1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 972 // 973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 974 // visibility: [8, 10). 975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 976 uint64_t Version) { 977 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 978 // like getDecodedLinkage() above. Any future change to the linkage enum and 979 // to getDecodedLinkage() will need to be taken into account here as above. 980 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 981 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 982 RawFlags = RawFlags >> 4; 983 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 984 // The Live flag wasn't introduced until version 3. For dead stripping 985 // to work correctly on earlier versions, we must conservatively treat all 986 // values as live. 987 bool Live = (RawFlags & 0x2) || Version < 3; 988 bool Local = (RawFlags & 0x4); 989 bool AutoHide = (RawFlags & 0x8); 990 991 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 992 Live, Local, AutoHide); 993 } 994 995 // Decode the flags for GlobalVariable in the summary 996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 997 return GlobalVarSummary::GVarFlags( 998 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 999 (RawFlags & 0x4) ? true : false, 1000 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1001 } 1002 1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1004 switch (Val) { 1005 default: // Map unknown visibilities to default. 1006 case 0: return GlobalValue::DefaultVisibility; 1007 case 1: return GlobalValue::HiddenVisibility; 1008 case 2: return GlobalValue::ProtectedVisibility; 1009 } 1010 } 1011 1012 static GlobalValue::DLLStorageClassTypes 1013 getDecodedDLLStorageClass(unsigned Val) { 1014 switch (Val) { 1015 default: // Map unknown values to default. 1016 case 0: return GlobalValue::DefaultStorageClass; 1017 case 1: return GlobalValue::DLLImportStorageClass; 1018 case 2: return GlobalValue::DLLExportStorageClass; 1019 } 1020 } 1021 1022 static bool getDecodedDSOLocal(unsigned Val) { 1023 switch(Val) { 1024 default: // Map unknown values to preemptable. 1025 case 0: return false; 1026 case 1: return true; 1027 } 1028 } 1029 1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1031 switch (Val) { 1032 case 0: return GlobalVariable::NotThreadLocal; 1033 default: // Map unknown non-zero value to general dynamic. 1034 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1035 case 2: return GlobalVariable::LocalDynamicTLSModel; 1036 case 3: return GlobalVariable::InitialExecTLSModel; 1037 case 4: return GlobalVariable::LocalExecTLSModel; 1038 } 1039 } 1040 1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1042 switch (Val) { 1043 default: // Map unknown to UnnamedAddr::None. 1044 case 0: return GlobalVariable::UnnamedAddr::None; 1045 case 1: return GlobalVariable::UnnamedAddr::Global; 1046 case 2: return GlobalVariable::UnnamedAddr::Local; 1047 } 1048 } 1049 1050 static int getDecodedCastOpcode(unsigned Val) { 1051 switch (Val) { 1052 default: return -1; 1053 case bitc::CAST_TRUNC : return Instruction::Trunc; 1054 case bitc::CAST_ZEXT : return Instruction::ZExt; 1055 case bitc::CAST_SEXT : return Instruction::SExt; 1056 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1057 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1058 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1059 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1060 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1061 case bitc::CAST_FPEXT : return Instruction::FPExt; 1062 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1063 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1064 case bitc::CAST_BITCAST : return Instruction::BitCast; 1065 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1066 } 1067 } 1068 1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1070 bool IsFP = Ty->isFPOrFPVectorTy(); 1071 // UnOps are only valid for int/fp or vector of int/fp types 1072 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1073 return -1; 1074 1075 switch (Val) { 1076 default: 1077 return -1; 1078 case bitc::UNOP_FNEG: 1079 return IsFP ? Instruction::FNeg : -1; 1080 } 1081 } 1082 1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1084 bool IsFP = Ty->isFPOrFPVectorTy(); 1085 // BinOps are only valid for int/fp or vector of int/fp types 1086 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1087 return -1; 1088 1089 switch (Val) { 1090 default: 1091 return -1; 1092 case bitc::BINOP_ADD: 1093 return IsFP ? Instruction::FAdd : Instruction::Add; 1094 case bitc::BINOP_SUB: 1095 return IsFP ? Instruction::FSub : Instruction::Sub; 1096 case bitc::BINOP_MUL: 1097 return IsFP ? Instruction::FMul : Instruction::Mul; 1098 case bitc::BINOP_UDIV: 1099 return IsFP ? -1 : Instruction::UDiv; 1100 case bitc::BINOP_SDIV: 1101 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1102 case bitc::BINOP_UREM: 1103 return IsFP ? -1 : Instruction::URem; 1104 case bitc::BINOP_SREM: 1105 return IsFP ? Instruction::FRem : Instruction::SRem; 1106 case bitc::BINOP_SHL: 1107 return IsFP ? -1 : Instruction::Shl; 1108 case bitc::BINOP_LSHR: 1109 return IsFP ? -1 : Instruction::LShr; 1110 case bitc::BINOP_ASHR: 1111 return IsFP ? -1 : Instruction::AShr; 1112 case bitc::BINOP_AND: 1113 return IsFP ? -1 : Instruction::And; 1114 case bitc::BINOP_OR: 1115 return IsFP ? -1 : Instruction::Or; 1116 case bitc::BINOP_XOR: 1117 return IsFP ? -1 : Instruction::Xor; 1118 } 1119 } 1120 1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1122 switch (Val) { 1123 default: return AtomicRMWInst::BAD_BINOP; 1124 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1125 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1126 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1127 case bitc::RMW_AND: return AtomicRMWInst::And; 1128 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1129 case bitc::RMW_OR: return AtomicRMWInst::Or; 1130 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1131 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1132 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1133 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1134 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1135 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1136 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1137 } 1138 } 1139 1140 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1141 switch (Val) { 1142 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1143 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1144 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1145 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1146 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1147 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1148 default: // Map unknown orderings to sequentially-consistent. 1149 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1150 } 1151 } 1152 1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1154 switch (Val) { 1155 default: // Map unknown selection kinds to any. 1156 case bitc::COMDAT_SELECTION_KIND_ANY: 1157 return Comdat::Any; 1158 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1159 return Comdat::ExactMatch; 1160 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1161 return Comdat::Largest; 1162 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1163 return Comdat::NoDuplicates; 1164 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1165 return Comdat::SameSize; 1166 } 1167 } 1168 1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1170 FastMathFlags FMF; 1171 if (0 != (Val & bitc::UnsafeAlgebra)) 1172 FMF.setFast(); 1173 if (0 != (Val & bitc::AllowReassoc)) 1174 FMF.setAllowReassoc(); 1175 if (0 != (Val & bitc::NoNaNs)) 1176 FMF.setNoNaNs(); 1177 if (0 != (Val & bitc::NoInfs)) 1178 FMF.setNoInfs(); 1179 if (0 != (Val & bitc::NoSignedZeros)) 1180 FMF.setNoSignedZeros(); 1181 if (0 != (Val & bitc::AllowReciprocal)) 1182 FMF.setAllowReciprocal(); 1183 if (0 != (Val & bitc::AllowContract)) 1184 FMF.setAllowContract(true); 1185 if (0 != (Val & bitc::ApproxFunc)) 1186 FMF.setApproxFunc(); 1187 return FMF; 1188 } 1189 1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1191 switch (Val) { 1192 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1193 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1194 } 1195 } 1196 1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1198 // The type table size is always specified correctly. 1199 if (ID >= TypeList.size()) 1200 return nullptr; 1201 1202 if (Type *Ty = TypeList[ID]) 1203 return Ty; 1204 1205 // If we have a forward reference, the only possible case is when it is to a 1206 // named struct. Just create a placeholder for now. 1207 return TypeList[ID] = createIdentifiedStructType(Context); 1208 } 1209 1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1211 StringRef Name) { 1212 auto *Ret = StructType::create(Context, Name); 1213 IdentifiedStructTypes.push_back(Ret); 1214 return Ret; 1215 } 1216 1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1218 auto *Ret = StructType::create(Context); 1219 IdentifiedStructTypes.push_back(Ret); 1220 return Ret; 1221 } 1222 1223 //===----------------------------------------------------------------------===// 1224 // Functions for parsing blocks from the bitcode file 1225 //===----------------------------------------------------------------------===// 1226 1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1228 switch (Val) { 1229 case Attribute::EndAttrKinds: 1230 case Attribute::EmptyKey: 1231 case Attribute::TombstoneKey: 1232 llvm_unreachable("Synthetic enumerators which should never get here"); 1233 1234 case Attribute::None: return 0; 1235 case Attribute::ZExt: return 1 << 0; 1236 case Attribute::SExt: return 1 << 1; 1237 case Attribute::NoReturn: return 1 << 2; 1238 case Attribute::InReg: return 1 << 3; 1239 case Attribute::StructRet: return 1 << 4; 1240 case Attribute::NoUnwind: return 1 << 5; 1241 case Attribute::NoAlias: return 1 << 6; 1242 case Attribute::ByVal: return 1 << 7; 1243 case Attribute::Nest: return 1 << 8; 1244 case Attribute::ReadNone: return 1 << 9; 1245 case Attribute::ReadOnly: return 1 << 10; 1246 case Attribute::NoInline: return 1 << 11; 1247 case Attribute::AlwaysInline: return 1 << 12; 1248 case Attribute::OptimizeForSize: return 1 << 13; 1249 case Attribute::StackProtect: return 1 << 14; 1250 case Attribute::StackProtectReq: return 1 << 15; 1251 case Attribute::Alignment: return 31 << 16; 1252 case Attribute::NoCapture: return 1 << 21; 1253 case Attribute::NoRedZone: return 1 << 22; 1254 case Attribute::NoImplicitFloat: return 1 << 23; 1255 case Attribute::Naked: return 1 << 24; 1256 case Attribute::InlineHint: return 1 << 25; 1257 case Attribute::StackAlignment: return 7 << 26; 1258 case Attribute::ReturnsTwice: return 1 << 29; 1259 case Attribute::UWTable: return 1 << 30; 1260 case Attribute::NonLazyBind: return 1U << 31; 1261 case Attribute::SanitizeAddress: return 1ULL << 32; 1262 case Attribute::MinSize: return 1ULL << 33; 1263 case Attribute::NoDuplicate: return 1ULL << 34; 1264 case Attribute::StackProtectStrong: return 1ULL << 35; 1265 case Attribute::SanitizeThread: return 1ULL << 36; 1266 case Attribute::SanitizeMemory: return 1ULL << 37; 1267 case Attribute::NoBuiltin: return 1ULL << 38; 1268 case Attribute::Returned: return 1ULL << 39; 1269 case Attribute::Cold: return 1ULL << 40; 1270 case Attribute::Builtin: return 1ULL << 41; 1271 case Attribute::OptimizeNone: return 1ULL << 42; 1272 case Attribute::InAlloca: return 1ULL << 43; 1273 case Attribute::NonNull: return 1ULL << 44; 1274 case Attribute::JumpTable: return 1ULL << 45; 1275 case Attribute::Convergent: return 1ULL << 46; 1276 case Attribute::SafeStack: return 1ULL << 47; 1277 case Attribute::NoRecurse: return 1ULL << 48; 1278 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1279 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1280 case Attribute::SwiftSelf: return 1ULL << 51; 1281 case Attribute::SwiftError: return 1ULL << 52; 1282 case Attribute::WriteOnly: return 1ULL << 53; 1283 case Attribute::Speculatable: return 1ULL << 54; 1284 case Attribute::StrictFP: return 1ULL << 55; 1285 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1286 case Attribute::NoCfCheck: return 1ULL << 57; 1287 case Attribute::OptForFuzzing: return 1ULL << 58; 1288 case Attribute::ShadowCallStack: return 1ULL << 59; 1289 case Attribute::SpeculativeLoadHardening: 1290 return 1ULL << 60; 1291 case Attribute::ImmArg: 1292 return 1ULL << 61; 1293 case Attribute::WillReturn: 1294 return 1ULL << 62; 1295 case Attribute::NoFree: 1296 return 1ULL << 63; 1297 default: 1298 // Other attributes are not supported in the raw format, 1299 // as we ran out of space. 1300 return 0; 1301 } 1302 llvm_unreachable("Unsupported attribute type"); 1303 } 1304 1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1306 if (!Val) return; 1307 1308 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1309 I = Attribute::AttrKind(I + 1)) { 1310 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1311 if (I == Attribute::Alignment) 1312 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1313 else if (I == Attribute::StackAlignment) 1314 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1315 else 1316 B.addAttribute(I); 1317 } 1318 } 1319 } 1320 1321 /// This fills an AttrBuilder object with the LLVM attributes that have 1322 /// been decoded from the given integer. This function must stay in sync with 1323 /// 'encodeLLVMAttributesForBitcode'. 1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1325 uint64_t EncodedAttrs) { 1326 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1327 // the bits above 31 down by 11 bits. 1328 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1329 assert((!Alignment || isPowerOf2_32(Alignment)) && 1330 "Alignment must be a power of two."); 1331 1332 if (Alignment) 1333 B.addAlignmentAttr(Alignment); 1334 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1335 (EncodedAttrs & 0xffff)); 1336 } 1337 1338 Error BitcodeReader::parseAttributeBlock() { 1339 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1340 return Err; 1341 1342 if (!MAttributes.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 SmallVector<AttributeList, 8> Attrs; 1348 1349 // Read all the records. 1350 while (true) { 1351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1352 if (!MaybeEntry) 1353 return MaybeEntry.takeError(); 1354 BitstreamEntry Entry = MaybeEntry.get(); 1355 1356 switch (Entry.Kind) { 1357 case BitstreamEntry::SubBlock: // Handled for us already. 1358 case BitstreamEntry::Error: 1359 return error("Malformed block"); 1360 case BitstreamEntry::EndBlock: 1361 return Error::success(); 1362 case BitstreamEntry::Record: 1363 // The interesting case. 1364 break; 1365 } 1366 1367 // Read a record. 1368 Record.clear(); 1369 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1370 if (!MaybeRecord) 1371 return MaybeRecord.takeError(); 1372 switch (MaybeRecord.get()) { 1373 default: // Default behavior: ignore. 1374 break; 1375 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1376 // Deprecated, but still needed to read old bitcode files. 1377 if (Record.size() & 1) 1378 return error("Invalid record"); 1379 1380 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1381 AttrBuilder B; 1382 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1383 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1384 } 1385 1386 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1387 Attrs.clear(); 1388 break; 1389 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1390 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1391 Attrs.push_back(MAttributeGroups[Record[i]]); 1392 1393 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1394 Attrs.clear(); 1395 break; 1396 } 1397 } 1398 } 1399 1400 // Returns Attribute::None on unrecognized codes. 1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1402 switch (Code) { 1403 default: 1404 return Attribute::None; 1405 case bitc::ATTR_KIND_ALIGNMENT: 1406 return Attribute::Alignment; 1407 case bitc::ATTR_KIND_ALWAYS_INLINE: 1408 return Attribute::AlwaysInline; 1409 case bitc::ATTR_KIND_ARGMEMONLY: 1410 return Attribute::ArgMemOnly; 1411 case bitc::ATTR_KIND_BUILTIN: 1412 return Attribute::Builtin; 1413 case bitc::ATTR_KIND_BY_VAL: 1414 return Attribute::ByVal; 1415 case bitc::ATTR_KIND_IN_ALLOCA: 1416 return Attribute::InAlloca; 1417 case bitc::ATTR_KIND_COLD: 1418 return Attribute::Cold; 1419 case bitc::ATTR_KIND_CONVERGENT: 1420 return Attribute::Convergent; 1421 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1422 return Attribute::InaccessibleMemOnly; 1423 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1424 return Attribute::InaccessibleMemOrArgMemOnly; 1425 case bitc::ATTR_KIND_INLINE_HINT: 1426 return Attribute::InlineHint; 1427 case bitc::ATTR_KIND_IN_REG: 1428 return Attribute::InReg; 1429 case bitc::ATTR_KIND_JUMP_TABLE: 1430 return Attribute::JumpTable; 1431 case bitc::ATTR_KIND_MIN_SIZE: 1432 return Attribute::MinSize; 1433 case bitc::ATTR_KIND_NAKED: 1434 return Attribute::Naked; 1435 case bitc::ATTR_KIND_NEST: 1436 return Attribute::Nest; 1437 case bitc::ATTR_KIND_NO_ALIAS: 1438 return Attribute::NoAlias; 1439 case bitc::ATTR_KIND_NO_BUILTIN: 1440 return Attribute::NoBuiltin; 1441 case bitc::ATTR_KIND_NO_CALLBACK: 1442 return Attribute::NoCallback; 1443 case bitc::ATTR_KIND_NO_CAPTURE: 1444 return Attribute::NoCapture; 1445 case bitc::ATTR_KIND_NO_DUPLICATE: 1446 return Attribute::NoDuplicate; 1447 case bitc::ATTR_KIND_NOFREE: 1448 return Attribute::NoFree; 1449 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1450 return Attribute::NoImplicitFloat; 1451 case bitc::ATTR_KIND_NO_INLINE: 1452 return Attribute::NoInline; 1453 case bitc::ATTR_KIND_NO_RECURSE: 1454 return Attribute::NoRecurse; 1455 case bitc::ATTR_KIND_NO_MERGE: 1456 return Attribute::NoMerge; 1457 case bitc::ATTR_KIND_NON_LAZY_BIND: 1458 return Attribute::NonLazyBind; 1459 case bitc::ATTR_KIND_NON_NULL: 1460 return Attribute::NonNull; 1461 case bitc::ATTR_KIND_DEREFERENCEABLE: 1462 return Attribute::Dereferenceable; 1463 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1464 return Attribute::DereferenceableOrNull; 1465 case bitc::ATTR_KIND_ALLOC_SIZE: 1466 return Attribute::AllocSize; 1467 case bitc::ATTR_KIND_NO_RED_ZONE: 1468 return Attribute::NoRedZone; 1469 case bitc::ATTR_KIND_NO_RETURN: 1470 return Attribute::NoReturn; 1471 case bitc::ATTR_KIND_NOSYNC: 1472 return Attribute::NoSync; 1473 case bitc::ATTR_KIND_NOCF_CHECK: 1474 return Attribute::NoCfCheck; 1475 case bitc::ATTR_KIND_NO_UNWIND: 1476 return Attribute::NoUnwind; 1477 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1478 return Attribute::NullPointerIsValid; 1479 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1480 return Attribute::OptForFuzzing; 1481 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1482 return Attribute::OptimizeForSize; 1483 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1484 return Attribute::OptimizeNone; 1485 case bitc::ATTR_KIND_READ_NONE: 1486 return Attribute::ReadNone; 1487 case bitc::ATTR_KIND_READ_ONLY: 1488 return Attribute::ReadOnly; 1489 case bitc::ATTR_KIND_RETURNED: 1490 return Attribute::Returned; 1491 case bitc::ATTR_KIND_RETURNS_TWICE: 1492 return Attribute::ReturnsTwice; 1493 case bitc::ATTR_KIND_S_EXT: 1494 return Attribute::SExt; 1495 case bitc::ATTR_KIND_SPECULATABLE: 1496 return Attribute::Speculatable; 1497 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1498 return Attribute::StackAlignment; 1499 case bitc::ATTR_KIND_STACK_PROTECT: 1500 return Attribute::StackProtect; 1501 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1502 return Attribute::StackProtectReq; 1503 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1504 return Attribute::StackProtectStrong; 1505 case bitc::ATTR_KIND_SAFESTACK: 1506 return Attribute::SafeStack; 1507 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1508 return Attribute::ShadowCallStack; 1509 case bitc::ATTR_KIND_STRICT_FP: 1510 return Attribute::StrictFP; 1511 case bitc::ATTR_KIND_STRUCT_RET: 1512 return Attribute::StructRet; 1513 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1514 return Attribute::SanitizeAddress; 1515 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1516 return Attribute::SanitizeHWAddress; 1517 case bitc::ATTR_KIND_SANITIZE_THREAD: 1518 return Attribute::SanitizeThread; 1519 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1520 return Attribute::SanitizeMemory; 1521 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1522 return Attribute::SpeculativeLoadHardening; 1523 case bitc::ATTR_KIND_SWIFT_ERROR: 1524 return Attribute::SwiftError; 1525 case bitc::ATTR_KIND_SWIFT_SELF: 1526 return Attribute::SwiftSelf; 1527 case bitc::ATTR_KIND_UW_TABLE: 1528 return Attribute::UWTable; 1529 case bitc::ATTR_KIND_VSCALE_RANGE: 1530 return Attribute::VScaleRange; 1531 case bitc::ATTR_KIND_WILLRETURN: 1532 return Attribute::WillReturn; 1533 case bitc::ATTR_KIND_WRITEONLY: 1534 return Attribute::WriteOnly; 1535 case bitc::ATTR_KIND_Z_EXT: 1536 return Attribute::ZExt; 1537 case bitc::ATTR_KIND_IMMARG: 1538 return Attribute::ImmArg; 1539 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1540 return Attribute::SanitizeMemTag; 1541 case bitc::ATTR_KIND_PREALLOCATED: 1542 return Attribute::Preallocated; 1543 case bitc::ATTR_KIND_NOUNDEF: 1544 return Attribute::NoUndef; 1545 case bitc::ATTR_KIND_BYREF: 1546 return Attribute::ByRef; 1547 case bitc::ATTR_KIND_MUSTPROGRESS: 1548 return Attribute::MustProgress; 1549 case bitc::ATTR_KIND_HOT: 1550 return Attribute::Hot; 1551 } 1552 } 1553 1554 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1555 MaybeAlign &Alignment) { 1556 // Note: Alignment in bitcode files is incremented by 1, so that zero 1557 // can be used for default alignment. 1558 if (Exponent > Value::MaxAlignmentExponent + 1) 1559 return error("Invalid alignment value"); 1560 Alignment = decodeMaybeAlign(Exponent); 1561 return Error::success(); 1562 } 1563 1564 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1565 *Kind = getAttrFromCode(Code); 1566 if (*Kind == Attribute::None) 1567 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1568 return Error::success(); 1569 } 1570 1571 Error BitcodeReader::parseAttributeGroupBlock() { 1572 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1573 return Err; 1574 1575 if (!MAttributeGroups.empty()) 1576 return error("Invalid multiple blocks"); 1577 1578 SmallVector<uint64_t, 64> Record; 1579 1580 // Read all the records. 1581 while (true) { 1582 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1583 if (!MaybeEntry) 1584 return MaybeEntry.takeError(); 1585 BitstreamEntry Entry = MaybeEntry.get(); 1586 1587 switch (Entry.Kind) { 1588 case BitstreamEntry::SubBlock: // Handled for us already. 1589 case BitstreamEntry::Error: 1590 return error("Malformed block"); 1591 case BitstreamEntry::EndBlock: 1592 return Error::success(); 1593 case BitstreamEntry::Record: 1594 // The interesting case. 1595 break; 1596 } 1597 1598 // Read a record. 1599 Record.clear(); 1600 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1601 if (!MaybeRecord) 1602 return MaybeRecord.takeError(); 1603 switch (MaybeRecord.get()) { 1604 default: // Default behavior: ignore. 1605 break; 1606 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1607 if (Record.size() < 3) 1608 return error("Invalid record"); 1609 1610 uint64_t GrpID = Record[0]; 1611 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1612 1613 AttrBuilder B; 1614 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1615 if (Record[i] == 0) { // Enum attribute 1616 Attribute::AttrKind Kind; 1617 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1618 return Err; 1619 1620 // Upgrade old-style byval attribute to one with a type, even if it's 1621 // nullptr. We will have to insert the real type when we associate 1622 // this AttributeList with a function. 1623 if (Kind == Attribute::ByVal) 1624 B.addByValAttr(nullptr); 1625 else if (Kind == Attribute::StructRet) 1626 B.addStructRetAttr(nullptr); 1627 else if (Kind == Attribute::InAlloca) 1628 B.addInAllocaAttr(nullptr); 1629 1630 B.addAttribute(Kind); 1631 } else if (Record[i] == 1) { // Integer attribute 1632 Attribute::AttrKind Kind; 1633 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1634 return Err; 1635 if (Kind == Attribute::Alignment) 1636 B.addAlignmentAttr(Record[++i]); 1637 else if (Kind == Attribute::StackAlignment) 1638 B.addStackAlignmentAttr(Record[++i]); 1639 else if (Kind == Attribute::Dereferenceable) 1640 B.addDereferenceableAttr(Record[++i]); 1641 else if (Kind == Attribute::DereferenceableOrNull) 1642 B.addDereferenceableOrNullAttr(Record[++i]); 1643 else if (Kind == Attribute::AllocSize) 1644 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1645 else if (Kind == Attribute::VScaleRange) 1646 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1647 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1648 bool HasValue = (Record[i++] == 4); 1649 SmallString<64> KindStr; 1650 SmallString<64> ValStr; 1651 1652 while (Record[i] != 0 && i != e) 1653 KindStr += Record[i++]; 1654 assert(Record[i] == 0 && "Kind string not null terminated"); 1655 1656 if (HasValue) { 1657 // Has a value associated with it. 1658 ++i; // Skip the '0' that terminates the "kind" string. 1659 while (Record[i] != 0 && i != e) 1660 ValStr += Record[i++]; 1661 assert(Record[i] == 0 && "Value string not null terminated"); 1662 } 1663 1664 B.addAttribute(KindStr.str(), ValStr.str()); 1665 } else { 1666 assert((Record[i] == 5 || Record[i] == 6) && 1667 "Invalid attribute group entry"); 1668 bool HasType = Record[i] == 6; 1669 Attribute::AttrKind Kind; 1670 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1671 return Err; 1672 if (Kind == Attribute::ByVal) { 1673 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1674 } else if (Kind == Attribute::StructRet) { 1675 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1676 } else if (Kind == Attribute::ByRef) { 1677 B.addByRefAttr(getTypeByID(Record[++i])); 1678 } else if (Kind == Attribute::Preallocated) { 1679 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1680 } else if (Kind == Attribute::InAlloca) { 1681 B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1682 } 1683 } 1684 } 1685 1686 UpgradeAttributes(B); 1687 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1688 break; 1689 } 1690 } 1691 } 1692 } 1693 1694 Error BitcodeReader::parseTypeTable() { 1695 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1696 return Err; 1697 1698 return parseTypeTableBody(); 1699 } 1700 1701 Error BitcodeReader::parseTypeTableBody() { 1702 if (!TypeList.empty()) 1703 return error("Invalid multiple blocks"); 1704 1705 SmallVector<uint64_t, 64> Record; 1706 unsigned NumRecords = 0; 1707 1708 SmallString<64> TypeName; 1709 1710 // Read all the records for this type table. 