1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   bool readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B(Context);
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B(Context);
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else {
1651           assert((Record[i] == 5 || Record[i] == 6) &&
1652                  "Invalid attribute group entry");
1653           bool HasType = Record[i] == 6;
1654           Attribute::AttrKind Kind;
1655           if (Error Err = parseAttrKind(Record[++i], &Kind))
1656             return Err;
1657           if (!Attribute::isTypeAttrKind(Kind))
1658             return error("Not a type attribute");
1659 
1660           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061   return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065                                             Function *F,
2066                                             ArrayRef<uint64_t> Record) {
2067   // Note that we subtract 1 here because the offset is relative to one word
2068   // before the start of the identification or module block, which was
2069   // historically always the start of the regular bitcode header.
2070   uint64_t FuncWordOffset = Record[1] - 1;
2071   uint64_t FuncBitOffset = FuncWordOffset * 32;
2072   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073   // Set the LastFunctionBlockBit to point to the last function block.
2074   // Later when parsing is resumed after function materialization,
2075   // we can simply skip that last function block.
2076   if (FuncBitOffset > LastFunctionBlockBit)
2077     LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082   unsigned FuncBitcodeOffsetDelta =
2083       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086     return Err;
2087 
2088   SmallVector<uint64_t, 64> Record;
2089   while (true) {
2090     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091     if (!MaybeEntry)
2092       return MaybeEntry.takeError();
2093     BitstreamEntry Entry = MaybeEntry.get();
2094 
2095     switch (Entry.Kind) {
2096     case BitstreamEntry::SubBlock:
2097     case BitstreamEntry::Error:
2098       return error("Malformed block");
2099     case BitstreamEntry::EndBlock:
2100       return Error::success();
2101     case BitstreamEntry::Record:
2102       break;
2103     }
2104 
2105     Record.clear();
2106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107     if (!MaybeRecord)
2108       return MaybeRecord.takeError();
2109     switch (MaybeRecord.get()) {
2110     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2111       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2112                               cast<Function>(ValueList[Record[0]]), Record);
2113       break;
2114     }
2115   }
2116 }
2117 
2118 /// Parse the value symbol table at either the current parsing location or
2119 /// at the given bit offset if provided.
2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2121   uint64_t CurrentBit;
2122   // Pass in the Offset to distinguish between calling for the module-level
2123   // VST (where we want to jump to the VST offset) and the function-level
2124   // VST (where we don't).
2125   if (Offset > 0) {
2126     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2127     if (!MaybeCurrentBit)
2128       return MaybeCurrentBit.takeError();
2129     CurrentBit = MaybeCurrentBit.get();
2130     // If this module uses a string table, read this as a module-level VST.
2131     if (UseStrtab) {
2132       if (Error Err = parseGlobalValueSymbolTable())
2133         return Err;
2134       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2135         return JumpFailed;
2136       return Error::success();
2137     }
2138     // Otherwise, the VST will be in a similar format to a function-level VST,
2139     // and will contain symbol names.
2140   }
2141 
2142   // Compute the delta between the bitcode indices in the VST (the word offset
2143   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2144   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2145   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2146   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2147   // just before entering the VST subblock because: 1) the EnterSubBlock
2148   // changes the AbbrevID width; 2) the VST block is nested within the same
2149   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2150   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2151   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2152   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2153   unsigned FuncBitcodeOffsetDelta =
2154       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2155 
2156   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2157     return Err;
2158 
2159   SmallVector<uint64_t, 64> Record;
2160 
2161   Triple TT(TheModule->getTargetTriple());
2162 
2163   // Read all the records for this value table.
2164   SmallString<128> ValueName;
2165 
2166   while (true) {
2167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168     if (!MaybeEntry)
2169       return MaybeEntry.takeError();
2170     BitstreamEntry Entry = MaybeEntry.get();
2171 
2172     switch (Entry.Kind) {
2173     case BitstreamEntry::SubBlock: // Handled for us already.
2174     case BitstreamEntry::Error:
2175       return error("Malformed block");
2176     case BitstreamEntry::EndBlock:
2177       if (Offset > 0)
2178         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2179           return JumpFailed;
2180       return Error::success();
2181     case BitstreamEntry::Record:
2182       // The interesting case.
2183       break;
2184     }
2185 
2186     // Read a record.
2187     Record.clear();
2188     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2189     if (!MaybeRecord)
2190       return MaybeRecord.takeError();
2191     switch (MaybeRecord.get()) {
2192     default:  // Default behavior: unknown type.
2193       break;
2194     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2195       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2196       if (Error Err = ValOrErr.takeError())
2197         return Err;
2198       ValOrErr.get();
2199       break;
2200     }
2201     case bitc::VST_CODE_FNENTRY: {
2202       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2203       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2204       if (Error Err = ValOrErr.takeError())
2205         return Err;
2206       Value *V = ValOrErr.get();
2207 
2208       // Ignore function offsets emitted for aliases of functions in older
2209       // versions of LLVM.
2210       if (auto *F = dyn_cast<Function>(V))
2211         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2212       break;
2213     }
2214     case bitc::VST_CODE_BBENTRY: {
2215       if (convertToString(Record, 1, ValueName))
2216         return error("Invalid record");
2217       BasicBlock *BB = getBasicBlock(Record[0]);
2218       if (!BB)
2219         return error("Invalid record");
2220 
2221       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2222       ValueName.clear();
2223       break;
2224     }
2225     }
2226   }
2227 }
2228 
2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2230 /// encoding.
2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2232   if ((V & 1) == 0)
2233     return V >> 1;
2234   if (V != 1)
2235     return -(V >> 1);
2236   // There is no such thing as -0 with integers.  "-0" really means MININT.
2237   return 1ULL << 63;
2238 }
2239 
2240 /// Resolve all of the initializers for global values and aliases that we can.
2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2242   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2243   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2244   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2245 
2246   GlobalInitWorklist.swap(GlobalInits);
2247   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2248   FunctionOperandWorklist.swap(FunctionOperands);
2249 
2250   while (!GlobalInitWorklist.empty()) {
2251     unsigned ValID = GlobalInitWorklist.back().second;
2252     if (ValID >= ValueList.size()) {
2253       // Not ready to resolve this yet, it requires something later in the file.
2254       GlobalInits.push_back(GlobalInitWorklist.back());
2255     } else {
2256       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2257         GlobalInitWorklist.back().first->setInitializer(C);
2258       else
2259         return error("Expected a constant");
2260     }
2261     GlobalInitWorklist.pop_back();
2262   }
2263 
2264   while (!IndirectSymbolInitWorklist.empty()) {
2265     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2266     if (ValID >= ValueList.size()) {
2267       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2268     } else {
2269       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2270       if (!C)
2271         return error("Expected a constant");
2272       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2273       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2274         if (C->getType() != GV->getType())
2275           return error("Alias and aliasee types don't match");
2276         GA->setAliasee(C);
2277       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2278         Type *ResolverFTy =
2279             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2280         // Transparently fix up the type for compatiblity with older bitcode
2281         GI->setResolver(
2282             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2283       } else {
2284         return error("Expected an alias or an ifunc");
2285       }
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionOperandWorklist.empty()) {
2291     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2292     if (Info.PersonalityFn) {
2293       unsigned ValID = Info.PersonalityFn - 1;
2294       if (ValID < ValueList.size()) {
2295         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296           Info.F->setPersonalityFn(C);
2297         else
2298           return error("Expected a constant");
2299         Info.PersonalityFn = 0;
2300       }
2301     }
2302     if (Info.Prefix) {
2303       unsigned ValID = Info.Prefix - 1;
2304       if (ValID < ValueList.size()) {
2305         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306           Info.F->setPrefixData(C);
2307         else
2308           return error("Expected a constant");
2309         Info.Prefix = 0;
2310       }
2311     }
2312     if (Info.Prologue) {
2313       unsigned ValID = Info.Prologue - 1;
2314       if (ValID < ValueList.size()) {
2315         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2316           Info.F->setPrologueData(C);
2317         else
2318           return error("Expected a constant");
2319         Info.Prologue = 0;
2320       }
2321     }
2322     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2323       FunctionOperands.push_back(Info);
2324     FunctionOperandWorklist.pop_back();
2325   }
2326 
2327   return Error::success();
2328 }
2329 
2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2331   SmallVector<uint64_t, 8> Words(Vals.size());
2332   transform(Vals, Words.begin(),
2333                  BitcodeReader::decodeSignRotatedValue);
2334 
2335   return APInt(TypeBits, Words);
2336 }
2337 
2338 Error BitcodeReader::parseConstants() {
2339   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2340     return Err;
2341 
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   // Read all the records for this value table.
2345   Type *CurTy = Type::getInt32Ty(Context);
2346   unsigned NextCstNo = ValueList.size();
2347 
2348   struct DelayedShufTy {
2349     VectorType *OpTy;
2350     VectorType *RTy;
2351     uint64_t Op0Idx;
2352     uint64_t Op1Idx;
2353     uint64_t Op2Idx;
2354     unsigned CstNo;
2355   };
2356   std::vector<DelayedShufTy> DelayedShuffles;
2357   struct DelayedSelTy {
2358     Type *OpTy;
2359     uint64_t Op0Idx;
2360     uint64_t Op1Idx;
2361     uint64_t Op2Idx;
2362     unsigned CstNo;
2363   };
2364   std::vector<DelayedSelTy> DelayedSelectors;
2365 
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo);
2401       }
2402       for (auto &DelayedSelector : DelayedSelectors) {
2403         Type *OpTy = DelayedSelector.OpTy;
2404         Type *SelectorTy = Type::getInt1Ty(Context);
2405         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2406         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2407         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2408         uint64_t CstNo = DelayedSelector.CstNo;
2409         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2410         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2411         // The selector might be an i1 or an <n x i1>
2412         // Get the type from the ValueList before getting a forward ref.
2413         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2414           Value *V = ValueList[Op0Idx];
2415           assert(V);
2416           if (SelectorTy != V->getType())
2417             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2418         }
2419         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2420         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2421         ValueList.assignValue(V, CstNo);
2422       }
2423 
2424       if (NextCstNo != ValueList.size())
2425         return error("Invalid constant reference");
2426 
2427       ValueList.resolveConstantForwardRefs();
2428       return Error::success();
2429     case BitstreamEntry::Record:
2430       // The interesting case.
2431       break;
2432     }
2433 
2434     // Read a record.
2435     Record.clear();
2436     Type *VoidType = Type::getVoidTy(Context);
2437     Value *V = nullptr;
2438     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2439     if (!MaybeBitCode)
2440       return MaybeBitCode.takeError();
2441     switch (unsigned BitCode = MaybeBitCode.get()) {
2442     default:  // Default behavior: unknown constant
2443     case bitc::CST_CODE_UNDEF:     // UNDEF
2444       V = UndefValue::get(CurTy);
2445       break;
2446     case bitc::CST_CODE_POISON:    // POISON
2447       V = PoisonValue::get(CurTy);
2448       break;
2449     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2450       if (Record.empty())
2451         return error("Invalid record");
2452       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2453         return error("Invalid record");
2454       if (TypeList[Record[0]] == VoidType)
2455         return error("Invalid constant type");
2456       CurTy = TypeList[Record[0]];
2457       continue;  // Skip the ValueList manipulation.
2458     case bitc::CST_CODE_NULL:      // NULL
2459       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2460         return error("Invalid type for a constant null value");
2461       V = Constant::getNullValue(CurTy);
2462       break;
2463     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2464       if (!CurTy->isIntegerTy() || Record.empty())
2465         return error("Invalid record");
2466       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2467       break;
2468     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471 
2472       APInt VInt =
2473           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2474       V = ConstantInt::get(Context, VInt);
2475 
2476       break;
2477     }
2478     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2479       if (Record.empty())
2480         return error("Invalid record");
2481       if (CurTy->isHalfTy())
2482         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2483                                              APInt(16, (uint16_t)Record[0])));
2484       else if (CurTy->isBFloatTy())
2485         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2486                                              APInt(16, (uint32_t)Record[0])));
2487       else if (CurTy->isFloatTy())
2488         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2489                                              APInt(32, (uint32_t)Record[0])));
2490       else if (CurTy->isDoubleTy())
2491         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2492                                              APInt(64, Record[0])));
2493       else if (CurTy->isX86_FP80Ty()) {
2494         // Bits are not stored the same way as a normal i80 APInt, compensate.
2495         uint64_t Rearrange[2];
2496         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2497         Rearrange[1] = Record[0] >> 48;
2498         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2499                                              APInt(80, Rearrange)));
2500       } else if (CurTy->isFP128Ty())
2501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2502                                              APInt(128, Record)));
2503       else if (CurTy->isPPC_FP128Ty())
2504         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2505                                              APInt(128, Record)));
2506       else
2507         V = UndefValue::get(CurTy);
2508       break;
2509     }
2510 
2511     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2512       if (Record.empty())
2513         return error("Invalid record");
2514 
2515       unsigned Size = Record.size();
2516       SmallVector<Constant*, 16> Elts;
2517 
2518       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2519         for (unsigned i = 0; i != Size; ++i)
2520           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2521                                                      STy->getElementType(i)));
2522         V = ConstantStruct::get(STy, Elts);
2523       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2524         Type *EltTy = ATy->getElementType();
2525         for (unsigned i = 0; i != Size; ++i)
2526           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2527         V = ConstantArray::get(ATy, Elts);
2528       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2529         Type *EltTy = VTy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantVector::get(Elts);
2533       } else {
2534         V = UndefValue::get(CurTy);
2535       }
2536       break;
2537     }
2538     case bitc::CST_CODE_STRING:    // STRING: [values]
2539     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2540       if (Record.empty())
2541         return error("Invalid record");
2542 
2543       SmallString<16> Elts(Record.begin(), Record.end());
2544       V = ConstantDataArray::getString(Context, Elts,
2545                                        BitCode == bitc::CST_CODE_CSTRING);
2546       break;
2547     }
2548     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2549       if (Record.empty())
2550         return error("Invalid record");
2551 
2552       Type *EltTy;
2553       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2554         EltTy = Array->getElementType();
2555       else
2556         EltTy = cast<VectorType>(CurTy)->getElementType();
2557       if (EltTy->isIntegerTy(8)) {
2558         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::get(Context, Elts);
2561         else
2562           V = ConstantDataArray::get(Context, Elts);
2563       } else if (EltTy->isIntegerTy(16)) {
2564         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::get(Context, Elts);
2567         else
2568           V = ConstantDataArray::get(Context, Elts);
2569       } else if (EltTy->isIntegerTy(32)) {
2570         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::get(Context, Elts);
2573         else
2574           V = ConstantDataArray::get(Context, Elts);
2575       } else if (EltTy->isIntegerTy(64)) {
2576         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2577         if (isa<VectorType>(CurTy))
2578           V = ConstantDataVector::get(Context, Elts);
2579         else
2580           V = ConstantDataArray::get(Context, Elts);
2581       } else if (EltTy->isHalfTy()) {
2582         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2583         if (isa<VectorType>(CurTy))
2584           V = ConstantDataVector::getFP(EltTy, Elts);
2585         else
2586           V = ConstantDataArray::getFP(EltTy, Elts);
2587       } else if (EltTy->isBFloatTy()) {
2588         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2589         if (isa<VectorType>(CurTy))
2590           V = ConstantDataVector::getFP(EltTy, Elts);
2591         else
2592           V = ConstantDataArray::getFP(EltTy, Elts);
2593       } else if (EltTy->isFloatTy()) {
2594         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2595         if (isa<VectorType>(CurTy))
2596           V = ConstantDataVector::getFP(EltTy, Elts);
2597         else
2598           V = ConstantDataArray::getFP(EltTy, Elts);
2599       } else if (EltTy->isDoubleTy()) {
2600         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2601         if (isa<VectorType>(CurTy))
2602           V = ConstantDataVector::getFP(EltTy, Elts);
2603         else
2604           V = ConstantDataArray::getFP(EltTy, Elts);
2605       } else {
2606         return error("Invalid type for value");
2607       }
2608       break;
2609     }
2610     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2611       if (Record.size() < 2)
2612         return error("Invalid record");
2613       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2614       if (Opc < 0) {
2615         V = UndefValue::get(CurTy);  // Unknown unop.
2616       } else {
2617         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2618         unsigned Flags = 0;
2619         V = ConstantExpr::get(Opc, LHS, Flags);
2620       }
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2627       if (Opc < 0) {
2628         V = UndefValue::get(CurTy);  // Unknown binop.
2629       } else {
2630         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2631         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2632         unsigned Flags = 0;
2633         if (Record.size() >= 4) {
2634           if (Opc == Instruction::Add ||
2635               Opc == Instruction::Sub ||
2636               Opc == Instruction::Mul ||
2637               Opc == Instruction::Shl) {
2638             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2639               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2640             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2641               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2642           } else if (Opc == Instruction::SDiv ||
2643                      Opc == Instruction::UDiv ||
2644                      Opc == Instruction::LShr ||
2645                      Opc == Instruction::AShr) {
2646             if (Record[3] & (1 << bitc::PEO_EXACT))
2647               Flags |= SDivOperator::IsExact;
2648           }
2649         }
2650         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2651       }
2652       break;
2653     }
2654     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2655       if (Record.size() < 3)
2656         return error("Invalid record");
2657       int Opc = getDecodedCastOpcode(Record[0]);
2658       if (Opc < 0) {
2659         V = UndefValue::get(CurTy);  // Unknown cast.
2660       } else {
2661         Type *OpTy = getTypeByID(Record[1]);
2662         if (!OpTy)
2663           return error("Invalid record");
2664         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2665         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2666         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2667       }
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2671     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2672     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2673                                                      // operands]
2674       unsigned OpNum = 0;
2675       Type *PointeeType = nullptr;
2676       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2677           Record.size() % 2)
2678         PointeeType = getTypeByID(Record[OpNum++]);
2679 
2680       bool InBounds = false;
2681       Optional<unsigned> InRangeIndex;
2682       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2683         uint64_t Op = Record[OpNum++];
2684         InBounds = Op & 1;
2685         InRangeIndex = Op >> 1;
2686       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2687         InBounds = true;
2688 
2689       SmallVector<Constant*, 16> Elts;
2690       Type *Elt0FullTy = nullptr;
2691       while (OpNum != Record.size()) {
2692         if (!Elt0FullTy)
2693           Elt0FullTy = getTypeByID(Record[OpNum]);
2694         Type *ElTy = getTypeByID(Record[OpNum++]);
2695         if (!ElTy)
2696           return error("Invalid record");
2697         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2698       }
2699 
2700       if (Elts.size() < 1)
2701         return error("Invalid gep with no operands");
2702 
2703       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2704       if (!PointeeType)
2705         PointeeType = OrigPtrTy->getElementType();
2706       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2707         return error("Explicit gep operator type does not match pointee type "
2708                      "of pointer operand");
2709 
2710       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2711       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2712                                          InBounds, InRangeIndex);
2713       break;
2714     }
2715     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718 
2719       DelayedSelectors.push_back(
2720           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2721       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2722       ++NextCstNo;
2723       continue;
2724     }
2725     case bitc::CST_CODE_CE_EXTRACTELT
2726         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2727       if (Record.size() < 3)
2728         return error("Invalid record");
2729       VectorType *OpTy =
2730         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2731       if (!OpTy)
2732         return error("Invalid record");
2733       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2734       Constant *Op1 = nullptr;
2735       if (Record.size() == 4) {
2736         Type *IdxTy = getTypeByID(Record[2]);
2737         if (!IdxTy)
2738           return error("Invalid record");
2739         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2740       } else {
2741         // Deprecated, but still needed to read old bitcode files.
