1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   return Flags;
964 }
965 
966 /// Decode the flags for GlobalValue in the summary.
967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
968                                                             uint64_t Version) {
969   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
970   // like getDecodedLinkage() above. Any future change to the linkage enum and
971   // to getDecodedLinkage() will need to be taken into account here as above.
972   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
973   RawFlags = RawFlags >> 4;
974   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975   // The Live flag wasn't introduced until version 3. For dead stripping
976   // to work correctly on earlier versions, we must conservatively treat all
977   // values as live.
978   bool Live = (RawFlags & 0x2) || Version < 3;
979   bool Local = (RawFlags & 0x4);
980   bool AutoHide = (RawFlags & 0x8);
981 
982   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
983 }
984 
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
988                                      (RawFlags & 0x2) ? true : false);
989 }
990 
991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
992   switch (Val) {
993   default: // Map unknown visibilities to default.
994   case 0: return GlobalValue::DefaultVisibility;
995   case 1: return GlobalValue::HiddenVisibility;
996   case 2: return GlobalValue::ProtectedVisibility;
997   }
998 }
999 
1000 static GlobalValue::DLLStorageClassTypes
1001 getDecodedDLLStorageClass(unsigned Val) {
1002   switch (Val) {
1003   default: // Map unknown values to default.
1004   case 0: return GlobalValue::DefaultStorageClass;
1005   case 1: return GlobalValue::DLLImportStorageClass;
1006   case 2: return GlobalValue::DLLExportStorageClass;
1007   }
1008 }
1009 
1010 static bool getDecodedDSOLocal(unsigned Val) {
1011   switch(Val) {
1012   default: // Map unknown values to preemptable.
1013   case 0:  return false;
1014   case 1:  return true;
1015   }
1016 }
1017 
1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1019   switch (Val) {
1020     case 0: return GlobalVariable::NotThreadLocal;
1021     default: // Map unknown non-zero value to general dynamic.
1022     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1023     case 2: return GlobalVariable::LocalDynamicTLSModel;
1024     case 3: return GlobalVariable::InitialExecTLSModel;
1025     case 4: return GlobalVariable::LocalExecTLSModel;
1026   }
1027 }
1028 
1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1030   switch (Val) {
1031     default: // Map unknown to UnnamedAddr::None.
1032     case 0: return GlobalVariable::UnnamedAddr::None;
1033     case 1: return GlobalVariable::UnnamedAddr::Global;
1034     case 2: return GlobalVariable::UnnamedAddr::Local;
1035   }
1036 }
1037 
1038 static int getDecodedCastOpcode(unsigned Val) {
1039   switch (Val) {
1040   default: return -1;
1041   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1042   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1043   case bitc::CAST_SEXT    : return Instruction::SExt;
1044   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1045   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1046   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1047   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1048   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1049   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1050   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1051   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1052   case bitc::CAST_BITCAST : return Instruction::BitCast;
1053   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1054   }
1055 }
1056 
1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1058   bool IsFP = Ty->isFPOrFPVectorTy();
1059   // UnOps are only valid for int/fp or vector of int/fp types
1060   if (!IsFP && !Ty->isIntOrIntVectorTy())
1061     return -1;
1062 
1063   switch (Val) {
1064   default:
1065     return -1;
1066   case bitc::UNOP_NEG:
1067     return IsFP ? Instruction::FNeg : -1;
1068   }
1069 }
1070 
1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1072   bool IsFP = Ty->isFPOrFPVectorTy();
1073   // BinOps are only valid for int/fp or vector of int/fp types
1074   if (!IsFP && !Ty->isIntOrIntVectorTy())
1075     return -1;
1076 
1077   switch (Val) {
1078   default:
1079     return -1;
1080   case bitc::BINOP_ADD:
1081     return IsFP ? Instruction::FAdd : Instruction::Add;
1082   case bitc::BINOP_SUB:
1083     return IsFP ? Instruction::FSub : Instruction::Sub;
1084   case bitc::BINOP_MUL:
1085     return IsFP ? Instruction::FMul : Instruction::Mul;
1086   case bitc::BINOP_UDIV:
1087     return IsFP ? -1 : Instruction::UDiv;
1088   case bitc::BINOP_SDIV:
1089     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1090   case bitc::BINOP_UREM:
1091     return IsFP ? -1 : Instruction::URem;
1092   case bitc::BINOP_SREM:
1093     return IsFP ? Instruction::FRem : Instruction::SRem;
1094   case bitc::BINOP_SHL:
1095     return IsFP ? -1 : Instruction::Shl;
1096   case bitc::BINOP_LSHR:
1097     return IsFP ? -1 : Instruction::LShr;
1098   case bitc::BINOP_ASHR:
1099     return IsFP ? -1 : Instruction::AShr;
1100   case bitc::BINOP_AND:
1101     return IsFP ? -1 : Instruction::And;
1102   case bitc::BINOP_OR:
1103     return IsFP ? -1 : Instruction::Or;
1104   case bitc::BINOP_XOR:
1105     return IsFP ? -1 : Instruction::Xor;
1106   }
1107 }
1108 
1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1110   switch (Val) {
1111   default: return AtomicRMWInst::BAD_BINOP;
1112   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1113   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1114   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1115   case bitc::RMW_AND: return AtomicRMWInst::And;
1116   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1117   case bitc::RMW_OR: return AtomicRMWInst::Or;
1118   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1119   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1120   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1121   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1122   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1123   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1124   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1125   }
1126 }
1127 
1128 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1129   switch (Val) {
1130   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1131   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1132   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1133   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1134   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1135   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1136   default: // Map unknown orderings to sequentially-consistent.
1137   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1138   }
1139 }
1140 
1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1142   switch (Val) {
1143   default: // Map unknown selection kinds to any.
1144   case bitc::COMDAT_SELECTION_KIND_ANY:
1145     return Comdat::Any;
1146   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1147     return Comdat::ExactMatch;
1148   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1149     return Comdat::Largest;
1150   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1151     return Comdat::NoDuplicates;
1152   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1153     return Comdat::SameSize;
1154   }
1155 }
1156 
1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1158   FastMathFlags FMF;
1159   if (0 != (Val & bitc::UnsafeAlgebra))
1160     FMF.setFast();
1161   if (0 != (Val & bitc::AllowReassoc))
1162     FMF.setAllowReassoc();
1163   if (0 != (Val & bitc::NoNaNs))
1164     FMF.setNoNaNs();
1165   if (0 != (Val & bitc::NoInfs))
1166     FMF.setNoInfs();
1167   if (0 != (Val & bitc::NoSignedZeros))
1168     FMF.setNoSignedZeros();
1169   if (0 != (Val & bitc::AllowReciprocal))
1170     FMF.setAllowReciprocal();
1171   if (0 != (Val & bitc::AllowContract))
1172     FMF.setAllowContract(true);
1173   if (0 != (Val & bitc::ApproxFunc))
1174     FMF.setApproxFunc();
1175   return FMF;
1176 }
1177 
1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1179   switch (Val) {
1180   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1181   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1182   }
1183 }
1184 
1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1186   // The type table size is always specified correctly.
1187   if (ID >= TypeList.size())
1188     return nullptr;
1189 
1190   if (Type *Ty = TypeList[ID])
1191     return Ty;
1192 
1193   // If we have a forward reference, the only possible case is when it is to a
1194   // named struct.  Just create a placeholder for now.
1195   return TypeList[ID] = createIdentifiedStructType(Context);
1196 }
1197 
1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1199                                                       StringRef Name) {
1200   auto *Ret = StructType::create(Context, Name);
1201   IdentifiedStructTypes.push_back(Ret);
1202   return Ret;
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1206   auto *Ret = StructType::create(Context);
1207   IdentifiedStructTypes.push_back(Ret);
1208   return Ret;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 //  Functions for parsing blocks from the bitcode file
1213 //===----------------------------------------------------------------------===//
1214 
1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1216   switch (Val) {
1217   case Attribute::EndAttrKinds:
1218     llvm_unreachable("Synthetic enumerators which should never get here");
1219 
1220   case Attribute::None:            return 0;
1221   case Attribute::ZExt:            return 1 << 0;
1222   case Attribute::SExt:            return 1 << 1;
1223   case Attribute::NoReturn:        return 1 << 2;
1224   case Attribute::InReg:           return 1 << 3;
1225   case Attribute::StructRet:       return 1 << 4;
1226   case Attribute::NoUnwind:        return 1 << 5;
1227   case Attribute::NoAlias:         return 1 << 6;
1228   case Attribute::ByVal:           return 1 << 7;
1229   case Attribute::Nest:            return 1 << 8;
1230   case Attribute::ReadNone:        return 1 << 9;
1231   case Attribute::ReadOnly:        return 1 << 10;
1232   case Attribute::NoInline:        return 1 << 11;
1233   case Attribute::AlwaysInline:    return 1 << 12;
1234   case Attribute::OptimizeForSize: return 1 << 13;
1235   case Attribute::StackProtect:    return 1 << 14;
1236   case Attribute::StackProtectReq: return 1 << 15;
1237   case Attribute::Alignment:       return 31 << 16;
1238   case Attribute::NoCapture:       return 1 << 21;
1239   case Attribute::NoRedZone:       return 1 << 22;
1240   case Attribute::NoImplicitFloat: return 1 << 23;
1241   case Attribute::Naked:           return 1 << 24;
1242   case Attribute::InlineHint:      return 1 << 25;
1243   case Attribute::StackAlignment:  return 7 << 26;
1244   case Attribute::ReturnsTwice:    return 1 << 29;
1245   case Attribute::UWTable:         return 1 << 30;
1246   case Attribute::NonLazyBind:     return 1U << 31;
1247   case Attribute::SanitizeAddress: return 1ULL << 32;
1248   case Attribute::MinSize:         return 1ULL << 33;
1249   case Attribute::NoDuplicate:     return 1ULL << 34;
1250   case Attribute::StackProtectStrong: return 1ULL << 35;
1251   case Attribute::SanitizeThread:  return 1ULL << 36;
1252   case Attribute::SanitizeMemory:  return 1ULL << 37;
1253   case Attribute::NoBuiltin:       return 1ULL << 38;
1254   case Attribute::Returned:        return 1ULL << 39;
1255   case Attribute::Cold:            return 1ULL << 40;
1256   case Attribute::Builtin:         return 1ULL << 41;
1257   case Attribute::OptimizeNone:    return 1ULL << 42;
1258   case Attribute::InAlloca:        return 1ULL << 43;
1259   case Attribute::NonNull:         return 1ULL << 44;
1260   case Attribute::JumpTable:       return 1ULL << 45;
1261   case Attribute::Convergent:      return 1ULL << 46;
1262   case Attribute::SafeStack:       return 1ULL << 47;
1263   case Attribute::NoRecurse:       return 1ULL << 48;
1264   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1265   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1266   case Attribute::SwiftSelf:       return 1ULL << 51;
1267   case Attribute::SwiftError:      return 1ULL << 52;
1268   case Attribute::WriteOnly:       return 1ULL << 53;
1269   case Attribute::Speculatable:    return 1ULL << 54;
1270   case Attribute::StrictFP:        return 1ULL << 55;
1271   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1272   case Attribute::NoCfCheck:       return 1ULL << 57;
1273   case Attribute::OptForFuzzing:   return 1ULL << 58;
1274   case Attribute::ShadowCallStack: return 1ULL << 59;
1275   case Attribute::SpeculativeLoadHardening:
1276     return 1ULL << 60;
1277   case Attribute::ImmArg:
1278     return 1ULL << 61;
1279   case Attribute::WillReturn:
1280     return 1ULL << 62;
1281   case Attribute::Dereferenceable:
1282     llvm_unreachable("dereferenceable attribute not supported in raw format");
1283     break;
1284   case Attribute::DereferenceableOrNull:
1285     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1286                      "format");
1287     break;
1288   case Attribute::ArgMemOnly:
1289     llvm_unreachable("argmemonly attribute not supported in raw format");
1290     break;
1291   case Attribute::AllocSize:
1292     llvm_unreachable("allocsize not supported in raw format");
1293     break;
1294   }
1295   llvm_unreachable("Unsupported attribute type");
1296 }
1297 
1298 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1299   if (!Val) return;
1300 
1301   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1302        I = Attribute::AttrKind(I + 1)) {
1303     if (I == Attribute::Dereferenceable ||
1304         I == Attribute::DereferenceableOrNull ||
1305         I == Attribute::ArgMemOnly ||
1306         I == Attribute::AllocSize)
1307       continue;
1308     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1309       if (I == Attribute::Alignment)
1310         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1311       else if (I == Attribute::StackAlignment)
1312         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1313       else
1314         B.addAttribute(I);
1315     }
1316   }
1317 }
1318 
1319 /// This fills an AttrBuilder object with the LLVM attributes that have
1320 /// been decoded from the given integer. This function must stay in sync with
1321 /// 'encodeLLVMAttributesForBitcode'.
1322 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1323                                            uint64_t EncodedAttrs) {
1324   // FIXME: Remove in 4.0.
1325 
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // FIXME: Remove in 4.0.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CAPTURE:
1442     return Attribute::NoCapture;
1443   case bitc::ATTR_KIND_NO_DUPLICATE:
1444     return Attribute::NoDuplicate;
1445   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1446     return Attribute::NoImplicitFloat;
1447   case bitc::ATTR_KIND_NO_INLINE:
1448     return Attribute::NoInline;
1449   case bitc::ATTR_KIND_NO_RECURSE:
1450     return Attribute::NoRecurse;
1451   case bitc::ATTR_KIND_NON_LAZY_BIND:
1452     return Attribute::NonLazyBind;
1453   case bitc::ATTR_KIND_NON_NULL:
1454     return Attribute::NonNull;
1455   case bitc::ATTR_KIND_DEREFERENCEABLE:
1456     return Attribute::Dereferenceable;
1457   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1458     return Attribute::DereferenceableOrNull;
1459   case bitc::ATTR_KIND_ALLOC_SIZE:
1460     return Attribute::AllocSize;
1461   case bitc::ATTR_KIND_NO_RED_ZONE:
1462     return Attribute::NoRedZone;
1463   case bitc::ATTR_KIND_NO_RETURN:
1464     return Attribute::NoReturn;
1465   case bitc::ATTR_KIND_NOCF_CHECK:
1466     return Attribute::NoCfCheck;
1467   case bitc::ATTR_KIND_NO_UNWIND:
1468     return Attribute::NoUnwind;
1469   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1470     return Attribute::OptForFuzzing;
1471   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1472     return Attribute::OptimizeForSize;
1473   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1474     return Attribute::OptimizeNone;
1475   case bitc::ATTR_KIND_READ_NONE:
1476     return Attribute::ReadNone;
1477   case bitc::ATTR_KIND_READ_ONLY:
1478     return Attribute::ReadOnly;
1479   case bitc::ATTR_KIND_RETURNED:
1480     return Attribute::Returned;
1481   case bitc::ATTR_KIND_RETURNS_TWICE:
1482     return Attribute::ReturnsTwice;
1483   case bitc::ATTR_KIND_S_EXT:
1484     return Attribute::SExt;
1485   case bitc::ATTR_KIND_SPECULATABLE:
1486     return Attribute::Speculatable;
1487   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1488     return Attribute::StackAlignment;
1489   case bitc::ATTR_KIND_STACK_PROTECT:
1490     return Attribute::StackProtect;
1491   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1492     return Attribute::StackProtectReq;
1493   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1494     return Attribute::StackProtectStrong;
1495   case bitc::ATTR_KIND_SAFESTACK:
1496     return Attribute::SafeStack;
1497   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1498     return Attribute::ShadowCallStack;
1499   case bitc::ATTR_KIND_STRICT_FP:
1500     return Attribute::StrictFP;
1501   case bitc::ATTR_KIND_STRUCT_RET:
1502     return Attribute::StructRet;
1503   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1504     return Attribute::SanitizeAddress;
1505   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1506     return Attribute::SanitizeHWAddress;
1507   case bitc::ATTR_KIND_SANITIZE_THREAD:
1508     return Attribute::SanitizeThread;
1509   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1510     return Attribute::SanitizeMemory;
1511   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1512     return Attribute::SpeculativeLoadHardening;
1513   case bitc::ATTR_KIND_SWIFT_ERROR:
1514     return Attribute::SwiftError;
1515   case bitc::ATTR_KIND_SWIFT_SELF:
1516     return Attribute::SwiftSelf;
1517   case bitc::ATTR_KIND_UW_TABLE:
1518     return Attribute::UWTable;
1519   case bitc::ATTR_KIND_WILLRETURN:
1520     return Attribute::WillReturn;
1521   case bitc::ATTR_KIND_WRITEONLY:
1522     return Attribute::WriteOnly;
1523   case bitc::ATTR_KIND_Z_EXT:
1524     return Attribute::ZExt;
1525   case bitc::ATTR_KIND_IMMARG:
1526     return Attribute::ImmArg;
1527   }
1528 }
1529 
1530 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1531                                          unsigned &Alignment) {
1532   // Note: Alignment in bitcode files is incremented by 1, so that zero
1533   // can be used for default alignment.
1534   if (Exponent > Value::MaxAlignmentExponent + 1)
1535     return error("Invalid alignment value");
1536   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1537   return Error::success();
1538 }
1539 
1540 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1541   *Kind = getAttrFromCode(Code);
1542   if (*Kind == Attribute::None)
1543     return error("Unknown attribute kind (" + Twine(Code) + ")");
1544   return Error::success();
1545 }
1546 
1547 Error BitcodeReader::parseAttributeGroupBlock() {
1548   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1549     return Err;
1550 
1551   if (!MAttributeGroups.empty())
1552     return error("Invalid multiple blocks");
1553 
1554   SmallVector<uint64_t, 64> Record;
1555 
1556   // Read all the records.
1557   while (true) {
1558     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1559     if (!MaybeEntry)
1560       return MaybeEntry.takeError();
1561     BitstreamEntry Entry = MaybeEntry.get();
1562 
1563     switch (Entry.Kind) {
1564     case BitstreamEntry::SubBlock: // Handled for us already.
1565     case BitstreamEntry::Error:
1566       return error("Malformed block");
1567     case BitstreamEntry::EndBlock:
1568       return Error::success();
1569     case BitstreamEntry::Record:
1570       // The interesting case.
1571       break;
1572     }
1573 
1574     // Read a record.
1575     Record.clear();
1576     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1577     if (!MaybeRecord)
1578       return MaybeRecord.takeError();
1579     switch (MaybeRecord.get()) {
1580     default:  // Default behavior: ignore.
1581       break;
1582     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1583       if (Record.size() < 3)
1584         return error("Invalid record");
1585 
1586       uint64_t GrpID = Record[0];
1587       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1588 
1589       AttrBuilder B;
1590       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1591         if (Record[i] == 0) {        // Enum attribute
1592           Attribute::AttrKind Kind;
1593           if (Error Err = parseAttrKind(Record[++i], &Kind))
1594             return Err;
1595 
1596           // Upgrade old-style byval attribute to one with a type, even if it's
1597           // nullptr. We will have to insert the real type when we associate
1598           // this AttributeList with a function.
1599           if (Kind == Attribute::ByVal)
1600             B.addByValAttr(nullptr);
1601 
1602           B.addAttribute(Kind);
1603         } else if (Record[i] == 1) { // Integer attribute
1604           Attribute::AttrKind Kind;
1605           if (Error Err = parseAttrKind(Record[++i], &Kind))
1606             return Err;
1607           if (Kind == Attribute::Alignment)
1608             B.addAlignmentAttr(Record[++i]);
1609           else if (Kind == Attribute::StackAlignment)
1610             B.addStackAlignmentAttr(Record[++i]);
1611           else if (Kind == Attribute::Dereferenceable)
1612             B.addDereferenceableAttr(Record[++i]);
1613           else if (Kind == Attribute::DereferenceableOrNull)
1614             B.addDereferenceableOrNullAttr(Record[++i]);
1615           else if (Kind == Attribute::AllocSize)
1616             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1617         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1618           bool HasValue = (Record[i++] == 4);
1619           SmallString<64> KindStr;
1620           SmallString<64> ValStr;
1621 
1622           while (Record[i] != 0 && i != e)
1623             KindStr += Record[i++];
1624           assert(Record[i] == 0 && "Kind string not null terminated");
1625 
1626           if (HasValue) {
1627             // Has a value associated with it.
1628             ++i; // Skip the '0' that terminates the "kind" string.
1629             while (Record[i] != 0 && i != e)
1630               ValStr += Record[i++];
1631             assert(Record[i] == 0 && "Value string not null terminated");
1632           }
1633 
1634           B.addAttribute(KindStr.str(), ValStr.str());
1635         } else {
1636           assert((Record[i] == 5 || Record[i] == 6) &&
1637                  "Invalid attribute group entry");
1638           bool HasType = Record[i] == 6;
1639           Attribute::AttrKind Kind;
1640           if (Error Err = parseAttrKind(Record[++i], &Kind))
1641             return Err;
1642           if (Kind == Attribute::ByVal)
1643             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1644         }
1645       }
1646 
1647       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1648       break;
1649     }
1650     }
1651   }
1652 }
1653 
1654 Error BitcodeReader::parseTypeTable() {
1655   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1656     return Err;
1657 
1658   return parseTypeTableBody();
1659 }
1660 
1661 Error BitcodeReader::parseTypeTableBody() {
1662   if (!TypeList.empty())
1663     return error("Invalid multiple blocks");
1664 
1665   SmallVector<uint64_t, 64> Record;
1666   unsigned NumRecords = 0;
1667 
1668   SmallString<64> TypeName;
1669 
1670   // Read all the records for this type table.
1671   while (true) {
1672     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1673     if (!MaybeEntry)
1674       return MaybeEntry.takeError();
1675     BitstreamEntry Entry = MaybeEntry.get();
1676 
1677     switch (Entry.Kind) {
1678     case BitstreamEntry::SubBlock: // Handled for us already.
1679     case BitstreamEntry::Error:
1680       return error("Malformed block");
1681     case BitstreamEntry::EndBlock:
1682       if (NumRecords != TypeList.size())
1683         return error("Malformed block");
1684       return Error::success();
1685     case BitstreamEntry::Record:
1686       // The interesting case.
1687       break;
1688     }
1689 
1690     // Read a record.
1691     Record.clear();
1692     Type *ResultTy = nullptr;
1693     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1694     if (!MaybeRecord)
1695       return MaybeRecord.takeError();
1696     switch (MaybeRecord.get()) {
1697     default:
1698       return error("Invalid value");
1699     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1700       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1701       // type list.  This allows us to reserve space.