1711 while (true) { 1712 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1713 if (!MaybeEntry) 1714 return MaybeEntry.takeError(); 1715 BitstreamEntry Entry = MaybeEntry.get(); 1716 1717 switch (Entry.Kind) { 1718 case BitstreamEntry::SubBlock: // Handled for us already. 1719 case BitstreamEntry::Error: 1720 return error("Malformed block"); 1721 case BitstreamEntry::EndBlock: 1722 if (NumRecords != TypeList.size()) 1723 return error("Malformed block"); 1724 return Error::success(); 1725 case BitstreamEntry::Record: 1726 // The interesting case. 1727 break; 1728 } 1729 1730 // Read a record. 1731 Record.clear(); 1732 Type *ResultTy = nullptr; 1733 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1734 if (!MaybeRecord) 1735 return MaybeRecord.takeError(); 1736 switch (MaybeRecord.get()) { 1737 default: 1738 return error("Invalid value"); 1739 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1740 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1741 // type list. This allows us to reserve space. 1742 if (Record.empty()) 1743 return error("Invalid record"); 1744 TypeList.resize(Record[0]); 1745 continue; 1746 case bitc::TYPE_CODE_VOID: // VOID 1747 ResultTy = Type::getVoidTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_HALF: // HALF 1750 ResultTy = Type::getHalfTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1753 ResultTy = Type::getBFloatTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_FLOAT: // FLOAT 1756 ResultTy = Type::getFloatTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1759 ResultTy = Type::getDoubleTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1762 ResultTy = Type::getX86_FP80Ty(Context); 1763 break; 1764 case bitc::TYPE_CODE_FP128: // FP128 1765 ResultTy = Type::getFP128Ty(Context); 1766 break; 1767 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1768 ResultTy = Type::getPPC_FP128Ty(Context); 1769 break; 1770 case bitc::TYPE_CODE_LABEL: // LABEL 1771 ResultTy = Type::getLabelTy(Context); 1772 break; 1773 case bitc::TYPE_CODE_METADATA: // METADATA 1774 ResultTy = Type::getMetadataTy(Context); 1775 break; 1776 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1777 ResultTy = Type::getX86_MMXTy(Context); 1778 break; 1779 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1780 ResultTy = Type::getX86_AMXTy(Context); 1781 break; 1782 case bitc::TYPE_CODE_TOKEN: // TOKEN 1783 ResultTy = Type::getTokenTy(Context); 1784 break; 1785 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1786 if (Record.empty()) 1787 return error("Invalid record"); 1788 1789 uint64_t NumBits = Record[0]; 1790 if (NumBits < IntegerType::MIN_INT_BITS || 1791 NumBits > IntegerType::MAX_INT_BITS) 1792 return error("Bitwidth for integer type out of range"); 1793 ResultTy = IntegerType::get(Context, NumBits); 1794 break; 1795 } 1796 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1797 // [pointee type, address space] 1798 if (Record.empty()) 1799 return error("Invalid record"); 1800 unsigned AddressSpace = 0; 1801 if (Record.size() == 2) 1802 AddressSpace = Record[1]; 1803 ResultTy = getTypeByID(Record[0]); 1804 if (!ResultTy || 1805 !PointerType::isValidElementType(ResultTy)) 1806 return error("Invalid type"); 1807 ResultTy = PointerType::get(ResultTy, AddressSpace); 1808 break; 1809 } 1810 case bitc::TYPE_CODE_FUNCTION_OLD: { 1811 // Deprecated, but still needed to read old bitcode files. 1812 // FUNCTION: [vararg, attrid, retty, paramty x N] 1813 if (Record.size() < 3) 1814 return error("Invalid record"); 1815 SmallVector<Type*, 8> ArgTys; 1816 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1817 if (Type *T = getTypeByID(Record[i])) 1818 ArgTys.push_back(T); 1819 else 1820 break; 1821 } 1822 1823 ResultTy = getTypeByID(Record[2]); 1824 if (!ResultTy || ArgTys.size() < Record.size()-3) 1825 return error("Invalid type"); 1826 1827 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1828 break; 1829 } 1830 case bitc::TYPE_CODE_FUNCTION: { 1831 // FUNCTION: [vararg, retty, paramty x N] 1832 if (Record.size() < 2) 1833 return error("Invalid record"); 1834 SmallVector<Type*, 8> ArgTys; 1835 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1836 if (Type *T = getTypeByID(Record[i])) { 1837 if (!FunctionType::isValidArgumentType(T)) 1838 return error("Invalid function argument type"); 1839 ArgTys.push_back(T); 1840 } 1841 else 1842 break; 1843 } 1844 1845 ResultTy = getTypeByID(Record[1]); 1846 if (!ResultTy || ArgTys.size() < Record.size()-2) 1847 return error("Invalid type"); 1848 1849 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1850 break; 1851 } 1852 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1853 if (Record.empty()) 1854 return error("Invalid record"); 1855 SmallVector<Type*, 8> EltTys; 1856 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1857 if (Type *T = getTypeByID(Record[i])) 1858 EltTys.push_back(T); 1859 else 1860 break; 1861 } 1862 if (EltTys.size() != Record.size()-1) 1863 return error("Invalid type"); 1864 ResultTy = StructType::get(Context, EltTys, Record[0]); 1865 break; 1866 } 1867 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1868 if (convertToString(Record, 0, TypeName)) 1869 return error("Invalid record"); 1870 continue; 1871 1872 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1873 if (Record.empty()) 1874 return error("Invalid record"); 1875 1876 if (NumRecords >= TypeList.size()) 1877 return error("Invalid TYPE table"); 1878 1879 // Check to see if this was forward referenced, if so fill in the temp. 1880 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1881 if (Res) { 1882 Res->setName(TypeName); 1883 TypeList[NumRecords] = nullptr; 1884 } else // Otherwise, create a new struct. 1885 Res = createIdentifiedStructType(Context, TypeName); 1886 TypeName.clear(); 1887 1888 SmallVector<Type*, 8> EltTys; 1889 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1890 if (Type *T = getTypeByID(Record[i])) 1891 EltTys.push_back(T); 1892 else 1893 break; 1894 } 1895 if (EltTys.size() != Record.size()-1) 1896 return error("Invalid record"); 1897 Res->setBody(EltTys, Record[0]); 1898 ResultTy = Res; 1899 break; 1900 } 1901 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1902 if (Record.size() != 1) 1903 return error("Invalid record"); 1904 1905 if (NumRecords >= TypeList.size()) 1906 return error("Invalid TYPE table"); 1907 1908 // Check to see if this was forward referenced, if so fill in the temp. 1909 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1910 if (Res) { 1911 Res->setName(TypeName); 1912 TypeList[NumRecords] = nullptr; 1913 } else // Otherwise, create a new struct with no body. 1914 Res = createIdentifiedStructType(Context, TypeName); 1915 TypeName.clear(); 1916 ResultTy = Res; 1917 break; 1918 } 1919 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1920 if (Record.size() < 2) 1921 return error("Invalid record"); 1922 ResultTy = getTypeByID(Record[1]); 1923 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1924 return error("Invalid type"); 1925 ResultTy = ArrayType::get(ResultTy, Record[0]); 1926 break; 1927 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1928 // [numelts, eltty, scalable] 1929 if (Record.size() < 2) 1930 return error("Invalid record"); 1931 if (Record[0] == 0) 1932 return error("Invalid vector length"); 1933 ResultTy = getTypeByID(Record[1]); 1934 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1935 return error("Invalid type"); 1936 bool Scalable = Record.size() > 2 ? Record[2] : false; 1937 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1938 break; 1939 } 1940 1941 if (NumRecords >= TypeList.size()) 1942 return error("Invalid TYPE table"); 1943 if (TypeList[NumRecords]) 1944 return error( 1945 "Invalid TYPE table: Only named structs can be forward referenced"); 1946 assert(ResultTy && "Didn't read a type?"); 1947 TypeList[NumRecords++] = ResultTy; 1948 } 1949 } 1950 1951 Error BitcodeReader::parseOperandBundleTags() { 1952 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1953 return Err; 1954 1955 if (!BundleTags.empty()) 1956 return error("Invalid multiple blocks"); 1957 1958 SmallVector<uint64_t, 64> Record; 1959 1960 while (true) { 1961 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1962 if (!MaybeEntry) 1963 return MaybeEntry.takeError(); 1964 BitstreamEntry Entry = MaybeEntry.get(); 1965 1966 switch (Entry.Kind) { 1967 case BitstreamEntry::SubBlock: // Handled for us already. 1968 case BitstreamEntry::Error: 1969 return error("Malformed block"); 1970 case BitstreamEntry::EndBlock: 1971 return Error::success(); 1972 case BitstreamEntry::Record: 1973 // The interesting case. 1974 break; 1975 } 1976 1977 // Tags are implicitly mapped to integers by their order. 1978 1979 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1980 if (!MaybeRecord) 1981 return MaybeRecord.takeError(); 1982 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1983 return error("Invalid record"); 1984 1985 // OPERAND_BUNDLE_TAG: [strchr x N] 1986 BundleTags.emplace_back(); 1987 if (convertToString(Record, 0, BundleTags.back())) 1988 return error("Invalid record"); 1989 Record.clear(); 1990 } 1991 } 1992 1993 Error BitcodeReader::parseSyncScopeNames() { 1994 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1995 return Err; 1996 1997 if (!SSIDs.empty()) 1998 return error("Invalid multiple synchronization scope names blocks"); 1999 2000 SmallVector<uint64_t, 64> Record; 2001 while (true) { 2002 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2003 if (!MaybeEntry) 2004 return MaybeEntry.takeError(); 2005 BitstreamEntry Entry = MaybeEntry.get(); 2006 2007 switch (Entry.Kind) { 2008 case BitstreamEntry::SubBlock: // Handled for us already. 2009 case BitstreamEntry::Error: 2010 return error("Malformed block"); 2011 case BitstreamEntry::EndBlock: 2012 if (SSIDs.empty()) 2013 return error("Invalid empty synchronization scope names block"); 2014 return Error::success(); 2015 case BitstreamEntry::Record: 2016 // The interesting case. 2017 break; 2018 } 2019 2020 // Synchronization scope names are implicitly mapped to synchronization 2021 // scope IDs by their order. 2022 2023 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2024 if (!MaybeRecord) 2025 return MaybeRecord.takeError(); 2026 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2027 return error("Invalid record"); 2028 2029 SmallString<16> SSN; 2030 if (convertToString(Record, 0, SSN)) 2031 return error("Invalid record"); 2032 2033 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2034 Record.clear(); 2035 } 2036 } 2037 2038 /// Associate a value with its name from the given index in the provided record. 2039 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2040 unsigned NameIndex, Triple &TT) { 2041 SmallString<128> ValueName; 2042 if (convertToString(Record, NameIndex, ValueName)) 2043 return error("Invalid record"); 2044 unsigned ValueID = Record[0]; 2045 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2046 return error("Invalid record"); 2047 Value *V = ValueList[ValueID]; 2048 2049 StringRef NameStr(ValueName.data(), ValueName.size()); 2050 if (NameStr.find_first_of(0) != StringRef::npos) 2051 return error("Invalid value name"); 2052 V->setName(NameStr); 2053 auto *GO = dyn_cast<GlobalObject>(V); 2054 if (GO) { 2055 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2056 if (TT.supportsCOMDAT()) 2057 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2058 else 2059 GO->setComdat(nullptr); 2060 } 2061 } 2062 return V; 2063 } 2064 2065 /// Helper to note and return the current location, and jump to the given 2066 /// offset. 2067 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2068 BitstreamCursor &Stream) { 2069 // Save the current parsing location so we can jump back at the end 2070 // of the VST read. 2071 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2072 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2073 return std::move(JumpFailed); 2074 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2075 if (!MaybeEntry) 2076 return MaybeEntry.takeError(); 2077 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2078 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2079 return CurrentBit; 2080 } 2081 2082 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2083 Function *F, 2084 ArrayRef<uint64_t> Record) { 2085 // Note that we subtract 1 here because the offset is relative to one word 2086 // before the start of the identification or module block, which was 2087 // historically always the start of the regular bitcode header. 2088 uint64_t FuncWordOffset = Record[1] - 1; 2089 uint64_t FuncBitOffset = FuncWordOffset * 32; 2090 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2091 // Set the LastFunctionBlockBit to point to the last function block. 2092 // Later when parsing is resumed after function materialization, 2093 // we can simply skip that last function block. 2094 if (FuncBitOffset > LastFunctionBlockBit) 2095 LastFunctionBlockBit = FuncBitOffset; 2096 } 2097 2098 /// Read a new-style GlobalValue symbol table. 2099 Error BitcodeReader::parseGlobalValueSymbolTable() { 2100 unsigned FuncBitcodeOffsetDelta = 2101 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2102 2103 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2104 return Err; 2105 2106 SmallVector<uint64_t, 64> Record; 2107 while (true) { 2108 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2109 if (!MaybeEntry) 2110 return MaybeEntry.takeError(); 2111 BitstreamEntry Entry = MaybeEntry.get(); 2112 2113 switch (Entry.Kind) { 2114 case BitstreamEntry::SubBlock: 2115 case BitstreamEntry::Error: 2116 return error("Malformed block"); 2117 case BitstreamEntry::EndBlock: 2118 return Error::success(); 2119 case BitstreamEntry::Record: 2120 break; 2121 } 2122 2123 Record.clear(); 2124 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2125 if (!MaybeRecord) 2126 return MaybeRecord.takeError(); 2127 switch (MaybeRecord.get()) { 2128 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2129 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2130 cast<Function>(ValueList[Record[0]]), Record); 2131 break; 2132 } 2133 } 2134 } 2135 2136 /// Parse the value symbol table at either the current parsing location or 2137 /// at the given bit offset if provided. 2138 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2139 uint64_t CurrentBit; 2140 // Pass in the Offset to distinguish between calling for the module-level 2141 // VST (where we want to jump to the VST offset) and the function-level 2142 // VST (where we don't). 2143 if (Offset > 0) { 2144 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2145 if (!MaybeCurrentBit) 2146 return MaybeCurrentBit.takeError(); 2147 CurrentBit = MaybeCurrentBit.get(); 2148 // If this module uses a string table, read this as a module-level VST. 2149 if (UseStrtab) { 2150 if (Error Err = parseGlobalValueSymbolTable()) 2151 return Err; 2152 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2153 return JumpFailed; 2154 return Error::success(); 2155 } 2156 // Otherwise, the VST will be in a similar format to a function-level VST, 2157 // and will contain symbol names. 2158 } 2159 2160 // Compute the delta between the bitcode indices in the VST (the word offset 2161 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2162 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2163 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2164 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2165 // just before entering the VST subblock because: 1) the EnterSubBlock 2166 // changes the AbbrevID width; 2) the VST block is nested within the same 2167 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2168 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2169 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2170 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2171 unsigned FuncBitcodeOffsetDelta = 2172 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2173 2174 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2175 return Err; 2176 2177 SmallVector<uint64_t, 64> Record; 2178 2179 Triple TT(TheModule->getTargetTriple()); 2180 2181 // Read all the records for this value table. 2182 SmallString<128> ValueName; 2183 2184 while (true) { 2185 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2186 if (!MaybeEntry) 2187 return MaybeEntry.takeError(); 2188 BitstreamEntry Entry = MaybeEntry.get(); 2189 2190 switch (Entry.Kind) { 2191 case BitstreamEntry::SubBlock: // Handled for us already. 2192 case BitstreamEntry::Error: 2193 return error("Malformed block"); 2194 case BitstreamEntry::EndBlock: 2195 if (Offset > 0) 2196 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2197 return JumpFailed; 2198 return Error::success(); 2199 case BitstreamEntry::Record: 2200 // The interesting case. 2201 break; 2202 } 2203 2204 // Read a record. 2205 Record.clear(); 2206 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2207 if (!MaybeRecord) 2208 return MaybeRecord.takeError(); 2209 switch (MaybeRecord.get()) { 2210 default: // Default behavior: unknown type. 2211 break; 2212 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2213 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2214 if (Error Err = ValOrErr.takeError()) 2215 return Err; 2216 ValOrErr.get(); 2217 break; 2218 } 2219 case bitc::VST_CODE_FNENTRY: { 2220 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2221 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2222 if (Error Err = ValOrErr.takeError()) 2223 return Err; 2224 Value *V = ValOrErr.get(); 2225 2226 // Ignore function offsets emitted for aliases of functions in older 2227 // versions of LLVM. 2228 if (auto *F = dyn_cast<Function>(V)) 2229 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2230 break; 2231 } 2232 case bitc::VST_CODE_BBENTRY: { 2233 if (convertToString(Record, 1, ValueName)) 2234 return error("Invalid record"); 2235 BasicBlock *BB = getBasicBlock(Record[0]); 2236 if (!BB) 2237 return error("Invalid record"); 2238 2239 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2240 ValueName.clear(); 2241 break; 2242 } 2243 } 2244 } 2245 } 2246 2247 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2248 /// encoding. 2249 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2250 if ((V & 1) == 0) 2251 return V >> 1; 2252 if (V != 1) 2253 return -(V >> 1); 2254 // There is no such thing as -0 with integers. "-0" really means MININT. 2255 return 1ULL << 63; 2256 } 2257 2258 /// Resolve all of the initializers for global values and aliases that we can. 2259 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2260 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2261 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2262 IndirectSymbolInitWorklist; 2263 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2264 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2265 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2266 2267 GlobalInitWorklist.swap(GlobalInits); 2268 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2269 FunctionPrefixWorklist.swap(FunctionPrefixes); 2270 FunctionPrologueWorklist.swap(FunctionPrologues); 2271 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2272 2273 while (!GlobalInitWorklist.empty()) { 2274 unsigned ValID = GlobalInitWorklist.back().second; 2275 if (ValID >= ValueList.size()) { 2276 // Not ready to resolve this yet, it requires something later in the file. 2277 GlobalInits.push_back(GlobalInitWorklist.back()); 2278 } else { 2279 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2280 GlobalInitWorklist.back().first->setInitializer(C); 2281 else 2282 return error("Expected a constant"); 2283 } 2284 GlobalInitWorklist.pop_back(); 2285 } 2286 2287 while (!IndirectSymbolInitWorklist.empty()) { 2288 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2289 if (ValID >= ValueList.size()) { 2290 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2291 } else { 2292 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2293 if (!C) 2294 return error("Expected a constant"); 2295 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2296 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2297 return error("Alias and aliasee types don't match"); 2298 GIS->setIndirectSymbol(C); 2299 } 2300 IndirectSymbolInitWorklist.pop_back(); 2301 } 2302 2303 while (!FunctionPrefixWorklist.empty()) { 2304 unsigned ValID = FunctionPrefixWorklist.back().second; 2305 if (ValID >= ValueList.size()) { 2306 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2307 } else { 2308 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2309 FunctionPrefixWorklist.back().first->setPrefixData(C); 2310 else 2311 return error("Expected a constant"); 2312 } 2313 FunctionPrefixWorklist.pop_back(); 2314 } 2315 2316 while (!FunctionPrologueWorklist.empty()) { 2317 unsigned ValID = FunctionPrologueWorklist.back().second; 2318 if (ValID >= ValueList.size()) { 2319 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2320 } else { 2321 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2322 FunctionPrologueWorklist.back().first->setPrologueData(C); 2323 else 2324 return error("Expected a constant"); 2325 } 2326 FunctionPrologueWorklist.pop_back(); 2327 } 2328 2329 while (!FunctionPersonalityFnWorklist.empty()) { 2330 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2331 if (ValID >= ValueList.size()) { 2332 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2333 } else { 2334 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2335 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2336 else 2337 return error("Expected a constant"); 2338 } 2339 FunctionPersonalityFnWorklist.pop_back(); 2340 } 2341 2342 return Error::success(); 2343 } 2344 2345 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2346 SmallVector<uint64_t, 8> Words(Vals.size()); 2347 transform(Vals, Words.begin(), 2348 BitcodeReader::decodeSignRotatedValue); 2349 2350 return APInt(TypeBits, Words); 2351 } 2352 2353 Error BitcodeReader::parseConstants() { 2354 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2355 return Err; 2356 2357 SmallVector<uint64_t, 64> Record; 2358 2359 // Read all the records for this value table. 2360 Type *CurTy = Type::getInt32Ty(Context); 2361 Type *CurFullTy = Type::getInt32Ty(Context); 2362 unsigned NextCstNo = ValueList.size(); 2363 2364 struct DelayedShufTy { 2365 VectorType *OpTy; 2366 VectorType *RTy; 2367 Type *CurFullTy; 2368 uint64_t Op0Idx; 2369 uint64_t Op1Idx; 2370 uint64_t Op2Idx; 2371 unsigned CstNo; 2372 }; 2373 std::vector<DelayedShufTy> DelayedShuffles; 2374 while (true) { 2375 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2376 if (!MaybeEntry) 2377 return MaybeEntry.takeError(); 2378 BitstreamEntry Entry = MaybeEntry.get(); 2379 2380 switch (Entry.Kind) { 2381 case BitstreamEntry::SubBlock: // Handled for us already. 2382 case BitstreamEntry::Error: 2383 return error("Malformed block"); 2384 case BitstreamEntry::EndBlock: 2385 // Once all the constants have been read, go through and resolve forward 2386 // references. 2387 // 2388 // We have to treat shuffles specially because they don't have three 2389 // operands anymore. We need to convert the shuffle mask into an array, 2390 // and we can't convert a forward reference. 2391 for (auto &DelayedShuffle : DelayedShuffles) { 2392 VectorType *OpTy = DelayedShuffle.OpTy; 2393 VectorType *RTy = DelayedShuffle.RTy; 2394 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2395 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2396 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2397 uint64_t CstNo = DelayedShuffle.CstNo; 2398 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2399 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2400 Type *ShufTy = 2401 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2402 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2403 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2404 return error("Invalid shufflevector operands"); 2405 SmallVector<int, 16> Mask; 2406 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2407 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2408 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2409 } 2410 2411 if (NextCstNo != ValueList.size()) 2412 return error("Invalid constant reference"); 2413 2414 ValueList.resolveConstantForwardRefs(); 2415 return Error::success(); 2416 case BitstreamEntry::Record: 2417 // The interesting case. 2418 break; 2419 } 2420 2421 // Read a record. 2422 Record.clear(); 2423 Type *VoidType = Type::getVoidTy(Context); 2424 Value *V = nullptr; 2425 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2426 if (!MaybeBitCode) 2427 return MaybeBitCode.takeError(); 2428 switch (unsigned BitCode = MaybeBitCode.get()) { 2429 default: // Default behavior: unknown constant 2430 case bitc::CST_CODE_UNDEF: // UNDEF 2431 V = UndefValue::get(CurTy); 2432 break; 2433 case bitc::CST_CODE_POISON: // POISON 2434 V = PoisonValue::get(CurTy); 2435 break; 2436 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2437 if (Record.empty()) 2438 return error("Invalid record"); 2439 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2440 return error("Invalid record"); 2441 if (TypeList[Record[0]] == VoidType) 2442 return error("Invalid constant type"); 2443 CurFullTy = TypeList[Record[0]]; 2444 CurTy = flattenPointerTypes(CurFullTy); 2445 continue; // Skip the ValueList manipulation. 2446 case bitc::CST_CODE_NULL: // NULL 2447 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2448 return error("Invalid type for a constant null value"); 2449 V = Constant::getNullValue(CurTy); 2450 break; 2451 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2452 if (!CurTy->isIntegerTy() || Record.empty()) 2453 return error("Invalid record"); 2454 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2455 break; 2456 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2457 if (!CurTy->isIntegerTy() || Record.empty()) 2458 return error("Invalid record"); 2459 2460 APInt VInt = 2461 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2462 V = ConstantInt::get(Context, VInt); 2463 2464 break; 2465 } 2466 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2467 if (Record.empty()) 2468 return error("Invalid record"); 2469 if (CurTy->isHalfTy()) 2470 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2471 APInt(16, (uint16_t)Record[0]))); 2472 else if (CurTy->isBFloatTy()) 2473 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2474 APInt(16, (uint32_t)Record[0]))); 2475 else if (CurTy->isFloatTy()) 2476 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2477 APInt(32, (uint32_t)Record[0]))); 2478 else if (CurTy->isDoubleTy()) 2479 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2480 APInt(64, Record[0]))); 2481 else if (CurTy->isX86_FP80Ty()) { 2482 // Bits are not stored the same way as a normal i80 APInt, compensate. 