1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Bitcode/BitstreamReader.h"
26 #include "llvm/Bitcode/LLVMBitCodes.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/DiagnosticPrinter.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalIndirectSymbol.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/GVMaterializer.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstIterator.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/OperandTraits.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/TrackingMDRef.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/ValueHandle.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <limits>
81 #include <map>
82 #include <memory>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 // FIXME: This flag should either be removed or moved to clang as a driver flag.
97 static llvm::cl::opt<bool> IgnoreEmptyThinLTOIndexFile(
98     "ignore-empty-index-file", llvm::cl::ZeroOrMore,
99     llvm::cl::desc(
100         "Ignore an empty index file and perform non-ThinLTO compilation"),
101     llvm::cl::init(false));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 Error error(const Twine &Message) {
110   return make_error<StringError>(
111       Message, make_error_code(BitcodeError::CorruptedBitcode));
112 }
113 
114 /// Helper to read the header common to all bitcode files.
115 bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
116   // Sniff for the signature.
117   if (!Stream.canSkipToPos(4) ||
118       Stream.Read(8) != 'B' ||
119       Stream.Read(8) != 'C' ||
120       Stream.Read(4) != 0x0 ||
121       Stream.Read(4) != 0xC ||
122       Stream.Read(4) != 0xE ||
123       Stream.Read(4) != 0xD)
124     return false;
125   return true;
126 }
127 
128 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (!hasValidBitcodeHeader(Stream))
143     return error("Invalid bitcode signature");
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
156     Result += (char)Record[i];
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return error("Invalid record");
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry = Stream.advance();
183 
184     switch (Entry.Kind) {
185     default:
186     case BitstreamEntry::Error:
187       return error("Malformed block");
188     case BitstreamEntry::EndBlock:
189       return ProducerIdentification;
190     case BitstreamEntry::Record:
191       // The interesting case.
192       break;
193     }
194 
195     // Read a record.
196     Record.clear();
197     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
198     switch (BitCode) {
199     default: // Default behavior: reject
200       return error("Invalid value");
201     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
202       convertToString(Record, 0, ProducerIdentification);
203       break;
204     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
205       unsigned epoch = (unsigned)Record[0];
206       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
207         return error(
208           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
209           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
210       }
211     }
212     }
213   }
214 }
215 
216 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
217   // We expect a number of well-defined blocks, though we don't necessarily
218   // need to understand them all.
219   while (true) {
220     if (Stream.AtEndOfStream())
221       return "";
222 
223     BitstreamEntry Entry = Stream.advance();
224     switch (Entry.Kind) {
225     case BitstreamEntry::EndBlock:
226     case BitstreamEntry::Error:
227       return error("Malformed block");
228 
229     case BitstreamEntry::SubBlock:
230       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
231         return readIdentificationBlock(Stream);
232 
233       // Ignore other sub-blocks.
234       if (Stream.SkipBlock())
235         return error("Malformed block");
236       continue;
237     case BitstreamEntry::Record:
238       Stream.skipRecord(Entry.ID);
239       continue;
240     }
241   }
242 }
243 
244 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
245   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
246     return error("Invalid record");
247 
248   SmallVector<uint64_t, 64> Record;
249   // Read all the records for this module.
250 
251   while (true) {
252     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::SubBlock: // Handled for us already.
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258     case BitstreamEntry::EndBlock:
259       return false;
260     case BitstreamEntry::Record:
261       // The interesting case.
262       break;
263     }
264 
265     // Read a record.
266     switch (Stream.readRecord(Entry.ID, Record)) {
267     default:
268       break; // Default behavior, ignore unknown content.
269     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
270       std::string S;
271       if (convertToString(Record, 0, S))
272         return error("Invalid record");
273       // Check for the i386 and other (x86_64, ARM) conventions
274       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
275           S.find("__OBJC,__category") != std::string::npos)
276         return true;
277       break;
278     }
279     }
280     Record.clear();
281   }
282   llvm_unreachable("Exit infinite loop");
283 }
284 
285 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
286   // We expect a number of well-defined blocks, though we don't necessarily
287   // need to understand them all.
288   while (true) {
289     BitstreamEntry Entry = Stream.advance();
290 
291     switch (Entry.Kind) {
292     case BitstreamEntry::Error:
293       return error("Malformed block");
294     case BitstreamEntry::EndBlock:
295       return false;
296 
297     case BitstreamEntry::SubBlock:
298       if (Entry.ID == bitc::MODULE_BLOCK_ID)
299         return hasObjCCategoryInModule(Stream);
300 
301       // Ignore other sub-blocks.
302       if (Stream.SkipBlock())
303         return error("Malformed block");
304       continue;
305 
306     case BitstreamEntry::Record:
307       Stream.skipRecord(Entry.ID);
308       continue;
309     }
310   }
311 }
312 
313 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
314   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
315     return error("Invalid record");
316 
317   SmallVector<uint64_t, 64> Record;
318 
319   std::string Triple;
320 
321   // Read all the records for this module.
322   while (true) {
323     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
324 
325     switch (Entry.Kind) {
326     case BitstreamEntry::SubBlock: // Handled for us already.
327     case BitstreamEntry::Error:
328       return error("Malformed block");
329     case BitstreamEntry::EndBlock:
330       return Triple;
331     case BitstreamEntry::Record:
332       // The interesting case.
333       break;
334     }
335 
336     // Read a record.
337     switch (Stream.readRecord(Entry.ID, Record)) {
338     default: break;  // Default behavior, ignore unknown content.
339     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
340       std::string S;
341       if (convertToString(Record, 0, S))
342         return error("Invalid record");
343       Triple = S;
344       break;
345     }
346     }
347     Record.clear();
348   }
349   llvm_unreachable("Exit infinite loop");
350 }
351 
352 Expected<std::string> readTriple(BitstreamCursor &Stream) {
353   // We expect a number of well-defined blocks, though we don't necessarily
354   // need to understand them all.
355   while (true) {
356     BitstreamEntry Entry = Stream.advance();
357 
358     switch (Entry.Kind) {
359     case BitstreamEntry::Error:
360       return error("Malformed block");
361     case BitstreamEntry::EndBlock:
362       return "";
363 
364     case BitstreamEntry::SubBlock:
365       if (Entry.ID == bitc::MODULE_BLOCK_ID)
366         return readModuleTriple(Stream);
367 
368       // Ignore other sub-blocks.
369       if (Stream.SkipBlock())
370         return error("Malformed block");
371       continue;
372 
373     case BitstreamEntry::Record:
374       Stream.skipRecord(Entry.ID);
375       continue;
376     }
377   }
378 }
379 
380 class BitcodeReaderBase {
381 protected:
382   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
383       : Stream(std::move(Stream)), Strtab(Strtab) {
384     this->Stream.setBlockInfo(&BlockInfo);
385   }
386 
387   BitstreamBlockInfo BlockInfo;
388   BitstreamCursor Stream;
389   StringRef Strtab;
390 
391   /// In version 2 of the bitcode we store names of global values and comdats in
392   /// a string table rather than in the VST.
393   bool UseStrtab = false;
394 
395   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
396 
397   /// If this module uses a string table, pop the reference to the string table
398   /// and return the referenced string and the rest of the record. Otherwise
399   /// just return the record itself.
400   std::pair<StringRef, ArrayRef<uint64_t>>
401   readNameFromStrtab(ArrayRef<uint64_t> Record);
402 
403   bool readBlockInfo();
404 
405   // Contains an arbitrary and optional string identifying the bitcode producer
406   std::string ProducerIdentification;
407 
408   Error error(const Twine &Message);
409 };
410 
411 Error BitcodeReaderBase::error(const Twine &Message) {
412   std::string FullMsg = Message.str();
413   if (!ProducerIdentification.empty())
414     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
415                LLVM_VERSION_STRING "')";
416   return ::error(FullMsg);
417 }
418 
419 Expected<unsigned>
420 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
421   if (Record.size() < 1)
422     return error("Invalid record");
423   unsigned ModuleVersion = Record[0];
424   if (ModuleVersion > 2)
425     return error("Invalid value");
426   UseStrtab = ModuleVersion >= 2;
427   return ModuleVersion;
428 }
429 
430 std::pair<StringRef, ArrayRef<uint64_t>>
431 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
432   if (!UseStrtab)
433     return {"", Record};
434   // Invalid reference. Let the caller complain about the record being empty.
435   if (Record[0] + Record[1] > Strtab.size())
436     return {"", {}};
437   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
438 }
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
461   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
462   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
463   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523 
524 public:
525   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
526                 StringRef ProducerIdentification, LLVMContext &Context);
527 
528   Error materializeForwardReferencedFunctions();
529 
530   Error materialize(GlobalValue *GV) override;
531   Error materializeModule() override;
532   std::vector<StructType *> getIdentifiedStructTypes() const override;
533 
534   /// \brief Main interface to parsing a bitcode buffer.
535   /// \returns true if an error occurred.
536   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
537                          bool IsImporting = false);
538 
539   static uint64_t decodeSignRotatedValue(uint64_t V);
540 
541   /// Materialize any deferred Metadata block.
542   Error materializeMetadata() override;
543 
544   void setStripDebugInfo() override;
545 
546 private:
547   std::vector<StructType *> IdentifiedStructTypes;
548   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
549   StructType *createIdentifiedStructType(LLVMContext &Context);
550 
551   Type *getTypeByID(unsigned ID);
552 
553   Value *getFnValueByID(unsigned ID, Type *Ty) {
554     if (Ty && Ty->isMetadataTy())
555       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
556     return ValueList.getValueFwdRef(ID, Ty);
557   }
558 
559   Metadata *getFnMetadataByID(unsigned ID) {
560     return MDLoader->getMetadataFwdRefOrLoad(ID);
561   }
562 
563   BasicBlock *getBasicBlock(unsigned ID) const {
564     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
565     return FunctionBBs[ID];
566   }
567 
568   AttributeList getAttributes(unsigned i) const {
569     if (i-1 < MAttributes.size())
570       return MAttributes[i-1];
571     return AttributeList();
572   }
573 
574   /// Read a value/type pair out of the specified record from slot 'Slot'.
575   /// Increment Slot past the number of slots used in the record. Return true on
576   /// failure.
577   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
578                         unsigned InstNum, Value *&ResVal) {
579     if (Slot == Record.size()) return true;
580     unsigned ValNo = (unsigned)Record[Slot++];
581     // Adjust the ValNo, if it was encoded relative to the InstNum.
582     if (UseRelativeIDs)
583       ValNo = InstNum - ValNo;
584     if (ValNo < InstNum) {
585       // If this is not a forward reference, just return the value we already
586       // have.
587       ResVal = getFnValueByID(ValNo, nullptr);
588       return ResVal == nullptr;
589     }
590     if (Slot == Record.size())
591       return true;
592 
593     unsigned TypeNo = (unsigned)Record[Slot++];
594     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
595     return ResVal == nullptr;
596   }
597 
598   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
599   /// past the number of slots used by the value in the record. Return true if
600   /// there is an error.
601   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
602                 unsigned InstNum, Type *Ty, Value *&ResVal) {
603     if (getValue(Record, Slot, InstNum, Ty, ResVal))
604       return true;
605     // All values currently take a single record slot.
606     ++Slot;
607     return false;
608   }
609 
610   /// Like popValue, but does not increment the Slot number.
611   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
612                 unsigned InstNum, Type *Ty, Value *&ResVal) {
613     ResVal = getValue(Record, Slot, InstNum, Ty);
614     return ResVal == nullptr;
615   }
616 
617   /// Version of getValue that returns ResVal directly, or 0 if there is an
618   /// error.
619   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
620                   unsigned InstNum, Type *Ty) {
621     if (Slot == Record.size()) return nullptr;
622     unsigned ValNo = (unsigned)Record[Slot];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     return getFnValueByID(ValNo, Ty);
627   }
628 
629   /// Like getValue, but decodes signed VBRs.
630   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
631                         unsigned InstNum, Type *Ty) {
632     if (Slot == Record.size()) return nullptr;
633     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
634     // Adjust the ValNo, if it was encoded relative to the InstNum.
635     if (UseRelativeIDs)
636       ValNo = InstNum - ValNo;
637     return getFnValueByID(ValNo, Ty);
638   }
639 
640   /// Converts alignment exponent (i.e. power of two (or zero)) to the
641   /// corresponding alignment to use. If alignment is too large, returns
642   /// a corresponding error code.
643   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
644   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
645   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
646 
647   Error parseComdatRecord(ArrayRef<uint64_t> Record);
648   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
649   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
650   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
651                                         ArrayRef<uint64_t> Record);
652 
653   Error parseAttributeBlock();
654   Error parseAttributeGroupBlock();
655   Error parseTypeTable();
656   Error parseTypeTableBody();
657   Error parseOperandBundleTags();
658 
659   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
660                                 unsigned NameIndex, Triple &TT);
661   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
662                                ArrayRef<uint64_t> Record);
663   Error parseValueSymbolTable(uint64_t Offset = 0);
664   Error parseGlobalValueSymbolTable();
665   Error parseConstants();
666   Error rememberAndSkipFunctionBodies();
667   Error rememberAndSkipFunctionBody();
668   /// Save the positions of the Metadata blocks and skip parsing the blocks.
669   Error rememberAndSkipMetadata();
670   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
671   Error parseFunctionBody(Function *F);
672   Error globalCleanup();
673   Error resolveGlobalAndIndirectSymbolInits();
674   Error parseUseLists();
675   Error findFunctionInStream(
676       Function *F,
677       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
678 };
679 
680 /// Class to manage reading and parsing function summary index bitcode
681 /// files/sections.
682 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
683   /// The module index built during parsing.
684   ModuleSummaryIndex &TheIndex;
685 
686   /// Indicates whether we have encountered a global value summary section
687   /// yet during parsing.
688   bool SeenGlobalValSummary = false;
689 
690   /// Indicates whether we have already parsed the VST, used for error checking.
691   bool SeenValueSymbolTable = false;
692 
693   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
694   /// Used to enable on-demand parsing of the VST.
695   uint64_t VSTOffset = 0;
696 
697   // Map to save ValueId to ValueInfo association that was recorded in the
698   // ValueSymbolTable. It is used after the VST is parsed to convert
699   // call graph edges read from the function summary from referencing
700   // callees by their ValueId to using the ValueInfo instead, which is how
701   // they are recorded in the summary index being built.
702   // We save a GUID which refers to the same global as the ValueInfo, but
703   // ignoring the linkage, i.e. for values other than local linkage they are
704   // identical.
705   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
706       ValueIdToValueInfoMap;
707 
708   /// Map populated during module path string table parsing, from the
709   /// module ID to a string reference owned by the index's module
710   /// path string table, used to correlate with combined index
711   /// summary records.
712   DenseMap<uint64_t, StringRef> ModuleIdMap;
713 
714   /// Original source file name recorded in a bitcode record.
715   std::string SourceFileName;
716 
717   /// The string identifier given to this module by the client, normally the
718   /// path to the bitcode file.
719   StringRef ModulePath;
720 
721   /// For per-module summary indexes, the unique numerical identifier given to
722   /// this module by the client.
723   unsigned ModuleId;
724 
725 public:
726   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
727                                   ModuleSummaryIndex &TheIndex,
728                                   StringRef ModulePath, unsigned ModuleId);
729 
730   Error parseModule();
731 
732 private:
733   void setValueGUID(uint64_t ValueID, StringRef ValueName,
734                     GlobalValue::LinkageTypes Linkage,
735                     StringRef SourceFileName);
736   Error parseValueSymbolTable(
737       uint64_t Offset,
738       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
739   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
740   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
741                                                     bool IsOldProfileFormat,
742                                                     bool HasProfile);
743   Error parseEntireSummary();
744   Error parseModuleStringTable();
745 
746   std::pair<ValueInfo, GlobalValue::GUID>
747   getValueInfoFromValueId(unsigned ValueId);
748 
749   ModulePathStringTableTy::iterator addThisModulePath();
750 };
751 
752 } // end anonymous namespace
753 
754 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
755                                                     Error Err) {
756   if (Err) {
757     std::error_code EC;
758     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
759       EC = EIB.convertToErrorCode();
760       Ctx.emitError(EIB.message());
761     });
762     return EC;
763   }
764   return std::error_code();
765 }
766 
767 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
768                              StringRef ProducerIdentification,
769                              LLVMContext &Context)
770     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
771       ValueList(Context) {
772   this->ProducerIdentification = ProducerIdentification;
773 }
774 
775 Error BitcodeReader::materializeForwardReferencedFunctions() {
776   if (WillMaterializeAllForwardRefs)
777     return Error::success();
778 
779   // Prevent recursion.
780   WillMaterializeAllForwardRefs = true;
781 
782   while (!BasicBlockFwdRefQueue.empty()) {
783     Function *F = BasicBlockFwdRefQueue.front();
784     BasicBlockFwdRefQueue.pop_front();
785     assert(F && "Expected valid function");
786     if (!BasicBlockFwdRefs.count(F))
787       // Already materialized.
788       continue;
789 
790     // Check for a function that isn't materializable to prevent an infinite
791     // loop.  When parsing a blockaddress stored in a global variable, there
792     // isn't a trivial way to check if a function will have a body without a
793     // linear search through FunctionsWithBodies, so just check it here.
794     if (!F->isMaterializable())
795       return error("Never resolved function from blockaddress");
796 
797     // Try to materialize F.
798     if (Error Err = materialize(F))
799       return Err;
800   }
801   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
802 
803   // Reset state.
804   WillMaterializeAllForwardRefs = false;
805   return Error::success();
806 }
807 
808 //===----------------------------------------------------------------------===//
809 //  Helper functions to implement forward reference resolution, etc.
810 //===----------------------------------------------------------------------===//
811 
812 static bool hasImplicitComdat(size_t Val) {
813   switch (Val) {
814   default:
815     return false;
816   case 1:  // Old WeakAnyLinkage
817   case 4:  // Old LinkOnceAnyLinkage
818   case 10: // Old WeakODRLinkage
819   case 11: // Old LinkOnceODRLinkage
820     return true;
821   }
822 }
823 
824 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
825   switch (Val) {
826   default: // Map unknown/new linkages to external
827   case 0:
828     return GlobalValue::ExternalLinkage;
829   case 2:
830     return GlobalValue::AppendingLinkage;
831   case 3:
832     return GlobalValue::InternalLinkage;
833   case 5:
834     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
835   case 6:
836     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
837   case 7:
838     return GlobalValue::ExternalWeakLinkage;
839   case 8:
840     return GlobalValue::CommonLinkage;
841   case 9:
842     return GlobalValue::PrivateLinkage;
843   case 12:
844     return GlobalValue::AvailableExternallyLinkage;
845   case 13:
846     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
847   case 14:
848     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
849   case 15:
850     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
851   case 1: // Old value with implicit comdat.
852   case 16:
853     return GlobalValue::WeakAnyLinkage;
854   case 10: // Old value with implicit comdat.
855   case 17:
856     return GlobalValue::WeakODRLinkage;
857   case 4: // Old value with implicit comdat.
858   case 18:
859     return GlobalValue::LinkOnceAnyLinkage;
860   case 11: // Old value with implicit comdat.
861   case 19:
862     return GlobalValue::LinkOnceODRLinkage;
863   }
864 }
865 
866 /// Decode the flags for GlobalValue in the summary.
867 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
868                                                             uint64_t Version) {
869   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
870   // like getDecodedLinkage() above. Any future change to the linkage enum and
871   // to getDecodedLinkage() will need to be taken into account here as above.
872   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
873   RawFlags = RawFlags >> 4;
874   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
875   // The LiveRoot flag wasn't introduced until version 3. For dead stripping
876   // to work correctly on earlier versions, we must conservatively treat all
877   // values as live.
878   bool LiveRoot = (RawFlags & 0x2) || Version < 3;
879   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot);
880 }
881 
882 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
883   switch (Val) {
884   default: // Map unknown visibilities to default.
885   case 0: return GlobalValue::DefaultVisibility;
886   case 1: return GlobalValue::HiddenVisibility;
887   case 2: return GlobalValue::ProtectedVisibility;
888   }
889 }
890 
891 static GlobalValue::DLLStorageClassTypes
892 getDecodedDLLStorageClass(unsigned Val) {
893   switch (Val) {
894   default: // Map unknown values to default.
895   case 0: return GlobalValue::DefaultStorageClass;
896   case 1: return GlobalValue::DLLImportStorageClass;
897   case 2: return GlobalValue::DLLExportStorageClass;
898   }
899 }
900 
901 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
902   switch (Val) {
903     case 0: return GlobalVariable::NotThreadLocal;
904     default: // Map unknown non-zero value to general dynamic.
905     case 1: return GlobalVariable::GeneralDynamicTLSModel;
906     case 2: return GlobalVariable::LocalDynamicTLSModel;
907     case 3: return GlobalVariable::InitialExecTLSModel;
908     case 4: return GlobalVariable::LocalExecTLSModel;
909   }
910 }
911 
912 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
913   switch (Val) {
914     default: // Map unknown to UnnamedAddr::None.
