1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 505 struct FunctionOperandInfo { 506 Function *F; 507 unsigned PersonalityFn; 508 unsigned Prefix; 509 unsigned Prologue; 510 }; 511 std::vector<FunctionOperandInfo> FunctionOperands; 512 513 /// The set of attributes by index. Index zero in the file is for null, and 514 /// is thus not represented here. As such all indices are off by one. 515 std::vector<AttributeList> MAttributes; 516 517 /// The set of attribute groups. 518 std::map<unsigned, AttributeList> MAttributeGroups; 519 520 /// While parsing a function body, this is a list of the basic blocks for the 521 /// function. 522 std::vector<BasicBlock*> FunctionBBs; 523 524 // When reading the module header, this list is populated with functions that 525 // have bodies later in the file. 526 std::vector<Function*> FunctionsWithBodies; 527 528 // When intrinsic functions are encountered which require upgrading they are 529 // stored here with their replacement function. 530 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 531 UpdatedIntrinsicMap UpgradedIntrinsics; 532 // Intrinsics which were remangled because of types rename 533 UpdatedIntrinsicMap RemangledIntrinsics; 534 535 // Several operations happen after the module header has been read, but 536 // before function bodies are processed. This keeps track of whether 537 // we've done this yet. 538 bool SeenFirstFunctionBody = false; 539 540 /// When function bodies are initially scanned, this map contains info about 541 /// where to find deferred function body in the stream. 542 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 543 544 /// When Metadata block is initially scanned when parsing the module, we may 545 /// choose to defer parsing of the metadata. This vector contains info about 546 /// which Metadata blocks are deferred. 547 std::vector<uint64_t> DeferredMetadataInfo; 548 549 /// These are basic blocks forward-referenced by block addresses. They are 550 /// inserted lazily into functions when they're loaded. The basic block ID is 551 /// its index into the vector. 552 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 553 std::deque<Function *> BasicBlockFwdRefQueue; 554 555 /// Indicates that we are using a new encoding for instruction operands where 556 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 557 /// instruction number, for a more compact encoding. Some instruction 558 /// operands are not relative to the instruction ID: basic block numbers, and 559 /// types. Once the old style function blocks have been phased out, we would 560 /// not need this flag. 561 bool UseRelativeIDs = false; 562 563 /// True if all functions will be materialized, negating the need to process 564 /// (e.g.) blockaddress forward references. 565 bool WillMaterializeAllForwardRefs = false; 566 567 bool StripDebugInfo = false; 568 TBAAVerifier TBAAVerifyHelper; 569 570 std::vector<std::string> BundleTags; 571 SmallVector<SyncScope::ID, 8> SSIDs; 572 573 public: 574 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 575 StringRef ProducerIdentification, LLVMContext &Context); 576 577 Error materializeForwardReferencedFunctions(); 578 579 Error materialize(GlobalValue *GV) override; 580 Error materializeModule() override; 581 std::vector<StructType *> getIdentifiedStructTypes() const override; 582 583 /// Main interface to parsing a bitcode buffer. 584 /// \returns true if an error occurred. 585 Error parseBitcodeInto( 586 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 587 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 588 589 static uint64_t decodeSignRotatedValue(uint64_t V); 590 591 /// Materialize any deferred Metadata block. 592 Error materializeMetadata() override; 593 594 void setStripDebugInfo() override; 595 596 private: 597 std::vector<StructType *> IdentifiedStructTypes; 598 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 599 StructType *createIdentifiedStructType(LLVMContext &Context); 600 601 Type *getTypeByID(unsigned ID); 602 603 Value *getFnValueByID(unsigned ID, Type *Ty) { 604 if (Ty && Ty->isMetadataTy()) 605 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 606 return ValueList.getValueFwdRef(ID, Ty); 607 } 608 609 Metadata *getFnMetadataByID(unsigned ID) { 610 return MDLoader->getMetadataFwdRefOrLoad(ID); 611 } 612 613 BasicBlock *getBasicBlock(unsigned ID) const { 614 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 615 return FunctionBBs[ID]; 616 } 617 618 AttributeList getAttributes(unsigned i) const { 619 if (i-1 < MAttributes.size()) 620 return MAttributes[i-1]; 621 return AttributeList(); 622 } 623 624 /// Read a value/type pair out of the specified record from slot 'Slot'. 625 /// Increment Slot past the number of slots used in the record. Return true on 626 /// failure. 627 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 628 unsigned InstNum, Value *&ResVal) { 629 if (Slot == Record.size()) return true; 630 unsigned ValNo = (unsigned)Record[Slot++]; 631 // Adjust the ValNo, if it was encoded relative to the InstNum. 632 if (UseRelativeIDs) 633 ValNo = InstNum - ValNo; 634 if (ValNo < InstNum) { 635 // If this is not a forward reference, just return the value we already 636 // have. 637 ResVal = getFnValueByID(ValNo, nullptr); 638 return ResVal == nullptr; 639 } 640 if (Slot == Record.size()) 641 return true; 642 643 unsigned TypeNo = (unsigned)Record[Slot++]; 644 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 645 return ResVal == nullptr; 646 } 647 648 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 649 /// past the number of slots used by the value in the record. Return true if 650 /// there is an error. 651 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 652 unsigned InstNum, Type *Ty, Value *&ResVal) { 653 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 654 return true; 655 // All values currently take a single record slot. 656 ++Slot; 657 return false; 658 } 659 660 /// Like popValue, but does not increment the Slot number. 661 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty, Value *&ResVal) { 663 ResVal = getValue(Record, Slot, InstNum, Ty); 664 return ResVal == nullptr; 665 } 666 667 /// Version of getValue that returns ResVal directly, or 0 if there is an 668 /// error. 669 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 670 unsigned InstNum, Type *Ty) { 671 if (Slot == Record.size()) return nullptr; 672 unsigned ValNo = (unsigned)Record[Slot]; 673 // Adjust the ValNo, if it was encoded relative to the InstNum. 674 if (UseRelativeIDs) 675 ValNo = InstNum - ValNo; 676 return getFnValueByID(ValNo, Ty); 677 } 678 679 /// Like getValue, but decodes signed VBRs. 680 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 681 unsigned InstNum, Type *Ty) { 682 if (Slot == Record.size()) return nullptr; 683 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 684 // Adjust the ValNo, if it was encoded relative to the InstNum. 685 if (UseRelativeIDs) 686 ValNo = InstNum - ValNo; 687 return getFnValueByID(ValNo, Ty); 688 } 689 690 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 691 /// corresponding argument's pointee type. Also upgrades intrinsics that now 692 /// require an elementtype attribute. 693 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 694 695 /// Converts alignment exponent (i.e. power of two (or zero)) to the 696 /// corresponding alignment to use. If alignment is too large, returns 697 /// a corresponding error code. 698 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 699 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 700 Error parseModule( 701 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 702 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 703 704 Error parseComdatRecord(ArrayRef<uint64_t> Record); 705 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 706 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 707 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 708 ArrayRef<uint64_t> Record); 709 710 Error parseAttributeBlock(); 711 Error parseAttributeGroupBlock(); 712 Error parseTypeTable(); 713 Error parseTypeTableBody(); 714 Error parseOperandBundleTags(); 715 Error parseSyncScopeNames(); 716 717 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 718 unsigned NameIndex, Triple &TT); 719 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 720 ArrayRef<uint64_t> Record); 721 Error parseValueSymbolTable(uint64_t Offset = 0); 722 Error parseGlobalValueSymbolTable(); 723 Error parseConstants(); 724 Error rememberAndSkipFunctionBodies(); 725 Error rememberAndSkipFunctionBody(); 726 /// Save the positions of the Metadata blocks and skip parsing the blocks. 727 Error rememberAndSkipMetadata(); 728 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 729 Error parseFunctionBody(Function *F); 730 Error globalCleanup(); 731 Error resolveGlobalAndIndirectSymbolInits(); 732 Error parseUseLists(); 733 Error findFunctionInStream( 734 Function *F, 735 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 736 737 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 738 }; 739 740 /// Class to manage reading and parsing function summary index bitcode 741 /// files/sections. 742 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 743 /// The module index built during parsing. 744 ModuleSummaryIndex &TheIndex; 745 746 /// Indicates whether we have encountered a global value summary section 747 /// yet during parsing. 748 bool SeenGlobalValSummary = false; 749 750 /// Indicates whether we have already parsed the VST, used for error checking. 751 bool SeenValueSymbolTable = false; 752 753 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 754 /// Used to enable on-demand parsing of the VST. 755 uint64_t VSTOffset = 0; 756 757 // Map to save ValueId to ValueInfo association that was recorded in the 758 // ValueSymbolTable. It is used after the VST is parsed to convert 759 // call graph edges read from the function summary from referencing 760 // callees by their ValueId to using the ValueInfo instead, which is how 761 // they are recorded in the summary index being built. 762 // We save a GUID which refers to the same global as the ValueInfo, but 763 // ignoring the linkage, i.e. for values other than local linkage they are 764 // identical. 765 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 766 ValueIdToValueInfoMap; 767 768 /// Map populated during module path string table parsing, from the 769 /// module ID to a string reference owned by the index's module 770 /// path string table, used to correlate with combined index 771 /// summary records. 772 DenseMap<uint64_t, StringRef> ModuleIdMap; 773 774 /// Original source file name recorded in a bitcode record. 775 std::string SourceFileName; 776 777 /// The string identifier given to this module by the client, normally the 778 /// path to the bitcode file. 779 StringRef ModulePath; 780 781 /// For per-module summary indexes, the unique numerical identifier given to 782 /// this module by the client. 783 unsigned ModuleId; 784 785 public: 786 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 787 ModuleSummaryIndex &TheIndex, 788 StringRef ModulePath, unsigned ModuleId); 789 790 Error parseModule(); 791 792 private: 793 void setValueGUID(uint64_t ValueID, StringRef ValueName, 794 GlobalValue::LinkageTypes Linkage, 795 StringRef SourceFileName); 796 Error parseValueSymbolTable( 797 uint64_t Offset, 798 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 799 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 800 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 801 bool IsOldProfileFormat, 802 bool HasProfile, 803 bool HasRelBF); 804 Error parseEntireSummary(unsigned ID); 805 Error parseModuleStringTable(); 806 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 807 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 808 TypeIdCompatibleVtableInfo &TypeId); 809 std::vector<FunctionSummary::ParamAccess> 810 parseParamAccesses(ArrayRef<uint64_t> Record); 811 812 std::pair<ValueInfo, GlobalValue::GUID> 813 getValueInfoFromValueId(unsigned ValueId); 814 815 void addThisModule(); 816 ModuleSummaryIndex::ModuleInfo *getThisModule(); 817 }; 818 819 } // end anonymous namespace 820 821 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 822 Error Err) { 823 if (Err) { 824 std::error_code EC; 825 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 826 EC = EIB.convertToErrorCode(); 827 Ctx.emitError(EIB.message()); 828 }); 829 return EC; 830 } 831 return std::error_code(); 832 } 833 834 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 835 StringRef ProducerIdentification, 836 LLVMContext &Context) 837 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 838 ValueList(Context, Stream.SizeInBytes()) { 839 this->ProducerIdentification = std::string(ProducerIdentification); 840 } 841 842 Error BitcodeReader::materializeForwardReferencedFunctions() { 843 if (WillMaterializeAllForwardRefs) 844 return Error::success(); 845 846 // Prevent recursion. 847 WillMaterializeAllForwardRefs = true; 848 849 while (!BasicBlockFwdRefQueue.empty()) { 850 Function *F = BasicBlockFwdRefQueue.front(); 851 BasicBlockFwdRefQueue.pop_front(); 852 assert(F && "Expected valid function"); 853 if (!BasicBlockFwdRefs.count(F)) 854 // Already materialized. 855 continue; 856 857 // Check for a function that isn't materializable to prevent an infinite 858 // loop. When parsing a blockaddress stored in a global variable, there 859 // isn't a trivial way to check if a function will have a body without a 860 // linear search through FunctionsWithBodies, so just check it here. 861 if (!F->isMaterializable()) 862 return error("Never resolved function from blockaddress"); 863 864 // Try to materialize F. 865 if (Error Err = materialize(F)) 866 return Err; 867 } 868 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 869 870 // Reset state. 871 WillMaterializeAllForwardRefs = false; 872 return Error::success(); 873 } 874 875 //===----------------------------------------------------------------------===// 876 // Helper functions to implement forward reference resolution, etc. 877 //===----------------------------------------------------------------------===// 878 879 static bool hasImplicitComdat(size_t Val) { 880 switch (Val) { 881 default: 882 return false; 883 case 1: // Old WeakAnyLinkage 884 case 4: // Old LinkOnceAnyLinkage 885 case 10: // Old WeakODRLinkage 886 case 11: // Old LinkOnceODRLinkage 887 return true; 888 } 889 } 890 891 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 892 switch (Val) { 893 default: // Map unknown/new linkages to external 894 case 0: 895 return GlobalValue::ExternalLinkage; 896 case 2: 897 return GlobalValue::AppendingLinkage; 898 case 3: 899 return GlobalValue::InternalLinkage; 900 case 5: 901 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 902 case 6: 903 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 904 case 7: 905 return GlobalValue::ExternalWeakLinkage; 906 case 8: 907 return GlobalValue::CommonLinkage; 908 case 9: 909 return GlobalValue::PrivateLinkage; 910 case 12: 911 return GlobalValue::AvailableExternallyLinkage; 912 case 13: 913 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 914 case 14: 915 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 916 case 15: 917 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 918 case 1: // Old value with implicit comdat. 919 case 16: 920 return GlobalValue::WeakAnyLinkage; 921 case 10: // Old value with implicit comdat. 922 case 17: 923 return GlobalValue::WeakODRLinkage; 924 case 4: // Old value with implicit comdat. 925 case 18: 926 return GlobalValue::LinkOnceAnyLinkage; 927 case 11: // Old value with implicit comdat. 928 case 19: 929 return GlobalValue::LinkOnceODRLinkage; 930 } 931 } 932 933 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 934 FunctionSummary::FFlags Flags; 935 Flags.ReadNone = RawFlags & 0x1; 936 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 937 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 938 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 939 Flags.NoInline = (RawFlags >> 4) & 0x1; 940 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 941 return Flags; 942 } 943 944 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 945 // 946 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 947 // visibility: [8, 10). 948 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 949 uint64_t Version) { 950 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 951 // like getDecodedLinkage() above. Any future change to the linkage enum and 952 // to getDecodedLinkage() will need to be taken into account here as above. 953 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 954 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 955 RawFlags = RawFlags >> 4; 956 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 957 // The Live flag wasn't introduced until version 3. For dead stripping 958 // to work correctly on earlier versions, we must conservatively treat all 959 // values as live. 960 bool Live = (RawFlags & 0x2) || Version < 3; 961 bool Local = (RawFlags & 0x4); 962 bool AutoHide = (RawFlags & 0x8); 963 964 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 965 Live, Local, AutoHide); 966 } 967 968 // Decode the flags for GlobalVariable in the summary 969 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 970 return GlobalVarSummary::GVarFlags( 971 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 972 (RawFlags & 0x4) ? true : false, 973 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 974 } 975 976 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 977 switch (Val) { 978 default: // Map unknown visibilities to default. 979 case 0: return GlobalValue::DefaultVisibility; 980 case 1: return GlobalValue::HiddenVisibility; 981 case 2: return GlobalValue::ProtectedVisibility; 982 } 983 } 984 985 static GlobalValue::DLLStorageClassTypes 986 getDecodedDLLStorageClass(unsigned Val) { 987 switch (Val) { 988 default: // Map unknown values to default. 989 case 0: return GlobalValue::DefaultStorageClass; 990 case 1: return GlobalValue::DLLImportStorageClass; 991 case 2: return GlobalValue::DLLExportStorageClass; 992 } 993 } 994 995 static bool getDecodedDSOLocal(unsigned Val) { 996 switch(Val) { 997 default: // Map unknown values to preemptable. 998 case 0: return false; 999 case 1: return true; 1000 } 1001 } 1002 1003 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1004 switch (Val) { 1005 case 0: return GlobalVariable::NotThreadLocal; 1006 default: // Map unknown non-zero value to general dynamic. 1007 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1008 case 2: return GlobalVariable::LocalDynamicTLSModel; 1009 case 3: return GlobalVariable::InitialExecTLSModel; 1010 case 4: return GlobalVariable::LocalExecTLSModel; 1011 } 1012 } 1013 1014 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown to UnnamedAddr::None. 1017 case 0: return GlobalVariable::UnnamedAddr::None; 1018 case 1: return GlobalVariable::UnnamedAddr::Global; 1019 case 2: return GlobalVariable::UnnamedAddr::Local; 1020 } 1021 } 1022 1023 static int getDecodedCastOpcode(unsigned Val) { 1024 switch (Val) { 1025 default: return -1; 1026 case bitc::CAST_TRUNC : return Instruction::Trunc; 1027 case bitc::CAST_ZEXT : return Instruction::ZExt; 1028 case bitc::CAST_SEXT : return Instruction::SExt; 1029 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1030 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1031 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1032 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1033 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1034 case bitc::CAST_FPEXT : return Instruction::FPExt; 1035 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1036 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1037 case bitc::CAST_BITCAST : return Instruction::BitCast; 1038 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1039 } 1040 } 1041 1042 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1043 bool IsFP = Ty->isFPOrFPVectorTy(); 1044 // UnOps are only valid for int/fp or vector of int/fp types 1045 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1046 return -1; 1047 1048 switch (Val) { 1049 default: 1050 return -1; 1051 case bitc::UNOP_FNEG: 1052 return IsFP ? Instruction::FNeg : -1; 1053 } 1054 } 1055 1056 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // BinOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::BINOP_ADD: 1066 return IsFP ? Instruction::FAdd : Instruction::Add; 1067 case bitc::BINOP_SUB: 1068 return IsFP ? Instruction::FSub : Instruction::Sub; 1069 case bitc::BINOP_MUL: 1070 return IsFP ? Instruction::FMul : Instruction::Mul; 1071 case bitc::BINOP_UDIV: 1072 return IsFP ? -1 : Instruction::UDiv; 1073 case bitc::BINOP_SDIV: 1074 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1075 case bitc::BINOP_UREM: 1076 return IsFP ? -1 : Instruction::URem; 1077 case bitc::BINOP_SREM: 1078 return IsFP ? Instruction::FRem : Instruction::SRem; 1079 case bitc::BINOP_SHL: 1080 return IsFP ? -1 : Instruction::Shl; 1081 case bitc::BINOP_LSHR: 1082 return IsFP ? -1 : Instruction::LShr; 1083 case bitc::BINOP_ASHR: 1084 return IsFP ? -1 : Instruction::AShr; 1085 case bitc::BINOP_AND: 1086 return IsFP ? -1 : Instruction::And; 1087 case bitc::BINOP_OR: 1088 return IsFP ? -1 : Instruction::Or; 1089 case bitc::BINOP_XOR: 1090 return IsFP ? -1 : Instruction::Xor; 1091 } 1092 } 1093 1094 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1095 switch (Val) { 1096 default: return AtomicRMWInst::BAD_BINOP; 1097 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1098 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1099 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1100 case bitc::RMW_AND: return AtomicRMWInst::And; 1101 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1102 case bitc::RMW_OR: return AtomicRMWInst::Or; 1103 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1104 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1105 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1106 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1107 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1108 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1109 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1110 } 1111 } 1112 1113 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1114 switch (Val) { 1115 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1116 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1117 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1118 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1119 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1120 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1121 default: // Map unknown orderings to sequentially-consistent. 1122 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1123 } 1124 } 1125 1126 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1127 switch (Val) { 1128 default: // Map unknown selection kinds to any. 1129 case bitc::COMDAT_SELECTION_KIND_ANY: 1130 return Comdat::Any; 1131 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1132 return Comdat::ExactMatch; 1133 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1134 return Comdat::Largest; 1135 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1136 return Comdat::NoDeduplicate; 1137 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1138 return Comdat::SameSize; 1139 } 1140 } 1141 1142 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1143 FastMathFlags FMF; 1144 if (0 != (Val & bitc::UnsafeAlgebra)) 1145 FMF.setFast(); 1146 if (0 != (Val & bitc::AllowReassoc)) 1147 FMF.setAllowReassoc(); 1148 if (0 != (Val & bitc::NoNaNs)) 1149 FMF.setNoNaNs(); 1150 if (0 != (Val & bitc::NoInfs)) 1151 FMF.setNoInfs(); 1152 if (0 != (Val & bitc::NoSignedZeros)) 1153 FMF.setNoSignedZeros(); 1154 if (0 != (Val & bitc::AllowReciprocal)) 1155 FMF.setAllowReciprocal(); 1156 if (0 != (Val & bitc::AllowContract)) 1157 FMF.setAllowContract(true); 1158 if (0 != (Val & bitc::ApproxFunc)) 1159 FMF.setApproxFunc(); 1160 return FMF; 1161 } 1162 1163 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1164 switch (Val) { 1165 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1166 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1167 } 1168 } 1169 1170 Type *BitcodeReader::getTypeByID(unsigned ID) { 1171 // The type table size is always specified correctly. 1172 if (ID >= TypeList.size()) 1173 return nullptr; 1174 1175 if (Type *Ty = TypeList[ID]) 1176 return Ty; 1177 1178 // If we have a forward reference, the only possible case is when it is to a 1179 // named struct. Just create a placeholder for now. 1180 return TypeList[ID] = createIdentifiedStructType(Context); 1181 } 1182 1183 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1184 StringRef Name) { 1185 auto *Ret = StructType::create(Context, Name); 1186 IdentifiedStructTypes.push_back(Ret); 1187 return Ret; 1188 } 1189 1190 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1191 auto *Ret = StructType::create(Context); 1192 IdentifiedStructTypes.push_back(Ret); 1193 return Ret; 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // Functions for parsing blocks from the bitcode file 1198 //===----------------------------------------------------------------------===// 1199 1200 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1201 switch (Val) { 1202 case Attribute::EndAttrKinds: 1203 case Attribute::EmptyKey: 1204 case Attribute::TombstoneKey: 1205 llvm_unreachable("Synthetic enumerators which should never get here"); 1206 1207 case Attribute::None: return 0; 1208 case Attribute::ZExt: return 1 << 0; 1209 case Attribute::SExt: return 1 << 1; 1210 case Attribute::NoReturn: return 1 << 2; 1211 case Attribute::InReg: return 1 << 3; 1212 case Attribute::StructRet: return 1 << 4; 1213 case Attribute::NoUnwind: return 1 << 5; 1214 case Attribute::NoAlias: return 1 << 6; 1215 case Attribute::ByVal: return 1 << 7; 1216 case Attribute::Nest: return 1 << 8; 1217 case Attribute::ReadNone: return 1 << 9; 1218 case Attribute::ReadOnly: return 1 << 10; 1219 case Attribute::NoInline: return 1 << 11; 1220 case Attribute::AlwaysInline: return 1 << 12; 1221 case Attribute::OptimizeForSize: return 1 << 13; 1222 case Attribute::StackProtect: return 1 << 14; 1223 case Attribute::StackProtectReq: return 1 << 15; 1224 case Attribute::Alignment: return 31 << 16; 1225 case Attribute::NoCapture: return 1 << 21; 1226 case Attribute::NoRedZone: return 1 << 22; 1227 case Attribute::NoImplicitFloat: return 1 << 23; 1228 case Attribute::Naked: return 1 << 24; 1229 case Attribute::InlineHint: return 1 << 25; 1230 case Attribute::StackAlignment: return 7 << 26; 1231 case Attribute::ReturnsTwice: return 1 << 29; 1232 case Attribute::UWTable: return 1 << 30; 1233 case Attribute::NonLazyBind: return 1U << 31; 1234 case Attribute::SanitizeAddress: return 1ULL << 32; 1235 case Attribute::MinSize: return 1ULL << 33; 1236 case Attribute::NoDuplicate: return 1ULL << 34; 1237 case Attribute::StackProtectStrong: return 1ULL << 35; 1238 case Attribute::SanitizeThread: return 1ULL << 36; 1239 case Attribute::SanitizeMemory: return 1ULL << 37; 1240 case Attribute::NoBuiltin: return 1ULL << 38; 1241 case Attribute::Returned: return 1ULL << 39; 1242 case Attribute::Cold: return 1ULL << 40; 1243 case Attribute::Builtin: return 1ULL << 41; 1244 case Attribute::OptimizeNone: return 1ULL << 42; 1245 case Attribute::InAlloca: return 1ULL << 43; 1246 case Attribute::NonNull: return 1ULL << 44; 1247 case Attribute::JumpTable: return 1ULL << 45; 1248 case Attribute::Convergent: return 1ULL << 46; 1249 case Attribute::SafeStack: return 1ULL << 47; 1250 case Attribute::NoRecurse: return 1ULL << 48; 1251 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1252 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1253 case Attribute::SwiftSelf: return 1ULL << 51; 1254 case Attribute::SwiftError: return 1ULL << 52; 1255 case Attribute::WriteOnly: return 1ULL << 53; 1256 case Attribute::Speculatable: return 1ULL << 54; 1257 case Attribute::StrictFP: return 1ULL << 55; 1258 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1259 case Attribute::NoCfCheck: return 1ULL << 57; 1260 case Attribute::OptForFuzzing: return 1ULL << 58; 1261 case Attribute::ShadowCallStack: return 1ULL << 59; 1262 case Attribute::SpeculativeLoadHardening: 1263 return 1ULL << 60; 1264 case Attribute::ImmArg: 1265 return 1ULL << 61; 1266 case Attribute::WillReturn: 1267 return 1ULL << 62; 1268 case Attribute::NoFree: 1269 return 1ULL << 63; 1270 default: 1271 // Other attributes are not supported in the raw format, 1272 // as we ran out of space. 