2483 uint64_t Rearrange[2]; 2484 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2485 Rearrange[1] = Record[0] >> 48; 2486 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2487 APInt(80, Rearrange))); 2488 } else if (CurTy->isFP128Ty()) 2489 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2490 APInt(128, Record))); 2491 else if (CurTy->isPPC_FP128Ty()) 2492 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2493 APInt(128, Record))); 2494 else 2495 V = UndefValue::get(CurTy); 2496 break; 2497 } 2498 2499 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2500 if (Record.empty()) 2501 return error("Invalid record"); 2502 2503 unsigned Size = Record.size(); 2504 SmallVector<Constant*, 16> Elts; 2505 2506 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2507 for (unsigned i = 0; i != Size; ++i) 2508 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2509 STy->getElementType(i))); 2510 V = ConstantStruct::get(STy, Elts); 2511 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2512 Type *EltTy = ATy->getElementType(); 2513 for (unsigned i = 0; i != Size; ++i) 2514 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2515 V = ConstantArray::get(ATy, Elts); 2516 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2517 Type *EltTy = VTy->getElementType(); 2518 for (unsigned i = 0; i != Size; ++i) 2519 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2520 V = ConstantVector::get(Elts); 2521 } else { 2522 V = UndefValue::get(CurTy); 2523 } 2524 break; 2525 } 2526 case bitc::CST_CODE_STRING: // STRING: [values] 2527 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2528 if (Record.empty()) 2529 return error("Invalid record"); 2530 2531 SmallString<16> Elts(Record.begin(), Record.end()); 2532 V = ConstantDataArray::getString(Context, Elts, 2533 BitCode == bitc::CST_CODE_CSTRING); 2534 break; 2535 } 2536 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2537 if (Record.empty()) 2538 return error("Invalid record"); 2539 2540 Type *EltTy; 2541 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2542 EltTy = Array->getElementType(); 2543 else 2544 EltTy = cast<VectorType>(CurTy)->getElementType(); 2545 if (EltTy->isIntegerTy(8)) { 2546 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2547 if (isa<VectorType>(CurTy)) 2548 V = ConstantDataVector::get(Context, Elts); 2549 else 2550 V = ConstantDataArray::get(Context, Elts); 2551 } else if (EltTy->isIntegerTy(16)) { 2552 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2553 if (isa<VectorType>(CurTy)) 2554 V = ConstantDataVector::get(Context, Elts); 2555 else 2556 V = ConstantDataArray::get(Context, Elts); 2557 } else if (EltTy->isIntegerTy(32)) { 2558 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2559 if (isa<VectorType>(CurTy)) 2560 V = ConstantDataVector::get(Context, Elts); 2561 else 2562 V = ConstantDataArray::get(Context, Elts); 2563 } else if (EltTy->isIntegerTy(64)) { 2564 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2565 if (isa<VectorType>(CurTy)) 2566 V = ConstantDataVector::get(Context, Elts); 2567 else 2568 V = ConstantDataArray::get(Context, Elts); 2569 } else if (EltTy->isHalfTy()) { 2570 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2571 if (isa<VectorType>(CurTy)) 2572 V = ConstantDataVector::getFP(EltTy, Elts); 2573 else 2574 V = ConstantDataArray::getFP(EltTy, Elts); 2575 } else if (EltTy->isBFloatTy()) { 2576 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2577 if (isa<VectorType>(CurTy)) 2578 V = ConstantDataVector::getFP(EltTy, Elts); 2579 else 2580 V = ConstantDataArray::getFP(EltTy, Elts); 2581 } else if (EltTy->isFloatTy()) { 2582 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2583 if (isa<VectorType>(CurTy)) 2584 V = ConstantDataVector::getFP(EltTy, Elts); 2585 else 2586 V = ConstantDataArray::getFP(EltTy, Elts); 2587 } else if (EltTy->isDoubleTy()) { 2588 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::getFP(EltTy, Elts); 2591 else 2592 V = ConstantDataArray::getFP(EltTy, Elts); 2593 } else { 2594 return error("Invalid type for value"); 2595 } 2596 break; 2597 } 2598 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2599 if (Record.size() < 2) 2600 return error("Invalid record"); 2601 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2602 if (Opc < 0) { 2603 V = UndefValue::get(CurTy); // Unknown unop. 2604 } else { 2605 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2606 unsigned Flags = 0; 2607 V = ConstantExpr::get(Opc, LHS, Flags); 2608 } 2609 break; 2610 } 2611 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2612 if (Record.size() < 3) 2613 return error("Invalid record"); 2614 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2615 if (Opc < 0) { 2616 V = UndefValue::get(CurTy); // Unknown binop. 2617 } else { 2618 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2619 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2620 unsigned Flags = 0; 2621 if (Record.size() >= 4) { 2622 if (Opc == Instruction::Add || 2623 Opc == Instruction::Sub || 2624 Opc == Instruction::Mul || 2625 Opc == Instruction::Shl) { 2626 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2627 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2628 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2629 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2630 } else if (Opc == Instruction::SDiv || 2631 Opc == Instruction::UDiv || 2632 Opc == Instruction::LShr || 2633 Opc == Instruction::AShr) { 2634 if (Record[3] & (1 << bitc::PEO_EXACT)) 2635 Flags |= SDivOperator::IsExact; 2636 } 2637 } 2638 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2639 } 2640 break; 2641 } 2642 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2643 if (Record.size() < 3) 2644 return error("Invalid record"); 2645 int Opc = getDecodedCastOpcode(Record[0]); 2646 if (Opc < 0) { 2647 V = UndefValue::get(CurTy); // Unknown cast. 2648 } else { 2649 Type *OpTy = getTypeByID(Record[1]); 2650 if (!OpTy) 2651 return error("Invalid record"); 2652 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2653 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2654 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2655 } 2656 break; 2657 } 2658 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2659 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2660 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2661 // operands] 2662 unsigned OpNum = 0; 2663 Type *PointeeType = nullptr; 2664 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2665 Record.size() % 2) 2666 PointeeType = getTypeByID(Record[OpNum++]); 2667 2668 bool InBounds = false; 2669 Optional<unsigned> InRangeIndex; 2670 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2671 uint64_t Op = Record[OpNum++]; 2672 InBounds = Op & 1; 2673 InRangeIndex = Op >> 1; 2674 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2675 InBounds = true; 2676 2677 SmallVector<Constant*, 16> Elts; 2678 Type *Elt0FullTy = nullptr; 2679 while (OpNum != Record.size()) { 2680 if (!Elt0FullTy) 2681 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2682 Type *ElTy = getTypeByID(Record[OpNum++]); 2683 if (!ElTy) 2684 return error("Invalid record"); 2685 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2686 } 2687 2688 if (Elts.size() < 1) 2689 return error("Invalid gep with no operands"); 2690 2691 Type *ImplicitPointeeType = 2692 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2693 if (!PointeeType) 2694 PointeeType = ImplicitPointeeType; 2695 else if (PointeeType != ImplicitPointeeType) 2696 return error("Explicit gep operator type does not match pointee type " 2697 "of pointer operand"); 2698 2699 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2700 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2701 InBounds, InRangeIndex); 2702 break; 2703 } 2704 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2705 if (Record.size() < 3) 2706 return error("Invalid record"); 2707 2708 Type *SelectorTy = Type::getInt1Ty(Context); 2709 2710 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2711 // Get the type from the ValueList before getting a forward ref. 2712 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2713 if (Value *V = ValueList[Record[0]]) 2714 if (SelectorTy != V->getType()) 2715 SelectorTy = VectorType::get(SelectorTy, 2716 VTy->getElementCount()); 2717 2718 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2719 SelectorTy), 2720 ValueList.getConstantFwdRef(Record[1],CurTy), 2721 ValueList.getConstantFwdRef(Record[2],CurTy)); 2722 break; 2723 } 2724 case bitc::CST_CODE_CE_EXTRACTELT 2725 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2726 if (Record.size() < 3) 2727 return error("Invalid record"); 2728 VectorType *OpTy = 2729 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2730 if (!OpTy) 2731 return error("Invalid record"); 2732 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2733 Constant *Op1 = nullptr; 2734 if (Record.size() == 4) { 2735 Type *IdxTy = getTypeByID(Record[2]); 2736 if (!IdxTy) 2737 return error("Invalid record"); 2738 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2739 } else { 2740 // Deprecated, but still needed to read old bitcode files. 2741 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2742 } 2743 if (!Op1) 2744 return error("Invalid record"); 2745 V = ConstantExpr::getExtractElement(Op0, Op1); 2746 break; 2747 } 2748 case bitc::CST_CODE_CE_INSERTELT 2749 : { // CE_INSERTELT: [opval, opval, opty, opval] 2750 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2751 if (Record.size() < 3 || !OpTy) 2752 return error("Invalid record"); 2753 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2754 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2755 OpTy->getElementType()); 2756 Constant *Op2 = nullptr; 2757 if (Record.size() == 4) { 2758 Type *IdxTy = getTypeByID(Record[2]); 2759 if (!IdxTy) 2760 return error("Invalid record"); 2761 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2762 } else { 2763 // Deprecated, but still needed to read old bitcode files. 2764 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2765 } 2766 if (!Op2) 2767 return error("Invalid record"); 2768 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2769 break; 2770 } 2771 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2772 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2773 if (Record.size() < 3 || !OpTy) 2774 return error("Invalid record"); 2775 DelayedShuffles.push_back( 2776 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2777 ++NextCstNo; 2778 continue; 2779 } 2780 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2781 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2782 VectorType *OpTy = 2783 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2784 if (Record.size() < 4 || !RTy || !OpTy) 2785 return error("Invalid record"); 2786 DelayedShuffles.push_back( 2787 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2788 ++NextCstNo; 2789 continue; 2790 } 2791 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2792 if (Record.size() < 4) 2793 return error("Invalid record"); 2794 Type *OpTy = getTypeByID(Record[0]); 2795 if (!OpTy) 2796 return error("Invalid record"); 2797 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2798 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2799 2800 if (OpTy->isFPOrFPVectorTy()) 2801 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2802 else 2803 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2804 break; 2805 } 2806 // This maintains backward compatibility, pre-asm dialect keywords. 2807 // Deprecated, but still needed to read old bitcode files. 2808 case bitc::CST_CODE_INLINEASM_OLD: { 2809 if (Record.size() < 2) 2810 return error("Invalid record"); 2811 std::string AsmStr, ConstrStr; 2812 bool HasSideEffects = Record[0] & 1; 2813 bool IsAlignStack = Record[0] >> 1; 2814 unsigned AsmStrSize = Record[1]; 2815 if (2+AsmStrSize >= Record.size()) 2816 return error("Invalid record"); 2817 unsigned ConstStrSize = Record[2+AsmStrSize]; 2818 if (3+AsmStrSize+ConstStrSize > Record.size()) 2819 return error("Invalid record"); 2820 2821 for (unsigned i = 0; i != AsmStrSize; ++i) 2822 AsmStr += (char)Record[2+i]; 2823 for (unsigned i = 0; i != ConstStrSize; ++i) 2824 ConstrStr += (char)Record[3+AsmStrSize+i]; 2825 UpgradeInlineAsmString(&AsmStr); 2826 V = InlineAsm::get( 2827 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2828 ConstrStr, HasSideEffects, IsAlignStack); 2829 break; 2830 } 2831 // This version adds support for the asm dialect keywords (e.g., 2832 // inteldialect). 2833 case bitc::CST_CODE_INLINEASM_OLD2: { 2834 if (Record.size() < 2) 2835 return error("Invalid record"); 2836 std::string AsmStr, ConstrStr; 2837 bool HasSideEffects = Record[0] & 1; 2838 bool IsAlignStack = (Record[0] >> 1) & 1; 2839 unsigned AsmDialect = Record[0] >> 2; 2840 unsigned AsmStrSize = Record[1]; 2841 if (2+AsmStrSize >= Record.size()) 2842 return error("Invalid record"); 2843 unsigned ConstStrSize = Record[2+AsmStrSize]; 2844 if (3+AsmStrSize+ConstStrSize > Record.size()) 2845 return error("Invalid record"); 2846 2847 for (unsigned i = 0; i != AsmStrSize; ++i) 2848 AsmStr += (char)Record[2+i]; 2849 for (unsigned i = 0; i != ConstStrSize; ++i) 2850 ConstrStr += (char)Record[3+AsmStrSize+i]; 2851 UpgradeInlineAsmString(&AsmStr); 2852 V = InlineAsm::get( 2853 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2854 ConstrStr, HasSideEffects, IsAlignStack, 2855 InlineAsm::AsmDialect(AsmDialect)); 2856 break; 2857 } 2858 // This version adds support for the unwind keyword. 2859 case bitc::CST_CODE_INLINEASM: { 2860 if (Record.size() < 2) 2861 return error("Invalid record"); 2862 std::string AsmStr, ConstrStr; 2863 bool HasSideEffects = Record[0] & 1; 2864 bool IsAlignStack = (Record[0] >> 1) & 1; 2865 unsigned AsmDialect = (Record[0] >> 2) & 1; 2866 bool CanThrow = (Record[0] >> 3) & 1; 2867 unsigned AsmStrSize = Record[1]; 2868 if (2 + AsmStrSize >= Record.size()) 2869 return error("Invalid record"); 2870 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2871 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2872 return error("Invalid record"); 2873 2874 for (unsigned i = 0; i != AsmStrSize; ++i) 2875 AsmStr += (char)Record[2 + i]; 2876 for (unsigned i = 0; i != ConstStrSize; ++i) 2877 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2878 UpgradeInlineAsmString(&AsmStr); 2879 V = InlineAsm::get( 2880 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2881 ConstrStr, HasSideEffects, IsAlignStack, 2882 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2883 break; 2884 } 2885 case bitc::CST_CODE_BLOCKADDRESS:{ 2886 if (Record.size() < 3) 2887 return error("Invalid record"); 2888 Type *FnTy = getTypeByID(Record[0]); 2889 if (!FnTy) 2890 return error("Invalid record"); 2891 Function *Fn = 2892 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2893 if (!Fn) 2894 return error("Invalid record"); 2895 2896 // If the function is already parsed we can insert the block address right 2897 // away. 2898 BasicBlock *BB; 2899 unsigned BBID = Record[2]; 2900 if (!BBID) 2901 // Invalid reference to entry block. 2902 return error("Invalid ID"); 2903 if (!Fn->empty()) { 2904 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2905 for (size_t I = 0, E = BBID; I != E; ++I) { 2906 if (BBI == BBE) 2907 return error("Invalid ID"); 2908 ++BBI; 2909 } 2910 BB = &*BBI; 2911 } else { 2912 // Otherwise insert a placeholder and remember it so it can be inserted 2913 // when the function is parsed. 2914 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2915 if (FwdBBs.empty()) 2916 BasicBlockFwdRefQueue.push_back(Fn); 2917 if (FwdBBs.size() < BBID + 1) 2918 FwdBBs.resize(BBID + 1); 2919 if (!FwdBBs[BBID]) 2920 FwdBBs[BBID] = BasicBlock::Create(Context); 2921 BB = FwdBBs[BBID]; 2922 } 2923 V = BlockAddress::get(Fn, BB); 2924 break; 2925 } 2926 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2927 if (Record.size() < 2) 2928 return error("Invalid record"); 2929 Type *GVTy = getTypeByID(Record[0]); 2930 if (!GVTy) 2931 return error("Invalid record"); 2932 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2933 ValueList.getConstantFwdRef(Record[1], GVTy)); 2934 if (!GV) 2935 return error("Invalid record"); 2936 2937 V = DSOLocalEquivalent::get(GV); 2938 break; 2939 } 2940 } 2941 2942 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2943 "Incorrect fully structured type provided for Constant"); 2944 ValueList.assignValue(V, NextCstNo, CurFullTy); 2945 ++NextCstNo; 2946 } 2947 } 2948 2949 Error BitcodeReader::parseUseLists() { 2950 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2951 return Err; 2952 2953 // Read all the records. 2954 SmallVector<uint64_t, 64> Record; 2955 2956 while (true) { 2957 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2958 if (!MaybeEntry) 2959 return MaybeEntry.takeError(); 2960 BitstreamEntry Entry = MaybeEntry.get(); 2961 2962 switch (Entry.Kind) { 2963 case BitstreamEntry::SubBlock: // Handled for us already. 2964 case BitstreamEntry::Error: 2965 return error("Malformed block"); 2966 case BitstreamEntry::EndBlock: 2967 return Error::success(); 2968 case BitstreamEntry::Record: 2969 // The interesting case. 2970 break; 2971 } 2972 2973 // Read a use list record. 2974 Record.clear(); 2975 bool IsBB = false; 2976 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2977 if (!MaybeRecord) 2978 return MaybeRecord.takeError(); 2979 switch (MaybeRecord.get()) { 2980 default: // Default behavior: unknown type. 2981 break; 2982 case bitc::USELIST_CODE_BB: 2983 IsBB = true; 2984 LLVM_FALLTHROUGH; 2985 case bitc::USELIST_CODE_DEFAULT: { 2986 unsigned RecordLength = Record.size(); 2987 if (RecordLength < 3) 2988 // Records should have at least an ID and two indexes. 2989 return error("Invalid record"); 2990 unsigned ID = Record.pop_back_val(); 2991 2992 Value *V; 2993 if (IsBB) { 2994 assert(ID < FunctionBBs.size() && "Basic block not found"); 2995 V = FunctionBBs[ID]; 2996 } else 2997 V = ValueList[ID]; 2998 unsigned NumUses = 0; 2999 SmallDenseMap<const Use *, unsigned, 16> Order; 3000 for (const Use &U : V->materialized_uses()) { 3001 if (++NumUses > Record.size()) 3002 break; 3003 Order[&U] = Record[NumUses - 1]; 3004 } 3005 if (Order.size() != Record.size() || NumUses > Record.size()) 3006 // Mismatches can happen if the functions are being materialized lazily 3007 // (out-of-order), or a value has been upgraded. 3008 break; 3009 3010 V->sortUseList([&](const Use &L, const Use &R) { 3011 return Order.lookup(&L) < Order.lookup(&R); 3012 }); 3013 break; 3014 } 3015 } 3016 } 3017 } 3018 3019 /// When we see the block for metadata, remember where it is and then skip it. 3020 /// This lets us lazily deserialize the metadata. 3021 Error BitcodeReader::rememberAndSkipMetadata() { 3022 // Save the current stream state. 3023 uint64_t CurBit = Stream.GetCurrentBitNo(); 3024 DeferredMetadataInfo.push_back(CurBit); 3025 3026 // Skip over the block for now. 3027 if (Error Err = Stream.SkipBlock()) 3028 return Err; 3029 return Error::success(); 3030 } 3031 3032 Error BitcodeReader::materializeMetadata() { 3033 for (uint64_t BitPos : DeferredMetadataInfo) { 3034 // Move the bit stream to the saved position. 3035 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3036 return JumpFailed; 3037 if (Error Err = MDLoader->parseModuleMetadata()) 3038 return Err; 3039 } 3040 3041 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3042 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3043 // multiple times. 3044 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3045 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3046 NamedMDNode *LinkerOpts = 3047 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3048 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3049 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3050 } 3051 } 3052 3053 DeferredMetadataInfo.clear(); 3054 return Error::success(); 3055 } 3056 3057 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3058 3059 /// When we see the block for a function body, remember where it is and then 3060 /// skip it. This lets us lazily deserialize the functions. 3061 Error BitcodeReader::rememberAndSkipFunctionBody() { 3062 // Get the function we are talking about. 3063 if (FunctionsWithBodies.empty()) 3064 return error("Insufficient function protos"); 3065 3066 Function *Fn = FunctionsWithBodies.back(); 3067 FunctionsWithBodies.pop_back(); 3068 3069 // Save the current stream state. 3070 uint64_t CurBit = Stream.GetCurrentBitNo(); 3071 assert( 3072 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3073 "Mismatch between VST and scanned function offsets"); 3074 DeferredFunctionInfo[Fn] = CurBit; 3075 3076 // Skip over the function block for now. 3077 if (Error Err = Stream.SkipBlock()) 3078 return Err; 3079 return Error::success(); 3080 } 3081 3082 Error BitcodeReader::globalCleanup() { 3083 // Patch the initializers for globals and aliases up. 3084 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3085 return Err; 3086 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3087 return error("Malformed global initializer set"); 3088 3089 // Look for intrinsic functions which need to be upgraded at some point 3090 // and functions that need to have their function attributes upgraded. 3091 for (Function &F : *TheModule) { 3092 MDLoader->upgradeDebugIntrinsics(F); 3093 Function *NewFn; 3094 if (UpgradeIntrinsicFunction(&F, NewFn)) 3095 UpgradedIntrinsics[&F] = NewFn; 3096 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3097 // Some types could be renamed during loading if several modules are 3098 // loaded in the same LLVMContext (LTO scenario). In this case we should 3099 // remangle intrinsics names as well. 3100 RemangledIntrinsics[&F] = Remangled.getValue(); 3101 // Look for functions that rely on old function attribute behavior. 3102 UpgradeFunctionAttributes(F); 3103 } 3104 3105 // Look for global variables which need to be renamed. 3106 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3107 for (GlobalVariable &GV : TheModule->globals()) 3108 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3109 UpgradedVariables.emplace_back(&GV, Upgraded); 3110 for (auto &Pair : UpgradedVariables) { 3111 Pair.first->eraseFromParent(); 3112 TheModule->getGlobalList().push_back(Pair.second); 3113 } 3114 3115 // Force deallocation of memory for these vectors to favor the client that 3116 // want lazy deserialization. 3117 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3118 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3119 IndirectSymbolInits); 3120 return Error::success(); 3121 } 3122 3123 /// Support for lazy parsing of function bodies. This is required if we 3124 /// either have an old bitcode file without a VST forward declaration record, 3125 /// or if we have an anonymous function being materialized, since anonymous 3126 /// functions do not have a name and are therefore not in the VST. 3127 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3128 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3129 return JumpFailed; 3130 3131 if (Stream.AtEndOfStream()) 3132 return error("Could not find function in stream"); 3133 3134 if (!SeenFirstFunctionBody) 3135 return error("Trying to materialize functions before seeing function blocks"); 3136 3137 // An old bitcode file with the symbol table at the end would have 3138 // finished the parse greedily. 3139 assert(SeenValueSymbolTable); 3140 3141 SmallVector<uint64_t, 64> Record; 3142 3143 while (true) { 3144 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3145 if (!MaybeEntry) 3146 return MaybeEntry.takeError(); 3147 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3148 3149 switch (Entry.Kind) { 3150 default: 3151 return error("Expect SubBlock"); 3152 case BitstreamEntry::SubBlock: 3153 switch (Entry.ID) { 3154 default: 3155 return error("Expect function block"); 3156 case bitc::FUNCTION_BLOCK_ID: 3157 if (Error Err = rememberAndSkipFunctionBody()) 3158 return Err; 3159 NextUnreadBit = Stream.GetCurrentBitNo(); 3160 return Error::success(); 3161 } 3162 } 3163 } 3164 } 3165 3166 bool BitcodeReaderBase::readBlockInfo() { 3167 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3168 Stream.ReadBlockInfoBlock(); 3169 if (!MaybeNewBlockInfo) 3170 return true; // FIXME Handle the error. 3171 Optional<BitstreamBlockInfo> NewBlockInfo = 3172 std::move(MaybeNewBlockInfo.get()); 3173 if (!NewBlockInfo) 3174 return true; 3175 BlockInfo = std::move(*NewBlockInfo); 3176 return false; 3177 } 3178 3179 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3180 // v1: [selection_kind, name] 3181 // v2: [strtab_offset, strtab_size, selection_kind] 3182 StringRef Name; 3183 std::tie(Name, Record) = readNameFromStrtab(Record); 3184 3185 if (Record.empty()) 3186 return error("Invalid record"); 3187 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3188 std::string OldFormatName; 3189 if (!UseStrtab) { 3190 if (Record.size() < 2) 3191 return error("Invalid record"); 3192 unsigned ComdatNameSize = Record[1]; 3193 OldFormatName.reserve(ComdatNameSize); 3194 for (unsigned i = 0; i != ComdatNameSize; ++i) 3195 OldFormatName += (char)Record[2 + i]; 3196 Name = OldFormatName; 3197 } 3198 Comdat *C = TheModule->getOrInsertComdat(Name); 3199 C->setSelectionKind(SK); 3200 ComdatList.push_back(C); 3201 return Error::success(); 3202 } 3203 3204 static void inferDSOLocal(GlobalValue *GV) { 3205 // infer dso_local from linkage and visibility if it is not encoded. 3206 if (GV->hasLocalLinkage() || 3207 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3208 GV->setDSOLocal(true); 3209 } 3210 3211 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3212 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3213 // visibility, threadlocal, unnamed_addr, externally_initialized, 3214 // dllstorageclass, comdat, attributes, preemption specifier, 3215 // partition strtab offset, partition strtab size] (name in VST) 3216 // v2: [strtab_offset, strtab_size, v1] 3217 StringRef Name; 3218 std::tie(Name, Record) = readNameFromStrtab(Record); 3219 3220 if (Record.size() < 6) 3221 return error("Invalid record"); 3222 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3223 Type *Ty = flattenPointerTypes(FullTy); 3224 if (!Ty) 3225 return error("Invalid record"); 3226 bool isConstant = Record[1] & 1; 3227 bool explicitType = Record[1] & 2; 3228 unsigned AddressSpace; 3229 if (explicitType) { 3230 AddressSpace = Record[1] >> 2; 3231 } else { 3232 if (!Ty->isPointerTy()) 3233 return error("Invalid type for value"); 3234 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3235 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3236 } 3237 3238 uint64_t RawLinkage = Record[3]; 3239 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3240 MaybeAlign Alignment; 3241 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3242 return Err; 3243 std::string Section; 3244 if (Record[5]) { 3245 if (Record[5] - 1 >= SectionTable.size()) 3246 return error("Invalid ID"); 3247 Section = SectionTable[Record[5] - 1]; 3248 } 3249 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3250 // Local linkage must have default visibility. 