1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void AssignValue(Value *V, unsigned Idx); 90 91 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 92 /// resolves any forward references. 93 void ResolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void AssignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 DataStreamer *LazyStreamer; 140 uint64_t NextUnreadBit; 141 bool SeenValueSymbolTable; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// MAttributes - The set of attributes by index. Index zero in the 157 /// file is for null, and is thus not represented here. As such all indices 158 /// are off by one. 159 std::vector<AttributeSet> MAttributes; 160 161 /// \brief The set of attribute groups. 162 std::map<unsigned, AttributeSet> MAttributeGroups; 163 164 /// FunctionBBs - While parsing a function body, this is a list of the basic 165 /// blocks for the function. 166 std::vector<BasicBlock*> FunctionBBs; 167 168 // When reading the module header, this list is populated with functions that 169 // have bodies later in the file. 170 std::vector<Function*> FunctionsWithBodies; 171 172 // When intrinsic functions are encountered which require upgrading they are 173 // stored here with their replacement function. 174 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 175 UpgradedIntrinsicMap UpgradedIntrinsics; 176 177 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 178 DenseMap<unsigned, unsigned> MDKindMap; 179 180 // Several operations happen after the module header has been read, but 181 // before function bodies are processed. This keeps track of whether 182 // we've done this yet. 183 bool SeenFirstFunctionBody; 184 185 /// DeferredFunctionInfo - When function bodies are initially scanned, this 186 /// map contains info about where to find deferred function body in the 187 /// stream. 188 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 189 190 /// When Metadata block is initially scanned when parsing the module, we may 191 /// choose to defer parsing of the metadata. This vector contains info about 192 /// which Metadata blocks are deferred. 193 std::vector<uint64_t> DeferredMetadataInfo; 194 195 /// These are basic blocks forward-referenced by block addresses. They are 196 /// inserted lazily into functions when they're loaded. The basic block ID is 197 /// its index into the vector. 198 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 199 std::deque<Function *> BasicBlockFwdRefQueue; 200 201 /// UseRelativeIDs - Indicates that we are using a new encoding for 202 /// instruction operands where most operands in the current 203 /// FUNCTION_BLOCK are encoded relative to the instruction number, 204 /// for a more compact encoding. Some instruction operands are not 205 /// relative to the instruction ID: basic block numbers, and types. 206 /// Once the old style function blocks have been phased out, we would 207 /// not need this flag. 208 bool UseRelativeIDs; 209 210 /// True if all functions will be materialized, negating the need to process 211 /// (e.g.) blockaddress forward references. 212 bool WillMaterializeAllForwardRefs; 213 214 /// Functions that have block addresses taken. This is usually empty. 215 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 216 217 /// True if any Metadata block has been materialized. 218 bool IsMetadataMaterialized; 219 220 bool StripDebugInfo = false; 221 222 public: 223 std::error_code Error(BitcodeError E, const Twine &Message); 224 std::error_code Error(BitcodeError E); 225 std::error_code Error(const Twine &Message); 226 227 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 228 DiagnosticHandlerFunction DiagnosticHandler); 229 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 ~BitcodeReader() override { FreeState(); } 232 233 std::error_code materializeForwardReferencedFunctions(); 234 235 void FreeState(); 236 237 void releaseBuffer(); 238 239 bool isDematerializable(const GlobalValue *GV) const override; 240 std::error_code materialize(GlobalValue *GV) override; 241 std::error_code materializeModule(Module *M) override; 242 std::vector<StructType *> getIdentifiedStructTypes() const override; 243 void dematerialize(GlobalValue *GV) override; 244 245 /// @brief Main interface to parsing a bitcode buffer. 246 /// @returns true if an error occurred. 247 std::error_code ParseBitcodeInto(Module *M, 248 bool ShouldLazyLoadMetadata = false); 249 250 /// @brief Cheap mechanism to just extract module triple 251 /// @returns true if an error occurred. 252 ErrorOr<std::string> parseTriple(); 253 254 static uint64_t decodeSignRotatedValue(uint64_t V); 255 256 /// Materialize any deferred Metadata block. 257 std::error_code materializeMetadata() override; 258 259 void setStripDebugInfo() override; 260 261 private: 262 std::vector<StructType *> IdentifiedStructTypes; 263 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 264 StructType *createIdentifiedStructType(LLVMContext &Context); 265 266 Type *getTypeByID(unsigned ID); 267 Value *getFnValueByID(unsigned ID, Type *Ty) { 268 if (Ty && Ty->isMetadataTy()) 269 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 270 return ValueList.getValueFwdRef(ID, Ty); 271 } 272 Metadata *getFnMetadataByID(unsigned ID) { 273 return MDValueList.getValueFwdRef(ID); 274 } 275 BasicBlock *getBasicBlock(unsigned ID) const { 276 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 277 return FunctionBBs[ID]; 278 } 279 AttributeSet getAttributes(unsigned i) const { 280 if (i-1 < MAttributes.size()) 281 return MAttributes[i-1]; 282 return AttributeSet(); 283 } 284 285 /// getValueTypePair - Read a value/type pair out of the specified record from 286 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 287 /// Return true on failure. 288 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 289 unsigned InstNum, Value *&ResVal) { 290 if (Slot == Record.size()) return true; 291 unsigned ValNo = (unsigned)Record[Slot++]; 292 // Adjust the ValNo, if it was encoded relative to the InstNum. 293 if (UseRelativeIDs) 294 ValNo = InstNum - ValNo; 295 if (ValNo < InstNum) { 296 // If this is not a forward reference, just return the value we already 297 // have. 298 ResVal = getFnValueByID(ValNo, nullptr); 299 return ResVal == nullptr; 300 } 301 if (Slot == Record.size()) 302 return true; 303 304 unsigned TypeNo = (unsigned)Record[Slot++]; 305 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 306 return ResVal == nullptr; 307 } 308 309 /// popValue - Read a value out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used by the value in the record. 311 /// Return true if there is an error. 312 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Type *Ty, Value *&ResVal) { 314 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 315 return true; 316 // All values currently take a single record slot. 317 ++Slot; 318 return false; 319 } 320 321 /// getValue -- Like popValue, but does not increment the Slot number. 322 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 323 unsigned InstNum, Type *Ty, Value *&ResVal) { 324 ResVal = getValue(Record, Slot, InstNum, Ty); 325 return ResVal == nullptr; 326 } 327 328 /// getValue -- Version of getValue that returns ResVal directly, 329 /// or 0 if there is an error. 330 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 331 unsigned InstNum, Type *Ty) { 332 if (Slot == Record.size()) return nullptr; 333 unsigned ValNo = (unsigned)Record[Slot]; 334 // Adjust the ValNo, if it was encoded relative to the InstNum. 335 if (UseRelativeIDs) 336 ValNo = InstNum - ValNo; 337 return getFnValueByID(ValNo, Ty); 338 } 339 340 /// getValueSigned -- Like getValue, but decodes signed VBRs. 341 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 342 unsigned InstNum, Type *Ty) { 343 if (Slot == Record.size()) return nullptr; 344 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 345 // Adjust the ValNo, if it was encoded relative to the InstNum. 346 if (UseRelativeIDs) 347 ValNo = InstNum - ValNo; 348 return getFnValueByID(ValNo, Ty); 349 } 350 351 /// Converts alignment exponent (i.e. power of two (or zero)) to the 352 /// corresponding alignment to use. If alignment is too large, returns 353 /// a corresponding error code. 354 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 355 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 356 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 357 std::error_code ParseAttributeBlock(); 358 std::error_code ParseAttributeGroupBlock(); 359 std::error_code ParseTypeTable(); 360 std::error_code ParseTypeTableBody(); 361 362 std::error_code ParseValueSymbolTable(); 363 std::error_code ParseConstants(); 364 std::error_code RememberAndSkipFunctionBody(); 365 /// Save the positions of the Metadata blocks and skip parsing the blocks. 366 std::error_code rememberAndSkipMetadata(); 367 std::error_code ParseFunctionBody(Function *F); 368 std::error_code GlobalCleanup(); 369 std::error_code ResolveGlobalAndAliasInits(); 370 std::error_code ParseMetadata(); 371 std::error_code ParseMetadataAttachment(Function &F); 372 ErrorOr<std::string> parseModuleTriple(); 373 std::error_code ParseUseLists(); 374 std::error_code InitStream(); 375 std::error_code InitStreamFromBuffer(); 376 std::error_code InitLazyStream(); 377 std::error_code FindFunctionInStream( 378 Function *F, 379 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 380 }; 381 } // namespace 382 383 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 384 DiagnosticSeverity Severity, 385 const Twine &Msg) 386 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 387 388 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 389 390 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 391 std::error_code EC, const Twine &Message) { 392 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 393 DiagnosticHandler(DI); 394 return EC; 395 } 396 397 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 398 std::error_code EC) { 399 return Error(DiagnosticHandler, EC, EC.message()); 400 } 401 402 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 403 const Twine &Message) { 404 return Error(DiagnosticHandler, 405 make_error_code(BitcodeError::CorruptedBitcode), Message); 406 } 407 408 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 409 return ::Error(DiagnosticHandler, make_error_code(E), Message); 410 } 411 412 std::error_code BitcodeReader::Error(const Twine &Message) { 413 return ::Error(DiagnosticHandler, 414 make_error_code(BitcodeError::CorruptedBitcode), Message); 415 } 416 417 std::error_code BitcodeReader::Error(BitcodeError E) { 418 return ::Error(DiagnosticHandler, make_error_code(E)); 419 } 420 421 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 422 LLVMContext &C) { 423 if (F) 424 return F; 425 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 426 } 427 428 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 429 DiagnosticHandlerFunction DiagnosticHandler) 430 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 431 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 432 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 433 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 434 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 435 436 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 437 DiagnosticHandlerFunction DiagnosticHandler) 438 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 439 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 440 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 441 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 442 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 443 444 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 445 if (WillMaterializeAllForwardRefs) 446 return std::error_code(); 447 448 // Prevent recursion. 449 WillMaterializeAllForwardRefs = true; 450 451 while (!BasicBlockFwdRefQueue.empty()) { 452 Function *F = BasicBlockFwdRefQueue.front(); 453 BasicBlockFwdRefQueue.pop_front(); 454 assert(F && "Expected valid function"); 455 if (!BasicBlockFwdRefs.count(F)) 456 // Already materialized. 457 continue; 458 459 // Check for a function that isn't materializable to prevent an infinite 460 // loop. When parsing a blockaddress stored in a global variable, there 461 // isn't a trivial way to check if a function will have a body without a 462 // linear search through FunctionsWithBodies, so just check it here. 463 if (!F->isMaterializable()) 464 return Error("Never resolved function from blockaddress"); 465 466 // Try to materialize F. 467 if (std::error_code EC = materialize(F)) 468 return EC; 469 } 470 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 471 472 // Reset state. 473 WillMaterializeAllForwardRefs = false; 474 return std::error_code(); 475 } 476 477 void BitcodeReader::FreeState() { 478 Buffer = nullptr; 479 std::vector<Type*>().swap(TypeList); 480 ValueList.clear(); 481 MDValueList.clear(); 482 std::vector<Comdat *>().swap(ComdatList); 483 484 std::vector<AttributeSet>().swap(MAttributes); 485 std::vector<BasicBlock*>().swap(FunctionBBs); 486 std::vector<Function*>().swap(FunctionsWithBodies); 487 DeferredFunctionInfo.clear(); 488 DeferredMetadataInfo.clear(); 489 MDKindMap.clear(); 490 491 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 492 BasicBlockFwdRefQueue.clear(); 493 } 494 495 //===----------------------------------------------------------------------===// 496 // Helper functions to implement forward reference resolution, etc. 497 //===----------------------------------------------------------------------===// 498 499 /// ConvertToString - Convert a string from a record into an std::string, return 500 /// true on failure. 501 template<typename StrTy> 502 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 503 StrTy &Result) { 504 if (Idx > Record.size()) 505 return true; 506 507 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 508 Result += (char)Record[i]; 509 return false; 510 } 511 512 static bool hasImplicitComdat(size_t Val) { 513 switch (Val) { 514 default: 515 return false; 516 case 1: // Old WeakAnyLinkage 517 case 4: // Old LinkOnceAnyLinkage 518 case 10: // Old WeakODRLinkage 519 case 11: // Old LinkOnceODRLinkage 520 return true; 521 } 522 } 523 524 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 525 switch (Val) { 526 default: // Map unknown/new linkages to external 527 case 0: 528 return GlobalValue::ExternalLinkage; 529 case 2: 530 return GlobalValue::AppendingLinkage; 531 case 3: 532 return GlobalValue::InternalLinkage; 533 case 5: 534 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 535 case 6: 536 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 537 case 7: 538 return GlobalValue::ExternalWeakLinkage; 539 case 8: 540 return GlobalValue::CommonLinkage; 541 case 9: 542 return GlobalValue::PrivateLinkage; 543 case 12: 544 return GlobalValue::AvailableExternallyLinkage; 545 case 13: 546 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 547 case 14: 548 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 549 case 15: 550 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 551 case 1: // Old value with implicit comdat. 552 case 16: 553 return GlobalValue::WeakAnyLinkage; 554 case 10: // Old value with implicit comdat. 555 case 17: 556 return GlobalValue::WeakODRLinkage; 557 case 4: // Old value with implicit comdat. 558 case 18: 559 return GlobalValue::LinkOnceAnyLinkage; 560 case 11: // Old value with implicit comdat. 