915     case 0: return GlobalVariable::UnnamedAddr::None;
916     case 1: return GlobalVariable::UnnamedAddr::Global;
917     case 2: return GlobalVariable::UnnamedAddr::Local;
918   }
919 }
920 
921 static int getDecodedCastOpcode(unsigned Val) {
922   switch (Val) {
923   default: return -1;
924   case bitc::CAST_TRUNC   : return Instruction::Trunc;
925   case bitc::CAST_ZEXT    : return Instruction::ZExt;
926   case bitc::CAST_SEXT    : return Instruction::SExt;
927   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
928   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
929   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
930   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
931   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
932   case bitc::CAST_FPEXT   : return Instruction::FPExt;
933   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
934   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
935   case bitc::CAST_BITCAST : return Instruction::BitCast;
936   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
937   }
938 }
939 
940 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
941   bool IsFP = Ty->isFPOrFPVectorTy();
942   // BinOps are only valid for int/fp or vector of int/fp types
943   if (!IsFP && !Ty->isIntOrIntVectorTy())
944     return -1;
945 
946   switch (Val) {
947   default:
948     return -1;
949   case bitc::BINOP_ADD:
950     return IsFP ? Instruction::FAdd : Instruction::Add;
951   case bitc::BINOP_SUB:
952     return IsFP ? Instruction::FSub : Instruction::Sub;
953   case bitc::BINOP_MUL:
954     return IsFP ? Instruction::FMul : Instruction::Mul;
955   case bitc::BINOP_UDIV:
956     return IsFP ? -1 : Instruction::UDiv;
957   case bitc::BINOP_SDIV:
958     return IsFP ? Instruction::FDiv : Instruction::SDiv;
959   case bitc::BINOP_UREM:
960     return IsFP ? -1 : Instruction::URem;
961   case bitc::BINOP_SREM:
962     return IsFP ? Instruction::FRem : Instruction::SRem;
963   case bitc::BINOP_SHL:
964     return IsFP ? -1 : Instruction::Shl;
965   case bitc::BINOP_LSHR:
966     return IsFP ? -1 : Instruction::LShr;
967   case bitc::BINOP_ASHR:
968     return IsFP ? -1 : Instruction::AShr;
969   case bitc::BINOP_AND:
970     return IsFP ? -1 : Instruction::And;
971   case bitc::BINOP_OR:
972     return IsFP ? -1 : Instruction::Or;
973   case bitc::BINOP_XOR:
974     return IsFP ? -1 : Instruction::Xor;
975   }
976 }
977 
978 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
979   switch (Val) {
980   default: return AtomicRMWInst::BAD_BINOP;
981   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
982   case bitc::RMW_ADD: return AtomicRMWInst::Add;
983   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
984   case bitc::RMW_AND: return AtomicRMWInst::And;
985   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
986   case bitc::RMW_OR: return AtomicRMWInst::Or;
987   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
988   case bitc::RMW_MAX: return AtomicRMWInst::Max;
989   case bitc::RMW_MIN: return AtomicRMWInst::Min;
990   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
991   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
992   }
993 }
994 
995 static AtomicOrdering getDecodedOrdering(unsigned Val) {
996   switch (Val) {
997   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
998   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
999   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1000   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1001   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1002   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1003   default: // Map unknown orderings to sequentially-consistent.
1004   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1005   }
1006 }
1007 
1008 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
1009   switch (Val) {
1010   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
1011   default: // Map unknown scopes to cross-thread.
1012   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
1013   }
1014 }
1015 
1016 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1017   switch (Val) {
1018   default: // Map unknown selection kinds to any.
1019   case bitc::COMDAT_SELECTION_KIND_ANY:
1020     return Comdat::Any;
1021   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1022     return Comdat::ExactMatch;
1023   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1024     return Comdat::Largest;
1025   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1026     return Comdat::NoDuplicates;
1027   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1028     return Comdat::SameSize;
1029   }
1030 }
1031 
1032 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1033   FastMathFlags FMF;
1034   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1035     FMF.setUnsafeAlgebra();
1036   if (0 != (Val & FastMathFlags::NoNaNs))
1037     FMF.setNoNaNs();
1038   if (0 != (Val & FastMathFlags::NoInfs))
1039     FMF.setNoInfs();
1040   if (0 != (Val & FastMathFlags::NoSignedZeros))
1041     FMF.setNoSignedZeros();
1042   if (0 != (Val & FastMathFlags::AllowReciprocal))
1043     FMF.setAllowReciprocal();
1044   if (0 != (Val & FastMathFlags::AllowContract))
1045     FMF.setAllowContract(true);
1046   return FMF;
1047 }
1048 
1049 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1050   switch (Val) {
1051   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1052   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1053   }
1054 }
1055 
1056 
1057 Type *BitcodeReader::getTypeByID(unsigned ID) {
1058   // The type table size is always specified correctly.
1059   if (ID >= TypeList.size())
1060     return nullptr;
1061 
1062   if (Type *Ty = TypeList[ID])
1063     return Ty;
1064 
1065   // If we have a forward reference, the only possible case is when it is to a
1066   // named struct.  Just create a placeholder for now.
1067   return TypeList[ID] = createIdentifiedStructType(Context);
1068 }
1069 
1070 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1071                                                       StringRef Name) {
1072   auto *Ret = StructType::create(Context, Name);
1073   IdentifiedStructTypes.push_back(Ret);
1074   return Ret;
1075 }
1076 
1077 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1078   auto *Ret = StructType::create(Context);
1079   IdentifiedStructTypes.push_back(Ret);
1080   return Ret;
1081 }
1082 
1083 //===----------------------------------------------------------------------===//
1084 //  Functions for parsing blocks from the bitcode file
1085 //===----------------------------------------------------------------------===//
1086 
1087 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1088   switch (Val) {
1089   case Attribute::EndAttrKinds:
1090     llvm_unreachable("Synthetic enumerators which should never get here");
1091 
1092   case Attribute::None:            return 0;
1093   case Attribute::ZExt:            return 1 << 0;
1094   case Attribute::SExt:            return 1 << 1;
1095   case Attribute::NoReturn:        return 1 << 2;
1096   case Attribute::InReg:           return 1 << 3;
1097   case Attribute::StructRet:       return 1 << 4;
1098   case Attribute::NoUnwind:        return 1 << 5;
1099   case Attribute::NoAlias:         return 1 << 6;
1100   case Attribute::ByVal:           return 1 << 7;
1101   case Attribute::Nest:            return 1 << 8;
1102   case Attribute::ReadNone:        return 1 << 9;
1103   case Attribute::ReadOnly:        return 1 << 10;
1104   case Attribute::NoInline:        return 1 << 11;
1105   case Attribute::AlwaysInline:    return 1 << 12;
1106   case Attribute::OptimizeForSize: return 1 << 13;
1107   case Attribute::StackProtect:    return 1 << 14;
1108   case Attribute::StackProtectReq: return 1 << 15;
1109   case Attribute::Alignment:       return 31 << 16;
1110   case Attribute::NoCapture:       return 1 << 21;
1111   case Attribute::NoRedZone:       return 1 << 22;
1112   case Attribute::NoImplicitFloat: return 1 << 23;
1113   case Attribute::Naked:           return 1 << 24;
1114   case Attribute::InlineHint:      return 1 << 25;
1115   case Attribute::StackAlignment:  return 7 << 26;
1116   case Attribute::ReturnsTwice:    return 1 << 29;
1117   case Attribute::UWTable:         return 1 << 30;
1118   case Attribute::NonLazyBind:     return 1U << 31;
1119   case Attribute::SanitizeAddress: return 1ULL << 32;
1120   case Attribute::MinSize:         return 1ULL << 33;
1121   case Attribute::NoDuplicate:     return 1ULL << 34;
1122   case Attribute::StackProtectStrong: return 1ULL << 35;
1123   case Attribute::SanitizeThread:  return 1ULL << 36;
1124   case Attribute::SanitizeMemory:  return 1ULL << 37;
1125   case Attribute::NoBuiltin:       return 1ULL << 38;
1126   case Attribute::Returned:        return 1ULL << 39;
1127   case Attribute::Cold:            return 1ULL << 40;
1128   case Attribute::Builtin:         return 1ULL << 41;
1129   case Attribute::OptimizeNone:    return 1ULL << 42;
1130   case Attribute::InAlloca:        return 1ULL << 43;
1131   case Attribute::NonNull:         return 1ULL << 44;
1132   case Attribute::JumpTable:       return 1ULL << 45;
1133   case Attribute::Convergent:      return 1ULL << 46;
1134   case Attribute::SafeStack:       return 1ULL << 47;
1135   case Attribute::NoRecurse:       return 1ULL << 48;
1136   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1137   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1138   case Attribute::SwiftSelf:       return 1ULL << 51;
1139   case Attribute::SwiftError:      return 1ULL << 52;
1140   case Attribute::WriteOnly:       return 1ULL << 53;
1141   case Attribute::Speculatable:    return 1ULL << 54;
1142   case Attribute::Dereferenceable:
1143     llvm_unreachable("dereferenceable attribute not supported in raw format");
1144     break;
1145   case Attribute::DereferenceableOrNull:
1146     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1147                      "format");
1148     break;
1149   case Attribute::ArgMemOnly:
1150     llvm_unreachable("argmemonly attribute not supported in raw format");
1151     break;
1152   case Attribute::AllocSize:
1153     llvm_unreachable("allocsize not supported in raw format");
1154     break;
1155   }
1156   llvm_unreachable("Unsupported attribute type");
1157 }
1158 
1159 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1160   if (!Val) return;
1161 
1162   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1163        I = Attribute::AttrKind(I + 1)) {
1164     if (I == Attribute::Dereferenceable ||
1165         I == Attribute::DereferenceableOrNull ||
1166         I == Attribute::ArgMemOnly ||
1167         I == Attribute::AllocSize)
1168       continue;
1169     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1170       if (I == Attribute::Alignment)
1171         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1172       else if (I == Attribute::StackAlignment)
1173         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1174       else
1175         B.addAttribute(I);
1176     }
1177   }
1178 }
1179 
1180 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1181 /// been decoded from the given integer. This function must stay in sync with
1182 /// 'encodeLLVMAttributesForBitcode'.
1183 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1184                                            uint64_t EncodedAttrs) {
1185   // FIXME: Remove in 4.0.
1186 
1187   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1188   // the bits above 31 down by 11 bits.
1189   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1190   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1191          "Alignment must be a power of two.");
1192 
1193   if (Alignment)
1194     B.addAlignmentAttr(Alignment);
1195   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1196                           (EncodedAttrs & 0xffff));
1197 }
1198 
1199 Error BitcodeReader::parseAttributeBlock() {
1200   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1201     return error("Invalid record");
1202 
1203   if (!MAttributes.empty())
1204     return error("Invalid multiple blocks");
1205 
1206   SmallVector<uint64_t, 64> Record;
1207 
1208   SmallVector<AttributeList, 8> Attrs;
1209 
1210   // Read all the records.
1211   while (true) {
1212     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1213 
1214     switch (Entry.Kind) {
1215     case BitstreamEntry::SubBlock: // Handled for us already.
1216     case BitstreamEntry::Error:
1217       return error("Malformed block");
1218     case BitstreamEntry::EndBlock:
1219       return Error::success();
1220     case BitstreamEntry::Record:
1221       // The interesting case.
1222       break;
1223     }
1224 
1225     // Read a record.
1226     Record.clear();
1227     switch (Stream.readRecord(Entry.ID, Record)) {
1228     default:  // Default behavior: ignore.
1229       break;
1230     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1231       // FIXME: Remove in 4.0.
1232       if (Record.size() & 1)
1233         return error("Invalid record");
1234 
1235       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1236         AttrBuilder B;
1237         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1238         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1239       }
1240 
1241       MAttributes.push_back(AttributeList::get(Context, Attrs));
1242       Attrs.clear();
1243       break;
1244     }
1245     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1246       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1247         Attrs.push_back(MAttributeGroups[Record[i]]);
1248 
1249       MAttributes.push_back(AttributeList::get(Context, Attrs));
1250       Attrs.clear();
1251       break;
1252     }
1253     }
1254   }
1255 }
1256 
1257 // Returns Attribute::None on unrecognized codes.
1258 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1259   switch (Code) {
1260   default:
1261     return Attribute::None;
1262   case bitc::ATTR_KIND_ALIGNMENT:
1263     return Attribute::Alignment;
1264   case bitc::ATTR_KIND_ALWAYS_INLINE:
1265     return Attribute::AlwaysInline;
1266   case bitc::ATTR_KIND_ARGMEMONLY:
1267     return Attribute::ArgMemOnly;
1268   case bitc::ATTR_KIND_BUILTIN:
1269     return Attribute::Builtin;
1270   case bitc::ATTR_KIND_BY_VAL:
1271     return Attribute::ByVal;
1272   case bitc::ATTR_KIND_IN_ALLOCA:
1273     return Attribute::InAlloca;
1274   case bitc::ATTR_KIND_COLD:
1275     return Attribute::Cold;
1276   case bitc::ATTR_KIND_CONVERGENT:
1277     return Attribute::Convergent;
1278   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1279     return Attribute::InaccessibleMemOnly;
1280   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1281     return Attribute::InaccessibleMemOrArgMemOnly;
1282   case bitc::ATTR_KIND_INLINE_HINT:
1283     return Attribute::InlineHint;
1284   case bitc::ATTR_KIND_IN_REG:
1285     return Attribute::InReg;
1286   case bitc::ATTR_KIND_JUMP_TABLE:
1287     return Attribute::JumpTable;
1288   case bitc::ATTR_KIND_MIN_SIZE:
1289     return Attribute::MinSize;
1290   case bitc::ATTR_KIND_NAKED:
1291     return Attribute::Naked;
1292   case bitc::ATTR_KIND_NEST:
1293     return Attribute::Nest;
1294   case bitc::ATTR_KIND_NO_ALIAS:
1295     return Attribute::NoAlias;
1296   case bitc::ATTR_KIND_NO_BUILTIN:
1297     return Attribute::NoBuiltin;
1298   case bitc::ATTR_KIND_NO_CAPTURE:
1299     return Attribute::NoCapture;
1300   case bitc::ATTR_KIND_NO_DUPLICATE:
1301     return Attribute::NoDuplicate;
1302   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1303     return Attribute::NoImplicitFloat;
1304   case bitc::ATTR_KIND_NO_INLINE:
1305     return Attribute::NoInline;
1306   case bitc::ATTR_KIND_NO_RECURSE:
1307     return Attribute::NoRecurse;
1308   case bitc::ATTR_KIND_NON_LAZY_BIND:
1309     return Attribute::NonLazyBind;
1310   case bitc::ATTR_KIND_NON_NULL:
1311     return Attribute::NonNull;
1312   case bitc::ATTR_KIND_DEREFERENCEABLE:
1313     return Attribute::Dereferenceable;
1314   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1315     return Attribute::DereferenceableOrNull;
1316   case bitc::ATTR_KIND_ALLOC_SIZE:
1317     return Attribute::AllocSize;
1318   case bitc::ATTR_KIND_NO_RED_ZONE:
1319     return Attribute::NoRedZone;
1320   case bitc::ATTR_KIND_NO_RETURN:
1321     return Attribute::NoReturn;
1322   case bitc::ATTR_KIND_NO_UNWIND:
1323     return Attribute::NoUnwind;
1324   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1325     return Attribute::OptimizeForSize;
1326   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1327     return Attribute::OptimizeNone;
1328   case bitc::ATTR_KIND_READ_NONE:
1329     return Attribute::ReadNone;
1330   case bitc::ATTR_KIND_READ_ONLY:
1331     return Attribute::ReadOnly;
1332   case bitc::ATTR_KIND_RETURNED:
1333     return Attribute::Returned;
1334   case bitc::ATTR_KIND_RETURNS_TWICE:
1335     return Attribute::ReturnsTwice;
1336   case bitc::ATTR_KIND_S_EXT:
1337     return Attribute::SExt;
1338   case bitc::ATTR_KIND_SPECULATABLE:
1339     return Attribute::Speculatable;
1340   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1341     return Attribute::StackAlignment;
1342   case bitc::ATTR_KIND_STACK_PROTECT:
1343     return Attribute::StackProtect;
1344   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1345     return Attribute::StackProtectReq;
1346   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1347     return Attribute::StackProtectStrong;
1348   case bitc::ATTR_KIND_SAFESTACK:
1349     return Attribute::SafeStack;
1350   case bitc::ATTR_KIND_STRUCT_RET:
1351     return Attribute::StructRet;
1352   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1353     return Attribute::SanitizeAddress;
1354   case bitc::ATTR_KIND_SANITIZE_THREAD:
1355     return Attribute::SanitizeThread;
1356   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1357     return Attribute::SanitizeMemory;
1358   case bitc::ATTR_KIND_SWIFT_ERROR:
1359     return Attribute::SwiftError;
1360   case bitc::ATTR_KIND_SWIFT_SELF:
1361     return Attribute::SwiftSelf;
1362   case bitc::ATTR_KIND_UW_TABLE:
1363     return Attribute::UWTable;
1364   case bitc::ATTR_KIND_WRITEONLY:
1365     return Attribute::WriteOnly;
1366   case bitc::ATTR_KIND_Z_EXT:
1367     return Attribute::ZExt;
1368   }
1369 }
1370 
1371 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1372                                          unsigned &Alignment) {
1373   // Note: Alignment in bitcode files is incremented by 1, so that zero
1374   // can be used for default alignment.
1375   if (Exponent > Value::MaxAlignmentExponent + 1)
1376     return error("Invalid alignment value");
1377   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1378   return Error::success();
1379 }
1380 
1381 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1382   *Kind = getAttrFromCode(Code);
1383   if (*Kind == Attribute::None)
1384     return error("Unknown attribute kind (" + Twine(Code) + ")");
1385   return Error::success();
1386 }
1387 
1388 Error BitcodeReader::parseAttributeGroupBlock() {
1389   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1390     return error("Invalid record");
1391 
1392   if (!MAttributeGroups.empty())
1393     return error("Invalid multiple blocks");
1394 
1395   SmallVector<uint64_t, 64> Record;
1396 
1397   // Read all the records.
1398   while (true) {
1399     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1400 
1401     switch (Entry.Kind) {
1402     case BitstreamEntry::SubBlock: // Handled for us already.
1403     case BitstreamEntry::Error:
1404       return error("Malformed block");
1405     case BitstreamEntry::EndBlock:
1406       return Error::success();
1407     case BitstreamEntry::Record:
1408       // The interesting case.
1409       break;
1410     }
1411 
1412     // Read a record.
1413     Record.clear();
1414     switch (Stream.readRecord(Entry.ID, Record)) {
1415     default:  // Default behavior: ignore.
1416       break;
1417     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1418       if (Record.size() < 3)
1419         return error("Invalid record");
1420 
1421       uint64_t GrpID = Record[0];
1422       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1423 
1424       AttrBuilder B;
1425       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1426         if (Record[i] == 0) {        // Enum attribute
1427           Attribute::AttrKind Kind;
1428           if (Error Err = parseAttrKind(Record[++i], &Kind))
1429             return Err;
1430 
1431           B.addAttribute(Kind);
1432         } else if (Record[i] == 1) { // Integer attribute
1433           Attribute::AttrKind Kind;
1434           if (Error Err = parseAttrKind(Record[++i], &Kind))
1435             return Err;
1436           if (Kind == Attribute::Alignment)
1437             B.addAlignmentAttr(Record[++i]);
1438           else if (Kind == Attribute::StackAlignment)
1439             B.addStackAlignmentAttr(Record[++i]);
1440           else if (Kind == Attribute::Dereferenceable)
1441             B.addDereferenceableAttr(Record[++i]);
1442           else if (Kind == Attribute::DereferenceableOrNull)
1443             B.addDereferenceableOrNullAttr(Record[++i]);
1444           else if (Kind == Attribute::AllocSize)
1445             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1446         } else {                     // String attribute
1447           assert((Record[i] == 3 || Record[i] == 4) &&
1448                  "Invalid attribute group entry");
1449           bool HasValue = (Record[i++] == 4);
1450           SmallString<64> KindStr;
1451           SmallString<64> ValStr;
1452 
1453           while (Record[i] != 0 && i != e)
1454             KindStr += Record[i++];
1455           assert(Record[i] == 0 && "Kind string not null terminated");
1456 
1457           if (HasValue) {
1458             // Has a value associated with it.
1459             ++i; // Skip the '0' that terminates the "kind" string.
1460             while (Record[i] != 0 && i != e)
1461               ValStr += Record[i++];
1462             assert(Record[i] == 0 && "Value string not null terminated");
1463           }
1464 
1465           B.addAttribute(KindStr.str(), ValStr.str());
1466         }
1467       }
1468 
1469       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1470       break;
1471     }
1472     }
1473   }
1474 }
1475 
1476 Error BitcodeReader::parseTypeTable() {
1477   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1478     return error("Invalid record");
1479 
1480   return parseTypeTableBody();
1481 }
1482 
1483 Error BitcodeReader::parseTypeTableBody() {
1484   if (!TypeList.empty())
1485     return error("Invalid multiple blocks");
1486 
1487   SmallVector<uint64_t, 64> Record;
1488   unsigned NumRecords = 0;
1489 
1490   SmallString<64> TypeName;
1491 
1492   // Read all the records for this type table.
1493   while (true) {
1494     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1495 
1496     switch (Entry.Kind) {
1497     case BitstreamEntry::SubBlock: // Handled for us already.
1498     case BitstreamEntry::Error:
1499       return error("Malformed block");
1500     case BitstreamEntry::EndBlock:
1501       if (NumRecords != TypeList.size())
1502         return error("Malformed block");
1503       return Error::success();
1504     case BitstreamEntry::Record:
1505       // The interesting case.
1506       break;
1507     }
1508 
1509     // Read a record.
1510     Record.clear();
1511     Type *ResultTy = nullptr;
1512     switch (Stream.readRecord(Entry.ID, Record)) {
1513     default:
1514       return error("Invalid value");
1515     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1516       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1517       // type list.  This allows us to reserve space.
