1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ErrorOr.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 class BitcodeReaderBase { 232 protected: 233 BitcodeReaderBase(MemoryBuffer *Buffer) : Buffer(Buffer) {} 234 235 std::unique_ptr<MemoryBuffer> Buffer; 236 std::unique_ptr<BitstreamReader> StreamFile; 237 BitstreamCursor Stream; 238 239 std::error_code initStream(); 240 bool readBlockInfo(); 241 242 virtual std::error_code error(const Twine &Message) = 0; 243 virtual ~BitcodeReaderBase() = default; 244 }; 245 246 std::error_code BitcodeReaderBase::initStream() { 247 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 248 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 249 250 if (Buffer->getBufferSize() & 3) 251 return error("Invalid bitcode signature"); 252 253 // If we have a wrapper header, parse it and ignore the non-bc file contents. 254 // The magic number is 0x0B17C0DE stored in little endian. 255 if (isBitcodeWrapper(BufPtr, BufEnd)) 256 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 257 return error("Invalid bitcode wrapper header"); 258 259 StreamFile.reset(new BitstreamReader(ArrayRef<uint8_t>(BufPtr, BufEnd))); 260 Stream.init(&*StreamFile); 261 262 return std::error_code(); 263 } 264 265 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 266 LLVMContext &Context; 267 Module *TheModule = nullptr; 268 // Next offset to start scanning for lazy parsing of function bodies. 269 uint64_t NextUnreadBit = 0; 270 // Last function offset found in the VST. 271 uint64_t LastFunctionBlockBit = 0; 272 bool SeenValueSymbolTable = false; 273 uint64_t VSTOffset = 0; 274 // Contains an arbitrary and optional string identifying the bitcode producer 275 std::string ProducerIdentification; 276 277 std::vector<Type*> TypeList; 278 BitcodeReaderValueList ValueList; 279 BitcodeReaderMetadataList MetadataList; 280 std::vector<Comdat *> ComdatList; 281 SmallVector<Instruction *, 64> InstructionList; 282 283 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 284 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 285 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 286 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 287 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 288 289 bool HasSeenOldLoopTags = false; 290 291 /// The set of attributes by index. Index zero in the file is for null, and 292 /// is thus not represented here. As such all indices are off by one. 293 std::vector<AttributeSet> MAttributes; 294 295 /// The set of attribute groups. 296 std::map<unsigned, AttributeSet> MAttributeGroups; 297 298 /// While parsing a function body, this is a list of the basic blocks for the 299 /// function. 300 std::vector<BasicBlock*> FunctionBBs; 301 302 // When reading the module header, this list is populated with functions that 303 // have bodies later in the file. 304 std::vector<Function*> FunctionsWithBodies; 305 306 // When intrinsic functions are encountered which require upgrading they are 307 // stored here with their replacement function. 308 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 309 UpdatedIntrinsicMap UpgradedIntrinsics; 310 // Intrinsics which were remangled because of types rename 311 UpdatedIntrinsicMap RemangledIntrinsics; 312 313 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 314 DenseMap<unsigned, unsigned> MDKindMap; 315 316 // Several operations happen after the module header has been read, but 317 // before function bodies are processed. This keeps track of whether 318 // we've done this yet. 319 bool SeenFirstFunctionBody = false; 320 321 /// When function bodies are initially scanned, this map contains info about 322 /// where to find deferred function body in the stream. 323 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 324 325 /// When Metadata block is initially scanned when parsing the module, we may 326 /// choose to defer parsing of the metadata. This vector contains info about 327 /// which Metadata blocks are deferred. 328 std::vector<uint64_t> DeferredMetadataInfo; 329 330 /// These are basic blocks forward-referenced by block addresses. They are 331 /// inserted lazily into functions when they're loaded. The basic block ID is 332 /// its index into the vector. 333 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 334 std::deque<Function *> BasicBlockFwdRefQueue; 335 336 /// Indicates that we are using a new encoding for instruction operands where 337 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 338 /// instruction number, for a more compact encoding. Some instruction 339 /// operands are not relative to the instruction ID: basic block numbers, and 340 /// types. Once the old style function blocks have been phased out, we would 341 /// not need this flag. 342 bool UseRelativeIDs = false; 343 344 /// True if all functions will be materialized, negating the need to process 345 /// (e.g.) blockaddress forward references. 346 bool WillMaterializeAllForwardRefs = false; 347 348 /// True if any Metadata block has been materialized. 349 bool IsMetadataMaterialized = false; 350 351 bool StripDebugInfo = false; 352 353 /// Functions that need to be matched with subprograms when upgrading old 354 /// metadata. 355 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 356 357 std::vector<std::string> BundleTags; 358 359 public: 360 std::error_code error(BitcodeError E, const Twine &Message); 361 std::error_code error(const Twine &Message) override; 362 363 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 364 ~BitcodeReader() override { freeState(); } 365 366 std::error_code materializeForwardReferencedFunctions(); 367 368 void freeState(); 369 370 void releaseBuffer(); 371 372 std::error_code materialize(GlobalValue *GV) override; 373 std::error_code materializeModule() override; 374 std::vector<StructType *> getIdentifiedStructTypes() const override; 375 376 /// \brief Main interface to parsing a bitcode buffer. 377 /// \returns true if an error occurred. 378 std::error_code parseBitcodeInto(Module *M, 379 bool ShouldLazyLoadMetadata = false); 380 381 /// \brief Cheap mechanism to just extract module triple 382 /// \returns true if an error occurred. 383 ErrorOr<std::string> parseTriple(); 384 385 /// Cheap mechanism to just extract the identification block out of bitcode. 386 ErrorOr<std::string> parseIdentificationBlock(); 387 388 /// Peak at the module content and return true if any ObjC category or class 389 /// is found. 390 ErrorOr<bool> hasObjCCategory(); 391 392 static uint64_t decodeSignRotatedValue(uint64_t V); 393 394 /// Materialize any deferred Metadata block. 395 std::error_code materializeMetadata() override; 396 397 void setStripDebugInfo() override; 398 399 private: 400 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 401 // ProducerIdentification data member, and do some basic enforcement on the 402 // "epoch" encoded in the bitcode. 403 std::error_code parseBitcodeVersion(); 404 405 std::vector<StructType *> IdentifiedStructTypes; 406 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 407 StructType *createIdentifiedStructType(LLVMContext &Context); 408 409 Type *getTypeByID(unsigned ID); 410 411 Value *getFnValueByID(unsigned ID, Type *Ty) { 412 if (Ty && Ty->isMetadataTy()) 413 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 414 return ValueList.getValueFwdRef(ID, Ty); 415 } 416 417 Metadata *getFnMetadataByID(unsigned ID) { 418 return MetadataList.getMetadataFwdRef(ID); 419 } 420 421 BasicBlock *getBasicBlock(unsigned ID) const { 422 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 423 return FunctionBBs[ID]; 424 } 425 426 AttributeSet getAttributes(unsigned i) const { 427 if (i-1 < MAttributes.size()) 428 return MAttributes[i-1]; 429 return AttributeSet(); 430 } 431 432 /// Read a value/type pair out of the specified record from slot 'Slot'. 433 /// Increment Slot past the number of slots used in the record. Return true on 434 /// failure. 435 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 436 unsigned InstNum, Value *&ResVal) { 437 if (Slot == Record.size()) return true; 438 unsigned ValNo = (unsigned)Record[Slot++]; 439 // Adjust the ValNo, if it was encoded relative to the InstNum. 440 if (UseRelativeIDs) 441 ValNo = InstNum - ValNo; 442 if (ValNo < InstNum) { 443 // If this is not a forward reference, just return the value we already 444 // have. 445 ResVal = getFnValueByID(ValNo, nullptr); 446 return ResVal == nullptr; 447 } 448 if (Slot == Record.size()) 449 return true; 450 451 unsigned TypeNo = (unsigned)Record[Slot++]; 452 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 453 return ResVal == nullptr; 454 } 455 456 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 457 /// past the number of slots used by the value in the record. Return true if 458 /// there is an error. 459 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 460 unsigned InstNum, Type *Ty, Value *&ResVal) { 461 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 462 return true; 463 // All values currently take a single record slot. 464 ++Slot; 465 return false; 466 } 467 468 /// Like popValue, but does not increment the Slot number. 469 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 470 unsigned InstNum, Type *Ty, Value *&ResVal) { 471 ResVal = getValue(Record, Slot, InstNum, Ty); 472 return ResVal == nullptr; 473 } 474 475 /// Version of getValue that returns ResVal directly, or 0 if there is an 476 /// error. 477 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 478 unsigned InstNum, Type *Ty) { 479 if (Slot == Record.size()) return nullptr; 480 unsigned ValNo = (unsigned)Record[Slot]; 481 // Adjust the ValNo, if it was encoded relative to the InstNum. 482 if (UseRelativeIDs) 483 ValNo = InstNum - ValNo; 484 return getFnValueByID(ValNo, Ty); 485 } 486 487 /// Like getValue, but decodes signed VBRs. 488 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 489 unsigned InstNum, Type *Ty) { 490 if (Slot == Record.size()) return nullptr; 491 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 492 // Adjust the ValNo, if it was encoded relative to the InstNum. 493 if (UseRelativeIDs) 494 ValNo = InstNum - ValNo; 495 return getFnValueByID(ValNo, Ty); 496 } 497 498 /// Converts alignment exponent (i.e. power of two (or zero)) to the 499 /// corresponding alignment to use. If alignment is too large, returns 500 /// a corresponding error code. 501 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 502 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 503 std::error_code parseModule(uint64_t ResumeBit, 504 bool ShouldLazyLoadMetadata = false); 505 std::error_code parseAttributeBlock(); 506 std::error_code parseAttributeGroupBlock(); 507 std::error_code parseTypeTable(); 508 std::error_code parseTypeTableBody(); 509 std::error_code parseOperandBundleTags(); 510 511 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 512 unsigned NameIndex, Triple &TT); 513 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 514 std::error_code parseConstants(); 515 std::error_code rememberAndSkipFunctionBodies(); 516 std::error_code rememberAndSkipFunctionBody(); 517 /// Save the positions of the Metadata blocks and skip parsing the blocks. 518 std::error_code rememberAndSkipMetadata(); 519 std::error_code parseFunctionBody(Function *F); 520 std::error_code globalCleanup(); 521 std::error_code resolveGlobalAndIndirectSymbolInits(); 522 std::error_code parseMetadata(bool ModuleLevel = false); 523 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 524 StringRef Blob, 525 unsigned &NextMetadataNo); 526 std::error_code parseMetadataKinds(); 527 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 528 std::error_code 529 parseGlobalObjectAttachment(GlobalObject &GO, 530 ArrayRef<uint64_t> Record); 531 std::error_code parseMetadataAttachment(Function &F); 532 ErrorOr<std::string> parseModuleTriple(); 533 ErrorOr<bool> hasObjCCategoryInModule(); 534 std::error_code parseUseLists(); 535 std::error_code findFunctionInStream( 536 Function *F, 537 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 538 }; 539 540 /// Class to manage reading and parsing function summary index bitcode 541 /// files/sections. 542 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 543 DiagnosticHandlerFunction DiagnosticHandler; 544 545 /// Eventually points to the module index built during parsing. 546 ModuleSummaryIndex *TheIndex = nullptr; 547 548 /// Used to indicate whether caller only wants to check for the presence 549 /// of the global value summary bitcode section. All blocks are skipped, 550 /// but the SeenGlobalValSummary boolean is set. 551 bool CheckGlobalValSummaryPresenceOnly = false; 552 553 /// Indicates whether we have encountered a global value summary section 554 /// yet during parsing, used when checking if file contains global value 555 /// summary section. 556 bool SeenGlobalValSummary = false; 557 558 /// Indicates whether we have already parsed the VST, used for error checking. 559 bool SeenValueSymbolTable = false; 560 561 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 562 /// Used to enable on-demand parsing of the VST. 563 uint64_t VSTOffset = 0; 564 565 // Map to save ValueId to GUID association that was recorded in the 566 // ValueSymbolTable. It is used after the VST is parsed to convert 567 // call graph edges read from the function summary from referencing 568 // callees by their ValueId to using the GUID instead, which is how 569 // they are recorded in the summary index being built. 570 // We save a second GUID which is the same as the first one, but ignoring the 571 // linkage, i.e. for value other than local linkage they are identical. 572 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 573 ValueIdToCallGraphGUIDMap; 574 575 /// Map populated during module path string table parsing, from the 576 /// module ID to a string reference owned by the index's module 577 /// path string table, used to correlate with combined index 578 /// summary records. 579 DenseMap<uint64_t, StringRef> ModuleIdMap; 580 581 /// Original source file name recorded in a bitcode record. 582 std::string SourceFileName; 583 584 public: 585 std::error_code error(const Twine &Message); 586 587 ModuleSummaryIndexBitcodeReader( 588 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 589 bool CheckGlobalValSummaryPresenceOnly = false); 590 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 591 592 void freeState(); 593 594 void releaseBuffer(); 595 596 /// Check if the parser has encountered a summary section. 597 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 598 599 /// \brief Main interface to parsing a bitcode buffer. 600 /// \returns true if an error occurred. 601 std::error_code parseSummaryIndexInto(ModuleSummaryIndex *I); 602 603 private: 604 std::error_code parseModule(); 605 std::error_code parseValueSymbolTable( 606 uint64_t Offset, 607 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 608 std::error_code parseEntireSummary(); 609 std::error_code parseModuleStringTable(); 610 std::pair<GlobalValue::GUID, GlobalValue::GUID> 611 612 getGUIDFromValueId(unsigned ValueId); 613 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 614 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 615 bool IsOldProfileFormat, bool HasProfile); 616 }; 617 618 } // end anonymous namespace 619 620 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 621 DiagnosticSeverity Severity, 622 const Twine &Msg) 623 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 624 625 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 626 627 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 628 std::error_code EC, const Twine &Message) { 629 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 630 DiagnosticHandler(DI); 631 return EC; 632 } 633 634 static std::error_code error(LLVMContext &Context, std::error_code EC, 635 const Twine &Message) { 636 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 637 Message); 638 } 639 640 static std::error_code error(LLVMContext &Context, const Twine &Message) { 641 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 642 Message); 643 } 644 645 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 646 if (!ProducerIdentification.empty()) { 647 return ::error(Context, make_error_code(E), 648 Message + " (Producer: '" + ProducerIdentification + 649 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 650 } 651 return ::error(Context, make_error_code(E), Message); 652 } 653 654 std::error_code BitcodeReader::error(const Twine &Message) { 655 if (!ProducerIdentification.empty()) { 656 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 657 Message + " (Producer: '" + ProducerIdentification + 658 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 659 } 660 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 661 Message); 662 } 663 664 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 665 : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context), 666 MetadataList(Context) {} 667 668 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 669 if (WillMaterializeAllForwardRefs) 670 return std::error_code(); 671 672 // Prevent recursion. 673 WillMaterializeAllForwardRefs = true; 674 675 while (!BasicBlockFwdRefQueue.empty()) { 676 Function *F = BasicBlockFwdRefQueue.front(); 677 BasicBlockFwdRefQueue.pop_front(); 678 assert(F && "Expected valid function"); 679 if (!BasicBlockFwdRefs.count(F)) 680 // Already materialized. 681 continue; 682 683 // Check for a function that isn't materializable to prevent an infinite 684 // loop. When parsing a blockaddress stored in a global variable, there 685 // isn't a trivial way to check if a function will have a body without a 686 // linear search through FunctionsWithBodies, so just check it here. 687 if (!F->isMaterializable()) 688 return error("Never resolved function from blockaddress"); 689 690 // Try to materialize F. 691 if (std::error_code EC = materialize(F)) 692 return EC; 693 } 694 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 695 696 // Reset state. 697 WillMaterializeAllForwardRefs = false; 698 return std::error_code(); 699 } 700 701 void BitcodeReader::freeState() { 702 Buffer = nullptr; 703 std::vector<Type*>().swap(TypeList); 704 ValueList.clear(); 705 MetadataList.clear(); 706 std::vector<Comdat *>().swap(ComdatList); 707 708 std::vector<AttributeSet>().swap(MAttributes); 709 std::vector<BasicBlock*>().swap(FunctionBBs); 710 std::vector<Function*>().swap(FunctionsWithBodies); 711 DeferredFunctionInfo.clear(); 712 DeferredMetadataInfo.clear(); 713 MDKindMap.clear(); 714 715 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 716 BasicBlockFwdRefQueue.clear(); 717 } 718 719 //===----------------------------------------------------------------------===// 720 // Helper functions to implement forward reference resolution, etc. 721 //===----------------------------------------------------------------------===// 722 723 /// Convert a string from a record into an std::string, return true on failure. 724 template <typename StrTy> 725 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 726 StrTy &Result) { 727 if (Idx > Record.size()) 728 return true; 729 730 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 731 Result += (char)Record[i]; 732 return false; 733 } 734 735 static bool hasImplicitComdat(size_t Val) { 736 switch (Val) { 737 default: 738 return false; 739 case 1: // Old WeakAnyLinkage 740 case 4: // Old LinkOnceAnyLinkage 741 case 10: // Old WeakODRLinkage 742 case 11: // Old LinkOnceODRLinkage 743 return true; 744 } 745 } 746 747 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 748 switch (Val) { 749 default: // Map unknown/new linkages to external 750 case 0: 751 return GlobalValue::ExternalLinkage; 752 case 2: 753 return GlobalValue::AppendingLinkage; 754 case 3: 755 return GlobalValue::InternalLinkage; 756 case 5: 757 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 758 case 6: 759 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 760 case 7: 761 return GlobalValue::ExternalWeakLinkage; 762 case 8: 763 return GlobalValue::CommonLinkage; 764 case 9: 765 return GlobalValue::PrivateLinkage; 766 case 12: 767 return GlobalValue::AvailableExternallyLinkage; 768 case 13: 769 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 770 case 14: 771 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 772 case 15: 773 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 774 case 1: // Old value with implicit comdat. 775 case 16: 776 return GlobalValue::WeakAnyLinkage; 777 case 10: // Old value with implicit comdat. 778 case 17: 779 return GlobalValue::WeakODRLinkage; 780 case 4: // Old value with implicit comdat. 781 case 18: 782 return GlobalValue::LinkOnceAnyLinkage; 783 case 11: // Old value with implicit comdat. 784 case 19: 785 return GlobalValue::LinkOnceODRLinkage; 786 } 787 } 788 789 /// Decode the flags for GlobalValue in the summary. 790 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 791 uint64_t Version) { 792 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 793 // like getDecodedLinkage() above. Any future change to the linkage enum and 794 // to getDecodedLinkage() will need to be taken into account here as above. 795 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 796 RawFlags = RawFlags >> 4; 797 bool NoRename = RawFlags & 0x1; 798 bool IsNotViableToInline = RawFlags & 0x2; 799 return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline); 800 } 801 802 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 803 switch (Val) { 804 default: // Map unknown visibilities to default. 805 case 0: return GlobalValue::DefaultVisibility; 806 case 1: return GlobalValue::HiddenVisibility; 807 case 2: return GlobalValue::ProtectedVisibility; 808 } 809 } 810 811 static GlobalValue::DLLStorageClassTypes 812 getDecodedDLLStorageClass(unsigned Val) { 813 switch (Val) { 814 default: // Map unknown values to default. 815 case 0: return GlobalValue::DefaultStorageClass; 816 case 1: return GlobalValue::DLLImportStorageClass; 817 case 2: return GlobalValue::DLLExportStorageClass; 818 } 819 } 820 821 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 822 switch (Val) { 823 case 0: return GlobalVariable::NotThreadLocal; 824 default: // Map unknown non-zero value to general dynamic. 825 case 1: return GlobalVariable::GeneralDynamicTLSModel; 826 case 2: return GlobalVariable::LocalDynamicTLSModel; 827 case 3: return GlobalVariable::InitialExecTLSModel; 828 case 4: return GlobalVariable::LocalExecTLSModel; 829 } 830 } 831 832 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 833 switch (Val) { 834 default: // Map unknown to UnnamedAddr::None. 835 case 0: return GlobalVariable::UnnamedAddr::None; 836 case 1: return GlobalVariable::UnnamedAddr::Global; 837 case 2: return GlobalVariable::UnnamedAddr::Local; 838 } 839 } 840 841 static int getDecodedCastOpcode(unsigned Val) { 842 switch (Val) { 843 default: return -1; 844 case bitc::CAST_TRUNC : return Instruction::Trunc; 845 case bitc::CAST_ZEXT : return Instruction::ZExt; 846 case bitc::CAST_SEXT : return Instruction::SExt; 847 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 848 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 849 case bitc::CAST_UITOFP : return Instruction::UIToFP; 850 case bitc::CAST_SITOFP : return Instruction::SIToFP; 851 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 852 case bitc::CAST_FPEXT : return Instruction::FPExt; 853 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 854 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 855 case bitc::CAST_BITCAST : return Instruction::BitCast; 856 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 857 } 858 } 859 860 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 861 bool IsFP = Ty->isFPOrFPVectorTy(); 862 // BinOps are only valid for int/fp or vector of int/fp types 863 if (!IsFP && !Ty->isIntOrIntVectorTy()) 864 return -1; 865 866 switch (Val) { 867 default: 868 return -1; 869 case bitc::BINOP_ADD: 870 return IsFP ? Instruction::FAdd : Instruction::Add; 871 case bitc::BINOP_SUB: 872 return IsFP ? Instruction::FSub : Instruction::Sub; 873 case bitc::BINOP_MUL: 874 return IsFP ? Instruction::FMul : Instruction::Mul; 875 case bitc::BINOP_UDIV: 876 return IsFP ? -1 : Instruction::UDiv; 877 case bitc::BINOP_SDIV: 878 return IsFP ? Instruction::FDiv : Instruction::SDiv; 879 case bitc::BINOP_UREM: 880 return IsFP ? -1 : Instruction::URem; 881 case bitc::BINOP_SREM: 882 return IsFP ? Instruction::FRem : Instruction::SRem; 883 case bitc::BINOP_SHL: 884 return IsFP ? -1 : Instruction::Shl; 885 case bitc::BINOP_LSHR: 886 return IsFP ? -1 : Instruction::LShr; 887 case bitc::BINOP_ASHR: 888 return IsFP ? -1 : Instruction::AShr; 889 case bitc::BINOP_AND: 890 return IsFP ? -1 : Instruction::And; 891 case bitc::BINOP_OR: 892 return IsFP ? -1 : Instruction::Or; 893 case bitc::BINOP_XOR: 894 return IsFP ? -1 : Instruction::Xor; 895 } 896 } 897 898 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 899 switch (Val) { 900 default: return AtomicRMWInst::BAD_BINOP; 901 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 902 case bitc::RMW_ADD: return AtomicRMWInst::Add; 903 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 904 case bitc::RMW_AND: return AtomicRMWInst::And; 905 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 906 case bitc::RMW_OR: return AtomicRMWInst::Or; 907 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 908 case bitc::RMW_MAX: return AtomicRMWInst::Max; 909 case bitc::RMW_MIN: return AtomicRMWInst::Min; 910 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 911 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 912 } 913 } 914 915 static AtomicOrdering getDecodedOrdering(unsigned Val) { 916 switch (Val) { 917 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 918 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 919 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 920 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 921 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 922 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 923 default: // Map unknown orderings to sequentially-consistent. 924 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 925 } 926 } 927 928 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 929 switch (Val) { 930 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 931 default: // Map unknown scopes to cross-thread. 932 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 933 } 934 } 935 936 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 937 switch (Val) { 938 default: // Map unknown selection kinds to any. 939 case bitc::COMDAT_SELECTION_KIND_ANY: 940 return Comdat::Any; 941 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 942 return Comdat::ExactMatch; 943 case bitc::COMDAT_SELECTION_KIND_LARGEST: 944 return Comdat::Largest; 945 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 946 return Comdat::NoDuplicates; 947 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 948 return Comdat::SameSize; 949 } 950 } 951 952 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 953 FastMathFlags FMF; 954 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 955 FMF.setUnsafeAlgebra(); 956 if (0 != (Val & FastMathFlags::NoNaNs)) 957 FMF.setNoNaNs(); 958 if (0 != (Val & FastMathFlags::NoInfs)) 959 FMF.setNoInfs(); 960 if (0 != (Val & FastMathFlags::NoSignedZeros)) 961 FMF.setNoSignedZeros(); 962 if (0 != (Val & FastMathFlags::AllowReciprocal)) 963 FMF.setAllowReciprocal(); 964 return FMF; 965 } 966 967 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 968 switch (Val) { 969 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 970 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 971 } 972 } 973 974 namespace llvm { 975 namespace { 976 977 /// \brief A class for maintaining the slot number definition 978 /// as a placeholder for the actual definition for forward constants defs. 979 class ConstantPlaceHolder : public ConstantExpr { 980 void operator=(const ConstantPlaceHolder &) = delete; 981 982 public: 983 // allocate space for exactly one operand 984 void *operator new(size_t s) { return User::operator new(s, 1); } 985 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 986 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 987 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 988 } 989 990 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 991 static bool classof(const Value *V) { 992 return isa<ConstantExpr>(V) && 993 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 994 } 995 996 /// Provide fast operand accessors 997 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 998 }; 999 1000 } // end anonymous namespace 1001 1002 // FIXME: can we inherit this from ConstantExpr? 