561 case 19: 562 return GlobalValue::LinkOnceODRLinkage; 563 } 564 } 565 566 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 567 switch (Val) { 568 default: // Map unknown visibilities to default. 569 case 0: return GlobalValue::DefaultVisibility; 570 case 1: return GlobalValue::HiddenVisibility; 571 case 2: return GlobalValue::ProtectedVisibility; 572 } 573 } 574 575 static GlobalValue::DLLStorageClassTypes 576 GetDecodedDLLStorageClass(unsigned Val) { 577 switch (Val) { 578 default: // Map unknown values to default. 579 case 0: return GlobalValue::DefaultStorageClass; 580 case 1: return GlobalValue::DLLImportStorageClass; 581 case 2: return GlobalValue::DLLExportStorageClass; 582 } 583 } 584 585 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 586 switch (Val) { 587 case 0: return GlobalVariable::NotThreadLocal; 588 default: // Map unknown non-zero value to general dynamic. 589 case 1: return GlobalVariable::GeneralDynamicTLSModel; 590 case 2: return GlobalVariable::LocalDynamicTLSModel; 591 case 3: return GlobalVariable::InitialExecTLSModel; 592 case 4: return GlobalVariable::LocalExecTLSModel; 593 } 594 } 595 596 static int GetDecodedCastOpcode(unsigned Val) { 597 switch (Val) { 598 default: return -1; 599 case bitc::CAST_TRUNC : return Instruction::Trunc; 600 case bitc::CAST_ZEXT : return Instruction::ZExt; 601 case bitc::CAST_SEXT : return Instruction::SExt; 602 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 603 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 604 case bitc::CAST_UITOFP : return Instruction::UIToFP; 605 case bitc::CAST_SITOFP : return Instruction::SIToFP; 606 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 607 case bitc::CAST_FPEXT : return Instruction::FPExt; 608 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 609 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 610 case bitc::CAST_BITCAST : return Instruction::BitCast; 611 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 612 } 613 } 614 615 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 616 bool IsFP = Ty->isFPOrFPVectorTy(); 617 // BinOps are only valid for int/fp or vector of int/fp types 618 if (!IsFP && !Ty->isIntOrIntVectorTy()) 619 return -1; 620 621 switch (Val) { 622 default: 623 return -1; 624 case bitc::BINOP_ADD: 625 return IsFP ? Instruction::FAdd : Instruction::Add; 626 case bitc::BINOP_SUB: 627 return IsFP ? Instruction::FSub : Instruction::Sub; 628 case bitc::BINOP_MUL: 629 return IsFP ? Instruction::FMul : Instruction::Mul; 630 case bitc::BINOP_UDIV: 631 return IsFP ? -1 : Instruction::UDiv; 632 case bitc::BINOP_SDIV: 633 return IsFP ? Instruction::FDiv : Instruction::SDiv; 634 case bitc::BINOP_UREM: 635 return IsFP ? -1 : Instruction::URem; 636 case bitc::BINOP_SREM: 637 return IsFP ? Instruction::FRem : Instruction::SRem; 638 case bitc::BINOP_SHL: 639 return IsFP ? -1 : Instruction::Shl; 640 case bitc::BINOP_LSHR: 641 return IsFP ? -1 : Instruction::LShr; 642 case bitc::BINOP_ASHR: 643 return IsFP ? -1 : Instruction::AShr; 644 case bitc::BINOP_AND: 645 return IsFP ? -1 : Instruction::And; 646 case bitc::BINOP_OR: 647 return IsFP ? -1 : Instruction::Or; 648 case bitc::BINOP_XOR: 649 return IsFP ? -1 : Instruction::Xor; 650 } 651 } 652 653 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 654 switch (Val) { 655 default: return AtomicRMWInst::BAD_BINOP; 656 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 657 case bitc::RMW_ADD: return AtomicRMWInst::Add; 658 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 659 case bitc::RMW_AND: return AtomicRMWInst::And; 660 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 661 case bitc::RMW_OR: return AtomicRMWInst::Or; 662 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 663 case bitc::RMW_MAX: return AtomicRMWInst::Max; 664 case bitc::RMW_MIN: return AtomicRMWInst::Min; 665 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 666 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 667 } 668 } 669 670 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 671 switch (Val) { 672 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 673 case bitc::ORDERING_UNORDERED: return Unordered; 674 case bitc::ORDERING_MONOTONIC: return Monotonic; 675 case bitc::ORDERING_ACQUIRE: return Acquire; 676 case bitc::ORDERING_RELEASE: return Release; 677 case bitc::ORDERING_ACQREL: return AcquireRelease; 678 default: // Map unknown orderings to sequentially-consistent. 679 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 680 } 681 } 682 683 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 684 switch (Val) { 685 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 686 default: // Map unknown scopes to cross-thread. 687 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 688 } 689 } 690 691 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 692 switch (Val) { 693 default: // Map unknown selection kinds to any. 694 case bitc::COMDAT_SELECTION_KIND_ANY: 695 return Comdat::Any; 696 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 697 return Comdat::ExactMatch; 698 case bitc::COMDAT_SELECTION_KIND_LARGEST: 699 return Comdat::Largest; 700 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 701 return Comdat::NoDuplicates; 702 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 703 return Comdat::SameSize; 704 } 705 } 706 707 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 708 switch (Val) { 709 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 710 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 711 } 712 } 713 714 namespace llvm { 715 namespace { 716 /// @brief A class for maintaining the slot number definition 717 /// as a placeholder for the actual definition for forward constants defs. 718 class ConstantPlaceHolder : public ConstantExpr { 719 void operator=(const ConstantPlaceHolder &) = delete; 720 public: 721 // allocate space for exactly one operand 722 void *operator new(size_t s) { 723 return User::operator new(s, 1); 724 } 725 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 726 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 727 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 728 } 729 730 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 731 static bool classof(const Value *V) { 732 return isa<ConstantExpr>(V) && 733 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 734 } 735 736 737 /// Provide fast operand accessors 738 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 739 }; 740 } 741 742 // FIXME: can we inherit this from ConstantExpr? 743 template <> 744 struct OperandTraits<ConstantPlaceHolder> : 745 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 746 }; 747 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 748 } 749 750 751 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 752 if (Idx == size()) { 753 push_back(V); 754 return; 755 } 756 757 if (Idx >= size()) 758 resize(Idx+1); 759 760 WeakVH &OldV = ValuePtrs[Idx]; 761 if (!OldV) { 762 OldV = V; 763 return; 764 } 765 766 // Handle constants and non-constants (e.g. instrs) differently for 767 // efficiency. 768 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 769 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 770 OldV = V; 771 } else { 772 // If there was a forward reference to this value, replace it. 773 Value *PrevVal = OldV; 774 OldV->replaceAllUsesWith(V); 775 delete PrevVal; 776 } 777 } 778 779 780 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 781 Type *Ty) { 782 if (Idx >= size()) 783 resize(Idx + 1); 784 785 if (Value *V = ValuePtrs[Idx]) { 786 if (Ty != V->getType()) 787 report_fatal_error("Type mismatch in constant table!"); 788 return cast<Constant>(V); 789 } 790 791 // Create and return a placeholder, which will later be RAUW'd. 792 Constant *C = new ConstantPlaceHolder(Ty, Context); 793 ValuePtrs[Idx] = C; 794 return C; 795 } 796 797 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 798 // Bail out for a clearly invalid value. This would make us call resize(0) 799 if (Idx == UINT_MAX) 800 return nullptr; 801 802 if (Idx >= size()) 803 resize(Idx + 1); 804 805 if (Value *V = ValuePtrs[Idx]) { 806 // If the types don't match, it's invalid. 807 if (Ty && Ty != V->getType()) 808 return nullptr; 809 return V; 810 } 811 812 // No type specified, must be invalid reference. 813 if (!Ty) return nullptr; 814 815 // Create and return a placeholder, which will later be RAUW'd. 816 Value *V = new Argument(Ty); 817 ValuePtrs[Idx] = V; 818 return V; 819 } 820 821 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 822 /// resolves any forward references. The idea behind this is that we sometimes 823 /// get constants (such as large arrays) which reference *many* forward ref 824 /// constants. Replacing each of these causes a lot of thrashing when 825 /// building/reuniquing the constant. Instead of doing this, we look at all the 826 /// uses and rewrite all the place holders at once for any constant that uses 827 /// a placeholder. 828 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 829 // Sort the values by-pointer so that they are efficient to look up with a 830 // binary search. 831 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 832 833 SmallVector<Constant*, 64> NewOps; 834 835 while (!ResolveConstants.empty()) { 836 Value *RealVal = operator[](ResolveConstants.back().second); 837 Constant *Placeholder = ResolveConstants.back().first; 838 ResolveConstants.pop_back(); 839 840 // Loop over all users of the placeholder, updating them to reference the 841 // new value. If they reference more than one placeholder, update them all 842 // at once. 843 while (!Placeholder->use_empty()) { 844 auto UI = Placeholder->user_begin(); 845 User *U = *UI; 846 847 // If the using object isn't uniqued, just update the operands. This 848 // handles instructions and initializers for global variables. 849 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 850 UI.getUse().set(RealVal); 851 continue; 852 } 853 854 // Otherwise, we have a constant that uses the placeholder. Replace that 855 // constant with a new constant that has *all* placeholder uses updated. 856 Constant *UserC = cast<Constant>(U); 857 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 858 I != E; ++I) { 859 Value *NewOp; 860 if (!isa<ConstantPlaceHolder>(*I)) { 861 // Not a placeholder reference. 862 NewOp = *I; 863 } else if (*I == Placeholder) { 864 // Common case is that it just references this one placeholder. 865 NewOp = RealVal; 866 } else { 867 // Otherwise, look up the placeholder in ResolveConstants. 868 ResolveConstantsTy::iterator It = 869 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 870 std::pair<Constant*, unsigned>(cast<Constant>(*I), 871 0)); 872 assert(It != ResolveConstants.end() && It->first == *I); 873 NewOp = operator[](It->second); 874 } 875 876 NewOps.push_back(cast<Constant>(NewOp)); 877 } 878 879 // Make the new constant. 880 Constant *NewC; 881 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 882 NewC = ConstantArray::get(UserCA->getType(), NewOps); 883 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 884 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 885 } else if (isa<ConstantVector>(UserC)) { 886 NewC = ConstantVector::get(NewOps); 887 } else { 888 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 889 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 890 } 891 892 UserC->replaceAllUsesWith(NewC); 893 UserC->destroyConstant(); 894 NewOps.clear(); 895 } 896 897 // Update all ValueHandles, they should be the only users at this point. 898 Placeholder->replaceAllUsesWith(RealVal); 899 delete Placeholder; 900 } 901 } 902 903 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 904 if (Idx == size()) { 905 push_back(MD); 906 return; 907 } 908 909 if (Idx >= size()) 910 resize(Idx+1); 911 912 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 913 if (!OldMD) { 914 OldMD.reset(MD); 915 return; 916 } 917 918 // If there was a forward reference to this value, replace it. 919 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 920 PrevMD->replaceAllUsesWith(MD); 921 --NumFwdRefs; 922 } 923 924 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 925 if (Idx >= size()) 926 resize(Idx + 1); 927 928 if (Metadata *MD = MDValuePtrs[Idx]) 929 return MD; 930 931 // Track forward refs to be resolved later. 932 if (AnyFwdRefs) { 933 MinFwdRef = std::min(MinFwdRef, Idx); 934 MaxFwdRef = std::max(MaxFwdRef, Idx); 935 } else { 936 AnyFwdRefs = true; 937 MinFwdRef = MaxFwdRef = Idx; 938 } 939 ++NumFwdRefs; 940 941 // Create and return a placeholder, which will later be RAUW'd. 942 Metadata *MD = MDNode::getTemporary(Context, None).release(); 943 MDValuePtrs[Idx].reset(MD); 944 return MD; 945 } 946 947 void BitcodeReaderMDValueList::tryToResolveCycles() { 948 if (!AnyFwdRefs) 949 // Nothing to do. 950 return; 951 952 if (NumFwdRefs) 953 // Still forward references... can't resolve cycles. 954 return; 955 956 // Resolve any cycles. 957 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 958 auto &MD = MDValuePtrs[I]; 959 auto *N = dyn_cast_or_null<MDNode>(MD); 960 if (!N) 961 continue; 962 963 assert(!N->isTemporary() && "Unexpected forward reference"); 964 N->resolveCycles(); 965 } 966 967 // Make sure we return early again until there's another forward ref. 968 AnyFwdRefs = false; 969 } 970 971 Type *BitcodeReader::getTypeByID(unsigned ID) { 972 // The type table size is always specified correctly. 973 if (ID >= TypeList.size()) 974 return nullptr; 975 976 if (Type *Ty = TypeList[ID]) 977 return Ty; 978 979 // If we have a forward reference, the only possible case is when it is to a 980 // named struct. Just create a placeholder for now. 981 return TypeList[ID] = createIdentifiedStructType(Context); 982 } 983 984 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 985 StringRef Name) { 986 auto *Ret = StructType::create(Context, Name); 987 IdentifiedStructTypes.push_back(Ret); 988 return Ret; 989 } 990 991 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 992 auto *Ret = StructType::create(Context); 993 IdentifiedStructTypes.push_back(Ret); 994 return Ret; 995 } 996 997 998 //===----------------------------------------------------------------------===// 999 // Functions for parsing blocks from the bitcode file 1000 //===----------------------------------------------------------------------===// 1001 1002 1003 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1004 /// been decoded from the given integer. This function must stay in sync with 1005 /// 'encodeLLVMAttributesForBitcode'. 1006 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1007 uint64_t EncodedAttrs) { 1008 // FIXME: Remove in 4.0. 1009 1010 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1011 // the bits above 31 down by 11 bits. 1012 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1013 assert((!Alignment || isPowerOf2_32(Alignment)) && 1014 "Alignment must be a power of two."); 1015 1016 if (Alignment) 1017 B.addAlignmentAttr(Alignment); 1018 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1019 (EncodedAttrs & 0xffff)); 1020 } 1021 1022 std::error_code BitcodeReader::ParseAttributeBlock() { 1023 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1024 return Error("Invalid record"); 1025 1026 if (!MAttributes.empty()) 1027 return Error("Invalid multiple blocks"); 1028 1029 SmallVector<uint64_t, 64> Record; 1030 1031 SmallVector<AttributeSet, 8> Attrs; 1032 1033 // Read all the records. 1034 while (1) { 1035 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1036 1037 switch (Entry.Kind) { 1038 case BitstreamEntry::SubBlock: // Handled for us already. 