1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/OperandTraits.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/DataStream.h" 26 #include "llvm/Support/ManagedStatic.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 enum { 34 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 35 }; 36 37 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 38 DiagnosticSeverity Severity, 39 const Twine &Msg) 40 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 41 42 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 43 44 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 45 std::error_code EC, const Twine &Message) { 46 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 47 DiagnosticHandler(DI); 48 return EC; 49 } 50 51 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 52 std::error_code EC) { 53 return Error(DiagnosticHandler, EC, EC.message()); 54 } 55 56 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 57 return ::Error(DiagnosticHandler, make_error_code(E), Message); 58 } 59 60 std::error_code BitcodeReader::Error(const Twine &Message) { 61 return ::Error(DiagnosticHandler, 62 make_error_code(BitcodeError::CorruptedBitcode), Message); 63 } 64 65 std::error_code BitcodeReader::Error(BitcodeError E) { 66 return ::Error(DiagnosticHandler, make_error_code(E)); 67 } 68 69 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 70 LLVMContext &C) { 71 if (F) 72 return F; 73 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 74 } 75 76 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 77 DiagnosticHandlerFunction DiagnosticHandler) 78 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 79 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 80 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 81 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 82 WillMaterializeAllForwardRefs(false) {} 83 84 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 85 DiagnosticHandlerFunction DiagnosticHandler) 86 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 87 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 88 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 89 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 90 WillMaterializeAllForwardRefs(false) {} 91 92 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 93 if (WillMaterializeAllForwardRefs) 94 return std::error_code(); 95 96 // Prevent recursion. 97 WillMaterializeAllForwardRefs = true; 98 99 while (!BasicBlockFwdRefQueue.empty()) { 100 Function *F = BasicBlockFwdRefQueue.front(); 101 BasicBlockFwdRefQueue.pop_front(); 102 assert(F && "Expected valid function"); 103 if (!BasicBlockFwdRefs.count(F)) 104 // Already materialized. 105 continue; 106 107 // Check for a function that isn't materializable to prevent an infinite 108 // loop. When parsing a blockaddress stored in a global variable, there 109 // isn't a trivial way to check if a function will have a body without a 110 // linear search through FunctionsWithBodies, so just check it here. 111 if (!F->isMaterializable()) 112 return Error("Never resolved function from blockaddress"); 113 114 // Try to materialize F. 115 if (std::error_code EC = materialize(F)) 116 return EC; 117 } 118 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 119 120 // Reset state. 121 WillMaterializeAllForwardRefs = false; 122 return std::error_code(); 123 } 124 125 void BitcodeReader::FreeState() { 126 Buffer = nullptr; 127 std::vector<Type*>().swap(TypeList); 128 ValueList.clear(); 129 MDValueList.clear(); 130 std::vector<Comdat *>().swap(ComdatList); 131 132 std::vector<AttributeSet>().swap(MAttributes); 133 std::vector<BasicBlock*>().swap(FunctionBBs); 134 std::vector<Function*>().swap(FunctionsWithBodies); 135 DeferredFunctionInfo.clear(); 136 MDKindMap.clear(); 137 138 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 139 BasicBlockFwdRefQueue.clear(); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Helper functions to implement forward reference resolution, etc. 144 //===----------------------------------------------------------------------===// 145 146 /// ConvertToString - Convert a string from a record into an std::string, return 147 /// true on failure. 148 template<typename StrTy> 149 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 150 StrTy &Result) { 151 if (Idx > Record.size()) 152 return true; 153 154 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 155 Result += (char)Record[i]; 156 return false; 157 } 158 159 static bool hasImplicitComdat(size_t Val) { 160 switch (Val) { 161 default: 162 return false; 163 case 1: // Old WeakAnyLinkage 164 case 4: // Old LinkOnceAnyLinkage 165 case 10: // Old WeakODRLinkage 166 case 11: // Old LinkOnceODRLinkage 167 return true; 168 } 169 } 170 171 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 172 switch (Val) { 173 default: // Map unknown/new linkages to external 174 case 0: 175 return GlobalValue::ExternalLinkage; 176 case 2: 177 return GlobalValue::AppendingLinkage; 178 case 3: 179 return GlobalValue::InternalLinkage; 180 case 5: 181 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 182 case 6: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 184 case 7: 185 return GlobalValue::ExternalWeakLinkage; 186 case 8: 187 return GlobalValue::CommonLinkage; 188 case 9: 189 return GlobalValue::PrivateLinkage; 190 case 12: 191 return GlobalValue::AvailableExternallyLinkage; 192 case 13: 193 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 194 case 14: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 196 case 15: 197 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 198 case 1: // Old value with implicit comdat. 199 case 16: 200 return GlobalValue::WeakAnyLinkage; 201 case 10: // Old value with implicit comdat. 202 case 17: 203 return GlobalValue::WeakODRLinkage; 204 case 4: // Old value with implicit comdat. 205 case 18: 206 return GlobalValue::LinkOnceAnyLinkage; 207 case 11: // Old value with implicit comdat. 208 case 19: 209 return GlobalValue::LinkOnceODRLinkage; 210 } 211 } 212 213 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 214 switch (Val) { 215 default: // Map unknown visibilities to default. 216 case 0: return GlobalValue::DefaultVisibility; 217 case 1: return GlobalValue::HiddenVisibility; 218 case 2: return GlobalValue::ProtectedVisibility; 219 } 220 } 221 222 static GlobalValue::DLLStorageClassTypes 223 GetDecodedDLLStorageClass(unsigned Val) { 224 switch (Val) { 225 default: // Map unknown values to default. 226 case 0: return GlobalValue::DefaultStorageClass; 227 case 1: return GlobalValue::DLLImportStorageClass; 228 case 2: return GlobalValue::DLLExportStorageClass; 229 } 230 } 231 232 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 233 switch (Val) { 234 case 0: return GlobalVariable::NotThreadLocal; 235 default: // Map unknown non-zero value to general dynamic. 236 case 1: return GlobalVariable::GeneralDynamicTLSModel; 237 case 2: return GlobalVariable::LocalDynamicTLSModel; 238 case 3: return GlobalVariable::InitialExecTLSModel; 239 case 4: return GlobalVariable::LocalExecTLSModel; 240 } 241 } 242 243 static int GetDecodedCastOpcode(unsigned Val) { 244 switch (Val) { 245 default: return -1; 246 case bitc::CAST_TRUNC : return Instruction::Trunc; 247 case bitc::CAST_ZEXT : return Instruction::ZExt; 248 case bitc::CAST_SEXT : return Instruction::SExt; 249 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 250 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 251 case bitc::CAST_UITOFP : return Instruction::UIToFP; 252 case bitc::CAST_SITOFP : return Instruction::SIToFP; 253 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 254 case bitc::CAST_FPEXT : return Instruction::FPExt; 255 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 256 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 257 case bitc::CAST_BITCAST : return Instruction::BitCast; 258 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 259 } 260 } 261 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 262 switch (Val) { 263 default: return -1; 264 case bitc::BINOP_ADD: 265 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 266 case bitc::BINOP_SUB: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 268 case bitc::BINOP_MUL: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 270 case bitc::BINOP_UDIV: return Instruction::UDiv; 271 case bitc::BINOP_SDIV: 272 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 273 case bitc::BINOP_UREM: return Instruction::URem; 274 case bitc::BINOP_SREM: 275 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 276 case bitc::BINOP_SHL: return Instruction::Shl; 277 case bitc::BINOP_LSHR: return Instruction::LShr; 278 case bitc::BINOP_ASHR: return Instruction::AShr; 279 case bitc::BINOP_AND: return Instruction::And; 280 case bitc::BINOP_OR: return Instruction::Or; 281 case bitc::BINOP_XOR: return Instruction::Xor; 282 } 283 } 284 285 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 286 switch (Val) { 287 default: return AtomicRMWInst::BAD_BINOP; 288 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 289 case bitc::RMW_ADD: return AtomicRMWInst::Add; 290 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 291 case bitc::RMW_AND: return AtomicRMWInst::And; 292 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 293 case bitc::RMW_OR: return AtomicRMWInst::Or; 294 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 295 case bitc::RMW_MAX: return AtomicRMWInst::Max; 296 case bitc::RMW_MIN: return AtomicRMWInst::Min; 297 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 298 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 299 } 300 } 301 302 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 303 switch (Val) { 304 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 305 case bitc::ORDERING_UNORDERED: return Unordered; 306 case bitc::ORDERING_MONOTONIC: return Monotonic; 307 case bitc::ORDERING_ACQUIRE: return Acquire; 308 case bitc::ORDERING_RELEASE: return Release; 309 case bitc::ORDERING_ACQREL: return AcquireRelease; 310 default: // Map unknown orderings to sequentially-consistent. 311 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 312 } 313 } 314 315 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 316 switch (Val) { 317 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 318 default: // Map unknown scopes to cross-thread. 319 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 320 } 321 } 322 323 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 324 switch (Val) { 325 default: // Map unknown selection kinds to any. 326 case bitc::COMDAT_SELECTION_KIND_ANY: 327 return Comdat::Any; 328 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 329 return Comdat::ExactMatch; 330 case bitc::COMDAT_SELECTION_KIND_LARGEST: 331 return Comdat::Largest; 332 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 333 return Comdat::NoDuplicates; 334 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 335 return Comdat::SameSize; 336 } 337 } 338 339 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 340 switch (Val) { 341 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 342 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 343 } 344 } 345 346 namespace llvm { 347 namespace { 348 /// @brief A class for maintaining the slot number definition 349 /// as a placeholder for the actual definition for forward constants defs. 350 class ConstantPlaceHolder : public ConstantExpr { 351 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 352 public: 353 // allocate space for exactly one operand 354 void *operator new(size_t s) { 355 return User::operator new(s, 1); 356 } 357 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 358 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 359 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 360 } 361 362 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 363 static bool classof(const Value *V) { 364 return isa<ConstantExpr>(V) && 365 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 366 } 367 368 369 /// Provide fast operand accessors 370 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 371 }; 372 } 373 374 // FIXME: can we inherit this from ConstantExpr? 375 template <> 376 struct OperandTraits<ConstantPlaceHolder> : 377 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 378 }; 379 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 380 } 381 382 383 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 384 if (Idx == size()) { 385 push_back(V); 386 return; 387 } 388 389 if (Idx >= size()) 390 resize(Idx+1); 391 392 WeakVH &OldV = ValuePtrs[Idx]; 393 if (!OldV) { 394 OldV = V; 395 return; 396 } 397 398 // Handle constants and non-constants (e.g. instrs) differently for 399 // efficiency. 400 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 401 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 402 OldV = V; 403 } else { 404 // If there was a forward reference to this value, replace it. 405 Value *PrevVal = OldV; 406 OldV->replaceAllUsesWith(V); 407 delete PrevVal; 408 } 409 } 410 411 412 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 413 Type *Ty) { 414 if (Idx >= size()) 415 resize(Idx + 1); 416 417 if (Value *V = ValuePtrs[Idx]) { 418 assert(Ty == V->getType() && "Type mismatch in constant table!"); 419 return cast<Constant>(V); 420 } 421 422 // Create and return a placeholder, which will later be RAUW'd. 423 Constant *C = new ConstantPlaceHolder(Ty, Context); 424 ValuePtrs[Idx] = C; 425 return C; 426 } 427 428 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 429 if (Idx >= size()) 430 resize(Idx + 1); 431 432 if (Value *V = ValuePtrs[Idx]) { 433 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 434 return V; 435 } 436 437 // No type specified, must be invalid reference. 438 if (!Ty) return nullptr; 439 440 // Create and return a placeholder, which will later be RAUW'd. 441 Value *V = new Argument(Ty); 442 ValuePtrs[Idx] = V; 443 return V; 444 } 445 446 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 447 /// resolves any forward references. The idea behind this is that we sometimes 448 /// get constants (such as large arrays) which reference *many* forward ref 449 /// constants. Replacing each of these causes a lot of thrashing when 450 /// building/reuniquing the constant. Instead of doing this, we look at all the 451 /// uses and rewrite all the place holders at once for any constant that uses 452 /// a placeholder. 453 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 454 // Sort the values by-pointer so that they are efficient to look up with a 455 // binary search. 456 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 457 458 SmallVector<Constant*, 64> NewOps; 459 460 while (!ResolveConstants.empty()) { 461 Value *RealVal = operator[](ResolveConstants.back().second); 462 Constant *Placeholder = ResolveConstants.back().first; 463 ResolveConstants.pop_back(); 464 465 // Loop over all users of the placeholder, updating them to reference the 466 // new value. If they reference more than one placeholder, update them all 467 // at once. 468 while (!Placeholder->use_empty()) { 469 auto UI = Placeholder->user_begin(); 470 User *U = *UI; 471 472 // If the using object isn't uniqued, just update the operands. This 473 // handles instructions and initializers for global variables. 474 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 475 UI.getUse().set(RealVal); 476 continue; 477 } 478 479 // Otherwise, we have a constant that uses the placeholder. Replace that 480 // constant with a new constant that has *all* placeholder uses updated. 481 Constant *UserC = cast<Constant>(U); 482 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 483 I != E; ++I) { 484 Value *NewOp; 485 if (!isa<ConstantPlaceHolder>(*I)) { 486 // Not a placeholder reference. 