1702       if (Record.size() < 1)
1703         return error("Invalid record");
1704       TypeList.resize(Record[0]);
1705       continue;
1706     case bitc::TYPE_CODE_VOID:      // VOID
1707       ResultTy = Type::getVoidTy(Context);
1708       break;
1709     case bitc::TYPE_CODE_HALF:     // HALF
1710       ResultTy = Type::getHalfTy(Context);
1711       break;
1712     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1713       ResultTy = Type::getFloatTy(Context);
1714       break;
1715     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1716       ResultTy = Type::getDoubleTy(Context);
1717       break;
1718     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1719       ResultTy = Type::getX86_FP80Ty(Context);
1720       break;
1721     case bitc::TYPE_CODE_FP128:     // FP128
1722       ResultTy = Type::getFP128Ty(Context);
1723       break;
1724     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1725       ResultTy = Type::getPPC_FP128Ty(Context);
1726       break;
1727     case bitc::TYPE_CODE_LABEL:     // LABEL
1728       ResultTy = Type::getLabelTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_METADATA:  // METADATA
1731       ResultTy = Type::getMetadataTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1734       ResultTy = Type::getX86_MMXTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1737       ResultTy = Type::getTokenTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1740       if (Record.size() < 1)
1741         return error("Invalid record");
1742 
1743       uint64_t NumBits = Record[0];
1744       if (NumBits < IntegerType::MIN_INT_BITS ||
1745           NumBits > IntegerType::MAX_INT_BITS)
1746         return error("Bitwidth for integer type out of range");
1747       ResultTy = IntegerType::get(Context, NumBits);
1748       break;
1749     }
1750     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1751                                     //          [pointee type, address space]
1752       if (Record.size() < 1)
1753         return error("Invalid record");
1754       unsigned AddressSpace = 0;
1755       if (Record.size() == 2)
1756         AddressSpace = Record[1];
1757       ResultTy = getTypeByID(Record[0]);
1758       if (!ResultTy ||
1759           !PointerType::isValidElementType(ResultTy))
1760         return error("Invalid type");
1761       ResultTy = PointerType::get(ResultTy, AddressSpace);
1762       break;
1763     }
1764     case bitc::TYPE_CODE_FUNCTION_OLD: {
1765       // FIXME: attrid is dead, remove it in LLVM 4.0
1766       // FUNCTION: [vararg, attrid, retty, paramty x N]
1767       if (Record.size() < 3)
1768         return error("Invalid record");
1769       SmallVector<Type*, 8> ArgTys;
1770       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1771         if (Type *T = getTypeByID(Record[i]))
1772           ArgTys.push_back(T);
1773         else
1774           break;
1775       }
1776 
1777       ResultTy = getTypeByID(Record[2]);
1778       if (!ResultTy || ArgTys.size() < Record.size()-3)
1779         return error("Invalid type");
1780 
1781       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1782       break;
1783     }
1784     case bitc::TYPE_CODE_FUNCTION: {
1785       // FUNCTION: [vararg, retty, paramty x N]
1786       if (Record.size() < 2)
1787         return error("Invalid record");
1788       SmallVector<Type*, 8> ArgTys;
1789       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1790         if (Type *T = getTypeByID(Record[i])) {
1791           if (!FunctionType::isValidArgumentType(T))
1792             return error("Invalid function argument type");
1793           ArgTys.push_back(T);
1794         }
1795         else
1796           break;
1797       }
1798 
1799       ResultTy = getTypeByID(Record[1]);
1800       if (!ResultTy || ArgTys.size() < Record.size()-2)
1801         return error("Invalid type");
1802 
1803       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1804       break;
1805     }
1806     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1807       if (Record.size() < 1)
1808         return error("Invalid record");
1809       SmallVector<Type*, 8> EltTys;
1810       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1811         if (Type *T = getTypeByID(Record[i]))
1812           EltTys.push_back(T);
1813         else
1814           break;
1815       }
1816       if (EltTys.size() != Record.size()-1)
1817         return error("Invalid type");
1818       ResultTy = StructType::get(Context, EltTys, Record[0]);
1819       break;
1820     }
1821     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1822       if (convertToString(Record, 0, TypeName))
1823         return error("Invalid record");
1824       continue;
1825 
1826     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1827       if (Record.size() < 1)
1828         return error("Invalid record");
1829 
1830       if (NumRecords >= TypeList.size())
1831         return error("Invalid TYPE table");
1832 
1833       // Check to see if this was forward referenced, if so fill in the temp.
1834       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1835       if (Res) {
1836         Res->setName(TypeName);
1837         TypeList[NumRecords] = nullptr;
1838       } else  // Otherwise, create a new struct.
1839         Res = createIdentifiedStructType(Context, TypeName);
1840       TypeName.clear();
1841 
1842       SmallVector<Type*, 8> EltTys;
1843       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1844         if (Type *T = getTypeByID(Record[i]))
1845           EltTys.push_back(T);
1846         else
1847           break;
1848       }
1849       if (EltTys.size() != Record.size()-1)
1850         return error("Invalid record");
1851       Res->setBody(EltTys, Record[0]);
1852       ResultTy = Res;
1853       break;
1854     }
1855     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1856       if (Record.size() != 1)
1857         return error("Invalid record");
1858 
1859       if (NumRecords >= TypeList.size())
1860         return error("Invalid TYPE table");
1861 
1862       // Check to see if this was forward referenced, if so fill in the temp.
1863       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1864       if (Res) {
1865         Res->setName(TypeName);
1866         TypeList[NumRecords] = nullptr;
1867       } else  // Otherwise, create a new struct with no body.
1868         Res = createIdentifiedStructType(Context, TypeName);
1869       TypeName.clear();
1870       ResultTy = Res;
1871       break;
1872     }
1873     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1874       if (Record.size() < 2)
1875         return error("Invalid record");
1876       ResultTy = getTypeByID(Record[1]);
1877       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1878         return error("Invalid type");
1879       ResultTy = ArrayType::get(ResultTy, Record[0]);
1880       break;
1881     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1882                                     //         [numelts, eltty, scalable]
1883       if (Record.size() < 2)
1884         return error("Invalid record");
1885       if (Record[0] == 0)
1886         return error("Invalid vector length");
1887       ResultTy = getTypeByID(Record[1]);
1888       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1889         return error("Invalid type");
1890       bool Scalable = Record.size() > 2 ? Record[2] : false;
1891       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1892       break;
1893     }
1894 
1895     if (NumRecords >= TypeList.size())
1896       return error("Invalid TYPE table");
1897     if (TypeList[NumRecords])
1898       return error(
1899           "Invalid TYPE table: Only named structs can be forward referenced");
1900     assert(ResultTy && "Didn't read a type?");
1901     TypeList[NumRecords++] = ResultTy;
1902   }
1903 }
1904 
1905 Error BitcodeReader::parseOperandBundleTags() {
1906   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1907     return Err;
1908 
1909   if (!BundleTags.empty())
1910     return error("Invalid multiple blocks");
1911 
1912   SmallVector<uint64_t, 64> Record;
1913 
1914   while (true) {
1915     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1916     if (!MaybeEntry)
1917       return MaybeEntry.takeError();
1918     BitstreamEntry Entry = MaybeEntry.get();
1919 
1920     switch (Entry.Kind) {
1921     case BitstreamEntry::SubBlock: // Handled for us already.
1922     case BitstreamEntry::Error:
1923       return error("Malformed block");
1924     case BitstreamEntry::EndBlock:
1925       return Error::success();
1926     case BitstreamEntry::Record:
1927       // The interesting case.
1928       break;
1929     }
1930 
1931     // Tags are implicitly mapped to integers by their order.
1932 
1933     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1934     if (!MaybeRecord)
1935       return MaybeRecord.takeError();
1936     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1937       return error("Invalid record");
1938 
1939     // OPERAND_BUNDLE_TAG: [strchr x N]
1940     BundleTags.emplace_back();
1941     if (convertToString(Record, 0, BundleTags.back()))
1942       return error("Invalid record");
1943     Record.clear();
1944   }
1945 }
1946 
1947 Error BitcodeReader::parseSyncScopeNames() {
1948   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1949     return Err;
1950 
1951   if (!SSIDs.empty())
1952     return error("Invalid multiple synchronization scope names blocks");
1953 
1954   SmallVector<uint64_t, 64> Record;
1955   while (true) {
1956     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1957     if (!MaybeEntry)
1958       return MaybeEntry.takeError();
1959     BitstreamEntry Entry = MaybeEntry.get();
1960 
1961     switch (Entry.Kind) {
1962     case BitstreamEntry::SubBlock: // Handled for us already.
1963     case BitstreamEntry::Error:
1964       return error("Malformed block");
1965     case BitstreamEntry::EndBlock:
1966       if (SSIDs.empty())
1967         return error("Invalid empty synchronization scope names block");
1968       return Error::success();
1969     case BitstreamEntry::Record:
1970       // The interesting case.
1971       break;
1972     }
1973 
1974     // Synchronization scope names are implicitly mapped to synchronization
1975     // scope IDs by their order.
1976 
1977     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1978     if (!MaybeRecord)
1979       return MaybeRecord.takeError();
1980     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1981       return error("Invalid record");
1982 
1983     SmallString<16> SSN;
1984     if (convertToString(Record, 0, SSN))
1985       return error("Invalid record");
1986 
1987     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1988     Record.clear();
1989   }
1990 }
1991 
1992 /// Associate a value with its name from the given index in the provided record.
1993 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1994                                              unsigned NameIndex, Triple &TT) {
1995   SmallString<128> ValueName;
1996   if (convertToString(Record, NameIndex, ValueName))
1997     return error("Invalid record");
1998   unsigned ValueID = Record[0];
1999   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2000     return error("Invalid record");
2001   Value *V = ValueList[ValueID];
2002 
2003   StringRef NameStr(ValueName.data(), ValueName.size());
2004   if (NameStr.find_first_of(0) != StringRef::npos)
2005     return error("Invalid value name");
2006   V->setName(NameStr);
2007   auto *GO = dyn_cast<GlobalObject>(V);
2008   if (GO) {
2009     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2010       if (TT.supportsCOMDAT())
2011         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2012       else
2013         GO->setComdat(nullptr);
2014     }
2015   }
2016   return V;
2017 }
2018 
2019 /// Helper to note and return the current location, and jump to the given
2020 /// offset.
2021 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2022                                                  BitstreamCursor &Stream) {
2023   // Save the current parsing location so we can jump back at the end
2024   // of the VST read.
2025   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2026   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2027     return std::move(JumpFailed);
2028   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2029   if (!MaybeEntry)
2030     return MaybeEntry.takeError();
2031   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2032   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2033   return CurrentBit;
2034 }
2035 
2036 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2037                                             Function *F,
2038                                             ArrayRef<uint64_t> Record) {
2039   // Note that we subtract 1 here because the offset is relative to one word
2040   // before the start of the identification or module block, which was
2041   // historically always the start of the regular bitcode header.
2042   uint64_t FuncWordOffset = Record[1] - 1;
2043   uint64_t FuncBitOffset = FuncWordOffset * 32;
2044   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2045   // Set the LastFunctionBlockBit to point to the last function block.
2046   // Later when parsing is resumed after function materialization,
2047   // we can simply skip that last function block.
2048   if (FuncBitOffset > LastFunctionBlockBit)
2049     LastFunctionBlockBit = FuncBitOffset;
2050 }
2051 
2052 /// Read a new-style GlobalValue symbol table.
2053 Error BitcodeReader::parseGlobalValueSymbolTable() {
2054   unsigned FuncBitcodeOffsetDelta =
2055       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2056 
2057   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2058     return Err;
2059 
2060   SmallVector<uint64_t, 64> Record;
2061   while (true) {
2062     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2063     if (!MaybeEntry)
2064       return MaybeEntry.takeError();
2065     BitstreamEntry Entry = MaybeEntry.get();
2066 
2067     switch (Entry.Kind) {
2068     case BitstreamEntry::SubBlock:
2069     case BitstreamEntry::Error:
2070       return error("Malformed block");
2071     case BitstreamEntry::EndBlock:
2072       return Error::success();
2073     case BitstreamEntry::Record:
2074       break;
2075     }
2076 
2077     Record.clear();
2078     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2079     if (!MaybeRecord)
2080       return MaybeRecord.takeError();
2081     switch (MaybeRecord.get()) {
2082     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2083       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2084                               cast<Function>(ValueList[Record[0]]), Record);
2085       break;
2086     }
2087   }
2088 }
2089 
2090 /// Parse the value symbol table at either the current parsing location or
2091 /// at the given bit offset if provided.
2092 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2093   uint64_t CurrentBit;
2094   // Pass in the Offset to distinguish between calling for the module-level
2095   // VST (where we want to jump to the VST offset) and the function-level
2096   // VST (where we don't).
2097   if (Offset > 0) {
2098     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2099     if (!MaybeCurrentBit)
2100       return MaybeCurrentBit.takeError();
2101     CurrentBit = MaybeCurrentBit.get();
2102     // If this module uses a string table, read this as a module-level VST.
2103     if (UseStrtab) {
2104       if (Error Err = parseGlobalValueSymbolTable())
2105         return Err;
2106       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2107         return JumpFailed;
2108       return Error::success();
2109     }
2110     // Otherwise, the VST will be in a similar format to a function-level VST,
2111     // and will contain symbol names.
2112   }
2113 
2114   // Compute the delta between the bitcode indices in the VST (the word offset
2115   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2116   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2117   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2118   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2119   // just before entering the VST subblock because: 1) the EnterSubBlock
2120   // changes the AbbrevID width; 2) the VST block is nested within the same
2121   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2122   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2123   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2124   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2125   unsigned FuncBitcodeOffsetDelta =
2126       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2127 
2128   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2129     return Err;
2130 
2131   SmallVector<uint64_t, 64> Record;
2132 
2133   Triple TT(TheModule->getTargetTriple());
2134 
2135   // Read all the records for this value table.
2136   SmallString<128> ValueName;
2137 
2138   while (true) {
2139     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2140     if (!MaybeEntry)
2141       return MaybeEntry.takeError();
2142     BitstreamEntry Entry = MaybeEntry.get();
2143 
2144     switch (Entry.Kind) {
2145     case BitstreamEntry::SubBlock: // Handled for us already.
2146     case BitstreamEntry::Error:
2147       return error("Malformed block");
2148     case BitstreamEntry::EndBlock:
2149       if (Offset > 0)
2150         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2151           return JumpFailed;
2152       return Error::success();
2153     case BitstreamEntry::Record:
2154       // The interesting case.
2155       break;
2156     }
2157 
2158     // Read a record.
2159     Record.clear();
2160     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2161     if (!MaybeRecord)
2162       return MaybeRecord.takeError();
2163     switch (MaybeRecord.get()) {
2164     default:  // Default behavior: unknown type.
2165       break;
2166     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2167       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2168       if (Error Err = ValOrErr.takeError())
2169         return Err;
2170       ValOrErr.get();
2171       break;
2172     }
2173     case bitc::VST_CODE_FNENTRY: {
2174       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2175       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2176       if (Error Err = ValOrErr.takeError())
2177         return Err;
2178       Value *V = ValOrErr.get();
2179 
2180       // Ignore function offsets emitted for aliases of functions in older
2181       // versions of LLVM.
2182       if (auto *F = dyn_cast<Function>(V))
2183         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2184       break;
2185     }
2186     case bitc::VST_CODE_BBENTRY: {
2187       if (convertToString(Record, 1, ValueName))
2188         return error("Invalid record");
2189       BasicBlock *BB = getBasicBlock(Record[0]);
2190       if (!BB)
2191         return error("Invalid record");
2192 
2193       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2194       ValueName.clear();
2195       break;
2196     }
2197     }
2198   }
2199 }
2200 
2201 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2202 /// encoding.
2203 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2204   if ((V & 1) == 0)
2205     return V >> 1;
2206   if (V != 1)
2207     return -(V >> 1);
2208   // There is no such thing as -0 with integers.  "-0" really means MININT.
2209   return 1ULL << 63;
2210 }
2211 
2212 /// Resolve all of the initializers for global values and aliases that we can.
2213 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2214   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2215   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2216       IndirectSymbolInitWorklist;
2217   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2218   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2219   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2220 
2221   GlobalInitWorklist.swap(GlobalInits);
2222   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2223   FunctionPrefixWorklist.swap(FunctionPrefixes);
2224   FunctionPrologueWorklist.swap(FunctionPrologues);
2225   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2226 
2227   while (!GlobalInitWorklist.empty()) {
2228     unsigned ValID = GlobalInitWorklist.back().second;
2229     if (ValID >= ValueList.size()) {
2230       // Not ready to resolve this yet, it requires something later in the file.
2231       GlobalInits.push_back(GlobalInitWorklist.back());
2232     } else {
2233       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2234         GlobalInitWorklist.back().first->setInitializer(C);
2235       else
2236         return error("Expected a constant");
2237     }
2238     GlobalInitWorklist.pop_back();
2239   }
2240 
2241   while (!IndirectSymbolInitWorklist.empty()) {
2242     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2243     if (ValID >= ValueList.size()) {
2244       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2245     } else {
2246       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2247       if (!C)
2248         return error("Expected a constant");
2249       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2250       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2251         return error("Alias and aliasee types don't match");
2252       GIS->setIndirectSymbol(C);
2253     }
2254     IndirectSymbolInitWorklist.pop_back();
2255   }
2256 
2257   while (!FunctionPrefixWorklist.empty()) {
2258     unsigned ValID = FunctionPrefixWorklist.back().second;
2259     if (ValID >= ValueList.size()) {
2260       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2261     } else {
2262       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2263         FunctionPrefixWorklist.back().first->setPrefixData(C);
2264       else
2265         return error("Expected a constant");
2266     }
2267     FunctionPrefixWorklist.pop_back();
2268   }
2269 
2270   while (!FunctionPrologueWorklist.empty()) {
2271     unsigned ValID = FunctionPrologueWorklist.back().second;
2272     if (ValID >= ValueList.size()) {
2273       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2274     } else {
2275       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2276         FunctionPrologueWorklist.back().first->setPrologueData(C);
2277       else
2278         return error("Expected a constant");
2279     }
2280     FunctionPrologueWorklist.pop_back();
2281   }
2282 
2283   while (!FunctionPersonalityFnWorklist.empty()) {
2284     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2285     if (ValID >= ValueList.size()) {
2286       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2287     } else {
2288       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2289         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2290       else
2291         return error("Expected a constant");
2292     }
2293     FunctionPersonalityFnWorklist.pop_back();
2294   }
2295 
2296   return Error::success();
2297 }
2298 
2299 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2300   SmallVector<uint64_t, 8> Words(Vals.size());
2301   transform(Vals, Words.begin(),
2302                  BitcodeReader::decodeSignRotatedValue);
2303 
2304   return APInt(TypeBits, Words);
2305 }
2306 
2307 Error BitcodeReader::parseConstants() {
2308   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2309     return Err;
2310 
2311   SmallVector<uint64_t, 64> Record;
2312 
2313   // Read all the records for this value table.
2314   Type *CurTy = Type::getInt32Ty(Context);
2315   Type *CurFullTy = Type::getInt32Ty(Context);
2316   unsigned NextCstNo = ValueList.size();
2317 
2318   while (true) {
2319     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2320     if (!MaybeEntry)
2321       return MaybeEntry.takeError();
2322     BitstreamEntry Entry = MaybeEntry.get();
2323 
2324     switch (Entry.Kind) {
2325     case BitstreamEntry::SubBlock: // Handled for us already.
2326     case BitstreamEntry::Error:
2327       return error("Malformed block");
2328     case BitstreamEntry::EndBlock:
2329       if (NextCstNo != ValueList.size())
2330         return error("Invalid constant reference");
2331 
2332       // Once all the constants have been read, go through and resolve forward
2333       // references.
2334       ValueList.resolveConstantForwardRefs();
2335       return Error::success();
2336     case BitstreamEntry::Record:
2337       // The interesting case.
2338       break;
2339     }
2340 
2341     // Read a record.
2342     Record.clear();
2343     Type *VoidType = Type::getVoidTy(Context);
2344     Value *V = nullptr;
2345     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2346     if (!MaybeBitCode)
2347       return MaybeBitCode.takeError();
2348     switch (unsigned BitCode = MaybeBitCode.get()) {
2349     default:  // Default behavior: unknown constant
2350     case bitc::CST_CODE_UNDEF:     // UNDEF
2351       V = UndefValue::get(CurTy);
2352       break;
2353     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2354       if (Record.empty())
2355         return error("Invalid record");
2356       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2357         return error("Invalid record");
2358       if (TypeList[Record[0]] == VoidType)
2359         return error("Invalid constant type");
2360       CurFullTy = TypeList[Record[0]];
2361       CurTy = flattenPointerTypes(CurFullTy);
2362       continue;  // Skip the ValueList manipulation.
2363     case bitc::CST_CODE_NULL:      // NULL
2364       V = Constant::getNullValue(CurTy);
2365       break;
2366     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2367       if (!CurTy->isIntegerTy() || Record.empty())
2368         return error("Invalid record");
2369       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2370       break;
2371     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2372       if (!CurTy->isIntegerTy() || Record.empty())
2373         return error("Invalid record");
2374 
2375       APInt VInt =
2376           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2377       V = ConstantInt::get(Context, VInt);
2378 
2379       break;
2380     }
2381     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2382       if (Record.empty())
2383         return error("Invalid record");
2384       if (CurTy->isHalfTy())
2385         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2386                                              APInt(16, (uint16_t)Record[0])));
2387       else if (CurTy->isFloatTy())
2388         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2389                                              APInt(32, (uint32_t)Record[0])));
2390       else if (CurTy->isDoubleTy())
2391         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2392                                              APInt(64, Record[0])));
2393       else if (CurTy->isX86_FP80Ty()) {
2394         // Bits are not stored the same way as a normal i80 APInt, compensate.