1039 case BitstreamEntry::Error: 1040 return Error("Malformed block"); 1041 case BitstreamEntry::EndBlock: 1042 return std::error_code(); 1043 case BitstreamEntry::Record: 1044 // The interesting case. 1045 break; 1046 } 1047 1048 // Read a record. 1049 Record.clear(); 1050 switch (Stream.readRecord(Entry.ID, Record)) { 1051 default: // Default behavior: ignore. 1052 break; 1053 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1054 // FIXME: Remove in 4.0. 1055 if (Record.size() & 1) 1056 return Error("Invalid record"); 1057 1058 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1059 AttrBuilder B; 1060 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1061 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1062 } 1063 1064 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1065 Attrs.clear(); 1066 break; 1067 } 1068 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1069 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1070 Attrs.push_back(MAttributeGroups[Record[i]]); 1071 1072 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1073 Attrs.clear(); 1074 break; 1075 } 1076 } 1077 } 1078 } 1079 1080 // Returns Attribute::None on unrecognized codes. 1081 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1082 switch (Code) { 1083 default: 1084 return Attribute::None; 1085 case bitc::ATTR_KIND_ALIGNMENT: 1086 return Attribute::Alignment; 1087 case bitc::ATTR_KIND_ALWAYS_INLINE: 1088 return Attribute::AlwaysInline; 1089 case bitc::ATTR_KIND_BUILTIN: 1090 return Attribute::Builtin; 1091 case bitc::ATTR_KIND_BY_VAL: 1092 return Attribute::ByVal; 1093 case bitc::ATTR_KIND_IN_ALLOCA: 1094 return Attribute::InAlloca; 1095 case bitc::ATTR_KIND_COLD: 1096 return Attribute::Cold; 1097 case bitc::ATTR_KIND_CONVERGENT: 1098 return Attribute::Convergent; 1099 case bitc::ATTR_KIND_INLINE_HINT: 1100 return Attribute::InlineHint; 1101 case bitc::ATTR_KIND_IN_REG: 1102 return Attribute::InReg; 1103 case bitc::ATTR_KIND_JUMP_TABLE: 1104 return Attribute::JumpTable; 1105 case bitc::ATTR_KIND_MIN_SIZE: 1106 return Attribute::MinSize; 1107 case bitc::ATTR_KIND_NAKED: 1108 return Attribute::Naked; 1109 case bitc::ATTR_KIND_NEST: 1110 return Attribute::Nest; 1111 case bitc::ATTR_KIND_NO_ALIAS: 1112 return Attribute::NoAlias; 1113 case bitc::ATTR_KIND_NO_BUILTIN: 1114 return Attribute::NoBuiltin; 1115 case bitc::ATTR_KIND_NO_CAPTURE: 1116 return Attribute::NoCapture; 1117 case bitc::ATTR_KIND_NO_DUPLICATE: 1118 return Attribute::NoDuplicate; 1119 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1120 return Attribute::NoImplicitFloat; 1121 case bitc::ATTR_KIND_NO_INLINE: 1122 return Attribute::NoInline; 1123 case bitc::ATTR_KIND_NON_LAZY_BIND: 1124 return Attribute::NonLazyBind; 1125 case bitc::ATTR_KIND_NON_NULL: 1126 return Attribute::NonNull; 1127 case bitc::ATTR_KIND_DEREFERENCEABLE: 1128 return Attribute::Dereferenceable; 1129 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1130 return Attribute::DereferenceableOrNull; 1131 case bitc::ATTR_KIND_NO_RED_ZONE: 1132 return Attribute::NoRedZone; 1133 case bitc::ATTR_KIND_NO_RETURN: 1134 return Attribute::NoReturn; 1135 case bitc::ATTR_KIND_NO_UNWIND: 1136 return Attribute::NoUnwind; 1137 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1138 return Attribute::OptimizeForSize; 1139 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1140 return Attribute::OptimizeNone; 1141 case bitc::ATTR_KIND_READ_NONE: 1142 return Attribute::ReadNone; 1143 case bitc::ATTR_KIND_READ_ONLY: 1144 return Attribute::ReadOnly; 1145 case bitc::ATTR_KIND_RETURNED: 1146 return Attribute::Returned; 1147 case bitc::ATTR_KIND_RETURNS_TWICE: 1148 return Attribute::ReturnsTwice; 1149 case bitc::ATTR_KIND_S_EXT: 1150 return Attribute::SExt; 1151 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1152 return Attribute::StackAlignment; 1153 case bitc::ATTR_KIND_STACK_PROTECT: 1154 return Attribute::StackProtect; 1155 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1156 return Attribute::StackProtectReq; 1157 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1158 return Attribute::StackProtectStrong; 1159 case bitc::ATTR_KIND_STRUCT_RET: 1160 return Attribute::StructRet; 1161 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1162 return Attribute::SanitizeAddress; 1163 case bitc::ATTR_KIND_SANITIZE_THREAD: 1164 return Attribute::SanitizeThread; 1165 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1166 return Attribute::SanitizeMemory; 1167 case bitc::ATTR_KIND_UW_TABLE: 1168 return Attribute::UWTable; 1169 case bitc::ATTR_KIND_Z_EXT: 1170 return Attribute::ZExt; 1171 } 1172 } 1173 1174 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1175 unsigned &Alignment) { 1176 // Note: Alignment in bitcode files is incremented by 1, so that zero 1177 // can be used for default alignment. 1178 if (Exponent > Value::MaxAlignmentExponent + 1) 1179 return Error("Invalid alignment value"); 1180 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1181 return std::error_code(); 1182 } 1183 1184 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1185 Attribute::AttrKind *Kind) { 1186 *Kind = GetAttrFromCode(Code); 1187 if (*Kind == Attribute::None) 1188 return Error(BitcodeError::CorruptedBitcode, 1189 "Unknown attribute kind (" + Twine(Code) + ")"); 1190 return std::error_code(); 1191 } 1192 1193 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1194 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1195 return Error("Invalid record"); 1196 1197 if (!MAttributeGroups.empty()) 1198 return Error("Invalid multiple blocks"); 1199 1200 SmallVector<uint64_t, 64> Record; 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 return std::error_code(); 1212 case BitstreamEntry::Record: 1213 // The interesting case. 1214 break; 1215 } 1216 1217 // Read a record. 1218 Record.clear(); 1219 switch (Stream.readRecord(Entry.ID, Record)) { 1220 default: // Default behavior: ignore. 1221 break; 1222 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1223 if (Record.size() < 3) 1224 return Error("Invalid record"); 1225 1226 uint64_t GrpID = Record[0]; 1227 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1228 1229 AttrBuilder B; 1230 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1231 if (Record[i] == 0) { // Enum attribute 1232 Attribute::AttrKind Kind; 1233 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1234 return EC; 1235 1236 B.addAttribute(Kind); 1237 } else if (Record[i] == 1) { // Integer attribute 1238 Attribute::AttrKind Kind; 1239 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1240 return EC; 1241 if (Kind == Attribute::Alignment) 1242 B.addAlignmentAttr(Record[++i]); 1243 else if (Kind == Attribute::StackAlignment) 1244 B.addStackAlignmentAttr(Record[++i]); 1245 else if (Kind == Attribute::Dereferenceable) 1246 B.addDereferenceableAttr(Record[++i]); 1247 else if (Kind == Attribute::DereferenceableOrNull) 1248 B.addDereferenceableOrNullAttr(Record[++i]); 1249 } else { // String attribute 1250 assert((Record[i] == 3 || Record[i] == 4) && 1251 "Invalid attribute group entry"); 1252 bool HasValue = (Record[i++] == 4); 1253 SmallString<64> KindStr; 1254 SmallString<64> ValStr; 1255 1256 while (Record[i] != 0 && i != e) 1257 KindStr += Record[i++]; 1258 assert(Record[i] == 0 && "Kind string not null terminated"); 1259 1260 if (HasValue) { 1261 // Has a value associated with it. 1262 ++i; // Skip the '0' that terminates the "kind" string. 1263 while (Record[i] != 0 && i != e) 1264 ValStr += Record[i++]; 1265 assert(Record[i] == 0 && "Value string not null terminated"); 1266 } 1267 1268 B.addAttribute(KindStr.str(), ValStr.str()); 1269 } 1270 } 1271 1272 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1273 break; 1274 } 1275 } 1276 } 1277 } 1278 1279 std::error_code BitcodeReader::ParseTypeTable() { 1280 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1281 return Error("Invalid record"); 1282 1283 return ParseTypeTableBody(); 1284 } 1285 1286 std::error_code BitcodeReader::ParseTypeTableBody() { 1287 if (!TypeList.empty()) 1288 return Error("Invalid multiple blocks"); 1289 1290 SmallVector<uint64_t, 64> Record; 1291 unsigned NumRecords = 0; 1292 1293 SmallString<64> TypeName; 1294 1295 // Read all the records for this type table. 1296 while (1) { 1297 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1298 1299 switch (Entry.Kind) { 1300 case BitstreamEntry::SubBlock: // Handled for us already. 1301 case BitstreamEntry::Error: 1302 return Error("Malformed block"); 1303 case BitstreamEntry::EndBlock: 1304 if (NumRecords != TypeList.size()) 1305 return Error("Malformed block"); 1306 return std::error_code(); 1307 case BitstreamEntry::Record: 1308 // The interesting case. 1309 break; 1310 } 1311 1312 // Read a record. 1313 Record.clear(); 1314 Type *ResultTy = nullptr; 1315 switch (Stream.readRecord(Entry.ID, Record)) { 1316 default: 1317 return Error("Invalid value"); 1318 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1319 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1320 // type list. This allows us to reserve space. 1321 if (Record.size() < 1) 1322 return Error("Invalid record"); 1323 TypeList.resize(Record[0]); 1324 continue; 1325 case bitc::TYPE_CODE_VOID: // VOID 1326 ResultTy = Type::getVoidTy(Context); 1327 break; 1328 case bitc::TYPE_CODE_HALF: // HALF 1329 ResultTy = Type::getHalfTy(Context); 1330 break; 1331 case bitc::TYPE_CODE_FLOAT: // FLOAT 1332 ResultTy = Type::getFloatTy(Context); 1333 break; 1334 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1335 ResultTy = Type::getDoubleTy(Context); 1336 break; 1337 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1338 ResultTy = Type::getX86_FP80Ty(Context); 1339 break; 1340 case bitc::TYPE_CODE_FP128: // FP128 1341 ResultTy = Type::getFP128Ty(Context); 1342 break; 1343 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1344 ResultTy = Type::getPPC_FP128Ty(Context); 1345 break; 1346 case bitc::TYPE_CODE_LABEL: // LABEL 1347 ResultTy = Type::getLabelTy(Context); 1348 break; 1349 case bitc::TYPE_CODE_METADATA: // METADATA 1350 ResultTy = Type::getMetadataTy(Context); 1351 break; 1352 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1353 ResultTy = Type::getX86_MMXTy(Context); 1354 break; 1355 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1356 if (Record.size() < 1) 1357 return Error("Invalid record"); 1358 1359 uint64_t NumBits = Record[0]; 1360 if (NumBits < IntegerType::MIN_INT_BITS || 1361 NumBits > IntegerType::MAX_INT_BITS) 1362 return Error("Bitwidth for integer type out of range"); 1363 ResultTy = IntegerType::get(Context, NumBits); 1364 break; 1365 } 1366 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1367 // [pointee type, address space] 1368 if (Record.size() < 1) 1369 return Error("Invalid record"); 1370 unsigned AddressSpace = 0; 1371 if (Record.size() == 2) 1372 AddressSpace = Record[1]; 1373 ResultTy = getTypeByID(Record[0]); 1374 if (!ResultTy || 1375 !PointerType::isValidElementType(ResultTy)) 1376 return Error("Invalid type"); 1377 ResultTy = PointerType::get(ResultTy, AddressSpace); 1378 break; 1379 } 1380 case bitc::TYPE_CODE_FUNCTION_OLD: { 1381 // FIXME: attrid is dead, remove it in LLVM 4.0 1382 // FUNCTION: [vararg, attrid, retty, paramty x N] 1383 if (Record.size() < 3) 1384 return Error("Invalid record"); 1385 SmallVector<Type*, 8> ArgTys; 1386 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1387 if (Type *T = getTypeByID(Record[i])) 1388 ArgTys.push_back(T); 1389 else 1390 break; 1391 } 1392 1393 ResultTy = getTypeByID(Record[2]); 1394 if (!ResultTy || ArgTys.size() < Record.size()-3) 1395 return Error("Invalid type"); 1396 1397 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1398 break; 1399 } 1400 case bitc::TYPE_CODE_FUNCTION: { 1401 // FUNCTION: [vararg, retty, paramty x N] 1402 if (Record.size() < 2) 1403 return Error("Invalid record"); 1404 SmallVector<Type*, 8> ArgTys; 1405 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1406 if (Type *T = getTypeByID(Record[i])) { 1407 if (!FunctionType::isValidArgumentType(T)) 1408 return Error("Invalid function argument type"); 1409 ArgTys.push_back(T); 1410 } 1411 else 1412 break; 1413 } 1414 1415 ResultTy = getTypeByID(Record[1]); 1416 if (!ResultTy || ArgTys.size() < Record.size()-2) 1417 return Error("Invalid type"); 1418 1419 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1420 break; 1421 } 1422 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1423 if (Record.size() < 1) 1424 return Error("Invalid record"); 1425 SmallVector<Type*, 8> EltTys; 1426 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1427 if (Type *T = getTypeByID(Record[i])) 1428 EltTys.push_back(T); 1429 else 1430 break; 1431 } 1432 if (EltTys.size() != Record.size()-1) 1433 return Error("Invalid type"); 1434 ResultTy = StructType::get(Context, EltTys, Record[0]); 1435 break; 1436 } 1437 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1438 if (ConvertToString(Record, 0, TypeName)) 1439 return Error("Invalid record"); 1440 continue; 1441 1442 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1443 if (Record.size() < 1) 1444 return Error("Invalid record"); 1445 1446 if (NumRecords >= TypeList.size()) 1447 return Error("Invalid TYPE table"); 1448 1449 // Check to see if this was forward referenced, if so fill in the temp. 1450 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1451 if (Res) { 1452 Res->setName(TypeName); 1453 TypeList[NumRecords] = nullptr; 1454 } else // Otherwise, create a new struct. 1455 Res = createIdentifiedStructType(Context, TypeName); 1456 TypeName.clear(); 1457 1458 SmallVector<Type*, 8> EltTys; 1459 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1460 if (Type *T = getTypeByID(Record[i])) 1461 EltTys.push_back(T); 1462 else 1463 break; 1464 } 1465 if (EltTys.size() != Record.size()-1) 1466 return Error("Invalid record"); 1467 Res->setBody(EltTys, Record[0]); 1468 ResultTy = Res; 1469 break; 1470 } 1471 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1472 if (Record.size() != 1) 1473 return Error("Invalid record"); 1474 1475 if (NumRecords >= TypeList.size()) 1476 return Error("Invalid TYPE table"); 1477 1478 // Check to see if this was forward referenced, if so fill in the temp. 1479 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1480 if (Res) { 1481 Res->setName(TypeName); 1482 TypeList[NumRecords] = nullptr; 1483 } else // Otherwise, create a new struct with no body. 1484 Res = createIdentifiedStructType(Context, TypeName); 1485 TypeName.clear(); 1486 ResultTy = Res; 1487 break; 1488 } 1489 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1490 if (Record.size() < 2) 1491 return Error("Invalid record"); 1492 ResultTy = getTypeByID(Record[1]); 1493 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1494 return Error("Invalid type"); 1495 ResultTy = ArrayType::get(ResultTy, Record[0]); 1496 break; 1497 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1498 if (Record.size() < 2) 1499 return Error("Invalid record"); 1500 if (Record[0] == 0) 1501 return Error("Invalid vector length"); 1502 ResultTy = getTypeByID(Record[1]); 1503 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1504 return Error("Invalid type"); 1505 ResultTy = VectorType::get(ResultTy, Record[0]); 1506 break; 1507 } 1508 1509 if (NumRecords >= TypeList.size()) 1510 return Error("Invalid TYPE table"); 1511 if (TypeList[NumRecords]) 1512 return Error( 1513 "Invalid TYPE table: Only named structs can be forward referenced"); 1514 assert(ResultTy && "Didn't read a type?"); 1515 TypeList[NumRecords++] = ResultTy; 1516 } 1517 } 1518 1519 std::error_code BitcodeReader::ParseValueSymbolTable() { 1520 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1521 return Error("Invalid record"); 1522 1523 SmallVector<uint64_t, 64> Record; 1524 1525 Triple TT(TheModule->getTargetTriple()); 1526 1527 // Read all the records for this value table. 