1518       if (Record.size() < 1)
1519         return error("Invalid record");
1520       TypeList.resize(Record[0]);
1521       continue;
1522     case bitc::TYPE_CODE_VOID:      // VOID
1523       ResultTy = Type::getVoidTy(Context);
1524       break;
1525     case bitc::TYPE_CODE_HALF:     // HALF
1526       ResultTy = Type::getHalfTy(Context);
1527       break;
1528     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1529       ResultTy = Type::getFloatTy(Context);
1530       break;
1531     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1532       ResultTy = Type::getDoubleTy(Context);
1533       break;
1534     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1535       ResultTy = Type::getX86_FP80Ty(Context);
1536       break;
1537     case bitc::TYPE_CODE_FP128:     // FP128
1538       ResultTy = Type::getFP128Ty(Context);
1539       break;
1540     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1541       ResultTy = Type::getPPC_FP128Ty(Context);
1542       break;
1543     case bitc::TYPE_CODE_LABEL:     // LABEL
1544       ResultTy = Type::getLabelTy(Context);
1545       break;
1546     case bitc::TYPE_CODE_METADATA:  // METADATA
1547       ResultTy = Type::getMetadataTy(Context);
1548       break;
1549     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1550       ResultTy = Type::getX86_MMXTy(Context);
1551       break;
1552     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1553       ResultTy = Type::getTokenTy(Context);
1554       break;
1555     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1556       if (Record.size() < 1)
1557         return error("Invalid record");
1558 
1559       uint64_t NumBits = Record[0];
1560       if (NumBits < IntegerType::MIN_INT_BITS ||
1561           NumBits > IntegerType::MAX_INT_BITS)
1562         return error("Bitwidth for integer type out of range");
1563       ResultTy = IntegerType::get(Context, NumBits);
1564       break;
1565     }
1566     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1567                                     //          [pointee type, address space]
1568       if (Record.size() < 1)
1569         return error("Invalid record");
1570       unsigned AddressSpace = 0;
1571       if (Record.size() == 2)
1572         AddressSpace = Record[1];
1573       ResultTy = getTypeByID(Record[0]);
1574       if (!ResultTy ||
1575           !PointerType::isValidElementType(ResultTy))
1576         return error("Invalid type");
1577       ResultTy = PointerType::get(ResultTy, AddressSpace);
1578       break;
1579     }
1580     case bitc::TYPE_CODE_FUNCTION_OLD: {
1581       // FIXME: attrid is dead, remove it in LLVM 4.0
1582       // FUNCTION: [vararg, attrid, retty, paramty x N]
1583       if (Record.size() < 3)
1584         return error("Invalid record");
1585       SmallVector<Type*, 8> ArgTys;
1586       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1587         if (Type *T = getTypeByID(Record[i]))
1588           ArgTys.push_back(T);
1589         else
1590           break;
1591       }
1592 
1593       ResultTy = getTypeByID(Record[2]);
1594       if (!ResultTy || ArgTys.size() < Record.size()-3)
1595         return error("Invalid type");
1596 
1597       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1598       break;
1599     }
1600     case bitc::TYPE_CODE_FUNCTION: {
1601       // FUNCTION: [vararg, retty, paramty x N]
1602       if (Record.size() < 2)
1603         return error("Invalid record");
1604       SmallVector<Type*, 8> ArgTys;
1605       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1606         if (Type *T = getTypeByID(Record[i])) {
1607           if (!FunctionType::isValidArgumentType(T))
1608             return error("Invalid function argument type");
1609           ArgTys.push_back(T);
1610         }
1611         else
1612           break;
1613       }
1614 
1615       ResultTy = getTypeByID(Record[1]);
1616       if (!ResultTy || ArgTys.size() < Record.size()-2)
1617         return error("Invalid type");
1618 
1619       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1620       break;
1621     }
1622     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1623       if (Record.size() < 1)
1624         return error("Invalid record");
1625       SmallVector<Type*, 8> EltTys;
1626       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1627         if (Type *T = getTypeByID(Record[i]))
1628           EltTys.push_back(T);
1629         else
1630           break;
1631       }
1632       if (EltTys.size() != Record.size()-1)
1633         return error("Invalid type");
1634       ResultTy = StructType::get(Context, EltTys, Record[0]);
1635       break;
1636     }
1637     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1638       if (convertToString(Record, 0, TypeName))
1639         return error("Invalid record");
1640       continue;
1641 
1642     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1643       if (Record.size() < 1)
1644         return error("Invalid record");
1645 
1646       if (NumRecords >= TypeList.size())
1647         return error("Invalid TYPE table");
1648 
1649       // Check to see if this was forward referenced, if so fill in the temp.
1650       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1651       if (Res) {
1652         Res->setName(TypeName);
1653         TypeList[NumRecords] = nullptr;
1654       } else  // Otherwise, create a new struct.
1655         Res = createIdentifiedStructType(Context, TypeName);
1656       TypeName.clear();
1657 
1658       SmallVector<Type*, 8> EltTys;
1659       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1660         if (Type *T = getTypeByID(Record[i]))
1661           EltTys.push_back(T);
1662         else
1663           break;
1664       }
1665       if (EltTys.size() != Record.size()-1)
1666         return error("Invalid record");
1667       Res->setBody(EltTys, Record[0]);
1668       ResultTy = Res;
1669       break;
1670     }
1671     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1672       if (Record.size() != 1)
1673         return error("Invalid record");
1674 
1675       if (NumRecords >= TypeList.size())
1676         return error("Invalid TYPE table");
1677 
1678       // Check to see if this was forward referenced, if so fill in the temp.
1679       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1680       if (Res) {
1681         Res->setName(TypeName);
1682         TypeList[NumRecords] = nullptr;
1683       } else  // Otherwise, create a new struct with no body.
1684         Res = createIdentifiedStructType(Context, TypeName);
1685       TypeName.clear();
1686       ResultTy = Res;
1687       break;
1688     }
1689     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1690       if (Record.size() < 2)
1691         return error("Invalid record");
1692       ResultTy = getTypeByID(Record[1]);
1693       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1694         return error("Invalid type");
1695       ResultTy = ArrayType::get(ResultTy, Record[0]);
1696       break;
1697     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1698       if (Record.size() < 2)
1699         return error("Invalid record");
1700       if (Record[0] == 0)
1701         return error("Invalid vector length");
1702       ResultTy = getTypeByID(Record[1]);
1703       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1704         return error("Invalid type");
1705       ResultTy = VectorType::get(ResultTy, Record[0]);
1706       break;
1707     }
1708 
1709     if (NumRecords >= TypeList.size())
1710       return error("Invalid TYPE table");
1711     if (TypeList[NumRecords])
1712       return error(
1713           "Invalid TYPE table: Only named structs can be forward referenced");
1714     assert(ResultTy && "Didn't read a type?");
1715     TypeList[NumRecords++] = ResultTy;
1716   }
1717 }
1718 
1719 Error BitcodeReader::parseOperandBundleTags() {
1720   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1721     return error("Invalid record");
1722 
1723   if (!BundleTags.empty())
1724     return error("Invalid multiple blocks");
1725 
1726   SmallVector<uint64_t, 64> Record;
1727 
1728   while (true) {
1729     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1730 
1731     switch (Entry.Kind) {
1732     case BitstreamEntry::SubBlock: // Handled for us already.
1733     case BitstreamEntry::Error:
1734       return error("Malformed block");
1735     case BitstreamEntry::EndBlock:
1736       return Error::success();
1737     case BitstreamEntry::Record:
1738       // The interesting case.
1739       break;
1740     }
1741 
1742     // Tags are implicitly mapped to integers by their order.
1743 
1744     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1745       return error("Invalid record");
1746 
1747     // OPERAND_BUNDLE_TAG: [strchr x N]
1748     BundleTags.emplace_back();
1749     if (convertToString(Record, 0, BundleTags.back()))
1750       return error("Invalid record");
1751     Record.clear();
1752   }
1753 }
1754 
1755 /// Associate a value with its name from the given index in the provided record.
1756 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1757                                              unsigned NameIndex, Triple &TT) {
1758   SmallString<128> ValueName;
1759   if (convertToString(Record, NameIndex, ValueName))
1760     return error("Invalid record");
1761   unsigned ValueID = Record[0];
1762   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1763     return error("Invalid record");
1764   Value *V = ValueList[ValueID];
1765 
1766   StringRef NameStr(ValueName.data(), ValueName.size());
1767   if (NameStr.find_first_of(0) != StringRef::npos)
1768     return error("Invalid value name");
1769   V->setName(NameStr);
1770   auto *GO = dyn_cast<GlobalObject>(V);
1771   if (GO) {
1772     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1773       if (TT.isOSBinFormatMachO())
1774         GO->setComdat(nullptr);
1775       else
1776         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1777     }
1778   }
1779   return V;
1780 }
1781 
1782 /// Helper to note and return the current location, and jump to the given
1783 /// offset.
1784 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1785                                        BitstreamCursor &Stream) {
1786   // Save the current parsing location so we can jump back at the end
1787   // of the VST read.
1788   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1789   Stream.JumpToBit(Offset * 32);
1790 #ifndef NDEBUG
1791   // Do some checking if we are in debug mode.
1792   BitstreamEntry Entry = Stream.advance();
1793   assert(Entry.Kind == BitstreamEntry::SubBlock);
1794   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1795 #else
1796   // In NDEBUG mode ignore the output so we don't get an unused variable
1797   // warning.
1798   Stream.advance();
1799 #endif
1800   return CurrentBit;
1801 }
1802 
1803 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1804                                             Function *F,
1805                                             ArrayRef<uint64_t> Record) {
1806   // Note that we subtract 1 here because the offset is relative to one word
1807   // before the start of the identification or module block, which was
1808   // historically always the start of the regular bitcode header.
1809   uint64_t FuncWordOffset = Record[1] - 1;
1810   uint64_t FuncBitOffset = FuncWordOffset * 32;
1811   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1812   // Set the LastFunctionBlockBit to point to the last function block.
1813   // Later when parsing is resumed after function materialization,
1814   // we can simply skip that last function block.
1815   if (FuncBitOffset > LastFunctionBlockBit)
1816     LastFunctionBlockBit = FuncBitOffset;
1817 }
1818 
1819 /// Read a new-style GlobalValue symbol table.
1820 Error BitcodeReader::parseGlobalValueSymbolTable() {
1821   unsigned FuncBitcodeOffsetDelta =
1822       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1823 
1824   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1825     return error("Invalid record");
1826 
1827   SmallVector<uint64_t, 64> Record;
1828   while (true) {
1829     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1830 
1831     switch (Entry.Kind) {
1832     case BitstreamEntry::SubBlock:
1833     case BitstreamEntry::Error:
1834       return error("Malformed block");
1835     case BitstreamEntry::EndBlock:
1836       return Error::success();
1837     case BitstreamEntry::Record:
1838       break;
1839     }
1840 
1841     Record.clear();
1842     switch (Stream.readRecord(Entry.ID, Record)) {
1843     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1844       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1845                               cast<Function>(ValueList[Record[0]]), Record);
1846       break;
1847     }
1848   }
1849 }
1850 
1851 /// Parse the value symbol table at either the current parsing location or
1852 /// at the given bit offset if provided.
1853 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1854   uint64_t CurrentBit;
1855   // Pass in the Offset to distinguish between calling for the module-level
1856   // VST (where we want to jump to the VST offset) and the function-level
1857   // VST (where we don't).
1858   if (Offset > 0) {
1859     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1860     // If this module uses a string table, read this as a module-level VST.
1861     if (UseStrtab) {
1862       if (Error Err = parseGlobalValueSymbolTable())
1863         return Err;
1864       Stream.JumpToBit(CurrentBit);
1865       return Error::success();
1866     }
1867     // Otherwise, the VST will be in a similar format to a function-level VST,
1868     // and will contain symbol names.
1869   }
1870 
1871   // Compute the delta between the bitcode indices in the VST (the word offset
1872   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1873   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1874   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1875   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1876   // just before entering the VST subblock because: 1) the EnterSubBlock
1877   // changes the AbbrevID width; 2) the VST block is nested within the same
1878   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1879   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1880   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1881   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1882   unsigned FuncBitcodeOffsetDelta =
1883       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1884 
1885   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1886     return error("Invalid record");
1887 
1888   SmallVector<uint64_t, 64> Record;
1889 
1890   Triple TT(TheModule->getTargetTriple());
1891 
1892   // Read all the records for this value table.
1893   SmallString<128> ValueName;
1894 
1895   while (true) {
1896     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1897 
1898     switch (Entry.Kind) {
1899     case BitstreamEntry::SubBlock: // Handled for us already.
1900     case BitstreamEntry::Error:
1901       return error("Malformed block");
1902     case BitstreamEntry::EndBlock:
1903       if (Offset > 0)
1904         Stream.JumpToBit(CurrentBit);
1905       return Error::success();
1906     case BitstreamEntry::Record:
1907       // The interesting case.
1908       break;
1909     }
1910 
1911     // Read a record.
1912     Record.clear();
1913     switch (Stream.readRecord(Entry.ID, Record)) {
1914     default:  // Default behavior: unknown type.
1915       break;
1916     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1917       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1918       if (Error Err = ValOrErr.takeError())
1919         return Err;
1920       ValOrErr.get();
1921       break;
1922     }
1923     case bitc::VST_CODE_FNENTRY: {
1924       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1925       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1926       if (Error Err = ValOrErr.takeError())
1927         return Err;
1928       Value *V = ValOrErr.get();
1929 
1930       // Ignore function offsets emitted for aliases of functions in older
1931       // versions of LLVM.
1932       if (auto *F = dyn_cast<Function>(V))
1933         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1934       break;
1935     }
1936     case bitc::VST_CODE_BBENTRY: {
1937       if (convertToString(Record, 1, ValueName))
1938         return error("Invalid record");
1939       BasicBlock *BB = getBasicBlock(Record[0]);
1940       if (!BB)
1941         return error("Invalid record");
1942 
1943       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1944       ValueName.clear();
1945       break;
1946     }
1947     }
1948   }
1949 }
1950 
1951 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
1952 /// encoding.
1953 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1954   if ((V & 1) == 0)
1955     return V >> 1;
1956   if (V != 1)
1957     return -(V >> 1);
1958   // There is no such thing as -0 with integers.  "-0" really means MININT.
1959   return 1ULL << 63;
1960 }
1961 
1962 /// Resolve all of the initializers for global values and aliases that we can.
1963 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
1964   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1965   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
1966       IndirectSymbolInitWorklist;
1967   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1968   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
1969   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
1970 
1971   GlobalInitWorklist.swap(GlobalInits);
1972   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
1973   FunctionPrefixWorklist.swap(FunctionPrefixes);
1974   FunctionPrologueWorklist.swap(FunctionPrologues);
1975   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
1976 
1977   while (!GlobalInitWorklist.empty()) {
1978     unsigned ValID = GlobalInitWorklist.back().second;
1979     if (ValID >= ValueList.size()) {
1980       // Not ready to resolve this yet, it requires something later in the file.
1981       GlobalInits.push_back(GlobalInitWorklist.back());
1982     } else {
1983       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1984         GlobalInitWorklist.back().first->setInitializer(C);
1985       else
1986         return error("Expected a constant");
1987     }
1988     GlobalInitWorklist.pop_back();
1989   }
1990 
1991   while (!IndirectSymbolInitWorklist.empty()) {
1992     unsigned ValID = IndirectSymbolInitWorklist.back().second;
1993     if (ValID >= ValueList.size()) {
1994       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
1995     } else {
1996       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
1997       if (!C)
1998         return error("Expected a constant");
1999       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2000       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2001         return error("Alias and aliasee types don't match");
2002       GIS->setIndirectSymbol(C);
2003     }
2004     IndirectSymbolInitWorklist.pop_back();
2005   }
2006 
2007   while (!FunctionPrefixWorklist.empty()) {
2008     unsigned ValID = FunctionPrefixWorklist.back().second;
2009     if (ValID >= ValueList.size()) {
2010       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2011     } else {
2012       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2013         FunctionPrefixWorklist.back().first->setPrefixData(C);
2014       else
2015         return error("Expected a constant");
2016     }
2017     FunctionPrefixWorklist.pop_back();
2018   }
2019 
2020   while (!FunctionPrologueWorklist.empty()) {
2021     unsigned ValID = FunctionPrologueWorklist.back().second;
2022     if (ValID >= ValueList.size()) {
2023       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2024     } else {
2025       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2026         FunctionPrologueWorklist.back().first->setPrologueData(C);
2027       else
2028         return error("Expected a constant");
2029     }
2030     FunctionPrologueWorklist.pop_back();
2031   }
2032 
2033   while (!FunctionPersonalityFnWorklist.empty()) {
2034     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2035     if (ValID >= ValueList.size()) {
2036       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2037     } else {
2038       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2039         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2040       else
2041         return error("Expected a constant");
2042     }
2043     FunctionPersonalityFnWorklist.pop_back();
2044   }
2045 
2046   return Error::success();
2047 }
2048 
2049 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2050   SmallVector<uint64_t, 8> Words(Vals.size());
2051   transform(Vals, Words.begin(),
2052                  BitcodeReader::decodeSignRotatedValue);
2053 
2054   return APInt(TypeBits, Words);
2055 }
2056 
2057 Error BitcodeReader::parseConstants() {
2058   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2059     return error("Invalid record");
2060 
2061   SmallVector<uint64_t, 64> Record;
2062 
2063   // Read all the records for this value table.
2064   Type *CurTy = Type::getInt32Ty(Context);
2065   unsigned NextCstNo = ValueList.size();
2066 
2067   while (true) {
2068     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2069 
2070     switch (Entry.Kind) {
2071     case BitstreamEntry::SubBlock: // Handled for us already.
2072     case BitstreamEntry::Error:
2073       return error("Malformed block");
2074     case BitstreamEntry::EndBlock:
2075       if (NextCstNo != ValueList.size())
2076         return error("Invalid constant reference");
2077 
2078       // Once all the constants have been read, go through and resolve forward
2079       // references.
2080       ValueList.resolveConstantForwardRefs();
2081       return Error::success();
2082     case BitstreamEntry::Record:
2083       // The interesting case.
2084       break;
2085     }
2086 
2087     // Read a record.
2088     Record.clear();
2089     Type *VoidType = Type::getVoidTy(Context);
2090     Value *V = nullptr;
2091     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2092     switch (BitCode) {
2093     default:  // Default behavior: unknown constant
2094     case bitc::CST_CODE_UNDEF:     // UNDEF
2095       V = UndefValue::get(CurTy);
2096       break;
2097     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2098       if (Record.empty())
2099         return error("Invalid record");
2100       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2101         return error("Invalid record");
2102       if (TypeList[Record[0]] == VoidType)
2103         return error("Invalid constant type");
2104       CurTy = TypeList[Record[0]];
2105       continue;  // Skip the ValueList manipulation.
2106     case bitc::CST_CODE_NULL:      // NULL
2107       V = Constant::getNullValue(CurTy);
2108       break;
2109     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2110       if (!CurTy->isIntegerTy() || Record.empty())
2111         return error("Invalid record");
2112       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2113       break;
2114     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2115       if (!CurTy->isIntegerTy() || Record.empty())
2116         return error("Invalid record");
2117 
2118       APInt VInt =
2119           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2120       V = ConstantInt::get(Context, VInt);
2121 
2122       break;
2123     }
2124     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2125       if (Record.empty())
2126         return error("Invalid record");
2127       if (CurTy->isHalfTy())
2128         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2129                                              APInt(16, (uint16_t)Record[0])));
2130       else if (CurTy->isFloatTy())
2131         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2132                                              APInt(32, (uint32_t)Record[0])));
2133       else if (CurTy->isDoubleTy())
2134         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2135                                              APInt(64, Record[0])));
2136       else if (CurTy->isX86_FP80Ty()) {
2137         // Bits are not stored the same way as a normal i80 APInt, compensate.
2138         uint64_t Rearrange[2];
2139         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2140         Rearrange[1] = Record[0] >> 48;
2141         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2142                                              APInt(80, Rearrange)));
2143       } else if (CurTy->isFP128Ty())
2144         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2145                                              APInt(128, Record)));
2146       else if (CurTy->isPPC_FP128Ty())
2147         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2148                                              APInt(128, Record)));
2149       else
2150         V = UndefValue::get(CurTy);
2151       break;
2152     }
2153 
2154     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2155       if (Record.empty())
2156         return error("Invalid record");
2157 
2158       unsigned Size = Record.size();
2159       SmallVector<Constant*, 16> Elts;
2160 
2161       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2162         for (unsigned i = 0; i != Size; ++i)
2163           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2164                                                      STy->getElementType(i)));
2165         V = ConstantStruct::get(STy, Elts);
2166       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2167         Type *EltTy = ATy->getElementType();
2168         for (unsigned i = 0; i != Size; ++i)
2169           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2170         V = ConstantArray::get(ATy, Elts);
2171       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2172         Type *EltTy = VTy->getElementType();
2173         for (unsigned i = 0; i != Size; ++i)
2174           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2175         V = ConstantVector::get(Elts);
2176       } else {
2177         V = UndefValue::get(CurTy);
2178       }
2179       break;
2180     }
2181     case bitc::CST_CODE_STRING:    // STRING: [values]
2182     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2183       if (Record.empty())
2184         return error("Invalid record");
2185 
2186       SmallString<16> Elts(Record.begin(), Record.end());
2187       V = ConstantDataArray::getString(Context, Elts,
2188                                        BitCode == bitc::CST_CODE_CSTRING);
2189       break;
2190     }
2191     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2192       if (Record.empty())
2193         return error("Invalid record");
2194 
2195       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2196       if (EltTy->isIntegerTy(8)) {
2197         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2198         if (isa<VectorType>(CurTy))
2199           V = ConstantDataVector::get(Context, Elts);
2200         else
2201           V = ConstantDataArray::get(Context, Elts);
2202       } else if (EltTy->isIntegerTy(16)) {
2203         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2204         if (isa<VectorType>(CurTy))
2205           V = ConstantDataVector::get(Context, Elts);
2206         else
2207           V = ConstantDataArray::get(Context, Elts);
2208       } else if (EltTy->isIntegerTy(32)) {
2209         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2210         if (isa<VectorType>(CurTy))
2211           V = ConstantDataVector::get(Context, Elts);
2212         else
2213           V = ConstantDataArray::get(Context, Elts);
2214       } else if (EltTy->isIntegerTy(64)) {
2215         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2216         if (isa<VectorType>(CurTy))
2217           V = ConstantDataVector::get(Context, Elts);
2218         else
2219           V = ConstantDataArray::get(Context, Elts);
2220       } else if (EltTy->isHalfTy()) {
2221         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2222         if (isa<VectorType>(CurTy))
2223           V = ConstantDataVector::getFP(Context, Elts);
2224         else
2225           V = ConstantDataArray::getFP(Context, Elts);
2226       } else if (EltTy->isFloatTy()) {
2227         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2228         if (isa<VectorType>(CurTy))
2229           V = ConstantDataVector::getFP(Context, Elts);
2230         else
2231           V = ConstantDataArray::getFP(Context, Elts);
2232       } else if (EltTy->isDoubleTy()) {
2233         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2234         if (isa<VectorType>(CurTy))
2235           V = ConstantDataVector::getFP(Context, Elts);
2236         else
2237           V = ConstantDataArray::getFP(Context, Elts);
2238       } else {
2239         return error("Invalid type for value");
2240       }
2241       break;
2242     }
2243     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2244       if (Record.size() < 3)
2245         return error("Invalid record");
2246       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2247       if (Opc < 0) {
2248         V = UndefValue::get(CurTy);  // Unknown binop.
2249       } else {
2250         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2251         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2252         unsigned Flags = 0;
2253         if (Record.size() >= 4) {
2254           if (Opc == Instruction::Add ||
2255               Opc == Instruction::Sub ||
2256               Opc == Instruction::Mul ||
2257               Opc == Instruction::Shl) {
2258             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2259               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2260             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2261               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2262           } else if (Opc == Instruction::SDiv ||
2263                      Opc == Instruction::UDiv ||
2264                      Opc == Instruction::LShr ||
2265                      Opc == Instruction::AShr) {
2266             if (Record[3] & (1 << bitc::PEO_EXACT))
2267               Flags |= SDivOperator::IsExact;
2268           }
2269         }
2270         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2271       }
2272       break;
2273     }
2274     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2275       if (Record.size() < 3)
2276         return error("Invalid record");
2277       int Opc = getDecodedCastOpcode(Record[0]);
2278       if (Opc < 0) {
2279         V = UndefValue::get(CurTy);  // Unknown cast.
2280       } else {
2281         Type *OpTy = getTypeByID(Record[1]);
2282         if (!OpTy)
2283           return error("Invalid record");
2284         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2285         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2286         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2287       }
2288       break;
2289     }
2290     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2291     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2292     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2293                                                      // operands]
2294       unsigned OpNum = 0;
2295       Type *PointeeType = nullptr;
2296       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2297           Record.size() % 2)
2298         PointeeType = getTypeByID(Record[OpNum++]);
2299 
2300       bool InBounds = false;
2301       Optional<unsigned> InRangeIndex;
2302       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2303         uint64_t Op = Record[OpNum++];
2304         InBounds = Op & 1;
2305         InRangeIndex = Op >> 1;
2306       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2307         InBounds = true;
2308 
2309       SmallVector<Constant*, 16> Elts;
2310       while (OpNum != Record.size()) {
2311         Type *ElTy = getTypeByID(Record[OpNum++]);
2312         if (!ElTy)
2313           return error("Invalid record");
2314         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2315       }
2316 
2317       if (PointeeType &&
2318           PointeeType !=
2319               cast<PointerType>(Elts[0]->getType()->getScalarType())
2320                   ->getElementType())
2321         return error("Explicit gep operator type does not match pointee type "
2322                      "of pointer operand");
2323 
2324       if (Elts.size() < 1)
2325         return error("Invalid gep with no operands");
2326 
2327       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2328       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2329                                          InBounds, InRangeIndex);
2330       break;
2331     }
2332     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2333       if (Record.size() < 3)
2334         return error("Invalid record");
2335 
2336       Type *SelectorTy = Type::getInt1Ty(Context);
2337 
2338       // The selector might be an i1 or an <n x i1>
2339       // Get the type from the ValueList before getting a forward ref.