2395         uint64_t Rearrange[2];
2396         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2397         Rearrange[1] = Record[0] >> 48;
2398         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2399                                              APInt(80, Rearrange)));
2400       } else if (CurTy->isFP128Ty())
2401         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2402                                              APInt(128, Record)));
2403       else if (CurTy->isPPC_FP128Ty())
2404         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2405                                              APInt(128, Record)));
2406       else
2407         V = UndefValue::get(CurTy);
2408       break;
2409     }
2410 
2411     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2412       if (Record.empty())
2413         return error("Invalid record");
2414 
2415       unsigned Size = Record.size();
2416       SmallVector<Constant*, 16> Elts;
2417 
2418       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2419         for (unsigned i = 0; i != Size; ++i)
2420           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2421                                                      STy->getElementType(i)));
2422         V = ConstantStruct::get(STy, Elts);
2423       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2424         Type *EltTy = ATy->getElementType();
2425         for (unsigned i = 0; i != Size; ++i)
2426           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2427         V = ConstantArray::get(ATy, Elts);
2428       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2429         Type *EltTy = VTy->getElementType();
2430         for (unsigned i = 0; i != Size; ++i)
2431           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2432         V = ConstantVector::get(Elts);
2433       } else {
2434         V = UndefValue::get(CurTy);
2435       }
2436       break;
2437     }
2438     case bitc::CST_CODE_STRING:    // STRING: [values]
2439     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2440       if (Record.empty())
2441         return error("Invalid record");
2442 
2443       SmallString<16> Elts(Record.begin(), Record.end());
2444       V = ConstantDataArray::getString(Context, Elts,
2445                                        BitCode == bitc::CST_CODE_CSTRING);
2446       break;
2447     }
2448     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2449       if (Record.empty())
2450         return error("Invalid record");
2451 
2452       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2453       if (EltTy->isIntegerTy(8)) {
2454         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2455         if (isa<VectorType>(CurTy))
2456           V = ConstantDataVector::get(Context, Elts);
2457         else
2458           V = ConstantDataArray::get(Context, Elts);
2459       } else if (EltTy->isIntegerTy(16)) {
2460         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2461         if (isa<VectorType>(CurTy))
2462           V = ConstantDataVector::get(Context, Elts);
2463         else
2464           V = ConstantDataArray::get(Context, Elts);
2465       } else if (EltTy->isIntegerTy(32)) {
2466         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2467         if (isa<VectorType>(CurTy))
2468           V = ConstantDataVector::get(Context, Elts);
2469         else
2470           V = ConstantDataArray::get(Context, Elts);
2471       } else if (EltTy->isIntegerTy(64)) {
2472         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2473         if (isa<VectorType>(CurTy))
2474           V = ConstantDataVector::get(Context, Elts);
2475         else
2476           V = ConstantDataArray::get(Context, Elts);
2477       } else if (EltTy->isHalfTy()) {
2478         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2479         if (isa<VectorType>(CurTy))
2480           V = ConstantDataVector::getFP(Context, Elts);
2481         else
2482           V = ConstantDataArray::getFP(Context, Elts);
2483       } else if (EltTy->isFloatTy()) {
2484         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2485         if (isa<VectorType>(CurTy))
2486           V = ConstantDataVector::getFP(Context, Elts);
2487         else
2488           V = ConstantDataArray::getFP(Context, Elts);
2489       } else if (EltTy->isDoubleTy()) {
2490         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2491         if (isa<VectorType>(CurTy))
2492           V = ConstantDataVector::getFP(Context, Elts);
2493         else
2494           V = ConstantDataArray::getFP(Context, Elts);
2495       } else {
2496         return error("Invalid type for value");
2497       }
2498       break;
2499     }
2500     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2501       if (Record.size() < 2)
2502         return error("Invalid record");
2503       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2504       if (Opc < 0) {
2505         V = UndefValue::get(CurTy);  // Unknown unop.
2506       } else {
2507         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2508         unsigned Flags = 0;
2509         V = ConstantExpr::get(Opc, LHS, Flags);
2510       }
2511       break;
2512     }
2513     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2514       if (Record.size() < 3)
2515         return error("Invalid record");
2516       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2517       if (Opc < 0) {
2518         V = UndefValue::get(CurTy);  // Unknown binop.
2519       } else {
2520         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2521         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2522         unsigned Flags = 0;
2523         if (Record.size() >= 4) {
2524           if (Opc == Instruction::Add ||
2525               Opc == Instruction::Sub ||
2526               Opc == Instruction::Mul ||
2527               Opc == Instruction::Shl) {
2528             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2529               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2530             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2531               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2532           } else if (Opc == Instruction::SDiv ||
2533                      Opc == Instruction::UDiv ||
2534                      Opc == Instruction::LShr ||
2535                      Opc == Instruction::AShr) {
2536             if (Record[3] & (1 << bitc::PEO_EXACT))
2537               Flags |= SDivOperator::IsExact;
2538           }
2539         }
2540         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2541       }
2542       break;
2543     }
2544     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2545       if (Record.size() < 3)
2546         return error("Invalid record");
2547       int Opc = getDecodedCastOpcode(Record[0]);
2548       if (Opc < 0) {
2549         V = UndefValue::get(CurTy);  // Unknown cast.
2550       } else {
2551         Type *OpTy = getTypeByID(Record[1]);
2552         if (!OpTy)
2553           return error("Invalid record");
2554         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2555         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2556         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2557       }
2558       break;
2559     }
2560     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2561     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2562     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2563                                                      // operands]
2564       unsigned OpNum = 0;
2565       Type *PointeeType = nullptr;
2566       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2567           Record.size() % 2)
2568         PointeeType = getTypeByID(Record[OpNum++]);
2569 
2570       bool InBounds = false;
2571       Optional<unsigned> InRangeIndex;
2572       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2573         uint64_t Op = Record[OpNum++];
2574         InBounds = Op & 1;
2575         InRangeIndex = Op >> 1;
2576       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2577         InBounds = true;
2578 
2579       SmallVector<Constant*, 16> Elts;
2580       Type *Elt0FullTy = nullptr;
2581       while (OpNum != Record.size()) {
2582         if (!Elt0FullTy)
2583           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2584         Type *ElTy = getTypeByID(Record[OpNum++]);
2585         if (!ElTy)
2586           return error("Invalid record");
2587         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2588       }
2589 
2590       if (Elts.size() < 1)
2591         return error("Invalid gep with no operands");
2592 
2593       Type *ImplicitPointeeType =
2594           getPointerElementFlatType(Elt0FullTy->getScalarType());
2595       if (!PointeeType)
2596         PointeeType = ImplicitPointeeType;
2597       else if (PointeeType != ImplicitPointeeType)
2598         return error("Explicit gep operator type does not match pointee type "
2599                      "of pointer operand");
2600 
2601       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2602       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2603                                          InBounds, InRangeIndex);
2604       break;
2605     }
2606     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2607       if (Record.size() < 3)
2608         return error("Invalid record");
2609 
2610       Type *SelectorTy = Type::getInt1Ty(Context);
2611 
2612       // The selector might be an i1 or an <n x i1>
2613       // Get the type from the ValueList before getting a forward ref.
2614       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2615         if (Value *V = ValueList[Record[0]])
2616           if (SelectorTy != V->getType())
2617             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2618 
2619       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2620                                                               SelectorTy),
2621                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2622                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2623       break;
2624     }
2625     case bitc::CST_CODE_CE_EXTRACTELT
2626         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2627       if (Record.size() < 3)
2628         return error("Invalid record");
2629       VectorType *OpTy =
2630         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2631       if (!OpTy)
2632         return error("Invalid record");
2633       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2634       Constant *Op1 = nullptr;
2635       if (Record.size() == 4) {
2636         Type *IdxTy = getTypeByID(Record[2]);
2637         if (!IdxTy)
2638           return error("Invalid record");
2639         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2640       } else // TODO: Remove with llvm 4.0
2641         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2642       if (!Op1)
2643         return error("Invalid record");
2644       V = ConstantExpr::getExtractElement(Op0, Op1);
2645       break;
2646     }
2647     case bitc::CST_CODE_CE_INSERTELT
2648         : { // CE_INSERTELT: [opval, opval, opty, opval]
2649       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2650       if (Record.size() < 3 || !OpTy)
2651         return error("Invalid record");
2652       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2653       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2654                                                   OpTy->getElementType());
2655       Constant *Op2 = nullptr;
2656       if (Record.size() == 4) {
2657         Type *IdxTy = getTypeByID(Record[2]);
2658         if (!IdxTy)
2659           return error("Invalid record");
2660         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2661       } else // TODO: Remove with llvm 4.0
2662         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2663       if (!Op2)
2664         return error("Invalid record");
2665       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2666       break;
2667     }
2668     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2669       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2670       if (Record.size() < 3 || !OpTy)
2671         return error("Invalid record");
2672       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2673       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2674       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2675                                                  OpTy->getNumElements());
2676       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2677       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2678       break;
2679     }
2680     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2681       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2682       VectorType *OpTy =
2683         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2684       if (Record.size() < 4 || !RTy || !OpTy)
2685         return error("Invalid record");
2686       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2687       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2688       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2689                                                  RTy->getNumElements());
2690       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2691       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2692       break;
2693     }
2694     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2695       if (Record.size() < 4)
2696         return error("Invalid record");
2697       Type *OpTy = getTypeByID(Record[0]);
2698       if (!OpTy)
2699         return error("Invalid record");
2700       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2701       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2702 
2703       if (OpTy->isFPOrFPVectorTy())
2704         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2705       else
2706         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2707       break;
2708     }
2709     // This maintains backward compatibility, pre-asm dialect keywords.
2710     // FIXME: Remove with the 4.0 release.
2711     case bitc::CST_CODE_INLINEASM_OLD: {
2712       if (Record.size() < 2)
2713         return error("Invalid record");
2714       std::string AsmStr, ConstrStr;
2715       bool HasSideEffects = Record[0] & 1;
2716       bool IsAlignStack = Record[0] >> 1;
2717       unsigned AsmStrSize = Record[1];
2718       if (2+AsmStrSize >= Record.size())
2719         return error("Invalid record");
2720       unsigned ConstStrSize = Record[2+AsmStrSize];
2721       if (3+AsmStrSize+ConstStrSize > Record.size())
2722         return error("Invalid record");
2723 
2724       for (unsigned i = 0; i != AsmStrSize; ++i)
2725         AsmStr += (char)Record[2+i];
2726       for (unsigned i = 0; i != ConstStrSize; ++i)
2727         ConstrStr += (char)Record[3+AsmStrSize+i];
2728       UpgradeInlineAsmString(&AsmStr);
2729       V = InlineAsm::get(
2730           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2731           ConstrStr, HasSideEffects, IsAlignStack);
2732       break;
2733     }
2734     // This version adds support for the asm dialect keywords (e.g.,
2735     // inteldialect).
2736     case bitc::CST_CODE_INLINEASM: {
2737       if (Record.size() < 2)
2738         return error("Invalid record");
2739       std::string AsmStr, ConstrStr;
2740       bool HasSideEffects = Record[0] & 1;
2741       bool IsAlignStack = (Record[0] >> 1) & 1;
2742       unsigned AsmDialect = Record[0] >> 2;
2743       unsigned AsmStrSize = Record[1];
2744       if (2+AsmStrSize >= Record.size())
2745         return error("Invalid record");
2746       unsigned ConstStrSize = Record[2+AsmStrSize];
2747       if (3+AsmStrSize+ConstStrSize > Record.size())
2748         return error("Invalid record");
2749 
2750       for (unsigned i = 0; i != AsmStrSize; ++i)
2751         AsmStr += (char)Record[2+i];
2752       for (unsigned i = 0; i != ConstStrSize; ++i)
2753         ConstrStr += (char)Record[3+AsmStrSize+i];
2754       UpgradeInlineAsmString(&AsmStr);
2755       V = InlineAsm::get(
2756           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2757           ConstrStr, HasSideEffects, IsAlignStack,
2758           InlineAsm::AsmDialect(AsmDialect));
2759       break;
2760     }
2761     case bitc::CST_CODE_BLOCKADDRESS:{
2762       if (Record.size() < 3)
2763         return error("Invalid record");
2764       Type *FnTy = getTypeByID(Record[0]);
2765       if (!FnTy)
2766         return error("Invalid record");
2767       Function *Fn =
2768         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2769       if (!Fn)
2770         return error("Invalid record");
2771 
2772       // If the function is already parsed we can insert the block address right
2773       // away.
2774       BasicBlock *BB;
2775       unsigned BBID = Record[2];
2776       if (!BBID)
2777         // Invalid reference to entry block.
2778         return error("Invalid ID");
2779       if (!Fn->empty()) {
2780         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2781         for (size_t I = 0, E = BBID; I != E; ++I) {
2782           if (BBI == BBE)
2783             return error("Invalid ID");
2784           ++BBI;
2785         }
2786         BB = &*BBI;
2787       } else {
2788         // Otherwise insert a placeholder and remember it so it can be inserted
2789         // when the function is parsed.
2790         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2791         if (FwdBBs.empty())
2792           BasicBlockFwdRefQueue.push_back(Fn);
2793         if (FwdBBs.size() < BBID + 1)
2794           FwdBBs.resize(BBID + 1);
2795         if (!FwdBBs[BBID])
2796           FwdBBs[BBID] = BasicBlock::Create(Context);
2797         BB = FwdBBs[BBID];
2798       }
2799       V = BlockAddress::get(Fn, BB);
2800       break;
2801     }
2802     }
2803 
2804     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2805            "Incorrect fully structured type provided for Constant");
2806     ValueList.assignValue(V, NextCstNo, CurFullTy);
2807     ++NextCstNo;
2808   }
2809 }
2810 
2811 Error BitcodeReader::parseUseLists() {
2812   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2813     return Err;
2814 
2815   // Read all the records.
2816   SmallVector<uint64_t, 64> Record;
2817 
2818   while (true) {
2819     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2820     if (!MaybeEntry)
2821       return MaybeEntry.takeError();
2822     BitstreamEntry Entry = MaybeEntry.get();
2823 
2824     switch (Entry.Kind) {
2825     case BitstreamEntry::SubBlock: // Handled for us already.
2826     case BitstreamEntry::Error:
2827       return error("Malformed block");
2828     case BitstreamEntry::EndBlock:
2829       return Error::success();
2830     case BitstreamEntry::Record:
2831       // The interesting case.
2832       break;
2833     }
2834 
2835     // Read a use list record.
2836     Record.clear();
2837     bool IsBB = false;
2838     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2839     if (!MaybeRecord)
2840       return MaybeRecord.takeError();
2841     switch (MaybeRecord.get()) {
2842     default:  // Default behavior: unknown type.
2843       break;
2844     case bitc::USELIST_CODE_BB:
2845       IsBB = true;
2846       LLVM_FALLTHROUGH;
2847     case bitc::USELIST_CODE_DEFAULT: {
2848       unsigned RecordLength = Record.size();
2849       if (RecordLength < 3)
2850         // Records should have at least an ID and two indexes.
2851         return error("Invalid record");
2852       unsigned ID = Record.back();
2853       Record.pop_back();
2854 
2855       Value *V;
2856       if (IsBB) {
2857         assert(ID < FunctionBBs.size() && "Basic block not found");
2858         V = FunctionBBs[ID];
2859       } else
2860         V = ValueList[ID];
2861       unsigned NumUses = 0;
2862       SmallDenseMap<const Use *, unsigned, 16> Order;
2863       for (const Use &U : V->materialized_uses()) {
2864         if (++NumUses > Record.size())
2865           break;
2866         Order[&U] = Record[NumUses - 1];
2867       }
2868       if (Order.size() != Record.size() || NumUses > Record.size())
2869         // Mismatches can happen if the functions are being materialized lazily
2870         // (out-of-order), or a value has been upgraded.
2871         break;
2872 
2873       V->sortUseList([&](const Use &L, const Use &R) {
2874         return Order.lookup(&L) < Order.lookup(&R);
2875       });
2876       break;
2877     }
2878     }
2879   }
2880 }
2881 
2882 /// When we see the block for metadata, remember where it is and then skip it.
2883 /// This lets us lazily deserialize the metadata.
2884 Error BitcodeReader::rememberAndSkipMetadata() {
2885   // Save the current stream state.
2886   uint64_t CurBit = Stream.GetCurrentBitNo();
2887   DeferredMetadataInfo.push_back(CurBit);
2888 
2889   // Skip over the block for now.
2890   if (Error Err = Stream.SkipBlock())
2891     return Err;
2892   return Error::success();
2893 }
2894 
2895 Error BitcodeReader::materializeMetadata() {
2896   for (uint64_t BitPos : DeferredMetadataInfo) {
2897     // Move the bit stream to the saved position.
2898     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2899       return JumpFailed;
2900     if (Error Err = MDLoader->parseModuleMetadata())
2901       return Err;
2902   }
2903 
2904   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2905   // metadata.
2906   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2907     NamedMDNode *LinkerOpts =
2908         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2909     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2910       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2911   }
2912 
2913   DeferredMetadataInfo.clear();
2914   return Error::success();
2915 }
2916 
2917 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2918 
2919 /// When we see the block for a function body, remember where it is and then
2920 /// skip it.  This lets us lazily deserialize the functions.
2921 Error BitcodeReader::rememberAndSkipFunctionBody() {
2922   // Get the function we are talking about.
2923   if (FunctionsWithBodies.empty())
2924     return error("Insufficient function protos");
2925 
2926   Function *Fn = FunctionsWithBodies.back();
2927   FunctionsWithBodies.pop_back();
2928 
2929   // Save the current stream state.
2930   uint64_t CurBit = Stream.GetCurrentBitNo();
2931   assert(
2932       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2933       "Mismatch between VST and scanned function offsets");
2934   DeferredFunctionInfo[Fn] = CurBit;
2935 
2936   // Skip over the function block for now.
2937   if (Error Err = Stream.SkipBlock())
2938     return Err;
2939   return Error::success();
2940 }
2941 
2942 Error BitcodeReader::globalCleanup() {
2943   // Patch the initializers for globals and aliases up.
2944   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2945     return Err;
2946   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2947     return error("Malformed global initializer set");
2948 
2949   // Look for intrinsic functions which need to be upgraded at some point
2950   for (Function &F : *TheModule) {
2951     MDLoader->upgradeDebugIntrinsics(F);
2952     Function *NewFn;
2953     if (UpgradeIntrinsicFunction(&F, NewFn))
2954       UpgradedIntrinsics[&F] = NewFn;
2955     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2956       // Some types could be renamed during loading if several modules are
2957       // loaded in the same LLVMContext (LTO scenario). In this case we should
2958       // remangle intrinsics names as well.
2959       RemangledIntrinsics[&F] = Remangled.getValue();
2960   }
2961 
2962   // Look for global variables which need to be renamed.
2963   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2964   for (GlobalVariable &GV : TheModule->globals())
2965     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2966       UpgradedVariables.emplace_back(&GV, Upgraded);
2967   for (auto &Pair : UpgradedVariables) {
2968     Pair.first->eraseFromParent();
2969     TheModule->getGlobalList().push_back(Pair.second);
2970   }
2971 
2972   // Force deallocation of memory for these vectors to favor the client that
2973   // want lazy deserialization.
2974   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2975   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2976       IndirectSymbolInits);
2977   return Error::success();
2978 }
2979 
2980 /// Support for lazy parsing of function bodies. This is required if we
2981 /// either have an old bitcode file without a VST forward declaration record,
2982 /// or if we have an anonymous function being materialized, since anonymous
2983 /// functions do not have a name and are therefore not in the VST.
2984 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2985   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
2986     return JumpFailed;
2987 
2988   if (Stream.AtEndOfStream())
2989     return error("Could not find function in stream");
2990 
2991   if (!SeenFirstFunctionBody)
2992     return error("Trying to materialize functions before seeing function blocks");
2993 
2994   // An old bitcode file with the symbol table at the end would have
2995   // finished the parse greedily.
2996   assert(SeenValueSymbolTable);
2997 
2998   SmallVector<uint64_t, 64> Record;
2999 
3000   while (true) {
3001     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3002     if (!MaybeEntry)
3003       return MaybeEntry.takeError();
3004     llvm::BitstreamEntry Entry = MaybeEntry.get();
3005 
3006     switch (Entry.Kind) {
3007     default:
3008       return error("Expect SubBlock");
3009     case BitstreamEntry::SubBlock:
3010       switch (Entry.ID) {
3011       default:
3012         return error("Expect function block");
3013       case bitc::FUNCTION_BLOCK_ID:
3014         if (Error Err = rememberAndSkipFunctionBody())
3015           return Err;
3016         NextUnreadBit = Stream.GetCurrentBitNo();
3017         return Error::success();
3018       }
3019     }
3020   }
3021 }
3022 
3023 bool BitcodeReaderBase::readBlockInfo() {
3024   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3025       Stream.ReadBlockInfoBlock();
3026   if (!MaybeNewBlockInfo)
3027     return true; // FIXME Handle the error.
3028   Optional<BitstreamBlockInfo> NewBlockInfo =
3029       std::move(MaybeNewBlockInfo.get());
3030   if (!NewBlockInfo)
3031     return true;
3032   BlockInfo = std::move(*NewBlockInfo);
3033   return false;
3034 }
3035 
3036 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3037   // v1: [selection_kind, name]
3038   // v2: [strtab_offset, strtab_size, selection_kind]
3039   StringRef Name;
3040   std::tie(Name, Record) = readNameFromStrtab(Record);
3041 
3042   if (Record.empty())
3043     return error("Invalid record");
3044   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3045   std::string OldFormatName;
3046   if (!UseStrtab) {
3047     if (Record.size() < 2)
3048       return error("Invalid record");
3049     unsigned ComdatNameSize = Record[1];
3050     OldFormatName.reserve(ComdatNameSize);
3051     for (unsigned i = 0; i != ComdatNameSize; ++i)
3052       OldFormatName += (char)Record[2 + i];
3053     Name = OldFormatName;
3054   }
3055   Comdat *C = TheModule->getOrInsertComdat(Name);
3056   C->setSelectionKind(SK);
3057   ComdatList.push_back(C);
3058   return Error::success();
3059 }
3060 
3061 static void inferDSOLocal(GlobalValue *GV) {
3062   // infer dso_local from linkage and visibility if it is not encoded.
3063   if (GV->hasLocalLinkage() ||
3064       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3065     GV->setDSOLocal(true);
3066 }
3067 
3068 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3069   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3070   // visibility, threadlocal, unnamed_addr, externally_initialized,
3071   // dllstorageclass, comdat, attributes, preemption specifier,
3072   // partition strtab offset, partition strtab size] (name in VST)
3073   // v2: [strtab_offset, strtab_size, v1]
3074   StringRef Name;
3075   std::tie(Name, Record) = readNameFromStrtab(Record);
3076 
3077   if (Record.size() < 6)
3078     return error("Invalid record");
3079   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3080   Type *Ty = flattenPointerTypes(FullTy);
3081   if (!Ty)
3082     return error("Invalid record");
3083   bool isConstant = Record[1] & 1;
3084   bool explicitType = Record[1] & 2;
3085   unsigned AddressSpace;
3086   if (explicitType) {
3087     AddressSpace = Record[1] >> 2;
3088   } else {
3089     if (!Ty->isPointerTy())
3090       return error("Invalid type for value");
3091     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3092     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3093   }
3094 
3095   uint64_t RawLinkage = Record[3];
3096   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3097   unsigned Alignment;
3098   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3099     return Err;
3100   std::string Section;
3101   if (Record[5]) {
3102     if (Record[5] - 1 >= SectionTable.size())
3103       return error("Invalid ID");
3104     Section = SectionTable[Record[5] - 1];
3105   }
3106   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3107   // Local linkage must have default visibility.