487 NewOp = *I; 488 } else if (*I == Placeholder) { 489 // Common case is that it just references this one placeholder. 490 NewOp = RealVal; 491 } else { 492 // Otherwise, look up the placeholder in ResolveConstants. 493 ResolveConstantsTy::iterator It = 494 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 495 std::pair<Constant*, unsigned>(cast<Constant>(*I), 496 0)); 497 assert(It != ResolveConstants.end() && It->first == *I); 498 NewOp = operator[](It->second); 499 } 500 501 NewOps.push_back(cast<Constant>(NewOp)); 502 } 503 504 // Make the new constant. 505 Constant *NewC; 506 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 507 NewC = ConstantArray::get(UserCA->getType(), NewOps); 508 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 509 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 510 } else if (isa<ConstantVector>(UserC)) { 511 NewC = ConstantVector::get(NewOps); 512 } else { 513 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 514 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 515 } 516 517 UserC->replaceAllUsesWith(NewC); 518 UserC->destroyConstant(); 519 NewOps.clear(); 520 } 521 522 // Update all ValueHandles, they should be the only users at this point. 523 Placeholder->replaceAllUsesWith(RealVal); 524 delete Placeholder; 525 } 526 } 527 528 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 529 if (Idx == size()) { 530 push_back(MD); 531 return; 532 } 533 534 if (Idx >= size()) 535 resize(Idx+1); 536 537 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 538 if (!OldMD) { 539 OldMD.reset(MD); 540 return; 541 } 542 543 // If there was a forward reference to this value, replace it. 544 MDTuple *PrevMD = cast<MDTuple>(OldMD.get()); 545 PrevMD->replaceAllUsesWith(MD); 546 MDNode::deleteTemporary(PrevMD); 547 --NumFwdRefs; 548 } 549 550 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 551 if (Idx >= size()) 552 resize(Idx + 1); 553 554 if (Metadata *MD = MDValuePtrs[Idx]) 555 return MD; 556 557 // Create and return a placeholder, which will later be RAUW'd. 558 AnyFwdRefs = true; 559 ++NumFwdRefs; 560 Metadata *MD = MDNode::getTemporary(Context, None); 561 MDValuePtrs[Idx].reset(MD); 562 return MD; 563 } 564 565 void BitcodeReaderMDValueList::tryToResolveCycles() { 566 if (!AnyFwdRefs) 567 // Nothing to do. 568 return; 569 570 if (NumFwdRefs) 571 // Still forward references... can't resolve cycles. 572 return; 573 574 // Resolve any cycles. 575 for (auto &MD : MDValuePtrs) { 576 auto *N = dyn_cast_or_null<UniquableMDNode>(MD); 577 if (!N) 578 continue; 579 580 assert(!N->isTemporary() && "Unexpected forward reference"); 581 N->resolveCycles(); 582 } 583 } 584 585 Type *BitcodeReader::getTypeByID(unsigned ID) { 586 // The type table size is always specified correctly. 587 if (ID >= TypeList.size()) 588 return nullptr; 589 590 if (Type *Ty = TypeList[ID]) 591 return Ty; 592 593 // If we have a forward reference, the only possible case is when it is to a 594 // named struct. Just create a placeholder for now. 595 return TypeList[ID] = createIdentifiedStructType(Context); 596 } 597 598 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 599 StringRef Name) { 600 auto *Ret = StructType::create(Context, Name); 601 IdentifiedStructTypes.push_back(Ret); 602 return Ret; 603 } 604 605 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 606 auto *Ret = StructType::create(Context); 607 IdentifiedStructTypes.push_back(Ret); 608 return Ret; 609 } 610 611 612 //===----------------------------------------------------------------------===// 613 // Functions for parsing blocks from the bitcode file 614 //===----------------------------------------------------------------------===// 615 616 617 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 618 /// been decoded from the given integer. This function must stay in sync with 619 /// 'encodeLLVMAttributesForBitcode'. 620 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 621 uint64_t EncodedAttrs) { 622 // FIXME: Remove in 4.0. 623 624 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 625 // the bits above 31 down by 11 bits. 626 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 627 assert((!Alignment || isPowerOf2_32(Alignment)) && 628 "Alignment must be a power of two."); 629 630 if (Alignment) 631 B.addAlignmentAttr(Alignment); 632 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 633 (EncodedAttrs & 0xffff)); 634 } 635 636 std::error_code BitcodeReader::ParseAttributeBlock() { 637 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 638 return Error("Invalid record"); 639 640 if (!MAttributes.empty()) 641 return Error("Invalid multiple blocks"); 642 643 SmallVector<uint64_t, 64> Record; 644 645 SmallVector<AttributeSet, 8> Attrs; 646 647 // Read all the records. 648 while (1) { 649 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 650 651 switch (Entry.Kind) { 652 case BitstreamEntry::SubBlock: // Handled for us already. 653 case BitstreamEntry::Error: 654 return Error("Malformed block"); 655 case BitstreamEntry::EndBlock: 656 return std::error_code(); 657 case BitstreamEntry::Record: 658 // The interesting case. 659 break; 660 } 661 662 // Read a record. 663 Record.clear(); 664 switch (Stream.readRecord(Entry.ID, Record)) { 665 default: // Default behavior: ignore. 666 break; 667 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 668 // FIXME: Remove in 4.0. 669 if (Record.size() & 1) 670 return Error("Invalid record"); 671 672 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 673 AttrBuilder B; 674 decodeLLVMAttributesForBitcode(B, Record[i+1]); 675 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 676 } 677 678 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 679 Attrs.clear(); 680 break; 681 } 682 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 683 for (unsigned i = 0, e = Record.size(); i != e; ++i) 684 Attrs.push_back(MAttributeGroups[Record[i]]); 685 686 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 687 Attrs.clear(); 688 break; 689 } 690 } 691 } 692 } 693 694 // Returns Attribute::None on unrecognized codes. 695 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 696 switch (Code) { 697 default: 698 return Attribute::None; 699 case bitc::ATTR_KIND_ALIGNMENT: 700 return Attribute::Alignment; 701 case bitc::ATTR_KIND_ALWAYS_INLINE: 702 return Attribute::AlwaysInline; 703 case bitc::ATTR_KIND_BUILTIN: 704 return Attribute::Builtin; 705 case bitc::ATTR_KIND_BY_VAL: 706 return Attribute::ByVal; 707 case bitc::ATTR_KIND_IN_ALLOCA: 708 return Attribute::InAlloca; 709 case bitc::ATTR_KIND_COLD: 710 return Attribute::Cold; 711 case bitc::ATTR_KIND_INLINE_HINT: 712 return Attribute::InlineHint; 713 case bitc::ATTR_KIND_IN_REG: 714 return Attribute::InReg; 715 case bitc::ATTR_KIND_JUMP_TABLE: 716 return Attribute::JumpTable; 717 case bitc::ATTR_KIND_MIN_SIZE: 718 return Attribute::MinSize; 719 case bitc::ATTR_KIND_NAKED: 720 return Attribute::Naked; 721 case bitc::ATTR_KIND_NEST: 722 return Attribute::Nest; 723 case bitc::ATTR_KIND_NO_ALIAS: 724 return Attribute::NoAlias; 725 case bitc::ATTR_KIND_NO_BUILTIN: 726 return Attribute::NoBuiltin; 727 case bitc::ATTR_KIND_NO_CAPTURE: 728 return Attribute::NoCapture; 729 case bitc::ATTR_KIND_NO_DUPLICATE: 730 return Attribute::NoDuplicate; 731 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 732 return Attribute::NoImplicitFloat; 733 case bitc::ATTR_KIND_NO_INLINE: 734 return Attribute::NoInline; 735 case bitc::ATTR_KIND_NON_LAZY_BIND: 736 return Attribute::NonLazyBind; 737 case bitc::ATTR_KIND_NON_NULL: 738 return Attribute::NonNull; 739 case bitc::ATTR_KIND_DEREFERENCEABLE: 740 return Attribute::Dereferenceable; 741 case bitc::ATTR_KIND_NO_RED_ZONE: 742 return Attribute::NoRedZone; 743 case bitc::ATTR_KIND_NO_RETURN: 744 return Attribute::NoReturn; 745 case bitc::ATTR_KIND_NO_UNWIND: 746 return Attribute::NoUnwind; 747 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 748 return Attribute::OptimizeForSize; 749 case bitc::ATTR_KIND_OPTIMIZE_NONE: 750 return Attribute::OptimizeNone; 751 case bitc::ATTR_KIND_READ_NONE: 752 return Attribute::ReadNone; 753 case bitc::ATTR_KIND_READ_ONLY: 754 return Attribute::ReadOnly; 755 case bitc::ATTR_KIND_RETURNED: 756 return Attribute::Returned; 757 case bitc::ATTR_KIND_RETURNS_TWICE: 758 return Attribute::ReturnsTwice; 759 case bitc::ATTR_KIND_S_EXT: 760 return Attribute::SExt; 761 case bitc::ATTR_KIND_STACK_ALIGNMENT: 762 return Attribute::StackAlignment; 763 case bitc::ATTR_KIND_STACK_PROTECT: 764 return Attribute::StackProtect; 765 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 766 return Attribute::StackProtectReq; 767 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 768 return Attribute::StackProtectStrong; 769 case bitc::ATTR_KIND_STRUCT_RET: 770 return Attribute::StructRet; 771 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 772 return Attribute::SanitizeAddress; 773 case bitc::ATTR_KIND_SANITIZE_THREAD: 774 return Attribute::SanitizeThread; 775 case bitc::ATTR_KIND_SANITIZE_MEMORY: 776 return Attribute::SanitizeMemory; 777 case bitc::ATTR_KIND_UW_TABLE: 778 return Attribute::UWTable; 779 case bitc::ATTR_KIND_Z_EXT: 780 return Attribute::ZExt; 781 } 782 } 783 784 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 785 Attribute::AttrKind *Kind) { 786 *Kind = GetAttrFromCode(Code); 787 if (*Kind == Attribute::None) 788 return Error(BitcodeError::CorruptedBitcode, 789 "Unknown attribute kind (" + Twine(Code) + ")"); 790 return std::error_code(); 791 } 792 793 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 794 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 795 return Error("Invalid record"); 796 797 if (!MAttributeGroups.empty()) 798 return Error("Invalid multiple blocks"); 799 800 SmallVector<uint64_t, 64> Record; 801 802 // Read all the records. 803 while (1) { 804 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 805 806 switch (Entry.Kind) { 807 case BitstreamEntry::SubBlock: // Handled for us already. 808 case BitstreamEntry::Error: 809 return Error("Malformed block"); 810 case BitstreamEntry::EndBlock: 811 return std::error_code(); 812 case BitstreamEntry::Record: 813 // The interesting case. 814 break; 815 } 816 817 // Read a record. 818 Record.clear(); 819 switch (Stream.readRecord(Entry.ID, Record)) { 820 default: // Default behavior: ignore. 821 break; 822 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 823 if (Record.size() < 3) 824 return Error("Invalid record"); 825 826 uint64_t GrpID = Record[0]; 827 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 828 829 AttrBuilder B; 830 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 831 if (Record[i] == 0) { // Enum attribute 832 Attribute::AttrKind Kind; 833 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 834 return EC; 835 836 B.addAttribute(Kind); 837 } else if (Record[i] == 1) { // Integer attribute 838 Attribute::AttrKind Kind; 839 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 840 return EC; 841 if (Kind == Attribute::Alignment) 842 B.addAlignmentAttr(Record[++i]); 843 else if (Kind == Attribute::StackAlignment) 844 B.addStackAlignmentAttr(Record[++i]); 845 else if (Kind == Attribute::Dereferenceable) 846 B.addDereferenceableAttr(Record[++i]); 847 } else { // String attribute 848 assert((Record[i] == 3 || Record[i] == 4) && 849 "Invalid attribute group entry"); 850 bool HasValue = (Record[i++] == 4); 851 SmallString<64> KindStr; 852 SmallString<64> ValStr; 853 854 while (Record[i] != 0 && i != e) 855 KindStr += Record[i++]; 856 assert(Record[i] == 0 && "Kind string not null terminated"); 857 858 if (HasValue) { 859 // Has a value associated with it. 860 ++i; // Skip the '0' that terminates the "kind" string. 861 while (Record[i] != 0 && i != e) 862 ValStr += Record[i++]; 863 assert(Record[i] == 0 && "Value string not null terminated"); 864 } 865 866 B.addAttribute(KindStr.str(), ValStr.str()); 867 } 868 } 869 870 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 871 break; 872 } 873 } 874 } 875 } 876 877 std::error_code BitcodeReader::ParseTypeTable() { 878 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 879 return Error("Invalid record"); 880 881 return ParseTypeTableBody(); 882 } 883 884 std::error_code BitcodeReader::ParseTypeTableBody() { 885 if (!TypeList.empty()) 886 return Error("Invalid multiple blocks"); 887 888 SmallVector<uint64_t, 64> Record; 889 unsigned NumRecords = 0; 890 891 SmallString<64> TypeName; 892 893 // Read all the records for this type table. 894 while (1) { 895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 896 897 switch (Entry.Kind) { 898 case BitstreamEntry::SubBlock: // Handled for us already. 899 case BitstreamEntry::Error: 900 return Error("Malformed block"); 901 case BitstreamEntry::EndBlock: 902 if (NumRecords != TypeList.size()) 903 return Error("Malformed block"); 904 return std::error_code(); 905 case BitstreamEntry::Record: 906 // The interesting case. 907 break; 908 } 909 910 // Read a record. 911 Record.clear(); 912 Type *ResultTy = nullptr; 913 switch (Stream.readRecord(Entry.ID, Record)) { 914 default: 915 return Error("Invalid value"); 916 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 917 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 918 // type list. This allows us to reserve space. 919 if (Record.size() < 1) 920 return Error("Invalid record"); 921 TypeList.resize(Record[0]); 922 continue; 923 case bitc::TYPE_CODE_VOID: // VOID 924 ResultTy = Type::getVoidTy(Context); 925 break; 926 case bitc::TYPE_CODE_HALF: // HALF 927 ResultTy = Type::getHalfTy(Context); 928 break; 929 case bitc::TYPE_CODE_FLOAT: // FLOAT 930 ResultTy = Type::getFloatTy(Context); 931 break; 932 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 933 ResultTy = Type::getDoubleTy(Context); 934 break; 935 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 936 ResultTy = Type::getX86_FP80Ty(Context); 937 break; 938 case bitc::TYPE_CODE_FP128: // FP128 939 ResultTy = Type::getFP128Ty(Context); 940 break; 941 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 942 ResultTy = Type::getPPC_FP128Ty(Context); 943 break; 944 case bitc::TYPE_CODE_LABEL: // LABEL 945 ResultTy = Type::getLabelTy(Context); 946 break; 947 case bitc::TYPE_CODE_METADATA: // METADATA 948 ResultTy = Type::getMetadataTy(Context); 949 break; 950 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 951 ResultTy = Type::getX86_MMXTy(Context); 952 break; 953 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 954 if (Record.size() < 1) 955 return Error("Invalid record"); 956 957 ResultTy = IntegerType::get(Context, Record[0]); 958 break; 959 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 960 // [pointee type, address space] 961 if (Record.size() < 1) 962 return Error("Invalid record"); 963 unsigned AddressSpace = 0; 964 if (Record.size() == 2) 965 AddressSpace = Record[1]; 966 ResultTy = getTypeByID(Record[0]); 967 if (!ResultTy) 968 return Error("Invalid type"); 969 ResultTy = PointerType::get(ResultTy, AddressSpace); 970 break; 971 } 972 case bitc::TYPE_CODE_FUNCTION_OLD: { 973 // FIXME: attrid is dead, remove it in LLVM 4.0 974 // FUNCTION: [vararg, attrid, retty, paramty x N] 975 if (Record.size() < 3) 976 return Error("Invalid record"); 977 SmallVector<Type*, 8> ArgTys; 978 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 979 if (Type *T = getTypeByID(Record[i])) 980 ArgTys.push_back(T); 981 else 982 break; 983 } 984 985 ResultTy = getTypeByID(Record[2]); 986 if (!ResultTy || ArgTys.size() < Record.size()-3) 987 return Error("Invalid type"); 988 989 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 990 break; 991 } 992 case bitc::TYPE_CODE_FUNCTION: { 993 // FUNCTION: [vararg, retty, paramty x N] 994 if (Record.size() < 2) 995 return Error("Invalid record"); 996 SmallVector<Type*, 8> ArgTys; 997 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 998 if (Type *T = getTypeByID(Record[i])) 999 ArgTys.push_back(T); 1000 else 1001 break; 1002 } 1003 1004 ResultTy = getTypeByID(Record[1]); 1005 if (!ResultTy || ArgTys.size() < Record.size()-2) 1006 return Error("Invalid type"); 1007 1008 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1009 break; 1010 } 1011 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1012 if (Record.size() < 1) 1013 return Error("Invalid record"); 1014 SmallVector<Type*, 8> EltTys; 1015 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1016 if (Type *T = getTypeByID(Record[i])) 1017 EltTys.push_back(T); 1018 else 1019 break; 1020 } 1021 if (EltTys.size() != Record.size()-1) 1022 return Error("Invalid type"); 1023 ResultTy = StructType::get(Context, EltTys, Record[0]); 1024 break; 1025 } 1026 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1027 if (ConvertToString(Record, 0, TypeName)) 1028 return Error("Invalid record"); 1029 continue; 1030 1031 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1032 if (Record.size() < 1) 1033 return Error("Invalid record"); 1034 1035 if (NumRecords >= TypeList.size()) 1036 return Error("Invalid TYPE table"); 1037 1038 // Check to see if this was forward referenced, if so fill in the temp. 1039 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1040 if (Res) { 1041 Res->setName(TypeName); 1042 TypeList[NumRecords] = nullptr; 1043 } else // Otherwise, create a new struct. 