2742         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2743       }
2744       if (!Op1)
2745         return error("Invalid record");
2746       V = ConstantExpr::getExtractElement(Op0, Op1);
2747       break;
2748     }
2749     case bitc::CST_CODE_CE_INSERTELT
2750         : { // CE_INSERTELT: [opval, opval, opty, opval]
2751       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2752       if (Record.size() < 3 || !OpTy)
2753         return error("Invalid record");
2754       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2755       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2756                                                   OpTy->getElementType());
2757       Constant *Op2 = nullptr;
2758       if (Record.size() == 4) {
2759         Type *IdxTy = getTypeByID(Record[2]);
2760         if (!IdxTy)
2761           return error("Invalid record");
2762         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2763       } else {
2764         // Deprecated, but still needed to read old bitcode files.
2765         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2766       }
2767       if (!Op2)
2768         return error("Invalid record");
2769       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2770       break;
2771     }
2772     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2773       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2774       if (Record.size() < 3 || !OpTy)
2775         return error("Invalid record");
2776       DelayedShuffles.push_back(
2777           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2778       ++NextCstNo;
2779       continue;
2780     }
2781     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2782       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2783       VectorType *OpTy =
2784         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2785       if (Record.size() < 4 || !RTy || !OpTy)
2786         return error("Invalid record");
2787       DelayedShuffles.push_back(
2788           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2789       ++NextCstNo;
2790       continue;
2791     }
2792     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2793       if (Record.size() < 4)
2794         return error("Invalid record");
2795       Type *OpTy = getTypeByID(Record[0]);
2796       if (!OpTy)
2797         return error("Invalid record");
2798       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2799       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2800 
2801       if (OpTy->isFPOrFPVectorTy())
2802         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2803       else
2804         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2805       break;
2806     }
2807     // This maintains backward compatibility, pre-asm dialect keywords.
2808     // Deprecated, but still needed to read old bitcode files.
2809     case bitc::CST_CODE_INLINEASM_OLD: {
2810       if (Record.size() < 2)
2811         return error("Invalid record");
2812       std::string AsmStr, ConstrStr;
2813       bool HasSideEffects = Record[0] & 1;
2814       bool IsAlignStack = Record[0] >> 1;
2815       unsigned AsmStrSize = Record[1];
2816       if (2+AsmStrSize >= Record.size())
2817         return error("Invalid record");
2818       unsigned ConstStrSize = Record[2+AsmStrSize];
2819       if (3+AsmStrSize+ConstStrSize > Record.size())
2820         return error("Invalid record");
2821 
2822       for (unsigned i = 0; i != AsmStrSize; ++i)
2823         AsmStr += (char)Record[2+i];
2824       for (unsigned i = 0; i != ConstStrSize; ++i)
2825         ConstrStr += (char)Record[3+AsmStrSize+i];
2826       UpgradeInlineAsmString(&AsmStr);
2827       // FIXME: support upgrading in opaque pointers mode.
2828       V = InlineAsm::get(
2829           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2830           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2831       break;
2832     }
2833     // This version adds support for the asm dialect keywords (e.g.,
2834     // inteldialect).
2835     case bitc::CST_CODE_INLINEASM_OLD2: {
2836       if (Record.size() < 2)
2837         return error("Invalid record");
2838       std::string AsmStr, ConstrStr;
2839       bool HasSideEffects = Record[0] & 1;
2840       bool IsAlignStack = (Record[0] >> 1) & 1;
2841       unsigned AsmDialect = Record[0] >> 2;
2842       unsigned AsmStrSize = Record[1];
2843       if (2+AsmStrSize >= Record.size())
2844         return error("Invalid record");
2845       unsigned ConstStrSize = Record[2+AsmStrSize];
2846       if (3+AsmStrSize+ConstStrSize > Record.size())
2847         return error("Invalid record");
2848 
2849       for (unsigned i = 0; i != AsmStrSize; ++i)
2850         AsmStr += (char)Record[2+i];
2851       for (unsigned i = 0; i != ConstStrSize; ++i)
2852         ConstrStr += (char)Record[3+AsmStrSize+i];
2853       UpgradeInlineAsmString(&AsmStr);
2854       // FIXME: support upgrading in opaque pointers mode.
2855       V = InlineAsm::get(
2856           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2857           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2858           InlineAsm::AsmDialect(AsmDialect));
2859       break;
2860     }
2861     // This version adds support for the unwind keyword.
2862     case bitc::CST_CODE_INLINEASM_OLD3: {
2863       if (Record.size() < 2)
2864         return error("Invalid record");
2865       unsigned OpNum = 0;
2866       std::string AsmStr, ConstrStr;
2867       bool HasSideEffects = Record[OpNum] & 1;
2868       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2869       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2870       bool CanThrow = (Record[OpNum] >> 3) & 1;
2871       ++OpNum;
2872       unsigned AsmStrSize = Record[OpNum];
2873       ++OpNum;
2874       if (OpNum + AsmStrSize >= Record.size())
2875         return error("Invalid record");
2876       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2877       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2878         return error("Invalid record");
2879 
2880       for (unsigned i = 0; i != AsmStrSize; ++i)
2881         AsmStr += (char)Record[OpNum + i];
2882       ++OpNum;
2883       for (unsigned i = 0; i != ConstStrSize; ++i)
2884         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2885       UpgradeInlineAsmString(&AsmStr);
2886       // FIXME: support upgrading in opaque pointers mode.
2887       V = InlineAsm::get(
2888           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2889           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2890           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2891       break;
2892     }
2893     // This version adds explicit function type.
2894     case bitc::CST_CODE_INLINEASM: {
2895       if (Record.size() < 3)
2896         return error("Invalid record");
2897       unsigned OpNum = 0;
2898       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
2899       ++OpNum;
2900       if (!FnTy)
2901         return error("Invalid record");
2902       std::string AsmStr, ConstrStr;
2903       bool HasSideEffects = Record[OpNum] & 1;
2904       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2905       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2906       bool CanThrow = (Record[OpNum] >> 3) & 1;
2907       ++OpNum;
2908       unsigned AsmStrSize = Record[OpNum];
2909       ++OpNum;
2910       if (OpNum + AsmStrSize >= Record.size())
2911         return error("Invalid record");
2912       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2913       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2914         return error("Invalid record");
2915 
2916       for (unsigned i = 0; i != AsmStrSize; ++i)
2917         AsmStr += (char)Record[OpNum + i];
2918       ++OpNum;
2919       for (unsigned i = 0; i != ConstStrSize; ++i)
2920         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2921       UpgradeInlineAsmString(&AsmStr);
2922       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2923                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2924       break;
2925     }
2926     case bitc::CST_CODE_BLOCKADDRESS:{
2927       if (Record.size() < 3)
2928         return error("Invalid record");
2929       Type *FnTy = getTypeByID(Record[0]);
2930       if (!FnTy)
2931         return error("Invalid record");
2932       Function *Fn =
2933         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2934       if (!Fn)
2935         return error("Invalid record");
2936 
2937       // If the function is already parsed we can insert the block address right
2938       // away.
2939       BasicBlock *BB;
2940       unsigned BBID = Record[2];
2941       if (!BBID)
2942         // Invalid reference to entry block.
2943         return error("Invalid ID");
2944       if (!Fn->empty()) {
2945         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2946         for (size_t I = 0, E = BBID; I != E; ++I) {
2947           if (BBI == BBE)
2948             return error("Invalid ID");
2949           ++BBI;
2950         }
2951         BB = &*BBI;
2952       } else {
2953         // Otherwise insert a placeholder and remember it so it can be inserted
2954         // when the function is parsed.
2955         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2956         if (FwdBBs.empty())
2957           BasicBlockFwdRefQueue.push_back(Fn);
2958         if (FwdBBs.size() < BBID + 1)
2959           FwdBBs.resize(BBID + 1);
2960         if (!FwdBBs[BBID])
2961           FwdBBs[BBID] = BasicBlock::Create(Context);
2962         BB = FwdBBs[BBID];
2963       }
2964       V = BlockAddress::get(Fn, BB);
2965       break;
2966     }
2967     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2968       if (Record.size() < 2)
2969         return error("Invalid record");
2970       Type *GVTy = getTypeByID(Record[0]);
2971       if (!GVTy)
2972         return error("Invalid record");
2973       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2974           ValueList.getConstantFwdRef(Record[1], GVTy));
2975       if (!GV)
2976         return error("Invalid record");
2977 
2978       V = DSOLocalEquivalent::get(GV);
2979       break;
2980     }
2981     case bitc::CST_CODE_NO_CFI_VALUE: {
2982       if (Record.size() < 2)
2983         return error("Invalid record");
2984       Type *GVTy = getTypeByID(Record[0]);
2985       if (!GVTy)
2986         return error("Invalid record");
2987       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2988           ValueList.getConstantFwdRef(Record[1], GVTy));
2989       if (!GV)
2990         return error("Invalid record");
2991       V = NoCFIValue::get(GV);
2992       break;
2993     }
2994     }
2995 
2996     ValueList.assignValue(V, NextCstNo);
2997     ++NextCstNo;
2998   }
2999 }
3000 
3001 Error BitcodeReader::parseUseLists() {
3002   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3003     return Err;
3004 
3005   // Read all the records.
3006   SmallVector<uint64_t, 64> Record;
3007 
3008   while (true) {
3009     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3010     if (!MaybeEntry)
3011       return MaybeEntry.takeError();
3012     BitstreamEntry Entry = MaybeEntry.get();
3013 
3014     switch (Entry.Kind) {
3015     case BitstreamEntry::SubBlock: // Handled for us already.
3016     case BitstreamEntry::Error:
3017       return error("Malformed block");
3018     case BitstreamEntry::EndBlock:
3019       return Error::success();
3020     case BitstreamEntry::Record:
3021       // The interesting case.
3022       break;
3023     }
3024 
3025     // Read a use list record.
3026     Record.clear();
3027     bool IsBB = false;
3028     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3029     if (!MaybeRecord)
3030       return MaybeRecord.takeError();
3031     switch (MaybeRecord.get()) {
3032     default:  // Default behavior: unknown type.
3033       break;
3034     case bitc::USELIST_CODE_BB:
3035       IsBB = true;
3036       LLVM_FALLTHROUGH;
3037     case bitc::USELIST_CODE_DEFAULT: {
3038       unsigned RecordLength = Record.size();
3039       if (RecordLength < 3)
3040         // Records should have at least an ID and two indexes.
3041         return error("Invalid record");
3042       unsigned ID = Record.pop_back_val();
3043 
3044       Value *V;
3045       if (IsBB) {
3046         assert(ID < FunctionBBs.size() && "Basic block not found");
3047         V = FunctionBBs[ID];
3048       } else
3049         V = ValueList[ID];
3050       unsigned NumUses = 0;
3051       SmallDenseMap<const Use *, unsigned, 16> Order;
3052       for (const Use &U : V->materialized_uses()) {
3053         if (++NumUses > Record.size())
3054           break;
3055         Order[&U] = Record[NumUses - 1];
3056       }
3057       if (Order.size() != Record.size() || NumUses > Record.size())
3058         // Mismatches can happen if the functions are being materialized lazily
3059         // (out-of-order), or a value has been upgraded.
3060         break;
3061 
3062       V->sortUseList([&](const Use &L, const Use &R) {
3063         return Order.lookup(&L) < Order.lookup(&R);
3064       });
3065       break;
3066     }
3067     }
3068   }
3069 }
3070 
3071 /// When we see the block for metadata, remember where it is and then skip it.
3072 /// This lets us lazily deserialize the metadata.
3073 Error BitcodeReader::rememberAndSkipMetadata() {
3074   // Save the current stream state.
3075   uint64_t CurBit = Stream.GetCurrentBitNo();
3076   DeferredMetadataInfo.push_back(CurBit);
3077 
3078   // Skip over the block for now.
3079   if (Error Err = Stream.SkipBlock())
3080     return Err;
3081   return Error::success();
3082 }
3083 
3084 Error BitcodeReader::materializeMetadata() {
3085   for (uint64_t BitPos : DeferredMetadataInfo) {
3086     // Move the bit stream to the saved position.
3087     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3088       return JumpFailed;
3089     if (Error Err = MDLoader->parseModuleMetadata())
3090       return Err;
3091   }
3092 
3093   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3094   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3095   // multiple times.
3096   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3097     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3098       NamedMDNode *LinkerOpts =
3099           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3100       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3101         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3102     }
3103   }
3104 
3105   DeferredMetadataInfo.clear();
3106   return Error::success();
3107 }
3108 
3109 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3110 
3111 /// When we see the block for a function body, remember where it is and then
3112 /// skip it.  This lets us lazily deserialize the functions.
3113 Error BitcodeReader::rememberAndSkipFunctionBody() {
3114   // Get the function we are talking about.
3115   if (FunctionsWithBodies.empty())
3116     return error("Insufficient function protos");
3117 
3118   Function *Fn = FunctionsWithBodies.back();
3119   FunctionsWithBodies.pop_back();
3120 
3121   // Save the current stream state.
3122   uint64_t CurBit = Stream.GetCurrentBitNo();
3123   assert(
3124       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3125       "Mismatch between VST and scanned function offsets");
3126   DeferredFunctionInfo[Fn] = CurBit;
3127 
3128   // Skip over the function block for now.
3129   if (Error Err = Stream.SkipBlock())
3130     return Err;
3131   return Error::success();
3132 }
3133 
3134 Error BitcodeReader::globalCleanup() {
3135   // Patch the initializers for globals and aliases up.
3136   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3137     return Err;
3138   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3139     return error("Malformed global initializer set");
3140 
3141   // Look for intrinsic functions which need to be upgraded at some point
3142   // and functions that need to have their function attributes upgraded.
3143   for (Function &F : *TheModule) {
3144     MDLoader->upgradeDebugIntrinsics(F);
3145     Function *NewFn;
3146     if (UpgradeIntrinsicFunction(&F, NewFn))
3147       UpgradedIntrinsics[&F] = NewFn;
3148     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3149       // Some types could be renamed during loading if several modules are
3150       // loaded in the same LLVMContext (LTO scenario). In this case we should
3151       // remangle intrinsics names as well.
3152       RemangledIntrinsics[&F] = Remangled.getValue();
3153     // Look for functions that rely on old function attribute behavior.
3154     UpgradeFunctionAttributes(F);
3155   }
3156 
3157   // Look for global variables which need to be renamed.
3158   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3159   for (GlobalVariable &GV : TheModule->globals())
3160     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3161       UpgradedVariables.emplace_back(&GV, Upgraded);
3162   for (auto &Pair : UpgradedVariables) {
3163     Pair.first->eraseFromParent();
3164     TheModule->getGlobalList().push_back(Pair.second);
3165   }
3166 
3167   // Force deallocation of memory for these vectors to favor the client that
3168   // want lazy deserialization.
3169   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3170   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3171   return Error::success();
3172 }
3173 
3174 /// Support for lazy parsing of function bodies. This is required if we
3175 /// either have an old bitcode file without a VST forward declaration record,
3176 /// or if we have an anonymous function being materialized, since anonymous
3177 /// functions do not have a name and are therefore not in the VST.
3178 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3179   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3180     return JumpFailed;
3181 
3182   if (Stream.AtEndOfStream())
3183     return error("Could not find function in stream");
3184 
3185   if (!SeenFirstFunctionBody)
3186     return error("Trying to materialize functions before seeing function blocks");
3187 
3188   // An old bitcode file with the symbol table at the end would have
3189   // finished the parse greedily.
3190   assert(SeenValueSymbolTable);
3191 
3192   SmallVector<uint64_t, 64> Record;
3193 
3194   while (true) {
3195     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3196     if (!MaybeEntry)
3197       return MaybeEntry.takeError();
3198     llvm::BitstreamEntry Entry = MaybeEntry.get();
3199 
3200     switch (Entry.Kind) {
3201     default:
3202       return error("Expect SubBlock");
3203     case BitstreamEntry::SubBlock:
3204       switch (Entry.ID) {
3205       default:
3206         return error("Expect function block");
3207       case bitc::FUNCTION_BLOCK_ID:
3208         if (Error Err = rememberAndSkipFunctionBody())
3209           return Err;
3210         NextUnreadBit = Stream.GetCurrentBitNo();
3211         return Error::success();
3212       }
3213     }
3214   }
3215 }
3216 
3217 bool BitcodeReaderBase::readBlockInfo() {
3218   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3219       Stream.ReadBlockInfoBlock();
3220   if (!MaybeNewBlockInfo)
3221     return true; // FIXME Handle the error.
3222   Optional<BitstreamBlockInfo> NewBlockInfo =
3223       std::move(MaybeNewBlockInfo.get());
3224   if (!NewBlockInfo)
3225     return true;
3226   BlockInfo = std::move(*NewBlockInfo);
3227   return false;
3228 }
3229 
3230 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3231   // v1: [selection_kind, name]
3232   // v2: [strtab_offset, strtab_size, selection_kind]
3233   StringRef Name;
3234   std::tie(Name, Record) = readNameFromStrtab(Record);
3235 
3236   if (Record.empty())
3237     return error("Invalid record");
3238   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3239   std::string OldFormatName;
3240   if (!UseStrtab) {
3241     if (Record.size() < 2)
3242       return error("Invalid record");
3243     unsigned ComdatNameSize = Record[1];
3244     OldFormatName.reserve(ComdatNameSize);
3245     for (unsigned i = 0; i != ComdatNameSize; ++i)
3246       OldFormatName += (char)Record[2 + i];
3247     Name = OldFormatName;
3248   }
3249   Comdat *C = TheModule->getOrInsertComdat(Name);
3250   C->setSelectionKind(SK);
3251   ComdatList.push_back(C);
3252   return Error::success();
3253 }
3254 
3255 static void inferDSOLocal(GlobalValue *GV) {
3256   // infer dso_local from linkage and visibility if it is not encoded.
3257   if (GV->hasLocalLinkage() ||
3258       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3259     GV->setDSOLocal(true);
3260 }
3261 
3262 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3263   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3264   // visibility, threadlocal, unnamed_addr, externally_initialized,
3265   // dllstorageclass, comdat, attributes, preemption specifier,
3266   // partition strtab offset, partition strtab size] (name in VST)
3267   // v2: [strtab_offset, strtab_size, v1]
3268   StringRef Name;
3269   std::tie(Name, Record) = readNameFromStrtab(Record);
3270 
3271   if (Record.size() < 6)
3272     return error("Invalid record");
3273   Type *Ty = getTypeByID(Record[0]);
3274   if (!Ty)
3275     return error("Invalid record");
3276   bool isConstant = Record[1] & 1;
3277   bool explicitType = Record[1] & 2;
3278   unsigned AddressSpace;
3279   if (explicitType) {
3280     AddressSpace = Record[1] >> 2;
3281   } else {
3282     if (!Ty->isPointerTy())
3283       return error("Invalid type for value");
3284     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3285     Ty = cast<PointerType>(Ty)->getElementType();
3286   }
3287 
3288   uint64_t RawLinkage = Record[3];
3289   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3290   MaybeAlign Alignment;
3291   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3292     return Err;
3293   std::string Section;
3294   if (Record[5]) {
3295     if (Record[5] - 1 >= SectionTable.size())
3296       return error("Invalid ID");
3297     Section = SectionTable[Record[5] - 1];
3298   }
3299   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3300   // Local linkage must have default visibility.
3301   // auto-upgrade `hidden` and `protected` for old bitcode.
3302   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3303     Visibility = getDecodedVisibility(Record[6]);
3304 
3305   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3306   if (Record.size() > 7)
3307     TLM = getDecodedThreadLocalMode(Record[7]);
3308 
3309   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3310   if (Record.size() > 8)
3311     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3312 
3313   bool ExternallyInitialized = false;
3314   if (Record.size() > 9)
3315     ExternallyInitialized = Record[9];
3316 
3317   GlobalVariable *NewGV =
3318       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3319                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3320   NewGV->setAlignment(Alignment);
3321   if (!Section.empty())
3322     NewGV->setSection(Section);
3323   NewGV->setVisibility(Visibility);
3324   NewGV->setUnnamedAddr(UnnamedAddr);
3325 
3326   if (Record.size() > 10)
3327     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3328   else
3329     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3330 
3331   ValueList.push_back(NewGV);
3332 
3333   // Remember which value to use for the global initializer.