1003 template <> 1004 struct OperandTraits<ConstantPlaceHolder> : 1005 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 1006 }; 1007 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 1008 1009 } // end namespace llvm 1010 1011 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 1012 if (Idx == size()) { 1013 push_back(V); 1014 return; 1015 } 1016 1017 if (Idx >= size()) 1018 resize(Idx+1); 1019 1020 WeakVH &OldV = ValuePtrs[Idx]; 1021 if (!OldV) { 1022 OldV = V; 1023 return; 1024 } 1025 1026 // Handle constants and non-constants (e.g. instrs) differently for 1027 // efficiency. 1028 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1029 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1030 OldV = V; 1031 } else { 1032 // If there was a forward reference to this value, replace it. 1033 Value *PrevVal = OldV; 1034 OldV->replaceAllUsesWith(V); 1035 delete PrevVal; 1036 } 1037 } 1038 1039 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1040 Type *Ty) { 1041 if (Idx >= size()) 1042 resize(Idx + 1); 1043 1044 if (Value *V = ValuePtrs[Idx]) { 1045 if (Ty != V->getType()) 1046 report_fatal_error("Type mismatch in constant table!"); 1047 return cast<Constant>(V); 1048 } 1049 1050 // Create and return a placeholder, which will later be RAUW'd. 1051 Constant *C = new ConstantPlaceHolder(Ty, Context); 1052 ValuePtrs[Idx] = C; 1053 return C; 1054 } 1055 1056 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1057 // Bail out for a clearly invalid value. This would make us call resize(0) 1058 if (Idx == std::numeric_limits<unsigned>::max()) 1059 return nullptr; 1060 1061 if (Idx >= size()) 1062 resize(Idx + 1); 1063 1064 if (Value *V = ValuePtrs[Idx]) { 1065 // If the types don't match, it's invalid. 1066 if (Ty && Ty != V->getType()) 1067 return nullptr; 1068 return V; 1069 } 1070 1071 // No type specified, must be invalid reference. 1072 if (!Ty) return nullptr; 1073 1074 // Create and return a placeholder, which will later be RAUW'd. 1075 Value *V = new Argument(Ty); 1076 ValuePtrs[Idx] = V; 1077 return V; 1078 } 1079 1080 /// Once all constants are read, this method bulk resolves any forward 1081 /// references. The idea behind this is that we sometimes get constants (such 1082 /// as large arrays) which reference *many* forward ref constants. Replacing 1083 /// each of these causes a lot of thrashing when building/reuniquing the 1084 /// constant. Instead of doing this, we look at all the uses and rewrite all 1085 /// the place holders at once for any constant that uses a placeholder. 1086 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1087 // Sort the values by-pointer so that they are efficient to look up with a 1088 // binary search. 1089 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1090 1091 SmallVector<Constant*, 64> NewOps; 1092 1093 while (!ResolveConstants.empty()) { 1094 Value *RealVal = operator[](ResolveConstants.back().second); 1095 Constant *Placeholder = ResolveConstants.back().first; 1096 ResolveConstants.pop_back(); 1097 1098 // Loop over all users of the placeholder, updating them to reference the 1099 // new value. If they reference more than one placeholder, update them all 1100 // at once. 1101 while (!Placeholder->use_empty()) { 1102 auto UI = Placeholder->user_begin(); 1103 User *U = *UI; 1104 1105 // If the using object isn't uniqued, just update the operands. This 1106 // handles instructions and initializers for global variables. 1107 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1108 UI.getUse().set(RealVal); 1109 continue; 1110 } 1111 1112 // Otherwise, we have a constant that uses the placeholder. Replace that 1113 // constant with a new constant that has *all* placeholder uses updated. 1114 Constant *UserC = cast<Constant>(U); 1115 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1116 I != E; ++I) { 1117 Value *NewOp; 1118 if (!isa<ConstantPlaceHolder>(*I)) { 1119 // Not a placeholder reference. 1120 NewOp = *I; 1121 } else if (*I == Placeholder) { 1122 // Common case is that it just references this one placeholder. 1123 NewOp = RealVal; 1124 } else { 1125 // Otherwise, look up the placeholder in ResolveConstants. 1126 ResolveConstantsTy::iterator It = 1127 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1128 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1129 0)); 1130 assert(It != ResolveConstants.end() && It->first == *I); 1131 NewOp = operator[](It->second); 1132 } 1133 1134 NewOps.push_back(cast<Constant>(NewOp)); 1135 } 1136 1137 // Make the new constant. 1138 Constant *NewC; 1139 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1140 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1141 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1142 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1143 } else if (isa<ConstantVector>(UserC)) { 1144 NewC = ConstantVector::get(NewOps); 1145 } else { 1146 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1147 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1148 } 1149 1150 UserC->replaceAllUsesWith(NewC); 1151 UserC->destroyConstant(); 1152 NewOps.clear(); 1153 } 1154 1155 // Update all ValueHandles, they should be the only users at this point. 1156 Placeholder->replaceAllUsesWith(RealVal); 1157 delete Placeholder; 1158 } 1159 } 1160 1161 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1162 if (Idx == size()) { 1163 push_back(MD); 1164 return; 1165 } 1166 1167 if (Idx >= size()) 1168 resize(Idx+1); 1169 1170 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1171 if (!OldMD) { 1172 OldMD.reset(MD); 1173 return; 1174 } 1175 1176 // If there was a forward reference to this value, replace it. 1177 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1178 PrevMD->replaceAllUsesWith(MD); 1179 --NumFwdRefs; 1180 } 1181 1182 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1183 if (Idx >= size()) 1184 resize(Idx + 1); 1185 1186 if (Metadata *MD = MetadataPtrs[Idx]) 1187 return MD; 1188 1189 // Track forward refs to be resolved later. 1190 if (AnyFwdRefs) { 1191 MinFwdRef = std::min(MinFwdRef, Idx); 1192 MaxFwdRef = std::max(MaxFwdRef, Idx); 1193 } else { 1194 AnyFwdRefs = true; 1195 MinFwdRef = MaxFwdRef = Idx; 1196 } 1197 ++NumFwdRefs; 1198 1199 // Create and return a placeholder, which will later be RAUW'd. 1200 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1201 MetadataPtrs[Idx].reset(MD); 1202 return MD; 1203 } 1204 1205 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1206 Metadata *MD = lookup(Idx); 1207 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1208 if (!N->isResolved()) 1209 return nullptr; 1210 return MD; 1211 } 1212 1213 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1214 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1215 } 1216 1217 void BitcodeReaderMetadataList::tryToResolveCycles() { 1218 if (NumFwdRefs) 1219 // Still forward references... can't resolve cycles. 1220 return; 1221 1222 bool DidReplaceTypeRefs = false; 1223 1224 // Give up on finding a full definition for any forward decls that remain. 1225 for (const auto &Ref : OldTypeRefs.FwdDecls) 1226 OldTypeRefs.Final.insert(Ref); 1227 OldTypeRefs.FwdDecls.clear(); 1228 1229 // Upgrade from old type ref arrays. In strange cases, this could add to 1230 // OldTypeRefs.Unknown. 1231 for (const auto &Array : OldTypeRefs.Arrays) { 1232 DidReplaceTypeRefs = true; 1233 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1234 } 1235 OldTypeRefs.Arrays.clear(); 1236 1237 // Replace old string-based type refs with the resolved node, if possible. 1238 // If we haven't seen the node, leave it to the verifier to complain about 1239 // the invalid string reference. 1240 for (const auto &Ref : OldTypeRefs.Unknown) { 1241 DidReplaceTypeRefs = true; 1242 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1243 Ref.second->replaceAllUsesWith(CT); 1244 else 1245 Ref.second->replaceAllUsesWith(Ref.first); 1246 } 1247 OldTypeRefs.Unknown.clear(); 1248 1249 // Make sure all the upgraded types are resolved. 1250 if (DidReplaceTypeRefs) { 1251 AnyFwdRefs = true; 1252 MinFwdRef = 0; 1253 MaxFwdRef = MetadataPtrs.size() - 1; 1254 } 1255 1256 if (!AnyFwdRefs) 1257 // Nothing to do. 1258 return; 1259 1260 // Resolve any cycles. 1261 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1262 auto &MD = MetadataPtrs[I]; 1263 auto *N = dyn_cast_or_null<MDNode>(MD); 1264 if (!N) 1265 continue; 1266 1267 assert(!N->isTemporary() && "Unexpected forward reference"); 1268 N->resolveCycles(); 1269 } 1270 1271 // Make sure we return early again until there's another forward ref. 1272 AnyFwdRefs = false; 1273 } 1274 1275 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1276 DICompositeType &CT) { 1277 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1278 if (CT.isForwardDecl()) 1279 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1280 else 1281 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1282 } 1283 1284 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1285 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1286 if (LLVM_LIKELY(!UUID)) 1287 return MaybeUUID; 1288 1289 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1290 return CT; 1291 1292 auto &Ref = OldTypeRefs.Unknown[UUID]; 1293 if (!Ref) 1294 Ref = MDNode::getTemporary(Context, None); 1295 return Ref.get(); 1296 } 1297 1298 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1299 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1300 if (!Tuple || Tuple->isDistinct()) 1301 return MaybeTuple; 1302 1303 // Look through the array immediately if possible. 1304 if (!Tuple->isTemporary()) 1305 return resolveTypeRefArray(Tuple); 1306 1307 // Create and return a placeholder to use for now. Eventually 1308 // resolveTypeRefArrays() will be resolve this forward reference. 1309 OldTypeRefs.Arrays.emplace_back( 1310 std::piecewise_construct, std::forward_as_tuple(Tuple), 1311 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1312 return OldTypeRefs.Arrays.back().second.get(); 1313 } 1314 1315 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1316 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1317 if (!Tuple || Tuple->isDistinct()) 1318 return MaybeTuple; 1319 1320 // Look through the DITypeRefArray, upgrading each DITypeRef. 1321 SmallVector<Metadata *, 32> Ops; 1322 Ops.reserve(Tuple->getNumOperands()); 1323 for (Metadata *MD : Tuple->operands()) 1324 Ops.push_back(upgradeTypeRef(MD)); 1325 1326 return MDTuple::get(Context, Ops); 1327 } 1328 1329 Type *BitcodeReader::getTypeByID(unsigned ID) { 1330 // The type table size is always specified correctly. 1331 if (ID >= TypeList.size()) 1332 return nullptr; 1333 1334 if (Type *Ty = TypeList[ID]) 1335 return Ty; 1336 1337 // If we have a forward reference, the only possible case is when it is to a 1338 // named struct. Just create a placeholder for now. 1339 return TypeList[ID] = createIdentifiedStructType(Context); 1340 } 1341 1342 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1343 StringRef Name) { 1344 auto *Ret = StructType::create(Context, Name); 1345 IdentifiedStructTypes.push_back(Ret); 1346 return Ret; 1347 } 1348 1349 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1350 auto *Ret = StructType::create(Context); 1351 IdentifiedStructTypes.push_back(Ret); 1352 return Ret; 1353 } 1354 1355 //===----------------------------------------------------------------------===// 1356 // Functions for parsing blocks from the bitcode file 1357 //===----------------------------------------------------------------------===// 1358 1359 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1360 switch (Val) { 1361 case Attribute::EndAttrKinds: 1362 llvm_unreachable("Synthetic enumerators which should never get here"); 1363 1364 case Attribute::None: return 0; 1365 case Attribute::ZExt: return 1 << 0; 1366 case Attribute::SExt: return 1 << 1; 1367 case Attribute::NoReturn: return 1 << 2; 1368 case Attribute::InReg: return 1 << 3; 1369 case Attribute::StructRet: return 1 << 4; 1370 case Attribute::NoUnwind: return 1 << 5; 1371 case Attribute::NoAlias: return 1 << 6; 1372 case Attribute::ByVal: return 1 << 7; 1373 case Attribute::Nest: return 1 << 8; 1374 case Attribute::ReadNone: return 1 << 9; 1375 case Attribute::ReadOnly: return 1 << 10; 1376 case Attribute::NoInline: return 1 << 11; 1377 case Attribute::AlwaysInline: return 1 << 12; 1378 case Attribute::OptimizeForSize: return 1 << 13; 1379 case Attribute::StackProtect: return 1 << 14; 1380 case Attribute::StackProtectReq: return 1 << 15; 1381 case Attribute::Alignment: return 31 << 16; 1382 case Attribute::NoCapture: return 1 << 21; 1383 case Attribute::NoRedZone: return 1 << 22; 1384 case Attribute::NoImplicitFloat: return 1 << 23; 1385 case Attribute::Naked: return 1 << 24; 1386 case Attribute::InlineHint: return 1 << 25; 1387 case Attribute::StackAlignment: return 7 << 26; 1388 case Attribute::ReturnsTwice: return 1 << 29; 1389 case Attribute::UWTable: return 1 << 30; 1390 case Attribute::NonLazyBind: return 1U << 31; 1391 case Attribute::SanitizeAddress: return 1ULL << 32; 1392 case Attribute::MinSize: return 1ULL << 33; 1393 case Attribute::NoDuplicate: return 1ULL << 34; 1394 case Attribute::StackProtectStrong: return 1ULL << 35; 1395 case Attribute::SanitizeThread: return 1ULL << 36; 1396 case Attribute::SanitizeMemory: return 1ULL << 37; 1397 case Attribute::NoBuiltin: return 1ULL << 38; 1398 case Attribute::Returned: return 1ULL << 39; 1399 case Attribute::Cold: return 1ULL << 40; 1400 case Attribute::Builtin: return 1ULL << 41; 1401 case Attribute::OptimizeNone: return 1ULL << 42; 1402 case Attribute::InAlloca: return 1ULL << 43; 1403 case Attribute::NonNull: return 1ULL << 44; 1404 case Attribute::JumpTable: return 1ULL << 45; 1405 case Attribute::Convergent: return 1ULL << 46; 1406 case Attribute::SafeStack: return 1ULL << 47; 1407 case Attribute::NoRecurse: return 1ULL << 48; 1408 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1409 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1410 case Attribute::SwiftSelf: return 1ULL << 51; 1411 case Attribute::SwiftError: return 1ULL << 52; 1412 case Attribute::WriteOnly: return 1ULL << 53; 1413 case Attribute::Dereferenceable: 1414 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1415 break; 1416 case Attribute::DereferenceableOrNull: 1417 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1418 "format"); 1419 break; 1420 case Attribute::ArgMemOnly: 1421 llvm_unreachable("argmemonly attribute not supported in raw format"); 1422 break; 1423 case Attribute::AllocSize: 1424 llvm_unreachable("allocsize not supported in raw format"); 1425 break; 1426 } 1427 llvm_unreachable("Unsupported attribute type"); 1428 } 1429 1430 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1431 if (!Val) return; 1432 1433 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1434 I = Attribute::AttrKind(I + 1)) { 1435 if (I == Attribute::Dereferenceable || 1436 I == Attribute::DereferenceableOrNull || 1437 I == Attribute::ArgMemOnly || 1438 I == Attribute::AllocSize) 1439 continue; 1440 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1441 if (I == Attribute::Alignment) 1442 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1443 else if (I == Attribute::StackAlignment) 1444 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1445 else 1446 B.addAttribute(I); 1447 } 1448 } 1449 } 1450 1451 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1452 /// been decoded from the given integer. This function must stay in sync with 1453 /// 'encodeLLVMAttributesForBitcode'. 1454 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1455 uint64_t EncodedAttrs) { 1456 // FIXME: Remove in 4.0. 1457 1458 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1459 // the bits above 31 down by 11 bits. 1460 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1461 assert((!Alignment || isPowerOf2_32(Alignment)) && 1462 "Alignment must be a power of two."); 1463 1464 if (Alignment) 1465 B.addAlignmentAttr(Alignment); 1466 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1467 (EncodedAttrs & 0xffff)); 1468 } 1469 1470 std::error_code BitcodeReader::parseAttributeBlock() { 1471 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1472 return error("Invalid record"); 1473 1474 if (!MAttributes.empty()) 1475 return error("Invalid multiple blocks"); 1476 1477 SmallVector<uint64_t, 64> Record; 1478 1479 SmallVector<AttributeSet, 8> Attrs; 1480 1481 // Read all the records. 1482 while (true) { 1483 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1484 1485 switch (Entry.Kind) { 1486 case BitstreamEntry::SubBlock: // Handled for us already. 1487 case BitstreamEntry::Error: 1488 return error("Malformed block"); 1489 case BitstreamEntry::EndBlock: 1490 return std::error_code(); 1491 case BitstreamEntry::Record: 1492 // The interesting case. 1493 break; 1494 } 1495 1496 // Read a record. 1497 Record.clear(); 1498 switch (Stream.readRecord(Entry.ID, Record)) { 1499 default: // Default behavior: ignore. 1500 break; 1501 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1502 // FIXME: Remove in 4.0. 1503 if (Record.size() & 1) 1504 return error("Invalid record"); 1505 1506 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1507 AttrBuilder B; 1508 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1509 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1510 } 1511 1512 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1513 Attrs.clear(); 1514 break; 1515 } 1516 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1517 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1518 Attrs.push_back(MAttributeGroups[Record[i]]); 1519 1520 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1521 Attrs.clear(); 1522 break; 1523 } 1524 } 1525 } 1526 } 1527 1528 // Returns Attribute::None on unrecognized codes. 1529 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1530 switch (Code) { 1531 default: 1532 return Attribute::None; 1533 case bitc::ATTR_KIND_ALIGNMENT: 1534 return Attribute::Alignment; 1535 case bitc::ATTR_KIND_ALWAYS_INLINE: 1536 return Attribute::AlwaysInline; 1537 case bitc::ATTR_KIND_ARGMEMONLY: 1538 return Attribute::ArgMemOnly; 1539 case bitc::ATTR_KIND_BUILTIN: 1540 return Attribute::Builtin; 1541 case bitc::ATTR_KIND_BY_VAL: 1542 return Attribute::ByVal; 1543 case bitc::ATTR_KIND_IN_ALLOCA: 1544 return Attribute::InAlloca; 1545 case bitc::ATTR_KIND_COLD: 1546 return Attribute::Cold; 1547 case bitc::ATTR_KIND_CONVERGENT: 1548 return Attribute::Convergent; 1549 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1550 return Attribute::InaccessibleMemOnly; 1551 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1552 return Attribute::InaccessibleMemOrArgMemOnly; 1553 case bitc::ATTR_KIND_INLINE_HINT: 1554 return Attribute::InlineHint; 1555 case bitc::ATTR_KIND_IN_REG: 1556 return Attribute::InReg; 1557 case bitc::ATTR_KIND_JUMP_TABLE: 1558 return Attribute::JumpTable; 1559 case bitc::ATTR_KIND_MIN_SIZE: 1560 return Attribute::MinSize; 1561 case bitc::ATTR_KIND_NAKED: 1562 return Attribute::Naked; 1563 case bitc::ATTR_KIND_NEST: 1564 return Attribute::Nest; 1565 case bitc::ATTR_KIND_NO_ALIAS: 1566 return Attribute::NoAlias; 1567 case bitc::ATTR_KIND_NO_BUILTIN: 1568 return Attribute::NoBuiltin; 1569 case bitc::ATTR_KIND_NO_CAPTURE: 1570 return Attribute::NoCapture; 1571 case bitc::ATTR_KIND_NO_DUPLICATE: 1572 return Attribute::NoDuplicate; 1573 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1574 return Attribute::NoImplicitFloat; 1575 case bitc::ATTR_KIND_NO_INLINE: 1576 return Attribute::NoInline; 1577 case bitc::ATTR_KIND_NO_RECURSE: 1578 return Attribute::NoRecurse; 1579 case bitc::ATTR_KIND_NON_LAZY_BIND: 1580 return Attribute::NonLazyBind; 1581 case bitc::ATTR_KIND_NON_NULL: 1582 return Attribute::NonNull; 1583 case bitc::ATTR_KIND_DEREFERENCEABLE: 1584 return Attribute::Dereferenceable; 1585 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1586 return Attribute::DereferenceableOrNull; 1587 case bitc::ATTR_KIND_ALLOC_SIZE: 1588 return Attribute::AllocSize; 1589 case bitc::ATTR_KIND_NO_RED_ZONE: 1590 return Attribute::NoRedZone; 1591 case bitc::ATTR_KIND_NO_RETURN: 1592 return Attribute::NoReturn; 1593 case bitc::ATTR_KIND_NO_UNWIND: 1594 return Attribute::NoUnwind; 1595 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1596 return Attribute::OptimizeForSize; 1597 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1598 return Attribute::OptimizeNone; 1599 case bitc::ATTR_KIND_READ_NONE: 1600 return Attribute::ReadNone; 1601 case bitc::ATTR_KIND_READ_ONLY: 1602 return Attribute::ReadOnly; 1603 case bitc::ATTR_KIND_RETURNED: 1604 return Attribute::Returned; 1605 case bitc::ATTR_KIND_RETURNS_TWICE: 1606 return Attribute::ReturnsTwice; 1607 case bitc::ATTR_KIND_S_EXT: 1608 return Attribute::SExt; 1609 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1610 return Attribute::StackAlignment; 1611 case bitc::ATTR_KIND_STACK_PROTECT: 1612 return Attribute::StackProtect; 1613 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1614 return Attribute::StackProtectReq; 1615 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1616 return Attribute::StackProtectStrong; 1617 case bitc::ATTR_KIND_SAFESTACK: 1618 return Attribute::SafeStack; 1619 case bitc::ATTR_KIND_STRUCT_RET: 1620 return Attribute::StructRet; 1621 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1622 return Attribute::SanitizeAddress; 1623 case bitc::ATTR_KIND_SANITIZE_THREAD: 1624 return Attribute::SanitizeThread; 1625 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1626 return Attribute::SanitizeMemory; 1627 case bitc::ATTR_KIND_SWIFT_ERROR: 1628 return Attribute::SwiftError; 1629 case bitc::ATTR_KIND_SWIFT_SELF: 1630 return Attribute::SwiftSelf; 1631 case bitc::ATTR_KIND_UW_TABLE: 1632 return Attribute::UWTable; 1633 case bitc::ATTR_KIND_WRITEONLY: 1634 return Attribute::WriteOnly; 1635 case bitc::ATTR_KIND_Z_EXT: 1636 return Attribute::ZExt; 1637 } 1638 } 1639 1640 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1641 unsigned &Alignment) { 1642 // Note: Alignment in bitcode files is incremented by 1, so that zero 1643 // can be used for default alignment. 1644 if (Exponent > Value::MaxAlignmentExponent + 1) 1645 return error("Invalid alignment value"); 1646 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1647 return std::error_code(); 1648 } 1649 1650 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1651 Attribute::AttrKind *Kind) { 1652 *Kind = getAttrFromCode(Code); 1653 if (*Kind == Attribute::None) 1654 return error(BitcodeError::CorruptedBitcode, 1655 "Unknown attribute kind (" + Twine(Code) + ")"); 1656 return std::error_code(); 1657 } 1658 1659 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1660 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1661 return error("Invalid record"); 1662 1663 if (!MAttributeGroups.empty()) 1664 return error("Invalid multiple blocks"); 1665 1666 SmallVector<uint64_t, 64> Record; 1667 1668 // Read all the records. 1669 while (true) { 1670 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1671 1672 switch (Entry.Kind) { 1673 case BitstreamEntry::SubBlock: // Handled for us already. 1674 case BitstreamEntry::Error: 1675 return error("Malformed block"); 1676 case BitstreamEntry::EndBlock: 1677 return std::error_code(); 1678 case BitstreamEntry::Record: 1679 // The interesting case. 1680 break; 1681 } 1682 1683 // Read a record. 1684 Record.clear(); 1685 switch (Stream.readRecord(Entry.ID, Record)) { 1686 default: // Default behavior: ignore. 1687 break; 1688 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1689 if (Record.size() < 3) 1690 return error("Invalid record"); 1691 1692 uint64_t GrpID = Record[0]; 1693 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1694 1695 AttrBuilder B; 1696 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1697 if (Record[i] == 0) { // Enum attribute 1698 Attribute::AttrKind Kind; 1699 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1700 return EC; 1701 1702 B.addAttribute(Kind); 1703 } else if (Record[i] == 1) { // Integer attribute 1704 Attribute::AttrKind Kind; 1705 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1706 return EC; 1707 if (Kind == Attribute::Alignment) 1708 B.addAlignmentAttr(Record[++i]); 1709 else if (Kind == Attribute::StackAlignment) 1710 B.addStackAlignmentAttr(Record[++i]); 1711 else if (Kind == Attribute::Dereferenceable) 1712 B.addDereferenceableAttr(Record[++i]); 1713 else if (Kind == Attribute::DereferenceableOrNull) 1714 B.addDereferenceableOrNullAttr(Record[++i]); 1715 else if (Kind == Attribute::AllocSize) 1716 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1717 } else { // String attribute 1718 assert((Record[i] == 3 || Record[i] == 4) && 1719 "Invalid attribute group entry"); 1720 bool HasValue = (Record[i++] == 4); 1721 SmallString<64> KindStr; 1722 SmallString<64> ValStr; 1723 1724 while (Record[i] != 0 && i != e) 1725 KindStr += Record[i++]; 1726 assert(Record[i] == 0 && "Kind string not null terminated"); 1727 1728 if (HasValue) { 1729 // Has a value associated with it. 1730 ++i; // Skip the '0' that terminates the "kind" string. 1731 while (Record[i] != 0 && i != e) 1732 ValStr += Record[i++]; 1733 assert(Record[i] == 0 && "Value string not null terminated"); 1734 } 1735 1736 B.addAttribute(KindStr.str(), ValStr.str()); 1737 } 1738 } 1739 1740 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1741 break; 1742 } 1743 } 1744 } 1745 } 1746 1747 std::error_code BitcodeReader::parseTypeTable() { 1748 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1749 return error("Invalid record"); 1750 1751 return parseTypeTableBody(); 1752 } 1753 1754 std::error_code BitcodeReader::parseTypeTableBody() { 1755 if (!TypeList.empty()) 1756 return error("Invalid multiple blocks"); 1757 1758 SmallVector<uint64_t, 64> Record; 1759 unsigned NumRecords = 0; 1760 1761 SmallString<64> TypeName; 1762 1763 // Read all the records for this type table. 1764 while (true) { 1765 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1766 1767 switch (Entry.Kind) { 1768 case BitstreamEntry::SubBlock: // Handled for us already. 1769 case BitstreamEntry::Error: 1770 return error("Malformed block"); 1771 case BitstreamEntry::EndBlock: 1772 if (NumRecords != TypeList.size()) 1773 return error("Malformed block"); 1774 return std::error_code(); 1775 case BitstreamEntry::Record: 1776 // The interesting case. 1777 break; 1778 } 1779 1780 // Read a record. 1781 Record.clear(); 1782 Type *ResultTy = nullptr; 1783 switch (Stream.readRecord(Entry.ID, Record)) { 1784 default: 1785 return error("Invalid value"); 1786 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1787 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1788 // type list. This allows us to reserve space. 