3251 // auto-upgrade `hidden` and `protected` for old bitcode. 3252 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3253 Visibility = getDecodedVisibility(Record[6]); 3254 3255 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3256 if (Record.size() > 7) 3257 TLM = getDecodedThreadLocalMode(Record[7]); 3258 3259 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3260 if (Record.size() > 8) 3261 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3262 3263 bool ExternallyInitialized = false; 3264 if (Record.size() > 9) 3265 ExternallyInitialized = Record[9]; 3266 3267 GlobalVariable *NewGV = 3268 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3269 nullptr, TLM, AddressSpace, ExternallyInitialized); 3270 NewGV->setAlignment(Alignment); 3271 if (!Section.empty()) 3272 NewGV->setSection(Section); 3273 NewGV->setVisibility(Visibility); 3274 NewGV->setUnnamedAddr(UnnamedAddr); 3275 3276 if (Record.size() > 10) 3277 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3278 else 3279 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3280 3281 FullTy = PointerType::get(FullTy, AddressSpace); 3282 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3283 "Incorrect fully specified type for GlobalVariable"); 3284 ValueList.push_back(NewGV, FullTy); 3285 3286 // Remember which value to use for the global initializer. 3287 if (unsigned InitID = Record[2]) 3288 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3289 3290 if (Record.size() > 11) { 3291 if (unsigned ComdatID = Record[11]) { 3292 if (ComdatID > ComdatList.size()) 3293 return error("Invalid global variable comdat ID"); 3294 NewGV->setComdat(ComdatList[ComdatID - 1]); 3295 } 3296 } else if (hasImplicitComdat(RawLinkage)) { 3297 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3298 } 3299 3300 if (Record.size() > 12) { 3301 auto AS = getAttributes(Record[12]).getFnAttributes(); 3302 NewGV->setAttributes(AS); 3303 } 3304 3305 if (Record.size() > 13) { 3306 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3307 } 3308 inferDSOLocal(NewGV); 3309 3310 // Check whether we have enough values to read a partition name. 3311 if (Record.size() > 15) 3312 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3313 3314 return Error::success(); 3315 } 3316 3317 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3318 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3319 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3320 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3321 // v2: [strtab_offset, strtab_size, v1] 3322 StringRef Name; 3323 std::tie(Name, Record) = readNameFromStrtab(Record); 3324 3325 if (Record.size() < 8) 3326 return error("Invalid record"); 3327 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3328 Type *FTy = flattenPointerTypes(FullFTy); 3329 if (!FTy) 3330 return error("Invalid record"); 3331 if (isa<PointerType>(FTy)) 3332 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3333 3334 if (!isa<FunctionType>(FTy)) 3335 return error("Invalid type for value"); 3336 auto CC = static_cast<CallingConv::ID>(Record[1]); 3337 if (CC & ~CallingConv::MaxID) 3338 return error("Invalid calling convention ID"); 3339 3340 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3341 if (Record.size() > 16) 3342 AddrSpace = Record[16]; 3343 3344 Function *Func = 3345 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3346 AddrSpace, Name, TheModule); 3347 3348 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3349 "Incorrect fully specified type provided for function"); 3350 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3351 3352 Func->setCallingConv(CC); 3353 bool isProto = Record[2]; 3354 uint64_t RawLinkage = Record[3]; 3355 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3356 Func->setAttributes(getAttributes(Record[4])); 3357 3358 // Upgrade any old-style byval or sret without a type by propagating the 3359 // argument's pointee type. There should be no opaque pointers where the byval 3360 // type is implicit. 3361 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3362 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3363 Attribute::InAlloca}) { 3364 if (!Func->hasParamAttribute(i, Kind)) 3365 continue; 3366 3367 Func->removeParamAttr(i, Kind); 3368 3369 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3370 Type *PtrEltTy = getPointerElementFlatType(PTy); 3371 Attribute NewAttr; 3372 switch (Kind) { 3373 case Attribute::ByVal: 3374 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3375 break; 3376 case Attribute::StructRet: 3377 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3378 break; 3379 case Attribute::InAlloca: 3380 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3381 break; 3382 default: 3383 llvm_unreachable("not an upgraded type attribute"); 3384 } 3385 3386 Func->addParamAttr(i, NewAttr); 3387 } 3388 } 3389 3390 MaybeAlign Alignment; 3391 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3392 return Err; 3393 Func->setAlignment(Alignment); 3394 if (Record[6]) { 3395 if (Record[6] - 1 >= SectionTable.size()) 3396 return error("Invalid ID"); 3397 Func->setSection(SectionTable[Record[6] - 1]); 3398 } 3399 // Local linkage must have default visibility. 3400 // auto-upgrade `hidden` and `protected` for old bitcode. 3401 if (!Func->hasLocalLinkage()) 3402 Func->setVisibility(getDecodedVisibility(Record[7])); 3403 if (Record.size() > 8 && Record[8]) { 3404 if (Record[8] - 1 >= GCTable.size()) 3405 return error("Invalid ID"); 3406 Func->setGC(GCTable[Record[8] - 1]); 3407 } 3408 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3409 if (Record.size() > 9) 3410 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3411 Func->setUnnamedAddr(UnnamedAddr); 3412 if (Record.size() > 10 && Record[10] != 0) 3413 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3414 3415 if (Record.size() > 11) 3416 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3417 else 3418 upgradeDLLImportExportLinkage(Func, RawLinkage); 3419 3420 if (Record.size() > 12) { 3421 if (unsigned ComdatID = Record[12]) { 3422 if (ComdatID > ComdatList.size()) 3423 return error("Invalid function comdat ID"); 3424 Func->setComdat(ComdatList[ComdatID - 1]); 3425 } 3426 } else if (hasImplicitComdat(RawLinkage)) { 3427 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3428 } 3429 3430 if (Record.size() > 13 && Record[13] != 0) 3431 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3432 3433 if (Record.size() > 14 && Record[14] != 0) 3434 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3435 3436 if (Record.size() > 15) { 3437 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3438 } 3439 inferDSOLocal(Func); 3440 3441 // Record[16] is the address space number. 3442 3443 // Check whether we have enough values to read a partition name. 3444 if (Record.size() > 18) 3445 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3446 3447 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3448 assert(Func->getType() == flattenPointerTypes(FullTy) && 3449 "Incorrect fully specified type provided for Function"); 3450 ValueList.push_back(Func, FullTy); 3451 3452 // If this is a function with a body, remember the prototype we are 3453 // creating now, so that we can match up the body with them later. 3454 if (!isProto) { 3455 Func->setIsMaterializable(true); 3456 FunctionsWithBodies.push_back(Func); 3457 DeferredFunctionInfo[Func] = 0; 3458 } 3459 return Error::success(); 3460 } 3461 3462 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3463 unsigned BitCode, ArrayRef<uint64_t> Record) { 3464 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3465 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3466 // dllstorageclass, threadlocal, unnamed_addr, 3467 // preemption specifier] (name in VST) 3468 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3469 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3470 // preemption specifier] (name in VST) 3471 // v2: [strtab_offset, strtab_size, v1] 3472 StringRef Name; 3473 std::tie(Name, Record) = readNameFromStrtab(Record); 3474 3475 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3476 if (Record.size() < (3 + (unsigned)NewRecord)) 3477 return error("Invalid record"); 3478 unsigned OpNum = 0; 3479 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3480 Type *Ty = flattenPointerTypes(FullTy); 3481 if (!Ty) 3482 return error("Invalid record"); 3483 3484 unsigned AddrSpace; 3485 if (!NewRecord) { 3486 auto *PTy = dyn_cast<PointerType>(Ty); 3487 if (!PTy) 3488 return error("Invalid type for value"); 3489 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3490 AddrSpace = PTy->getAddressSpace(); 3491 } else { 3492 AddrSpace = Record[OpNum++]; 3493 } 3494 3495 auto Val = Record[OpNum++]; 3496 auto Linkage = Record[OpNum++]; 3497 GlobalIndirectSymbol *NewGA; 3498 if (BitCode == bitc::MODULE_CODE_ALIAS || 3499 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3500 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3501 TheModule); 3502 else 3503 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3504 nullptr, TheModule); 3505 3506 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3507 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3508 // Local linkage must have default visibility. 3509 // auto-upgrade `hidden` and `protected` for old bitcode. 3510 if (OpNum != Record.size()) { 3511 auto VisInd = OpNum++; 3512 if (!NewGA->hasLocalLinkage()) 3513 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3514 } 3515 if (BitCode == bitc::MODULE_CODE_ALIAS || 3516 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3517 if (OpNum != Record.size()) 3518 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3519 else 3520 upgradeDLLImportExportLinkage(NewGA, Linkage); 3521 if (OpNum != Record.size()) 3522 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3523 if (OpNum != Record.size()) 3524 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3525 } 3526 if (OpNum != Record.size()) 3527 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3528 inferDSOLocal(NewGA); 3529 3530 // Check whether we have enough values to read a partition name. 3531 if (OpNum + 1 < Record.size()) { 3532 NewGA->setPartition( 3533 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3534 OpNum += 2; 3535 } 3536 3537 FullTy = PointerType::get(FullTy, AddrSpace); 3538 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3539 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3540 ValueList.push_back(NewGA, FullTy); 3541 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3542 return Error::success(); 3543 } 3544 3545 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3546 bool ShouldLazyLoadMetadata, 3547 DataLayoutCallbackTy DataLayoutCallback) { 3548 if (ResumeBit) { 3549 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3550 return JumpFailed; 3551 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3552 return Err; 3553 3554 SmallVector<uint64_t, 64> Record; 3555 3556 // Parts of bitcode parsing depend on the datalayout. Make sure we 3557 // finalize the datalayout before we run any of that code. 3558 bool ResolvedDataLayout = false; 3559 auto ResolveDataLayout = [&] { 3560 if (ResolvedDataLayout) 3561 return; 3562 3563 // datalayout and triple can't be parsed after this point. 3564 ResolvedDataLayout = true; 3565 3566 // Upgrade data layout string. 3567 std::string DL = llvm::UpgradeDataLayoutString( 3568 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3569 TheModule->setDataLayout(DL); 3570 3571 if (auto LayoutOverride = 3572 DataLayoutCallback(TheModule->getTargetTriple())) 3573 TheModule->setDataLayout(*LayoutOverride); 3574 }; 3575 3576 // Read all the records for this module. 3577 while (true) { 3578 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3579 if (!MaybeEntry) 3580 return MaybeEntry.takeError(); 3581 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3582 3583 switch (Entry.Kind) { 3584 case BitstreamEntry::Error: 3585 return error("Malformed block"); 3586 case BitstreamEntry::EndBlock: 3587 ResolveDataLayout(); 3588 return globalCleanup(); 3589 3590 case BitstreamEntry::SubBlock: 3591 switch (Entry.ID) { 3592 default: // Skip unknown content. 3593 if (Error Err = Stream.SkipBlock()) 3594 return Err; 3595 break; 3596 case bitc::BLOCKINFO_BLOCK_ID: 3597 if (readBlockInfo()) 3598 return error("Malformed block"); 3599 break; 3600 case bitc::PARAMATTR_BLOCK_ID: 3601 if (Error Err = parseAttributeBlock()) 3602 return Err; 3603 break; 3604 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3605 if (Error Err = parseAttributeGroupBlock()) 3606 return Err; 3607 break; 3608 case bitc::TYPE_BLOCK_ID_NEW: 3609 if (Error Err = parseTypeTable()) 3610 return Err; 3611 break; 3612 case bitc::VALUE_SYMTAB_BLOCK_ID: 3613 if (!SeenValueSymbolTable) { 3614 // Either this is an old form VST without function index and an 3615 // associated VST forward declaration record (which would have caused 3616 // the VST to be jumped to and parsed before it was encountered 3617 // normally in the stream), or there were no function blocks to 3618 // trigger an earlier parsing of the VST. 3619 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3620 if (Error Err = parseValueSymbolTable()) 3621 return Err; 3622 SeenValueSymbolTable = true; 3623 } else { 3624 // We must have had a VST forward declaration record, which caused 3625 // the parser to jump to and parse the VST earlier. 3626 assert(VSTOffset > 0); 3627 if (Error Err = Stream.SkipBlock()) 3628 return Err; 3629 } 3630 break; 3631 case bitc::CONSTANTS_BLOCK_ID: 3632 if (Error Err = parseConstants()) 3633 return Err; 3634 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3635 return Err; 3636 break; 3637 case bitc::METADATA_BLOCK_ID: 3638 if (ShouldLazyLoadMetadata) { 3639 if (Error Err = rememberAndSkipMetadata()) 3640 return Err; 3641 break; 3642 } 3643 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3644 if (Error Err = MDLoader->parseModuleMetadata()) 3645 return Err; 3646 break; 3647 case bitc::METADATA_KIND_BLOCK_ID: 3648 if (Error Err = MDLoader->parseMetadataKinds()) 3649 return Err; 3650 break; 3651 case bitc::FUNCTION_BLOCK_ID: 3652 ResolveDataLayout(); 3653 3654 // If this is the first function body we've seen, reverse the 3655 // FunctionsWithBodies list. 3656 if (!SeenFirstFunctionBody) { 3657 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3658 if (Error Err = globalCleanup()) 3659 return Err; 3660 SeenFirstFunctionBody = true; 3661 } 3662 3663 if (VSTOffset > 0) { 3664 // If we have a VST forward declaration record, make sure we 3665 // parse the VST now if we haven't already. It is needed to 3666 // set up the DeferredFunctionInfo vector for lazy reading. 3667 if (!SeenValueSymbolTable) { 3668 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3669 return Err; 3670 SeenValueSymbolTable = true; 3671 // Fall through so that we record the NextUnreadBit below. 3672 // This is necessary in case we have an anonymous function that 3673 // is later materialized. Since it will not have a VST entry we 3674 // need to fall back to the lazy parse to find its offset. 3675 } else { 3676 // If we have a VST forward declaration record, but have already 3677 // parsed the VST (just above, when the first function body was 3678 // encountered here), then we are resuming the parse after 3679 // materializing functions. The ResumeBit points to the 3680 // start of the last function block recorded in the 3681 // DeferredFunctionInfo map. Skip it. 3682 if (Error Err = Stream.SkipBlock()) 3683 return Err; 3684 continue; 3685 } 3686 } 3687 3688 // Support older bitcode files that did not have the function 3689 // index in the VST, nor a VST forward declaration record, as 3690 // well as anonymous functions that do not have VST entries. 3691 // Build the DeferredFunctionInfo vector on the fly. 3692 if (Error Err = rememberAndSkipFunctionBody()) 3693 return Err; 3694 3695 // Suspend parsing when we reach the function bodies. Subsequent 3696 // materialization calls will resume it when necessary. If the bitcode 3697 // file is old, the symbol table will be at the end instead and will not 3698 // have been seen yet. In this case, just finish the parse now. 3699 if (SeenValueSymbolTable) { 3700 NextUnreadBit = Stream.GetCurrentBitNo(); 3701 // After the VST has been parsed, we need to make sure intrinsic name 3702 // are auto-upgraded. 3703 return globalCleanup(); 3704 } 3705 break; 3706 case bitc::USELIST_BLOCK_ID: 3707 if (Error Err = parseUseLists()) 3708 return Err; 3709 break; 3710 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3711 if (Error Err = parseOperandBundleTags()) 3712 return Err; 3713 break; 3714 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3715 if (Error Err = parseSyncScopeNames()) 3716 return Err; 3717 break; 3718 } 3719 continue; 3720 3721 case BitstreamEntry::Record: 3722 // The interesting case. 3723 break; 3724 } 3725 3726 // Read a record. 3727 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3728 if (!MaybeBitCode) 3729 return MaybeBitCode.takeError(); 3730 switch (unsigned BitCode = MaybeBitCode.get()) { 3731 default: break; // Default behavior, ignore unknown content. 3732 case bitc::MODULE_CODE_VERSION: { 3733 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3734 if (!VersionOrErr) 3735 return VersionOrErr.takeError(); 3736 UseRelativeIDs = *VersionOrErr >= 1; 3737 break; 3738 } 3739 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3740 if (ResolvedDataLayout) 3741 return error("target triple too late in module"); 3742 std::string S; 3743 if (convertToString(Record, 0, S)) 3744 return error("Invalid record"); 3745 TheModule->setTargetTriple(S); 3746 break; 3747 } 3748 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3749 if (ResolvedDataLayout) 3750 return error("datalayout too late in module"); 3751 std::string S; 3752 if (convertToString(Record, 0, S)) 3753 return error("Invalid record"); 3754 TheModule->setDataLayout(S); 3755 break; 3756 } 3757 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3758 std::string S; 3759 if (convertToString(Record, 0, S)) 3760 return error("Invalid record"); 3761 TheModule->setModuleInlineAsm(S); 3762 break; 3763 } 3764 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3765 // Deprecated, but still needed to read old bitcode files. 3766 std::string S; 3767 if (convertToString(Record, 0, S)) 3768 return error("Invalid record"); 3769 // Ignore value. 3770 break; 3771 } 3772 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3773 std::string S; 3774 if (convertToString(Record, 0, S)) 3775 return error("Invalid record"); 3776 SectionTable.push_back(S); 3777 break; 3778 } 3779 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3780 std::string S; 3781 if (convertToString(Record, 0, S)) 3782 return error("Invalid record"); 3783 GCTable.push_back(S); 3784 break; 3785 } 3786 case bitc::MODULE_CODE_COMDAT: 3787 if (Error Err = parseComdatRecord(Record)) 3788 return Err; 3789 break; 3790 case bitc::MODULE_CODE_GLOBALVAR: 3791 if (Error Err = parseGlobalVarRecord(Record)) 3792 return Err; 3793 break; 3794 case bitc::MODULE_CODE_FUNCTION: 3795 ResolveDataLayout(); 3796 if (Error Err = parseFunctionRecord(Record)) 3797 return Err; 3798 break; 3799 case bitc::MODULE_CODE_IFUNC: 3800 case bitc::MODULE_CODE_ALIAS: 3801 case bitc::MODULE_CODE_ALIAS_OLD: 3802 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3803 return Err; 3804 break; 3805 /// MODULE_CODE_VSTOFFSET: [offset] 3806 case bitc::MODULE_CODE_VSTOFFSET: 3807 if (Record.empty()) 3808 return error("Invalid record"); 3809 // Note that we subtract 1 here because the offset is relative to one word 3810 // before the start of the identification or module block, which was 3811 // historically always the start of the regular bitcode header. 3812 VSTOffset = Record[0] - 1; 3813 break; 3814 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3815 case bitc::MODULE_CODE_SOURCE_FILENAME: 3816 SmallString<128> ValueName; 3817 if (convertToString(Record, 0, ValueName)) 3818 return error("Invalid record"); 3819 TheModule->setSourceFileName(ValueName); 3820 break; 3821 } 3822 Record.clear(); 3823 } 3824 } 3825 3826 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3827 bool IsImporting, 3828 DataLayoutCallbackTy DataLayoutCallback) { 3829 TheModule = M; 3830 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3831 [&](unsigned ID) { return getTypeByID(ID); }); 3832 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3833 } 3834 3835 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3836 if (!isa<PointerType>(PtrType)) 3837 return error("Load/Store operand is not a pointer type"); 3838 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3839 3840 if (ValType && ValType != ElemType) 3841 return error("Explicit load/store type does not match pointee " 3842 "type of pointer operand"); 3843 if (!PointerType::isLoadableOrStorableType(ElemType)) 3844 return error("Cannot load/store from pointer"); 3845 return Error::success(); 3846 } 3847 3848 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3849 ArrayRef<Type *> ArgsFullTys) { 3850 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3851 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3852 Attribute::InAlloca}) { 3853 if (!CB->paramHasAttr(i, Kind)) 3854 continue; 3855 3856 CB->removeParamAttr(i, Kind); 3857 3858 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3859 Attribute NewAttr; 3860 switch (Kind) { 3861 case Attribute::ByVal: 3862 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3863 break; 3864 case Attribute::StructRet: 3865 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3866 break; 3867 case Attribute::InAlloca: 3868 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3869 break; 3870 default: 3871 llvm_unreachable("not an upgraded type attribute"); 3872 } 3873 3874 CB->addParamAttr(i, NewAttr); 3875 } 3876 } 3877 } 3878 3879 /// Lazily parse the specified function body block. 3880 Error BitcodeReader::parseFunctionBody(Function *F) { 3881 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3882 return Err; 3883 3884 // Unexpected unresolved metadata when parsing function. 3885 if (MDLoader->hasFwdRefs()) 3886 return error("Invalid function metadata: incoming forward references"); 3887 3888 InstructionList.clear(); 3889 unsigned ModuleValueListSize = ValueList.size(); 3890 unsigned ModuleMDLoaderSize = MDLoader->size(); 3891 3892 // Add all the function arguments to the value table. 3893 unsigned ArgNo = 0; 3894 FunctionType *FullFTy = FunctionTypes[F]; 3895 for (Argument &I : F->args()) { 3896 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3897 "Incorrect fully specified type for Function Argument"); 3898 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3899 } 3900 unsigned NextValueNo = ValueList.size(); 3901 BasicBlock *CurBB = nullptr; 3902 unsigned CurBBNo = 0; 3903 3904 DebugLoc LastLoc; 3905 auto getLastInstruction = [&]() -> Instruction * { 3906 if (CurBB && !CurBB->empty()) 3907 return &CurBB->back(); 3908 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3909 !FunctionBBs[CurBBNo - 1]->empty()) 3910 return &FunctionBBs[CurBBNo - 1]->back(); 3911 return nullptr; 3912 }; 3913 3914 std::vector<OperandBundleDef> OperandBundles; 3915 3916 // Read all the records. 3917 SmallVector<uint64_t, 64> Record; 3918 3919 while (true) { 3920 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3921 if (!MaybeEntry) 3922 return MaybeEntry.takeError(); 3923 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3924 3925 switch (Entry.Kind) { 3926 case BitstreamEntry::Error: 3927 return error("Malformed block"); 3928 case BitstreamEntry::EndBlock: 3929 goto OutOfRecordLoop; 3930 3931 case BitstreamEntry::SubBlock: 3932 switch (Entry.ID) { 3933 default: // Skip unknown content. 3934 if (Error Err = Stream.SkipBlock()) 3935 return Err; 3936 break; 3937 case bitc::CONSTANTS_BLOCK_ID: 3938 if (Error Err = parseConstants()) 3939 return Err; 3940 NextValueNo = ValueList.size(); 3941 break; 3942 case bitc::VALUE_SYMTAB_BLOCK_ID: 3943 if (Error Err = parseValueSymbolTable()) 3944 return Err; 3945 break; 3946 case bitc::METADATA_ATTACHMENT_ID: 3947 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3948 return Err; 3949 break; 3950 case bitc::METADATA_BLOCK_ID: 3951 assert(DeferredMetadataInfo.empty() && 3952 "Must read all module-level metadata before function-level"); 3953 if (Error Err = MDLoader->parseFunctionMetadata()) 3954 return Err; 3955 break; 3956 case bitc::USELIST_BLOCK_ID: 3957 if (Error Err = parseUseLists()) 3958 return Err; 3959 break; 3960 } 3961 continue; 3962 3963 case BitstreamEntry::Record: 3964 // The interesting case. 3965 break; 3966 } 3967 3968 // Read a record. 3969 Record.clear(); 3970 Instruction *I = nullptr; 3971 Type *FullTy = nullptr; 3972 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3973 if (!MaybeBitCode) 3974 return MaybeBitCode.takeError(); 3975 switch (unsigned BitCode = MaybeBitCode.get()) { 3976 default: // Default behavior: reject 3977 return error("Invalid value"); 3978 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3979 if (Record.empty() || Record[0] == 0) 3980 return error("Invalid record"); 3981 // Create all the basic blocks for the function. 3982 FunctionBBs.resize(Record[0]); 3983 3984 // See if anything took the address of blocks in this function. 3985 auto BBFRI = BasicBlockFwdRefs.find(F); 3986 if (BBFRI == BasicBlockFwdRefs.end()) { 3987 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3988 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3989 } else { 3990 auto &BBRefs = BBFRI->second; 3991 // Check for invalid basic block references. 3992 if (BBRefs.size() > FunctionBBs.size()) 3993 return error("Invalid ID"); 3994 assert(!BBRefs.empty() && "Unexpected empty array"); 3995 assert(!BBRefs.front() && "Invalid reference to entry block"); 3996 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3997 ++I) 3998 if (I < RE && BBRefs[I]) { 3999 BBRefs[I]->insertInto(F); 4000 FunctionBBs[I] = BBRefs[I]; 4001 } else { 4002 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4003 } 4004 4005 // Erase from the table. 4006 BasicBlockFwdRefs.erase(BBFRI); 4007 } 4008 4009 CurBB = FunctionBBs[0]; 4010 continue; 4011 } 4012 4013 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4014 // This record indicates that the last instruction is at the same 4015 // location as the previous instruction with a location. 