3334   if (unsigned InitID = Record[2])
3335     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3336 
3337   if (Record.size() > 11) {
3338     if (unsigned ComdatID = Record[11]) {
3339       if (ComdatID > ComdatList.size())
3340         return error("Invalid global variable comdat ID");
3341       NewGV->setComdat(ComdatList[ComdatID - 1]);
3342     }
3343   } else if (hasImplicitComdat(RawLinkage)) {
3344     ImplicitComdatObjects.insert(NewGV);
3345   }
3346 
3347   if (Record.size() > 12) {
3348     auto AS = getAttributes(Record[12]).getFnAttrs();
3349     NewGV->setAttributes(AS);
3350   }
3351 
3352   if (Record.size() > 13) {
3353     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3354   }
3355   inferDSOLocal(NewGV);
3356 
3357   // Check whether we have enough values to read a partition name.
3358   if (Record.size() > 15)
3359     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3360 
3361   return Error::success();
3362 }
3363 
3364 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3365   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3366   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3367   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3368   // v2: [strtab_offset, strtab_size, v1]
3369   StringRef Name;
3370   std::tie(Name, Record) = readNameFromStrtab(Record);
3371 
3372   if (Record.size() < 8)
3373     return error("Invalid record");
3374   Type *FTy = getTypeByID(Record[0]);
3375   if (!FTy)
3376     return error("Invalid record");
3377   if (auto *PTy = dyn_cast<PointerType>(FTy))
3378     FTy = PTy->getElementType();
3379 
3380   if (!isa<FunctionType>(FTy))
3381     return error("Invalid type for value");
3382   auto CC = static_cast<CallingConv::ID>(Record[1]);
3383   if (CC & ~CallingConv::MaxID)
3384     return error("Invalid calling convention ID");
3385 
3386   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3387   if (Record.size() > 16)
3388     AddrSpace = Record[16];
3389 
3390   Function *Func =
3391       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3392                        AddrSpace, Name, TheModule);
3393 
3394   assert(Func->getFunctionType() == FTy &&
3395          "Incorrect fully specified type provided for function");
3396   FunctionTypes[Func] = cast<FunctionType>(FTy);
3397 
3398   Func->setCallingConv(CC);
3399   bool isProto = Record[2];
3400   uint64_t RawLinkage = Record[3];
3401   Func->setLinkage(getDecodedLinkage(RawLinkage));
3402   Func->setAttributes(getAttributes(Record[4]));
3403 
3404   // Upgrade any old-style byval or sret without a type by propagating the
3405   // argument's pointee type. There should be no opaque pointers where the byval
3406   // type is implicit.
3407   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3408     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3409                                      Attribute::InAlloca}) {
3410       if (!Func->hasParamAttribute(i, Kind))
3411         continue;
3412 
3413       if (Func->getParamAttribute(i, Kind).getValueAsType())
3414         continue;
3415 
3416       Func->removeParamAttr(i, Kind);
3417 
3418       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3419       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3420       Attribute NewAttr;
3421       switch (Kind) {
3422       case Attribute::ByVal:
3423         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3424         break;
3425       case Attribute::StructRet:
3426         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3427         break;
3428       case Attribute::InAlloca:
3429         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3430         break;
3431       default:
3432         llvm_unreachable("not an upgraded type attribute");
3433       }
3434 
3435       Func->addParamAttr(i, NewAttr);
3436     }
3437   }
3438 
3439   MaybeAlign Alignment;
3440   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3441     return Err;
3442   Func->setAlignment(Alignment);
3443   if (Record[6]) {
3444     if (Record[6] - 1 >= SectionTable.size())
3445       return error("Invalid ID");
3446     Func->setSection(SectionTable[Record[6] - 1]);
3447   }
3448   // Local linkage must have default visibility.
3449   // auto-upgrade `hidden` and `protected` for old bitcode.
3450   if (!Func->hasLocalLinkage())
3451     Func->setVisibility(getDecodedVisibility(Record[7]));
3452   if (Record.size() > 8 && Record[8]) {
3453     if (Record[8] - 1 >= GCTable.size())
3454       return error("Invalid ID");
3455     Func->setGC(GCTable[Record[8] - 1]);
3456   }
3457   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3458   if (Record.size() > 9)
3459     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3460   Func->setUnnamedAddr(UnnamedAddr);
3461 
3462   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3463   if (Record.size() > 10)
3464     OperandInfo.Prologue = Record[10];
3465 
3466   if (Record.size() > 11)
3467     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3468   else
3469     upgradeDLLImportExportLinkage(Func, RawLinkage);
3470 
3471   if (Record.size() > 12) {
3472     if (unsigned ComdatID = Record[12]) {
3473       if (ComdatID > ComdatList.size())
3474         return error("Invalid function comdat ID");
3475       Func->setComdat(ComdatList[ComdatID - 1]);
3476     }
3477   } else if (hasImplicitComdat(RawLinkage)) {
3478     ImplicitComdatObjects.insert(Func);
3479   }
3480 
3481   if (Record.size() > 13)
3482     OperandInfo.Prefix = Record[13];
3483 
3484   if (Record.size() > 14)
3485     OperandInfo.PersonalityFn = Record[14];
3486 
3487   if (Record.size() > 15) {
3488     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3489   }
3490   inferDSOLocal(Func);
3491 
3492   // Record[16] is the address space number.
3493 
3494   // Check whether we have enough values to read a partition name. Also make
3495   // sure Strtab has enough values.
3496   if (Record.size() > 18 && Strtab.data() &&
3497       Record[17] + Record[18] <= Strtab.size()) {
3498     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3499   }
3500 
3501   ValueList.push_back(Func);
3502 
3503   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3504     FunctionOperands.push_back(OperandInfo);
3505 
3506   // If this is a function with a body, remember the prototype we are
3507   // creating now, so that we can match up the body with them later.
3508   if (!isProto) {
3509     Func->setIsMaterializable(true);
3510     FunctionsWithBodies.push_back(Func);
3511     DeferredFunctionInfo[Func] = 0;
3512   }
3513   return Error::success();
3514 }
3515 
3516 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3517     unsigned BitCode, ArrayRef<uint64_t> Record) {
3518   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3519   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3520   // dllstorageclass, threadlocal, unnamed_addr,
3521   // preemption specifier] (name in VST)
3522   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3523   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3524   // preemption specifier] (name in VST)
3525   // v2: [strtab_offset, strtab_size, v1]
3526   StringRef Name;
3527   std::tie(Name, Record) = readNameFromStrtab(Record);
3528 
3529   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3530   if (Record.size() < (3 + (unsigned)NewRecord))
3531     return error("Invalid record");
3532   unsigned OpNum = 0;
3533   Type *Ty = getTypeByID(Record[OpNum++]);
3534   if (!Ty)
3535     return error("Invalid record");
3536 
3537   unsigned AddrSpace;
3538   if (!NewRecord) {
3539     auto *PTy = dyn_cast<PointerType>(Ty);
3540     if (!PTy)
3541       return error("Invalid type for value");
3542     Ty = PTy->getElementType();
3543     AddrSpace = PTy->getAddressSpace();
3544   } else {
3545     AddrSpace = Record[OpNum++];
3546   }
3547 
3548   auto Val = Record[OpNum++];
3549   auto Linkage = Record[OpNum++];
3550   GlobalValue *NewGA;
3551   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3552       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3553     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3554                                 TheModule);
3555   else
3556     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3557                                 nullptr, TheModule);
3558 
3559   // Local linkage must have default visibility.
3560   // auto-upgrade `hidden` and `protected` for old bitcode.
3561   if (OpNum != Record.size()) {
3562     auto VisInd = OpNum++;
3563     if (!NewGA->hasLocalLinkage())
3564       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3565   }
3566   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3567       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3568     if (OpNum != Record.size())
3569       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3570     else
3571       upgradeDLLImportExportLinkage(NewGA, Linkage);
3572     if (OpNum != Record.size())
3573       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3574     if (OpNum != Record.size())
3575       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3576   }
3577   if (OpNum != Record.size())
3578     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3579   inferDSOLocal(NewGA);
3580 
3581   // Check whether we have enough values to read a partition name.
3582   if (OpNum + 1 < Record.size()) {
3583     NewGA->setPartition(
3584         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3585     OpNum += 2;
3586   }
3587 
3588   ValueList.push_back(NewGA);
3589   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3590   return Error::success();
3591 }
3592 
3593 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3594                                  bool ShouldLazyLoadMetadata,
3595                                  DataLayoutCallbackTy DataLayoutCallback) {
3596   if (ResumeBit) {
3597     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3598       return JumpFailed;
3599   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3600     return Err;
3601 
3602   SmallVector<uint64_t, 64> Record;
3603 
3604   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3605   // finalize the datalayout before we run any of that code.
3606   bool ResolvedDataLayout = false;
3607   auto ResolveDataLayout = [&] {
3608     if (ResolvedDataLayout)
3609       return;
3610 
3611     // datalayout and triple can't be parsed after this point.
3612     ResolvedDataLayout = true;
3613 
3614     // Upgrade data layout string.
3615     std::string DL = llvm::UpgradeDataLayoutString(
3616         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3617     TheModule->setDataLayout(DL);
3618 
3619     if (auto LayoutOverride =
3620             DataLayoutCallback(TheModule->getTargetTriple()))
3621       TheModule->setDataLayout(*LayoutOverride);
3622   };
3623 
3624   // Read all the records for this module.
3625   while (true) {
3626     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3627     if (!MaybeEntry)
3628       return MaybeEntry.takeError();
3629     llvm::BitstreamEntry Entry = MaybeEntry.get();
3630 
3631     switch (Entry.Kind) {
3632     case BitstreamEntry::Error:
3633       return error("Malformed block");
3634     case BitstreamEntry::EndBlock:
3635       ResolveDataLayout();
3636       return globalCleanup();
3637 
3638     case BitstreamEntry::SubBlock:
3639       switch (Entry.ID) {
3640       default:  // Skip unknown content.
3641         if (Error Err = Stream.SkipBlock())
3642           return Err;
3643         break;
3644       case bitc::BLOCKINFO_BLOCK_ID:
3645         if (readBlockInfo())
3646           return error("Malformed block");
3647         break;
3648       case bitc::PARAMATTR_BLOCK_ID:
3649         if (Error Err = parseAttributeBlock())
3650           return Err;
3651         break;
3652       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3653         if (Error Err = parseAttributeGroupBlock())
3654           return Err;
3655         break;
3656       case bitc::TYPE_BLOCK_ID_NEW:
3657         if (Error Err = parseTypeTable())
3658           return Err;
3659         break;
3660       case bitc::VALUE_SYMTAB_BLOCK_ID:
3661         if (!SeenValueSymbolTable) {
3662           // Either this is an old form VST without function index and an
3663           // associated VST forward declaration record (which would have caused
3664           // the VST to be jumped to and parsed before it was encountered
3665           // normally in the stream), or there were no function blocks to
3666           // trigger an earlier parsing of the VST.
3667           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3668           if (Error Err = parseValueSymbolTable())
3669             return Err;
3670           SeenValueSymbolTable = true;
3671         } else {
3672           // We must have had a VST forward declaration record, which caused
3673           // the parser to jump to and parse the VST earlier.
3674           assert(VSTOffset > 0);
3675           if (Error Err = Stream.SkipBlock())
3676             return Err;
3677         }
3678         break;
3679       case bitc::CONSTANTS_BLOCK_ID:
3680         if (Error Err = parseConstants())
3681           return Err;
3682         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3683           return Err;
3684         break;
3685       case bitc::METADATA_BLOCK_ID:
3686         if (ShouldLazyLoadMetadata) {
3687           if (Error Err = rememberAndSkipMetadata())
3688             return Err;
3689           break;
3690         }
3691         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3692         if (Error Err = MDLoader->parseModuleMetadata())
3693           return Err;
3694         break;
3695       case bitc::METADATA_KIND_BLOCK_ID:
3696         if (Error Err = MDLoader->parseMetadataKinds())
3697           return Err;
3698         break;
3699       case bitc::FUNCTION_BLOCK_ID:
3700         ResolveDataLayout();
3701 
3702         // If this is the first function body we've seen, reverse the
3703         // FunctionsWithBodies list.
3704         if (!SeenFirstFunctionBody) {
3705           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3706           if (Error Err = globalCleanup())
3707             return Err;
3708           SeenFirstFunctionBody = true;
3709         }
3710 
3711         if (VSTOffset > 0) {
3712           // If we have a VST forward declaration record, make sure we
3713           // parse the VST now if we haven't already. It is needed to
3714           // set up the DeferredFunctionInfo vector for lazy reading.
3715           if (!SeenValueSymbolTable) {
3716             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3717               return Err;
3718             SeenValueSymbolTable = true;
3719             // Fall through so that we record the NextUnreadBit below.
3720             // This is necessary in case we have an anonymous function that
3721             // is later materialized. Since it will not have a VST entry we
3722             // need to fall back to the lazy parse to find its offset.
3723           } else {
3724             // If we have a VST forward declaration record, but have already
3725             // parsed the VST (just above, when the first function body was
3726             // encountered here), then we are resuming the parse after
3727             // materializing functions. The ResumeBit points to the
3728             // start of the last function block recorded in the
3729             // DeferredFunctionInfo map. Skip it.
3730             if (Error Err = Stream.SkipBlock())
3731               return Err;
3732             continue;
3733           }
3734         }
3735 
3736         // Support older bitcode files that did not have the function
3737         // index in the VST, nor a VST forward declaration record, as
3738         // well as anonymous functions that do not have VST entries.
3739         // Build the DeferredFunctionInfo vector on the fly.
3740         if (Error Err = rememberAndSkipFunctionBody())
3741           return Err;
3742 
3743         // Suspend parsing when we reach the function bodies. Subsequent
3744         // materialization calls will resume it when necessary. If the bitcode
3745         // file is old, the symbol table will be at the end instead and will not
3746         // have been seen yet. In this case, just finish the parse now.
3747         if (SeenValueSymbolTable) {
3748           NextUnreadBit = Stream.GetCurrentBitNo();
3749           // After the VST has been parsed, we need to make sure intrinsic name
3750           // are auto-upgraded.
3751           return globalCleanup();
3752         }
3753         break;
3754       case bitc::USELIST_BLOCK_ID:
3755         if (Error Err = parseUseLists())
3756           return Err;
3757         break;
3758       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3759         if (Error Err = parseOperandBundleTags())
3760           return Err;
3761         break;
3762       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3763         if (Error Err = parseSyncScopeNames())
3764           return Err;
3765         break;
3766       }
3767       continue;
3768 
3769     case BitstreamEntry::Record:
3770       // The interesting case.
3771       break;
3772     }
3773 
3774     // Read a record.
3775     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3776     if (!MaybeBitCode)
3777       return MaybeBitCode.takeError();
3778     switch (unsigned BitCode = MaybeBitCode.get()) {
3779     default: break;  // Default behavior, ignore unknown content.
3780     case bitc::MODULE_CODE_VERSION: {
3781       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3782       if (!VersionOrErr)
3783         return VersionOrErr.takeError();
3784       UseRelativeIDs = *VersionOrErr >= 1;
3785       break;
3786     }
3787     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3788       if (ResolvedDataLayout)
3789         return error("target triple too late in module");
3790       std::string S;
3791       if (convertToString(Record, 0, S))
3792         return error("Invalid record");
3793       TheModule->setTargetTriple(S);
3794       break;
3795     }
3796     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3797       if (ResolvedDataLayout)
3798         return error("datalayout too late in module");
3799       std::string S;
3800       if (convertToString(Record, 0, S))
3801         return error("Invalid record");
3802       TheModule->setDataLayout(S);
3803       break;
3804     }
3805     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3806       std::string S;
3807       if (convertToString(Record, 0, S))
3808         return error("Invalid record");
3809       TheModule->setModuleInlineAsm(S);
3810       break;
3811     }
3812     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3813       // Deprecated, but still needed to read old bitcode files.
3814       std::string S;
3815       if (convertToString(Record, 0, S))
3816         return error("Invalid record");
3817       // Ignore value.
3818       break;
3819     }
3820     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3821       std::string S;
3822       if (convertToString(Record, 0, S))
3823         return error("Invalid record");
3824       SectionTable.push_back(S);
3825       break;
3826     }
3827     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3828       std::string S;
3829       if (convertToString(Record, 0, S))
3830         return error("Invalid record");
3831       GCTable.push_back(S);
3832       break;
3833     }
3834     case bitc::MODULE_CODE_COMDAT:
3835       if (Error Err = parseComdatRecord(Record))
3836         return Err;
3837       break;
3838     case bitc::MODULE_CODE_GLOBALVAR:
3839       if (Error Err = parseGlobalVarRecord(Record))
3840         return Err;
3841       break;
3842     case bitc::MODULE_CODE_FUNCTION:
3843       ResolveDataLayout();
3844       if (Error Err = parseFunctionRecord(Record))
3845         return Err;
3846       break;
3847     case bitc::MODULE_CODE_IFUNC:
3848     case bitc::MODULE_CODE_ALIAS:
3849     case bitc::MODULE_CODE_ALIAS_OLD:
3850       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3851         return Err;
3852       break;
3853     /// MODULE_CODE_VSTOFFSET: [offset]
3854     case bitc::MODULE_CODE_VSTOFFSET:
3855       if (Record.empty())
3856         return error("Invalid record");
3857       // Note that we subtract 1 here because the offset is relative to one word
3858       // before the start of the identification or module block, which was
3859       // historically always the start of the regular bitcode header.
3860       VSTOffset = Record[0] - 1;
3861       break;
3862     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3863     case bitc::MODULE_CODE_SOURCE_FILENAME:
3864       SmallString<128> ValueName;
3865       if (convertToString(Record, 0, ValueName))
3866         return error("Invalid record");
3867       TheModule->setSourceFileName(ValueName);
3868       break;
3869     }
3870     Record.clear();
3871   }
3872 }
3873 
3874 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3875                                       bool IsImporting,
3876                                       DataLayoutCallbackTy DataLayoutCallback) {
3877   TheModule = M;
3878   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3879                             [&](unsigned ID) { return getTypeByID(ID); });
3880   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3881 }
3882 
3883 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3884   if (!isa<PointerType>(PtrType))
3885     return error("Load/Store operand is not a pointer type");
3886 
3887   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3888     return error("Explicit load/store type does not match pointee "
3889                  "type of pointer operand");
3890   if (!PointerType::isLoadableOrStorableType(ValType))
3891     return error("Cannot load/store from pointer");
3892   return Error::success();
3893 }
3894 
3895 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3896                                             ArrayRef<Type *> ArgsTys) {
3897   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3898     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3899                                      Attribute::InAlloca}) {
3900       if (!CB->paramHasAttr(i, Kind) ||
3901           CB->getParamAttr(i, Kind).getValueAsType())
3902         continue;
3903 
3904       CB->removeParamAttr(i, Kind);
3905 
3906       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3907       Attribute NewAttr;
3908       switch (Kind) {
3909       case Attribute::ByVal:
3910         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3911         break;
3912       case Attribute::StructRet:
3913         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3914         break;
3915       case Attribute::InAlloca:
3916         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3917         break;
3918       default:
3919         llvm_unreachable("not an upgraded type attribute");
3920       }
3921 
3922       CB->addParamAttr(i, NewAttr);
3923     }
3924   }
3925 
3926   if (CB->isInlineAsm()) {
3927     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
3928     unsigned ArgNo = 0;
3929     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3930       if (!CI.hasArg())
3931         continue;
3932 
3933       if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) {
3934         Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType();
3935         CB->addParamAttr(
3936             ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
3937       }
3938 
3939       ArgNo++;
3940     }
3941   }
3942 
3943   switch (CB->getIntrinsicID()) {
3944   case Intrinsic::preserve_array_access_index:
3945   case Intrinsic::preserve_struct_access_index:
3946     if (!CB->getAttributes().getParamElementType(0)) {
3947       Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3948       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3949       CB->addParamAttr(0, NewAttr);
3950     }
3951     break;
3952   default:
3953     break;
3954   }
3955 }
3956 
3957 /// Lazily parse the specified function body block.