1528 SmallString<128> ValueName; 1529 while (1) { 1530 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1531 1532 switch (Entry.Kind) { 1533 case BitstreamEntry::SubBlock: // Handled for us already. 1534 case BitstreamEntry::Error: 1535 return Error("Malformed block"); 1536 case BitstreamEntry::EndBlock: 1537 return std::error_code(); 1538 case BitstreamEntry::Record: 1539 // The interesting case. 1540 break; 1541 } 1542 1543 // Read a record. 1544 Record.clear(); 1545 switch (Stream.readRecord(Entry.ID, Record)) { 1546 default: // Default behavior: unknown type. 1547 break; 1548 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1549 if (ConvertToString(Record, 1, ValueName)) 1550 return Error("Invalid record"); 1551 unsigned ValueID = Record[0]; 1552 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1553 return Error("Invalid record"); 1554 Value *V = ValueList[ValueID]; 1555 1556 V->setName(StringRef(ValueName.data(), ValueName.size())); 1557 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1558 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1559 if (TT.isOSBinFormatMachO()) 1560 GO->setComdat(nullptr); 1561 else 1562 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1563 } 1564 } 1565 ValueName.clear(); 1566 break; 1567 } 1568 case bitc::VST_CODE_BBENTRY: { 1569 if (ConvertToString(Record, 1, ValueName)) 1570 return Error("Invalid record"); 1571 BasicBlock *BB = getBasicBlock(Record[0]); 1572 if (!BB) 1573 return Error("Invalid record"); 1574 1575 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1576 ValueName.clear(); 1577 break; 1578 } 1579 } 1580 } 1581 } 1582 1583 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1584 1585 std::error_code BitcodeReader::ParseMetadata() { 1586 IsMetadataMaterialized = true; 1587 unsigned NextMDValueNo = MDValueList.size(); 1588 1589 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1590 return Error("Invalid record"); 1591 1592 SmallVector<uint64_t, 64> Record; 1593 1594 auto getMD = 1595 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1596 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1597 if (ID) 1598 return getMD(ID - 1); 1599 return nullptr; 1600 }; 1601 auto getMDString = [&](unsigned ID) -> MDString *{ 1602 // This requires that the ID is not really a forward reference. In 1603 // particular, the MDString must already have been resolved. 1604 return cast_or_null<MDString>(getMDOrNull(ID)); 1605 }; 1606 1607 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1608 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1609 1610 // Read all the records. 1611 while (1) { 1612 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1613 1614 switch (Entry.Kind) { 1615 case BitstreamEntry::SubBlock: // Handled for us already. 1616 case BitstreamEntry::Error: 1617 return Error("Malformed block"); 1618 case BitstreamEntry::EndBlock: 1619 MDValueList.tryToResolveCycles(); 1620 return std::error_code(); 1621 case BitstreamEntry::Record: 1622 // The interesting case. 1623 break; 1624 } 1625 1626 // Read a record. 1627 Record.clear(); 1628 unsigned Code = Stream.readRecord(Entry.ID, Record); 1629 bool IsDistinct = false; 1630 switch (Code) { 1631 default: // Default behavior: ignore. 1632 break; 1633 case bitc::METADATA_NAME: { 1634 // Read name of the named metadata. 1635 SmallString<8> Name(Record.begin(), Record.end()); 1636 Record.clear(); 1637 Code = Stream.ReadCode(); 1638 1639 unsigned NextBitCode = Stream.readRecord(Code, Record); 1640 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1641 return Error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1642 1643 // Read named metadata elements. 1644 unsigned Size = Record.size(); 1645 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1646 for (unsigned i = 0; i != Size; ++i) { 1647 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1648 if (!MD) 1649 return Error("Invalid record"); 1650 NMD->addOperand(MD); 1651 } 1652 break; 1653 } 1654 case bitc::METADATA_OLD_FN_NODE: { 1655 // FIXME: Remove in 4.0. 1656 // This is a LocalAsMetadata record, the only type of function-local 1657 // metadata. 1658 if (Record.size() % 2 == 1) 1659 return Error("Invalid record"); 1660 1661 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1662 // to be legal, but there's no upgrade path. 1663 auto dropRecord = [&] { 1664 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1665 }; 1666 if (Record.size() != 2) { 1667 dropRecord(); 1668 break; 1669 } 1670 1671 Type *Ty = getTypeByID(Record[0]); 1672 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1673 dropRecord(); 1674 break; 1675 } 1676 1677 MDValueList.AssignValue( 1678 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1679 NextMDValueNo++); 1680 break; 1681 } 1682 case bitc::METADATA_OLD_NODE: { 1683 // FIXME: Remove in 4.0. 1684 if (Record.size() % 2 == 1) 1685 return Error("Invalid record"); 1686 1687 unsigned Size = Record.size(); 1688 SmallVector<Metadata *, 8> Elts; 1689 for (unsigned i = 0; i != Size; i += 2) { 1690 Type *Ty = getTypeByID(Record[i]); 1691 if (!Ty) 1692 return Error("Invalid record"); 1693 if (Ty->isMetadataTy()) 1694 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1695 else if (!Ty->isVoidTy()) { 1696 auto *MD = 1697 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1698 assert(isa<ConstantAsMetadata>(MD) && 1699 "Expected non-function-local metadata"); 1700 Elts.push_back(MD); 1701 } else 1702 Elts.push_back(nullptr); 1703 } 1704 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1705 break; 1706 } 1707 case bitc::METADATA_VALUE: { 1708 if (Record.size() != 2) 1709 return Error("Invalid record"); 1710 1711 Type *Ty = getTypeByID(Record[0]); 1712 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1713 return Error("Invalid record"); 1714 1715 MDValueList.AssignValue( 1716 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1717 NextMDValueNo++); 1718 break; 1719 } 1720 case bitc::METADATA_DISTINCT_NODE: 1721 IsDistinct = true; 1722 // fallthrough... 1723 case bitc::METADATA_NODE: { 1724 SmallVector<Metadata *, 8> Elts; 1725 Elts.reserve(Record.size()); 1726 for (unsigned ID : Record) 1727 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1728 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1729 : MDNode::get(Context, Elts), 1730 NextMDValueNo++); 1731 break; 1732 } 1733 case bitc::METADATA_LOCATION: { 1734 if (Record.size() != 5) 1735 return Error("Invalid record"); 1736 1737 unsigned Line = Record[1]; 1738 unsigned Column = Record[2]; 1739 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1740 Metadata *InlinedAt = 1741 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1742 MDValueList.AssignValue( 1743 GET_OR_DISTINCT(DILocation, Record[0], 1744 (Context, Line, Column, Scope, InlinedAt)), 1745 NextMDValueNo++); 1746 break; 1747 } 1748 case bitc::METADATA_GENERIC_DEBUG: { 1749 if (Record.size() < 4) 1750 return Error("Invalid record"); 1751 1752 unsigned Tag = Record[1]; 1753 unsigned Version = Record[2]; 1754 1755 if (Tag >= 1u << 16 || Version != 0) 1756 return Error("Invalid record"); 1757 1758 auto *Header = getMDString(Record[3]); 1759 SmallVector<Metadata *, 8> DwarfOps; 1760 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1761 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1762 : nullptr); 1763 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1764 (Context, Tag, Header, DwarfOps)), 1765 NextMDValueNo++); 1766 break; 1767 } 1768 case bitc::METADATA_SUBRANGE: { 1769 if (Record.size() != 3) 1770 return Error("Invalid record"); 1771 1772 MDValueList.AssignValue( 1773 GET_OR_DISTINCT(DISubrange, Record[0], 1774 (Context, Record[1], unrotateSign(Record[2]))), 1775 NextMDValueNo++); 1776 break; 1777 } 1778 case bitc::METADATA_ENUMERATOR: { 1779 if (Record.size() != 3) 1780 return Error("Invalid record"); 1781 1782 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1783 (Context, unrotateSign(Record[1]), 1784 getMDString(Record[2]))), 1785 NextMDValueNo++); 1786 break; 1787 } 1788 case bitc::METADATA_BASIC_TYPE: { 1789 if (Record.size() != 6) 1790 return Error("Invalid record"); 1791 1792 MDValueList.AssignValue( 1793 GET_OR_DISTINCT(DIBasicType, Record[0], 1794 (Context, Record[1], getMDString(Record[2]), 1795 Record[3], Record[4], Record[5])), 1796 NextMDValueNo++); 1797 break; 1798 } 1799 case bitc::METADATA_DERIVED_TYPE: { 1800 if (Record.size() != 12) 1801 return Error("Invalid record"); 1802 1803 MDValueList.AssignValue( 1804 GET_OR_DISTINCT(DIDerivedType, Record[0], 1805 (Context, Record[1], getMDString(Record[2]), 1806 getMDOrNull(Record[3]), Record[4], 1807 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1808 Record[7], Record[8], Record[9], Record[10], 1809 getMDOrNull(Record[11]))), 1810 NextMDValueNo++); 1811 break; 1812 } 1813 case bitc::METADATA_COMPOSITE_TYPE: { 1814 if (Record.size() != 16) 1815 return Error("Invalid record"); 1816 1817 MDValueList.AssignValue( 1818 GET_OR_DISTINCT(DICompositeType, Record[0], 1819 (Context, Record[1], getMDString(Record[2]), 1820 getMDOrNull(Record[3]), Record[4], 1821 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1822 Record[7], Record[8], Record[9], Record[10], 1823 getMDOrNull(Record[11]), Record[12], 1824 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1825 getMDString(Record[15]))), 1826 NextMDValueNo++); 1827 break; 1828 } 1829 case bitc::METADATA_SUBROUTINE_TYPE: { 1830 if (Record.size() != 3) 1831 return Error("Invalid record"); 1832 1833 MDValueList.AssignValue( 1834 GET_OR_DISTINCT(DISubroutineType, Record[0], 1835 (Context, Record[1], getMDOrNull(Record[2]))), 1836 NextMDValueNo++); 1837 break; 1838 } 1839 case bitc::METADATA_FILE: { 1840 if (Record.size() != 3) 1841 return Error("Invalid record"); 1842 1843 MDValueList.AssignValue( 1844 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1845 getMDString(Record[2]))), 1846 NextMDValueNo++); 1847 break; 1848 } 1849 case bitc::METADATA_COMPILE_UNIT: { 1850 if (Record.size() < 14 || Record.size() > 15) 1851 return Error("Invalid record"); 1852 1853 MDValueList.AssignValue( 1854 GET_OR_DISTINCT(DICompileUnit, Record[0], 1855 (Context, Record[1], getMDOrNull(Record[2]), 1856 getMDString(Record[3]), Record[4], 1857 getMDString(Record[5]), Record[6], 1858 getMDString(Record[7]), Record[8], 1859 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1860 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1861 getMDOrNull(Record[13]), 1862 Record.size() == 14 ? 0 : Record[14])), 1863 NextMDValueNo++); 1864 break; 1865 } 1866 case bitc::METADATA_SUBPROGRAM: { 1867 if (Record.size() != 19) 1868 return Error("Invalid record"); 1869 1870 MDValueList.AssignValue( 1871 GET_OR_DISTINCT( 1872 DISubprogram, Record[0], 1873 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1874 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1875 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1876 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1877 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1878 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1879 NextMDValueNo++); 1880 break; 1881 } 1882 case bitc::METADATA_LEXICAL_BLOCK: { 1883 if (Record.size() != 5) 1884 return Error("Invalid record"); 1885 1886 MDValueList.AssignValue( 1887 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1888 (Context, getMDOrNull(Record[1]), 1889 getMDOrNull(Record[2]), Record[3], Record[4])), 1890 NextMDValueNo++); 1891 break; 1892 } 1893 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1894 if (Record.size() != 4) 1895 return Error("Invalid record"); 1896 1897 MDValueList.AssignValue( 1898 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1899 (Context, getMDOrNull(Record[1]), 1900 getMDOrNull(Record[2]), Record[3])), 1901 NextMDValueNo++); 1902 break; 1903 } 1904 case bitc::METADATA_NAMESPACE: { 1905 if (Record.size() != 5) 1906 return Error("Invalid record"); 1907 1908 MDValueList.AssignValue( 1909 GET_OR_DISTINCT(DINamespace, Record[0], 1910 (Context, getMDOrNull(Record[1]), 1911 getMDOrNull(Record[2]), getMDString(Record[3]), 1912 Record[4])), 1913 NextMDValueNo++); 1914 break; 1915 } 1916 case bitc::METADATA_TEMPLATE_TYPE: { 1917 if (Record.size() != 3) 1918 return Error("Invalid record"); 1919 1920 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1921 Record[0], 1922 (Context, getMDString(Record[1]), 1923 getMDOrNull(Record[2]))), 1924 NextMDValueNo++); 1925 break; 1926 } 1927 case bitc::METADATA_TEMPLATE_VALUE: { 1928 if (Record.size() != 5) 1929 return Error("Invalid record"); 1930 1931 MDValueList.AssignValue( 1932 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1933 (Context, Record[1], getMDString(Record[2]), 1934 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1935 NextMDValueNo++); 1936 break; 1937 } 1938 case bitc::METADATA_GLOBAL_VAR: { 1939 if (Record.size() != 11) 1940 return Error("Invalid record"); 1941 1942 MDValueList.AssignValue( 1943 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1944 (Context, getMDOrNull(Record[1]), 1945 getMDString(Record[2]), getMDString(Record[3]), 1946 getMDOrNull(Record[4]), Record[5], 1947 getMDOrNull(Record[6]), Record[7], Record[8], 1948 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1949 NextMDValueNo++); 1950 break; 1951 } 1952 case bitc::METADATA_LOCAL_VAR: { 1953 // 10th field is for the obseleted 'inlinedAt:' field. 1954 if (Record.size() != 9 && Record.size() != 10) 1955 return Error("Invalid record"); 1956 1957 MDValueList.AssignValue( 1958 GET_OR_DISTINCT(DILocalVariable, Record[0], 1959 (Context, Record[1], getMDOrNull(Record[2]), 1960 getMDString(Record[3]), getMDOrNull(Record[4]), 1961 Record[5], getMDOrNull(Record[6]), Record[7], 1962 Record[8])), 1963 NextMDValueNo++); 1964 break; 1965 } 1966 case bitc::METADATA_EXPRESSION: { 1967 if (Record.size() < 1) 1968 return Error("Invalid record"); 1969 1970 MDValueList.AssignValue( 1971 GET_OR_DISTINCT(DIExpression, Record[0], 1972 (Context, makeArrayRef(Record).slice(1))), 1973 NextMDValueNo++); 1974 break; 1975 } 1976 case bitc::METADATA_OBJC_PROPERTY: { 1977 if (Record.size() != 8) 1978 return Error("Invalid record"); 1979 1980 MDValueList.AssignValue( 1981 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1982 (Context, getMDString(Record[1]), 1983 getMDOrNull(Record[2]), Record[3], 1984 getMDString(Record[4]), getMDString(Record[5]), 1985 Record[6], getMDOrNull(Record[7]))), 1986 NextMDValueNo++); 1987 break; 1988 } 1989 case bitc::METADATA_IMPORTED_ENTITY: { 1990 if (Record.size() != 6) 1991 return Error("Invalid record"); 1992 1993 MDValueList.AssignValue( 1994 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1995 (Context, Record[1], getMDOrNull(Record[2]), 1996 getMDOrNull(Record[3]), Record[4], 1997 getMDString(Record[5]))), 1998 NextMDValueNo++); 1999 break; 2000 } 2001 case bitc::METADATA_STRING: { 2002 std::string String(Record.begin(), Record.end()); 2003 llvm::UpgradeMDStringConstant(String); 2004 Metadata *MD = MDString::get(Context, String); 2005 MDValueList.AssignValue(MD, NextMDValueNo++); 2006 break; 2007 } 2008 case bitc::METADATA_KIND: { 2009 if (Record.size() < 2) 2010 return Error("Invalid record"); 2011 2012 unsigned Kind = Record[0]; 2013 SmallString<8> Name(Record.begin()+1, Record.end()); 2014 2015 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2016 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2017 return Error("Conflicting METADATA_KIND records"); 2018 break; 2019 } 2020 } 2021 } 2022 #undef GET_OR_DISTINCT 2023 } 2024 2025 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2026 /// the LSB for dense VBR encoding. 