1789 if (Record.size() < 1) 1790 return error("Invalid record"); 1791 TypeList.resize(Record[0]); 1792 continue; 1793 case bitc::TYPE_CODE_VOID: // VOID 1794 ResultTy = Type::getVoidTy(Context); 1795 break; 1796 case bitc::TYPE_CODE_HALF: // HALF 1797 ResultTy = Type::getHalfTy(Context); 1798 break; 1799 case bitc::TYPE_CODE_FLOAT: // FLOAT 1800 ResultTy = Type::getFloatTy(Context); 1801 break; 1802 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1803 ResultTy = Type::getDoubleTy(Context); 1804 break; 1805 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1806 ResultTy = Type::getX86_FP80Ty(Context); 1807 break; 1808 case bitc::TYPE_CODE_FP128: // FP128 1809 ResultTy = Type::getFP128Ty(Context); 1810 break; 1811 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1812 ResultTy = Type::getPPC_FP128Ty(Context); 1813 break; 1814 case bitc::TYPE_CODE_LABEL: // LABEL 1815 ResultTy = Type::getLabelTy(Context); 1816 break; 1817 case bitc::TYPE_CODE_METADATA: // METADATA 1818 ResultTy = Type::getMetadataTy(Context); 1819 break; 1820 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1821 ResultTy = Type::getX86_MMXTy(Context); 1822 break; 1823 case bitc::TYPE_CODE_TOKEN: // TOKEN 1824 ResultTy = Type::getTokenTy(Context); 1825 break; 1826 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1827 if (Record.size() < 1) 1828 return error("Invalid record"); 1829 1830 uint64_t NumBits = Record[0]; 1831 if (NumBits < IntegerType::MIN_INT_BITS || 1832 NumBits > IntegerType::MAX_INT_BITS) 1833 return error("Bitwidth for integer type out of range"); 1834 ResultTy = IntegerType::get(Context, NumBits); 1835 break; 1836 } 1837 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1838 // [pointee type, address space] 1839 if (Record.size() < 1) 1840 return error("Invalid record"); 1841 unsigned AddressSpace = 0; 1842 if (Record.size() == 2) 1843 AddressSpace = Record[1]; 1844 ResultTy = getTypeByID(Record[0]); 1845 if (!ResultTy || 1846 !PointerType::isValidElementType(ResultTy)) 1847 return error("Invalid type"); 1848 ResultTy = PointerType::get(ResultTy, AddressSpace); 1849 break; 1850 } 1851 case bitc::TYPE_CODE_FUNCTION_OLD: { 1852 // FIXME: attrid is dead, remove it in LLVM 4.0 1853 // FUNCTION: [vararg, attrid, retty, paramty x N] 1854 if (Record.size() < 3) 1855 return error("Invalid record"); 1856 SmallVector<Type*, 8> ArgTys; 1857 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1858 if (Type *T = getTypeByID(Record[i])) 1859 ArgTys.push_back(T); 1860 else 1861 break; 1862 } 1863 1864 ResultTy = getTypeByID(Record[2]); 1865 if (!ResultTy || ArgTys.size() < Record.size()-3) 1866 return error("Invalid type"); 1867 1868 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1869 break; 1870 } 1871 case bitc::TYPE_CODE_FUNCTION: { 1872 // FUNCTION: [vararg, retty, paramty x N] 1873 if (Record.size() < 2) 1874 return error("Invalid record"); 1875 SmallVector<Type*, 8> ArgTys; 1876 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1877 if (Type *T = getTypeByID(Record[i])) { 1878 if (!FunctionType::isValidArgumentType(T)) 1879 return error("Invalid function argument type"); 1880 ArgTys.push_back(T); 1881 } 1882 else 1883 break; 1884 } 1885 1886 ResultTy = getTypeByID(Record[1]); 1887 if (!ResultTy || ArgTys.size() < Record.size()-2) 1888 return error("Invalid type"); 1889 1890 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1891 break; 1892 } 1893 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1894 if (Record.size() < 1) 1895 return error("Invalid record"); 1896 SmallVector<Type*, 8> EltTys; 1897 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1898 if (Type *T = getTypeByID(Record[i])) 1899 EltTys.push_back(T); 1900 else 1901 break; 1902 } 1903 if (EltTys.size() != Record.size()-1) 1904 return error("Invalid type"); 1905 ResultTy = StructType::get(Context, EltTys, Record[0]); 1906 break; 1907 } 1908 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1909 if (convertToString(Record, 0, TypeName)) 1910 return error("Invalid record"); 1911 continue; 1912 1913 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1914 if (Record.size() < 1) 1915 return error("Invalid record"); 1916 1917 if (NumRecords >= TypeList.size()) 1918 return error("Invalid TYPE table"); 1919 1920 // Check to see if this was forward referenced, if so fill in the temp. 1921 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1922 if (Res) { 1923 Res->setName(TypeName); 1924 TypeList[NumRecords] = nullptr; 1925 } else // Otherwise, create a new struct. 1926 Res = createIdentifiedStructType(Context, TypeName); 1927 TypeName.clear(); 1928 1929 SmallVector<Type*, 8> EltTys; 1930 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1931 if (Type *T = getTypeByID(Record[i])) 1932 EltTys.push_back(T); 1933 else 1934 break; 1935 } 1936 if (EltTys.size() != Record.size()-1) 1937 return error("Invalid record"); 1938 Res->setBody(EltTys, Record[0]); 1939 ResultTy = Res; 1940 break; 1941 } 1942 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1943 if (Record.size() != 1) 1944 return error("Invalid record"); 1945 1946 if (NumRecords >= TypeList.size()) 1947 return error("Invalid TYPE table"); 1948 1949 // Check to see if this was forward referenced, if so fill in the temp. 1950 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1951 if (Res) { 1952 Res->setName(TypeName); 1953 TypeList[NumRecords] = nullptr; 1954 } else // Otherwise, create a new struct with no body. 1955 Res = createIdentifiedStructType(Context, TypeName); 1956 TypeName.clear(); 1957 ResultTy = Res; 1958 break; 1959 } 1960 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1961 if (Record.size() < 2) 1962 return error("Invalid record"); 1963 ResultTy = getTypeByID(Record[1]); 1964 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1965 return error("Invalid type"); 1966 ResultTy = ArrayType::get(ResultTy, Record[0]); 1967 break; 1968 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1969 if (Record.size() < 2) 1970 return error("Invalid record"); 1971 if (Record[0] == 0) 1972 return error("Invalid vector length"); 1973 ResultTy = getTypeByID(Record[1]); 1974 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1975 return error("Invalid type"); 1976 ResultTy = VectorType::get(ResultTy, Record[0]); 1977 break; 1978 } 1979 1980 if (NumRecords >= TypeList.size()) 1981 return error("Invalid TYPE table"); 1982 if (TypeList[NumRecords]) 1983 return error( 1984 "Invalid TYPE table: Only named structs can be forward referenced"); 1985 assert(ResultTy && "Didn't read a type?"); 1986 TypeList[NumRecords++] = ResultTy; 1987 } 1988 } 1989 1990 std::error_code BitcodeReader::parseOperandBundleTags() { 1991 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1992 return error("Invalid record"); 1993 1994 if (!BundleTags.empty()) 1995 return error("Invalid multiple blocks"); 1996 1997 SmallVector<uint64_t, 64> Record; 1998 1999 while (true) { 2000 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2001 2002 switch (Entry.Kind) { 2003 case BitstreamEntry::SubBlock: // Handled for us already. 2004 case BitstreamEntry::Error: 2005 return error("Malformed block"); 2006 case BitstreamEntry::EndBlock: 2007 return std::error_code(); 2008 case BitstreamEntry::Record: 2009 // The interesting case. 2010 break; 2011 } 2012 2013 // Tags are implicitly mapped to integers by their order. 2014 2015 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 2016 return error("Invalid record"); 2017 2018 // OPERAND_BUNDLE_TAG: [strchr x N] 2019 BundleTags.emplace_back(); 2020 if (convertToString(Record, 0, BundleTags.back())) 2021 return error("Invalid record"); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO) { 2043 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2044 if (TT.isOSBinFormatMachO()) 2045 GO->setComdat(nullptr); 2046 else 2047 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2048 } 2049 } 2050 return V; 2051 } 2052 2053 /// Helper to note and return the current location, and jump to the given 2054 /// offset. 2055 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2056 BitstreamCursor &Stream) { 2057 // Save the current parsing location so we can jump back at the end 2058 // of the VST read. 2059 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2060 Stream.JumpToBit(Offset * 32); 2061 #ifndef NDEBUG 2062 // Do some checking if we are in debug mode. 2063 BitstreamEntry Entry = Stream.advance(); 2064 assert(Entry.Kind == BitstreamEntry::SubBlock); 2065 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2066 #else 2067 // In NDEBUG mode ignore the output so we don't get an unused variable 2068 // warning. 2069 Stream.advance(); 2070 #endif 2071 return CurrentBit; 2072 } 2073 2074 /// Parse the value symbol table at either the current parsing location or 2075 /// at the given bit offset if provided. 2076 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2077 uint64_t CurrentBit; 2078 // Pass in the Offset to distinguish between calling for the module-level 2079 // VST (where we want to jump to the VST offset) and the function-level 2080 // VST (where we don't). 2081 if (Offset > 0) 2082 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2083 2084 // Compute the delta between the bitcode indices in the VST (the word offset 2085 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2086 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2087 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2088 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2089 // just before entering the VST subblock because: 1) the EnterSubBlock 2090 // changes the AbbrevID width; 2) the VST block is nested within the same 2091 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2092 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2093 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2094 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2095 unsigned FuncBitcodeOffsetDelta = 2096 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2097 2098 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2099 return error("Invalid record"); 2100 2101 SmallVector<uint64_t, 64> Record; 2102 2103 Triple TT(TheModule->getTargetTriple()); 2104 2105 // Read all the records for this value table. 2106 SmallString<128> ValueName; 2107 2108 while (true) { 2109 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2110 2111 switch (Entry.Kind) { 2112 case BitstreamEntry::SubBlock: // Handled for us already. 2113 case BitstreamEntry::Error: 2114 return error("Malformed block"); 2115 case BitstreamEntry::EndBlock: 2116 if (Offset > 0) 2117 Stream.JumpToBit(CurrentBit); 2118 return std::error_code(); 2119 case BitstreamEntry::Record: 2120 // The interesting case. 2121 break; 2122 } 2123 2124 // Read a record. 2125 Record.clear(); 2126 switch (Stream.readRecord(Entry.ID, Record)) { 2127 default: // Default behavior: unknown type. 2128 break; 2129 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2130 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2131 if (std::error_code EC = ValOrErr.getError()) 2132 return EC; 2133 ValOrErr.get(); 2134 break; 2135 } 2136 case bitc::VST_CODE_FNENTRY: { 2137 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2138 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2139 if (std::error_code EC = ValOrErr.getError()) 2140 return EC; 2141 Value *V = ValOrErr.get(); 2142 2143 auto *GO = dyn_cast<GlobalObject>(V); 2144 if (!GO) { 2145 // If this is an alias, need to get the actual Function object 2146 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2147 auto *GA = dyn_cast<GlobalAlias>(V); 2148 if (GA) 2149 GO = GA->getBaseObject(); 2150 assert(GO); 2151 } 2152 2153 uint64_t FuncWordOffset = Record[1]; 2154 Function *F = dyn_cast<Function>(GO); 2155 assert(F); 2156 uint64_t FuncBitOffset = FuncWordOffset * 32; 2157 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2158 // Set the LastFunctionBlockBit to point to the last function block. 2159 // Later when parsing is resumed after function materialization, 2160 // we can simply skip that last function block. 2161 if (FuncBitOffset > LastFunctionBlockBit) 2162 LastFunctionBlockBit = FuncBitOffset; 2163 break; 2164 } 2165 case bitc::VST_CODE_BBENTRY: { 2166 if (convertToString(Record, 1, ValueName)) 2167 return error("Invalid record"); 2168 BasicBlock *BB = getBasicBlock(Record[0]); 2169 if (!BB) 2170 return error("Invalid record"); 2171 2172 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2173 ValueName.clear(); 2174 break; 2175 } 2176 } 2177 } 2178 } 2179 2180 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2181 std::error_code 2182 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2183 if (Record.size() < 2) 2184 return error("Invalid record"); 2185 2186 unsigned Kind = Record[0]; 2187 SmallString<8> Name(Record.begin() + 1, Record.end()); 2188 2189 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2190 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2191 return error("Conflicting METADATA_KIND records"); 2192 return std::error_code(); 2193 } 2194 2195 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2196 2197 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2198 StringRef Blob, 2199 unsigned &NextMetadataNo) { 2200 // All the MDStrings in the block are emitted together in a single 2201 // record. The strings are concatenated and stored in a blob along with 2202 // their sizes. 2203 if (Record.size() != 2) 2204 return error("Invalid record: metadata strings layout"); 2205 2206 unsigned NumStrings = Record[0]; 2207 unsigned StringsOffset = Record[1]; 2208 if (!NumStrings) 2209 return error("Invalid record: metadata strings with no strings"); 2210 if (StringsOffset > Blob.size()) 2211 return error("Invalid record: metadata strings corrupt offset"); 2212 2213 StringRef Lengths = Blob.slice(0, StringsOffset); 2214 SimpleBitstreamCursor R(*StreamFile); 2215 R.jumpToPointer(Lengths.begin()); 2216 2217 StringRef Strings = Blob.drop_front(StringsOffset); 2218 do { 2219 if (R.AtEndOfStream()) 2220 return error("Invalid record: metadata strings bad length"); 2221 2222 unsigned Size = R.ReadVBR(6); 2223 if (Strings.size() < Size) 2224 return error("Invalid record: metadata strings truncated chars"); 2225 2226 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2227 NextMetadataNo++); 2228 Strings = Strings.drop_front(Size); 2229 } while (--NumStrings); 2230 2231 return std::error_code(); 2232 } 2233 2234 namespace { 2235 2236 class PlaceholderQueue { 2237 // Placeholders would thrash around when moved, so store in a std::deque 2238 // instead of some sort of vector. 2239 std::deque<DistinctMDOperandPlaceholder> PHs; 2240 2241 public: 2242 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2243 void flush(BitcodeReaderMetadataList &MetadataList); 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2249 PHs.emplace_back(ID); 2250 return PHs.back(); 2251 } 2252 2253 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2254 while (!PHs.empty()) { 2255 PHs.front().replaceUseWith( 2256 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2257 PHs.pop_front(); 2258 } 2259 } 2260 2261 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2262 /// module level metadata. 2263 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2264 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2265 "Must read all module-level metadata before function-level"); 2266 2267 IsMetadataMaterialized = true; 2268 unsigned NextMetadataNo = MetadataList.size(); 2269 2270 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2271 return error("Invalid metadata: fwd refs into function blocks"); 2272 2273 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2274 return error("Invalid record"); 2275 2276 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2277 SmallVector<uint64_t, 64> Record; 2278 2279 PlaceholderQueue Placeholders; 2280 bool IsDistinct; 2281 auto getMD = [&](unsigned ID) -> Metadata * { 2282 if (!IsDistinct) 2283 return MetadataList.getMetadataFwdRef(ID); 2284 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2285 return MD; 2286 return &Placeholders.getPlaceholderOp(ID); 2287 }; 2288 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2289 if (ID) 2290 return getMD(ID - 1); 2291 return nullptr; 2292 }; 2293 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2294 if (ID) 2295 return MetadataList.getMetadataFwdRef(ID - 1); 2296 return nullptr; 2297 }; 2298 auto getMDString = [&](unsigned ID) -> MDString *{ 2299 // This requires that the ID is not really a forward reference. In 2300 // particular, the MDString must already have been resolved. 2301 return cast_or_null<MDString>(getMDOrNull(ID)); 2302 }; 2303 2304 // Support for old type refs. 2305 auto getDITypeRefOrNull = [&](unsigned ID) { 2306 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2307 }; 2308 2309 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2310 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2311 2312 // Read all the records. 2313 while (true) { 2314 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2315 2316 switch (Entry.Kind) { 2317 case BitstreamEntry::SubBlock: // Handled for us already. 2318 case BitstreamEntry::Error: 2319 return error("Malformed block"); 2320 case BitstreamEntry::EndBlock: 2321 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2322 for (auto CU_SP : CUSubprograms) 2323 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2324 for (auto &Op : SPs->operands()) 2325 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2326 SP->replaceOperandWith(7, CU_SP.first); 2327 2328 MetadataList.tryToResolveCycles(); 2329 Placeholders.flush(MetadataList); 2330 return std::error_code(); 2331 case BitstreamEntry::Record: 2332 // The interesting case. 2333 break; 2334 } 2335 2336 // Read a record. 2337 Record.clear(); 2338 StringRef Blob; 2339 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2340 IsDistinct = false; 2341 switch (Code) { 2342 default: // Default behavior: ignore. 2343 break; 2344 case bitc::METADATA_NAME: { 2345 // Read name of the named metadata. 2346 SmallString<8> Name(Record.begin(), Record.end()); 2347 Record.clear(); 2348 Code = Stream.ReadCode(); 2349 2350 unsigned NextBitCode = Stream.readRecord(Code, Record); 2351 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2352 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2353 2354 // Read named metadata elements. 2355 unsigned Size = Record.size(); 2356 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2357 for (unsigned i = 0; i != Size; ++i) { 2358 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2359 if (!MD) 2360 return error("Invalid record"); 2361 NMD->addOperand(MD); 2362 } 2363 break; 2364 } 2365 case bitc::METADATA_OLD_FN_NODE: { 2366 // FIXME: Remove in 4.0. 2367 // This is a LocalAsMetadata record, the only type of function-local 2368 // metadata. 2369 if (Record.size() % 2 == 1) 2370 return error("Invalid record"); 2371 2372 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2373 // to be legal, but there's no upgrade path. 2374 auto dropRecord = [&] { 2375 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2376 }; 2377 if (Record.size() != 2) { 2378 dropRecord(); 2379 break; 2380 } 2381 2382 Type *Ty = getTypeByID(Record[0]); 2383 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2384 dropRecord(); 2385 break; 2386 } 2387 2388 MetadataList.assignValue( 2389 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2390 NextMetadataNo++); 2391 break; 2392 } 2393 case bitc::METADATA_OLD_NODE: { 2394 // FIXME: Remove in 4.0. 2395 if (Record.size() % 2 == 1) 2396 return error("Invalid record"); 2397 2398 unsigned Size = Record.size(); 2399 SmallVector<Metadata *, 8> Elts; 2400 for (unsigned i = 0; i != Size; i += 2) { 2401 Type *Ty = getTypeByID(Record[i]); 2402 if (!Ty) 2403 return error("Invalid record"); 2404 if (Ty->isMetadataTy()) 2405 Elts.push_back(getMD(Record[i + 1])); 2406 else if (!Ty->isVoidTy()) { 2407 auto *MD = 2408 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2409 assert(isa<ConstantAsMetadata>(MD) && 2410 "Expected non-function-local metadata"); 2411 Elts.push_back(MD); 2412 } else 2413 Elts.push_back(nullptr); 2414 } 2415 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2416 break; 2417 } 2418 case bitc::METADATA_VALUE: { 2419 if (Record.size() != 2) 2420 return error("Invalid record"); 2421 2422 Type *Ty = getTypeByID(Record[0]); 2423 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2424 return error("Invalid record"); 2425 2426 MetadataList.assignValue( 2427 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2428 NextMetadataNo++); 2429 break; 2430 } 2431 case bitc::METADATA_DISTINCT_NODE: 2432 IsDistinct = true; 2433 LLVM_FALLTHROUGH; 2434 case bitc::METADATA_NODE: { 2435 SmallVector<Metadata *, 8> Elts; 2436 Elts.reserve(Record.size()); 2437 for (unsigned ID : Record) 2438 Elts.push_back(getMDOrNull(ID)); 2439 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2440 : MDNode::get(Context, Elts), 2441 NextMetadataNo++); 2442 break; 2443 } 2444 case bitc::METADATA_LOCATION: { 2445 if (Record.size() != 5) 2446 return error("Invalid record"); 2447 2448 IsDistinct = Record[0]; 2449 unsigned Line = Record[1]; 2450 unsigned Column = Record[2]; 2451 Metadata *Scope = getMD(Record[3]); 2452 Metadata *InlinedAt = getMDOrNull(Record[4]); 2453 MetadataList.assignValue( 2454 GET_OR_DISTINCT(DILocation, 2455 (Context, Line, Column, Scope, InlinedAt)), 2456 NextMetadataNo++); 2457 break; 2458 } 2459 case bitc::METADATA_GENERIC_DEBUG: { 2460 if (Record.size() < 4) 2461 return error("Invalid record"); 2462 2463 IsDistinct = Record[0]; 2464 unsigned Tag = Record[1]; 2465 unsigned Version = Record[2]; 2466 2467 if (Tag >= 1u << 16 || Version != 0) 2468 return error("Invalid record"); 2469 2470 auto *Header = getMDString(Record[3]); 2471 SmallVector<Metadata *, 8> DwarfOps; 2472 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2473 DwarfOps.push_back(getMDOrNull(Record[I])); 2474 MetadataList.assignValue( 2475 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2476 NextMetadataNo++); 2477 break; 2478 } 2479 case bitc::METADATA_SUBRANGE: { 2480 if (Record.size() != 3) 2481 return error("Invalid record"); 2482 2483 IsDistinct = Record[0]; 2484 MetadataList.assignValue( 2485 GET_OR_DISTINCT(DISubrange, 2486 (Context, Record[1], unrotateSign(Record[2]))), 2487 NextMetadataNo++); 2488 break; 2489 } 2490 case bitc::METADATA_ENUMERATOR: { 2491 if (Record.size() != 3) 2492 return error("Invalid record"); 2493 2494 IsDistinct = Record[0]; 2495 MetadataList.assignValue( 2496 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2497 getMDString(Record[2]))), 2498 NextMetadataNo++); 2499 break; 2500 } 2501 case bitc::METADATA_BASIC_TYPE: { 2502 if (Record.size() != 6) 2503 return error("Invalid record"); 2504 2505 IsDistinct = Record[0]; 2506 MetadataList.assignValue( 2507 GET_OR_DISTINCT(DIBasicType, 2508 (Context, Record[1], getMDString(Record[2]), 2509 Record[3], Record[4], Record[5])), 2510 NextMetadataNo++); 2511 break; 2512 } 2513 case bitc::METADATA_DERIVED_TYPE: { 2514 if (Record.size() != 12) 2515 return error("Invalid record"); 2516 2517 IsDistinct = Record[0]; 2518 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2519 MetadataList.assignValue( 2520 GET_OR_DISTINCT(DIDerivedType, 2521 (Context, Record[1], getMDString(Record[2]), 2522 getMDOrNull(Record[3]), Record[4], 2523 getDITypeRefOrNull(Record[5]), 2524 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2525 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2526 NextMetadataNo++); 2527 break; 2528 } 2529 case bitc::METADATA_COMPOSITE_TYPE: { 2530 if (Record.size() != 16) 2531 return error("Invalid record"); 2532 2533 // If we have a UUID and this is not a forward declaration, lookup the 2534 // mapping. 2535 IsDistinct = Record[0] & 0x1; 2536 bool IsNotUsedInTypeRef = Record[0] >= 2; 2537 unsigned Tag = Record[1]; 2538 MDString *Name = getMDString(Record[2]); 2539 Metadata *File = getMDOrNull(Record[3]); 2540 unsigned Line = Record[4]; 2541 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2542 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2543 uint64_t SizeInBits = Record[7]; 2544 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2545 return error("Alignment value is too large"); 2546 uint32_t AlignInBits = Record[8]; 2547 uint64_t OffsetInBits = Record[9]; 2548 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2549 Metadata *Elements = getMDOrNull(Record[11]); 2550 unsigned RuntimeLang = Record[12]; 2551 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2552 Metadata *TemplateParams = getMDOrNull(Record[14]); 2553 auto *Identifier = getMDString(Record[15]); 2554 DICompositeType *CT = nullptr; 2555 if (Identifier) 2556 CT = DICompositeType::buildODRType( 2557 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2558 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2559 VTableHolder, TemplateParams); 2560 2561 // Create a node if we didn't get a lazy ODR type. 2562 if (!CT) 2563 CT = GET_OR_DISTINCT(DICompositeType, 2564 (Context, Tag, Name, File, Line, Scope, BaseType, 2565 SizeInBits, AlignInBits, OffsetInBits, Flags, 2566 Elements, RuntimeLang, VTableHolder, 2567 TemplateParams, Identifier)); 2568 if (!IsNotUsedInTypeRef && Identifier) 2569 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2570 2571 MetadataList.assignValue(CT, NextMetadataNo++); 2572 break; 2573 } 2574 case bitc::METADATA_SUBROUTINE_TYPE: { 2575 if (Record.size() < 3 || Record.size() > 4) 2576 return error("Invalid record"); 2577 bool IsOldTypeRefArray = Record[0] < 2; 2578 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2579 2580 IsDistinct = Record[0] & 0x1; 2581 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2582 Metadata *Types = getMDOrNull(Record[2]); 2583 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2584 Types = MetadataList.upgradeTypeRefArray(Types); 2585 2586 MetadataList.assignValue( 2587 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2588 NextMetadataNo++); 2589 break; 2590 } 2591 2592 case bitc::METADATA_MODULE: { 2593 if (Record.size() != 6) 2594 return error("Invalid record"); 2595 2596 IsDistinct = Record[0]; 2597 MetadataList.assignValue( 2598 GET_OR_DISTINCT(DIModule, 2599 (Context, getMDOrNull(Record[1]), 2600 getMDString(Record[2]), getMDString(Record[3]), 2601 getMDString(Record[4]), getMDString(Record[5]))), 2602 NextMetadataNo++); 2603 break; 2604 } 2605 2606 case bitc::METADATA_FILE: { 2607 if (Record.size() != 3) 2608 return error("Invalid record"); 2609 2610 IsDistinct = Record[0]; 2611 MetadataList.assignValue( 2612 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2613 getMDString(Record[2]))), 2614 NextMetadataNo++); 2615 break; 2616 } 2617 case bitc::METADATA_COMPILE_UNIT: { 2618 if (Record.size() < 14 || Record.size() > 17) 2619 return error("Invalid record"); 2620 2621 // Ignore Record[0], which indicates whether this compile unit is 2622 // distinct. It's always distinct. 2623 IsDistinct = true; 2624 auto *CU = DICompileUnit::getDistinct( 2625 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2626 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2627 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2628 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2629 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2630 Record.size() <= 14 ? 0 : Record[14], 2631 Record.size() <= 16 ? true : Record[16]); 2632 2633 MetadataList.assignValue(CU, NextMetadataNo++); 2634 2635 // Move the Upgrade the list of subprograms. 2636 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2637 CUSubprograms.push_back({CU, SPs}); 2638 break; 2639 } 2640 case bitc::METADATA_SUBPROGRAM: { 2641 if (Record.size() < 18 || Record.size() > 20) 2642 return error("Invalid record"); 2643 2644 IsDistinct = 2645 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2646 // Version 1 has a Function as Record[15]. 2647 // Version 2 has removed Record[15]. 2648 // Version 3 has the Unit as Record[15]. 2649 // Version 4 added thisAdjustment. 2650 bool HasUnit = Record[0] >= 2; 2651 if (HasUnit && Record.size() < 19) 2652 return error("Invalid record"); 2653 Metadata *CUorFn = getMDOrNull(Record[15]); 2654 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2655 bool HasFn = Offset && !HasUnit; 2656 bool HasThisAdj = Record.size() >= 20; 2657 DISubprogram *SP = GET_OR_DISTINCT( 2658 DISubprogram, (Context, 2659 getDITypeRefOrNull(Record[1]), // scope 2660 getMDString(Record[2]), // name 2661 getMDString(Record[3]), // linkageName 2662 getMDOrNull(Record[4]), // file 2663 Record[5], // line 2664 getMDOrNull(Record[6]), // type 2665 Record[7], // isLocal 2666 Record[8], // isDefinition 2667 Record[9], // scopeLine 2668 getDITypeRefOrNull(Record[10]), // containingType 2669 Record[11], // virtuality 2670 Record[12], // virtualIndex 2671 HasThisAdj ? Record[19] : 0, // thisAdjustment 2672 static_cast<DINode::DIFlags>(Record[13] // flags 2673 ), 2674 Record[14], // isOptimized 2675 HasUnit ? CUorFn : nullptr, // unit 2676 getMDOrNull(Record[15 + Offset]), // templateParams 2677 getMDOrNull(Record[16 + Offset]), // declaration 2678 getMDOrNull(Record[17 + Offset]) // variables 2679 )); 2680 MetadataList.assignValue(SP, NextMetadataNo++); 2681 2682 // Upgrade sp->function mapping to function->sp mapping. 2683 if (HasFn) { 2684 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2685 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2686 if (F->isMaterializable()) 2687 // Defer until materialized; unmaterialized functions may not have 2688 // metadata. 