3958 Error BitcodeReader::parseFunctionBody(Function *F) {
3959   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3960     return Err;
3961 
3962   // Unexpected unresolved metadata when parsing function.
3963   if (MDLoader->hasFwdRefs())
3964     return error("Invalid function metadata: incoming forward references");
3965 
3966   InstructionList.clear();
3967   unsigned ModuleValueListSize = ValueList.size();
3968   unsigned ModuleMDLoaderSize = MDLoader->size();
3969 
3970   // Add all the function arguments to the value table.
3971 #ifndef NDEBUG
3972   unsigned ArgNo = 0;
3973   FunctionType *FTy = FunctionTypes[F];
3974 #endif
3975   for (Argument &I : F->args()) {
3976     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3977            "Incorrect fully specified type for Function Argument");
3978     ValueList.push_back(&I);
3979   }
3980   unsigned NextValueNo = ValueList.size();
3981   BasicBlock *CurBB = nullptr;
3982   unsigned CurBBNo = 0;
3983 
3984   DebugLoc LastLoc;
3985   auto getLastInstruction = [&]() -> Instruction * {
3986     if (CurBB && !CurBB->empty())
3987       return &CurBB->back();
3988     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3989              !FunctionBBs[CurBBNo - 1]->empty())
3990       return &FunctionBBs[CurBBNo - 1]->back();
3991     return nullptr;
3992   };
3993 
3994   std::vector<OperandBundleDef> OperandBundles;
3995 
3996   // Read all the records.
3997   SmallVector<uint64_t, 64> Record;
3998 
3999   while (true) {
4000     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4001     if (!MaybeEntry)
4002       return MaybeEntry.takeError();
4003     llvm::BitstreamEntry Entry = MaybeEntry.get();
4004 
4005     switch (Entry.Kind) {
4006     case BitstreamEntry::Error:
4007       return error("Malformed block");
4008     case BitstreamEntry::EndBlock:
4009       goto OutOfRecordLoop;
4010 
4011     case BitstreamEntry::SubBlock:
4012       switch (Entry.ID) {
4013       default:  // Skip unknown content.
4014         if (Error Err = Stream.SkipBlock())
4015           return Err;
4016         break;
4017       case bitc::CONSTANTS_BLOCK_ID:
4018         if (Error Err = parseConstants())
4019           return Err;
4020         NextValueNo = ValueList.size();
4021         break;
4022       case bitc::VALUE_SYMTAB_BLOCK_ID:
4023         if (Error Err = parseValueSymbolTable())
4024           return Err;
4025         break;
4026       case bitc::METADATA_ATTACHMENT_ID:
4027         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4028           return Err;
4029         break;
4030       case bitc::METADATA_BLOCK_ID:
4031         assert(DeferredMetadataInfo.empty() &&
4032                "Must read all module-level metadata before function-level");
4033         if (Error Err = MDLoader->parseFunctionMetadata())
4034           return Err;
4035         break;
4036       case bitc::USELIST_BLOCK_ID:
4037         if (Error Err = parseUseLists())
4038           return Err;
4039         break;
4040       }
4041       continue;
4042 
4043     case BitstreamEntry::Record:
4044       // The interesting case.
4045       break;
4046     }
4047 
4048     // Read a record.
4049     Record.clear();
4050     Instruction *I = nullptr;
4051     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4052     if (!MaybeBitCode)
4053       return MaybeBitCode.takeError();
4054     switch (unsigned BitCode = MaybeBitCode.get()) {
4055     default: // Default behavior: reject
4056       return error("Invalid value");
4057     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4058       if (Record.empty() || Record[0] == 0)
4059         return error("Invalid record");
4060       // Create all the basic blocks for the function.
4061       FunctionBBs.resize(Record[0]);
4062 
4063       // See if anything took the address of blocks in this function.
4064       auto BBFRI = BasicBlockFwdRefs.find(F);
4065       if (BBFRI == BasicBlockFwdRefs.end()) {
4066         for (BasicBlock *&BB : FunctionBBs)
4067           BB = BasicBlock::Create(Context, "", F);
4068       } else {
4069         auto &BBRefs = BBFRI->second;
4070         // Check for invalid basic block references.
4071         if (BBRefs.size() > FunctionBBs.size())
4072           return error("Invalid ID");
4073         assert(!BBRefs.empty() && "Unexpected empty array");
4074         assert(!BBRefs.front() && "Invalid reference to entry block");
4075         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4076              ++I)
4077           if (I < RE && BBRefs[I]) {
4078             BBRefs[I]->insertInto(F);
4079             FunctionBBs[I] = BBRefs[I];
4080           } else {
4081             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4082           }
4083 
4084         // Erase from the table.
4085         BasicBlockFwdRefs.erase(BBFRI);
4086       }
4087 
4088       CurBB = FunctionBBs[0];
4089       continue;
4090     }
4091 
4092     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4093       // This record indicates that the last instruction is at the same
4094       // location as the previous instruction with a location.
4095       I = getLastInstruction();
4096 
4097       if (!I)
4098         return error("Invalid record");
4099       I->setDebugLoc(LastLoc);
4100       I = nullptr;
4101       continue;
4102 
4103     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4104       I = getLastInstruction();
4105       if (!I || Record.size() < 4)
4106         return error("Invalid record");
4107 
4108       unsigned Line = Record[0], Col = Record[1];
4109       unsigned ScopeID = Record[2], IAID = Record[3];
4110       bool isImplicitCode = Record.size() == 5 && Record[4];
4111 
4112       MDNode *Scope = nullptr, *IA = nullptr;
4113       if (ScopeID) {
4114         Scope = dyn_cast_or_null<MDNode>(
4115             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4116         if (!Scope)
4117           return error("Invalid record");
4118       }
4119       if (IAID) {
4120         IA = dyn_cast_or_null<MDNode>(
4121             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4122         if (!IA)
4123           return error("Invalid record");
4124       }
4125       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4126                                 isImplicitCode);
4127       I->setDebugLoc(LastLoc);
4128       I = nullptr;
4129       continue;
4130     }
4131     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4132       unsigned OpNum = 0;
4133       Value *LHS;
4134       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4135           OpNum+1 > Record.size())
4136         return error("Invalid record");
4137 
4138       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4139       if (Opc == -1)
4140         return error("Invalid record");
4141       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4142       InstructionList.push_back(I);
4143       if (OpNum < Record.size()) {
4144         if (isa<FPMathOperator>(I)) {
4145           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4146           if (FMF.any())
4147             I->setFastMathFlags(FMF);
4148         }
4149       }
4150       break;
4151     }
4152     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4153       unsigned OpNum = 0;
4154       Value *LHS, *RHS;
4155       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4156           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4157           OpNum+1 > Record.size())
4158         return error("Invalid record");
4159 
4160       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4161       if (Opc == -1)
4162         return error("Invalid record");
4163       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4164       InstructionList.push_back(I);
4165       if (OpNum < Record.size()) {
4166         if (Opc == Instruction::Add ||
4167             Opc == Instruction::Sub ||
4168             Opc == Instruction::Mul ||
4169             Opc == Instruction::Shl) {
4170           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4171             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4172           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4173             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4174         } else if (Opc == Instruction::SDiv ||
4175                    Opc == Instruction::UDiv ||
4176                    Opc == Instruction::LShr ||
4177                    Opc == Instruction::AShr) {
4178           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4179             cast<BinaryOperator>(I)->setIsExact(true);
4180         } else if (isa<FPMathOperator>(I)) {
4181           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4182           if (FMF.any())
4183             I->setFastMathFlags(FMF);
4184         }
4185 
4186       }
4187       break;
4188     }
4189     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4190       unsigned OpNum = 0;
4191       Value *Op;
4192       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4193           OpNum+2 != Record.size())
4194         return error("Invalid record");
4195 
4196       Type *ResTy = getTypeByID(Record[OpNum]);
4197       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4198       if (Opc == -1 || !ResTy)
4199         return error("Invalid record");
4200       Instruction *Temp = nullptr;
4201       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4202         if (Temp) {
4203           InstructionList.push_back(Temp);
4204           assert(CurBB && "No current BB?");
4205           CurBB->getInstList().push_back(Temp);
4206         }
4207       } else {
4208         auto CastOp = (Instruction::CastOps)Opc;
4209         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4210           return error("Invalid cast");
4211         I = CastInst::Create(CastOp, Op, ResTy);
4212       }
4213       InstructionList.push_back(I);
4214       break;
4215     }
4216     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4217     case bitc::FUNC_CODE_INST_GEP_OLD:
4218     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4219       unsigned OpNum = 0;
4220 
4221       Type *Ty;
4222       bool InBounds;
4223 
4224       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4225         InBounds = Record[OpNum++];
4226         Ty = getTypeByID(Record[OpNum++]);
4227       } else {
4228         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4229         Ty = nullptr;
4230       }
4231 
4232       Value *BasePtr;
4233       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4234         return error("Invalid record");
4235 
4236       if (!Ty) {
4237         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4238                  ->getElementType();
4239       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4240                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4241         return error(
4242             "Explicit gep type does not match pointee type of pointer operand");
4243       }
4244 
4245       SmallVector<Value*, 16> GEPIdx;
4246       while (OpNum != Record.size()) {
4247         Value *Op;
4248         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4249           return error("Invalid record");
4250         GEPIdx.push_back(Op);
4251       }
4252 
4253       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4254 
4255       InstructionList.push_back(I);
4256       if (InBounds)
4257         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4258       break;
4259     }
4260 
4261     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4262                                        // EXTRACTVAL: [opty, opval, n x indices]
4263       unsigned OpNum = 0;
4264       Value *Agg;
4265       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4266         return error("Invalid record");
4267       Type *Ty = Agg->getType();
4268 
4269       unsigned RecSize = Record.size();
4270       if (OpNum == RecSize)
4271         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4272 
4273       SmallVector<unsigned, 4> EXTRACTVALIdx;
4274       for (; OpNum != RecSize; ++OpNum) {
4275         bool IsArray = Ty->isArrayTy();
4276         bool IsStruct = Ty->isStructTy();
4277         uint64_t Index = Record[OpNum];
4278 
4279         if (!IsStruct && !IsArray)
4280           return error("EXTRACTVAL: Invalid type");
4281         if ((unsigned)Index != Index)
4282           return error("Invalid value");
4283         if (IsStruct && Index >= Ty->getStructNumElements())
4284           return error("EXTRACTVAL: Invalid struct index");
4285         if (IsArray && Index >= Ty->getArrayNumElements())
4286           return error("EXTRACTVAL: Invalid array index");
4287         EXTRACTVALIdx.push_back((unsigned)Index);
4288 
4289         if (IsStruct)
4290           Ty = Ty->getStructElementType(Index);
4291         else
4292           Ty = Ty->getArrayElementType();
4293       }
4294 
4295       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4296       InstructionList.push_back(I);
4297       break;
4298     }
4299 
4300     case bitc::FUNC_CODE_INST_INSERTVAL: {
4301                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4302       unsigned OpNum = 0;
4303       Value *Agg;
4304       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4305         return error("Invalid record");
4306       Value *Val;
4307       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4308         return error("Invalid record");
4309 
4310       unsigned RecSize = Record.size();
4311       if (OpNum == RecSize)
4312         return error("INSERTVAL: Invalid instruction with 0 indices");
4313 
4314       SmallVector<unsigned, 4> INSERTVALIdx;
4315       Type *CurTy = Agg->getType();
4316       for (; OpNum != RecSize; ++OpNum) {
4317         bool IsArray = CurTy->isArrayTy();
4318         bool IsStruct = CurTy->isStructTy();
4319         uint64_t Index = Record[OpNum];
4320 
4321         if (!IsStruct && !IsArray)
4322           return error("INSERTVAL: Invalid type");
4323         if ((unsigned)Index != Index)
4324           return error("Invalid value");
4325         if (IsStruct && Index >= CurTy->getStructNumElements())
4326           return error("INSERTVAL: Invalid struct index");
4327         if (IsArray && Index >= CurTy->getArrayNumElements())
4328           return error("INSERTVAL: Invalid array index");
4329 
4330         INSERTVALIdx.push_back((unsigned)Index);
4331         if (IsStruct)
4332           CurTy = CurTy->getStructElementType(Index);
4333         else
4334           CurTy = CurTy->getArrayElementType();
4335       }
4336 
4337       if (CurTy != Val->getType())
4338         return error("Inserted value type doesn't match aggregate type");
4339 
4340       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4341       InstructionList.push_back(I);
4342       break;
4343     }
4344 
4345     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4346       // obsolete form of select
4347       // handles select i1 ... in old bitcode
4348       unsigned OpNum = 0;
4349       Value *TrueVal, *FalseVal, *Cond;
4350       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4351           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4352           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4353         return error("Invalid record");
4354 
4355       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4356       InstructionList.push_back(I);
4357       break;
4358     }
4359 
4360     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4361       // new form of select
4362       // handles select i1 or select [N x i1]
4363       unsigned OpNum = 0;
4364       Value *TrueVal, *FalseVal, *Cond;
4365       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4366           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4367           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4368         return error("Invalid record");
4369 
4370       // select condition can be either i1 or [N x i1]
4371       if (VectorType* vector_type =
4372           dyn_cast<VectorType>(Cond->getType())) {
4373         // expect <n x i1>
4374         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4375           return error("Invalid type for value");
4376       } else {
4377         // expect i1
4378         if (Cond->getType() != Type::getInt1Ty(Context))
4379           return error("Invalid type for value");
4380       }
4381 
4382       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4383       InstructionList.push_back(I);
4384       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4385         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4386         if (FMF.any())
4387           I->setFastMathFlags(FMF);
4388       }
4389       break;
4390     }
4391 
4392     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4393       unsigned OpNum = 0;
4394       Value *Vec, *Idx;
4395       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4396           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4397         return error("Invalid record");
4398       if (!Vec->getType()->isVectorTy())
4399         return error("Invalid type for value");
4400       I = ExtractElementInst::Create(Vec, Idx);
4401       InstructionList.push_back(I);
4402       break;
4403     }
4404 
4405     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4406       unsigned OpNum = 0;
4407       Value *Vec, *Elt, *Idx;
4408       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4409         return error("Invalid record");
4410       if (!Vec->getType()->isVectorTy())
4411         return error("Invalid type for value");
4412       if (popValue(Record, OpNum, NextValueNo,
4413                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4414           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4415         return error("Invalid record");
4416       I = InsertElementInst::Create(Vec, Elt, Idx);
4417       InstructionList.push_back(I);
4418       break;
4419     }
4420 
4421     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4422       unsigned OpNum = 0;
4423       Value *Vec1, *Vec2, *Mask;
4424       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4425           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4426         return error("Invalid record");
4427 
4428       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4429         return error("Invalid record");
4430       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4431         return error("Invalid type for value");
4432 
4433       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4434       InstructionList.push_back(I);
4435       break;
4436     }
4437 
4438     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4439       // Old form of ICmp/FCmp returning bool
4440       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4441       // both legal on vectors but had different behaviour.
4442     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4443       // FCmp/ICmp returning bool or vector of bool
4444 
4445       unsigned OpNum = 0;
4446       Value *LHS, *RHS;
4447       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4448           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4449         return error("Invalid record");
4450 
4451       if (OpNum >= Record.size())
4452         return error(
4453             "Invalid record: operand number exceeded available operands");
4454 
4455       unsigned PredVal = Record[OpNum];
4456       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4457       FastMathFlags FMF;
4458       if (IsFP && Record.size() > OpNum+1)
4459         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4460 
4461       if (OpNum+1 != Record.size())
4462         return error("Invalid record");
4463 
4464       if (LHS->getType()->isFPOrFPVectorTy())
4465         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4466       else
4467         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4468 
4469       if (FMF.any())
4470         I->setFastMathFlags(FMF);
4471       InstructionList.push_back(I);
4472       break;
4473     }
4474 
4475     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4476       {
4477         unsigned Size = Record.size();
4478         if (Size == 0) {
4479           I = ReturnInst::Create(Context);
4480           InstructionList.push_back(I);
4481           break;
4482         }
4483 
4484         unsigned OpNum = 0;
4485         Value *Op = nullptr;
4486         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4487           return error("Invalid record");
4488         if (OpNum != Record.size())
4489           return error("Invalid record");
4490 
4491         I = ReturnInst::Create(Context, Op);
4492         InstructionList.push_back(I);
4493         break;
4494       }
4495     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4496       if (Record.size() != 1 && Record.size() != 3)
4497         return error("Invalid record");
4498       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4499       if (!TrueDest)
4500         return error("Invalid record");
4501 
4502       if (Record.size() == 1) {
4503         I = BranchInst::Create(TrueDest);
4504         InstructionList.push_back(I);
4505       }
4506       else {
4507         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4508         Value *Cond = getValue(Record, 2, NextValueNo,
4509                                Type::getInt1Ty(Context));
4510         if (!FalseDest || !Cond)
4511           return error("Invalid record");
4512         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4513         InstructionList.push_back(I);
4514       }
4515       break;
4516     }
4517     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4518       if (Record.size() != 1 && Record.size() != 2)
4519         return error("Invalid record");
4520       unsigned Idx = 0;
4521       Value *CleanupPad =
4522           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4523       if (!CleanupPad)
4524         return error("Invalid record");
4525       BasicBlock *UnwindDest = nullptr;
4526       if (Record.size() == 2) {
4527         UnwindDest = getBasicBlock(Record[Idx++]);
4528         if (!UnwindDest)
4529           return error("Invalid record");
4530       }
4531 
4532       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4533       InstructionList.push_back(I);
4534       break;
4535     }
4536     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4537       if (Record.size() != 2)
4538         return error("Invalid record");
4539       unsigned Idx = 0;
4540       Value *CatchPad =
4541           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4542       if (!CatchPad)
4543         return error("Invalid record");
4544       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4545       if (!BB)
4546         return error("Invalid record");
4547 
4548       I = CatchReturnInst::Create(CatchPad, BB);
4549       InstructionList.push_back(I);
4550       break;
4551     }
4552     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4553       // We must have, at minimum, the outer scope and the number of arguments.
4554       if (Record.size() < 2)
4555         return error("Invalid record");
4556 
4557       unsigned Idx = 0;
4558 
4559       Value *ParentPad =
4560           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4561 
4562       unsigned NumHandlers = Record[Idx++];
4563 
4564       SmallVector<BasicBlock *, 2> Handlers;
4565       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4566         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4567         if (!BB)
4568           return error("Invalid record");
4569         Handlers.push_back(BB);
4570       }
4571 
4572       BasicBlock *UnwindDest = nullptr;
4573       if (Idx + 1 == Record.size()) {
4574         UnwindDest = getBasicBlock(Record[Idx++]);
4575         if (!UnwindDest)
4576           return error("Invalid record");
4577       }
4578 
4579       if (Record.size() != Idx)
4580         return error("Invalid record");
4581 
4582       auto *CatchSwitch =
4583           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4584       for (BasicBlock *Handler : Handlers)
4585         CatchSwitch->addHandler(Handler);
4586       I = CatchSwitch;
4587       InstructionList.push_back(I);
4588       break;
4589     }
4590     case bitc::FUNC_CODE_INST_CATCHPAD:
4591     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4592       // We must have, at minimum, the outer scope and the number of arguments.