4016 I = getLastInstruction(); 4017 4018 if (!I) 4019 return error("Invalid record"); 4020 I->setDebugLoc(LastLoc); 4021 I = nullptr; 4022 continue; 4023 4024 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4025 I = getLastInstruction(); 4026 if (!I || Record.size() < 4) 4027 return error("Invalid record"); 4028 4029 unsigned Line = Record[0], Col = Record[1]; 4030 unsigned ScopeID = Record[2], IAID = Record[3]; 4031 bool isImplicitCode = Record.size() == 5 && Record[4]; 4032 4033 MDNode *Scope = nullptr, *IA = nullptr; 4034 if (ScopeID) { 4035 Scope = dyn_cast_or_null<MDNode>( 4036 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4037 if (!Scope) 4038 return error("Invalid record"); 4039 } 4040 if (IAID) { 4041 IA = dyn_cast_or_null<MDNode>( 4042 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4043 if (!IA) 4044 return error("Invalid record"); 4045 } 4046 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4047 isImplicitCode); 4048 I->setDebugLoc(LastLoc); 4049 I = nullptr; 4050 continue; 4051 } 4052 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4053 unsigned OpNum = 0; 4054 Value *LHS; 4055 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4056 OpNum+1 > Record.size()) 4057 return error("Invalid record"); 4058 4059 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4060 if (Opc == -1) 4061 return error("Invalid record"); 4062 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4063 InstructionList.push_back(I); 4064 if (OpNum < Record.size()) { 4065 if (isa<FPMathOperator>(I)) { 4066 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4067 if (FMF.any()) 4068 I->setFastMathFlags(FMF); 4069 } 4070 } 4071 break; 4072 } 4073 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4074 unsigned OpNum = 0; 4075 Value *LHS, *RHS; 4076 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4077 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4078 OpNum+1 > Record.size()) 4079 return error("Invalid record"); 4080 4081 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4082 if (Opc == -1) 4083 return error("Invalid record"); 4084 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4085 InstructionList.push_back(I); 4086 if (OpNum < Record.size()) { 4087 if (Opc == Instruction::Add || 4088 Opc == Instruction::Sub || 4089 Opc == Instruction::Mul || 4090 Opc == Instruction::Shl) { 4091 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4092 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4093 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4094 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4095 } else if (Opc == Instruction::SDiv || 4096 Opc == Instruction::UDiv || 4097 Opc == Instruction::LShr || 4098 Opc == Instruction::AShr) { 4099 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4100 cast<BinaryOperator>(I)->setIsExact(true); 4101 } else if (isa<FPMathOperator>(I)) { 4102 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4103 if (FMF.any()) 4104 I->setFastMathFlags(FMF); 4105 } 4106 4107 } 4108 break; 4109 } 4110 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4111 unsigned OpNum = 0; 4112 Value *Op; 4113 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4114 OpNum+2 != Record.size()) 4115 return error("Invalid record"); 4116 4117 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4118 Type *ResTy = flattenPointerTypes(FullTy); 4119 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4120 if (Opc == -1 || !ResTy) 4121 return error("Invalid record"); 4122 Instruction *Temp = nullptr; 4123 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4124 if (Temp) { 4125 InstructionList.push_back(Temp); 4126 assert(CurBB && "No current BB?"); 4127 CurBB->getInstList().push_back(Temp); 4128 } 4129 } else { 4130 auto CastOp = (Instruction::CastOps)Opc; 4131 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4132 return error("Invalid cast"); 4133 I = CastInst::Create(CastOp, Op, ResTy); 4134 } 4135 InstructionList.push_back(I); 4136 break; 4137 } 4138 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4139 case bitc::FUNC_CODE_INST_GEP_OLD: 4140 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4141 unsigned OpNum = 0; 4142 4143 Type *Ty; 4144 bool InBounds; 4145 4146 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4147 InBounds = Record[OpNum++]; 4148 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4149 Ty = flattenPointerTypes(FullTy); 4150 } else { 4151 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4152 Ty = nullptr; 4153 } 4154 4155 Value *BasePtr; 4156 Type *FullBaseTy = nullptr; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4158 return error("Invalid record"); 4159 4160 if (!Ty) { 4161 std::tie(FullTy, Ty) = 4162 getPointerElementTypes(FullBaseTy->getScalarType()); 4163 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4164 return error( 4165 "Explicit gep type does not match pointee type of pointer operand"); 4166 4167 SmallVector<Value*, 16> GEPIdx; 4168 while (OpNum != Record.size()) { 4169 Value *Op; 4170 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4171 return error("Invalid record"); 4172 GEPIdx.push_back(Op); 4173 } 4174 4175 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4176 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4177 4178 InstructionList.push_back(I); 4179 if (InBounds) 4180 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4181 break; 4182 } 4183 4184 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4185 // EXTRACTVAL: [opty, opval, n x indices] 4186 unsigned OpNum = 0; 4187 Value *Agg; 4188 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4189 return error("Invalid record"); 4190 4191 unsigned RecSize = Record.size(); 4192 if (OpNum == RecSize) 4193 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4194 4195 SmallVector<unsigned, 4> EXTRACTVALIdx; 4196 for (; OpNum != RecSize; ++OpNum) { 4197 bool IsArray = FullTy->isArrayTy(); 4198 bool IsStruct = FullTy->isStructTy(); 4199 uint64_t Index = Record[OpNum]; 4200 4201 if (!IsStruct && !IsArray) 4202 return error("EXTRACTVAL: Invalid type"); 4203 if ((unsigned)Index != Index) 4204 return error("Invalid value"); 4205 if (IsStruct && Index >= FullTy->getStructNumElements()) 4206 return error("EXTRACTVAL: Invalid struct index"); 4207 if (IsArray && Index >= FullTy->getArrayNumElements()) 4208 return error("EXTRACTVAL: Invalid array index"); 4209 EXTRACTVALIdx.push_back((unsigned)Index); 4210 4211 if (IsStruct) 4212 FullTy = FullTy->getStructElementType(Index); 4213 else 4214 FullTy = FullTy->getArrayElementType(); 4215 } 4216 4217 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4218 InstructionList.push_back(I); 4219 break; 4220 } 4221 4222 case bitc::FUNC_CODE_INST_INSERTVAL: { 4223 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4224 unsigned OpNum = 0; 4225 Value *Agg; 4226 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4227 return error("Invalid record"); 4228 Value *Val; 4229 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4230 return error("Invalid record"); 4231 4232 unsigned RecSize = Record.size(); 4233 if (OpNum == RecSize) 4234 return error("INSERTVAL: Invalid instruction with 0 indices"); 4235 4236 SmallVector<unsigned, 4> INSERTVALIdx; 4237 Type *CurTy = Agg->getType(); 4238 for (; OpNum != RecSize; ++OpNum) { 4239 bool IsArray = CurTy->isArrayTy(); 4240 bool IsStruct = CurTy->isStructTy(); 4241 uint64_t Index = Record[OpNum]; 4242 4243 if (!IsStruct && !IsArray) 4244 return error("INSERTVAL: Invalid type"); 4245 if ((unsigned)Index != Index) 4246 return error("Invalid value"); 4247 if (IsStruct && Index >= CurTy->getStructNumElements()) 4248 return error("INSERTVAL: Invalid struct index"); 4249 if (IsArray && Index >= CurTy->getArrayNumElements()) 4250 return error("INSERTVAL: Invalid array index"); 4251 4252 INSERTVALIdx.push_back((unsigned)Index); 4253 if (IsStruct) 4254 CurTy = CurTy->getStructElementType(Index); 4255 else 4256 CurTy = CurTy->getArrayElementType(); 4257 } 4258 4259 if (CurTy != Val->getType()) 4260 return error("Inserted value type doesn't match aggregate type"); 4261 4262 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4263 InstructionList.push_back(I); 4264 break; 4265 } 4266 4267 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4268 // obsolete form of select 4269 // handles select i1 ... in old bitcode 4270 unsigned OpNum = 0; 4271 Value *TrueVal, *FalseVal, *Cond; 4272 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4273 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4274 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4275 return error("Invalid record"); 4276 4277 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4278 InstructionList.push_back(I); 4279 break; 4280 } 4281 4282 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4283 // new form of select 4284 // handles select i1 or select [N x i1] 4285 unsigned OpNum = 0; 4286 Value *TrueVal, *FalseVal, *Cond; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4288 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4289 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4290 return error("Invalid record"); 4291 4292 // select condition can be either i1 or [N x i1] 4293 if (VectorType* vector_type = 4294 dyn_cast<VectorType>(Cond->getType())) { 4295 // expect <n x i1> 4296 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4297 return error("Invalid type for value"); 4298 } else { 4299 // expect i1 4300 if (Cond->getType() != Type::getInt1Ty(Context)) 4301 return error("Invalid type for value"); 4302 } 4303 4304 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4305 InstructionList.push_back(I); 4306 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4307 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4308 if (FMF.any()) 4309 I->setFastMathFlags(FMF); 4310 } 4311 break; 4312 } 4313 4314 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4315 unsigned OpNum = 0; 4316 Value *Vec, *Idx; 4317 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4318 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4319 return error("Invalid record"); 4320 if (!Vec->getType()->isVectorTy()) 4321 return error("Invalid type for value"); 4322 I = ExtractElementInst::Create(Vec, Idx); 4323 FullTy = cast<VectorType>(FullTy)->getElementType(); 4324 InstructionList.push_back(I); 4325 break; 4326 } 4327 4328 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4329 unsigned OpNum = 0; 4330 Value *Vec, *Elt, *Idx; 4331 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4332 return error("Invalid record"); 4333 if (!Vec->getType()->isVectorTy()) 4334 return error("Invalid type for value"); 4335 if (popValue(Record, OpNum, NextValueNo, 4336 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4337 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4338 return error("Invalid record"); 4339 I = InsertElementInst::Create(Vec, Elt, Idx); 4340 InstructionList.push_back(I); 4341 break; 4342 } 4343 4344 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4345 unsigned OpNum = 0; 4346 Value *Vec1, *Vec2, *Mask; 4347 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4348 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4349 return error("Invalid record"); 4350 4351 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4352 return error("Invalid record"); 4353 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4354 return error("Invalid type for value"); 4355 4356 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4357 FullTy = 4358 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4359 cast<VectorType>(Mask->getType())->getElementCount()); 4360 InstructionList.push_back(I); 4361 break; 4362 } 4363 4364 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4365 // Old form of ICmp/FCmp returning bool 4366 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4367 // both legal on vectors but had different behaviour. 4368 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4369 // FCmp/ICmp returning bool or vector of bool 4370 4371 unsigned OpNum = 0; 4372 Value *LHS, *RHS; 4373 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4374 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4375 return error("Invalid record"); 4376 4377 if (OpNum >= Record.size()) 4378 return error( 4379 "Invalid record: operand number exceeded available operands"); 4380 4381 unsigned PredVal = Record[OpNum]; 4382 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4383 FastMathFlags FMF; 4384 if (IsFP && Record.size() > OpNum+1) 4385 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4386 4387 if (OpNum+1 != Record.size()) 4388 return error("Invalid record"); 4389 4390 if (LHS->getType()->isFPOrFPVectorTy()) 4391 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4392 else 4393 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4394 4395 if (FMF.any()) 4396 I->setFastMathFlags(FMF); 4397 InstructionList.push_back(I); 4398 break; 4399 } 4400 4401 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4402 { 4403 unsigned Size = Record.size(); 4404 if (Size == 0) { 4405 I = ReturnInst::Create(Context); 4406 InstructionList.push_back(I); 4407 break; 4408 } 4409 4410 unsigned OpNum = 0; 4411 Value *Op = nullptr; 4412 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4413 return error("Invalid record"); 4414 if (OpNum != Record.size()) 4415 return error("Invalid record"); 4416 4417 I = ReturnInst::Create(Context, Op); 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4422 if (Record.size() != 1 && Record.size() != 3) 4423 return error("Invalid record"); 4424 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4425 if (!TrueDest) 4426 return error("Invalid record"); 4427 4428 if (Record.size() == 1) { 4429 I = BranchInst::Create(TrueDest); 4430 InstructionList.push_back(I); 4431 } 4432 else { 4433 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4434 Value *Cond = getValue(Record, 2, NextValueNo, 4435 Type::getInt1Ty(Context)); 4436 if (!FalseDest || !Cond) 4437 return error("Invalid record"); 4438 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4439 InstructionList.push_back(I); 4440 } 4441 break; 4442 } 4443 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4444 if (Record.size() != 1 && Record.size() != 2) 4445 return error("Invalid record"); 4446 unsigned Idx = 0; 4447 Value *CleanupPad = 4448 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4449 if (!CleanupPad) 4450 return error("Invalid record"); 4451 BasicBlock *UnwindDest = nullptr; 4452 if (Record.size() == 2) { 4453 UnwindDest = getBasicBlock(Record[Idx++]); 4454 if (!UnwindDest) 4455 return error("Invalid record"); 4456 } 4457 4458 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4459 InstructionList.push_back(I); 4460 break; 4461 } 4462 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4463 if (Record.size() != 2) 4464 return error("Invalid record"); 4465 unsigned Idx = 0; 4466 Value *CatchPad = 4467 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4468 if (!CatchPad) 4469 return error("Invalid record"); 4470 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4471 if (!BB) 4472 return error("Invalid record"); 4473 4474 I = CatchReturnInst::Create(CatchPad, BB); 4475 InstructionList.push_back(I); 4476 break; 4477 } 4478 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4479 // We must have, at minimum, the outer scope and the number of arguments. 4480 if (Record.size() < 2) 4481 return error("Invalid record"); 4482 4483 unsigned Idx = 0; 4484 4485 Value *ParentPad = 4486 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4487 4488 unsigned NumHandlers = Record[Idx++]; 4489 4490 SmallVector<BasicBlock *, 2> Handlers; 4491 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4492 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4493 if (!BB) 4494 return error("Invalid record"); 4495 Handlers.push_back(BB); 4496 } 4497 4498 BasicBlock *UnwindDest = nullptr; 4499 if (Idx + 1 == Record.size()) { 4500 UnwindDest = getBasicBlock(Record[Idx++]); 4501 if (!UnwindDest) 4502 return error("Invalid record"); 4503 } 4504 4505 if (Record.size() != Idx) 4506 return error("Invalid record"); 4507 4508 auto *CatchSwitch = 4509 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4510 for (BasicBlock *Handler : Handlers) 4511 CatchSwitch->addHandler(Handler); 4512 I = CatchSwitch; 4513 InstructionList.push_back(I); 4514 break; 4515 } 4516 case bitc::FUNC_CODE_INST_CATCHPAD: 4517 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4518 // We must have, at minimum, the outer scope and the number of arguments. 4519 if (Record.size() < 2) 4520 return error("Invalid record"); 4521 4522 unsigned Idx = 0; 4523 4524 Value *ParentPad = 4525 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4526 4527 unsigned NumArgOperands = Record[Idx++]; 4528 4529 SmallVector<Value *, 2> Args; 4530 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4531 Value *Val; 4532 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4533 return error("Invalid record"); 4534 Args.push_back(Val); 4535 } 4536 4537 if (Record.size() != Idx) 4538 return error("Invalid record"); 4539 4540 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4541 I = CleanupPadInst::Create(ParentPad, Args); 4542 else 4543 I = CatchPadInst::Create(ParentPad, Args); 4544 InstructionList.push_back(I); 4545 break; 4546 } 4547 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4548 // Check magic 4549 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4550 // "New" SwitchInst format with case ranges. The changes to write this 4551 // format were reverted but we still recognize bitcode that uses it. 4552 // Hopefully someday we will have support for case ranges and can use 4553 // this format again. 4554 4555 Type *OpTy = getTypeByID(Record[1]); 4556 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4557 4558 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4559 BasicBlock *Default = getBasicBlock(Record[3]); 4560 if (!OpTy || !Cond || !Default) 4561 return error("Invalid record"); 4562 4563 unsigned NumCases = Record[4]; 4564 4565 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4566 InstructionList.push_back(SI); 4567 4568 unsigned CurIdx = 5; 4569 for (unsigned i = 0; i != NumCases; ++i) { 4570 SmallVector<ConstantInt*, 1> CaseVals; 4571 unsigned NumItems = Record[CurIdx++]; 4572 for (unsigned ci = 0; ci != NumItems; ++ci) { 4573 bool isSingleNumber = Record[CurIdx++]; 4574 4575 APInt Low; 4576 unsigned ActiveWords = 1; 4577 if (ValueBitWidth > 64) 4578 ActiveWords = Record[CurIdx++]; 4579 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4580 ValueBitWidth); 4581 CurIdx += ActiveWords; 4582 4583 if (!isSingleNumber) { 4584 ActiveWords = 1; 4585 if (ValueBitWidth > 64) 4586 ActiveWords = Record[CurIdx++]; 4587 APInt High = readWideAPInt( 4588 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4589 CurIdx += ActiveWords; 4590 4591 // FIXME: It is not clear whether values in the range should be 4592 // compared as signed or unsigned values. The partially 4593 // implemented changes that used this format in the past used 4594 // unsigned comparisons. 4595 for ( ; Low.ule(High); ++Low) 4596 CaseVals.push_back(ConstantInt::get(Context, Low)); 4597 } else 4598 CaseVals.push_back(ConstantInt::get(Context, Low)); 4599 } 4600 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4601 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4602 cve = CaseVals.end(); cvi != cve; ++cvi) 4603 SI->addCase(*cvi, DestBB); 4604 } 4605 I = SI; 4606 break; 4607 } 4608 4609 // Old SwitchInst format without case ranges. 4610 4611 if (Record.size() < 3 || (Record.size() & 1) == 0) 4612 return error("Invalid record"); 4613 Type *OpTy = getTypeByID(Record[0]); 4614 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4615 BasicBlock *Default = getBasicBlock(Record[2]); 4616 if (!OpTy || !Cond || !Default) 4617 return error("Invalid record"); 4618 unsigned NumCases = (Record.size()-3)/2; 4619 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4620 InstructionList.push_back(SI); 4621 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4622 ConstantInt *CaseVal = 4623 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4624 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4625 if (!CaseVal || !DestBB) { 4626 delete SI; 4627 return error("Invalid record"); 4628 } 4629 SI->addCase(CaseVal, DestBB); 4630 } 4631 I = SI; 4632 break; 4633 } 4634 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4635 if (Record.size() < 2) 4636 return error("Invalid record"); 4637 Type *OpTy = getTypeByID(Record[0]); 4638 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4639 if (!OpTy || !Address) 4640 return error("Invalid record"); 4641 unsigned NumDests = Record.size()-2; 4642 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4643 InstructionList.push_back(IBI); 4644 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4645 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4646 IBI->addDestination(DestBB); 4647 } else { 4648 delete IBI; 4649 return error("Invalid record"); 4650 } 4651 } 4652 I = IBI; 4653 break; 4654 } 4655 4656 case bitc::FUNC_CODE_INST_INVOKE: { 4657 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4658 if (Record.size() < 4) 4659 return error("Invalid record"); 4660 unsigned OpNum = 0; 4661 AttributeList PAL = getAttributes(Record[OpNum++]); 4662 unsigned CCInfo = Record[OpNum++]; 4663 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4664 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4665 4666 FunctionType *FTy = nullptr; 4667 FunctionType *FullFTy = nullptr; 4668 if ((CCInfo >> 13) & 1) { 4669 FullFTy = 4670 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4671 if (!FullFTy) 4672 return error("Explicit invoke type is not a function type"); 4673 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4674 } 4675 4676 Value *Callee; 4677 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4678 return error("Invalid record"); 4679 4680 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4681 if (!CalleeTy) 4682 return error("Callee is not a pointer"); 4683 if (!FTy) { 4684 FullFTy = 4685 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4686 if (!FullFTy) 4687 return error("Callee is not of pointer to function type"); 4688 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4689 } else if (getPointerElementFlatType(FullTy) != FTy) 4690 return error("Explicit invoke type does not match pointee type of " 4691 "callee operand"); 4692 if (Record.size() < FTy->getNumParams() + OpNum) 4693 return error("Insufficient operands to call"); 4694 4695 SmallVector<Value*, 16> Ops; 4696 SmallVector<Type *, 16> ArgsFullTys; 4697 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4698 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4699 FTy->getParamType(i))); 4700 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4701 if (!Ops.back()) 4702 return error("Invalid record"); 4703 } 4704 4705 if (!FTy->isVarArg()) { 4706 if (Record.size() != OpNum) 4707 return error("Invalid record"); 4708 } else { 4709 // Read type/value pairs for varargs params. 4710 while (OpNum != Record.size()) { 4711 Value *Op; 4712 Type *FullTy; 4713 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4714 return error("Invalid record"); 4715 Ops.push_back(Op); 4716 ArgsFullTys.push_back(FullTy); 4717 } 4718 } 4719 4720 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4721 OperandBundles); 4722 FullTy = FullFTy->getReturnType(); 4723 OperandBundles.clear(); 4724 InstructionList.push_back(I); 4725 cast<InvokeInst>(I)->setCallingConv( 4726 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4727 cast<InvokeInst>(I)->setAttributes(PAL); 4728 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4729 4730 break; 4731 } 4732 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4733 unsigned Idx = 0; 4734 Value *Val = nullptr; 4735 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4736 return error("Invalid record"); 4737 I = ResumeInst::Create(Val); 4738 InstructionList.push_back(I); 4739 break; 4740 } 4741 case bitc::FUNC_CODE_INST_CALLBR: { 4742 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4743 unsigned OpNum = 0; 4744 AttributeList PAL = getAttributes(Record[OpNum++]); 4745 unsigned CCInfo = Record[OpNum++]; 4746 4747 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4748 unsigned NumIndirectDests = Record[OpNum++]; 4749 SmallVector<BasicBlock *, 16> IndirectDests; 4750 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4751 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4752 4753 FunctionType *FTy = nullptr; 4754 FunctionType *FullFTy = nullptr; 4755 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4756 FullFTy = 4757 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4758 if (!FullFTy) 4759 return error("Explicit call type is not a function type"); 4760 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4761 } 4762 4763 Value *Callee; 4764 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4765 return error("Invalid record"); 4766 4767 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4768 if (!OpTy) 4769 return error("Callee is not a pointer type"); 4770 if (!FTy) { 4771 FullFTy = 4772 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4773 if (!FullFTy) 4774 return error("Callee is not of pointer to function type"); 4775 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4776 } else if (getPointerElementFlatType(FullTy) != FTy) 4777 return error("Explicit call type does not match pointee type of " 4778 "callee operand"); 4779 if (Record.size() < FTy->getNumParams() + OpNum) 4780 return error("Insufficient operands to call"); 4781 4782 SmallVector<Value*, 16> Args; 4783 // Read the fixed params. 4784 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4785 if (FTy->getParamType(i)->isLabelTy()) 4786 Args.push_back(getBasicBlock(Record[OpNum])); 4787 else 4788 Args.push_back(getValue(Record, OpNum, NextValueNo, 4789 FTy->getParamType(i))); 4790 if (!Args.back()) 4791 return error("Invalid record"); 4792 } 4793 4794 // Read type/value pairs for varargs params. 4795 if (!FTy->isVarArg()) { 4796 if (OpNum != Record.size()) 4797 return error("Invalid record"); 4798 } else { 4799 while (OpNum != Record.size()) { 4800 Value *Op; 4801 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4802 return error("Invalid record"); 4803 Args.push_back(Op); 4804 } 4805 } 4806 4807 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4808 OperandBundles); 4809 FullTy = FullFTy->getReturnType(); 4810 OperandBundles.clear(); 4811 InstructionList.push_back(I); 4812 cast<CallBrInst>(I)->setCallingConv( 4813 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4814 cast<CallBrInst>(I)->setAttributes(PAL); 4815 break; 4816 } 4817 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4818 I = new UnreachableInst(Context); 4819 InstructionList.push_back(I); 4820 break; 4821 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4822 if (Record.empty()) 4823 return error("Invalid record"); 4824 // The first record specifies the type. 4825 FullTy = getFullyStructuredTypeByID(Record[0]); 4826 Type *Ty = flattenPointerTypes(FullTy); 4827 if (!Ty) 4828 return error("Invalid record"); 4829 4830 // Phi arguments are pairs of records of [value, basic block]. 