr(i, Attribute::getWithByValType(
3248                               Context, getPointerElementFlatType(PTy)));
3249   }
3250 
3251   MaybeAlign Alignment;
3252   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3253     return Err;
3254   Func->setAlignment(Alignment);
3255   if (Record[6]) {
3256     if (Record[6] - 1 >= SectionTable.size())
3257       return error("Invalid ID");
3258     Func->setSection(SectionTable[Record[6] - 1]);
3259   }
3260   // Local linkage must have default visibility.
3261   if (!Func->hasLocalLinkage())
3262     // FIXME: Change to an error if non-default in 4.0.
3263     Func->setVisibility(getDecodedVisibility(Record[7]));
3264   if (Record.size() > 8 && Record[8]) {
3265     if (Record[8] - 1 >= GCTable.size())
3266       return error("Invalid ID");
3267     Func->setGC(GCTable[Record[8] - 1]);
3268   }
3269   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3270   if (Record.size() > 9)
3271     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3272   Func->setUnnamedAddr(UnnamedAddr);
3273   if (Record.size() > 10 && Record[10] != 0)
3274     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3275 
3276   if (Record.size() > 11)
3277     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3278   else
3279     upgradeDLLImportExportLinkage(Func, RawLinkage);
3280 
3281   if (Record.size() > 12) {
3282     if (unsigned ComdatID = Record[12]) {
3283       if (ComdatID > ComdatList.size())
3284         return error("Invalid function comdat ID");
3285       Func->setComdat(ComdatList[ComdatID - 1]);
3286     }
3287   } else if (hasImplicitComdat(RawLinkage)) {
3288     Func->setComdat(reinterpret_cast<Comdat *>(1));
3289   }
3290 
3291   if (Record.size() > 13 && Record[13] != 0)
3292     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3293 
3294   if (Record.size() > 14 && Record[14] != 0)
3295     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3296 
3297   if (Record.size() > 15) {
3298     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3299   }
3300   inferDSOLocal(Func);
3301 
3302   // Record[16] is the address space number.
3303 
3304   // Check whether we have enough values to read a partition name.
3305   if (Record.size() > 18)
3306     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3307 
3308   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3309   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3310          "Incorrect fully specified type provided for Function");
3311   ValueList.push_back(Func, FullTy);
3312 
3313   // If this is a function with a body, remember the prototype we are
3314   // creating now, so that we can match up the body with them later.
3315   if (!isProto) {
3316     Func->setIsMaterializable(true);
3317     FunctionsWithBodies.push_back(Func);
3318     DeferredFunctionInfo[Func] = 0;
3319   }
3320   return Error::success();
3321 }
3322 
3323 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3324     unsigned BitCode, ArrayRef<uint64_t> Record) {
3325   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3326   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3327   // dllstorageclass, threadlocal, unnamed_addr,
3328   // preemption specifier] (name in VST)
3329   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3330   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3331   // preemption specifier] (name in VST)
3332   // v2: [strtab_offset, strtab_size, v1]
3333   StringRef Name;
3334   std::tie(Name, Record) = readNameFromStrtab(Record);
3335 
3336   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3337   if (Record.size() < (3 + (unsigned)NewRecord))
3338     return error("Invalid record");
3339   unsigned OpNum = 0;
3340   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3341   Type *Ty = flattenPointerTypes(FullTy);
3342   if (!Ty)
3343     return error("Invalid record");
3344 
3345   unsigned AddrSpace;
3346   if (!NewRecord) {
3347     auto *PTy = dyn_cast<PointerType>(Ty);
3348     if (!PTy)
3349       return error("Invalid type for value");
3350     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3351     AddrSpace = PTy->getAddressSpace();
3352   } else {
3353     AddrSpace = Record[OpNum++];
3354   }
3355 
3356   auto Val = Record[OpNum++];
3357   auto Linkage = Record[OpNum++];
3358   GlobalIndirectSymbol *NewGA;
3359   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3360       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3361     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3362                                 TheModule);
3363   else
3364     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3365                                 nullptr, TheModule);
3366 
3367   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3368          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3369   // Old bitcode files didn't have visibility field.
3370   // Local linkage must have default visibility.
3371   if (OpNum != Record.size()) {
3372     auto VisInd = OpNum++;
3373     if (!NewGA->hasLocalLinkage())
3374       // FIXME: Change to an error if non-default in 4.0.
3375       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3376   }
3377   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3378       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3379     if (OpNum != Record.size())
3380       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3381     else
3382       upgradeDLLImportExportLinkage(NewGA, Linkage);
3383     if (OpNum != Record.size())
3384       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3385     if (OpNum != Record.size())
3386       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3387   }
3388   if (OpNum != Record.size())
3389     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3390   inferDSOLocal(NewGA);
3391 
3392   // Check whether we have enough values to read a partition name.
3393   if (OpNum + 1 < Record.size()) {
3394     NewGA->setPartition(
3395         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3396     OpNum += 2;
3397   }
3398 
3399   FullTy = PointerType::get(FullTy, AddrSpace);
3400   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3401          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3402   ValueList.push_back(NewGA, FullTy);
3403   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3404   return Error::success();
3405 }
3406 
3407 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3408                                  bool ShouldLazyLoadMetadata) {
3409   if (ResumeBit) {
3410     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3411       return JumpFailed;
3412   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3413     return Err;
3414 
3415   SmallVector<uint64_t, 64> Record;
3416 
3417   // Read all the records for this module.
3418   while (true) {
3419     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3420     if (!MaybeEntry)
3421       return MaybeEntry.takeError();
3422     llvm::BitstreamEntry Entry = MaybeEntry.get();
3423 
3424     switch (Entry.Kind) {
3425     case BitstreamEntry::Error:
3426       return error("Malformed block");
3427     case BitstreamEntry::EndBlock:
3428       return globalCleanup();
3429 
3430     case BitstreamEntry::SubBlock:
3431       switch (Entry.ID) {
3432       default:  // Skip unknown content.
3433         if (Error Err = Stream.SkipBlock())
3434           return Err;
3435         break;
3436       case bitc::BLOCKINFO_BLOCK_ID:
3437         if (readBlockInfo())
3438           return error("Malformed block");
3439         break;
3440       case bitc::PARAMATTR_BLOCK_ID:
3441         if (Error Err = parseAttributeBlock())
3442           return Err;
3443         break;
3444       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3445         if (Error Err = parseAttributeGroupBlock())
3446           return Err;
3447         break;
3448       case bitc::TYPE_BLOCK_ID_NEW:
3449         if (Error Err = parseTypeTable())
3450           return Err;
3451         break;
3452       case bitc::VALUE_SYMTAB_BLOCK_ID:
3453         if (!SeenValueSymbolTable) {
3454           // Either this is an old form VST without function index and an
3455           // associated VST forward declaration record (which would have caused
3456           // the VST to be jumped to and parsed before it was encountered
3457           // normally in the stream), or there were no function blocks to
3458           // trigger an earlier parsing of the VST.
3459           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3460           if (Error Err = parseValueSymbolTable())
3461             return Err;
3462           SeenValueSymbolTable = true;
3463         } else {
3464           // We must have had a VST forward declaration record, which caused
3465           // the parser to jump to and parse the VST earlier.
3466           assert(VSTOffset > 0);
3467           if (Error Err = Stream.SkipBlock())
3468             return Err;
3469         }
3470         break;
3471       case bitc::CONSTANTS_BLOCK_ID:
3472         if (Error Err = parseConstants())
3473           return Err;
3474         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3475           return Err;
3476         break;
3477       case bitc::METADATA_BLOCK_ID:
3478         if (ShouldLazyLoadMetadata) {
3479           if (Error Err = rememberAndSkipMetadata())
3480             return Err;
3481           break;
3482         }
3483         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3484         if (Error Err = MDLoader->parseModuleMetadata())
3485           return Err;
3486         break;
3487       case bitc::METADATA_KIND_BLOCK_ID:
3488         if (Error Err = MDLoader->parseMetadataKinds())
3489           return Err;
3490         break;
3491       case bitc::FUNCTION_BLOCK_ID:
3492         // If this is the first function body we've seen, reverse the
3493         // FunctionsWithBodies list.
3494         if (!SeenFirstFunctionBody) {
3495           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3496           if (Error Err = globalCleanup())
3497             return Err;
3498           SeenFirstFunctionBody = true;
3499         }
3500 
3501         if (VSTOffset > 0) {
3502           // If we have a VST forward declaration record, make sure we
3503           // parse the VST now if we haven't already. It is needed to
3504           // set up the DeferredFunctionInfo vector for lazy reading.
3505           if (!SeenValueSymbolTable) {
3506             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3507               return Err;
3508             SeenValueSymbolTable = true;
3509             // Fall through so that we record the NextUnreadBit below.
3510             // This is necessary in case we have an anonymous function that
3511             // is later materialized. Since it will not have a VST entry we
3512             // need to fall back to the lazy parse to find its offset.
3513           } else {
3514             // If we have a VST forward declaration record, but have already
3515             // parsed the VST (just above, when the first function body was
3516             // encountered here), then we are resuming the parse after
3517             // materializing functions. The ResumeBit points to the
3518             // start of the last function block recorded in the
3519             // DeferredFunctionInfo map. Skip it.
3520             if (Error Err = Stream.SkipBlock())
3521               return Err;
3522             continue;
3523           }
3524         }
3525 
3526         // Support older bitcode files that did not have the function
3527         // index in the VST, nor a VST forward declaration record, as
3528         // well as anonymous functions that do not have VST entries.
3529         // Build the DeferredFunctionInfo vector on the fly.
3530         if (Error Err = rememberAndSkipFunctionBody())
3531           return Err;
3532 
3533         // Suspend parsing when we reach the function bodies. Subsequent
3534         // materialization calls will resume it when necessary. If the bitcode
3535         // file is old, the symbol table will be at the end instead and will not
3536         // have been seen yet. In this case, just finish the parse now.
3537         if (SeenValueSymbolTable) {
3538           NextUnreadBit = Stream.GetCurrentBitNo();
3539           // After the VST has been parsed, we need to make sure intrinsic name
3540           // are auto-upgraded.
3541           return globalCleanup();
3542         }
3543         break;
3544       case bitc::USELIST_BLOCK_ID:
3545         if (Error Err = parseUseLists())
3546           return Err;
3547         break;
3548       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3549         if (Error Err = parseOperandBundleTags())
3550           return Err;
3551         break;
3552       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3553         if (Error Err = parseSyncScopeNames())
3554           return Err;
3555         break;
3556       }
3557       continue;
3558 
3559     case BitstreamEntry::Record:
3560       // The interesting case.
3561       break;
3562     }
3563 
3564     // Read a record.
3565     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3566     if (!MaybeBitCode)
3567       return MaybeBitCode.takeError();
3568     switch (unsigned BitCode = MaybeBitCode.get()) {
3569     default: break;  // Default behavior, ignore unknown content.
3570     case bitc::MODULE_CODE_VERSION: {
3571       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3572       if (!VersionOrErr)
3573         return VersionOrErr.takeError();
3574       UseRelativeIDs = *VersionOrErr >= 1;
3575       break;
3576     }
3577     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3578       std::string S;
3579       if (convertToString(Record, 0, S))
3580         return error("Invalid record");
3581       TheModule->setTargetTriple(S);
3582       break;
3583     }
3584     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3585       std::string S;
3586       if (convertToString(Record, 0, S))
3587         return error("Invalid record");
3588       TheModule->setDataLayout(S);
3589       break;
3590     }
3591     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3592       std::string S;
3593       if (convertToString(Record, 0, S))
3594         return error("Invalid record");
3595       TheModule->setModuleInlineAsm(S);
3596       break;
3597     }
3598     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3599       // FIXME: Remove in 4.0.
3600       std::string S;
3601       if (convertToString(Record, 0, S))
3602         return error("Invalid record");
3603       // Ignore value.
3604       break;
3605     }
3606     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3607       std::string S;
3608       if (convertToString(Record, 0, S))
3609         return error("Invalid record");
3610       SectionTable.push_back(S);
3611       break;
3612     }
3613     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3614       std::string S;
3615       if (convertToString(Record, 0, S))
3616         return error("Invalid record");
3617       GCTable.push_back(S);
3618       break;
3619     }
3620     case bitc::MODULE_CODE_COMDAT:
3621       if (Error Err = parseComdatRecord(Record))
3622         return Err;
3623       break;
3624     case bitc::MODULE_CODE_GLOBALVAR:
3625       if (Error Err = parseGlobalVarRecord(Record))
3626         return Err;
3627       break;
3628     case bitc::MODULE_CODE_FUNCTION:
3629       if (Error Err = parseFunctionRecord(Record))
3630         return Err;
3631       break;
3632     case bitc::MODULE_CODE_IFUNC:
3633     case bitc::MODULE_CODE_ALIAS:
3634     case bitc::MODULE_CODE_ALIAS_OLD:
3635       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3636         return Err;
3637       break;
3638     /// MODULE_CODE_VSTOFFSET: [offset]
3639     case bitc::MODULE_CODE_VSTOFFSET:
3640       if (Record.size() < 1)
3641         return error("Invalid record");
3642       // Note that we subtract 1 here because the offset is relative to one word
3643       // before the start of the identification or module block, which was
3644       // historically always the start of the regular bitcode header.
3645       VSTOffset = Record[0] - 1;
3646       break;
3647     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3648     case bitc::MODULE_CODE_SOURCE_FILENAME:
3649       SmallString<128> ValueName;
3650       if (convertToString(Record, 0, ValueName))
3651         return error("Invalid record");
3652       TheModule->setSourceFileName(ValueName);
3653       break;
3654     }
3655     Record.clear();
3656 
3657     // Upgrade data layout string.