2027 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2028 if ((V & 1) == 0) 2029 return V >> 1; 2030 if (V != 1) 2031 return -(V >> 1); 2032 // There is no such thing as -0 with integers. "-0" really means MININT. 2033 return 1ULL << 63; 2034 } 2035 2036 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2037 /// values and aliases that we can. 2038 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2039 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2040 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2041 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2042 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2043 2044 GlobalInitWorklist.swap(GlobalInits); 2045 AliasInitWorklist.swap(AliasInits); 2046 FunctionPrefixWorklist.swap(FunctionPrefixes); 2047 FunctionPrologueWorklist.swap(FunctionPrologues); 2048 2049 while (!GlobalInitWorklist.empty()) { 2050 unsigned ValID = GlobalInitWorklist.back().second; 2051 if (ValID >= ValueList.size()) { 2052 // Not ready to resolve this yet, it requires something later in the file. 2053 GlobalInits.push_back(GlobalInitWorklist.back()); 2054 } else { 2055 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2056 GlobalInitWorklist.back().first->setInitializer(C); 2057 else 2058 return Error("Expected a constant"); 2059 } 2060 GlobalInitWorklist.pop_back(); 2061 } 2062 2063 while (!AliasInitWorklist.empty()) { 2064 unsigned ValID = AliasInitWorklist.back().second; 2065 if (ValID >= ValueList.size()) { 2066 AliasInits.push_back(AliasInitWorklist.back()); 2067 } else { 2068 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2069 AliasInitWorklist.back().first->setAliasee(C); 2070 else 2071 return Error("Expected a constant"); 2072 } 2073 AliasInitWorklist.pop_back(); 2074 } 2075 2076 while (!FunctionPrefixWorklist.empty()) { 2077 unsigned ValID = FunctionPrefixWorklist.back().second; 2078 if (ValID >= ValueList.size()) { 2079 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2080 } else { 2081 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2082 FunctionPrefixWorklist.back().first->setPrefixData(C); 2083 else 2084 return Error("Expected a constant"); 2085 } 2086 FunctionPrefixWorklist.pop_back(); 2087 } 2088 2089 while (!FunctionPrologueWorklist.empty()) { 2090 unsigned ValID = FunctionPrologueWorklist.back().second; 2091 if (ValID >= ValueList.size()) { 2092 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2093 } else { 2094 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2095 FunctionPrologueWorklist.back().first->setPrologueData(C); 2096 else 2097 return Error("Expected a constant"); 2098 } 2099 FunctionPrologueWorklist.pop_back(); 2100 } 2101 2102 return std::error_code(); 2103 } 2104 2105 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2106 SmallVector<uint64_t, 8> Words(Vals.size()); 2107 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2108 BitcodeReader::decodeSignRotatedValue); 2109 2110 return APInt(TypeBits, Words); 2111 } 2112 2113 std::error_code BitcodeReader::ParseConstants() { 2114 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2115 return Error("Invalid record"); 2116 2117 SmallVector<uint64_t, 64> Record; 2118 2119 // Read all the records for this value table. 2120 Type *CurTy = Type::getInt32Ty(Context); 2121 unsigned NextCstNo = ValueList.size(); 2122 while (1) { 2123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2124 2125 switch (Entry.Kind) { 2126 case BitstreamEntry::SubBlock: // Handled for us already. 2127 case BitstreamEntry::Error: 2128 return Error("Malformed block"); 2129 case BitstreamEntry::EndBlock: 2130 if (NextCstNo != ValueList.size()) 2131 return Error("Invalid ronstant reference"); 2132 2133 // Once all the constants have been read, go through and resolve forward 2134 // references. 2135 ValueList.ResolveConstantForwardRefs(); 2136 return std::error_code(); 2137 case BitstreamEntry::Record: 2138 // The interesting case. 2139 break; 2140 } 2141 2142 // Read a record. 2143 Record.clear(); 2144 Value *V = nullptr; 2145 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2146 switch (BitCode) { 2147 default: // Default behavior: unknown constant 2148 case bitc::CST_CODE_UNDEF: // UNDEF 2149 V = UndefValue::get(CurTy); 2150 break; 2151 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2152 if (Record.empty()) 2153 return Error("Invalid record"); 2154 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2155 return Error("Invalid record"); 2156 CurTy = TypeList[Record[0]]; 2157 continue; // Skip the ValueList manipulation. 2158 case bitc::CST_CODE_NULL: // NULL 2159 V = Constant::getNullValue(CurTy); 2160 break; 2161 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2162 if (!CurTy->isIntegerTy() || Record.empty()) 2163 return Error("Invalid record"); 2164 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2165 break; 2166 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2167 if (!CurTy->isIntegerTy() || Record.empty()) 2168 return Error("Invalid record"); 2169 2170 APInt VInt = ReadWideAPInt(Record, 2171 cast<IntegerType>(CurTy)->getBitWidth()); 2172 V = ConstantInt::get(Context, VInt); 2173 2174 break; 2175 } 2176 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2177 if (Record.empty()) 2178 return Error("Invalid record"); 2179 if (CurTy->isHalfTy()) 2180 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2181 APInt(16, (uint16_t)Record[0]))); 2182 else if (CurTy->isFloatTy()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2184 APInt(32, (uint32_t)Record[0]))); 2185 else if (CurTy->isDoubleTy()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2187 APInt(64, Record[0]))); 2188 else if (CurTy->isX86_FP80Ty()) { 2189 // Bits are not stored the same way as a normal i80 APInt, compensate. 2190 uint64_t Rearrange[2]; 2191 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2192 Rearrange[1] = Record[0] >> 48; 2193 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2194 APInt(80, Rearrange))); 2195 } else if (CurTy->isFP128Ty()) 2196 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2197 APInt(128, Record))); 2198 else if (CurTy->isPPC_FP128Ty()) 2199 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2200 APInt(128, Record))); 2201 else 2202 V = UndefValue::get(CurTy); 2203 break; 2204 } 2205 2206 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2207 if (Record.empty()) 2208 return Error("Invalid record"); 2209 2210 unsigned Size = Record.size(); 2211 SmallVector<Constant*, 16> Elts; 2212 2213 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2214 for (unsigned i = 0; i != Size; ++i) 2215 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2216 STy->getElementType(i))); 2217 V = ConstantStruct::get(STy, Elts); 2218 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2219 Type *EltTy = ATy->getElementType(); 2220 for (unsigned i = 0; i != Size; ++i) 2221 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2222 V = ConstantArray::get(ATy, Elts); 2223 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2224 Type *EltTy = VTy->getElementType(); 2225 for (unsigned i = 0; i != Size; ++i) 2226 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2227 V = ConstantVector::get(Elts); 2228 } else { 2229 V = UndefValue::get(CurTy); 2230 } 2231 break; 2232 } 2233 case bitc::CST_CODE_STRING: // STRING: [values] 2234 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2235 if (Record.empty()) 2236 return Error("Invalid record"); 2237 2238 SmallString<16> Elts(Record.begin(), Record.end()); 2239 V = ConstantDataArray::getString(Context, Elts, 2240 BitCode == bitc::CST_CODE_CSTRING); 2241 break; 2242 } 2243 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2244 if (Record.empty()) 2245 return Error("Invalid record"); 2246 2247 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2248 unsigned Size = Record.size(); 2249 2250 if (EltTy->isIntegerTy(8)) { 2251 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2252 if (isa<VectorType>(CurTy)) 2253 V = ConstantDataVector::get(Context, Elts); 2254 else 2255 V = ConstantDataArray::get(Context, Elts); 2256 } else if (EltTy->isIntegerTy(16)) { 2257 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2258 if (isa<VectorType>(CurTy)) 2259 V = ConstantDataVector::get(Context, Elts); 2260 else 2261 V = ConstantDataArray::get(Context, Elts); 2262 } else if (EltTy->isIntegerTy(32)) { 2263 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2264 if (isa<VectorType>(CurTy)) 2265 V = ConstantDataVector::get(Context, Elts); 2266 else 2267 V = ConstantDataArray::get(Context, Elts); 2268 } else if (EltTy->isIntegerTy(64)) { 2269 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2270 if (isa<VectorType>(CurTy)) 2271 V = ConstantDataVector::get(Context, Elts); 2272 else 2273 V = ConstantDataArray::get(Context, Elts); 2274 } else if (EltTy->isFloatTy()) { 2275 SmallVector<float, 16> Elts(Size); 2276 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2277 if (isa<VectorType>(CurTy)) 2278 V = ConstantDataVector::get(Context, Elts); 2279 else 2280 V = ConstantDataArray::get(Context, Elts); 2281 } else if (EltTy->isDoubleTy()) { 2282 SmallVector<double, 16> Elts(Size); 2283 std::transform(Record.begin(), Record.end(), Elts.begin(), 2284 BitsToDouble); 2285 if (isa<VectorType>(CurTy)) 2286 V = ConstantDataVector::get(Context, Elts); 2287 else 2288 V = ConstantDataArray::get(Context, Elts); 2289 } else { 2290 return Error("Invalid type for value"); 2291 } 2292 break; 2293 } 2294 2295 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2296 if (Record.size() < 3) 2297 return Error("Invalid record"); 2298 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2299 if (Opc < 0) { 2300 V = UndefValue::get(CurTy); // Unknown binop. 2301 } else { 2302 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2303 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2304 unsigned Flags = 0; 2305 if (Record.size() >= 4) { 2306 if (Opc == Instruction::Add || 2307 Opc == Instruction::Sub || 2308 Opc == Instruction::Mul || 2309 Opc == Instruction::Shl) { 2310 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2311 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2312 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2313 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2314 } else if (Opc == Instruction::SDiv || 2315 Opc == Instruction::UDiv || 2316 Opc == Instruction::LShr || 2317 Opc == Instruction::AShr) { 2318 if (Record[3] & (1 << bitc::PEO_EXACT)) 2319 Flags |= SDivOperator::IsExact; 2320 } 2321 } 2322 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2323 } 2324 break; 2325 } 2326 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2327 if (Record.size() < 3) 2328 return Error("Invalid record"); 2329 int Opc = GetDecodedCastOpcode(Record[0]); 2330 if (Opc < 0) { 2331 V = UndefValue::get(CurTy); // Unknown cast. 2332 } else { 2333 Type *OpTy = getTypeByID(Record[1]); 2334 if (!OpTy) 2335 return Error("Invalid record"); 2336 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2337 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2338 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2339 } 2340 break; 2341 } 2342 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2343 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2344 unsigned OpNum = 0; 2345 Type *PointeeType = nullptr; 2346 if (Record.size() % 2) 2347 PointeeType = getTypeByID(Record[OpNum++]); 2348 SmallVector<Constant*, 16> Elts; 2349 while (OpNum != Record.size()) { 2350 Type *ElTy = getTypeByID(Record[OpNum++]); 2351 if (!ElTy) 2352 return Error("Invalid record"); 2353 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2354 } 2355 2356 if (PointeeType && 2357 PointeeType != 2358 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2359 ->getElementType()) 2360 return Error("Explicit gep operator type does not match pointee type " 2361 "of pointer operand"); 2362 2363 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2364 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2365 BitCode == 2366 bitc::CST_CODE_CE_INBOUNDS_GEP); 2367 break; 2368 } 2369 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2370 if (Record.size() < 3) 2371 return Error("Invalid record"); 2372 2373 Type *SelectorTy = Type::getInt1Ty(Context); 2374 2375 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2376 // vector. Otherwise, it must be a single bit. 2377 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2378 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2379 VTy->getNumElements()); 2380 2381 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2382 SelectorTy), 2383 ValueList.getConstantFwdRef(Record[1],CurTy), 2384 ValueList.getConstantFwdRef(Record[2],CurTy)); 2385 break; 2386 } 2387 case bitc::CST_CODE_CE_EXTRACTELT 2388 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2389 if (Record.size() < 3) 2390 return Error("Invalid record"); 2391 VectorType *OpTy = 2392 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2393 if (!OpTy) 2394 return Error("Invalid record"); 2395 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2396 Constant *Op1 = nullptr; 2397 if (Record.size() == 4) { 2398 Type *IdxTy = getTypeByID(Record[2]); 2399 if (!IdxTy) 2400 return Error("Invalid record"); 2401 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2402 } else // TODO: Remove with llvm 4.0 2403 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2404 if (!Op1) 2405 return Error("Invalid record"); 2406 V = ConstantExpr::getExtractElement(Op0, Op1); 2407 break; 2408 } 2409 case bitc::CST_CODE_CE_INSERTELT 2410 : { // CE_INSERTELT: [opval, opval, opty, opval] 2411 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2412 if (Record.size() < 3 || !OpTy) 2413 return Error("Invalid record"); 2414 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2415 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2416 OpTy->getElementType()); 2417 Constant *Op2 = nullptr; 2418 if (Record.size() == 4) { 2419 Type *IdxTy = getTypeByID(Record[2]); 2420 if (!IdxTy) 2421 return Error("Invalid record"); 2422 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2423 } else // TODO: Remove with llvm 4.0 2424 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2425 if (!Op2) 2426 return Error("Invalid record"); 2427 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2428 break; 2429 } 2430 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2431 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2432 if (Record.size() < 3 || !OpTy) 2433 return Error("Invalid record"); 2434 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2435 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2436 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2437 OpTy->getNumElements()); 2438 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2439 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2440 break; 2441 } 2442 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2443 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2444 VectorType *OpTy = 2445 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2446 if (Record.size() < 4 || !RTy || !OpTy) 2447 return Error("Invalid record"); 2448 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2449 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2450 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2451 RTy->getNumElements()); 2452 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2453 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2454 break; 2455 } 2456 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2457 if (Record.size() < 4) 2458 return Error("Invalid record"); 2459 Type *OpTy = getTypeByID(Record[0]); 2460 if (!OpTy) 2461 return Error("Invalid record"); 2462 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2463 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2464 2465 if (OpTy->isFPOrFPVectorTy()) 2466 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2467 else 2468 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2469 break; 2470 } 2471 // This maintains backward compatibility, pre-asm dialect keywords. 