1273 return 0; 1274 } 1275 llvm_unreachable("Unsupported attribute type"); 1276 } 1277 1278 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1279 if (!Val) return; 1280 1281 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1282 I = Attribute::AttrKind(I + 1)) { 1283 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1284 if (I == Attribute::Alignment) 1285 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1286 else if (I == Attribute::StackAlignment) 1287 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1288 else if (Attribute::isTypeAttrKind(I)) 1289 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1290 else 1291 B.addAttribute(I); 1292 } 1293 } 1294 } 1295 1296 /// This fills an AttrBuilder object with the LLVM attributes that have 1297 /// been decoded from the given integer. This function must stay in sync with 1298 /// 'encodeLLVMAttributesForBitcode'. 1299 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1300 uint64_t EncodedAttrs) { 1301 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1302 // the bits above 31 down by 11 bits. 1303 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1304 assert((!Alignment || isPowerOf2_32(Alignment)) && 1305 "Alignment must be a power of two."); 1306 1307 if (Alignment) 1308 B.addAlignmentAttr(Alignment); 1309 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1310 (EncodedAttrs & 0xffff)); 1311 } 1312 1313 Error BitcodeReader::parseAttributeBlock() { 1314 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1315 return Err; 1316 1317 if (!MAttributes.empty()) 1318 return error("Invalid multiple blocks"); 1319 1320 SmallVector<uint64_t, 64> Record; 1321 1322 SmallVector<AttributeList, 8> Attrs; 1323 1324 // Read all the records. 1325 while (true) { 1326 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1327 if (!MaybeEntry) 1328 return MaybeEntry.takeError(); 1329 BitstreamEntry Entry = MaybeEntry.get(); 1330 1331 switch (Entry.Kind) { 1332 case BitstreamEntry::SubBlock: // Handled for us already. 1333 case BitstreamEntry::Error: 1334 return error("Malformed block"); 1335 case BitstreamEntry::EndBlock: 1336 return Error::success(); 1337 case BitstreamEntry::Record: 1338 // The interesting case. 1339 break; 1340 } 1341 1342 // Read a record. 1343 Record.clear(); 1344 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1345 if (!MaybeRecord) 1346 return MaybeRecord.takeError(); 1347 switch (MaybeRecord.get()) { 1348 default: // Default behavior: ignore. 1349 break; 1350 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1351 // Deprecated, but still needed to read old bitcode files. 1352 if (Record.size() & 1) 1353 return error("Invalid record"); 1354 1355 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1356 AttrBuilder B; 1357 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1358 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1359 } 1360 1361 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1362 Attrs.clear(); 1363 break; 1364 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1365 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1366 Attrs.push_back(MAttributeGroups[Record[i]]); 1367 1368 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1369 Attrs.clear(); 1370 break; 1371 } 1372 } 1373 } 1374 1375 // Returns Attribute::None on unrecognized codes. 1376 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1377 switch (Code) { 1378 default: 1379 return Attribute::None; 1380 case bitc::ATTR_KIND_ALIGNMENT: 1381 return Attribute::Alignment; 1382 case bitc::ATTR_KIND_ALWAYS_INLINE: 1383 return Attribute::AlwaysInline; 1384 case bitc::ATTR_KIND_ARGMEMONLY: 1385 return Attribute::ArgMemOnly; 1386 case bitc::ATTR_KIND_BUILTIN: 1387 return Attribute::Builtin; 1388 case bitc::ATTR_KIND_BY_VAL: 1389 return Attribute::ByVal; 1390 case bitc::ATTR_KIND_IN_ALLOCA: 1391 return Attribute::InAlloca; 1392 case bitc::ATTR_KIND_COLD: 1393 return Attribute::Cold; 1394 case bitc::ATTR_KIND_CONVERGENT: 1395 return Attribute::Convergent; 1396 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1397 return Attribute::DisableSanitizerInstrumentation; 1398 case bitc::ATTR_KIND_ELEMENTTYPE: 1399 return Attribute::ElementType; 1400 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1401 return Attribute::InaccessibleMemOnly; 1402 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1403 return Attribute::InaccessibleMemOrArgMemOnly; 1404 case bitc::ATTR_KIND_INLINE_HINT: 1405 return Attribute::InlineHint; 1406 case bitc::ATTR_KIND_IN_REG: 1407 return Attribute::InReg; 1408 case bitc::ATTR_KIND_JUMP_TABLE: 1409 return Attribute::JumpTable; 1410 case bitc::ATTR_KIND_MIN_SIZE: 1411 return Attribute::MinSize; 1412 case bitc::ATTR_KIND_NAKED: 1413 return Attribute::Naked; 1414 case bitc::ATTR_KIND_NEST: 1415 return Attribute::Nest; 1416 case bitc::ATTR_KIND_NO_ALIAS: 1417 return Attribute::NoAlias; 1418 case bitc::ATTR_KIND_NO_BUILTIN: 1419 return Attribute::NoBuiltin; 1420 case bitc::ATTR_KIND_NO_CALLBACK: 1421 return Attribute::NoCallback; 1422 case bitc::ATTR_KIND_NO_CAPTURE: 1423 return Attribute::NoCapture; 1424 case bitc::ATTR_KIND_NO_DUPLICATE: 1425 return Attribute::NoDuplicate; 1426 case bitc::ATTR_KIND_NOFREE: 1427 return Attribute::NoFree; 1428 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1429 return Attribute::NoImplicitFloat; 1430 case bitc::ATTR_KIND_NO_INLINE: 1431 return Attribute::NoInline; 1432 case bitc::ATTR_KIND_NO_RECURSE: 1433 return Attribute::NoRecurse; 1434 case bitc::ATTR_KIND_NO_MERGE: 1435 return Attribute::NoMerge; 1436 case bitc::ATTR_KIND_NON_LAZY_BIND: 1437 return Attribute::NonLazyBind; 1438 case bitc::ATTR_KIND_NON_NULL: 1439 return Attribute::NonNull; 1440 case bitc::ATTR_KIND_DEREFERENCEABLE: 1441 return Attribute::Dereferenceable; 1442 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1443 return Attribute::DereferenceableOrNull; 1444 case bitc::ATTR_KIND_ALLOC_SIZE: 1445 return Attribute::AllocSize; 1446 case bitc::ATTR_KIND_NO_RED_ZONE: 1447 return Attribute::NoRedZone; 1448 case bitc::ATTR_KIND_NO_RETURN: 1449 return Attribute::NoReturn; 1450 case bitc::ATTR_KIND_NOSYNC: 1451 return Attribute::NoSync; 1452 case bitc::ATTR_KIND_NOCF_CHECK: 1453 return Attribute::NoCfCheck; 1454 case bitc::ATTR_KIND_NO_PROFILE: 1455 return Attribute::NoProfile; 1456 case bitc::ATTR_KIND_NO_UNWIND: 1457 return Attribute::NoUnwind; 1458 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1459 return Attribute::NoSanitizeCoverage; 1460 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1461 return Attribute::NullPointerIsValid; 1462 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1463 return Attribute::OptForFuzzing; 1464 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1465 return Attribute::OptimizeForSize; 1466 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1467 return Attribute::OptimizeNone; 1468 case bitc::ATTR_KIND_READ_NONE: 1469 return Attribute::ReadNone; 1470 case bitc::ATTR_KIND_READ_ONLY: 1471 return Attribute::ReadOnly; 1472 case bitc::ATTR_KIND_RETURNED: 1473 return Attribute::Returned; 1474 case bitc::ATTR_KIND_RETURNS_TWICE: 1475 return Attribute::ReturnsTwice; 1476 case bitc::ATTR_KIND_S_EXT: 1477 return Attribute::SExt; 1478 case bitc::ATTR_KIND_SPECULATABLE: 1479 return Attribute::Speculatable; 1480 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1481 return Attribute::StackAlignment; 1482 case bitc::ATTR_KIND_STACK_PROTECT: 1483 return Attribute::StackProtect; 1484 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1485 return Attribute::StackProtectReq; 1486 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1487 return Attribute::StackProtectStrong; 1488 case bitc::ATTR_KIND_SAFESTACK: 1489 return Attribute::SafeStack; 1490 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1491 return Attribute::ShadowCallStack; 1492 case bitc::ATTR_KIND_STRICT_FP: 1493 return Attribute::StrictFP; 1494 case bitc::ATTR_KIND_STRUCT_RET: 1495 return Attribute::StructRet; 1496 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1497 return Attribute::SanitizeAddress; 1498 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1499 return Attribute::SanitizeHWAddress; 1500 case bitc::ATTR_KIND_SANITIZE_THREAD: 1501 return Attribute::SanitizeThread; 1502 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1503 return Attribute::SanitizeMemory; 1504 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1505 return Attribute::SpeculativeLoadHardening; 1506 case bitc::ATTR_KIND_SWIFT_ERROR: 1507 return Attribute::SwiftError; 1508 case bitc::ATTR_KIND_SWIFT_SELF: 1509 return Attribute::SwiftSelf; 1510 case bitc::ATTR_KIND_SWIFT_ASYNC: 1511 return Attribute::SwiftAsync; 1512 case bitc::ATTR_KIND_UW_TABLE: 1513 return Attribute::UWTable; 1514 case bitc::ATTR_KIND_VSCALE_RANGE: 1515 return Attribute::VScaleRange; 1516 case bitc::ATTR_KIND_WILLRETURN: 1517 return Attribute::WillReturn; 1518 case bitc::ATTR_KIND_WRITEONLY: 1519 return Attribute::WriteOnly; 1520 case bitc::ATTR_KIND_Z_EXT: 1521 return Attribute::ZExt; 1522 case bitc::ATTR_KIND_IMMARG: 1523 return Attribute::ImmArg; 1524 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1525 return Attribute::SanitizeMemTag; 1526 case bitc::ATTR_KIND_PREALLOCATED: 1527 return Attribute::Preallocated; 1528 case bitc::ATTR_KIND_NOUNDEF: 1529 return Attribute::NoUndef; 1530 case bitc::ATTR_KIND_BYREF: 1531 return Attribute::ByRef; 1532 case bitc::ATTR_KIND_MUSTPROGRESS: 1533 return Attribute::MustProgress; 1534 case bitc::ATTR_KIND_HOT: 1535 return Attribute::Hot; 1536 } 1537 } 1538 1539 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1540 MaybeAlign &Alignment) { 1541 // Note: Alignment in bitcode files is incremented by 1, so that zero 1542 // can be used for default alignment. 1543 if (Exponent > Value::MaxAlignmentExponent + 1) 1544 return error("Invalid alignment value"); 1545 Alignment = decodeMaybeAlign(Exponent); 1546 return Error::success(); 1547 } 1548 1549 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1550 *Kind = getAttrFromCode(Code); 1551 if (*Kind == Attribute::None) 1552 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1553 return Error::success(); 1554 } 1555 1556 Error BitcodeReader::parseAttributeGroupBlock() { 1557 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1558 return Err; 1559 1560 if (!MAttributeGroups.empty()) 1561 return error("Invalid multiple blocks"); 1562 1563 SmallVector<uint64_t, 64> Record; 1564 1565 // Read all the records. 1566 while (true) { 1567 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1568 if (!MaybeEntry) 1569 return MaybeEntry.takeError(); 1570 BitstreamEntry Entry = MaybeEntry.get(); 1571 1572 switch (Entry.Kind) { 1573 case BitstreamEntry::SubBlock: // Handled for us already. 1574 case BitstreamEntry::Error: 1575 return error("Malformed block"); 1576 case BitstreamEntry::EndBlock: 1577 return Error::success(); 1578 case BitstreamEntry::Record: 1579 // The interesting case. 1580 break; 1581 } 1582 1583 // Read a record. 1584 Record.clear(); 1585 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1586 if (!MaybeRecord) 1587 return MaybeRecord.takeError(); 1588 switch (MaybeRecord.get()) { 1589 default: // Default behavior: ignore. 1590 break; 1591 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1592 if (Record.size() < 3) 1593 return error("Invalid record"); 1594 1595 uint64_t GrpID = Record[0]; 1596 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1597 1598 AttrBuilder B; 1599 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1600 if (Record[i] == 0) { // Enum attribute 1601 Attribute::AttrKind Kind; 1602 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1603 return Err; 1604 1605 // Upgrade old-style byval attribute to one with a type, even if it's 1606 // nullptr. We will have to insert the real type when we associate 1607 // this AttributeList with a function. 1608 if (Kind == Attribute::ByVal) 1609 B.addByValAttr(nullptr); 1610 else if (Kind == Attribute::StructRet) 1611 B.addStructRetAttr(nullptr); 1612 else if (Kind == Attribute::InAlloca) 1613 B.addInAllocaAttr(nullptr); 1614 else if (Attribute::isEnumAttrKind(Kind)) 1615 B.addAttribute(Kind); 1616 else 1617 return error("Not an enum attribute"); 1618 } else if (Record[i] == 1) { // Integer attribute 1619 Attribute::AttrKind Kind; 1620 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1621 return Err; 1622 if (!Attribute::isIntAttrKind(Kind)) 1623 return error("Not an int attribute"); 1624 if (Kind == Attribute::Alignment) 1625 B.addAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::StackAlignment) 1627 B.addStackAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::Dereferenceable) 1629 B.addDereferenceableAttr(Record[++i]); 1630 else if (Kind == Attribute::DereferenceableOrNull) 1631 B.addDereferenceableOrNullAttr(Record[++i]); 1632 else if (Kind == Attribute::AllocSize) 1633 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1634 else if (Kind == Attribute::VScaleRange) 1635 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1636 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1637 bool HasValue = (Record[i++] == 4); 1638 SmallString<64> KindStr; 1639 SmallString<64> ValStr; 1640 1641 while (Record[i] != 0 && i != e) 1642 KindStr += Record[i++]; 1643 assert(Record[i] == 0 && "Kind string not null terminated"); 1644 1645 if (HasValue) { 1646 // Has a value associated with it. 1647 ++i; // Skip the '0' that terminates the "kind" string. 1648 while (Record[i] != 0 && i != e) 1649 ValStr += Record[i++]; 1650 assert(Record[i] == 0 && "Value string not null terminated"); 1651 } 1652 1653 B.addAttribute(KindStr.str(), ValStr.str()); 1654 } else { 1655 assert((Record[i] == 5 || Record[i] == 6) && 1656 "Invalid attribute group entry"); 1657 bool HasType = Record[i] == 6; 1658 Attribute::AttrKind Kind; 1659 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1660 return Err; 1661 if (!Attribute::isTypeAttrKind(Kind)) 1662 return error("Not a type attribute"); 1663 1664 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1665 } 1666 } 1667 1668 UpgradeAttributes(B); 1669 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1670 break; 1671 } 1672 } 1673 } 1674 } 1675 1676 Error BitcodeReader::parseTypeTable() { 1677 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1678 return Err; 1679 1680 return parseTypeTableBody(); 1681 } 1682 1683 Error BitcodeReader::parseTypeTableBody() { 1684 if (!TypeList.empty()) 1685 return error("Invalid multiple blocks"); 1686 1687 SmallVector<uint64_t, 64> Record; 1688 unsigned NumRecords = 0; 1689 1690 SmallString<64> TypeName; 1691 1692 // Read all the records for this type table. 1693 while (true) { 1694 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1695 if (!MaybeEntry) 1696 return MaybeEntry.takeError(); 1697 BitstreamEntry Entry = MaybeEntry.get(); 1698 1699 switch (Entry.Kind) { 1700 case BitstreamEntry::SubBlock: // Handled for us already. 1701 case BitstreamEntry::Error: 1702 return error("Malformed block"); 1703 case BitstreamEntry::EndBlock: 1704 if (NumRecords != TypeList.size()) 1705 return error("Malformed block"); 1706 return Error::success(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Read a record. 1713 Record.clear(); 1714 Type *ResultTy = nullptr; 1715 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1716 if (!MaybeRecord) 1717 return MaybeRecord.takeError(); 1718 switch (MaybeRecord.get()) { 1719 default: 1720 return error("Invalid value"); 1721 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1722 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1723 // type list. This allows us to reserve space. 1724 if (Record.empty()) 1725 return error("Invalid record"); 1726 TypeList.resize(Record[0]); 1727 continue; 1728 case bitc::TYPE_CODE_VOID: // VOID 1729 ResultTy = Type::getVoidTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_HALF: // HALF 1732 ResultTy = Type::getHalfTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1735 ResultTy = Type::getBFloatTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_FLOAT: // FLOAT 1738 ResultTy = Type::getFloatTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1741 ResultTy = Type::getDoubleTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1744 ResultTy = Type::getX86_FP80Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_FP128: // FP128 1747 ResultTy = Type::getFP128Ty(Context); 1748 break; 1749 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1750 ResultTy = Type::getPPC_FP128Ty(Context); 1751 break; 1752 case bitc::TYPE_CODE_LABEL: // LABEL 1753 ResultTy = Type::getLabelTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_METADATA: // METADATA 1756 ResultTy = Type::getMetadataTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1759 ResultTy = Type::getX86_MMXTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1762 ResultTy = Type::getX86_AMXTy(Context); 1763 break; 1764 case bitc::TYPE_CODE_TOKEN: // TOKEN 1765 ResultTy = Type::getTokenTy(Context); 1766 break; 1767 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1768 if (Record.empty()) 1769 return error("Invalid record"); 1770 1771 uint64_t NumBits = Record[0]; 1772 if (NumBits < IntegerType::MIN_INT_BITS || 1773 NumBits > IntegerType::MAX_INT_BITS) 1774 return error("Bitwidth for integer type out of range"); 1775 ResultTy = IntegerType::get(Context, NumBits); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1779 // [pointee type, address space] 1780 if (Record.empty()) 1781 return error("Invalid record"); 1782 unsigned AddressSpace = 0; 1783 if (Record.size() == 2) 1784 AddressSpace = Record[1]; 1785 ResultTy = getTypeByID(Record[0]); 1786 if (!ResultTy || 1787 !PointerType::isValidElementType(ResultTy)) 1788 return error("Invalid type"); 1789 ResultTy = PointerType::get(ResultTy, AddressSpace); 1790 break; 1791 } 1792 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1793 if (Record.size() != 1) 1794 return error("Invalid record"); 1795 if (Context.supportsTypedPointers()) 1796 return error( 1797 "Opaque pointers are only supported in -opaque-pointers mode"); 1798 unsigned AddressSpace = Record[0]; 1799 ResultTy = PointerType::get(Context, AddressSpace); 1800 break; 1801 } 1802 case bitc::TYPE_CODE_FUNCTION_OLD: { 1803 // Deprecated, but still needed to read old bitcode files. 1804 // FUNCTION: [vararg, attrid, retty, paramty x N] 1805 if (Record.size() < 3) 1806 return error("Invalid record"); 1807 SmallVector<Type*, 8> ArgTys; 1808 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1809 if (Type *T = getTypeByID(Record[i])) 1810 ArgTys.push_back(T); 1811 else 1812 break; 1813 } 1814 1815 ResultTy = getTypeByID(Record[2]); 1816 if (!ResultTy || ArgTys.size() < Record.size()-3) 1817 return error("Invalid type"); 1818 1819 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1820 break; 1821 } 1822 case bitc::TYPE_CODE_FUNCTION: { 1823 // FUNCTION: [vararg, retty, paramty x N] 1824 if (Record.size() < 2) 1825 return error("Invalid record"); 1826 SmallVector<Type*, 8> ArgTys; 1827 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1828 if (Type *T = getTypeByID(Record[i])) { 1829 if (!FunctionType::isValidArgumentType(T)) 1830 return error("Invalid function argument type"); 1831 ArgTys.push_back(T); 1832 } 1833 else 1834 break; 1835 } 1836 1837 ResultTy = getTypeByID(Record[1]); 1838 if (!ResultTy || ArgTys.size() < Record.size()-2) 1839 return error("Invalid type"); 1840 1841 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1842 break; 1843 } 1844 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1845 if (Record.empty()) 1846 return error("Invalid record"); 1847 SmallVector<Type*, 8> EltTys; 1848 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1849 if (Type *T = getTypeByID(Record[i])) 1850 EltTys.push_back(T); 1851 else 1852 break; 1853 } 1854 if (EltTys.size() != Record.size()-1) 1855 return error("Invalid type"); 1856 ResultTy = StructType::get(Context, EltTys, Record[0]); 1857 break; 1858 } 1859 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1860 if (convertToString(Record, 0, TypeName)) 1861 return error("Invalid record"); 1862 continue; 1863 1864 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1865 if (Record.empty()) 1866 return error("Invalid record"); 1867 1868 if (NumRecords >= TypeList.size()) 1869 return error("Invalid TYPE table"); 1870 1871 // Check to see if this was forward referenced, if so fill in the temp. 1872 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1873 if (Res) { 1874 Res->setName(TypeName); 1875 TypeList[NumRecords] = nullptr; 1876 } else // Otherwise, create a new struct. 1877 Res = createIdentifiedStructType(Context, TypeName); 1878 TypeName.clear(); 1879 1880 SmallVector<Type*, 8> EltTys; 1881 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1882 if (Type *T = getTypeByID(Record[i])) 1883 EltTys.push_back(T); 1884 else 1885 break; 1886 } 1887 if (EltTys.size() != Record.size()-1) 1888 return error("Invalid record"); 1889 Res->setBody(EltTys, Record[0]); 1890 ResultTy = Res; 1891 break; 1892 } 1893 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1894 if (Record.size() != 1) 1895 return error("Invalid record"); 1896 1897 if (NumRecords >= TypeList.size()) 1898 return error("Invalid TYPE table"); 1899 1900 // Check to see if this was forward referenced, if so fill in the temp. 1901 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1902 if (Res) { 1903 Res->setName(TypeName); 1904 TypeList[NumRecords] = nullptr; 1905 } else // Otherwise, create a new struct with no body. 1906 Res = createIdentifiedStructType(Context, TypeName); 1907 TypeName.clear(); 1908 ResultTy = Res; 1909 break; 1910 } 1911 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1912 if (Record.size() < 2) 1913 return error("Invalid record"); 1914 ResultTy = getTypeByID(Record[1]); 1915 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1916 return error("Invalid type"); 1917 ResultTy = ArrayType::get(ResultTy, Record[0]); 1918 break; 1919 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1920 // [numelts, eltty, scalable] 1921 if (Record.size() < 2) 1922 return error("Invalid record"); 1923 if (Record[0] == 0) 1924 return error("Invalid vector length"); 1925 ResultTy = getTypeByID(Record[1]); 1926 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1927 return error("Invalid type"); 1928 bool Scalable = Record.size() > 2 ? Record[2] : false; 1929 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1930 break; 1931 } 1932 1933 if (NumRecords >= TypeList.size()) 1934 return error("Invalid TYPE table"); 1935 if (TypeList[NumRecords]) 1936 return error( 1937 "Invalid TYPE table: Only named structs can be forward referenced"); 1938 assert(ResultTy && "Didn't read a type?"); 1939 TypeList[NumRecords++] = ResultTy; 1940 } 1941 } 1942 1943 Error BitcodeReader::parseOperandBundleTags() { 1944 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1945 return Err; 1946 1947 if (!BundleTags.empty()) 1948 return error("Invalid multiple blocks"); 1949 1950 SmallVector<uint64_t, 64> Record; 1951 1952 while (true) { 1953 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1954 if (!MaybeEntry) 1955 return MaybeEntry.takeError(); 1956 BitstreamEntry Entry = MaybeEntry.get(); 1957 1958 switch (Entry.Kind) { 1959 case BitstreamEntry::SubBlock: // Handled for us already. 1960 case BitstreamEntry::Error: 1961 return error("Malformed block"); 1962 case BitstreamEntry::EndBlock: 1963 return Error::success(); 1964 case BitstreamEntry::Record: 1965 // The interesting case. 1966 break; 1967 } 1968 1969 // Tags are implicitly mapped to integers by their order. 1970 1971 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1972 if (!MaybeRecord) 1973 return MaybeRecord.takeError(); 1974 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1975 return error("Invalid record"); 1976 1977 // OPERAND_BUNDLE_TAG: [strchr x N] 1978 BundleTags.emplace_back(); 1979 if (convertToString(Record, 0, BundleTags.back())) 1980 return error("Invalid record"); 1981 Record.clear(); 1982 } 1983 } 1984 1985 Error BitcodeReader::parseSyncScopeNames() { 1986 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1987 return Err; 1988 1989 if (!SSIDs.empty()) 1990 return error("Invalid multiple synchronization scope names blocks"); 1991 1992 SmallVector<uint64_t, 64> Record; 1993 while (true) { 1994 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1995 if (!MaybeEntry) 1996 return MaybeEntry.takeError(); 1997 BitstreamEntry Entry = MaybeEntry.get(); 1998 1999 switch (Entry.Kind) { 2000 case BitstreamEntry::SubBlock: // Handled for us already. 2001 case BitstreamEntry::Error: 2002 return error("Malformed block"); 2003 case BitstreamEntry::EndBlock: 2004 if (SSIDs.empty()) 2005 return error("Invalid empty synchronization scope names block"); 2006 return Error::success(); 2007 case BitstreamEntry::Record: 2008 // The interesting case. 2009 break; 2010 } 2011 2012 // Synchronization scope names are implicitly mapped to synchronization 2013 // scope IDs by their order. 2014 2015 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2016 if (!MaybeRecord) 2017 return MaybeRecord.takeError(); 2018 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2019 return error("Invalid record"); 2020 2021 SmallString<16> SSN; 2022 if (convertToString(Record, 0, SSN)) 2023 return error("Invalid record"); 2024 2025 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2026 Record.clear(); 2027 } 2028 } 2029 2030 /// Associate a value with its name from the given index in the provided record. 2031 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2032 unsigned NameIndex, Triple &TT) { 2033 SmallString<128> ValueName; 2034 if (convertToString(Record, NameIndex, ValueName)) 2035 return error("Invalid record"); 2036 unsigned ValueID = Record[0]; 2037 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2038 return error("Invalid record"); 2039 Value *V = ValueList[ValueID]; 2040 2041 StringRef NameStr(ValueName.data(), ValueName.size()); 2042 if (NameStr.find_first_of(0) != StringRef::npos) 2043 return error("Invalid value name"); 2044 V->setName(NameStr); 2045 auto *GO = dyn_cast<GlobalObject>(V); 2046 if (GO) { 2047 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2048 if (TT.supportsCOMDAT()) 2049 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2050 else 2051 GO->setComdat(nullptr); 2052 } 2053 } 2054 return V; 2055 } 2056 2057 /// Helper to note and return the current location, and jump to the given 2058 /// offset. 2059 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2060 BitstreamCursor &Stream) { 2061 // Save the current parsing location so we can jump back at the end 2062 // of the VST read. 2063 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2064 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2065 return std::move(JumpFailed); 2066 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2067 if (!MaybeEntry) 2068 return MaybeEntry.takeError(); 2069 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2070 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2071 return CurrentBit; 2072 } 2073 2074 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2075 Function *F, 2076 ArrayRef<uint64_t> Record) { 2077 // Note that we subtract 1 here because the offset is relative to one word 2078 // before the start of the identification or module block, which was 2079 // historically always the start of the regular bitcode header. 2080 uint64_t FuncWordOffset = Record[1] - 1; 2081 uint64_t FuncBitOffset = FuncWordOffset * 32; 2082 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2083 // Set the LastFunctionBlockBit to point to the last function block. 2084 // Later when parsing is resumed after function materialization, 2085 // we can simply skip that last function block. 2086 if (FuncBitOffset > LastFunctionBlockBit) 2087 LastFunctionBlockBit = FuncBitOffset; 2088 } 2089 2090 /// Read a new-style GlobalValue symbol table. 