3658     std::string DL = llvm::UpgradeDataLayoutString(
3659         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3660     TheModule->setDataLayout(DL);
3661   }
3662 }
3663 
3664 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3665                                       bool IsImporting) {
3666   TheModule = M;
3667   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3668                             [&](unsigned ID) { return getTypeByID(ID); });
3669   return parseModule(0, ShouldLazyLoadMetadata);
3670 }
3671 
3672 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3673   if (!isa<PointerType>(PtrType))
3674     return error("Load/Store operand is not a pointer type");
3675   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3676 
3677   if (ValType && ValType != ElemType)
3678     return error("Explicit load/store type does not match pointee "
3679                  "type of pointer operand");
3680   if (!PointerType::isLoadableOrStorableType(ElemType))
3681     return error("Cannot load/store from pointer");
3682   return Error::success();
3683 }
3684 
3685 void BitcodeReader::propagateByValTypes(CallBase *CB,
3686                                         ArrayRef<Type *> ArgsFullTys) {
3687   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3688     if (!CB->paramHasAttr(i, Attribute::ByVal))
3689       continue;
3690 
3691     CB->removeParamAttr(i, Attribute::ByVal);
3692     CB->addParamAttr(
3693         i, Attribute::getWithByValType(
3694                Context, getPointerElementFlatType(ArgsFullTys[i])));
3695   }
3696 }
3697 
3698 /// Lazily parse the specified function body block.
3699 Error BitcodeReader::parseFunctionBody(Function *F) {
3700   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3701     return Err;
3702 
3703   // Unexpected unresolved metadata when parsing function.
3704   if (MDLoader->hasFwdRefs())
3705     return error("Invalid function metadata: incoming forward references");
3706 
3707   InstructionList.clear();
3708   unsigned ModuleValueListSize = ValueList.size();
3709   unsigned ModuleMDLoaderSize = MDLoader->size();
3710 
3711   // Add all the function arguments to the value table.
3712   unsigned ArgNo = 0;
3713   FunctionType *FullFTy = FunctionTypes[F];
3714   for (Argument &I : F->args()) {
3715     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3716            "Incorrect fully specified type for Function Argument");
3717     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3718   }
3719   unsigned NextValueNo = ValueList.size();
3720   BasicBlock *CurBB = nullptr;
3721   unsigned CurBBNo = 0;
3722 
3723   DebugLoc LastLoc;
3724   auto getLastInstruction = [&]() -> Instruction * {
3725     if (CurBB && !CurBB->empty())
3726       return &CurBB->back();
3727     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3728              !FunctionBBs[CurBBNo - 1]->empty())
3729       return &FunctionBBs[CurBBNo - 1]->back();
3730     return nullptr;
3731   };
3732 
3733   std::vector<OperandBundleDef> OperandBundles;
3734 
3735   // Read all the records.
3736   SmallVector<uint64_t, 64> Record;
3737 
3738   while (true) {
3739     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3740     if (!MaybeEntry)
3741       return MaybeEntry.takeError();
3742     llvm::BitstreamEntry Entry = MaybeEntry.get();
3743 
3744     switch (Entry.Kind) {
3745     case BitstreamEntry::Error:
3746       return error("Malformed block");
3747     case BitstreamEntry::EndBlock:
3748       goto OutOfRecordLoop;
3749 
3750     case BitstreamEntry::SubBlock:
3751       switch (Entry.ID) {
3752       default:  // Skip unknown content.
3753         if (Error Err = Stream.SkipBlock())
3754           return Err;
3755         break;
3756       case bitc::CONSTANTS_BLOCK_ID:
3757         if (Error Err = parseConstants())
3758           return Err;
3759         NextValueNo = ValueList.size();
3760         break;
3761       case bitc::VALUE_SYMTAB_BLOCK_ID:
3762         if (Error Err = parseValueSymbolTable())
3763           return Err;
3764         break;
3765       case bitc::METADATA_ATTACHMENT_ID:
3766         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3767           return Err;
3768         break;
3769       case bitc::METADATA_BLOCK_ID:
3770         assert(DeferredMetadataInfo.empty() &&
3771                "Must read all module-level metadata before function-level");
3772         if (Error Err = MDLoader->parseFunctionMetadata())
3773           return Err;
3774         break;
3775       case bitc::USELIST_BLOCK_ID:
3776         if (Error Err = parseUseLists())
3777           return Err;
3778         break;
3779       }
3780       continue;
3781 
3782     case BitstreamEntry::Record:
3783       // The interesting case.
3784       break;
3785     }
3786 
3787     // Read a record.
3788     Record.clear();
3789     Instruction *I = nullptr;
3790     Type *FullTy = nullptr;
3791     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3792     if (!MaybeBitCode)
3793       return MaybeBitCode.takeError();
3794     switch (unsigned BitCode = MaybeBitCode.get()) {
3795     default: // Default behavior: reject
3796       return error("Invalid value");
3797     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3798       if (Record.size() < 1 || Record[0] == 0)
3799         return error("Invalid record");
3800       // Create all the basic blocks for the function.
3801       FunctionBBs.resize(Record[0]);
3802 
3803       // See if anything took the address of blocks in this function.
3804       auto BBFRI = BasicBlockFwdRefs.find(F);
3805       if (BBFRI == BasicBlockFwdRefs.end()) {
3806         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3807           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3808       } else {
3809         auto &BBRefs = BBFRI->second;
3810         // Check for invalid basic block references.
3811         if (BBRefs.size() > FunctionBBs.size())
3812           return error("Invalid ID");
3813         assert(!BBRefs.empty() && "Unexpected empty array");
3814         assert(!BBRefs.front() && "Invalid reference to entry block");
3815         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3816              ++I)
3817           if (I < RE && BBRefs[I]) {
3818             BBRefs[I]->insertInto(F);
3819             FunctionBBs[I] = BBRefs[I];
3820           } else {
3821             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3822           }
3823 
3824         // Erase from the table.
3825         BasicBlockFwdRefs.erase(BBFRI);
3826       }
3827 
3828       CurBB = FunctionBBs[0];
3829       continue;
3830     }
3831 
3832     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3833       // This record indicates that the last instruction is at the same
3834       // location as the previous instruction with a location.
3835       I = getLastInstruction();
3836 
3837       if (!I)
3838         return error("Invalid record");
3839       I->setDebugLoc(LastLoc);
3840       I = nullptr;
3841       continue;
3842 
3843     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3844       I = getLastInstruction();
3845       if (!I || Record.size() < 4)
3846         return error("Invalid record");
3847 
3848       unsigned Line = Record[0], Col = Record[1];
3849       unsigned ScopeID = Record[2], IAID = Record[3];
3850       bool isImplicitCode = Record.size() == 5 && Record[4];
3851 
3852       MDNode *Scope = nullptr, *IA = nullptr;
3853       if (ScopeID) {
3854         Scope = dyn_cast_or_null<MDNode>(
3855             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3856         if (!Scope)
3857           return error("Invalid record");
3858       }
3859       if (IAID) {
3860         IA = dyn_cast_or_null<MDNode>(
3861             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3862         if (!IA)
3863           return error("Invalid record");
3864       }
3865       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3866       I->setDebugLoc(LastLoc);
3867       I = nullptr;
3868       continue;
3869     }
3870     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3871       unsigned OpNum = 0;
3872       Value *LHS;
3873       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3874           OpNum+1 > Record.size())
3875         return error("Invalid record");
3876 
3877       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3878       if (Opc == -1)
3879         return error("Invalid record");
3880       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3881       InstructionList.push_back(I);
3882       if (OpNum < Record.size()) {
3883         if (isa<FPMathOperator>(I)) {
3884           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3885           if (FMF.any())
3886             I->setFastMathFlags(FMF);
3887         }
3888       }
3889       break;
3890     }
3891     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3892       unsigned OpNum = 0;
3893       Value *LHS, *RHS;
3894       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3895           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3896           OpNum+1 > Record.size())
3897         return error("Invalid record");
3898 
3899       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3900       if (Opc == -1)
3901         return error("Invalid record");
3902       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3903       InstructionList.push_back(I);
3904       if (OpNum < Record.size()) {
3905         if (Opc == Instruction::Add ||
3906             Opc == Instruction::Sub ||
3907             Opc == Instruction::Mul ||
3908             Opc == Instruction::Shl) {
3909           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3910             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3911           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3912             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3913         } else if (Opc == Instruction::SDiv ||
3914                    Opc == Instruction::UDiv ||
3915                    Opc == Instruction::LShr ||
3916                    Opc == Instruction::AShr) {
3917           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3918             cast<BinaryOperator>(I)->setIsExact(true);
3919         } else if (isa<FPMathOperator>(I)) {
3920           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3921           if (FMF.any())
3922             I->setFastMathFlags(FMF);
3923         }
3924 
3925       }
3926       break;
3927     }
3928     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3929       unsigned OpNum = 0;
3930       Value *Op;
3931       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3932           OpNum+2 != Record.size())
3933         return error("Invalid record");
3934 
3935       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3936       Type *ResTy = flattenPointerTypes(FullTy);
3937       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3938       if (Opc == -1 || !ResTy)
3939         return error("Invalid record");
3940       Instruction *Temp = nullptr;
3941       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3942         if (Temp) {
3943           InstructionList.push_back(Temp);
3944           assert(CurBB && "No current BB?");
3945           CurBB->getInstList().push_back(Temp);
3946         }
3947       } else {
3948         auto CastOp = (Instruction::CastOps)Opc;
3949         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3950           return error("Invalid cast");
3951         I = CastInst::Create(CastOp, Op, ResTy);
3952       }
3953       InstructionList.push_back(I);
3954       break;
3955     }
3956     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3957     case bitc::FUNC_CODE_INST_GEP_OLD:
3958     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3959       unsigned OpNum = 0;
3960 
3961       Type *Ty;
3962       bool InBounds;
3963 
3964       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3965         InBounds = Record[OpNum++];
3966         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3967         Ty = flattenPointerTypes(FullTy);
3968       } else {
3969         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3970         Ty = nullptr;
3971       }
3972 
3973       Value *BasePtr;
3974       Type *FullBaseTy = nullptr;
3975       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3976         return error("Invalid record");
3977 
3978       if (!Ty) {
3979         std::tie(FullTy, Ty) =
3980             getPointerElementTypes(FullBaseTy->getScalarType());
3981       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3982         return error(
3983             "Explicit gep type does not match pointee type of pointer operand");
3984 
3985       SmallVector<Value*, 16> GEPIdx;
3986       while (OpNum != Record.size()) {
3987         Value *Op;
3988         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3989           return error("Invalid record");
3990         GEPIdx.push_back(Op);
3991       }
3992 
3993       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3994       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3995 
3996       InstructionList.push_back(I);
3997       if (InBounds)
3998         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3999       break;
4000     }
4001 
4002     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4003                                        // EXTRACTVAL: [opty, opval, n x indices]
4004       unsigned OpNum = 0;
4005       Value *Agg;
4006       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4007         return error("Invalid record");
4008 
4009       unsigned RecSize = Record.size();
4010       if (OpNum == RecSize)
4011         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4012 
4013       SmallVector<unsigned, 4> EXTRACTVALIdx;
4014       for (; OpNum != RecSize; ++OpNum) {
4015         bool IsArray = FullTy->isArrayTy();
4016         bool IsStruct = FullTy->isStructTy();
4017         uint64_t Index = Record[OpNum];
4018 
4019         if (!IsStruct && !IsArray)
4020           return error("EXTRACTVAL: Invalid type");
4021         if ((unsigned)Index != Index)
4022           return error("Invalid value");
4023         if (IsStruct && Index >= FullTy->getStructNumElements())
4024           return error("EXTRACTVAL: Invalid struct index");
4025         if (IsArray && Index >= FullTy->getArrayNumElements())
4026           return error("EXTRACTVAL: Invalid array index");
4027         EXTRACTVALIdx.push_back((unsigned)Index);
4028 
4029         if (IsStruct)
4030           FullTy = FullTy->getStructElementType(Index);
4031         else
4032           FullTy = FullTy->getArrayElementType();
4033       }
4034 
4035       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4036       InstructionList.push_back(I);
4037       break;
4038     }
4039 
4040     case bitc::FUNC_CODE_INST_INSERTVAL: {
4041                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4042       unsigned OpNum = 0;
4043       Value *Agg;
4044       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4045         return error("Invalid record");
4046       Value *Val;
4047       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4048         return error("Invalid record");
4049 
4050       unsigned RecSize = Record.size();
4051       if (OpNum == RecSize)
4052         return error("INSERTVAL: Invalid instruction with 0 indices");
4053 
4054       SmallVector<unsigned, 4> INSERTVALIdx;
4055       Type *CurTy = Agg->getType();
4056       for (; OpNum != RecSize; ++OpNum) {
4057         bool IsArray = CurTy->isArrayTy();
4058         bool IsStruct = CurTy->isStructTy();
4059         uint64_t Index = Record[OpNum];
4060 
4061         if (!IsStruct && !IsArray)
4062           return error("INSERTVAL: Invalid type");
4063         if ((unsigned)Index != Index)
4064           return error("Invalid value");
4065         if (IsStruct && Index >= CurTy->getStructNumElements())
4066           return error("INSERTVAL: Invalid struct index");
4067         if (IsArray && Index >= CurTy->getArrayNumElements())
4068           return error("INSERTVAL: Invalid array index");
4069 
4070         INSERTVALIdx.push_back((unsigned)Index);
4071         if (IsStruct)
4072           CurTy = CurTy->getStructElementType(Index);
4073         else
4074           CurTy = CurTy->getArrayElementType();
4075       }
4076 
4077       if (CurTy != Val->getType())
4078         return error("Inserted value type doesn't match aggregate type");
4079 
4080       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4081       InstructionList.push_back(I);
4082       break;
4083     }
4084 
4085     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4086       // obsolete form of select
4087       // handles select i1 ... in old bitcode
4088       unsigned OpNum = 0;
4089       Value *TrueVal, *FalseVal, *Cond;
4090       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4091           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4092           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4093         return error("Invalid record");
4094 
4095       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4096       InstructionList.push_back(I);
4097       break;
4098     }
4099 
4100     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4101       // new form of select
4102       // handles select i1 or select [N x i1]
4103       unsigned OpNum = 0;
4104       Value *TrueVal, *FalseVal, *Cond;
4105       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4106           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4107           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4108         return error("Invalid record");
4109 
4110       // select condition can be either i1 or [N x i1]
4111       if (VectorType* vector_type =
4112           dyn_cast<VectorType>(Cond->getType())) {
4113         // expect <n x i1>
4114         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4115           return error("Invalid type for value");
4116       } else {
4117         // expect i1
4118         if (Cond->getType() != Type::getInt1Ty(Context))
4119           return error("Invalid type for value");
4120       }
4121 
4122       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4123       InstructionList.push_back(I);
4124       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4125         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4126         if (FMF.any())
4127           I->setFastMathFlags(FMF);
4128       }
4129       break;
4130     }
4131 
4132     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4133       unsigned OpNum = 0;
4134       Value *Vec, *Idx;
4135       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4136           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4137         return error("Invalid record");
4138       if (!Vec->getType()->isVectorTy())
4139         return error("Invalid type for value");
4140       I = ExtractElementInst::Create(Vec, Idx);
4141       FullTy = FullTy->getVectorElementType();
4142       InstructionList.push_back(I);
4143       break;
4144     }
4145 
4146     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4147       unsigned OpNum = 0;
4148       Value *Vec, *Elt, *Idx;
4149       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4150         return error("Invalid record");
4151       if (!Vec->getType()->isVectorTy())
4152         return error("Invalid type for value");
4153       if (popValue(Record, OpNum, NextValueNo,
4154                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4155           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4156         return error("Invalid record");
4157       I = InsertElementInst::Create(Vec, Elt, Idx);
4158       InstructionList.push_back(I);
4159       break;
4160     }
4161 
4162     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4163       unsigned OpNum = 0;
4164       Value *Vec1, *Vec2, *Mask;
4165       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4166           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4167         return error("Invalid record");
4168 
4169       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4170         return error("Invalid record");
4171       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4172         return error("Invalid type for value");
4173 
4174       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4175       FullTy = VectorType::get(FullTy->getVectorElementType(),
4176                                Mask->getType()->getVectorElementCount());
4177       InstructionList.push_back(I);
4178       break;
4179     }
4180 
4181     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4182       // Old form of ICmp/FCmp returning bool
4183       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4184       // both legal on vectors but had different behaviour.