2689 FunctionsWithSPs[F] = SP; 2690 else if (!F->empty()) 2691 F->setSubprogram(SP); 2692 } 2693 } 2694 break; 2695 } 2696 case bitc::METADATA_LEXICAL_BLOCK: { 2697 if (Record.size() != 5) 2698 return error("Invalid record"); 2699 2700 IsDistinct = Record[0]; 2701 MetadataList.assignValue( 2702 GET_OR_DISTINCT(DILexicalBlock, 2703 (Context, getMDOrNull(Record[1]), 2704 getMDOrNull(Record[2]), Record[3], Record[4])), 2705 NextMetadataNo++); 2706 break; 2707 } 2708 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2709 if (Record.size() != 4) 2710 return error("Invalid record"); 2711 2712 IsDistinct = Record[0]; 2713 MetadataList.assignValue( 2714 GET_OR_DISTINCT(DILexicalBlockFile, 2715 (Context, getMDOrNull(Record[1]), 2716 getMDOrNull(Record[2]), Record[3])), 2717 NextMetadataNo++); 2718 break; 2719 } 2720 case bitc::METADATA_NAMESPACE: { 2721 if (Record.size() != 5) 2722 return error("Invalid record"); 2723 2724 IsDistinct = Record[0] & 1; 2725 bool ExportSymbols = Record[0] & 2; 2726 MetadataList.assignValue( 2727 GET_OR_DISTINCT(DINamespace, 2728 (Context, getMDOrNull(Record[1]), 2729 getMDOrNull(Record[2]), getMDString(Record[3]), 2730 Record[4], ExportSymbols)), 2731 NextMetadataNo++); 2732 break; 2733 } 2734 case bitc::METADATA_MACRO: { 2735 if (Record.size() != 5) 2736 return error("Invalid record"); 2737 2738 IsDistinct = Record[0]; 2739 MetadataList.assignValue( 2740 GET_OR_DISTINCT(DIMacro, 2741 (Context, Record[1], Record[2], 2742 getMDString(Record[3]), getMDString(Record[4]))), 2743 NextMetadataNo++); 2744 break; 2745 } 2746 case bitc::METADATA_MACRO_FILE: { 2747 if (Record.size() != 5) 2748 return error("Invalid record"); 2749 2750 IsDistinct = Record[0]; 2751 MetadataList.assignValue( 2752 GET_OR_DISTINCT(DIMacroFile, 2753 (Context, Record[1], Record[2], 2754 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2755 NextMetadataNo++); 2756 break; 2757 } 2758 case bitc::METADATA_TEMPLATE_TYPE: { 2759 if (Record.size() != 3) 2760 return error("Invalid record"); 2761 2762 IsDistinct = Record[0]; 2763 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2764 (Context, getMDString(Record[1]), 2765 getDITypeRefOrNull(Record[2]))), 2766 NextMetadataNo++); 2767 break; 2768 } 2769 case bitc::METADATA_TEMPLATE_VALUE: { 2770 if (Record.size() != 5) 2771 return error("Invalid record"); 2772 2773 IsDistinct = Record[0]; 2774 MetadataList.assignValue( 2775 GET_OR_DISTINCT(DITemplateValueParameter, 2776 (Context, Record[1], getMDString(Record[2]), 2777 getDITypeRefOrNull(Record[3]), 2778 getMDOrNull(Record[4]))), 2779 NextMetadataNo++); 2780 break; 2781 } 2782 case bitc::METADATA_GLOBAL_VAR: { 2783 if (Record.size() < 11 || Record.size() > 12) 2784 return error("Invalid record"); 2785 2786 IsDistinct = Record[0]; 2787 2788 // Upgrade old metadata, which stored a global variable reference or a 2789 // ConstantInt here. 2790 Metadata *Expr = getMDOrNull(Record[9]); 2791 uint32_t AlignInBits = 0; 2792 if (Record.size() > 11) { 2793 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2794 return error("Alignment value is too large"); 2795 AlignInBits = Record[11]; 2796 } 2797 GlobalVariable *Attach = nullptr; 2798 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2799 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2800 Attach = GV; 2801 Expr = nullptr; 2802 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2803 Expr = DIExpression::get(Context, 2804 {dwarf::DW_OP_constu, CI->getZExtValue(), 2805 dwarf::DW_OP_stack_value}); 2806 } else { 2807 Expr = nullptr; 2808 } 2809 } 2810 2811 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2812 DIGlobalVariable, 2813 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2814 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2815 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2816 getMDOrNull(Record[10]), AlignInBits)); 2817 MetadataList.assignValue(DGV, NextMetadataNo++); 2818 2819 if (Attach) 2820 Attach->addDebugInfo(DGV); 2821 2822 break; 2823 } 2824 case bitc::METADATA_LOCAL_VAR: { 2825 // 10th field is for the obseleted 'inlinedAt:' field. 2826 if (Record.size() < 8 || Record.size() > 10) 2827 return error("Invalid record"); 2828 2829 IsDistinct = Record[0] & 1; 2830 bool HasAlignment = Record[0] & 2; 2831 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2832 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2833 // this is newer version of record which doesn't have artifical tag. 2834 bool HasTag = !HasAlignment && Record.size() > 8; 2835 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2836 uint32_t AlignInBits = 0; 2837 if (HasAlignment) { 2838 if (Record[8 + HasTag] > 2839 (uint64_t)std::numeric_limits<uint32_t>::max()) 2840 return error("Alignment value is too large"); 2841 AlignInBits = Record[8 + HasTag]; 2842 } 2843 MetadataList.assignValue( 2844 GET_OR_DISTINCT(DILocalVariable, 2845 (Context, getMDOrNull(Record[1 + HasTag]), 2846 getMDString(Record[2 + HasTag]), 2847 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2848 getDITypeRefOrNull(Record[5 + HasTag]), 2849 Record[6 + HasTag], Flags, AlignInBits)), 2850 NextMetadataNo++); 2851 break; 2852 } 2853 case bitc::METADATA_EXPRESSION: { 2854 if (Record.size() < 1) 2855 return error("Invalid record"); 2856 2857 IsDistinct = Record[0]; 2858 MetadataList.assignValue( 2859 GET_OR_DISTINCT(DIExpression, 2860 (Context, makeArrayRef(Record).slice(1))), 2861 NextMetadataNo++); 2862 break; 2863 } 2864 case bitc::METADATA_OBJC_PROPERTY: { 2865 if (Record.size() != 8) 2866 return error("Invalid record"); 2867 2868 IsDistinct = Record[0]; 2869 MetadataList.assignValue( 2870 GET_OR_DISTINCT(DIObjCProperty, 2871 (Context, getMDString(Record[1]), 2872 getMDOrNull(Record[2]), Record[3], 2873 getMDString(Record[4]), getMDString(Record[5]), 2874 Record[6], getDITypeRefOrNull(Record[7]))), 2875 NextMetadataNo++); 2876 break; 2877 } 2878 case bitc::METADATA_IMPORTED_ENTITY: { 2879 if (Record.size() != 6) 2880 return error("Invalid record"); 2881 2882 IsDistinct = Record[0]; 2883 MetadataList.assignValue( 2884 GET_OR_DISTINCT(DIImportedEntity, 2885 (Context, Record[1], getMDOrNull(Record[2]), 2886 getDITypeRefOrNull(Record[3]), Record[4], 2887 getMDString(Record[5]))), 2888 NextMetadataNo++); 2889 break; 2890 } 2891 case bitc::METADATA_STRING_OLD: { 2892 std::string String(Record.begin(), Record.end()); 2893 2894 // Test for upgrading !llvm.loop. 2895 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2896 2897 Metadata *MD = MDString::get(Context, String); 2898 MetadataList.assignValue(MD, NextMetadataNo++); 2899 break; 2900 } 2901 case bitc::METADATA_STRINGS: 2902 if (std::error_code EC = 2903 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2904 return EC; 2905 break; 2906 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2907 if (Record.size() % 2 == 0) 2908 return error("Invalid record"); 2909 unsigned ValueID = Record[0]; 2910 if (ValueID >= ValueList.size()) 2911 return error("Invalid record"); 2912 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2913 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2914 break; 2915 } 2916 case bitc::METADATA_KIND: { 2917 // Support older bitcode files that had METADATA_KIND records in a 2918 // block with METADATA_BLOCK_ID. 2919 if (std::error_code EC = parseMetadataKindRecord(Record)) 2920 return EC; 2921 break; 2922 } 2923 } 2924 } 2925 2926 #undef GET_OR_DISTINCT 2927 } 2928 2929 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2930 std::error_code BitcodeReader::parseMetadataKinds() { 2931 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2932 return error("Invalid record"); 2933 2934 SmallVector<uint64_t, 64> Record; 2935 2936 // Read all the records. 2937 while (true) { 2938 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2939 2940 switch (Entry.Kind) { 2941 case BitstreamEntry::SubBlock: // Handled for us already. 2942 case BitstreamEntry::Error: 2943 return error("Malformed block"); 2944 case BitstreamEntry::EndBlock: 2945 return std::error_code(); 2946 case BitstreamEntry::Record: 2947 // The interesting case. 2948 break; 2949 } 2950 2951 // Read a record. 2952 Record.clear(); 2953 unsigned Code = Stream.readRecord(Entry.ID, Record); 2954 switch (Code) { 2955 default: // Default behavior: ignore. 2956 break; 2957 case bitc::METADATA_KIND: { 2958 if (std::error_code EC = parseMetadataKindRecord(Record)) 2959 return EC; 2960 break; 2961 } 2962 } 2963 } 2964 } 2965 2966 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2967 /// encoding. 2968 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2969 if ((V & 1) == 0) 2970 return V >> 1; 2971 if (V != 1) 2972 return -(V >> 1); 2973 // There is no such thing as -0 with integers. "-0" really means MININT. 2974 return 1ULL << 63; 2975 } 2976 2977 /// Resolve all of the initializers for global values and aliases that we can. 2978 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2979 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2980 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2981 IndirectSymbolInitWorklist; 2982 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2983 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2984 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2985 2986 GlobalInitWorklist.swap(GlobalInits); 2987 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2988 FunctionPrefixWorklist.swap(FunctionPrefixes); 2989 FunctionPrologueWorklist.swap(FunctionPrologues); 2990 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2991 2992 while (!GlobalInitWorklist.empty()) { 2993 unsigned ValID = GlobalInitWorklist.back().second; 2994 if (ValID >= ValueList.size()) { 2995 // Not ready to resolve this yet, it requires something later in the file. 2996 GlobalInits.push_back(GlobalInitWorklist.back()); 2997 } else { 2998 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2999 GlobalInitWorklist.back().first->setInitializer(C); 3000 else 3001 return error("Expected a constant"); 3002 } 3003 GlobalInitWorklist.pop_back(); 3004 } 3005 3006 while (!IndirectSymbolInitWorklist.empty()) { 3007 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3008 if (ValID >= ValueList.size()) { 3009 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3010 } else { 3011 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 3012 if (!C) 3013 return error("Expected a constant"); 3014 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 3015 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 3016 return error("Alias and aliasee types don't match"); 3017 GIS->setIndirectSymbol(C); 3018 } 3019 IndirectSymbolInitWorklist.pop_back(); 3020 } 3021 3022 while (!FunctionPrefixWorklist.empty()) { 3023 unsigned ValID = FunctionPrefixWorklist.back().second; 3024 if (ValID >= ValueList.size()) { 3025 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 3026 } else { 3027 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3028 FunctionPrefixWorklist.back().first->setPrefixData(C); 3029 else 3030 return error("Expected a constant"); 3031 } 3032 FunctionPrefixWorklist.pop_back(); 3033 } 3034 3035 while (!FunctionPrologueWorklist.empty()) { 3036 unsigned ValID = FunctionPrologueWorklist.back().second; 3037 if (ValID >= ValueList.size()) { 3038 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 3039 } else { 3040 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3041 FunctionPrologueWorklist.back().first->setPrologueData(C); 3042 else 3043 return error("Expected a constant"); 3044 } 3045 FunctionPrologueWorklist.pop_back(); 3046 } 3047 3048 while (!FunctionPersonalityFnWorklist.empty()) { 3049 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 3050 if (ValID >= ValueList.size()) { 3051 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 3052 } else { 3053 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3054 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 3055 else 3056 return error("Expected a constant"); 3057 } 3058 FunctionPersonalityFnWorklist.pop_back(); 3059 } 3060 3061 return std::error_code(); 3062 } 3063 3064 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3065 SmallVector<uint64_t, 8> Words(Vals.size()); 3066 transform(Vals, Words.begin(), 3067 BitcodeReader::decodeSignRotatedValue); 3068 3069 return APInt(TypeBits, Words); 3070 } 3071 3072 std::error_code BitcodeReader::parseConstants() { 3073 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3074 return error("Invalid record"); 3075 3076 SmallVector<uint64_t, 64> Record; 3077 3078 // Read all the records for this value table. 3079 Type *CurTy = Type::getInt32Ty(Context); 3080 unsigned NextCstNo = ValueList.size(); 3081 3082 while (true) { 3083 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3084 3085 switch (Entry.Kind) { 3086 case BitstreamEntry::SubBlock: // Handled for us already. 3087 case BitstreamEntry::Error: 3088 return error("Malformed block"); 3089 case BitstreamEntry::EndBlock: 3090 if (NextCstNo != ValueList.size()) 3091 return error("Invalid constant reference"); 3092 3093 // Once all the constants have been read, go through and resolve forward 3094 // references. 3095 ValueList.resolveConstantForwardRefs(); 3096 return std::error_code(); 3097 case BitstreamEntry::Record: 3098 // The interesting case. 3099 break; 3100 } 3101 3102 // Read a record. 3103 Record.clear(); 3104 Type *VoidType = Type::getVoidTy(Context); 3105 Value *V = nullptr; 3106 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3107 switch (BitCode) { 3108 default: // Default behavior: unknown constant 3109 case bitc::CST_CODE_UNDEF: // UNDEF 3110 V = UndefValue::get(CurTy); 3111 break; 3112 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3113 if (Record.empty()) 3114 return error("Invalid record"); 3115 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3116 return error("Invalid record"); 3117 if (TypeList[Record[0]] == VoidType) 3118 return error("Invalid constant type"); 3119 CurTy = TypeList[Record[0]]; 3120 continue; // Skip the ValueList manipulation. 3121 case bitc::CST_CODE_NULL: // NULL 3122 V = Constant::getNullValue(CurTy); 3123 break; 3124 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3125 if (!CurTy->isIntegerTy() || Record.empty()) 3126 return error("Invalid record"); 3127 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3128 break; 3129 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3130 if (!CurTy->isIntegerTy() || Record.empty()) 3131 return error("Invalid record"); 3132 3133 APInt VInt = 3134 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3135 V = ConstantInt::get(Context, VInt); 3136 3137 break; 3138 } 3139 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3140 if (Record.empty()) 3141 return error("Invalid record"); 3142 if (CurTy->isHalfTy()) 3143 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3144 APInt(16, (uint16_t)Record[0]))); 3145 else if (CurTy->isFloatTy()) 3146 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3147 APInt(32, (uint32_t)Record[0]))); 3148 else if (CurTy->isDoubleTy()) 3149 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3150 APInt(64, Record[0]))); 3151 else if (CurTy->isX86_FP80Ty()) { 3152 // Bits are not stored the same way as a normal i80 APInt, compensate. 3153 uint64_t Rearrange[2]; 3154 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3155 Rearrange[1] = Record[0] >> 48; 3156 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3157 APInt(80, Rearrange))); 3158 } else if (CurTy->isFP128Ty()) 3159 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3160 APInt(128, Record))); 3161 else if (CurTy->isPPC_FP128Ty()) 3162 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3163 APInt(128, Record))); 3164 else 3165 V = UndefValue::get(CurTy); 3166 break; 3167 } 3168 3169 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3170 if (Record.empty()) 3171 return error("Invalid record"); 3172 3173 unsigned Size = Record.size(); 3174 SmallVector<Constant*, 16> Elts; 3175 3176 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3177 for (unsigned i = 0; i != Size; ++i) 3178 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3179 STy->getElementType(i))); 3180 V = ConstantStruct::get(STy, Elts); 3181 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3182 Type *EltTy = ATy->getElementType(); 3183 for (unsigned i = 0; i != Size; ++i) 3184 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3185 V = ConstantArray::get(ATy, Elts); 3186 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3187 Type *EltTy = VTy->getElementType(); 3188 for (unsigned i = 0; i != Size; ++i) 3189 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3190 V = ConstantVector::get(Elts); 3191 } else { 3192 V = UndefValue::get(CurTy); 3193 } 3194 break; 3195 } 3196 case bitc::CST_CODE_STRING: // STRING: [values] 3197 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3198 if (Record.empty()) 3199 return error("Invalid record"); 3200 3201 SmallString<16> Elts(Record.begin(), Record.end()); 3202 V = ConstantDataArray::getString(Context, Elts, 3203 BitCode == bitc::CST_CODE_CSTRING); 3204 break; 3205 } 3206 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3207 if (Record.empty()) 3208 return error("Invalid record"); 3209 3210 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3211 if (EltTy->isIntegerTy(8)) { 3212 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3213 if (isa<VectorType>(CurTy)) 3214 V = ConstantDataVector::get(Context, Elts); 3215 else 3216 V = ConstantDataArray::get(Context, Elts); 3217 } else if (EltTy->isIntegerTy(16)) { 3218 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3219 if (isa<VectorType>(CurTy)) 3220 V = ConstantDataVector::get(Context, Elts); 3221 else 3222 V = ConstantDataArray::get(Context, Elts); 3223 } else if (EltTy->isIntegerTy(32)) { 3224 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3225 if (isa<VectorType>(CurTy)) 3226 V = ConstantDataVector::get(Context, Elts); 3227 else 3228 V = ConstantDataArray::get(Context, Elts); 3229 } else if (EltTy->isIntegerTy(64)) { 3230 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3231 if (isa<VectorType>(CurTy)) 3232 V = ConstantDataVector::get(Context, Elts); 3233 else 3234 V = ConstantDataArray::get(Context, Elts); 3235 } else if (EltTy->isHalfTy()) { 3236 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3237 if (isa<VectorType>(CurTy)) 3238 V = ConstantDataVector::getFP(Context, Elts); 3239 else 3240 V = ConstantDataArray::getFP(Context, Elts); 3241 } else if (EltTy->isFloatTy()) { 3242 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3243 if (isa<VectorType>(CurTy)) 3244 V = ConstantDataVector::getFP(Context, Elts); 3245 else 3246 V = ConstantDataArray::getFP(Context, Elts); 3247 } else if (EltTy->isDoubleTy()) { 3248 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3249 if (isa<VectorType>(CurTy)) 3250 V = ConstantDataVector::getFP(Context, Elts); 3251 else 3252 V = ConstantDataArray::getFP(Context, Elts); 3253 } else { 3254 return error("Invalid type for value"); 3255 } 3256 break; 3257 } 3258 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3259 if (Record.size() < 3) 3260 return error("Invalid record"); 3261 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3262 if (Opc < 0) { 3263 V = UndefValue::get(CurTy); // Unknown binop. 3264 } else { 3265 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3266 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3267 unsigned Flags = 0; 3268 if (Record.size() >= 4) { 3269 if (Opc == Instruction::Add || 3270 Opc == Instruction::Sub || 3271 Opc == Instruction::Mul || 3272 Opc == Instruction::Shl) { 3273 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3274 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3275 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3276 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3277 } else if (Opc == Instruction::SDiv || 3278 Opc == Instruction::UDiv || 3279 Opc == Instruction::LShr || 3280 Opc == Instruction::AShr) { 3281 if (Record[3] & (1 << bitc::PEO_EXACT)) 3282 Flags |= SDivOperator::IsExact; 3283 } 3284 } 3285 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3286 } 3287 break; 3288 } 3289 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3290 if (Record.size() < 3) 3291 return error("Invalid record"); 3292 int Opc = getDecodedCastOpcode(Record[0]); 3293 if (Opc < 0) { 3294 V = UndefValue::get(CurTy); // Unknown cast. 3295 } else { 3296 Type *OpTy = getTypeByID(Record[1]); 3297 if (!OpTy) 3298 return error("Invalid record"); 3299 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3300 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3301 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3302 } 3303 break; 3304 } 3305 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3306 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3307 unsigned OpNum = 0; 3308 Type *PointeeType = nullptr; 3309 if (Record.size() % 2) 3310 PointeeType = getTypeByID(Record[OpNum++]); 3311 SmallVector<Constant*, 16> Elts; 3312 while (OpNum != Record.size()) { 3313 Type *ElTy = getTypeByID(Record[OpNum++]); 3314 if (!ElTy) 3315 return error("Invalid record"); 3316 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3317 } 3318 3319 if (PointeeType && 3320 PointeeType != 3321 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3322 ->getElementType()) 3323 return error("Explicit gep operator type does not match pointee type " 3324 "of pointer operand"); 3325 3326 if (Elts.size() < 1) 3327 return error("Invalid gep with no operands"); 3328 3329 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3330 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3331 BitCode == 3332 bitc::CST_CODE_CE_INBOUNDS_GEP); 3333 break; 3334 } 3335 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3336 if (Record.size() < 3) 3337 return error("Invalid record"); 3338 3339 Type *SelectorTy = Type::getInt1Ty(Context); 3340 3341 // The selector might be an i1 or an <n x i1> 3342 // Get the type from the ValueList before getting a forward ref. 3343 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3344 if (Value *V = ValueList[Record[0]]) 3345 if (SelectorTy != V->getType()) 3346 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3347 3348 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3349 SelectorTy), 3350 ValueList.getConstantFwdRef(Record[1],CurTy), 3351 ValueList.getConstantFwdRef(Record[2],CurTy)); 3352 break; 3353 } 3354 case bitc::CST_CODE_CE_EXTRACTELT 3355 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3356 if (Record.size() < 3) 3357 return error("Invalid record"); 3358 VectorType *OpTy = 3359 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3360 if (!OpTy) 3361 return error("Invalid record"); 3362 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3363 Constant *Op1 = nullptr; 3364 if (Record.size() == 4) { 3365 Type *IdxTy = getTypeByID(Record[2]); 3366 if (!IdxTy) 3367 return error("Invalid record"); 3368 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3369 } else // TODO: Remove with llvm 4.0 3370 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3371 if (!Op1) 3372 return error("Invalid record"); 3373 V = ConstantExpr::getExtractElement(Op0, Op1); 3374 break; 3375 } 3376 case bitc::CST_CODE_CE_INSERTELT 3377 : { // CE_INSERTELT: [opval, opval, opty, opval] 3378 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3379 if (Record.size() < 3 || !OpTy) 3380 return error("Invalid record"); 3381 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3382 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3383 OpTy->getElementType()); 3384 Constant *Op2 = nullptr; 3385 if (Record.size() == 4) { 3386 Type *IdxTy = getTypeByID(Record[2]); 3387 if (!IdxTy) 3388 return error("Invalid record"); 3389 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3390 } else // TODO: Remove with llvm 4.0 3391 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3392 if (!Op2) 3393 return error("Invalid record"); 3394 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3395 break; 3396 } 3397 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3398 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3399 if (Record.size() < 3 || !OpTy) 3400 return error("Invalid record"); 3401 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3402 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3403 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3404 OpTy->getNumElements()); 3405 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3406 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3407 break; 3408 } 3409 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3410 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3411 VectorType *OpTy = 3412 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3413 if (Record.size() < 4 || !RTy || !OpTy) 3414 return error("Invalid record"); 3415 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3416 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3417 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3418 RTy->getNumElements()); 3419 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3420 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3421 break; 3422 } 3423 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3424 if (Record.size() < 4) 3425 return error("Invalid record"); 3426 Type *OpTy = getTypeByID(Record[0]); 3427 if (!OpTy) 3428 return error("Invalid record"); 3429 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3430 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3431 3432 if (OpTy->isFPOrFPVectorTy()) 3433 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3434 else 3435 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3436 break; 3437 } 3438 // This maintains backward compatibility, pre-asm dialect keywords. 3439 // FIXME: Remove with the 4.0 release. 3440 case bitc::CST_CODE_INLINEASM_OLD: { 3441 if (Record.size() < 2) 3442 return error("Invalid record"); 3443 std::string AsmStr, ConstrStr; 3444 bool HasSideEffects = Record[0] & 1; 3445 bool IsAlignStack = Record[0] >> 1; 3446 unsigned AsmStrSize = Record[1]; 3447 if (2+AsmStrSize >= Record.size()) 3448 return error("Invalid record"); 3449 unsigned ConstStrSize = Record[2+AsmStrSize]; 3450 if (3+AsmStrSize+ConstStrSize > Record.size()) 3451 return error("Invalid record"); 3452 3453 for (unsigned i = 0; i != AsmStrSize; ++i) 3454 AsmStr += (char)Record[2+i]; 3455 for (unsigned i = 0; i != ConstStrSize; ++i) 3456 ConstrStr += (char)Record[3+AsmStrSize+i]; 3457 PointerType *PTy = cast<PointerType>(CurTy); 3458 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3459 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3460 break; 3461 } 3462 // This version adds support for the asm dialect keywords (e.g., 3463 // inteldialect). 3464 case bitc::CST_CODE_INLINEASM: { 3465 if (Record.size() < 2) 3466 return error("Invalid record"); 3467 std::string AsmStr, ConstrStr; 3468 bool HasSideEffects = Record[0] & 1; 3469 bool IsAlignStack = (Record[0] >> 1) & 1; 3470 unsigned AsmDialect = Record[0] >> 2; 3471 unsigned AsmStrSize = Record[1]; 3472 if (2+AsmStrSize >= Record.size()) 3473 return error("Invalid record"); 3474 unsigned ConstStrSize = Record[2+AsmStrSize]; 3475 if (3+AsmStrSize+ConstStrSize > Record.size()) 3476 return error("Invalid record"); 3477 3478 for (unsigned i = 0; i != AsmStrSize; ++i) 3479 AsmStr += (char)Record[2+i]; 3480 for (unsigned i = 0; i != ConstStrSize; ++i) 3481 ConstrStr += (char)Record[3+AsmStrSize+i]; 3482 PointerType *PTy = cast<PointerType>(CurTy); 3483 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3484 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3485 InlineAsm::AsmDialect(AsmDialect)); 3486 break; 3487 } 3488 case bitc::CST_CODE_BLOCKADDRESS:{ 3489 if (Record.size() < 3) 3490 return error("Invalid record"); 3491 Type *FnTy = getTypeByID(Record[0]); 3492 if (!FnTy) 3493 return error("Invalid record"); 3494 Function *Fn = 3495 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3496 if (!Fn) 3497 return error("Invalid record"); 3498 3499 // If the function is already parsed we can insert the block address right 3500 // away. 3501 BasicBlock *BB; 3502 unsigned BBID = Record[2]; 3503 if (!BBID) 3504 // Invalid reference to entry block. 3505 return error("Invalid ID"); 3506 if (!Fn->empty()) { 3507 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3508 for (size_t I = 0, E = BBID; I != E; ++I) { 3509 if (BBI == BBE) 3510 return error("Invalid ID"); 3511 ++BBI; 3512 } 3513 BB = &*BBI; 3514 } else { 3515 // Otherwise insert a placeholder and remember it so it can be inserted 3516 // when the function is parsed. 