2091 Error BitcodeReader::parseGlobalValueSymbolTable() { 2092 unsigned FuncBitcodeOffsetDelta = 2093 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2094 2095 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2096 return Err; 2097 2098 SmallVector<uint64_t, 64> Record; 2099 while (true) { 2100 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2101 if (!MaybeEntry) 2102 return MaybeEntry.takeError(); 2103 BitstreamEntry Entry = MaybeEntry.get(); 2104 2105 switch (Entry.Kind) { 2106 case BitstreamEntry::SubBlock: 2107 case BitstreamEntry::Error: 2108 return error("Malformed block"); 2109 case BitstreamEntry::EndBlock: 2110 return Error::success(); 2111 case BitstreamEntry::Record: 2112 break; 2113 } 2114 2115 Record.clear(); 2116 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2117 if (!MaybeRecord) 2118 return MaybeRecord.takeError(); 2119 switch (MaybeRecord.get()) { 2120 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2121 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2122 cast<Function>(ValueList[Record[0]]), Record); 2123 break; 2124 } 2125 } 2126 } 2127 2128 /// Parse the value symbol table at either the current parsing location or 2129 /// at the given bit offset if provided. 2130 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2131 uint64_t CurrentBit; 2132 // Pass in the Offset to distinguish between calling for the module-level 2133 // VST (where we want to jump to the VST offset) and the function-level 2134 // VST (where we don't). 2135 if (Offset > 0) { 2136 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2137 if (!MaybeCurrentBit) 2138 return MaybeCurrentBit.takeError(); 2139 CurrentBit = MaybeCurrentBit.get(); 2140 // If this module uses a string table, read this as a module-level VST. 2141 if (UseStrtab) { 2142 if (Error Err = parseGlobalValueSymbolTable()) 2143 return Err; 2144 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2145 return JumpFailed; 2146 return Error::success(); 2147 } 2148 // Otherwise, the VST will be in a similar format to a function-level VST, 2149 // and will contain symbol names. 2150 } 2151 2152 // Compute the delta between the bitcode indices in the VST (the word offset 2153 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2154 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2155 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2156 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2157 // just before entering the VST subblock because: 1) the EnterSubBlock 2158 // changes the AbbrevID width; 2) the VST block is nested within the same 2159 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2160 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2161 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2162 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2163 unsigned FuncBitcodeOffsetDelta = 2164 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2165 2166 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2167 return Err; 2168 2169 SmallVector<uint64_t, 64> Record; 2170 2171 Triple TT(TheModule->getTargetTriple()); 2172 2173 // Read all the records for this value table. 2174 SmallString<128> ValueName; 2175 2176 while (true) { 2177 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2178 if (!MaybeEntry) 2179 return MaybeEntry.takeError(); 2180 BitstreamEntry Entry = MaybeEntry.get(); 2181 2182 switch (Entry.Kind) { 2183 case BitstreamEntry::SubBlock: // Handled for us already. 2184 case BitstreamEntry::Error: 2185 return error("Malformed block"); 2186 case BitstreamEntry::EndBlock: 2187 if (Offset > 0) 2188 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2189 return JumpFailed; 2190 return Error::success(); 2191 case BitstreamEntry::Record: 2192 // The interesting case. 2193 break; 2194 } 2195 2196 // Read a record. 2197 Record.clear(); 2198 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2199 if (!MaybeRecord) 2200 return MaybeRecord.takeError(); 2201 switch (MaybeRecord.get()) { 2202 default: // Default behavior: unknown type. 2203 break; 2204 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2205 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2206 if (Error Err = ValOrErr.takeError()) 2207 return Err; 2208 ValOrErr.get(); 2209 break; 2210 } 2211 case bitc::VST_CODE_FNENTRY: { 2212 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2213 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2214 if (Error Err = ValOrErr.takeError()) 2215 return Err; 2216 Value *V = ValOrErr.get(); 2217 2218 // Ignore function offsets emitted for aliases of functions in older 2219 // versions of LLVM. 2220 if (auto *F = dyn_cast<Function>(V)) 2221 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2222 break; 2223 } 2224 case bitc::VST_CODE_BBENTRY: { 2225 if (convertToString(Record, 1, ValueName)) 2226 return error("Invalid record"); 2227 BasicBlock *BB = getBasicBlock(Record[0]); 2228 if (!BB) 2229 return error("Invalid record"); 2230 2231 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2232 ValueName.clear(); 2233 break; 2234 } 2235 } 2236 } 2237 } 2238 2239 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2240 /// encoding. 2241 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2242 if ((V & 1) == 0) 2243 return V >> 1; 2244 if (V != 1) 2245 return -(V >> 1); 2246 // There is no such thing as -0 with integers. "-0" really means MININT. 2247 return 1ULL << 63; 2248 } 2249 2250 /// Resolve all of the initializers for global values and aliases that we can. 2251 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2252 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2253 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2254 IndirectSymbolInitWorklist; 2255 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2256 2257 GlobalInitWorklist.swap(GlobalInits); 2258 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2259 FunctionOperandWorklist.swap(FunctionOperands); 2260 2261 while (!GlobalInitWorklist.empty()) { 2262 unsigned ValID = GlobalInitWorklist.back().second; 2263 if (ValID >= ValueList.size()) { 2264 // Not ready to resolve this yet, it requires something later in the file. 2265 GlobalInits.push_back(GlobalInitWorklist.back()); 2266 } else { 2267 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2268 GlobalInitWorklist.back().first->setInitializer(C); 2269 else 2270 return error("Expected a constant"); 2271 } 2272 GlobalInitWorklist.pop_back(); 2273 } 2274 2275 while (!IndirectSymbolInitWorklist.empty()) { 2276 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2277 if (ValID >= ValueList.size()) { 2278 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2279 } else { 2280 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2281 if (!C) 2282 return error("Expected a constant"); 2283 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2284 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2285 return error("Alias and aliasee types don't match"); 2286 GIS->setIndirectSymbol(C); 2287 } 2288 IndirectSymbolInitWorklist.pop_back(); 2289 } 2290 2291 while (!FunctionOperandWorklist.empty()) { 2292 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2293 if (Info.PersonalityFn) { 2294 unsigned ValID = Info.PersonalityFn - 1; 2295 if (ValID < ValueList.size()) { 2296 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2297 Info.F->setPersonalityFn(C); 2298 else 2299 return error("Expected a constant"); 2300 Info.PersonalityFn = 0; 2301 } 2302 } 2303 if (Info.Prefix) { 2304 unsigned ValID = Info.Prefix - 1; 2305 if (ValID < ValueList.size()) { 2306 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2307 Info.F->setPrefixData(C); 2308 else 2309 return error("Expected a constant"); 2310 Info.Prefix = 0; 2311 } 2312 } 2313 if (Info.Prologue) { 2314 unsigned ValID = Info.Prologue - 1; 2315 if (ValID < ValueList.size()) { 2316 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2317 Info.F->setPrologueData(C); 2318 else 2319 return error("Expected a constant"); 2320 Info.Prologue = 0; 2321 } 2322 } 2323 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2324 FunctionOperands.push_back(Info); 2325 FunctionOperandWorklist.pop_back(); 2326 } 2327 2328 return Error::success(); 2329 } 2330 2331 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2332 SmallVector<uint64_t, 8> Words(Vals.size()); 2333 transform(Vals, Words.begin(), 2334 BitcodeReader::decodeSignRotatedValue); 2335 2336 return APInt(TypeBits, Words); 2337 } 2338 2339 Error BitcodeReader::parseConstants() { 2340 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2341 return Err; 2342 2343 SmallVector<uint64_t, 64> Record; 2344 2345 // Read all the records for this value table. 2346 Type *CurTy = Type::getInt32Ty(Context); 2347 unsigned NextCstNo = ValueList.size(); 2348 2349 struct DelayedShufTy { 2350 VectorType *OpTy; 2351 VectorType *RTy; 2352 uint64_t Op0Idx; 2353 uint64_t Op1Idx; 2354 uint64_t Op2Idx; 2355 unsigned CstNo; 2356 }; 2357 std::vector<DelayedShufTy> DelayedShuffles; 2358 while (true) { 2359 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2360 if (!MaybeEntry) 2361 return MaybeEntry.takeError(); 2362 BitstreamEntry Entry = MaybeEntry.get(); 2363 2364 switch (Entry.Kind) { 2365 case BitstreamEntry::SubBlock: // Handled for us already. 2366 case BitstreamEntry::Error: 2367 return error("Malformed block"); 2368 case BitstreamEntry::EndBlock: 2369 // Once all the constants have been read, go through and resolve forward 2370 // references. 2371 // 2372 // We have to treat shuffles specially because they don't have three 2373 // operands anymore. We need to convert the shuffle mask into an array, 2374 // and we can't convert a forward reference. 2375 for (auto &DelayedShuffle : DelayedShuffles) { 2376 VectorType *OpTy = DelayedShuffle.OpTy; 2377 VectorType *RTy = DelayedShuffle.RTy; 2378 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2379 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2380 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2381 uint64_t CstNo = DelayedShuffle.CstNo; 2382 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2383 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2384 Type *ShufTy = 2385 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2386 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2387 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2388 return error("Invalid shufflevector operands"); 2389 SmallVector<int, 16> Mask; 2390 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2391 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2392 ValueList.assignValue(V, CstNo); 2393 } 2394 2395 if (NextCstNo != ValueList.size()) 2396 return error("Invalid constant reference"); 2397 2398 ValueList.resolveConstantForwardRefs(); 2399 return Error::success(); 2400 case BitstreamEntry::Record: 2401 // The interesting case. 2402 break; 2403 } 2404 2405 // Read a record. 2406 Record.clear(); 2407 Type *VoidType = Type::getVoidTy(Context); 2408 Value *V = nullptr; 2409 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2410 if (!MaybeBitCode) 2411 return MaybeBitCode.takeError(); 2412 switch (unsigned BitCode = MaybeBitCode.get()) { 2413 default: // Default behavior: unknown constant 2414 case bitc::CST_CODE_UNDEF: // UNDEF 2415 V = UndefValue::get(CurTy); 2416 break; 2417 case bitc::CST_CODE_POISON: // POISON 2418 V = PoisonValue::get(CurTy); 2419 break; 2420 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2421 if (Record.empty()) 2422 return error("Invalid record"); 2423 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2424 return error("Invalid record"); 2425 if (TypeList[Record[0]] == VoidType) 2426 return error("Invalid constant type"); 2427 CurTy = TypeList[Record[0]]; 2428 continue; // Skip the ValueList manipulation. 2429 case bitc::CST_CODE_NULL: // NULL 2430 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2431 return error("Invalid type for a constant null value"); 2432 V = Constant::getNullValue(CurTy); 2433 break; 2434 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2435 if (!CurTy->isIntegerTy() || Record.empty()) 2436 return error("Invalid record"); 2437 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2438 break; 2439 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2440 if (!CurTy->isIntegerTy() || Record.empty()) 2441 return error("Invalid record"); 2442 2443 APInt VInt = 2444 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2445 V = ConstantInt::get(Context, VInt); 2446 2447 break; 2448 } 2449 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2450 if (Record.empty()) 2451 return error("Invalid record"); 2452 if (CurTy->isHalfTy()) 2453 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2454 APInt(16, (uint16_t)Record[0]))); 2455 else if (CurTy->isBFloatTy()) 2456 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2457 APInt(16, (uint32_t)Record[0]))); 2458 else if (CurTy->isFloatTy()) 2459 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2460 APInt(32, (uint32_t)Record[0]))); 2461 else if (CurTy->isDoubleTy()) 2462 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2463 APInt(64, Record[0]))); 2464 else if (CurTy->isX86_FP80Ty()) { 2465 // Bits are not stored the same way as a normal i80 APInt, compensate. 2466 uint64_t Rearrange[2]; 2467 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2468 Rearrange[1] = Record[0] >> 48; 2469 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2470 APInt(80, Rearrange))); 2471 } else if (CurTy->isFP128Ty()) 2472 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2473 APInt(128, Record))); 2474 else if (CurTy->isPPC_FP128Ty()) 2475 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2476 APInt(128, Record))); 2477 else 2478 V = UndefValue::get(CurTy); 2479 break; 2480 } 2481 2482 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2483 if (Record.empty()) 2484 return error("Invalid record"); 2485 2486 unsigned Size = Record.size(); 2487 SmallVector<Constant*, 16> Elts; 2488 2489 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2490 for (unsigned i = 0; i != Size; ++i) 2491 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2492 STy->getElementType(i))); 2493 V = ConstantStruct::get(STy, Elts); 2494 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2495 Type *EltTy = ATy->getElementType(); 2496 for (unsigned i = 0; i != Size; ++i) 2497 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2498 V = ConstantArray::get(ATy, Elts); 2499 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2500 Type *EltTy = VTy->getElementType(); 2501 for (unsigned i = 0; i != Size; ++i) 2502 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2503 V = ConstantVector::get(Elts); 2504 } else { 2505 V = UndefValue::get(CurTy); 2506 } 2507 break; 2508 } 2509 case bitc::CST_CODE_STRING: // STRING: [values] 2510 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2511 if (Record.empty()) 2512 return error("Invalid record"); 2513 2514 SmallString<16> Elts(Record.begin(), Record.end()); 2515 V = ConstantDataArray::getString(Context, Elts, 2516 BitCode == bitc::CST_CODE_CSTRING); 2517 break; 2518 } 2519 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2520 if (Record.empty()) 2521 return error("Invalid record"); 2522 2523 Type *EltTy; 2524 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2525 EltTy = Array->getElementType(); 2526 else 2527 EltTy = cast<VectorType>(CurTy)->getElementType(); 2528 if (EltTy->isIntegerTy(8)) { 2529 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2530 if (isa<VectorType>(CurTy)) 2531 V = ConstantDataVector::get(Context, Elts); 2532 else 2533 V = ConstantDataArray::get(Context, Elts); 2534 } else if (EltTy->isIntegerTy(16)) { 2535 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2536 if (isa<VectorType>(CurTy)) 2537 V = ConstantDataVector::get(Context, Elts); 2538 else 2539 V = ConstantDataArray::get(Context, Elts); 2540 } else if (EltTy->isIntegerTy(32)) { 2541 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2542 if (isa<VectorType>(CurTy)) 2543 V = ConstantDataVector::get(Context, Elts); 2544 else 2545 V = ConstantDataArray::get(Context, Elts); 2546 } else if (EltTy->isIntegerTy(64)) { 2547 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2548 if (isa<VectorType>(CurTy)) 2549 V = ConstantDataVector::get(Context, Elts); 2550 else 2551 V = ConstantDataArray::get(Context, Elts); 2552 } else if (EltTy->isHalfTy()) { 2553 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2554 if (isa<VectorType>(CurTy)) 2555 V = ConstantDataVector::getFP(EltTy, Elts); 2556 else 2557 V = ConstantDataArray::getFP(EltTy, Elts); 2558 } else if (EltTy->isBFloatTy()) { 2559 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2560 if (isa<VectorType>(CurTy)) 2561 V = ConstantDataVector::getFP(EltTy, Elts); 2562 else 2563 V = ConstantDataArray::getFP(EltTy, Elts); 2564 } else if (EltTy->isFloatTy()) { 2565 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2566 if (isa<VectorType>(CurTy)) 2567 V = ConstantDataVector::getFP(EltTy, Elts); 2568 else 2569 V = ConstantDataArray::getFP(EltTy, Elts); 2570 } else if (EltTy->isDoubleTy()) { 2571 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2572 if (isa<VectorType>(CurTy)) 2573 V = ConstantDataVector::getFP(EltTy, Elts); 2574 else 2575 V = ConstantDataArray::getFP(EltTy, Elts); 2576 } else { 2577 return error("Invalid type for value"); 2578 } 2579 break; 2580 } 2581 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2582 if (Record.size() < 2) 2583 return error("Invalid record"); 2584 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2585 if (Opc < 0) { 2586 V = UndefValue::get(CurTy); // Unknown unop. 2587 } else { 2588 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2589 unsigned Flags = 0; 2590 V = ConstantExpr::get(Opc, LHS, Flags); 2591 } 2592 break; 2593 } 2594 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2595 if (Record.size() < 3) 2596 return error("Invalid record"); 2597 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2598 if (Opc < 0) { 2599 V = UndefValue::get(CurTy); // Unknown binop. 2600 } else { 2601 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2602 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2603 unsigned Flags = 0; 2604 if (Record.size() >= 4) { 2605 if (Opc == Instruction::Add || 2606 Opc == Instruction::Sub || 2607 Opc == Instruction::Mul || 2608 Opc == Instruction::Shl) { 2609 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2610 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2611 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2612 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2613 } else if (Opc == Instruction::SDiv || 2614 Opc == Instruction::UDiv || 2615 Opc == Instruction::LShr || 2616 Opc == Instruction::AShr) { 2617 if (Record[3] & (1 << bitc::PEO_EXACT)) 2618 Flags |= SDivOperator::IsExact; 2619 } 2620 } 2621 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2622 } 2623 break; 2624 } 2625 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2626 if (Record.size() < 3) 2627 return error("Invalid record"); 2628 int Opc = getDecodedCastOpcode(Record[0]); 2629 if (Opc < 0) { 2630 V = UndefValue::get(CurTy); // Unknown cast. 2631 } else { 2632 Type *OpTy = getTypeByID(Record[1]); 2633 if (!OpTy) 2634 return error("Invalid record"); 2635 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2636 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2637 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2638 } 2639 break; 2640 } 2641 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2642 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2643 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2644 // operands] 2645 unsigned OpNum = 0; 2646 Type *PointeeType = nullptr; 2647 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2648 Record.size() % 2) 2649 PointeeType = getTypeByID(Record[OpNum++]); 2650 2651 bool InBounds = false; 2652 Optional<unsigned> InRangeIndex; 2653 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2654 uint64_t Op = Record[OpNum++]; 2655 InBounds = Op & 1; 2656 InRangeIndex = Op >> 1; 2657 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2658 InBounds = true; 2659 2660 SmallVector<Constant*, 16> Elts; 2661 Type *Elt0FullTy = nullptr; 2662 while (OpNum != Record.size()) { 2663 if (!Elt0FullTy) 2664 Elt0FullTy = getTypeByID(Record[OpNum]); 2665 Type *ElTy = getTypeByID(Record[OpNum++]); 2666 if (!ElTy) 2667 return error("Invalid record"); 2668 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2669 } 2670 2671 if (Elts.size() < 1) 2672 return error("Invalid gep with no operands"); 2673 2674 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2675 if (!PointeeType) 2676 PointeeType = OrigPtrTy->getElementType(); 2677 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2678 return error("Explicit gep operator type does not match pointee type " 2679 "of pointer operand"); 2680 2681 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2682 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2683 InBounds, InRangeIndex); 2684 break; 2685 } 2686 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2687 if (Record.size() < 3) 2688 return error("Invalid record"); 2689 2690 Type *SelectorTy = Type::getInt1Ty(Context); 2691 2692 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2693 // Get the type from the ValueList before getting a forward ref. 2694 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2695 if (Value *V = ValueList[Record[0]]) 2696 if (SelectorTy != V->getType()) 2697 SelectorTy = VectorType::get(SelectorTy, 2698 VTy->getElementCount()); 2699 2700 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2701 SelectorTy), 2702 ValueList.getConstantFwdRef(Record[1],CurTy), 2703 ValueList.getConstantFwdRef(Record[2],CurTy)); 2704 break; 2705 } 2706 case bitc::CST_CODE_CE_EXTRACTELT 2707 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2708 if (Record.size() < 3) 2709 return error("Invalid record"); 2710 VectorType *OpTy = 2711 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2712 if (!OpTy) 2713 return error("Invalid record"); 2714 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2715 Constant *Op1 = nullptr; 2716 if (Record.size() == 4) { 2717 Type *IdxTy = getTypeByID(Record[2]); 2718 if (!IdxTy) 2719 return error("Invalid record"); 2720 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2721 } else { 2722 // Deprecated, but still needed to read old bitcode files. 2723 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2724 } 2725 if (!Op1) 2726 return error("Invalid record"); 2727 V = ConstantExpr::getExtractElement(Op0, Op1); 2728 break; 2729 } 2730 case bitc::CST_CODE_CE_INSERTELT 2731 : { // CE_INSERTELT: [opval, opval, opty, opval] 2732 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2733 if (Record.size() < 3 || !OpTy) 2734 return error("Invalid record"); 2735 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2736 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2737 OpTy->getElementType()); 2738 Constant *Op2 = nullptr; 2739 if (Record.size() == 4) { 2740 Type *IdxTy = getTypeByID(Record[2]); 2741 if (!IdxTy) 2742 return error("Invalid record"); 2743 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2744 } else { 2745 // Deprecated, but still needed to read old bitcode files. 2746 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2747 } 2748 if (!Op2) 2749 return error("Invalid record"); 2750 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2751 break; 2752 } 2753 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2754 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2755 if (Record.size() < 3 || !OpTy) 2756 return error("Invalid record"); 2757 DelayedShuffles.push_back( 2758 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2759 ++NextCstNo; 2760 continue; 2761 } 2762 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2763 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2764 VectorType *OpTy = 2765 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2766 if (Record.size() < 4 || !RTy || !OpTy) 2767 return error("Invalid record"); 2768 DelayedShuffles.push_back( 2769 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2770 ++NextCstNo; 2771 continue; 2772 } 2773 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2774 if (Record.size() < 4) 2775 return error("Invalid record"); 2776 Type *OpTy = getTypeByID(Record[0]); 2777 if (!OpTy) 2778 return error("Invalid record"); 2779 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2780 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2781 2782 if (OpTy->isFPOrFPVectorTy()) 2783 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2784 else 2785 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2786 break; 2787 } 2788 // This maintains backward compatibility, pre-asm dialect keywords. 2789 // Deprecated, but still needed to read old bitcode files. 2790 case bitc::CST_CODE_INLINEASM_OLD: { 2791 if (Record.size() < 2) 2792 return error("Invalid record"); 2793 std::string AsmStr, ConstrStr; 2794 bool HasSideEffects = Record[0] & 1; 2795 bool IsAlignStack = Record[0] >> 1; 2796 unsigned AsmStrSize = Record[1]; 2797 if (2+AsmStrSize >= Record.size()) 2798 return error("Invalid record"); 2799 unsigned ConstStrSize = Record[2+AsmStrSize]; 2800 if (3+AsmStrSize+ConstStrSize > Record.size()) 2801 return error("Invalid record"); 2802 2803 for (unsigned i = 0; i != AsmStrSize; ++i) 2804 AsmStr += (char)Record[2+i]; 2805 for (unsigned i = 0; i != ConstStrSize; ++i) 2806 ConstrStr += (char)Record[3+AsmStrSize+i]; 2807 UpgradeInlineAsmString(&AsmStr); 2808 V = InlineAsm::get( 2809 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2810 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2811 break; 2812 } 2813 // This version adds support for the asm dialect keywords (e.g., 2814 // inteldialect). 2815 case bitc::CST_CODE_INLINEASM_OLD2: { 2816 if (Record.size() < 2) 2817 return error("Invalid record"); 2818 std::string AsmStr, ConstrStr; 2819 bool HasSideEffects = Record[0] & 1; 2820 bool IsAlignStack = (Record[0] >> 1) & 1; 2821 unsigned AsmDialect = Record[0] >> 2; 2822 unsigned AsmStrSize = Record[1]; 2823 if (2+AsmStrSize >= Record.size()) 2824 return error("Invalid record"); 2825 unsigned ConstStrSize = Record[2+AsmStrSize]; 2826 if (3+AsmStrSize+ConstStrSize > Record.size()) 2827 return error("Invalid record"); 2828 2829 for (unsigned i = 0; i != AsmStrSize; ++i) 2830 AsmStr += (char)Record[2+i]; 2831 for (unsigned i = 0; i != ConstStrSize; ++i) 2832 ConstrStr += (char)Record[3+AsmStrSize+i]; 2833 UpgradeInlineAsmString(&AsmStr); 2834 V = InlineAsm::get( 2835 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2836 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2837 InlineAsm::AsmDialect(AsmDialect)); 2838 break; 2839 } 2840 // This version adds support for the unwind keyword. 2841 case bitc::CST_CODE_INLINEASM: { 2842 if (Record.size() < 2) 2843 return error("Invalid record"); 2844 std::string AsmStr, ConstrStr; 2845 bool HasSideEffects = Record[0] & 1; 2846 bool IsAlignStack = (Record[0] >> 1) & 1; 2847 unsigned AsmDialect = (Record[0] >> 2) & 1; 2848 bool CanThrow = (Record[0] >> 3) & 1; 2849 unsigned AsmStrSize = Record[1]; 2850 if (2 + AsmStrSize >= Record.size()) 2851 return error("Invalid record"); 2852 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2853 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2854 return error("Invalid record"); 2855 2856 for (unsigned i = 0; i != AsmStrSize; ++i) 2857 AsmStr += (char)Record[2 + i]; 2858 for (unsigned i = 0; i != ConstStrSize; ++i) 2859 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2860 UpgradeInlineAsmString(&AsmStr); 2861 V = InlineAsm::get( 2862 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2863 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2864 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2865 break; 2866 } 2867 case bitc::CST_CODE_BLOCKADDRESS:{ 2868 if (Record.size() < 3) 2869 return error("Invalid record"); 2870 Type *FnTy = getTypeByID(Record[0]); 2871 if (!FnTy) 2872 return error("Invalid record"); 2873 Function *Fn = 2874 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2875 if (!Fn) 2876 return error("Invalid record"); 2877 2878 // If the function is already parsed we can insert the block address right 2879 // away. 2880 BasicBlock *BB; 2881 unsigned BBID = Record[2]; 2882 if (!BBID) 2883 // Invalid reference to entry block. 2884 return error("Invalid ID"); 2885 if (!Fn->empty()) { 2886 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2887 for (size_t I = 0, E = BBID; I != E; ++I) { 2888 if (BBI == BBE) 2889 return error("Invalid ID"); 2890 ++BBI; 2891 } 2892 BB = &*BBI; 2893 } else { 2894 // Otherwise insert a placeholder and remember it so it can be inserted 2895 // when the function is parsed. 