4593       if (Record.size() < 2)
4594         return error("Invalid record");
4595 
4596       unsigned Idx = 0;
4597 
4598       Value *ParentPad =
4599           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4600 
4601       unsigned NumArgOperands = Record[Idx++];
4602 
4603       SmallVector<Value *, 2> Args;
4604       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4605         Value *Val;
4606         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4607           return error("Invalid record");
4608         Args.push_back(Val);
4609       }
4610 
4611       if (Record.size() != Idx)
4612         return error("Invalid record");
4613 
4614       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4615         I = CleanupPadInst::Create(ParentPad, Args);
4616       else
4617         I = CatchPadInst::Create(ParentPad, Args);
4618       InstructionList.push_back(I);
4619       break;
4620     }
4621     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4622       // Check magic
4623       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4624         // "New" SwitchInst format with case ranges. The changes to write this
4625         // format were reverted but we still recognize bitcode that uses it.
4626         // Hopefully someday we will have support for case ranges and can use
4627         // this format again.
4628 
4629         Type *OpTy = getTypeByID(Record[1]);
4630         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4631 
4632         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4633         BasicBlock *Default = getBasicBlock(Record[3]);
4634         if (!OpTy || !Cond || !Default)
4635           return error("Invalid record");
4636 
4637         unsigned NumCases = Record[4];
4638 
4639         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4640         InstructionList.push_back(SI);
4641 
4642         unsigned CurIdx = 5;
4643         for (unsigned i = 0; i != NumCases; ++i) {
4644           SmallVector<ConstantInt*, 1> CaseVals;
4645           unsigned NumItems = Record[CurIdx++];
4646           for (unsigned ci = 0; ci != NumItems; ++ci) {
4647             bool isSingleNumber = Record[CurIdx++];
4648 
4649             APInt Low;
4650             unsigned ActiveWords = 1;
4651             if (ValueBitWidth > 64)
4652               ActiveWords = Record[CurIdx++];
4653             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4654                                 ValueBitWidth);
4655             CurIdx += ActiveWords;
4656 
4657             if (!isSingleNumber) {
4658               ActiveWords = 1;
4659               if (ValueBitWidth > 64)
4660                 ActiveWords = Record[CurIdx++];
4661               APInt High = readWideAPInt(
4662                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4663               CurIdx += ActiveWords;
4664 
4665               // FIXME: It is not clear whether values in the range should be
4666               // compared as signed or unsigned values. The partially
4667               // implemented changes that used this format in the past used
4668               // unsigned comparisons.
4669               for ( ; Low.ule(High); ++Low)
4670                 CaseVals.push_back(ConstantInt::get(Context, Low));
4671             } else
4672               CaseVals.push_back(ConstantInt::get(Context, Low));
4673           }
4674           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4675           for (ConstantInt *Cst : CaseVals)
4676             SI->addCase(Cst, DestBB);
4677         }
4678         I = SI;
4679         break;
4680       }
4681 
4682       // Old SwitchInst format without case ranges.
4683 
4684       if (Record.size() < 3 || (Record.size() & 1) == 0)
4685         return error("Invalid record");
4686       Type *OpTy = getTypeByID(Record[0]);
4687       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4688       BasicBlock *Default = getBasicBlock(Record[2]);
4689       if (!OpTy || !Cond || !Default)
4690         return error("Invalid record");
4691       unsigned NumCases = (Record.size()-3)/2;
4692       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4693       InstructionList.push_back(SI);
4694       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4695         ConstantInt *CaseVal =
4696           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4697         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4698         if (!CaseVal || !DestBB) {
4699           delete SI;
4700           return error("Invalid record");
4701         }
4702         SI->addCase(CaseVal, DestBB);
4703       }
4704       I = SI;
4705       break;
4706     }
4707     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4708       if (Record.size() < 2)
4709         return error("Invalid record");
4710       Type *OpTy = getTypeByID(Record[0]);
4711       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4712       if (!OpTy || !Address)
4713         return error("Invalid record");
4714       unsigned NumDests = Record.size()-2;
4715       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4716       InstructionList.push_back(IBI);
4717       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4718         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4719           IBI->addDestination(DestBB);
4720         } else {
4721           delete IBI;
4722           return error("Invalid record");
4723         }
4724       }
4725       I = IBI;
4726       break;
4727     }
4728 
4729     case bitc::FUNC_CODE_INST_INVOKE: {
4730       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4731       if (Record.size() < 4)
4732         return error("Invalid record");
4733       unsigned OpNum = 0;
4734       AttributeList PAL = getAttributes(Record[OpNum++]);
4735       unsigned CCInfo = Record[OpNum++];
4736       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4737       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4738 
4739       FunctionType *FTy = nullptr;
4740       if ((CCInfo >> 13) & 1) {
4741         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4742         if (!FTy)
4743           return error("Explicit invoke type is not a function type");
4744       }
4745 
4746       Value *Callee;
4747       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4748         return error("Invalid record");
4749 
4750       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4751       if (!CalleeTy)
4752         return error("Callee is not a pointer");
4753       if (!FTy) {
4754         FTy = dyn_cast<FunctionType>(
4755             cast<PointerType>(Callee->getType())->getElementType());
4756         if (!FTy)
4757           return error("Callee is not of pointer to function type");
4758       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4759         return error("Explicit invoke type does not match pointee type of "
4760                      "callee operand");
4761       if (Record.size() < FTy->getNumParams() + OpNum)
4762         return error("Insufficient operands to call");
4763 
4764       SmallVector<Value*, 16> Ops;
4765       SmallVector<Type *, 16> ArgsTys;
4766       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4767         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4768                                FTy->getParamType(i)));
4769         ArgsTys.push_back(FTy->getParamType(i));
4770         if (!Ops.back())
4771           return error("Invalid record");
4772       }
4773 
4774       if (!FTy->isVarArg()) {
4775         if (Record.size() != OpNum)
4776           return error("Invalid record");
4777       } else {
4778         // Read type/value pairs for varargs params.
4779         while (OpNum != Record.size()) {
4780           Value *Op;
4781           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4782             return error("Invalid record");
4783           Ops.push_back(Op);
4784           ArgsTys.push_back(Op->getType());
4785         }
4786       }
4787 
4788       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4789                              OperandBundles);
4790       OperandBundles.clear();
4791       InstructionList.push_back(I);
4792       cast<InvokeInst>(I)->setCallingConv(
4793           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4794       cast<InvokeInst>(I)->setAttributes(PAL);
4795       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4796 
4797       break;
4798     }
4799     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4800       unsigned Idx = 0;
4801       Value *Val = nullptr;
4802       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4803         return error("Invalid record");
4804       I = ResumeInst::Create(Val);
4805       InstructionList.push_back(I);
4806       break;
4807     }
4808     case bitc::FUNC_CODE_INST_CALLBR: {
4809       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4810       unsigned OpNum = 0;
4811       AttributeList PAL = getAttributes(Record[OpNum++]);
4812       unsigned CCInfo = Record[OpNum++];
4813 
4814       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4815       unsigned NumIndirectDests = Record[OpNum++];
4816       SmallVector<BasicBlock *, 16> IndirectDests;
4817       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4818         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4819 
4820       FunctionType *FTy = nullptr;
4821       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4822         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4823         if (!FTy)
4824           return error("Explicit call type is not a function type");
4825       }
4826 
4827       Value *Callee;
4828       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4829         return error("Invalid record");
4830 
4831       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4832       if (!OpTy)
4833         return error("Callee is not a pointer type");
4834       if (!FTy) {
4835         FTy = dyn_cast<FunctionType>(
4836             cast<PointerType>(Callee->getType())->getElementType());
4837         if (!FTy)
4838           return error("Callee is not of pointer to function type");
4839       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
4840         return error("Explicit call type does not match pointee type of "
4841                      "callee operand");
4842       if (Record.size() < FTy->getNumParams() + OpNum)
4843         return error("Insufficient operands to call");
4844 
4845       SmallVector<Value*, 16> Args;
4846       SmallVector<Type *, 16> ArgsTys;
4847       // Read the fixed params.
4848       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4849         Value *Arg;
4850         if (FTy->getParamType(i)->isLabelTy())
4851           Arg = getBasicBlock(Record[OpNum]);
4852         else
4853           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i));
4854         if (!Arg)
4855           return error("Invalid record");
4856         Args.push_back(Arg);
4857         ArgsTys.push_back(Arg->getType());
4858       }
4859 
4860       // Read type/value pairs for varargs params.
4861       if (!FTy->isVarArg()) {
4862         if (OpNum != Record.size())
4863           return error("Invalid record");
4864       } else {
4865         while (OpNum != Record.size()) {
4866           Value *Op;
4867           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4868             return error("Invalid record");
4869           Args.push_back(Op);
4870           ArgsTys.push_back(Op->getType());
4871         }
4872       }
4873 
4874       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4875                              OperandBundles);
4876       OperandBundles.clear();
4877       InstructionList.push_back(I);
4878       cast<CallBrInst>(I)->setCallingConv(
4879           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4880       cast<CallBrInst>(I)->setAttributes(PAL);
4881       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4882       break;
4883     }
4884     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4885       I = new UnreachableInst(Context);
4886       InstructionList.push_back(I);
4887       break;
4888     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4889       if (Record.empty())
4890         return error("Invalid record");
4891       // The first record specifies the type.
4892       Type *Ty = getTypeByID(Record[0]);
4893       if (!Ty)
4894         return error("Invalid record");
4895 
4896       // Phi arguments are pairs of records of [value, basic block].
4897       // There is an optional final record for fast-math-flags if this phi has a
4898       // floating-point type.
4899       size_t NumArgs = (Record.size() - 1) / 2;
4900       PHINode *PN = PHINode::Create(Ty, NumArgs);
4901       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4902         return error("Invalid record");
4903       InstructionList.push_back(PN);
4904 
4905       for (unsigned i = 0; i != NumArgs; i++) {
4906         Value *V;
4907         // With the new function encoding, it is possible that operands have
4908         // negative IDs (for forward references).  Use a signed VBR
4909         // representation to keep the encoding small.
4910         if (UseRelativeIDs)
4911           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4912         else
4913           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4914         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4915         if (!V || !BB)
4916           return error("Invalid record");
4917         PN->addIncoming(V, BB);
4918       }
4919       I = PN;
4920 
4921       // If there are an even number of records, the final record must be FMF.
4922       if (Record.size() % 2 == 0) {
4923         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4924         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4925         if (FMF.any())
4926           I->setFastMathFlags(FMF);
4927       }
4928 
4929       break;
4930     }
4931 
4932     case bitc::FUNC_CODE_INST_LANDINGPAD:
4933     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4934       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4935       unsigned Idx = 0;
4936       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4937         if (Record.size() < 3)
4938           return error("Invalid record");
4939       } else {
4940         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4941         if (Record.size() < 4)
4942           return error("Invalid record");
4943       }
4944       Type *Ty = getTypeByID(Record[Idx++]);
4945       if (!Ty)
4946         return error("Invalid record");
4947       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4948         Value *PersFn = nullptr;
4949         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4950           return error("Invalid record");
4951 
4952         if (!F->hasPersonalityFn())
4953           F->setPersonalityFn(cast<Constant>(PersFn));
4954         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4955           return error("Personality function mismatch");
4956       }
4957 
4958       bool IsCleanup = !!Record[Idx++];
4959       unsigned NumClauses = Record[Idx++];
4960       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4961       LP->setCleanup(IsCleanup);
4962       for (unsigned J = 0; J != NumClauses; ++J) {
4963         LandingPadInst::ClauseType CT =
4964           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4965         Value *Val;
4966 
4967         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4968           delete LP;
4969           return error("Invalid record");
4970         }
4971 
4972         assert((CT != LandingPadInst::Catch ||
4973                 !isa<ArrayType>(Val->getType())) &&
4974                "Catch clause has a invalid type!");
4975         assert((CT != LandingPadInst::Filter ||
4976                 isa<ArrayType>(Val->getType())) &&
4977                "Filter clause has invalid type!");
4978         LP->addClause(cast<Constant>(Val));
4979       }
4980 
4981       I = LP;
4982       InstructionList.push_back(I);
4983       break;
4984     }
4985 
4986     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4987       if (Record.size() != 4)
4988         return error("Invalid record");
4989       using APV = AllocaPackedValues;
4990       const uint64_t Rec = Record[3];
4991       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4992       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4993       Type *Ty = getTypeByID(Record[0]);
4994       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4995         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4996         if (!PTy)
4997           return error("Old-style alloca with a non-pointer type");
4998         Ty = PTy->getElementType();
4999       }
5000       Type *OpTy = getTypeByID(Record[1]);
5001       Value *Size = getFnValueByID(Record[2], OpTy);
5002       MaybeAlign Align;
5003       uint64_t AlignExp =
5004           Bitfield::get<APV::AlignLower>(Rec) |
5005           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5006       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5007         return Err;
5008       }
5009       if (!Ty || !Size)
5010         return error("Invalid record");
5011 
5012       // FIXME: Make this an optional field.
5013       const DataLayout &DL = TheModule->getDataLayout();
5014       unsigned AS = DL.getAllocaAddrSpace();
5015 
5016       SmallPtrSet<Type *, 4> Visited;
5017       if (!Align && !Ty->isSized(&Visited))
5018         return error("alloca of unsized type");
5019       if (!Align)
5020         Align = DL.getPrefTypeAlign(Ty);
5021 
5022       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5023       AI->setUsedWithInAlloca(InAlloca);
5024       AI->setSwiftError(SwiftError);
5025       I = AI;
5026       InstructionList.push_back(I);
5027       break;
5028     }
5029     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5030       unsigned OpNum = 0;
5031       Value *Op;
5032       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5033           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5034         return error("Invalid record");
5035 
5036       if (!isa<PointerType>(Op->getType()))
5037         return error("Load operand is not a pointer type");
5038 
5039       Type *Ty = nullptr;
5040       if (OpNum + 3 == Record.size()) {
5041         Ty = getTypeByID(Record[OpNum++]);
5042       } else {
5043         Ty = cast<PointerType>(Op->getType())->getElementType();
5044       }
5045 
5046       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5047         return Err;
5048 
5049       MaybeAlign Align;
5050       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5051         return Err;
5052       SmallPtrSet<Type *, 4> Visited;
5053       if (!Align && !Ty->isSized(&Visited))
5054         return error("load of unsized type");
5055       if (!Align)
5056         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5057       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5058       InstructionList.push_back(I);
5059       break;
5060     }
5061     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5062        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5063       unsigned OpNum = 0;
5064       Value *Op;
5065       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5066           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5067         return error("Invalid record");
5068 
5069       if (!isa<PointerType>(Op->getType()))
5070         return error("Load operand is not a pointer type");
5071 
5072       Type *Ty = nullptr;
5073       if (OpNum + 5 == Record.size()) {
5074         Ty = getTypeByID(Record[OpNum++]);
5075       } else {
5076         Ty = cast<PointerType>(Op->getType())->getElementType();
5077       }
5078 
5079       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5080         return Err;
5081 
5082       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5083       if (Ordering == AtomicOrdering::NotAtomic ||
5084           Ordering == AtomicOrdering::Release ||
5085           Ordering == AtomicOrdering::AcquireRelease)
5086         return error("Invalid record");
5087       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5088         return error("Invalid record");
5089       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5090 
5091       MaybeAlign Align;
5092       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5093         return Err;
5094       if (!Align)
5095         return error("Alignment missing from atomic load");
5096       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5097       InstructionList.push_back(I);
5098       break;
5099     }
5100     case bitc::FUNC_CODE_INST_STORE:
5101     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5102       unsigned OpNum = 0;
5103       Value *Val, *Ptr;
5104       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5105           (BitCode == bitc::FUNC_CODE_INST_STORE
5106                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5107                : popValue(Record, OpNum, NextValueNo,
5108                           cast<PointerType>(Ptr->getType())->getElementType(),
5109                           Val)) ||
5110           OpNum + 2 != Record.size())
5111         return error("Invalid record");
5112 
5113       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5114         return Err;
5115       MaybeAlign Align;
5116       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5117         return Err;
5118       SmallPtrSet<Type *, 4> Visited;
5119       if (!Align && !Val->getType()->isSized(&Visited))
5120         return error("store of unsized type");
5121       if (!Align)
5122         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5123       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5124       InstructionList.push_back(I);
5125       break;
5126     }
5127     case bitc::FUNC_CODE_INST_STOREATOMIC:
5128     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5129       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5130       unsigned OpNum = 0;
5131       Value *Val, *Ptr;
5132       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5133           !isa<PointerType>(Ptr->getType()) ||
5134           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5135                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5136                : popValue(Record, OpNum, NextValueNo,
5137                           cast<PointerType>(Ptr->getType())->getElementType(),
5138                           Val)) ||
5139           OpNum + 4 != Record.size())
5140         return error("Invalid record");
5141 
5142       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5143         return Err;
5144       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5145       if (Ordering == AtomicOrdering::NotAtomic ||
5146           Ordering == AtomicOrdering::Acquire ||
5147           Ordering == AtomicOrdering::AcquireRelease)
5148         return error("Invalid record");
5149       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5150       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5151         return error("Invalid record");
5152 
5153       MaybeAlign Align;
5154       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5155         return Err;
5156       if (!Align)
5157         return error("Alignment missing from atomic store");
5158       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5159       InstructionList.push_back(I);
5160       break;
5161     }
5162     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5163       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5164       // failure_ordering?, weak?]
5165       const size_t NumRecords = Record.size();
5166       unsigned OpNum = 0;
5167       Value *Ptr = nullptr;
5168       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5169         return error("Invalid record");
5170 
5171       if (!isa<PointerType>(Ptr->getType()))
5172         return error("Cmpxchg operand is not a pointer type");
5173 
5174       Value *Cmp = nullptr;
5175       if (popValue(Record, OpNum, NextValueNo,
5176                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5177                    Cmp))
5178         return error("Invalid record");
5179 
5180       Value *New = nullptr;
5181       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5182           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5183         return error("Invalid record");
5184 
5185       const AtomicOrdering SuccessOrdering =
5186           getDecodedOrdering(Record[OpNum + 1]);
5187       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5188           SuccessOrdering == AtomicOrdering::Unordered)
5189         return error("Invalid record");
5190 
5191       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5192 
5193       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5194         return Err;
5195 
5196       const AtomicOrdering FailureOrdering =
5197           NumRecords < 7
5198               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5199               : getDecodedOrdering(Record[OpNum + 3]);
5200 
5201       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5202           FailureOrdering == AtomicOrdering::Unordered)
5203         return error("Invalid record");
5204 
5205       const Align Alignment(
5206           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5207 
5208       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5209                                 FailureOrdering, SSID);
5210       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5211 
5212       if (NumRecords < 8) {
5213         // Before weak cmpxchgs existed, the instruction simply returned the
5214         // value loaded from memory, so bitcode files from that era will be
5215         // expecting the first component of a modern cmpxchg.
5216         CurBB->getInstList().push_back(I);
5217         I = ExtractValueInst::Create(I, 0);
5218       } else {
5219         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5220       }
5221 
5222       InstructionList.push_back(I);
5223       break;
5224     }
5225     case bitc::FUNC_CODE_INST_CMPXCHG: {
5226       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5227       // failure_ordering, weak, align?]