4185     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4186       // FCmp/ICmp returning bool or vector of bool
4187 
4188       unsigned OpNum = 0;
4189       Value *LHS, *RHS;
4190       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4191           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4192         return error("Invalid record");
4193 
4194       if (OpNum >= Record.size())
4195         return error(
4196             "Invalid record: operand number exceeded available operands");
4197 
4198       unsigned PredVal = Record[OpNum];
4199       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4200       FastMathFlags FMF;
4201       if (IsFP && Record.size() > OpNum+1)
4202         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4203 
4204       if (OpNum+1 != Record.size())
4205         return error("Invalid record");
4206 
4207       if (LHS->getType()->isFPOrFPVectorTy())
4208         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4209       else
4210         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4211 
4212       if (FMF.any())
4213         I->setFastMathFlags(FMF);
4214       InstructionList.push_back(I);
4215       break;
4216     }
4217 
4218     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4219       {
4220         unsigned Size = Record.size();
4221         if (Size == 0) {
4222           I = ReturnInst::Create(Context);
4223           InstructionList.push_back(I);
4224           break;
4225         }
4226 
4227         unsigned OpNum = 0;
4228         Value *Op = nullptr;
4229         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4230           return error("Invalid record");
4231         if (OpNum != Record.size())
4232           return error("Invalid record");
4233 
4234         I = ReturnInst::Create(Context, Op);
4235         InstructionList.push_back(I);
4236         break;
4237       }
4238     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4239       if (Record.size() != 1 && Record.size() != 3)
4240         return error("Invalid record");
4241       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4242       if (!TrueDest)
4243         return error("Invalid record");
4244 
4245       if (Record.size() == 1) {
4246         I = BranchInst::Create(TrueDest);
4247         InstructionList.push_back(I);
4248       }
4249       else {
4250         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4251         Value *Cond = getValue(Record, 2, NextValueNo,
4252                                Type::getInt1Ty(Context));
4253         if (!FalseDest || !Cond)
4254           return error("Invalid record");
4255         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4256         InstructionList.push_back(I);
4257       }
4258       break;
4259     }
4260     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4261       if (Record.size() != 1 && Record.size() != 2)
4262         return error("Invalid record");
4263       unsigned Idx = 0;
4264       Value *CleanupPad =
4265           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4266       if (!CleanupPad)
4267         return error("Invalid record");
4268       BasicBlock *UnwindDest = nullptr;
4269       if (Record.size() == 2) {
4270         UnwindDest = getBasicBlock(Record[Idx++]);
4271         if (!UnwindDest)
4272           return error("Invalid record");
4273       }
4274 
4275       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4276       InstructionList.push_back(I);
4277       break;
4278     }
4279     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4280       if (Record.size() != 2)
4281         return error("Invalid record");
4282       unsigned Idx = 0;
4283       Value *CatchPad =
4284           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4285       if (!CatchPad)
4286         return error("Invalid record");
4287       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4288       if (!BB)
4289         return error("Invalid record");
4290 
4291       I = CatchReturnInst::Create(CatchPad, BB);
4292       InstructionList.push_back(I);
4293       break;
4294     }
4295     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4296       // We must have, at minimum, the outer scope and the number of arguments.
4297       if (Record.size() < 2)
4298         return error("Invalid record");
4299 
4300       unsigned Idx = 0;
4301 
4302       Value *ParentPad =
4303           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4304 
4305       unsigned NumHandlers = Record[Idx++];
4306 
4307       SmallVector<BasicBlock *, 2> Handlers;
4308       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4309         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4310         if (!BB)
4311           return error("Invalid record");
4312         Handlers.push_back(BB);
4313       }
4314 
4315       BasicBlock *UnwindDest = nullptr;
4316       if (Idx + 1 == Record.size()) {
4317         UnwindDest = getBasicBlock(Record[Idx++]);
4318         if (!UnwindDest)
4319           return error("Invalid record");
4320       }
4321 
4322       if (Record.size() != Idx)
4323         return error("Invalid record");
4324 
4325       auto *CatchSwitch =
4326           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4327       for (BasicBlock *Handler : Handlers)
4328         CatchSwitch->addHandler(Handler);
4329       I = CatchSwitch;
4330       InstructionList.push_back(I);
4331       break;
4332     }
4333     case bitc::FUNC_CODE_INST_CATCHPAD:
4334     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4335       // We must have, at minimum, the outer scope and the number of arguments.
4336       if (Record.size() < 2)
4337         return error("Invalid record");
4338 
4339       unsigned Idx = 0;
4340 
4341       Value *ParentPad =
4342           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4343 
4344       unsigned NumArgOperands = Record[Idx++];
4345 
4346       SmallVector<Value *, 2> Args;
4347       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4348         Value *Val;
4349         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4350           return error("Invalid record");
4351         Args.push_back(Val);
4352       }
4353 
4354       if (Record.size() != Idx)
4355         return error("Invalid record");
4356 
4357       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4358         I = CleanupPadInst::Create(ParentPad, Args);
4359       else
4360         I = CatchPadInst::Create(ParentPad, Args);
4361       InstructionList.push_back(I);
4362       break;
4363     }
4364     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4365       // Check magic
4366       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4367         // "New" SwitchInst format with case ranges. The changes to write this
4368         // format were reverted but we still recognize bitcode that uses it.
4369         // Hopefully someday we will have support for case ranges and can use
4370         // this format again.
4371 
4372         Type *OpTy = getTypeByID(Record[1]);
4373         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4374 
4375         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4376         BasicBlock *Default = getBasicBlock(Record[3]);
4377         if (!OpTy || !Cond || !Default)
4378           return error("Invalid record");
4379 
4380         unsigned NumCases = Record[4];
4381 
4382         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4383         InstructionList.push_back(SI);
4384 
4385         unsigned CurIdx = 5;
4386         for (unsigned i = 0; i != NumCases; ++i) {
4387           SmallVector<ConstantInt*, 1> CaseVals;
4388           unsigned NumItems = Record[CurIdx++];
4389           for (unsigned ci = 0; ci != NumItems; ++ci) {
4390             bool isSingleNumber = Record[CurIdx++];
4391 
4392             APInt Low;
4393             unsigned ActiveWords = 1;
4394             if (ValueBitWidth > 64)
4395               ActiveWords = Record[CurIdx++];
4396             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4397                                 ValueBitWidth);
4398             CurIdx += ActiveWords;
4399 
4400             if (!isSingleNumber) {
4401               ActiveWords = 1;
4402               if (ValueBitWidth > 64)
4403                 ActiveWords = Record[CurIdx++];
4404               APInt High = readWideAPInt(
4405                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4406               CurIdx += ActiveWords;
4407 
4408               // FIXME: It is not clear whether values in the range should be
4409               // compared as signed or unsigned values. The partially
4410               // implemented changes that used this format in the past used
4411               // unsigned comparisons.
4412               for ( ; Low.ule(High); ++Low)
4413                 CaseVals.push_back(ConstantInt::get(Context, Low));
4414             } else
4415               CaseVals.push_back(ConstantInt::get(Context, Low));
4416           }
4417           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4418           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4419                  cve = CaseVals.end(); cvi != cve; ++cvi)
4420             SI->addCase(*cvi, DestBB);
4421         }
4422         I = SI;
4423         break;
4424       }
4425 
4426       // Old SwitchInst format without case ranges.
4427 
4428       if (Record.size() < 3 || (Record.size() & 1) == 0)
4429         return error("Invalid record");
4430       Type *OpTy = getTypeByID(Record[0]);
4431       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4432       BasicBlock *Default = getBasicBlock(Record[2]);
4433       if (!OpTy || !Cond || !Default)
4434         return error("Invalid record");
4435       unsigned NumCases = (Record.size()-3)/2;
4436       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4437       InstructionList.push_back(SI);
4438       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4439         ConstantInt *CaseVal =
4440           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4441         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4442         if (!CaseVal || !DestBB) {
4443           delete SI;
4444           return error("Invalid record");
4445         }
4446         SI->addCase(CaseVal, DestBB);
4447       }
4448       I = SI;
4449       break;
4450     }
4451     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4452       if (Record.size() < 2)
4453         return error("Invalid record");
4454       Type *OpTy = getTypeByID(Record[0]);
4455       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4456       if (!OpTy || !Address)
4457         return error("Invalid record");
4458       unsigned NumDests = Record.size()-2;
4459       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4460       InstructionList.push_back(IBI);
4461       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4462         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4463           IBI->addDestination(DestBB);
4464         } else {
4465           delete IBI;
4466           return error("Invalid record");
4467         }
4468       }
4469       I = IBI;
4470       break;
4471     }
4472 
4473     case bitc::FUNC_CODE_INST_INVOKE: {
4474       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4475       if (Record.size() < 4)
4476         return error("Invalid record");
4477       unsigned OpNum = 0;
4478       AttributeList PAL = getAttributes(Record[OpNum++]);
4479       unsigned CCInfo = Record[OpNum++];
4480       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4481       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4482 
4483       FunctionType *FTy = nullptr;
4484       FunctionType *FullFTy = nullptr;
4485       if ((CCInfo >> 13) & 1) {
4486         FullFTy =
4487             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4488         if (!FullFTy)
4489           return error("Explicit invoke type is not a function type");
4490         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4491       }
4492 
4493       Value *Callee;
4494       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4495         return error("Invalid record");
4496 
4497       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4498       if (!CalleeTy)
4499         return error("Callee is not a pointer");
4500       if (!FTy) {
4501         FullFTy =
4502             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4503         if (!FullFTy)
4504           return error("Callee is not of pointer to function type");
4505         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4506       } else if (getPointerElementFlatType(FullTy) != FTy)
4507         return error("Explicit invoke type does not match pointee type of "
4508                      "callee operand");
4509       if (Record.size() < FTy->getNumParams() + OpNum)
4510         return error("Insufficient operands to call");
4511 
4512       SmallVector<Value*, 16> Ops;
4513       SmallVector<Type *, 16> ArgsFullTys;
4514       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4515         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4516                                FTy->getParamType(i)));
4517         ArgsFullTys.push_back(FullFTy->getParamType(i));
4518         if (!Ops.back())
4519           return error("Invalid record");
4520       }
4521 
4522       if (!FTy->isVarArg()) {
4523         if (Record.size() != OpNum)
4524           return error("Invalid record");
4525       } else {
4526         // Read type/value pairs for varargs params.
4527         while (OpNum != Record.size()) {
4528           Value *Op;
4529           Type *FullTy;
4530           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4531             return error("Invalid record");
4532           Ops.push_back(Op);
4533           ArgsFullTys.push_back(FullTy);
4534         }
4535       }
4536 
4537       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4538                              OperandBundles);
4539       FullTy = FullFTy->getReturnType();
4540       OperandBundles.clear();
4541       InstructionList.push_back(I);
4542       cast<InvokeInst>(I)->setCallingConv(
4543           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4544       cast<InvokeInst>(I)->setAttributes(PAL);
4545       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4546 
4547       break;
4548     }
4549     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4550       unsigned Idx = 0;
4551       Value *Val = nullptr;
4552       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4553         return error("Invalid record");
4554       I = ResumeInst::Create(Val);
4555       InstructionList.push_back(I);
4556       break;
4557     }
4558     case bitc::FUNC_CODE_INST_CALLBR: {
4559       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4560       unsigned OpNum = 0;
4561       AttributeList PAL = getAttributes(Record[OpNum++]);
4562       unsigned CCInfo = Record[OpNum++];
4563 
4564       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4565       unsigned NumIndirectDests = Record[OpNum++];
4566       SmallVector<BasicBlock *, 16> IndirectDests;
4567       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4568         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4569 
4570       FunctionType *FTy = nullptr;
4571       FunctionType *FullFTy = nullptr;
4572       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4573         FullFTy =
4574             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4575         if (!FullFTy)
4576           return error("Explicit call type is not a function type");
4577         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4578       }
4579 
4580       Value *Callee;
4581       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4582         return error("Invalid record");
4583 
4584       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4585       if (!OpTy)
4586         return error("Callee is not a pointer type");
4587       if (!FTy) {
4588         FullFTy =
4589             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4590         if (!FullFTy)
4591           return error("Callee is not of pointer to function type");
4592         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4593       } else if (getPointerElementFlatType(FullTy) != FTy)
4594         return error("Explicit call type does not match pointee type of "
4595                      "callee operand");
4596       if (Record.size() < FTy->getNumParams() + OpNum)
4597         return error("Insufficient operands to call");
4598 
4599       SmallVector<Value*, 16> Args;
4600       // Read the fixed params.