2896 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2897 if (FwdBBs.empty()) 2898 BasicBlockFwdRefQueue.push_back(Fn); 2899 if (FwdBBs.size() < BBID + 1) 2900 FwdBBs.resize(BBID + 1); 2901 if (!FwdBBs[BBID]) 2902 FwdBBs[BBID] = BasicBlock::Create(Context); 2903 BB = FwdBBs[BBID]; 2904 } 2905 V = BlockAddress::get(Fn, BB); 2906 break; 2907 } 2908 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2909 if (Record.size() < 2) 2910 return error("Invalid record"); 2911 Type *GVTy = getTypeByID(Record[0]); 2912 if (!GVTy) 2913 return error("Invalid record"); 2914 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2915 ValueList.getConstantFwdRef(Record[1], GVTy)); 2916 if (!GV) 2917 return error("Invalid record"); 2918 2919 V = DSOLocalEquivalent::get(GV); 2920 break; 2921 } 2922 } 2923 2924 ValueList.assignValue(V, NextCstNo); 2925 ++NextCstNo; 2926 } 2927 } 2928 2929 Error BitcodeReader::parseUseLists() { 2930 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2931 return Err; 2932 2933 // Read all the records. 2934 SmallVector<uint64_t, 64> Record; 2935 2936 while (true) { 2937 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2938 if (!MaybeEntry) 2939 return MaybeEntry.takeError(); 2940 BitstreamEntry Entry = MaybeEntry.get(); 2941 2942 switch (Entry.Kind) { 2943 case BitstreamEntry::SubBlock: // Handled for us already. 2944 case BitstreamEntry::Error: 2945 return error("Malformed block"); 2946 case BitstreamEntry::EndBlock: 2947 return Error::success(); 2948 case BitstreamEntry::Record: 2949 // The interesting case. 2950 break; 2951 } 2952 2953 // Read a use list record. 2954 Record.clear(); 2955 bool IsBB = false; 2956 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2957 if (!MaybeRecord) 2958 return MaybeRecord.takeError(); 2959 switch (MaybeRecord.get()) { 2960 default: // Default behavior: unknown type. 2961 break; 2962 case bitc::USELIST_CODE_BB: 2963 IsBB = true; 2964 LLVM_FALLTHROUGH; 2965 case bitc::USELIST_CODE_DEFAULT: { 2966 unsigned RecordLength = Record.size(); 2967 if (RecordLength < 3) 2968 // Records should have at least an ID and two indexes. 2969 return error("Invalid record"); 2970 unsigned ID = Record.pop_back_val(); 2971 2972 Value *V; 2973 if (IsBB) { 2974 assert(ID < FunctionBBs.size() && "Basic block not found"); 2975 V = FunctionBBs[ID]; 2976 } else 2977 V = ValueList[ID]; 2978 unsigned NumUses = 0; 2979 SmallDenseMap<const Use *, unsigned, 16> Order; 2980 for (const Use &U : V->materialized_uses()) { 2981 if (++NumUses > Record.size()) 2982 break; 2983 Order[&U] = Record[NumUses - 1]; 2984 } 2985 if (Order.size() != Record.size() || NumUses > Record.size()) 2986 // Mismatches can happen if the functions are being materialized lazily 2987 // (out-of-order), or a value has been upgraded. 2988 break; 2989 2990 V->sortUseList([&](const Use &L, const Use &R) { 2991 return Order.lookup(&L) < Order.lookup(&R); 2992 }); 2993 break; 2994 } 2995 } 2996 } 2997 } 2998 2999 /// When we see the block for metadata, remember where it is and then skip it. 3000 /// This lets us lazily deserialize the metadata. 3001 Error BitcodeReader::rememberAndSkipMetadata() { 3002 // Save the current stream state. 3003 uint64_t CurBit = Stream.GetCurrentBitNo(); 3004 DeferredMetadataInfo.push_back(CurBit); 3005 3006 // Skip over the block for now. 3007 if (Error Err = Stream.SkipBlock()) 3008 return Err; 3009 return Error::success(); 3010 } 3011 3012 Error BitcodeReader::materializeMetadata() { 3013 for (uint64_t BitPos : DeferredMetadataInfo) { 3014 // Move the bit stream to the saved position. 3015 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3016 return JumpFailed; 3017 if (Error Err = MDLoader->parseModuleMetadata()) 3018 return Err; 3019 } 3020 3021 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3022 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3023 // multiple times. 3024 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3025 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3026 NamedMDNode *LinkerOpts = 3027 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3028 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3029 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3030 } 3031 } 3032 3033 DeferredMetadataInfo.clear(); 3034 return Error::success(); 3035 } 3036 3037 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3038 3039 /// When we see the block for a function body, remember where it is and then 3040 /// skip it. This lets us lazily deserialize the functions. 3041 Error BitcodeReader::rememberAndSkipFunctionBody() { 3042 // Get the function we are talking about. 3043 if (FunctionsWithBodies.empty()) 3044 return error("Insufficient function protos"); 3045 3046 Function *Fn = FunctionsWithBodies.back(); 3047 FunctionsWithBodies.pop_back(); 3048 3049 // Save the current stream state. 3050 uint64_t CurBit = Stream.GetCurrentBitNo(); 3051 assert( 3052 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3053 "Mismatch between VST and scanned function offsets"); 3054 DeferredFunctionInfo[Fn] = CurBit; 3055 3056 // Skip over the function block for now. 3057 if (Error Err = Stream.SkipBlock()) 3058 return Err; 3059 return Error::success(); 3060 } 3061 3062 Error BitcodeReader::globalCleanup() { 3063 // Patch the initializers for globals and aliases up. 3064 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3065 return Err; 3066 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3067 return error("Malformed global initializer set"); 3068 3069 // Look for intrinsic functions which need to be upgraded at some point 3070 // and functions that need to have their function attributes upgraded. 3071 for (Function &F : *TheModule) { 3072 MDLoader->upgradeDebugIntrinsics(F); 3073 Function *NewFn; 3074 if (UpgradeIntrinsicFunction(&F, NewFn)) 3075 UpgradedIntrinsics[&F] = NewFn; 3076 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3077 // Some types could be renamed during loading if several modules are 3078 // loaded in the same LLVMContext (LTO scenario). In this case we should 3079 // remangle intrinsics names as well. 3080 RemangledIntrinsics[&F] = Remangled.getValue(); 3081 // Look for functions that rely on old function attribute behavior. 3082 UpgradeFunctionAttributes(F); 3083 } 3084 3085 // Look for global variables which need to be renamed. 3086 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3087 for (GlobalVariable &GV : TheModule->globals()) 3088 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3089 UpgradedVariables.emplace_back(&GV, Upgraded); 3090 for (auto &Pair : UpgradedVariables) { 3091 Pair.first->eraseFromParent(); 3092 TheModule->getGlobalList().push_back(Pair.second); 3093 } 3094 3095 // Force deallocation of memory for these vectors to favor the client that 3096 // want lazy deserialization. 3097 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3098 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3099 IndirectSymbolInits); 3100 return Error::success(); 3101 } 3102 3103 /// Support for lazy parsing of function bodies. This is required if we 3104 /// either have an old bitcode file without a VST forward declaration record, 3105 /// or if we have an anonymous function being materialized, since anonymous 3106 /// functions do not have a name and are therefore not in the VST. 3107 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3108 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3109 return JumpFailed; 3110 3111 if (Stream.AtEndOfStream()) 3112 return error("Could not find function in stream"); 3113 3114 if (!SeenFirstFunctionBody) 3115 return error("Trying to materialize functions before seeing function blocks"); 3116 3117 // An old bitcode file with the symbol table at the end would have 3118 // finished the parse greedily. 3119 assert(SeenValueSymbolTable); 3120 3121 SmallVector<uint64_t, 64> Record; 3122 3123 while (true) { 3124 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3125 if (!MaybeEntry) 3126 return MaybeEntry.takeError(); 3127 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3128 3129 switch (Entry.Kind) { 3130 default: 3131 return error("Expect SubBlock"); 3132 case BitstreamEntry::SubBlock: 3133 switch (Entry.ID) { 3134 default: 3135 return error("Expect function block"); 3136 case bitc::FUNCTION_BLOCK_ID: 3137 if (Error Err = rememberAndSkipFunctionBody()) 3138 return Err; 3139 NextUnreadBit = Stream.GetCurrentBitNo(); 3140 return Error::success(); 3141 } 3142 } 3143 } 3144 } 3145 3146 bool BitcodeReaderBase::readBlockInfo() { 3147 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3148 Stream.ReadBlockInfoBlock(); 3149 if (!MaybeNewBlockInfo) 3150 return true; // FIXME Handle the error. 3151 Optional<BitstreamBlockInfo> NewBlockInfo = 3152 std::move(MaybeNewBlockInfo.get()); 3153 if (!NewBlockInfo) 3154 return true; 3155 BlockInfo = std::move(*NewBlockInfo); 3156 return false; 3157 } 3158 3159 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3160 // v1: [selection_kind, name] 3161 // v2: [strtab_offset, strtab_size, selection_kind] 3162 StringRef Name; 3163 std::tie(Name, Record) = readNameFromStrtab(Record); 3164 3165 if (Record.empty()) 3166 return error("Invalid record"); 3167 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3168 std::string OldFormatName; 3169 if (!UseStrtab) { 3170 if (Record.size() < 2) 3171 return error("Invalid record"); 3172 unsigned ComdatNameSize = Record[1]; 3173 OldFormatName.reserve(ComdatNameSize); 3174 for (unsigned i = 0; i != ComdatNameSize; ++i) 3175 OldFormatName += (char)Record[2 + i]; 3176 Name = OldFormatName; 3177 } 3178 Comdat *C = TheModule->getOrInsertComdat(Name); 3179 C->setSelectionKind(SK); 3180 ComdatList.push_back(C); 3181 return Error::success(); 3182 } 3183 3184 static void inferDSOLocal(GlobalValue *GV) { 3185 // infer dso_local from linkage and visibility if it is not encoded. 3186 if (GV->hasLocalLinkage() || 3187 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3188 GV->setDSOLocal(true); 3189 } 3190 3191 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3192 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3193 // visibility, threadlocal, unnamed_addr, externally_initialized, 3194 // dllstorageclass, comdat, attributes, preemption specifier, 3195 // partition strtab offset, partition strtab size] (name in VST) 3196 // v2: [strtab_offset, strtab_size, v1] 3197 StringRef Name; 3198 std::tie(Name, Record) = readNameFromStrtab(Record); 3199 3200 if (Record.size() < 6) 3201 return error("Invalid record"); 3202 Type *Ty = getTypeByID(Record[0]); 3203 if (!Ty) 3204 return error("Invalid record"); 3205 bool isConstant = Record[1] & 1; 3206 bool explicitType = Record[1] & 2; 3207 unsigned AddressSpace; 3208 if (explicitType) { 3209 AddressSpace = Record[1] >> 2; 3210 } else { 3211 if (!Ty->isPointerTy()) 3212 return error("Invalid type for value"); 3213 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3214 Ty = cast<PointerType>(Ty)->getElementType(); 3215 } 3216 3217 uint64_t RawLinkage = Record[3]; 3218 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3219 MaybeAlign Alignment; 3220 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3221 return Err; 3222 std::string Section; 3223 if (Record[5]) { 3224 if (Record[5] - 1 >= SectionTable.size()) 3225 return error("Invalid ID"); 3226 Section = SectionTable[Record[5] - 1]; 3227 } 3228 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3229 // Local linkage must have default visibility. 3230 // auto-upgrade `hidden` and `protected` for old bitcode. 3231 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3232 Visibility = getDecodedVisibility(Record[6]); 3233 3234 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3235 if (Record.size() > 7) 3236 TLM = getDecodedThreadLocalMode(Record[7]); 3237 3238 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3239 if (Record.size() > 8) 3240 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3241 3242 bool ExternallyInitialized = false; 3243 if (Record.size() > 9) 3244 ExternallyInitialized = Record[9]; 3245 3246 GlobalVariable *NewGV = 3247 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3248 nullptr, TLM, AddressSpace, ExternallyInitialized); 3249 NewGV->setAlignment(Alignment); 3250 if (!Section.empty()) 3251 NewGV->setSection(Section); 3252 NewGV->setVisibility(Visibility); 3253 NewGV->setUnnamedAddr(UnnamedAddr); 3254 3255 if (Record.size() > 10) 3256 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3257 else 3258 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3259 3260 ValueList.push_back(NewGV); 3261 3262 // Remember which value to use for the global initializer. 3263 if (unsigned InitID = Record[2]) 3264 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3265 3266 if (Record.size() > 11) { 3267 if (unsigned ComdatID = Record[11]) { 3268 if (ComdatID > ComdatList.size()) 3269 return error("Invalid global variable comdat ID"); 3270 NewGV->setComdat(ComdatList[ComdatID - 1]); 3271 } 3272 } else if (hasImplicitComdat(RawLinkage)) { 3273 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3274 } 3275 3276 if (Record.size() > 12) { 3277 auto AS = getAttributes(Record[12]).getFnAttrs(); 3278 NewGV->setAttributes(AS); 3279 } 3280 3281 if (Record.size() > 13) { 3282 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3283 } 3284 inferDSOLocal(NewGV); 3285 3286 // Check whether we have enough values to read a partition name. 3287 if (Record.size() > 15) 3288 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3289 3290 return Error::success(); 3291 } 3292 3293 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3294 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3295 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3296 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3297 // v2: [strtab_offset, strtab_size, v1] 3298 StringRef Name; 3299 std::tie(Name, Record) = readNameFromStrtab(Record); 3300 3301 if (Record.size() < 8) 3302 return error("Invalid record"); 3303 Type *FTy = getTypeByID(Record[0]); 3304 if (!FTy) 3305 return error("Invalid record"); 3306 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3307 FTy = PTy->getElementType(); 3308 3309 if (!isa<FunctionType>(FTy)) 3310 return error("Invalid type for value"); 3311 auto CC = static_cast<CallingConv::ID>(Record[1]); 3312 if (CC & ~CallingConv::MaxID) 3313 return error("Invalid calling convention ID"); 3314 3315 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3316 if (Record.size() > 16) 3317 AddrSpace = Record[16]; 3318 3319 Function *Func = 3320 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3321 AddrSpace, Name, TheModule); 3322 3323 assert(Func->getFunctionType() == FTy && 3324 "Incorrect fully specified type provided for function"); 3325 FunctionTypes[Func] = cast<FunctionType>(FTy); 3326 3327 Func->setCallingConv(CC); 3328 bool isProto = Record[2]; 3329 uint64_t RawLinkage = Record[3]; 3330 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3331 Func->setAttributes(getAttributes(Record[4])); 3332 3333 // Upgrade any old-style byval or sret without a type by propagating the 3334 // argument's pointee type. There should be no opaque pointers where the byval 3335 // type is implicit. 3336 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3337 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3338 Attribute::InAlloca}) { 3339 if (!Func->hasParamAttribute(i, Kind)) 3340 continue; 3341 3342 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3343 continue; 3344 3345 Func->removeParamAttr(i, Kind); 3346 3347 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3348 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3349 Attribute NewAttr; 3350 switch (Kind) { 3351 case Attribute::ByVal: 3352 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3353 break; 3354 case Attribute::StructRet: 3355 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3356 break; 3357 case Attribute::InAlloca: 3358 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3359 break; 3360 default: 3361 llvm_unreachable("not an upgraded type attribute"); 3362 } 3363 3364 Func->addParamAttr(i, NewAttr); 3365 } 3366 } 3367 3368 MaybeAlign Alignment; 3369 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3370 return Err; 3371 Func->setAlignment(Alignment); 3372 if (Record[6]) { 3373 if (Record[6] - 1 >= SectionTable.size()) 3374 return error("Invalid ID"); 3375 Func->setSection(SectionTable[Record[6] - 1]); 3376 } 3377 // Local linkage must have default visibility. 3378 // auto-upgrade `hidden` and `protected` for old bitcode. 3379 if (!Func->hasLocalLinkage()) 3380 Func->setVisibility(getDecodedVisibility(Record[7])); 3381 if (Record.size() > 8 && Record[8]) { 3382 if (Record[8] - 1 >= GCTable.size()) 3383 return error("Invalid ID"); 3384 Func->setGC(GCTable[Record[8] - 1]); 3385 } 3386 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3387 if (Record.size() > 9) 3388 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3389 Func->setUnnamedAddr(UnnamedAddr); 3390 3391 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3392 if (Record.size() > 10) 3393 OperandInfo.Prologue = Record[10]; 3394 3395 if (Record.size() > 11) 3396 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3397 else 3398 upgradeDLLImportExportLinkage(Func, RawLinkage); 3399 3400 if (Record.size() > 12) { 3401 if (unsigned ComdatID = Record[12]) { 3402 if (ComdatID > ComdatList.size()) 3403 return error("Invalid function comdat ID"); 3404 Func->setComdat(ComdatList[ComdatID - 1]); 3405 } 3406 } else if (hasImplicitComdat(RawLinkage)) { 3407 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3408 } 3409 3410 if (Record.size() > 13) 3411 OperandInfo.Prefix = Record[13]; 3412 3413 if (Record.size() > 14) 3414 OperandInfo.PersonalityFn = Record[14]; 3415 3416 if (Record.size() > 15) { 3417 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3418 } 3419 inferDSOLocal(Func); 3420 3421 // Record[16] is the address space number. 3422 3423 // Check whether we have enough values to read a partition name. Also make 3424 // sure Strtab has enough values. 3425 if (Record.size() > 18 && Strtab.data() && 3426 Record[17] + Record[18] <= Strtab.size()) { 3427 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3428 } 3429 3430 ValueList.push_back(Func); 3431 3432 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3433 FunctionOperands.push_back(OperandInfo); 3434 3435 // If this is a function with a body, remember the prototype we are 3436 // creating now, so that we can match up the body with them later. 3437 if (!isProto) { 3438 Func->setIsMaterializable(true); 3439 FunctionsWithBodies.push_back(Func); 3440 DeferredFunctionInfo[Func] = 0; 3441 } 3442 return Error::success(); 3443 } 3444 3445 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3446 unsigned BitCode, ArrayRef<uint64_t> Record) { 3447 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3448 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3449 // dllstorageclass, threadlocal, unnamed_addr, 3450 // preemption specifier] (name in VST) 3451 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3452 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3453 // preemption specifier] (name in VST) 3454 // v2: [strtab_offset, strtab_size, v1] 3455 StringRef Name; 3456 std::tie(Name, Record) = readNameFromStrtab(Record); 3457 3458 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3459 if (Record.size() < (3 + (unsigned)NewRecord)) 3460 return error("Invalid record"); 3461 unsigned OpNum = 0; 3462 Type *Ty = getTypeByID(Record[OpNum++]); 3463 if (!Ty) 3464 return error("Invalid record"); 3465 3466 unsigned AddrSpace; 3467 if (!NewRecord) { 3468 auto *PTy = dyn_cast<PointerType>(Ty); 3469 if (!PTy) 3470 return error("Invalid type for value"); 3471 Ty = PTy->getElementType(); 3472 AddrSpace = PTy->getAddressSpace(); 3473 } else { 3474 AddrSpace = Record[OpNum++]; 3475 } 3476 3477 auto Val = Record[OpNum++]; 3478 auto Linkage = Record[OpNum++]; 3479 GlobalIndirectSymbol *NewGA; 3480 if (BitCode == bitc::MODULE_CODE_ALIAS || 3481 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3482 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3483 TheModule); 3484 else 3485 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3486 nullptr, TheModule); 3487 3488 // Local linkage must have default visibility. 3489 // auto-upgrade `hidden` and `protected` for old bitcode. 3490 if (OpNum != Record.size()) { 3491 auto VisInd = OpNum++; 3492 if (!NewGA->hasLocalLinkage()) 3493 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3494 } 3495 if (BitCode == bitc::MODULE_CODE_ALIAS || 3496 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3497 if (OpNum != Record.size()) 3498 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3499 else 3500 upgradeDLLImportExportLinkage(NewGA, Linkage); 3501 if (OpNum != Record.size()) 3502 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3503 if (OpNum != Record.size()) 3504 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3505 } 3506 if (OpNum != Record.size()) 3507 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3508 inferDSOLocal(NewGA); 3509 3510 // Check whether we have enough values to read a partition name. 3511 if (OpNum + 1 < Record.size()) { 3512 NewGA->setPartition( 3513 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3514 OpNum += 2; 3515 } 3516 3517 ValueList.push_back(NewGA); 3518 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3519 return Error::success(); 3520 } 3521 3522 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3523 bool ShouldLazyLoadMetadata, 3524 DataLayoutCallbackTy DataLayoutCallback) { 3525 if (ResumeBit) { 3526 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3527 return JumpFailed; 3528 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3529 return Err; 3530 3531 SmallVector<uint64_t, 64> Record; 3532 3533 // Parts of bitcode parsing depend on the datalayout. Make sure we 3534 // finalize the datalayout before we run any of that code. 3535 bool ResolvedDataLayout = false; 3536 auto ResolveDataLayout = [&] { 3537 if (ResolvedDataLayout) 3538 return; 3539 3540 // datalayout and triple can't be parsed after this point. 3541 ResolvedDataLayout = true; 3542 3543 // Upgrade data layout string. 3544 std::string DL = llvm::UpgradeDataLayoutString( 3545 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3546 TheModule->setDataLayout(DL); 3547 3548 if (auto LayoutOverride = 3549 DataLayoutCallback(TheModule->getTargetTriple())) 3550 TheModule->setDataLayout(*LayoutOverride); 3551 }; 3552 3553 // Read all the records for this module. 3554 while (true) { 3555 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3556 if (!MaybeEntry) 3557 return MaybeEntry.takeError(); 3558 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3559 3560 switch (Entry.Kind) { 3561 case BitstreamEntry::Error: 3562 return error("Malformed block"); 3563 case BitstreamEntry::EndBlock: 3564 ResolveDataLayout(); 3565 return globalCleanup(); 3566 3567 case BitstreamEntry::SubBlock: 3568 switch (Entry.ID) { 3569 default: // Skip unknown content. 3570 if (Error Err = Stream.SkipBlock()) 3571 return Err; 3572 break; 3573 case bitc::BLOCKINFO_BLOCK_ID: 3574 if (readBlockInfo()) 3575 return error("Malformed block"); 3576 break; 3577 case bitc::PARAMATTR_BLOCK_ID: 3578 if (Error Err = parseAttributeBlock()) 3579 return Err; 3580 break; 3581 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3582 if (Error Err = parseAttributeGroupBlock()) 3583 return Err; 3584 break; 3585 case bitc::TYPE_BLOCK_ID_NEW: 3586 if (Error Err = parseTypeTable()) 3587 return Err; 3588 break; 3589 case bitc::VALUE_SYMTAB_BLOCK_ID: 3590 if (!SeenValueSymbolTable) { 3591 // Either this is an old form VST without function index and an 3592 // associated VST forward declaration record (which would have caused 3593 // the VST to be jumped to and parsed before it was encountered 3594 // normally in the stream), or there were no function blocks to 3595 // trigger an earlier parsing of the VST. 3596 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3597 if (Error Err = parseValueSymbolTable()) 3598 return Err; 3599 SeenValueSymbolTable = true; 3600 } else { 3601 // We must have had a VST forward declaration record, which caused 3602 // the parser to jump to and parse the VST earlier. 3603 assert(VSTOffset > 0); 3604 if (Error Err = Stream.SkipBlock()) 3605 return Err; 3606 } 3607 break; 3608 case bitc::CONSTANTS_BLOCK_ID: 3609 if (Error Err = parseConstants()) 3610 return Err; 3611 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3612 return Err; 3613 break; 3614 case bitc::METADATA_BLOCK_ID: 3615 if (ShouldLazyLoadMetadata) { 3616 if (Error Err = rememberAndSkipMetadata()) 3617 return Err; 3618 break; 3619 } 3620 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3621 if (Error Err = MDLoader->parseModuleMetadata()) 3622 return Err; 3623 break; 3624 case bitc::METADATA_KIND_BLOCK_ID: 3625 if (Error Err = MDLoader->parseMetadataKinds()) 3626 return Err; 3627 break; 3628 case bitc::FUNCTION_BLOCK_ID: 3629 ResolveDataLayout(); 3630 3631 // If this is the first function body we've seen, reverse the 3632 // FunctionsWithBodies list. 3633 if (!SeenFirstFunctionBody) { 3634 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3635 if (Error Err = globalCleanup()) 3636 return Err; 3637 SeenFirstFunctionBody = true; 3638 } 3639 3640 if (VSTOffset > 0) { 3641 // If we have a VST forward declaration record, make sure we 3642 // parse the VST now if we haven't already. It is needed to 3643 // set up the DeferredFunctionInfo vector for lazy reading. 3644 if (!SeenValueSymbolTable) { 3645 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3646 return Err; 3647 SeenValueSymbolTable = true; 3648 // Fall through so that we record the NextUnreadBit below. 3649 // This is necessary in case we have an anonymous function that 3650 // is later materialized. Since it will not have a VST entry we 3651 // need to fall back to the lazy parse to find its offset. 3652 } else { 3653 // If we have a VST forward declaration record, but have already 3654 // parsed the VST (just above, when the first function body was 3655 // encountered here), then we are resuming the parse after 3656 // materializing functions. The ResumeBit points to the 3657 // start of the last function block recorded in the 3658 // DeferredFunctionInfo map. Skip it. 3659 if (Error Err = Stream.SkipBlock()) 3660 return Err; 3661 continue; 3662 } 3663 } 3664 3665 // Support older bitcode files that did not have the function 3666 // index in the VST, nor a VST forward declaration record, as 3667 // well as anonymous functions that do not have VST entries. 3668 // Build the DeferredFunctionInfo vector on the fly. 3669 if (Error Err = rememberAndSkipFunctionBody()) 3670 return Err; 3671 3672 // Suspend parsing when we reach the function bodies. Subsequent 3673 // materialization calls will resume it when necessary. If the bitcode 3674 // file is old, the symbol table will be at the end instead and will not 3675 // have been seen yet. In this case, just finish the parse now. 3676 if (SeenValueSymbolTable) { 3677 NextUnreadBit = Stream.GetCurrentBitNo(); 3678 // After the VST has been parsed, we need to make sure intrinsic name 3679 // are auto-upgraded. 3680 return globalCleanup(); 3681 } 3682 break; 3683 case bitc::USELIST_BLOCK_ID: 3684 if (Error Err = parseUseLists()) 3685 return Err; 3686 break; 3687 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3688 if (Error Err = parseOperandBundleTags()) 3689 return Err; 3690 break; 3691 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3692 if (Error Err = parseSyncScopeNames()) 3693 return Err; 3694 break; 3695 } 3696 continue; 3697 3698 case BitstreamEntry::Record: 3699 // The interesting case. 3700 break; 3701 } 3702 3703 // Read a record. 3704 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3705 if (!MaybeBitCode) 3706 return MaybeBitCode.takeError(); 3707 switch (unsigned BitCode = MaybeBitCode.get()) { 3708 default: break; // Default behavior, ignore unknown content. 3709 case bitc::MODULE_CODE_VERSION: { 3710 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3711 if (!VersionOrErr) 3712 return VersionOrErr.takeError(); 3713 UseRelativeIDs = *VersionOrErr >= 1; 3714 break; 3715 } 3716 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3717 if (ResolvedDataLayout) 3718 return error("target triple too late in module"); 3719 std::string S; 3720 if (convertToString(Record, 0, S)) 3721 return error("Invalid record"); 3722 TheModule->setTargetTriple(S); 3723 break; 3724 } 3725 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3726 if (ResolvedDataLayout) 3727 return error("datalayout too late in module"); 3728 std::string S; 3729 if (convertToString(Record, 0, S)) 3730 return error("Invalid record"); 3731 TheModule->setDataLayout(S); 3732 break; 3733 } 3734 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3735 std::string S; 3736 if (convertToString(Record, 0, S)) 3737 return error("Invalid record"); 3738 TheModule->setModuleInlineAsm(S); 3739 break; 3740 } 3741 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3742 // Deprecated, but still needed to read old bitcode files. 