3108   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3109     // FIXME: Change to an error if non-default in 4.0.
3110     Visibility = getDecodedVisibility(Record[6]);
3111 
3112   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3113   if (Record.size() > 7)
3114     TLM = getDecodedThreadLocalMode(Record[7]);
3115 
3116   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3117   if (Record.size() > 8)
3118     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3119 
3120   bool ExternallyInitialized = false;
3121   if (Record.size() > 9)
3122     ExternallyInitialized = Record[9];
3123 
3124   GlobalVariable *NewGV =
3125       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3126                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3127   NewGV->setAlignment(Alignment);
3128   if (!Section.empty())
3129     NewGV->setSection(Section);
3130   NewGV->setVisibility(Visibility);
3131   NewGV->setUnnamedAddr(UnnamedAddr);
3132 
3133   if (Record.size() > 10)
3134     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3135   else
3136     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3137 
3138   FullTy = PointerType::get(FullTy, AddressSpace);
3139   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3140          "Incorrect fully specified type for GlobalVariable");
3141   ValueList.push_back(NewGV, FullTy);
3142 
3143   // Remember which value to use for the global initializer.
3144   if (unsigned InitID = Record[2])
3145     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3146 
3147   if (Record.size() > 11) {
3148     if (unsigned ComdatID = Record[11]) {
3149       if (ComdatID > ComdatList.size())
3150         return error("Invalid global variable comdat ID");
3151       NewGV->setComdat(ComdatList[ComdatID - 1]);
3152     }
3153   } else if (hasImplicitComdat(RawLinkage)) {
3154     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3155   }
3156 
3157   if (Record.size() > 12) {
3158     auto AS = getAttributes(Record[12]).getFnAttributes();
3159     NewGV->setAttributes(AS);
3160   }
3161 
3162   if (Record.size() > 13) {
3163     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3164   }
3165   inferDSOLocal(NewGV);
3166 
3167   // Check whether we have enough values to read a partition name.
3168   if (Record.size() > 15)
3169     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3170 
3171   return Error::success();
3172 }
3173 
3174 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3175   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3176   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3177   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3178   // v2: [strtab_offset, strtab_size, v1]
3179   StringRef Name;
3180   std::tie(Name, Record) = readNameFromStrtab(Record);
3181 
3182   if (Record.size() < 8)
3183     return error("Invalid record");
3184   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3185   Type *FTy = flattenPointerTypes(FullFTy);
3186   if (!FTy)
3187     return error("Invalid record");
3188   if (isa<PointerType>(FTy))
3189     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3190 
3191   if (!isa<FunctionType>(FTy))
3192     return error("Invalid type for value");
3193   auto CC = static_cast<CallingConv::ID>(Record[1]);
3194   if (CC & ~CallingConv::MaxID)
3195     return error("Invalid calling convention ID");
3196 
3197   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3198   if (Record.size() > 16)
3199     AddrSpace = Record[16];
3200 
3201   Function *Func =
3202       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3203                        AddrSpace, Name, TheModule);
3204 
3205   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3206          "Incorrect fully specified type provided for function");
3207   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3208 
3209   Func->setCallingConv(CC);
3210   bool isProto = Record[2];
3211   uint64_t RawLinkage = Record[3];
3212   Func->setLinkage(getDecodedLinkage(RawLinkage));
3213   Func->setAttributes(getAttributes(Record[4]));
3214 
3215   // Upgrade any old-style byval without a type by propagating the argument's
3216   // pointee type. There should be no opaque pointers where the byval type is
3217   // implicit.
3218   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3219     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3220       continue;
3221 
3222     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3223     Func->removeParamAttr(i, Attribute::ByVal);
3224     Func->addParamAttr(i, Attribute::getWithByValType(
3225                               Context, getPointerElementFlatType(PTy)));
3226   }
3227 
3228   unsigned Alignment;
3229   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3230     return Err;
3231   Func->setAlignment(Alignment);
3232   if (Record[6]) {
3233     if (Record[6] - 1 >= SectionTable.size())
3234       return error("Invalid ID");
3235     Func->setSection(SectionTable[Record[6] - 1]);
3236   }
3237   // Local linkage must have default visibility.
3238   if (!Func->hasLocalLinkage())
3239     // FIXME: Change to an error if non-default in 4.0.
3240     Func->setVisibility(getDecodedVisibility(Record[7]));
3241   if (Record.size() > 8 && Record[8]) {
3242     if (Record[8] - 1 >= GCTable.size())
3243       return error("Invalid ID");
3244     Func->setGC(GCTable[Record[8] - 1]);
3245   }
3246   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3247   if (Record.size() > 9)
3248     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3249   Func->setUnnamedAddr(UnnamedAddr);
3250   if (Record.size() > 10 && Record[10] != 0)
3251     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3252 
3253   if (Record.size() > 11)
3254     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3255   else
3256     upgradeDLLImportExportLinkage(Func, RawLinkage);
3257 
3258   if (Record.size() > 12) {
3259     if (unsigned ComdatID = Record[12]) {
3260       if (ComdatID > ComdatList.size())
3261         return error("Invalid function comdat ID");
3262       Func->setComdat(ComdatList[ComdatID - 1]);
3263     }
3264   } else if (hasImplicitComdat(RawLinkage)) {
3265     Func->setComdat(reinterpret_cast<Comdat *>(1));
3266   }
3267 
3268   if (Record.size() > 13 && Record[13] != 0)
3269     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3270 
3271   if (Record.size() > 14 && Record[14] != 0)
3272     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3273 
3274   if (Record.size() > 15) {
3275     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3276   }
3277   inferDSOLocal(Func);
3278 
3279   // Record[16] is the address space number.
3280 
3281   // Check whether we have enough values to read a partition name.
3282   if (Record.size() > 18)
3283     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3284 
3285   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3286   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3287          "Incorrect fully specified type provided for Function");
3288   ValueList.push_back(Func, FullTy);
3289 
3290   // If this is a function with a body, remember the prototype we are
3291   // creating now, so that we can match up the body with them later.
3292   if (!isProto) {
3293     Func->setIsMaterializable(true);
3294     FunctionsWithBodies.push_back(Func);
3295     DeferredFunctionInfo[Func] = 0;
3296   }
3297   return Error::success();
3298 }
3299 
3300 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3301     unsigned BitCode, ArrayRef<uint64_t> Record) {
3302   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3303   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3304   // dllstorageclass, threadlocal, unnamed_addr,
3305   // preemption specifier] (name in VST)
3306   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3307   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3308   // preemption specifier] (name in VST)
3309   // v2: [strtab_offset, strtab_size, v1]
3310   StringRef Name;
3311   std::tie(Name, Record) = readNameFromStrtab(Record);
3312 
3313   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3314   if (Record.size() < (3 + (unsigned)NewRecord))
3315     return error("Invalid record");
3316   unsigned OpNum = 0;
3317   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3318   Type *Ty = flattenPointerTypes(FullTy);
3319   if (!Ty)
3320     return error("Invalid record");
3321 
3322   unsigned AddrSpace;
3323   if (!NewRecord) {
3324     auto *PTy = dyn_cast<PointerType>(Ty);
3325     if (!PTy)
3326       return error("Invalid type for value");
3327     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3328     AddrSpace = PTy->getAddressSpace();
3329   } else {
3330     AddrSpace = Record[OpNum++];
3331   }
3332 
3333   auto Val = Record[OpNum++];
3334   auto Linkage = Record[OpNum++];
3335   GlobalIndirectSymbol *NewGA;
3336   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3337       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3338     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3339                                 TheModule);
3340   else
3341     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3342                                 nullptr, TheModule);
3343 
3344   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3345          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3346   // Old bitcode files didn't have visibility field.
3347   // Local linkage must have default visibility.
3348   if (OpNum != Record.size()) {
3349     auto VisInd = OpNum++;
3350     if (!NewGA->hasLocalLinkage())
3351       // FIXME: Change to an error if non-default in 4.0.
3352       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3353   }
3354   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3355       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3356     if (OpNum != Record.size())
3357       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3358     else
3359       upgradeDLLImportExportLinkage(NewGA, Linkage);
3360     if (OpNum != Record.size())
3361       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3362     if (OpNum != Record.size())
3363       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3364   }
3365   if (OpNum != Record.size())
3366     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3367   inferDSOLocal(NewGA);
3368 
3369   // Check whether we have enough values to read a partition name.
3370   if (OpNum + 1 < Record.size()) {
3371     NewGA->setPartition(
3372         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3373     OpNum += 2;
3374   }
3375 
3376   FullTy = PointerType::get(FullTy, AddrSpace);
3377   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3378          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3379   ValueList.push_back(NewGA, FullTy);
3380   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3381   return Error::success();
3382 }
3383 
3384 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3385                                  bool ShouldLazyLoadMetadata) {
3386   if (ResumeBit) {
3387     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3388       return JumpFailed;
3389   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3390     return Err;
3391 
3392   SmallVector<uint64_t, 64> Record;
3393 
3394   // Read all the records for this module.
3395   while (true) {
3396     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3397     if (!MaybeEntry)
3398       return MaybeEntry.takeError();
3399     llvm::BitstreamEntry Entry = MaybeEntry.get();
3400 
3401     switch (Entry.Kind) {
3402     case BitstreamEntry::Error:
3403       return error("Malformed block");
3404     case BitstreamEntry::EndBlock:
3405       return globalCleanup();
3406 
3407     case BitstreamEntry::SubBlock:
3408       switch (Entry.ID) {
3409       default:  // Skip unknown content.
3410         if (Error Err = Stream.SkipBlock())
3411           return Err;
3412         break;
3413       case bitc::BLOCKINFO_BLOCK_ID:
3414         if (readBlockInfo())
3415           return error("Malformed block");
3416         break;
3417       case bitc::PARAMATTR_BLOCK_ID:
3418         if (Error Err = parseAttributeBlock())
3419           return Err;
3420         break;
3421       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3422         if (Error Err = parseAttributeGroupBlock())
3423           return Err;
3424         break;
3425       case bitc::TYPE_BLOCK_ID_NEW:
3426         if (Error Err = parseTypeTable())
3427           return Err;
3428         break;
3429       case bitc::VALUE_SYMTAB_BLOCK_ID:
3430         if (!SeenValueSymbolTable) {
3431           // Either this is an old form VST without function index and an
3432           // associated VST forward declaration record (which would have caused
3433           // the VST to be jumped to and parsed before it was encountered
3434           // normally in the stream), or there were no function blocks to
3435           // trigger an earlier parsing of the VST.
3436           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3437           if (Error Err = parseValueSymbolTable())
3438             return Err;
3439           SeenValueSymbolTable = true;
3440         } else {
3441           // We must have had a VST forward declaration record, which caused
3442           // the parser to jump to and parse the VST earlier.
3443           assert(VSTOffset > 0);
3444           if (Error Err = Stream.SkipBlock())
3445             return Err;
3446         }
3447         break;
3448       case bitc::CONSTANTS_BLOCK_ID:
3449         if (Error Err = parseConstants())
3450           return Err;
3451         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3452           return Err;
3453         break;
3454       case bitc::METADATA_BLOCK_ID:
3455         if (ShouldLazyLoadMetadata) {
3456           if (Error Err = rememberAndSkipMetadata())
3457             return Err;
3458           break;
3459         }
3460         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3461         if (Error Err = MDLoader->parseModuleMetadata())
3462           return Err;
3463         break;
3464       case bitc::METADATA_KIND_BLOCK_ID:
3465         if (Error Err = MDLoader->parseMetadataKinds())
3466           return Err;
3467         break;
3468       case bitc::FUNCTION_BLOCK_ID:
3469         // If this is the first function body we've seen, reverse the
3470         // FunctionsWithBodies list.
3471         if (!SeenFirstFunctionBody) {
3472           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3473           if (Error Err = globalCleanup())
3474             return Err;
3475           SeenFirstFunctionBody = true;
3476         }
3477 
3478         if (VSTOffset > 0) {
3479           // If we have a VST forward declaration record, make sure we
3480           // parse the VST now if we haven't already. It is needed to
3481           // set up the DeferredFunctionInfo vector for lazy reading.
3482           if (!SeenValueSymbolTable) {
3483             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3484               return Err;
3485             SeenValueSymbolTable = true;
3486             // Fall through so that we record the NextUnreadBit below.
3487             // This is necessary in case we have an anonymous function that
3488             // is later materialized. Since it will not have a VST entry we
3489             // need to fall back to the lazy parse to find its offset.
3490           } else {
3491             // If we have a VST forward declaration record, but have already
3492             // parsed the VST (just above, when the first function body was
3493             // encountered here), then we are resuming the parse after
3494             // materializing functions. The ResumeBit points to the
3495             // start of the last function block recorded in the
3496             // DeferredFunctionInfo map. Skip it.
3497             if (Error Err = Stream.SkipBlock())
3498               return Err;
3499             continue;
3500           }
3501         }
3502 
3503         // Support older bitcode files that did not have the function
3504         // index in the VST, nor a VST forward declaration record, as
3505         // well as anonymous functions that do not have VST entries.
3506         // Build the DeferredFunctionInfo vector on the fly.
3507         if (Error Err = rememberAndSkipFunctionBody())
3508           return Err;
3509 
3510         // Suspend parsing when we reach the function bodies. Subsequent
3511         // materialization calls will resume it when necessary. If the bitcode
3512         // file is old, the symbol table will be at the end instead and will not
3513         // have been seen yet. In this case, just finish the parse now.
3514         if (SeenValueSymbolTable) {
3515           NextUnreadBit = Stream.GetCurrentBitNo();
3516           // After the VST has been parsed, we need to make sure intrinsic name
3517           // are auto-upgraded.
3518           return globalCleanup();
3519         }
3520         break;
3521       case bitc::USELIST_BLOCK_ID:
3522         if (Error Err = parseUseLists())
3523           return Err;
3524         break;
3525       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3526         if (Error Err = parseOperandBundleTags())
3527           return Err;
3528         break;
3529       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3530         if (Error Err = parseSyncScopeNames())
3531           return Err;
3532         break;
3533       }
3534       continue;
3535 
3536     case BitstreamEntry::Record:
3537       // The interesting case.
3538       break;
3539     }
3540 
3541     // Read a record.
3542     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3543     if (!MaybeBitCode)
3544       return MaybeBitCode.takeError();
3545     switch (unsigned BitCode = MaybeBitCode.get()) {
3546     default: break;  // Default behavior, ignore unknown content.
3547     case bitc::MODULE_CODE_VERSION: {
3548       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3549       if (!VersionOrErr)
3550         return VersionOrErr.takeError();
3551       UseRelativeIDs = *VersionOrErr >= 1;
3552       break;
3553     }
3554     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3555       std::string S;
3556       if (convertToString(Record, 0, S))
3557         return error("Invalid record");
3558       TheModule->setTargetTriple(S);
3559       break;
3560     }
3561     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3562       std::string S;
3563       if (convertToString(Record, 0, S))
3564         return error("Invalid record");
3565       TheModule->setDataLayout(S);
3566       break;
3567     }
3568     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3569       std::string S;
3570       if (convertToString(Record, 0, S))
3571         return error("Invalid record");
3572       TheModule->setModuleInlineAsm(S);
3573       break;
3574     }
3575     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3576       // FIXME: Remove in 4.0.
3577       std::string S;
3578       if (convertToString(Record, 0, S))
3579         return error("Invalid record");
3580       // Ignore value.
3581       break;
3582     }
3583     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3584       std::string S;
3585       if (convertToString(Record, 0, S))
3586         return error("Invalid record");
3587       SectionTable.push_back(S);
3588       break;
3589     }
3590     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3591       std::string S;
3592       if (convertToString(Record, 0, S))
3593         return error("Invalid record");
3594       GCTable.push_back(S);
3595       break;
3596     }
3597     case bitc::MODULE_CODE_COMDAT:
3598       if (Error Err = parseComdatRecord(Record))
3599         return Err;
3600       break;
3601     case bitc::MODULE_CODE_GLOBALVAR:
3602       if (Error Err = parseGlobalVarRecord(Record))
3603         return Err;
3604       break;
3605     case bitc::MODULE_CODE_FUNCTION:
3606       if (Error Err = parseFunctionRecord(Record))
3607         return Err;
3608       break;
3609     case bitc::MODULE_CODE_IFUNC:
3610     case bitc::MODULE_CODE_ALIAS:
3611     case bitc::MODULE_CODE_ALIAS_OLD:
3612       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3613         return Err;
3614       break;
3615     /// MODULE_CODE_VSTOFFSET: [offset]
3616     case bitc::MODULE_CODE_VSTOFFSET:
3617       if (Record.size() < 1)
3618         return error("Invalid record");
3619       // Note that we subtract 1 here because the offset is relative to one word
3620       // before the start of the identification or module block, which was
3621       // historically always the start of the regular bitcode header.
3622       VSTOffset = Record[0] - 1;
3623       break;
3624     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3625     case bitc::MODULE_CODE_SOURCE_FILENAME:
3626       SmallString<128> ValueName;
3627       if (convertToString(Record, 0, ValueName))
3628         return error("Invalid record");
3629       TheModule->setSourceFileName(ValueName);
3630       break;
3631     }
3632     Record.clear();
3633   }
3634 }
3635 
3636 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3637                                       bool IsImporting) {
3638   TheModule = M;
3639   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3640                             [&](unsigned ID) { return getTypeByID(ID); });
3641   return parseModule(0, ShouldLazyLoadMetadata);
3642 }
3643 
3644 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3645   if (!isa<PointerType>(PtrType))
3646     return error("Load/Store operand is not a pointer type");
3647   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3648 
3649   if (ValType && ValType != ElemType)
3650     return error("Explicit load/store type does not match pointee "
3651                  "type of pointer operand");
3652   if (!PointerType::isLoadableOrStorableType(ElemType))
3653     return error("Cannot load/store from pointer");
3654   return Error::success();
3655 }
3656 
3657 void BitcodeReader::propagateByValTypes(CallBase *CB,
3658                                         ArrayRef<Type *> ArgsFullTys) {
3659   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3660     if (!CB->paramHasAttr(i, Attribute::ByVal))
3661       continue;
3662 
3663     CB->removeParamAttr(i, Attribute::ByVal);
3664     CB->addParamAttr(
3665         i, Attribute::getWithByValType(
3666                Context, getPointerElementFlatType(ArgsFullTys[i])));
3667   }
3668 }
3669 
3670 /// Lazily parse the specified function body block.
3671 Error BitcodeReader::parseFunctionBody(Function *F) {
3672   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3673     return Err;
3674 
3675   // Unexpected unresolved metadata when parsing function.
3676   if (MDLoader->hasFwdRefs())
3677     return error("Invalid function metadata: incoming forward references");
3678 
3679   InstructionList.clear();
3680   unsigned ModuleValueListSize = ValueList.size();
3681   unsigned ModuleMDLoaderSize = MDLoader->size();
3682 
3683   // Add all the function arguments to the value table.
3684   unsigned ArgNo = 0;
3685   FunctionType *FullFTy = FunctionTypes[F];
3686   for (Argument &I : F->args()) {
3687     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3688            "Incorrect fully specified type for Function Argument");
3689     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3690   }
3691   unsigned NextValueNo = ValueList.size();
3692   BasicBlock *CurBB = nullptr;
3693   unsigned CurBBNo = 0;
3694 
3695   DebugLoc LastLoc;
3696   auto getLastInstruction = [&]() -> Instruction * {
3697     if (CurBB && !CurBB->empty())
3698       return &CurBB->back();
3699     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3700              !FunctionBBs[CurBBNo - 1]->empty())
3701       return &FunctionBBs[CurBBNo - 1]->back();
3702     return nullptr;
3703   };
3704 
3705   std::vector<OperandBundleDef> OperandBundles;
3706 
3707   // Read all the records.
3708   SmallVector<uint64_t, 64> Record;
3709 
3710   while (true) {
3711     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3712     if (!MaybeEntry)
3713       return MaybeEntry.takeError();
3714     llvm::BitstreamEntry Entry = MaybeEntry.get();
3715 
3716     switch (Entry.Kind) {
3717     case BitstreamEntry::Error:
3718       return error("Malformed block");
3719     case BitstreamEntry::EndBlock:
3720       goto OutOfRecordLoop;
3721 
3722     case BitstreamEntry::SubBlock:
3723       switch (Entry.ID) {
3724       default:  // Skip unknown content.
3725         if (Error Err = Stream.SkipBlock())
3726           return Err;
3727         break;
3728       case bitc::CONSTANTS_BLOCK_ID:
3729         if (Error Err = parseConstants())
3730           return Err;
3731         NextValueNo = ValueList.size();
3732         break;
3733       case bitc::VALUE_SYMTAB_BLOCK_ID:
3734         if (Error Err = parseValueSymbolTable())
3735           return Err;
3736         break;
3737       case bitc::METADATA_ATTACHMENT_ID:
3738         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3739           return Err;
3740         break;
3741       case bitc::METADATA_BLOCK_ID:
3742         assert(DeferredMetadataInfo.empty() &&
3743                "Must read all module-level metadata before function-level");
3744         if (Error Err = MDLoader->parseFunctionMetadata())
3745           return Err;
3746         break;
3747       case bitc::USELIST_BLOCK_ID:
3748         if (Error Err = parseUseLists())
3749           return Err;
3750         break;
3751       }
3752       continue;
3753 
3754     case BitstreamEntry::Record:
3755       // The interesting case.
3756       break;
3757     }
3758 
3759     // Read a record.
3760     Record.clear();
3761     Instruction *I = nullptr;
3762     Type *FullTy = nullptr;
3763     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3764     if (!MaybeBitCode)
3765       return MaybeBitCode.takeError();
3766     switch (unsigned BitCode = MaybeBitCode.get()) {
3767     default: // Default behavior: reject
3768       return error("Invalid value");
3769     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3770       if (Record.size() < 1 || Record[0] == 0)
3771         return error("Invalid record");
3772       // Create all the basic blocks for the function.
3773       FunctionBBs.resize(Record[0]);
3774 
3775       // See if anything took the address of blocks in this function.
3776       auto BBFRI = BasicBlockFwdRefs.find(F);
3777       if (BBFRI == BasicBlockFwdRefs.end()) {
3778         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3779           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3780       } else {
3781         auto &BBRefs = BBFRI->second;
3782         // Check for invalid basic block references.
3783         if (BBRefs.size() > FunctionBBs.size())
3784           return error("Invalid ID");
3785         assert(!BBRefs.empty() && "Unexpected empty array");
3786         assert(!BBRefs.front() && "Invalid reference to entry block");
3787         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3788              ++I)
3789           if (I < RE && BBRefs[I]) {
3790             BBRefs[I]->insertInto(F);
3791             FunctionBBs[I] = BBRefs[I];
3792           } else {
3793             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3794           }
3795 
3796         // Erase from the table.