4831 // There is an optional final record for fast-math-flags if this phi has a 4832 // floating-point type. 4833 size_t NumArgs = (Record.size() - 1) / 2; 4834 PHINode *PN = PHINode::Create(Ty, NumArgs); 4835 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4836 return error("Invalid record"); 4837 InstructionList.push_back(PN); 4838 4839 for (unsigned i = 0; i != NumArgs; i++) { 4840 Value *V; 4841 // With the new function encoding, it is possible that operands have 4842 // negative IDs (for forward references). Use a signed VBR 4843 // representation to keep the encoding small. 4844 if (UseRelativeIDs) 4845 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4846 else 4847 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4848 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4849 if (!V || !BB) 4850 return error("Invalid record"); 4851 PN->addIncoming(V, BB); 4852 } 4853 I = PN; 4854 4855 // If there are an even number of records, the final record must be FMF. 4856 if (Record.size() % 2 == 0) { 4857 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4858 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4859 if (FMF.any()) 4860 I->setFastMathFlags(FMF); 4861 } 4862 4863 break; 4864 } 4865 4866 case bitc::FUNC_CODE_INST_LANDINGPAD: 4867 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4868 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4869 unsigned Idx = 0; 4870 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4871 if (Record.size() < 3) 4872 return error("Invalid record"); 4873 } else { 4874 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4875 if (Record.size() < 4) 4876 return error("Invalid record"); 4877 } 4878 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4879 Type *Ty = flattenPointerTypes(FullTy); 4880 if (!Ty) 4881 return error("Invalid record"); 4882 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4883 Value *PersFn = nullptr; 4884 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4885 return error("Invalid record"); 4886 4887 if (!F->hasPersonalityFn()) 4888 F->setPersonalityFn(cast<Constant>(PersFn)); 4889 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4890 return error("Personality function mismatch"); 4891 } 4892 4893 bool IsCleanup = !!Record[Idx++]; 4894 unsigned NumClauses = Record[Idx++]; 4895 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4896 LP->setCleanup(IsCleanup); 4897 for (unsigned J = 0; J != NumClauses; ++J) { 4898 LandingPadInst::ClauseType CT = 4899 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4900 Value *Val; 4901 4902 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4903 delete LP; 4904 return error("Invalid record"); 4905 } 4906 4907 assert((CT != LandingPadInst::Catch || 4908 !isa<ArrayType>(Val->getType())) && 4909 "Catch clause has a invalid type!"); 4910 assert((CT != LandingPadInst::Filter || 4911 isa<ArrayType>(Val->getType())) && 4912 "Filter clause has invalid type!"); 4913 LP->addClause(cast<Constant>(Val)); 4914 } 4915 4916 I = LP; 4917 InstructionList.push_back(I); 4918 break; 4919 } 4920 4921 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4922 if (Record.size() != 4) 4923 return error("Invalid record"); 4924 using APV = AllocaPackedValues; 4925 const uint64_t Rec = Record[3]; 4926 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4927 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4928 FullTy = getFullyStructuredTypeByID(Record[0]); 4929 Type *Ty = flattenPointerTypes(FullTy); 4930 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4931 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4932 if (!PTy) 4933 return error("Old-style alloca with a non-pointer type"); 4934 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4935 } 4936 Type *OpTy = getTypeByID(Record[1]); 4937 Value *Size = getFnValueByID(Record[2], OpTy); 4938 MaybeAlign Align; 4939 if (Error Err = 4940 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4941 return Err; 4942 } 4943 if (!Ty || !Size) 4944 return error("Invalid record"); 4945 4946 // FIXME: Make this an optional field. 4947 const DataLayout &DL = TheModule->getDataLayout(); 4948 unsigned AS = DL.getAllocaAddrSpace(); 4949 4950 SmallPtrSet<Type *, 4> Visited; 4951 if (!Align && !Ty->isSized(&Visited)) 4952 return error("alloca of unsized type"); 4953 if (!Align) 4954 Align = DL.getPrefTypeAlign(Ty); 4955 4956 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4957 AI->setUsedWithInAlloca(InAlloca); 4958 AI->setSwiftError(SwiftError); 4959 I = AI; 4960 FullTy = PointerType::get(FullTy, AS); 4961 InstructionList.push_back(I); 4962 break; 4963 } 4964 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4965 unsigned OpNum = 0; 4966 Value *Op; 4967 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4968 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4969 return error("Invalid record"); 4970 4971 if (!isa<PointerType>(Op->getType())) 4972 return error("Load operand is not a pointer type"); 4973 4974 Type *Ty = nullptr; 4975 if (OpNum + 3 == Record.size()) { 4976 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4977 Ty = flattenPointerTypes(FullTy); 4978 } else 4979 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4980 4981 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4982 return Err; 4983 4984 MaybeAlign Align; 4985 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4986 return Err; 4987 SmallPtrSet<Type *, 4> Visited; 4988 if (!Align && !Ty->isSized(&Visited)) 4989 return error("load of unsized type"); 4990 if (!Align) 4991 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4992 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4993 InstructionList.push_back(I); 4994 break; 4995 } 4996 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4997 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4998 unsigned OpNum = 0; 4999 Value *Op; 5000 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 5001 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5002 return error("Invalid record"); 5003 5004 if (!isa<PointerType>(Op->getType())) 5005 return error("Load operand is not a pointer type"); 5006 5007 Type *Ty = nullptr; 5008 if (OpNum + 5 == Record.size()) { 5009 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 5010 Ty = flattenPointerTypes(FullTy); 5011 } else 5012 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 5013 5014 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5015 return Err; 5016 5017 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5018 if (Ordering == AtomicOrdering::NotAtomic || 5019 Ordering == AtomicOrdering::Release || 5020 Ordering == AtomicOrdering::AcquireRelease) 5021 return error("Invalid record"); 5022 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5023 return error("Invalid record"); 5024 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5025 5026 MaybeAlign Align; 5027 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5028 return Err; 5029 if (!Align) 5030 return error("Alignment missing from atomic load"); 5031 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5032 InstructionList.push_back(I); 5033 break; 5034 } 5035 case bitc::FUNC_CODE_INST_STORE: 5036 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5037 unsigned OpNum = 0; 5038 Value *Val, *Ptr; 5039 Type *FullTy; 5040 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5041 (BitCode == bitc::FUNC_CODE_INST_STORE 5042 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5043 : popValue(Record, OpNum, NextValueNo, 5044 getPointerElementFlatType(FullTy), Val)) || 5045 OpNum + 2 != Record.size()) 5046 return error("Invalid record"); 5047 5048 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5049 return Err; 5050 MaybeAlign Align; 5051 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5052 return Err; 5053 SmallPtrSet<Type *, 4> Visited; 5054 if (!Align && !Val->getType()->isSized(&Visited)) 5055 return error("store of unsized type"); 5056 if (!Align) 5057 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5058 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5059 InstructionList.push_back(I); 5060 break; 5061 } 5062 case bitc::FUNC_CODE_INST_STOREATOMIC: 5063 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5064 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5065 unsigned OpNum = 0; 5066 Value *Val, *Ptr; 5067 Type *FullTy; 5068 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5069 !isa<PointerType>(Ptr->getType()) || 5070 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5071 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5072 : popValue(Record, OpNum, NextValueNo, 5073 getPointerElementFlatType(FullTy), Val)) || 5074 OpNum + 4 != Record.size()) 5075 return error("Invalid record"); 5076 5077 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5078 return Err; 5079 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5080 if (Ordering == AtomicOrdering::NotAtomic || 5081 Ordering == AtomicOrdering::Acquire || 5082 Ordering == AtomicOrdering::AcquireRelease) 5083 return error("Invalid record"); 5084 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5085 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5086 return error("Invalid record"); 5087 5088 MaybeAlign Align; 5089 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5090 return Err; 5091 if (!Align) 5092 return error("Alignment missing from atomic store"); 5093 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5094 InstructionList.push_back(I); 5095 break; 5096 } 5097 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5098 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5099 // failure_ordering?, weak?] 5100 const size_t NumRecords = Record.size(); 5101 unsigned OpNum = 0; 5102 Value *Ptr = nullptr; 5103 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5104 return error("Invalid record"); 5105 5106 if (!isa<PointerType>(Ptr->getType())) 5107 return error("Cmpxchg operand is not a pointer type"); 5108 5109 Value *Cmp = nullptr; 5110 if (popValue(Record, OpNum, NextValueNo, 5111 getPointerElementFlatType(FullTy), Cmp)) 5112 return error("Invalid record"); 5113 5114 FullTy = cast<PointerType>(FullTy)->getElementType(); 5115 5116 Value *New = nullptr; 5117 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5118 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5119 return error("Invalid record"); 5120 5121 const AtomicOrdering SuccessOrdering = 5122 getDecodedOrdering(Record[OpNum + 1]); 5123 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5124 SuccessOrdering == AtomicOrdering::Unordered) 5125 return error("Invalid record"); 5126 5127 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5128 5129 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5130 return Err; 5131 5132 const AtomicOrdering FailureOrdering = 5133 NumRecords < 7 5134 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5135 : getDecodedOrdering(Record[OpNum + 3]); 5136 5137 const Align Alignment( 5138 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5139 5140 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5141 FailureOrdering, SSID); 5142 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5143 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5144 5145 if (NumRecords < 8) { 5146 // Before weak cmpxchgs existed, the instruction simply returned the 5147 // value loaded from memory, so bitcode files from that era will be 5148 // expecting the first component of a modern cmpxchg. 5149 CurBB->getInstList().push_back(I); 5150 I = ExtractValueInst::Create(I, 0); 5151 FullTy = cast<StructType>(FullTy)->getElementType(0); 5152 } else { 5153 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5154 } 5155 5156 InstructionList.push_back(I); 5157 break; 5158 } 5159 case bitc::FUNC_CODE_INST_CMPXCHG: { 5160 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5161 // failure_ordering, weak, align?] 5162 const size_t NumRecords = Record.size(); 5163 unsigned OpNum = 0; 5164 Value *Ptr = nullptr; 5165 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5166 return error("Invalid record"); 5167 5168 if (!isa<PointerType>(Ptr->getType())) 5169 return error("Cmpxchg operand is not a pointer type"); 5170 5171 Value *Cmp = nullptr; 5172 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5173 return error("Invalid record"); 5174 5175 Value *Val = nullptr; 5176 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5177 return error("Invalid record"); 5178 5179 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5180 return error("Invalid record"); 5181 5182 const bool IsVol = Record[OpNum]; 5183 5184 const AtomicOrdering SuccessOrdering = 5185 getDecodedOrdering(Record[OpNum + 1]); 5186 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5187 SuccessOrdering == AtomicOrdering::Unordered) 5188 return error("Invalid record"); 5189 5190 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5191 5192 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5193 return Err; 5194 5195 const AtomicOrdering FailureOrdering = 5196 getDecodedOrdering(Record[OpNum + 3]); 5197 5198 const bool IsWeak = Record[OpNum + 4]; 5199 5200 MaybeAlign Alignment; 5201 5202 if (NumRecords == (OpNum + 6)) { 5203 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5204 return Err; 5205 } 5206 if (!Alignment) 5207 Alignment = 5208 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5209 5210 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5211 FailureOrdering, SSID); 5212 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5213 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5214 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5215 5216 InstructionList.push_back(I); 5217 break; 5218 } 5219 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5220 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?] 5221 const size_t NumRecords = Record.size(); 5222 unsigned OpNum = 0; 5223 5224 Value *Ptr = nullptr; 5225 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5226 return error("Invalid record"); 5227 5228 if (!isa<PointerType>(Ptr->getType())) 5229 return error("Invalid record"); 5230 5231 Value *Val = nullptr; 5232 if (popValue(Record, OpNum, NextValueNo, 5233 getPointerElementFlatType(FullTy), Val)) 5234 return error("Invalid record"); 5235 5236 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5237 return error("Invalid record"); 5238 5239 const AtomicRMWInst::BinOp Operation = 5240 getDecodedRMWOperation(Record[OpNum]); 5241 if (Operation < AtomicRMWInst::FIRST_BINOP || 5242 Operation > AtomicRMWInst::LAST_BINOP) 5243 return error("Invalid record"); 5244 5245 const bool IsVol = Record[OpNum + 1]; 5246 5247 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5248 if (Ordering == AtomicOrdering::NotAtomic || 5249 Ordering == AtomicOrdering::Unordered) 5250 return error("Invalid record"); 5251 5252 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5253 5254 MaybeAlign Alignment; 5255 5256 if (NumRecords == (OpNum + 5)) { 5257 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5258 return Err; 5259 } 5260 5261 if (!Alignment) 5262 Alignment = 5263 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5264 5265 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5266 FullTy = getPointerElementFlatType(FullTy); 5267 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5268 5269 InstructionList.push_back(I); 5270 break; 5271 } 5272 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5273 if (2 != Record.size()) 5274 return error("Invalid record"); 5275 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5276 if (Ordering == AtomicOrdering::NotAtomic || 5277 Ordering == AtomicOrdering::Unordered || 5278 Ordering == AtomicOrdering::Monotonic) 5279 return error("Invalid record"); 5280 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5281 I = new FenceInst(Context, Ordering, SSID); 5282 InstructionList.push_back(I); 5283 break; 5284 } 5285 case bitc::FUNC_CODE_INST_CALL: { 5286 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5287 if (Record.size() < 3) 5288 return error("Invalid record"); 5289 5290 unsigned OpNum = 0; 5291 AttributeList PAL = getAttributes(Record[OpNum++]); 5292 unsigned CCInfo = Record[OpNum++]; 5293 5294 FastMathFlags FMF; 5295 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5296 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5297 if (!FMF.any()) 5298 return error("Fast math flags indicator set for call with no FMF"); 5299 } 5300 5301 FunctionType *FTy = nullptr; 5302 FunctionType *FullFTy = nullptr; 5303 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5304 FullFTy = 5305 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5306 if (!FullFTy) 5307 return error("Explicit call type is not a function type"); 5308 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5309 } 5310 5311 Value *Callee; 5312 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5313 return error("Invalid record"); 5314 5315 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5316 if (!OpTy) 5317 return error("Callee is not a pointer type"); 5318 if (!FTy) { 5319 FullFTy = 5320 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5321 if (!FullFTy) 5322 return error("Callee is not of pointer to function type"); 5323 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5324 } else if (getPointerElementFlatType(FullTy) != FTy) 5325 return error("Explicit call type does not match pointee type of " 5326 "callee operand"); 5327 if (Record.size() < FTy->getNumParams() + OpNum) 5328 return error("Insufficient operands to call"); 5329 5330 SmallVector<Value*, 16> Args; 5331 SmallVector<Type*, 16> ArgsFullTys; 5332 // Read the fixed params. 5333 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5334 if (FTy->getParamType(i)->isLabelTy()) 5335 Args.push_back(getBasicBlock(Record[OpNum])); 5336 else 5337 Args.push_back(getValue(Record, OpNum, NextValueNo, 5338 FTy->getParamType(i))); 5339 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5340 if (!Args.back()) 5341 return error("Invalid record"); 5342 } 5343 5344 // Read type/value pairs for varargs params. 5345 if (!FTy->isVarArg()) { 5346 if (OpNum != Record.size()) 5347 return error("Invalid record"); 5348 } else { 5349 while (OpNum != Record.size()) { 5350 Value *Op; 5351 Type *FullTy; 5352 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5353 return error("Invalid record"); 5354 Args.push_back(Op); 5355 ArgsFullTys.push_back(FullTy); 5356 } 5357 } 5358 5359 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5360 FullTy = FullFTy->getReturnType(); 5361 OperandBundles.clear(); 5362 InstructionList.push_back(I); 5363 cast<CallInst>(I)->setCallingConv( 5364 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5365 CallInst::TailCallKind TCK = CallInst::TCK_None; 5366 if (CCInfo & 1 << bitc::CALL_TAIL) 5367 TCK = CallInst::TCK_Tail; 5368 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5369 TCK = CallInst::TCK_MustTail; 5370 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5371 TCK = CallInst::TCK_NoTail; 5372 cast<CallInst>(I)->setTailCallKind(TCK); 5373 cast<CallInst>(I)->setAttributes(PAL); 5374 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5375 if (FMF.any()) { 5376 if (!isa<FPMathOperator>(I)) 5377 return error("Fast-math-flags specified for call without " 5378 "floating-point scalar or vector return type"); 5379 I->setFastMathFlags(FMF); 5380 } 5381 break; 5382 } 5383 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5384 if (Record.size() < 3) 5385 return error("Invalid record"); 5386 Type *OpTy = getTypeByID(Record[0]); 5387 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5388 FullTy = getFullyStructuredTypeByID(Record[2]); 5389 Type *ResTy = flattenPointerTypes(FullTy); 5390 if (!OpTy || !Op || !ResTy) 5391 return error("Invalid record"); 5392 I = new VAArgInst(Op, ResTy); 5393 InstructionList.push_back(I); 5394 break; 5395 } 5396 5397 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5398 // A call or an invoke can be optionally prefixed with some variable 5399 // number of operand bundle blocks. These blocks are read into 5400 // OperandBundles and consumed at the next call or invoke instruction. 5401 5402 if (Record.empty() || Record[0] >= BundleTags.size()) 5403 return error("Invalid record"); 5404 5405 std::vector<Value *> Inputs; 5406 5407 unsigned OpNum = 1; 5408 while (OpNum != Record.size()) { 5409 Value *Op; 5410 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5411 return error("Invalid record"); 5412 Inputs.push_back(Op); 5413 } 5414 5415 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5416 continue; 5417 } 5418 5419 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5420 unsigned OpNum = 0; 5421 Value *Op = nullptr; 5422 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5423 return error("Invalid record"); 5424 if (OpNum != Record.size()) 5425 return error("Invalid record"); 5426 5427 I = new FreezeInst(Op); 5428 InstructionList.push_back(I); 5429 break; 5430 } 5431 } 5432 5433 // Add instruction to end of current BB. If there is no current BB, reject 5434 // this file. 5435 if (!CurBB) { 5436 I->deleteValue(); 5437 return error("Invalid instruction with no BB"); 5438 } 5439 if (!OperandBundles.empty()) { 5440 I->deleteValue(); 5441 return error("Operand bundles found with no consumer"); 5442 } 5443 CurBB->getInstList().push_back(I); 5444 5445 // If this was a terminator instruction, move to the next block. 5446 if (I->isTerminator()) { 5447 ++CurBBNo; 5448 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5449 } 5450 5451 // Non-void values get registered in the value table for future use. 5452 if (!I->getType()->isVoidTy()) { 5453 if (!FullTy) { 5454 FullTy = I->getType(); 5455 assert( 5456 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5457 !isa<ArrayType>(FullTy) && 5458 (!isa<VectorType>(FullTy) || 5459 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5460 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5461 "Structured types must be assigned with corresponding non-opaque " 5462 "pointer type"); 5463 } 5464 5465 assert(I->getType() == flattenPointerTypes(FullTy) && 5466 "Incorrect fully structured type provided for Instruction"); 5467 ValueList.assignValue(I, NextValueNo++, FullTy); 5468 } 5469 } 5470 5471 OutOfRecordLoop: 5472 5473 if (!OperandBundles.empty()) 5474 return error("Operand bundles found with no consumer"); 5475 5476 // Check the function list for unresolved values. 5477 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5478 if (!A->getParent()) { 5479 // We found at least one unresolved value. Nuke them all to avoid leaks. 5480 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5481 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5482 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5483 delete A; 5484 } 5485 } 5486 return error("Never resolved value found in function"); 5487 } 5488 } 5489 5490 // Unexpected unresolved metadata about to be dropped. 5491 if (MDLoader->hasFwdRefs()) 5492 return error("Invalid function metadata: outgoing forward refs"); 5493 5494 // Trim the value list down to the size it was before we parsed this function. 5495 ValueList.shrinkTo(ModuleValueListSize); 5496 MDLoader->shrinkTo(ModuleMDLoaderSize); 5497 std::vector<BasicBlock*>().swap(FunctionBBs); 5498 return Error::success(); 5499 } 5500 5501 /// Find the function body in the bitcode stream 5502 Error BitcodeReader::findFunctionInStream( 5503 Function *F, 5504 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5505 while (DeferredFunctionInfoIterator->second == 0) { 5506 // This is the fallback handling for the old format bitcode that 5507 // didn't contain the function index in the VST, or when we have 5508 // an anonymous function which would not have a VST entry. 5509 // Assert that we have one of those two cases. 5510 assert(VSTOffset == 0 || !F->hasName()); 5511 // Parse the next body in the stream and set its position in the 5512 // DeferredFunctionInfo map. 5513 if (Error Err = rememberAndSkipFunctionBodies()) 5514 return Err; 5515 } 5516 return Error::success(); 5517 } 5518 5519 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5520 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5521 return SyncScope::ID(Val); 5522 if (Val >= SSIDs.size()) 5523 return SyncScope::System; // Map unknown synchronization scopes to system. 5524 return SSIDs[Val]; 5525 } 5526 5527 //===----------------------------------------------------------------------===// 5528 // GVMaterializer implementation 5529 //===----------------------------------------------------------------------===// 5530 5531 Error BitcodeReader::materialize(GlobalValue *GV) { 5532 Function *F = dyn_cast<Function>(GV); 5533 // If it's not a function or is already material, ignore the request. 5534 if (!F || !F->isMaterializable()) 5535 return Error::success(); 5536 5537 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5538 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5539 // If its position is recorded as 0, its body is somewhere in the stream 5540 // but we haven't seen it yet. 5541 if (DFII->second == 0) 5542 if (Error Err = findFunctionInStream(F, DFII)) 5543 return Err; 5544 5545 // Materialize metadata before parsing any function bodies. 5546 if (Error Err = materializeMetadata()) 5547 return Err; 5548 5549 // Move the bit stream to the saved position of the deferred function body. 5550 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5551 return JumpFailed; 5552 if (Error Err = parseFunctionBody(F)) 5553 return Err; 5554 F->setIsMaterializable(false); 5555 5556 if (StripDebugInfo) 5557 stripDebugInfo(*F); 5558 5559 // Upgrade any old intrinsic calls in the function. 5560 for (auto &I : UpgradedIntrinsics) { 5561 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5562 UI != UE;) { 5563 User *U = *UI; 5564 ++UI; 5565 if (CallInst *CI = dyn_cast<CallInst>(U)) 5566 UpgradeIntrinsicCall(CI, I.second); 5567 } 5568 } 5569 5570 // Update calls to the remangled intrinsics 5571 for (auto &I : RemangledIntrinsics) 5572 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5573 UI != UE;) 5574 // Don't expect any other users than call sites 5575 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5576 5577 // Finish fn->subprogram upgrade for materialized functions. 