3743 std::string S; 3744 if (convertToString(Record, 0, S)) 3745 return error("Invalid record"); 3746 // Ignore value. 3747 break; 3748 } 3749 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3750 std::string S; 3751 if (convertToString(Record, 0, S)) 3752 return error("Invalid record"); 3753 SectionTable.push_back(S); 3754 break; 3755 } 3756 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3757 std::string S; 3758 if (convertToString(Record, 0, S)) 3759 return error("Invalid record"); 3760 GCTable.push_back(S); 3761 break; 3762 } 3763 case bitc::MODULE_CODE_COMDAT: 3764 if (Error Err = parseComdatRecord(Record)) 3765 return Err; 3766 break; 3767 case bitc::MODULE_CODE_GLOBALVAR: 3768 if (Error Err = parseGlobalVarRecord(Record)) 3769 return Err; 3770 break; 3771 case bitc::MODULE_CODE_FUNCTION: 3772 ResolveDataLayout(); 3773 if (Error Err = parseFunctionRecord(Record)) 3774 return Err; 3775 break; 3776 case bitc::MODULE_CODE_IFUNC: 3777 case bitc::MODULE_CODE_ALIAS: 3778 case bitc::MODULE_CODE_ALIAS_OLD: 3779 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3780 return Err; 3781 break; 3782 /// MODULE_CODE_VSTOFFSET: [offset] 3783 case bitc::MODULE_CODE_VSTOFFSET: 3784 if (Record.empty()) 3785 return error("Invalid record"); 3786 // Note that we subtract 1 here because the offset is relative to one word 3787 // before the start of the identification or module block, which was 3788 // historically always the start of the regular bitcode header. 3789 VSTOffset = Record[0] - 1; 3790 break; 3791 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3792 case bitc::MODULE_CODE_SOURCE_FILENAME: 3793 SmallString<128> ValueName; 3794 if (convertToString(Record, 0, ValueName)) 3795 return error("Invalid record"); 3796 TheModule->setSourceFileName(ValueName); 3797 break; 3798 } 3799 Record.clear(); 3800 } 3801 } 3802 3803 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3804 bool IsImporting, 3805 DataLayoutCallbackTy DataLayoutCallback) { 3806 TheModule = M; 3807 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3808 [&](unsigned ID) { return getTypeByID(ID); }); 3809 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3810 } 3811 3812 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3813 if (!isa<PointerType>(PtrType)) 3814 return error("Load/Store operand is not a pointer type"); 3815 3816 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3817 return error("Explicit load/store type does not match pointee " 3818 "type of pointer operand"); 3819 if (!PointerType::isLoadableOrStorableType(ValType)) 3820 return error("Cannot load/store from pointer"); 3821 return Error::success(); 3822 } 3823 3824 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3825 ArrayRef<Type *> ArgsTys) { 3826 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3827 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3828 Attribute::InAlloca}) { 3829 if (!CB->paramHasAttr(i, Kind)) 3830 continue; 3831 3832 CB->removeParamAttr(i, Kind); 3833 3834 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3835 Attribute NewAttr; 3836 switch (Kind) { 3837 case Attribute::ByVal: 3838 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3839 break; 3840 case Attribute::StructRet: 3841 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3842 break; 3843 case Attribute::InAlloca: 3844 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3845 break; 3846 default: 3847 llvm_unreachable("not an upgraded type attribute"); 3848 } 3849 3850 CB->addParamAttr(i, NewAttr); 3851 } 3852 } 3853 3854 switch (CB->getIntrinsicID()) { 3855 case Intrinsic::preserve_array_access_index: 3856 case Intrinsic::preserve_struct_access_index: 3857 if (!CB->getAttributes().getParamElementType(0)) { 3858 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3859 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3860 CB->addParamAttr(0, NewAttr); 3861 } 3862 break; 3863 default: 3864 break; 3865 } 3866 } 3867 3868 /// Lazily parse the specified function body block. 3869 Error BitcodeReader::parseFunctionBody(Function *F) { 3870 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3871 return Err; 3872 3873 // Unexpected unresolved metadata when parsing function. 3874 if (MDLoader->hasFwdRefs()) 3875 return error("Invalid function metadata: incoming forward references"); 3876 3877 InstructionList.clear(); 3878 unsigned ModuleValueListSize = ValueList.size(); 3879 unsigned ModuleMDLoaderSize = MDLoader->size(); 3880 3881 // Add all the function arguments to the value table. 3882 #ifndef NDEBUG 3883 unsigned ArgNo = 0; 3884 FunctionType *FTy = FunctionTypes[F]; 3885 #endif 3886 for (Argument &I : F->args()) { 3887 assert(I.getType() == FTy->getParamType(ArgNo++) && 3888 "Incorrect fully specified type for Function Argument"); 3889 ValueList.push_back(&I); 3890 } 3891 unsigned NextValueNo = ValueList.size(); 3892 BasicBlock *CurBB = nullptr; 3893 unsigned CurBBNo = 0; 3894 3895 DebugLoc LastLoc; 3896 auto getLastInstruction = [&]() -> Instruction * { 3897 if (CurBB && !CurBB->empty()) 3898 return &CurBB->back(); 3899 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3900 !FunctionBBs[CurBBNo - 1]->empty()) 3901 return &FunctionBBs[CurBBNo - 1]->back(); 3902 return nullptr; 3903 }; 3904 3905 std::vector<OperandBundleDef> OperandBundles; 3906 3907 // Read all the records. 3908 SmallVector<uint64_t, 64> Record; 3909 3910 while (true) { 3911 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3912 if (!MaybeEntry) 3913 return MaybeEntry.takeError(); 3914 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3915 3916 switch (Entry.Kind) { 3917 case BitstreamEntry::Error: 3918 return error("Malformed block"); 3919 case BitstreamEntry::EndBlock: 3920 goto OutOfRecordLoop; 3921 3922 case BitstreamEntry::SubBlock: 3923 switch (Entry.ID) { 3924 default: // Skip unknown content. 3925 if (Error Err = Stream.SkipBlock()) 3926 return Err; 3927 break; 3928 case bitc::CONSTANTS_BLOCK_ID: 3929 if (Error Err = parseConstants()) 3930 return Err; 3931 NextValueNo = ValueList.size(); 3932 break; 3933 case bitc::VALUE_SYMTAB_BLOCK_ID: 3934 if (Error Err = parseValueSymbolTable()) 3935 return Err; 3936 break; 3937 case bitc::METADATA_ATTACHMENT_ID: 3938 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3939 return Err; 3940 break; 3941 case bitc::METADATA_BLOCK_ID: 3942 assert(DeferredMetadataInfo.empty() && 3943 "Must read all module-level metadata before function-level"); 3944 if (Error Err = MDLoader->parseFunctionMetadata()) 3945 return Err; 3946 break; 3947 case bitc::USELIST_BLOCK_ID: 3948 if (Error Err = parseUseLists()) 3949 return Err; 3950 break; 3951 } 3952 continue; 3953 3954 case BitstreamEntry::Record: 3955 // The interesting case. 3956 break; 3957 } 3958 3959 // Read a record. 3960 Record.clear(); 3961 Instruction *I = nullptr; 3962 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3963 if (!MaybeBitCode) 3964 return MaybeBitCode.takeError(); 3965 switch (unsigned BitCode = MaybeBitCode.get()) { 3966 default: // Default behavior: reject 3967 return error("Invalid value"); 3968 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3969 if (Record.empty() || Record[0] == 0) 3970 return error("Invalid record"); 3971 // Create all the basic blocks for the function. 3972 FunctionBBs.resize(Record[0]); 3973 3974 // See if anything took the address of blocks in this function. 3975 auto BBFRI = BasicBlockFwdRefs.find(F); 3976 if (BBFRI == BasicBlockFwdRefs.end()) { 3977 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3978 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3979 } else { 3980 auto &BBRefs = BBFRI->second; 3981 // Check for invalid basic block references. 3982 if (BBRefs.size() > FunctionBBs.size()) 3983 return error("Invalid ID"); 3984 assert(!BBRefs.empty() && "Unexpected empty array"); 3985 assert(!BBRefs.front() && "Invalid reference to entry block"); 3986 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3987 ++I) 3988 if (I < RE && BBRefs[I]) { 3989 BBRefs[I]->insertInto(F); 3990 FunctionBBs[I] = BBRefs[I]; 3991 } else { 3992 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3993 } 3994 3995 // Erase from the table. 3996 BasicBlockFwdRefs.erase(BBFRI); 3997 } 3998 3999 CurBB = FunctionBBs[0]; 4000 continue; 4001 } 4002 4003 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4004 // This record indicates that the last instruction is at the same 4005 // location as the previous instruction with a location. 4006 I = getLastInstruction(); 4007 4008 if (!I) 4009 return error("Invalid record"); 4010 I->setDebugLoc(LastLoc); 4011 I = nullptr; 4012 continue; 4013 4014 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4015 I = getLastInstruction(); 4016 if (!I || Record.size() < 4) 4017 return error("Invalid record"); 4018 4019 unsigned Line = Record[0], Col = Record[1]; 4020 unsigned ScopeID = Record[2], IAID = Record[3]; 4021 bool isImplicitCode = Record.size() == 5 && Record[4]; 4022 4023 MDNode *Scope = nullptr, *IA = nullptr; 4024 if (ScopeID) { 4025 Scope = dyn_cast_or_null<MDNode>( 4026 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4027 if (!Scope) 4028 return error("Invalid record"); 4029 } 4030 if (IAID) { 4031 IA = dyn_cast_or_null<MDNode>( 4032 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4033 if (!IA) 4034 return error("Invalid record"); 4035 } 4036 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4037 isImplicitCode); 4038 I->setDebugLoc(LastLoc); 4039 I = nullptr; 4040 continue; 4041 } 4042 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4043 unsigned OpNum = 0; 4044 Value *LHS; 4045 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4046 OpNum+1 > Record.size()) 4047 return error("Invalid record"); 4048 4049 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4050 if (Opc == -1) 4051 return error("Invalid record"); 4052 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4053 InstructionList.push_back(I); 4054 if (OpNum < Record.size()) { 4055 if (isa<FPMathOperator>(I)) { 4056 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4057 if (FMF.any()) 4058 I->setFastMathFlags(FMF); 4059 } 4060 } 4061 break; 4062 } 4063 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4064 unsigned OpNum = 0; 4065 Value *LHS, *RHS; 4066 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4067 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4068 OpNum+1 > Record.size()) 4069 return error("Invalid record"); 4070 4071 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4072 if (Opc == -1) 4073 return error("Invalid record"); 4074 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4075 InstructionList.push_back(I); 4076 if (OpNum < Record.size()) { 4077 if (Opc == Instruction::Add || 4078 Opc == Instruction::Sub || 4079 Opc == Instruction::Mul || 4080 Opc == Instruction::Shl) { 4081 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4082 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4083 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4084 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4085 } else if (Opc == Instruction::SDiv || 4086 Opc == Instruction::UDiv || 4087 Opc == Instruction::LShr || 4088 Opc == Instruction::AShr) { 4089 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4090 cast<BinaryOperator>(I)->setIsExact(true); 4091 } else if (isa<FPMathOperator>(I)) { 4092 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4093 if (FMF.any()) 4094 I->setFastMathFlags(FMF); 4095 } 4096 4097 } 4098 break; 4099 } 4100 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4101 unsigned OpNum = 0; 4102 Value *Op; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4104 OpNum+2 != Record.size()) 4105 return error("Invalid record"); 4106 4107 Type *ResTy = getTypeByID(Record[OpNum]); 4108 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4109 if (Opc == -1 || !ResTy) 4110 return error("Invalid record"); 4111 Instruction *Temp = nullptr; 4112 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4113 if (Temp) { 4114 InstructionList.push_back(Temp); 4115 assert(CurBB && "No current BB?"); 4116 CurBB->getInstList().push_back(Temp); 4117 } 4118 } else { 4119 auto CastOp = (Instruction::CastOps)Opc; 4120 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4121 return error("Invalid cast"); 4122 I = CastInst::Create(CastOp, Op, ResTy); 4123 } 4124 InstructionList.push_back(I); 4125 break; 4126 } 4127 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4128 case bitc::FUNC_CODE_INST_GEP_OLD: 4129 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4130 unsigned OpNum = 0; 4131 4132 Type *Ty; 4133 bool InBounds; 4134 4135 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4136 InBounds = Record[OpNum++]; 4137 Ty = getTypeByID(Record[OpNum++]); 4138 } else { 4139 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4140 Ty = nullptr; 4141 } 4142 4143 Value *BasePtr; 4144 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4145 return error("Invalid record"); 4146 4147 if (!Ty) { 4148 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4149 ->getElementType(); 4150 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4151 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4152 return error( 4153 "Explicit gep type does not match pointee type of pointer operand"); 4154 } 4155 4156 SmallVector<Value*, 16> GEPIdx; 4157 while (OpNum != Record.size()) { 4158 Value *Op; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4160 return error("Invalid record"); 4161 GEPIdx.push_back(Op); 4162 } 4163 4164 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4165 4166 InstructionList.push_back(I); 4167 if (InBounds) 4168 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4169 break; 4170 } 4171 4172 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4173 // EXTRACTVAL: [opty, opval, n x indices] 4174 unsigned OpNum = 0; 4175 Value *Agg; 4176 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4177 return error("Invalid record"); 4178 Type *Ty = Agg->getType(); 4179 4180 unsigned RecSize = Record.size(); 4181 if (OpNum == RecSize) 4182 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4183 4184 SmallVector<unsigned, 4> EXTRACTVALIdx; 4185 for (; OpNum != RecSize; ++OpNum) { 4186 bool IsArray = Ty->isArrayTy(); 4187 bool IsStruct = Ty->isStructTy(); 4188 uint64_t Index = Record[OpNum]; 4189 4190 if (!IsStruct && !IsArray) 4191 return error("EXTRACTVAL: Invalid type"); 4192 if ((unsigned)Index != Index) 4193 return error("Invalid value"); 4194 if (IsStruct && Index >= Ty->getStructNumElements()) 4195 return error("EXTRACTVAL: Invalid struct index"); 4196 if (IsArray && Index >= Ty->getArrayNumElements()) 4197 return error("EXTRACTVAL: Invalid array index"); 4198 EXTRACTVALIdx.push_back((unsigned)Index); 4199 4200 if (IsStruct) 4201 Ty = Ty->getStructElementType(Index); 4202 else 4203 Ty = Ty->getArrayElementType(); 4204 } 4205 4206 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4207 InstructionList.push_back(I); 4208 break; 4209 } 4210 4211 case bitc::FUNC_CODE_INST_INSERTVAL: { 4212 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4213 unsigned OpNum = 0; 4214 Value *Agg; 4215 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4216 return error("Invalid record"); 4217 Value *Val; 4218 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4219 return error("Invalid record"); 4220 4221 unsigned RecSize = Record.size(); 4222 if (OpNum == RecSize) 4223 return error("INSERTVAL: Invalid instruction with 0 indices"); 4224 4225 SmallVector<unsigned, 4> INSERTVALIdx; 4226 Type *CurTy = Agg->getType(); 4227 for (; OpNum != RecSize; ++OpNum) { 4228 bool IsArray = CurTy->isArrayTy(); 4229 bool IsStruct = CurTy->isStructTy(); 4230 uint64_t Index = Record[OpNum]; 4231 4232 if (!IsStruct && !IsArray) 4233 return error("INSERTVAL: Invalid type"); 4234 if ((unsigned)Index != Index) 4235 return error("Invalid value"); 4236 if (IsStruct && Index >= CurTy->getStructNumElements()) 4237 return error("INSERTVAL: Invalid struct index"); 4238 if (IsArray && Index >= CurTy->getArrayNumElements()) 4239 return error("INSERTVAL: Invalid array index"); 4240 4241 INSERTVALIdx.push_back((unsigned)Index); 4242 if (IsStruct) 4243 CurTy = CurTy->getStructElementType(Index); 4244 else 4245 CurTy = CurTy->getArrayElementType(); 4246 } 4247 4248 if (CurTy != Val->getType()) 4249 return error("Inserted value type doesn't match aggregate type"); 4250 4251 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4252 InstructionList.push_back(I); 4253 break; 4254 } 4255 4256 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4257 // obsolete form of select 4258 // handles select i1 ... in old bitcode 4259 unsigned OpNum = 0; 4260 Value *TrueVal, *FalseVal, *Cond; 4261 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4262 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4263 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4264 return error("Invalid record"); 4265 4266 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4267 InstructionList.push_back(I); 4268 break; 4269 } 4270 4271 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4272 // new form of select 4273 // handles select i1 or select [N x i1] 4274 unsigned OpNum = 0; 4275 Value *TrueVal, *FalseVal, *Cond; 4276 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4277 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4278 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4279 return error("Invalid record"); 4280 4281 // select condition can be either i1 or [N x i1] 4282 if (VectorType* vector_type = 4283 dyn_cast<VectorType>(Cond->getType())) { 4284 // expect <n x i1> 4285 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4286 return error("Invalid type for value"); 4287 } else { 4288 // expect i1 4289 if (Cond->getType() != Type::getInt1Ty(Context)) 4290 return error("Invalid type for value"); 4291 } 4292 4293 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4294 InstructionList.push_back(I); 4295 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4296 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4297 if (FMF.any()) 4298 I->setFastMathFlags(FMF); 4299 } 4300 break; 4301 } 4302 4303 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4304 unsigned OpNum = 0; 4305 Value *Vec, *Idx; 4306 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4307 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4308 return error("Invalid record"); 4309 if (!Vec->getType()->isVectorTy()) 4310 return error("Invalid type for value"); 4311 I = ExtractElementInst::Create(Vec, Idx); 4312 InstructionList.push_back(I); 4313 break; 4314 } 4315 4316 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4317 unsigned OpNum = 0; 4318 Value *Vec, *Elt, *Idx; 4319 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4320 return error("Invalid record"); 4321 if (!Vec->getType()->isVectorTy()) 4322 return error("Invalid type for value"); 4323 if (popValue(Record, OpNum, NextValueNo, 4324 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4325 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4326 return error("Invalid record"); 4327 I = InsertElementInst::Create(Vec, Elt, Idx); 4328 InstructionList.push_back(I); 4329 break; 4330 } 4331 4332 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4333 unsigned OpNum = 0; 4334 Value *Vec1, *Vec2, *Mask; 4335 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4336 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4337 return error("Invalid record"); 4338 4339 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4340 return error("Invalid record"); 4341 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4342 return error("Invalid type for value"); 4343 4344 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4345 InstructionList.push_back(I); 4346 break; 4347 } 4348 4349 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4350 // Old form of ICmp/FCmp returning bool 4351 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4352 // both legal on vectors but had different behaviour. 4353 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4354 // FCmp/ICmp returning bool or vector of bool 4355 4356 unsigned OpNum = 0; 4357 Value *LHS, *RHS; 4358 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4359 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4360 return error("Invalid record"); 4361 4362 if (OpNum >= Record.size()) 4363 return error( 4364 "Invalid record: operand number exceeded available operands"); 4365 4366 unsigned PredVal = Record[OpNum]; 4367 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4368 FastMathFlags FMF; 4369 if (IsFP && Record.size() > OpNum+1) 4370 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4371 4372 if (OpNum+1 != Record.size()) 4373 return error("Invalid record"); 4374 4375 if (LHS->getType()->isFPOrFPVectorTy()) 4376 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4377 else 4378 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4379 4380 if (FMF.any()) 4381 I->setFastMathFlags(FMF); 4382 InstructionList.push_back(I); 4383 break; 4384 } 4385 4386 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4387 { 4388 unsigned Size = Record.size(); 4389 if (Size == 0) { 4390 I = ReturnInst::Create(Context); 4391 InstructionList.push_back(I); 4392 break; 4393 } 4394 4395 unsigned OpNum = 0; 4396 Value *Op = nullptr; 4397 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4398 return error("Invalid record"); 4399 if (OpNum != Record.size()) 4400 return error("Invalid record"); 4401 4402 I = ReturnInst::Create(Context, Op); 4403 InstructionList.push_back(I); 4404 break; 4405 } 4406 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4407 if (Record.size() != 1 && Record.size() != 3) 4408 return error("Invalid record"); 4409 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4410 if (!TrueDest) 4411 return error("Invalid record"); 4412 4413 if (Record.size() == 1) { 4414 I = BranchInst::Create(TrueDest); 4415 InstructionList.push_back(I); 4416 } 4417 else { 4418 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4419 Value *Cond = getValue(Record, 2, NextValueNo, 4420 Type::getInt1Ty(Context)); 4421 if (!FalseDest || !Cond) 4422 return error("Invalid record"); 4423 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4424 InstructionList.push_back(I); 4425 } 4426 break; 4427 } 4428 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4429 if (Record.size() != 1 && Record.size() != 2) 4430 return error("Invalid record"); 4431 unsigned Idx = 0; 4432 Value *CleanupPad = 4433 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4434 if (!CleanupPad) 4435 return error("Invalid record"); 4436 BasicBlock *UnwindDest = nullptr; 4437 if (Record.size() == 2) { 4438 UnwindDest = getBasicBlock(Record[Idx++]); 4439 if (!UnwindDest) 4440 return error("Invalid record"); 4441 } 4442 4443 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4444 InstructionList.push_back(I); 4445 break; 4446 } 4447 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4448 if (Record.size() != 2) 4449 return error("Invalid record"); 4450 unsigned Idx = 0; 4451 Value *CatchPad = 4452 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4453 if (!CatchPad) 4454 return error("Invalid record"); 4455 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4456 if (!BB) 4457 return error("Invalid record"); 4458 4459 I = CatchReturnInst::Create(CatchPad, BB); 4460 InstructionList.push_back(I); 4461 break; 4462 } 4463 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4464 // We must have, at minimum, the outer scope and the number of arguments. 4465 if (Record.size() < 2) 4466 return error("Invalid record"); 4467 4468 unsigned Idx = 0; 4469 4470 Value *ParentPad = 4471 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4472 4473 unsigned NumHandlers = Record[Idx++]; 4474 4475 SmallVector<BasicBlock *, 2> Handlers; 4476 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4477 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4478 if (!BB) 4479 return error("Invalid record"); 4480 Handlers.push_back(BB); 4481 } 4482 4483 BasicBlock *UnwindDest = nullptr; 4484 if (Idx + 1 == Record.size()) { 4485 UnwindDest = getBasicBlock(Record[Idx++]); 4486 if (!UnwindDest) 4487 return error("Invalid record"); 4488 } 4489 4490 if (Record.size() != Idx) 4491 return error("Invalid record"); 4492 4493 auto *CatchSwitch = 4494 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4495 for (BasicBlock *Handler : Handlers) 4496 CatchSwitch->addHandler(Handler); 4497 I = CatchSwitch; 4498 InstructionList.push_back(I); 4499 break; 4500 } 4501 case bitc::FUNC_CODE_INST_CATCHPAD: 4502 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4503 // We must have, at minimum, the outer scope and the number of arguments. 4504 if (Record.size() < 2) 4505 return error("Invalid record"); 4506 4507 unsigned Idx = 0; 4508 4509 Value *ParentPad = 4510 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4511 4512 unsigned NumArgOperands = Record[Idx++]; 4513 4514 SmallVector<Value *, 2> Args; 4515 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4516 Value *Val; 4517 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4518 return error("Invalid record"); 4519 Args.push_back(Val); 4520 } 4521 4522 if (Record.size() != Idx) 4523 return error("Invalid record"); 4524 4525 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4526 I = CleanupPadInst::Create(ParentPad, Args); 4527 else 4528 I = CatchPadInst::Create(ParentPad, Args); 4529 InstructionList.push_back(I); 4530 break; 4531 } 4532 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4533 // Check magic 4534 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4535 // "New" SwitchInst format with case ranges. The changes to write this 4536 // format were reverted but we still recognize bitcode that uses it. 4537 // Hopefully someday we will have support for case ranges and can use 4538 // this format again. 4539 4540 Type *OpTy = getTypeByID(Record[1]); 4541 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4542 4543 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4544 BasicBlock *Default = getBasicBlock(Record[3]); 4545 if (!OpTy || !Cond || !Default) 4546 return error("Invalid record"); 4547 4548 unsigned NumCases = Record[4]; 4549 4550 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4551 InstructionList.push_back(SI); 4552 4553 unsigned CurIdx = 5; 4554 for (unsigned i = 0; i != NumCases; ++i) { 4555 SmallVector<ConstantInt*, 1> CaseVals; 4556 unsigned NumItems = Record[CurIdx++]; 4557 for (unsigned ci = 0; ci != NumItems; ++ci) { 4558 bool isSingleNumber = Record[CurIdx++]; 4559 4560 APInt Low; 4561 unsigned ActiveWords = 1; 4562 if (ValueBitWidth > 64) 4563 ActiveWords = Record[CurIdx++]; 4564 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4565 ValueBitWidth); 4566 CurIdx += ActiveWords; 4567 4568 if (!isSingleNumber) { 4569 ActiveWords = 1; 4570 if (ValueBitWidth > 64) 4571 ActiveWords = Record[CurIdx++]; 4572 APInt High = readWideAPInt( 4573 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4574 CurIdx += ActiveWords; 4575 4576 // FIXME: It is not clear whether values in the range should be 4577 // compared as signed or unsigned values. The partially 4578 // implemented changes that used this format in the past used 4579 // unsigned comparisons. 4580 for ( ; Low.ule(High); ++Low) 4581 CaseVals.push_back(ConstantInt::get(Context, Low)); 4582 } else 4583 CaseVals.push_back(ConstantInt::get(Context, Low)); 4584 } 4585 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4586 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4587 cve = CaseVals.end(); cvi != cve; ++cvi) 4588 SI->addCase(*cvi, DestBB); 4589 } 4590 I = SI; 4591 break; 4592 } 4593 4594 // Old SwitchInst format without case ranges. 