5228       const size_t NumRecords = Record.size();
5229       unsigned OpNum = 0;
5230       Value *Ptr = nullptr;
5231       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5232         return error("Invalid record");
5233 
5234       if (!isa<PointerType>(Ptr->getType()))
5235         return error("Cmpxchg operand is not a pointer type");
5236 
5237       Value *Cmp = nullptr;
5238       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5239         return error("Invalid record");
5240 
5241       Value *Val = nullptr;
5242       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5243         return error("Invalid record");
5244 
5245       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5246         return error("Invalid record");
5247 
5248       const bool IsVol = Record[OpNum];
5249 
5250       const AtomicOrdering SuccessOrdering =
5251           getDecodedOrdering(Record[OpNum + 1]);
5252       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5253         return error("Invalid cmpxchg success ordering");
5254 
5255       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5256 
5257       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5258         return Err;
5259 
5260       const AtomicOrdering FailureOrdering =
5261           getDecodedOrdering(Record[OpNum + 3]);
5262       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5263         return error("Invalid cmpxchg failure ordering");
5264 
5265       const bool IsWeak = Record[OpNum + 4];
5266 
5267       MaybeAlign Alignment;
5268 
5269       if (NumRecords == (OpNum + 6)) {
5270         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5271           return Err;
5272       }
5273       if (!Alignment)
5274         Alignment =
5275             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5276 
5277       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5278                                 FailureOrdering, SSID);
5279       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5280       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5281 
5282       InstructionList.push_back(I);
5283       break;
5284     }
5285     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5286     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5287       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5288       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5289       const size_t NumRecords = Record.size();
5290       unsigned OpNum = 0;
5291 
5292       Value *Ptr = nullptr;
5293       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5294         return error("Invalid record");
5295 
5296       if (!isa<PointerType>(Ptr->getType()))
5297         return error("Invalid record");
5298 
5299       Value *Val = nullptr;
5300       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5301         if (popValue(Record, OpNum, NextValueNo,
5302                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5303                      Val))
5304           return error("Invalid record");
5305       } else {
5306         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5307           return error("Invalid record");
5308       }
5309 
5310       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5311         return error("Invalid record");
5312 
5313       const AtomicRMWInst::BinOp Operation =
5314           getDecodedRMWOperation(Record[OpNum]);
5315       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5316           Operation > AtomicRMWInst::LAST_BINOP)
5317         return error("Invalid record");
5318 
5319       const bool IsVol = Record[OpNum + 1];
5320 
5321       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5322       if (Ordering == AtomicOrdering::NotAtomic ||
5323           Ordering == AtomicOrdering::Unordered)
5324         return error("Invalid record");
5325 
5326       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5327 
5328       MaybeAlign Alignment;
5329 
5330       if (NumRecords == (OpNum + 5)) {
5331         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5332           return Err;
5333       }
5334 
5335       if (!Alignment)
5336         Alignment =
5337             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5338 
5339       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5340       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5341 
5342       InstructionList.push_back(I);
5343       break;
5344     }
5345     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5346       if (2 != Record.size())
5347         return error("Invalid record");
5348       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5349       if (Ordering == AtomicOrdering::NotAtomic ||
5350           Ordering == AtomicOrdering::Unordered ||
5351           Ordering == AtomicOrdering::Monotonic)
5352         return error("Invalid record");
5353       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5354       I = new FenceInst(Context, Ordering, SSID);
5355       InstructionList.push_back(I);
5356       break;
5357     }
5358     case bitc::FUNC_CODE_INST_CALL: {
5359       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5360       if (Record.size() < 3)
5361         return error("Invalid record");
5362 
5363       unsigned OpNum = 0;
5364       AttributeList PAL = getAttributes(Record[OpNum++]);
5365       unsigned CCInfo = Record[OpNum++];
5366 
5367       FastMathFlags FMF;
5368       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5369         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5370         if (!FMF.any())
5371           return error("Fast math flags indicator set for call with no FMF");
5372       }
5373 
5374       FunctionType *FTy = nullptr;
5375       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5376         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5377         if (!FTy)
5378           return error("Explicit call type is not a function type");
5379       }
5380 
5381       Value *Callee;
5382       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5383         return error("Invalid record");
5384 
5385       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5386       if (!OpTy)
5387         return error("Callee is not a pointer type");
5388       if (!FTy) {
5389         FTy = dyn_cast<FunctionType>(
5390             cast<PointerType>(Callee->getType())->getElementType());
5391         if (!FTy)
5392           return error("Callee is not of pointer to function type");
5393       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5394         return error("Explicit call type does not match pointee type of "
5395                      "callee operand");
5396       if (Record.size() < FTy->getNumParams() + OpNum)
5397         return error("Insufficient operands to call");
5398 
5399       SmallVector<Value*, 16> Args;
5400       SmallVector<Type *, 16> ArgsTys;
5401       // Read the fixed params.
5402       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5403         if (FTy->getParamType(i)->isLabelTy())
5404           Args.push_back(getBasicBlock(Record[OpNum]));
5405         else
5406           Args.push_back(getValue(Record, OpNum, NextValueNo,
5407                                   FTy->getParamType(i)));
5408         ArgsTys.push_back(FTy->getParamType(i));
5409         if (!Args.back())
5410           return error("Invalid record");
5411       }
5412 
5413       // Read type/value pairs for varargs params.
5414       if (!FTy->isVarArg()) {
5415         if (OpNum != Record.size())
5416           return error("Invalid record");
5417       } else {
5418         while (OpNum != Record.size()) {
5419           Value *Op;
5420           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5421             return error("Invalid record");
5422           Args.push_back(Op);
5423           ArgsTys.push_back(Op->getType());
5424         }
5425       }
5426 
5427       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5428       OperandBundles.clear();
5429       InstructionList.push_back(I);
5430       cast<CallInst>(I)->setCallingConv(
5431           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5432       CallInst::TailCallKind TCK = CallInst::TCK_None;
5433       if (CCInfo & 1 << bitc::CALL_TAIL)
5434         TCK = CallInst::TCK_Tail;
5435       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5436         TCK = CallInst::TCK_MustTail;
5437       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5438         TCK = CallInst::TCK_NoTail;
5439       cast<CallInst>(I)->setTailCallKind(TCK);
5440       cast<CallInst>(I)->setAttributes(PAL);
5441       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5442       if (FMF.any()) {
5443         if (!isa<FPMathOperator>(I))
5444           return error("Fast-math-flags specified for call without "
5445                        "floating-point scalar or vector return type");
5446         I->setFastMathFlags(FMF);
5447       }
5448       break;
5449     }
5450     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5451       if (Record.size() < 3)
5452         return error("Invalid record");
5453       Type *OpTy = getTypeByID(Record[0]);
5454       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5455       Type *ResTy = getTypeByID(Record[2]);
5456       if (!OpTy || !Op || !ResTy)
5457         return error("Invalid record");
5458       I = new VAArgInst(Op, ResTy);
5459       InstructionList.push_back(I);
5460       break;
5461     }
5462 
5463     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5464       // A call or an invoke can be optionally prefixed with some variable
5465       // number of operand bundle blocks.  These blocks are read into
5466       // OperandBundles and consumed at the next call or invoke instruction.
5467 
5468       if (Record.empty() || Record[0] >= BundleTags.size())
5469         return error("Invalid record");
5470 
5471       std::vector<Value *> Inputs;
5472 
5473       unsigned OpNum = 1;
5474       while (OpNum != Record.size()) {
5475         Value *Op;
5476         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5477           return error("Invalid record");
5478         Inputs.push_back(Op);
5479       }
5480 
5481       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5482       continue;
5483     }
5484 
5485     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5486       unsigned OpNum = 0;
5487       Value *Op = nullptr;
5488       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5489         return error("Invalid record");
5490       if (OpNum != Record.size())
5491         return error("Invalid record");
5492 
5493       I = new FreezeInst(Op);
5494       InstructionList.push_back(I);
5495       break;
5496     }
5497     }
5498 
5499     // Add instruction to end of current BB.  If there is no current BB, reject
5500     // this file.
5501     if (!CurBB) {
5502       I->deleteValue();
5503       return error("Invalid instruction with no BB");
5504     }
5505     if (!OperandBundles.empty()) {
5506       I->deleteValue();
5507       return error("Operand bundles found with no consumer");
5508     }
5509     CurBB->getInstList().push_back(I);
5510 
5511     // If this was a terminator instruction, move to the next block.
5512     if (I->isTerminator()) {
5513       ++CurBBNo;
5514       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5515     }
5516 
5517     // Non-void values get registered in the value table for future use.
5518     if (!I->getType()->isVoidTy())
5519       ValueList.assignValue(I, NextValueNo++);
5520   }
5521 
5522 OutOfRecordLoop:
5523 
5524   if (!OperandBundles.empty())
5525     return error("Operand bundles found with no consumer");
5526 
5527   // Check the function list for unresolved values.
5528   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5529     if (!A->getParent()) {
5530       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5531       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5532         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5533           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5534           delete A;
5535         }
5536       }
5537       return error("Never resolved value found in function");
5538     }
5539   }
5540 
5541   // Unexpected unresolved metadata about to be dropped.
5542   if (MDLoader->hasFwdRefs())
5543     return error("Invalid function metadata: outgoing forward refs");
5544 
5545   // Trim the value list down to the size it was before we parsed this function.
5546   ValueList.shrinkTo(ModuleValueListSize);
5547   MDLoader->shrinkTo(ModuleMDLoaderSize);
5548   std::vector<BasicBlock*>().swap(FunctionBBs);
5549   return Error::success();
5550 }
5551 
5552 /// Find the function body in the bitcode stream
5553 Error BitcodeReader::findFunctionInStream(
5554     Function *F,
5555     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5556   while (DeferredFunctionInfoIterator->second == 0) {
5557     // This is the fallback handling for the old format bitcode that
5558     // didn't contain the function index in the VST, or when we have
5559     // an anonymous function which would not have a VST entry.
5560     // Assert that we have one of those two cases.
5561     assert(VSTOffset == 0 || !F->hasName());
5562     // Parse the next body in the stream and set its position in the
5563     // DeferredFunctionInfo map.
5564     if (Error Err = rememberAndSkipFunctionBodies())
5565       return Err;
5566   }
5567   return Error::success();
5568 }
5569 
5570 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5571   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5572     return SyncScope::ID(Val);
5573   if (Val >= SSIDs.size())
5574     return SyncScope::System; // Map unknown synchronization scopes to system.
5575   return SSIDs[Val];
5576 }
5577 
5578 //===----------------------------------------------------------------------===//
5579 // GVMaterializer implementation
5580 //===----------------------------------------------------------------------===//
5581 
5582 Error BitcodeReader::materialize(GlobalValue *GV) {
5583   Function *F = dyn_cast<Function>(GV);
5584   // If it's not a function or is already material, ignore the request.
5585   if (!F || !F->isMaterializable())
5586     return Error::success();
5587 
5588   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5589   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5590   // If its position is recorded as 0, its body is somewhere in the stream
5591   // but we haven't seen it yet.
5592   if (DFII->second == 0)
5593     if (Error Err = findFunctionInStream(F, DFII))
5594       return Err;
5595 
5596   // Materialize metadata before parsing any function bodies.
5597   if (Error Err = materializeMetadata())
5598     return Err;
5599 
5600   // Move the bit stream to the saved position of the deferred function body.
5601   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5602     return JumpFailed;
5603   if (Error Err = parseFunctionBody(F))
5604     return Err;
5605   F->setIsMaterializable(false);
5606 
5607   if (StripDebugInfo)
5608     stripDebugInfo(*F);
5609 
5610   // Upgrade any old intrinsic calls in the function.
5611   for (auto &I : UpgradedIntrinsics) {
5612     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5613       if (CallInst *CI = dyn_cast<CallInst>(U))
5614         UpgradeIntrinsicCall(CI, I.second);
5615   }
5616 
5617   // Update calls to the remangled intrinsics
5618   for (auto &I : RemangledIntrinsics)
5619     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5620       // Don't expect any other users than call sites
5621       cast<CallBase>(U)->setCalledFunction(I.second);
5622 
5623   // Finish fn->subprogram upgrade for materialized functions.
5624   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5625     F->setSubprogram(SP);
5626 
5627   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5628   if (!MDLoader->isStrippingTBAA()) {
5629     for (auto &I : instructions(F)) {
5630       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5631       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5632         continue;
5633       MDLoader->setStripTBAA(true);
5634       stripTBAA(F->getParent());
5635     }
5636   }
5637 
5638   for (auto &I : instructions(F)) {
5639     // "Upgrade" older incorrect branch weights by dropping them.
5640     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5641       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5642         MDString *MDS = cast<MDString>(MD->getOperand(0));
5643         StringRef ProfName = MDS->getString();
5644         // Check consistency of !prof branch_weights metadata.
5645         if (!ProfName.equals("branch_weights"))
5646           continue;
5647         unsigned ExpectedNumOperands = 0;
5648         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5649           ExpectedNumOperands = BI->getNumSuccessors();
5650         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5651           ExpectedNumOperands = SI->getNumSuccessors();
5652         else if (isa<CallInst>(&I))
5653           ExpectedNumOperands = 1;
5654         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5655           ExpectedNumOperands = IBI->getNumDestinations();
5656         else if (isa<SelectInst>(&I))
5657           ExpectedNumOperands = 2;
5658         else
5659           continue; // ignore and continue.
5660 
5661         // If branch weight doesn't match, just strip branch weight.
5662         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5663           I.setMetadata(LLVMContext::MD_prof, nullptr);
5664       }
5665     }
5666 
5667     // Remove incompatible attributes on function calls.
5668     if (auto *CI = dyn_cast<CallBase>(&I)) {
5669       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5670           CI->getFunctionType()->getReturnType()));
5671 
5672       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5673         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5674                                         CI->getArgOperand(ArgNo)->getType()));
5675     }
5676   }
5677 
5678   // Look for functions that rely on old function attribute behavior.
5679   UpgradeFunctionAttributes(*F);
5680 
5681   // Bring in any functions that this function forward-referenced via
5682   // blockaddresses.
5683   return materializeForwardReferencedFunctions();
5684 }
5685 
5686 Error BitcodeReader::materializeModule() {
5687   if (Error Err = materializeMetadata())
5688     return Err;
5689 
5690   // Promise to materialize all forward references.
5691   WillMaterializeAllForwardRefs = true;
5692 
5693   // Iterate over the module, deserializing any functions that are still on
5694   // disk.
5695   for (Function &F : *TheModule) {
5696     if (Error Err = materialize(&F))
5697       return Err;
5698   }
5699   // At this point, if there are any function bodies, parse the rest of
5700   // the bits in the module past the last function block we have recorded
5701   // through either lazy scanning or the VST.
5702   if (LastFunctionBlockBit || NextUnreadBit)
5703     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5704                                     ? LastFunctionBlockBit
5705                                     : NextUnreadBit))
5706       return Err;
5707 
5708   // Check that all block address forward references got resolved (as we
5709   // promised above).
5710   if (!BasicBlockFwdRefs.empty())
5711     return error("Never resolved function from blockaddress");
5712 
5713   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5714   // delete the old functions to clean up. We can't do this unless the entire
5715   // module is materialized because there could always be another function body
5716   // with calls to the old function.
5717   for (auto &I : UpgradedIntrinsics) {
5718     for (auto *U : I.first->users()) {
5719       if (CallInst *CI = dyn_cast<CallInst>(U))
5720         UpgradeIntrinsicCall(CI, I.second);
5721     }
5722     if (!I.first->use_empty())
5723       I.first->replaceAllUsesWith(I.second);
5724     I.first->eraseFromParent();
5725   }
5726   UpgradedIntrinsics.clear();
5727   // Do the same for remangled intrinsics
5728   for (auto &I : RemangledIntrinsics) {
5729     I.first->replaceAllUsesWith(I.second);
5730     I.first->eraseFromParent();
5731   }
5732   RemangledIntrinsics.clear();
5733 
5734   UpgradeDebugInfo(*TheModule);
5735 
5736   UpgradeModuleFlags(*TheModule);
5737 
5738   UpgradeARCRuntime(*TheModule);
5739 
5740   return Error::success();
5741 }
5742 
5743 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5744   return IdentifiedStructTypes;
5745 }
5746 
5747 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5748     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5749     StringRef ModulePath, unsigned ModuleId)
5750     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5751       ModulePath(ModulePath), ModuleId(ModuleId) {}
5752 
5753 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5754   TheIndex.addModule(ModulePath, ModuleId);
5755 }
5756 
5757 ModuleSummaryIndex::ModuleInfo *
5758 ModuleSummaryIndexBitcodeReader::getThisModule() {
5759   return TheIndex.getModule(ModulePath);
5760 }
5761 
5762 std::pair<ValueInfo, GlobalValue::GUID>
5763 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5764   auto VGI = ValueIdToValueInfoMap[ValueId];
5765   assert(VGI.first);
5766   return VGI;
5767 }
5768 
5769 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5770     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5771     StringRef SourceFileName) {
5772   std::string GlobalId =
5773       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5774   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5775   auto OriginalNameID = ValueGUID;
5776   if (GlobalValue::isLocalLinkage(Linkage))
5777     OriginalNameID = GlobalValue::getGUID(ValueName);
5778   if (PrintSummaryGUIDs)
5779     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5780            << ValueName << "\n";
5781 
5782   // UseStrtab is false for legacy summary formats and value names are
5783   // created on stack. In that case we save the name in a string saver in
5784   // the index so that the value name can be recorded.
5785   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5786       TheIndex.getOrInsertValueInfo(
5787           ValueGUID,
5788           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5789       OriginalNameID);
5790 }
5791 
5792 // Specialized value symbol table parser used when reading module index
5793 // blocks where we don't actually create global values. The parsed information
5794 // is saved in the bitcode reader for use when later parsing summaries.
5795 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5796     uint64_t Offset,
5797     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5798   // With a strtab the VST is not required to parse the summary.
5799   if (UseStrtab)
5800     return Error::success();
5801 
5802   assert(Offset > 0 && "Expected non-zero VST offset");
5803   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5804   if (!MaybeCurrentBit)
5805     return MaybeCurrentBit.takeError();
5806   uint64_t CurrentBit = MaybeCurrentBit.get();
5807 
5808   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5809     return Err;
5810 
5811   SmallVector<uint64_t, 64> Record;
5812 
5813   // Read all the records for this value table.
5814   SmallString<128> ValueName;
5815 
5816   while (true) {
5817     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5818     if (!MaybeEntry)
5819       return MaybeEntry.takeError();
5820     BitstreamEntry Entry = MaybeEntry.get();
5821 
5822     switch (Entry.Kind) {
5823     case BitstreamEntry::SubBlock: // Handled for us already.
5824     case BitstreamEntry::Error:
5825       return error("Malformed block");
5826     case BitstreamEntry::EndBlock:
5827       // Done parsing VST, jump back to wherever we came from.
5828       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5829         return JumpFailed;
5830       return Error::success();
5831     case BitstreamEntry::Record:
5832       // The interesting case.
5833       break;
5834     }
5835 
5836     // Read a record.
5837     Record.clear();
5838     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5839     if (!MaybeRecord)
5840       return MaybeRecord.takeError();
5841     switch (MaybeRecord.get()) {
5842     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5843       break;
5844     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5845       if (convertToString(Record, 1, ValueName))
5846         return error("Invalid record");
5847       unsigned ValueID = Record[0];
5848       assert(!SourceFileName.empty());
5849       auto VLI = ValueIdToLinkageMap.find(ValueID);
5850       assert(VLI != ValueIdToLinkageMap.end() &&
5851              "No linkage found for VST entry?");
5852       auto Linkage = VLI->second;
5853       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5854       ValueName.clear();
5855       break;
5856     }
5857     case bitc::VST_CODE_FNENTRY: {
5858       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5859       if (convertToString(Record, 2, ValueName))
5860         return error("Invalid record");
5861       unsigned ValueID = Record[0];
5862       assert(!SourceFileName.empty());
5863       auto VLI = ValueIdToLinkageMap.find(ValueID);
5864       assert(VLI != ValueIdToLinkageMap.end() &&
5865              "No linkage found for VST entry?");
5866       auto Linkage = VLI->second;
5867       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5868       ValueName.clear();
5869       break;
5870     }
5871     case bitc::VST_CODE_COMBINED_ENTRY: {
5872       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5873       unsigned ValueID = Record[0];
5874       GlobalValue::GUID RefGUID = Record[1];
5875       // The "original name", which is the second value of the pair will be
5876       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5877       ValueIdToValueInfoMap[ValueID] =
5878           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5879       break;
5880     }
5881     }
5882   }
5883 }
5884 
5885 // Parse just the blocks needed for building the index out of the module.
5886 // At the end of this routine the module Index is populated with a map
5887 // from global value id to GlobalValueSummary objects.