5578 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5579 F->setSubprogram(SP); 5580 5581 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5582 if (!MDLoader->isStrippingTBAA()) { 5583 for (auto &I : instructions(F)) { 5584 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5585 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5586 continue; 5587 MDLoader->setStripTBAA(true); 5588 stripTBAA(F->getParent()); 5589 } 5590 } 5591 5592 for (auto &I : instructions(F)) { 5593 // "Upgrade" older incorrect branch weights by dropping them. 5594 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5595 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5596 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5597 StringRef ProfName = MDS->getString(); 5598 // Check consistency of !prof branch_weights metadata. 5599 if (!ProfName.equals("branch_weights")) 5600 continue; 5601 unsigned ExpectedNumOperands = 0; 5602 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5603 ExpectedNumOperands = BI->getNumSuccessors(); 5604 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5605 ExpectedNumOperands = SI->getNumSuccessors(); 5606 else if (isa<CallInst>(&I)) 5607 ExpectedNumOperands = 1; 5608 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5609 ExpectedNumOperands = IBI->getNumDestinations(); 5610 else if (isa<SelectInst>(&I)) 5611 ExpectedNumOperands = 2; 5612 else 5613 continue; // ignore and continue. 5614 5615 // If branch weight doesn't match, just strip branch weight. 5616 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5617 I.setMetadata(LLVMContext::MD_prof, nullptr); 5618 } 5619 } 5620 5621 // Remove align from return attribute on CallInst. 5622 if (auto *CI = dyn_cast<CallInst>(&I)) { 5623 if (CI->getFunctionType()->getReturnType()->isVoidTy()) 5624 CI->removeAttribute(0, Attribute::Alignment); 5625 } 5626 } 5627 5628 // Look for functions that rely on old function attribute behavior. 5629 UpgradeFunctionAttributes(*F); 5630 5631 // Bring in any functions that this function forward-referenced via 5632 // blockaddresses. 5633 return materializeForwardReferencedFunctions(); 5634 } 5635 5636 Error BitcodeReader::materializeModule() { 5637 if (Error Err = materializeMetadata()) 5638 return Err; 5639 5640 // Promise to materialize all forward references. 5641 WillMaterializeAllForwardRefs = true; 5642 5643 // Iterate over the module, deserializing any functions that are still on 5644 // disk. 5645 for (Function &F : *TheModule) { 5646 if (Error Err = materialize(&F)) 5647 return Err; 5648 } 5649 // At this point, if there are any function bodies, parse the rest of 5650 // the bits in the module past the last function block we have recorded 5651 // through either lazy scanning or the VST. 5652 if (LastFunctionBlockBit || NextUnreadBit) 5653 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5654 ? LastFunctionBlockBit 5655 : NextUnreadBit)) 5656 return Err; 5657 5658 // Check that all block address forward references got resolved (as we 5659 // promised above). 5660 if (!BasicBlockFwdRefs.empty()) 5661 return error("Never resolved function from blockaddress"); 5662 5663 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5664 // delete the old functions to clean up. We can't do this unless the entire 5665 // module is materialized because there could always be another function body 5666 // with calls to the old function. 5667 for (auto &I : UpgradedIntrinsics) { 5668 for (auto *U : I.first->users()) { 5669 if (CallInst *CI = dyn_cast<CallInst>(U)) 5670 UpgradeIntrinsicCall(CI, I.second); 5671 } 5672 if (!I.first->use_empty()) 5673 I.first->replaceAllUsesWith(I.second); 5674 I.first->eraseFromParent(); 5675 } 5676 UpgradedIntrinsics.clear(); 5677 // Do the same for remangled intrinsics 5678 for (auto &I : RemangledIntrinsics) { 5679 I.first->replaceAllUsesWith(I.second); 5680 I.first->eraseFromParent(); 5681 } 5682 RemangledIntrinsics.clear(); 5683 5684 UpgradeDebugInfo(*TheModule); 5685 5686 UpgradeModuleFlags(*TheModule); 5687 5688 UpgradeARCRuntime(*TheModule); 5689 5690 return Error::success(); 5691 } 5692 5693 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5694 return IdentifiedStructTypes; 5695 } 5696 5697 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5698 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5699 StringRef ModulePath, unsigned ModuleId) 5700 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5701 ModulePath(ModulePath), ModuleId(ModuleId) {} 5702 5703 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5704 TheIndex.addModule(ModulePath, ModuleId); 5705 } 5706 5707 ModuleSummaryIndex::ModuleInfo * 5708 ModuleSummaryIndexBitcodeReader::getThisModule() { 5709 return TheIndex.getModule(ModulePath); 5710 } 5711 5712 std::pair<ValueInfo, GlobalValue::GUID> 5713 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5714 auto VGI = ValueIdToValueInfoMap[ValueId]; 5715 assert(VGI.first); 5716 return VGI; 5717 } 5718 5719 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5720 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5721 StringRef SourceFileName) { 5722 std::string GlobalId = 5723 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5724 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5725 auto OriginalNameID = ValueGUID; 5726 if (GlobalValue::isLocalLinkage(Linkage)) 5727 OriginalNameID = GlobalValue::getGUID(ValueName); 5728 if (PrintSummaryGUIDs) 5729 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5730 << ValueName << "\n"; 5731 5732 // UseStrtab is false for legacy summary formats and value names are 5733 // created on stack. In that case we save the name in a string saver in 5734 // the index so that the value name can be recorded. 5735 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5736 TheIndex.getOrInsertValueInfo( 5737 ValueGUID, 5738 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5739 OriginalNameID); 5740 } 5741 5742 // Specialized value symbol table parser used when reading module index 5743 // blocks where we don't actually create global values. The parsed information 5744 // is saved in the bitcode reader for use when later parsing summaries. 5745 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5746 uint64_t Offset, 5747 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5748 // With a strtab the VST is not required to parse the summary. 5749 if (UseStrtab) 5750 return Error::success(); 5751 5752 assert(Offset > 0 && "Expected non-zero VST offset"); 5753 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5754 if (!MaybeCurrentBit) 5755 return MaybeCurrentBit.takeError(); 5756 uint64_t CurrentBit = MaybeCurrentBit.get(); 5757 5758 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5759 return Err; 5760 5761 SmallVector<uint64_t, 64> Record; 5762 5763 // Read all the records for this value table. 5764 SmallString<128> ValueName; 5765 5766 while (true) { 5767 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5768 if (!MaybeEntry) 5769 return MaybeEntry.takeError(); 5770 BitstreamEntry Entry = MaybeEntry.get(); 5771 5772 switch (Entry.Kind) { 5773 case BitstreamEntry::SubBlock: // Handled for us already. 5774 case BitstreamEntry::Error: 5775 return error("Malformed block"); 5776 case BitstreamEntry::EndBlock: 5777 // Done parsing VST, jump back to wherever we came from. 5778 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5779 return JumpFailed; 5780 return Error::success(); 5781 case BitstreamEntry::Record: 5782 // The interesting case. 5783 break; 5784 } 5785 5786 // Read a record. 5787 Record.clear(); 5788 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5789 if (!MaybeRecord) 5790 return MaybeRecord.takeError(); 5791 switch (MaybeRecord.get()) { 5792 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5793 break; 5794 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5795 if (convertToString(Record, 1, ValueName)) 5796 return error("Invalid record"); 5797 unsigned ValueID = Record[0]; 5798 assert(!SourceFileName.empty()); 5799 auto VLI = ValueIdToLinkageMap.find(ValueID); 5800 assert(VLI != ValueIdToLinkageMap.end() && 5801 "No linkage found for VST entry?"); 5802 auto Linkage = VLI->second; 5803 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5804 ValueName.clear(); 5805 break; 5806 } 5807 case bitc::VST_CODE_FNENTRY: { 5808 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5809 if (convertToString(Record, 2, ValueName)) 5810 return error("Invalid record"); 5811 unsigned ValueID = Record[0]; 5812 assert(!SourceFileName.empty()); 5813 auto VLI = ValueIdToLinkageMap.find(ValueID); 5814 assert(VLI != ValueIdToLinkageMap.end() && 5815 "No linkage found for VST entry?"); 5816 auto Linkage = VLI->second; 5817 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5818 ValueName.clear(); 5819 break; 5820 } 5821 case bitc::VST_CODE_COMBINED_ENTRY: { 5822 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5823 unsigned ValueID = Record[0]; 5824 GlobalValue::GUID RefGUID = Record[1]; 5825 // The "original name", which is the second value of the pair will be 5826 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5827 ValueIdToValueInfoMap[ValueID] = 5828 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5829 break; 5830 } 5831 } 5832 } 5833 } 5834 5835 // Parse just the blocks needed for building the index out of the module. 5836 // At the end of this routine the module Index is populated with a map 5837 // from global value id to GlobalValueSummary objects. 5838 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5839 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5840 return Err; 5841 5842 SmallVector<uint64_t, 64> Record; 5843 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5844 unsigned ValueId = 0; 5845 5846 // Read the index for this module. 5847 while (true) { 5848 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5849 if (!MaybeEntry) 5850 return MaybeEntry.takeError(); 5851 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5852 5853 switch (Entry.Kind) { 5854 case BitstreamEntry::Error: 5855 return error("Malformed block"); 5856 case BitstreamEntry::EndBlock: 5857 return Error::success(); 5858 5859 case BitstreamEntry::SubBlock: 5860 switch (Entry.ID) { 5861 default: // Skip unknown content. 5862 if (Error Err = Stream.SkipBlock()) 5863 return Err; 5864 break; 5865 case bitc::BLOCKINFO_BLOCK_ID: 5866 // Need to parse these to get abbrev ids (e.g. for VST) 5867 if (readBlockInfo()) 5868 return error("Malformed block"); 5869 break; 5870 case bitc::VALUE_SYMTAB_BLOCK_ID: 5871 // Should have been parsed earlier via VSTOffset, unless there 5872 // is no summary section. 5873 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5874 !SeenGlobalValSummary) && 5875 "Expected early VST parse via VSTOffset record"); 5876 if (Error Err = Stream.SkipBlock()) 5877 return Err; 5878 break; 5879 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5880 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5881 // Add the module if it is a per-module index (has a source file name). 5882 if (!SourceFileName.empty()) 5883 addThisModule(); 5884 assert(!SeenValueSymbolTable && 5885 "Already read VST when parsing summary block?"); 5886 // We might not have a VST if there were no values in the 5887 // summary. An empty summary block generated when we are 5888 // performing ThinLTO compiles so we don't later invoke 5889 // the regular LTO process on them. 5890 if (VSTOffset > 0) { 5891 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5892 return Err; 5893 SeenValueSymbolTable = true; 5894 } 5895 SeenGlobalValSummary = true; 5896 if (Error Err = parseEntireSummary(Entry.ID)) 5897 return Err; 5898 break; 5899 case bitc::MODULE_STRTAB_BLOCK_ID: 5900 if (Error Err = parseModuleStringTable()) 5901 return Err; 5902 break; 5903 } 5904 continue; 5905 5906 case BitstreamEntry::Record: { 5907 Record.clear(); 5908 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5909 if (!MaybeBitCode) 5910 return MaybeBitCode.takeError(); 5911 switch (MaybeBitCode.get()) { 5912 default: 5913 break; // Default behavior, ignore unknown content. 5914 case bitc::MODULE_CODE_VERSION: { 5915 if (Error Err = parseVersionRecord(Record).takeError()) 5916 return Err; 5917 break; 5918 } 5919 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5920 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5921 SmallString<128> ValueName; 5922 if (convertToString(Record, 0, ValueName)) 5923 return error("Invalid record"); 5924 SourceFileName = ValueName.c_str(); 5925 break; 5926 } 5927 /// MODULE_CODE_HASH: [5*i32] 5928 case bitc::MODULE_CODE_HASH: { 5929 if (Record.size() != 5) 5930 return error("Invalid hash length " + Twine(Record.size()).str()); 5931 auto &Hash = getThisModule()->second.second; 5932 int Pos = 0; 5933 for (auto &Val : Record) { 5934 assert(!(Val >> 32) && "Unexpected high bits set"); 5935 Hash[Pos++] = Val; 5936 } 5937 break; 5938 } 5939 /// MODULE_CODE_VSTOFFSET: [offset] 5940 case bitc::MODULE_CODE_VSTOFFSET: 5941 if (Record.empty()) 5942 return error("Invalid record"); 5943 // Note that we subtract 1 here because the offset is relative to one 5944 // word before the start of the identification or module block, which 5945 // was historically always the start of the regular bitcode header. 5946 VSTOffset = Record[0] - 1; 5947 break; 5948 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5949 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5950 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5951 // v2: [strtab offset, strtab size, v1] 5952 case bitc::MODULE_CODE_GLOBALVAR: 5953 case bitc::MODULE_CODE_FUNCTION: 5954 case bitc::MODULE_CODE_ALIAS: { 5955 StringRef Name; 5956 ArrayRef<uint64_t> GVRecord; 5957 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5958 if (GVRecord.size() <= 3) 5959 return error("Invalid record"); 5960 uint64_t RawLinkage = GVRecord[3]; 5961 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5962 if (!UseStrtab) { 5963 ValueIdToLinkageMap[ValueId++] = Linkage; 5964 break; 5965 } 5966 5967 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5968 break; 5969 } 5970 } 5971 } 5972 continue; 5973 } 5974 } 5975 } 5976 5977 std::vector<ValueInfo> 5978 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5979 std::vector<ValueInfo> Ret; 5980 Ret.reserve(Record.size()); 5981 for (uint64_t RefValueId : Record) 5982 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5983 return Ret; 5984 } 5985 5986 std::vector<FunctionSummary::EdgeTy> 5987 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5988 bool IsOldProfileFormat, 5989 bool HasProfile, bool HasRelBF) { 5990 std::vector<FunctionSummary::EdgeTy> Ret; 5991 Ret.reserve(Record.size()); 5992 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5993 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5994 uint64_t RelBF = 0; 5995 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5996 if (IsOldProfileFormat) { 5997 I += 1; // Skip old callsitecount field 5998 if (HasProfile) 5999 I += 1; // Skip old profilecount field 6000 } else if (HasProfile) 6001 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6002 else if (HasRelBF) 6003 RelBF = Record[++I]; 6004 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6005 } 6006 return Ret; 6007 } 6008 6009 static void 6010 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6011 WholeProgramDevirtResolution &Wpd) { 6012 uint64_t ArgNum = Record[Slot++]; 6013 WholeProgramDevirtResolution::ByArg &B = 6014 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6015 Slot += ArgNum; 6016 6017 B.TheKind = 6018 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6019 B.Info = Record[Slot++]; 6020 B.Byte = Record[Slot++]; 6021 B.Bit = Record[Slot++]; 6022 } 6023 6024 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6025 StringRef Strtab, size_t &Slot, 6026 TypeIdSummary &TypeId) { 6027 uint64_t Id = Record[Slot++]; 6028 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6029 6030 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6031 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6032 static_cast<size_t>(Record[Slot + 1])}; 6033 Slot += 2; 6034 6035 uint64_t ResByArgNum = Record[Slot++]; 6036 for (uint64_t I = 0; I != ResByArgNum; ++I) 6037 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6038 } 6039 6040 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6041 StringRef Strtab, 6042 ModuleSummaryIndex &TheIndex) { 6043 size_t Slot = 0; 6044 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6045 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6046 Slot += 2; 6047 6048 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6049 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6050 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6051 TypeId.TTRes.SizeM1 = Record[Slot++]; 6052 TypeId.TTRes.BitMask = Record[Slot++]; 6053 TypeId.TTRes.InlineBits = Record[Slot++]; 6054 6055 while (Slot < Record.size()) 6056 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6057 } 6058 6059 std::vector<FunctionSummary::ParamAccess> 6060 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6061 auto ReadRange = [&]() { 6062 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6063 BitcodeReader::decodeSignRotatedValue(Record.front())); 6064 Record = Record.drop_front(); 6065 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6066 BitcodeReader::decodeSignRotatedValue(Record.front())); 6067 Record = Record.drop_front(); 6068 ConstantRange Range{Lower, Upper}; 6069 assert(!Range.isFullSet()); 6070 assert(!Range.isUpperSignWrapped()); 6071 return Range; 6072 }; 6073 6074 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6075 while (!Record.empty()) { 6076 PendingParamAccesses.emplace_back(); 6077 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6078 ParamAccess.ParamNo = Record.front(); 6079 Record = Record.drop_front(); 6080 ParamAccess.Use = ReadRange(); 6081 ParamAccess.Calls.resize(Record.front()); 6082 Record = Record.drop_front(); 6083 for (auto &Call : ParamAccess.Calls) { 6084 Call.ParamNo = Record.front(); 6085 Record = Record.drop_front(); 6086 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6087 Record = Record.drop_front(); 6088 Call.Offsets = ReadRange(); 6089 } 6090 } 6091 return PendingParamAccesses; 6092 } 6093 6094 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6095 ArrayRef<uint64_t> Record, size_t &Slot, 6096 TypeIdCompatibleVtableInfo &TypeId) { 6097 uint64_t Offset = Record[Slot++]; 6098 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6099 TypeId.push_back({Offset, Callee}); 6100 } 6101 6102 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6103 ArrayRef<uint64_t> Record) { 6104 size_t Slot = 0; 6105 TypeIdCompatibleVtableInfo &TypeId = 6106 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6107 {Strtab.data() + Record[Slot], 6108 static_cast<size_t>(Record[Slot + 1])}); 6109 Slot += 2; 6110 6111 while (Slot < Record.size()) 6112 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6113 } 6114 6115 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6116 unsigned WOCnt) { 6117 // Readonly and writeonly refs are in the end of the refs list. 6118 assert(ROCnt + WOCnt <= Refs.size()); 6119 unsigned FirstWORef = Refs.size() - WOCnt; 6120 unsigned RefNo = FirstWORef - ROCnt; 6121 for (; RefNo < FirstWORef; ++RefNo) 6122 Refs[RefNo].setReadOnly(); 6123 for (; RefNo < Refs.size(); ++RefNo) 6124 Refs[RefNo].setWriteOnly(); 6125 } 6126 6127 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6128 // objects in the index. 6129 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6130 if (Error Err = Stream.EnterSubBlock(ID)) 6131 return Err; 6132 SmallVector<uint64_t, 64> Record; 6133 6134 // Parse version 6135 { 6136 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6137 if (!MaybeEntry) 6138 return MaybeEntry.takeError(); 6139 BitstreamEntry Entry = MaybeEntry.get(); 6140 6141 if (Entry.Kind != BitstreamEntry::Record) 6142 return error("Invalid Summary Block: record for version expected"); 6143 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6144 if (!MaybeRecord) 6145 return MaybeRecord.takeError(); 6146 if (MaybeRecord.get() != bitc::FS_VERSION) 6147 return error("Invalid Summary Block: version expected"); 6148 } 6149 const uint64_t Version = Record[0]; 6150 const bool IsOldProfileFormat = Version == 1; 6151 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6152 return error("Invalid summary version " + Twine(Version) + 6153 ". Version should be in the range [1-" + 6154 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6155 "]."); 6156 Record.clear(); 6157 6158 // Keep around the last seen summary to be used when we see an optional 6159 // "OriginalName" attachement. 6160 GlobalValueSummary *LastSeenSummary = nullptr; 6161 GlobalValue::GUID LastSeenGUID = 0; 6162 6163 // We can expect to see any number of type ID information records before 6164 // each function summary records; these variables store the information 6165 // collected so far so that it can be used to create the summary object. 6166 std::vector<GlobalValue::GUID> PendingTypeTests; 6167 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6168 PendingTypeCheckedLoadVCalls; 6169 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6170 PendingTypeCheckedLoadConstVCalls; 6171 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6172 6173 while (true) { 6174 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6175 if (!MaybeEntry) 6176 return MaybeEntry.takeError(); 6177 BitstreamEntry Entry = MaybeEntry.get(); 6178 6179 switch (Entry.Kind) { 6180 case BitstreamEntry::SubBlock: // Handled for us already. 6181 case BitstreamEntry::Error: 6182 return error("Malformed block"); 6183 case BitstreamEntry::EndBlock: 6184 return Error::success(); 6185 case BitstreamEntry::Record: 6186 // The interesting case. 6187 break; 6188 } 6189 6190 // Read a record. The record format depends on whether this 6191 // is a per-module index or a combined index file. In the per-module 6192 // case the records contain the associated value's ID for correlation 6193 // with VST entries. In the combined index the correlation is done 6194 // via the bitcode offset of the summary records (which were saved 6195 // in the combined index VST entries). The records also contain 6196 // information used for ThinLTO renaming and importing. 6197 Record.clear(); 6198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6199 if (!MaybeBitCode) 6200 return MaybeBitCode.takeError(); 6201 switch (unsigned BitCode = MaybeBitCode.get()) { 6202 default: // Default behavior: ignore. 6203 break; 6204 case bitc::FS_FLAGS: { // [flags] 6205 TheIndex.setFlags(Record[0]); 6206 break; 6207 } 6208 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6209 uint64_t ValueID = Record[0]; 6210 GlobalValue::GUID RefGUID = Record[1]; 6211 ValueIdToValueInfoMap[ValueID] = 6212 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6213 break; 6214 } 6215 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6216 // numrefs x valueid, n x (valueid)] 6217 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6218 // numrefs x valueid, 6219 // n x (valueid, hotness)] 6220 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6221 // numrefs x valueid, 6222 // n x (valueid, relblockfreq)] 6223 case bitc::FS_PERMODULE: 6224 case bitc::FS_PERMODULE_RELBF: 6225 case bitc::FS_PERMODULE_PROFILE: { 6226 unsigned ValueID = Record[0]; 6227 uint64_t RawFlags = Record[1]; 6228 unsigned InstCount = Record[2]; 6229 uint64_t RawFunFlags = 0; 6230 unsigned NumRefs = Record[3]; 6231 unsigned NumRORefs = 0, NumWORefs = 0; 6232 int RefListStartIndex = 4; 6233 if (Version >= 4) { 6234 RawFunFlags = Record[3]; 6235 NumRefs = Record[4]; 6236 RefListStartIndex = 5; 6237 if (Version >= 5) { 6238 NumRORefs = Record[5]; 6239 RefListStartIndex = 6; 6240 if (Version >= 7) { 6241 NumWORefs = Record[6]; 6242 RefListStartIndex = 7; 6243 } 6244 } 6245 } 6246 6247 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6248 // The module path string ref set in the summary must be owned by the 6249 // index's module string table. Since we don't have a module path 6250 // string table section in the per-module index, we create a single 6251 // module path string table entry with an empty (0) ID to take 6252 // ownership. 6253 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6254 assert(Record.size() >= RefListStartIndex + NumRefs && 6255 "Record size inconsistent with number of references"); 6256 std::vector<ValueInfo> Refs = makeRefList( 6257 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6258 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6259 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6260 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6261 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6262 IsOldProfileFormat, HasProfile, HasRelBF); 6263 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6264 auto FS = std::make_unique<FunctionSummary>( 6265 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6266 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6267 std::move(PendingTypeTestAssumeVCalls), 6268 std::move(PendingTypeCheckedLoadVCalls), 6269 std::move(PendingTypeTestAssumeConstVCalls), 6270 std::move(PendingTypeCheckedLoadConstVCalls), 6271 std::move(PendingParamAccesses)); 6272 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6273 FS->setModulePath(getThisModule()->first()); 6274 FS->setOriginalName(VIAndOriginalGUID.second); 6275 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6276 break; 6277 } 6278 // FS_ALIAS: [valueid, flags, valueid] 6279 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6280 // they expect all aliasee summaries to be available. 6281 case bitc::FS_ALIAS: { 6282 unsigned ValueID = Record[0]; 6283 uint64_t RawFlags = Record[1]; 6284 unsigned AliaseeID = Record[2]; 6285 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6286 auto AS = std::make_unique<AliasSummary>(Flags); 6287 // The module path string ref set in the summary must be owned by the 6288 // index's module string table. Since we don't have a module path 6289 // string table section in the per-module index, we create a single 6290 // module path string table entry with an empty (0) ID to take 6291 // ownership. 