3517 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3518 if (FwdBBs.empty()) 3519 BasicBlockFwdRefQueue.push_back(Fn); 3520 if (FwdBBs.size() < BBID + 1) 3521 FwdBBs.resize(BBID + 1); 3522 if (!FwdBBs[BBID]) 3523 FwdBBs[BBID] = BasicBlock::Create(Context); 3524 BB = FwdBBs[BBID]; 3525 } 3526 V = BlockAddress::get(Fn, BB); 3527 break; 3528 } 3529 } 3530 3531 ValueList.assignValue(V, NextCstNo); 3532 ++NextCstNo; 3533 } 3534 } 3535 3536 std::error_code BitcodeReader::parseUseLists() { 3537 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3538 return error("Invalid record"); 3539 3540 // Read all the records. 3541 SmallVector<uint64_t, 64> Record; 3542 3543 while (true) { 3544 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3545 3546 switch (Entry.Kind) { 3547 case BitstreamEntry::SubBlock: // Handled for us already. 3548 case BitstreamEntry::Error: 3549 return error("Malformed block"); 3550 case BitstreamEntry::EndBlock: 3551 return std::error_code(); 3552 case BitstreamEntry::Record: 3553 // The interesting case. 3554 break; 3555 } 3556 3557 // Read a use list record. 3558 Record.clear(); 3559 bool IsBB = false; 3560 switch (Stream.readRecord(Entry.ID, Record)) { 3561 default: // Default behavior: unknown type. 3562 break; 3563 case bitc::USELIST_CODE_BB: 3564 IsBB = true; 3565 LLVM_FALLTHROUGH; 3566 case bitc::USELIST_CODE_DEFAULT: { 3567 unsigned RecordLength = Record.size(); 3568 if (RecordLength < 3) 3569 // Records should have at least an ID and two indexes. 3570 return error("Invalid record"); 3571 unsigned ID = Record.back(); 3572 Record.pop_back(); 3573 3574 Value *V; 3575 if (IsBB) { 3576 assert(ID < FunctionBBs.size() && "Basic block not found"); 3577 V = FunctionBBs[ID]; 3578 } else 3579 V = ValueList[ID]; 3580 unsigned NumUses = 0; 3581 SmallDenseMap<const Use *, unsigned, 16> Order; 3582 for (const Use &U : V->materialized_uses()) { 3583 if (++NumUses > Record.size()) 3584 break; 3585 Order[&U] = Record[NumUses - 1]; 3586 } 3587 if (Order.size() != Record.size() || NumUses > Record.size()) 3588 // Mismatches can happen if the functions are being materialized lazily 3589 // (out-of-order), or a value has been upgraded. 3590 break; 3591 3592 V->sortUseList([&](const Use &L, const Use &R) { 3593 return Order.lookup(&L) < Order.lookup(&R); 3594 }); 3595 break; 3596 } 3597 } 3598 } 3599 } 3600 3601 /// When we see the block for metadata, remember where it is and then skip it. 3602 /// This lets us lazily deserialize the metadata. 3603 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3604 // Save the current stream state. 3605 uint64_t CurBit = Stream.GetCurrentBitNo(); 3606 DeferredMetadataInfo.push_back(CurBit); 3607 3608 // Skip over the block for now. 3609 if (Stream.SkipBlock()) 3610 return error("Invalid record"); 3611 return std::error_code(); 3612 } 3613 3614 std::error_code BitcodeReader::materializeMetadata() { 3615 for (uint64_t BitPos : DeferredMetadataInfo) { 3616 // Move the bit stream to the saved position. 3617 Stream.JumpToBit(BitPos); 3618 if (std::error_code EC = parseMetadata(true)) 3619 return EC; 3620 } 3621 DeferredMetadataInfo.clear(); 3622 return std::error_code(); 3623 } 3624 3625 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3626 3627 /// When we see the block for a function body, remember where it is and then 3628 /// skip it. This lets us lazily deserialize the functions. 3629 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3630 // Get the function we are talking about. 3631 if (FunctionsWithBodies.empty()) 3632 return error("Insufficient function protos"); 3633 3634 Function *Fn = FunctionsWithBodies.back(); 3635 FunctionsWithBodies.pop_back(); 3636 3637 // Save the current stream state. 3638 uint64_t CurBit = Stream.GetCurrentBitNo(); 3639 assert( 3640 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3641 "Mismatch between VST and scanned function offsets"); 3642 DeferredFunctionInfo[Fn] = CurBit; 3643 3644 // Skip over the function block for now. 3645 if (Stream.SkipBlock()) 3646 return error("Invalid record"); 3647 return std::error_code(); 3648 } 3649 3650 std::error_code BitcodeReader::globalCleanup() { 3651 // Patch the initializers for globals and aliases up. 3652 resolveGlobalAndIndirectSymbolInits(); 3653 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3654 return error("Malformed global initializer set"); 3655 3656 // Look for intrinsic functions which need to be upgraded at some point 3657 for (Function &F : *TheModule) { 3658 Function *NewFn; 3659 if (UpgradeIntrinsicFunction(&F, NewFn)) 3660 UpgradedIntrinsics[&F] = NewFn; 3661 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3662 // Some types could be renamed during loading if several modules are 3663 // loaded in the same LLVMContext (LTO scenario). In this case we should 3664 // remangle intrinsics names as well. 3665 RemangledIntrinsics[&F] = Remangled.getValue(); 3666 } 3667 3668 // Look for global variables which need to be renamed. 3669 for (GlobalVariable &GV : TheModule->globals()) 3670 UpgradeGlobalVariable(&GV); 3671 3672 // Force deallocation of memory for these vectors to favor the client that 3673 // want lazy deserialization. 3674 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3675 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3676 IndirectSymbolInits); 3677 return std::error_code(); 3678 } 3679 3680 /// Support for lazy parsing of function bodies. This is required if we 3681 /// either have an old bitcode file without a VST forward declaration record, 3682 /// or if we have an anonymous function being materialized, since anonymous 3683 /// functions do not have a name and are therefore not in the VST. 3684 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3685 Stream.JumpToBit(NextUnreadBit); 3686 3687 if (Stream.AtEndOfStream()) 3688 return error("Could not find function in stream"); 3689 3690 if (!SeenFirstFunctionBody) 3691 return error("Trying to materialize functions before seeing function blocks"); 3692 3693 // An old bitcode file with the symbol table at the end would have 3694 // finished the parse greedily. 3695 assert(SeenValueSymbolTable); 3696 3697 SmallVector<uint64_t, 64> Record; 3698 3699 while (true) { 3700 BitstreamEntry Entry = Stream.advance(); 3701 switch (Entry.Kind) { 3702 default: 3703 return error("Expect SubBlock"); 3704 case BitstreamEntry::SubBlock: 3705 switch (Entry.ID) { 3706 default: 3707 return error("Expect function block"); 3708 case bitc::FUNCTION_BLOCK_ID: 3709 if (std::error_code EC = rememberAndSkipFunctionBody()) 3710 return EC; 3711 NextUnreadBit = Stream.GetCurrentBitNo(); 3712 return std::error_code(); 3713 } 3714 } 3715 } 3716 } 3717 3718 std::error_code BitcodeReader::parseBitcodeVersion() { 3719 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3720 return error("Invalid record"); 3721 3722 // Read all the records. 3723 SmallVector<uint64_t, 64> Record; 3724 3725 while (true) { 3726 BitstreamEntry Entry = Stream.advance(); 3727 3728 switch (Entry.Kind) { 3729 default: 3730 case BitstreamEntry::Error: 3731 return error("Malformed block"); 3732 case BitstreamEntry::EndBlock: 3733 return std::error_code(); 3734 case BitstreamEntry::Record: 3735 // The interesting case. 3736 break; 3737 } 3738 3739 // Read a record. 3740 Record.clear(); 3741 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3742 switch (BitCode) { 3743 default: // Default behavior: reject 3744 return error("Invalid value"); 3745 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3746 // N] 3747 convertToString(Record, 0, ProducerIdentification); 3748 break; 3749 } 3750 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3751 unsigned epoch = (unsigned)Record[0]; 3752 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3753 return error( 3754 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3755 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3756 } 3757 } 3758 } 3759 } 3760 } 3761 3762 3763 bool BitcodeReaderBase::readBlockInfo() { 3764 return Stream.ReadBlockInfoBlock(); 3765 } 3766 3767 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3768 bool ShouldLazyLoadMetadata) { 3769 if (ResumeBit) 3770 Stream.JumpToBit(ResumeBit); 3771 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3772 return error("Invalid record"); 3773 3774 SmallVector<uint64_t, 64> Record; 3775 std::vector<std::string> SectionTable; 3776 std::vector<std::string> GCTable; 3777 3778 // Read all the records for this module. 3779 while (true) { 3780 BitstreamEntry Entry = Stream.advance(); 3781 3782 switch (Entry.Kind) { 3783 case BitstreamEntry::Error: 3784 return error("Malformed block"); 3785 case BitstreamEntry::EndBlock: 3786 return globalCleanup(); 3787 3788 case BitstreamEntry::SubBlock: 3789 switch (Entry.ID) { 3790 default: // Skip unknown content. 3791 if (Stream.SkipBlock()) 3792 return error("Invalid record"); 3793 break; 3794 case bitc::BLOCKINFO_BLOCK_ID: 3795 if (readBlockInfo()) 3796 return error("Malformed block"); 3797 break; 3798 case bitc::PARAMATTR_BLOCK_ID: 3799 if (std::error_code EC = parseAttributeBlock()) 3800 return EC; 3801 break; 3802 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3803 if (std::error_code EC = parseAttributeGroupBlock()) 3804 return EC; 3805 break; 3806 case bitc::TYPE_BLOCK_ID_NEW: 3807 if (std::error_code EC = parseTypeTable()) 3808 return EC; 3809 break; 3810 case bitc::VALUE_SYMTAB_BLOCK_ID: 3811 if (!SeenValueSymbolTable) { 3812 // Either this is an old form VST without function index and an 3813 // associated VST forward declaration record (which would have caused 3814 // the VST to be jumped to and parsed before it was encountered 3815 // normally in the stream), or there were no function blocks to 3816 // trigger an earlier parsing of the VST. 3817 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3818 if (std::error_code EC = parseValueSymbolTable()) 3819 return EC; 3820 SeenValueSymbolTable = true; 3821 } else { 3822 // We must have had a VST forward declaration record, which caused 3823 // the parser to jump to and parse the VST earlier. 3824 assert(VSTOffset > 0); 3825 if (Stream.SkipBlock()) 3826 return error("Invalid record"); 3827 } 3828 break; 3829 case bitc::CONSTANTS_BLOCK_ID: 3830 if (std::error_code EC = parseConstants()) 3831 return EC; 3832 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3833 return EC; 3834 break; 3835 case bitc::METADATA_BLOCK_ID: 3836 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3837 if (std::error_code EC = rememberAndSkipMetadata()) 3838 return EC; 3839 break; 3840 } 3841 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3842 if (std::error_code EC = parseMetadata(true)) 3843 return EC; 3844 break; 3845 case bitc::METADATA_KIND_BLOCK_ID: 3846 if (std::error_code EC = parseMetadataKinds()) 3847 return EC; 3848 break; 3849 case bitc::FUNCTION_BLOCK_ID: 3850 // If this is the first function body we've seen, reverse the 3851 // FunctionsWithBodies list. 3852 if (!SeenFirstFunctionBody) { 3853 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3854 if (std::error_code EC = globalCleanup()) 3855 return EC; 3856 SeenFirstFunctionBody = true; 3857 } 3858 3859 if (VSTOffset > 0) { 3860 // If we have a VST forward declaration record, make sure we 3861 // parse the VST now if we haven't already. It is needed to 3862 // set up the DeferredFunctionInfo vector for lazy reading. 3863 if (!SeenValueSymbolTable) { 3864 if (std::error_code EC = 3865 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3866 return EC; 3867 SeenValueSymbolTable = true; 3868 // Fall through so that we record the NextUnreadBit below. 3869 // This is necessary in case we have an anonymous function that 3870 // is later materialized. Since it will not have a VST entry we 3871 // need to fall back to the lazy parse to find its offset. 3872 } else { 3873 // If we have a VST forward declaration record, but have already 3874 // parsed the VST (just above, when the first function body was 3875 // encountered here), then we are resuming the parse after 3876 // materializing functions. The ResumeBit points to the 3877 // start of the last function block recorded in the 3878 // DeferredFunctionInfo map. Skip it. 3879 if (Stream.SkipBlock()) 3880 return error("Invalid record"); 3881 continue; 3882 } 3883 } 3884 3885 // Support older bitcode files that did not have the function 3886 // index in the VST, nor a VST forward declaration record, as 3887 // well as anonymous functions that do not have VST entries. 3888 // Build the DeferredFunctionInfo vector on the fly. 3889 if (std::error_code EC = rememberAndSkipFunctionBody()) 3890 return EC; 3891 3892 // Suspend parsing when we reach the function bodies. Subsequent 3893 // materialization calls will resume it when necessary. If the bitcode 3894 // file is old, the symbol table will be at the end instead and will not 3895 // have been seen yet. In this case, just finish the parse now. 3896 if (SeenValueSymbolTable) { 3897 NextUnreadBit = Stream.GetCurrentBitNo(); 3898 // After the VST has been parsed, we need to make sure intrinsic name 3899 // are auto-upgraded. 3900 return globalCleanup(); 3901 } 3902 break; 3903 case bitc::USELIST_BLOCK_ID: 3904 if (std::error_code EC = parseUseLists()) 3905 return EC; 3906 break; 3907 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3908 if (std::error_code EC = parseOperandBundleTags()) 3909 return EC; 3910 break; 3911 } 3912 continue; 3913 3914 case BitstreamEntry::Record: 3915 // The interesting case. 3916 break; 3917 } 3918 3919 // Read a record. 3920 auto BitCode = Stream.readRecord(Entry.ID, Record); 3921 switch (BitCode) { 3922 default: break; // Default behavior, ignore unknown content. 3923 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3924 if (Record.size() < 1) 3925 return error("Invalid record"); 3926 // Only version #0 and #1 are supported so far. 3927 unsigned module_version = Record[0]; 3928 switch (module_version) { 3929 default: 3930 return error("Invalid value"); 3931 case 0: 3932 UseRelativeIDs = false; 3933 break; 3934 case 1: 3935 UseRelativeIDs = true; 3936 break; 3937 } 3938 break; 3939 } 3940 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3941 std::string S; 3942 if (convertToString(Record, 0, S)) 3943 return error("Invalid record"); 3944 TheModule->setTargetTriple(S); 3945 break; 3946 } 3947 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3948 std::string S; 3949 if (convertToString(Record, 0, S)) 3950 return error("Invalid record"); 3951 TheModule->setDataLayout(S); 3952 break; 3953 } 3954 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3955 std::string S; 3956 if (convertToString(Record, 0, S)) 3957 return error("Invalid record"); 3958 TheModule->setModuleInlineAsm(S); 3959 break; 3960 } 3961 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3962 // FIXME: Remove in 4.0. 3963 std::string S; 3964 if (convertToString(Record, 0, S)) 3965 return error("Invalid record"); 3966 // Ignore value. 3967 break; 3968 } 3969 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3970 std::string S; 3971 if (convertToString(Record, 0, S)) 3972 return error("Invalid record"); 3973 SectionTable.push_back(S); 3974 break; 3975 } 3976 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3977 std::string S; 3978 if (convertToString(Record, 0, S)) 3979 return error("Invalid record"); 3980 GCTable.push_back(S); 3981 break; 3982 } 3983 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3984 if (Record.size() < 2) 3985 return error("Invalid record"); 3986 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3987 unsigned ComdatNameSize = Record[1]; 3988 std::string ComdatName; 3989 ComdatName.reserve(ComdatNameSize); 3990 for (unsigned i = 0; i != ComdatNameSize; ++i) 3991 ComdatName += (char)Record[2 + i]; 3992 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3993 C->setSelectionKind(SK); 3994 ComdatList.push_back(C); 3995 break; 3996 } 3997 // GLOBALVAR: [pointer type, isconst, initid, 3998 // linkage, alignment, section, visibility, threadlocal, 3999 // unnamed_addr, externally_initialized, dllstorageclass, 4000 // comdat] 4001 case bitc::MODULE_CODE_GLOBALVAR: { 4002 if (Record.size() < 6) 4003 return error("Invalid record"); 4004 Type *Ty = getTypeByID(Record[0]); 4005 if (!Ty) 4006 return error("Invalid record"); 4007 bool isConstant = Record[1] & 1; 4008 bool explicitType = Record[1] & 2; 4009 unsigned AddressSpace; 4010 if (explicitType) { 4011 AddressSpace = Record[1] >> 2; 4012 } else { 4013 if (!Ty->isPointerTy()) 4014 return error("Invalid type for value"); 4015 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4016 Ty = cast<PointerType>(Ty)->getElementType(); 4017 } 4018 4019 uint64_t RawLinkage = Record[3]; 4020 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4021 unsigned Alignment; 4022 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 4023 return EC; 4024 std::string Section; 4025 if (Record[5]) { 4026 if (Record[5]-1 >= SectionTable.size()) 4027 return error("Invalid ID"); 4028 Section = SectionTable[Record[5]-1]; 4029 } 4030 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4031 // Local linkage must have default visibility. 4032 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4033 // FIXME: Change to an error if non-default in 4.0. 4034 Visibility = getDecodedVisibility(Record[6]); 4035 4036 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4037 if (Record.size() > 7) 4038 TLM = getDecodedThreadLocalMode(Record[7]); 4039 4040 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4041 if (Record.size() > 8) 4042 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4043 4044 bool ExternallyInitialized = false; 4045 if (Record.size() > 9) 4046 ExternallyInitialized = Record[9]; 4047 4048 GlobalVariable *NewGV = 4049 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 4050 TLM, AddressSpace, ExternallyInitialized); 4051 NewGV->setAlignment(Alignment); 4052 if (!Section.empty()) 4053 NewGV->setSection(Section); 4054 NewGV->setVisibility(Visibility); 4055 NewGV->setUnnamedAddr(UnnamedAddr); 4056 4057 if (Record.size() > 10) 4058 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4059 else 4060 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4061 4062 ValueList.push_back(NewGV); 4063 4064 // Remember which value to use for the global initializer. 4065 if (unsigned InitID = Record[2]) 4066 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 4067 4068 if (Record.size() > 11) { 4069 if (unsigned ComdatID = Record[11]) { 4070 if (ComdatID > ComdatList.size()) 4071 return error("Invalid global variable comdat ID"); 4072 NewGV->setComdat(ComdatList[ComdatID - 1]); 4073 } 4074 } else if (hasImplicitComdat(RawLinkage)) { 4075 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4076 } 4077 4078 break; 4079 } 4080 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4081 // alignment, section, visibility, gc, unnamed_addr, 4082 // prologuedata, dllstorageclass, comdat, prefixdata] 4083 case bitc::MODULE_CODE_FUNCTION: { 4084 if (Record.size() < 8) 4085 return error("Invalid record"); 4086 Type *Ty = getTypeByID(Record[0]); 4087 if (!Ty) 4088 return error("Invalid record"); 4089 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4090 Ty = PTy->getElementType(); 4091 auto *FTy = dyn_cast<FunctionType>(Ty); 4092 if (!FTy) 4093 return error("Invalid type for value"); 4094 auto CC = static_cast<CallingConv::ID>(Record[1]); 4095 if (CC & ~CallingConv::MaxID) 4096 return error("Invalid calling convention ID"); 4097 4098 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4099 "", TheModule); 4100 4101 Func->setCallingConv(CC); 4102 bool isProto = Record[2]; 4103 uint64_t RawLinkage = Record[3]; 4104 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4105 Func->setAttributes(getAttributes(Record[4])); 4106 4107 unsigned Alignment; 4108 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 4109 return EC; 4110 Func->setAlignment(Alignment); 4111 if (Record[6]) { 4112 if (Record[6]-1 >= SectionTable.size()) 4113 return error("Invalid ID"); 4114 Func->setSection(SectionTable[Record[6]-1]); 4115 } 4116 // Local linkage must have default visibility. 4117 if (!Func->hasLocalLinkage()) 4118 // FIXME: Change to an error if non-default in 4.0. 4119 Func->setVisibility(getDecodedVisibility(Record[7])); 4120 if (Record.size() > 8 && Record[8]) { 4121 if (Record[8]-1 >= GCTable.size()) 4122 return error("Invalid ID"); 4123 Func->setGC(GCTable[Record[8] - 1]); 4124 } 4125 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4126 if (Record.size() > 9) 4127 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4128 Func->setUnnamedAddr(UnnamedAddr); 4129 if (Record.size() > 10 && Record[10] != 0) 4130 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4131 4132 if (Record.size() > 11) 4133 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4134 else 4135 upgradeDLLImportExportLinkage(Func, RawLinkage); 4136 4137 if (Record.size() > 12) { 4138 if (unsigned ComdatID = Record[12]) { 4139 if (ComdatID > ComdatList.size()) 4140 return error("Invalid function comdat ID"); 4141 Func->setComdat(ComdatList[ComdatID - 1]); 4142 } 4143 } else if (hasImplicitComdat(RawLinkage)) { 4144 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4145 } 4146 4147 if (Record.size() > 13 && Record[13] != 0) 4148 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4149 4150 if (Record.size() > 14 && Record[14] != 0) 4151 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4152 4153 ValueList.push_back(Func); 4154 4155 // If this is a function with a body, remember the prototype we are 4156 // creating now, so that we can match up the body with them later. 4157 if (!isProto) { 4158 Func->setIsMaterializable(true); 4159 FunctionsWithBodies.push_back(Func); 4160 DeferredFunctionInfo[Func] = 0; 4161 } 4162 break; 4163 } 4164 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4165 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4166 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4167 case bitc::MODULE_CODE_IFUNC: 4168 case bitc::MODULE_CODE_ALIAS: 4169 case bitc::MODULE_CODE_ALIAS_OLD: { 4170 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4171 if (Record.size() < (3 + (unsigned)NewRecord)) 4172 return error("Invalid record"); 4173 unsigned OpNum = 0; 4174 Type *Ty = getTypeByID(Record[OpNum++]); 4175 if (!Ty) 4176 return error("Invalid record"); 4177 4178 unsigned AddrSpace; 4179 if (!NewRecord) { 4180 auto *PTy = dyn_cast<PointerType>(Ty); 4181 if (!PTy) 4182 return error("Invalid type for value"); 4183 Ty = PTy->getElementType(); 4184 AddrSpace = PTy->getAddressSpace(); 4185 } else { 4186 AddrSpace = Record[OpNum++]; 4187 } 4188 4189 auto Val = Record[OpNum++]; 4190 auto Linkage = Record[OpNum++]; 4191 GlobalIndirectSymbol *NewGA; 4192 if (BitCode == bitc::MODULE_CODE_ALIAS || 4193 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4194 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4195 "", TheModule); 4196 else 4197 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4198 "", nullptr, TheModule); 4199 // Old bitcode files didn't have visibility field. 4200 // Local linkage must have default visibility. 4201 if (OpNum != Record.size()) { 4202 auto VisInd = OpNum++; 4203 if (!NewGA->hasLocalLinkage()) 4204 // FIXME: Change to an error if non-default in 4.0. 4205 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4206 } 4207 if (OpNum != Record.size()) 4208 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4209 else 4210 upgradeDLLImportExportLinkage(NewGA, Linkage); 4211 if (OpNum != Record.size()) 4212 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4213 if (OpNum != Record.size()) 4214 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4215 ValueList.push_back(NewGA); 4216 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4217 break; 4218 } 4219 /// MODULE_CODE_PURGEVALS: [numvals] 4220 case bitc::MODULE_CODE_PURGEVALS: 4221 // Trim down the value list to the specified size. 4222 if (Record.size() < 1 || Record[0] > ValueList.size()) 4223 return error("Invalid record"); 4224 ValueList.shrinkTo(Record[0]); 4225 break; 4226 /// MODULE_CODE_VSTOFFSET: [offset] 4227 case bitc::MODULE_CODE_VSTOFFSET: 4228 if (Record.size() < 1) 4229 return error("Invalid record"); 4230 VSTOffset = Record[0]; 4231 break; 4232 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4233 case bitc::MODULE_CODE_SOURCE_FILENAME: 4234 SmallString<128> ValueName; 4235 if (convertToString(Record, 0, ValueName)) 4236 return error("Invalid record"); 4237 TheModule->setSourceFileName(ValueName); 4238 break; 4239 } 4240 Record.clear(); 4241 } 4242 } 4243 4244 /// Helper to read the header common to all bitcode files. 4245 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4246 // Sniff for the signature. 4247 if (!Stream.canSkipToPos(4) || 4248 Stream.Read(8) != 'B' || 4249 Stream.Read(8) != 'C' || 4250 Stream.Read(4) != 0x0 || 4251 Stream.Read(4) != 0xC || 4252 Stream.Read(4) != 0xE || 4253 Stream.Read(4) != 0xD) 4254 return false; 4255 return true; 4256 } 4257 4258 std::error_code BitcodeReader::parseBitcodeInto(Module *M, 4259 bool ShouldLazyLoadMetadata) { 4260 TheModule = M; 4261 4262 if (std::error_code EC = initStream()) 4263 return EC; 4264 4265 // Sniff for the signature. 4266 if (!hasValidBitcodeHeader(Stream)) 4267 return error("Invalid bitcode signature"); 4268 4269 // We expect a number of well-defined blocks, though we don't necessarily 4270 // need to understand them all. 4271 while (true) { 4272 if (Stream.AtEndOfStream()) { 4273 // We didn't really read a proper Module. 4274 return error("Malformed IR file"); 4275 } 4276 4277 BitstreamEntry Entry = 4278 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4279 4280 if (Entry.Kind != BitstreamEntry::SubBlock) 4281 return error("Malformed block"); 4282 4283 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4284 parseBitcodeVersion(); 4285 continue; 4286 } 4287 4288 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4289 return parseModule(0, ShouldLazyLoadMetadata); 4290 4291 if (Stream.SkipBlock()) 4292 return error("Invalid record"); 4293 } 4294 } 4295 4296 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4297 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4298 return error("Invalid record"); 4299 4300 SmallVector<uint64_t, 64> Record; 4301 4302 std::string Triple; 4303 4304 // Read all the records for this module. 4305 while (true) { 4306 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4307 4308 switch (Entry.Kind) { 4309 case BitstreamEntry::SubBlock: // Handled for us already. 4310 case BitstreamEntry::Error: 4311 return error("Malformed block"); 4312 case BitstreamEntry::EndBlock: 4313 return Triple; 4314 case BitstreamEntry::Record: 4315 // The interesting case. 4316 break; 4317 } 4318 4319 // Read a record. 4320 switch (Stream.readRecord(Entry.ID, Record)) { 4321 default: break; // Default behavior, ignore unknown content. 4322 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4323 std::string S; 4324 if (convertToString(Record, 0, S)) 4325 return error("Invalid record"); 4326 Triple = S; 4327 break; 4328 } 4329 } 4330 Record.clear(); 4331 } 4332 llvm_unreachable("Exit infinite loop"); 4333 } 4334 4335 ErrorOr<std::string> BitcodeReader::parseTriple() { 4336 if (std::error_code EC = initStream()) 4337 return EC; 4338 4339 // Sniff for the signature. 4340 if (!hasValidBitcodeHeader(Stream)) 4341 return error("Invalid bitcode signature"); 4342 4343 // We expect a number of well-defined blocks, though we don't necessarily 4344 // need to understand them all. 4345 while (true) { 4346 BitstreamEntry Entry = Stream.advance(); 4347 4348 switch (Entry.Kind) { 4349 case BitstreamEntry::Error: 4350 return error("Malformed block"); 4351 case BitstreamEntry::EndBlock: 4352 return std::error_code(); 4353 4354 case BitstreamEntry::SubBlock: 4355 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4356 return parseModuleTriple(); 4357 4358 // Ignore other sub-blocks. 4359 if (Stream.SkipBlock()) 4360 return error("Malformed block"); 4361 continue; 4362 4363 case BitstreamEntry::Record: 4364 Stream.skipRecord(Entry.ID); 4365 continue; 4366 } 4367 } 4368 } 4369 4370 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4371 if (std::error_code EC = initStream()) 4372 return EC; 4373 4374 // Sniff for the signature. 