4601       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4602         if (FTy->getParamType(i)->isLabelTy())
4603           Args.push_back(getBasicBlock(Record[OpNum]));
4604         else
4605           Args.push_back(getValue(Record, OpNum, NextValueNo,
4606                                   FTy->getParamType(i)));
4607         if (!Args.back())
4608           return error("Invalid record");
4609       }
4610 
4611       // Read type/value pairs for varargs params.
4612       if (!FTy->isVarArg()) {
4613         if (OpNum != Record.size())
4614           return error("Invalid record");
4615       } else {
4616         while (OpNum != Record.size()) {
4617           Value *Op;
4618           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4619             return error("Invalid record");
4620           Args.push_back(Op);
4621         }
4622       }
4623 
4624       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4625                              OperandBundles);
4626       FullTy = FullFTy->getReturnType();
4627       OperandBundles.clear();
4628       InstructionList.push_back(I);
4629       cast<CallBrInst>(I)->setCallingConv(
4630           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4631       cast<CallBrInst>(I)->setAttributes(PAL);
4632       break;
4633     }
4634     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4635       I = new UnreachableInst(Context);
4636       InstructionList.push_back(I);
4637       break;
4638     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4639       if (Record.size() < 1)
4640         return error("Invalid record");
4641       // The first record specifies the type.
4642       FullTy = getFullyStructuredTypeByID(Record[0]);
4643       Type *Ty = flattenPointerTypes(FullTy);
4644       if (!Ty)
4645         return error("Invalid record");
4646 
4647       // Phi arguments are pairs of records of [value, basic block].
4648       // There is an optional final record for fast-math-flags if this phi has a
4649       // floating-point type.
4650       size_t NumArgs = (Record.size() - 1) / 2;
4651       PHINode *PN = PHINode::Create(Ty, NumArgs);
4652       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4653         return error("Invalid record");
4654       InstructionList.push_back(PN);
4655 
4656       for (unsigned i = 0; i != NumArgs; i++) {
4657         Value *V;
4658         // With the new function encoding, it is possible that operands have
4659         // negative IDs (for forward references).  Use a signed VBR
4660         // representation to keep the encoding small.
4661         if (UseRelativeIDs)
4662           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4663         else
4664           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4665         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4666         if (!V || !BB)
4667           return error("Invalid record");
4668         PN->addIncoming(V, BB);
4669       }
4670       I = PN;
4671 
4672       // If there are an even number of records, the final record must be FMF.
4673       if (Record.size() % 2 == 0) {
4674         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4675         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4676         if (FMF.any())
4677           I->setFastMathFlags(FMF);
4678       }
4679 
4680       break;
4681     }
4682 
4683     case bitc::FUNC_CODE_INST_LANDINGPAD:
4684     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4685       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4686       unsigned Idx = 0;
4687       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4688         if (Record.size() < 3)
4689           return error("Invalid record");
4690       } else {
4691         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4692         if (Record.size() < 4)
4693           return error("Invalid record");
4694       }
4695       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4696       Type *Ty = flattenPointerTypes(FullTy);
4697       if (!Ty)
4698         return error("Invalid record");
4699       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4700         Value *PersFn = nullptr;
4701         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4702           return error("Invalid record");
4703 
4704         if (!F->hasPersonalityFn())
4705           F->setPersonalityFn(cast<Constant>(PersFn));
4706         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4707           return error("Personality function mismatch");
4708       }
4709 
4710       bool IsCleanup = !!Record[Idx++];
4711       unsigned NumClauses = Record[Idx++];
4712       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4713       LP->setCleanup(IsCleanup);
4714       for (unsigned J = 0; J != NumClauses; ++J) {
4715         LandingPadInst::ClauseType CT =
4716           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4717         Value *Val;
4718 
4719         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4720           delete LP;
4721           return error("Invalid record");
4722         }
4723 
4724         assert((CT != LandingPadInst::Catch ||
4725                 !isa<ArrayType>(Val->getType())) &&
4726                "Catch clause has a invalid type!");
4727         assert((CT != LandingPadInst::Filter ||
4728                 isa<ArrayType>(Val->getType())) &&
4729                "Filter clause has invalid type!");
4730         LP->addClause(cast<Constant>(Val));
4731       }
4732 
4733       I = LP;
4734       InstructionList.push_back(I);
4735       break;
4736     }
4737 
4738     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4739       if (Record.size() != 4)
4740         return error("Invalid record");
4741       uint64_t AlignRecord = Record[3];
4742       const uint64_t InAllocaMask = uint64_t(1) << 5;
4743       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4744       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4745       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4746                                 SwiftErrorMask;
4747       bool InAlloca = AlignRecord & InAllocaMask;
4748       bool SwiftError = AlignRecord & SwiftErrorMask;
4749       FullTy = getFullyStructuredTypeByID(Record[0]);
4750       Type *Ty = flattenPointerTypes(FullTy);
4751       if ((AlignRecord & ExplicitTypeMask) == 0) {
4752         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4753         if (!PTy)
4754           return error("Old-style alloca with a non-pointer type");
4755         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4756       }
4757       Type *OpTy = getTypeByID(Record[1]);
4758       Value *Size = getFnValueByID(Record[2], OpTy);
4759       MaybeAlign Align;
4760       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4761         return Err;
4762       }
4763       if (!Ty || !Size)
4764         return error("Invalid record");
4765 
4766       // FIXME: Make this an optional field.
4767       const DataLayout &DL = TheModule->getDataLayout();
4768       unsigned AS = DL.getAllocaAddrSpace();
4769 
4770       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4771       AI->setUsedWithInAlloca(InAlloca);
4772       AI->setSwiftError(SwiftError);
4773       I = AI;
4774       FullTy = PointerType::get(FullTy, AS);
4775       InstructionList.push_back(I);
4776       break;
4777     }
4778     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4779       unsigned OpNum = 0;
4780       Value *Op;
4781       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4782           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4783         return error("Invalid record");
4784 
4785       if (!isa<PointerType>(Op->getType()))
4786         return error("Load operand is not a pointer type");
4787 
4788       Type *Ty = nullptr;
4789       if (OpNum + 3 == Record.size()) {
4790         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4791         Ty = flattenPointerTypes(FullTy);
4792       } else
4793         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4794 
4795       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4796         return Err;
4797 
4798       MaybeAlign Align;
4799       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4800         return Err;
4801       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4802       InstructionList.push_back(I);
4803       break;
4804     }
4805     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4806        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4807       unsigned OpNum = 0;
4808       Value *Op;
4809       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4810           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4811         return error("Invalid record");
4812 
4813       if (!isa<PointerType>(Op->getType()))
4814         return error("Load operand is not a pointer type");
4815 
4816       Type *Ty = nullptr;
4817       if (OpNum + 5 == Record.size()) {
4818         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4819         Ty = flattenPointerTypes(FullTy);
4820       } else
4821         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4822 
4823       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4824         return Err;
4825 
4826       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4827       if (Ordering == AtomicOrdering::NotAtomic ||
4828           Ordering == AtomicOrdering::Release ||
4829           Ordering == AtomicOrdering::AcquireRelease)
4830         return error("Invalid record");
4831       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4832         return error("Invalid record");
4833       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4834 
4835       MaybeAlign Align;
4836       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4837         return Err;
4838       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4839       InstructionList.push_back(I);
4840       break;
4841     }
4842     case bitc::FUNC_CODE_INST_STORE:
4843     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4844       unsigned OpNum = 0;
4845       Value *Val, *Ptr;
4846       Type *FullTy;
4847       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4848           (BitCode == bitc::FUNC_CODE_INST_STORE
4849                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4850                : popValue(Record, OpNum, NextValueNo,
4851                           getPointerElementFlatType(FullTy), Val)) ||
4852           OpNum + 2 != Record.size())
4853         return error("Invalid record");
4854 
4855       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4856         return Err;
4857       MaybeAlign Align;
4858       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4859         return Err;
4860       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4861       InstructionList.push_back(I);
4862       break;
4863     }
4864     case bitc::FUNC_CODE_INST_STOREATOMIC:
4865     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4866       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4867       unsigned OpNum = 0;
4868       Value *Val, *Ptr;
4869       Type *FullTy;
4870       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4871           !isa<PointerType>(Ptr->getType()) ||
4872           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4873                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4874                : popValue(Record, OpNum, NextValueNo,
4875                           getPointerElementFlatType(FullTy), Val)) ||
4876           OpNum + 4 != Record.size())
4877         return error("Invalid record");
4878 
4879       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4880         return Err;
4881       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4882       if (Ordering == AtomicOrdering::NotAtomic ||
4883           Ordering == AtomicOrdering::Acquire ||
4884           Ordering == AtomicOrdering::AcquireRelease)
4885         return error("Invalid record");
4886       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4887       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4888         return error("Invalid record");
4889 
4890       MaybeAlign Align;
4891       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4892         return Err;
4893       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4894       InstructionList.push_back(I);
4895       break;
4896     }
4897     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4898     case bitc::FUNC_CODE_INST_CMPXCHG: {
4899       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4900       //          failureordering?, isweak?]
4901       unsigned OpNum = 0;
4902       Value *Ptr, *Cmp, *New;
4903       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4904         return error("Invalid record");
4905 
4906       if (!isa<PointerType>(Ptr->getType()))
4907         return error("Cmpxchg operand is not a pointer type");
4908 
4909       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4910         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4911           return error("Invalid record");
4912       } else if (popValue(Record, OpNum, NextValueNo,
4913                           getPointerElementFlatType(FullTy), Cmp))
4914         return error("Invalid record");
4915       else
4916         FullTy = cast<PointerType>(FullTy)->getElementType();
4917 
4918       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4919           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4920         return error("Invalid record");
4921 
4922       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4923       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4924           SuccessOrdering == AtomicOrdering::Unordered)
4925         return error("Invalid record");
4926       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4927 
4928       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4929         return Err;
4930       AtomicOrdering FailureOrdering;
4931       if (Record.size() < 7)
4932         FailureOrdering =
4933             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4934       else
4935         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4936 
4937       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4938                                 SSID);
4939       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4940       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4941 
4942       if (Record.size() < 8) {
4943         // Before weak cmpxchgs existed, the instruction simply returned the
4944         // value loaded from memory, so bitcode files from that era will be
4945         // expecting the first component of a modern cmpxchg.
4946         CurBB->getInstList().push_back(I);
4947         I = ExtractValueInst::Create(I, 0);
4948         FullTy = cast<StructType>(FullTy)->getElementType(0);
4949       } else {
4950         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4951       }
4952 
4953       InstructionList.push_back(I);
4954       break;
4955     }
4956     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4957       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4958       unsigned OpNum = 0;
4959       Value *Ptr, *Val;
4960       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4961           !isa<PointerType>(Ptr->getType()) ||
4962           popValue(Record, OpNum, NextValueNo,
4963                    getPointerElementFlatType(FullTy), Val) ||
4964           OpNum + 4 != Record.size())
4965         return error("Invalid record");
4966       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4967       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4968           Operation > AtomicRMWInst::LAST_BINOP)
4969         return error("Invalid record");
4970       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4971       if (Ordering == AtomicOrdering::NotAtomic ||
4972           Ordering == AtomicOrdering::Unordered)
4973         return error("Invalid record");
4974       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4975       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4976       FullTy = getPointerElementFlatType(FullTy);
4977       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4978       InstructionList.push_back(I);
4979       break;
4980     }
4981     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4982       if (2 != Record.size())
4983         return error("Invalid record");
4984       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4985       if (Ordering == AtomicOrdering::NotAtomic ||
4986           Ordering == AtomicOrdering::Unordered ||
4987           Ordering == AtomicOrdering::Monotonic)
4988         return error("Invalid record");
4989       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4990       I = new FenceInst(Context, Ordering, SSID);
4991       InstructionList.push_back(I);
4992       break;
4993     }
4994     case bitc::FUNC_CODE_INST_CALL: {
4995       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4996       if (Record.size() < 3)
4997         return error("Invalid record");
4998 
4999       unsigned OpNum = 0;
5000       AttributeList PAL = getAttributes(Record[OpNum++]);
5001       unsigned CCInfo = Record[OpNum++];
5002 
5003       FastMathFlags FMF;
5004       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5005         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5006         if (!FMF.any())
5007           return error("Fast math flags indicator set for call with no FMF");
5008       }
5009 
5010       FunctionType *FTy = nullptr;
5011       FunctionType *FullFTy = nullptr;
5012       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5013         FullFTy =
5014             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5015         if (!FullFTy)
5016           return error("Explicit call type is not a function type");
5017         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5018       }
5019 
5020       Value *Callee;
5021       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5022         return error("Invalid record");
5023 
5024       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5025       if (!OpTy)
5026         return error("Callee is not a pointer type");
5027       if (!FTy) {
5028         FullFTy =
5029             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5030         if (!FullFTy)
5031           return error("Callee is not of pointer to function type");
5032         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5033       } else if (getPointerElementFlatType(FullTy) != FTy)
5034         return error("Explicit call type does not match pointee type of "
5035                      "callee operand");
5036       if (Record.size() < FTy->getNumParams() + OpNum)
5037         return error("Insufficient operands to call");
5038 
5039       SmallVector<Value*, 16> Args;
5040       SmallVector<Type*, 16> ArgsFullTys;
5041       // Read the fixed params.