6292 AS->setModulePath(getThisModule()->first()); 6293 6294 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6295 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6296 if (!AliaseeInModule) 6297 return error("Alias expects aliasee summary to be parsed"); 6298 AS->setAliasee(AliaseeVI, AliaseeInModule); 6299 6300 auto GUID = getValueInfoFromValueId(ValueID); 6301 AS->setOriginalName(GUID.second); 6302 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6303 break; 6304 } 6305 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6306 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6307 unsigned ValueID = Record[0]; 6308 uint64_t RawFlags = Record[1]; 6309 unsigned RefArrayStart = 2; 6310 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6311 /* WriteOnly */ false, 6312 /* Constant */ false, 6313 GlobalObject::VCallVisibilityPublic); 6314 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6315 if (Version >= 5) { 6316 GVF = getDecodedGVarFlags(Record[2]); 6317 RefArrayStart = 3; 6318 } 6319 std::vector<ValueInfo> Refs = 6320 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6321 auto FS = 6322 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6323 FS->setModulePath(getThisModule()->first()); 6324 auto GUID = getValueInfoFromValueId(ValueID); 6325 FS->setOriginalName(GUID.second); 6326 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6327 break; 6328 } 6329 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6330 // numrefs, numrefs x valueid, 6331 // n x (valueid, offset)] 6332 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6333 unsigned ValueID = Record[0]; 6334 uint64_t RawFlags = Record[1]; 6335 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6336 unsigned NumRefs = Record[3]; 6337 unsigned RefListStartIndex = 4; 6338 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6339 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6340 std::vector<ValueInfo> Refs = makeRefList( 6341 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6342 VTableFuncList VTableFuncs; 6343 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6344 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6345 uint64_t Offset = Record[++I]; 6346 VTableFuncs.push_back({Callee, Offset}); 6347 } 6348 auto VS = 6349 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6350 VS->setModulePath(getThisModule()->first()); 6351 VS->setVTableFuncs(VTableFuncs); 6352 auto GUID = getValueInfoFromValueId(ValueID); 6353 VS->setOriginalName(GUID.second); 6354 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6355 break; 6356 } 6357 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6358 // numrefs x valueid, n x (valueid)] 6359 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6360 // numrefs x valueid, n x (valueid, hotness)] 6361 case bitc::FS_COMBINED: 6362 case bitc::FS_COMBINED_PROFILE: { 6363 unsigned ValueID = Record[0]; 6364 uint64_t ModuleId = Record[1]; 6365 uint64_t RawFlags = Record[2]; 6366 unsigned InstCount = Record[3]; 6367 uint64_t RawFunFlags = 0; 6368 uint64_t EntryCount = 0; 6369 unsigned NumRefs = Record[4]; 6370 unsigned NumRORefs = 0, NumWORefs = 0; 6371 int RefListStartIndex = 5; 6372 6373 if (Version >= 4) { 6374 RawFunFlags = Record[4]; 6375 RefListStartIndex = 6; 6376 size_t NumRefsIndex = 5; 6377 if (Version >= 5) { 6378 unsigned NumRORefsOffset = 1; 6379 RefListStartIndex = 7; 6380 if (Version >= 6) { 6381 NumRefsIndex = 6; 6382 EntryCount = Record[5]; 6383 RefListStartIndex = 8; 6384 if (Version >= 7) { 6385 RefListStartIndex = 9; 6386 NumWORefs = Record[8]; 6387 NumRORefsOffset = 2; 6388 } 6389 } 6390 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6391 } 6392 NumRefs = Record[NumRefsIndex]; 6393 } 6394 6395 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6396 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6397 assert(Record.size() >= RefListStartIndex + NumRefs && 6398 "Record size inconsistent with number of references"); 6399 std::vector<ValueInfo> Refs = makeRefList( 6400 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6401 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6402 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6403 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6404 IsOldProfileFormat, HasProfile, false); 6405 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6406 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6407 auto FS = std::make_unique<FunctionSummary>( 6408 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6409 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6410 std::move(PendingTypeTestAssumeVCalls), 6411 std::move(PendingTypeCheckedLoadVCalls), 6412 std::move(PendingTypeTestAssumeConstVCalls), 6413 std::move(PendingTypeCheckedLoadConstVCalls), 6414 std::move(PendingParamAccesses)); 6415 LastSeenSummary = FS.get(); 6416 LastSeenGUID = VI.getGUID(); 6417 FS->setModulePath(ModuleIdMap[ModuleId]); 6418 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6419 break; 6420 } 6421 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6422 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6423 // they expect all aliasee summaries to be available. 6424 case bitc::FS_COMBINED_ALIAS: { 6425 unsigned ValueID = Record[0]; 6426 uint64_t ModuleId = Record[1]; 6427 uint64_t RawFlags = Record[2]; 6428 unsigned AliaseeValueId = Record[3]; 6429 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6430 auto AS = std::make_unique<AliasSummary>(Flags); 6431 LastSeenSummary = AS.get(); 6432 AS->setModulePath(ModuleIdMap[ModuleId]); 6433 6434 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6435 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6436 AS->setAliasee(AliaseeVI, AliaseeInModule); 6437 6438 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6439 LastSeenGUID = VI.getGUID(); 6440 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6441 break; 6442 } 6443 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6444 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6445 unsigned ValueID = Record[0]; 6446 uint64_t ModuleId = Record[1]; 6447 uint64_t RawFlags = Record[2]; 6448 unsigned RefArrayStart = 3; 6449 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6450 /* WriteOnly */ false, 6451 /* Constant */ false, 6452 GlobalObject::VCallVisibilityPublic); 6453 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6454 if (Version >= 5) { 6455 GVF = getDecodedGVarFlags(Record[3]); 6456 RefArrayStart = 4; 6457 } 6458 std::vector<ValueInfo> Refs = 6459 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6460 auto FS = 6461 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6462 LastSeenSummary = FS.get(); 6463 FS->setModulePath(ModuleIdMap[ModuleId]); 6464 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6465 LastSeenGUID = VI.getGUID(); 6466 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6467 break; 6468 } 6469 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6470 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6471 uint64_t OriginalName = Record[0]; 6472 if (!LastSeenSummary) 6473 return error("Name attachment that does not follow a combined record"); 6474 LastSeenSummary->setOriginalName(OriginalName); 6475 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6476 // Reset the LastSeenSummary 6477 LastSeenSummary = nullptr; 6478 LastSeenGUID = 0; 6479 break; 6480 } 6481 case bitc::FS_TYPE_TESTS: 6482 assert(PendingTypeTests.empty()); 6483 llvm::append_range(PendingTypeTests, Record); 6484 break; 6485 6486 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6487 assert(PendingTypeTestAssumeVCalls.empty()); 6488 for (unsigned I = 0; I != Record.size(); I += 2) 6489 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6490 break; 6491 6492 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6493 assert(PendingTypeCheckedLoadVCalls.empty()); 6494 for (unsigned I = 0; I != Record.size(); I += 2) 6495 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6496 break; 6497 6498 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6499 PendingTypeTestAssumeConstVCalls.push_back( 6500 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6501 break; 6502 6503 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6504 PendingTypeCheckedLoadConstVCalls.push_back( 6505 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6506 break; 6507 6508 case bitc::FS_CFI_FUNCTION_DEFS: { 6509 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6510 for (unsigned I = 0; I != Record.size(); I += 2) 6511 CfiFunctionDefs.insert( 6512 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6513 break; 6514 } 6515 6516 case bitc::FS_CFI_FUNCTION_DECLS: { 6517 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6518 for (unsigned I = 0; I != Record.size(); I += 2) 6519 CfiFunctionDecls.insert( 6520 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6521 break; 6522 } 6523 6524 case bitc::FS_TYPE_ID: 6525 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6526 break; 6527 6528 case bitc::FS_TYPE_ID_METADATA: 6529 parseTypeIdCompatibleVtableSummaryRecord(Record); 6530 break; 6531 6532 case bitc::FS_BLOCK_COUNT: 6533 TheIndex.addBlockCount(Record[0]); 6534 break; 6535 6536 case bitc::FS_PARAM_ACCESS: { 6537 PendingParamAccesses = parseParamAccesses(Record); 6538 break; 6539 } 6540 } 6541 } 6542 llvm_unreachable("Exit infinite loop"); 6543 } 6544 6545 // Parse the module string table block into the Index. 6546 // This populates the ModulePathStringTable map in the index. 6547 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6548 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6549 return Err; 6550 6551 SmallVector<uint64_t, 64> Record; 6552 6553 SmallString<128> ModulePath; 6554 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6555 6556 while (true) { 6557 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6558 if (!MaybeEntry) 6559 return MaybeEntry.takeError(); 6560 BitstreamEntry Entry = MaybeEntry.get(); 6561 6562 switch (Entry.Kind) { 6563 case BitstreamEntry::SubBlock: // Handled for us already. 6564 case BitstreamEntry::Error: 6565 return error("Malformed block"); 6566 case BitstreamEntry::EndBlock: 6567 return Error::success(); 6568 case BitstreamEntry::Record: 6569 // The interesting case. 6570 break; 6571 } 6572 6573 Record.clear(); 6574 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6575 if (!MaybeRecord) 6576 return MaybeRecord.takeError(); 6577 switch (MaybeRecord.get()) { 6578 default: // Default behavior: ignore. 6579 break; 6580 case bitc::MST_CODE_ENTRY: { 6581 // MST_ENTRY: [modid, namechar x N] 6582 uint64_t ModuleId = Record[0]; 6583 6584 if (convertToString(Record, 1, ModulePath)) 6585 return error("Invalid record"); 6586 6587 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6588 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6589 6590 ModulePath.clear(); 6591 break; 6592 } 6593 /// MST_CODE_HASH: [5*i32] 6594 case bitc::MST_CODE_HASH: { 6595 if (Record.size() != 5) 6596 return error("Invalid hash length " + Twine(Record.size()).str()); 6597 if (!LastSeenModule) 6598 return error("Invalid hash that does not follow a module path"); 6599 int Pos = 0; 6600 for (auto &Val : Record) { 6601 assert(!(Val >> 32) && "Unexpected high bits set"); 6602 LastSeenModule->second.second[Pos++] = Val; 6603 } 6604 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6605 LastSeenModule = nullptr; 6606 break; 6607 } 6608 } 6609 } 6610 llvm_unreachable("Exit infinite loop"); 6611 } 6612 6613 namespace { 6614 6615 // FIXME: This class is only here to support the transition to llvm::Error. It 6616 // will be removed once this transition is complete. Clients should prefer to 6617 // deal with the Error value directly, rather than converting to error_code. 6618 class BitcodeErrorCategoryType : public std::error_category { 6619 const char *name() const noexcept override { 6620 return "llvm.bitcode"; 6621 } 6622 6623 std::string message(int IE) const override { 6624 BitcodeError E = static_cast<BitcodeError>(IE); 6625 switch (E) { 6626 case BitcodeError::CorruptedBitcode: 6627 return "Corrupted bitcode"; 6628 } 6629 llvm_unreachable("Unknown error type!"); 6630 } 6631 }; 6632 6633 } // end anonymous namespace 6634 6635 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6636 6637 const std::error_category &llvm::BitcodeErrorCategory() { 6638 return *ErrorCategory; 6639 } 6640 6641 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6642 unsigned Block, unsigned RecordID) { 6643 if (Error Err = Stream.EnterSubBlock(Block)) 6644 return std::move(Err); 6645 6646 StringRef Strtab; 6647 while (true) { 6648 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6649 if (!MaybeEntry) 6650 return MaybeEntry.takeError(); 6651 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6652 6653 switch (Entry.Kind) { 6654 case BitstreamEntry::EndBlock: 6655 return Strtab; 6656 6657 case BitstreamEntry::Error: 6658 return error("Malformed block"); 6659 6660 case BitstreamEntry::SubBlock: 6661 if (Error Err = Stream.SkipBlock()) 6662 return std::move(Err); 6663 break; 6664 6665 case BitstreamEntry::Record: 6666 StringRef Blob; 6667 SmallVector<uint64_t, 1> Record; 6668 Expected<unsigned> MaybeRecord = 6669 Stream.readRecord(Entry.ID, Record, &Blob); 6670 if (!MaybeRecord) 6671 return MaybeRecord.takeError(); 6672 if (MaybeRecord.get() == RecordID) 6673 Strtab = Blob; 6674 break; 6675 } 6676 } 6677 } 6678 6679 //===----------------------------------------------------------------------===// 6680 // External interface 6681 //===----------------------------------------------------------------------===// 6682 6683 Expected<std::vector<BitcodeModule>> 6684 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6685 auto FOrErr = getBitcodeFileContents(Buffer); 6686 if (!FOrErr) 6687 return FOrErr.takeError(); 6688 return std::move(FOrErr->Mods); 6689 } 6690 6691 Expected<BitcodeFileContents> 6692 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6693 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6694 if (!StreamOrErr) 6695 return StreamOrErr.takeError(); 6696 BitstreamCursor &Stream = *StreamOrErr; 6697 6698 BitcodeFileContents F; 6699 while (true) { 6700 uint64_t BCBegin = Stream.getCurrentByteNo(); 6701 6702 // We may be consuming bitcode from a client that leaves garbage at the end 6703 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6704 // the end that there cannot possibly be another module, stop looking. 6705 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6706 return F; 6707 6708 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6709 if (!MaybeEntry) 6710 return MaybeEntry.takeError(); 6711 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6712 6713 switch (Entry.Kind) { 6714 case BitstreamEntry::EndBlock: 6715 case BitstreamEntry::Error: 6716 return error("Malformed block"); 6717 6718 case BitstreamEntry::SubBlock: { 6719 uint64_t IdentificationBit = -1ull; 6720 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6721 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6722 if (Error Err = Stream.SkipBlock()) 6723 return std::move(Err); 6724 6725 { 6726 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6727 if (!MaybeEntry) 6728 return MaybeEntry.takeError(); 6729 Entry = MaybeEntry.get(); 6730 } 6731 6732 if (Entry.Kind != BitstreamEntry::SubBlock || 6733 Entry.ID != bitc::MODULE_BLOCK_ID) 6734 return error("Malformed block"); 6735 } 6736 6737 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6738 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6739 if (Error Err = Stream.SkipBlock()) 6740 return std::move(Err); 6741 6742 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6743 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6744 Buffer.getBufferIdentifier(), IdentificationBit, 6745 ModuleBit}); 6746 continue; 6747 } 6748 6749 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6750 Expected<StringRef> Strtab = 6751 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6752 if (!Strtab) 6753 return Strtab.takeError(); 6754 // This string table is used by every preceding bitcode module that does 6755 // not have its own string table. A bitcode file may have multiple 6756 // string tables if it was created by binary concatenation, for example 6757 // with "llvm-cat -b". 6758 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6759 if (!I->Strtab.empty()) 6760 break; 6761 I->Strtab = *Strtab; 6762 } 6763 // Similarly, the string table is used by every preceding symbol table; 6764 // normally there will be just one unless the bitcode file was created 6765 // by binary concatenation. 6766 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6767 F.StrtabForSymtab = *Strtab; 6768 continue; 6769 } 6770 6771 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6772 Expected<StringRef> SymtabOrErr = 6773 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6774 if (!SymtabOrErr) 6775 return SymtabOrErr.takeError(); 6776 6777 // We can expect the bitcode file to have multiple symbol tables if it 6778 // was created by binary concatenation. In that case we silently 6779 // ignore any subsequent symbol tables, which is fine because this is a 6780 // low level function. The client is expected to notice that the number 6781 // of modules in the symbol table does not match the number of modules 6782 // in the input file and regenerate the symbol table. 6783 if (F.Symtab.empty()) 6784 F.Symtab = *SymtabOrErr; 6785 continue; 6786 } 6787 6788 if (Error Err = Stream.SkipBlock()) 6789 return std::move(Err); 6790 continue; 6791 } 6792 case BitstreamEntry::Record: 6793 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6794 continue; 6795 else 6796 return StreamFailed.takeError(); 6797 } 6798 } 6799 } 6800 6801 /// Get a lazy one-at-time loading module from bitcode. 6802 /// 6803 /// This isn't always used in a lazy context. In particular, it's also used by 6804 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6805 /// in forward-referenced functions from block address references. 6806 /// 6807 /// \param[in] MaterializeAll Set to \c true if we should materialize 6808 /// everything. 6809 Expected<std::unique_ptr<Module>> 6810 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6811 bool ShouldLazyLoadMetadata, bool IsImporting, 6812 DataLayoutCallbackTy DataLayoutCallback) { 6813 BitstreamCursor Stream(Buffer); 6814 6815 std::string ProducerIdentification; 6816 if (IdentificationBit != -1ull) { 6817 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6818 return std::move(JumpFailed); 6819 Expected<std::string> ProducerIdentificationOrErr = 6820 readIdentificationBlock(Stream); 6821 if (!ProducerIdentificationOrErr) 6822 return ProducerIdentificationOrErr.takeError(); 6823 6824 ProducerIdentification = *ProducerIdentificationOrErr; 6825 } 6826 6827 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6828 return std::move(JumpFailed); 6829 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6830 Context); 6831 6832 std::unique_ptr<Module> M = 6833 std::make_unique<Module>(ModuleIdentifier, Context); 6834 M->setMaterializer(R); 6835 6836 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6837 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6838 IsImporting, DataLayoutCallback)) 6839 return std::move(Err); 6840 6841 if (MaterializeAll) { 6842 // Read in the entire module, and destroy the BitcodeReader. 6843 if (Error Err = M->materializeAll()) 6844 return std::move(Err); 6845 } else { 6846 // Resolve forward references from blockaddresses. 6847 if (Error Err = R->materializeForwardReferencedFunctions()) 6848 return std::move(Err); 6849 } 6850 return std::move(M); 6851 } 6852 6853 Expected<std::unique_ptr<Module>> 6854 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6855 bool IsImporting) { 6856 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6857 [](StringRef) { return None; }); 6858 } 6859 6860 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6861 // We don't use ModuleIdentifier here because the client may need to control the 6862 // module path used in the combined summary (e.g. when reading summaries for 6863 // regular LTO modules). 6864 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6865 StringRef ModulePath, uint64_t ModuleId) { 6866 BitstreamCursor Stream(Buffer); 6867 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6868 return JumpFailed; 6869 6870 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6871 ModulePath, ModuleId); 6872 return R.parseModule(); 6873 } 6874 6875 // Parse the specified bitcode buffer, returning the function info index. 6876 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6877 BitstreamCursor Stream(Buffer); 6878 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6879 return std::move(JumpFailed); 6880 6881 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6882 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6883 ModuleIdentifier, 0); 6884 6885 if (Error Err = R.parseModule()) 6886 return std::move(Err); 6887 6888 return std::move(Index); 6889 } 6890 6891 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6892 unsigned ID) { 6893 if (Error Err = Stream.EnterSubBlock(ID)) 6894 return std::move(Err); 6895 SmallVector<uint64_t, 64> Record; 6896 6897 while (true) { 6898 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6899 if (!MaybeEntry) 6900 return MaybeEntry.takeError(); 6901 BitstreamEntry Entry = MaybeEntry.get(); 6902 6903 switch (Entry.Kind) { 6904 case BitstreamEntry::SubBlock: // Handled for us already. 6905 case BitstreamEntry::Error: 6906 return error("Malformed block"); 6907 case BitstreamEntry::EndBlock: 6908 // If no flags record found, conservatively return true to mimic 6909 // behavior before this flag was added. 6910 return true; 6911 case BitstreamEntry::Record: 6912 // The interesting case. 6913 break; 6914 } 6915 6916 // Look for the FS_FLAGS record. 6917 Record.clear(); 6918 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6919 if (!MaybeBitCode) 6920 return MaybeBitCode.takeError(); 6921 switch (MaybeBitCode.get()) { 6922 default: // Default behavior: ignore. 6923 break; 6924 case bitc::FS_FLAGS: { // [flags] 6925 uint64_t Flags = Record[0]; 6926 // Scan flags. 6927 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6928 6929 return Flags & 0x8; 6930 } 6931 } 6932 } 6933 llvm_unreachable("Exit infinite loop"); 6934 } 6935 6936 // Check if the given bitcode buffer contains a global value summary block. 6937 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6938 BitstreamCursor Stream(Buffer); 6939 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6940 return std::move(JumpFailed); 6941 6942 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6943 return std::move(Err); 6944 6945 while (true) { 6946 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6947 if (!MaybeEntry) 6948 return MaybeEntry.takeError(); 6949 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6950 6951 switch (Entry.Kind) { 6952 case BitstreamEntry::Error: 6953 return error("Malformed block"); 6954 case BitstreamEntry::EndBlock: 6955 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6956 /*EnableSplitLTOUnit=*/false}; 6957 6958 case BitstreamEntry::SubBlock: 6959 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6960 Expected<bool> EnableSplitLTOUnit = 6961 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6962 if (!EnableSplitLTOUnit) 6963 return EnableSplitLTOUnit.takeError(); 6964 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6965 *EnableSplitLTOUnit}; 6966 } 6967 6968 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6969 Expected<bool> EnableSplitLTOUnit = 6970 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6971 if (!EnableSplitLTOUnit) 6972 return EnableSplitLTOUnit.takeError(); 6973 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6974 *EnableSplitLTOUnit}; 6975 } 6976 6977 // Ignore other sub-blocks. 6978 if (Error Err = Stream.SkipBlock()) 6979 return std::move(Err); 6980 continue; 6981 6982 case BitstreamEntry::Record: 6983 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6984 continue; 6985 else 6986 return StreamFailed.takeError(); 6987 } 6988 } 6989 } 6990 6991 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6992 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6993 if (!MsOrErr) 6994 return MsOrErr.takeError(); 6995 6996 if (MsOrErr->size() != 1) 6997 return error("Expected a single module"); 6998 6999 return (*MsOrErr)[0]; 7000 } 7001 7002 Expected<std::unique_ptr<Module>> 7003 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7004 bool ShouldLazyLoadMetadata, bool IsImporting) { 7005 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7006 if (!BM) 7007 return BM.takeError(); 7008 7009 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7010 } 7011 7012 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7013 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7014 bool ShouldLazyLoadMetadata, bool IsImporting) { 7015 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7016 IsImporting); 7017 if (MOrErr) 7018 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7019 return MOrErr; 7020 } 7021 7022 Expected<std::unique_ptr<Module>> 7023 BitcodeModule::parseModule(LLVMContext &Context, 7024 DataLayoutCallbackTy DataLayoutCallback) { 7025 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7026 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7027 // written. We must defer until the Module has been fully materialized. 7028 } 7029 7030 Expected<std::unique_ptr<Module>> 7031 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7032 DataLayoutCallbackTy DataLayoutCallback) { 7033 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7034 if (!BM) 7035 return BM.takeError(); 7036 7037 return BM->parseModule(Context, DataLayoutCallback); 7038 } 7039 7040 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7041 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7042 if (!StreamOrErr) 7043 return StreamOrErr.takeError(); 7044 7045 return readTriple(*StreamOrErr); 7046 } 7047 7048 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7049 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7050 if (!StreamOrErr) 7051 return StreamOrErr.takeError(); 7052 7053 return hasObjCCategory(*StreamOrErr); 7054 } 7055 7056 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7057 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7058 if (!StreamOrErr) 7059 return StreamOrErr.takeError(); 7060 7061 return readIdentificationCode(*StreamOrErr); 7062 } 7063 7064 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7065 ModuleSummaryIndex &CombinedIndex, 7066 uint64_t ModuleId) { 7067 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7068 if (!BM) 7069 return BM.takeError(); 7070 7071 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7072 } 7073 7074 Expected<std::unique_ptr<ModuleSummaryIndex>> 7075 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7076 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7077 if (!BM) 7078 return BM.takeError(); 7079 7080 return BM->getSummary(); 7081 } 7082 7083 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7084 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7085 if (!BM) 7086 return BM.takeError(); 7087 7088 return BM->getLTOInfo(); 7089 } 7090 7091 Expected<std::unique_ptr<ModuleSummaryIndex>> 7092 llvm::getModuleSummaryIndexForFile(StringRef Path, 7093 bool IgnoreEmptyThinLTOIndexFile) { 7094 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7095 MemoryBuffer::getFileOrSTDIN(Path); 7096 if (!FileOrErr) 7097 return errorCodeToError(FileOrErr.getError()); 7098 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7099 return nullptr; 7100 return getModuleSummaryIndex(**FileOrErr); 7101 } 7102