4375 if (!hasValidBitcodeHeader(Stream)) 4376 return error("Invalid bitcode signature"); 4377 4378 // We expect a number of well-defined blocks, though we don't necessarily 4379 // need to understand them all. 4380 while (true) { 4381 BitstreamEntry Entry = Stream.advance(); 4382 switch (Entry.Kind) { 4383 case BitstreamEntry::Error: 4384 return error("Malformed block"); 4385 case BitstreamEntry::EndBlock: 4386 return std::error_code(); 4387 4388 case BitstreamEntry::SubBlock: 4389 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4390 if (std::error_code EC = parseBitcodeVersion()) 4391 return EC; 4392 return ProducerIdentification; 4393 } 4394 // Ignore other sub-blocks. 4395 if (Stream.SkipBlock()) 4396 return error("Malformed block"); 4397 continue; 4398 case BitstreamEntry::Record: 4399 Stream.skipRecord(Entry.ID); 4400 continue; 4401 } 4402 } 4403 } 4404 4405 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4406 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4407 assert(Record.size() % 2 == 0); 4408 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4409 auto K = MDKindMap.find(Record[I]); 4410 if (K == MDKindMap.end()) 4411 return error("Invalid ID"); 4412 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4413 if (!MD) 4414 return error("Invalid metadata attachment"); 4415 GO.addMetadata(K->second, *MD); 4416 } 4417 return std::error_code(); 4418 } 4419 4420 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4421 if (std::error_code EC = initStream()) 4422 return EC; 4423 4424 // Sniff for the signature. 4425 if (!hasValidBitcodeHeader(Stream)) 4426 return error("Invalid bitcode signature"); 4427 4428 // We expect a number of well-defined blocks, though we don't necessarily 4429 // need to understand them all. 4430 while (true) { 4431 BitstreamEntry Entry = Stream.advance(); 4432 4433 switch (Entry.Kind) { 4434 case BitstreamEntry::Error: 4435 return error("Malformed block"); 4436 case BitstreamEntry::EndBlock: 4437 return std::error_code(); 4438 4439 case BitstreamEntry::SubBlock: 4440 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4441 return hasObjCCategoryInModule(); 4442 4443 // Ignore other sub-blocks. 4444 if (Stream.SkipBlock()) 4445 return error("Malformed block"); 4446 continue; 4447 4448 case BitstreamEntry::Record: 4449 Stream.skipRecord(Entry.ID); 4450 continue; 4451 } 4452 } 4453 } 4454 4455 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4456 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4457 return error("Invalid record"); 4458 4459 SmallVector<uint64_t, 64> Record; 4460 // Read all the records for this module. 4461 4462 while (true) { 4463 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4464 4465 switch (Entry.Kind) { 4466 case BitstreamEntry::SubBlock: // Handled for us already. 4467 case BitstreamEntry::Error: 4468 return error("Malformed block"); 4469 case BitstreamEntry::EndBlock: 4470 return false; 4471 case BitstreamEntry::Record: 4472 // The interesting case. 4473 break; 4474 } 4475 4476 // Read a record. 4477 switch (Stream.readRecord(Entry.ID, Record)) { 4478 default: 4479 break; // Default behavior, ignore unknown content. 4480 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4481 std::string S; 4482 if (convertToString(Record, 0, S)) 4483 return error("Invalid record"); 4484 // Check for the i386 and other (x86_64, ARM) conventions 4485 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4486 S.find("__OBJC,__category") != std::string::npos) 4487 return true; 4488 break; 4489 } 4490 } 4491 Record.clear(); 4492 } 4493 llvm_unreachable("Exit infinite loop"); 4494 } 4495 4496 /// Parse metadata attachments. 4497 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4498 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4499 return error("Invalid record"); 4500 4501 SmallVector<uint64_t, 64> Record; 4502 4503 while (true) { 4504 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4505 4506 switch (Entry.Kind) { 4507 case BitstreamEntry::SubBlock: // Handled for us already. 4508 case BitstreamEntry::Error: 4509 return error("Malformed block"); 4510 case BitstreamEntry::EndBlock: 4511 return std::error_code(); 4512 case BitstreamEntry::Record: 4513 // The interesting case. 4514 break; 4515 } 4516 4517 // Read a metadata attachment record. 4518 Record.clear(); 4519 switch (Stream.readRecord(Entry.ID, Record)) { 4520 default: // Default behavior: ignore. 4521 break; 4522 case bitc::METADATA_ATTACHMENT: { 4523 unsigned RecordLength = Record.size(); 4524 if (Record.empty()) 4525 return error("Invalid record"); 4526 if (RecordLength % 2 == 0) { 4527 // A function attachment. 4528 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4529 return EC; 4530 continue; 4531 } 4532 4533 // An instruction attachment. 4534 Instruction *Inst = InstructionList[Record[0]]; 4535 for (unsigned i = 1; i != RecordLength; i = i+2) { 4536 unsigned Kind = Record[i]; 4537 DenseMap<unsigned, unsigned>::iterator I = 4538 MDKindMap.find(Kind); 4539 if (I == MDKindMap.end()) 4540 return error("Invalid ID"); 4541 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4542 if (isa<LocalAsMetadata>(Node)) 4543 // Drop the attachment. This used to be legal, but there's no 4544 // upgrade path. 4545 break; 4546 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4547 if (!MD) 4548 return error("Invalid metadata attachment"); 4549 4550 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4551 MD = upgradeInstructionLoopAttachment(*MD); 4552 4553 if (I->second == LLVMContext::MD_tbaa) { 4554 assert(!MD->isTemporary() && "should load MDs before attachments"); 4555 MD = UpgradeTBAANode(*MD); 4556 } 4557 Inst->setMetadata(I->second, MD); 4558 } 4559 break; 4560 } 4561 } 4562 } 4563 } 4564 4565 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4566 LLVMContext &Context = PtrType->getContext(); 4567 if (!isa<PointerType>(PtrType)) 4568 return error(Context, "Load/Store operand is not a pointer type"); 4569 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4570 4571 if (ValType && ValType != ElemType) 4572 return error(Context, "Explicit load/store type does not match pointee " 4573 "type of pointer operand"); 4574 if (!PointerType::isLoadableOrStorableType(ElemType)) 4575 return error(Context, "Cannot load/store from pointer"); 4576 return std::error_code(); 4577 } 4578 4579 /// Lazily parse the specified function body block. 4580 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4581 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4582 return error("Invalid record"); 4583 4584 // Unexpected unresolved metadata when parsing function. 4585 if (MetadataList.hasFwdRefs()) 4586 return error("Invalid function metadata: incoming forward references"); 4587 4588 InstructionList.clear(); 4589 unsigned ModuleValueListSize = ValueList.size(); 4590 unsigned ModuleMetadataListSize = MetadataList.size(); 4591 4592 // Add all the function arguments to the value table. 4593 for (Argument &I : F->args()) 4594 ValueList.push_back(&I); 4595 4596 unsigned NextValueNo = ValueList.size(); 4597 BasicBlock *CurBB = nullptr; 4598 unsigned CurBBNo = 0; 4599 4600 DebugLoc LastLoc; 4601 auto getLastInstruction = [&]() -> Instruction * { 4602 if (CurBB && !CurBB->empty()) 4603 return &CurBB->back(); 4604 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4605 !FunctionBBs[CurBBNo - 1]->empty()) 4606 return &FunctionBBs[CurBBNo - 1]->back(); 4607 return nullptr; 4608 }; 4609 4610 std::vector<OperandBundleDef> OperandBundles; 4611 4612 // Read all the records. 4613 SmallVector<uint64_t, 64> Record; 4614 4615 while (true) { 4616 BitstreamEntry Entry = Stream.advance(); 4617 4618 switch (Entry.Kind) { 4619 case BitstreamEntry::Error: 4620 return error("Malformed block"); 4621 case BitstreamEntry::EndBlock: 4622 goto OutOfRecordLoop; 4623 4624 case BitstreamEntry::SubBlock: 4625 switch (Entry.ID) { 4626 default: // Skip unknown content. 4627 if (Stream.SkipBlock()) 4628 return error("Invalid record"); 4629 break; 4630 case bitc::CONSTANTS_BLOCK_ID: 4631 if (std::error_code EC = parseConstants()) 4632 return EC; 4633 NextValueNo = ValueList.size(); 4634 break; 4635 case bitc::VALUE_SYMTAB_BLOCK_ID: 4636 if (std::error_code EC = parseValueSymbolTable()) 4637 return EC; 4638 break; 4639 case bitc::METADATA_ATTACHMENT_ID: 4640 if (std::error_code EC = parseMetadataAttachment(*F)) 4641 return EC; 4642 break; 4643 case bitc::METADATA_BLOCK_ID: 4644 if (std::error_code EC = parseMetadata()) 4645 return EC; 4646 break; 4647 case bitc::USELIST_BLOCK_ID: 4648 if (std::error_code EC = parseUseLists()) 4649 return EC; 4650 break; 4651 } 4652 continue; 4653 4654 case BitstreamEntry::Record: 4655 // The interesting case. 4656 break; 4657 } 4658 4659 // Read a record. 4660 Record.clear(); 4661 Instruction *I = nullptr; 4662 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4663 switch (BitCode) { 4664 default: // Default behavior: reject 4665 return error("Invalid value"); 4666 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4667 if (Record.size() < 1 || Record[0] == 0) 4668 return error("Invalid record"); 4669 // Create all the basic blocks for the function. 4670 FunctionBBs.resize(Record[0]); 4671 4672 // See if anything took the address of blocks in this function. 4673 auto BBFRI = BasicBlockFwdRefs.find(F); 4674 if (BBFRI == BasicBlockFwdRefs.end()) { 4675 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4676 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4677 } else { 4678 auto &BBRefs = BBFRI->second; 4679 // Check for invalid basic block references. 4680 if (BBRefs.size() > FunctionBBs.size()) 4681 return error("Invalid ID"); 4682 assert(!BBRefs.empty() && "Unexpected empty array"); 4683 assert(!BBRefs.front() && "Invalid reference to entry block"); 4684 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4685 ++I) 4686 if (I < RE && BBRefs[I]) { 4687 BBRefs[I]->insertInto(F); 4688 FunctionBBs[I] = BBRefs[I]; 4689 } else { 4690 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4691 } 4692 4693 // Erase from the table. 4694 BasicBlockFwdRefs.erase(BBFRI); 4695 } 4696 4697 CurBB = FunctionBBs[0]; 4698 continue; 4699 } 4700 4701 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4702 // This record indicates that the last instruction is at the same 4703 // location as the previous instruction with a location. 4704 I = getLastInstruction(); 4705 4706 if (!I) 4707 return error("Invalid record"); 4708 I->setDebugLoc(LastLoc); 4709 I = nullptr; 4710 continue; 4711 4712 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4713 I = getLastInstruction(); 4714 if (!I || Record.size() < 4) 4715 return error("Invalid record"); 4716 4717 unsigned Line = Record[0], Col = Record[1]; 4718 unsigned ScopeID = Record[2], IAID = Record[3]; 4719 4720 MDNode *Scope = nullptr, *IA = nullptr; 4721 if (ScopeID) { 4722 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4723 if (!Scope) 4724 return error("Invalid record"); 4725 } 4726 if (IAID) { 4727 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4728 if (!IA) 4729 return error("Invalid record"); 4730 } 4731 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4732 I->setDebugLoc(LastLoc); 4733 I = nullptr; 4734 continue; 4735 } 4736 4737 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4738 unsigned OpNum = 0; 4739 Value *LHS, *RHS; 4740 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4741 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4742 OpNum+1 > Record.size()) 4743 return error("Invalid record"); 4744 4745 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4746 if (Opc == -1) 4747 return error("Invalid record"); 4748 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4749 InstructionList.push_back(I); 4750 if (OpNum < Record.size()) { 4751 if (Opc == Instruction::Add || 4752 Opc == Instruction::Sub || 4753 Opc == Instruction::Mul || 4754 Opc == Instruction::Shl) { 4755 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4756 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4757 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4758 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4759 } else if (Opc == Instruction::SDiv || 4760 Opc == Instruction::UDiv || 4761 Opc == Instruction::LShr || 4762 Opc == Instruction::AShr) { 4763 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4764 cast<BinaryOperator>(I)->setIsExact(true); 4765 } else if (isa<FPMathOperator>(I)) { 4766 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4767 if (FMF.any()) 4768 I->setFastMathFlags(FMF); 4769 } 4770 4771 } 4772 break; 4773 } 4774 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4775 unsigned OpNum = 0; 4776 Value *Op; 4777 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4778 OpNum+2 != Record.size()) 4779 return error("Invalid record"); 4780 4781 Type *ResTy = getTypeByID(Record[OpNum]); 4782 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4783 if (Opc == -1 || !ResTy) 4784 return error("Invalid record"); 4785 Instruction *Temp = nullptr; 4786 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4787 if (Temp) { 4788 InstructionList.push_back(Temp); 4789 CurBB->getInstList().push_back(Temp); 4790 } 4791 } else { 4792 auto CastOp = (Instruction::CastOps)Opc; 4793 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4794 return error("Invalid cast"); 4795 I = CastInst::Create(CastOp, Op, ResTy); 4796 } 4797 InstructionList.push_back(I); 4798 break; 4799 } 4800 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4801 case bitc::FUNC_CODE_INST_GEP_OLD: 4802 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4803 unsigned OpNum = 0; 4804 4805 Type *Ty; 4806 bool InBounds; 4807 4808 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4809 InBounds = Record[OpNum++]; 4810 Ty = getTypeByID(Record[OpNum++]); 4811 } else { 4812 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4813 Ty = nullptr; 4814 } 4815 4816 Value *BasePtr; 4817 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4818 return error("Invalid record"); 4819 4820 if (!Ty) 4821 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4822 ->getElementType(); 4823 else if (Ty != 4824 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4825 ->getElementType()) 4826 return error( 4827 "Explicit gep type does not match pointee type of pointer operand"); 4828 4829 SmallVector<Value*, 16> GEPIdx; 4830 while (OpNum != Record.size()) { 4831 Value *Op; 4832 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4833 return error("Invalid record"); 4834 GEPIdx.push_back(Op); 4835 } 4836 4837 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4838 4839 InstructionList.push_back(I); 4840 if (InBounds) 4841 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4842 break; 4843 } 4844 4845 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4846 // EXTRACTVAL: [opty, opval, n x indices] 4847 unsigned OpNum = 0; 4848 Value *Agg; 4849 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4850 return error("Invalid record"); 4851 4852 unsigned RecSize = Record.size(); 4853 if (OpNum == RecSize) 4854 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4855 4856 SmallVector<unsigned, 4> EXTRACTVALIdx; 4857 Type *CurTy = Agg->getType(); 4858 for (; OpNum != RecSize; ++OpNum) { 4859 bool IsArray = CurTy->isArrayTy(); 4860 bool IsStruct = CurTy->isStructTy(); 4861 uint64_t Index = Record[OpNum]; 4862 4863 if (!IsStruct && !IsArray) 4864 return error("EXTRACTVAL: Invalid type"); 4865 if ((unsigned)Index != Index) 4866 return error("Invalid value"); 4867 if (IsStruct && Index >= CurTy->subtypes().size()) 4868 return error("EXTRACTVAL: Invalid struct index"); 4869 if (IsArray && Index >= CurTy->getArrayNumElements()) 4870 return error("EXTRACTVAL: Invalid array index"); 4871 EXTRACTVALIdx.push_back((unsigned)Index); 4872 4873 if (IsStruct) 4874 CurTy = CurTy->subtypes()[Index]; 4875 else 4876 CurTy = CurTy->subtypes()[0]; 4877 } 4878 4879 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4880 InstructionList.push_back(I); 4881 break; 4882 } 4883 4884 case bitc::FUNC_CODE_INST_INSERTVAL: { 4885 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4886 unsigned OpNum = 0; 4887 Value *Agg; 4888 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4889 return error("Invalid record"); 4890 Value *Val; 4891 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4892 return error("Invalid record"); 4893 4894 unsigned RecSize = Record.size(); 4895 if (OpNum == RecSize) 4896 return error("INSERTVAL: Invalid instruction with 0 indices"); 4897 4898 SmallVector<unsigned, 4> INSERTVALIdx; 4899 Type *CurTy = Agg->getType(); 4900 for (; OpNum != RecSize; ++OpNum) { 4901 bool IsArray = CurTy->isArrayTy(); 4902 bool IsStruct = CurTy->isStructTy(); 4903 uint64_t Index = Record[OpNum]; 4904 4905 if (!IsStruct && !IsArray) 4906 return error("INSERTVAL: Invalid type"); 4907 if ((unsigned)Index != Index) 4908 return error("Invalid value"); 4909 if (IsStruct && Index >= CurTy->subtypes().size()) 4910 return error("INSERTVAL: Invalid struct index"); 4911 if (IsArray && Index >= CurTy->getArrayNumElements()) 4912 return error("INSERTVAL: Invalid array index"); 4913 4914 INSERTVALIdx.push_back((unsigned)Index); 4915 if (IsStruct) 4916 CurTy = CurTy->subtypes()[Index]; 4917 else 4918 CurTy = CurTy->subtypes()[0]; 4919 } 4920 4921 if (CurTy != Val->getType()) 4922 return error("Inserted value type doesn't match aggregate type"); 4923 4924 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4925 InstructionList.push_back(I); 4926 break; 4927 } 4928 4929 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4930 // obsolete form of select 4931 // handles select i1 ... in old bitcode 4932 unsigned OpNum = 0; 4933 Value *TrueVal, *FalseVal, *Cond; 4934 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4935 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4936 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4937 return error("Invalid record"); 4938 4939 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4940 InstructionList.push_back(I); 4941 break; 4942 } 4943 4944 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4945 // new form of select 4946 // handles select i1 or select [N x i1] 4947 unsigned OpNum = 0; 4948 Value *TrueVal, *FalseVal, *Cond; 4949 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4950 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4951 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4952 return error("Invalid record"); 4953 4954 // select condition can be either i1 or [N x i1] 4955 if (VectorType* vector_type = 4956 dyn_cast<VectorType>(Cond->getType())) { 4957 // expect <n x i1> 4958 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4959 return error("Invalid type for value"); 4960 } else { 4961 // expect i1 4962 if (Cond->getType() != Type::getInt1Ty(Context)) 4963 return error("Invalid type for value"); 4964 } 4965 4966 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4967 InstructionList.push_back(I); 4968 break; 4969 } 4970 4971 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4972 unsigned OpNum = 0; 4973 Value *Vec, *Idx; 4974 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4975 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4976 return error("Invalid record"); 4977 if (!Vec->getType()->isVectorTy()) 4978 return error("Invalid type for value"); 4979 I = ExtractElementInst::Create(Vec, Idx); 4980 InstructionList.push_back(I); 4981 break; 4982 } 4983 4984 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4985 unsigned OpNum = 0; 4986 Value *Vec, *Elt, *Idx; 4987 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4988 return error("Invalid record"); 4989 if (!Vec->getType()->isVectorTy()) 4990 return error("Invalid type for value"); 4991 if (popValue(Record, OpNum, NextValueNo, 4992 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4993 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4994 return error("Invalid record"); 4995 I = InsertElementInst::Create(Vec, Elt, Idx); 4996 InstructionList.push_back(I); 4997 break; 4998 } 4999 5000 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5001 unsigned OpNum = 0; 5002 Value *Vec1, *Vec2, *Mask; 5003 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 5004 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 5005 return error("Invalid record"); 5006 5007 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 5008 return error("Invalid record"); 5009 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5010 return error("Invalid type for value"); 5011 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5012 InstructionList.push_back(I); 5013 break; 5014 } 5015 5016 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5017 // Old form of ICmp/FCmp returning bool 5018 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5019 // both legal on vectors but had different behaviour. 5020 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5021 // FCmp/ICmp returning bool or vector of bool 5022 5023 unsigned OpNum = 0; 5024 Value *LHS, *RHS; 5025 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 5026 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 5027 return error("Invalid record"); 5028 5029 unsigned PredVal = Record[OpNum]; 5030 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5031 FastMathFlags FMF; 5032 if (IsFP && Record.size() > OpNum+1) 5033 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5034 5035 if (OpNum+1 != Record.size()) 5036 return error("Invalid record"); 5037 5038 if (LHS->getType()->isFPOrFPVectorTy()) 5039 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5040 else 5041 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5042 5043 if (FMF.any()) 5044 I->setFastMathFlags(FMF); 5045 InstructionList.push_back(I); 5046 break; 5047 } 5048 5049 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5050 { 5051 unsigned Size = Record.size(); 5052 if (Size == 0) { 5053 I = ReturnInst::Create(Context); 5054 InstructionList.push_back(I); 5055 break; 5056 } 5057 5058 unsigned OpNum = 0; 5059 Value *Op = nullptr; 5060 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5061 return error("Invalid record"); 5062 if (OpNum != Record.size()) 5063 return error("Invalid record"); 5064 5065 I = ReturnInst::Create(Context, Op); 5066 InstructionList.push_back(I); 5067 break; 5068 } 5069 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5070 if (Record.size() != 1 && Record.size() != 3) 5071 return error("Invalid record"); 5072 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5073 if (!TrueDest) 5074 return error("Invalid record"); 5075 5076 if (Record.size() == 1) { 5077 I = BranchInst::Create(TrueDest); 5078 InstructionList.push_back(I); 5079 } 5080 else { 5081 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5082 Value *Cond = getValue(Record, 2, NextValueNo, 5083 Type::getInt1Ty(Context)); 5084 if (!FalseDest || !Cond) 5085 return error("Invalid record"); 5086 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5087 InstructionList.push_back(I); 5088 } 5089 break; 5090 } 5091 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5092 if (Record.size() != 1 && Record.size() != 2) 5093 return error("Invalid record"); 5094 unsigned Idx = 0; 5095 Value *CleanupPad = 5096 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5097 if (!CleanupPad) 5098 return error("Invalid record"); 5099 BasicBlock *UnwindDest = nullptr; 5100 if (Record.size() == 2) { 5101 UnwindDest = getBasicBlock(Record[Idx++]); 5102 if (!UnwindDest) 5103 return error("Invalid record"); 5104 } 5105 5106 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5107 InstructionList.push_back(I); 5108 break; 5109 } 5110 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5111 if (Record.size() != 2) 5112 return error("Invalid record"); 5113 unsigned Idx = 0; 5114 Value *CatchPad = 5115 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5116 if (!CatchPad) 5117 return error("Invalid record"); 5118 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5119 if (!BB) 5120 return error("Invalid record"); 5121 5122 I = CatchReturnInst::Create(CatchPad, BB); 5123 InstructionList.push_back(I); 5124 break; 5125 } 5126 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5127 // We must have, at minimum, the outer scope and the number of arguments. 5128 if (Record.size() < 2) 5129 return error("Invalid record"); 5130 5131 unsigned Idx = 0; 5132 5133 Value *ParentPad = 5134 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5135 5136 unsigned NumHandlers = Record[Idx++]; 5137 5138 SmallVector<BasicBlock *, 2> Handlers; 5139 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5140 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5141 if (!BB) 5142 return error("Invalid record"); 5143 Handlers.push_back(BB); 5144 } 5145 5146 BasicBlock *UnwindDest = nullptr; 5147 if (Idx + 1 == Record.size()) { 5148 UnwindDest = getBasicBlock(Record[Idx++]); 5149 if (!UnwindDest) 5150 return error("Invalid record"); 5151 } 5152 5153 if (Record.size() != Idx) 5154 return error("Invalid record"); 5155 5156 auto *CatchSwitch = 5157 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5158 for (BasicBlock *Handler : Handlers) 5159 CatchSwitch->addHandler(Handler); 5160 I = CatchSwitch; 5161 InstructionList.push_back(I); 5162 break; 5163 } 5164 case bitc::FUNC_CODE_INST_CATCHPAD: 5165 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5166 // We must have, at minimum, the outer scope and the number of arguments. 5167 if (Record.size() < 2) 5168 return error("Invalid record"); 5169 5170 unsigned Idx = 0; 5171 5172 Value *ParentPad = 5173 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5174 5175 unsigned NumArgOperands = Record[Idx++]; 5176 5177 SmallVector<Value *, 2> Args; 5178 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5179 Value *Val; 5180 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5181 return error("Invalid record"); 5182 Args.push_back(Val); 5183 } 5184 5185 if (Record.size() != Idx) 5186 return error("Invalid record"); 5187 5188 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5189 I = CleanupPadInst::Create(ParentPad, Args); 5190 else 5191 I = CatchPadInst::Create(ParentPad, Args); 5192 InstructionList.push_back(I); 5193 break; 5194 } 5195 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5196 // Check magic 5197 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5198 // "New" SwitchInst format with case ranges. The changes to write this 5199 // format were reverted but we still recognize bitcode that uses it. 5200 // Hopefully someday we will have support for case ranges and can use 5201 // this format again. 5202 5203 Type *OpTy = getTypeByID(Record[1]); 5204 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5205 5206 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5207 BasicBlock *Default = getBasicBlock(Record[3]); 5208 if (!OpTy || !Cond || !Default) 5209 return error("Invalid record"); 5210 5211 unsigned NumCases = Record[4]; 5212 5213 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5214 InstructionList.push_back(SI); 5215 5216 unsigned CurIdx = 5; 5217 for (unsigned i = 0; i != NumCases; ++i) { 5218 SmallVector<ConstantInt*, 1> CaseVals; 5219 unsigned NumItems = Record[CurIdx++]; 5220 for (unsigned ci = 0; ci != NumItems; ++ci) { 5221 bool isSingleNumber = Record[CurIdx++]; 5222 5223 APInt Low; 5224 unsigned ActiveWords = 1; 5225 if (ValueBitWidth > 64) 5226 ActiveWords = Record[CurIdx++]; 5227 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5228 ValueBitWidth); 5229 CurIdx += ActiveWords; 5230 5231 if (!isSingleNumber) { 5232 ActiveWords = 1; 5233 if (ValueBitWidth > 64) 5234 ActiveWords = Record[CurIdx++]; 5235 APInt High = readWideAPInt( 5236 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5237 CurIdx += ActiveWords; 5238 5239 // FIXME: It is not clear whether values in the range should be 5240 // compared as signed or unsigned values. The partially 5241 // implemented changes that used this format in the past used 5242 // unsigned comparisons. 5243 for ( ; Low.ule(High); ++Low) 5244 CaseVals.push_back(ConstantInt::get(Context, Low)); 5245 } else 5246 CaseVals.push_back(ConstantInt::get(Context, Low)); 5247 } 5248 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5249 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5250 cve = CaseVals.end(); cvi != cve; ++cvi) 5251 SI->addCase(*cvi, DestBB); 5252 } 5253 I = SI; 5254 break; 5255 } 5256 5257 // Old SwitchInst format without case ranges. 