2340       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2341         if (Value *V = ValueList[Record[0]])
2342           if (SelectorTy != V->getType())
2343             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2344 
2345       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2346                                                               SelectorTy),
2347                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2348                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2349       break;
2350     }
2351     case bitc::CST_CODE_CE_EXTRACTELT
2352         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2353       if (Record.size() < 3)
2354         return error("Invalid record");
2355       VectorType *OpTy =
2356         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2357       if (!OpTy)
2358         return error("Invalid record");
2359       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2360       Constant *Op1 = nullptr;
2361       if (Record.size() == 4) {
2362         Type *IdxTy = getTypeByID(Record[2]);
2363         if (!IdxTy)
2364           return error("Invalid record");
2365         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2366       } else // TODO: Remove with llvm 4.0
2367         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2368       if (!Op1)
2369         return error("Invalid record");
2370       V = ConstantExpr::getExtractElement(Op0, Op1);
2371       break;
2372     }
2373     case bitc::CST_CODE_CE_INSERTELT
2374         : { // CE_INSERTELT: [opval, opval, opty, opval]
2375       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2376       if (Record.size() < 3 || !OpTy)
2377         return error("Invalid record");
2378       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2379       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2380                                                   OpTy->getElementType());
2381       Constant *Op2 = nullptr;
2382       if (Record.size() == 4) {
2383         Type *IdxTy = getTypeByID(Record[2]);
2384         if (!IdxTy)
2385           return error("Invalid record");
2386         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2387       } else // TODO: Remove with llvm 4.0
2388         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2389       if (!Op2)
2390         return error("Invalid record");
2391       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2392       break;
2393     }
2394     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2395       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2396       if (Record.size() < 3 || !OpTy)
2397         return error("Invalid record");
2398       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2399       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2400       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2401                                                  OpTy->getNumElements());
2402       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2403       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2404       break;
2405     }
2406     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2407       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2408       VectorType *OpTy =
2409         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2410       if (Record.size() < 4 || !RTy || !OpTy)
2411         return error("Invalid record");
2412       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2413       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2414       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2415                                                  RTy->getNumElements());
2416       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2417       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2418       break;
2419     }
2420     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2421       if (Record.size() < 4)
2422         return error("Invalid record");
2423       Type *OpTy = getTypeByID(Record[0]);
2424       if (!OpTy)
2425         return error("Invalid record");
2426       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2427       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2428 
2429       if (OpTy->isFPOrFPVectorTy())
2430         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2431       else
2432         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2433       break;
2434     }
2435     // This maintains backward compatibility, pre-asm dialect keywords.
2436     // FIXME: Remove with the 4.0 release.
2437     case bitc::CST_CODE_INLINEASM_OLD: {
2438       if (Record.size() < 2)
2439         return error("Invalid record");
2440       std::string AsmStr, ConstrStr;
2441       bool HasSideEffects = Record[0] & 1;
2442       bool IsAlignStack = Record[0] >> 1;
2443       unsigned AsmStrSize = Record[1];
2444       if (2+AsmStrSize >= Record.size())
2445         return error("Invalid record");
2446       unsigned ConstStrSize = Record[2+AsmStrSize];
2447       if (3+AsmStrSize+ConstStrSize > Record.size())
2448         return error("Invalid record");
2449 
2450       for (unsigned i = 0; i != AsmStrSize; ++i)
2451         AsmStr += (char)Record[2+i];
2452       for (unsigned i = 0; i != ConstStrSize; ++i)
2453         ConstrStr += (char)Record[3+AsmStrSize+i];
2454       PointerType *PTy = cast<PointerType>(CurTy);
2455       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2456                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2457       break;
2458     }
2459     // This version adds support for the asm dialect keywords (e.g.,
2460     // inteldialect).
2461     case bitc::CST_CODE_INLINEASM: {
2462       if (Record.size() < 2)
2463         return error("Invalid record");
2464       std::string AsmStr, ConstrStr;
2465       bool HasSideEffects = Record[0] & 1;
2466       bool IsAlignStack = (Record[0] >> 1) & 1;
2467       unsigned AsmDialect = Record[0] >> 2;
2468       unsigned AsmStrSize = Record[1];
2469       if (2+AsmStrSize >= Record.size())
2470         return error("Invalid record");
2471       unsigned ConstStrSize = Record[2+AsmStrSize];
2472       if (3+AsmStrSize+ConstStrSize > Record.size())
2473         return error("Invalid record");
2474 
2475       for (unsigned i = 0; i != AsmStrSize; ++i)
2476         AsmStr += (char)Record[2+i];
2477       for (unsigned i = 0; i != ConstStrSize; ++i)
2478         ConstrStr += (char)Record[3+AsmStrSize+i];
2479       PointerType *PTy = cast<PointerType>(CurTy);
2480       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2481                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2482                          InlineAsm::AsmDialect(AsmDialect));
2483       break;
2484     }
2485     case bitc::CST_CODE_BLOCKADDRESS:{
2486       if (Record.size() < 3)
2487         return error("Invalid record");
2488       Type *FnTy = getTypeByID(Record[0]);
2489       if (!FnTy)
2490         return error("Invalid record");
2491       Function *Fn =
2492         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2493       if (!Fn)
2494         return error("Invalid record");
2495 
2496       // If the function is already parsed we can insert the block address right
2497       // away.
2498       BasicBlock *BB;
2499       unsigned BBID = Record[2];
2500       if (!BBID)
2501         // Invalid reference to entry block.
2502         return error("Invalid ID");
2503       if (!Fn->empty()) {
2504         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2505         for (size_t I = 0, E = BBID; I != E; ++I) {
2506           if (BBI == BBE)
2507             return error("Invalid ID");
2508           ++BBI;
2509         }
2510         BB = &*BBI;
2511       } else {
2512         // Otherwise insert a placeholder and remember it so it can be inserted
2513         // when the function is parsed.
2514         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2515         if (FwdBBs.empty())
2516           BasicBlockFwdRefQueue.push_back(Fn);
2517         if (FwdBBs.size() < BBID + 1)
2518           FwdBBs.resize(BBID + 1);
2519         if (!FwdBBs[BBID])
2520           FwdBBs[BBID] = BasicBlock::Create(Context);
2521         BB = FwdBBs[BBID];
2522       }
2523       V = BlockAddress::get(Fn, BB);
2524       break;
2525     }
2526     }
2527 
2528     ValueList.assignValue(V, NextCstNo);
2529     ++NextCstNo;
2530   }
2531 }
2532 
2533 Error BitcodeReader::parseUseLists() {
2534   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2535     return error("Invalid record");
2536 
2537   // Read all the records.
2538   SmallVector<uint64_t, 64> Record;
2539 
2540   while (true) {
2541     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2542 
2543     switch (Entry.Kind) {
2544     case BitstreamEntry::SubBlock: // Handled for us already.
2545     case BitstreamEntry::Error:
2546       return error("Malformed block");
2547     case BitstreamEntry::EndBlock:
2548       return Error::success();
2549     case BitstreamEntry::Record:
2550       // The interesting case.
2551       break;
2552     }
2553 
2554     // Read a use list record.
2555     Record.clear();
2556     bool IsBB = false;
2557     switch (Stream.readRecord(Entry.ID, Record)) {
2558     default:  // Default behavior: unknown type.
2559       break;
2560     case bitc::USELIST_CODE_BB:
2561       IsBB = true;
2562       LLVM_FALLTHROUGH;
2563     case bitc::USELIST_CODE_DEFAULT: {
2564       unsigned RecordLength = Record.size();
2565       if (RecordLength < 3)
2566         // Records should have at least an ID and two indexes.
2567         return error("Invalid record");
2568       unsigned ID = Record.back();
2569       Record.pop_back();
2570 
2571       Value *V;
2572       if (IsBB) {
2573         assert(ID < FunctionBBs.size() && "Basic block not found");
2574         V = FunctionBBs[ID];
2575       } else
2576         V = ValueList[ID];
2577       unsigned NumUses = 0;
2578       SmallDenseMap<const Use *, unsigned, 16> Order;
2579       for (const Use &U : V->materialized_uses()) {
2580         if (++NumUses > Record.size())
2581           break;
2582         Order[&U] = Record[NumUses - 1];
2583       }
2584       if (Order.size() != Record.size() || NumUses > Record.size())
2585         // Mismatches can happen if the functions are being materialized lazily
2586         // (out-of-order), or a value has been upgraded.
2587         break;
2588 
2589       V->sortUseList([&](const Use &L, const Use &R) {
2590         return Order.lookup(&L) < Order.lookup(&R);
2591       });
2592       break;
2593     }
2594     }
2595   }
2596 }
2597 
2598 /// When we see the block for metadata, remember where it is and then skip it.
2599 /// This lets us lazily deserialize the metadata.
2600 Error BitcodeReader::rememberAndSkipMetadata() {
2601   // Save the current stream state.
2602   uint64_t CurBit = Stream.GetCurrentBitNo();
2603   DeferredMetadataInfo.push_back(CurBit);
2604 
2605   // Skip over the block for now.
2606   if (Stream.SkipBlock())
2607     return error("Invalid record");
2608   return Error::success();
2609 }
2610 
2611 Error BitcodeReader::materializeMetadata() {
2612   for (uint64_t BitPos : DeferredMetadataInfo) {
2613     // Move the bit stream to the saved position.
2614     Stream.JumpToBit(BitPos);
2615     if (Error Err = MDLoader->parseModuleMetadata())
2616       return Err;
2617   }
2618   DeferredMetadataInfo.clear();
2619   return Error::success();
2620 }
2621 
2622 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2623 
2624 /// When we see the block for a function body, remember where it is and then
2625 /// skip it.  This lets us lazily deserialize the functions.
2626 Error BitcodeReader::rememberAndSkipFunctionBody() {
2627   // Get the function we are talking about.
2628   if (FunctionsWithBodies.empty())
2629     return error("Insufficient function protos");
2630 
2631   Function *Fn = FunctionsWithBodies.back();
2632   FunctionsWithBodies.pop_back();
2633 
2634   // Save the current stream state.
2635   uint64_t CurBit = Stream.GetCurrentBitNo();
2636   assert(
2637       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2638       "Mismatch between VST and scanned function offsets");
2639   DeferredFunctionInfo[Fn] = CurBit;
2640 
2641   // Skip over the function block for now.
2642   if (Stream.SkipBlock())
2643     return error("Invalid record");
2644   return Error::success();
2645 }
2646 
2647 Error BitcodeReader::globalCleanup() {
2648   // Patch the initializers for globals and aliases up.
2649   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2650     return Err;
2651   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2652     return error("Malformed global initializer set");
2653 
2654   // Look for intrinsic functions which need to be upgraded at some point
2655   for (Function &F : *TheModule) {
2656     MDLoader->upgradeDebugIntrinsics(F);
2657     Function *NewFn;
2658     if (UpgradeIntrinsicFunction(&F, NewFn))
2659       UpgradedIntrinsics[&F] = NewFn;
2660     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2661       // Some types could be renamed during loading if several modules are
2662       // loaded in the same LLVMContext (LTO scenario). In this case we should
2663       // remangle intrinsics names as well.
2664       RemangledIntrinsics[&F] = Remangled.getValue();
2665   }
2666 
2667   // Look for global variables which need to be renamed.
2668   for (GlobalVariable &GV : TheModule->globals())
2669     UpgradeGlobalVariable(&GV);
2670 
2671   // Force deallocation of memory for these vectors to favor the client that
2672   // want lazy deserialization.
2673   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2674   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
2675       IndirectSymbolInits);
2676   return Error::success();
2677 }
2678 
2679 /// Support for lazy parsing of function bodies. This is required if we
2680 /// either have an old bitcode file without a VST forward declaration record,
2681 /// or if we have an anonymous function being materialized, since anonymous
2682 /// functions do not have a name and are therefore not in the VST.
2683 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2684   Stream.JumpToBit(NextUnreadBit);
2685 
2686   if (Stream.AtEndOfStream())
2687     return error("Could not find function in stream");
2688 
2689   if (!SeenFirstFunctionBody)
2690     return error("Trying to materialize functions before seeing function blocks");
2691 
2692   // An old bitcode file with the symbol table at the end would have
2693   // finished the parse greedily.
2694   assert(SeenValueSymbolTable);
2695 
2696   SmallVector<uint64_t, 64> Record;
2697 
2698   while (true) {
2699     BitstreamEntry Entry = Stream.advance();
2700     switch (Entry.Kind) {
2701     default:
2702       return error("Expect SubBlock");
2703     case BitstreamEntry::SubBlock:
2704       switch (Entry.ID) {
2705       default:
2706         return error("Expect function block");
2707       case bitc::FUNCTION_BLOCK_ID:
2708         if (Error Err = rememberAndSkipFunctionBody())
2709           return Err;
2710         NextUnreadBit = Stream.GetCurrentBitNo();
2711         return Error::success();
2712       }
2713     }
2714   }
2715 }
2716 
2717 bool BitcodeReaderBase::readBlockInfo() {
2718   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2719   if (!NewBlockInfo)
2720     return true;
2721   BlockInfo = std::move(*NewBlockInfo);
2722   return false;
2723 }
2724 
2725 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2726   // v1: [selection_kind, name]
2727   // v2: [strtab_offset, strtab_size, selection_kind]
2728   StringRef Name;
2729   std::tie(Name, Record) = readNameFromStrtab(Record);
2730 
2731   if (Record.size() < 1)
2732     return error("Invalid record");
2733   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2734   std::string OldFormatName;
2735   if (!UseStrtab) {
2736     if (Record.size() < 2)
2737       return error("Invalid record");
2738     unsigned ComdatNameSize = Record[1];
2739     OldFormatName.reserve(ComdatNameSize);
2740     for (unsigned i = 0; i != ComdatNameSize; ++i)
2741       OldFormatName += (char)Record[2 + i];
2742     Name = OldFormatName;
2743   }
2744   Comdat *C = TheModule->getOrInsertComdat(Name);
2745   C->setSelectionKind(SK);
2746   ComdatList.push_back(C);
2747   return Error::success();
2748 }
2749 
2750 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2751   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2752   // visibility, threadlocal, unnamed_addr, externally_initialized,
2753   // dllstorageclass, comdat] (name in VST)
2754   // v2: [strtab_offset, strtab_size, v1]
2755   StringRef Name;
2756   std::tie(Name, Record) = readNameFromStrtab(Record);
2757 
2758   if (Record.size() < 6)
2759     return error("Invalid record");
2760   Type *Ty = getTypeByID(Record[0]);
2761   if (!Ty)
2762     return error("Invalid record");
2763   bool isConstant = Record[1] & 1;
2764   bool explicitType = Record[1] & 2;
2765   unsigned AddressSpace;
2766   if (explicitType) {
2767     AddressSpace = Record[1] >> 2;
2768   } else {
2769     if (!Ty->isPointerTy())
2770       return error("Invalid type for value");
2771     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2772     Ty = cast<PointerType>(Ty)->getElementType();
2773   }
2774 
2775   uint64_t RawLinkage = Record[3];
2776   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2777   unsigned Alignment;
2778   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2779     return Err;
2780   std::string Section;
2781   if (Record[5]) {
2782     if (Record[5] - 1 >= SectionTable.size())
2783       return error("Invalid ID");
2784     Section = SectionTable[Record[5] - 1];
2785   }
2786   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2787   // Local linkage must have default visibility.
2788   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2789     // FIXME: Change to an error if non-default in 4.0.
2790     Visibility = getDecodedVisibility(Record[6]);
2791 
2792   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2793   if (Record.size() > 7)
2794     TLM = getDecodedThreadLocalMode(Record[7]);
2795 
2796   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2797   if (Record.size() > 8)
2798     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2799 
2800   bool ExternallyInitialized = false;
2801   if (Record.size() > 9)
2802     ExternallyInitialized = Record[9];
2803 
2804   GlobalVariable *NewGV =
2805       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2806                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2807   NewGV->setAlignment(Alignment);
2808   if (!Section.empty())
2809     NewGV->setSection(Section);
2810   NewGV->setVisibility(Visibility);
2811   NewGV->setUnnamedAddr(UnnamedAddr);
2812 
2813   if (Record.size() > 10)
2814     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2815   else
2816     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2817 
2818   ValueList.push_back(NewGV);
2819 
2820   // Remember which value to use for the global initializer.
2821   if (unsigned InitID = Record[2])
2822     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2823 
2824   if (Record.size() > 11) {
2825     if (unsigned ComdatID = Record[11]) {
2826       if (ComdatID > ComdatList.size())
2827         return error("Invalid global variable comdat ID");
2828       NewGV->setComdat(ComdatList[ComdatID - 1]);
2829     }
2830   } else if (hasImplicitComdat(RawLinkage)) {
2831     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2832   }
2833   return Error::success();
2834 }
2835 
2836 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2837   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2838   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2839   // prefixdata] (name in VST)
2840   // v2: [strtab_offset, strtab_size, v1]
2841   StringRef Name;
2842   std::tie(Name, Record) = readNameFromStrtab(Record);
2843 
2844   if (Record.size() < 8)
2845     return error("Invalid record");
2846   Type *Ty = getTypeByID(Record[0]);
2847   if (!Ty)
2848     return error("Invalid record");
2849   if (auto *PTy = dyn_cast<PointerType>(Ty))
2850     Ty = PTy->getElementType();
2851   auto *FTy = dyn_cast<FunctionType>(Ty);
2852   if (!FTy)
2853     return error("Invalid type for value");
2854   auto CC = static_cast<CallingConv::ID>(Record[1]);
2855   if (CC & ~CallingConv::MaxID)
2856     return error("Invalid calling convention ID");
2857 
2858   Function *Func =
2859       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2860 
2861   Func->setCallingConv(CC);
2862   bool isProto = Record[2];
2863   uint64_t RawLinkage = Record[3];
2864   Func->setLinkage(getDecodedLinkage(RawLinkage));
2865   Func->setAttributes(getAttributes(Record[4]));
2866 
2867   unsigned Alignment;
2868   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2869     return Err;
2870   Func->setAlignment(Alignment);
2871   if (Record[6]) {
2872     if (Record[6] - 1 >= SectionTable.size())
2873       return error("Invalid ID");
2874     Func->setSection(SectionTable[Record[6] - 1]);
2875   }
2876   // Local linkage must have default visibility.
2877   if (!Func->hasLocalLinkage())
2878     // FIXME: Change to an error if non-default in 4.0.