1044 Res = createIdentifiedStructType(Context, TypeName); 1045 TypeName.clear(); 1046 1047 SmallVector<Type*, 8> EltTys; 1048 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1049 if (Type *T = getTypeByID(Record[i])) 1050 EltTys.push_back(T); 1051 else 1052 break; 1053 } 1054 if (EltTys.size() != Record.size()-1) 1055 return Error("Invalid record"); 1056 Res->setBody(EltTys, Record[0]); 1057 ResultTy = Res; 1058 break; 1059 } 1060 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1061 if (Record.size() != 1) 1062 return Error("Invalid record"); 1063 1064 if (NumRecords >= TypeList.size()) 1065 return Error("Invalid TYPE table"); 1066 1067 // Check to see if this was forward referenced, if so fill in the temp. 1068 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1069 if (Res) { 1070 Res->setName(TypeName); 1071 TypeList[NumRecords] = nullptr; 1072 } else // Otherwise, create a new struct with no body. 1073 Res = createIdentifiedStructType(Context, TypeName); 1074 TypeName.clear(); 1075 ResultTy = Res; 1076 break; 1077 } 1078 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1079 if (Record.size() < 2) 1080 return Error("Invalid record"); 1081 if ((ResultTy = getTypeByID(Record[1]))) 1082 ResultTy = ArrayType::get(ResultTy, Record[0]); 1083 else 1084 return Error("Invalid type"); 1085 break; 1086 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1087 if (Record.size() < 2) 1088 return Error("Invalid record"); 1089 if ((ResultTy = getTypeByID(Record[1]))) 1090 ResultTy = VectorType::get(ResultTy, Record[0]); 1091 else 1092 return Error("Invalid type"); 1093 break; 1094 } 1095 1096 if (NumRecords >= TypeList.size()) 1097 return Error("Invalid TYPE table"); 1098 assert(ResultTy && "Didn't read a type?"); 1099 assert(!TypeList[NumRecords] && "Already read type?"); 1100 TypeList[NumRecords++] = ResultTy; 1101 } 1102 } 1103 1104 std::error_code BitcodeReader::ParseValueSymbolTable() { 1105 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1106 return Error("Invalid record"); 1107 1108 SmallVector<uint64_t, 64> Record; 1109 1110 // Read all the records for this value table. 1111 SmallString<128> ValueName; 1112 while (1) { 1113 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1114 1115 switch (Entry.Kind) { 1116 case BitstreamEntry::SubBlock: // Handled for us already. 1117 case BitstreamEntry::Error: 1118 return Error("Malformed block"); 1119 case BitstreamEntry::EndBlock: 1120 return std::error_code(); 1121 case BitstreamEntry::Record: 1122 // The interesting case. 1123 break; 1124 } 1125 1126 // Read a record. 1127 Record.clear(); 1128 switch (Stream.readRecord(Entry.ID, Record)) { 1129 default: // Default behavior: unknown type. 1130 break; 1131 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1132 if (ConvertToString(Record, 1, ValueName)) 1133 return Error("Invalid record"); 1134 unsigned ValueID = Record[0]; 1135 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1136 return Error("Invalid record"); 1137 Value *V = ValueList[ValueID]; 1138 1139 V->setName(StringRef(ValueName.data(), ValueName.size())); 1140 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1141 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) 1142 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1143 } 1144 ValueName.clear(); 1145 break; 1146 } 1147 case bitc::VST_CODE_BBENTRY: { 1148 if (ConvertToString(Record, 1, ValueName)) 1149 return Error("Invalid record"); 1150 BasicBlock *BB = getBasicBlock(Record[0]); 1151 if (!BB) 1152 return Error("Invalid record"); 1153 1154 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1155 ValueName.clear(); 1156 break; 1157 } 1158 } 1159 } 1160 } 1161 1162 std::error_code BitcodeReader::ParseMetadata() { 1163 unsigned NextMDValueNo = MDValueList.size(); 1164 1165 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1166 return Error("Invalid record"); 1167 1168 SmallVector<uint64_t, 64> Record; 1169 1170 // Read all the records. 1171 while (1) { 1172 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1173 1174 switch (Entry.Kind) { 1175 case BitstreamEntry::SubBlock: // Handled for us already. 1176 case BitstreamEntry::Error: 1177 return Error("Malformed block"); 1178 case BitstreamEntry::EndBlock: 1179 MDValueList.tryToResolveCycles(); 1180 return std::error_code(); 1181 case BitstreamEntry::Record: 1182 // The interesting case. 1183 break; 1184 } 1185 1186 // Read a record. 1187 Record.clear(); 1188 unsigned Code = Stream.readRecord(Entry.ID, Record); 1189 bool IsDistinct = false; 1190 switch (Code) { 1191 default: // Default behavior: ignore. 1192 break; 1193 case bitc::METADATA_NAME: { 1194 // Read name of the named metadata. 1195 SmallString<8> Name(Record.begin(), Record.end()); 1196 Record.clear(); 1197 Code = Stream.ReadCode(); 1198 1199 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1200 unsigned NextBitCode = Stream.readRecord(Code, Record); 1201 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1202 1203 // Read named metadata elements. 1204 unsigned Size = Record.size(); 1205 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1206 for (unsigned i = 0; i != Size; ++i) { 1207 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1208 if (!MD) 1209 return Error("Invalid record"); 1210 NMD->addOperand(MD); 1211 } 1212 break; 1213 } 1214 case bitc::METADATA_OLD_FN_NODE: { 1215 // FIXME: Remove in 4.0. 1216 // This is a LocalAsMetadata record, the only type of function-local 1217 // metadata. 1218 if (Record.size() % 2 == 1) 1219 return Error("Invalid record"); 1220 1221 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1222 // to be legal, but there's no upgrade path. 1223 auto dropRecord = [&] { 1224 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1225 }; 1226 if (Record.size() != 2) { 1227 dropRecord(); 1228 break; 1229 } 1230 1231 Type *Ty = getTypeByID(Record[0]); 1232 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1233 dropRecord(); 1234 break; 1235 } 1236 1237 MDValueList.AssignValue( 1238 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1239 NextMDValueNo++); 1240 break; 1241 } 1242 case bitc::METADATA_OLD_NODE: { 1243 // FIXME: Remove in 4.0. 1244 if (Record.size() % 2 == 1) 1245 return Error("Invalid record"); 1246 1247 unsigned Size = Record.size(); 1248 SmallVector<Metadata *, 8> Elts; 1249 for (unsigned i = 0; i != Size; i += 2) { 1250 Type *Ty = getTypeByID(Record[i]); 1251 if (!Ty) 1252 return Error("Invalid record"); 1253 if (Ty->isMetadataTy()) 1254 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1255 else if (!Ty->isVoidTy()) { 1256 auto *MD = 1257 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1258 assert(isa<ConstantAsMetadata>(MD) && 1259 "Expected non-function-local metadata"); 1260 Elts.push_back(MD); 1261 } else 1262 Elts.push_back(nullptr); 1263 } 1264 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1265 break; 1266 } 1267 case bitc::METADATA_VALUE: { 1268 if (Record.size() != 2) 1269 return Error("Invalid record"); 1270 1271 Type *Ty = getTypeByID(Record[0]); 1272 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1273 return Error("Invalid record"); 1274 1275 MDValueList.AssignValue( 1276 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1277 NextMDValueNo++); 1278 break; 1279 } 1280 case bitc::METADATA_DISTINCT_NODE: 1281 IsDistinct = true; 1282 // fallthrough... 1283 case bitc::METADATA_NODE: { 1284 SmallVector<Metadata *, 8> Elts; 1285 Elts.reserve(Record.size()); 1286 for (unsigned ID : Record) 1287 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1288 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1289 : MDNode::get(Context, Elts), 1290 NextMDValueNo++); 1291 break; 1292 } 1293 case bitc::METADATA_LOCATION: { 1294 if (Record.size() != 5) 1295 return Error("Invalid record"); 1296 1297 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1298 unsigned Line = Record[1]; 1299 unsigned Column = Record[2]; 1300 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1301 Metadata *InlinedAt = 1302 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1303 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1304 NextMDValueNo++); 1305 break; 1306 } 1307 case bitc::METADATA_STRING: { 1308 std::string String(Record.begin(), Record.end()); 1309 llvm::UpgradeMDStringConstant(String); 1310 Metadata *MD = MDString::get(Context, String); 1311 MDValueList.AssignValue(MD, NextMDValueNo++); 1312 break; 1313 } 1314 case bitc::METADATA_KIND: { 1315 if (Record.size() < 2) 1316 return Error("Invalid record"); 1317 1318 unsigned Kind = Record[0]; 1319 SmallString<8> Name(Record.begin()+1, Record.end()); 1320 1321 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1322 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1323 return Error("Conflicting METADATA_KIND records"); 1324 break; 1325 } 1326 } 1327 } 1328 } 1329 1330 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1331 /// the LSB for dense VBR encoding. 1332 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1333 if ((V & 1) == 0) 1334 return V >> 1; 1335 if (V != 1) 1336 return -(V >> 1); 1337 // There is no such thing as -0 with integers. "-0" really means MININT. 1338 return 1ULL << 63; 1339 } 1340 1341 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1342 /// values and aliases that we can. 1343 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1344 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1345 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1346 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1347 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1348 1349 GlobalInitWorklist.swap(GlobalInits); 1350 AliasInitWorklist.swap(AliasInits); 1351 FunctionPrefixWorklist.swap(FunctionPrefixes); 1352 FunctionPrologueWorklist.swap(FunctionPrologues); 1353 1354 while (!GlobalInitWorklist.empty()) { 1355 unsigned ValID = GlobalInitWorklist.back().second; 1356 if (ValID >= ValueList.size()) { 1357 // Not ready to resolve this yet, it requires something later in the file. 1358 GlobalInits.push_back(GlobalInitWorklist.back()); 1359 } else { 1360 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1361 GlobalInitWorklist.back().first->setInitializer(C); 1362 else 1363 return Error("Expected a constant"); 1364 } 1365 GlobalInitWorklist.pop_back(); 1366 } 1367 1368 while (!AliasInitWorklist.empty()) { 1369 unsigned ValID = AliasInitWorklist.back().second; 1370 if (ValID >= ValueList.size()) { 1371 AliasInits.push_back(AliasInitWorklist.back()); 1372 } else { 1373 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1374 AliasInitWorklist.back().first->setAliasee(C); 1375 else 1376 return Error("Expected a constant"); 1377 } 1378 AliasInitWorklist.pop_back(); 1379 } 1380 1381 while (!FunctionPrefixWorklist.empty()) { 1382 unsigned ValID = FunctionPrefixWorklist.back().second; 1383 if (ValID >= ValueList.size()) { 1384 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1385 } else { 1386 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1387 FunctionPrefixWorklist.back().first->setPrefixData(C); 1388 else 1389 return Error("Expected a constant"); 1390 } 1391 FunctionPrefixWorklist.pop_back(); 1392 } 1393 1394 while (!FunctionPrologueWorklist.empty()) { 1395 unsigned ValID = FunctionPrologueWorklist.back().second; 1396 if (ValID >= ValueList.size()) { 1397 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1398 } else { 1399 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1400 FunctionPrologueWorklist.back().first->setPrologueData(C); 1401 else 1402 return Error("Expected a constant"); 1403 } 1404 FunctionPrologueWorklist.pop_back(); 1405 } 1406 1407 return std::error_code(); 1408 } 1409 1410 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1411 SmallVector<uint64_t, 8> Words(Vals.size()); 1412 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1413 BitcodeReader::decodeSignRotatedValue); 1414 1415 return APInt(TypeBits, Words); 1416 } 1417 1418 std::error_code BitcodeReader::ParseConstants() { 1419 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1420 return Error("Invalid record"); 1421 1422 SmallVector<uint64_t, 64> Record; 1423 1424 // Read all the records for this value table. 1425 Type *CurTy = Type::getInt32Ty(Context); 1426 unsigned NextCstNo = ValueList.size(); 1427 while (1) { 1428 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1429 1430 switch (Entry.Kind) { 1431 case BitstreamEntry::SubBlock: // Handled for us already. 1432 case BitstreamEntry::Error: 1433 return Error("Malformed block"); 1434 case BitstreamEntry::EndBlock: 1435 if (NextCstNo != ValueList.size()) 1436 return Error("Invalid ronstant reference"); 1437 1438 // Once all the constants have been read, go through and resolve forward 1439 // references. 1440 ValueList.ResolveConstantForwardRefs(); 1441 return std::error_code(); 1442 case BitstreamEntry::Record: 1443 // The interesting case. 1444 break; 1445 } 1446 1447 // Read a record. 1448 Record.clear(); 1449 Value *V = nullptr; 1450 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1451 switch (BitCode) { 1452 default: // Default behavior: unknown constant 1453 case bitc::CST_CODE_UNDEF: // UNDEF 1454 V = UndefValue::get(CurTy); 1455 break; 1456 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1457 if (Record.empty()) 1458 return Error("Invalid record"); 1459 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1460 return Error("Invalid record"); 1461 CurTy = TypeList[Record[0]]; 1462 continue; // Skip the ValueList manipulation. 1463 case bitc::CST_CODE_NULL: // NULL 1464 V = Constant::getNullValue(CurTy); 1465 break; 1466 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1467 if (!CurTy->isIntegerTy() || Record.empty()) 1468 return Error("Invalid record"); 1469 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1470 break; 1471 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1472 if (!CurTy->isIntegerTy() || Record.empty()) 1473 return Error("Invalid record"); 1474 1475 APInt VInt = ReadWideAPInt(Record, 1476 cast<IntegerType>(CurTy)->getBitWidth()); 1477 V = ConstantInt::get(Context, VInt); 1478 1479 break; 1480 } 1481 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1482 if (Record.empty()) 1483 return Error("Invalid record"); 1484 if (CurTy->isHalfTy()) 1485 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1486 APInt(16, (uint16_t)Record[0]))); 1487 else if (CurTy->isFloatTy()) 1488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1489 APInt(32, (uint32_t)Record[0]))); 1490 else if (CurTy->isDoubleTy()) 1491 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1492 APInt(64, Record[0]))); 1493 else if (CurTy->isX86_FP80Ty()) { 1494 // Bits are not stored the same way as a normal i80 APInt, compensate. 