5258 5259 if (Record.size() < 3 || (Record.size() & 1) == 0) 5260 return error("Invalid record"); 5261 Type *OpTy = getTypeByID(Record[0]); 5262 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5263 BasicBlock *Default = getBasicBlock(Record[2]); 5264 if (!OpTy || !Cond || !Default) 5265 return error("Invalid record"); 5266 unsigned NumCases = (Record.size()-3)/2; 5267 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5268 InstructionList.push_back(SI); 5269 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5270 ConstantInt *CaseVal = 5271 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5272 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5273 if (!CaseVal || !DestBB) { 5274 delete SI; 5275 return error("Invalid record"); 5276 } 5277 SI->addCase(CaseVal, DestBB); 5278 } 5279 I = SI; 5280 break; 5281 } 5282 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5283 if (Record.size() < 2) 5284 return error("Invalid record"); 5285 Type *OpTy = getTypeByID(Record[0]); 5286 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5287 if (!OpTy || !Address) 5288 return error("Invalid record"); 5289 unsigned NumDests = Record.size()-2; 5290 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5291 InstructionList.push_back(IBI); 5292 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5293 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5294 IBI->addDestination(DestBB); 5295 } else { 5296 delete IBI; 5297 return error("Invalid record"); 5298 } 5299 } 5300 I = IBI; 5301 break; 5302 } 5303 5304 case bitc::FUNC_CODE_INST_INVOKE: { 5305 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5306 if (Record.size() < 4) 5307 return error("Invalid record"); 5308 unsigned OpNum = 0; 5309 AttributeSet PAL = getAttributes(Record[OpNum++]); 5310 unsigned CCInfo = Record[OpNum++]; 5311 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5312 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5313 5314 FunctionType *FTy = nullptr; 5315 if (CCInfo >> 13 & 1 && 5316 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5317 return error("Explicit invoke type is not a function type"); 5318 5319 Value *Callee; 5320 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5321 return error("Invalid record"); 5322 5323 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5324 if (!CalleeTy) 5325 return error("Callee is not a pointer"); 5326 if (!FTy) { 5327 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5328 if (!FTy) 5329 return error("Callee is not of pointer to function type"); 5330 } else if (CalleeTy->getElementType() != FTy) 5331 return error("Explicit invoke type does not match pointee type of " 5332 "callee operand"); 5333 if (Record.size() < FTy->getNumParams() + OpNum) 5334 return error("Insufficient operands to call"); 5335 5336 SmallVector<Value*, 16> Ops; 5337 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5338 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5339 FTy->getParamType(i))); 5340 if (!Ops.back()) 5341 return error("Invalid record"); 5342 } 5343 5344 if (!FTy->isVarArg()) { 5345 if (Record.size() != OpNum) 5346 return error("Invalid record"); 5347 } else { 5348 // Read type/value pairs for varargs params. 5349 while (OpNum != Record.size()) { 5350 Value *Op; 5351 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5352 return error("Invalid record"); 5353 Ops.push_back(Op); 5354 } 5355 } 5356 5357 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5358 OperandBundles.clear(); 5359 InstructionList.push_back(I); 5360 cast<InvokeInst>(I)->setCallingConv( 5361 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5362 cast<InvokeInst>(I)->setAttributes(PAL); 5363 break; 5364 } 5365 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5366 unsigned Idx = 0; 5367 Value *Val = nullptr; 5368 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5369 return error("Invalid record"); 5370 I = ResumeInst::Create(Val); 5371 InstructionList.push_back(I); 5372 break; 5373 } 5374 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5375 I = new UnreachableInst(Context); 5376 InstructionList.push_back(I); 5377 break; 5378 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5379 if (Record.size() < 1 || ((Record.size()-1)&1)) 5380 return error("Invalid record"); 5381 Type *Ty = getTypeByID(Record[0]); 5382 if (!Ty) 5383 return error("Invalid record"); 5384 5385 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5386 InstructionList.push_back(PN); 5387 5388 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5389 Value *V; 5390 // With the new function encoding, it is possible that operands have 5391 // negative IDs (for forward references). Use a signed VBR 5392 // representation to keep the encoding small. 5393 if (UseRelativeIDs) 5394 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5395 else 5396 V = getValue(Record, 1+i, NextValueNo, Ty); 5397 BasicBlock *BB = getBasicBlock(Record[2+i]); 5398 if (!V || !BB) 5399 return error("Invalid record"); 5400 PN->addIncoming(V, BB); 5401 } 5402 I = PN; 5403 break; 5404 } 5405 5406 case bitc::FUNC_CODE_INST_LANDINGPAD: 5407 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5408 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5409 unsigned Idx = 0; 5410 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5411 if (Record.size() < 3) 5412 return error("Invalid record"); 5413 } else { 5414 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5415 if (Record.size() < 4) 5416 return error("Invalid record"); 5417 } 5418 Type *Ty = getTypeByID(Record[Idx++]); 5419 if (!Ty) 5420 return error("Invalid record"); 5421 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5422 Value *PersFn = nullptr; 5423 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5424 return error("Invalid record"); 5425 5426 if (!F->hasPersonalityFn()) 5427 F->setPersonalityFn(cast<Constant>(PersFn)); 5428 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5429 return error("Personality function mismatch"); 5430 } 5431 5432 bool IsCleanup = !!Record[Idx++]; 5433 unsigned NumClauses = Record[Idx++]; 5434 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5435 LP->setCleanup(IsCleanup); 5436 for (unsigned J = 0; J != NumClauses; ++J) { 5437 LandingPadInst::ClauseType CT = 5438 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5439 Value *Val; 5440 5441 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5442 delete LP; 5443 return error("Invalid record"); 5444 } 5445 5446 assert((CT != LandingPadInst::Catch || 5447 !isa<ArrayType>(Val->getType())) && 5448 "Catch clause has a invalid type!"); 5449 assert((CT != LandingPadInst::Filter || 5450 isa<ArrayType>(Val->getType())) && 5451 "Filter clause has invalid type!"); 5452 LP->addClause(cast<Constant>(Val)); 5453 } 5454 5455 I = LP; 5456 InstructionList.push_back(I); 5457 break; 5458 } 5459 5460 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5461 if (Record.size() != 4) 5462 return error("Invalid record"); 5463 uint64_t AlignRecord = Record[3]; 5464 const uint64_t InAllocaMask = uint64_t(1) << 5; 5465 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5466 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5467 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5468 SwiftErrorMask; 5469 bool InAlloca = AlignRecord & InAllocaMask; 5470 bool SwiftError = AlignRecord & SwiftErrorMask; 5471 Type *Ty = getTypeByID(Record[0]); 5472 if ((AlignRecord & ExplicitTypeMask) == 0) { 5473 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5474 if (!PTy) 5475 return error("Old-style alloca with a non-pointer type"); 5476 Ty = PTy->getElementType(); 5477 } 5478 Type *OpTy = getTypeByID(Record[1]); 5479 Value *Size = getFnValueByID(Record[2], OpTy); 5480 unsigned Align; 5481 if (std::error_code EC = 5482 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5483 return EC; 5484 } 5485 if (!Ty || !Size) 5486 return error("Invalid record"); 5487 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5488 AI->setUsedWithInAlloca(InAlloca); 5489 AI->setSwiftError(SwiftError); 5490 I = AI; 5491 InstructionList.push_back(I); 5492 break; 5493 } 5494 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5495 unsigned OpNum = 0; 5496 Value *Op; 5497 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5498 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5499 return error("Invalid record"); 5500 5501 Type *Ty = nullptr; 5502 if (OpNum + 3 == Record.size()) 5503 Ty = getTypeByID(Record[OpNum++]); 5504 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5505 return EC; 5506 if (!Ty) 5507 Ty = cast<PointerType>(Op->getType())->getElementType(); 5508 5509 unsigned Align; 5510 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5511 return EC; 5512 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5513 5514 InstructionList.push_back(I); 5515 break; 5516 } 5517 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5518 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5519 unsigned OpNum = 0; 5520 Value *Op; 5521 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5522 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5523 return error("Invalid record"); 5524 5525 Type *Ty = nullptr; 5526 if (OpNum + 5 == Record.size()) 5527 Ty = getTypeByID(Record[OpNum++]); 5528 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5529 return EC; 5530 if (!Ty) 5531 Ty = cast<PointerType>(Op->getType())->getElementType(); 5532 5533 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5534 if (Ordering == AtomicOrdering::NotAtomic || 5535 Ordering == AtomicOrdering::Release || 5536 Ordering == AtomicOrdering::AcquireRelease) 5537 return error("Invalid record"); 5538 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5539 return error("Invalid record"); 5540 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5541 5542 unsigned Align; 5543 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5544 return EC; 5545 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5546 5547 InstructionList.push_back(I); 5548 break; 5549 } 5550 case bitc::FUNC_CODE_INST_STORE: 5551 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5552 unsigned OpNum = 0; 5553 Value *Val, *Ptr; 5554 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5555 (BitCode == bitc::FUNC_CODE_INST_STORE 5556 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5557 : popValue(Record, OpNum, NextValueNo, 5558 cast<PointerType>(Ptr->getType())->getElementType(), 5559 Val)) || 5560 OpNum + 2 != Record.size()) 5561 return error("Invalid record"); 5562 5563 if (std::error_code EC = 5564 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5565 return EC; 5566 unsigned Align; 5567 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5568 return EC; 5569 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5570 InstructionList.push_back(I); 5571 break; 5572 } 5573 case bitc::FUNC_CODE_INST_STOREATOMIC: 5574 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5575 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5576 unsigned OpNum = 0; 5577 Value *Val, *Ptr; 5578 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5579 !isa<PointerType>(Ptr->getType()) || 5580 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5581 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5582 : popValue(Record, OpNum, NextValueNo, 5583 cast<PointerType>(Ptr->getType())->getElementType(), 5584 Val)) || 5585 OpNum + 4 != Record.size()) 5586 return error("Invalid record"); 5587 5588 if (std::error_code EC = 5589 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5590 return EC; 5591 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5592 if (Ordering == AtomicOrdering::NotAtomic || 5593 Ordering == AtomicOrdering::Acquire || 5594 Ordering == AtomicOrdering::AcquireRelease) 5595 return error("Invalid record"); 5596 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5597 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5598 return error("Invalid record"); 5599 5600 unsigned Align; 5601 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5602 return EC; 5603 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5604 InstructionList.push_back(I); 5605 break; 5606 } 5607 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5608 case bitc::FUNC_CODE_INST_CMPXCHG: { 5609 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5610 // failureordering?, isweak?] 5611 unsigned OpNum = 0; 5612 Value *Ptr, *Cmp, *New; 5613 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5614 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5615 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5616 : popValue(Record, OpNum, NextValueNo, 5617 cast<PointerType>(Ptr->getType())->getElementType(), 5618 Cmp)) || 5619 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5620 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5621 return error("Invalid record"); 5622 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5623 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5624 SuccessOrdering == AtomicOrdering::Unordered) 5625 return error("Invalid record"); 5626 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5627 5628 if (std::error_code EC = 5629 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5630 return EC; 5631 AtomicOrdering FailureOrdering; 5632 if (Record.size() < 7) 5633 FailureOrdering = 5634 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5635 else 5636 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5637 5638 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5639 SynchScope); 5640 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5641 5642 if (Record.size() < 8) { 5643 // Before weak cmpxchgs existed, the instruction simply returned the 5644 // value loaded from memory, so bitcode files from that era will be 5645 // expecting the first component of a modern cmpxchg. 5646 CurBB->getInstList().push_back(I); 5647 I = ExtractValueInst::Create(I, 0); 5648 } else { 5649 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5650 } 5651 5652 InstructionList.push_back(I); 5653 break; 5654 } 5655 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5656 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5657 unsigned OpNum = 0; 5658 Value *Ptr, *Val; 5659 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5660 !isa<PointerType>(Ptr->getType()) || 5661 popValue(Record, OpNum, NextValueNo, 5662 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5663 OpNum+4 != Record.size()) 5664 return error("Invalid record"); 5665 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5666 if (Operation < AtomicRMWInst::FIRST_BINOP || 5667 Operation > AtomicRMWInst::LAST_BINOP) 5668 return error("Invalid record"); 5669 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5670 if (Ordering == AtomicOrdering::NotAtomic || 5671 Ordering == AtomicOrdering::Unordered) 5672 return error("Invalid record"); 5673 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5674 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5675 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5676 InstructionList.push_back(I); 5677 break; 5678 } 5679 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5680 if (2 != Record.size()) 5681 return error("Invalid record"); 5682 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5683 if (Ordering == AtomicOrdering::NotAtomic || 5684 Ordering == AtomicOrdering::Unordered || 5685 Ordering == AtomicOrdering::Monotonic) 5686 return error("Invalid record"); 5687 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5688 I = new FenceInst(Context, Ordering, SynchScope); 5689 InstructionList.push_back(I); 5690 break; 5691 } 5692 case bitc::FUNC_CODE_INST_CALL: { 5693 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5694 if (Record.size() < 3) 5695 return error("Invalid record"); 5696 5697 unsigned OpNum = 0; 5698 AttributeSet PAL = getAttributes(Record[OpNum++]); 5699 unsigned CCInfo = Record[OpNum++]; 5700 5701 FastMathFlags FMF; 5702 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5703 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5704 if (!FMF.any()) 5705 return error("Fast math flags indicator set for call with no FMF"); 5706 } 5707 5708 FunctionType *FTy = nullptr; 5709 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5710 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5711 return error("Explicit call type is not a function type"); 5712 5713 Value *Callee; 5714 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5715 return error("Invalid record"); 5716 5717 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5718 if (!OpTy) 5719 return error("Callee is not a pointer type"); 5720 if (!FTy) { 5721 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5722 if (!FTy) 5723 return error("Callee is not of pointer to function type"); 5724 } else if (OpTy->getElementType() != FTy) 5725 return error("Explicit call type does not match pointee type of " 5726 "callee operand"); 5727 if (Record.size() < FTy->getNumParams() + OpNum) 5728 return error("Insufficient operands to call"); 5729 5730 SmallVector<Value*, 16> Args; 5731 // Read the fixed params. 5732 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5733 if (FTy->getParamType(i)->isLabelTy()) 5734 Args.push_back(getBasicBlock(Record[OpNum])); 5735 else 5736 Args.push_back(getValue(Record, OpNum, NextValueNo, 5737 FTy->getParamType(i))); 5738 if (!Args.back()) 5739 return error("Invalid record"); 5740 } 5741 5742 // Read type/value pairs for varargs params. 5743 if (!FTy->isVarArg()) { 5744 if (OpNum != Record.size()) 5745 return error("Invalid record"); 5746 } else { 5747 while (OpNum != Record.size()) { 5748 Value *Op; 5749 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5750 return error("Invalid record"); 5751 Args.push_back(Op); 5752 } 5753 } 5754 5755 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5756 OperandBundles.clear(); 5757 InstructionList.push_back(I); 5758 cast<CallInst>(I)->setCallingConv( 5759 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5760 CallInst::TailCallKind TCK = CallInst::TCK_None; 5761 if (CCInfo & 1 << bitc::CALL_TAIL) 5762 TCK = CallInst::TCK_Tail; 5763 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5764 TCK = CallInst::TCK_MustTail; 5765 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5766 TCK = CallInst::TCK_NoTail; 5767 cast<CallInst>(I)->setTailCallKind(TCK); 5768 cast<CallInst>(I)->setAttributes(PAL); 5769 if (FMF.any()) { 5770 if (!isa<FPMathOperator>(I)) 5771 return error("Fast-math-flags specified for call without " 5772 "floating-point scalar or vector return type"); 5773 I->setFastMathFlags(FMF); 5774 } 5775 break; 5776 } 5777 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5778 if (Record.size() < 3) 5779 return error("Invalid record"); 5780 Type *OpTy = getTypeByID(Record[0]); 5781 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5782 Type *ResTy = getTypeByID(Record[2]); 5783 if (!OpTy || !Op || !ResTy) 5784 return error("Invalid record"); 5785 I = new VAArgInst(Op, ResTy); 5786 InstructionList.push_back(I); 5787 break; 5788 } 5789 5790 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5791 // A call or an invoke can be optionally prefixed with some variable 5792 // number of operand bundle blocks. These blocks are read into 5793 // OperandBundles and consumed at the next call or invoke instruction. 5794 5795 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5796 return error("Invalid record"); 5797 5798 std::vector<Value *> Inputs; 5799 5800 unsigned OpNum = 1; 5801 while (OpNum != Record.size()) { 5802 Value *Op; 5803 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5804 return error("Invalid record"); 5805 Inputs.push_back(Op); 5806 } 5807 5808 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5809 continue; 5810 } 5811 } 5812 5813 // Add instruction to end of current BB. If there is no current BB, reject 5814 // this file. 5815 if (!CurBB) { 5816 delete I; 5817 return error("Invalid instruction with no BB"); 5818 } 5819 if (!OperandBundles.empty()) { 5820 delete I; 5821 return error("Operand bundles found with no consumer"); 5822 } 5823 CurBB->getInstList().push_back(I); 5824 5825 // If this was a terminator instruction, move to the next block. 5826 if (isa<TerminatorInst>(I)) { 5827 ++CurBBNo; 5828 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5829 } 5830 5831 // Non-void values get registered in the value table for future use. 5832 if (I && !I->getType()->isVoidTy()) 5833 ValueList.assignValue(I, NextValueNo++); 5834 } 5835 5836 OutOfRecordLoop: 5837 5838 if (!OperandBundles.empty()) 5839 return error("Operand bundles found with no consumer"); 5840 5841 // Check the function list for unresolved values. 5842 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5843 if (!A->getParent()) { 5844 // We found at least one unresolved value. Nuke them all to avoid leaks. 5845 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5846 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5847 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5848 delete A; 5849 } 5850 } 5851 return error("Never resolved value found in function"); 5852 } 5853 } 5854 5855 // Unexpected unresolved metadata about to be dropped. 5856 if (MetadataList.hasFwdRefs()) 5857 return error("Invalid function metadata: outgoing forward refs"); 5858 5859 // Trim the value list down to the size it was before we parsed this function. 5860 ValueList.shrinkTo(ModuleValueListSize); 5861 MetadataList.shrinkTo(ModuleMetadataListSize); 5862 std::vector<BasicBlock*>().swap(FunctionBBs); 5863 return std::error_code(); 5864 } 5865 5866 /// Find the function body in the bitcode stream 5867 std::error_code BitcodeReader::findFunctionInStream( 5868 Function *F, 5869 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5870 while (DeferredFunctionInfoIterator->second == 0) { 5871 // This is the fallback handling for the old format bitcode that 5872 // didn't contain the function index in the VST, or when we have 5873 // an anonymous function which would not have a VST entry. 5874 // Assert that we have one of those two cases. 5875 assert(VSTOffset == 0 || !F->hasName()); 5876 // Parse the next body in the stream and set its position in the 5877 // DeferredFunctionInfo map. 5878 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5879 return EC; 5880 } 5881 return std::error_code(); 5882 } 5883 5884 //===----------------------------------------------------------------------===// 5885 // GVMaterializer implementation 5886 //===----------------------------------------------------------------------===// 5887 5888 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5889 5890 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5891 Function *F = dyn_cast<Function>(GV); 5892 // If it's not a function or is already material, ignore the request. 5893 if (!F || !F->isMaterializable()) 5894 return std::error_code(); 5895 5896 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5897 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5898 // If its position is recorded as 0, its body is somewhere in the stream 5899 // but we haven't seen it yet. 5900 if (DFII->second == 0) 5901 if (std::error_code EC = findFunctionInStream(F, DFII)) 5902 return EC; 5903 5904 // Materialize metadata before parsing any function bodies. 5905 if (std::error_code EC = materializeMetadata()) 5906 return EC; 5907 5908 // Move the bit stream to the saved position of the deferred function body. 5909 Stream.JumpToBit(DFII->second); 5910 5911 if (std::error_code EC = parseFunctionBody(F)) 5912 return EC; 5913 F->setIsMaterializable(false); 5914 5915 if (StripDebugInfo) 5916 stripDebugInfo(*F); 5917 5918 // Upgrade any old intrinsic calls in the function. 5919 for (auto &I : UpgradedIntrinsics) { 5920 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5921 UI != UE;) { 5922 User *U = *UI; 5923 ++UI; 5924 if (CallInst *CI = dyn_cast<CallInst>(U)) 5925 UpgradeIntrinsicCall(CI, I.second); 5926 } 5927 } 5928 5929 // Update calls to the remangled intrinsics 5930 for (auto &I : RemangledIntrinsics) 5931 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5932 UI != UE;) 5933 // Don't expect any other users than call sites 5934 CallSite(*UI++).setCalledFunction(I.second); 5935 5936 // Finish fn->subprogram upgrade for materialized functions. 5937 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5938 F->setSubprogram(SP); 5939 5940 // Bring in any functions that this function forward-referenced via 5941 // blockaddresses. 5942 return materializeForwardReferencedFunctions(); 5943 } 5944 5945 std::error_code BitcodeReader::materializeModule() { 5946 if (std::error_code EC = materializeMetadata()) 5947 return EC; 5948 5949 // Promise to materialize all forward references. 5950 WillMaterializeAllForwardRefs = true; 5951 5952 // Iterate over the module, deserializing any functions that are still on 5953 // disk. 5954 for (Function &F : *TheModule) { 5955 if (std::error_code EC = materialize(&F)) 5956 return EC; 5957 } 5958 // At this point, if there are any function bodies, parse the rest of 5959 // the bits in the module past the last function block we have recorded 5960 // through either lazy scanning or the VST. 5961 if (LastFunctionBlockBit || NextUnreadBit) 5962 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5963 : NextUnreadBit); 5964 5965 // Check that all block address forward references got resolved (as we 5966 // promised above). 5967 if (!BasicBlockFwdRefs.empty()) 5968 return error("Never resolved function from blockaddress"); 5969 5970 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5971 // delete the old functions to clean up. We can't do this unless the entire 5972 // module is materialized because there could always be another function body 5973 // with calls to the old function. 5974 for (auto &I : UpgradedIntrinsics) { 5975 for (auto *U : I.first->users()) { 5976 if (CallInst *CI = dyn_cast<CallInst>(U)) 5977 UpgradeIntrinsicCall(CI, I.second); 5978 } 5979 if (!I.first->use_empty()) 5980 I.first->replaceAllUsesWith(I.second); 5981 I.first->eraseFromParent(); 5982 } 5983 UpgradedIntrinsics.clear(); 5984 // Do the same for remangled intrinsics 5985 for (auto &I : RemangledIntrinsics) { 5986 I.first->replaceAllUsesWith(I.second); 5987 I.first->eraseFromParent(); 5988 } 5989 RemangledIntrinsics.clear(); 5990 5991 UpgradeDebugInfo(*TheModule); 5992 5993 UpgradeModuleFlags(*TheModule); 5994 return std::error_code(); 5995 } 5996 5997 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5998 return IdentifiedStructTypes; 5999 } 6000 6001 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 6002 return ::error(DiagnosticHandler, 6003 make_error_code(BitcodeError::CorruptedBitcode), Message); 6004 } 6005 6006 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6007 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6008 bool CheckGlobalValSummaryPresenceOnly) 6009 : BitcodeReaderBase(Buffer), 6010 DiagnosticHandler(std::move(DiagnosticHandler)), 6011 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 6012 6013 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 6014 6015 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 6016 6017 std::pair<GlobalValue::GUID, GlobalValue::GUID> 6018 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 6019 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 6020 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 6021 return VGI->second; 6022 } 6023 6024 // Specialized value symbol table parser used when reading module index 6025 // blocks where we don't actually create global values. The parsed information 6026 // is saved in the bitcode reader for use when later parsing summaries. 6027 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6028 uint64_t Offset, 6029 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6030 assert(Offset > 0 && "Expected non-zero VST offset"); 6031 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 6032 6033 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6034 return error("Invalid record"); 6035 6036 SmallVector<uint64_t, 64> Record; 6037 6038 // Read all the records for this value table. 6039 SmallString<128> ValueName; 6040 6041 while (true) { 6042 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6043 6044 switch (Entry.Kind) { 6045 case BitstreamEntry::SubBlock: // Handled for us already. 6046 case BitstreamEntry::Error: 6047 return error("Malformed block"); 6048 case BitstreamEntry::EndBlock: 6049 // Done parsing VST, jump back to wherever we came from. 6050 Stream.JumpToBit(CurrentBit); 6051 return std::error_code(); 6052 case BitstreamEntry::Record: 6053 // The interesting case. 6054 break; 6055 } 6056 6057 // Read a record. 