4595 4596 if (Record.size() < 3 || (Record.size() & 1) == 0) 4597 return error("Invalid record"); 4598 Type *OpTy = getTypeByID(Record[0]); 4599 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4600 BasicBlock *Default = getBasicBlock(Record[2]); 4601 if (!OpTy || !Cond || !Default) 4602 return error("Invalid record"); 4603 unsigned NumCases = (Record.size()-3)/2; 4604 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4605 InstructionList.push_back(SI); 4606 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4607 ConstantInt *CaseVal = 4608 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4609 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4610 if (!CaseVal || !DestBB) { 4611 delete SI; 4612 return error("Invalid record"); 4613 } 4614 SI->addCase(CaseVal, DestBB); 4615 } 4616 I = SI; 4617 break; 4618 } 4619 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4620 if (Record.size() < 2) 4621 return error("Invalid record"); 4622 Type *OpTy = getTypeByID(Record[0]); 4623 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4624 if (!OpTy || !Address) 4625 return error("Invalid record"); 4626 unsigned NumDests = Record.size()-2; 4627 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4628 InstructionList.push_back(IBI); 4629 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4630 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4631 IBI->addDestination(DestBB); 4632 } else { 4633 delete IBI; 4634 return error("Invalid record"); 4635 } 4636 } 4637 I = IBI; 4638 break; 4639 } 4640 4641 case bitc::FUNC_CODE_INST_INVOKE: { 4642 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4643 if (Record.size() < 4) 4644 return error("Invalid record"); 4645 unsigned OpNum = 0; 4646 AttributeList PAL = getAttributes(Record[OpNum++]); 4647 unsigned CCInfo = Record[OpNum++]; 4648 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4649 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4650 4651 FunctionType *FTy = nullptr; 4652 if ((CCInfo >> 13) & 1) { 4653 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4654 if (!FTy) 4655 return error("Explicit invoke type is not a function type"); 4656 } 4657 4658 Value *Callee; 4659 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4660 return error("Invalid record"); 4661 4662 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4663 if (!CalleeTy) 4664 return error("Callee is not a pointer"); 4665 if (!FTy) { 4666 FTy = dyn_cast<FunctionType>( 4667 cast<PointerType>(Callee->getType())->getElementType()); 4668 if (!FTy) 4669 return error("Callee is not of pointer to function type"); 4670 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4671 return error("Explicit invoke type does not match pointee type of " 4672 "callee operand"); 4673 if (Record.size() < FTy->getNumParams() + OpNum) 4674 return error("Insufficient operands to call"); 4675 4676 SmallVector<Value*, 16> Ops; 4677 SmallVector<Type *, 16> ArgsTys; 4678 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4679 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4680 FTy->getParamType(i))); 4681 ArgsTys.push_back(FTy->getParamType(i)); 4682 if (!Ops.back()) 4683 return error("Invalid record"); 4684 } 4685 4686 if (!FTy->isVarArg()) { 4687 if (Record.size() != OpNum) 4688 return error("Invalid record"); 4689 } else { 4690 // Read type/value pairs for varargs params. 4691 while (OpNum != Record.size()) { 4692 Value *Op; 4693 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4694 return error("Invalid record"); 4695 Ops.push_back(Op); 4696 ArgsTys.push_back(Op->getType()); 4697 } 4698 } 4699 4700 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4701 OperandBundles); 4702 OperandBundles.clear(); 4703 InstructionList.push_back(I); 4704 cast<InvokeInst>(I)->setCallingConv( 4705 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4706 cast<InvokeInst>(I)->setAttributes(PAL); 4707 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4708 4709 break; 4710 } 4711 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4712 unsigned Idx = 0; 4713 Value *Val = nullptr; 4714 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4715 return error("Invalid record"); 4716 I = ResumeInst::Create(Val); 4717 InstructionList.push_back(I); 4718 break; 4719 } 4720 case bitc::FUNC_CODE_INST_CALLBR: { 4721 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4722 unsigned OpNum = 0; 4723 AttributeList PAL = getAttributes(Record[OpNum++]); 4724 unsigned CCInfo = Record[OpNum++]; 4725 4726 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4727 unsigned NumIndirectDests = Record[OpNum++]; 4728 SmallVector<BasicBlock *, 16> IndirectDests; 4729 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4730 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4731 4732 FunctionType *FTy = nullptr; 4733 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4734 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4735 if (!FTy) 4736 return error("Explicit call type is not a function type"); 4737 } 4738 4739 Value *Callee; 4740 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4741 return error("Invalid record"); 4742 4743 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4744 if (!OpTy) 4745 return error("Callee is not a pointer type"); 4746 if (!FTy) { 4747 FTy = dyn_cast<FunctionType>( 4748 cast<PointerType>(Callee->getType())->getElementType()); 4749 if (!FTy) 4750 return error("Callee is not of pointer to function type"); 4751 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4752 return error("Explicit call type does not match pointee type of " 4753 "callee operand"); 4754 if (Record.size() < FTy->getNumParams() + OpNum) 4755 return error("Insufficient operands to call"); 4756 4757 SmallVector<Value*, 16> Args; 4758 // Read the fixed params. 4759 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4760 if (FTy->getParamType(i)->isLabelTy()) 4761 Args.push_back(getBasicBlock(Record[OpNum])); 4762 else 4763 Args.push_back(getValue(Record, OpNum, NextValueNo, 4764 FTy->getParamType(i))); 4765 if (!Args.back()) 4766 return error("Invalid record"); 4767 } 4768 4769 // Read type/value pairs for varargs params. 4770 if (!FTy->isVarArg()) { 4771 if (OpNum != Record.size()) 4772 return error("Invalid record"); 4773 } else { 4774 while (OpNum != Record.size()) { 4775 Value *Op; 4776 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4777 return error("Invalid record"); 4778 Args.push_back(Op); 4779 } 4780 } 4781 4782 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4783 OperandBundles); 4784 OperandBundles.clear(); 4785 InstructionList.push_back(I); 4786 cast<CallBrInst>(I)->setCallingConv( 4787 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4788 cast<CallBrInst>(I)->setAttributes(PAL); 4789 break; 4790 } 4791 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4792 I = new UnreachableInst(Context); 4793 InstructionList.push_back(I); 4794 break; 4795 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4796 if (Record.empty()) 4797 return error("Invalid record"); 4798 // The first record specifies the type. 4799 Type *Ty = getTypeByID(Record[0]); 4800 if (!Ty) 4801 return error("Invalid record"); 4802 4803 // Phi arguments are pairs of records of [value, basic block]. 4804 // There is an optional final record for fast-math-flags if this phi has a 4805 // floating-point type. 4806 size_t NumArgs = (Record.size() - 1) / 2; 4807 PHINode *PN = PHINode::Create(Ty, NumArgs); 4808 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4809 return error("Invalid record"); 4810 InstructionList.push_back(PN); 4811 4812 for (unsigned i = 0; i != NumArgs; i++) { 4813 Value *V; 4814 // With the new function encoding, it is possible that operands have 4815 // negative IDs (for forward references). Use a signed VBR 4816 // representation to keep the encoding small. 4817 if (UseRelativeIDs) 4818 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4819 else 4820 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4821 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4822 if (!V || !BB) 4823 return error("Invalid record"); 4824 PN->addIncoming(V, BB); 4825 } 4826 I = PN; 4827 4828 // If there are an even number of records, the final record must be FMF. 4829 if (Record.size() % 2 == 0) { 4830 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4831 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4832 if (FMF.any()) 4833 I->setFastMathFlags(FMF); 4834 } 4835 4836 break; 4837 } 4838 4839 case bitc::FUNC_CODE_INST_LANDINGPAD: 4840 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4841 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4842 unsigned Idx = 0; 4843 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4844 if (Record.size() < 3) 4845 return error("Invalid record"); 4846 } else { 4847 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4848 if (Record.size() < 4) 4849 return error("Invalid record"); 4850 } 4851 Type *Ty = getTypeByID(Record[Idx++]); 4852 if (!Ty) 4853 return error("Invalid record"); 4854 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4855 Value *PersFn = nullptr; 4856 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4857 return error("Invalid record"); 4858 4859 if (!F->hasPersonalityFn()) 4860 F->setPersonalityFn(cast<Constant>(PersFn)); 4861 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4862 return error("Personality function mismatch"); 4863 } 4864 4865 bool IsCleanup = !!Record[Idx++]; 4866 unsigned NumClauses = Record[Idx++]; 4867 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4868 LP->setCleanup(IsCleanup); 4869 for (unsigned J = 0; J != NumClauses; ++J) { 4870 LandingPadInst::ClauseType CT = 4871 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4872 Value *Val; 4873 4874 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4875 delete LP; 4876 return error("Invalid record"); 4877 } 4878 4879 assert((CT != LandingPadInst::Catch || 4880 !isa<ArrayType>(Val->getType())) && 4881 "Catch clause has a invalid type!"); 4882 assert((CT != LandingPadInst::Filter || 4883 isa<ArrayType>(Val->getType())) && 4884 "Filter clause has invalid type!"); 4885 LP->addClause(cast<Constant>(Val)); 4886 } 4887 4888 I = LP; 4889 InstructionList.push_back(I); 4890 break; 4891 } 4892 4893 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4894 if (Record.size() != 4) 4895 return error("Invalid record"); 4896 using APV = AllocaPackedValues; 4897 const uint64_t Rec = Record[3]; 4898 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4899 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4900 Type *Ty = getTypeByID(Record[0]); 4901 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4902 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4903 if (!PTy) 4904 return error("Old-style alloca with a non-pointer type"); 4905 Ty = PTy->getElementType(); 4906 } 4907 Type *OpTy = getTypeByID(Record[1]); 4908 Value *Size = getFnValueByID(Record[2], OpTy); 4909 MaybeAlign Align; 4910 if (Error Err = 4911 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4912 return Err; 4913 } 4914 if (!Ty || !Size) 4915 return error("Invalid record"); 4916 4917 // FIXME: Make this an optional field. 4918 const DataLayout &DL = TheModule->getDataLayout(); 4919 unsigned AS = DL.getAllocaAddrSpace(); 4920 4921 SmallPtrSet<Type *, 4> Visited; 4922 if (!Align && !Ty->isSized(&Visited)) 4923 return error("alloca of unsized type"); 4924 if (!Align) 4925 Align = DL.getPrefTypeAlign(Ty); 4926 4927 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4928 AI->setUsedWithInAlloca(InAlloca); 4929 AI->setSwiftError(SwiftError); 4930 I = AI; 4931 InstructionList.push_back(I); 4932 break; 4933 } 4934 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4935 unsigned OpNum = 0; 4936 Value *Op; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4938 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4939 return error("Invalid record"); 4940 4941 if (!isa<PointerType>(Op->getType())) 4942 return error("Load operand is not a pointer type"); 4943 4944 Type *Ty = nullptr; 4945 if (OpNum + 3 == Record.size()) { 4946 Ty = getTypeByID(Record[OpNum++]); 4947 } else { 4948 Ty = cast<PointerType>(Op->getType())->getElementType(); 4949 } 4950 4951 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4952 return Err; 4953 4954 MaybeAlign Align; 4955 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4956 return Err; 4957 SmallPtrSet<Type *, 4> Visited; 4958 if (!Align && !Ty->isSized(&Visited)) 4959 return error("load of unsized type"); 4960 if (!Align) 4961 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4962 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4963 InstructionList.push_back(I); 4964 break; 4965 } 4966 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4967 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4968 unsigned OpNum = 0; 4969 Value *Op; 4970 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4971 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4972 return error("Invalid record"); 4973 4974 if (!isa<PointerType>(Op->getType())) 4975 return error("Load operand is not a pointer type"); 4976 4977 Type *Ty = nullptr; 4978 if (OpNum + 5 == Record.size()) { 4979 Ty = getTypeByID(Record[OpNum++]); 4980 } else { 4981 Ty = cast<PointerType>(Op->getType())->getElementType(); 4982 } 4983 4984 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4985 return Err; 4986 4987 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4988 if (Ordering == AtomicOrdering::NotAtomic || 4989 Ordering == AtomicOrdering::Release || 4990 Ordering == AtomicOrdering::AcquireRelease) 4991 return error("Invalid record"); 4992 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4993 return error("Invalid record"); 4994 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4995 4996 MaybeAlign Align; 4997 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4998 return Err; 4999 if (!Align) 5000 return error("Alignment missing from atomic load"); 5001 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5002 InstructionList.push_back(I); 5003 break; 5004 } 5005 case bitc::FUNC_CODE_INST_STORE: 5006 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5007 unsigned OpNum = 0; 5008 Value *Val, *Ptr; 5009 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5010 (BitCode == bitc::FUNC_CODE_INST_STORE 5011 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5012 : popValue(Record, OpNum, NextValueNo, 5013 cast<PointerType>(Ptr->getType())->getElementType(), 5014 Val)) || 5015 OpNum + 2 != Record.size()) 5016 return error("Invalid record"); 5017 5018 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5019 return Err; 5020 MaybeAlign Align; 5021 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5022 return Err; 5023 SmallPtrSet<Type *, 4> Visited; 5024 if (!Align && !Val->getType()->isSized(&Visited)) 5025 return error("store of unsized type"); 5026 if (!Align) 5027 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5028 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5029 InstructionList.push_back(I); 5030 break; 5031 } 5032 case bitc::FUNC_CODE_INST_STOREATOMIC: 5033 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5034 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5035 unsigned OpNum = 0; 5036 Value *Val, *Ptr; 5037 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5038 !isa<PointerType>(Ptr->getType()) || 5039 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5040 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5041 : popValue(Record, OpNum, NextValueNo, 5042 cast<PointerType>(Ptr->getType())->getElementType(), 5043 Val)) || 5044 OpNum + 4 != Record.size()) 5045 return error("Invalid record"); 5046 5047 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5048 return Err; 5049 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5050 if (Ordering == AtomicOrdering::NotAtomic || 5051 Ordering == AtomicOrdering::Acquire || 5052 Ordering == AtomicOrdering::AcquireRelease) 5053 return error("Invalid record"); 5054 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5055 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5056 return error("Invalid record"); 5057 5058 MaybeAlign Align; 5059 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5060 return Err; 5061 if (!Align) 5062 return error("Alignment missing from atomic store"); 5063 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5064 InstructionList.push_back(I); 5065 break; 5066 } 5067 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5068 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5069 // failure_ordering?, weak?] 5070 const size_t NumRecords = Record.size(); 5071 unsigned OpNum = 0; 5072 Value *Ptr = nullptr; 5073 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5074 return error("Invalid record"); 5075 5076 if (!isa<PointerType>(Ptr->getType())) 5077 return error("Cmpxchg operand is not a pointer type"); 5078 5079 Value *Cmp = nullptr; 5080 if (popValue(Record, OpNum, NextValueNo, 5081 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5082 Cmp)) 5083 return error("Invalid record"); 5084 5085 Value *New = nullptr; 5086 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5087 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5088 return error("Invalid record"); 5089 5090 const AtomicOrdering SuccessOrdering = 5091 getDecodedOrdering(Record[OpNum + 1]); 5092 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5093 SuccessOrdering == AtomicOrdering::Unordered) 5094 return error("Invalid record"); 5095 5096 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5097 5098 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5099 return Err; 5100 5101 const AtomicOrdering FailureOrdering = 5102 NumRecords < 7 5103 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5104 : getDecodedOrdering(Record[OpNum + 3]); 5105 5106 if (FailureOrdering == AtomicOrdering::NotAtomic || 5107 FailureOrdering == AtomicOrdering::Unordered) 5108 return error("Invalid record"); 5109 5110 const Align Alignment( 5111 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5112 5113 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5114 FailureOrdering, SSID); 5115 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5116 5117 if (NumRecords < 8) { 5118 // Before weak cmpxchgs existed, the instruction simply returned the 5119 // value loaded from memory, so bitcode files from that era will be 5120 // expecting the first component of a modern cmpxchg. 5121 CurBB->getInstList().push_back(I); 5122 I = ExtractValueInst::Create(I, 0); 5123 } else { 5124 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5125 } 5126 5127 InstructionList.push_back(I); 5128 break; 5129 } 5130 case bitc::FUNC_CODE_INST_CMPXCHG: { 5131 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5132 // failure_ordering, weak, align?] 5133 const size_t NumRecords = Record.size(); 5134 unsigned OpNum = 0; 5135 Value *Ptr = nullptr; 5136 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5137 return error("Invalid record"); 5138 5139 if (!isa<PointerType>(Ptr->getType())) 5140 return error("Cmpxchg operand is not a pointer type"); 5141 5142 Value *Cmp = nullptr; 5143 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5144 return error("Invalid record"); 5145 5146 Value *Val = nullptr; 5147 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5148 return error("Invalid record"); 5149 5150 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5151 return error("Invalid record"); 5152 5153 const bool IsVol = Record[OpNum]; 5154 5155 const AtomicOrdering SuccessOrdering = 5156 getDecodedOrdering(Record[OpNum + 1]); 5157 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5158 return error("Invalid cmpxchg success ordering"); 5159 5160 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5161 5162 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5163 return Err; 5164 5165 const AtomicOrdering FailureOrdering = 5166 getDecodedOrdering(Record[OpNum + 3]); 5167 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5168 return error("Invalid cmpxchg failure ordering"); 5169 5170 const bool IsWeak = Record[OpNum + 4]; 5171 5172 MaybeAlign Alignment; 5173 5174 if (NumRecords == (OpNum + 6)) { 5175 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5176 return Err; 5177 } 5178 if (!Alignment) 5179 Alignment = 5180 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5181 5182 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5183 FailureOrdering, SSID); 5184 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5185 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5186 5187 InstructionList.push_back(I); 5188 break; 5189 } 5190 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5191 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5192 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5193 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5194 const size_t NumRecords = Record.size(); 5195 unsigned OpNum = 0; 5196 5197 Value *Ptr = nullptr; 5198 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5199 return error("Invalid record"); 5200 5201 if (!isa<PointerType>(Ptr->getType())) 5202 return error("Invalid record"); 5203 5204 Value *Val = nullptr; 5205 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5206 if (popValue(Record, OpNum, NextValueNo, 5207 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5208 Val)) 5209 return error("Invalid record"); 5210 } else { 5211 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5212 return error("Invalid record"); 5213 } 5214 5215 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5216 return error("Invalid record"); 5217 5218 const AtomicRMWInst::BinOp Operation = 5219 getDecodedRMWOperation(Record[OpNum]); 5220 if (Operation < AtomicRMWInst::FIRST_BINOP || 5221 Operation > AtomicRMWInst::LAST_BINOP) 5222 return error("Invalid record"); 5223 5224 const bool IsVol = Record[OpNum + 1]; 5225 5226 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5227 if (Ordering == AtomicOrdering::NotAtomic || 5228 Ordering == AtomicOrdering::Unordered) 5229 return error("Invalid record"); 5230 5231 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5232 5233 MaybeAlign Alignment; 5234 5235 if (NumRecords == (OpNum + 5)) { 5236 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5237 return Err; 5238 } 5239 5240 if (!Alignment) 5241 Alignment = 5242 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5243 5244 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5245 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5246 5247 InstructionList.push_back(I); 5248 break; 5249 } 5250 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5251 if (2 != Record.size()) 5252 return error("Invalid record"); 5253 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5254 if (Ordering == AtomicOrdering::NotAtomic || 5255 Ordering == AtomicOrdering::Unordered || 5256 Ordering == AtomicOrdering::Monotonic) 5257 return error("Invalid record"); 5258 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5259 I = new FenceInst(Context, Ordering, SSID); 5260 InstructionList.push_back(I); 5261 break; 5262 } 5263 case bitc::FUNC_CODE_INST_CALL: { 5264 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5265 if (Record.size() < 3) 5266 return error("Invalid record"); 5267 5268 unsigned OpNum = 0; 5269 AttributeList PAL = getAttributes(Record[OpNum++]); 5270 unsigned CCInfo = Record[OpNum++]; 5271 5272 FastMathFlags FMF; 5273 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5274 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5275 if (!FMF.any()) 5276 return error("Fast math flags indicator set for call with no FMF"); 5277 } 5278 5279 FunctionType *FTy = nullptr; 5280 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5281 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5282 if (!FTy) 5283 return error("Explicit call type is not a function type"); 5284 } 5285 5286 Value *Callee; 5287 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5288 return error("Invalid record"); 5289 5290 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5291 if (!OpTy) 5292 return error("Callee is not a pointer type"); 5293 if (!FTy) { 5294 FTy = dyn_cast<FunctionType>( 5295 cast<PointerType>(Callee->getType())->getElementType()); 5296 if (!FTy) 5297 return error("Callee is not of pointer to function type"); 5298 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5299 return error("Explicit call type does not match pointee type of " 5300 "callee operand"); 5301 if (Record.size() < FTy->getNumParams() + OpNum) 5302 return error("Insufficient operands to call"); 5303 5304 SmallVector<Value*, 16> Args; 5305 SmallVector<Type *, 16> ArgsTys; 5306 // Read the fixed params. 5307 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5308 if (FTy->getParamType(i)->isLabelTy()) 5309 Args.push_back(getBasicBlock(Record[OpNum])); 5310 else 5311 Args.push_back(getValue(Record, OpNum, NextValueNo, 5312 FTy->getParamType(i))); 5313 ArgsTys.push_back(FTy->getParamType(i)); 5314 if (!Args.back()) 5315 return error("Invalid record"); 5316 } 5317 5318 // Read type/value pairs for varargs params. 5319 if (!FTy->isVarArg()) { 5320 if (OpNum != Record.size()) 5321 return error("Invalid record"); 5322 } else { 5323 while (OpNum != Record.size()) { 5324 Value *Op; 5325 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5326 return error("Invalid record"); 5327 Args.push_back(Op); 5328 ArgsTys.push_back(Op->getType()); 5329 } 5330 } 5331 5332 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5333 OperandBundles.clear(); 5334 InstructionList.push_back(I); 5335 cast<CallInst>(I)->setCallingConv( 5336 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5337 CallInst::TailCallKind TCK = CallInst::TCK_None; 5338 if (CCInfo & 1 << bitc::CALL_TAIL) 5339 TCK = CallInst::TCK_Tail; 5340 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5341 TCK = CallInst::TCK_MustTail; 5342 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5343 TCK = CallInst::TCK_NoTail; 5344 cast<CallInst>(I)->setTailCallKind(TCK); 5345 cast<CallInst>(I)->setAttributes(PAL); 5346 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5347 if (FMF.any()) { 5348 if (!isa<FPMathOperator>(I)) 5349 return error("Fast-math-flags specified for call without " 5350 "floating-point scalar or vector return type"); 5351 I->setFastMathFlags(FMF); 5352 } 5353 break; 5354 } 5355 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5356 if (Record.size() < 3) 5357 return error("Invalid record"); 5358 Type *OpTy = getTypeByID(Record[0]); 5359 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5360 Type *ResTy = getTypeByID(Record[2]); 5361 if (!OpTy || !Op || !ResTy) 5362 return error("Invalid record"); 5363 I = new VAArgInst(Op, ResTy); 5364 InstructionList.push_back(I); 5365 break; 5366 } 5367 5368 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5369 // A call or an invoke can be optionally prefixed with some variable 5370 // number of operand bundle blocks. These blocks are read into 5371 // OperandBundles and consumed at the next call or invoke instruction. 5372 5373 if (Record.empty() || Record[0] >= BundleTags.size()) 5374 return error("Invalid record"); 5375 5376 std::vector<Value *> Inputs; 5377 5378 unsigned OpNum = 1; 5379 while (OpNum != Record.size()) { 5380 Value *Op; 5381 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5382 return error("Invalid record"); 5383 Inputs.push_back(Op); 5384 } 5385 5386 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5387 continue; 5388 } 5389 5390 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5391 unsigned OpNum = 0; 5392 Value *Op = nullptr; 5393 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5394 return error("Invalid record"); 5395 if (OpNum != Record.size()) 5396 return error("Invalid record"); 5397 5398 I = new FreezeInst(Op); 5399 InstructionList.push_back(I); 5400 break; 5401 } 5402 } 5403 5404 // Add instruction to end of current BB. If there is no current BB, reject 5405 // this file. 5406 if (!CurBB) { 5407 I->deleteValue(); 5408 return error("Invalid instruction with no BB"); 5409 } 5410 if (!OperandBundles.empty()) { 5411 I->deleteValue(); 5412 return error("Operand bundles found with no consumer"); 5413 } 5414 CurBB->getInstList().push_back(I); 5415 5416 // If this was a terminator instruction, move to the next block. 5417 if (I->isTerminator()) { 5418 ++CurBBNo; 5419 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5420 } 5421 5422 // Non-void values get registered in the value table for future use. 5423 if (!I->getType()->isVoidTy()) 5424 ValueList.assignValue(I, NextValueNo++); 5425 } 5426 5427 OutOfRecordLoop: 5428 5429 if (!OperandBundles.empty()) 5430 return error("Operand bundles found with no consumer"); 5431 5432 // Check the function list for unresolved values. 5433 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5434 if (!A->getParent()) { 5435 // We found at least one unresolved value. Nuke them all to avoid leaks. 5436 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5437 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5438 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5439 delete A; 5440 } 5441 } 5442 return error("Never resolved value found in function"); 5443 } 5444 } 5445 5446 // Unexpected unresolved metadata about to be dropped. 5447 if (MDLoader->hasFwdRefs()) 5448 return error("Invalid function metadata: outgoing forward refs"); 5449 5450 // Trim the value list down to the size it was before we parsed this function. 