5042       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5043         if (FTy->getParamType(i)->isLabelTy())
5044           Args.push_back(getBasicBlock(Record[OpNum]));
5045         else
5046           Args.push_back(getValue(Record, OpNum, NextValueNo,
5047                                   FTy->getParamType(i)));
5048         ArgsFullTys.push_back(FullFTy->getParamType(i));
5049         if (!Args.back())
5050           return error("Invalid record");
5051       }
5052 
5053       // Read type/value pairs for varargs params.
5054       if (!FTy->isVarArg()) {
5055         if (OpNum != Record.size())
5056           return error("Invalid record");
5057       } else {
5058         while (OpNum != Record.size()) {
5059           Value *Op;
5060           Type *FullTy;
5061           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5062             return error("Invalid record");
5063           Args.push_back(Op);
5064           ArgsFullTys.push_back(FullTy);
5065         }
5066       }
5067 
5068       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5069       FullTy = FullFTy->getReturnType();
5070       OperandBundles.clear();
5071       InstructionList.push_back(I);
5072       cast<CallInst>(I)->setCallingConv(
5073           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5074       CallInst::TailCallKind TCK = CallInst::TCK_None;
5075       if (CCInfo & 1 << bitc::CALL_TAIL)
5076         TCK = CallInst::TCK_Tail;
5077       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5078         TCK = CallInst::TCK_MustTail;
5079       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5080         TCK = CallInst::TCK_NoTail;
5081       cast<CallInst>(I)->setTailCallKind(TCK);
5082       cast<CallInst>(I)->setAttributes(PAL);
5083       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5084       if (FMF.any()) {
5085         if (!isa<FPMathOperator>(I))
5086           return error("Fast-math-flags specified for call without "
5087                        "floating-point scalar or vector return type");
5088         I->setFastMathFlags(FMF);
5089       }
5090       break;
5091     }
5092     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5093       if (Record.size() < 3)
5094         return error("Invalid record");
5095       Type *OpTy = getTypeByID(Record[0]);
5096       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5097       FullTy = getFullyStructuredTypeByID(Record[2]);
5098       Type *ResTy = flattenPointerTypes(FullTy);
5099       if (!OpTy || !Op || !ResTy)
5100         return error("Invalid record");
5101       I = new VAArgInst(Op, ResTy);
5102       InstructionList.push_back(I);
5103       break;
5104     }
5105 
5106     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5107       // A call or an invoke can be optionally prefixed with some variable
5108       // number of operand bundle blocks.  These blocks are read into
5109       // OperandBundles and consumed at the next call or invoke instruction.
5110 
5111       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5112         return error("Invalid record");
5113 
5114       std::vector<Value *> Inputs;
5115 
5116       unsigned OpNum = 1;
5117       while (OpNum != Record.size()) {
5118         Value *Op;
5119         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5120           return error("Invalid record");
5121         Inputs.push_back(Op);
5122       }
5123 
5124       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5125       continue;
5126     }
5127 
5128     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5129       unsigned OpNum = 0;
5130       Value *Op = nullptr;
5131       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5132         return error("Invalid record");
5133       if (OpNum != Record.size())
5134         return error("Invalid record");
5135 
5136       I = new FreezeInst(Op);
5137       InstructionList.push_back(I);
5138       break;
5139     }
5140     }
5141 
5142     // Add instruction to end of current BB.  If there is no current BB, reject
5143     // this file.
5144     if (!CurBB) {
5145       I->deleteValue();
5146       return error("Invalid instruction with no BB");
5147     }
5148     if (!OperandBundles.empty()) {
5149       I->deleteValue();
5150       return error("Operand bundles found with no consumer");
5151     }
5152     CurBB->getInstList().push_back(I);
5153 
5154     // If this was a terminator instruction, move to the next block.
5155     if (I->isTerminator()) {
5156       ++CurBBNo;
5157       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5158     }
5159 
5160     // Non-void values get registered in the value table for future use.
5161     if (!I->getType()->isVoidTy()) {
5162       if (!FullTy) {
5163         FullTy = I->getType();
5164         assert(
5165             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5166             !isa<ArrayType>(FullTy) &&
5167             (!isa<VectorType>(FullTy) ||
5168              FullTy->getVectorElementType()->isFloatingPointTy() ||
5169              FullTy->getVectorElementType()->isIntegerTy()) &&
5170             "Structured types must be assigned with corresponding non-opaque "
5171             "pointer type");
5172       }
5173 
5174       assert(I->getType() == flattenPointerTypes(FullTy) &&
5175              "Incorrect fully structured type provided for Instruction");
5176       ValueList.assignValue(I, NextValueNo++, FullTy);
5177     }
5178   }
5179 
5180 OutOfRecordLoop:
5181 
5182   if (!OperandBundles.empty())
5183     return error("Operand bundles found with no consumer");
5184 
5185   // Check the function list for unresolved values.
5186   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5187     if (!A->getParent()) {
5188       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5189       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5190         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5191           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5192           delete A;
5193         }
5194       }
5195       return error("Never resolved value found in function");
5196     }
5197   }
5198 
5199   // Unexpected unresolved metadata about to be dropped.
5200   if (MDLoader->hasFwdRefs())
5201     return error("Invalid function metadata: outgoing forward refs");
5202 
5203   // Trim the value list down to the size it was before we parsed this function.
5204   ValueList.shrinkTo(ModuleValueListSize);
5205   MDLoader->shrinkTo(ModuleMDLoaderSize);
5206   std::vector<BasicBlock*>().swap(FunctionBBs);
5207   return Error::success();
5208 }
5209 
5210 /// Find the function body in the bitcode stream
5211 Error BitcodeReader::findFunctionInStream(
5212     Function *F,
5213     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5214   while (DeferredFunctionInfoIterator->second == 0) {
5215     // This is the fallback handling for the old format bitcode that
5216     // didn't contain the function index in the VST, or when we have
5217     // an anonymous function which would not have a VST entry.
5218     // Assert that we have one of those two cases.
5219     assert(VSTOffset == 0 || !F->hasName());
5220     // Parse the next body in the stream and set its position in the
5221     // DeferredFunctionInfo map.
5222     if (Error Err = rememberAndSkipFunctionBodies())
5223       return Err;
5224   }
5225   return Error::success();
5226 }
5227 
5228 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5229   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5230     return SyncScope::ID(Val);
5231   if (Val >= SSIDs.size())
5232     return SyncScope::System; // Map unknown synchronization scopes to system.
5233   return SSIDs[Val];
5234 }
5235 
5236 //===----------------------------------------------------------------------===//
5237 // GVMaterializer implementation
5238 //===----------------------------------------------------------------------===//
5239 
5240 Error BitcodeReader::materialize(GlobalValue *GV) {
5241   Function *F = dyn_cast<Function>(GV);
5242   // If it's not a function or is already material, ignore the request.
5243   if (!F || !F->isMaterializable())
5244     return Error::success();
5245 
5246   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5247   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5248   // If its position is recorded as 0, its body is somewhere in the stream
5249   // but we haven't seen it yet.
5250   if (DFII->second == 0)
5251     if (Error Err = findFunctionInStream(F, DFII))
5252       return Err;
5253 
5254   // Materialize metadata before parsing any function bodies.
5255   if (Error Err = materializeMetadata())
5256     return Err;
5257 
5258   // Move the bit stream to the saved position of the deferred function body.
5259   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5260     return JumpFailed;
5261   if (Error Err = parseFunctionBody(F))
5262     return Err;
5263   F->setIsMaterializable(false);
5264 
5265   if (StripDebugInfo)
5266     stripDebugInfo(*F);
5267 
5268   // Upgrade any old intrinsic calls in the function.
5269   for (auto &I : UpgradedIntrinsics) {
5270     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5271          UI != UE;) {
5272       User *U = *UI;
5273       ++UI;
5274       if (CallInst *CI = dyn_cast<CallInst>(U))
5275         UpgradeIntrinsicCall(CI, I.second);
5276     }
5277   }
5278 
5279   // Update calls to the remangled intrinsics
5280   for (auto &I : RemangledIntrinsics)
5281     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5282          UI != UE;)
5283       // Don't expect any other users than call sites
5284       CallSite(*UI++).setCalledFunction(I.second);
5285 
5286   // Finish fn->subprogram upgrade for materialized functions.
5287   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5288     F->setSubprogram(SP);
5289 
5290   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5291   if (!MDLoader->isStrippingTBAA()) {
5292     for (auto &I : instructions(F)) {
5293       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5294       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5295         continue;
5296       MDLoader->setStripTBAA(true);
5297       stripTBAA(F->getParent());
5298     }
5299   }
5300 
5301   // Bring in any functions that this function forward-referenced via
5302   // blockaddresses.
5303   return materializeForwardReferencedFunctions();
5304 }
5305 
5306 Error BitcodeReader::materializeModule() {
5307   if (Error Err = materializeMetadata())
5308     return Err;
5309 
5310   // Promise to materialize all forward references.
5311   WillMaterializeAllForwardRefs = true;
5312 
5313   // Iterate over the module, deserializing any functions that are still on
5314   // disk.
5315   for (Function &F : *TheModule) {
5316     if (Error Err = materialize(&F))
5317       return Err;
5318   }
5319   // At this point, if there are any function bodies, parse the rest of
5320   // the bits in the module past the last function block we have recorded
5321   // through either lazy scanning or the VST.
5322   if (LastFunctionBlockBit || NextUnreadBit)
5323     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5324                                     ? LastFunctionBlockBit
5325                                     : NextUnreadBit))
5326       return Err;
5327 
5328   // Check that all block address forward references got resolved (as we
5329   // promised above).
5330   if (!BasicBlockFwdRefs.empty())
5331     return error("Never resolved function from blockaddress");
5332 
5333   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5334   // delete the old functions to clean up. We can't do this unless the entire
5335   // module is materialized because there could always be another function body
5336   // with calls to the old function.
5337   for (auto &I : UpgradedIntrinsics) {
5338     for (auto *U : I.first->users()) {
5339       if (CallInst *CI = dyn_cast<CallInst>(U))
5340         UpgradeIntrinsicCall(CI, I.second);
5341     }
5342     if (!I.first->use_empty())
5343       I.first->replaceAllUsesWith(I.second);
5344     I.first->eraseFromParent();
5345   }
5346   UpgradedIntrinsics.clear();
5347   // Do the same for remangled intrinsics
5348   for (auto &I : RemangledIntrinsics) {
5349     I.first->replaceAllUsesWith(I.second);
5350     I.first->eraseFromParent();
5351   }
5352   RemangledIntrinsics.clear();
5353 
5354   UpgradeDebugInfo(*TheModule);
5355 
5356   UpgradeModuleFlags(*TheModule);
5357 
5358   UpgradeARCRuntime(*TheModule);
5359 
5360   return Error::success();
5361 }
5362 
5363 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5364   return IdentifiedStructTypes;
5365 }
5366 
5367 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5368     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5369     StringRef ModulePath, unsigned ModuleId)
5370     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5371       ModulePath(ModulePath), ModuleId(ModuleId) {}
5372 
5373 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5374   TheIndex.addModule(ModulePath, ModuleId);
5375 }
5376 
5377 ModuleSummaryIndex::ModuleInfo *
5378 ModuleSummaryIndexBitcodeReader::getThisModule() {
5379   return TheIndex.getModule(ModulePath);
5380 }
5381 
5382 std::pair<ValueInfo, GlobalValue::GUID>
5383 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5384   auto VGI = ValueIdToValueInfoMap[ValueId];
5385   assert(VGI.first);
5386   return VGI;
5387 }
5388 
5389 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5390     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5391     StringRef SourceFileName) {
5392   std::string GlobalId =
5393       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5394   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5395   auto OriginalNameID = ValueGUID;
5396   if (GlobalValue::isLocalLinkage(Linkage))
5397     OriginalNameID = GlobalValue::getGUID(ValueName);
5398   if (PrintSummaryGUIDs)
5399     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5400            << ValueName << "\n";
5401 
5402   // UseStrtab is false for legacy summary formats and value names are
5403   // created on stack. In that case we save the name in a string saver in
5404   // the index so that the value name can be recorded.
5405   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5406       TheIndex.getOrInsertValueInfo(
5407           ValueGUID,
5408           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5409       OriginalNameID);
5410 }
5411 
5412 // Specialized value symbol table parser used when reading module index
5413 // blocks where we don't actually create global values. The parsed information
5414 // is saved in the bitcode reader for use when later parsing summaries.
5415 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5416     uint64_t Offset,
5417     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5418   // With a strtab the VST is not required to parse the summary.
5419   if (UseStrtab)
5420     return Error::success();
5421 
5422   assert(Offset > 0 && "Expected non-zero VST offset");
5423   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5424   if (!MaybeCurrentBit)
5425     return MaybeCurrentBit.takeError();
5426   uint64_t CurrentBit = MaybeCurrentBit.get();
5427 
5428   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5429     return Err;
5430 
5431   SmallVector<uint64_t, 64> Record;
5432 
5433   // Read all the records for this value table.
5434   SmallString<128> ValueName;
5435 
5436   while (true) {
5437     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5438     if (!MaybeEntry)
5439       return MaybeEntry.takeError();
5440     BitstreamEntry Entry = MaybeEntry.get();
5441 
5442     switch (Entry.Kind) {
5443     case BitstreamEntry::SubBlock: // Handled for us already.
5444     case BitstreamEntry::Error:
5445       return error("Malformed block");
5446     case BitstreamEntry::EndBlock:
5447       // Done parsing VST, jump back to wherever we came from.
5448       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5449         return JumpFailed;
5450       return Error::success();
5451     case BitstreamEntry::Record:
5452       // The interesting case.