2879     Func->setVisibility(getDecodedVisibility(Record[7]));
2880   if (Record.size() > 8 && Record[8]) {
2881     if (Record[8] - 1 >= GCTable.size())
2882       return error("Invalid ID");
2883     Func->setGC(GCTable[Record[8] - 1]);
2884   }
2885   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2886   if (Record.size() > 9)
2887     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2888   Func->setUnnamedAddr(UnnamedAddr);
2889   if (Record.size() > 10 && Record[10] != 0)
2890     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2891 
2892   if (Record.size() > 11)
2893     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2894   else
2895     upgradeDLLImportExportLinkage(Func, RawLinkage);
2896 
2897   if (Record.size() > 12) {
2898     if (unsigned ComdatID = Record[12]) {
2899       if (ComdatID > ComdatList.size())
2900         return error("Invalid function comdat ID");
2901       Func->setComdat(ComdatList[ComdatID - 1]);
2902     }
2903   } else if (hasImplicitComdat(RawLinkage)) {
2904     Func->setComdat(reinterpret_cast<Comdat *>(1));
2905   }
2906 
2907   if (Record.size() > 13 && Record[13] != 0)
2908     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2909 
2910   if (Record.size() > 14 && Record[14] != 0)
2911     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2912 
2913   ValueList.push_back(Func);
2914 
2915   // If this is a function with a body, remember the prototype we are
2916   // creating now, so that we can match up the body with them later.
2917   if (!isProto) {
2918     Func->setIsMaterializable(true);
2919     FunctionsWithBodies.push_back(Func);
2920     DeferredFunctionInfo[Func] = 0;
2921   }
2922   return Error::success();
2923 }
2924 
2925 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
2926     unsigned BitCode, ArrayRef<uint64_t> Record) {
2927   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
2928   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
2929   // dllstorageclass] (name in VST)
2930   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
2931   // visibility, dllstorageclass] (name in VST)
2932   // v2: [strtab_offset, strtab_size, v1]
2933   StringRef Name;
2934   std::tie(Name, Record) = readNameFromStrtab(Record);
2935 
2936   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
2937   if (Record.size() < (3 + (unsigned)NewRecord))
2938     return error("Invalid record");
2939   unsigned OpNum = 0;
2940   Type *Ty = getTypeByID(Record[OpNum++]);
2941   if (!Ty)
2942     return error("Invalid record");
2943 
2944   unsigned AddrSpace;
2945   if (!NewRecord) {
2946     auto *PTy = dyn_cast<PointerType>(Ty);
2947     if (!PTy)
2948       return error("Invalid type for value");
2949     Ty = PTy->getElementType();
2950     AddrSpace = PTy->getAddressSpace();
2951   } else {
2952     AddrSpace = Record[OpNum++];
2953   }
2954 
2955   auto Val = Record[OpNum++];
2956   auto Linkage = Record[OpNum++];
2957   GlobalIndirectSymbol *NewGA;
2958   if (BitCode == bitc::MODULE_CODE_ALIAS ||
2959       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
2960     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
2961                                 TheModule);
2962   else
2963     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
2964                                 nullptr, TheModule);
2965   // Old bitcode files didn't have visibility field.
2966   // Local linkage must have default visibility.
2967   if (OpNum != Record.size()) {
2968     auto VisInd = OpNum++;
2969     if (!NewGA->hasLocalLinkage())
2970       // FIXME: Change to an error if non-default in 4.0.
2971       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
2972   }
2973   if (OpNum != Record.size())
2974     NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
2975   else
2976     upgradeDLLImportExportLinkage(NewGA, Linkage);
2977   if (OpNum != Record.size())
2978     NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
2979   if (OpNum != Record.size())
2980     NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
2981   ValueList.push_back(NewGA);
2982   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
2983   return Error::success();
2984 }
2985 
2986 Error BitcodeReader::parseModule(uint64_t ResumeBit,
2987                                  bool ShouldLazyLoadMetadata) {
2988   if (ResumeBit)
2989     Stream.JumpToBit(ResumeBit);
2990   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2991     return error("Invalid record");
2992 
2993   SmallVector<uint64_t, 64> Record;
2994 
2995   // Read all the records for this module.
2996   while (true) {
2997     BitstreamEntry Entry = Stream.advance();
2998 
2999     switch (Entry.Kind) {
3000     case BitstreamEntry::Error:
3001       return error("Malformed block");
3002     case BitstreamEntry::EndBlock:
3003       return globalCleanup();
3004 
3005     case BitstreamEntry::SubBlock:
3006       switch (Entry.ID) {
3007       default:  // Skip unknown content.
3008         if (Stream.SkipBlock())
3009           return error("Invalid record");
3010         break;
3011       case bitc::BLOCKINFO_BLOCK_ID:
3012         if (readBlockInfo())
3013           return error("Malformed block");
3014         break;
3015       case bitc::PARAMATTR_BLOCK_ID:
3016         if (Error Err = parseAttributeBlock())
3017           return Err;
3018         break;
3019       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3020         if (Error Err = parseAttributeGroupBlock())
3021           return Err;
3022         break;
3023       case bitc::TYPE_BLOCK_ID_NEW:
3024         if (Error Err = parseTypeTable())
3025           return Err;
3026         break;
3027       case bitc::VALUE_SYMTAB_BLOCK_ID:
3028         if (!SeenValueSymbolTable) {
3029           // Either this is an old form VST without function index and an
3030           // associated VST forward declaration record (which would have caused
3031           // the VST to be jumped to and parsed before it was encountered
3032           // normally in the stream), or there were no function blocks to
3033           // trigger an earlier parsing of the VST.
3034           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3035           if (Error Err = parseValueSymbolTable())
3036             return Err;
3037           SeenValueSymbolTable = true;
3038         } else {
3039           // We must have had a VST forward declaration record, which caused
3040           // the parser to jump to and parse the VST earlier.
3041           assert(VSTOffset > 0);
3042           if (Stream.SkipBlock())
3043             return error("Invalid record");
3044         }
3045         break;
3046       case bitc::CONSTANTS_BLOCK_ID:
3047         if (Error Err = parseConstants())
3048           return Err;
3049         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3050           return Err;
3051         break;
3052       case bitc::METADATA_BLOCK_ID:
3053         if (ShouldLazyLoadMetadata) {
3054           if (Error Err = rememberAndSkipMetadata())
3055             return Err;
3056           break;
3057         }
3058         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3059         if (Error Err = MDLoader->parseModuleMetadata())
3060           return Err;
3061         break;
3062       case bitc::METADATA_KIND_BLOCK_ID:
3063         if (Error Err = MDLoader->parseMetadataKinds())
3064           return Err;
3065         break;
3066       case bitc::FUNCTION_BLOCK_ID:
3067         // If this is the first function body we've seen, reverse the
3068         // FunctionsWithBodies list.
3069         if (!SeenFirstFunctionBody) {
3070           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3071           if (Error Err = globalCleanup())
3072             return Err;
3073           SeenFirstFunctionBody = true;
3074         }
3075 
3076         if (VSTOffset > 0) {
3077           // If we have a VST forward declaration record, make sure we
3078           // parse the VST now if we haven't already. It is needed to
3079           // set up the DeferredFunctionInfo vector for lazy reading.
3080           if (!SeenValueSymbolTable) {
3081             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3082               return Err;
3083             SeenValueSymbolTable = true;
3084             // Fall through so that we record the NextUnreadBit below.
3085             // This is necessary in case we have an anonymous function that
3086             // is later materialized. Since it will not have a VST entry we
3087             // need to fall back to the lazy parse to find its offset.
3088           } else {
3089             // If we have a VST forward declaration record, but have already
3090             // parsed the VST (just above, when the first function body was
3091             // encountered here), then we are resuming the parse after
3092             // materializing functions. The ResumeBit points to the
3093             // start of the last function block recorded in the
3094             // DeferredFunctionInfo map. Skip it.
3095             if (Stream.SkipBlock())
3096               return error("Invalid record");
3097             continue;
3098           }
3099         }
3100 
3101         // Support older bitcode files that did not have the function
3102         // index in the VST, nor a VST forward declaration record, as
3103         // well as anonymous functions that do not have VST entries.
3104         // Build the DeferredFunctionInfo vector on the fly.
3105         if (Error Err = rememberAndSkipFunctionBody())
3106           return Err;
3107 
3108         // Suspend parsing when we reach the function bodies. Subsequent
3109         // materialization calls will resume it when necessary. If the bitcode
3110         // file is old, the symbol table will be at the end instead and will not
3111         // have been seen yet. In this case, just finish the parse now.
3112         if (SeenValueSymbolTable) {
3113           NextUnreadBit = Stream.GetCurrentBitNo();
3114           // After the VST has been parsed, we need to make sure intrinsic name
3115           // are auto-upgraded.
3116           return globalCleanup();
3117         }
3118         break;
3119       case bitc::USELIST_BLOCK_ID:
3120         if (Error Err = parseUseLists())
3121           return Err;
3122         break;
3123       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3124         if (Error Err = parseOperandBundleTags())
3125           return Err;
3126         break;
3127       }
3128       continue;
3129 
3130     case BitstreamEntry::Record:
3131       // The interesting case.
3132       break;
3133     }
3134 
3135     // Read a record.
3136     auto BitCode = Stream.readRecord(Entry.ID, Record);
3137     switch (BitCode) {
3138     default: break;  // Default behavior, ignore unknown content.
3139     case bitc::MODULE_CODE_VERSION: {
3140       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3141       if (!VersionOrErr)
3142         return VersionOrErr.takeError();
3143       UseRelativeIDs = *VersionOrErr >= 1;
3144       break;
3145     }
3146     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3147       std::string S;
3148       if (convertToString(Record, 0, S))
3149         return error("Invalid record");
3150       TheModule->setTargetTriple(S);
3151       break;
3152     }
3153     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3154       std::string S;
3155       if (convertToString(Record, 0, S))
3156         return error("Invalid record");
3157       TheModule->setDataLayout(S);
3158       break;
3159     }
3160     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3161       std::string S;
3162       if (convertToString(Record, 0, S))
3163         return error("Invalid record");
3164       TheModule->setModuleInlineAsm(S);
3165       break;
3166     }
3167     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3168       // FIXME: Remove in 4.0.
3169       std::string S;
3170       if (convertToString(Record, 0, S))
3171         return error("Invalid record");
3172       // Ignore value.
3173       break;
3174     }
3175     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3176       std::string S;
3177       if (convertToString(Record, 0, S))
3178         return error("Invalid record");
3179       SectionTable.push_back(S);
3180       break;
3181     }
3182     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3183       std::string S;
3184       if (convertToString(Record, 0, S))
3185         return error("Invalid record");
3186       GCTable.push_back(S);
3187       break;
3188     }
3189     case bitc::MODULE_CODE_COMDAT: {
3190       if (Error Err = parseComdatRecord(Record))
3191         return Err;
3192       break;
3193     }
3194     case bitc::MODULE_CODE_GLOBALVAR: {
3195       if (Error Err = parseGlobalVarRecord(Record))
3196         return Err;
3197       break;
3198     }
3199     case bitc::MODULE_CODE_FUNCTION: {
3200       if (Error Err = parseFunctionRecord(Record))
3201         return Err;
3202       break;
3203     }
3204     case bitc::MODULE_CODE_IFUNC:
3205     case bitc::MODULE_CODE_ALIAS:
3206     case bitc::MODULE_CODE_ALIAS_OLD: {
3207       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3208         return Err;
3209       break;
3210     }
3211     /// MODULE_CODE_VSTOFFSET: [offset]
3212     case bitc::MODULE_CODE_VSTOFFSET:
3213       if (Record.size() < 1)
3214         return error("Invalid record");
3215       // Note that we subtract 1 here because the offset is relative to one word
3216       // before the start of the identification or module block, which was
3217       // historically always the start of the regular bitcode header.
3218       VSTOffset = Record[0] - 1;
3219       break;
3220     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3221     case bitc::MODULE_CODE_SOURCE_FILENAME:
3222       SmallString<128> ValueName;
3223       if (convertToString(Record, 0, ValueName))
3224         return error("Invalid record");
3225       TheModule->setSourceFileName(ValueName);
3226       break;
3227     }
3228     Record.clear();
3229   }
3230 }
3231 
3232 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3233                                       bool IsImporting) {
3234   TheModule = M;
3235   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3236                             [&](unsigned ID) { return getTypeByID(ID); });
3237   return parseModule(0, ShouldLazyLoadMetadata);
3238 }
3239 
3240 
3241 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3242   if (!isa<PointerType>(PtrType))
3243     return error("Load/Store operand is not a pointer type");
3244   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3245 
3246   if (ValType && ValType != ElemType)
3247     return error("Explicit load/store type does not match pointee "
3248                  "type of pointer operand");
3249   if (!PointerType::isLoadableOrStorableType(ElemType))
3250     return error("Cannot load/store from pointer");
3251   return Error::success();
3252 }
3253 
3254 /// Lazily parse the specified function body block.
3255 Error BitcodeReader::parseFunctionBody(Function *F) {
3256   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3257     return error("Invalid record");
3258 
3259   // Unexpected unresolved metadata when parsing function.
3260   if (MDLoader->hasFwdRefs())
3261     return error("Invalid function metadata: incoming forward references");
3262 
3263   InstructionList.clear();
3264   unsigned ModuleValueListSize = ValueList.size();
3265   unsigned ModuleMDLoaderSize = MDLoader->size();
3266 
3267   // Add all the function arguments to the value table.
3268   for (Argument &I : F->args())
3269     ValueList.push_back(&I);
3270 
3271   unsigned NextValueNo = ValueList.size();
3272   BasicBlock *CurBB = nullptr;
3273   unsigned CurBBNo = 0;
3274 
3275   DebugLoc LastLoc;
3276   auto getLastInstruction = [&]() -> Instruction * {
3277     if (CurBB && !CurBB->empty())
3278       return &CurBB->back();
3279     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3280              !FunctionBBs[CurBBNo - 1]->empty())
3281       return &FunctionBBs[CurBBNo - 1]->back();
3282     return nullptr;
3283   };
3284 
3285   std::vector<OperandBundleDef> OperandBundles;
3286 
3287   // Read all the records.
3288   SmallVector<uint64_t, 64> Record;
3289 
3290   while (true) {
3291     BitstreamEntry Entry = Stream.advance();
3292 
3293     switch (Entry.Kind) {
3294     case BitstreamEntry::Error:
3295       return error("Malformed block");
3296     case BitstreamEntry::EndBlock:
3297       goto OutOfRecordLoop;
3298 
3299     case BitstreamEntry::SubBlock:
3300       switch (Entry.ID) {
3301       default:  // Skip unknown content.
3302         if (Stream.SkipBlock())
3303           return error("Invalid record");
3304         break;
3305       case bitc::CONSTANTS_BLOCK_ID:
3306         if (Error Err = parseConstants())
3307           return Err;
3308         NextValueNo = ValueList.size();
3309         break;
3310       case bitc::VALUE_SYMTAB_BLOCK_ID:
3311         if (Error Err = parseValueSymbolTable())
3312           return Err;
3313         break;
3314       case bitc::METADATA_ATTACHMENT_ID:
3315         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3316           return Err;
3317         break;
3318       case bitc::METADATA_BLOCK_ID:
3319         assert(DeferredMetadataInfo.empty() &&
3320                "Must read all module-level metadata before function-level");
3321         if (Error Err = MDLoader->parseFunctionMetadata())
3322           return Err;
3323         break;
3324       case bitc::USELIST_BLOCK_ID:
3325         if (Error Err = parseUseLists())
3326           return Err;
3327         break;
3328       }
3329       continue;
3330 
3331     case BitstreamEntry::Record:
3332       // The interesting case.
3333       break;
3334     }
3335 
3336     // Read a record.
3337     Record.clear();
3338     Instruction *I = nullptr;
3339     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3340     switch (BitCode) {
3341     default: // Default behavior: reject
3342       return error("Invalid value");
3343     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3344       if (Record.size() < 1 || Record[0] == 0)
3345         return error("Invalid record");
3346       // Create all the basic blocks for the function.
3347       FunctionBBs.resize(Record[0]);
3348 
3349       // See if anything took the address of blocks in this function.
3350       auto BBFRI = BasicBlockFwdRefs.find(F);
3351       if (BBFRI == BasicBlockFwdRefs.end()) {
3352         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3353           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3354       } else {
3355         auto &BBRefs = BBFRI->second;
3356         // Check for invalid basic block references.
3357         if (BBRefs.size() > FunctionBBs.size())
3358           return error("Invalid ID");
3359         assert(!BBRefs.empty() && "Unexpected empty array");
3360         assert(!BBRefs.front() && "Invalid reference to entry block");
3361         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3362              ++I)
3363           if (I < RE && BBRefs[I]) {
3364             BBRefs[I]->insertInto(F);
3365             FunctionBBs[I] = BBRefs[I];
3366           } else {
3367             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3368           }
3369 
3370         // Erase from the table.
3371         BasicBlockFwdRefs.erase(BBFRI);
3372       }
3373 
3374       CurBB = FunctionBBs[0];
3375       continue;
3376     }
3377 
3378     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3379       // This record indicates that the last instruction is at the same
3380       // location as the previous instruction with a location.
3381       I = getLastInstruction();
3382 
3383       if (!I)
3384         return error("Invalid record");
3385       I->setDebugLoc(LastLoc);
3386       I = nullptr;
3387       continue;
3388 
3389     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3390       I = getLastInstruction();
3391       if (!I || Record.size() < 4)
3392         return error("Invalid record");
3393 
3394       unsigned Line = Record[0], Col = Record[1];
3395       unsigned ScopeID = Record[2], IAID = Record[3];
3396 
3397       MDNode *Scope = nullptr, *IA = nullptr;
3398       if (ScopeID) {
3399         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3400         if (!Scope)
3401           return error("Invalid record");
3402       }
3403       if (IAID) {
3404         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3405         if (!IA)
3406           return error("Invalid record");
3407       }
3408       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3409       I->setDebugLoc(LastLoc);
3410       I = nullptr;
3411       continue;
3412     }
3413 
3414     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3415       unsigned OpNum = 0;
3416       Value *LHS, *RHS;
3417       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3418           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3419           OpNum+1 > Record.size())
3420         return error("Invalid record");
3421 
3422       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3423       if (Opc == -1)
3424         return error("Invalid record");
3425       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3426       InstructionList.push_back(I);
3427       if (OpNum < Record.size()) {
3428         if (Opc == Instruction::Add ||
3429             Opc == Instruction::Sub ||
3430             Opc == Instruction::Mul ||
3431             Opc == Instruction::Shl) {
3432           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3433             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3434           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3435             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3436         } else if (Opc == Instruction::SDiv ||
3437                    Opc == Instruction::UDiv ||
3438                    Opc == Instruction::LShr ||
3439                    Opc == Instruction::AShr) {
3440           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3441             cast<BinaryOperator>(I)->setIsExact(true);
3442         } else if (isa<FPMathOperator>(I)) {
3443           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3444           if (FMF.any())
3445             I->setFastMathFlags(FMF);
3446         }
3447 
3448       }
3449       break;
3450     }
3451     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3452       unsigned OpNum = 0;
3453       Value *Op;
3454       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3455           OpNum+2 != Record.size())
3456         return error("Invalid record");
3457 
3458       Type *ResTy = getTypeByID(Record[OpNum]);
3459       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3460       if (Opc == -1 || !ResTy)
3461         return error("Invalid record");
3462       Instruction *Temp = nullptr;
3463       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3464         if (Temp) {
3465           InstructionList.push_back(Temp);
3466           CurBB->getInstList().push_back(Temp);
3467         }
3468       } else {
3469         auto CastOp = (Instruction::CastOps)Opc;
3470         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3471           return error("Invalid cast");
3472         I = CastInst::Create(CastOp, Op, ResTy);
3473       }
3474       InstructionList.push_back(I);
3475       break;
3476     }
3477     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3478     case bitc::FUNC_CODE_INST_GEP_OLD:
3479     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3480       unsigned OpNum = 0;
3481 
3482       Type *Ty;
3483       bool InBounds;
3484 
3485       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3486         InBounds = Record[OpNum++];
3487         Ty = getTypeByID(Record[OpNum++]);
3488       } else {
3489         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3490         Ty = nullptr;
3491       }
3492 
3493       Value *BasePtr;
3494       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3495         return error("Invalid record");
3496 
3497       if (!Ty)
3498         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3499                  ->getElementType();
3500       else if (Ty !=
3501                cast<PointerType>(BasePtr->getType()->getScalarType())
3502                    ->getElementType())
3503         return error(
3504             "Explicit gep type does not match pointee type of pointer operand");
3505 
3506       SmallVector<Value*, 16> GEPIdx;
3507       while (OpNum != Record.size()) {
3508         Value *Op;
3509         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3510           return error("Invalid record");
3511         GEPIdx.push_back(Op);
3512       }
3513 
3514       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3515 
3516       InstructionList.push_back(I);
3517       if (InBounds)
3518         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3519       break;
3520     }
3521 
3522     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3523                                        // EXTRACTVAL: [opty, opval, n x indices]
3524       unsigned OpNum = 0;
3525       Value *Agg;
3526       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3527         return error("Invalid record");
3528 
3529       unsigned RecSize = Record.size();
3530       if (OpNum == RecSize)
3531         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3532 
3533       SmallVector<unsigned, 4> EXTRACTVALIdx;
3534       Type *CurTy = Agg->getType();
3535       for (; OpNum != RecSize; ++OpNum) {
3536         bool IsArray = CurTy->isArrayTy();
3537         bool IsStruct = CurTy->isStructTy();
3538         uint64_t Index = Record[OpNum];
3539 
3540         if (!IsStruct && !IsArray)
3541           return error("EXTRACTVAL: Invalid type");
3542         if ((unsigned)Index != Index)
3543           return error("Invalid value");
3544         if (IsStruct && Index >= CurTy->subtypes().size())
3545           return error("EXTRACTVAL: Invalid struct index");
3546         if (IsArray && Index >= CurTy->getArrayNumElements())
3547           return error("EXTRACTVAL: Invalid array index");
3548         EXTRACTVALIdx.push_back((unsigned)Index);
3549 
3550         if (IsStruct)
3551           CurTy = CurTy->subtypes()[Index];
3552         else
3553           CurTy = CurTy->subtypes()[0];
3554       }
3555 
3556       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3557       InstructionList.push_back(I);
3558       break;
3559     }
3560 
3561     case bitc::FUNC_CODE_INST_INSERTVAL: {
3562                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3563       unsigned OpNum = 0;
3564       Value *Agg;
3565       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3566         return error("Invalid record");
3567       Value *Val;
3568       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3569         return error("Invalid record");
3570 
3571       unsigned RecSize = Record.size();
3572       if (OpNum == RecSize)
3573         return error("INSERTVAL: Invalid instruction with 0 indices");
3574 
3575       SmallVector<unsigned, 4> INSERTVALIdx;
3576       Type *CurTy = Agg->getType();
3577       for (; OpNum != RecSize; ++OpNum) {
3578         bool IsArray = CurTy->isArrayTy();
3579         bool IsStruct = CurTy->isStructTy();
3580         uint64_t Index = Record[OpNum];
3581 
3582         if (!IsStruct && !IsArray)
3583           return error("INSERTVAL: Invalid type");
3584         if ((unsigned)Index != Index)
3585           return error("Invalid value");
3586         if (IsStruct && Index >= CurTy->subtypes().size())
3587           return error("INSERTVAL: Invalid struct index");
3588         if (IsArray && Index >= CurTy->getArrayNumElements())
3589           return error("INSERTVAL: Invalid array index");
3590 
3591         INSERTVALIdx.push_back((unsigned)Index);
3592         if (IsStruct)
3593           CurTy = CurTy->subtypes()[Index];
3594         else
3595           CurTy = CurTy->subtypes()[0];
3596       }
3597 
3598       if (CurTy != Val->getType())
3599         return error("Inserted value type doesn't match aggregate type");
3600 
3601       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3602       InstructionList.push_back(I);
3603       break;
3604     }
3605 
3606     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3607       // obsolete form of select
3608       // handles select i1 ... in old bitcode
3609       unsigned OpNum = 0;
3610       Value *TrueVal, *FalseVal, *Cond;
3611       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3612           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3613           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3614         return error("Invalid record");
3615 
3616       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3617       InstructionList.push_back(I);
3618       break;
3619     }
3620 
3621     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3622       // new form of select
3623       // handles select i1 or select [N x i1]
3624       unsigned OpNum = 0;
3625       Value *TrueVal, *FalseVal, *Cond;
3626       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3627           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3628           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3629         return error("Invalid record");
3630 
3631       // select condition can be either i1 or [N x i1]
3632       if (VectorType* vector_type =
3633           dyn_cast<VectorType>(Cond->getType())) {
3634         // expect <n x i1>
3635         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3636           return error("Invalid type for value");
3637       } else {
3638         // expect i1
3639         if (Cond->getType() != Type::getInt1Ty(Context))
3640           return error("Invalid type for value");
3641       }
3642 
3643       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3644       InstructionList.push_back(I);
3645       break;
3646     }
3647 
3648     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3649       unsigned OpNum = 0;
3650       Value *Vec, *Idx;
3651       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3652           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3653         return error("Invalid record");
3654       if (!Vec->getType()->isVectorTy())
3655         return error("Invalid type for value");
3656       I = ExtractElementInst::Create(Vec, Idx);
3657       InstructionList.push_back(I);
3658       break;
3659     }
3660 
3661     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3662       unsigned OpNum = 0;
3663       Value *Vec, *Elt, *Idx;
3664       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3665         return error("Invalid record");
3666       if (!Vec->getType()->isVectorTy())
3667         return error("Invalid type for value");
3668       if (popValue(Record, OpNum, NextValueNo,
3669                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3670           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3671         return error("Invalid record");
3672       I = InsertElementInst::Create(Vec, Elt, Idx);
3673       InstructionList.push_back(I);
3674       break;
3675     }
3676 
3677     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3678       unsigned OpNum = 0;
3679       Value *Vec1, *Vec2, *Mask;
3680       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3681           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3682         return error("Invalid record");
3683 
3684       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3685         return error("Invalid record");
3686       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3687         return error("Invalid type for value");
3688       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3689       InstructionList.push_back(I);
3690       break;
3691     }
3692 
3693     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3694       // Old form of ICmp/FCmp returning bool
3695       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3696       // both legal on vectors but had different behaviour.