3797         BasicBlockFwdRefs.erase(BBFRI);
3798       }
3799 
3800       CurBB = FunctionBBs[0];
3801       continue;
3802     }
3803 
3804     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3805       // This record indicates that the last instruction is at the same
3806       // location as the previous instruction with a location.
3807       I = getLastInstruction();
3808 
3809       if (!I)
3810         return error("Invalid record");
3811       I->setDebugLoc(LastLoc);
3812       I = nullptr;
3813       continue;
3814 
3815     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3816       I = getLastInstruction();
3817       if (!I || Record.size() < 4)
3818         return error("Invalid record");
3819 
3820       unsigned Line = Record[0], Col = Record[1];
3821       unsigned ScopeID = Record[2], IAID = Record[3];
3822       bool isImplicitCode = Record.size() == 5 && Record[4];
3823 
3824       MDNode *Scope = nullptr, *IA = nullptr;
3825       if (ScopeID) {
3826         Scope = dyn_cast_or_null<MDNode>(
3827             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3828         if (!Scope)
3829           return error("Invalid record");
3830       }
3831       if (IAID) {
3832         IA = dyn_cast_or_null<MDNode>(
3833             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3834         if (!IA)
3835           return error("Invalid record");
3836       }
3837       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3838       I->setDebugLoc(LastLoc);
3839       I = nullptr;
3840       continue;
3841     }
3842     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3843       unsigned OpNum = 0;
3844       Value *LHS;
3845       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3846           OpNum+1 > Record.size())
3847         return error("Invalid record");
3848 
3849       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3850       if (Opc == -1)
3851         return error("Invalid record");
3852       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3853       InstructionList.push_back(I);
3854       if (OpNum < Record.size()) {
3855         if (isa<FPMathOperator>(I)) {
3856           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3857           if (FMF.any())
3858             I->setFastMathFlags(FMF);
3859         }
3860       }
3861       break;
3862     }
3863     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3864       unsigned OpNum = 0;
3865       Value *LHS, *RHS;
3866       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3867           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3868           OpNum+1 > Record.size())
3869         return error("Invalid record");
3870 
3871       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3872       if (Opc == -1)
3873         return error("Invalid record");
3874       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3875       InstructionList.push_back(I);
3876       if (OpNum < Record.size()) {
3877         if (Opc == Instruction::Add ||
3878             Opc == Instruction::Sub ||
3879             Opc == Instruction::Mul ||
3880             Opc == Instruction::Shl) {
3881           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3882             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3883           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3884             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3885         } else if (Opc == Instruction::SDiv ||
3886                    Opc == Instruction::UDiv ||
3887                    Opc == Instruction::LShr ||
3888                    Opc == Instruction::AShr) {
3889           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3890             cast<BinaryOperator>(I)->setIsExact(true);
3891         } else if (isa<FPMathOperator>(I)) {
3892           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3893           if (FMF.any())
3894             I->setFastMathFlags(FMF);
3895         }
3896 
3897       }
3898       break;
3899     }
3900     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3901       unsigned OpNum = 0;
3902       Value *Op;
3903       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3904           OpNum+2 != Record.size())
3905         return error("Invalid record");
3906 
3907       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3908       Type *ResTy = flattenPointerTypes(FullTy);
3909       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3910       if (Opc == -1 || !ResTy)
3911         return error("Invalid record");
3912       Instruction *Temp = nullptr;
3913       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3914         if (Temp) {
3915           InstructionList.push_back(Temp);
3916           CurBB->getInstList().push_back(Temp);
3917         }
3918       } else {
3919         auto CastOp = (Instruction::CastOps)Opc;
3920         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3921           return error("Invalid cast");
3922         I = CastInst::Create(CastOp, Op, ResTy);
3923       }
3924       InstructionList.push_back(I);
3925       break;
3926     }
3927     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3928     case bitc::FUNC_CODE_INST_GEP_OLD:
3929     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3930       unsigned OpNum = 0;
3931 
3932       Type *Ty;
3933       bool InBounds;
3934 
3935       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3936         InBounds = Record[OpNum++];
3937         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3938         Ty = flattenPointerTypes(FullTy);
3939       } else {
3940         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3941         Ty = nullptr;
3942       }
3943 
3944       Value *BasePtr;
3945       Type *FullBaseTy = nullptr;
3946       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3947         return error("Invalid record");
3948 
3949       if (!Ty) {
3950         std::tie(FullTy, Ty) =
3951             getPointerElementTypes(FullBaseTy->getScalarType());
3952       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3953         return error(
3954             "Explicit gep type does not match pointee type of pointer operand");
3955 
3956       SmallVector<Value*, 16> GEPIdx;
3957       while (OpNum != Record.size()) {
3958         Value *Op;
3959         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3960           return error("Invalid record");
3961         GEPIdx.push_back(Op);
3962       }
3963 
3964       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3965       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3966 
3967       InstructionList.push_back(I);
3968       if (InBounds)
3969         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3970       break;
3971     }
3972 
3973     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3974                                        // EXTRACTVAL: [opty, opval, n x indices]
3975       unsigned OpNum = 0;
3976       Value *Agg;
3977       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
3978         return error("Invalid record");
3979 
3980       unsigned RecSize = Record.size();
3981       if (OpNum == RecSize)
3982         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3983 
3984       SmallVector<unsigned, 4> EXTRACTVALIdx;
3985       for (; OpNum != RecSize; ++OpNum) {
3986         bool IsArray = FullTy->isArrayTy();
3987         bool IsStruct = FullTy->isStructTy();
3988         uint64_t Index = Record[OpNum];
3989 
3990         if (!IsStruct && !IsArray)
3991           return error("EXTRACTVAL: Invalid type");
3992         if ((unsigned)Index != Index)
3993           return error("Invalid value");
3994         if (IsStruct && Index >= FullTy->getStructNumElements())
3995           return error("EXTRACTVAL: Invalid struct index");
3996         if (IsArray && Index >= FullTy->getArrayNumElements())
3997           return error("EXTRACTVAL: Invalid array index");
3998         EXTRACTVALIdx.push_back((unsigned)Index);
3999 
4000         if (IsStruct)
4001           FullTy = FullTy->getStructElementType(Index);
4002         else
4003           FullTy = FullTy->getArrayElementType();
4004       }
4005 
4006       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4007       InstructionList.push_back(I);
4008       break;
4009     }
4010 
4011     case bitc::FUNC_CODE_INST_INSERTVAL: {
4012                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4013       unsigned OpNum = 0;
4014       Value *Agg;
4015       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4016         return error("Invalid record");
4017       Value *Val;
4018       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4019         return error("Invalid record");
4020 
4021       unsigned RecSize = Record.size();
4022       if (OpNum == RecSize)
4023         return error("INSERTVAL: Invalid instruction with 0 indices");
4024 
4025       SmallVector<unsigned, 4> INSERTVALIdx;
4026       Type *CurTy = Agg->getType();
4027       for (; OpNum != RecSize; ++OpNum) {
4028         bool IsArray = CurTy->isArrayTy();
4029         bool IsStruct = CurTy->isStructTy();
4030         uint64_t Index = Record[OpNum];
4031 
4032         if (!IsStruct && !IsArray)
4033           return error("INSERTVAL: Invalid type");
4034         if ((unsigned)Index != Index)
4035           return error("Invalid value");
4036         if (IsStruct && Index >= CurTy->getStructNumElements())
4037           return error("INSERTVAL: Invalid struct index");
4038         if (IsArray && Index >= CurTy->getArrayNumElements())
4039           return error("INSERTVAL: Invalid array index");
4040 
4041         INSERTVALIdx.push_back((unsigned)Index);
4042         if (IsStruct)
4043           CurTy = CurTy->getStructElementType(Index);
4044         else
4045           CurTy = CurTy->getArrayElementType();
4046       }
4047 
4048       if (CurTy != Val->getType())
4049         return error("Inserted value type doesn't match aggregate type");
4050 
4051       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4052       InstructionList.push_back(I);
4053       break;
4054     }
4055 
4056     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4057       // obsolete form of select
4058       // handles select i1 ... in old bitcode
4059       unsigned OpNum = 0;
4060       Value *TrueVal, *FalseVal, *Cond;
4061       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4062           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4063           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4064         return error("Invalid record");
4065 
4066       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4067       InstructionList.push_back(I);
4068       break;
4069     }
4070 
4071     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4072       // new form of select
4073       // handles select i1 or select [N x i1]
4074       unsigned OpNum = 0;
4075       Value *TrueVal, *FalseVal, *Cond;
4076       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4077           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4078           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4079         return error("Invalid record");
4080 
4081       // select condition can be either i1 or [N x i1]
4082       if (VectorType* vector_type =
4083           dyn_cast<VectorType>(Cond->getType())) {
4084         // expect <n x i1>
4085         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4086           return error("Invalid type for value");
4087       } else {
4088         // expect i1
4089         if (Cond->getType() != Type::getInt1Ty(Context))
4090           return error("Invalid type for value");
4091       }
4092 
4093       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4094       InstructionList.push_back(I);
4095       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4096         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4097         if (FMF.any())
4098           I->setFastMathFlags(FMF);
4099       }
4100       break;
4101     }
4102 
4103     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4104       unsigned OpNum = 0;
4105       Value *Vec, *Idx;
4106       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4107           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4108         return error("Invalid record");
4109       if (!Vec->getType()->isVectorTy())
4110         return error("Invalid type for value");
4111       I = ExtractElementInst::Create(Vec, Idx);
4112       FullTy = FullTy->getVectorElementType();
4113       InstructionList.push_back(I);
4114       break;
4115     }
4116 
4117     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4118       unsigned OpNum = 0;
4119       Value *Vec, *Elt, *Idx;
4120       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4121         return error("Invalid record");
4122       if (!Vec->getType()->isVectorTy())
4123         return error("Invalid type for value");
4124       if (popValue(Record, OpNum, NextValueNo,
4125                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4126           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4127         return error("Invalid record");
4128       I = InsertElementInst::Create(Vec, Elt, Idx);
4129       InstructionList.push_back(I);
4130       break;
4131     }
4132 
4133     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4134       unsigned OpNum = 0;
4135       Value *Vec1, *Vec2, *Mask;
4136       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4137           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4138         return error("Invalid record");
4139 
4140       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4141         return error("Invalid record");
4142       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4143         return error("Invalid type for value");
4144       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4145       FullTy = VectorType::get(FullTy->getVectorElementType(),
4146                                Mask->getType()->getVectorNumElements());
4147       InstructionList.push_back(I);
4148       break;
4149     }
4150 
4151     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4152       // Old form of ICmp/FCmp returning bool
4153       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4154       // both legal on vectors but had different behaviour.
4155     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4156       // FCmp/ICmp returning bool or vector of bool
4157 
4158       unsigned OpNum = 0;
4159       Value *LHS, *RHS;
4160       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4161           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4162         return error("Invalid record");
4163 
4164       unsigned PredVal = Record[OpNum];
4165       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4166       FastMathFlags FMF;
4167       if (IsFP && Record.size() > OpNum+1)
4168         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4169 
4170       if (OpNum+1 != Record.size())
4171         return error("Invalid record");
4172 
4173       if (LHS->getType()->isFPOrFPVectorTy())
4174         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4175       else
4176         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4177 
4178       if (FMF.any())
4179         I->setFastMathFlags(FMF);
4180       InstructionList.push_back(I);
4181       break;
4182     }
4183 
4184     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4185       {
4186         unsigned Size = Record.size();
4187         if (Size == 0) {
4188           I = ReturnInst::Create(Context);
4189           InstructionList.push_back(I);
4190           break;
4191         }
4192 
4193         unsigned OpNum = 0;
4194         Value *Op = nullptr;
4195         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4196           return error("Invalid record");
4197         if (OpNum != Record.size())
4198           return error("Invalid record");
4199 
4200         I = ReturnInst::Create(Context, Op);
4201         InstructionList.push_back(I);
4202         break;
4203       }
4204     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4205       if (Record.size() != 1 && Record.size() != 3)
4206         return error("Invalid record");
4207       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4208       if (!TrueDest)
4209         return error("Invalid record");
4210 
4211       if (Record.size() == 1) {
4212         I = BranchInst::Create(TrueDest);
4213         InstructionList.push_back(I);
4214       }
4215       else {
4216         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4217         Value *Cond = getValue(Record, 2, NextValueNo,
4218                                Type::getInt1Ty(Context));
4219         if (!FalseDest || !Cond)
4220           return error("Invalid record");
4221         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4222         InstructionList.push_back(I);
4223       }
4224       break;
4225     }
4226     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4227       if (Record.size() != 1 && Record.size() != 2)
4228         return error("Invalid record");
4229       unsigned Idx = 0;
4230       Value *CleanupPad =
4231           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4232       if (!CleanupPad)
4233         return error("Invalid record");
4234       BasicBlock *UnwindDest = nullptr;
4235       if (Record.size() == 2) {
4236         UnwindDest = getBasicBlock(Record[Idx++]);
4237         if (!UnwindDest)
4238           return error("Invalid record");
4239       }
4240 
4241       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4242       InstructionList.push_back(I);
4243       break;
4244     }
4245     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4246       if (Record.size() != 2)
4247         return error("Invalid record");
4248       unsigned Idx = 0;
4249       Value *CatchPad =
4250           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4251       if (!CatchPad)
4252         return error("Invalid record");
4253       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4254       if (!BB)
4255         return error("Invalid record");
4256 
4257       I = CatchReturnInst::Create(CatchPad, BB);
4258       InstructionList.push_back(I);
4259       break;
4260     }
4261     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4262       // We must have, at minimum, the outer scope and the number of arguments.
4263       if (Record.size() < 2)
4264         return error("Invalid record");
4265 
4266       unsigned Idx = 0;
4267 
4268       Value *ParentPad =
4269           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4270 
4271       unsigned NumHandlers = Record[Idx++];
4272 
4273       SmallVector<BasicBlock *, 2> Handlers;
4274       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4275         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4276         if (!BB)
4277           return error("Invalid record");
4278         Handlers.push_back(BB);
4279       }
4280 
4281       BasicBlock *UnwindDest = nullptr;
4282       if (Idx + 1 == Record.size()) {
4283         UnwindDest = getBasicBlock(Record[Idx++]);
4284         if (!UnwindDest)
4285           return error("Invalid record");
4286       }
4287 
4288       if (Record.size() != Idx)
4289         return error("Invalid record");
4290 
4291       auto *CatchSwitch =
4292           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4293       for (BasicBlock *Handler : Handlers)
4294         CatchSwitch->addHandler(Handler);
4295       I = CatchSwitch;
4296       InstructionList.push_back(I);
4297       break;
4298     }
4299     case bitc::FUNC_CODE_INST_CATCHPAD:
4300     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4301       // We must have, at minimum, the outer scope and the number of arguments.
4302       if (Record.size() < 2)
4303         return error("Invalid record");
4304 
4305       unsigned Idx = 0;
4306 
4307       Value *ParentPad =
4308           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4309 
4310       unsigned NumArgOperands = Record[Idx++];
4311 
4312       SmallVector<Value *, 2> Args;
4313       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4314         Value *Val;
4315         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4316           return error("Invalid record");
4317         Args.push_back(Val);
4318       }
4319 
4320       if (Record.size() != Idx)
4321         return error("Invalid record");
4322 
4323       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4324         I = CleanupPadInst::Create(ParentPad, Args);
4325       else
4326         I = CatchPadInst::Create(ParentPad, Args);
4327       InstructionList.push_back(I);
4328       break;
4329     }
4330     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4331       // Check magic
4332       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4333         // "New" SwitchInst format with case ranges. The changes to write this
4334         // format were reverted but we still recognize bitcode that uses it.
4335         // Hopefully someday we will have support for case ranges and can use
4336         // this format again.
4337 
4338         Type *OpTy = getTypeByID(Record[1]);
4339         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4340 
4341         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4342         BasicBlock *Default = getBasicBlock(Record[3]);
4343         if (!OpTy || !Cond || !Default)
4344           return error("Invalid record");
4345 
4346         unsigned NumCases = Record[4];
4347 
4348         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4349         InstructionList.push_back(SI);
4350 
4351         unsigned CurIdx = 5;
4352         for (unsigned i = 0; i != NumCases; ++i) {
4353           SmallVector<ConstantInt*, 1> CaseVals;
4354           unsigned NumItems = Record[CurIdx++];
4355           for (unsigned ci = 0; ci != NumItems; ++ci) {
4356             bool isSingleNumber = Record[CurIdx++];
4357 
4358             APInt Low;
4359             unsigned ActiveWords = 1;
4360             if (ValueBitWidth > 64)
4361               ActiveWords = Record[CurIdx++];
4362             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4363                                 ValueBitWidth);
4364             CurIdx += ActiveWords;
4365 
4366             if (!isSingleNumber) {
4367               ActiveWords = 1;
4368               if (ValueBitWidth > 64)
4369                 ActiveWords = Record[CurIdx++];
4370               APInt High = readWideAPInt(
4371                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4372               CurIdx += ActiveWords;
4373 
4374               // FIXME: It is not clear whether values in the range should be
4375               // compared as signed or unsigned values. The partially
4376               // implemented changes that used this format in the past used
4377               // unsigned comparisons.
4378               for ( ; Low.ule(High); ++Low)
4379                 CaseVals.push_back(ConstantInt::get(Context, Low));
4380             } else
4381               CaseVals.push_back(ConstantInt::get(Context, Low));
4382           }
4383           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4384           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4385                  cve = CaseVals.end(); cvi != cve; ++cvi)
4386             SI->addCase(*cvi, DestBB);
4387         }
4388         I = SI;
4389         break;
4390       }
4391 
4392       // Old SwitchInst format without case ranges.
4393 
4394       if (Record.size() < 3 || (Record.size() & 1) == 0)
4395         return error("Invalid record");
4396       Type *OpTy = getTypeByID(Record[0]);
4397       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4398       BasicBlock *Default = getBasicBlock(Record[2]);
4399       if (!OpTy || !Cond || !Default)
4400         return error("Invalid record");
4401       unsigned NumCases = (Record.size()-3)/2;
4402       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4403       InstructionList.push_back(SI);
4404       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4405         ConstantInt *CaseVal =
4406           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4407         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4408         if (!CaseVal || !DestBB) {
4409           delete SI;
4410           return error("Invalid record");
4411         }
4412         SI->addCase(CaseVal, DestBB);
4413       }
4414       I = SI;
4415       break;
4416     }
4417     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4418       if (Record.size() < 2)
4419         return error("Invalid record");
4420       Type *OpTy = getTypeByID(Record[0]);
4421       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4422       if (!OpTy || !Address)
4423         return error("Invalid record");
4424       unsigned NumDests = Record.size()-2;
4425       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4426       InstructionList.push_back(IBI);
4427       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4428         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4429           IBI->addDestination(DestBB);
4430         } else {
4431           delete IBI;
4432           return error("Invalid record");
4433         }
4434       }
4435       I = IBI;
4436       break;
4437     }
4438 
4439     case bitc::FUNC_CODE_INST_INVOKE: {
4440       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4441       if (Record.size() < 4)
4442         return error("Invalid record");
4443       unsigned OpNum = 0;
4444       AttributeList PAL = getAttributes(Record[OpNum++]);
4445       unsigned CCInfo = Record[OpNum++];
4446       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4447       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4448 
4449       FunctionType *FTy = nullptr;
4450       FunctionType *FullFTy = nullptr;
4451       if ((CCInfo >> 13) & 1) {
4452         FullFTy =
4453             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4454         if (!FullFTy)
4455           return error("Explicit invoke type is not a function type");
4456         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4457       }
4458 
4459       Value *Callee;
4460       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4461         return error("Invalid record");
4462 
4463       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4464       if (!CalleeTy)
4465         return error("Callee is not a pointer");
4466       if (!FTy) {
4467         FullFTy =
4468             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4469         if (!FullFTy)
4470           return error("Callee is not of pointer to function type");
4471         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4472       } else if (getPointerElementFlatType(FullTy) != FTy)
4473         return error("Explicit invoke type does not match pointee type of "
4474                      "callee operand");
4475       if (Record.size() < FTy->getNumParams() + OpNum)
4476         return error("Insufficient operands to call");
4477 
4478       SmallVector<Value*, 16> Ops;
4479       SmallVector<Type *, 16> ArgsFullTys;
4480       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4481         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4482                                FTy->getParamType(i)));
4483         ArgsFullTys.push_back(FullFTy->getParamType(i));
4484         if (!Ops.back())
4485           return error("Invalid record");
4486       }
4487 
4488       if (!FTy->isVarArg()) {
4489         if (Record.size() != OpNum)
4490           return error("Invalid record");
4491       } else {
4492         // Read type/value pairs for varargs params.
4493         while (OpNum != Record.size()) {
4494           Value *Op;
4495           Type *FullTy;
4496           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4497             return error("Invalid record");
4498           Ops.push_back(Op);
4499           ArgsFullTys.push_back(FullTy);
4500         }
4501       }
4502 
4503       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4504                              OperandBundles);
4505       FullTy = FullFTy->getReturnType();
4506       OperandBundles.clear();
4507       InstructionList.push_back(I);
4508       cast<InvokeInst>(I)->setCallingConv(
4509           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4510       cast<InvokeInst>(I)->setAttributes(PAL);
4511       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4512 
4513       break;
4514     }
4515     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4516       unsigned Idx = 0;
4517       Value *Val = nullptr;
4518       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4519         return error("Invalid record");
4520       I = ResumeInst::Create(Val);
4521       InstructionList.push_back(I);
4522       break;
4523     }
4524     case bitc::FUNC_CODE_INST_CALLBR: {
4525       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4526       unsigned OpNum = 0;
4527       AttributeList PAL = getAttributes(Record[OpNum++]);
4528       unsigned CCInfo = Record[OpNum++];
4529 
4530       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4531       unsigned NumIndirectDests = Record[OpNum++];
4532       SmallVector<BasicBlock *, 16> IndirectDests;
4533       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4534         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4535 
4536       FunctionType *FTy = nullptr;
4537       FunctionType *FullFTy = nullptr;
4538       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4539         FullFTy =
4540             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4541         if (!FullFTy)
4542           return error("Explicit call type is not a function type");
4543         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4544       }
4545 
4546       Value *Callee;
4547       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4548         return error("Invalid record");
4549 
4550       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4551       if (!OpTy)
4552         return error("Callee is not a pointer type");
4553       if (!FTy) {
4554         FullFTy =
4555             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4556         if (!FullFTy)
4557           return error("Callee is not of pointer to function type");
4558         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4559       } else if (getPointerElementFlatType(FullTy) != FTy)
4560         return error("Explicit call type does not match pointee type of "
4561                      "callee operand");
4562       if (Record.size() < FTy->getNumParams() + OpNum)
4563         return error("Insufficient operands to call");
4564 
4565       SmallVector<Value*, 16> Args;
4566       // Read the fixed params.