5453       break;
5454     }
5455 
5456     // Read a record.
5457     Record.clear();
5458     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5459     if (!MaybeRecord)
5460       return MaybeRecord.takeError();
5461     switch (MaybeRecord.get()) {
5462     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5463       break;
5464     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5465       if (convertToString(Record, 1, ValueName))
5466         return error("Invalid record");
5467       unsigned ValueID = Record[0];
5468       assert(!SourceFileName.empty());
5469       auto VLI = ValueIdToLinkageMap.find(ValueID);
5470       assert(VLI != ValueIdToLinkageMap.end() &&
5471              "No linkage found for VST entry?");
5472       auto Linkage = VLI->second;
5473       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5474       ValueName.clear();
5475       break;
5476     }
5477     case bitc::VST_CODE_FNENTRY: {
5478       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5479       if (convertToString(Record, 2, ValueName))
5480         return error("Invalid record");
5481       unsigned ValueID = Record[0];
5482       assert(!SourceFileName.empty());
5483       auto VLI = ValueIdToLinkageMap.find(ValueID);
5484       assert(VLI != ValueIdToLinkageMap.end() &&
5485              "No linkage found for VST entry?");
5486       auto Linkage = VLI->second;
5487       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5488       ValueName.clear();
5489       break;
5490     }
5491     case bitc::VST_CODE_COMBINED_ENTRY: {
5492       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5493       unsigned ValueID = Record[0];
5494       GlobalValue::GUID RefGUID = Record[1];
5495       // The "original name", which is the second value of the pair will be
5496       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5497       ValueIdToValueInfoMap[ValueID] =
5498           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5499       break;
5500     }
5501     }
5502   }
5503 }
5504 
5505 // Parse just the blocks needed for building the index out of the module.
5506 // At the end of this routine the module Index is populated with a map
5507 // from global value id to GlobalValueSummary objects.
5508 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5509   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5510     return Err;
5511 
5512   SmallVector<uint64_t, 64> Record;
5513   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5514   unsigned ValueId = 0;
5515 
5516   // Read the index for this module.
5517   while (true) {
5518     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5519     if (!MaybeEntry)
5520       return MaybeEntry.takeError();
5521     llvm::BitstreamEntry Entry = MaybeEntry.get();
5522 
5523     switch (Entry.Kind) {
5524     case BitstreamEntry::Error:
5525       return error("Malformed block");
5526     case BitstreamEntry::EndBlock:
5527       return Error::success();
5528 
5529     case BitstreamEntry::SubBlock:
5530       switch (Entry.ID) {
5531       default: // Skip unknown content.
5532         if (Error Err = Stream.SkipBlock())
5533           return Err;
5534         break;
5535       case bitc::BLOCKINFO_BLOCK_ID:
5536         // Need to parse these to get abbrev ids (e.g. for VST)
5537         if (readBlockInfo())
5538           return error("Malformed block");
5539         break;
5540       case bitc::VALUE_SYMTAB_BLOCK_ID:
5541         // Should have been parsed earlier via VSTOffset, unless there
5542         // is no summary section.
5543         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5544                 !SeenGlobalValSummary) &&
5545                "Expected early VST parse via VSTOffset record");
5546         if (Error Err = Stream.SkipBlock())
5547           return Err;
5548         break;
5549       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5550       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5551         // Add the module if it is a per-module index (has a source file name).
5552         if (!SourceFileName.empty())
5553           addThisModule();
5554         assert(!SeenValueSymbolTable &&
5555                "Already read VST when parsing summary block?");
5556         // We might not have a VST if there were no values in the
5557         // summary. An empty summary block generated when we are
5558         // performing ThinLTO compiles so we don't later invoke
5559         // the regular LTO process on them.
5560         if (VSTOffset > 0) {
5561           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5562             return Err;
5563           SeenValueSymbolTable = true;
5564         }
5565         SeenGlobalValSummary = true;
5566         if (Error Err = parseEntireSummary(Entry.ID))
5567           return Err;
5568         break;
5569       case bitc::MODULE_STRTAB_BLOCK_ID:
5570         if (Error Err = parseModuleStringTable())
5571           return Err;
5572         break;
5573       }
5574       continue;
5575 
5576     case BitstreamEntry::Record: {
5577         Record.clear();
5578         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5579         if (!MaybeBitCode)
5580           return MaybeBitCode.takeError();
5581         switch (MaybeBitCode.get()) {
5582         default:
5583           break; // Default behavior, ignore unknown content.
5584         case bitc::MODULE_CODE_VERSION: {
5585           if (Error Err = parseVersionRecord(Record).takeError())
5586             return Err;
5587           break;
5588         }
5589         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5590         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5591           SmallString<128> ValueName;
5592           if (convertToString(Record, 0, ValueName))
5593             return error("Invalid record");
5594           SourceFileName = ValueName.c_str();
5595           break;
5596         }
5597         /// MODULE_CODE_HASH: [5*i32]
5598         case bitc::MODULE_CODE_HASH: {
5599           if (Record.size() != 5)
5600             return error("Invalid hash length " + Twine(Record.size()).str());
5601           auto &Hash = getThisModule()->second.second;
5602           int Pos = 0;
5603           for (auto &Val : Record) {
5604             assert(!(Val >> 32) && "Unexpected high bits set");
5605             Hash[Pos++] = Val;
5606           }
5607           break;
5608         }
5609         /// MODULE_CODE_VSTOFFSET: [offset]
5610         case bitc::MODULE_CODE_VSTOFFSET:
5611           if (Record.size() < 1)
5612             return error("Invalid record");
5613           // Note that we subtract 1 here because the offset is relative to one
5614           // word before the start of the identification or module block, which
5615           // was historically always the start of the regular bitcode header.
5616           VSTOffset = Record[0] - 1;
5617           break;
5618         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5619         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5620         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5621         // v2: [strtab offset, strtab size, v1]
5622         case bitc::MODULE_CODE_GLOBALVAR:
5623         case bitc::MODULE_CODE_FUNCTION:
5624         case bitc::MODULE_CODE_ALIAS: {
5625           StringRef Name;
5626           ArrayRef<uint64_t> GVRecord;
5627           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5628           if (GVRecord.size() <= 3)
5629             return error("Invalid record");
5630           uint64_t RawLinkage = GVRecord[3];
5631           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5632           if (!UseStrtab) {
5633             ValueIdToLinkageMap[ValueId++] = Linkage;
5634             break;
5635           }
5636 
5637           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5638           break;
5639         }
5640         }
5641       }
5642       continue;
5643     }
5644   }
5645 }
5646 
5647 std::vector<ValueInfo>
5648 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5649   std::vector<ValueInfo> Ret;
5650   Ret.reserve(Record.size());
5651   for (uint64_t RefValueId : Record)
5652     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5653   return Ret;
5654 }
5655 
5656 std::vector<FunctionSummary::EdgeTy>
5657 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5658                                               bool IsOldProfileFormat,
5659                                               bool HasProfile, bool HasRelBF) {
5660   std::vector<FunctionSummary::EdgeTy> Ret;
5661   Ret.reserve(Record.size());
5662   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5663     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5664     uint64_t RelBF = 0;
5665     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5666     if (IsOldProfileFormat) {
5667       I += 1; // Skip old callsitecount field
5668       if (HasProfile)
5669         I += 1; // Skip old profilecount field
5670     } else if (HasProfile)
5671       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5672     else if (HasRelBF)
5673       RelBF = Record[++I];
5674     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5675   }
5676   return Ret;
5677 }
5678 
5679 static void
5680 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5681                                        WholeProgramDevirtResolution &Wpd) {
5682   uint64_t ArgNum = Record[Slot++];
5683   WholeProgramDevirtResolution::ByArg &B =
5684       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5685   Slot += ArgNum;
5686 
5687   B.TheKind =
5688       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5689   B.Info = Record[Slot++];
5690   B.Byte = Record[Slot++];
5691   B.Bit = Record[Slot++];
5692 }
5693 
5694 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5695                                               StringRef Strtab, size_t &Slot,
5696                                               TypeIdSummary &TypeId) {
5697   uint64_t Id = Record[Slot++];
5698   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5699 
5700   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5701   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5702                         static_cast<size_t>(Record[Slot + 1])};
5703   Slot += 2;
5704 
5705   uint64_t ResByArgNum = Record[Slot++];
5706   for (uint64_t I = 0; I != ResByArgNum; ++I)
5707     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5708 }
5709 
5710 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5711                                      StringRef Strtab,
5712                                      ModuleSummaryIndex &TheIndex) {
5713   size_t Slot = 0;
5714   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5715       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5716   Slot += 2;
5717 
5718   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5719   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5720   TypeId.TTRes.AlignLog2 = Record[Slot++];
5721   TypeId.TTRes.SizeM1 = Record[Slot++];
5722   TypeId.TTRes.BitMask = Record[Slot++];
5723   TypeId.TTRes.InlineBits = Record[Slot++];
5724 
5725   while (Slot < Record.size())
5726     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5727 }
5728 
5729 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5730     ArrayRef<uint64_t> Record, size_t &Slot,
5731     TypeIdCompatibleVtableInfo &TypeId) {
5732   uint64_t Offset = Record[Slot++];
5733   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5734   TypeId.push_back({Offset, Callee});
5735 }
5736 
5737 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5738     ArrayRef<uint64_t> Record) {
5739   size_t Slot = 0;
5740   TypeIdCompatibleVtableInfo &TypeId =
5741       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5742           {Strtab.data() + Record[Slot],
5743            static_cast<size_t>(Record[Slot + 1])});
5744   Slot += 2;
5745 
5746   while (Slot < Record.size())
5747     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5748 }
5749 
5750 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5751                            unsigned WOCnt) {
5752   // Readonly and writeonly refs are in the end of the refs list.
5753   assert(ROCnt + WOCnt <= Refs.size());
5754   unsigned FirstWORef = Refs.size() - WOCnt;
5755   unsigned RefNo = FirstWORef - ROCnt;
5756   for (; RefNo < FirstWORef; ++RefNo)
5757     Refs[RefNo].setReadOnly();
5758   for (; RefNo < Refs.size(); ++RefNo)
5759     Refs[RefNo].setWriteOnly();
5760 }
5761 
5762 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5763 // objects in the index.
5764 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5765   if (Error Err = Stream.EnterSubBlock(ID))
5766     return Err;
5767   SmallVector<uint64_t, 64> Record;
5768 
5769   // Parse version
5770   {
5771     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5772     if (!MaybeEntry)
5773       return MaybeEntry.takeError();
5774     BitstreamEntry Entry = MaybeEntry.get();
5775 
5776     if (Entry.Kind != BitstreamEntry::Record)
5777       return error("Invalid Summary Block: record for version expected");
5778     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5779     if (!MaybeRecord)
5780       return MaybeRecord.takeError();
5781     if (MaybeRecord.get() != bitc::FS_VERSION)
5782       return error("Invalid Summary Block: version expected");
5783   }
5784   const uint64_t Version = Record[0];
5785   const bool IsOldProfileFormat = Version == 1;
5786   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5787     return error("Invalid summary version " + Twine(Version) +
5788                  ". Version should be in the range [1-" +
5789                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5790                  "].");
5791   Record.clear();
5792 
5793   // Keep around the last seen summary to be used when we see an optional
5794   // "OriginalName" attachement.
5795   GlobalValueSummary *LastSeenSummary = nullptr;
5796   GlobalValue::GUID LastSeenGUID = 0;
5797 
5798   // We can expect to see any number of type ID information records before
5799   // each function summary records; these variables store the information
5800   // collected so far so that it can be used to create the summary object.
5801   std::vector<GlobalValue::GUID> PendingTypeTests;
5802   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5803       PendingTypeCheckedLoadVCalls;
5804   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5805       PendingTypeCheckedLoadConstVCalls;
5806 
5807   while (true) {
5808     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5809     if (!MaybeEntry)
5810       return MaybeEntry.takeError();
5811     BitstreamEntry Entry = MaybeEntry.get();
5812 
5813     switch (Entry.Kind) {
5814     case BitstreamEntry::SubBlock: // Handled for us already.
5815     case BitstreamEntry::Error:
5816       return error("Malformed block");
5817     case BitstreamEntry::EndBlock:
5818       return Error::success();
5819     case BitstreamEntry::Record:
5820       // The interesting case.
5821       break;
5822     }
5823 
5824     // Read a record. The record format depends on whether this
5825     // is a per-module index or a combined index file. In the per-module
5826     // case the records contain the associated value's ID for correlation
5827     // with VST entries. In the combined index the correlation is done
5828     // via the bitcode offset of the summary records (which were saved
5829     // in the combined index VST entries). The records also contain
5830     // information used for ThinLTO renaming and importing.
5831     Record.clear();
5832     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5833     if (!MaybeBitCode)
5834       return MaybeBitCode.takeError();
5835     switch (unsigned BitCode = MaybeBitCode.get()) {
5836     default: // Default behavior: ignore.
5837       break;
5838     case bitc::FS_FLAGS: {  // [flags]
5839       uint64_t Flags = Record[0];
5840       // Scan flags.
5841       assert(Flags <= 0x3f && "Unexpected bits in flag");
5842 
5843       // 1 bit: WithGlobalValueDeadStripping flag.
5844       // Set on combined index only.
5845       if (Flags & 0x1)
5846         TheIndex.setWithGlobalValueDeadStripping();
5847       // 1 bit: SkipModuleByDistributedBackend flag.
5848       // Set on combined index only.
5849       if (Flags & 0x2)
5850         TheIndex.setSkipModuleByDistributedBackend();
5851       // 1 bit: HasSyntheticEntryCounts flag.
5852       // Set on combined index only.
5853       if (Flags & 0x4)
5854         TheIndex.setHasSyntheticEntryCounts();
5855       // 1 bit: DisableSplitLTOUnit flag.
5856       // Set on per module indexes. It is up to the client to validate
5857       // the consistency of this flag across modules being linked.