5888 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5889   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5890     return Err;
5891 
5892   SmallVector<uint64_t, 64> Record;
5893   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5894   unsigned ValueId = 0;
5895 
5896   // Read the index for this module.
5897   while (true) {
5898     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5899     if (!MaybeEntry)
5900       return MaybeEntry.takeError();
5901     llvm::BitstreamEntry Entry = MaybeEntry.get();
5902 
5903     switch (Entry.Kind) {
5904     case BitstreamEntry::Error:
5905       return error("Malformed block");
5906     case BitstreamEntry::EndBlock:
5907       return Error::success();
5908 
5909     case BitstreamEntry::SubBlock:
5910       switch (Entry.ID) {
5911       default: // Skip unknown content.
5912         if (Error Err = Stream.SkipBlock())
5913           return Err;
5914         break;
5915       case bitc::BLOCKINFO_BLOCK_ID:
5916         // Need to parse these to get abbrev ids (e.g. for VST)
5917         if (readBlockInfo())
5918           return error("Malformed block");
5919         break;
5920       case bitc::VALUE_SYMTAB_BLOCK_ID:
5921         // Should have been parsed earlier via VSTOffset, unless there
5922         // is no summary section.
5923         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5924                 !SeenGlobalValSummary) &&
5925                "Expected early VST parse via VSTOffset record");
5926         if (Error Err = Stream.SkipBlock())
5927           return Err;
5928         break;
5929       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5930       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5931         // Add the module if it is a per-module index (has a source file name).
5932         if (!SourceFileName.empty())
5933           addThisModule();
5934         assert(!SeenValueSymbolTable &&
5935                "Already read VST when parsing summary block?");
5936         // We might not have a VST if there were no values in the
5937         // summary. An empty summary block generated when we are
5938         // performing ThinLTO compiles so we don't later invoke
5939         // the regular LTO process on them.
5940         if (VSTOffset > 0) {
5941           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5942             return Err;
5943           SeenValueSymbolTable = true;
5944         }
5945         SeenGlobalValSummary = true;
5946         if (Error Err = parseEntireSummary(Entry.ID))
5947           return Err;
5948         break;
5949       case bitc::MODULE_STRTAB_BLOCK_ID:
5950         if (Error Err = parseModuleStringTable())
5951           return Err;
5952         break;
5953       }
5954       continue;
5955 
5956     case BitstreamEntry::Record: {
5957         Record.clear();
5958         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5959         if (!MaybeBitCode)
5960           return MaybeBitCode.takeError();
5961         switch (MaybeBitCode.get()) {
5962         default:
5963           break; // Default behavior, ignore unknown content.
5964         case bitc::MODULE_CODE_VERSION: {
5965           if (Error Err = parseVersionRecord(Record).takeError())
5966             return Err;
5967           break;
5968         }
5969         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5970         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5971           SmallString<128> ValueName;
5972           if (convertToString(Record, 0, ValueName))
5973             return error("Invalid record");
5974           SourceFileName = ValueName.c_str();
5975           break;
5976         }
5977         /// MODULE_CODE_HASH: [5*i32]
5978         case bitc::MODULE_CODE_HASH: {
5979           if (Record.size() != 5)
5980             return error("Invalid hash length " + Twine(Record.size()).str());
5981           auto &Hash = getThisModule()->second.second;
5982           int Pos = 0;
5983           for (auto &Val : Record) {
5984             assert(!(Val >> 32) && "Unexpected high bits set");
5985             Hash[Pos++] = Val;
5986           }
5987           break;
5988         }
5989         /// MODULE_CODE_VSTOFFSET: [offset]
5990         case bitc::MODULE_CODE_VSTOFFSET:
5991           if (Record.empty())
5992             return error("Invalid record");
5993           // Note that we subtract 1 here because the offset is relative to one
5994           // word before the start of the identification or module block, which
5995           // was historically always the start of the regular bitcode header.
5996           VSTOffset = Record[0] - 1;
5997           break;
5998         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5999         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6000         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6001         // v2: [strtab offset, strtab size, v1]
6002         case bitc::MODULE_CODE_GLOBALVAR:
6003         case bitc::MODULE_CODE_FUNCTION:
6004         case bitc::MODULE_CODE_ALIAS: {
6005           StringRef Name;
6006           ArrayRef<uint64_t> GVRecord;
6007           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6008           if (GVRecord.size() <= 3)
6009             return error("Invalid record");
6010           uint64_t RawLinkage = GVRecord[3];
6011           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6012           if (!UseStrtab) {
6013             ValueIdToLinkageMap[ValueId++] = Linkage;
6014             break;
6015           }
6016 
6017           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6018           break;
6019         }
6020         }
6021       }
6022       continue;
6023     }
6024   }
6025 }
6026 
6027 std::vector<ValueInfo>
6028 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6029   std::vector<ValueInfo> Ret;
6030   Ret.reserve(Record.size());
6031   for (uint64_t RefValueId : Record)
6032     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6033   return Ret;
6034 }
6035 
6036 std::vector<FunctionSummary::EdgeTy>
6037 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6038                                               bool IsOldProfileFormat,
6039                                               bool HasProfile, bool HasRelBF) {
6040   std::vector<FunctionSummary::EdgeTy> Ret;
6041   Ret.reserve(Record.size());
6042   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6043     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6044     uint64_t RelBF = 0;
6045     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6046     if (IsOldProfileFormat) {
6047       I += 1; // Skip old callsitecount field
6048       if (HasProfile)
6049         I += 1; // Skip old profilecount field
6050     } else if (HasProfile)
6051       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6052     else if (HasRelBF)
6053       RelBF = Record[++I];
6054     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6055   }
6056   return Ret;
6057 }
6058 
6059 static void
6060 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6061                                        WholeProgramDevirtResolution &Wpd) {
6062   uint64_t ArgNum = Record[Slot++];
6063   WholeProgramDevirtResolution::ByArg &B =
6064       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6065   Slot += ArgNum;
6066 
6067   B.TheKind =
6068       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6069   B.Info = Record[Slot++];
6070   B.Byte = Record[Slot++];
6071   B.Bit = Record[Slot++];
6072 }
6073 
6074 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6075                                               StringRef Strtab, size_t &Slot,
6076                                               TypeIdSummary &TypeId) {
6077   uint64_t Id = Record[Slot++];
6078   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6079 
6080   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6081   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6082                         static_cast<size_t>(Record[Slot + 1])};
6083   Slot += 2;
6084 
6085   uint64_t ResByArgNum = Record[Slot++];
6086   for (uint64_t I = 0; I != ResByArgNum; ++I)
6087     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6088 }
6089 
6090 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6091                                      StringRef Strtab,
6092                                      ModuleSummaryIndex &TheIndex) {
6093   size_t Slot = 0;
6094   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6095       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6096   Slot += 2;
6097 
6098   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6099   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6100   TypeId.TTRes.AlignLog2 = Record[Slot++];
6101   TypeId.TTRes.SizeM1 = Record[Slot++];
6102   TypeId.TTRes.BitMask = Record[Slot++];
6103   TypeId.TTRes.InlineBits = Record[Slot++];
6104 
6105   while (Slot < Record.size())
6106     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6107 }
6108 
6109 std::vector<FunctionSummary::ParamAccess>
6110 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6111   auto ReadRange = [&]() {
6112     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6113                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6114     Record = Record.drop_front();
6115     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6116                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6117     Record = Record.drop_front();
6118     ConstantRange Range{Lower, Upper};
6119     assert(!Range.isFullSet());
6120     assert(!Range.isUpperSignWrapped());
6121     return Range;
6122   };
6123 
6124   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6125   while (!Record.empty()) {
6126     PendingParamAccesses.emplace_back();
6127     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6128     ParamAccess.ParamNo = Record.front();
6129     Record = Record.drop_front();
6130     ParamAccess.Use = ReadRange();
6131     ParamAccess.Calls.resize(Record.front());
6132     Record = Record.drop_front();
6133     for (auto &Call : ParamAccess.Calls) {
6134       Call.ParamNo = Record.front();
6135       Record = Record.drop_front();
6136       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6137       Record = Record.drop_front();
6138       Call.Offsets = ReadRange();
6139     }
6140   }
6141   return PendingParamAccesses;
6142 }
6143 
6144 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6145     ArrayRef<uint64_t> Record, size_t &Slot,
6146     TypeIdCompatibleVtableInfo &TypeId) {
6147   uint64_t Offset = Record[Slot++];
6148   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6149   TypeId.push_back({Offset, Callee});
6150 }
6151 
6152 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6153     ArrayRef<uint64_t> Record) {
6154   size_t Slot = 0;
6155   TypeIdCompatibleVtableInfo &TypeId =
6156       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6157           {Strtab.data() + Record[Slot],
6158            static_cast<size_t>(Record[Slot + 1])});
6159   Slot += 2;
6160 
6161   while (Slot < Record.size())
6162     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6163 }
6164 
6165 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6166                            unsigned WOCnt) {
6167   // Readonly and writeonly refs are in the end of the refs list.
6168   assert(ROCnt + WOCnt <= Refs.size());
6169   unsigned FirstWORef = Refs.size() - WOCnt;
6170   unsigned RefNo = FirstWORef - ROCnt;
6171   for (; RefNo < FirstWORef; ++RefNo)
6172     Refs[RefNo].setReadOnly();
6173   for (; RefNo < Refs.size(); ++RefNo)
6174     Refs[RefNo].setWriteOnly();
6175 }
6176 
6177 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6178 // objects in the index.
6179 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6180   if (Error Err = Stream.EnterSubBlock(ID))
6181     return Err;
6182   SmallVector<uint64_t, 64> Record;
6183 
6184   // Parse version
6185   {
6186     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6187     if (!MaybeEntry)
6188       return MaybeEntry.takeError();
6189     BitstreamEntry Entry = MaybeEntry.get();
6190 
6191     if (Entry.Kind != BitstreamEntry::Record)
6192       return error("Invalid Summary Block: record for version expected");
6193     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6194     if (!MaybeRecord)
6195       return MaybeRecord.takeError();
6196     if (MaybeRecord.get() != bitc::FS_VERSION)
6197       return error("Invalid Summary Block: version expected");
6198   }
6199   const uint64_t Version = Record[0];
6200   const bool IsOldProfileFormat = Version == 1;
6201   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6202     return error("Invalid summary version " + Twine(Version) +
6203                  ". Version should be in the range [1-" +
6204                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6205                  "].");
6206   Record.clear();
6207 
6208   // Keep around the last seen summary to be used when we see an optional
6209   // "OriginalName" attachement.
6210   GlobalValueSummary *LastSeenSummary = nullptr;
6211   GlobalValue::GUID LastSeenGUID = 0;
6212 
6213   // We can expect to see any number of type ID information records before
6214   // each function summary records; these variables store the information
6215   // collected so far so that it can be used to create the summary object.
6216   std::vector<GlobalValue::GUID> PendingTypeTests;
6217   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6218       PendingTypeCheckedLoadVCalls;
6219   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6220       PendingTypeCheckedLoadConstVCalls;
6221   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6222 
6223   while (true) {
6224     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6225     if (!MaybeEntry)
6226       return MaybeEntry.takeError();
6227     BitstreamEntry Entry = MaybeEntry.get();
6228 
6229     switch (Entry.Kind) {
6230     case BitstreamEntry::SubBlock: // Handled for us already.
6231     case BitstreamEntry::Error:
6232       return error("Malformed block");
6233     case BitstreamEntry::EndBlock:
6234       return Error::success();
6235     case BitstreamEntry::Record:
6236       // The interesting case.
6237       break;
6238     }
6239 
6240     // Read a record. The record format depends on whether this
6241     // is a per-module index or a combined index file. In the per-module
6242     // case the records contain the associated value's ID for correlation
6243     // with VST entries. In the combined index the correlation is done
6244     // via the bitcode offset of the summary records (which were saved
6245     // in the combined index VST entries). The records also contain
6246     // information used for ThinLTO renaming and importing.
6247     Record.clear();
6248     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6249     if (!MaybeBitCode)
6250       return MaybeBitCode.takeError();
6251     switch (unsigned BitCode = MaybeBitCode.get()) {
6252     default: // Default behavior: ignore.
6253       break;
6254     case bitc::FS_FLAGS: {  // [flags]
6255       TheIndex.setFlags(Record[0]);
6256       break;
6257     }
6258     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6259       uint64_t ValueID = Record[0];
6260       GlobalValue::GUID RefGUID = Record[1];
6261       ValueIdToValueInfoMap[ValueID] =
6262           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6263       break;
6264     }
6265     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6266     //                numrefs x valueid, n x (valueid)]
6267     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6268     //                        numrefs x valueid,
6269     //                        n x (valueid, hotness)]
6270     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6271     //                      numrefs x valueid,
6272     //                      n x (valueid, relblockfreq)]
6273     case bitc::FS_PERMODULE:
6274     case bitc::FS_PERMODULE_RELBF:
6275     case bitc::FS_PERMODULE_PROFILE: {
6276       unsigned ValueID = Record[0];
6277       uint64_t RawFlags = Record[1];
6278       unsigned InstCount = Record[2];
6279       uint64_t RawFunFlags = 0;
6280       unsigned NumRefs = Record[3];
6281       unsigned NumRORefs = 0, NumWORefs = 0;
6282       int RefListStartIndex = 4;
6283       if (Version >= 4) {
6284         RawFunFlags = Record[3];
6285         NumRefs = Record[4];
6286         RefListStartIndex = 5;
6287         if (Version >= 5) {
6288           NumRORefs = Record[5];
6289           RefListStartIndex = 6;
6290           if (Version >= 7) {
6291             NumWORefs = Record[6];
6292             RefListStartIndex = 7;
6293           }
6294         }
6295       }
6296 
6297       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6298       // The module path string ref set in the summary must be owned by the
6299       // index's module string table. Since we don't have a module path
6300       // string table section in the per-module index, we create a single
6301       // module path string table entry with an empty (0) ID to take
6302       // ownership.
6303       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6304       assert(Record.size() >= RefListStartIndex + NumRefs &&
6305              "Record size inconsistent with number of references");
6306       std::vector<ValueInfo> Refs = makeRefList(
6307           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6308       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6309       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6310       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6311           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6312           IsOldProfileFormat, HasProfile, HasRelBF);
6313       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6314       auto FS = std::make_unique<FunctionSummary>(
6315           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6316           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6317           std::move(PendingTypeTestAssumeVCalls),
6318           std::move(PendingTypeCheckedLoadVCalls),
6319           std::move(PendingTypeTestAssumeConstVCalls),
6320           std::move(PendingTypeCheckedLoadConstVCalls),
6321           std::move(PendingParamAccesses));
6322       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6323       FS->setModulePath(getThisModule()->first());
6324       FS->setOriginalName(VIAndOriginalGUID.second);
6325       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6326       break;
6327     }
6328     // FS_ALIAS: [valueid, flags, valueid]
6329     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6330     // they expect all aliasee summaries to be available.
6331     case bitc::FS_ALIAS: {
6332       unsigned ValueID = Record[0];
6333       uint64_t RawFlags = Record[1];
6334       unsigned AliaseeID = Record[2];
6335       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6336       auto AS = std::make_unique<AliasSummary>(Flags);
6337       // The module path string ref set in the summary must be owned by the
6338       // index's module string table. Since we don't have a module path
6339       // string table section in the per-module index, we create a single
6340       // module path string table entry with an empty (0) ID to take
6341       // ownership.
6342       AS->setModulePath(getThisModule()->first());
6343 
6344       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6345       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6346       if (!AliaseeInModule)
6347         return error("Alias expects aliasee summary to be parsed");
6348       AS->setAliasee(AliaseeVI, AliaseeInModule);
6349 
6350       auto GUID = getValueInfoFromValueId(ValueID);
6351       AS->setOriginalName(GUID.second);
6352       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6353       break;
6354     }
6355     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6356     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6357       unsigned ValueID = Record[0];
6358       uint64_t RawFlags = Record[1];
6359       unsigned RefArrayStart = 2;
6360       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6361                                       /* WriteOnly */ false,
6362                                       /* Constant */ false,
6363                                       GlobalObject::VCallVisibilityPublic);
6364       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6365       if (Version >= 5) {
6366         GVF = getDecodedGVarFlags(Record[2]);
6367         RefArrayStart = 3;
6368       }
6369       std::vector<ValueInfo> Refs =
6370           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6371       auto FS =
6372           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6373       FS->setModulePath(getThisModule()->first());
6374       auto GUID = getValueInfoFromValueId(ValueID);
6375       FS->setOriginalName(GUID.second);
6376       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6377       break;
6378     }
6379     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6380     //                        numrefs, numrefs x valueid,
6381     //                        n x (valueid, offset)]
6382     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6383       unsigned ValueID = Record[0];
6384       uint64_t RawFlags = Record[1];
6385       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6386       unsigned NumRefs = Record[3];
6387       unsigned RefListStartIndex = 4;
6388       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6389       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6390       std::vector<ValueInfo> Refs = makeRefList(
6391           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6392       VTableFuncList VTableFuncs;
6393       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6394         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6395         uint64_t Offset = Record[++I];
6396         VTableFuncs.push_back({Callee, Offset});
6397       }
6398       auto VS =
6399           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6400       VS->setModulePath(getThisModule()->first());
6401       VS->setVTableFuncs(VTableFuncs);
6402       auto GUID = getValueInfoFromValueId(ValueID);
6403       VS->setOriginalName(GUID.second);
6404       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6405       break;
6406     }
6407     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6408     //               numrefs x valueid, n x (valueid)]
6409     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6410     //                       numrefs x valueid, n x (valueid, hotness)]
6411     case bitc::FS_COMBINED:
6412     case bitc::FS_COMBINED_PROFILE: {
6413       unsigned ValueID = Record[0];
6414       uint64_t ModuleId = Record[1];
6415       uint64_t RawFlags = Record[2];
6416       unsigned InstCount = Record[3];
6417       uint64_t RawFunFlags = 0;
6418       uint64_t EntryCount = 0;
6419       unsigned NumRefs = Record[4];
6420       unsigned NumRORefs = 0, NumWORefs = 0;
6421       int RefListStartIndex = 5;
6422 
6423       if (Version >= 4) {
6424         RawFunFlags = Record[4];
6425         RefListStartIndex = 6;
6426         size_t NumRefsIndex = 5;
6427         if (Version >= 5) {
6428           unsigned NumRORefsOffset = 1;
6429           RefListStartIndex = 7;
6430           if (Version >= 6) {
6431             NumRefsIndex = 6;
6432             EntryCount = Record[5];
6433             RefListStartIndex = 8;
6434             if (Version >= 7) {
6435               RefListStartIndex = 9;
6436               NumWORefs = Record[8];
6437               NumRORefsOffset = 2;
6438             }
6439           }
6440           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6441         }
6442         NumRefs = Record[NumRefsIndex];
6443       }
6444 
6445       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6446       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6447       assert(Record.size() >= RefListStartIndex + NumRefs &&
6448              "Record size inconsistent with number of references");
6449       std::vector<ValueInfo> Refs = makeRefList(
6450           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6451       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6452       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6453           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6454           IsOldProfileFormat, HasProfile, false);
6455       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6456       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6457       auto FS = std::make_unique<FunctionSummary>(
6458           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6459           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6460           std::move(PendingTypeTestAssumeVCalls),
6461           std::move(PendingTypeCheckedLoadVCalls),
6462           std::move(PendingTypeTestAssumeConstVCalls),
6463           std::move(PendingTypeCheckedLoadConstVCalls),
6464           std::move(PendingParamAccesses));
6465       LastSeenSummary = FS.get();
6466       LastSeenGUID = VI.getGUID();
6467       FS->setModulePath(ModuleIdMap[ModuleId]);
6468       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6469       break;
6470     }
6471     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6472     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6473     // they expect all aliasee summaries to be available.