3697     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3698       // FCmp/ICmp returning bool or vector of bool
3699 
3700       unsigned OpNum = 0;
3701       Value *LHS, *RHS;
3702       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3703           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3704         return error("Invalid record");
3705 
3706       unsigned PredVal = Record[OpNum];
3707       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3708       FastMathFlags FMF;
3709       if (IsFP && Record.size() > OpNum+1)
3710         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3711 
3712       if (OpNum+1 != Record.size())
3713         return error("Invalid record");
3714 
3715       if (LHS->getType()->isFPOrFPVectorTy())
3716         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3717       else
3718         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3719 
3720       if (FMF.any())
3721         I->setFastMathFlags(FMF);
3722       InstructionList.push_back(I);
3723       break;
3724     }
3725 
3726     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3727       {
3728         unsigned Size = Record.size();
3729         if (Size == 0) {
3730           I = ReturnInst::Create(Context);
3731           InstructionList.push_back(I);
3732           break;
3733         }
3734 
3735         unsigned OpNum = 0;
3736         Value *Op = nullptr;
3737         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3738           return error("Invalid record");
3739         if (OpNum != Record.size())
3740           return error("Invalid record");
3741 
3742         I = ReturnInst::Create(Context, Op);
3743         InstructionList.push_back(I);
3744         break;
3745       }
3746     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3747       if (Record.size() != 1 && Record.size() != 3)
3748         return error("Invalid record");
3749       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3750       if (!TrueDest)
3751         return error("Invalid record");
3752 
3753       if (Record.size() == 1) {
3754         I = BranchInst::Create(TrueDest);
3755         InstructionList.push_back(I);
3756       }
3757       else {
3758         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3759         Value *Cond = getValue(Record, 2, NextValueNo,
3760                                Type::getInt1Ty(Context));
3761         if (!FalseDest || !Cond)
3762           return error("Invalid record");
3763         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3764         InstructionList.push_back(I);
3765       }
3766       break;
3767     }
3768     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3769       if (Record.size() != 1 && Record.size() != 2)
3770         return error("Invalid record");
3771       unsigned Idx = 0;
3772       Value *CleanupPad =
3773           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3774       if (!CleanupPad)
3775         return error("Invalid record");
3776       BasicBlock *UnwindDest = nullptr;
3777       if (Record.size() == 2) {
3778         UnwindDest = getBasicBlock(Record[Idx++]);
3779         if (!UnwindDest)
3780           return error("Invalid record");
3781       }
3782 
3783       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3784       InstructionList.push_back(I);
3785       break;
3786     }
3787     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3788       if (Record.size() != 2)
3789         return error("Invalid record");
3790       unsigned Idx = 0;
3791       Value *CatchPad =
3792           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3793       if (!CatchPad)
3794         return error("Invalid record");
3795       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3796       if (!BB)
3797         return error("Invalid record");
3798 
3799       I = CatchReturnInst::Create(CatchPad, BB);
3800       InstructionList.push_back(I);
3801       break;
3802     }
3803     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3804       // We must have, at minimum, the outer scope and the number of arguments.
3805       if (Record.size() < 2)
3806         return error("Invalid record");
3807 
3808       unsigned Idx = 0;
3809 
3810       Value *ParentPad =
3811           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3812 
3813       unsigned NumHandlers = Record[Idx++];
3814 
3815       SmallVector<BasicBlock *, 2> Handlers;
3816       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3817         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3818         if (!BB)
3819           return error("Invalid record");
3820         Handlers.push_back(BB);
3821       }
3822 
3823       BasicBlock *UnwindDest = nullptr;
3824       if (Idx + 1 == Record.size()) {
3825         UnwindDest = getBasicBlock(Record[Idx++]);
3826         if (!UnwindDest)
3827           return error("Invalid record");
3828       }
3829 
3830       if (Record.size() != Idx)
3831         return error("Invalid record");
3832 
3833       auto *CatchSwitch =
3834           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3835       for (BasicBlock *Handler : Handlers)
3836         CatchSwitch->addHandler(Handler);
3837       I = CatchSwitch;
3838       InstructionList.push_back(I);
3839       break;
3840     }
3841     case bitc::FUNC_CODE_INST_CATCHPAD:
3842     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3843       // We must have, at minimum, the outer scope and the number of arguments.
3844       if (Record.size() < 2)
3845         return error("Invalid record");
3846 
3847       unsigned Idx = 0;
3848 
3849       Value *ParentPad =
3850           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3851 
3852       unsigned NumArgOperands = Record[Idx++];
3853 
3854       SmallVector<Value *, 2> Args;
3855       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3856         Value *Val;
3857         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3858           return error("Invalid record");
3859         Args.push_back(Val);
3860       }
3861 
3862       if (Record.size() != Idx)
3863         return error("Invalid record");
3864 
3865       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3866         I = CleanupPadInst::Create(ParentPad, Args);
3867       else
3868         I = CatchPadInst::Create(ParentPad, Args);
3869       InstructionList.push_back(I);
3870       break;
3871     }
3872     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3873       // Check magic
3874       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3875         // "New" SwitchInst format with case ranges. The changes to write this
3876         // format were reverted but we still recognize bitcode that uses it.
3877         // Hopefully someday we will have support for case ranges and can use
3878         // this format again.
3879 
3880         Type *OpTy = getTypeByID(Record[1]);
3881         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3882 
3883         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3884         BasicBlock *Default = getBasicBlock(Record[3]);
3885         if (!OpTy || !Cond || !Default)
3886           return error("Invalid record");
3887 
3888         unsigned NumCases = Record[4];
3889 
3890         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3891         InstructionList.push_back(SI);
3892 
3893         unsigned CurIdx = 5;
3894         for (unsigned i = 0; i != NumCases; ++i) {
3895           SmallVector<ConstantInt*, 1> CaseVals;
3896           unsigned NumItems = Record[CurIdx++];
3897           for (unsigned ci = 0; ci != NumItems; ++ci) {
3898             bool isSingleNumber = Record[CurIdx++];
3899 
3900             APInt Low;
3901             unsigned ActiveWords = 1;
3902             if (ValueBitWidth > 64)
3903               ActiveWords = Record[CurIdx++];
3904             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3905                                 ValueBitWidth);
3906             CurIdx += ActiveWords;
3907 
3908             if (!isSingleNumber) {
3909               ActiveWords = 1;
3910               if (ValueBitWidth > 64)
3911                 ActiveWords = Record[CurIdx++];
3912               APInt High = readWideAPInt(
3913                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3914               CurIdx += ActiveWords;
3915 
3916               // FIXME: It is not clear whether values in the range should be
3917               // compared as signed or unsigned values. The partially
3918               // implemented changes that used this format in the past used
3919               // unsigned comparisons.
3920               for ( ; Low.ule(High); ++Low)
3921                 CaseVals.push_back(ConstantInt::get(Context, Low));
3922             } else
3923               CaseVals.push_back(ConstantInt::get(Context, Low));
3924           }
3925           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3926           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3927                  cve = CaseVals.end(); cvi != cve; ++cvi)
3928             SI->addCase(*cvi, DestBB);
3929         }
3930         I = SI;
3931         break;
3932       }
3933 
3934       // Old SwitchInst format without case ranges.
3935 
3936       if (Record.size() < 3 || (Record.size() & 1) == 0)
3937         return error("Invalid record");
3938       Type *OpTy = getTypeByID(Record[0]);
3939       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3940       BasicBlock *Default = getBasicBlock(Record[2]);
3941       if (!OpTy || !Cond || !Default)
3942         return error("Invalid record");
3943       unsigned NumCases = (Record.size()-3)/2;
3944       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3945       InstructionList.push_back(SI);
3946       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3947         ConstantInt *CaseVal =
3948           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3949         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3950         if (!CaseVal || !DestBB) {
3951           delete SI;
3952           return error("Invalid record");
3953         }
3954         SI->addCase(CaseVal, DestBB);
3955       }
3956       I = SI;
3957       break;
3958     }
3959     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3960       if (Record.size() < 2)
3961         return error("Invalid record");
3962       Type *OpTy = getTypeByID(Record[0]);
3963       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
3964       if (!OpTy || !Address)
3965         return error("Invalid record");
3966       unsigned NumDests = Record.size()-2;
3967       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3968       InstructionList.push_back(IBI);
3969       for (unsigned i = 0, e = NumDests; i != e; ++i) {
3970         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3971           IBI->addDestination(DestBB);
3972         } else {
3973           delete IBI;
3974           return error("Invalid record");
3975         }
3976       }
3977       I = IBI;
3978       break;
3979     }
3980 
3981     case bitc::FUNC_CODE_INST_INVOKE: {
3982       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3983       if (Record.size() < 4)
3984         return error("Invalid record");
3985       unsigned OpNum = 0;
3986       AttributeList PAL = getAttributes(Record[OpNum++]);
3987       unsigned CCInfo = Record[OpNum++];
3988       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
3989       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
3990 
3991       FunctionType *FTy = nullptr;
3992       if (CCInfo >> 13 & 1 &&
3993           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
3994         return error("Explicit invoke type is not a function type");
3995 
3996       Value *Callee;
3997       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3998         return error("Invalid record");
3999 
4000       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4001       if (!CalleeTy)
4002         return error("Callee is not a pointer");
4003       if (!FTy) {
4004         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4005         if (!FTy)
4006           return error("Callee is not of pointer to function type");
4007       } else if (CalleeTy->getElementType() != FTy)
4008         return error("Explicit invoke type does not match pointee type of "
4009                      "callee operand");
4010       if (Record.size() < FTy->getNumParams() + OpNum)
4011         return error("Insufficient operands to call");
4012 
4013       SmallVector<Value*, 16> Ops;
4014       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4015         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4016                                FTy->getParamType(i)));
4017         if (!Ops.back())
4018           return error("Invalid record");
4019       }
4020 
4021       if (!FTy->isVarArg()) {
4022         if (Record.size() != OpNum)
4023           return error("Invalid record");
4024       } else {
4025         // Read type/value pairs for varargs params.
4026         while (OpNum != Record.size()) {
4027           Value *Op;
4028           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4029             return error("Invalid record");
4030           Ops.push_back(Op);
4031         }
4032       }
4033 
4034       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4035       OperandBundles.clear();
4036       InstructionList.push_back(I);
4037       cast<InvokeInst>(I)->setCallingConv(
4038           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4039       cast<InvokeInst>(I)->setAttributes(PAL);
4040       break;
4041     }
4042     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4043       unsigned Idx = 0;
4044       Value *Val = nullptr;
4045       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4046         return error("Invalid record");
4047       I = ResumeInst::Create(Val);
4048       InstructionList.push_back(I);
4049       break;
4050     }
4051     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4052       I = new UnreachableInst(Context);
4053       InstructionList.push_back(I);
4054       break;
4055     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4056       if (Record.size() < 1 || ((Record.size()-1)&1))
4057         return error("Invalid record");
4058       Type *Ty = getTypeByID(Record[0]);
4059       if (!Ty)
4060         return error("Invalid record");
4061 
4062       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4063       InstructionList.push_back(PN);
4064 
4065       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4066         Value *V;
4067         // With the new function encoding, it is possible that operands have
4068         // negative IDs (for forward references).  Use a signed VBR
4069         // representation to keep the encoding small.
4070         if (UseRelativeIDs)
4071           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4072         else
4073           V = getValue(Record, 1+i, NextValueNo, Ty);
4074         BasicBlock *BB = getBasicBlock(Record[2+i]);
4075         if (!V || !BB)
4076           return error("Invalid record");
4077         PN->addIncoming(V, BB);
4078       }
4079       I = PN;
4080       break;
4081     }
4082 
4083     case bitc::FUNC_CODE_INST_LANDINGPAD:
4084     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4085       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4086       unsigned Idx = 0;
4087       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4088         if (Record.size() < 3)
4089           return error("Invalid record");
4090       } else {
4091         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4092         if (Record.size() < 4)
4093           return error("Invalid record");
4094       }
4095       Type *Ty = getTypeByID(Record[Idx++]);
4096       if (!Ty)
4097         return error("Invalid record");
4098       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4099         Value *PersFn = nullptr;
4100         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4101           return error("Invalid record");
4102 
4103         if (!F->hasPersonalityFn())
4104           F->setPersonalityFn(cast<Constant>(PersFn));
4105         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4106           return error("Personality function mismatch");
4107       }
4108 
4109       bool IsCleanup = !!Record[Idx++];
4110       unsigned NumClauses = Record[Idx++];
4111       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4112       LP->setCleanup(IsCleanup);
4113       for (unsigned J = 0; J != NumClauses; ++J) {
4114         LandingPadInst::ClauseType CT =
4115           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4116         Value *Val;
4117 
4118         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4119           delete LP;
4120           return error("Invalid record");
4121         }
4122 
4123         assert((CT != LandingPadInst::Catch ||
4124                 !isa<ArrayType>(Val->getType())) &&
4125                "Catch clause has a invalid type!");
4126         assert((CT != LandingPadInst::Filter ||
4127                 isa<ArrayType>(Val->getType())) &&
4128                "Filter clause has invalid type!");
4129         LP->addClause(cast<Constant>(Val));
4130       }
4131 
4132       I = LP;
4133       InstructionList.push_back(I);
4134       break;
4135     }
4136 
4137     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4138       if (Record.size() != 4)
4139         return error("Invalid record");
4140       uint64_t AlignRecord = Record[3];
4141       const uint64_t InAllocaMask = uint64_t(1) << 5;
4142       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4143       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4144       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4145                                 SwiftErrorMask;
4146       bool InAlloca = AlignRecord & InAllocaMask;
4147       bool SwiftError = AlignRecord & SwiftErrorMask;
4148       Type *Ty = getTypeByID(Record[0]);
4149       if ((AlignRecord & ExplicitTypeMask) == 0) {
4150         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4151         if (!PTy)
4152           return error("Old-style alloca with a non-pointer type");
4153         Ty = PTy->getElementType();
4154       }
4155       Type *OpTy = getTypeByID(Record[1]);
4156       Value *Size = getFnValueByID(Record[2], OpTy);
4157       unsigned Align;
4158       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4159         return Err;
4160       }
4161       if (!Ty || !Size)
4162         return error("Invalid record");
4163 
4164       // FIXME: Make this an optional field.
4165       const DataLayout &DL = TheModule->getDataLayout();
4166       unsigned AS = DL.getAllocaAddrSpace();
4167 
4168       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4169       AI->setUsedWithInAlloca(InAlloca);
4170       AI->setSwiftError(SwiftError);
4171       I = AI;
4172       InstructionList.push_back(I);
4173       break;
4174     }
4175     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4176       unsigned OpNum = 0;
4177       Value *Op;
4178       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4179           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4180         return error("Invalid record");
4181 
4182       Type *Ty = nullptr;
4183       if (OpNum + 3 == Record.size())
4184         Ty = getTypeByID(Record[OpNum++]);
4185       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4186         return Err;
4187       if (!Ty)
4188         Ty = cast<PointerType>(Op->getType())->getElementType();
4189 
4190       unsigned Align;
4191       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4192         return Err;
4193       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4194 
4195       InstructionList.push_back(I);
4196       break;
4197     }
4198     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4199        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4200       unsigned OpNum = 0;
4201       Value *Op;
4202       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4203           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4204         return error("Invalid record");
4205 
4206       Type *Ty = nullptr;
4207       if (OpNum + 5 == Record.size())
4208         Ty = getTypeByID(Record[OpNum++]);
4209       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4210         return Err;
4211       if (!Ty)
4212         Ty = cast<PointerType>(Op->getType())->getElementType();
4213 
4214       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4215       if (Ordering == AtomicOrdering::NotAtomic ||
4216           Ordering == AtomicOrdering::Release ||
4217           Ordering == AtomicOrdering::AcquireRelease)
4218         return error("Invalid record");
4219       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4220         return error("Invalid record");
4221       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4222 
4223       unsigned Align;
4224       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4225         return Err;
4226       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4227 
4228       InstructionList.push_back(I);
4229       break;
4230     }
4231     case bitc::FUNC_CODE_INST_STORE:
4232     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4233       unsigned OpNum = 0;
4234       Value *Val, *Ptr;
4235       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4236           (BitCode == bitc::FUNC_CODE_INST_STORE
4237                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4238                : popValue(Record, OpNum, NextValueNo,
4239                           cast<PointerType>(Ptr->getType())->getElementType(),
4240                           Val)) ||
4241           OpNum + 2 != Record.size())
4242         return error("Invalid record");
4243 
4244       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4245         return Err;
4246       unsigned Align;
4247       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4248         return Err;
4249       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4250       InstructionList.push_back(I);
4251       break;
4252     }
4253     case bitc::FUNC_CODE_INST_STOREATOMIC:
4254     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4255       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4256       unsigned OpNum = 0;
4257       Value *Val, *Ptr;
4258       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4259           !isa<PointerType>(Ptr->getType()) ||
4260           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4261                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4262                : popValue(Record, OpNum, NextValueNo,
4263                           cast<PointerType>(Ptr->getType())->getElementType(),
4264                           Val)) ||
4265           OpNum + 4 != Record.size())
4266         return error("Invalid record");
4267 
4268       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4269         return Err;
4270       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4271       if (Ordering == AtomicOrdering::NotAtomic ||
4272           Ordering == AtomicOrdering::Acquire ||
4273           Ordering == AtomicOrdering::AcquireRelease)
4274         return error("Invalid record");
4275       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4276       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4277         return error("Invalid record");
4278 
4279       unsigned Align;
4280       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4281         return Err;
4282       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4283       InstructionList.push_back(I);
4284       break;
4285     }
4286     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4287     case bitc::FUNC_CODE_INST_CMPXCHG: {
4288       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4289       //          failureordering?, isweak?]
4290       unsigned OpNum = 0;
4291       Value *Ptr, *Cmp, *New;
4292       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4293           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4294                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4295                : popValue(Record, OpNum, NextValueNo,
4296                           cast<PointerType>(Ptr->getType())->getElementType(),
4297                           Cmp)) ||
4298           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4299           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4300         return error("Invalid record");
4301       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4302       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4303           SuccessOrdering == AtomicOrdering::Unordered)
4304         return error("Invalid record");
4305       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
4306 
4307       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4308         return Err;
4309       AtomicOrdering FailureOrdering;
4310       if (Record.size() < 7)
4311         FailureOrdering =
4312             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4313       else
4314         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4315 
4316       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4317                                 SynchScope);
4318       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4319 
4320       if (Record.size() < 8) {
4321         // Before weak cmpxchgs existed, the instruction simply returned the
4322         // value loaded from memory, so bitcode files from that era will be
4323         // expecting the first component of a modern cmpxchg.