1495 uint64_t Rearrange[2]; 1496 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1497 Rearrange[1] = Record[0] >> 48; 1498 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1499 APInt(80, Rearrange))); 1500 } else if (CurTy->isFP128Ty()) 1501 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1502 APInt(128, Record))); 1503 else if (CurTy->isPPC_FP128Ty()) 1504 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1505 APInt(128, Record))); 1506 else 1507 V = UndefValue::get(CurTy); 1508 break; 1509 } 1510 1511 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1512 if (Record.empty()) 1513 return Error("Invalid record"); 1514 1515 unsigned Size = Record.size(); 1516 SmallVector<Constant*, 16> Elts; 1517 1518 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1519 for (unsigned i = 0; i != Size; ++i) 1520 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1521 STy->getElementType(i))); 1522 V = ConstantStruct::get(STy, Elts); 1523 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1524 Type *EltTy = ATy->getElementType(); 1525 for (unsigned i = 0; i != Size; ++i) 1526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1527 V = ConstantArray::get(ATy, Elts); 1528 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1529 Type *EltTy = VTy->getElementType(); 1530 for (unsigned i = 0; i != Size; ++i) 1531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1532 V = ConstantVector::get(Elts); 1533 } else { 1534 V = UndefValue::get(CurTy); 1535 } 1536 break; 1537 } 1538 case bitc::CST_CODE_STRING: // STRING: [values] 1539 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1540 if (Record.empty()) 1541 return Error("Invalid record"); 1542 1543 SmallString<16> Elts(Record.begin(), Record.end()); 1544 V = ConstantDataArray::getString(Context, Elts, 1545 BitCode == bitc::CST_CODE_CSTRING); 1546 break; 1547 } 1548 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1549 if (Record.empty()) 1550 return Error("Invalid record"); 1551 1552 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1553 unsigned Size = Record.size(); 1554 1555 if (EltTy->isIntegerTy(8)) { 1556 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1557 if (isa<VectorType>(CurTy)) 1558 V = ConstantDataVector::get(Context, Elts); 1559 else 1560 V = ConstantDataArray::get(Context, Elts); 1561 } else if (EltTy->isIntegerTy(16)) { 1562 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1563 if (isa<VectorType>(CurTy)) 1564 V = ConstantDataVector::get(Context, Elts); 1565 else 1566 V = ConstantDataArray::get(Context, Elts); 1567 } else if (EltTy->isIntegerTy(32)) { 1568 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1569 if (isa<VectorType>(CurTy)) 1570 V = ConstantDataVector::get(Context, Elts); 1571 else 1572 V = ConstantDataArray::get(Context, Elts); 1573 } else if (EltTy->isIntegerTy(64)) { 1574 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1575 if (isa<VectorType>(CurTy)) 1576 V = ConstantDataVector::get(Context, Elts); 1577 else 1578 V = ConstantDataArray::get(Context, Elts); 1579 } else if (EltTy->isFloatTy()) { 1580 SmallVector<float, 16> Elts(Size); 1581 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1582 if (isa<VectorType>(CurTy)) 1583 V = ConstantDataVector::get(Context, Elts); 1584 else 1585 V = ConstantDataArray::get(Context, Elts); 1586 } else if (EltTy->isDoubleTy()) { 1587 SmallVector<double, 16> Elts(Size); 1588 std::transform(Record.begin(), Record.end(), Elts.begin(), 1589 BitsToDouble); 1590 if (isa<VectorType>(CurTy)) 1591 V = ConstantDataVector::get(Context, Elts); 1592 else 1593 V = ConstantDataArray::get(Context, Elts); 1594 } else { 1595 return Error("Invalid type for value"); 1596 } 1597 break; 1598 } 1599 1600 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1601 if (Record.size() < 3) 1602 return Error("Invalid record"); 1603 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1604 if (Opc < 0) { 1605 V = UndefValue::get(CurTy); // Unknown binop. 1606 } else { 1607 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1608 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1609 unsigned Flags = 0; 1610 if (Record.size() >= 4) { 1611 if (Opc == Instruction::Add || 1612 Opc == Instruction::Sub || 1613 Opc == Instruction::Mul || 1614 Opc == Instruction::Shl) { 1615 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1616 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1617 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1618 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1619 } else if (Opc == Instruction::SDiv || 1620 Opc == Instruction::UDiv || 1621 Opc == Instruction::LShr || 1622 Opc == Instruction::AShr) { 1623 if (Record[3] & (1 << bitc::PEO_EXACT)) 1624 Flags |= SDivOperator::IsExact; 1625 } 1626 } 1627 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1628 } 1629 break; 1630 } 1631 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1632 if (Record.size() < 3) 1633 return Error("Invalid record"); 1634 int Opc = GetDecodedCastOpcode(Record[0]); 1635 if (Opc < 0) { 1636 V = UndefValue::get(CurTy); // Unknown cast. 1637 } else { 1638 Type *OpTy = getTypeByID(Record[1]); 1639 if (!OpTy) 1640 return Error("Invalid record"); 1641 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1642 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1643 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1644 } 1645 break; 1646 } 1647 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1648 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1649 if (Record.size() & 1) 1650 return Error("Invalid record"); 1651 SmallVector<Constant*, 16> Elts; 1652 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1653 Type *ElTy = getTypeByID(Record[i]); 1654 if (!ElTy) 1655 return Error("Invalid record"); 1656 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1657 } 1658 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1659 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1660 BitCode == 1661 bitc::CST_CODE_CE_INBOUNDS_GEP); 1662 break; 1663 } 1664 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1665 if (Record.size() < 3) 1666 return Error("Invalid record"); 1667 1668 Type *SelectorTy = Type::getInt1Ty(Context); 1669 1670 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1671 // vector. Otherwise, it must be a single bit. 1672 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1673 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1674 VTy->getNumElements()); 1675 1676 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1677 SelectorTy), 1678 ValueList.getConstantFwdRef(Record[1],CurTy), 1679 ValueList.getConstantFwdRef(Record[2],CurTy)); 1680 break; 1681 } 1682 case bitc::CST_CODE_CE_EXTRACTELT 1683 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1684 if (Record.size() < 3) 1685 return Error("Invalid record"); 1686 VectorType *OpTy = 1687 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1688 if (!OpTy) 1689 return Error("Invalid record"); 1690 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1691 Constant *Op1 = nullptr; 1692 if (Record.size() == 4) { 1693 Type *IdxTy = getTypeByID(Record[2]); 1694 if (!IdxTy) 1695 return Error("Invalid record"); 1696 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1697 } else // TODO: Remove with llvm 4.0 1698 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1699 if (!Op1) 1700 return Error("Invalid record"); 1701 V = ConstantExpr::getExtractElement(Op0, Op1); 1702 break; 1703 } 1704 case bitc::CST_CODE_CE_INSERTELT 1705 : { // CE_INSERTELT: [opval, opval, opty, opval] 1706 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1707 if (Record.size() < 3 || !OpTy) 1708 return Error("Invalid record"); 1709 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1710 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1711 OpTy->getElementType()); 1712 Constant *Op2 = nullptr; 1713 if (Record.size() == 4) { 1714 Type *IdxTy = getTypeByID(Record[2]); 1715 if (!IdxTy) 1716 return Error("Invalid record"); 1717 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1718 } else // TODO: Remove with llvm 4.0 1719 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1720 if (!Op2) 1721 return Error("Invalid record"); 1722 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1723 break; 1724 } 1725 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1726 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1727 if (Record.size() < 3 || !OpTy) 1728 return Error("Invalid record"); 1729 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1730 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1731 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1732 OpTy->getNumElements()); 1733 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1734 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1735 break; 1736 } 1737 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1738 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1739 VectorType *OpTy = 1740 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1741 if (Record.size() < 4 || !RTy || !OpTy) 1742 return Error("Invalid record"); 1743 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1744 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1745 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1746 RTy->getNumElements()); 1747 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1748 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1749 break; 1750 } 1751 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1752 if (Record.size() < 4) 1753 return Error("Invalid record"); 1754 Type *OpTy = getTypeByID(Record[0]); 1755 if (!OpTy) 1756 return Error("Invalid record"); 1757 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1758 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1759 1760 if (OpTy->isFPOrFPVectorTy()) 1761 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1762 else 1763 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1764 break; 1765 } 1766 // This maintains backward compatibility, pre-asm dialect keywords. 1767 // FIXME: Remove with the 4.0 release. 1768 case bitc::CST_CODE_INLINEASM_OLD: { 1769 if (Record.size() < 2) 1770 return Error("Invalid record"); 1771 std::string AsmStr, ConstrStr; 1772 bool HasSideEffects = Record[0] & 1; 1773 bool IsAlignStack = Record[0] >> 1; 1774 unsigned AsmStrSize = Record[1]; 1775 if (2+AsmStrSize >= Record.size()) 1776 return Error("Invalid record"); 1777 unsigned ConstStrSize = Record[2+AsmStrSize]; 1778 if (3+AsmStrSize+ConstStrSize > Record.size()) 1779 return Error("Invalid record"); 1780 1781 for (unsigned i = 0; i != AsmStrSize; ++i) 1782 AsmStr += (char)Record[2+i]; 1783 for (unsigned i = 0; i != ConstStrSize; ++i) 1784 ConstrStr += (char)Record[3+AsmStrSize+i]; 1785 PointerType *PTy = cast<PointerType>(CurTy); 1786 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1787 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1788 break; 1789 } 1790 // This version adds support for the asm dialect keywords (e.g., 1791 // inteldialect). 1792 case bitc::CST_CODE_INLINEASM: { 1793 if (Record.size() < 2) 1794 return Error("Invalid record"); 1795 std::string AsmStr, ConstrStr; 1796 bool HasSideEffects = Record[0] & 1; 1797 bool IsAlignStack = (Record[0] >> 1) & 1; 1798 unsigned AsmDialect = Record[0] >> 2; 1799 unsigned AsmStrSize = Record[1]; 1800 if (2+AsmStrSize >= Record.size()) 1801 return Error("Invalid record"); 1802 unsigned ConstStrSize = Record[2+AsmStrSize]; 1803 if (3+AsmStrSize+ConstStrSize > Record.size()) 1804 return Error("Invalid record"); 1805 1806 for (unsigned i = 0; i != AsmStrSize; ++i) 1807 AsmStr += (char)Record[2+i]; 1808 for (unsigned i = 0; i != ConstStrSize; ++i) 1809 ConstrStr += (char)Record[3+AsmStrSize+i]; 1810 PointerType *PTy = cast<PointerType>(CurTy); 1811 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1812 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1813 InlineAsm::AsmDialect(AsmDialect)); 1814 break; 1815 } 1816 case bitc::CST_CODE_BLOCKADDRESS:{ 1817 if (Record.size() < 3) 1818 return Error("Invalid record"); 1819 Type *FnTy = getTypeByID(Record[0]); 1820 if (!FnTy) 1821 return Error("Invalid record"); 1822 Function *Fn = 1823 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1824 if (!Fn) 1825 return Error("Invalid record"); 1826 1827 // Don't let Fn get dematerialized. 1828 BlockAddressesTaken.insert(Fn); 1829 1830 // If the function is already parsed we can insert the block address right 1831 // away. 1832 BasicBlock *BB; 1833 unsigned BBID = Record[2]; 1834 if (!BBID) 1835 // Invalid reference to entry block. 1836 return Error("Invalid ID"); 1837 if (!Fn->empty()) { 1838 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1839 for (size_t I = 0, E = BBID; I != E; ++I) { 1840 if (BBI == BBE) 1841 return Error("Invalid ID"); 1842 ++BBI; 1843 } 1844 BB = BBI; 1845 } else { 1846 // Otherwise insert a placeholder and remember it so it can be inserted 1847 // when the function is parsed. 1848 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1849 if (FwdBBs.empty()) 1850 BasicBlockFwdRefQueue.push_back(Fn); 1851 if (FwdBBs.size() < BBID + 1) 1852 FwdBBs.resize(BBID + 1); 1853 if (!FwdBBs[BBID]) 1854 FwdBBs[BBID] = BasicBlock::Create(Context); 1855 BB = FwdBBs[BBID]; 1856 } 1857 V = BlockAddress::get(Fn, BB); 1858 break; 1859 } 1860 } 1861 1862 ValueList.AssignValue(V, NextCstNo); 1863 ++NextCstNo; 1864 } 1865 } 1866 1867 std::error_code BitcodeReader::ParseUseLists() { 1868 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1869 return Error("Invalid record"); 1870 1871 // Read all the records. 1872 SmallVector<uint64_t, 64> Record; 1873 while (1) { 1874 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1875 1876 switch (Entry.Kind) { 1877 case BitstreamEntry::SubBlock: // Handled for us already. 1878 case BitstreamEntry::Error: 1879 return Error("Malformed block"); 1880 case BitstreamEntry::EndBlock: 1881 return std::error_code(); 1882 case BitstreamEntry::Record: 1883 // The interesting case. 1884 break; 1885 } 1886 1887 // Read a use list record. 1888 Record.clear(); 1889 bool IsBB = false; 1890 switch (Stream.readRecord(Entry.ID, Record)) { 1891 default: // Default behavior: unknown type. 1892 break; 1893 case bitc::USELIST_CODE_BB: 1894 IsBB = true; 1895 // fallthrough 1896 case bitc::USELIST_CODE_DEFAULT: { 1897 unsigned RecordLength = Record.size(); 1898 if (RecordLength < 3) 1899 // Records should have at least an ID and two indexes. 1900 return Error("Invalid record"); 1901 unsigned ID = Record.back(); 1902 Record.pop_back(); 1903 1904 Value *V; 1905 if (IsBB) { 1906 assert(ID < FunctionBBs.size() && "Basic block not found"); 1907 V = FunctionBBs[ID]; 1908 } else 1909 V = ValueList[ID]; 1910 unsigned NumUses = 0; 1911 SmallDenseMap<const Use *, unsigned, 16> Order; 1912 for (const Use &U : V->uses()) { 1913 if (++NumUses > Record.size()) 1914 break; 1915 Order[&U] = Record[NumUses - 1]; 1916 } 1917 if (Order.size() != Record.size() || NumUses > Record.size()) 1918 // Mismatches can happen if the functions are being materialized lazily 1919 // (out-of-order), or a value has been upgraded. 