6058 Record.clear(); 6059 switch (Stream.readRecord(Entry.ID, Record)) { 6060 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6061 break; 6062 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6063 if (convertToString(Record, 1, ValueName)) 6064 return error("Invalid record"); 6065 unsigned ValueID = Record[0]; 6066 assert(!SourceFileName.empty()); 6067 auto VLI = ValueIdToLinkageMap.find(ValueID); 6068 assert(VLI != ValueIdToLinkageMap.end() && 6069 "No linkage found for VST entry?"); 6070 auto Linkage = VLI->second; 6071 std::string GlobalId = 6072 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6073 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6074 auto OriginalNameID = ValueGUID; 6075 if (GlobalValue::isLocalLinkage(Linkage)) 6076 OriginalNameID = GlobalValue::getGUID(ValueName); 6077 if (PrintSummaryGUIDs) 6078 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6079 << ValueName << "\n"; 6080 ValueIdToCallGraphGUIDMap[ValueID] = 6081 std::make_pair(ValueGUID, OriginalNameID); 6082 ValueName.clear(); 6083 break; 6084 } 6085 case bitc::VST_CODE_FNENTRY: { 6086 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6087 if (convertToString(Record, 2, ValueName)) 6088 return error("Invalid record"); 6089 unsigned ValueID = Record[0]; 6090 assert(!SourceFileName.empty()); 6091 auto VLI = ValueIdToLinkageMap.find(ValueID); 6092 assert(VLI != ValueIdToLinkageMap.end() && 6093 "No linkage found for VST entry?"); 6094 auto Linkage = VLI->second; 6095 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6096 ValueName, VLI->second, SourceFileName); 6097 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6098 auto OriginalNameID = FunctionGUID; 6099 if (GlobalValue::isLocalLinkage(Linkage)) 6100 OriginalNameID = GlobalValue::getGUID(ValueName); 6101 if (PrintSummaryGUIDs) 6102 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6103 << ValueName << "\n"; 6104 ValueIdToCallGraphGUIDMap[ValueID] = 6105 std::make_pair(FunctionGUID, OriginalNameID); 6106 6107 ValueName.clear(); 6108 break; 6109 } 6110 case bitc::VST_CODE_COMBINED_ENTRY: { 6111 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6112 unsigned ValueID = Record[0]; 6113 GlobalValue::GUID RefGUID = Record[1]; 6114 // The "original name", which is the second value of the pair will be 6115 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6116 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6117 break; 6118 } 6119 } 6120 } 6121 } 6122 6123 // Parse just the blocks needed for building the index out of the module. 6124 // At the end of this routine the module Index is populated with a map 6125 // from global value id to GlobalValueSummary objects. 6126 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6127 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6128 return error("Invalid record"); 6129 6130 SmallVector<uint64_t, 64> Record; 6131 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6132 unsigned ValueId = 0; 6133 6134 // Read the index for this module. 6135 while (true) { 6136 BitstreamEntry Entry = Stream.advance(); 6137 6138 switch (Entry.Kind) { 6139 case BitstreamEntry::Error: 6140 return error("Malformed block"); 6141 case BitstreamEntry::EndBlock: 6142 return std::error_code(); 6143 6144 case BitstreamEntry::SubBlock: 6145 if (CheckGlobalValSummaryPresenceOnly) { 6146 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6147 SeenGlobalValSummary = true; 6148 // No need to parse the rest since we found the summary. 6149 return std::error_code(); 6150 } 6151 if (Stream.SkipBlock()) 6152 return error("Invalid record"); 6153 continue; 6154 } 6155 switch (Entry.ID) { 6156 default: // Skip unknown content. 6157 if (Stream.SkipBlock()) 6158 return error("Invalid record"); 6159 break; 6160 case bitc::BLOCKINFO_BLOCK_ID: 6161 // Need to parse these to get abbrev ids (e.g. for VST) 6162 if (readBlockInfo()) 6163 return error("Malformed block"); 6164 break; 6165 case bitc::VALUE_SYMTAB_BLOCK_ID: 6166 // Should have been parsed earlier via VSTOffset, unless there 6167 // is no summary section. 6168 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6169 !SeenGlobalValSummary) && 6170 "Expected early VST parse via VSTOffset record"); 6171 if (Stream.SkipBlock()) 6172 return error("Invalid record"); 6173 break; 6174 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6175 assert(!SeenValueSymbolTable && 6176 "Already read VST when parsing summary block?"); 6177 // We might not have a VST if there were no values in the 6178 // summary. An empty summary block generated when we are 6179 // performing ThinLTO compiles so we don't later invoke 6180 // the regular LTO process on them. 6181 if (VSTOffset > 0) { 6182 if (std::error_code EC = 6183 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6184 return EC; 6185 SeenValueSymbolTable = true; 6186 } 6187 SeenGlobalValSummary = true; 6188 if (std::error_code EC = parseEntireSummary()) 6189 return EC; 6190 break; 6191 case bitc::MODULE_STRTAB_BLOCK_ID: 6192 if (std::error_code EC = parseModuleStringTable()) 6193 return EC; 6194 break; 6195 } 6196 continue; 6197 6198 case BitstreamEntry::Record: { 6199 Record.clear(); 6200 auto BitCode = Stream.readRecord(Entry.ID, Record); 6201 switch (BitCode) { 6202 default: 6203 break; // Default behavior, ignore unknown content. 6204 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6205 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6206 SmallString<128> ValueName; 6207 if (convertToString(Record, 0, ValueName)) 6208 return error("Invalid record"); 6209 SourceFileName = ValueName.c_str(); 6210 break; 6211 } 6212 /// MODULE_CODE_HASH: [5*i32] 6213 case bitc::MODULE_CODE_HASH: { 6214 if (Record.size() != 5) 6215 return error("Invalid hash length " + Twine(Record.size()).str()); 6216 if (!TheIndex) 6217 break; 6218 if (TheIndex->modulePaths().empty()) 6219 // We always seed the index with the module. 6220 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0); 6221 if (TheIndex->modulePaths().size() != 1) 6222 return error("Don't expect multiple modules defined?"); 6223 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6224 int Pos = 0; 6225 for (auto &Val : Record) { 6226 assert(!(Val >> 32) && "Unexpected high bits set"); 6227 Hash[Pos++] = Val; 6228 } 6229 break; 6230 } 6231 /// MODULE_CODE_VSTOFFSET: [offset] 6232 case bitc::MODULE_CODE_VSTOFFSET: 6233 if (Record.size() < 1) 6234 return error("Invalid record"); 6235 VSTOffset = Record[0]; 6236 break; 6237 // GLOBALVAR: [pointer type, isconst, initid, 6238 // linkage, alignment, section, visibility, threadlocal, 6239 // unnamed_addr, externally_initialized, dllstorageclass, 6240 // comdat] 6241 case bitc::MODULE_CODE_GLOBALVAR: { 6242 if (Record.size() < 6) 6243 return error("Invalid record"); 6244 uint64_t RawLinkage = Record[3]; 6245 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6246 ValueIdToLinkageMap[ValueId++] = Linkage; 6247 break; 6248 } 6249 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6250 // alignment, section, visibility, gc, unnamed_addr, 6251 // prologuedata, dllstorageclass, comdat, prefixdata] 6252 case bitc::MODULE_CODE_FUNCTION: { 6253 if (Record.size() < 8) 6254 return error("Invalid record"); 6255 uint64_t RawLinkage = Record[3]; 6256 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6257 ValueIdToLinkageMap[ValueId++] = Linkage; 6258 break; 6259 } 6260 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6261 // dllstorageclass] 6262 case bitc::MODULE_CODE_ALIAS: { 6263 if (Record.size() < 6) 6264 return error("Invalid record"); 6265 uint64_t RawLinkage = Record[3]; 6266 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6267 ValueIdToLinkageMap[ValueId++] = Linkage; 6268 break; 6269 } 6270 } 6271 } 6272 continue; 6273 } 6274 } 6275 } 6276 6277 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6278 // objects in the index. 6279 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6280 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6281 return error("Invalid record"); 6282 SmallVector<uint64_t, 64> Record; 6283 6284 // Parse version 6285 { 6286 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6287 if (Entry.Kind != BitstreamEntry::Record) 6288 return error("Invalid Summary Block: record for version expected"); 6289 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6290 return error("Invalid Summary Block: version expected"); 6291 } 6292 const uint64_t Version = Record[0]; 6293 const bool IsOldProfileFormat = Version == 1; 6294 if (!IsOldProfileFormat && Version != 2) 6295 return error("Invalid summary version " + Twine(Version) + 6296 ", 1 or 2 expected"); 6297 Record.clear(); 6298 6299 // Keep around the last seen summary to be used when we see an optional 6300 // "OriginalName" attachement. 6301 GlobalValueSummary *LastSeenSummary = nullptr; 6302 bool Combined = false; 6303 6304 while (true) { 6305 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6306 6307 switch (Entry.Kind) { 6308 case BitstreamEntry::SubBlock: // Handled for us already. 6309 case BitstreamEntry::Error: 6310 return error("Malformed block"); 6311 case BitstreamEntry::EndBlock: 6312 // For a per-module index, remove any entries that still have empty 6313 // summaries. The VST parsing creates entries eagerly for all symbols, 6314 // but not all have associated summaries (e.g. it doesn't know how to 6315 // distinguish between VST_CODE_ENTRY for function declarations vs global 6316 // variables with initializers that end up with a summary). Remove those 6317 // entries now so that we don't need to rely on the combined index merger 6318 // to clean them up (especially since that may not run for the first 6319 // module's index if we merge into that). 6320 if (!Combined) 6321 TheIndex->removeEmptySummaryEntries(); 6322 return std::error_code(); 6323 case BitstreamEntry::Record: 6324 // The interesting case. 6325 break; 6326 } 6327 6328 // Read a record. The record format depends on whether this 6329 // is a per-module index or a combined index file. In the per-module 6330 // case the records contain the associated value's ID for correlation 6331 // with VST entries. In the combined index the correlation is done 6332 // via the bitcode offset of the summary records (which were saved 6333 // in the combined index VST entries). The records also contain 6334 // information used for ThinLTO renaming and importing. 6335 Record.clear(); 6336 auto BitCode = Stream.readRecord(Entry.ID, Record); 6337 switch (BitCode) { 6338 default: // Default behavior: ignore. 6339 break; 6340 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6341 // n x (valueid)] 6342 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6343 // numrefs x valueid, 6344 // n x (valueid, hotness)] 6345 case bitc::FS_PERMODULE: 6346 case bitc::FS_PERMODULE_PROFILE: { 6347 unsigned ValueID = Record[0]; 6348 uint64_t RawFlags = Record[1]; 6349 unsigned InstCount = Record[2]; 6350 unsigned NumRefs = Record[3]; 6351 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6352 std::unique_ptr<FunctionSummary> FS = 6353 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6354 // The module path string ref set in the summary must be owned by the 6355 // index's module string table. Since we don't have a module path 6356 // string table section in the per-module index, we create a single 6357 // module path string table entry with an empty (0) ID to take 6358 // ownership. 6359 FS->setModulePath( 6360 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6361 static int RefListStartIndex = 4; 6362 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6363 assert(Record.size() >= RefListStartIndex + NumRefs && 6364 "Record size inconsistent with number of references"); 6365 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6366 unsigned RefValueId = Record[I]; 6367 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6368 FS->addRefEdge(RefGUID); 6369 } 6370 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6371 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6372 ++I) { 6373 CalleeInfo::HotnessType Hotness; 6374 GlobalValue::GUID CalleeGUID; 6375 std::tie(CalleeGUID, Hotness) = 6376 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6377 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6378 } 6379 auto GUID = getGUIDFromValueId(ValueID); 6380 FS->setOriginalName(GUID.second); 6381 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6382 break; 6383 } 6384 // FS_ALIAS: [valueid, flags, valueid] 6385 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6386 // they expect all aliasee summaries to be available. 6387 case bitc::FS_ALIAS: { 6388 unsigned ValueID = Record[0]; 6389 uint64_t RawFlags = Record[1]; 6390 unsigned AliaseeID = Record[2]; 6391 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6392 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6393 // The module path string ref set in the summary must be owned by the 6394 // index's module string table. Since we don't have a module path 6395 // string table section in the per-module index, we create a single 6396 // module path string table entry with an empty (0) ID to take 6397 // ownership. 6398 AS->setModulePath( 6399 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6400 6401 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6402 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6403 if (!AliaseeSummary) 6404 return error("Alias expects aliasee summary to be parsed"); 6405 AS->setAliasee(AliaseeSummary); 6406 6407 auto GUID = getGUIDFromValueId(ValueID); 6408 AS->setOriginalName(GUID.second); 6409 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6410 break; 6411 } 6412 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6413 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6414 unsigned ValueID = Record[0]; 6415 uint64_t RawFlags = Record[1]; 6416 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6417 std::unique_ptr<GlobalVarSummary> FS = 6418 llvm::make_unique<GlobalVarSummary>(Flags); 6419 FS->setModulePath( 6420 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6421 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6422 unsigned RefValueId = Record[I]; 6423 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6424 FS->addRefEdge(RefGUID); 6425 } 6426 auto GUID = getGUIDFromValueId(ValueID); 6427 FS->setOriginalName(GUID.second); 6428 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6429 break; 6430 } 6431 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6432 // numrefs x valueid, n x (valueid)] 6433 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6434 // numrefs x valueid, n x (valueid, hotness)] 6435 case bitc::FS_COMBINED: 6436 case bitc::FS_COMBINED_PROFILE: { 6437 unsigned ValueID = Record[0]; 6438 uint64_t ModuleId = Record[1]; 6439 uint64_t RawFlags = Record[2]; 6440 unsigned InstCount = Record[3]; 6441 unsigned NumRefs = Record[4]; 6442 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6443 std::unique_ptr<FunctionSummary> FS = 6444 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6445 LastSeenSummary = FS.get(); 6446 FS->setModulePath(ModuleIdMap[ModuleId]); 6447 static int RefListStartIndex = 5; 6448 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6449 assert(Record.size() >= RefListStartIndex + NumRefs && 6450 "Record size inconsistent with number of references"); 6451 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6452 ++I) { 6453 unsigned RefValueId = Record[I]; 6454 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6455 FS->addRefEdge(RefGUID); 6456 } 6457 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6458 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6459 ++I) { 6460 CalleeInfo::HotnessType Hotness; 6461 GlobalValue::GUID CalleeGUID; 6462 std::tie(CalleeGUID, Hotness) = 6463 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6464 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6465 } 6466 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6467 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6468 Combined = true; 6469 break; 6470 } 6471 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6472 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6473 // they expect all aliasee summaries to be available. 6474 case bitc::FS_COMBINED_ALIAS: { 6475 unsigned ValueID = Record[0]; 6476 uint64_t ModuleId = Record[1]; 6477 uint64_t RawFlags = Record[2]; 6478 unsigned AliaseeValueId = Record[3]; 6479 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6480 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6481 LastSeenSummary = AS.get(); 6482 AS->setModulePath(ModuleIdMap[ModuleId]); 6483 6484 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6485 auto AliaseeInModule = 6486 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6487 if (!AliaseeInModule) 6488 return error("Alias expects aliasee summary to be parsed"); 6489 AS->setAliasee(AliaseeInModule); 6490 6491 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6492 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6493 Combined = true; 6494 break; 6495 } 6496 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6497 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6498 unsigned ValueID = Record[0]; 6499 uint64_t ModuleId = Record[1]; 6500 uint64_t RawFlags = Record[2]; 6501 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6502 std::unique_ptr<GlobalVarSummary> FS = 6503 llvm::make_unique<GlobalVarSummary>(Flags); 6504 LastSeenSummary = FS.get(); 6505 FS->setModulePath(ModuleIdMap[ModuleId]); 6506 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6507 unsigned RefValueId = Record[I]; 6508 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6509 FS->addRefEdge(RefGUID); 6510 } 6511 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6512 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6513 Combined = true; 6514 break; 6515 } 6516 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6517 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6518 uint64_t OriginalName = Record[0]; 6519 if (!LastSeenSummary) 6520 return error("Name attachment that does not follow a combined record"); 6521 LastSeenSummary->setOriginalName(OriginalName); 6522 // Reset the LastSeenSummary 6523 LastSeenSummary = nullptr; 6524 } 6525 } 6526 } 6527 llvm_unreachable("Exit infinite loop"); 6528 } 6529 6530 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6531 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6532 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6533 const bool IsOldProfileFormat, const bool HasProfile) { 6534 6535 auto Hotness = CalleeInfo::HotnessType::Unknown; 6536 unsigned CalleeValueId = Record[I]; 6537 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6538 if (IsOldProfileFormat) { 6539 I += 1; // Skip old callsitecount field 6540 if (HasProfile) 6541 I += 1; // Skip old profilecount field 6542 } else if (HasProfile) 6543 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6544 return {CalleeGUID, Hotness}; 6545 } 6546 6547 // Parse the module string table block into the Index. 6548 // This populates the ModulePathStringTable map in the index. 6549 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6550 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6551 return error("Invalid record"); 6552 6553 SmallVector<uint64_t, 64> Record; 6554 6555 SmallString<128> ModulePath; 6556 ModulePathStringTableTy::iterator LastSeenModulePath; 6557 6558 while (true) { 6559 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6560 6561 switch (Entry.Kind) { 6562 case BitstreamEntry::SubBlock: // Handled for us already. 6563 case BitstreamEntry::Error: 6564 return error("Malformed block"); 6565 case BitstreamEntry::EndBlock: 6566 return std::error_code(); 6567 case BitstreamEntry::Record: 6568 // The interesting case. 6569 break; 6570 } 6571 6572 Record.clear(); 6573 switch (Stream.readRecord(Entry.ID, Record)) { 6574 default: // Default behavior: ignore. 6575 break; 6576 case bitc::MST_CODE_ENTRY: { 6577 // MST_ENTRY: [modid, namechar x N] 6578 uint64_t ModuleId = Record[0]; 6579 6580 if (convertToString(Record, 1, ModulePath)) 6581 return error("Invalid record"); 6582 6583 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6584 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6585 6586 ModulePath.clear(); 6587 break; 6588 } 6589 /// MST_CODE_HASH: [5*i32] 6590 case bitc::MST_CODE_HASH: { 6591 if (Record.size() != 5) 6592 return error("Invalid hash length " + Twine(Record.size()).str()); 6593 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6594 return error("Invalid hash that does not follow a module path"); 6595 int Pos = 0; 6596 for (auto &Val : Record) { 6597 assert(!(Val >> 32) && "Unexpected high bits set"); 6598 LastSeenModulePath->second.second[Pos++] = Val; 6599 } 6600 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6601 LastSeenModulePath = TheIndex->modulePaths().end(); 6602 break; 6603 } 6604 } 6605 } 6606 llvm_unreachable("Exit infinite loop"); 6607 } 6608 6609 // Parse the function info index from the bitcode streamer into the given index. 6610 std::error_code 6611 ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(ModuleSummaryIndex *I) { 6612 TheIndex = I; 6613 6614 if (std::error_code EC = initStream()) 6615 return EC; 6616 6617 // Sniff for the signature. 6618 if (!hasValidBitcodeHeader(Stream)) 6619 return error("Invalid bitcode signature"); 6620 6621 // We expect a number of well-defined blocks, though we don't necessarily 6622 // need to understand them all. 6623 while (true) { 6624 if (Stream.AtEndOfStream()) { 6625 // We didn't really read a proper Module block. 6626 return error("Malformed block"); 6627 } 6628 6629 BitstreamEntry Entry = 6630 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6631 6632 if (Entry.Kind != BitstreamEntry::SubBlock) 6633 return error("Malformed block"); 6634 6635 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6636 // building the function summary index. 6637 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6638 return parseModule(); 6639 6640 if (Stream.SkipBlock()) 6641 return error("Invalid record"); 6642 } 6643 } 6644 6645 namespace { 6646 6647 // FIXME: This class is only here to support the transition to llvm::Error. It 6648 // will be removed once this transition is complete. Clients should prefer to 6649 // deal with the Error value directly, rather than converting to error_code. 6650 class BitcodeErrorCategoryType : public std::error_category { 6651 const char *name() const noexcept override { 6652 return "llvm.bitcode"; 6653 } 6654 std::string message(int IE) const override { 6655 BitcodeError E = static_cast<BitcodeError>(IE); 6656 switch (E) { 6657 case BitcodeError::InvalidBitcodeSignature: 6658 return "Invalid bitcode signature"; 6659 case BitcodeError::CorruptedBitcode: 6660 return "Corrupted bitcode"; 6661 } 6662 llvm_unreachable("Unknown error type!"); 6663 } 6664 }; 6665 6666 } // end anonymous namespace 6667 6668 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6669 6670 const std::error_category &llvm::BitcodeErrorCategory() { 6671 return *ErrorCategory; 6672 } 6673 6674 //===----------------------------------------------------------------------===// 6675 // External interface 6676 //===----------------------------------------------------------------------===// 6677 6678 static ErrorOr<std::unique_ptr<Module>> 6679 getBitcodeModuleImpl(StringRef Name, BitcodeReader *R, LLVMContext &Context, 6680 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6681 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6682 M->setMaterializer(R); 6683 6684 auto cleanupOnError = [&](std::error_code EC) { 6685 R->releaseBuffer(); // Never take ownership on error. 6686 return EC; 6687 }; 6688 6689 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6690 if (std::error_code EC = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6691 return cleanupOnError(EC); 6692 6693 if (MaterializeAll) { 6694 // Read in the entire module, and destroy the BitcodeReader. 6695 if (std::error_code EC = M->materializeAll()) 6696 return cleanupOnError(EC); 6697 } else { 6698 // Resolve forward references from blockaddresses. 6699 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6700 return cleanupOnError(EC); 6701 } 6702 return std::move(M); 6703 } 6704 6705 /// \brief Get a lazy one-at-time loading module from bitcode. 6706 /// 6707 /// This isn't always used in a lazy context. In particular, it's also used by 6708 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6709 /// in forward-referenced functions from block address references. 6710 /// 6711 /// \param[in] MaterializeAll Set to \c true if we should materialize 6712 /// everything. 6713 static ErrorOr<std::unique_ptr<Module>> 6714 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6715 LLVMContext &Context, bool MaterializeAll, 6716 bool ShouldLazyLoadMetadata = false) { 6717 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6718 6719 ErrorOr<std::unique_ptr<Module>> Ret = 6720 getBitcodeModuleImpl(Buffer->getBufferIdentifier(), R, Context, 6721 MaterializeAll, ShouldLazyLoadMetadata); 6722 if (!Ret) 6723 return Ret; 6724 6725 Buffer.release(); // The BitcodeReader owns it now. 6726 return Ret; 6727 } 6728 6729 ErrorOr<std::unique_ptr<Module>> 6730 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6731 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6732 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6733 ShouldLazyLoadMetadata); 6734 } 6735 6736 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6737 LLVMContext &Context) { 6738 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6739 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6740 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6741 // written. We must defer until the Module has been fully materialized. 6742 } 6743 6744 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6745 LLVMContext &Context) { 6746 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6747 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6748 ErrorOr<std::string> Triple = R->parseTriple(); 6749 if (Triple.getError()) 6750 return ""; 6751 return Triple.get(); 6752 } 6753 6754 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6755 LLVMContext &Context) { 6756 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6757 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6758 ErrorOr<bool> hasObjCCategory = R->hasObjCCategory(); 6759 if (hasObjCCategory.getError()) 6760 return false; 6761 return hasObjCCategory.get(); 6762 } 6763 6764 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6765 LLVMContext &Context) { 6766 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6767 BitcodeReader R(Buf.release(), Context); 6768 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6769 if (ProducerString.getError()) 6770 return ""; 6771 return ProducerString.get(); 6772 } 6773 6774 // Parse the specified bitcode buffer, returning the function info index. 6775 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6776 MemoryBufferRef Buffer, 6777 const DiagnosticHandlerFunction &DiagnosticHandler) { 6778 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6779 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6780 6781 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6782 6783 auto cleanupOnError = [&](std::error_code EC) { 6784 R.releaseBuffer(); // Never take ownership on error. 6785 return EC; 6786 }; 6787 6788 if (std::error_code EC = R.parseSummaryIndexInto(Index.get())) 6789 return cleanupOnError(EC); 6790 6791 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6792 return std::move(Index); 6793 } 6794 6795 // Check if the given bitcode buffer contains a global value summary block. 6796 bool llvm::hasGlobalValueSummary( 6797 MemoryBufferRef Buffer, 6798 const DiagnosticHandlerFunction &DiagnosticHandler) { 6799 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6800 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6801 6802 auto cleanupOnError = [&](std::error_code EC) { 6803 R.releaseBuffer(); // Never take ownership on error. 6804 return false; 6805 }; 6806 6807 if (std::error_code EC = R.parseSummaryIndexInto(nullptr)) 6808 return cleanupOnError(EC); 6809 6810 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6811 return R.foundGlobalValSummary(); 6812 } 6813