2472 // FIXME: Remove with the 4.0 release. 2473 case bitc::CST_CODE_INLINEASM_OLD: { 2474 if (Record.size() < 2) 2475 return Error("Invalid record"); 2476 std::string AsmStr, ConstrStr; 2477 bool HasSideEffects = Record[0] & 1; 2478 bool IsAlignStack = Record[0] >> 1; 2479 unsigned AsmStrSize = Record[1]; 2480 if (2+AsmStrSize >= Record.size()) 2481 return Error("Invalid record"); 2482 unsigned ConstStrSize = Record[2+AsmStrSize]; 2483 if (3+AsmStrSize+ConstStrSize > Record.size()) 2484 return Error("Invalid record"); 2485 2486 for (unsigned i = 0; i != AsmStrSize; ++i) 2487 AsmStr += (char)Record[2+i]; 2488 for (unsigned i = 0; i != ConstStrSize; ++i) 2489 ConstrStr += (char)Record[3+AsmStrSize+i]; 2490 PointerType *PTy = cast<PointerType>(CurTy); 2491 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2492 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2493 break; 2494 } 2495 // This version adds support for the asm dialect keywords (e.g., 2496 // inteldialect). 2497 case bitc::CST_CODE_INLINEASM: { 2498 if (Record.size() < 2) 2499 return Error("Invalid record"); 2500 std::string AsmStr, ConstrStr; 2501 bool HasSideEffects = Record[0] & 1; 2502 bool IsAlignStack = (Record[0] >> 1) & 1; 2503 unsigned AsmDialect = Record[0] >> 2; 2504 unsigned AsmStrSize = Record[1]; 2505 if (2+AsmStrSize >= Record.size()) 2506 return Error("Invalid record"); 2507 unsigned ConstStrSize = Record[2+AsmStrSize]; 2508 if (3+AsmStrSize+ConstStrSize > Record.size()) 2509 return Error("Invalid record"); 2510 2511 for (unsigned i = 0; i != AsmStrSize; ++i) 2512 AsmStr += (char)Record[2+i]; 2513 for (unsigned i = 0; i != ConstStrSize; ++i) 2514 ConstrStr += (char)Record[3+AsmStrSize+i]; 2515 PointerType *PTy = cast<PointerType>(CurTy); 2516 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2517 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2518 InlineAsm::AsmDialect(AsmDialect)); 2519 break; 2520 } 2521 case bitc::CST_CODE_BLOCKADDRESS:{ 2522 if (Record.size() < 3) 2523 return Error("Invalid record"); 2524 Type *FnTy = getTypeByID(Record[0]); 2525 if (!FnTy) 2526 return Error("Invalid record"); 2527 Function *Fn = 2528 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2529 if (!Fn) 2530 return Error("Invalid record"); 2531 2532 // Don't let Fn get dematerialized. 2533 BlockAddressesTaken.insert(Fn); 2534 2535 // If the function is already parsed we can insert the block address right 2536 // away. 2537 BasicBlock *BB; 2538 unsigned BBID = Record[2]; 2539 if (!BBID) 2540 // Invalid reference to entry block. 2541 return Error("Invalid ID"); 2542 if (!Fn->empty()) { 2543 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2544 for (size_t I = 0, E = BBID; I != E; ++I) { 2545 if (BBI == BBE) 2546 return Error("Invalid ID"); 2547 ++BBI; 2548 } 2549 BB = BBI; 2550 } else { 2551 // Otherwise insert a placeholder and remember it so it can be inserted 2552 // when the function is parsed. 2553 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2554 if (FwdBBs.empty()) 2555 BasicBlockFwdRefQueue.push_back(Fn); 2556 if (FwdBBs.size() < BBID + 1) 2557 FwdBBs.resize(BBID + 1); 2558 if (!FwdBBs[BBID]) 2559 FwdBBs[BBID] = BasicBlock::Create(Context); 2560 BB = FwdBBs[BBID]; 2561 } 2562 V = BlockAddress::get(Fn, BB); 2563 break; 2564 } 2565 } 2566 2567 ValueList.AssignValue(V, NextCstNo); 2568 ++NextCstNo; 2569 } 2570 } 2571 2572 std::error_code BitcodeReader::ParseUseLists() { 2573 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2574 return Error("Invalid record"); 2575 2576 // Read all the records. 2577 SmallVector<uint64_t, 64> Record; 2578 while (1) { 2579 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2580 2581 switch (Entry.Kind) { 2582 case BitstreamEntry::SubBlock: // Handled for us already. 2583 case BitstreamEntry::Error: 2584 return Error("Malformed block"); 2585 case BitstreamEntry::EndBlock: 2586 return std::error_code(); 2587 case BitstreamEntry::Record: 2588 // The interesting case. 2589 break; 2590 } 2591 2592 // Read a use list record. 2593 Record.clear(); 2594 bool IsBB = false; 2595 switch (Stream.readRecord(Entry.ID, Record)) { 2596 default: // Default behavior: unknown type. 2597 break; 2598 case bitc::USELIST_CODE_BB: 2599 IsBB = true; 2600 // fallthrough 2601 case bitc::USELIST_CODE_DEFAULT: { 2602 unsigned RecordLength = Record.size(); 2603 if (RecordLength < 3) 2604 // Records should have at least an ID and two indexes. 2605 return Error("Invalid record"); 2606 unsigned ID = Record.back(); 2607 Record.pop_back(); 2608 2609 Value *V; 2610 if (IsBB) { 2611 assert(ID < FunctionBBs.size() && "Basic block not found"); 2612 V = FunctionBBs[ID]; 2613 } else 2614 V = ValueList[ID]; 2615 unsigned NumUses = 0; 2616 SmallDenseMap<const Use *, unsigned, 16> Order; 2617 for (const Use &U : V->uses()) { 2618 if (++NumUses > Record.size()) 2619 break; 2620 Order[&U] = Record[NumUses - 1]; 2621 } 2622 if (Order.size() != Record.size() || NumUses > Record.size()) 2623 // Mismatches can happen if the functions are being materialized lazily 2624 // (out-of-order), or a value has been upgraded. 2625 break; 2626 2627 V->sortUseList([&](const Use &L, const Use &R) { 2628 return Order.lookup(&L) < Order.lookup(&R); 2629 }); 2630 break; 2631 } 2632 } 2633 } 2634 } 2635 2636 /// When we see the block for metadata, remember where it is and then skip it. 2637 /// This lets us lazily deserialize the metadata. 2638 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2639 // Save the current stream state. 2640 uint64_t CurBit = Stream.GetCurrentBitNo(); 2641 DeferredMetadataInfo.push_back(CurBit); 2642 2643 // Skip over the block for now. 2644 if (Stream.SkipBlock()) 2645 return Error("Invalid record"); 2646 return std::error_code(); 2647 } 2648 2649 std::error_code BitcodeReader::materializeMetadata() { 2650 for (uint64_t BitPos : DeferredMetadataInfo) { 2651 // Move the bit stream to the saved position. 2652 Stream.JumpToBit(BitPos); 2653 if (std::error_code EC = ParseMetadata()) 2654 return EC; 2655 } 2656 DeferredMetadataInfo.clear(); 2657 return std::error_code(); 2658 } 2659 2660 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2661 2662 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2663 /// remember where it is and then skip it. This lets us lazily deserialize the 2664 /// functions. 2665 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2666 // Get the function we are talking about. 2667 if (FunctionsWithBodies.empty()) 2668 return Error("Insufficient function protos"); 2669 2670 Function *Fn = FunctionsWithBodies.back(); 2671 FunctionsWithBodies.pop_back(); 2672 2673 // Save the current stream state. 2674 uint64_t CurBit = Stream.GetCurrentBitNo(); 2675 DeferredFunctionInfo[Fn] = CurBit; 2676 2677 // Skip over the function block for now. 2678 if (Stream.SkipBlock()) 2679 return Error("Invalid record"); 2680 return std::error_code(); 2681 } 2682 2683 std::error_code BitcodeReader::GlobalCleanup() { 2684 // Patch the initializers for globals and aliases up. 2685 ResolveGlobalAndAliasInits(); 2686 if (!GlobalInits.empty() || !AliasInits.empty()) 2687 return Error("Malformed global initializer set"); 2688 2689 // Look for intrinsic functions which need to be upgraded at some point 2690 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2691 FI != FE; ++FI) { 2692 Function *NewFn; 2693 if (UpgradeIntrinsicFunction(FI, NewFn)) 2694 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2695 } 2696 2697 // Look for global variables which need to be renamed. 2698 for (Module::global_iterator 2699 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2700 GI != GE;) { 2701 GlobalVariable *GV = GI++; 2702 UpgradeGlobalVariable(GV); 2703 } 2704 2705 // Force deallocation of memory for these vectors to favor the client that 2706 // want lazy deserialization. 2707 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2708 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2709 return std::error_code(); 2710 } 2711 2712 std::error_code BitcodeReader::ParseModule(bool Resume, 2713 bool ShouldLazyLoadMetadata) { 2714 if (Resume) 2715 Stream.JumpToBit(NextUnreadBit); 2716 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2717 return Error("Invalid record"); 2718 2719 SmallVector<uint64_t, 64> Record; 2720 std::vector<std::string> SectionTable; 2721 std::vector<std::string> GCTable; 2722 2723 // Read all the records for this module. 2724 while (1) { 2725 BitstreamEntry Entry = Stream.advance(); 2726 2727 switch (Entry.Kind) { 2728 case BitstreamEntry::Error: 2729 return Error("Malformed block"); 2730 case BitstreamEntry::EndBlock: 2731 return GlobalCleanup(); 2732 2733 case BitstreamEntry::SubBlock: 2734 switch (Entry.ID) { 2735 default: // Skip unknown content. 2736 if (Stream.SkipBlock()) 2737 return Error("Invalid record"); 2738 break; 2739 case bitc::BLOCKINFO_BLOCK_ID: 2740 if (Stream.ReadBlockInfoBlock()) 2741 return Error("Malformed block"); 2742 break; 2743 case bitc::PARAMATTR_BLOCK_ID: 2744 if (std::error_code EC = ParseAttributeBlock()) 2745 return EC; 2746 break; 2747 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2748 if (std::error_code EC = ParseAttributeGroupBlock()) 2749 return EC; 2750 break; 2751 case bitc::TYPE_BLOCK_ID_NEW: 2752 if (std::error_code EC = ParseTypeTable()) 2753 return EC; 2754 break; 2755 case bitc::VALUE_SYMTAB_BLOCK_ID: 2756 if (std::error_code EC = ParseValueSymbolTable()) 2757 return EC; 2758 SeenValueSymbolTable = true; 2759 break; 2760 case bitc::CONSTANTS_BLOCK_ID: 2761 if (std::error_code EC = ParseConstants()) 2762 return EC; 2763 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2764 return EC; 2765 break; 2766 case bitc::METADATA_BLOCK_ID: 2767 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2768 if (std::error_code EC = rememberAndSkipMetadata()) 2769 return EC; 2770 break; 2771 } 2772 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2773 if (std::error_code EC = ParseMetadata()) 2774 return EC; 2775 break; 2776 case bitc::FUNCTION_BLOCK_ID: 2777 // If this is the first function body we've seen, reverse the 2778 // FunctionsWithBodies list. 2779 if (!SeenFirstFunctionBody) { 2780 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2781 if (std::error_code EC = GlobalCleanup()) 2782 return EC; 2783 SeenFirstFunctionBody = true; 2784 } 2785 2786 if (std::error_code EC = RememberAndSkipFunctionBody()) 2787 return EC; 2788 // For streaming bitcode, suspend parsing when we reach the function 2789 // bodies. Subsequent materialization calls will resume it when 2790 // necessary. For streaming, the function bodies must be at the end of 2791 // the bitcode. If the bitcode file is old, the symbol table will be 2792 // at the end instead and will not have been seen yet. In this case, 2793 // just finish the parse now. 2794 if (LazyStreamer && SeenValueSymbolTable) { 2795 NextUnreadBit = Stream.GetCurrentBitNo(); 2796 return std::error_code(); 2797 } 2798 break; 2799 case bitc::USELIST_BLOCK_ID: 2800 if (std::error_code EC = ParseUseLists()) 2801 return EC; 2802 break; 2803 } 2804 continue; 2805 2806 case BitstreamEntry::Record: 2807 // The interesting case. 2808 break; 2809 } 2810 2811 2812 // Read a record. 2813 switch (Stream.readRecord(Entry.ID, Record)) { 2814 default: break; // Default behavior, ignore unknown content. 2815 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2816 if (Record.size() < 1) 2817 return Error("Invalid record"); 2818 // Only version #0 and #1 are supported so far. 2819 unsigned module_version = Record[0]; 2820 switch (module_version) { 2821 default: 2822 return Error("Invalid value"); 2823 case 0: 2824 UseRelativeIDs = false; 2825 break; 2826 case 1: 2827 UseRelativeIDs = true; 2828 break; 2829 } 2830 break; 2831 } 2832 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2833 std::string S; 2834 if (ConvertToString(Record, 0, S)) 2835 return Error("Invalid record"); 2836 TheModule->setTargetTriple(S); 2837 break; 2838 } 2839 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2840 std::string S; 2841 if (ConvertToString(Record, 0, S)) 2842 return Error("Invalid record"); 2843 TheModule->setDataLayout(S); 2844 break; 2845 } 2846 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2847 std::string S; 2848 if (ConvertToString(Record, 0, S)) 2849 return Error("Invalid record"); 2850 TheModule->setModuleInlineAsm(S); 2851 break; 2852 } 2853 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2854 // FIXME: Remove in 4.0. 2855 std::string S; 2856 if (ConvertToString(Record, 0, S)) 2857 return Error("Invalid record"); 2858 // Ignore value. 2859 break; 2860 } 2861 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2862 std::string S; 2863 if (ConvertToString(Record, 0, S)) 2864 return Error("Invalid record"); 2865 SectionTable.push_back(S); 2866 break; 2867 } 2868 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2869 std::string S; 2870 if (ConvertToString(Record, 0, S)) 2871 return Error("Invalid record"); 2872 GCTable.push_back(S); 2873 break; 2874 } 2875 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2876 if (Record.size() < 2) 2877 return Error("Invalid record"); 2878 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2879 unsigned ComdatNameSize = Record[1]; 2880 std::string ComdatName; 2881 ComdatName.reserve(ComdatNameSize); 2882 for (unsigned i = 0; i != ComdatNameSize; ++i) 2883 ComdatName += (char)Record[2 + i]; 2884 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2885 C->setSelectionKind(SK); 2886 ComdatList.push_back(C); 2887 break; 2888 } 2889 // GLOBALVAR: [pointer type, isconst, initid, 2890 // linkage, alignment, section, visibility, threadlocal, 2891 // unnamed_addr, externally_initialized, dllstorageclass, 2892 // comdat] 2893 case bitc::MODULE_CODE_GLOBALVAR: { 2894 if (Record.size() < 6) 2895 return Error("Invalid record"); 2896 Type *Ty = getTypeByID(Record[0]); 2897 if (!Ty) 2898 return Error("Invalid record"); 2899 bool isConstant = Record[1] & 1; 2900 bool explicitType = Record[1] & 2; 2901 unsigned AddressSpace; 2902 if (explicitType) { 2903 AddressSpace = Record[1] >> 2; 2904 } else { 2905 if (!Ty->isPointerTy()) 2906 return Error("Invalid type for value"); 2907 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2908 Ty = cast<PointerType>(Ty)->getElementType(); 2909 } 2910 2911 uint64_t RawLinkage = Record[3]; 2912 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2913 unsigned Alignment; 2914 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2915 return EC; 2916 std::string Section; 2917 if (Record[5]) { 2918 if (Record[5]-1 >= SectionTable.size()) 2919 return Error("Invalid ID"); 2920 Section = SectionTable[Record[5]-1]; 2921 } 2922 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2923 // Local linkage must have default visibility. 