6474     case bitc::FS_COMBINED_ALIAS: {
6475       unsigned ValueID = Record[0];
6476       uint64_t ModuleId = Record[1];
6477       uint64_t RawFlags = Record[2];
6478       unsigned AliaseeValueId = Record[3];
6479       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6480       auto AS = std::make_unique<AliasSummary>(Flags);
6481       LastSeenSummary = AS.get();
6482       AS->setModulePath(ModuleIdMap[ModuleId]);
6483 
6484       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6485       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6486       AS->setAliasee(AliaseeVI, AliaseeInModule);
6487 
6488       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6489       LastSeenGUID = VI.getGUID();
6490       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6491       break;
6492     }
6493     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6494     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6495       unsigned ValueID = Record[0];
6496       uint64_t ModuleId = Record[1];
6497       uint64_t RawFlags = Record[2];
6498       unsigned RefArrayStart = 3;
6499       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6500                                       /* WriteOnly */ false,
6501                                       /* Constant */ false,
6502                                       GlobalObject::VCallVisibilityPublic);
6503       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6504       if (Version >= 5) {
6505         GVF = getDecodedGVarFlags(Record[3]);
6506         RefArrayStart = 4;
6507       }
6508       std::vector<ValueInfo> Refs =
6509           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6510       auto FS =
6511           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6512       LastSeenSummary = FS.get();
6513       FS->setModulePath(ModuleIdMap[ModuleId]);
6514       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6515       LastSeenGUID = VI.getGUID();
6516       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6517       break;
6518     }
6519     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6520     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6521       uint64_t OriginalName = Record[0];
6522       if (!LastSeenSummary)
6523         return error("Name attachment that does not follow a combined record");
6524       LastSeenSummary->setOriginalName(OriginalName);
6525       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6526       // Reset the LastSeenSummary
6527       LastSeenSummary = nullptr;
6528       LastSeenGUID = 0;
6529       break;
6530     }
6531     case bitc::FS_TYPE_TESTS:
6532       assert(PendingTypeTests.empty());
6533       llvm::append_range(PendingTypeTests, Record);
6534       break;
6535 
6536     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6537       assert(PendingTypeTestAssumeVCalls.empty());
6538       for (unsigned I = 0; I != Record.size(); I += 2)
6539         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6540       break;
6541 
6542     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6543       assert(PendingTypeCheckedLoadVCalls.empty());
6544       for (unsigned I = 0; I != Record.size(); I += 2)
6545         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6546       break;
6547 
6548     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6549       PendingTypeTestAssumeConstVCalls.push_back(
6550           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6551       break;
6552 
6553     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6554       PendingTypeCheckedLoadConstVCalls.push_back(
6555           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6556       break;
6557 
6558     case bitc::FS_CFI_FUNCTION_DEFS: {
6559       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6560       for (unsigned I = 0; I != Record.size(); I += 2)
6561         CfiFunctionDefs.insert(
6562             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6563       break;
6564     }
6565 
6566     case bitc::FS_CFI_FUNCTION_DECLS: {
6567       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6568       for (unsigned I = 0; I != Record.size(); I += 2)
6569         CfiFunctionDecls.insert(
6570             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6571       break;
6572     }
6573 
6574     case bitc::FS_TYPE_ID:
6575       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6576       break;
6577 
6578     case bitc::FS_TYPE_ID_METADATA:
6579       parseTypeIdCompatibleVtableSummaryRecord(Record);
6580       break;
6581 
6582     case bitc::FS_BLOCK_COUNT:
6583       TheIndex.addBlockCount(Record[0]);
6584       break;
6585 
6586     case bitc::FS_PARAM_ACCESS: {
6587       PendingParamAccesses = parseParamAccesses(Record);
6588       break;
6589     }
6590     }
6591   }
6592   llvm_unreachable("Exit infinite loop");
6593 }
6594 
6595 // Parse the  module string table block into the Index.
6596 // This populates the ModulePathStringTable map in the index.
6597 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6598   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6599     return Err;
6600 
6601   SmallVector<uint64_t, 64> Record;
6602 
6603   SmallString<128> ModulePath;
6604   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6605 
6606   while (true) {
6607     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6608     if (!MaybeEntry)
6609       return MaybeEntry.takeError();
6610     BitstreamEntry Entry = MaybeEntry.get();
6611 
6612     switch (Entry.Kind) {
6613     case BitstreamEntry::SubBlock: // Handled for us already.
6614     case BitstreamEntry::Error:
6615       return error("Malformed block");
6616     case BitstreamEntry::EndBlock:
6617       return Error::success();
6618     case BitstreamEntry::Record:
6619       // The interesting case.
6620       break;
6621     }
6622 
6623     Record.clear();
6624     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6625     if (!MaybeRecord)
6626       return MaybeRecord.takeError();
6627     switch (MaybeRecord.get()) {
6628     default: // Default behavior: ignore.
6629       break;
6630     case bitc::MST_CODE_ENTRY: {
6631       // MST_ENTRY: [modid, namechar x N]
6632       uint64_t ModuleId = Record[0];
6633 
6634       if (convertToString(Record, 1, ModulePath))
6635         return error("Invalid record");
6636 
6637       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6638       ModuleIdMap[ModuleId] = LastSeenModule->first();
6639 
6640       ModulePath.clear();
6641       break;
6642     }
6643     /// MST_CODE_HASH: [5*i32]
6644     case bitc::MST_CODE_HASH: {
6645       if (Record.size() != 5)
6646         return error("Invalid hash length " + Twine(Record.size()).str());
6647       if (!LastSeenModule)
6648         return error("Invalid hash that does not follow a module path");
6649       int Pos = 0;
6650       for (auto &Val : Record) {
6651         assert(!(Val >> 32) && "Unexpected high bits set");
6652         LastSeenModule->second.second[Pos++] = Val;
6653       }
6654       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6655       LastSeenModule = nullptr;
6656       break;
6657     }
6658     }
6659   }
6660   llvm_unreachable("Exit infinite loop");
6661 }
6662 
6663 namespace {
6664 
6665 // FIXME: This class is only here to support the transition to llvm::Error. It
6666 // will be removed once this transition is complete. Clients should prefer to
6667 // deal with the Error value directly, rather than converting to error_code.
6668 class BitcodeErrorCategoryType : public std::error_category {
6669   const char *name() const noexcept override {
6670     return "llvm.bitcode";
6671   }
6672 
6673   std::string message(int IE) const override {
6674     BitcodeError E = static_cast<BitcodeError>(IE);
6675     switch (E) {
6676     case BitcodeError::CorruptedBitcode:
6677       return "Corrupted bitcode";
6678     }
6679     llvm_unreachable("Unknown error type!");
6680   }
6681 };
6682 
6683 } // end anonymous namespace
6684 
6685 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6686 
6687 const std::error_category &llvm::BitcodeErrorCategory() {
6688   return *ErrorCategory;
6689 }
6690 
6691 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6692                                             unsigned Block, unsigned RecordID) {
6693   if (Error Err = Stream.EnterSubBlock(Block))
6694     return std::move(Err);
6695 
6696   StringRef Strtab;
6697   while (true) {
6698     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6699     if (!MaybeEntry)
6700       return MaybeEntry.takeError();
6701     llvm::BitstreamEntry Entry = MaybeEntry.get();
6702 
6703     switch (Entry.Kind) {
6704     case BitstreamEntry::EndBlock:
6705       return Strtab;
6706 
6707     case BitstreamEntry::Error:
6708       return error("Malformed block");
6709 
6710     case BitstreamEntry::SubBlock:
6711       if (Error Err = Stream.SkipBlock())
6712         return std::move(Err);
6713       break;
6714 
6715     case BitstreamEntry::Record:
6716       StringRef Blob;
6717       SmallVector<uint64_t, 1> Record;
6718       Expected<unsigned> MaybeRecord =
6719           Stream.readRecord(Entry.ID, Record, &Blob);
6720       if (!MaybeRecord)
6721         return MaybeRecord.takeError();
6722       if (MaybeRecord.get() == RecordID)
6723         Strtab = Blob;
6724       break;
6725     }
6726   }
6727 }
6728 
6729 //===----------------------------------------------------------------------===//
6730 // External interface
6731 //===----------------------------------------------------------------------===//
6732 
6733 Expected<std::vector<BitcodeModule>>
6734 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6735   auto FOrErr = getBitcodeFileContents(Buffer);
6736   if (!FOrErr)
6737     return FOrErr.takeError();
6738   return std::move(FOrErr->Mods);
6739 }
6740 
6741 Expected<BitcodeFileContents>
6742 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6743   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6744   if (!StreamOrErr)
6745     return StreamOrErr.takeError();
6746   BitstreamCursor &Stream = *StreamOrErr;
6747 
6748   BitcodeFileContents F;
6749   while (true) {
6750     uint64_t BCBegin = Stream.getCurrentByteNo();
6751 
6752     // We may be consuming bitcode from a client that leaves garbage at the end
6753     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6754     // the end that there cannot possibly be another module, stop looking.
6755     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6756       return F;
6757 
6758     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6759     if (!MaybeEntry)
6760       return MaybeEntry.takeError();
6761     llvm::BitstreamEntry Entry = MaybeEntry.get();
6762 
6763     switch (Entry.Kind) {
6764     case BitstreamEntry::EndBlock:
6765     case BitstreamEntry::Error:
6766       return error("Malformed block");
6767 
6768     case BitstreamEntry::SubBlock: {
6769       uint64_t IdentificationBit = -1ull;
6770       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6771         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6772         if (Error Err = Stream.SkipBlock())
6773           return std::move(Err);
6774 
6775         {
6776           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6777           if (!MaybeEntry)
6778             return MaybeEntry.takeError();
6779           Entry = MaybeEntry.get();
6780         }
6781 
6782         if (Entry.Kind != BitstreamEntry::SubBlock ||
6783             Entry.ID != bitc::MODULE_BLOCK_ID)
6784           return error("Malformed block");
6785       }
6786 
6787       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6788         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6789         if (Error Err = Stream.SkipBlock())
6790           return std::move(Err);
6791 
6792         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6793                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6794                           Buffer.getBufferIdentifier(), IdentificationBit,
6795                           ModuleBit});
6796         continue;
6797       }
6798 
6799       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6800         Expected<StringRef> Strtab =
6801             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6802         if (!Strtab)
6803           return Strtab.takeError();
6804         // This string table is used by every preceding bitcode module that does
6805         // not have its own string table. A bitcode file may have multiple
6806         // string tables if it was created by binary concatenation, for example
6807         // with "llvm-cat -b".
6808         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6809           if (!I.Strtab.empty())
6810             break;
6811           I.Strtab = *Strtab;
6812         }
6813         // Similarly, the string table is used by every preceding symbol table;
6814         // normally there will be just one unless the bitcode file was created
6815         // by binary concatenation.
6816         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6817           F.StrtabForSymtab = *Strtab;
6818         continue;
6819       }
6820 
6821       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6822         Expected<StringRef> SymtabOrErr =
6823             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6824         if (!SymtabOrErr)
6825           return SymtabOrErr.takeError();
6826 
6827         // We can expect the bitcode file to have multiple symbol tables if it
6828         // was created by binary concatenation. In that case we silently
6829         // ignore any subsequent symbol tables, which is fine because this is a
6830         // low level function. The client is expected to notice that the number
6831         // of modules in the symbol table does not match the number of modules
6832         // in the input file and regenerate the symbol table.
6833         if (F.Symtab.empty())
6834           F.Symtab = *SymtabOrErr;
6835         continue;
6836       }
6837 
6838       if (Error Err = Stream.SkipBlock())
6839         return std::move(Err);
6840       continue;
6841     }
6842     case BitstreamEntry::Record:
6843       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6844         return std::move(E);
6845       continue;
6846     }
6847   }
6848 }
6849 
6850 /// Get a lazy one-at-time loading module from bitcode.
6851 ///
6852 /// This isn't always used in a lazy context.  In particular, it's also used by
6853 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6854 /// in forward-referenced functions from block address references.
6855 ///
6856 /// \param[in] MaterializeAll Set to \c true if we should materialize
6857 /// everything.
6858 Expected<std::unique_ptr<Module>>
6859 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6860                              bool ShouldLazyLoadMetadata, bool IsImporting,
6861                              DataLayoutCallbackTy DataLayoutCallback) {
6862   BitstreamCursor Stream(Buffer);
6863 
6864   std::string ProducerIdentification;
6865   if (IdentificationBit != -1ull) {
6866     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6867       return std::move(JumpFailed);
6868     if (Error E =
6869             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6870       return std::move(E);
6871   }
6872 
6873   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6874     return std::move(JumpFailed);
6875   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6876                               Context);
6877 
6878   std::unique_ptr<Module> M =
6879       std::make_unique<Module>(ModuleIdentifier, Context);
6880   M->setMaterializer(R);
6881 
6882   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6883   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6884                                       IsImporting, DataLayoutCallback))
6885     return std::move(Err);
6886 
6887   if (MaterializeAll) {
6888     // Read in the entire module, and destroy the BitcodeReader.
6889     if (Error Err = M->materializeAll())
6890       return std::move(Err);
6891   } else {
6892     // Resolve forward references from blockaddresses.
6893     if (Error Err = R->materializeForwardReferencedFunctions())
6894       return std::move(Err);
6895   }
6896   return std::move(M);
6897 }
6898 
6899 Expected<std::unique_ptr<Module>>
6900 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6901                              bool IsImporting) {
6902   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6903                        [](StringRef) { return None; });
6904 }
6905 
6906 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6907 // We don't use ModuleIdentifier here because the client may need to control the
6908 // module path used in the combined summary (e.g. when reading summaries for
6909 // regular LTO modules).
6910 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6911                                  StringRef ModulePath, uint64_t ModuleId) {
6912   BitstreamCursor Stream(Buffer);
6913   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6914     return JumpFailed;
6915 
6916   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6917                                     ModulePath, ModuleId);
6918   return R.parseModule();
6919 }
6920 
6921 // Parse the specified bitcode buffer, returning the function info index.
6922 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6923   BitstreamCursor Stream(Buffer);
6924   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6925     return std::move(JumpFailed);
6926 
6927   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6928   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6929                                     ModuleIdentifier, 0);
6930 
6931   if (Error Err = R.parseModule())
6932     return std::move(Err);
6933 
6934   return std::move(Index);
6935 }
6936 
6937 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6938                                                 unsigned ID) {
6939   if (Error Err = Stream.EnterSubBlock(ID))
6940     return std::move(Err);
6941   SmallVector<uint64_t, 64> Record;
6942 
6943   while (true) {
6944     BitstreamEntry Entry;
6945     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6946       return std::move(E);
6947 
6948     switch (Entry.Kind) {
6949     case BitstreamEntry::SubBlock: // Handled for us already.
6950     case BitstreamEntry::Error:
6951       return error("Malformed block");
6952     case BitstreamEntry::EndBlock:
6953       // If no flags record found, conservatively return true to mimic
6954       // behavior before this flag was added.
6955       return true;
6956     case BitstreamEntry::Record:
6957       // The interesting case.
6958       break;
6959     }
6960 
6961     // Look for the FS_FLAGS record.
6962     Record.clear();
6963     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6964     if (!MaybeBitCode)
6965       return MaybeBitCode.takeError();
6966     switch (MaybeBitCode.get()) {
6967     default: // Default behavior: ignore.
6968       break;
6969     case bitc::FS_FLAGS: { // [flags]
6970       uint64_t Flags = Record[0];
6971       // Scan flags.
6972       assert(Flags <= 0x7f && "Unexpected bits in flag");
6973 
6974       return Flags & 0x8;
6975     }
6976     }
6977   }
6978   llvm_unreachable("Exit infinite loop");
6979 }
6980 
6981 // Check if the given bitcode buffer contains a global value summary block.
6982 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6983   BitstreamCursor Stream(Buffer);
6984   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6985     return std::move(JumpFailed);
6986 
6987   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6988     return std::move(Err);
6989 
6990   while (true) {
6991     llvm::BitstreamEntry Entry;
6992     if (Error E = Stream.advance().moveInto(Entry))
6993       return std::move(E);
6994 
6995     switch (Entry.Kind) {
6996     case BitstreamEntry::Error:
6997       return error("Malformed block");
6998     case BitstreamEntry::EndBlock:
6999       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7000                             /*EnableSplitLTOUnit=*/false};
7001 
7002     case BitstreamEntry::SubBlock:
7003       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7004         Expected<bool> EnableSplitLTOUnit =
7005             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7006         if (!EnableSplitLTOUnit)
7007           return EnableSplitLTOUnit.takeError();
7008         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7009                               *EnableSplitLTOUnit};
7010       }
7011 
7012       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7013         Expected<bool> EnableSplitLTOUnit =
7014             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7015         if (!EnableSplitLTOUnit)
7016           return EnableSplitLTOUnit.takeError();
7017         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7018                               *EnableSplitLTOUnit};
7019       }
7020 
7021       // Ignore other sub-blocks.
7022       if (Error Err = Stream.SkipBlock())
7023         return std::move(Err);
7024       continue;
7025 
7026     case BitstreamEntry::Record:
7027       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7028         continue;
7029       else
7030         return StreamFailed.takeError();
7031     }
7032   }
7033 }
7034 
7035 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7036   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7037   if (!MsOrErr)
7038     return MsOrErr.takeError();
7039 
7040   if (MsOrErr->size() != 1)
7041     return error("Expected a single module");
7042 
7043   return (*MsOrErr)[0];
7044 }
7045 
7046 Expected<std::unique_ptr<Module>>
7047 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7048                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7049   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7050   if (!BM)
7051     return BM.takeError();
7052 
7053   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7054 }
7055 
7056 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7057     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7058     bool ShouldLazyLoadMetadata, bool IsImporting) {
7059   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7060                                      IsImporting);
7061   if (MOrErr)
7062     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7063   return MOrErr;
7064 }
7065 
7066 Expected<std::unique_ptr<Module>>
7067 BitcodeModule::parseModule(LLVMContext &Context,
7068                            DataLayoutCallbackTy DataLayoutCallback) {
7069   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7070   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7071   // written.  We must defer until the Module has been fully materialized.
7072 }
7073 
7074 Expected<std::unique_ptr<Module>>
7075 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7076                        DataLayoutCallbackTy DataLayoutCallback) {
7077   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7078   if (!BM)
7079     return BM.takeError();
7080 
7081   return BM->parseModule(Context, DataLayoutCallback);
7082 }
7083 
7084 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7085   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7086   if (!StreamOrErr)
7087     return StreamOrErr.takeError();
7088 
7089   return readTriple(*StreamOrErr);
7090 }
7091 
7092 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7093   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7094   if (!StreamOrErr)
7095     return StreamOrErr.takeError();
7096 
7097   return hasObjCCategory(*StreamOrErr);
7098 }
7099 
7100 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7101   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7102   if (!StreamOrErr)
7103     return StreamOrErr.takeError();
7104 
7105   return readIdentificationCode(*StreamOrErr);
7106 }
7107 
7108 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7109                                    ModuleSummaryIndex &CombinedIndex,
7110                                    uint64_t ModuleId) {
7111   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7112   if (!BM)
7113     return BM.takeError();
7114 
7115   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7116 }
7117 
7118 Expected<std::unique_ptr<ModuleSummaryIndex>>
7119 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7120   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7121   if (!BM)
7122     return BM.takeError();
7123 
7124   return BM->getSummary();
7125 }
7126 
7127 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7128   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7129   if (!BM)
7130     return BM.takeError();
7131 
7132   return BM->getLTOInfo();
7133 }
7134 
7135 Expected<std::unique_ptr<ModuleSummaryIndex>>
7136 llvm::getModuleSummaryIndexForFile(StringRef Path,
7137                                    bool IgnoreEmptyThinLTOIndexFile) {
7138   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7139       MemoryBuffer::getFileOrSTDIN(Path);
7140   if (!FileOrErr)
7141     return errorCodeToError(FileOrErr.getError());
7142   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7143     return nullptr;
7144   return getModuleSummaryIndex(**FileOrErr);
7145 }
7146