1920 break; 1921 1922 V->sortUseList([&](const Use &L, const Use &R) { 1923 return Order.lookup(&L) < Order.lookup(&R); 1924 }); 1925 break; 1926 } 1927 } 1928 } 1929 } 1930 1931 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1932 /// remember where it is and then skip it. This lets us lazily deserialize the 1933 /// functions. 1934 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1935 // Get the function we are talking about. 1936 if (FunctionsWithBodies.empty()) 1937 return Error("Insufficient function protos"); 1938 1939 Function *Fn = FunctionsWithBodies.back(); 1940 FunctionsWithBodies.pop_back(); 1941 1942 // Save the current stream state. 1943 uint64_t CurBit = Stream.GetCurrentBitNo(); 1944 DeferredFunctionInfo[Fn] = CurBit; 1945 1946 // Skip over the function block for now. 1947 if (Stream.SkipBlock()) 1948 return Error("Invalid record"); 1949 return std::error_code(); 1950 } 1951 1952 std::error_code BitcodeReader::GlobalCleanup() { 1953 // Patch the initializers for globals and aliases up. 1954 ResolveGlobalAndAliasInits(); 1955 if (!GlobalInits.empty() || !AliasInits.empty()) 1956 return Error("Malformed global initializer set"); 1957 1958 // Look for intrinsic functions which need to be upgraded at some point 1959 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1960 FI != FE; ++FI) { 1961 Function *NewFn; 1962 if (UpgradeIntrinsicFunction(FI, NewFn)) 1963 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1964 } 1965 1966 // Look for global variables which need to be renamed. 1967 for (Module::global_iterator 1968 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1969 GI != GE;) { 1970 GlobalVariable *GV = GI++; 1971 UpgradeGlobalVariable(GV); 1972 } 1973 1974 // Force deallocation of memory for these vectors to favor the client that 1975 // want lazy deserialization. 1976 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1977 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1978 return std::error_code(); 1979 } 1980 1981 std::error_code BitcodeReader::ParseModule(bool Resume) { 1982 if (Resume) 1983 Stream.JumpToBit(NextUnreadBit); 1984 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1985 return Error("Invalid record"); 1986 1987 SmallVector<uint64_t, 64> Record; 1988 std::vector<std::string> SectionTable; 1989 std::vector<std::string> GCTable; 1990 1991 // Read all the records for this module. 1992 while (1) { 1993 BitstreamEntry Entry = Stream.advance(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::Error: 1997 return Error("Malformed block"); 1998 case BitstreamEntry::EndBlock: 1999 return GlobalCleanup(); 2000 2001 case BitstreamEntry::SubBlock: 2002 switch (Entry.ID) { 2003 default: // Skip unknown content. 2004 if (Stream.SkipBlock()) 2005 return Error("Invalid record"); 2006 break; 2007 case bitc::BLOCKINFO_BLOCK_ID: 2008 if (Stream.ReadBlockInfoBlock()) 2009 return Error("Malformed block"); 2010 break; 2011 case bitc::PARAMATTR_BLOCK_ID: 2012 if (std::error_code EC = ParseAttributeBlock()) 2013 return EC; 2014 break; 2015 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2016 if (std::error_code EC = ParseAttributeGroupBlock()) 2017 return EC; 2018 break; 2019 case bitc::TYPE_BLOCK_ID_NEW: 2020 if (std::error_code EC = ParseTypeTable()) 2021 return EC; 2022 break; 2023 case bitc::VALUE_SYMTAB_BLOCK_ID: 2024 if (std::error_code EC = ParseValueSymbolTable()) 2025 return EC; 2026 SeenValueSymbolTable = true; 2027 break; 2028 case bitc::CONSTANTS_BLOCK_ID: 2029 if (std::error_code EC = ParseConstants()) 2030 return EC; 2031 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2032 return EC; 2033 break; 2034 case bitc::METADATA_BLOCK_ID: 2035 if (std::error_code EC = ParseMetadata()) 2036 return EC; 2037 break; 2038 case bitc::FUNCTION_BLOCK_ID: 2039 // If this is the first function body we've seen, reverse the 2040 // FunctionsWithBodies list. 2041 if (!SeenFirstFunctionBody) { 2042 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2043 if (std::error_code EC = GlobalCleanup()) 2044 return EC; 2045 SeenFirstFunctionBody = true; 2046 } 2047 2048 if (std::error_code EC = RememberAndSkipFunctionBody()) 2049 return EC; 2050 // For streaming bitcode, suspend parsing when we reach the function 2051 // bodies. Subsequent materialization calls will resume it when 2052 // necessary. For streaming, the function bodies must be at the end of 2053 // the bitcode. If the bitcode file is old, the symbol table will be 2054 // at the end instead and will not have been seen yet. In this case, 2055 // just finish the parse now. 2056 if (LazyStreamer && SeenValueSymbolTable) { 2057 NextUnreadBit = Stream.GetCurrentBitNo(); 2058 return std::error_code(); 2059 } 2060 break; 2061 case bitc::USELIST_BLOCK_ID: 2062 if (std::error_code EC = ParseUseLists()) 2063 return EC; 2064 break; 2065 } 2066 continue; 2067 2068 case BitstreamEntry::Record: 2069 // The interesting case. 2070 break; 2071 } 2072 2073 2074 // Read a record. 2075 switch (Stream.readRecord(Entry.ID, Record)) { 2076 default: break; // Default behavior, ignore unknown content. 2077 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2078 if (Record.size() < 1) 2079 return Error("Invalid record"); 2080 // Only version #0 and #1 are supported so far. 2081 unsigned module_version = Record[0]; 2082 switch (module_version) { 2083 default: 2084 return Error("Invalid value"); 2085 case 0: 2086 UseRelativeIDs = false; 2087 break; 2088 case 1: 2089 UseRelativeIDs = true; 2090 break; 2091 } 2092 break; 2093 } 2094 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2095 std::string S; 2096 if (ConvertToString(Record, 0, S)) 2097 return Error("Invalid record"); 2098 TheModule->setTargetTriple(S); 2099 break; 2100 } 2101 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2102 std::string S; 2103 if (ConvertToString(Record, 0, S)) 2104 return Error("Invalid record"); 2105 TheModule->setDataLayout(S); 2106 break; 2107 } 2108 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2109 std::string S; 2110 if (ConvertToString(Record, 0, S)) 2111 return Error("Invalid record"); 2112 TheModule->setModuleInlineAsm(S); 2113 break; 2114 } 2115 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2116 // FIXME: Remove in 4.0. 2117 std::string S; 2118 if (ConvertToString(Record, 0, S)) 2119 return Error("Invalid record"); 2120 // Ignore value. 2121 break; 2122 } 2123 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2124 std::string S; 2125 if (ConvertToString(Record, 0, S)) 2126 return Error("Invalid record"); 2127 SectionTable.push_back(S); 2128 break; 2129 } 2130 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2131 std::string S; 2132 if (ConvertToString(Record, 0, S)) 2133 return Error("Invalid record"); 2134 GCTable.push_back(S); 2135 break; 2136 } 2137 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2138 if (Record.size() < 2) 2139 return Error("Invalid record"); 2140 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2141 unsigned ComdatNameSize = Record[1]; 2142 std::string ComdatName; 2143 ComdatName.reserve(ComdatNameSize); 2144 for (unsigned i = 0; i != ComdatNameSize; ++i) 2145 ComdatName += (char)Record[2 + i]; 2146 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2147 C->setSelectionKind(SK); 2148 ComdatList.push_back(C); 2149 break; 2150 } 2151 // GLOBALVAR: [pointer type, isconst, initid, 2152 // linkage, alignment, section, visibility, threadlocal, 2153 // unnamed_addr, dllstorageclass] 2154 case bitc::MODULE_CODE_GLOBALVAR: { 2155 if (Record.size() < 6) 2156 return Error("Invalid record"); 2157 Type *Ty = getTypeByID(Record[0]); 2158 if (!Ty) 2159 return Error("Invalid record"); 2160 if (!Ty->isPointerTy()) 2161 return Error("Invalid type for value"); 2162 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2163 Ty = cast<PointerType>(Ty)->getElementType(); 2164 2165 bool isConstant = Record[1]; 2166 uint64_t RawLinkage = Record[3]; 2167 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2168 unsigned Alignment = (1 << Record[4]) >> 1; 2169 std::string Section; 2170 if (Record[5]) { 2171 if (Record[5]-1 >= SectionTable.size()) 2172 return Error("Invalid ID"); 2173 Section = SectionTable[Record[5]-1]; 2174 } 2175 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2176 // Local linkage must have default visibility. 2177 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2178 // FIXME: Change to an error if non-default in 4.0. 2179 Visibility = GetDecodedVisibility(Record[6]); 2180 2181 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2182 if (Record.size() > 7) 2183 TLM = GetDecodedThreadLocalMode(Record[7]); 2184 2185 bool UnnamedAddr = false; 2186 if (Record.size() > 8) 2187 UnnamedAddr = Record[8]; 2188 2189 bool ExternallyInitialized = false; 2190 if (Record.size() > 9) 2191 ExternallyInitialized = Record[9]; 2192 2193 GlobalVariable *NewGV = 2194 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2195 TLM, AddressSpace, ExternallyInitialized); 2196 NewGV->setAlignment(Alignment); 2197 if (!Section.empty()) 2198 NewGV->setSection(Section); 2199 NewGV->setVisibility(Visibility); 2200 NewGV->setUnnamedAddr(UnnamedAddr); 2201 2202 if (Record.size() > 10) 2203 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2204 else 2205 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2206 2207 ValueList.push_back(NewGV); 2208 2209 // Remember which value to use for the global initializer. 2210 if (unsigned InitID = Record[2]) 2211 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2212 2213 if (Record.size() > 11) { 2214 if (unsigned ComdatID = Record[11]) { 2215 assert(ComdatID <= ComdatList.size()); 2216 NewGV->setComdat(ComdatList[ComdatID - 1]); 2217 } 2218 } else if (hasImplicitComdat(RawLinkage)) { 2219 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2220 } 2221 break; 2222 } 2223 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2224 // alignment, section, visibility, gc, unnamed_addr, 2225 // prologuedata, dllstorageclass, comdat, prefixdata] 2226 case bitc::MODULE_CODE_FUNCTION: { 2227 if (Record.size() < 8) 2228 return Error("Invalid record"); 2229 Type *Ty = getTypeByID(Record[0]); 2230 if (!Ty) 2231 return Error("Invalid record"); 2232 if (!Ty->isPointerTy()) 2233 return Error("Invalid type for value"); 2234 FunctionType *FTy = 2235 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2236 if (!FTy) 2237 return Error("Invalid type for value"); 2238 2239 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2240 "", TheModule); 2241 2242 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2243 bool isProto = Record[2]; 2244 uint64_t RawLinkage = Record[3]; 2245 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2246 Func->setAttributes(getAttributes(Record[4])); 2247 2248 Func->setAlignment((1 << Record[5]) >> 1); 2249 if (Record[6]) { 2250 if (Record[6]-1 >= SectionTable.size()) 2251 return Error("Invalid ID"); 2252 Func->setSection(SectionTable[Record[6]-1]); 2253 } 2254 // Local linkage must have default visibility. 2255 if (!Func->hasLocalLinkage()) 2256 // FIXME: Change to an error if non-default in 4.0. 2257 Func->setVisibility(GetDecodedVisibility(Record[7])); 2258 if (Record.size() > 8 && Record[8]) { 2259 if (Record[8]-1 > GCTable.size()) 2260 return Error("Invalid ID"); 2261 Func->setGC(GCTable[Record[8]-1].c_str()); 2262 } 2263 bool UnnamedAddr = false; 2264 if (Record.size() > 9) 2265 UnnamedAddr = Record[9]; 2266 Func->setUnnamedAddr(UnnamedAddr); 2267 if (Record.size() > 10 && Record[10] != 0) 2268 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2269 2270 if (Record.size() > 11) 2271 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2272 else 2273 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2274 2275 if (Record.size() > 12) { 2276 if (unsigned ComdatID = Record[12]) { 2277 assert(ComdatID <= ComdatList.size()); 2278 Func->setComdat(ComdatList[ComdatID - 1]); 2279 } 2280 } else if (hasImplicitComdat(RawLinkage)) { 2281 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2282 } 2283 2284 if (Record.size() > 13 && Record[13] != 0) 2285 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2286 2287 ValueList.push_back(Func); 2288 2289 // If this is a function with a body, remember the prototype we are 2290 // creating now, so that we can match up the body with them later. 2291 if (!isProto) { 2292 Func->setIsMaterializable(true); 2293 FunctionsWithBodies.push_back(Func); 2294 if (LazyStreamer) 2295 DeferredFunctionInfo[Func] = 0; 2296 } 2297 break; 2298 } 2299 // ALIAS: [alias type, aliasee val#, linkage] 2300 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2301 case bitc::MODULE_CODE_ALIAS: { 2302 if (Record.size() < 3) 2303 return Error("Invalid record"); 2304 Type *Ty = getTypeByID(Record[0]); 2305 if (!Ty) 2306 return Error("Invalid record"); 2307 auto *PTy = dyn_cast<PointerType>(Ty); 2308 if (!PTy) 2309 return Error("Invalid type for value"); 2310 2311 auto *NewGA = 2312 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2313 getDecodedLinkage(Record[2]), "", TheModule); 2314 // Old bitcode files didn't have visibility field. 2315 // Local linkage must have default visibility. 2316 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2317 // FIXME: Change to an error if non-default in 4.0. 2318 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2319 if (Record.size() > 4) 2320 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2321 else 2322 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2323 if (Record.size() > 5) 2324 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2325 if (Record.size() > 6) 2326 NewGA->setUnnamedAddr(Record[6]); 2327 ValueList.push_back(NewGA); 2328 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2329 break; 2330 } 2331 /// MODULE_CODE_PURGEVALS: [numvals] 2332 case bitc::MODULE_CODE_PURGEVALS: 2333 // Trim down the value list to the specified size. 2334 if (Record.size() < 1 || Record[0] > ValueList.size()) 2335 return Error("Invalid record"); 2336 ValueList.shrinkTo(Record[0]); 2337 break; 2338 } 2339 Record.clear(); 2340 } 2341 } 2342 2343 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2344 TheModule = nullptr; 2345 2346 if (std::error_code EC = InitStream()) 2347 return EC; 2348 2349 // Sniff for the signature. 2350 if (Stream.Read(8) != 'B' || 2351 Stream.Read(8) != 'C' || 2352 Stream.Read(4) != 0x0 || 2353 Stream.Read(4) != 0xC || 2354 Stream.Read(4) != 0xE || 2355 Stream.Read(4) != 0xD) 2356 return Error("Invalid bitcode signature"); 2357 2358 // We expect a number of well-defined blocks, though we don't necessarily 2359 // need to understand them all. 2360 while (1) { 2361 if (Stream.AtEndOfStream()) 2362 return std::error_code(); 2363 2364 BitstreamEntry Entry = 2365 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2366 2367 switch (Entry.Kind) { 2368 case BitstreamEntry::Error: 2369 return Error("Malformed block"); 2370 case BitstreamEntry::EndBlock: 2371 return std::error_code(); 2372 2373 case BitstreamEntry::SubBlock: 2374 switch (Entry.ID) { 2375 case bitc::BLOCKINFO_BLOCK_ID: 2376 if (Stream.ReadBlockInfoBlock()) 2377 return Error("Malformed block"); 2378 break; 2379 case bitc::MODULE_BLOCK_ID: 2380 // Reject multiple MODULE_BLOCK's in a single bitstream. 2381 if (TheModule) 2382 return Error("Invalid multiple blocks"); 2383 TheModule = M; 2384 if (std::error_code EC = ParseModule(false)) 2385 return EC; 2386 if (LazyStreamer) 2387 return std::error_code(); 2388 break; 2389 default: 2390 if (Stream.SkipBlock()) 2391 return Error("Invalid record"); 2392 break; 2393 } 2394 continue; 2395 case BitstreamEntry::Record: 2396 // There should be no records in the top-level of blocks. 