5451 ValueList.shrinkTo(ModuleValueListSize); 5452 MDLoader->shrinkTo(ModuleMDLoaderSize); 5453 std::vector<BasicBlock*>().swap(FunctionBBs); 5454 return Error::success(); 5455 } 5456 5457 /// Find the function body in the bitcode stream 5458 Error BitcodeReader::findFunctionInStream( 5459 Function *F, 5460 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5461 while (DeferredFunctionInfoIterator->second == 0) { 5462 // This is the fallback handling for the old format bitcode that 5463 // didn't contain the function index in the VST, or when we have 5464 // an anonymous function which would not have a VST entry. 5465 // Assert that we have one of those two cases. 5466 assert(VSTOffset == 0 || !F->hasName()); 5467 // Parse the next body in the stream and set its position in the 5468 // DeferredFunctionInfo map. 5469 if (Error Err = rememberAndSkipFunctionBodies()) 5470 return Err; 5471 } 5472 return Error::success(); 5473 } 5474 5475 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5476 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5477 return SyncScope::ID(Val); 5478 if (Val >= SSIDs.size()) 5479 return SyncScope::System; // Map unknown synchronization scopes to system. 5480 return SSIDs[Val]; 5481 } 5482 5483 //===----------------------------------------------------------------------===// 5484 // GVMaterializer implementation 5485 //===----------------------------------------------------------------------===// 5486 5487 Error BitcodeReader::materialize(GlobalValue *GV) { 5488 Function *F = dyn_cast<Function>(GV); 5489 // If it's not a function or is already material, ignore the request. 5490 if (!F || !F->isMaterializable()) 5491 return Error::success(); 5492 5493 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5494 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5495 // If its position is recorded as 0, its body is somewhere in the stream 5496 // but we haven't seen it yet. 5497 if (DFII->second == 0) 5498 if (Error Err = findFunctionInStream(F, DFII)) 5499 return Err; 5500 5501 // Materialize metadata before parsing any function bodies. 5502 if (Error Err = materializeMetadata()) 5503 return Err; 5504 5505 // Move the bit stream to the saved position of the deferred function body. 5506 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5507 return JumpFailed; 5508 if (Error Err = parseFunctionBody(F)) 5509 return Err; 5510 F->setIsMaterializable(false); 5511 5512 if (StripDebugInfo) 5513 stripDebugInfo(*F); 5514 5515 // Upgrade any old intrinsic calls in the function. 5516 for (auto &I : UpgradedIntrinsics) { 5517 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5518 UI != UE;) { 5519 User *U = *UI; 5520 ++UI; 5521 if (CallInst *CI = dyn_cast<CallInst>(U)) 5522 UpgradeIntrinsicCall(CI, I.second); 5523 } 5524 } 5525 5526 // Update calls to the remangled intrinsics 5527 for (auto &I : RemangledIntrinsics) 5528 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5529 UI != UE;) 5530 // Don't expect any other users than call sites 5531 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5532 5533 // Finish fn->subprogram upgrade for materialized functions. 5534 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5535 F->setSubprogram(SP); 5536 5537 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5538 if (!MDLoader->isStrippingTBAA()) { 5539 for (auto &I : instructions(F)) { 5540 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5541 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5542 continue; 5543 MDLoader->setStripTBAA(true); 5544 stripTBAA(F->getParent()); 5545 } 5546 } 5547 5548 for (auto &I : instructions(F)) { 5549 // "Upgrade" older incorrect branch weights by dropping them. 5550 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5551 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5552 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5553 StringRef ProfName = MDS->getString(); 5554 // Check consistency of !prof branch_weights metadata. 5555 if (!ProfName.equals("branch_weights")) 5556 continue; 5557 unsigned ExpectedNumOperands = 0; 5558 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5559 ExpectedNumOperands = BI->getNumSuccessors(); 5560 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5561 ExpectedNumOperands = SI->getNumSuccessors(); 5562 else if (isa<CallInst>(&I)) 5563 ExpectedNumOperands = 1; 5564 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5565 ExpectedNumOperands = IBI->getNumDestinations(); 5566 else if (isa<SelectInst>(&I)) 5567 ExpectedNumOperands = 2; 5568 else 5569 continue; // ignore and continue. 5570 5571 // If branch weight doesn't match, just strip branch weight. 5572 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5573 I.setMetadata(LLVMContext::MD_prof, nullptr); 5574 } 5575 } 5576 5577 // Remove incompatible attributes on function calls. 5578 if (auto *CI = dyn_cast<CallBase>(&I)) { 5579 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5580 CI->getFunctionType()->getReturnType())); 5581 5582 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5583 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5584 CI->getArgOperand(ArgNo)->getType())); 5585 } 5586 } 5587 5588 // Look for functions that rely on old function attribute behavior. 5589 UpgradeFunctionAttributes(*F); 5590 5591 // Bring in any functions that this function forward-referenced via 5592 // blockaddresses. 5593 return materializeForwardReferencedFunctions(); 5594 } 5595 5596 Error BitcodeReader::materializeModule() { 5597 if (Error Err = materializeMetadata()) 5598 return Err; 5599 5600 // Promise to materialize all forward references. 5601 WillMaterializeAllForwardRefs = true; 5602 5603 // Iterate over the module, deserializing any functions that are still on 5604 // disk. 5605 for (Function &F : *TheModule) { 5606 if (Error Err = materialize(&F)) 5607 return Err; 5608 } 5609 // At this point, if there are any function bodies, parse the rest of 5610 // the bits in the module past the last function block we have recorded 5611 // through either lazy scanning or the VST. 5612 if (LastFunctionBlockBit || NextUnreadBit) 5613 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5614 ? LastFunctionBlockBit 5615 : NextUnreadBit)) 5616 return Err; 5617 5618 // Check that all block address forward references got resolved (as we 5619 // promised above). 5620 if (!BasicBlockFwdRefs.empty()) 5621 return error("Never resolved function from blockaddress"); 5622 5623 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5624 // delete the old functions to clean up. We can't do this unless the entire 5625 // module is materialized because there could always be another function body 5626 // with calls to the old function. 5627 for (auto &I : UpgradedIntrinsics) { 5628 for (auto *U : I.first->users()) { 5629 if (CallInst *CI = dyn_cast<CallInst>(U)) 5630 UpgradeIntrinsicCall(CI, I.second); 5631 } 5632 if (!I.first->use_empty()) 5633 I.first->replaceAllUsesWith(I.second); 5634 I.first->eraseFromParent(); 5635 } 5636 UpgradedIntrinsics.clear(); 5637 // Do the same for remangled intrinsics 5638 for (auto &I : RemangledIntrinsics) { 5639 I.first->replaceAllUsesWith(I.second); 5640 I.first->eraseFromParent(); 5641 } 5642 RemangledIntrinsics.clear(); 5643 5644 UpgradeDebugInfo(*TheModule); 5645 5646 UpgradeModuleFlags(*TheModule); 5647 5648 UpgradeARCRuntime(*TheModule); 5649 5650 return Error::success(); 5651 } 5652 5653 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5654 return IdentifiedStructTypes; 5655 } 5656 5657 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5658 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5659 StringRef ModulePath, unsigned ModuleId) 5660 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5661 ModulePath(ModulePath), ModuleId(ModuleId) {} 5662 5663 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5664 TheIndex.addModule(ModulePath, ModuleId); 5665 } 5666 5667 ModuleSummaryIndex::ModuleInfo * 5668 ModuleSummaryIndexBitcodeReader::getThisModule() { 5669 return TheIndex.getModule(ModulePath); 5670 } 5671 5672 std::pair<ValueInfo, GlobalValue::GUID> 5673 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5674 auto VGI = ValueIdToValueInfoMap[ValueId]; 5675 assert(VGI.first); 5676 return VGI; 5677 } 5678 5679 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5680 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5681 StringRef SourceFileName) { 5682 std::string GlobalId = 5683 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5684 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5685 auto OriginalNameID = ValueGUID; 5686 if (GlobalValue::isLocalLinkage(Linkage)) 5687 OriginalNameID = GlobalValue::getGUID(ValueName); 5688 if (PrintSummaryGUIDs) 5689 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5690 << ValueName << "\n"; 5691 5692 // UseStrtab is false for legacy summary formats and value names are 5693 // created on stack. In that case we save the name in a string saver in 5694 // the index so that the value name can be recorded. 5695 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5696 TheIndex.getOrInsertValueInfo( 5697 ValueGUID, 5698 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5699 OriginalNameID); 5700 } 5701 5702 // Specialized value symbol table parser used when reading module index 5703 // blocks where we don't actually create global values. The parsed information 5704 // is saved in the bitcode reader for use when later parsing summaries. 5705 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5706 uint64_t Offset, 5707 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5708 // With a strtab the VST is not required to parse the summary. 5709 if (UseStrtab) 5710 return Error::success(); 5711 5712 assert(Offset > 0 && "Expected non-zero VST offset"); 5713 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5714 if (!MaybeCurrentBit) 5715 return MaybeCurrentBit.takeError(); 5716 uint64_t CurrentBit = MaybeCurrentBit.get(); 5717 5718 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5719 return Err; 5720 5721 SmallVector<uint64_t, 64> Record; 5722 5723 // Read all the records for this value table. 5724 SmallString<128> ValueName; 5725 5726 while (true) { 5727 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5728 if (!MaybeEntry) 5729 return MaybeEntry.takeError(); 5730 BitstreamEntry Entry = MaybeEntry.get(); 5731 5732 switch (Entry.Kind) { 5733 case BitstreamEntry::SubBlock: // Handled for us already. 5734 case BitstreamEntry::Error: 5735 return error("Malformed block"); 5736 case BitstreamEntry::EndBlock: 5737 // Done parsing VST, jump back to wherever we came from. 5738 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5739 return JumpFailed; 5740 return Error::success(); 5741 case BitstreamEntry::Record: 5742 // The interesting case. 5743 break; 5744 } 5745 5746 // Read a record. 5747 Record.clear(); 5748 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5749 if (!MaybeRecord) 5750 return MaybeRecord.takeError(); 5751 switch (MaybeRecord.get()) { 5752 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5753 break; 5754 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5755 if (convertToString(Record, 1, ValueName)) 5756 return error("Invalid record"); 5757 unsigned ValueID = Record[0]; 5758 assert(!SourceFileName.empty()); 5759 auto VLI = ValueIdToLinkageMap.find(ValueID); 5760 assert(VLI != ValueIdToLinkageMap.end() && 5761 "No linkage found for VST entry?"); 5762 auto Linkage = VLI->second; 5763 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5764 ValueName.clear(); 5765 break; 5766 } 5767 case bitc::VST_CODE_FNENTRY: { 5768 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5769 if (convertToString(Record, 2, ValueName)) 5770 return error("Invalid record"); 5771 unsigned ValueID = Record[0]; 5772 assert(!SourceFileName.empty()); 5773 auto VLI = ValueIdToLinkageMap.find(ValueID); 5774 assert(VLI != ValueIdToLinkageMap.end() && 5775 "No linkage found for VST entry?"); 5776 auto Linkage = VLI->second; 5777 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5778 ValueName.clear(); 5779 break; 5780 } 5781 case bitc::VST_CODE_COMBINED_ENTRY: { 5782 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5783 unsigned ValueID = Record[0]; 5784 GlobalValue::GUID RefGUID = Record[1]; 5785 // The "original name", which is the second value of the pair will be 5786 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5787 ValueIdToValueInfoMap[ValueID] = 5788 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5789 break; 5790 } 5791 } 5792 } 5793 } 5794 5795 // Parse just the blocks needed for building the index out of the module. 5796 // At the end of this routine the module Index is populated with a map 5797 // from global value id to GlobalValueSummary objects. 5798 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5799 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5800 return Err; 5801 5802 SmallVector<uint64_t, 64> Record; 5803 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5804 unsigned ValueId = 0; 5805 5806 // Read the index for this module. 5807 while (true) { 5808 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5809 if (!MaybeEntry) 5810 return MaybeEntry.takeError(); 5811 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5812 5813 switch (Entry.Kind) { 5814 case BitstreamEntry::Error: 5815 return error("Malformed block"); 5816 case BitstreamEntry::EndBlock: 5817 return Error::success(); 5818 5819 case BitstreamEntry::SubBlock: 5820 switch (Entry.ID) { 5821 default: // Skip unknown content. 5822 if (Error Err = Stream.SkipBlock()) 5823 return Err; 5824 break; 5825 case bitc::BLOCKINFO_BLOCK_ID: 5826 // Need to parse these to get abbrev ids (e.g. for VST) 5827 if (readBlockInfo()) 5828 return error("Malformed block"); 5829 break; 5830 case bitc::VALUE_SYMTAB_BLOCK_ID: 5831 // Should have been parsed earlier via VSTOffset, unless there 5832 // is no summary section. 5833 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5834 !SeenGlobalValSummary) && 5835 "Expected early VST parse via VSTOffset record"); 5836 if (Error Err = Stream.SkipBlock()) 5837 return Err; 5838 break; 5839 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5840 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5841 // Add the module if it is a per-module index (has a source file name). 5842 if (!SourceFileName.empty()) 5843 addThisModule(); 5844 assert(!SeenValueSymbolTable && 5845 "Already read VST when parsing summary block?"); 5846 // We might not have a VST if there were no values in the 5847 // summary. An empty summary block generated when we are 5848 // performing ThinLTO compiles so we don't later invoke 5849 // the regular LTO process on them. 5850 if (VSTOffset > 0) { 5851 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5852 return Err; 5853 SeenValueSymbolTable = true; 5854 } 5855 SeenGlobalValSummary = true; 5856 if (Error Err = parseEntireSummary(Entry.ID)) 5857 return Err; 5858 break; 5859 case bitc::MODULE_STRTAB_BLOCK_ID: 5860 if (Error Err = parseModuleStringTable()) 5861 return Err; 5862 break; 5863 } 5864 continue; 5865 5866 case BitstreamEntry::Record: { 5867 Record.clear(); 5868 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5869 if (!MaybeBitCode) 5870 return MaybeBitCode.takeError(); 5871 switch (MaybeBitCode.get()) { 5872 default: 5873 break; // Default behavior, ignore unknown content. 5874 case bitc::MODULE_CODE_VERSION: { 5875 if (Error Err = parseVersionRecord(Record).takeError()) 5876 return Err; 5877 break; 5878 } 5879 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5880 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5881 SmallString<128> ValueName; 5882 if (convertToString(Record, 0, ValueName)) 5883 return error("Invalid record"); 5884 SourceFileName = ValueName.c_str(); 5885 break; 5886 } 5887 /// MODULE_CODE_HASH: [5*i32] 5888 case bitc::MODULE_CODE_HASH: { 5889 if (Record.size() != 5) 5890 return error("Invalid hash length " + Twine(Record.size()).str()); 5891 auto &Hash = getThisModule()->second.second; 5892 int Pos = 0; 5893 for (auto &Val : Record) { 5894 assert(!(Val >> 32) && "Unexpected high bits set"); 5895 Hash[Pos++] = Val; 5896 } 5897 break; 5898 } 5899 /// MODULE_CODE_VSTOFFSET: [offset] 5900 case bitc::MODULE_CODE_VSTOFFSET: 5901 if (Record.empty()) 5902 return error("Invalid record"); 5903 // Note that we subtract 1 here because the offset is relative to one 5904 // word before the start of the identification or module block, which 5905 // was historically always the start of the regular bitcode header. 5906 VSTOffset = Record[0] - 1; 5907 break; 5908 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5909 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5910 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5911 // v2: [strtab offset, strtab size, v1] 5912 case bitc::MODULE_CODE_GLOBALVAR: 5913 case bitc::MODULE_CODE_FUNCTION: 5914 case bitc::MODULE_CODE_ALIAS: { 5915 StringRef Name; 5916 ArrayRef<uint64_t> GVRecord; 5917 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5918 if (GVRecord.size() <= 3) 5919 return error("Invalid record"); 5920 uint64_t RawLinkage = GVRecord[3]; 5921 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5922 if (!UseStrtab) { 5923 ValueIdToLinkageMap[ValueId++] = Linkage; 5924 break; 5925 } 5926 5927 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5928 break; 5929 } 5930 } 5931 } 5932 continue; 5933 } 5934 } 5935 } 5936 5937 std::vector<ValueInfo> 5938 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5939 std::vector<ValueInfo> Ret; 5940 Ret.reserve(Record.size()); 5941 for (uint64_t RefValueId : Record) 5942 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5943 return Ret; 5944 } 5945 5946 std::vector<FunctionSummary::EdgeTy> 5947 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5948 bool IsOldProfileFormat, 5949 bool HasProfile, bool HasRelBF) { 5950 std::vector<FunctionSummary::EdgeTy> Ret; 5951 Ret.reserve(Record.size()); 5952 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5953 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5954 uint64_t RelBF = 0; 5955 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5956 if (IsOldProfileFormat) { 5957 I += 1; // Skip old callsitecount field 5958 if (HasProfile) 5959 I += 1; // Skip old profilecount field 5960 } else if (HasProfile) 5961 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5962 else if (HasRelBF) 5963 RelBF = Record[++I]; 5964 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5965 } 5966 return Ret; 5967 } 5968 5969 static void 5970 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5971 WholeProgramDevirtResolution &Wpd) { 5972 uint64_t ArgNum = Record[Slot++]; 5973 WholeProgramDevirtResolution::ByArg &B = 5974 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5975 Slot += ArgNum; 5976 5977 B.TheKind = 5978 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5979 B.Info = Record[Slot++]; 5980 B.Byte = Record[Slot++]; 5981 B.Bit = Record[Slot++]; 5982 } 5983 5984 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5985 StringRef Strtab, size_t &Slot, 5986 TypeIdSummary &TypeId) { 5987 uint64_t Id = Record[Slot++]; 5988 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5989 5990 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5991 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5992 static_cast<size_t>(Record[Slot + 1])}; 5993 Slot += 2; 5994 5995 uint64_t ResByArgNum = Record[Slot++]; 5996 for (uint64_t I = 0; I != ResByArgNum; ++I) 5997 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5998 } 5999 6000 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6001 StringRef Strtab, 6002 ModuleSummaryIndex &TheIndex) { 6003 size_t Slot = 0; 6004 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6005 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6006 Slot += 2; 6007 6008 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6009 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6010 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6011 TypeId.TTRes.SizeM1 = Record[Slot++]; 6012 TypeId.TTRes.BitMask = Record[Slot++]; 6013 TypeId.TTRes.InlineBits = Record[Slot++]; 6014 6015 while (Slot < Record.size()) 6016 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6017 } 6018 6019 std::vector<FunctionSummary::ParamAccess> 6020 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6021 auto ReadRange = [&]() { 6022 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6023 BitcodeReader::decodeSignRotatedValue(Record.front())); 6024 Record = Record.drop_front(); 6025 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6026 BitcodeReader::decodeSignRotatedValue(Record.front())); 6027 Record = Record.drop_front(); 6028 ConstantRange Range{Lower, Upper}; 6029 assert(!Range.isFullSet()); 6030 assert(!Range.isUpperSignWrapped()); 6031 return Range; 6032 }; 6033 6034 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6035 while (!Record.empty()) { 6036 PendingParamAccesses.emplace_back(); 6037 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6038 ParamAccess.ParamNo = Record.front(); 6039 Record = Record.drop_front(); 6040 ParamAccess.Use = ReadRange(); 6041 ParamAccess.Calls.resize(Record.front()); 6042 Record = Record.drop_front(); 6043 for (auto &Call : ParamAccess.Calls) { 6044 Call.ParamNo = Record.front(); 6045 Record = Record.drop_front(); 6046 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6047 Record = Record.drop_front(); 6048 Call.Offsets = ReadRange(); 6049 } 6050 } 6051 return PendingParamAccesses; 6052 } 6053 6054 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6055 ArrayRef<uint64_t> Record, size_t &Slot, 6056 TypeIdCompatibleVtableInfo &TypeId) { 6057 uint64_t Offset = Record[Slot++]; 6058 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6059 TypeId.push_back({Offset, Callee}); 6060 } 6061 6062 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6063 ArrayRef<uint64_t> Record) { 6064 size_t Slot = 0; 6065 TypeIdCompatibleVtableInfo &TypeId = 6066 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6067 {Strtab.data() + Record[Slot], 6068 static_cast<size_t>(Record[Slot + 1])}); 6069 Slot += 2; 6070 6071 while (Slot < Record.size()) 6072 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6073 } 6074 6075 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6076 unsigned WOCnt) { 6077 // Readonly and writeonly refs are in the end of the refs list. 6078 assert(ROCnt + WOCnt <= Refs.size()); 6079 unsigned FirstWORef = Refs.size() - WOCnt; 6080 unsigned RefNo = FirstWORef - ROCnt; 6081 for (; RefNo < FirstWORef; ++RefNo) 6082 Refs[RefNo].setReadOnly(); 6083 for (; RefNo < Refs.size(); ++RefNo) 6084 Refs[RefNo].setWriteOnly(); 6085 } 6086 6087 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6088 // objects in the index. 6089 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6090 if (Error Err = Stream.EnterSubBlock(ID)) 6091 return Err; 6092 SmallVector<uint64_t, 64> Record; 6093 6094 // Parse version 6095 { 6096 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6097 if (!MaybeEntry) 6098 return MaybeEntry.takeError(); 6099 BitstreamEntry Entry = MaybeEntry.get(); 6100 6101 if (Entry.Kind != BitstreamEntry::Record) 6102 return error("Invalid Summary Block: record for version expected"); 6103 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6104 if (!MaybeRecord) 6105 return MaybeRecord.takeError(); 6106 if (MaybeRecord.get() != bitc::FS_VERSION) 6107 return error("Invalid Summary Block: version expected"); 6108 } 6109 const uint64_t Version = Record[0]; 6110 const bool IsOldProfileFormat = Version == 1; 6111 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6112 return error("Invalid summary version " + Twine(Version) + 6113 ". Version should be in the range [1-" + 6114 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6115 "]."); 6116 Record.clear(); 6117 6118 // Keep around the last seen summary to be used when we see an optional 6119 // "OriginalName" attachement. 6120 GlobalValueSummary *LastSeenSummary = nullptr; 6121 GlobalValue::GUID LastSeenGUID = 0; 6122 6123 // We can expect to see any number of type ID information records before 6124 // each function summary records; these variables store the information 6125 // collected so far so that it can be used to create the summary object. 6126 std::vector<GlobalValue::GUID> PendingTypeTests; 6127 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6128 PendingTypeCheckedLoadVCalls; 6129 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6130 PendingTypeCheckedLoadConstVCalls; 6131 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6132 6133 while (true) { 6134 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6135 if (!MaybeEntry) 6136 return MaybeEntry.takeError(); 6137 BitstreamEntry Entry = MaybeEntry.get(); 6138 6139 switch (Entry.Kind) { 6140 case BitstreamEntry::SubBlock: // Handled for us already. 6141 case BitstreamEntry::Error: 6142 return error("Malformed block"); 6143 case BitstreamEntry::EndBlock: 6144 return Error::success(); 6145 case BitstreamEntry::Record: 6146 // The interesting case. 6147 break; 6148 } 6149 6150 // Read a record. The record format depends on whether this 6151 // is a per-module index or a combined index file. In the per-module 6152 // case the records contain the associated value's ID for correlation 6153 // with VST entries. In the combined index the correlation is done 6154 // via the bitcode offset of the summary records (which were saved 6155 // in the combined index VST entries). The records also contain 6156 // information used for ThinLTO renaming and importing. 6157 Record.clear(); 6158 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6159 if (!MaybeBitCode) 6160 return MaybeBitCode.takeError(); 6161 switch (unsigned BitCode = MaybeBitCode.get()) { 6162 default: // Default behavior: ignore. 6163 break; 6164 case bitc::FS_FLAGS: { // [flags] 6165 TheIndex.setFlags(Record[0]); 6166 break; 6167 } 6168 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6169 uint64_t ValueID = Record[0]; 6170 GlobalValue::GUID RefGUID = Record[1]; 6171 ValueIdToValueInfoMap[ValueID] = 6172 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6173 break; 6174 } 6175 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6176 // numrefs x valueid, n x (valueid)] 6177 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6178 // numrefs x valueid, 6179 // n x (valueid, hotness)] 6180 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6181 // numrefs x valueid, 6182 // n x (valueid, relblockfreq)] 6183 case bitc::FS_PERMODULE: 6184 case bitc::FS_PERMODULE_RELBF: 6185 case bitc::FS_PERMODULE_PROFILE: { 6186 unsigned ValueID = Record[0]; 6187 uint64_t RawFlags = Record[1]; 6188 unsigned InstCount = Record[2]; 6189 uint64_t RawFunFlags = 0; 6190 unsigned NumRefs = Record[3]; 6191 unsigned NumRORefs = 0, NumWORefs = 0; 6192 int RefListStartIndex = 4; 6193 if (Version >= 4) { 6194 RawFunFlags = Record[3]; 6195 NumRefs = Record[4]; 6196 RefListStartIndex = 5; 6197 if (Version >= 5) { 6198 NumRORefs = Record[5]; 6199 RefListStartIndex = 6; 6200 if (Version >= 7) { 6201 NumWORefs = Record[6]; 6202 RefListStartIndex = 7; 6203 } 6204 } 6205 } 6206 6207 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6208 // The module path string ref set in the summary must be owned by the 6209 // index's module string table. Since we don't have a module path 6210 // string table section in the per-module index, we create a single 6211 // module path string table entry with an empty (0) ID to take 6212 // ownership. 6213 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6214 assert(Record.size() >= RefListStartIndex + NumRefs && 6215 "Record size inconsistent with number of references"); 6216 std::vector<ValueInfo> Refs = makeRefList( 6217 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6218 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6219 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6220 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6221 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6222 IsOldProfileFormat, HasProfile, HasRelBF); 6223 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6224 auto FS = std::make_unique<FunctionSummary>( 6225 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6226 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6227 std::move(PendingTypeTestAssumeVCalls), 6228 std::move(PendingTypeCheckedLoadVCalls), 6229 std::move(PendingTypeTestAssumeConstVCalls), 6230 std::move(PendingTypeCheckedLoadConstVCalls), 6231 std::move(PendingParamAccesses)); 6232 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6233 FS->setModulePath(getThisModule()->first()); 6234 FS->setOriginalName(VIAndOriginalGUID.second); 6235 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6236 break; 6237 } 6238 // FS_ALIAS: [valueid, flags, valueid] 6239 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6240 // they expect all aliasee summaries to be available. 