2924 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2925 // FIXME: Change to an error if non-default in 4.0. 2926 Visibility = GetDecodedVisibility(Record[6]); 2927 2928 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2929 if (Record.size() > 7) 2930 TLM = GetDecodedThreadLocalMode(Record[7]); 2931 2932 bool UnnamedAddr = false; 2933 if (Record.size() > 8) 2934 UnnamedAddr = Record[8]; 2935 2936 bool ExternallyInitialized = false; 2937 if (Record.size() > 9) 2938 ExternallyInitialized = Record[9]; 2939 2940 GlobalVariable *NewGV = 2941 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2942 TLM, AddressSpace, ExternallyInitialized); 2943 NewGV->setAlignment(Alignment); 2944 if (!Section.empty()) 2945 NewGV->setSection(Section); 2946 NewGV->setVisibility(Visibility); 2947 NewGV->setUnnamedAddr(UnnamedAddr); 2948 2949 if (Record.size() > 10) 2950 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2951 else 2952 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2953 2954 ValueList.push_back(NewGV); 2955 2956 // Remember which value to use for the global initializer. 2957 if (unsigned InitID = Record[2]) 2958 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2959 2960 if (Record.size() > 11) { 2961 if (unsigned ComdatID = Record[11]) { 2962 if (ComdatID > ComdatList.size()) 2963 return Error("Invalid global variable comdat ID"); 2964 NewGV->setComdat(ComdatList[ComdatID - 1]); 2965 } 2966 } else if (hasImplicitComdat(RawLinkage)) { 2967 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2968 } 2969 break; 2970 } 2971 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2972 // alignment, section, visibility, gc, unnamed_addr, 2973 // prologuedata, dllstorageclass, comdat, prefixdata] 2974 case bitc::MODULE_CODE_FUNCTION: { 2975 if (Record.size() < 8) 2976 return Error("Invalid record"); 2977 Type *Ty = getTypeByID(Record[0]); 2978 if (!Ty) 2979 return Error("Invalid record"); 2980 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2981 Ty = PTy->getElementType(); 2982 auto *FTy = dyn_cast<FunctionType>(Ty); 2983 if (!FTy) 2984 return Error("Invalid type for value"); 2985 2986 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2987 "", TheModule); 2988 2989 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2990 bool isProto = Record[2]; 2991 uint64_t RawLinkage = Record[3]; 2992 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2993 Func->setAttributes(getAttributes(Record[4])); 2994 2995 unsigned Alignment; 2996 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2997 return EC; 2998 Func->setAlignment(Alignment); 2999 if (Record[6]) { 3000 if (Record[6]-1 >= SectionTable.size()) 3001 return Error("Invalid ID"); 3002 Func->setSection(SectionTable[Record[6]-1]); 3003 } 3004 // Local linkage must have default visibility. 3005 if (!Func->hasLocalLinkage()) 3006 // FIXME: Change to an error if non-default in 4.0. 3007 Func->setVisibility(GetDecodedVisibility(Record[7])); 3008 if (Record.size() > 8 && Record[8]) { 3009 if (Record[8]-1 >= GCTable.size()) 3010 return Error("Invalid ID"); 3011 Func->setGC(GCTable[Record[8]-1].c_str()); 3012 } 3013 bool UnnamedAddr = false; 3014 if (Record.size() > 9) 3015 UnnamedAddr = Record[9]; 3016 Func->setUnnamedAddr(UnnamedAddr); 3017 if (Record.size() > 10 && Record[10] != 0) 3018 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3019 3020 if (Record.size() > 11) 3021 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3022 else 3023 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3024 3025 if (Record.size() > 12) { 3026 if (unsigned ComdatID = Record[12]) { 3027 if (ComdatID > ComdatList.size()) 3028 return Error("Invalid function comdat ID"); 3029 Func->setComdat(ComdatList[ComdatID - 1]); 3030 } 3031 } else if (hasImplicitComdat(RawLinkage)) { 3032 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3033 } 3034 3035 if (Record.size() > 13 && Record[13] != 0) 3036 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3037 3038 ValueList.push_back(Func); 3039 3040 // If this is a function with a body, remember the prototype we are 3041 // creating now, so that we can match up the body with them later. 3042 if (!isProto) { 3043 Func->setIsMaterializable(true); 3044 FunctionsWithBodies.push_back(Func); 3045 if (LazyStreamer) 3046 DeferredFunctionInfo[Func] = 0; 3047 } 3048 break; 3049 } 3050 // ALIAS: [alias type, aliasee val#, linkage] 3051 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3052 case bitc::MODULE_CODE_ALIAS: { 3053 if (Record.size() < 3) 3054 return Error("Invalid record"); 3055 Type *Ty = getTypeByID(Record[0]); 3056 if (!Ty) 3057 return Error("Invalid record"); 3058 auto *PTy = dyn_cast<PointerType>(Ty); 3059 if (!PTy) 3060 return Error("Invalid type for value"); 3061 3062 auto *NewGA = 3063 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3064 // Old bitcode files didn't have visibility field. 3065 // Local linkage must have default visibility. 3066 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3067 // FIXME: Change to an error if non-default in 4.0. 3068 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3069 if (Record.size() > 4) 3070 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3071 else 3072 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3073 if (Record.size() > 5) 3074 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3075 if (Record.size() > 6) 3076 NewGA->setUnnamedAddr(Record[6]); 3077 ValueList.push_back(NewGA); 3078 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3079 break; 3080 } 3081 /// MODULE_CODE_PURGEVALS: [numvals] 3082 case bitc::MODULE_CODE_PURGEVALS: 3083 // Trim down the value list to the specified size. 3084 if (Record.size() < 1 || Record[0] > ValueList.size()) 3085 return Error("Invalid record"); 3086 ValueList.shrinkTo(Record[0]); 3087 break; 3088 } 3089 Record.clear(); 3090 } 3091 } 3092 3093 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3094 bool ShouldLazyLoadMetadata) { 3095 TheModule = nullptr; 3096 3097 if (std::error_code EC = InitStream()) 3098 return EC; 3099 3100 // Sniff for the signature. 3101 if (Stream.Read(8) != 'B' || 3102 Stream.Read(8) != 'C' || 3103 Stream.Read(4) != 0x0 || 3104 Stream.Read(4) != 0xC || 3105 Stream.Read(4) != 0xE || 3106 Stream.Read(4) != 0xD) 3107 return Error("Invalid bitcode signature"); 3108 3109 // We expect a number of well-defined blocks, though we don't necessarily 3110 // need to understand them all. 3111 while (1) { 3112 if (Stream.AtEndOfStream()) { 3113 if (TheModule) 3114 return std::error_code(); 3115 // We didn't really read a proper Module. 3116 return Error("Malformed IR file"); 3117 } 3118 3119 BitstreamEntry Entry = 3120 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3121 3122 switch (Entry.Kind) { 3123 case BitstreamEntry::Error: 3124 return Error("Malformed block"); 3125 case BitstreamEntry::EndBlock: 3126 return std::error_code(); 3127 3128 case BitstreamEntry::SubBlock: 3129 switch (Entry.ID) { 3130 case bitc::BLOCKINFO_BLOCK_ID: 3131 if (Stream.ReadBlockInfoBlock()) 3132 return Error("Malformed block"); 3133 break; 3134 case bitc::MODULE_BLOCK_ID: 3135 // Reject multiple MODULE_BLOCK's in a single bitstream. 3136 if (TheModule) 3137 return Error("Invalid multiple blocks"); 3138 TheModule = M; 3139 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3140 return EC; 3141 if (LazyStreamer) 3142 return std::error_code(); 3143 break; 3144 default: 3145 if (Stream.SkipBlock()) 3146 return Error("Invalid record"); 3147 break; 3148 } 3149 continue; 3150 case BitstreamEntry::Record: 3151 // There should be no records in the top-level of blocks. 3152 3153 // The ranlib in Xcode 4 will align archive members by appending newlines 3154 // to the end of them. If this file size is a multiple of 4 but not 8, we 3155 // have to read and ignore these final 4 bytes :-( 3156 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3157 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3158 Stream.AtEndOfStream()) 3159 return std::error_code(); 3160 3161 return Error("Invalid record"); 3162 } 3163 } 3164 } 3165 3166 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3167 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3168 return Error("Invalid record"); 3169 3170 SmallVector<uint64_t, 64> Record; 3171 3172 std::string Triple; 3173 // Read all the records for this module. 3174 while (1) { 3175 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3176 3177 switch (Entry.Kind) { 3178 case BitstreamEntry::SubBlock: // Handled for us already. 3179 case BitstreamEntry::Error: 3180 return Error("Malformed block"); 3181 case BitstreamEntry::EndBlock: 3182 return Triple; 3183 case BitstreamEntry::Record: 3184 // The interesting case. 3185 break; 3186 } 3187 3188 // Read a record. 3189 switch (Stream.readRecord(Entry.ID, Record)) { 3190 default: break; // Default behavior, ignore unknown content. 3191 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3192 std::string S; 3193 if (ConvertToString(Record, 0, S)) 3194 return Error("Invalid record"); 3195 Triple = S; 3196 break; 3197 } 3198 } 3199 Record.clear(); 3200 } 3201 llvm_unreachable("Exit infinite loop"); 3202 } 3203 3204 ErrorOr<std::string> BitcodeReader::parseTriple() { 3205 if (std::error_code EC = InitStream()) 3206 return EC; 3207 3208 // Sniff for the signature. 3209 if (Stream.Read(8) != 'B' || 3210 Stream.Read(8) != 'C' || 3211 Stream.Read(4) != 0x0 || 3212 Stream.Read(4) != 0xC || 3213 Stream.Read(4) != 0xE || 3214 Stream.Read(4) != 0xD) 3215 return Error("Invalid bitcode signature"); 3216 3217 // We expect a number of well-defined blocks, though we don't necessarily 3218 // need to understand them all. 3219 while (1) { 3220 BitstreamEntry Entry = Stream.advance(); 3221 3222 switch (Entry.Kind) { 3223 case BitstreamEntry::Error: 3224 return Error("Malformed block"); 3225 case BitstreamEntry::EndBlock: 3226 return std::error_code(); 3227 3228 case BitstreamEntry::SubBlock: 3229 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3230 return parseModuleTriple(); 3231 3232 // Ignore other sub-blocks. 3233 if (Stream.SkipBlock()) 3234 return Error("Malformed block"); 3235 continue; 3236 3237 case BitstreamEntry::Record: 3238 Stream.skipRecord(Entry.ID); 3239 continue; 3240 } 3241 } 3242 } 3243 3244 /// ParseMetadataAttachment - Parse metadata attachments. 3245 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3246 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3247 return Error("Invalid record"); 3248 3249 SmallVector<uint64_t, 64> Record; 3250 while (1) { 3251 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3252 3253 switch (Entry.Kind) { 3254 case BitstreamEntry::SubBlock: // Handled for us already. 3255 case BitstreamEntry::Error: 3256 return Error("Malformed block"); 3257 case BitstreamEntry::EndBlock: 3258 return std::error_code(); 3259 case BitstreamEntry::Record: 3260 // The interesting case. 3261 break; 3262 } 3263 3264 // Read a metadata attachment record. 3265 Record.clear(); 3266 switch (Stream.readRecord(Entry.ID, Record)) { 3267 default: // Default behavior: ignore. 3268 break; 3269 case bitc::METADATA_ATTACHMENT: { 3270 unsigned RecordLength = Record.size(); 3271 if (Record.empty()) 3272 return Error("Invalid record"); 3273 if (RecordLength % 2 == 0) { 3274 // A function attachment. 3275 for (unsigned I = 0; I != RecordLength; I += 2) { 3276 auto K = MDKindMap.find(Record[I]); 3277 if (K == MDKindMap.end()) 3278 return Error("Invalid ID"); 3279 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3280 F.setMetadata(K->second, cast<MDNode>(MD)); 3281 } 3282 continue; 3283 } 3284 3285 // An instruction attachment. 3286 Instruction *Inst = InstructionList[Record[0]]; 3287 for (unsigned i = 1; i != RecordLength; i = i+2) { 3288 unsigned Kind = Record[i]; 3289 DenseMap<unsigned, unsigned>::iterator I = 3290 MDKindMap.find(Kind); 3291 if (I == MDKindMap.end()) 3292 return Error("Invalid ID"); 3293 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3294 if (isa<LocalAsMetadata>(Node)) 3295 // Drop the attachment. This used to be legal, but there's no 3296 // upgrade path. 3297 break; 3298 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3299 if (I->second == LLVMContext::MD_tbaa) 3300 InstsWithTBAATag.push_back(Inst); 3301 } 3302 break; 3303 } 3304 } 3305 } 3306 } 3307 3308 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3309 Type *ValType, Type *PtrType) { 3310 if (!isa<PointerType>(PtrType)) 3311 return Error(DH, "Load/Store operand is not a pointer type"); 3312 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3313 3314 if (ValType && ValType != ElemType) 3315 return Error(DH, "Explicit load/store type does not match pointee type of " 3316 "pointer operand"); 3317 if (!PointerType::isLoadableOrStorableType(ElemType)) 3318 return Error(DH, "Cannot load/store from pointer"); 3319 return std::error_code(); 3320 } 3321 3322 /// ParseFunctionBody - Lazily parse the specified function body block. 3323 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3324 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3325 return Error("Invalid record"); 3326 3327 InstructionList.clear(); 3328 unsigned ModuleValueListSize = ValueList.size(); 3329 unsigned ModuleMDValueListSize = MDValueList.size(); 3330 3331 // Add all the function arguments to the value table. 3332 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3333 ValueList.push_back(I); 3334 3335 unsigned NextValueNo = ValueList.size(); 3336 BasicBlock *CurBB = nullptr; 3337 unsigned CurBBNo = 0; 3338 3339 DebugLoc LastLoc; 3340 auto getLastInstruction = [&]() -> Instruction * { 3341 if (CurBB && !CurBB->empty()) 3342 return &CurBB->back(); 3343 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3344 !FunctionBBs[CurBBNo - 1]->empty()) 3345 return &FunctionBBs[CurBBNo - 1]->back(); 3346 return nullptr; 3347 }; 3348 3349 // Read all the records. 3350 SmallVector<uint64_t, 64> Record; 3351 while (1) { 3352 BitstreamEntry Entry = Stream.advance(); 3353 3354 switch (Entry.Kind) { 3355 case BitstreamEntry::Error: 3356 return Error("Malformed block"); 3357 case BitstreamEntry::EndBlock: 3358 goto OutOfRecordLoop; 3359 3360 case BitstreamEntry::SubBlock: 3361 switch (Entry.ID) { 3362 default: // Skip unknown content. 3363 if (Stream.SkipBlock()) 3364 return Error("Invalid record"); 3365 break; 3366 case bitc::CONSTANTS_BLOCK_ID: 3367 if (std::error_code EC = ParseConstants()) 3368 return EC; 3369 NextValueNo = ValueList.size(); 3370 break; 3371 case bitc::VALUE_SYMTAB_BLOCK_ID: 3372 if (std::error_code EC = ParseValueSymbolTable()) 3373 return EC; 3374 break; 3375 case bitc::METADATA_ATTACHMENT_ID: 3376 if (std::error_code EC = ParseMetadataAttachment(*F)) 3377 return EC; 3378 break; 3379 case bitc::METADATA_BLOCK_ID: 3380 if (std::error_code EC = ParseMetadata()) 3381 return EC; 3382 break; 3383 case bitc::USELIST_BLOCK_ID: 3384 if (std::error_code EC = ParseUseLists()) 3385 return EC; 3386 break; 3387 } 3388 continue; 3389 3390 case BitstreamEntry::Record: 3391 // The interesting case. 3392 break; 3393 } 3394 3395 // Read a record. 