2397 2398 // The ranlib in Xcode 4 will align archive members by appending newlines 2399 // to the end of them. If this file size is a multiple of 4 but not 8, we 2400 // have to read and ignore these final 4 bytes :-( 2401 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2402 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2403 Stream.AtEndOfStream()) 2404 return std::error_code(); 2405 2406 return Error("Invalid record"); 2407 } 2408 } 2409 } 2410 2411 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2412 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2413 return Error("Invalid record"); 2414 2415 SmallVector<uint64_t, 64> Record; 2416 2417 std::string Triple; 2418 // Read all the records for this module. 2419 while (1) { 2420 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2421 2422 switch (Entry.Kind) { 2423 case BitstreamEntry::SubBlock: // Handled for us already. 2424 case BitstreamEntry::Error: 2425 return Error("Malformed block"); 2426 case BitstreamEntry::EndBlock: 2427 return Triple; 2428 case BitstreamEntry::Record: 2429 // The interesting case. 2430 break; 2431 } 2432 2433 // Read a record. 2434 switch (Stream.readRecord(Entry.ID, Record)) { 2435 default: break; // Default behavior, ignore unknown content. 2436 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2437 std::string S; 2438 if (ConvertToString(Record, 0, S)) 2439 return Error("Invalid record"); 2440 Triple = S; 2441 break; 2442 } 2443 } 2444 Record.clear(); 2445 } 2446 llvm_unreachable("Exit infinite loop"); 2447 } 2448 2449 ErrorOr<std::string> BitcodeReader::parseTriple() { 2450 if (std::error_code EC = InitStream()) 2451 return EC; 2452 2453 // Sniff for the signature. 2454 if (Stream.Read(8) != 'B' || 2455 Stream.Read(8) != 'C' || 2456 Stream.Read(4) != 0x0 || 2457 Stream.Read(4) != 0xC || 2458 Stream.Read(4) != 0xE || 2459 Stream.Read(4) != 0xD) 2460 return Error("Invalid bitcode signature"); 2461 2462 // We expect a number of well-defined blocks, though we don't necessarily 2463 // need to understand them all. 2464 while (1) { 2465 BitstreamEntry Entry = Stream.advance(); 2466 2467 switch (Entry.Kind) { 2468 case BitstreamEntry::Error: 2469 return Error("Malformed block"); 2470 case BitstreamEntry::EndBlock: 2471 return std::error_code(); 2472 2473 case BitstreamEntry::SubBlock: 2474 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2475 return parseModuleTriple(); 2476 2477 // Ignore other sub-blocks. 2478 if (Stream.SkipBlock()) 2479 return Error("Malformed block"); 2480 continue; 2481 2482 case BitstreamEntry::Record: 2483 Stream.skipRecord(Entry.ID); 2484 continue; 2485 } 2486 } 2487 } 2488 2489 /// ParseMetadataAttachment - Parse metadata attachments. 2490 std::error_code BitcodeReader::ParseMetadataAttachment() { 2491 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2492 return Error("Invalid record"); 2493 2494 SmallVector<uint64_t, 64> Record; 2495 while (1) { 2496 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2497 2498 switch (Entry.Kind) { 2499 case BitstreamEntry::SubBlock: // Handled for us already. 2500 case BitstreamEntry::Error: 2501 return Error("Malformed block"); 2502 case BitstreamEntry::EndBlock: 2503 return std::error_code(); 2504 case BitstreamEntry::Record: 2505 // The interesting case. 2506 break; 2507 } 2508 2509 // Read a metadata attachment record. 2510 Record.clear(); 2511 switch (Stream.readRecord(Entry.ID, Record)) { 2512 default: // Default behavior: ignore. 2513 break; 2514 case bitc::METADATA_ATTACHMENT: { 2515 unsigned RecordLength = Record.size(); 2516 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2517 return Error("Invalid record"); 2518 Instruction *Inst = InstructionList[Record[0]]; 2519 for (unsigned i = 1; i != RecordLength; i = i+2) { 2520 unsigned Kind = Record[i]; 2521 DenseMap<unsigned, unsigned>::iterator I = 2522 MDKindMap.find(Kind); 2523 if (I == MDKindMap.end()) 2524 return Error("Invalid ID"); 2525 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2526 if (isa<LocalAsMetadata>(Node)) 2527 // Drop the attachment. This used to be legal, but there's no 2528 // upgrade path. 2529 break; 2530 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2531 if (I->second == LLVMContext::MD_tbaa) 2532 InstsWithTBAATag.push_back(Inst); 2533 } 2534 break; 2535 } 2536 } 2537 } 2538 } 2539 2540 /// ParseFunctionBody - Lazily parse the specified function body block. 2541 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2542 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2543 return Error("Invalid record"); 2544 2545 InstructionList.clear(); 2546 unsigned ModuleValueListSize = ValueList.size(); 2547 unsigned ModuleMDValueListSize = MDValueList.size(); 2548 2549 // Add all the function arguments to the value table. 2550 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2551 ValueList.push_back(I); 2552 2553 unsigned NextValueNo = ValueList.size(); 2554 BasicBlock *CurBB = nullptr; 2555 unsigned CurBBNo = 0; 2556 2557 DebugLoc LastLoc; 2558 auto getLastInstruction = [&]() -> Instruction * { 2559 if (CurBB && !CurBB->empty()) 2560 return &CurBB->back(); 2561 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2562 !FunctionBBs[CurBBNo - 1]->empty()) 2563 return &FunctionBBs[CurBBNo - 1]->back(); 2564 return nullptr; 2565 }; 2566 2567 // Read all the records. 2568 SmallVector<uint64_t, 64> Record; 2569 while (1) { 2570 BitstreamEntry Entry = Stream.advance(); 2571 2572 switch (Entry.Kind) { 2573 case BitstreamEntry::Error: 2574 return Error("Malformed block"); 2575 case BitstreamEntry::EndBlock: 2576 goto OutOfRecordLoop; 2577 2578 case BitstreamEntry::SubBlock: 2579 switch (Entry.ID) { 2580 default: // Skip unknown content. 2581 if (Stream.SkipBlock()) 2582 return Error("Invalid record"); 2583 break; 2584 case bitc::CONSTANTS_BLOCK_ID: 2585 if (std::error_code EC = ParseConstants()) 2586 return EC; 2587 NextValueNo = ValueList.size(); 2588 break; 2589 case bitc::VALUE_SYMTAB_BLOCK_ID: 2590 if (std::error_code EC = ParseValueSymbolTable()) 2591 return EC; 2592 break; 2593 case bitc::METADATA_ATTACHMENT_ID: 2594 if (std::error_code EC = ParseMetadataAttachment()) 2595 return EC; 2596 break; 2597 case bitc::METADATA_BLOCK_ID: 2598 if (std::error_code EC = ParseMetadata()) 2599 return EC; 2600 break; 2601 case bitc::USELIST_BLOCK_ID: 2602 if (std::error_code EC = ParseUseLists()) 2603 return EC; 2604 break; 2605 } 2606 continue; 2607 2608 case BitstreamEntry::Record: 2609 // The interesting case. 2610 break; 2611 } 2612 2613 // Read a record. 2614 Record.clear(); 2615 Instruction *I = nullptr; 2616 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2617 switch (BitCode) { 2618 default: // Default behavior: reject 2619 return Error("Invalid value"); 2620 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2621 if (Record.size() < 1 || Record[0] == 0) 2622 return Error("Invalid record"); 2623 // Create all the basic blocks for the function. 2624 FunctionBBs.resize(Record[0]); 2625 2626 // See if anything took the address of blocks in this function. 2627 auto BBFRI = BasicBlockFwdRefs.find(F); 2628 if (BBFRI == BasicBlockFwdRefs.end()) { 2629 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2630 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2631 } else { 2632 auto &BBRefs = BBFRI->second; 2633 // Check for invalid basic block references. 2634 if (BBRefs.size() > FunctionBBs.size()) 2635 return Error("Invalid ID"); 2636 assert(!BBRefs.empty() && "Unexpected empty array"); 2637 assert(!BBRefs.front() && "Invalid reference to entry block"); 2638 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2639 ++I) 2640 if (I < RE && BBRefs[I]) { 2641 BBRefs[I]->insertInto(F); 2642 FunctionBBs[I] = BBRefs[I]; 2643 } else { 2644 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2645 } 2646 2647 // Erase from the table. 2648 BasicBlockFwdRefs.erase(BBFRI); 2649 } 2650 2651 CurBB = FunctionBBs[0]; 2652 continue; 2653 } 2654 2655 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2656 // This record indicates that the last instruction is at the same 2657 // location as the previous instruction with a location. 2658 I = getLastInstruction(); 2659 2660 if (!I) 2661 return Error("Invalid record"); 2662 I->setDebugLoc(LastLoc); 2663 I = nullptr; 2664 continue; 2665 2666 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2667 I = getLastInstruction(); 2668 if (!I || Record.size() < 4) 2669 return Error("Invalid record"); 2670 2671 unsigned Line = Record[0], Col = Record[1]; 2672 unsigned ScopeID = Record[2], IAID = Record[3]; 2673 2674 MDNode *Scope = nullptr, *IA = nullptr; 2675 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2676 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2677 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2678 I->setDebugLoc(LastLoc); 2679 I = nullptr; 2680 continue; 2681 } 2682 2683 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2684 unsigned OpNum = 0; 2685 Value *LHS, *RHS; 2686 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2687 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2688 OpNum+1 > Record.size()) 2689 return Error("Invalid record"); 2690 2691 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2692 if (Opc == -1) 2693 return Error("Invalid record"); 2694 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2695 InstructionList.push_back(I); 2696 if (OpNum < Record.size()) { 2697 if (Opc == Instruction::Add || 2698 Opc == Instruction::Sub || 2699 Opc == Instruction::Mul || 2700 Opc == Instruction::Shl) { 2701 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2702 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2703 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2704 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2705 } else if (Opc == Instruction::SDiv || 2706 Opc == Instruction::UDiv || 2707 Opc == Instruction::LShr || 2708 Opc == Instruction::AShr) { 2709 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2710 cast<BinaryOperator>(I)->setIsExact(true); 2711 } else if (isa<FPMathOperator>(I)) { 2712 FastMathFlags FMF; 2713 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2714 FMF.setUnsafeAlgebra(); 2715 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2716 FMF.setNoNaNs(); 2717 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2718 FMF.setNoInfs(); 2719 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2720 FMF.setNoSignedZeros(); 2721 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2722 FMF.setAllowReciprocal(); 2723 if (FMF.any()) 2724 I->setFastMathFlags(FMF); 2725 } 2726 2727 } 2728 break; 2729 } 2730 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2731 unsigned OpNum = 0; 2732 Value *Op; 2733 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2734 OpNum+2 != Record.size()) 2735 return Error("Invalid record"); 2736 2737 Type *ResTy = getTypeByID(Record[OpNum]); 2738 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2739 if (Opc == -1 || !ResTy) 2740 return Error("Invalid record"); 2741 Instruction *Temp = nullptr; 2742 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2743 if (Temp) { 2744 InstructionList.push_back(Temp); 2745 CurBB->getInstList().push_back(Temp); 2746 } 2747 } else { 2748 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2749 } 2750 InstructionList.push_back(I); 2751 break; 2752 } 2753 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2754 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2755 unsigned OpNum = 0; 2756 Value *BasePtr; 2757 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2758 return Error("Invalid record"); 2759 2760 SmallVector<Value*, 16> GEPIdx; 2761 while (OpNum != Record.size()) { 2762 Value *Op; 2763 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2764 return Error("Invalid record"); 2765 GEPIdx.push_back(Op); 2766 } 2767 2768 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2769 InstructionList.push_back(I); 2770 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2771 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2772 break; 2773 } 2774 2775 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2776 // EXTRACTVAL: [opty, opval, n x indices] 2777 unsigned OpNum = 0; 2778 Value *Agg; 2779 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2780 return Error("Invalid record"); 2781 2782 SmallVector<unsigned, 4> EXTRACTVALIdx; 2783 for (unsigned RecSize = Record.size(); 2784 OpNum != RecSize; ++OpNum) { 2785 uint64_t Index = Record[OpNum]; 2786 if ((unsigned)Index != Index) 2787 return Error("Invalid value"); 2788 EXTRACTVALIdx.push_back((unsigned)Index); 2789 } 2790 2791 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2792 InstructionList.push_back(I); 2793 break; 2794 } 2795 2796 case bitc::FUNC_CODE_INST_INSERTVAL: { 2797 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2798 unsigned OpNum = 0; 2799 Value *Agg; 2800 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2801 return Error("Invalid record"); 2802 Value *Val; 2803 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2804 return Error("Invalid record"); 2805 2806 SmallVector<unsigned, 4> INSERTVALIdx; 2807 for (unsigned RecSize = Record.size(); 2808 OpNum != RecSize; ++OpNum) { 2809 uint64_t Index = Record[OpNum]; 2810 if ((unsigned)Index != Index) 2811 return Error("Invalid value"); 2812 INSERTVALIdx.push_back((unsigned)Index); 2813 } 2814 2815 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2816 InstructionList.push_back(I); 2817 break; 2818 } 2819 2820 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2821 // obsolete form of select 2822 // handles select i1 ... in old bitcode 2823 unsigned OpNum = 0; 2824 Value *TrueVal, *FalseVal, *Cond; 2825 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2826 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2827 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2828 return Error("Invalid record"); 2829 2830 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2831 InstructionList.push_back(I); 2832 break; 2833 } 2834 2835 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2836 // new form of select 2837 // handles select i1 or select [N x i1] 2838 unsigned OpNum = 0; 2839 Value *TrueVal, *FalseVal, *Cond; 2840 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2841 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2842 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2843 return Error("Invalid record"); 2844 2845 // select condition can be either i1 or [N x i1] 2846 if (VectorType* vector_type = 2847 dyn_cast<VectorType>(Cond->getType())) { 2848 // expect <n x i1> 2849 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2850 return Error("Invalid type for value"); 2851 } else { 2852 // expect i1 2853 if (Cond->getType() != Type::getInt1Ty(Context)) 2854 return Error("Invalid type for value"); 2855 } 2856 2857 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2858 InstructionList.push_back(I); 2859 break; 2860 } 2861 2862 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2863 unsigned OpNum = 0; 2864 Value *Vec, *Idx; 2865 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2866 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2867 return Error("Invalid record"); 2868 I = ExtractElementInst::Create(Vec, Idx); 2869 InstructionList.push_back(I); 2870 break; 2871 } 2872 2873 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2874 unsigned OpNum = 0; 2875 Value *Vec, *Elt, *Idx; 2876 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2877 popValue(Record, OpNum, NextValueNo, 2878 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2879 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2880 return Error("Invalid record"); 2881 I = InsertElementInst::Create(Vec, Elt, Idx); 2882 InstructionList.push_back(I); 2883 break; 2884 } 2885 2886 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2887 unsigned OpNum = 0; 2888 Value *Vec1, *Vec2, *Mask; 2889 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2890 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2891 return Error("Invalid record"); 2892 2893 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2894 return Error("Invalid record"); 2895 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2896 InstructionList.push_back(I); 2897 break; 2898 } 2899 2900 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2901 // Old form of ICmp/FCmp returning bool 2902 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2903 // both legal on vectors but had different behaviour. 