5858       if (Flags & 0x8)
5859         TheIndex.setEnableSplitLTOUnit();
5860       // 1 bit: PartiallySplitLTOUnits flag.
5861       // Set on combined index only.
5862       if (Flags & 0x10)
5863         TheIndex.setPartiallySplitLTOUnits();
5864       // 1 bit: WithAttributePropagation flag.
5865       // Set on combined index only.
5866       if (Flags & 0x20)
5867         TheIndex.setWithAttributePropagation();
5868       break;
5869     }
5870     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5871       uint64_t ValueID = Record[0];
5872       GlobalValue::GUID RefGUID = Record[1];
5873       ValueIdToValueInfoMap[ValueID] =
5874           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5875       break;
5876     }
5877     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5878     //                numrefs x valueid, n x (valueid)]
5879     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5880     //                        numrefs x valueid,
5881     //                        n x (valueid, hotness)]
5882     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5883     //                      numrefs x valueid,
5884     //                      n x (valueid, relblockfreq)]
5885     case bitc::FS_PERMODULE:
5886     case bitc::FS_PERMODULE_RELBF:
5887     case bitc::FS_PERMODULE_PROFILE: {
5888       unsigned ValueID = Record[0];
5889       uint64_t RawFlags = Record[1];
5890       unsigned InstCount = Record[2];
5891       uint64_t RawFunFlags = 0;
5892       unsigned NumRefs = Record[3];
5893       unsigned NumRORefs = 0, NumWORefs = 0;
5894       int RefListStartIndex = 4;
5895       if (Version >= 4) {
5896         RawFunFlags = Record[3];
5897         NumRefs = Record[4];
5898         RefListStartIndex = 5;
5899         if (Version >= 5) {
5900           NumRORefs = Record[5];
5901           RefListStartIndex = 6;
5902           if (Version >= 7) {
5903             NumWORefs = Record[6];
5904             RefListStartIndex = 7;
5905           }
5906         }
5907       }
5908 
5909       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5910       // The module path string ref set in the summary must be owned by the
5911       // index's module string table. Since we don't have a module path
5912       // string table section in the per-module index, we create a single
5913       // module path string table entry with an empty (0) ID to take
5914       // ownership.
5915       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5916       assert(Record.size() >= RefListStartIndex + NumRefs &&
5917              "Record size inconsistent with number of references");
5918       std::vector<ValueInfo> Refs = makeRefList(
5919           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5920       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5921       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5922       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5923           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5924           IsOldProfileFormat, HasProfile, HasRelBF);
5925       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5926       auto FS = std::make_unique<FunctionSummary>(
5927           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5928           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5929           std::move(PendingTypeTestAssumeVCalls),
5930           std::move(PendingTypeCheckedLoadVCalls),
5931           std::move(PendingTypeTestAssumeConstVCalls),
5932           std::move(PendingTypeCheckedLoadConstVCalls));
5933       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5934       FS->setModulePath(getThisModule()->first());
5935       FS->setOriginalName(VIAndOriginalGUID.second);
5936       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5937       break;
5938     }
5939     // FS_ALIAS: [valueid, flags, valueid]
5940     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5941     // they expect all aliasee summaries to be available.
5942     case bitc::FS_ALIAS: {
5943       unsigned ValueID = Record[0];
5944       uint64_t RawFlags = Record[1];
5945       unsigned AliaseeID = Record[2];
5946       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5947       auto AS = std::make_unique<AliasSummary>(Flags);
5948       // The module path string ref set in the summary must be owned by the
5949       // index's module string table. Since we don't have a module path
5950       // string table section in the per-module index, we create a single
5951       // module path string table entry with an empty (0) ID to take
5952       // ownership.
5953       AS->setModulePath(getThisModule()->first());
5954 
5955       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5956       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5957       if (!AliaseeInModule)
5958         return error("Alias expects aliasee summary to be parsed");
5959       AS->setAliasee(AliaseeVI, AliaseeInModule);
5960 
5961       auto GUID = getValueInfoFromValueId(ValueID);
5962       AS->setOriginalName(GUID.second);
5963       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5964       break;
5965     }
5966     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5967     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5968       unsigned ValueID = Record[0];
5969       uint64_t RawFlags = Record[1];
5970       unsigned RefArrayStart = 2;
5971       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5972                                       /* WriteOnly */ false,
5973                                       /* Constant */ false,
5974                                       GlobalObject::VCallVisibilityPublic);
5975       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5976       if (Version >= 5) {
5977         GVF = getDecodedGVarFlags(Record[2]);
5978         RefArrayStart = 3;
5979       }
5980       std::vector<ValueInfo> Refs =
5981           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5982       auto FS =
5983           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5984       FS->setModulePath(getThisModule()->first());
5985       auto GUID = getValueInfoFromValueId(ValueID);
5986       FS->setOriginalName(GUID.second);
5987       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5988       break;
5989     }
5990     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5991     //                        numrefs, numrefs x valueid,
5992     //                        n x (valueid, offset)]
5993     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5994       unsigned ValueID = Record[0];
5995       uint64_t RawFlags = Record[1];
5996       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5997       unsigned NumRefs = Record[3];
5998       unsigned RefListStartIndex = 4;
5999       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6000       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6001       std::vector<ValueInfo> Refs = makeRefList(
6002           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6003       VTableFuncList VTableFuncs;
6004       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6005         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6006         uint64_t Offset = Record[++I];
6007         VTableFuncs.push_back({Callee, Offset});
6008       }
6009       auto VS =
6010           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6011       VS->setModulePath(getThisModule()->first());
6012       VS->setVTableFuncs(VTableFuncs);
6013       auto GUID = getValueInfoFromValueId(ValueID);
6014       VS->setOriginalName(GUID.second);
6015       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6016       break;
6017     }
6018     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6019     //               numrefs x valueid, n x (valueid)]
6020     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6021     //                       numrefs x valueid, n x (valueid, hotness)]
6022     case bitc::FS_COMBINED:
6023     case bitc::FS_COMBINED_PROFILE: {
6024       unsigned ValueID = Record[0];
6025       uint64_t ModuleId = Record[1];
6026       uint64_t RawFlags = Record[2];
6027       unsigned InstCount = Record[3];
6028       uint64_t RawFunFlags = 0;
6029       uint64_t EntryCount = 0;
6030       unsigned NumRefs = Record[4];
6031       unsigned NumRORefs = 0, NumWORefs = 0;
6032       int RefListStartIndex = 5;
6033 
6034       if (Version >= 4) {
6035         RawFunFlags = Record[4];
6036         RefListStartIndex = 6;
6037         size_t NumRefsIndex = 5;
6038         if (Version >= 5) {
6039           unsigned NumRORefsOffset = 1;
6040           RefListStartIndex = 7;
6041           if (Version >= 6) {
6042             NumRefsIndex = 6;
6043             EntryCount = Record[5];
6044             RefListStartIndex = 8;
6045             if (Version >= 7) {
6046               RefListStartIndex = 9;
6047               NumWORefs = Record[8];
6048               NumRORefsOffset = 2;
6049             }
6050           }
6051           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6052         }
6053         NumRefs = Record[NumRefsIndex];
6054       }
6055 
6056       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6057       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6058       assert(Record.size() >= RefListStartIndex + NumRefs &&
6059              "Record size inconsistent with number of references");
6060       std::vector<ValueInfo> Refs = makeRefList(
6061           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6062       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6063       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6064           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6065           IsOldProfileFormat, HasProfile, false);
6066       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6067       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6068       auto FS = std::make_unique<FunctionSummary>(
6069           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6070           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6071           std::move(PendingTypeTestAssumeVCalls),
6072           std::move(PendingTypeCheckedLoadVCalls),
6073           std::move(PendingTypeTestAssumeConstVCalls),
6074           std::move(PendingTypeCheckedLoadConstVCalls));
6075       LastSeenSummary = FS.get();
6076       LastSeenGUID = VI.getGUID();
6077       FS->setModulePath(ModuleIdMap[ModuleId]);
6078       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6079       break;
6080     }
6081     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6082     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6083     // they expect all aliasee summaries to be available.
6084     case bitc::FS_COMBINED_ALIAS: {
6085       unsigned ValueID = Record[0];
6086       uint64_t ModuleId = Record[1];
6087       uint64_t RawFlags = Record[2];
6088       unsigned AliaseeValueId = Record[3];
6089       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6090       auto AS = std::make_unique<AliasSummary>(Flags);
6091       LastSeenSummary = AS.get();
6092       AS->setModulePath(ModuleIdMap[ModuleId]);
6093 
6094       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6095       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6096       AS->setAliasee(AliaseeVI, AliaseeInModule);
6097 
6098       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6099       LastSeenGUID = VI.getGUID();
6100       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6101       break;
6102     }
6103     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6104     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6105       unsigned ValueID = Record[0];
6106       uint64_t ModuleId = Record[1];
6107       uint64_t RawFlags = Record[2];
6108       unsigned RefArrayStart = 3;
6109       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6110                                       /* WriteOnly */ false,
6111                                       /* Constant */ false,
6112                                       GlobalObject::VCallVisibilityPublic);
6113       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6114       if (Version >= 5) {
6115         GVF = getDecodedGVarFlags(Record[3]);
6116         RefArrayStart = 4;
6117       }
6118       std::vector<ValueInfo> Refs =
6119           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6120       auto FS =
6121           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6122       LastSeenSummary = FS.get();
6123       FS->setModulePath(ModuleIdMap[ModuleId]);
6124       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6125       LastSeenGUID = VI.getGUID();
6126       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6127       break;
6128     }
6129     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6130     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6131       uint64_t OriginalName = Record[0];
6132       if (!LastSeenSummary)
6133         return error("Name attachment that does not follow a combined record");
6134       LastSeenSummary->setOriginalName(OriginalName);
6135       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6136       // Reset the LastSeenSummary
6137       LastSeenSummary = nullptr;
6138       LastSeenGUID = 0;
6139       break;
6140     }
6141     case bitc::FS_TYPE_TESTS:
6142       assert(PendingTypeTests.empty());
6143       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6144                               Record.end());
6145       break;
6146 
6147     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6148       assert(PendingTypeTestAssumeVCalls.empty());
6149       for (unsigned I = 0; I != Record.size(); I += 2)
6150         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6151       break;
6152 
6153     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6154       assert(PendingTypeCheckedLoadVCalls.empty());
6155       for (unsigned I = 0; I != Record.size(); I += 2)
6156         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6157       break;
6158 
6159     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6160       PendingTypeTestAssumeConstVCalls.push_back(
6161           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6162       break;
6163 
6164     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6165       PendingTypeCheckedLoadConstVCalls.push_back(
6166           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6167       break;
6168 
6169     case bitc::FS_CFI_FUNCTION_DEFS: {
6170       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6171       for (unsigned I = 0; I != Record.size(); I += 2)
6172         CfiFunctionDefs.insert(
6173             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6174       break;
6175     }
6176 
6177     case bitc::FS_CFI_FUNCTION_DECLS: {
6178       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6179       for (unsigned I = 0; I != Record.size(); I += 2)
6180         CfiFunctionDecls.insert(
6181             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6182       break;
6183     }
6184 
6185     case bitc::FS_TYPE_ID:
6186       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6187       break;
6188 
6189     case bitc::FS_TYPE_ID_METADATA:
6190       parseTypeIdCompatibleVtableSummaryRecord(Record);
6191       break;
6192     }
6193   }
6194   llvm_unreachable("Exit infinite loop");
6195 }
6196 
6197 // Parse the  module string table block into the Index.
6198 // This populates the ModulePathStringTable map in the index.
6199 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6200   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6201     return Err;
6202 
6203   SmallVector<uint64_t, 64> Record;
6204 
6205   SmallString<128> ModulePath;
6206   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6207 
6208   while (true) {
6209     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6210     if (!MaybeEntry)
6211       return MaybeEntry.takeError();
6212     BitstreamEntry Entry = MaybeEntry.get();
6213 
6214     switch (Entry.Kind) {
6215     case BitstreamEntry::SubBlock: // Handled for us already.
6216     case BitstreamEntry::Error:
6217       return error("Malformed block");
6218     case BitstreamEntry::EndBlock:
6219       return Error::success();
6220     case BitstreamEntry::Record:
6221       // The interesting case.
6222       break;
6223     }
6224 
6225     Record.clear();
6226     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6227     if (!MaybeRecord)
6228       return MaybeRecord.takeError();
6229     switch (MaybeRecord.get()) {
6230     default: // Default behavior: ignore.
6231       break;
6232     case bitc::MST_CODE_ENTRY: {
6233       // MST_ENTRY: [modid, namechar x N]
6234       uint64_t ModuleId = Record[0];
6235 
6236       if (convertToString(Record, 1, ModulePath))
6237         return error("Invalid record");
6238 
6239       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6240       ModuleIdMap[ModuleId] = LastSeenModule->first();
6241 
6242       ModulePath.clear();
6243       break;
6244     }
6245     /// MST_CODE_HASH: [5*i32]
6246     case bitc::MST_CODE_HASH: {
6247       if (Record.size() != 5)
6248         return error("Invalid hash length " + Twine(Record.size()).str());
6249       if (!LastSeenModule)
6250         return error("Invalid hash that does not follow a module path");
6251       int Pos = 0;
6252       for (auto &Val : Record) {
6253         assert(!(Val >> 32) && "Unexpected high bits set");
6254         LastSeenModule->second.second[Pos++] = Val;
6255       }
6256       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6257       LastSeenModule = nullptr;
6258       break;
6259     }
6260     }
6261   }
6262   llvm_unreachable("Exit infinite loop");
6263 }
6264 
6265 namespace {
6266 
6267 // FIXME: This class is only here to support the transition to llvm::Error. It
6268 // will be removed once this transition is complete. Clients should prefer to
6269 // deal with the Error value directly, rather than converting to error_code.