4567       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4568         if (FTy->getParamType(i)->isLabelTy())
4569           Args.push_back(getBasicBlock(Record[OpNum]));
4570         else
4571           Args.push_back(getValue(Record, OpNum, NextValueNo,
4572                                   FTy->getParamType(i)));
4573         if (!Args.back())
4574           return error("Invalid record");
4575       }
4576 
4577       // Read type/value pairs for varargs params.
4578       if (!FTy->isVarArg()) {
4579         if (OpNum != Record.size())
4580           return error("Invalid record");
4581       } else {
4582         while (OpNum != Record.size()) {
4583           Value *Op;
4584           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4585             return error("Invalid record");
4586           Args.push_back(Op);
4587         }
4588       }
4589 
4590       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4591                              OperandBundles);
4592       FullTy = FullFTy->getReturnType();
4593       OperandBundles.clear();
4594       InstructionList.push_back(I);
4595       cast<CallBrInst>(I)->setCallingConv(
4596           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4597       cast<CallBrInst>(I)->setAttributes(PAL);
4598       break;
4599     }
4600     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4601       I = new UnreachableInst(Context);
4602       InstructionList.push_back(I);
4603       break;
4604     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4605       if (Record.size() < 1 || ((Record.size()-1)&1))
4606         return error("Invalid record");
4607       FullTy = getFullyStructuredTypeByID(Record[0]);
4608       Type *Ty = flattenPointerTypes(FullTy);
4609       if (!Ty)
4610         return error("Invalid record");
4611 
4612       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4613       InstructionList.push_back(PN);
4614 
4615       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4616         Value *V;
4617         // With the new function encoding, it is possible that operands have
4618         // negative IDs (for forward references).  Use a signed VBR
4619         // representation to keep the encoding small.
4620         if (UseRelativeIDs)
4621           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4622         else
4623           V = getValue(Record, 1+i, NextValueNo, Ty);
4624         BasicBlock *BB = getBasicBlock(Record[2+i]);
4625         if (!V || !BB)
4626           return error("Invalid record");
4627         PN->addIncoming(V, BB);
4628       }
4629       I = PN;
4630       break;
4631     }
4632 
4633     case bitc::FUNC_CODE_INST_LANDINGPAD:
4634     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4635       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4636       unsigned Idx = 0;
4637       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4638         if (Record.size() < 3)
4639           return error("Invalid record");
4640       } else {
4641         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4642         if (Record.size() < 4)
4643           return error("Invalid record");
4644       }
4645       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4646       Type *Ty = flattenPointerTypes(FullTy);
4647       if (!Ty)
4648         return error("Invalid record");
4649       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4650         Value *PersFn = nullptr;
4651         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4652           return error("Invalid record");
4653 
4654         if (!F->hasPersonalityFn())
4655           F->setPersonalityFn(cast<Constant>(PersFn));
4656         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4657           return error("Personality function mismatch");
4658       }
4659 
4660       bool IsCleanup = !!Record[Idx++];
4661       unsigned NumClauses = Record[Idx++];
4662       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4663       LP->setCleanup(IsCleanup);
4664       for (unsigned J = 0; J != NumClauses; ++J) {
4665         LandingPadInst::ClauseType CT =
4666           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4667         Value *Val;
4668 
4669         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4670           delete LP;
4671           return error("Invalid record");
4672         }
4673 
4674         assert((CT != LandingPadInst::Catch ||
4675                 !isa<ArrayType>(Val->getType())) &&
4676                "Catch clause has a invalid type!");
4677         assert((CT != LandingPadInst::Filter ||
4678                 isa<ArrayType>(Val->getType())) &&
4679                "Filter clause has invalid type!");
4680         LP->addClause(cast<Constant>(Val));
4681       }
4682 
4683       I = LP;
4684       InstructionList.push_back(I);
4685       break;
4686     }
4687 
4688     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4689       if (Record.size() != 4)
4690         return error("Invalid record");
4691       uint64_t AlignRecord = Record[3];
4692       const uint64_t InAllocaMask = uint64_t(1) << 5;
4693       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4694       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4695       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4696                                 SwiftErrorMask;
4697       bool InAlloca = AlignRecord & InAllocaMask;
4698       bool SwiftError = AlignRecord & SwiftErrorMask;
4699       FullTy = getFullyStructuredTypeByID(Record[0]);
4700       Type *Ty = flattenPointerTypes(FullTy);
4701       if ((AlignRecord & ExplicitTypeMask) == 0) {
4702         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4703         if (!PTy)
4704           return error("Old-style alloca with a non-pointer type");
4705         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4706       }
4707       Type *OpTy = getTypeByID(Record[1]);
4708       Value *Size = getFnValueByID(Record[2], OpTy);
4709       unsigned Align;
4710       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4711         return Err;
4712       }
4713       if (!Ty || !Size)
4714         return error("Invalid record");
4715 
4716       // FIXME: Make this an optional field.
4717       const DataLayout &DL = TheModule->getDataLayout();
4718       unsigned AS = DL.getAllocaAddrSpace();
4719 
4720       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4721       AI->setUsedWithInAlloca(InAlloca);
4722       AI->setSwiftError(SwiftError);
4723       I = AI;
4724       FullTy = PointerType::get(FullTy, AS);
4725       InstructionList.push_back(I);
4726       break;
4727     }
4728     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4729       unsigned OpNum = 0;
4730       Value *Op;
4731       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4732           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4733         return error("Invalid record");
4734 
4735       if (!isa<PointerType>(Op->getType()))
4736         return error("Load operand is not a pointer type");
4737 
4738       Type *Ty = nullptr;
4739       if (OpNum + 3 == Record.size()) {
4740         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4741         Ty = flattenPointerTypes(FullTy);
4742       } else
4743         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4744 
4745       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4746         return Err;
4747 
4748       unsigned Align;
4749       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4750         return Err;
4751       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4752       InstructionList.push_back(I);
4753       break;
4754     }
4755     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4756        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4757       unsigned OpNum = 0;
4758       Value *Op;
4759       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4760           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4761         return error("Invalid record");
4762 
4763       if (!isa<PointerType>(Op->getType()))
4764         return error("Load operand is not a pointer type");
4765 
4766       Type *Ty = nullptr;
4767       if (OpNum + 5 == Record.size()) {
4768         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4769         Ty = flattenPointerTypes(FullTy);
4770       } else
4771         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4772 
4773       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4774         return Err;
4775 
4776       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4777       if (Ordering == AtomicOrdering::NotAtomic ||
4778           Ordering == AtomicOrdering::Release ||
4779           Ordering == AtomicOrdering::AcquireRelease)
4780         return error("Invalid record");
4781       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4782         return error("Invalid record");
4783       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4784 
4785       unsigned Align;
4786       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4787         return Err;
4788       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4789       InstructionList.push_back(I);
4790       break;
4791     }
4792     case bitc::FUNC_CODE_INST_STORE:
4793     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4794       unsigned OpNum = 0;
4795       Value *Val, *Ptr;
4796       Type *FullTy;
4797       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4798           (BitCode == bitc::FUNC_CODE_INST_STORE
4799                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4800                : popValue(Record, OpNum, NextValueNo,
4801                           getPointerElementFlatType(FullTy), Val)) ||
4802           OpNum + 2 != Record.size())
4803         return error("Invalid record");
4804 
4805       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4806         return Err;
4807       unsigned Align;
4808       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4809         return Err;
4810       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4811       InstructionList.push_back(I);
4812       break;
4813     }
4814     case bitc::FUNC_CODE_INST_STOREATOMIC:
4815     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4816       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4817       unsigned OpNum = 0;
4818       Value *Val, *Ptr;
4819       Type *FullTy;
4820       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4821           !isa<PointerType>(Ptr->getType()) ||
4822           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4823                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4824                : popValue(Record, OpNum, NextValueNo,
4825                           getPointerElementFlatType(FullTy), Val)) ||
4826           OpNum + 4 != Record.size())
4827         return error("Invalid record");
4828 
4829       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4830         return Err;
4831       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4832       if (Ordering == AtomicOrdering::NotAtomic ||
4833           Ordering == AtomicOrdering::Acquire ||
4834           Ordering == AtomicOrdering::AcquireRelease)
4835         return error("Invalid record");
4836       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4837       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4838         return error("Invalid record");
4839 
4840       unsigned Align;
4841       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4842         return Err;
4843       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4844       InstructionList.push_back(I);
4845       break;
4846     }
4847     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4848     case bitc::FUNC_CODE_INST_CMPXCHG: {
4849       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4850       //          failureordering?, isweak?]
4851       unsigned OpNum = 0;
4852       Value *Ptr, *Cmp, *New;
4853       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4854         return error("Invalid record");
4855 
4856       if (!isa<PointerType>(Ptr->getType()))
4857         return error("Cmpxchg operand is not a pointer type");
4858 
4859       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4860         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4861           return error("Invalid record");
4862       } else if (popValue(Record, OpNum, NextValueNo,
4863                           getPointerElementFlatType(FullTy), Cmp))
4864         return error("Invalid record");
4865       else
4866         FullTy = cast<PointerType>(FullTy)->getElementType();
4867 
4868       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4869           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4870         return error("Invalid record");
4871 
4872       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4873       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4874           SuccessOrdering == AtomicOrdering::Unordered)
4875         return error("Invalid record");
4876       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4877 
4878       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4879         return Err;
4880       AtomicOrdering FailureOrdering;
4881       if (Record.size() < 7)
4882         FailureOrdering =
4883             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4884       else
4885         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4886 
4887       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4888                                 SSID);
4889       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4890       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4891 
4892       if (Record.size() < 8) {
4893         // Before weak cmpxchgs existed, the instruction simply returned the
4894         // value loaded from memory, so bitcode files from that era will be
4895         // expecting the first component of a modern cmpxchg.
4896         CurBB->getInstList().push_back(I);
4897         I = ExtractValueInst::Create(I, 0);
4898         FullTy = cast<StructType>(FullTy)->getElementType(0);
4899       } else {
4900         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4901       }
4902 
4903       InstructionList.push_back(I);
4904       break;
4905     }
4906     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4907       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4908       unsigned OpNum = 0;
4909       Value *Ptr, *Val;
4910       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4911           !isa<PointerType>(Ptr->getType()) ||
4912           popValue(Record, OpNum, NextValueNo,
4913                    getPointerElementFlatType(FullTy), Val) ||
4914           OpNum + 4 != Record.size())
4915         return error("Invalid record");
4916       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4917       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4918           Operation > AtomicRMWInst::LAST_BINOP)
4919         return error("Invalid record");
4920       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4921       if (Ordering == AtomicOrdering::NotAtomic ||
4922           Ordering == AtomicOrdering::Unordered)
4923         return error("Invalid record");
4924       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4925       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4926       FullTy = getPointerElementFlatType(FullTy);
4927       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4928       InstructionList.push_back(I);
4929       break;
4930     }
4931     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4932       if (2 != Record.size())
4933         return error("Invalid record");
4934       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4935       if (Ordering == AtomicOrdering::NotAtomic ||
4936           Ordering == AtomicOrdering::Unordered ||
4937           Ordering == AtomicOrdering::Monotonic)
4938         return error("Invalid record");
4939       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4940       I = new FenceInst(Context, Ordering, SSID);
4941       InstructionList.push_back(I);
4942       break;
4943     }
4944     case bitc::FUNC_CODE_INST_CALL: {
4945       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4946       if (Record.size() < 3)
4947         return error("Invalid record");
4948 
4949       unsigned OpNum = 0;
4950       AttributeList PAL = getAttributes(Record[OpNum++]);
4951       unsigned CCInfo = Record[OpNum++];
4952 
4953       FastMathFlags FMF;
4954       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4955         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4956         if (!FMF.any())
4957           return error("Fast math flags indicator set for call with no FMF");
4958       }
4959 
4960       FunctionType *FTy = nullptr;
4961       FunctionType *FullFTy = nullptr;
4962       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4963         FullFTy =
4964             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4965         if (!FullFTy)
4966           return error("Explicit call type is not a function type");
4967         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4968       }
4969 
4970       Value *Callee;
4971       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4972         return error("Invalid record");
4973 
4974       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4975       if (!OpTy)
4976         return error("Callee is not a pointer type");
4977       if (!FTy) {
4978         FullFTy =
4979             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4980         if (!FullFTy)
4981           return error("Callee is not of pointer to function type");
4982         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4983       } else if (getPointerElementFlatType(FullTy) != FTy)
4984         return error("Explicit call type does not match pointee type of "
4985                      "callee operand");
4986       if (Record.size() < FTy->getNumParams() + OpNum)
4987         return error("Insufficient operands to call");
4988 
4989       SmallVector<Value*, 16> Args;
4990       SmallVector<Type*, 16> ArgsFullTys;
4991       // Read the fixed params.
4992       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4993         if (FTy->getParamType(i)->isLabelTy())
4994           Args.push_back(getBasicBlock(Record[OpNum]));
4995         else
4996           Args.push_back(getValue(Record, OpNum, NextValueNo,
4997                                   FTy->getParamType(i)));
4998         ArgsFullTys.push_back(FullFTy->getParamType(i));
4999         if (!Args.back())
5000           return error("Invalid record");
5001       }
5002 
5003       // Read type/value pairs for varargs params.
5004       if (!FTy->isVarArg()) {
5005         if (OpNum != Record.size())
5006           return error("Invalid record");
5007       } else {
5008         while (OpNum != Record.size()) {
5009           Value *Op;
5010           Type *FullTy;
5011           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5012             return error("Invalid record");
5013           Args.push_back(Op);
5014           ArgsFullTys.push_back(FullTy);
5015         }
5016       }
5017 
5018       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5019       FullTy = FullFTy->getReturnType();
5020       OperandBundles.clear();
5021       InstructionList.push_back(I);
5022       cast<CallInst>(I)->setCallingConv(
5023           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5024       CallInst::TailCallKind TCK = CallInst::TCK_None;
5025       if (CCInfo & 1 << bitc::CALL_TAIL)
5026         TCK = CallInst::TCK_Tail;
5027       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5028         TCK = CallInst::TCK_MustTail;
5029       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5030         TCK = CallInst::TCK_NoTail;
5031       cast<CallInst>(I)->setTailCallKind(TCK);
5032       cast<CallInst>(I)->setAttributes(PAL);
5033       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5034       if (FMF.any()) {
5035         if (!isa<FPMathOperator>(I))
5036           return error("Fast-math-flags specified for call without "
5037                        "floating-point scalar or vector return type");
5038         I->setFastMathFlags(FMF);
5039       }
5040       break;
5041     }
5042     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5043       if (Record.size() < 3)
5044         return error("Invalid record");
5045       Type *OpTy = getTypeByID(Record[0]);
5046       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5047       FullTy = getFullyStructuredTypeByID(Record[2]);
5048       Type *ResTy = flattenPointerTypes(FullTy);
5049       if (!OpTy || !Op || !ResTy)
5050         return error("Invalid record");
5051       I = new VAArgInst(Op, ResTy);
5052       InstructionList.push_back(I);
5053       break;
5054     }
5055 
5056     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5057       // A call or an invoke can be optionally prefixed with some variable
5058       // number of operand bundle blocks.  These blocks are read into
5059       // OperandBundles and consumed at the next call or invoke instruction.
5060 
5061       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5062         return error("Invalid record");
5063 
5064       std::vector<Value *> Inputs;
5065 
5066       unsigned OpNum = 1;
5067       while (OpNum != Record.size()) {
5068         Value *Op;
5069         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5070           return error("Invalid record");
5071         Inputs.push_back(Op);
5072       }
5073 
5074       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5075       continue;
5076     }
5077     }
5078 
5079     // Add instruction to end of current BB.  If there is no current BB, reject
5080     // this file.
5081     if (!CurBB) {
5082       I->deleteValue();
5083       return error("Invalid instruction with no BB");
5084     }
5085     if (!OperandBundles.empty()) {
5086       I->deleteValue();
5087       return error("Operand bundles found with no consumer");
5088     }
5089     CurBB->getInstList().push_back(I);
5090 
5091     // If this was a terminator instruction, move to the next block.
5092     if (I->isTerminator()) {
5093       ++CurBBNo;
5094       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5095     }
5096 
5097     // Non-void values get registered in the value table for future use.
5098     if (I && !I->getType()->isVoidTy()) {
5099       if (!FullTy) {
5100         FullTy = I->getType();
5101         assert(
5102             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5103             !isa<ArrayType>(FullTy) &&
5104             (!isa<VectorType>(FullTy) ||
5105              FullTy->getVectorElementType()->isFloatingPointTy() ||
5106              FullTy->getVectorElementType()->isIntegerTy()) &&
5107             "Structured types must be assigned with corresponding non-opaque "
5108             "pointer type");
5109       }
5110 
5111       assert(I->getType() == flattenPointerTypes(FullTy) &&
5112              "Incorrect fully structured type provided for Instruction");
5113       ValueList.assignValue(I, NextValueNo++, FullTy);
5114     }
5115   }
5116 
5117 OutOfRecordLoop:
5118 
5119   if (!OperandBundles.empty())
5120     return error("Operand bundles found with no consumer");
5121 
5122   // Check the function list for unresolved values.
5123   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5124     if (!A->getParent()) {
5125       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5126       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5127         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5128           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5129           delete A;
5130         }
5131       }
5132       return error("Never resolved value found in function");
5133     }
5134   }
5135 
5136   // Unexpected unresolved metadata about to be dropped.
5137   if (MDLoader->hasFwdRefs())
5138     return error("Invalid function metadata: outgoing forward refs");
5139 
5140   // Trim the value list down to the size it was before we parsed this function.
5141   ValueList.shrinkTo(ModuleValueListSize);
5142   MDLoader->shrinkTo(ModuleMDLoaderSize);
5143   std::vector<BasicBlock*>().swap(FunctionBBs);
5144   return Error::success();
5145 }
5146 
5147 /// Find the function body in the bitcode stream
5148 Error BitcodeReader::findFunctionInStream(
5149     Function *F,
5150     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5151   while (DeferredFunctionInfoIterator->second == 0) {
5152     // This is the fallback handling for the old format bitcode that
5153     // didn't contain the function index in the VST, or when we have
5154     // an anonymous function which would not have a VST entry.
5155     // Assert that we have one of those two cases.
5156     assert(VSTOffset == 0 || !F->hasName());
5157     // Parse the next body in the stream and set its position in the
5158     // DeferredFunctionInfo map.
5159     if (Error Err = rememberAndSkipFunctionBodies())
5160       return Err;
5161   }
5162   return Error::success();
5163 }
5164 
5165 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5166   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5167     return SyncScope::ID(Val);
5168   if (Val >= SSIDs.size())
5169     return SyncScope::System; // Map unknown synchronization scopes to system.
5170   return SSIDs[Val];
5171 }
5172 
5173 //===----------------------------------------------------------------------===//
5174 // GVMaterializer implementation
5175 //===----------------------------------------------------------------------===//
5176 
5177 Error BitcodeReader::materialize(GlobalValue *GV) {
5178   Function *F = dyn_cast<Function>(GV);
5179   // If it's not a function or is already material, ignore the request.
5180   if (!F || !F->isMaterializable())
5181     return Error::success();
5182 
5183   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5184   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5185   // If its position is recorded as 0, its body is somewhere in the stream
5186   // but we haven't seen it yet.
5187   if (DFII->second == 0)
5188     if (Error Err = findFunctionInStream(F, DFII))
5189       return Err;
5190 
5191   // Materialize metadata before parsing any function bodies.
5192   if (Error Err = materializeMetadata())
5193     return Err;
5194 
5195   // Move the bit stream to the saved position of the deferred function body.
5196   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5197     return JumpFailed;
5198   if (Error Err = parseFunctionBody(F))
5199     return Err;
5200   F->setIsMaterializable(false);
5201 
5202   if (StripDebugInfo)
5203     stripDebugInfo(*F);
5204 
5205   // Upgrade any old intrinsic calls in the function.
5206   for (auto &I : UpgradedIntrinsics) {
5207     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5208          UI != UE;) {
5209       User *U = *UI;
5210       ++UI;
5211       if (CallInst *CI = dyn_cast<CallInst>(U))
5212         UpgradeIntrinsicCall(CI, I.second);
5213     }
5214   }
5215 
5216   // Update calls to the remangled intrinsics
5217   for (auto &I : RemangledIntrinsics)
5218     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5219          UI != UE;)
5220       // Don't expect any other users than call sites
5221       CallSite(*UI++).setCalledFunction(I.second);
5222 
5223   // Finish fn->subprogram upgrade for materialized functions.
5224   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5225     F->setSubprogram(SP);
5226 
5227   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5228   if (!MDLoader->isStrippingTBAA()) {
5229     for (auto &I : instructions(F)) {
5230       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5231       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5232         continue;
5233       MDLoader->setStripTBAA(true);
5234       stripTBAA(F->getParent());
5235     }
5236   }
5237 
5238   // Bring in any functions that this function forward-referenced via
5239   // blockaddresses.
5240   return materializeForwardReferencedFunctions();
5241 }
5242 
5243 Error BitcodeReader::materializeModule() {
5244   if (Error Err = materializeMetadata())
5245     return Err;
5246 
5247   // Promise to materialize all forward references.
5248   WillMaterializeAllForwardRefs = true;
5249 
5250   // Iterate over the module, deserializing any functions that are still on
5251   // disk.
5252   for (Function &F : *TheModule) {
5253     if (Error Err = materialize(&F))
5254       return Err;
5255   }
5256   // At this point, if there are any function bodies, parse the rest of
5257   // the bits in the module past the last function block we have recorded
5258   // through either lazy scanning or the VST.
5259   if (LastFunctionBlockBit || NextUnreadBit)
5260     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5261                                     ? LastFunctionBlockBit
5262                                     : NextUnreadBit))
5263       return Err;
5264 
5265   // Check that all block address forward references got resolved (as we
5266   // promised above).
5267   if (!BasicBlockFwdRefs.empty())
5268     return error("Never resolved function from blockaddress");
5269 
5270   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5271   // delete the old functions to clean up. We can't do this unless the entire
5272   // module is materialized because there could always be another function body
5273   // with calls to the old function.