4324         CurBB->getInstList().push_back(I);
4325         I = ExtractValueInst::Create(I, 0);
4326       } else {
4327         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4328       }
4329 
4330       InstructionList.push_back(I);
4331       break;
4332     }
4333     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4334       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4335       unsigned OpNum = 0;
4336       Value *Ptr, *Val;
4337       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4338           !isa<PointerType>(Ptr->getType()) ||
4339           popValue(Record, OpNum, NextValueNo,
4340                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4341           OpNum+4 != Record.size())
4342         return error("Invalid record");
4343       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4344       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4345           Operation > AtomicRMWInst::LAST_BINOP)
4346         return error("Invalid record");
4347       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4348       if (Ordering == AtomicOrdering::NotAtomic ||
4349           Ordering == AtomicOrdering::Unordered)
4350         return error("Invalid record");
4351       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4352       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
4353       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4354       InstructionList.push_back(I);
4355       break;
4356     }
4357     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
4358       if (2 != Record.size())
4359         return error("Invalid record");
4360       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4361       if (Ordering == AtomicOrdering::NotAtomic ||
4362           Ordering == AtomicOrdering::Unordered ||
4363           Ordering == AtomicOrdering::Monotonic)
4364         return error("Invalid record");
4365       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
4366       I = new FenceInst(Context, Ordering, SynchScope);
4367       InstructionList.push_back(I);
4368       break;
4369     }
4370     case bitc::FUNC_CODE_INST_CALL: {
4371       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4372       if (Record.size() < 3)
4373         return error("Invalid record");
4374 
4375       unsigned OpNum = 0;
4376       AttributeList PAL = getAttributes(Record[OpNum++]);
4377       unsigned CCInfo = Record[OpNum++];
4378 
4379       FastMathFlags FMF;
4380       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4381         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4382         if (!FMF.any())
4383           return error("Fast math flags indicator set for call with no FMF");
4384       }
4385 
4386       FunctionType *FTy = nullptr;
4387       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4388           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4389         return error("Explicit call type is not a function type");
4390 
4391       Value *Callee;
4392       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4393         return error("Invalid record");
4394 
4395       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4396       if (!OpTy)
4397         return error("Callee is not a pointer type");
4398       if (!FTy) {
4399         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4400         if (!FTy)
4401           return error("Callee is not of pointer to function type");
4402       } else if (OpTy->getElementType() != FTy)
4403         return error("Explicit call type does not match pointee type of "
4404                      "callee operand");
4405       if (Record.size() < FTy->getNumParams() + OpNum)
4406         return error("Insufficient operands to call");
4407 
4408       SmallVector<Value*, 16> Args;
4409       // Read the fixed params.
4410       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4411         if (FTy->getParamType(i)->isLabelTy())
4412           Args.push_back(getBasicBlock(Record[OpNum]));
4413         else
4414           Args.push_back(getValue(Record, OpNum, NextValueNo,
4415                                   FTy->getParamType(i)));
4416         if (!Args.back())
4417           return error("Invalid record");
4418       }
4419 
4420       // Read type/value pairs for varargs params.
4421       if (!FTy->isVarArg()) {
4422         if (OpNum != Record.size())
4423           return error("Invalid record");
4424       } else {
4425         while (OpNum != Record.size()) {
4426           Value *Op;
4427           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4428             return error("Invalid record");
4429           Args.push_back(Op);
4430         }
4431       }
4432 
4433       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4434       OperandBundles.clear();
4435       InstructionList.push_back(I);
4436       cast<CallInst>(I)->setCallingConv(
4437           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4438       CallInst::TailCallKind TCK = CallInst::TCK_None;
4439       if (CCInfo & 1 << bitc::CALL_TAIL)
4440         TCK = CallInst::TCK_Tail;
4441       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4442         TCK = CallInst::TCK_MustTail;
4443       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4444         TCK = CallInst::TCK_NoTail;
4445       cast<CallInst>(I)->setTailCallKind(TCK);
4446       cast<CallInst>(I)->setAttributes(PAL);
4447       if (FMF.any()) {
4448         if (!isa<FPMathOperator>(I))
4449           return error("Fast-math-flags specified for call without "
4450                        "floating-point scalar or vector return type");
4451         I->setFastMathFlags(FMF);
4452       }
4453       break;
4454     }
4455     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4456       if (Record.size() < 3)
4457         return error("Invalid record");
4458       Type *OpTy = getTypeByID(Record[0]);
4459       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4460       Type *ResTy = getTypeByID(Record[2]);
4461       if (!OpTy || !Op || !ResTy)
4462         return error("Invalid record");
4463       I = new VAArgInst(Op, ResTy);
4464       InstructionList.push_back(I);
4465       break;
4466     }
4467 
4468     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4469       // A call or an invoke can be optionally prefixed with some variable
4470       // number of operand bundle blocks.  These blocks are read into
4471       // OperandBundles and consumed at the next call or invoke instruction.
4472 
4473       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4474         return error("Invalid record");
4475 
4476       std::vector<Value *> Inputs;
4477 
4478       unsigned OpNum = 1;
4479       while (OpNum != Record.size()) {
4480         Value *Op;
4481         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4482           return error("Invalid record");
4483         Inputs.push_back(Op);
4484       }
4485 
4486       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4487       continue;
4488     }
4489     }
4490 
4491     // Add instruction to end of current BB.  If there is no current BB, reject
4492     // this file.
4493     if (!CurBB) {
4494       delete I;
4495       return error("Invalid instruction with no BB");
4496     }
4497     if (!OperandBundles.empty()) {
4498       delete I;
4499       return error("Operand bundles found with no consumer");
4500     }
4501     CurBB->getInstList().push_back(I);
4502 
4503     // If this was a terminator instruction, move to the next block.
4504     if (isa<TerminatorInst>(I)) {
4505       ++CurBBNo;
4506       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4507     }
4508 
4509     // Non-void values get registered in the value table for future use.
4510     if (I && !I->getType()->isVoidTy())
4511       ValueList.assignValue(I, NextValueNo++);
4512   }
4513 
4514 OutOfRecordLoop:
4515 
4516   if (!OperandBundles.empty())
4517     return error("Operand bundles found with no consumer");
4518 
4519   // Check the function list for unresolved values.
4520   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4521     if (!A->getParent()) {
4522       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4523       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4524         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4525           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4526           delete A;
4527         }
4528       }
4529       return error("Never resolved value found in function");
4530     }
4531   }
4532 
4533   // Unexpected unresolved metadata about to be dropped.
4534   if (MDLoader->hasFwdRefs())
4535     return error("Invalid function metadata: outgoing forward refs");
4536 
4537   // Trim the value list down to the size it was before we parsed this function.
4538   ValueList.shrinkTo(ModuleValueListSize);
4539   MDLoader->shrinkTo(ModuleMDLoaderSize);
4540   std::vector<BasicBlock*>().swap(FunctionBBs);
4541   return Error::success();
4542 }
4543 
4544 /// Find the function body in the bitcode stream
4545 Error BitcodeReader::findFunctionInStream(
4546     Function *F,
4547     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4548   while (DeferredFunctionInfoIterator->second == 0) {
4549     // This is the fallback handling for the old format bitcode that
4550     // didn't contain the function index in the VST, or when we have
4551     // an anonymous function which would not have a VST entry.
4552     // Assert that we have one of those two cases.
4553     assert(VSTOffset == 0 || !F->hasName());
4554     // Parse the next body in the stream and set its position in the
4555     // DeferredFunctionInfo map.
4556     if (Error Err = rememberAndSkipFunctionBodies())
4557       return Err;
4558   }
4559   return Error::success();
4560 }
4561 
4562 //===----------------------------------------------------------------------===//
4563 // GVMaterializer implementation
4564 //===----------------------------------------------------------------------===//
4565 
4566 Error BitcodeReader::materialize(GlobalValue *GV) {
4567   Function *F = dyn_cast<Function>(GV);
4568   // If it's not a function or is already material, ignore the request.
4569   if (!F || !F->isMaterializable())
4570     return Error::success();
4571 
4572   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4573   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4574   // If its position is recorded as 0, its body is somewhere in the stream
4575   // but we haven't seen it yet.
4576   if (DFII->second == 0)
4577     if (Error Err = findFunctionInStream(F, DFII))
4578       return Err;
4579 
4580   // Materialize metadata before parsing any function bodies.
4581   if (Error Err = materializeMetadata())
4582     return Err;
4583 
4584   // Move the bit stream to the saved position of the deferred function body.
4585   Stream.JumpToBit(DFII->second);
4586 
4587   if (Error Err = parseFunctionBody(F))
4588     return Err;
4589   F->setIsMaterializable(false);
4590 
4591   if (StripDebugInfo)
4592     stripDebugInfo(*F);
4593 
4594   // Upgrade any old intrinsic calls in the function.
4595   for (auto &I : UpgradedIntrinsics) {
4596     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4597          UI != UE;) {
4598       User *U = *UI;
4599       ++UI;
4600       if (CallInst *CI = dyn_cast<CallInst>(U))
4601         UpgradeIntrinsicCall(CI, I.second);
4602     }
4603   }
4604 
4605   // Update calls to the remangled intrinsics
4606   for (auto &I : RemangledIntrinsics)
4607     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4608          UI != UE;)
4609       // Don't expect any other users than call sites
4610       CallSite(*UI++).setCalledFunction(I.second);
4611 
4612   // Finish fn->subprogram upgrade for materialized functions.
4613   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4614     F->setSubprogram(SP);
4615 
4616   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4617   if (!MDLoader->isStrippingTBAA()) {
4618     for (auto &I : instructions(F)) {
4619       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4620       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4621         continue;
4622       MDLoader->setStripTBAA(true);
4623       stripTBAA(F->getParent());
4624     }
4625   }
4626 
4627   // Bring in any functions that this function forward-referenced via
4628   // blockaddresses.
4629   return materializeForwardReferencedFunctions();
4630 }
4631 
4632 Error BitcodeReader::materializeModule() {
4633   if (Error Err = materializeMetadata())
4634     return Err;
4635 
4636   // Promise to materialize all forward references.
4637   WillMaterializeAllForwardRefs = true;
4638 
4639   // Iterate over the module, deserializing any functions that are still on
4640   // disk.
4641   for (Function &F : *TheModule) {
4642     if (Error Err = materialize(&F))
4643       return Err;
4644   }
4645   // At this point, if there are any function bodies, parse the rest of
4646   // the bits in the module past the last function block we have recorded
4647   // through either lazy scanning or the VST.
4648   if (LastFunctionBlockBit || NextUnreadBit)
4649     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4650                                     ? LastFunctionBlockBit
4651                                     : NextUnreadBit))
4652       return Err;
4653 
4654   // Check that all block address forward references got resolved (as we
4655   // promised above).
4656   if (!BasicBlockFwdRefs.empty())
4657     return error("Never resolved function from blockaddress");
4658 
4659   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4660   // delete the old functions to clean up. We can't do this unless the entire
4661   // module is materialized because there could always be another function body
4662   // with calls to the old function.
4663   for (auto &I : UpgradedIntrinsics) {
4664     for (auto *U : I.first->users()) {
4665       if (CallInst *CI = dyn_cast<CallInst>(U))
4666         UpgradeIntrinsicCall(CI, I.second);
4667     }
4668     if (!I.first->use_empty())
4669       I.first->replaceAllUsesWith(I.second);
4670     I.first->eraseFromParent();
4671   }
4672   UpgradedIntrinsics.clear();
4673   // Do the same for remangled intrinsics
4674   for (auto &I : RemangledIntrinsics) {
4675     I.first->replaceAllUsesWith(I.second);
4676     I.first->eraseFromParent();
4677   }
4678   RemangledIntrinsics.clear();
4679 
4680   UpgradeDebugInfo(*TheModule);
4681 
4682   UpgradeModuleFlags(*TheModule);
4683   return Error::success();
4684 }
4685 
4686 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4687   return IdentifiedStructTypes;
4688 }
4689 
4690 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4691     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4692     StringRef ModulePath, unsigned ModuleId)
4693     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4694       ModulePath(ModulePath), ModuleId(ModuleId) {}
4695 
4696 ModulePathStringTableTy::iterator
4697 ModuleSummaryIndexBitcodeReader::addThisModulePath() {
4698   return TheIndex.addModulePath(ModulePath, ModuleId);
4699 }
4700 
4701 std::pair<ValueInfo, GlobalValue::GUID>
4702 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4703   auto VGI = ValueIdToValueInfoMap[ValueId];
4704   assert(VGI.first);
4705   return VGI;
4706 }
4707 
4708 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4709     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4710     StringRef SourceFileName) {
4711   std::string GlobalId =
4712       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4713   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4714   auto OriginalNameID = ValueGUID;
4715   if (GlobalValue::isLocalLinkage(Linkage))
4716     OriginalNameID = GlobalValue::getGUID(ValueName);
4717   if (PrintSummaryGUIDs)
4718     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4719            << ValueName << "\n";
4720   ValueIdToValueInfoMap[ValueID] =
4721       std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID);
4722 }
4723 
4724 // Specialized value symbol table parser used when reading module index
4725 // blocks where we don't actually create global values. The parsed information
4726 // is saved in the bitcode reader for use when later parsing summaries.
4727 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4728     uint64_t Offset,
4729     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4730   // With a strtab the VST is not required to parse the summary.
4731   if (UseStrtab)
4732     return Error::success();
4733 
4734   assert(Offset > 0 && "Expected non-zero VST offset");
4735   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4736 
4737   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4738     return error("Invalid record");
4739 
4740   SmallVector<uint64_t, 64> Record;
4741 
4742   // Read all the records for this value table.
4743   SmallString<128> ValueName;
4744 
4745   while (true) {
4746     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4747 
4748     switch (Entry.Kind) {
4749     case BitstreamEntry::SubBlock: // Handled for us already.
4750     case BitstreamEntry::Error:
4751       return error("Malformed block");
4752     case BitstreamEntry::EndBlock:
4753       // Done parsing VST, jump back to wherever we came from.
4754       Stream.JumpToBit(CurrentBit);
4755       return Error::success();
4756     case BitstreamEntry::Record:
4757       // The interesting case.
4758       break;
4759     }
4760 
4761     // Read a record.
4762     Record.clear();
4763     switch (Stream.readRecord(Entry.ID, Record)) {
4764     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4765       break;
4766     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4767       if (convertToString(Record, 1, ValueName))
4768         return error("Invalid record");
4769       unsigned ValueID = Record[0];
4770       assert(!SourceFileName.empty());
4771       auto VLI = ValueIdToLinkageMap.find(ValueID);
4772       assert(VLI != ValueIdToLinkageMap.end() &&
4773              "No linkage found for VST entry?");
4774       auto Linkage = VLI->second;
4775       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4776       ValueName.clear();
4777       break;
4778     }
4779     case bitc::VST_CODE_FNENTRY: {
4780       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4781       if (convertToString(Record, 2, ValueName))
4782         return error("Invalid record");
4783       unsigned ValueID = Record[0];
4784       assert(!SourceFileName.empty());
4785       auto VLI = ValueIdToLinkageMap.find(ValueID);
4786       assert(VLI != ValueIdToLinkageMap.end() &&
4787              "No linkage found for VST entry?");
4788       auto Linkage = VLI->second;
4789       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4790       ValueName.clear();
4791       break;
4792     }
4793     case bitc::VST_CODE_COMBINED_ENTRY: {
4794       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4795       unsigned ValueID = Record[0];
4796       GlobalValue::GUID RefGUID = Record[1];
4797       // The "original name", which is the second value of the pair will be
4798       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4799       ValueIdToValueInfoMap[ValueID] =
4800           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4801       break;
4802     }
4803     }
4804   }
4805 }
4806 
4807 // Parse just the blocks needed for building the index out of the module.
4808 // At the end of this routine the module Index is populated with a map
4809 // from global value id to GlobalValueSummary objects.
4810 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4811   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4812     return error("Invalid record");
4813 
4814   SmallVector<uint64_t, 64> Record;
4815   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4816   unsigned ValueId = 0;
4817 
4818   // Read the index for this module.
4819   while (true) {
4820     BitstreamEntry Entry = Stream.advance();
4821 
4822     switch (Entry.Kind) {
4823     case BitstreamEntry::Error:
4824       return error("Malformed block");
4825     case BitstreamEntry::EndBlock:
4826       return Error::success();
4827 
4828     case BitstreamEntry::SubBlock:
4829       switch (Entry.ID) {
4830       default: // Skip unknown content.
4831         if (Stream.SkipBlock())
4832           return error("Invalid record");
4833         break;
4834       case bitc::BLOCKINFO_BLOCK_ID:
4835         // Need to parse these to get abbrev ids (e.g. for VST)
4836         if (readBlockInfo())
4837           return error("Malformed block");
4838         break;
4839       case bitc::VALUE_SYMTAB_BLOCK_ID:
4840         // Should have been parsed earlier via VSTOffset, unless there
4841         // is no summary section.
4842         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4843                 !SeenGlobalValSummary) &&
4844                "Expected early VST parse via VSTOffset record");
4845         if (Stream.SkipBlock())
4846           return error("Invalid record");
4847         break;
4848       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4849         assert(!SeenValueSymbolTable &&
4850                "Already read VST when parsing summary block?");
4851         // We might not have a VST if there were no values in the
4852         // summary. An empty summary block generated when we are
4853         // performing ThinLTO compiles so we don't later invoke
4854         // the regular LTO process on them.
4855         if (VSTOffset > 0) {
4856           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4857             return Err;
4858           SeenValueSymbolTable = true;
4859         }
4860         SeenGlobalValSummary = true;
4861         if (Error Err = parseEntireSummary())
4862           return Err;
4863         break;
4864       case bitc::MODULE_STRTAB_BLOCK_ID:
4865         if (Error Err = parseModuleStringTable())
4866           return Err;
4867         break;
4868       }
4869       continue;
4870 
4871     case BitstreamEntry::Record: {
4872         Record.clear();
4873         auto BitCode = Stream.readRecord(Entry.ID, Record);
4874         switch (BitCode) {
4875         default:
4876           break; // Default behavior, ignore unknown content.
4877         case bitc::MODULE_CODE_VERSION: {
4878           if (Error Err = parseVersionRecord(Record).takeError())
4879             return Err;
4880           break;
4881         }
4882         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4883         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4884           SmallString<128> ValueName;
4885           if (convertToString(Record, 0, ValueName))
4886             return error("Invalid record");
4887           SourceFileName = ValueName.c_str();
4888           break;
4889         }
4890         /// MODULE_CODE_HASH: [5*i32]
4891         case bitc::MODULE_CODE_HASH: {
4892           if (Record.size() != 5)
4893             return error("Invalid hash length " + Twine(Record.size()).str());
4894           auto &Hash = addThisModulePath()->second.second;
4895           int Pos = 0;
4896           for (auto &Val : Record) {
4897             assert(!(Val >> 32) && "Unexpected high bits set");
4898             Hash[Pos++] = Val;
4899           }
4900           break;
4901         }
4902         /// MODULE_CODE_VSTOFFSET: [offset]
4903         case bitc::MODULE_CODE_VSTOFFSET:
4904           if (Record.size() < 1)
4905             return error("Invalid record");
4906           // Note that we subtract 1 here because the offset is relative to one
4907           // word before the start of the identification or module block, which
4908           // was historically always the start of the regular bitcode header.
4909           VSTOffset = Record[0] - 1;
4910           break;
4911         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
4912         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
4913         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
4914         // v2: [strtab offset, strtab size, v1]
4915         case bitc::MODULE_CODE_GLOBALVAR:
4916         case bitc::MODULE_CODE_FUNCTION:
4917         case bitc::MODULE_CODE_ALIAS: {
4918           StringRef Name;
4919           ArrayRef<uint64_t> GVRecord;
4920           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
4921           if (GVRecord.size() <= 3)
4922             return error("Invalid record");
4923           uint64_t RawLinkage = GVRecord[3];
4924           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4925           if (!UseStrtab) {
4926             ValueIdToLinkageMap[ValueId++] = Linkage;
4927             break;
4928           }
4929 
4930           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
4931           break;
4932         }
4933         }
4934       }
4935       continue;
4936     }
4937   }
4938 }
4939 
4940 std::vector<ValueInfo>
4941 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
4942   std::vector<ValueInfo> Ret;
4943   Ret.reserve(Record.size());
4944   for (uint64_t RefValueId : Record)
4945     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
4946   return Ret;
4947 }
4948 
4949 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
4950     ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
4951   std::vector<FunctionSummary::EdgeTy> Ret;
4952   Ret.reserve(Record.size());
4953   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
4954     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
4955     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
4956     if (IsOldProfileFormat) {
4957       I += 1; // Skip old callsitecount field
4958       if (HasProfile)
4959         I += 1; // Skip old profilecount field
4960     } else if (HasProfile)
4961       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
4962     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}});
4963   }
4964   return Ret;
4965 }
4966 
4967 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
4968 // objects in the index.
4969 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
4970   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
4971     return error("Invalid record");
4972   SmallVector<uint64_t, 64> Record;
4973 
4974   // Parse version
4975   {
4976     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4977     if (Entry.Kind != BitstreamEntry::Record)
4978       return error("Invalid Summary Block: record for version expected");
4979     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
4980       return error("Invalid Summary Block: version expected");
4981   }
4982   const uint64_t Version = Record[0];
4983   const bool IsOldProfileFormat = Version == 1;
4984   if (Version < 1 || Version > 3)
4985     return error("Invalid summary version " + Twine(Version) +
4986                  ", 1, 2 or 3 expected");
4987   Record.clear();
4988 
4989   // Keep around the last seen summary to be used when we see an optional
4990   // "OriginalName" attachement.