6270 class BitcodeErrorCategoryType : public std::error_category {
6271   const char *name() const noexcept override {
6272     return "llvm.bitcode";
6273   }
6274 
6275   std::string message(int IE) const override {
6276     BitcodeError E = static_cast<BitcodeError>(IE);
6277     switch (E) {
6278     case BitcodeError::CorruptedBitcode:
6279       return "Corrupted bitcode";
6280     }
6281     llvm_unreachable("Unknown error type!");
6282   }
6283 };
6284 
6285 } // end anonymous namespace
6286 
6287 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6288 
6289 const std::error_category &llvm::BitcodeErrorCategory() {
6290   return *ErrorCategory;
6291 }
6292 
6293 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6294                                             unsigned Block, unsigned RecordID) {
6295   if (Error Err = Stream.EnterSubBlock(Block))
6296     return std::move(Err);
6297 
6298   StringRef Strtab;
6299   while (true) {
6300     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6301     if (!MaybeEntry)
6302       return MaybeEntry.takeError();
6303     llvm::BitstreamEntry Entry = MaybeEntry.get();
6304 
6305     switch (Entry.Kind) {
6306     case BitstreamEntry::EndBlock:
6307       return Strtab;
6308 
6309     case BitstreamEntry::Error:
6310       return error("Malformed block");
6311 
6312     case BitstreamEntry::SubBlock:
6313       if (Error Err = Stream.SkipBlock())
6314         return std::move(Err);
6315       break;
6316 
6317     case BitstreamEntry::Record:
6318       StringRef Blob;
6319       SmallVector<uint64_t, 1> Record;
6320       Expected<unsigned> MaybeRecord =
6321           Stream.readRecord(Entry.ID, Record, &Blob);
6322       if (!MaybeRecord)
6323         return MaybeRecord.takeError();
6324       if (MaybeRecord.get() == RecordID)
6325         Strtab = Blob;
6326       break;
6327     }
6328   }
6329 }
6330 
6331 //===----------------------------------------------------------------------===//
6332 // External interface
6333 //===----------------------------------------------------------------------===//
6334 
6335 Expected<std::vector<BitcodeModule>>
6336 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6337   auto FOrErr = getBitcodeFileContents(Buffer);
6338   if (!FOrErr)
6339     return FOrErr.takeError();
6340   return std::move(FOrErr->Mods);
6341 }
6342 
6343 Expected<BitcodeFileContents>
6344 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6345   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6346   if (!StreamOrErr)
6347     return StreamOrErr.takeError();
6348   BitstreamCursor &Stream = *StreamOrErr;
6349 
6350   BitcodeFileContents F;
6351   while (true) {
6352     uint64_t BCBegin = Stream.getCurrentByteNo();
6353 
6354     // We may be consuming bitcode from a client that leaves garbage at the end
6355     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6356     // the end that there cannot possibly be another module, stop looking.
6357     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6358       return F;
6359 
6360     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6361     if (!MaybeEntry)
6362       return MaybeEntry.takeError();
6363     llvm::BitstreamEntry Entry = MaybeEntry.get();
6364 
6365     switch (Entry.Kind) {
6366     case BitstreamEntry::EndBlock:
6367     case BitstreamEntry::Error:
6368       return error("Malformed block");
6369 
6370     case BitstreamEntry::SubBlock: {
6371       uint64_t IdentificationBit = -1ull;
6372       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6373         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6374         if (Error Err = Stream.SkipBlock())
6375           return std::move(Err);
6376 
6377         {
6378           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6379           if (!MaybeEntry)
6380             return MaybeEntry.takeError();
6381           Entry = MaybeEntry.get();
6382         }
6383 
6384         if (Entry.Kind != BitstreamEntry::SubBlock ||
6385             Entry.ID != bitc::MODULE_BLOCK_ID)
6386           return error("Malformed block");
6387       }
6388 
6389       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6390         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6391         if (Error Err = Stream.SkipBlock())
6392           return std::move(Err);
6393 
6394         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6395                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6396                           Buffer.getBufferIdentifier(), IdentificationBit,
6397                           ModuleBit});
6398         continue;
6399       }
6400 
6401       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6402         Expected<StringRef> Strtab =
6403             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6404         if (!Strtab)
6405           return Strtab.takeError();
6406         // This string table is used by every preceding bitcode module that does
6407         // not have its own string table. A bitcode file may have multiple
6408         // string tables if it was created by binary concatenation, for example
6409         // with "llvm-cat -b".
6410         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6411           if (!I->Strtab.empty())
6412             break;
6413           I->Strtab = *Strtab;
6414         }
6415         // Similarly, the string table is used by every preceding symbol table;
6416         // normally there will be just one unless the bitcode file was created
6417         // by binary concatenation.
6418         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6419           F.StrtabForSymtab = *Strtab;
6420         continue;
6421       }
6422 
6423       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6424         Expected<StringRef> SymtabOrErr =
6425             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6426         if (!SymtabOrErr)
6427           return SymtabOrErr.takeError();
6428 
6429         // We can expect the bitcode file to have multiple symbol tables if it
6430         // was created by binary concatenation. In that case we silently
6431         // ignore any subsequent symbol tables, which is fine because this is a
6432         // low level function. The client is expected to notice that the number
6433         // of modules in the symbol table does not match the number of modules
6434         // in the input file and regenerate the symbol table.
6435         if (F.Symtab.empty())
6436           F.Symtab = *SymtabOrErr;
6437         continue;
6438       }
6439 
6440       if (Error Err = Stream.SkipBlock())
6441         return std::move(Err);
6442       continue;
6443     }
6444     case BitstreamEntry::Record:
6445       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6446         continue;
6447       else
6448         return StreamFailed.takeError();
6449     }
6450   }
6451 }
6452 
6453 /// Get a lazy one-at-time loading module from bitcode.
6454 ///
6455 /// This isn't always used in a lazy context.  In particular, it's also used by
6456 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6457 /// in forward-referenced functions from block address references.
6458 ///
6459 /// \param[in] MaterializeAll Set to \c true if we should materialize
6460 /// everything.
6461 Expected<std::unique_ptr<Module>>
6462 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6463                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6464   BitstreamCursor Stream(Buffer);
6465 
6466   std::string ProducerIdentification;
6467   if (IdentificationBit != -1ull) {
6468     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6469       return std::move(JumpFailed);
6470     Expected<std::string> ProducerIdentificationOrErr =
6471         readIdentificationBlock(Stream);
6472     if (!ProducerIdentificationOrErr)
6473       return ProducerIdentificationOrErr.takeError();
6474 
6475     ProducerIdentification = *ProducerIdentificationOrErr;
6476   }
6477 
6478   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6479     return std::move(JumpFailed);
6480   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6481                               Context);
6482 
6483   std::unique_ptr<Module> M =
6484       std::make_unique<Module>(ModuleIdentifier, Context);
6485   M->setMaterializer(R);
6486 
6487   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6488   if (Error Err =
6489           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6490     return std::move(Err);
6491 
6492   if (MaterializeAll) {
6493     // Read in the entire module, and destroy the BitcodeReader.
6494     if (Error Err = M->materializeAll())
6495       return std::move(Err);
6496   } else {
6497     // Resolve forward references from blockaddresses.
6498     if (Error Err = R->materializeForwardReferencedFunctions())
6499       return std::move(Err);
6500   }
6501   return std::move(M);
6502 }
6503 
6504 Expected<std::unique_ptr<Module>>
6505 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6506                              bool IsImporting) {
6507   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6508 }
6509 
6510 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6511 // We don't use ModuleIdentifier here because the client may need to control the
6512 // module path used in the combined summary (e.g. when reading summaries for
6513 // regular LTO modules).
6514 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6515                                  StringRef ModulePath, uint64_t ModuleId) {
6516   BitstreamCursor Stream(Buffer);
6517   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6518     return JumpFailed;
6519 
6520   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6521                                     ModulePath, ModuleId);
6522   return R.parseModule();
6523 }
6524 
6525 // Parse the specified bitcode buffer, returning the function info index.
6526 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6527   BitstreamCursor Stream(Buffer);
6528   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6529     return std::move(JumpFailed);
6530 
6531   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6532   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6533                                     ModuleIdentifier, 0);
6534 
6535   if (Error Err = R.parseModule())
6536     return std::move(Err);
6537 
6538   return std::move(Index);
6539 }
6540 
6541 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6542                                                 unsigned ID) {
6543   if (Error Err = Stream.EnterSubBlock(ID))
6544     return std::move(Err);
6545   SmallVector<uint64_t, 64> Record;
6546 
6547   while (true) {
6548     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6549     if (!MaybeEntry)
6550       return MaybeEntry.takeError();
6551     BitstreamEntry Entry = MaybeEntry.get();
6552 
6553     switch (Entry.Kind) {
6554     case BitstreamEntry::SubBlock: // Handled for us already.
6555     case BitstreamEntry::Error:
6556       return error("Malformed block");
6557     case BitstreamEntry::EndBlock:
6558       // If no flags record found, conservatively return true to mimic
6559       // behavior before this flag was added.
6560       return true;
6561     case BitstreamEntry::Record:
6562       // The interesting case.
6563       break;
6564     }
6565 
6566     // Look for the FS_FLAGS record.
6567     Record.clear();
6568     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6569     if (!MaybeBitCode)
6570       return MaybeBitCode.takeError();
6571     switch (MaybeBitCode.get()) {
6572     default: // Default behavior: ignore.
6573       break;
6574     case bitc::FS_FLAGS: { // [flags]
6575       uint64_t Flags = Record[0];
6576       // Scan flags.
6577       assert(Flags <= 0x3f && "Unexpected bits in flag");
6578 
6579       return Flags & 0x8;
6580     }
6581     }
6582   }
6583   llvm_unreachable("Exit infinite loop");
6584 }
6585 
6586 // Check if the given bitcode buffer contains a global value summary block.
6587 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6588   BitstreamCursor Stream(Buffer);
6589   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6590     return std::move(JumpFailed);
6591 
6592   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6593     return std::move(Err);
6594 
6595   while (true) {
6596     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6597     if (!MaybeEntry)
6598       return MaybeEntry.takeError();
6599     llvm::BitstreamEntry Entry = MaybeEntry.get();
6600 
6601     switch (Entry.Kind) {
6602     case BitstreamEntry::Error:
6603       return error("Malformed block");
6604     case BitstreamEntry::EndBlock:
6605       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6606                             /*EnableSplitLTOUnit=*/false};
6607 
6608     case BitstreamEntry::SubBlock:
6609       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6610         Expected<bool> EnableSplitLTOUnit =
6611             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6612         if (!EnableSplitLTOUnit)
6613           return EnableSplitLTOUnit.takeError();
6614         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6615                               *EnableSplitLTOUnit};
6616       }
6617 
6618       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6619         Expected<bool> EnableSplitLTOUnit =
6620             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6621         if (!EnableSplitLTOUnit)
6622           return EnableSplitLTOUnit.takeError();
6623         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6624                               *EnableSplitLTOUnit};
6625       }
6626 
6627       // Ignore other sub-blocks.
6628       if (Error Err = Stream.SkipBlock())
6629         return std::move(Err);
6630       continue;
6631 
6632     case BitstreamEntry::Record:
6633       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6634         continue;
6635       else
6636         return StreamFailed.takeError();
6637     }
6638   }
6639 }
6640 
6641 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6642   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6643   if (!MsOrErr)
6644     return MsOrErr.takeError();
6645 
6646   if (MsOrErr->size() != 1)
6647     return error("Expected a single module");
6648 
6649   return (*MsOrErr)[0];
6650 }
6651 
6652 Expected<std::unique_ptr<Module>>
6653 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6654                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6655   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6656   if (!BM)
6657     return BM.takeError();
6658 
6659   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6660 }
6661 
6662 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6663     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6664     bool ShouldLazyLoadMetadata, bool IsImporting) {
6665   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6666                                      IsImporting);
6667   if (MOrErr)
6668     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6669   return MOrErr;
6670 }
6671 
6672 Expected<std::unique_ptr<Module>>
6673 BitcodeModule::parseModule(LLVMContext &Context) {
6674   return getModuleImpl(Context, true, false, false);
6675   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6676   // written.  We must defer until the Module has been fully materialized.
6677 }
6678 
6679 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6680                                                          LLVMContext &Context) {
6681   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6682   if (!BM)
6683     return BM.takeError();
6684 
6685   return BM->parseModule(Context);
6686 }
6687 
6688 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6689   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6690   if (!StreamOrErr)
6691     return StreamOrErr.takeError();
6692 
6693   return readTriple(*StreamOrErr);
6694 }
6695 
6696 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6697   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6698   if (!StreamOrErr)
6699     return StreamOrErr.takeError();
6700 
6701   return hasObjCCategory(*StreamOrErr);
6702 }
6703 
6704 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6705   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6706   if (!StreamOrErr)
6707     return StreamOrErr.takeError();
6708 
6709   return readIdentificationCode(*StreamOrErr);
6710 }
6711 
6712 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6713                                    ModuleSummaryIndex &CombinedIndex,
6714                                    uint64_t ModuleId) {
6715   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6716   if (!BM)
6717     return BM.takeError();
6718 
6719   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6720 }
6721 
6722 Expected<std::unique_ptr<ModuleSummaryIndex>>
6723 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6724   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6725   if (!BM)
6726     return BM.takeError();
6727 
6728   return BM->getSummary();
6729 }
6730 
6731 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6732   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6733   if (!BM)
6734     return BM.takeError();
6735 
6736   return BM->getLTOInfo();
6737 }
6738 
6739 Expected<std::unique_ptr<ModuleSummaryIndex>>
6740 llvm::getModuleSummaryIndexForFile(StringRef Path,
6741                                    bool IgnoreEmptyThinLTOIndexFile) {
6742   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6743       MemoryBuffer::getFileOrSTDIN(Path);
6744   if (!FileOrErr)
6745     return errorCodeToError(FileOrErr.getError());
6746   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6747     return nullptr;
6748   return getModuleSummaryIndex(**FileOrErr);
6749 }
6750