6241 case bitc::FS_ALIAS: { 6242 unsigned ValueID = Record[0]; 6243 uint64_t RawFlags = Record[1]; 6244 unsigned AliaseeID = Record[2]; 6245 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6246 auto AS = std::make_unique<AliasSummary>(Flags); 6247 // The module path string ref set in the summary must be owned by the 6248 // index's module string table. Since we don't have a module path 6249 // string table section in the per-module index, we create a single 6250 // module path string table entry with an empty (0) ID to take 6251 // ownership. 6252 AS->setModulePath(getThisModule()->first()); 6253 6254 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6255 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6256 if (!AliaseeInModule) 6257 return error("Alias expects aliasee summary to be parsed"); 6258 AS->setAliasee(AliaseeVI, AliaseeInModule); 6259 6260 auto GUID = getValueInfoFromValueId(ValueID); 6261 AS->setOriginalName(GUID.second); 6262 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6263 break; 6264 } 6265 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6266 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6267 unsigned ValueID = Record[0]; 6268 uint64_t RawFlags = Record[1]; 6269 unsigned RefArrayStart = 2; 6270 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6271 /* WriteOnly */ false, 6272 /* Constant */ false, 6273 GlobalObject::VCallVisibilityPublic); 6274 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6275 if (Version >= 5) { 6276 GVF = getDecodedGVarFlags(Record[2]); 6277 RefArrayStart = 3; 6278 } 6279 std::vector<ValueInfo> Refs = 6280 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6281 auto FS = 6282 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6283 FS->setModulePath(getThisModule()->first()); 6284 auto GUID = getValueInfoFromValueId(ValueID); 6285 FS->setOriginalName(GUID.second); 6286 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6287 break; 6288 } 6289 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6290 // numrefs, numrefs x valueid, 6291 // n x (valueid, offset)] 6292 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6293 unsigned ValueID = Record[0]; 6294 uint64_t RawFlags = Record[1]; 6295 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6296 unsigned NumRefs = Record[3]; 6297 unsigned RefListStartIndex = 4; 6298 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6299 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6300 std::vector<ValueInfo> Refs = makeRefList( 6301 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6302 VTableFuncList VTableFuncs; 6303 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6304 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6305 uint64_t Offset = Record[++I]; 6306 VTableFuncs.push_back({Callee, Offset}); 6307 } 6308 auto VS = 6309 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6310 VS->setModulePath(getThisModule()->first()); 6311 VS->setVTableFuncs(VTableFuncs); 6312 auto GUID = getValueInfoFromValueId(ValueID); 6313 VS->setOriginalName(GUID.second); 6314 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6315 break; 6316 } 6317 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6318 // numrefs x valueid, n x (valueid)] 6319 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6320 // numrefs x valueid, n x (valueid, hotness)] 6321 case bitc::FS_COMBINED: 6322 case bitc::FS_COMBINED_PROFILE: { 6323 unsigned ValueID = Record[0]; 6324 uint64_t ModuleId = Record[1]; 6325 uint64_t RawFlags = Record[2]; 6326 unsigned InstCount = Record[3]; 6327 uint64_t RawFunFlags = 0; 6328 uint64_t EntryCount = 0; 6329 unsigned NumRefs = Record[4]; 6330 unsigned NumRORefs = 0, NumWORefs = 0; 6331 int RefListStartIndex = 5; 6332 6333 if (Version >= 4) { 6334 RawFunFlags = Record[4]; 6335 RefListStartIndex = 6; 6336 size_t NumRefsIndex = 5; 6337 if (Version >= 5) { 6338 unsigned NumRORefsOffset = 1; 6339 RefListStartIndex = 7; 6340 if (Version >= 6) { 6341 NumRefsIndex = 6; 6342 EntryCount = Record[5]; 6343 RefListStartIndex = 8; 6344 if (Version >= 7) { 6345 RefListStartIndex = 9; 6346 NumWORefs = Record[8]; 6347 NumRORefsOffset = 2; 6348 } 6349 } 6350 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6351 } 6352 NumRefs = Record[NumRefsIndex]; 6353 } 6354 6355 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6356 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6357 assert(Record.size() >= RefListStartIndex + NumRefs && 6358 "Record size inconsistent with number of references"); 6359 std::vector<ValueInfo> Refs = makeRefList( 6360 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6361 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6362 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6363 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6364 IsOldProfileFormat, HasProfile, false); 6365 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6366 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6367 auto FS = std::make_unique<FunctionSummary>( 6368 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6369 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6370 std::move(PendingTypeTestAssumeVCalls), 6371 std::move(PendingTypeCheckedLoadVCalls), 6372 std::move(PendingTypeTestAssumeConstVCalls), 6373 std::move(PendingTypeCheckedLoadConstVCalls), 6374 std::move(PendingParamAccesses)); 6375 LastSeenSummary = FS.get(); 6376 LastSeenGUID = VI.getGUID(); 6377 FS->setModulePath(ModuleIdMap[ModuleId]); 6378 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6379 break; 6380 } 6381 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6382 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6383 // they expect all aliasee summaries to be available. 6384 case bitc::FS_COMBINED_ALIAS: { 6385 unsigned ValueID = Record[0]; 6386 uint64_t ModuleId = Record[1]; 6387 uint64_t RawFlags = Record[2]; 6388 unsigned AliaseeValueId = Record[3]; 6389 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6390 auto AS = std::make_unique<AliasSummary>(Flags); 6391 LastSeenSummary = AS.get(); 6392 AS->setModulePath(ModuleIdMap[ModuleId]); 6393 6394 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6395 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6396 AS->setAliasee(AliaseeVI, AliaseeInModule); 6397 6398 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6399 LastSeenGUID = VI.getGUID(); 6400 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6401 break; 6402 } 6403 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6404 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6405 unsigned ValueID = Record[0]; 6406 uint64_t ModuleId = Record[1]; 6407 uint64_t RawFlags = Record[2]; 6408 unsigned RefArrayStart = 3; 6409 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6410 /* WriteOnly */ false, 6411 /* Constant */ false, 6412 GlobalObject::VCallVisibilityPublic); 6413 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6414 if (Version >= 5) { 6415 GVF = getDecodedGVarFlags(Record[3]); 6416 RefArrayStart = 4; 6417 } 6418 std::vector<ValueInfo> Refs = 6419 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6420 auto FS = 6421 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6422 LastSeenSummary = FS.get(); 6423 FS->setModulePath(ModuleIdMap[ModuleId]); 6424 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6425 LastSeenGUID = VI.getGUID(); 6426 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6427 break; 6428 } 6429 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6430 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6431 uint64_t OriginalName = Record[0]; 6432 if (!LastSeenSummary) 6433 return error("Name attachment that does not follow a combined record"); 6434 LastSeenSummary->setOriginalName(OriginalName); 6435 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6436 // Reset the LastSeenSummary 6437 LastSeenSummary = nullptr; 6438 LastSeenGUID = 0; 6439 break; 6440 } 6441 case bitc::FS_TYPE_TESTS: 6442 assert(PendingTypeTests.empty()); 6443 llvm::append_range(PendingTypeTests, Record); 6444 break; 6445 6446 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6447 assert(PendingTypeTestAssumeVCalls.empty()); 6448 for (unsigned I = 0; I != Record.size(); I += 2) 6449 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6450 break; 6451 6452 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6453 assert(PendingTypeCheckedLoadVCalls.empty()); 6454 for (unsigned I = 0; I != Record.size(); I += 2) 6455 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6456 break; 6457 6458 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6459 PendingTypeTestAssumeConstVCalls.push_back( 6460 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6461 break; 6462 6463 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6464 PendingTypeCheckedLoadConstVCalls.push_back( 6465 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6466 break; 6467 6468 case bitc::FS_CFI_FUNCTION_DEFS: { 6469 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6470 for (unsigned I = 0; I != Record.size(); I += 2) 6471 CfiFunctionDefs.insert( 6472 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6473 break; 6474 } 6475 6476 case bitc::FS_CFI_FUNCTION_DECLS: { 6477 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6478 for (unsigned I = 0; I != Record.size(); I += 2) 6479 CfiFunctionDecls.insert( 6480 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6481 break; 6482 } 6483 6484 case bitc::FS_TYPE_ID: 6485 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6486 break; 6487 6488 case bitc::FS_TYPE_ID_METADATA: 6489 parseTypeIdCompatibleVtableSummaryRecord(Record); 6490 break; 6491 6492 case bitc::FS_BLOCK_COUNT: 6493 TheIndex.addBlockCount(Record[0]); 6494 break; 6495 6496 case bitc::FS_PARAM_ACCESS: { 6497 PendingParamAccesses = parseParamAccesses(Record); 6498 break; 6499 } 6500 } 6501 } 6502 llvm_unreachable("Exit infinite loop"); 6503 } 6504 6505 // Parse the module string table block into the Index. 6506 // This populates the ModulePathStringTable map in the index. 6507 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6508 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6509 return Err; 6510 6511 SmallVector<uint64_t, 64> Record; 6512 6513 SmallString<128> ModulePath; 6514 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6515 6516 while (true) { 6517 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6518 if (!MaybeEntry) 6519 return MaybeEntry.takeError(); 6520 BitstreamEntry Entry = MaybeEntry.get(); 6521 6522 switch (Entry.Kind) { 6523 case BitstreamEntry::SubBlock: // Handled for us already. 6524 case BitstreamEntry::Error: 6525 return error("Malformed block"); 6526 case BitstreamEntry::EndBlock: 6527 return Error::success(); 6528 case BitstreamEntry::Record: 6529 // The interesting case. 6530 break; 6531 } 6532 6533 Record.clear(); 6534 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6535 if (!MaybeRecord) 6536 return MaybeRecord.takeError(); 6537 switch (MaybeRecord.get()) { 6538 default: // Default behavior: ignore. 6539 break; 6540 case bitc::MST_CODE_ENTRY: { 6541 // MST_ENTRY: [modid, namechar x N] 6542 uint64_t ModuleId = Record[0]; 6543 6544 if (convertToString(Record, 1, ModulePath)) 6545 return error("Invalid record"); 6546 6547 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6548 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6549 6550 ModulePath.clear(); 6551 break; 6552 } 6553 /// MST_CODE_HASH: [5*i32] 6554 case bitc::MST_CODE_HASH: { 6555 if (Record.size() != 5) 6556 return error("Invalid hash length " + Twine(Record.size()).str()); 6557 if (!LastSeenModule) 6558 return error("Invalid hash that does not follow a module path"); 6559 int Pos = 0; 6560 for (auto &Val : Record) { 6561 assert(!(Val >> 32) && "Unexpected high bits set"); 6562 LastSeenModule->second.second[Pos++] = Val; 6563 } 6564 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6565 LastSeenModule = nullptr; 6566 break; 6567 } 6568 } 6569 } 6570 llvm_unreachable("Exit infinite loop"); 6571 } 6572 6573 namespace { 6574 6575 // FIXME: This class is only here to support the transition to llvm::Error. It 6576 // will be removed once this transition is complete. Clients should prefer to 6577 // deal with the Error value directly, rather than converting to error_code. 6578 class BitcodeErrorCategoryType : public std::error_category { 6579 const char *name() const noexcept override { 6580 return "llvm.bitcode"; 6581 } 6582 6583 std::string message(int IE) const override { 6584 BitcodeError E = static_cast<BitcodeError>(IE); 6585 switch (E) { 6586 case BitcodeError::CorruptedBitcode: 6587 return "Corrupted bitcode"; 6588 } 6589 llvm_unreachable("Unknown error type!"); 6590 } 6591 }; 6592 6593 } // end anonymous namespace 6594 6595 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6596 6597 const std::error_category &llvm::BitcodeErrorCategory() { 6598 return *ErrorCategory; 6599 } 6600 6601 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6602 unsigned Block, unsigned RecordID) { 6603 if (Error Err = Stream.EnterSubBlock(Block)) 6604 return std::move(Err); 6605 6606 StringRef Strtab; 6607 while (true) { 6608 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6609 if (!MaybeEntry) 6610 return MaybeEntry.takeError(); 6611 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6612 6613 switch (Entry.Kind) { 6614 case BitstreamEntry::EndBlock: 6615 return Strtab; 6616 6617 case BitstreamEntry::Error: 6618 return error("Malformed block"); 6619 6620 case BitstreamEntry::SubBlock: 6621 if (Error Err = Stream.SkipBlock()) 6622 return std::move(Err); 6623 break; 6624 6625 case BitstreamEntry::Record: 6626 StringRef Blob; 6627 SmallVector<uint64_t, 1> Record; 6628 Expected<unsigned> MaybeRecord = 6629 Stream.readRecord(Entry.ID, Record, &Blob); 6630 if (!MaybeRecord) 6631 return MaybeRecord.takeError(); 6632 if (MaybeRecord.get() == RecordID) 6633 Strtab = Blob; 6634 break; 6635 } 6636 } 6637 } 6638 6639 //===----------------------------------------------------------------------===// 6640 // External interface 6641 //===----------------------------------------------------------------------===// 6642 6643 Expected<std::vector<BitcodeModule>> 6644 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6645 auto FOrErr = getBitcodeFileContents(Buffer); 6646 if (!FOrErr) 6647 return FOrErr.takeError(); 6648 return std::move(FOrErr->Mods); 6649 } 6650 6651 Expected<BitcodeFileContents> 6652 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6653 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6654 if (!StreamOrErr) 6655 return StreamOrErr.takeError(); 6656 BitstreamCursor &Stream = *StreamOrErr; 6657 6658 BitcodeFileContents F; 6659 while (true) { 6660 uint64_t BCBegin = Stream.getCurrentByteNo(); 6661 6662 // We may be consuming bitcode from a client that leaves garbage at the end 6663 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6664 // the end that there cannot possibly be another module, stop looking. 6665 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6666 return F; 6667 6668 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6669 if (!MaybeEntry) 6670 return MaybeEntry.takeError(); 6671 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6672 6673 switch (Entry.Kind) { 6674 case BitstreamEntry::EndBlock: 6675 case BitstreamEntry::Error: 6676 return error("Malformed block"); 6677 6678 case BitstreamEntry::SubBlock: { 6679 uint64_t IdentificationBit = -1ull; 6680 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6681 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6682 if (Error Err = Stream.SkipBlock()) 6683 return std::move(Err); 6684 6685 { 6686 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6687 if (!MaybeEntry) 6688 return MaybeEntry.takeError(); 6689 Entry = MaybeEntry.get(); 6690 } 6691 6692 if (Entry.Kind != BitstreamEntry::SubBlock || 6693 Entry.ID != bitc::MODULE_BLOCK_ID) 6694 return error("Malformed block"); 6695 } 6696 6697 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6698 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6699 if (Error Err = Stream.SkipBlock()) 6700 return std::move(Err); 6701 6702 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6703 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6704 Buffer.getBufferIdentifier(), IdentificationBit, 6705 ModuleBit}); 6706 continue; 6707 } 6708 6709 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6710 Expected<StringRef> Strtab = 6711 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6712 if (!Strtab) 6713 return Strtab.takeError(); 6714 // This string table is used by every preceding bitcode module that does 6715 // not have its own string table. A bitcode file may have multiple 6716 // string tables if it was created by binary concatenation, for example 6717 // with "llvm-cat -b". 6718 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6719 if (!I->Strtab.empty()) 6720 break; 6721 I->Strtab = *Strtab; 6722 } 6723 // Similarly, the string table is used by every preceding symbol table; 6724 // normally there will be just one unless the bitcode file was created 6725 // by binary concatenation. 6726 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6727 F.StrtabForSymtab = *Strtab; 6728 continue; 6729 } 6730 6731 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6732 Expected<StringRef> SymtabOrErr = 6733 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6734 if (!SymtabOrErr) 6735 return SymtabOrErr.takeError(); 6736 6737 // We can expect the bitcode file to have multiple symbol tables if it 6738 // was created by binary concatenation. In that case we silently 6739 // ignore any subsequent symbol tables, which is fine because this is a 6740 // low level function. The client is expected to notice that the number 6741 // of modules in the symbol table does not match the number of modules 6742 // in the input file and regenerate the symbol table. 6743 if (F.Symtab.empty()) 6744 F.Symtab = *SymtabOrErr; 6745 continue; 6746 } 6747 6748 if (Error Err = Stream.SkipBlock()) 6749 return std::move(Err); 6750 continue; 6751 } 6752 case BitstreamEntry::Record: 6753 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6754 continue; 6755 else 6756 return StreamFailed.takeError(); 6757 } 6758 } 6759 } 6760 6761 /// Get a lazy one-at-time loading module from bitcode. 6762 /// 6763 /// This isn't always used in a lazy context. In particular, it's also used by 6764 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6765 /// in forward-referenced functions from block address references. 6766 /// 6767 /// \param[in] MaterializeAll Set to \c true if we should materialize 6768 /// everything. 6769 Expected<std::unique_ptr<Module>> 6770 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6771 bool ShouldLazyLoadMetadata, bool IsImporting, 6772 DataLayoutCallbackTy DataLayoutCallback) { 6773 BitstreamCursor Stream(Buffer); 6774 6775 std::string ProducerIdentification; 6776 if (IdentificationBit != -1ull) { 6777 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6778 return std::move(JumpFailed); 6779 Expected<std::string> ProducerIdentificationOrErr = 6780 readIdentificationBlock(Stream); 6781 if (!ProducerIdentificationOrErr) 6782 return ProducerIdentificationOrErr.takeError(); 6783 6784 ProducerIdentification = *ProducerIdentificationOrErr; 6785 } 6786 6787 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6788 return std::move(JumpFailed); 6789 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6790 Context); 6791 6792 std::unique_ptr<Module> M = 6793 std::make_unique<Module>(ModuleIdentifier, Context); 6794 M->setMaterializer(R); 6795 6796 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6797 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6798 IsImporting, DataLayoutCallback)) 6799 return std::move(Err); 6800 6801 if (MaterializeAll) { 6802 // Read in the entire module, and destroy the BitcodeReader. 6803 if (Error Err = M->materializeAll()) 6804 return std::move(Err); 6805 } else { 6806 // Resolve forward references from blockaddresses. 6807 if (Error Err = R->materializeForwardReferencedFunctions()) 6808 return std::move(Err); 6809 } 6810 return std::move(M); 6811 } 6812 6813 Expected<std::unique_ptr<Module>> 6814 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6815 bool IsImporting) { 6816 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6817 [](StringRef) { return None; }); 6818 } 6819 6820 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6821 // We don't use ModuleIdentifier here because the client may need to control the 6822 // module path used in the combined summary (e.g. when reading summaries for 6823 // regular LTO modules). 6824 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6825 StringRef ModulePath, uint64_t ModuleId) { 6826 BitstreamCursor Stream(Buffer); 6827 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6828 return JumpFailed; 6829 6830 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6831 ModulePath, ModuleId); 6832 return R.parseModule(); 6833 } 6834 6835 // Parse the specified bitcode buffer, returning the function info index. 6836 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6837 BitstreamCursor Stream(Buffer); 6838 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6839 return std::move(JumpFailed); 6840 6841 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6842 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6843 ModuleIdentifier, 0); 6844 6845 if (Error Err = R.parseModule()) 6846 return std::move(Err); 6847 6848 return std::move(Index); 6849 } 6850 6851 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6852 unsigned ID) { 6853 if (Error Err = Stream.EnterSubBlock(ID)) 6854 return std::move(Err); 6855 SmallVector<uint64_t, 64> Record; 6856 6857 while (true) { 6858 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6859 if (!MaybeEntry) 6860 return MaybeEntry.takeError(); 6861 BitstreamEntry Entry = MaybeEntry.get(); 6862 6863 switch (Entry.Kind) { 6864 case BitstreamEntry::SubBlock: // Handled for us already. 6865 case BitstreamEntry::Error: 6866 return error("Malformed block"); 6867 case BitstreamEntry::EndBlock: 6868 // If no flags record found, conservatively return true to mimic 6869 // behavior before this flag was added. 6870 return true; 6871 case BitstreamEntry::Record: 6872 // The interesting case. 6873 break; 6874 } 6875 6876 // Look for the FS_FLAGS record. 6877 Record.clear(); 6878 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6879 if (!MaybeBitCode) 6880 return MaybeBitCode.takeError(); 6881 switch (MaybeBitCode.get()) { 6882 default: // Default behavior: ignore. 6883 break; 6884 case bitc::FS_FLAGS: { // [flags] 6885 uint64_t Flags = Record[0]; 6886 // Scan flags. 6887 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6888 6889 return Flags & 0x8; 6890 } 6891 } 6892 } 6893 llvm_unreachable("Exit infinite loop"); 6894 } 6895 6896 // Check if the given bitcode buffer contains a global value summary block. 6897 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6898 BitstreamCursor Stream(Buffer); 6899 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6900 return std::move(JumpFailed); 6901 6902 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6903 return std::move(Err); 6904 6905 while (true) { 6906 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6907 if (!MaybeEntry) 6908 return MaybeEntry.takeError(); 6909 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6910 6911 switch (Entry.Kind) { 6912 case BitstreamEntry::Error: 6913 return error("Malformed block"); 6914 case BitstreamEntry::EndBlock: 6915 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6916 /*EnableSplitLTOUnit=*/false}; 6917 6918 case BitstreamEntry::SubBlock: 6919 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6920 Expected<bool> EnableSplitLTOUnit = 6921 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6922 if (!EnableSplitLTOUnit) 6923 return EnableSplitLTOUnit.takeError(); 6924 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6925 *EnableSplitLTOUnit}; 6926 } 6927 6928 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6929 Expected<bool> EnableSplitLTOUnit = 6930 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6931 if (!EnableSplitLTOUnit) 6932 return EnableSplitLTOUnit.takeError(); 6933 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6934 *EnableSplitLTOUnit}; 6935 } 6936 6937 // Ignore other sub-blocks. 6938 if (Error Err = Stream.SkipBlock()) 6939 return std::move(Err); 6940 continue; 6941 6942 case BitstreamEntry::Record: 6943 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6944 continue; 6945 else 6946 return StreamFailed.takeError(); 6947 } 6948 } 6949 } 6950 6951 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6952 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6953 if (!MsOrErr) 6954 return MsOrErr.takeError(); 6955 6956 if (MsOrErr->size() != 1) 6957 return error("Expected a single module"); 6958 6959 return (*MsOrErr)[0]; 6960 } 6961 6962 Expected<std::unique_ptr<Module>> 6963 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6964 bool ShouldLazyLoadMetadata, bool IsImporting) { 6965 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6966 if (!BM) 6967 return BM.takeError(); 6968 6969 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6970 } 6971 6972 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6973 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6974 bool ShouldLazyLoadMetadata, bool IsImporting) { 6975 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6976 IsImporting); 6977 if (MOrErr) 6978 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6979 return MOrErr; 6980 } 6981 6982 Expected<std::unique_ptr<Module>> 6983 BitcodeModule::parseModule(LLVMContext &Context, 6984 DataLayoutCallbackTy DataLayoutCallback) { 6985 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6986 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6987 // written. We must defer until the Module has been fully materialized. 6988 } 6989 6990 Expected<std::unique_ptr<Module>> 6991 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6992 DataLayoutCallbackTy DataLayoutCallback) { 6993 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6994 if (!BM) 6995 return BM.takeError(); 6996 6997 return BM->parseModule(Context, DataLayoutCallback); 6998 } 6999 7000 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7001 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7002 if (!StreamOrErr) 7003 return StreamOrErr.takeError(); 7004 7005 return readTriple(*StreamOrErr); 7006 } 7007 7008 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7009 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7010 if (!StreamOrErr) 7011 return StreamOrErr.takeError(); 7012 7013 return hasObjCCategory(*StreamOrErr); 7014 } 7015 7016 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7017 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7018 if (!StreamOrErr) 7019 return StreamOrErr.takeError(); 7020 7021 return readIdentificationCode(*StreamOrErr); 7022 } 7023 7024 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7025 ModuleSummaryIndex &CombinedIndex, 7026 uint64_t ModuleId) { 7027 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7028 if (!BM) 7029 return BM.takeError(); 7030 7031 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7032 } 7033 7034 Expected<std::unique_ptr<ModuleSummaryIndex>> 7035 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7036 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7037 if (!BM) 7038 return BM.takeError(); 7039 7040 return BM->getSummary(); 7041 } 7042 7043 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7044 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7045 if (!BM) 7046 return BM.takeError(); 7047 7048 return BM->getLTOInfo(); 7049 } 7050 7051 Expected<std::unique_ptr<ModuleSummaryIndex>> 7052 llvm::getModuleSummaryIndexForFile(StringRef Path, 7053 bool IgnoreEmptyThinLTOIndexFile) { 7054 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7055 MemoryBuffer::getFileOrSTDIN(Path); 7056 if (!FileOrErr) 7057 return errorCodeToError(FileOrErr.getError()); 7058 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7059 return nullptr; 7060 return getModuleSummaryIndex(**FileOrErr); 7061 } 7062