4991   GlobalValueSummary *LastSeenSummary = nullptr;
4992   GlobalValue::GUID LastSeenGUID = 0;
4993 
4994   // We can expect to see any number of type ID information records before
4995   // each function summary records; these variables store the information
4996   // collected so far so that it can be used to create the summary object.
4997   std::vector<GlobalValue::GUID> PendingTypeTests;
4998   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
4999       PendingTypeCheckedLoadVCalls;
5000   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5001       PendingTypeCheckedLoadConstVCalls;
5002 
5003   while (true) {
5004     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5005 
5006     switch (Entry.Kind) {
5007     case BitstreamEntry::SubBlock: // Handled for us already.
5008     case BitstreamEntry::Error:
5009       return error("Malformed block");
5010     case BitstreamEntry::EndBlock:
5011       return Error::success();
5012     case BitstreamEntry::Record:
5013       // The interesting case.
5014       break;
5015     }
5016 
5017     // Read a record. The record format depends on whether this
5018     // is a per-module index or a combined index file. In the per-module
5019     // case the records contain the associated value's ID for correlation
5020     // with VST entries. In the combined index the correlation is done
5021     // via the bitcode offset of the summary records (which were saved
5022     // in the combined index VST entries). The records also contain
5023     // information used for ThinLTO renaming and importing.
5024     Record.clear();
5025     auto BitCode = Stream.readRecord(Entry.ID, Record);
5026     switch (BitCode) {
5027     default: // Default behavior: ignore.
5028       break;
5029     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5030       uint64_t ValueID = Record[0];
5031       GlobalValue::GUID RefGUID = Record[1];
5032       ValueIdToValueInfoMap[ValueID] =
5033           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5034       break;
5035     }
5036     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
5037     //                n x (valueid)]
5038     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
5039     //                        numrefs x valueid,
5040     //                        n x (valueid, hotness)]
5041     case bitc::FS_PERMODULE:
5042     case bitc::FS_PERMODULE_PROFILE: {
5043       unsigned ValueID = Record[0];
5044       uint64_t RawFlags = Record[1];
5045       unsigned InstCount = Record[2];
5046       unsigned NumRefs = Record[3];
5047       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5048       // The module path string ref set in the summary must be owned by the
5049       // index's module string table. Since we don't have a module path
5050       // string table section in the per-module index, we create a single
5051       // module path string table entry with an empty (0) ID to take
5052       // ownership.
5053       static int RefListStartIndex = 4;
5054       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5055       assert(Record.size() >= RefListStartIndex + NumRefs &&
5056              "Record size inconsistent with number of references");
5057       std::vector<ValueInfo> Refs = makeRefList(
5058           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5059       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5060       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5061           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5062           IsOldProfileFormat, HasProfile);
5063       auto FS = llvm::make_unique<FunctionSummary>(
5064           Flags, InstCount, std::move(Refs), std::move(Calls),
5065           std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls),
5066           std::move(PendingTypeCheckedLoadVCalls),
5067           std::move(PendingTypeTestAssumeConstVCalls),
5068           std::move(PendingTypeCheckedLoadConstVCalls));
5069       PendingTypeTests.clear();
5070       PendingTypeTestAssumeVCalls.clear();
5071       PendingTypeCheckedLoadVCalls.clear();
5072       PendingTypeTestAssumeConstVCalls.clear();
5073       PendingTypeCheckedLoadConstVCalls.clear();
5074       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5075       FS->setModulePath(addThisModulePath()->first());
5076       FS->setOriginalName(VIAndOriginalGUID.second);
5077       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5078       break;
5079     }
5080     // FS_ALIAS: [valueid, flags, valueid]
5081     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5082     // they expect all aliasee summaries to be available.
5083     case bitc::FS_ALIAS: {
5084       unsigned ValueID = Record[0];
5085       uint64_t RawFlags = Record[1];
5086       unsigned AliaseeID = Record[2];
5087       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5088       auto AS =
5089           llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{});
5090       // The module path string ref set in the summary must be owned by the
5091       // index's module string table. Since we don't have a module path
5092       // string table section in the per-module index, we create a single
5093       // module path string table entry with an empty (0) ID to take
5094       // ownership.
5095       AS->setModulePath(addThisModulePath()->first());
5096 
5097       GlobalValue::GUID AliaseeGUID =
5098           getValueInfoFromValueId(AliaseeID).first.getGUID();
5099       auto AliaseeInModule =
5100           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5101       if (!AliaseeInModule)
5102         return error("Alias expects aliasee summary to be parsed");
5103       AS->setAliasee(AliaseeInModule);
5104 
5105       auto GUID = getValueInfoFromValueId(ValueID);
5106       AS->setOriginalName(GUID.second);
5107       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5108       break;
5109     }
5110     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5111     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5112       unsigned ValueID = Record[0];
5113       uint64_t RawFlags = Record[1];
5114       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5115       std::vector<ValueInfo> Refs =
5116           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5117       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5118       FS->setModulePath(addThisModulePath()->first());
5119       auto GUID = getValueInfoFromValueId(ValueID);
5120       FS->setOriginalName(GUID.second);
5121       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5122       break;
5123     }
5124     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
5125     //               numrefs x valueid, n x (valueid)]
5126     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
5127     //                       numrefs x valueid, n x (valueid, hotness)]
5128     case bitc::FS_COMBINED:
5129     case bitc::FS_COMBINED_PROFILE: {
5130       unsigned ValueID = Record[0];
5131       uint64_t ModuleId = Record[1];
5132       uint64_t RawFlags = Record[2];
5133       unsigned InstCount = Record[3];
5134       unsigned NumRefs = Record[4];
5135       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5136       static int RefListStartIndex = 5;
5137       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5138       assert(Record.size() >= RefListStartIndex + NumRefs &&
5139              "Record size inconsistent with number of references");
5140       std::vector<ValueInfo> Refs = makeRefList(
5141           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5142       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5143       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5144           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5145           IsOldProfileFormat, HasProfile);
5146       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5147       auto FS = llvm::make_unique<FunctionSummary>(
5148           Flags, InstCount, std::move(Refs), std::move(Edges),
5149           std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls),
5150           std::move(PendingTypeCheckedLoadVCalls),
5151           std::move(PendingTypeTestAssumeConstVCalls),
5152           std::move(PendingTypeCheckedLoadConstVCalls));
5153       PendingTypeTests.clear();
5154       PendingTypeTestAssumeVCalls.clear();
5155       PendingTypeCheckedLoadVCalls.clear();
5156       PendingTypeTestAssumeConstVCalls.clear();
5157       PendingTypeCheckedLoadConstVCalls.clear();
5158       LastSeenSummary = FS.get();
5159       LastSeenGUID = VI.getGUID();
5160       FS->setModulePath(ModuleIdMap[ModuleId]);
5161       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5162       break;
5163     }
5164     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5165     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5166     // they expect all aliasee summaries to be available.
5167     case bitc::FS_COMBINED_ALIAS: {
5168       unsigned ValueID = Record[0];
5169       uint64_t ModuleId = Record[1];
5170       uint64_t RawFlags = Record[2];
5171       unsigned AliaseeValueId = Record[3];
5172       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5173       auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{});
5174       LastSeenSummary = AS.get();
5175       AS->setModulePath(ModuleIdMap[ModuleId]);
5176 
5177       auto AliaseeGUID =
5178           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5179       auto AliaseeInModule =
5180           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5181       if (!AliaseeInModule)
5182         return error("Alias expects aliasee summary to be parsed");
5183       AS->setAliasee(AliaseeInModule);
5184 
5185       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5186       LastSeenGUID = VI.getGUID();
5187       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5188       break;
5189     }
5190     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5191     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5192       unsigned ValueID = Record[0];
5193       uint64_t ModuleId = Record[1];
5194       uint64_t RawFlags = Record[2];
5195       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5196       std::vector<ValueInfo> Refs =
5197           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5198       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5199       LastSeenSummary = FS.get();
5200       FS->setModulePath(ModuleIdMap[ModuleId]);
5201       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5202       LastSeenGUID = VI.getGUID();
5203       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5204       break;
5205     }
5206     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5207     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5208       uint64_t OriginalName = Record[0];
5209       if (!LastSeenSummary)
5210         return error("Name attachment that does not follow a combined record");
5211       LastSeenSummary->setOriginalName(OriginalName);
5212       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5213       // Reset the LastSeenSummary
5214       LastSeenSummary = nullptr;
5215       LastSeenGUID = 0;
5216       break;
5217     }
5218     case bitc::FS_TYPE_TESTS: {
5219       assert(PendingTypeTests.empty());
5220       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5221                               Record.end());
5222       break;
5223     }
5224     case bitc::FS_TYPE_TEST_ASSUME_VCALLS: {
5225       assert(PendingTypeTestAssumeVCalls.empty());
5226       for (unsigned I = 0; I != Record.size(); I += 2)
5227         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5228       break;
5229     }
5230     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: {
5231       assert(PendingTypeCheckedLoadVCalls.empty());
5232       for (unsigned I = 0; I != Record.size(); I += 2)
5233         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5234       break;
5235     }
5236     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: {
5237       PendingTypeTestAssumeConstVCalls.push_back(
5238           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5239       break;
5240     }
5241     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: {
5242       PendingTypeCheckedLoadConstVCalls.push_back(
5243           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5244       break;
5245     }
5246     }
5247   }
5248   llvm_unreachable("Exit infinite loop");
5249 }
5250 
5251 // Parse the  module string table block into the Index.
5252 // This populates the ModulePathStringTable map in the index.
5253 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5254   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5255     return error("Invalid record");
5256 
5257   SmallVector<uint64_t, 64> Record;
5258 
5259   SmallString<128> ModulePath;
5260   ModulePathStringTableTy::iterator LastSeenModulePath;
5261 
5262   while (true) {
5263     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5264 
5265     switch (Entry.Kind) {
5266     case BitstreamEntry::SubBlock: // Handled for us already.
5267     case BitstreamEntry::Error:
5268       return error("Malformed block");
5269     case BitstreamEntry::EndBlock:
5270       return Error::success();
5271     case BitstreamEntry::Record:
5272       // The interesting case.
5273       break;
5274     }
5275 
5276     Record.clear();
5277     switch (Stream.readRecord(Entry.ID, Record)) {
5278     default: // Default behavior: ignore.
5279       break;
5280     case bitc::MST_CODE_ENTRY: {
5281       // MST_ENTRY: [modid, namechar x N]
5282       uint64_t ModuleId = Record[0];
5283 
5284       if (convertToString(Record, 1, ModulePath))
5285         return error("Invalid record");
5286 
5287       LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId);
5288       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
5289 
5290       ModulePath.clear();
5291       break;
5292     }
5293     /// MST_CODE_HASH: [5*i32]
5294     case bitc::MST_CODE_HASH: {
5295       if (Record.size() != 5)
5296         return error("Invalid hash length " + Twine(Record.size()).str());
5297       if (LastSeenModulePath == TheIndex.modulePaths().end())
5298         return error("Invalid hash that does not follow a module path");
5299       int Pos = 0;
5300       for (auto &Val : Record) {
5301         assert(!(Val >> 32) && "Unexpected high bits set");
5302         LastSeenModulePath->second.second[Pos++] = Val;
5303       }
5304       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
5305       LastSeenModulePath = TheIndex.modulePaths().end();
5306       break;
5307     }
5308     }
5309   }
5310   llvm_unreachable("Exit infinite loop");
5311 }
5312 
5313 namespace {
5314 
5315 // FIXME: This class is only here to support the transition to llvm::Error. It
5316 // will be removed once this transition is complete. Clients should prefer to
5317 // deal with the Error value directly, rather than converting to error_code.
5318 class BitcodeErrorCategoryType : public std::error_category {
5319   const char *name() const noexcept override {
5320     return "llvm.bitcode";
5321   }
5322   std::string message(int IE) const override {
5323     BitcodeError E = static_cast<BitcodeError>(IE);
5324     switch (E) {
5325     case BitcodeError::CorruptedBitcode:
5326       return "Corrupted bitcode";
5327     }
5328     llvm_unreachable("Unknown error type!");
5329   }
5330 };
5331 
5332 } // end anonymous namespace
5333 
5334 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5335 
5336 const std::error_category &llvm::BitcodeErrorCategory() {
5337   return *ErrorCategory;
5338 }
5339 
5340 static Expected<StringRef> readStrtab(BitstreamCursor &Stream) {
5341   if (Stream.EnterSubBlock(bitc::STRTAB_BLOCK_ID))
5342     return error("Invalid record");
5343 
5344   StringRef Strtab;
5345   while (1) {
5346     BitstreamEntry Entry = Stream.advance();
5347     switch (Entry.Kind) {
5348     case BitstreamEntry::EndBlock:
5349       return Strtab;
5350 
5351     case BitstreamEntry::Error:
5352       return error("Malformed block");
5353 
5354     case BitstreamEntry::SubBlock:
5355       if (Stream.SkipBlock())
5356         return error("Malformed block");
5357       break;
5358 
5359     case BitstreamEntry::Record:
5360       StringRef Blob;
5361       SmallVector<uint64_t, 1> Record;
5362       if (Stream.readRecord(Entry.ID, Record, &Blob) == bitc::STRTAB_BLOB)
5363         Strtab = Blob;
5364       break;
5365     }
5366   }
5367 }
5368 
5369 //===----------------------------------------------------------------------===//
5370 // External interface
5371 //===----------------------------------------------------------------------===//
5372 
5373 Expected<std::vector<BitcodeModule>>
5374 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5375   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5376   if (!StreamOrErr)
5377     return StreamOrErr.takeError();
5378   BitstreamCursor &Stream = *StreamOrErr;
5379 
5380   std::vector<BitcodeModule> Modules;
5381   while (true) {
5382     uint64_t BCBegin = Stream.getCurrentByteNo();
5383 
5384     // We may be consuming bitcode from a client that leaves garbage at the end
5385     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5386     // the end that there cannot possibly be another module, stop looking.
5387     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5388       return Modules;
5389 
5390     BitstreamEntry Entry = Stream.advance();
5391     switch (Entry.Kind) {
5392     case BitstreamEntry::EndBlock:
5393     case BitstreamEntry::Error:
5394       return error("Malformed block");
5395 
5396     case BitstreamEntry::SubBlock: {
5397       uint64_t IdentificationBit = -1ull;
5398       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5399         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5400         if (Stream.SkipBlock())
5401           return error("Malformed block");
5402 
5403         Entry = Stream.advance();
5404         if (Entry.Kind != BitstreamEntry::SubBlock ||
5405             Entry.ID != bitc::MODULE_BLOCK_ID)
5406           return error("Malformed block");
5407       }
5408 
5409       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5410         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5411         if (Stream.SkipBlock())
5412           return error("Malformed block");
5413 
5414         Modules.push_back({Stream.getBitcodeBytes().slice(
5415                                BCBegin, Stream.getCurrentByteNo() - BCBegin),
5416                            Buffer.getBufferIdentifier(), IdentificationBit,
5417                            ModuleBit});
5418         continue;
5419       }
5420 
5421       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5422         Expected<StringRef> Strtab = readStrtab(Stream);
5423         if (!Strtab)
5424           return Strtab.takeError();
5425         // This string table is used by every preceding bitcode module that does
5426         // not have its own string table. A bitcode file may have multiple
5427         // string tables if it was created by binary concatenation, for example
5428         // with "llvm-cat -b".
5429         for (auto I = Modules.rbegin(), E = Modules.rend(); I != E; ++I) {
5430           if (!I->Strtab.empty())
5431             break;
5432           I->Strtab = *Strtab;
5433         }
5434         continue;
5435       }
5436 
5437       if (Stream.SkipBlock())
5438         return error("Malformed block");
5439       continue;
5440     }
5441     case BitstreamEntry::Record:
5442       Stream.skipRecord(Entry.ID);
5443       continue;
5444     }
5445   }
5446 }
5447 
5448 /// \brief Get a lazy one-at-time loading module from bitcode.
5449 ///
5450 /// This isn't always used in a lazy context.  In particular, it's also used by
5451 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5452 /// in forward-referenced functions from block address references.
5453 ///
5454 /// \param[in] MaterializeAll Set to \c true if we should materialize
5455 /// everything.
5456 Expected<std::unique_ptr<Module>>
5457 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5458                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5459   BitstreamCursor Stream(Buffer);
5460 
5461   std::string ProducerIdentification;
5462   if (IdentificationBit != -1ull) {
5463     Stream.JumpToBit(IdentificationBit);
5464     Expected<std::string> ProducerIdentificationOrErr =
5465         readIdentificationBlock(Stream);
5466     if (!ProducerIdentificationOrErr)
5467       return ProducerIdentificationOrErr.takeError();
5468 
5469     ProducerIdentification = *ProducerIdentificationOrErr;
5470   }
5471 
5472   Stream.JumpToBit(ModuleBit);
5473   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5474                               Context);
5475 
5476   std::unique_ptr<Module> M =
5477       llvm::make_unique<Module>(ModuleIdentifier, Context);
5478   M->setMaterializer(R);
5479 
5480   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5481   if (Error Err =
5482           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5483     return std::move(Err);
5484 
5485   if (MaterializeAll) {
5486     // Read in the entire module, and destroy the BitcodeReader.
5487     if (Error Err = M->materializeAll())
5488       return std::move(Err);
5489   } else {
5490     // Resolve forward references from blockaddresses.
5491     if (Error Err = R->materializeForwardReferencedFunctions())
5492       return std::move(Err);
5493   }
5494   return std::move(M);
5495 }
5496 
5497 Expected<std::unique_ptr<Module>>
5498 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5499                              bool IsImporting) {
5500   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5501 }
5502 
5503 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5504 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5505                                  unsigned ModuleId) {
5506   BitstreamCursor Stream(Buffer);
5507   Stream.JumpToBit(ModuleBit);
5508 
5509   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5510                                     ModuleIdentifier, ModuleId);
5511   return R.parseModule();
5512 }
5513 
5514 // Parse the specified bitcode buffer, returning the function info index.
5515 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5516   BitstreamCursor Stream(Buffer);
5517   Stream.JumpToBit(ModuleBit);
5518 
5519   auto Index = llvm::make_unique<ModuleSummaryIndex>();
5520   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5521                                     ModuleIdentifier, 0);
5522 
5523   if (Error Err = R.parseModule())
5524     return std::move(Err);
5525 
5526   return std::move(Index);
5527 }
5528 
5529 // Check if the given bitcode buffer contains a global value summary block.
5530 Expected<bool> BitcodeModule::hasSummary() {
5531   BitstreamCursor Stream(Buffer);
5532   Stream.JumpToBit(ModuleBit);
5533 
5534   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5535     return error("Invalid record");
5536 
5537   while (true) {
5538     BitstreamEntry Entry = Stream.advance();
5539 
5540     switch (Entry.Kind) {
5541     case BitstreamEntry::Error:
5542       return error("Malformed block");
5543     case BitstreamEntry::EndBlock:
5544       return false;
5545 
5546     case BitstreamEntry::SubBlock:
5547       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5548         return true;
5549 
5550       // Ignore other sub-blocks.
5551       if (Stream.SkipBlock())
5552         return error("Malformed block");
5553       continue;
5554 
5555     case BitstreamEntry::Record:
5556       Stream.skipRecord(Entry.ID);
5557       continue;
5558     }
5559   }
5560 }
5561 
5562 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5563   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5564   if (!MsOrErr)
5565     return MsOrErr.takeError();
5566 
5567   if (MsOrErr->size() != 1)
5568     return error("Expected a single module");
5569 
5570   return (*MsOrErr)[0];
5571 }
5572 
5573 Expected<std::unique_ptr<Module>>
5574 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5575                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5576   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5577   if (!BM)
5578     return BM.takeError();
5579 
5580   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5581 }
5582 
5583 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5584     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5585     bool ShouldLazyLoadMetadata, bool IsImporting) {
5586   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5587                                      IsImporting);
5588   if (MOrErr)
5589     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5590   return MOrErr;
5591 }
5592 
5593 Expected<std::unique_ptr<Module>>
5594 BitcodeModule::parseModule(LLVMContext &Context) {
5595   return getModuleImpl(Context, true, false, false);
5596   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5597   // written.  We must defer until the Module has been fully materialized.
5598 }
5599 
5600 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5601                                                          LLVMContext &Context) {
5602   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5603   if (!BM)
5604     return BM.takeError();
5605 
5606   return BM->parseModule(Context);
5607 }
5608 
5609 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5610   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5611   if (!StreamOrErr)
5612     return StreamOrErr.takeError();
5613 
5614   return readTriple(*StreamOrErr);
5615 }
5616 
5617 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5618   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5619   if (!StreamOrErr)
5620     return StreamOrErr.takeError();
5621 
5622   return hasObjCCategory(*StreamOrErr);
5623 }
5624 
5625 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5626   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5627   if (!StreamOrErr)
5628     return StreamOrErr.takeError();
5629 
5630   return readIdentificationCode(*StreamOrErr);
5631 }
5632 
5633 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5634                                    ModuleSummaryIndex &CombinedIndex,
5635                                    unsigned ModuleId) {
5636   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5637   if (!BM)
5638     return BM.takeError();
5639 
5640   return BM->readSummary(CombinedIndex, ModuleId);
5641 }
5642 
5643 Expected<std::unique_ptr<ModuleSummaryIndex>>
5644 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5645   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5646   if (!BM)
5647     return BM.takeError();
5648 
5649   return BM->getSummary();
5650 }
5651 
5652 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) {
5653   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5654   if (!BM)
5655     return BM.takeError();
5656 
5657   return BM->hasSummary();
5658 }
5659 
5660 Expected<std::unique_ptr<ModuleSummaryIndex>>
5661 llvm::getModuleSummaryIndexForFile(StringRef Path) {
5662   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5663       MemoryBuffer::getFileOrSTDIN(Path);
5664   if (!FileOrErr)
5665     return errorCodeToError(FileOrErr.getError());
5666   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5667     return nullptr;
5668   return getModuleSummaryIndex(**FileOrErr);
5669 }
5670