2904 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2905 // FCmp/ICmp returning bool or vector of bool 2906 2907 unsigned OpNum = 0; 2908 Value *LHS, *RHS; 2909 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2910 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2911 OpNum+1 != Record.size()) 2912 return Error("Invalid record"); 2913 2914 if (LHS->getType()->isFPOrFPVectorTy()) 2915 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2916 else 2917 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2918 InstructionList.push_back(I); 2919 break; 2920 } 2921 2922 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2923 { 2924 unsigned Size = Record.size(); 2925 if (Size == 0) { 2926 I = ReturnInst::Create(Context); 2927 InstructionList.push_back(I); 2928 break; 2929 } 2930 2931 unsigned OpNum = 0; 2932 Value *Op = nullptr; 2933 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2934 return Error("Invalid record"); 2935 if (OpNum != Record.size()) 2936 return Error("Invalid record"); 2937 2938 I = ReturnInst::Create(Context, Op); 2939 InstructionList.push_back(I); 2940 break; 2941 } 2942 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2943 if (Record.size() != 1 && Record.size() != 3) 2944 return Error("Invalid record"); 2945 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2946 if (!TrueDest) 2947 return Error("Invalid record"); 2948 2949 if (Record.size() == 1) { 2950 I = BranchInst::Create(TrueDest); 2951 InstructionList.push_back(I); 2952 } 2953 else { 2954 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2955 Value *Cond = getValue(Record, 2, NextValueNo, 2956 Type::getInt1Ty(Context)); 2957 if (!FalseDest || !Cond) 2958 return Error("Invalid record"); 2959 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2960 InstructionList.push_back(I); 2961 } 2962 break; 2963 } 2964 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2965 // Check magic 2966 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2967 // "New" SwitchInst format with case ranges. The changes to write this 2968 // format were reverted but we still recognize bitcode that uses it. 2969 // Hopefully someday we will have support for case ranges and can use 2970 // this format again. 2971 2972 Type *OpTy = getTypeByID(Record[1]); 2973 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2974 2975 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2976 BasicBlock *Default = getBasicBlock(Record[3]); 2977 if (!OpTy || !Cond || !Default) 2978 return Error("Invalid record"); 2979 2980 unsigned NumCases = Record[4]; 2981 2982 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2983 InstructionList.push_back(SI); 2984 2985 unsigned CurIdx = 5; 2986 for (unsigned i = 0; i != NumCases; ++i) { 2987 SmallVector<ConstantInt*, 1> CaseVals; 2988 unsigned NumItems = Record[CurIdx++]; 2989 for (unsigned ci = 0; ci != NumItems; ++ci) { 2990 bool isSingleNumber = Record[CurIdx++]; 2991 2992 APInt Low; 2993 unsigned ActiveWords = 1; 2994 if (ValueBitWidth > 64) 2995 ActiveWords = Record[CurIdx++]; 2996 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2997 ValueBitWidth); 2998 CurIdx += ActiveWords; 2999 3000 if (!isSingleNumber) { 3001 ActiveWords = 1; 3002 if (ValueBitWidth > 64) 3003 ActiveWords = Record[CurIdx++]; 3004 APInt High = 3005 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3006 ValueBitWidth); 3007 CurIdx += ActiveWords; 3008 3009 // FIXME: It is not clear whether values in the range should be 3010 // compared as signed or unsigned values. The partially 3011 // implemented changes that used this format in the past used 3012 // unsigned comparisons. 3013 for ( ; Low.ule(High); ++Low) 3014 CaseVals.push_back(ConstantInt::get(Context, Low)); 3015 } else 3016 CaseVals.push_back(ConstantInt::get(Context, Low)); 3017 } 3018 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3019 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3020 cve = CaseVals.end(); cvi != cve; ++cvi) 3021 SI->addCase(*cvi, DestBB); 3022 } 3023 I = SI; 3024 break; 3025 } 3026 3027 // Old SwitchInst format without case ranges. 3028 3029 if (Record.size() < 3 || (Record.size() & 1) == 0) 3030 return Error("Invalid record"); 3031 Type *OpTy = getTypeByID(Record[0]); 3032 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3033 BasicBlock *Default = getBasicBlock(Record[2]); 3034 if (!OpTy || !Cond || !Default) 3035 return Error("Invalid record"); 3036 unsigned NumCases = (Record.size()-3)/2; 3037 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3038 InstructionList.push_back(SI); 3039 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3040 ConstantInt *CaseVal = 3041 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3042 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3043 if (!CaseVal || !DestBB) { 3044 delete SI; 3045 return Error("Invalid record"); 3046 } 3047 SI->addCase(CaseVal, DestBB); 3048 } 3049 I = SI; 3050 break; 3051 } 3052 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3053 if (Record.size() < 2) 3054 return Error("Invalid record"); 3055 Type *OpTy = getTypeByID(Record[0]); 3056 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3057 if (!OpTy || !Address) 3058 return Error("Invalid record"); 3059 unsigned NumDests = Record.size()-2; 3060 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3061 InstructionList.push_back(IBI); 3062 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3063 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3064 IBI->addDestination(DestBB); 3065 } else { 3066 delete IBI; 3067 return Error("Invalid record"); 3068 } 3069 } 3070 I = IBI; 3071 break; 3072 } 3073 3074 case bitc::FUNC_CODE_INST_INVOKE: { 3075 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3076 if (Record.size() < 4) 3077 return Error("Invalid record"); 3078 AttributeSet PAL = getAttributes(Record[0]); 3079 unsigned CCInfo = Record[1]; 3080 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3081 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3082 3083 unsigned OpNum = 4; 3084 Value *Callee; 3085 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3086 return Error("Invalid record"); 3087 3088 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3089 FunctionType *FTy = !CalleeTy ? nullptr : 3090 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3091 3092 // Check that the right number of fixed parameters are here. 3093 if (!FTy || !NormalBB || !UnwindBB || 3094 Record.size() < OpNum+FTy->getNumParams()) 3095 return Error("Invalid record"); 3096 3097 SmallVector<Value*, 16> Ops; 3098 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3099 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3100 FTy->getParamType(i))); 3101 if (!Ops.back()) 3102 return Error("Invalid record"); 3103 } 3104 3105 if (!FTy->isVarArg()) { 3106 if (Record.size() != OpNum) 3107 return Error("Invalid record"); 3108 } else { 3109 // Read type/value pairs for varargs params. 3110 while (OpNum != Record.size()) { 3111 Value *Op; 3112 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3113 return Error("Invalid record"); 3114 Ops.push_back(Op); 3115 } 3116 } 3117 3118 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3119 InstructionList.push_back(I); 3120 cast<InvokeInst>(I)->setCallingConv( 3121 static_cast<CallingConv::ID>(CCInfo)); 3122 cast<InvokeInst>(I)->setAttributes(PAL); 3123 break; 3124 } 3125 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3126 unsigned Idx = 0; 3127 Value *Val = nullptr; 3128 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3129 return Error("Invalid record"); 3130 I = ResumeInst::Create(Val); 3131 InstructionList.push_back(I); 3132 break; 3133 } 3134 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3135 I = new UnreachableInst(Context); 3136 InstructionList.push_back(I); 3137 break; 3138 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3139 if (Record.size() < 1 || ((Record.size()-1)&1)) 3140 return Error("Invalid record"); 3141 Type *Ty = getTypeByID(Record[0]); 3142 if (!Ty) 3143 return Error("Invalid record"); 3144 3145 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3146 InstructionList.push_back(PN); 3147 3148 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3149 Value *V; 3150 // With the new function encoding, it is possible that operands have 3151 // negative IDs (for forward references). Use a signed VBR 3152 // representation to keep the encoding small. 3153 if (UseRelativeIDs) 3154 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3155 else 3156 V = getValue(Record, 1+i, NextValueNo, Ty); 3157 BasicBlock *BB = getBasicBlock(Record[2+i]); 3158 if (!V || !BB) 3159 return Error("Invalid record"); 3160 PN->addIncoming(V, BB); 3161 } 3162 I = PN; 3163 break; 3164 } 3165 3166 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3167 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3168 unsigned Idx = 0; 3169 if (Record.size() < 4) 3170 return Error("Invalid record"); 3171 Type *Ty = getTypeByID(Record[Idx++]); 3172 if (!Ty) 3173 return Error("Invalid record"); 3174 Value *PersFn = nullptr; 3175 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3176 return Error("Invalid record"); 3177 3178 bool IsCleanup = !!Record[Idx++]; 3179 unsigned NumClauses = Record[Idx++]; 3180 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3181 LP->setCleanup(IsCleanup); 3182 for (unsigned J = 0; J != NumClauses; ++J) { 3183 LandingPadInst::ClauseType CT = 3184 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3185 Value *Val; 3186 3187 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3188 delete LP; 3189 return Error("Invalid record"); 3190 } 3191 3192 assert((CT != LandingPadInst::Catch || 3193 !isa<ArrayType>(Val->getType())) && 3194 "Catch clause has a invalid type!"); 3195 assert((CT != LandingPadInst::Filter || 3196 isa<ArrayType>(Val->getType())) && 3197 "Filter clause has invalid type!"); 3198 LP->addClause(cast<Constant>(Val)); 3199 } 3200 3201 I = LP; 3202 InstructionList.push_back(I); 3203 break; 3204 } 3205 3206 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3207 if (Record.size() != 4) 3208 return Error("Invalid record"); 3209 PointerType *Ty = 3210 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3211 Type *OpTy = getTypeByID(Record[1]); 3212 Value *Size = getFnValueByID(Record[2], OpTy); 3213 unsigned AlignRecord = Record[3]; 3214 bool InAlloca = AlignRecord & (1 << 5); 3215 unsigned Align = AlignRecord & ((1 << 5) - 1); 3216 if (!Ty || !Size) 3217 return Error("Invalid record"); 3218 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3219 AI->setUsedWithInAlloca(InAlloca); 3220 I = AI; 3221 InstructionList.push_back(I); 3222 break; 3223 } 3224 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3225 unsigned OpNum = 0; 3226 Value *Op; 3227 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3228 OpNum+2 != Record.size()) 3229 return Error("Invalid record"); 3230 3231 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3232 InstructionList.push_back(I); 3233 break; 3234 } 3235 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3236 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3237 unsigned OpNum = 0; 3238 Value *Op; 3239 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3240 OpNum+4 != Record.size()) 3241 return Error("Invalid record"); 3242 3243 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3244 if (Ordering == NotAtomic || Ordering == Release || 3245 Ordering == AcquireRelease) 3246 return Error("Invalid record"); 3247 if (Ordering != NotAtomic && Record[OpNum] == 0) 3248 return Error("Invalid record"); 3249 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3250 3251 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3252 Ordering, SynchScope); 3253 InstructionList.push_back(I); 3254 break; 3255 } 3256 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3257 unsigned OpNum = 0; 3258 Value *Val, *Ptr; 3259 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3260 popValue(Record, OpNum, NextValueNo, 3261 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3262 OpNum+2 != Record.size()) 3263 return Error("Invalid record"); 3264 3265 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3266 InstructionList.push_back(I); 3267 break; 3268 } 3269 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3270 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3271 unsigned OpNum = 0; 3272 Value *Val, *Ptr; 3273 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3274 popValue(Record, OpNum, NextValueNo, 3275 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3276 OpNum+4 != Record.size()) 3277 return Error("Invalid record"); 3278 3279 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3280 if (Ordering == NotAtomic || Ordering == Acquire || 3281 Ordering == AcquireRelease) 3282 return Error("Invalid record"); 3283 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3284 if (Ordering != NotAtomic && Record[OpNum] == 0) 3285 return Error("Invalid record"); 3286 3287 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3288 Ordering, SynchScope); 3289 InstructionList.push_back(I); 3290 break; 3291 } 3292 case bitc::FUNC_CODE_INST_CMPXCHG: { 3293 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3294 // failureordering?, isweak?] 3295 unsigned OpNum = 0; 3296 Value *Ptr, *Cmp, *New; 3297 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3298 popValue(Record, OpNum, NextValueNo, 3299 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3300 popValue(Record, OpNum, NextValueNo, 3301 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3302 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3303 return Error("Invalid record"); 3304 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3305 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3306 return Error("Invalid record"); 3307 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3308 3309 AtomicOrdering FailureOrdering; 3310 if (Record.size() < 7) 3311 FailureOrdering = 3312 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3313 else 3314 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3315 3316 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3317 SynchScope); 3318 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3319 3320 if (Record.size() < 8) { 3321 // Before weak cmpxchgs existed, the instruction simply returned the 3322 // value loaded from memory, so bitcode files from that era will be 3323 // expecting the first component of a modern cmpxchg. 