5274   for (auto &I : UpgradedIntrinsics) {
5275     for (auto *U : I.first->users()) {
5276       if (CallInst *CI = dyn_cast<CallInst>(U))
5277         UpgradeIntrinsicCall(CI, I.second);
5278     }
5279     if (!I.first->use_empty())
5280       I.first->replaceAllUsesWith(I.second);
5281     I.first->eraseFromParent();
5282   }
5283   UpgradedIntrinsics.clear();
5284   // Do the same for remangled intrinsics
5285   for (auto &I : RemangledIntrinsics) {
5286     I.first->replaceAllUsesWith(I.second);
5287     I.first->eraseFromParent();
5288   }
5289   RemangledIntrinsics.clear();
5290 
5291   UpgradeDebugInfo(*TheModule);
5292 
5293   UpgradeModuleFlags(*TheModule);
5294 
5295   UpgradeRetainReleaseMarker(*TheModule);
5296 
5297   return Error::success();
5298 }
5299 
5300 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5301   return IdentifiedStructTypes;
5302 }
5303 
5304 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5305     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5306     StringRef ModulePath, unsigned ModuleId)
5307     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5308       ModulePath(ModulePath), ModuleId(ModuleId) {}
5309 
5310 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5311   TheIndex.addModule(ModulePath, ModuleId);
5312 }
5313 
5314 ModuleSummaryIndex::ModuleInfo *
5315 ModuleSummaryIndexBitcodeReader::getThisModule() {
5316   return TheIndex.getModule(ModulePath);
5317 }
5318 
5319 std::pair<ValueInfo, GlobalValue::GUID>
5320 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5321   auto VGI = ValueIdToValueInfoMap[ValueId];
5322   assert(VGI.first);
5323   return VGI;
5324 }
5325 
5326 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5327     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5328     StringRef SourceFileName) {
5329   std::string GlobalId =
5330       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5331   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5332   auto OriginalNameID = ValueGUID;
5333   if (GlobalValue::isLocalLinkage(Linkage))
5334     OriginalNameID = GlobalValue::getGUID(ValueName);
5335   if (PrintSummaryGUIDs)
5336     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5337            << ValueName << "\n";
5338 
5339   // UseStrtab is false for legacy summary formats and value names are
5340   // created on stack. In that case we save the name in a string saver in
5341   // the index so that the value name can be recorded.
5342   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5343       TheIndex.getOrInsertValueInfo(
5344           ValueGUID,
5345           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5346       OriginalNameID);
5347 }
5348 
5349 // Specialized value symbol table parser used when reading module index
5350 // blocks where we don't actually create global values. The parsed information
5351 // is saved in the bitcode reader for use when later parsing summaries.
5352 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5353     uint64_t Offset,
5354     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5355   // With a strtab the VST is not required to parse the summary.
5356   if (UseStrtab)
5357     return Error::success();
5358 
5359   assert(Offset > 0 && "Expected non-zero VST offset");
5360   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5361   if (!MaybeCurrentBit)
5362     return MaybeCurrentBit.takeError();
5363   uint64_t CurrentBit = MaybeCurrentBit.get();
5364 
5365   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5366     return Err;
5367 
5368   SmallVector<uint64_t, 64> Record;
5369 
5370   // Read all the records for this value table.
5371   SmallString<128> ValueName;
5372 
5373   while (true) {
5374     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5375     if (!MaybeEntry)
5376       return MaybeEntry.takeError();
5377     BitstreamEntry Entry = MaybeEntry.get();
5378 
5379     switch (Entry.Kind) {
5380     case BitstreamEntry::SubBlock: // Handled for us already.
5381     case BitstreamEntry::Error:
5382       return error("Malformed block");
5383     case BitstreamEntry::EndBlock:
5384       // Done parsing VST, jump back to wherever we came from.
5385       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5386         return JumpFailed;
5387       return Error::success();
5388     case BitstreamEntry::Record:
5389       // The interesting case.
5390       break;
5391     }
5392 
5393     // Read a record.
5394     Record.clear();
5395     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5396     if (!MaybeRecord)
5397       return MaybeRecord.takeError();
5398     switch (MaybeRecord.get()) {
5399     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5400       break;
5401     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5402       if (convertToString(Record, 1, ValueName))
5403         return error("Invalid record");
5404       unsigned ValueID = Record[0];
5405       assert(!SourceFileName.empty());
5406       auto VLI = ValueIdToLinkageMap.find(ValueID);
5407       assert(VLI != ValueIdToLinkageMap.end() &&
5408              "No linkage found for VST entry?");
5409       auto Linkage = VLI->second;
5410       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5411       ValueName.clear();
5412       break;
5413     }
5414     case bitc::VST_CODE_FNENTRY: {
5415       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5416       if (convertToString(Record, 2, ValueName))
5417         return error("Invalid record");
5418       unsigned ValueID = Record[0];
5419       assert(!SourceFileName.empty());
5420       auto VLI = ValueIdToLinkageMap.find(ValueID);
5421       assert(VLI != ValueIdToLinkageMap.end() &&
5422              "No linkage found for VST entry?");
5423       auto Linkage = VLI->second;
5424       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5425       ValueName.clear();
5426       break;
5427     }
5428     case bitc::VST_CODE_COMBINED_ENTRY: {
5429       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5430       unsigned ValueID = Record[0];
5431       GlobalValue::GUID RefGUID = Record[1];
5432       // The "original name", which is the second value of the pair will be
5433       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5434       ValueIdToValueInfoMap[ValueID] =
5435           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5436       break;
5437     }
5438     }
5439   }
5440 }
5441 
5442 // Parse just the blocks needed for building the index out of the module.
5443 // At the end of this routine the module Index is populated with a map
5444 // from global value id to GlobalValueSummary objects.
5445 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5446   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5447     return Err;
5448 
5449   SmallVector<uint64_t, 64> Record;
5450   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5451   unsigned ValueId = 0;
5452 
5453   // Read the index for this module.
5454   while (true) {
5455     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5456     if (!MaybeEntry)
5457       return MaybeEntry.takeError();
5458     llvm::BitstreamEntry Entry = MaybeEntry.get();
5459 
5460     switch (Entry.Kind) {
5461     case BitstreamEntry::Error:
5462       return error("Malformed block");
5463     case BitstreamEntry::EndBlock:
5464       return Error::success();
5465 
5466     case BitstreamEntry::SubBlock:
5467       switch (Entry.ID) {
5468       default: // Skip unknown content.
5469         if (Error Err = Stream.SkipBlock())
5470           return Err;
5471         break;
5472       case bitc::BLOCKINFO_BLOCK_ID:
5473         // Need to parse these to get abbrev ids (e.g. for VST)
5474         if (readBlockInfo())
5475           return error("Malformed block");
5476         break;
5477       case bitc::VALUE_SYMTAB_BLOCK_ID:
5478         // Should have been parsed earlier via VSTOffset, unless there
5479         // is no summary section.
5480         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5481                 !SeenGlobalValSummary) &&
5482                "Expected early VST parse via VSTOffset record");
5483         if (Error Err = Stream.SkipBlock())
5484           return Err;
5485         break;
5486       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5487       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5488         // Add the module if it is a per-module index (has a source file name).
5489         if (!SourceFileName.empty())
5490           addThisModule();
5491         assert(!SeenValueSymbolTable &&
5492                "Already read VST when parsing summary block?");
5493         // We might not have a VST if there were no values in the
5494         // summary. An empty summary block generated when we are
5495         // performing ThinLTO compiles so we don't later invoke
5496         // the regular LTO process on them.
5497         if (VSTOffset > 0) {
5498           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5499             return Err;
5500           SeenValueSymbolTable = true;
5501         }
5502         SeenGlobalValSummary = true;
5503         if (Error Err = parseEntireSummary(Entry.ID))
5504           return Err;
5505         break;
5506       case bitc::MODULE_STRTAB_BLOCK_ID:
5507         if (Error Err = parseModuleStringTable())
5508           return Err;
5509         break;
5510       }
5511       continue;
5512 
5513     case BitstreamEntry::Record: {
5514         Record.clear();
5515         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5516         if (!MaybeBitCode)
5517           return MaybeBitCode.takeError();
5518         switch (MaybeBitCode.get()) {
5519         default:
5520           break; // Default behavior, ignore unknown content.
5521         case bitc::MODULE_CODE_VERSION: {
5522           if (Error Err = parseVersionRecord(Record).takeError())
5523             return Err;
5524           break;
5525         }
5526         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5527         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5528           SmallString<128> ValueName;
5529           if (convertToString(Record, 0, ValueName))
5530             return error("Invalid record");
5531           SourceFileName = ValueName.c_str();
5532           break;
5533         }
5534         /// MODULE_CODE_HASH: [5*i32]
5535         case bitc::MODULE_CODE_HASH: {
5536           if (Record.size() != 5)
5537             return error("Invalid hash length " + Twine(Record.size()).str());
5538           auto &Hash = getThisModule()->second.second;
5539           int Pos = 0;
5540           for (auto &Val : Record) {
5541             assert(!(Val >> 32) && "Unexpected high bits set");
5542             Hash[Pos++] = Val;
5543           }
5544           break;
5545         }
5546         /// MODULE_CODE_VSTOFFSET: [offset]
5547         case bitc::MODULE_CODE_VSTOFFSET:
5548           if (Record.size() < 1)
5549             return error("Invalid record");
5550           // Note that we subtract 1 here because the offset is relative to one
5551           // word before the start of the identification or module block, which
5552           // was historically always the start of the regular bitcode header.
5553           VSTOffset = Record[0] - 1;
5554           break;
5555         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5556         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5557         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5558         // v2: [strtab offset, strtab size, v1]
5559         case bitc::MODULE_CODE_GLOBALVAR:
5560         case bitc::MODULE_CODE_FUNCTION:
5561         case bitc::MODULE_CODE_ALIAS: {
5562           StringRef Name;
5563           ArrayRef<uint64_t> GVRecord;
5564           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5565           if (GVRecord.size() <= 3)
5566             return error("Invalid record");
5567           uint64_t RawLinkage = GVRecord[3];
5568           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5569           if (!UseStrtab) {
5570             ValueIdToLinkageMap[ValueId++] = Linkage;
5571             break;
5572           }
5573 
5574           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5575           break;
5576         }
5577         }
5578       }
5579       continue;
5580     }
5581   }
5582 }
5583 
5584 std::vector<ValueInfo>
5585 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5586   std::vector<ValueInfo> Ret;
5587   Ret.reserve(Record.size());
5588   for (uint64_t RefValueId : Record)
5589     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5590   return Ret;
5591 }
5592 
5593 std::vector<FunctionSummary::EdgeTy>
5594 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5595                                               bool IsOldProfileFormat,
5596                                               bool HasProfile, bool HasRelBF) {
5597   std::vector<FunctionSummary::EdgeTy> Ret;
5598   Ret.reserve(Record.size());
5599   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5600     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5601     uint64_t RelBF = 0;
5602     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5603     if (IsOldProfileFormat) {
5604       I += 1; // Skip old callsitecount field
5605       if (HasProfile)
5606         I += 1; // Skip old profilecount field
5607     } else if (HasProfile)
5608       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5609     else if (HasRelBF)
5610       RelBF = Record[++I];
5611     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5612   }
5613   return Ret;
5614 }
5615 
5616 static void
5617 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5618                                        WholeProgramDevirtResolution &Wpd) {
5619   uint64_t ArgNum = Record[Slot++];
5620   WholeProgramDevirtResolution::ByArg &B =
5621       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5622   Slot += ArgNum;
5623 
5624   B.TheKind =
5625       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5626   B.Info = Record[Slot++];
5627   B.Byte = Record[Slot++];
5628   B.Bit = Record[Slot++];
5629 }
5630 
5631 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5632                                               StringRef Strtab, size_t &Slot,
5633                                               TypeIdSummary &TypeId) {
5634   uint64_t Id = Record[Slot++];
5635   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5636 
5637   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5638   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5639                         static_cast<size_t>(Record[Slot + 1])};
5640   Slot += 2;
5641 
5642   uint64_t ResByArgNum = Record[Slot++];
5643   for (uint64_t I = 0; I != ResByArgNum; ++I)
5644     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5645 }
5646 
5647 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5648                                      StringRef Strtab,
5649                                      ModuleSummaryIndex &TheIndex) {
5650   size_t Slot = 0;
5651   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5652       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5653   Slot += 2;
5654 
5655   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5656   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5657   TypeId.TTRes.AlignLog2 = Record[Slot++];
5658   TypeId.TTRes.SizeM1 = Record[Slot++];
5659   TypeId.TTRes.BitMask = Record[Slot++];
5660   TypeId.TTRes.InlineBits = Record[Slot++];
5661 
5662   while (Slot < Record.size())
5663     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5664 }
5665 
5666 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5667     ArrayRef<uint64_t> Record, size_t &Slot,
5668     TypeIdCompatibleVtableInfo &TypeId) {
5669   uint64_t Offset = Record[Slot++];
5670   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5671   TypeId.push_back({Offset, Callee});
5672 }
5673 
5674 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5675     ArrayRef<uint64_t> Record) {
5676   size_t Slot = 0;
5677   TypeIdCompatibleVtableInfo &TypeId =
5678       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5679           {Strtab.data() + Record[Slot],
5680            static_cast<size_t>(Record[Slot + 1])});
5681   Slot += 2;
5682 
5683   while (Slot < Record.size())
5684     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5685 }
5686 
5687 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5688                            unsigned WOCnt) {
5689   // Readonly and writeonly refs are in the end of the refs list.
5690   assert(ROCnt + WOCnt <= Refs.size());
5691   unsigned FirstWORef = Refs.size() - WOCnt;
5692   unsigned RefNo = FirstWORef - ROCnt;
5693   for (; RefNo < FirstWORef; ++RefNo)
5694     Refs[RefNo].setReadOnly();
5695   for (; RefNo < Refs.size(); ++RefNo)
5696     Refs[RefNo].setWriteOnly();
5697 }
5698 
5699 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5700 // objects in the index.
5701 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5702   if (Error Err = Stream.EnterSubBlock(ID))
5703     return Err;
5704   SmallVector<uint64_t, 64> Record;
5705 
5706   // Parse version
5707   {
5708     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5709     if (!MaybeEntry)
5710       return MaybeEntry.takeError();
5711     BitstreamEntry Entry = MaybeEntry.get();
5712 
5713     if (Entry.Kind != BitstreamEntry::Record)
5714       return error("Invalid Summary Block: record for version expected");
5715     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5716     if (!MaybeRecord)
5717       return MaybeRecord.takeError();
5718     if (MaybeRecord.get() != bitc::FS_VERSION)
5719       return error("Invalid Summary Block: version expected");
5720   }
5721   const uint64_t Version = Record[0];
5722   const bool IsOldProfileFormat = Version == 1;
5723   if (Version < 1 || Version > 7)
5724     return error("Invalid summary version " + Twine(Version) +
5725                  ". Version should be in the range [1-7].");
5726   Record.clear();
5727 
5728   // Keep around the last seen summary to be used when we see an optional
5729   // "OriginalName" attachement.
5730   GlobalValueSummary *LastSeenSummary = nullptr;
5731   GlobalValue::GUID LastSeenGUID = 0;
5732 
5733   // We can expect to see any number of type ID information records before
5734   // each function summary records; these variables store the information
5735   // collected so far so that it can be used to create the summary object.
5736   std::vector<GlobalValue::GUID> PendingTypeTests;
5737   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5738       PendingTypeCheckedLoadVCalls;
5739   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5740       PendingTypeCheckedLoadConstVCalls;
5741 
5742   while (true) {
5743     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5744     if (!MaybeEntry)
5745       return MaybeEntry.takeError();
5746     BitstreamEntry Entry = MaybeEntry.get();
5747 
5748     switch (Entry.Kind) {
5749     case BitstreamEntry::SubBlock: // Handled for us already.
5750     case BitstreamEntry::Error:
5751       return error("Malformed block");
5752     case BitstreamEntry::EndBlock:
5753       return Error::success();
5754     case BitstreamEntry::Record:
5755       // The interesting case.
5756       break;
5757     }
5758 
5759     // Read a record. The record format depends on whether this
5760     // is a per-module index or a combined index file. In the per-module
5761     // case the records contain the associated value's ID for correlation
5762     // with VST entries. In the combined index the correlation is done
5763     // via the bitcode offset of the summary records (which were saved
5764     // in the combined index VST entries). The records also contain
5765     // information used for ThinLTO renaming and importing.
5766     Record.clear();
5767     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5768     if (!MaybeBitCode)
5769       return MaybeBitCode.takeError();
5770     switch (unsigned BitCode = MaybeBitCode.get()) {
5771     default: // Default behavior: ignore.
5772       break;
5773     case bitc::FS_FLAGS: {  // [flags]
5774       uint64_t Flags = Record[0];
5775       // Scan flags.
5776       assert(Flags <= 0x1f && "Unexpected bits in flag");
5777 
5778       // 1 bit: WithGlobalValueDeadStripping flag.
5779       // Set on combined index only.
5780       if (Flags & 0x1)
5781         TheIndex.setWithGlobalValueDeadStripping();
5782       // 1 bit: SkipModuleByDistributedBackend flag.
5783       // Set on combined index only.
5784       if (Flags & 0x2)
5785         TheIndex.setSkipModuleByDistributedBackend();
5786       // 1 bit: HasSyntheticEntryCounts flag.
5787       // Set on combined index only.
5788       if (Flags & 0x4)
5789         TheIndex.setHasSyntheticEntryCounts();
5790       // 1 bit: DisableSplitLTOUnit flag.
5791       // Set on per module indexes. It is up to the client to validate
5792       // the consistency of this flag across modules being linked.
5793       if (Flags & 0x8)
5794         TheIndex.setEnableSplitLTOUnit();
5795       // 1 bit: PartiallySplitLTOUnits flag.
5796       // Set on combined index only.
5797       if (Flags & 0x10)
5798         TheIndex.setPartiallySplitLTOUnits();
5799       break;
5800     }
5801     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5802       uint64_t ValueID = Record[0];
5803       GlobalValue::GUID RefGUID = Record[1];
5804       ValueIdToValueInfoMap[ValueID] =
5805           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5806       break;
5807     }
5808     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5809     //                numrefs x valueid, n x (valueid)]
5810     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5811     //                        numrefs x valueid,
5812     //                        n x (valueid, hotness)]
5813     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5814     //                      numrefs x valueid,
5815     //                      n x (valueid, relblockfreq)]
5816     case bitc::FS_PERMODULE:
5817     case bitc::FS_PERMODULE_RELBF:
5818     case bitc::FS_PERMODULE_PROFILE: {
5819       unsigned ValueID = Record[0];
5820       uint64_t RawFlags = Record[1];
5821       unsigned InstCount = Record[2];
5822       uint64_t RawFunFlags = 0;
5823       unsigned NumRefs = Record[3];
5824       unsigned NumRORefs = 0, NumWORefs = 0;
5825       int RefListStartIndex = 4;
5826       if (Version >= 4) {
5827         RawFunFlags = Record[3];
5828         NumRefs = Record[4];
5829         RefListStartIndex = 5;
5830         if (Version >= 5) {
5831           NumRORefs = Record[5];
5832           RefListStartIndex = 6;
5833           if (Version >= 7) {
5834             NumWORefs = Record[6];
5835             RefListStartIndex = 7;
5836           }
5837         }
5838       }
5839 
5840       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5841       // The module path string ref set in the summary must be owned by the
5842       // index's module string table. Since we don't have a module path
5843       // string table section in the per-module index, we create a single
5844       // module path string table entry with an empty (0) ID to take
5845       // ownership.
5846       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5847       assert(Record.size() >= RefListStartIndex + NumRefs &&
5848              "Record size inconsistent with number of references");
5849       std::vector<ValueInfo> Refs = makeRefList(
5850           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5851       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5852       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5853       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5854           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5855           IsOldProfileFormat, HasProfile, HasRelBF);
5856       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5857       auto FS = llvm::make_unique<FunctionSummary>(
5858           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5859           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5860           std::move(PendingTypeTestAssumeVCalls),
5861           std::move(PendingTypeCheckedLoadVCalls),
5862           std::move(PendingTypeTestAssumeConstVCalls),
5863           std::move(PendingTypeCheckedLoadConstVCalls));
5864       PendingTypeTests.clear();
5865       PendingTypeTestAssumeVCalls.clear();
5866       PendingTypeCheckedLoadVCalls.clear();
5867       PendingTypeTestAssumeConstVCalls.clear();
5868       PendingTypeCheckedLoadConstVCalls.clear();
5869       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5870       FS->setModulePath(getThisModule()->first());
5871       FS->setOriginalName(VIAndOriginalGUID.second);
5872       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5873       break;
5874     }
5875     // FS_ALIAS: [valueid, flags, valueid]
5876     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5877     // they expect all aliasee summaries to be available.
5878     case bitc::FS_ALIAS: {
5879       unsigned ValueID = Record[0];
5880       uint64_t RawFlags = Record[1];
5881       unsigned AliaseeID = Record[2];
5882       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5883       auto AS = llvm::make_unique<AliasSummary>(Flags);
5884       // The module path string ref set in the summary must be owned by the
5885       // index's module string table. Since we don't have a module path
5886       // string table section in the per-module index, we create a single
5887       // module path string table entry with an empty (0) ID to take
5888       // ownership.
5889       AS->setModulePath(getThisModule()->first());
5890 
5891       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5892       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5893       if (!AliaseeInModule)
5894         return error("Alias expects aliasee summary to be parsed");
5895       AS->setAliasee(AliaseeVI, AliaseeInModule);
5896 
5897       auto GUID = getValueInfoFromValueId(ValueID);
5898       AS->setOriginalName(GUID.second);
5899       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5900       break;
5901     }
5902     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5903     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5904       unsigned ValueID = Record[0];
5905       uint64_t RawFlags = Record[1];
5906       unsigned RefArrayStart = 2;
5907       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5908                                       /* WriteOnly */ false);
5909       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5910       if (Version >= 5) {
5911         GVF = getDecodedGVarFlags(Record[2]);
5912         RefArrayStart = 3;
5913       }
5914       std::vector<ValueInfo> Refs =
5915           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5916       auto FS =
5917           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5918       FS->setModulePath(getThisModule()->first());
5919       auto GUID = getValueInfoFromValueId(ValueID);
5920       FS->setOriginalName(GUID.second);
5921       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5922       break;
5923     }
5924     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5925     //                        numrefs, numrefs x valueid,
5926     //                        n x (valueid, offset)]
5927     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5928       unsigned ValueID = Record[0];
5929       uint64_t RawFlags = Record[1];
5930       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5931       unsigned NumRefs = Record[3];
5932       unsigned RefListStartIndex = 4;
5933       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5934       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5935       std::vector<ValueInfo> Refs = makeRefList(
5936           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5937       VTableFuncList VTableFuncs;
5938       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5939         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5940         uint64_t Offset = Record[++I];
5941         VTableFuncs.push_back({Callee, Offset});
5942       }
5943       auto VS =
5944           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5945       VS->setModulePath(getThisModule()->first());
5946       VS->setVTableFuncs(VTableFuncs);
5947       auto GUID = getValueInfoFromValueId(ValueID);
5948       VS->setOriginalName(GUID.second);
5949       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5950       break;
5951     }
5952     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5953     //               numrefs x valueid, n x (valueid)]
5954     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5955     //                       numrefs x valueid, n x (valueid, hotness)]
5956     case bitc::FS_COMBINED:
5957     case bitc::FS_COMBINED_PROFILE: {
5958       unsigned ValueID = Record[0];
5959       uint64_t ModuleId = Record[1];
5960       uint64_t RawFlags = Record[2];
5961       unsigned InstCount = Record[3];
5962       uint64_t RawFunFlags = 0;
5963       uint64_t EntryCount = 0;
5964       unsigned NumRefs = Record[4];
5965       unsigned NumRORefs = 0, NumWORefs = 0;
5966       int RefListStartIndex = 5;
5967 
5968       if (Version >= 4) {
5969         RawFunFlags = Record[4];
5970         RefListStartIndex = 6;
5971         size_t NumRefsIndex = 5;
5972         if (Version >= 5) {
5973           unsigned NumRORefsOffset = 1;
5974           RefListStartIndex = 7;
5975           if (Version >= 6) {
5976             NumRefsIndex = 6;
5977             EntryCount = Record[5];
5978             RefListStartIndex = 8;
5979             if (Version >= 7) {
5980               RefListStartIndex = 9;
5981               NumWORefs = Record[8];
5982               NumRORefsOffset = 2;
5983             }
5984           }
5985           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
5986         }
5987         NumRefs = Record[NumRefsIndex];
5988       }
5989 
5990       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5991       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5992       assert(Record.size() >= RefListStartIndex + NumRefs &&
5993              "Record size inconsistent with number of references");
5994       std::vector<ValueInfo> Refs = makeRefList(
5995           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5996       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5997       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5998           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5999           IsOldProfileFormat, HasProfile, false);
6000       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6001       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6002       auto FS = llvm::make_unique<FunctionSummary>(
6003           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6004           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6005           std::move(PendingTypeTestAssumeVCalls),
6006           std::move(PendingTypeCheckedLoadVCalls),
6007           std::move(PendingTypeTestAssumeConstVCalls),
6008           std::move(PendingTypeCheckedLoadConstVCalls));
6009       PendingTypeTests.clear();
6010       PendingTypeTestAssumeVCalls.clear();
6011       PendingTypeCheckedLoadVCalls.clear();
6012       PendingTypeTestAssumeConstVCalls.clear();
6013       PendingTypeCheckedLoadConstVCalls.clear();
6014       LastSeenSummary = FS.get();
6015       LastSeenGUID = VI.getGUID();
6016       FS->setModulePath(ModuleIdMap[ModuleId]);
6017       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6018       break;
6019     }
6020     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6021     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6022     // they expect all aliasee summaries to be available.
6023     case bitc::FS_COMBINED_ALIAS: {
6024       unsigned ValueID = Record[0];
6025       uint64_t ModuleId = Record[1];
6026       uint64_t RawFlags = Record[2];
6027       unsigned AliaseeValueId = Record[3];
6028       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6029       auto AS = llvm::make_unique<AliasSummary>(Flags);
6030       LastSeenSummary = AS.get();
6031       AS->setModulePath(ModuleIdMap[ModuleId]);
6032 
6033       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6034       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6035       AS->setAliasee(AliaseeVI, AliaseeInModule);
6036 
6037       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6038       LastSeenGUID = VI.getGUID();
6039       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6040       break;
6041     }
6042     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6043     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6044       unsigned ValueID = Record[0];
6045       uint64_t ModuleId = Record[1];
6046       uint64_t RawFlags = Record[2];
6047       unsigned RefArrayStart = 3;
6048       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6049                                       /* WriteOnly */ false);
6050       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6051       if (Version >= 5) {
6052         GVF = getDecodedGVarFlags(Record[3]);
6053         RefArrayStart = 4;
6054       }
6055       std::vector<ValueInfo> Refs =
6056           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6057       auto FS =
6058           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6059       LastSeenSummary = FS.get();
6060       FS->setModulePath(ModuleIdMap[ModuleId]);
6061       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6062       LastSeenGUID = VI.getGUID();
6063       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6064       break;
6065     }
6066     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6067     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6068       uint64_t OriginalName = Record[0];
6069       if (!LastSeenSummary)
6070         return error("Name attachment that does not follow a combined record");
6071       LastSeenSummary->setOriginalName(OriginalName);
6072       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6073       // Reset the LastSeenSummary
6074       LastSeenSummary = nullptr;
6075       LastSeenGUID = 0;
6076       break;
6077     }
6078     case bitc::FS_TYPE_TESTS:
6079       assert(PendingTypeTests.empty());
6080       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6081                               Record.end());
6082       break;
6083 
6084     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6085       assert(PendingTypeTestAssumeVCalls.empty());
6086       for (unsigned I = 0; I != Record.size(); I += 2)
6087         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6088       break;
6089 
6090     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6091       assert(PendingTypeCheckedLoadVCalls.empty());
6092       for (unsigned I = 0; I != Record.size(); I += 2)
6093         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6094       break;
6095 
6096     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6097       PendingTypeTestAssumeConstVCalls.push_back(
6098           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6099       break;
6100 
6101     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6102       PendingTypeCheckedLoadConstVCalls.push_back(
6103           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6104       break;
6105 
6106     case bitc::FS_CFI_FUNCTION_DEFS: {
6107       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6108       for (unsigned I = 0; I != Record.size(); I += 2)
6109         CfiFunctionDefs.insert(
6110             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6111       break;
6112     }
6113 
6114     case bitc::FS_CFI_FUNCTION_DECLS: {
6115       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6116       for (unsigned I = 0; I != Record.size(); I += 2)
6117         CfiFunctionDecls.insert(
6118             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6119       break;
6120     }
6121 
6122     case bitc::FS_TYPE_ID:
6123       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6124       break;
6125 
6126     case bitc::FS_TYPE_ID_METADATA:
6127       parseTypeIdCompatibleVtableSummaryRecord(Record);
6128       break;
6129     }
6130   }
6131   llvm_unreachable("Exit infinite loop");
6132 }
6133 
6134 // Parse the  module string table block into the Index.
6135 // This populates the ModulePathStringTable map in the index.
6136 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6137   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6138     return Err;
6139 
6140   SmallVector<uint64_t, 64> Record;
6141 
6142   SmallString<128> ModulePath;
6143   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6144 
6145   while (true) {
6146     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6147     if (!MaybeEntry)
6148       return MaybeEntry.takeError();
6149     BitstreamEntry Entry = MaybeEntry.get();
6150 
6151     switch (Entry.Kind) {
6152     case BitstreamEntry::SubBlock: // Handled for us already.
6153     case BitstreamEntry::Error:
6154       return error("Malformed block");
6155     case BitstreamEntry::EndBlock:
6156       return Error::success();
6157     case BitstreamEntry::Record:
6158       // The interesting case.
6159       break;
6160     }
6161 
6162     Record.clear();
6163     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6164     if (!MaybeRecord)
6165       return MaybeRecord.takeError();
6166     switch (MaybeRecord.get()) {
6167     default: // Default behavior: ignore.
6168       break;
6169     case bitc::MST_CODE_ENTRY: {
6170       // MST_ENTRY: [modid, namechar x N]
6171       uint64_t ModuleId = Record[0];
6172 
6173       if (convertToString(Record, 1, ModulePath))
6174         return error("Invalid record");
6175 
6176       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6177       ModuleIdMap[ModuleId] = LastSeenModule->first();
6178 
6179       ModulePath.clear();
6180       break;
6181     }
6182     /// MST_CODE_HASH: [5*i32]
6183     case bitc::MST_CODE_HASH: {
6184       if (Record.size() != 5)
6185         return error("Invalid hash length " + Twine(Record.size()).str());
6186       if (!LastSeenModule)
6187         return error("Invalid hash that does not follow a module path");
6188       int Pos = 0;
6189       for (auto &Val : Record) {
6190         assert(!(Val >> 32) && "Unexpected high bits set");
6191         LastSeenModule->second.second[Pos++] = Val;
6192       }
6193       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6194       LastSeenModule = nullptr;
6195       break;
6196     }
6197     }
6198   }
6199   llvm_unreachable("Exit infinite loop");
6200 }
6201 
6202 namespace {
6203 
6204 // FIXME: This class is only here to support the transition to llvm::Error. It
6205 // will be removed once this transition is complete. Clients should prefer to
6206 // deal with the Error value directly, rather than converting to error_code.
6207 class BitcodeErrorCategoryType : public std::error_category {
6208   const char *name() const noexcept override {
6209     return "llvm.bitcode";
6210   }
6211 
6212   std::string message(int IE) const override {
6213     BitcodeError E = static_cast<BitcodeError>(IE);
6214     switch (E) {
6215     case BitcodeError::CorruptedBitcode:
6216       return "Corrupted bitcode";
6217     }
6218     llvm_unreachable("Unknown error type!");
6219   }
6220 };
6221 
6222 } // end anonymous namespace
6223 
6224 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6225 
6226 const std::error_category &llvm::BitcodeErrorCategory() {
6227   return *ErrorCategory;
6228 }
6229 
6230 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6231                                             unsigned Block, unsigned RecordID) {
6232   if (Error Err = Stream.EnterSubBlock(Block))
6233     return std::move(Err);
6234 
6235   StringRef Strtab;
6236   while (true) {
6237     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6238     if (!MaybeEntry)
6239       return MaybeEntry.takeError();
6240     llvm::BitstreamEntry Entry = MaybeEntry.get();
6241 
6242     switch (Entry.Kind) {
6243     case BitstreamEntry::EndBlock:
6244       return Strtab;
6245 
6246     case BitstreamEntry::Error:
6247       return error("Malformed block");
6248 
6249     case BitstreamEntry::SubBlock:
6250       if (Error Err = Stream.SkipBlock())
6251         return std::move(Err);
6252       break;
6253 
6254     case BitstreamEntry::Record:
6255       StringRef Blob;
6256       SmallVector<uint64_t, 1> Record;
6257       Expected<unsigned> MaybeRecord =
6258           Stream.readRecord(Entry.ID, Record, &Blob);
6259       if (!MaybeRecord)
6260         return MaybeRecord.takeError();
6261       if (MaybeRecord.get() == RecordID)
6262         Strtab = Blob;
6263       break;
6264     }
6265   }
6266 }
6267 
6268 //===----------------------------------------------------------------------===//
6269 // External interface
6270 //===----------------------------------------------------------------------===//
6271 
6272 Expected<std::vector<BitcodeModule>>
6273 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6274   auto FOrErr = getBitcodeFileContents(Buffer);
6275   if (!FOrErr)
6276     return FOrErr.takeError();
6277   return std::move(FOrErr->Mods);
6278 }
6279 
6280 Expected<BitcodeFileContents>
6281 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6282   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6283   if (!StreamOrErr)
6284     return StreamOrErr.takeError();
6285   BitstreamCursor &Stream = *StreamOrErr;
6286 
6287   BitcodeFileContents F;
6288   while (true) {
6289     uint64_t BCBegin = Stream.getCurrentByteNo();
6290 
6291     // We may be consuming bitcode from a client that leaves garbage at the end
6292     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6293     // the end that there cannot possibly be another module, stop looking.
6294     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6295       return F;
6296 
6297     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6298     if (!MaybeEntry)
6299       return MaybeEntry.takeError();
6300     llvm::BitstreamEntry Entry = MaybeEntry.get();
6301 
6302     switch (Entry.Kind) {
6303     case BitstreamEntry::EndBlock:
6304     case BitstreamEntry::Error:
6305       return error("Malformed block");
6306 
6307     case BitstreamEntry::SubBlock: {
6308       uint64_t IdentificationBit = -1ull;
6309       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6310         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6311         if (Error Err = Stream.SkipBlock())
6312           return std::move(Err);
6313 
6314         {
6315           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6316           if (!MaybeEntry)
6317             return MaybeEntry.takeError();
6318           Entry = MaybeEntry.get();
6319         }
6320 
6321         if (Entry.Kind != BitstreamEntry::SubBlock ||
6322             Entry.ID != bitc::MODULE_BLOCK_ID)
6323           return error("Malformed block");
6324       }
6325 
6326       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6327         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6328         if (Error Err = Stream.SkipBlock())
6329           return std::move(Err);
6330 
6331         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6332                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6333                           Buffer.getBufferIdentifier(), IdentificationBit,
6334                           ModuleBit});
6335         continue;
6336       }
6337 
6338       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6339         Expected<StringRef> Strtab =
6340             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6341         if (!Strtab)
6342           return Strtab.takeError();
6343         // This string table is used by every preceding bitcode module that does
6344         // not have its own string table. A bitcode file may have multiple
6345         // string tables if it was created by binary concatenation, for example
6346         // with "llvm-cat -b".
6347         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6348           if (!I->Strtab.empty())
6349             break;
6350           I->Strtab = *Strtab;
6351         }
6352         // Similarly, the string table is used by every preceding symbol table;
6353         // normally there will be just one unless the bitcode file was created
6354         // by binary concatenation.
6355         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6356           F.StrtabForSymtab = *Strtab;
6357         continue;
6358       }
6359 
6360       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6361         Expected<StringRef> SymtabOrErr =
6362             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6363         if (!SymtabOrErr)
6364           return SymtabOrErr.takeError();
6365 
6366         // We can expect the bitcode file to have multiple symbol tables if it
6367         // was created by binary concatenation. In that case we silently
6368         // ignore any subsequent symbol tables, which is fine because this is a
6369         // low level function. The client is expected to notice that the number
6370         // of modules in the symbol table does not match the number of modules
6371         // in the input file and regenerate the symbol table.
6372         if (F.Symtab.empty())
6373           F.Symtab = *SymtabOrErr;
6374         continue;
6375       }
6376 
6377       if (Error Err = Stream.SkipBlock())
6378         return std::move(Err);
6379       continue;
6380     }
6381     case BitstreamEntry::Record:
6382       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6383         continue;
6384       else
6385         return StreamFailed.takeError();
6386     }
6387   }
6388 }
6389 
6390 /// Get a lazy one-at-time loading module from bitcode.
6391 ///
6392 /// This isn't always used in a lazy context.  In particular, it's also used by
6393 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6394 /// in forward-referenced functions from block address references.
6395 ///
6396 /// \param[in] MaterializeAll Set to \c true if we should materialize
6397 /// everything.
6398 Expected<std::unique_ptr<Module>>
6399 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6400                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6401   BitstreamCursor Stream(Buffer);
6402 
6403   std::string ProducerIdentification;
6404   if (IdentificationBit != -1ull) {
6405     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6406       return std::move(JumpFailed);
6407     Expected<std::string> ProducerIdentificationOrErr =
6408         readIdentificationBlock(Stream);
6409     if (!ProducerIdentificationOrErr)
6410       return ProducerIdentificationOrErr.takeError();
6411 
6412     ProducerIdentification = *ProducerIdentificationOrErr;
6413   }
6414 
6415   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6416     return std::move(JumpFailed);
6417   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6418                               Context);
6419 
6420   std::unique_ptr<Module> M =
6421       llvm::make_unique<Module>(ModuleIdentifier, Context);
6422   M->setMaterializer(R);
6423 
6424   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6425   if (Error Err =
6426           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6427     return std::move(Err);
6428 
6429   if (MaterializeAll) {
6430     // Read in the entire module, and destroy the BitcodeReader.
6431     if (Error Err = M->materializeAll())
6432       return std::move(Err);
6433   } else {
6434     // Resolve forward references from blockaddresses.
6435     if (Error Err = R->materializeForwardReferencedFunctions())
6436       return std::move(Err);
6437   }
6438   return std::move(M);
6439 }
6440 
6441 Expected<std::unique_ptr<Module>>
6442 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6443                              bool IsImporting) {
6444   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6445 }
6446 
6447 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6448 // We don't use ModuleIdentifier here because the client may need to control the
6449 // module path used in the combined summary (e.g. when reading summaries for
6450 // regular LTO modules).
6451 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6452                                  StringRef ModulePath, uint64_t ModuleId) {
6453   BitstreamCursor Stream(Buffer);
6454   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6455     return JumpFailed;
6456 
6457   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6458                                     ModulePath, ModuleId);
6459   return R.parseModule();
6460 }
6461 
6462 // Parse the specified bitcode buffer, returning the function info index.
6463 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6464   BitstreamCursor Stream(Buffer);
6465   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6466     return std::move(JumpFailed);
6467 
6468   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6469   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6470                                     ModuleIdentifier, 0);
6471 
6472   if (Error Err = R.parseModule())
6473     return std::move(Err);
6474 
6475   return std::move(Index);
6476 }
6477 
6478 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6479                                                 unsigned ID) {
6480   if (Error Err = Stream.EnterSubBlock(ID))
6481     return std::move(Err);
6482   SmallVector<uint64_t, 64> Record;
6483 
6484   while (true) {
6485     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6486     if (!MaybeEntry)
6487       return MaybeEntry.takeError();
6488     BitstreamEntry Entry = MaybeEntry.get();
6489 
6490     switch (Entry.Kind) {
6491     case BitstreamEntry::SubBlock: // Handled for us already.
6492     case BitstreamEntry::Error:
6493       return error("Malformed block");
6494     case BitstreamEntry::EndBlock:
6495       // If no flags record found, conservatively return true to mimic
6496       // behavior before this flag was added.
6497       return true;
6498     case BitstreamEntry::Record:
6499       // The interesting case.
6500       break;
6501     }
6502 
6503     // Look for the FS_FLAGS record.
6504     Record.clear();
6505     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6506     if (!MaybeBitCode)
6507       return MaybeBitCode.takeError();
6508     switch (MaybeBitCode.get()) {
6509     default: // Default behavior: ignore.
6510       break;
6511     case bitc::FS_FLAGS: { // [flags]
6512       uint64_t Flags = Record[0];
6513       // Scan flags.
6514       assert(Flags <= 0x1f && "Unexpected bits in flag");
6515 
6516       return Flags & 0x8;
6517     }
6518     }
6519   }
6520   llvm_unreachable("Exit infinite loop");
6521 }
6522 
6523 // Check if the given bitcode buffer contains a global value summary block.
6524 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6525   BitstreamCursor Stream(Buffer);
6526   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6527     return std::move(JumpFailed);
6528 
6529   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6530     return std::move(Err);
6531 
6532   while (true) {
6533     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6534     if (!MaybeEntry)
6535       return MaybeEntry.takeError();
6536     llvm::BitstreamEntry Entry = MaybeEntry.get();
6537 
6538     switch (Entry.Kind) {
6539     case BitstreamEntry::Error:
6540       return error("Malformed block");
6541     case BitstreamEntry::EndBlock:
6542       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6543                             /*EnableSplitLTOUnit=*/false};
6544 
6545     case BitstreamEntry::SubBlock:
6546       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6547         Expected<bool> EnableSplitLTOUnit =
6548             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6549         if (!EnableSplitLTOUnit)
6550           return EnableSplitLTOUnit.takeError();
6551         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6552                               *EnableSplitLTOUnit};
6553       }
6554 
6555       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6556         Expected<bool> EnableSplitLTOUnit =
6557             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6558         if (!EnableSplitLTOUnit)
6559           return EnableSplitLTOUnit.takeError();
6560         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6561                               *EnableSplitLTOUnit};
6562       }
6563 
6564       // Ignore other sub-blocks.
6565       if (Error Err = Stream.SkipBlock())
6566         return std::move(Err);
6567       continue;
6568 
6569     case BitstreamEntry::Record:
6570       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6571         continue;
6572       else
6573         return StreamFailed.takeError();
6574     }
6575   }
6576 }
6577 
6578 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6579   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6580   if (!MsOrErr)
6581     return MsOrErr.takeError();
6582 
6583   if (MsOrErr->size() != 1)
6584     return error("Expected a single module");
6585 
6586   return (*MsOrErr)[0];
6587 }
6588 
6589 Expected<std::unique_ptr<Module>>
6590 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6591                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6592   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6593   if (!BM)
6594     return BM.takeError();
6595 
6596   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6597 }
6598 
6599 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6600     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6601     bool ShouldLazyLoadMetadata, bool IsImporting) {
6602   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6603                                      IsImporting);
6604   if (MOrErr)
6605     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6606   return MOrErr;
6607 }
6608 
6609 Expected<std::unique_ptr<Module>>
6610 BitcodeModule::parseModule(LLVMContext &Context) {
6611   return getModuleImpl(Context, true, false, false);
6612   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6613   // written.  We must defer until the Module has been fully materialized.
6614 }
6615 
6616 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6617                                                          LLVMContext &Context) {
6618   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6619   if (!BM)
6620     return BM.takeError();
6621 
6622   return BM->parseModule(Context);
6623 }
6624 
6625 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6626   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6627   if (!StreamOrErr)
6628     return StreamOrErr.takeError();
6629 
6630   return readTriple(*StreamOrErr);
6631 }
6632 
6633 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6634   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6635   if (!StreamOrErr)
6636     return StreamOrErr.takeError();
6637 
6638   return hasObjCCategory(*StreamOrErr);
6639 }
6640 
6641 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6642   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6643   if (!StreamOrErr)
6644     return StreamOrErr.takeError();
6645 
6646   return readIdentificationCode(*StreamOrErr);
6647 }
6648 
6649 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6650                                    ModuleSummaryIndex &CombinedIndex,
6651                                    uint64_t ModuleId) {
6652   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6653   if (!BM)
6654     return BM.takeError();
6655 
6656   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6657 }
6658 
6659 Expected<std::unique_ptr<ModuleSummaryIndex>>
6660 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6661   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6662   if (!BM)
6663     return BM.takeError();
6664 
6665   return BM->getSummary();
6666 }
6667 
6668 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6669   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6670   if (!BM)
6671     return BM.takeError();
6672 
6673   return BM->getLTOInfo();
6674 }
6675 
6676 Expected<std::unique_ptr<ModuleSummaryIndex>>
6677 llvm::getModuleSummaryIndexForFile(StringRef Path,
6678                                    bool IgnoreEmptyThinLTOIndexFile) {
6679   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6680       MemoryBuffer::getFileOrSTDIN(Path);
6681   if (!FileOrErr)
6682     return errorCodeToError(FileOrErr.getError());
6683   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6684     return nullptr;
6685   return getModuleSummaryIndex(**FileOrErr);
6686 }
6687