3324 CurBB->getInstList().push_back(I); 3325 I = ExtractValueInst::Create(I, 0); 3326 } else { 3327 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3328 } 3329 3330 InstructionList.push_back(I); 3331 break; 3332 } 3333 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3334 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3335 unsigned OpNum = 0; 3336 Value *Ptr, *Val; 3337 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3338 popValue(Record, OpNum, NextValueNo, 3339 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3340 OpNum+4 != Record.size()) 3341 return Error("Invalid record"); 3342 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3343 if (Operation < AtomicRMWInst::FIRST_BINOP || 3344 Operation > AtomicRMWInst::LAST_BINOP) 3345 return Error("Invalid record"); 3346 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3347 if (Ordering == NotAtomic || Ordering == Unordered) 3348 return Error("Invalid record"); 3349 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3350 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3351 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3352 InstructionList.push_back(I); 3353 break; 3354 } 3355 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3356 if (2 != Record.size()) 3357 return Error("Invalid record"); 3358 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3359 if (Ordering == NotAtomic || Ordering == Unordered || 3360 Ordering == Monotonic) 3361 return Error("Invalid record"); 3362 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3363 I = new FenceInst(Context, Ordering, SynchScope); 3364 InstructionList.push_back(I); 3365 break; 3366 } 3367 case bitc::FUNC_CODE_INST_CALL: { 3368 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3369 if (Record.size() < 3) 3370 return Error("Invalid record"); 3371 3372 AttributeSet PAL = getAttributes(Record[0]); 3373 unsigned CCInfo = Record[1]; 3374 3375 unsigned OpNum = 2; 3376 Value *Callee; 3377 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3378 return Error("Invalid record"); 3379 3380 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3381 FunctionType *FTy = nullptr; 3382 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3383 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3384 return Error("Invalid record"); 3385 3386 SmallVector<Value*, 16> Args; 3387 // Read the fixed params. 3388 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3389 if (FTy->getParamType(i)->isLabelTy()) 3390 Args.push_back(getBasicBlock(Record[OpNum])); 3391 else 3392 Args.push_back(getValue(Record, OpNum, NextValueNo, 3393 FTy->getParamType(i))); 3394 if (!Args.back()) 3395 return Error("Invalid record"); 3396 } 3397 3398 // Read type/value pairs for varargs params. 3399 if (!FTy->isVarArg()) { 3400 if (OpNum != Record.size()) 3401 return Error("Invalid record"); 3402 } else { 3403 while (OpNum != Record.size()) { 3404 Value *Op; 3405 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3406 return Error("Invalid record"); 3407 Args.push_back(Op); 3408 } 3409 } 3410 3411 I = CallInst::Create(Callee, Args); 3412 InstructionList.push_back(I); 3413 cast<CallInst>(I)->setCallingConv( 3414 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3415 CallInst::TailCallKind TCK = CallInst::TCK_None; 3416 if (CCInfo & 1) 3417 TCK = CallInst::TCK_Tail; 3418 if (CCInfo & (1 << 14)) 3419 TCK = CallInst::TCK_MustTail; 3420 cast<CallInst>(I)->setTailCallKind(TCK); 3421 cast<CallInst>(I)->setAttributes(PAL); 3422 break; 3423 } 3424 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3425 if (Record.size() < 3) 3426 return Error("Invalid record"); 3427 Type *OpTy = getTypeByID(Record[0]); 3428 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3429 Type *ResTy = getTypeByID(Record[2]); 3430 if (!OpTy || !Op || !ResTy) 3431 return Error("Invalid record"); 3432 I = new VAArgInst(Op, ResTy); 3433 InstructionList.push_back(I); 3434 break; 3435 } 3436 } 3437 3438 // Add instruction to end of current BB. If there is no current BB, reject 3439 // this file. 3440 if (!CurBB) { 3441 delete I; 3442 return Error("Invalid instruction with no BB"); 3443 } 3444 CurBB->getInstList().push_back(I); 3445 3446 // If this was a terminator instruction, move to the next block. 3447 if (isa<TerminatorInst>(I)) { 3448 ++CurBBNo; 3449 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3450 } 3451 3452 // Non-void values get registered in the value table for future use. 3453 if (I && !I->getType()->isVoidTy()) 3454 ValueList.AssignValue(I, NextValueNo++); 3455 } 3456 3457 OutOfRecordLoop: 3458 3459 // Check the function list for unresolved values. 3460 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3461 if (!A->getParent()) { 3462 // We found at least one unresolved value. Nuke them all to avoid leaks. 3463 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3464 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3465 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3466 delete A; 3467 } 3468 } 3469 return Error("Never resolved value found in function"); 3470 } 3471 } 3472 3473 // FIXME: Check for unresolved forward-declared metadata references 3474 // and clean up leaks. 3475 3476 // Trim the value list down to the size it was before we parsed this function. 3477 ValueList.shrinkTo(ModuleValueListSize); 3478 MDValueList.shrinkTo(ModuleMDValueListSize); 3479 std::vector<BasicBlock*>().swap(FunctionBBs); 3480 return std::error_code(); 3481 } 3482 3483 /// Find the function body in the bitcode stream 3484 std::error_code BitcodeReader::FindFunctionInStream( 3485 Function *F, 3486 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3487 while (DeferredFunctionInfoIterator->second == 0) { 3488 if (Stream.AtEndOfStream()) 3489 return Error("Could not find function in stream"); 3490 // ParseModule will parse the next body in the stream and set its 3491 // position in the DeferredFunctionInfo map. 3492 if (std::error_code EC = ParseModule(true)) 3493 return EC; 3494 } 3495 return std::error_code(); 3496 } 3497 3498 //===----------------------------------------------------------------------===// 3499 // GVMaterializer implementation 3500 //===----------------------------------------------------------------------===// 3501 3502 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3503 3504 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3505 Function *F = dyn_cast<Function>(GV); 3506 // If it's not a function or is already material, ignore the request. 3507 if (!F || !F->isMaterializable()) 3508 return std::error_code(); 3509 3510 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3511 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3512 // If its position is recorded as 0, its body is somewhere in the stream 3513 // but we haven't seen it yet. 3514 if (DFII->second == 0 && LazyStreamer) 3515 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3516 return EC; 3517 3518 // Move the bit stream to the saved position of the deferred function body. 3519 Stream.JumpToBit(DFII->second); 3520 3521 if (std::error_code EC = ParseFunctionBody(F)) 3522 return EC; 3523 F->setIsMaterializable(false); 3524 3525 // Upgrade any old intrinsic calls in the function. 3526 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3527 E = UpgradedIntrinsics.end(); I != E; ++I) { 3528 if (I->first != I->second) { 3529 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3530 UI != UE;) { 3531 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3532 UpgradeIntrinsicCall(CI, I->second); 3533 } 3534 } 3535 } 3536 3537 // Bring in any functions that this function forward-referenced via 3538 // blockaddresses. 3539 return materializeForwardReferencedFunctions(); 3540 } 3541 3542 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3543 const Function *F = dyn_cast<Function>(GV); 3544 if (!F || F->isDeclaration()) 3545 return false; 3546 3547 // Dematerializing F would leave dangling references that wouldn't be 3548 // reconnected on re-materialization. 3549 if (BlockAddressesTaken.count(F)) 3550 return false; 3551 3552 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3553 } 3554 3555 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3556 Function *F = dyn_cast<Function>(GV); 3557 // If this function isn't dematerializable, this is a noop. 3558 if (!F || !isDematerializable(F)) 3559 return; 3560 3561 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3562 3563 // Just forget the function body, we can remat it later. 3564 F->dropAllReferences(); 3565 F->setIsMaterializable(true); 3566 } 3567 3568 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3569 assert(M == TheModule && 3570 "Can only Materialize the Module this BitcodeReader is attached to."); 3571 3572 // Promise to materialize all forward references. 3573 WillMaterializeAllForwardRefs = true; 3574 3575 // Iterate over the module, deserializing any functions that are still on 3576 // disk. 3577 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3578 F != E; ++F) { 3579 if (std::error_code EC = materialize(F)) 3580 return EC; 3581 } 3582 // At this point, if there are any function bodies, the current bit is 3583 // pointing to the END_BLOCK record after them. Now make sure the rest 3584 // of the bits in the module have been read. 3585 if (NextUnreadBit) 3586 ParseModule(true); 3587 3588 // Check that all block address forward references got resolved (as we 3589 // promised above). 3590 if (!BasicBlockFwdRefs.empty()) 3591 return Error("Never resolved function from blockaddress"); 3592 3593 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3594 // delete the old functions to clean up. We can't do this unless the entire 3595 // module is materialized because there could always be another function body 3596 // with calls to the old function. 3597 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3598 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3599 if (I->first != I->second) { 3600 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3601 UI != UE;) { 3602 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3603 UpgradeIntrinsicCall(CI, I->second); 3604 } 3605 if (!I->first->use_empty()) 3606 I->first->replaceAllUsesWith(I->second); 3607 I->first->eraseFromParent(); 3608 } 3609 } 3610 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3611 3612 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3613 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3614 3615 UpgradeDebugInfo(*M); 3616 return std::error_code(); 3617 } 3618 3619 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3620 return IdentifiedStructTypes; 3621 } 3622 3623 std::error_code BitcodeReader::InitStream() { 3624 if (LazyStreamer) 3625 return InitLazyStream(); 3626 return InitStreamFromBuffer(); 3627 } 3628 3629 std::error_code BitcodeReader::InitStreamFromBuffer() { 3630 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3631 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3632 3633 if (Buffer->getBufferSize() & 3) 3634 return Error("Invalid bitcode signature"); 3635 3636 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3637 // The magic number is 0x0B17C0DE stored in little endian. 3638 if (isBitcodeWrapper(BufPtr, BufEnd)) 3639 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3640 return Error("Invalid bitcode wrapper header"); 3641 3642 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3643 Stream.init(&*StreamFile); 3644 3645 return std::error_code(); 3646 } 3647 3648 std::error_code BitcodeReader::InitLazyStream() { 3649 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3650 // see it. 3651 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3652 StreamingMemoryObject &Bytes = *OwnedBytes; 3653 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3654 Stream.init(&*StreamFile); 3655 3656 unsigned char buf[16]; 3657 if (Bytes.readBytes(buf, 16, 0) != 16) 3658 return Error("Invalid bitcode signature"); 3659 3660 if (!isBitcode(buf, buf + 16)) 3661 return Error("Invalid bitcode signature"); 3662 3663 if (isBitcodeWrapper(buf, buf + 4)) { 3664 const unsigned char *bitcodeStart = buf; 3665 const unsigned char *bitcodeEnd = buf + 16; 3666 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3667 Bytes.dropLeadingBytes(bitcodeStart - buf); 3668 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3669 } 3670 return std::error_code(); 3671 } 3672 3673 namespace { 3674 class BitcodeErrorCategoryType : public std::error_category { 3675 const char *name() const LLVM_NOEXCEPT override { 3676 return "llvm.bitcode"; 3677 } 3678 std::string message(int IE) const override { 3679 BitcodeError E = static_cast<BitcodeError>(IE); 3680 switch (E) { 3681 case BitcodeError::InvalidBitcodeSignature: 3682 return "Invalid bitcode signature"; 3683 case BitcodeError::CorruptedBitcode: 3684 return "Corrupted bitcode"; 3685 } 3686 llvm_unreachable("Unknown error type!"); 3687 } 3688 }; 3689 } 3690 3691 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3692 3693 const std::error_category &llvm::BitcodeErrorCategory() { 3694 return *ErrorCategory; 3695 } 3696 3697 //===----------------------------------------------------------------------===// 3698 // External interface 3699 //===----------------------------------------------------------------------===// 3700 3701 /// \brief Get a lazy one-at-time loading module from bitcode. 3702 /// 3703 /// This isn't always used in a lazy context. In particular, it's also used by 3704 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3705 /// in forward-referenced functions from block address references. 3706 /// 3707 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3708 /// materialize everything -- in particular, if this isn't truly lazy. 3709 static ErrorOr<Module *> 3710 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3711 LLVMContext &Context, bool WillMaterializeAll, 3712 DiagnosticHandlerFunction DiagnosticHandler) { 3713 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3714 BitcodeReader *R = 3715 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3716 M->setMaterializer(R); 3717 3718 auto cleanupOnError = [&](std::error_code EC) { 3719 R->releaseBuffer(); // Never take ownership on error. 3720 delete M; // Also deletes R. 3721 return EC; 3722 }; 3723 3724 if (std::error_code EC = R->ParseBitcodeInto(M)) 3725 return cleanupOnError(EC); 3726 3727 if (!WillMaterializeAll) 3728 // Resolve forward references from blockaddresses. 3729 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3730 return cleanupOnError(EC); 3731 3732 Buffer.release(); // The BitcodeReader owns it now. 3733 return M; 3734 } 3735 3736 ErrorOr<Module *> 3737 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3738 LLVMContext &Context, 3739 DiagnosticHandlerFunction DiagnosticHandler) { 3740 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3741 DiagnosticHandler); 3742 } 3743 3744 ErrorOr<std::unique_ptr<Module>> 3745 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3746 LLVMContext &Context, 3747 DiagnosticHandlerFunction DiagnosticHandler) { 3748 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3749 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3750 M->setMaterializer(R); 3751 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3752 return EC; 3753 return std::move(M); 3754 } 3755 3756 ErrorOr<Module *> 3757 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3758 DiagnosticHandlerFunction DiagnosticHandler) { 3759 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3760 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3761 std::move(Buf), Context, true, DiagnosticHandler); 3762 if (!ModuleOrErr) 3763 return ModuleOrErr; 3764 Module *M = ModuleOrErr.get(); 3765 // Read in the entire module, and destroy the BitcodeReader. 3766 if (std::error_code EC = M->materializeAllPermanently()) { 3767 delete M; 3768 return EC; 3769 } 3770 3771 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3772 // written. We must defer until the Module has been fully materialized. 3773 3774 return M; 3775 } 3776 3777 std::string 3778 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3779 DiagnosticHandlerFunction DiagnosticHandler) { 3780 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3781 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3782 DiagnosticHandler); 3783 ErrorOr<std::string> Triple = R->parseTriple(); 3784 if (Triple.getError()) 3785 return ""; 3786 return Triple.get(); 3787 } 3788