3396 Record.clear(); 3397 Instruction *I = nullptr; 3398 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3399 switch (BitCode) { 3400 default: // Default behavior: reject 3401 return Error("Invalid value"); 3402 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3403 if (Record.size() < 1 || Record[0] == 0) 3404 return Error("Invalid record"); 3405 // Create all the basic blocks for the function. 3406 FunctionBBs.resize(Record[0]); 3407 3408 // See if anything took the address of blocks in this function. 3409 auto BBFRI = BasicBlockFwdRefs.find(F); 3410 if (BBFRI == BasicBlockFwdRefs.end()) { 3411 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3412 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3413 } else { 3414 auto &BBRefs = BBFRI->second; 3415 // Check for invalid basic block references. 3416 if (BBRefs.size() > FunctionBBs.size()) 3417 return Error("Invalid ID"); 3418 assert(!BBRefs.empty() && "Unexpected empty array"); 3419 assert(!BBRefs.front() && "Invalid reference to entry block"); 3420 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3421 ++I) 3422 if (I < RE && BBRefs[I]) { 3423 BBRefs[I]->insertInto(F); 3424 FunctionBBs[I] = BBRefs[I]; 3425 } else { 3426 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3427 } 3428 3429 // Erase from the table. 3430 BasicBlockFwdRefs.erase(BBFRI); 3431 } 3432 3433 CurBB = FunctionBBs[0]; 3434 continue; 3435 } 3436 3437 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3438 // This record indicates that the last instruction is at the same 3439 // location as the previous instruction with a location. 3440 I = getLastInstruction(); 3441 3442 if (!I) 3443 return Error("Invalid record"); 3444 I->setDebugLoc(LastLoc); 3445 I = nullptr; 3446 continue; 3447 3448 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3449 I = getLastInstruction(); 3450 if (!I || Record.size() < 4) 3451 return Error("Invalid record"); 3452 3453 unsigned Line = Record[0], Col = Record[1]; 3454 unsigned ScopeID = Record[2], IAID = Record[3]; 3455 3456 MDNode *Scope = nullptr, *IA = nullptr; 3457 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3458 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3459 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3460 I->setDebugLoc(LastLoc); 3461 I = nullptr; 3462 continue; 3463 } 3464 3465 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3466 unsigned OpNum = 0; 3467 Value *LHS, *RHS; 3468 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3469 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3470 OpNum+1 > Record.size()) 3471 return Error("Invalid record"); 3472 3473 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3474 if (Opc == -1) 3475 return Error("Invalid record"); 3476 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3477 InstructionList.push_back(I); 3478 if (OpNum < Record.size()) { 3479 if (Opc == Instruction::Add || 3480 Opc == Instruction::Sub || 3481 Opc == Instruction::Mul || 3482 Opc == Instruction::Shl) { 3483 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3484 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3485 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3486 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3487 } else if (Opc == Instruction::SDiv || 3488 Opc == Instruction::UDiv || 3489 Opc == Instruction::LShr || 3490 Opc == Instruction::AShr) { 3491 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3492 cast<BinaryOperator>(I)->setIsExact(true); 3493 } else if (isa<FPMathOperator>(I)) { 3494 FastMathFlags FMF; 3495 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3496 FMF.setUnsafeAlgebra(); 3497 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3498 FMF.setNoNaNs(); 3499 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3500 FMF.setNoInfs(); 3501 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3502 FMF.setNoSignedZeros(); 3503 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3504 FMF.setAllowReciprocal(); 3505 if (FMF.any()) 3506 I->setFastMathFlags(FMF); 3507 } 3508 3509 } 3510 break; 3511 } 3512 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3513 unsigned OpNum = 0; 3514 Value *Op; 3515 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3516 OpNum+2 != Record.size()) 3517 return Error("Invalid record"); 3518 3519 Type *ResTy = getTypeByID(Record[OpNum]); 3520 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3521 if (Opc == -1 || !ResTy) 3522 return Error("Invalid record"); 3523 Instruction *Temp = nullptr; 3524 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3525 if (Temp) { 3526 InstructionList.push_back(Temp); 3527 CurBB->getInstList().push_back(Temp); 3528 } 3529 } else { 3530 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3531 } 3532 InstructionList.push_back(I); 3533 break; 3534 } 3535 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3536 case bitc::FUNC_CODE_INST_GEP_OLD: 3537 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3538 unsigned OpNum = 0; 3539 3540 Type *Ty; 3541 bool InBounds; 3542 3543 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3544 InBounds = Record[OpNum++]; 3545 Ty = getTypeByID(Record[OpNum++]); 3546 } else { 3547 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3548 Ty = nullptr; 3549 } 3550 3551 Value *BasePtr; 3552 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3553 return Error("Invalid record"); 3554 3555 if (!Ty) 3556 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3557 ->getElementType(); 3558 else if (Ty != 3559 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3560 ->getElementType()) 3561 return Error( 3562 "Explicit gep type does not match pointee type of pointer operand"); 3563 3564 SmallVector<Value*, 16> GEPIdx; 3565 while (OpNum != Record.size()) { 3566 Value *Op; 3567 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3568 return Error("Invalid record"); 3569 GEPIdx.push_back(Op); 3570 } 3571 3572 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3573 3574 InstructionList.push_back(I); 3575 if (InBounds) 3576 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3577 break; 3578 } 3579 3580 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3581 // EXTRACTVAL: [opty, opval, n x indices] 3582 unsigned OpNum = 0; 3583 Value *Agg; 3584 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3585 return Error("Invalid record"); 3586 3587 unsigned RecSize = Record.size(); 3588 if (OpNum == RecSize) 3589 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3590 3591 SmallVector<unsigned, 4> EXTRACTVALIdx; 3592 Type *CurTy = Agg->getType(); 3593 for (; OpNum != RecSize; ++OpNum) { 3594 bool IsArray = CurTy->isArrayTy(); 3595 bool IsStruct = CurTy->isStructTy(); 3596 uint64_t Index = Record[OpNum]; 3597 3598 if (!IsStruct && !IsArray) 3599 return Error("EXTRACTVAL: Invalid type"); 3600 if ((unsigned)Index != Index) 3601 return Error("Invalid value"); 3602 if (IsStruct && Index >= CurTy->subtypes().size()) 3603 return Error("EXTRACTVAL: Invalid struct index"); 3604 if (IsArray && Index >= CurTy->getArrayNumElements()) 3605 return Error("EXTRACTVAL: Invalid array index"); 3606 EXTRACTVALIdx.push_back((unsigned)Index); 3607 3608 if (IsStruct) 3609 CurTy = CurTy->subtypes()[Index]; 3610 else 3611 CurTy = CurTy->subtypes()[0]; 3612 } 3613 3614 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3615 InstructionList.push_back(I); 3616 break; 3617 } 3618 3619 case bitc::FUNC_CODE_INST_INSERTVAL: { 3620 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3621 unsigned OpNum = 0; 3622 Value *Agg; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3624 return Error("Invalid record"); 3625 Value *Val; 3626 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3627 return Error("Invalid record"); 3628 3629 unsigned RecSize = Record.size(); 3630 if (OpNum == RecSize) 3631 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3632 3633 SmallVector<unsigned, 4> INSERTVALIdx; 3634 Type *CurTy = Agg->getType(); 3635 for (; OpNum != RecSize; ++OpNum) { 3636 bool IsArray = CurTy->isArrayTy(); 3637 bool IsStruct = CurTy->isStructTy(); 3638 uint64_t Index = Record[OpNum]; 3639 3640 if (!IsStruct && !IsArray) 3641 return Error("INSERTVAL: Invalid type"); 3642 if ((unsigned)Index != Index) 3643 return Error("Invalid value"); 3644 if (IsStruct && Index >= CurTy->subtypes().size()) 3645 return Error("INSERTVAL: Invalid struct index"); 3646 if (IsArray && Index >= CurTy->getArrayNumElements()) 3647 return Error("INSERTVAL: Invalid array index"); 3648 3649 INSERTVALIdx.push_back((unsigned)Index); 3650 if (IsStruct) 3651 CurTy = CurTy->subtypes()[Index]; 3652 else 3653 CurTy = CurTy->subtypes()[0]; 3654 } 3655 3656 if (CurTy != Val->getType()) 3657 return Error("Inserted value type doesn't match aggregate type"); 3658 3659 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3660 InstructionList.push_back(I); 3661 break; 3662 } 3663 3664 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3665 // obsolete form of select 3666 // handles select i1 ... in old bitcode 3667 unsigned OpNum = 0; 3668 Value *TrueVal, *FalseVal, *Cond; 3669 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3670 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3671 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3672 return Error("Invalid record"); 3673 3674 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3675 InstructionList.push_back(I); 3676 break; 3677 } 3678 3679 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3680 // new form of select 3681 // handles select i1 or select [N x i1] 3682 unsigned OpNum = 0; 3683 Value *TrueVal, *FalseVal, *Cond; 3684 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3685 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3686 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3687 return Error("Invalid record"); 3688 3689 // select condition can be either i1 or [N x i1] 3690 if (VectorType* vector_type = 3691 dyn_cast<VectorType>(Cond->getType())) { 3692 // expect <n x i1> 3693 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3694 return Error("Invalid type for value"); 3695 } else { 3696 // expect i1 3697 if (Cond->getType() != Type::getInt1Ty(Context)) 3698 return Error("Invalid type for value"); 3699 } 3700 3701 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3702 InstructionList.push_back(I); 3703 break; 3704 } 3705 3706 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3707 unsigned OpNum = 0; 3708 Value *Vec, *Idx; 3709 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3710 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3711 return Error("Invalid record"); 3712 if (!Vec->getType()->isVectorTy()) 3713 return Error("Invalid type for value"); 3714 I = ExtractElementInst::Create(Vec, Idx); 3715 InstructionList.push_back(I); 3716 break; 3717 } 3718 3719 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3720 unsigned OpNum = 0; 3721 Value *Vec, *Elt, *Idx; 3722 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3723 return Error("Invalid record"); 3724 if (!Vec->getType()->isVectorTy()) 3725 return Error("Invalid type for value"); 3726 if (popValue(Record, OpNum, NextValueNo, 3727 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3728 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3729 return Error("Invalid record"); 3730 I = InsertElementInst::Create(Vec, Elt, Idx); 3731 InstructionList.push_back(I); 3732 break; 3733 } 3734 3735 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3736 unsigned OpNum = 0; 3737 Value *Vec1, *Vec2, *Mask; 3738 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3739 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3740 return Error("Invalid record"); 3741 3742 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3743 return Error("Invalid record"); 3744 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3745 return Error("Invalid type for value"); 3746 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3747 InstructionList.push_back(I); 3748 break; 3749 } 3750 3751 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3752 // Old form of ICmp/FCmp returning bool 3753 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3754 // both legal on vectors but had different behaviour. 3755 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3756 // FCmp/ICmp returning bool or vector of bool 3757 3758 unsigned OpNum = 0; 3759 Value *LHS, *RHS; 3760 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3761 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3762 OpNum+1 != Record.size()) 3763 return Error("Invalid record"); 3764 3765 if (LHS->getType()->isFPOrFPVectorTy()) 3766 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3767 else 3768 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3769 InstructionList.push_back(I); 3770 break; 3771 } 3772 3773 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3774 { 3775 unsigned Size = Record.size(); 3776 if (Size == 0) { 3777 I = ReturnInst::Create(Context); 3778 InstructionList.push_back(I); 3779 break; 3780 } 3781 3782 unsigned OpNum = 0; 3783 Value *Op = nullptr; 3784 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3785 return Error("Invalid record"); 3786 if (OpNum != Record.size()) 3787 return Error("Invalid record"); 3788 3789 I = ReturnInst::Create(Context, Op); 3790 InstructionList.push_back(I); 3791 break; 3792 } 3793 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3794 if (Record.size() != 1 && Record.size() != 3) 3795 return Error("Invalid record"); 3796 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3797 if (!TrueDest) 3798 return Error("Invalid record"); 3799 3800 if (Record.size() == 1) { 3801 I = BranchInst::Create(TrueDest); 3802 InstructionList.push_back(I); 3803 } 3804 else { 3805 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3806 Value *Cond = getValue(Record, 2, NextValueNo, 3807 Type::getInt1Ty(Context)); 3808 if (!FalseDest || !Cond) 3809 return Error("Invalid record"); 3810 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3811 InstructionList.push_back(I); 3812 } 3813 break; 3814 } 3815 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3816 // Check magic 3817 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3818 // "New" SwitchInst format with case ranges. The changes to write this 3819 // format were reverted but we still recognize bitcode that uses it. 3820 // Hopefully someday we will have support for case ranges and can use 3821 // this format again. 3822 3823 Type *OpTy = getTypeByID(Record[1]); 3824 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3825 3826 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3827 BasicBlock *Default = getBasicBlock(Record[3]); 3828 if (!OpTy || !Cond || !Default) 3829 return Error("Invalid record"); 3830 3831 unsigned NumCases = Record[4]; 3832 3833 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3834 InstructionList.push_back(SI); 3835 3836 unsigned CurIdx = 5; 3837 for (unsigned i = 0; i != NumCases; ++i) { 3838 SmallVector<ConstantInt*, 1> CaseVals; 3839 unsigned NumItems = Record[CurIdx++]; 3840 for (unsigned ci = 0; ci != NumItems; ++ci) { 3841 bool isSingleNumber = Record[CurIdx++]; 3842 3843 APInt Low; 3844 unsigned ActiveWords = 1; 3845 if (ValueBitWidth > 64) 3846 ActiveWords = Record[CurIdx++]; 3847 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3848 ValueBitWidth); 3849 CurIdx += ActiveWords; 3850 3851 if (!isSingleNumber) { 3852 ActiveWords = 1; 3853 if (ValueBitWidth > 64) 3854 ActiveWords = Record[CurIdx++]; 3855 APInt High = 3856 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3857 ValueBitWidth); 3858 CurIdx += ActiveWords; 3859 3860 // FIXME: It is not clear whether values in the range should be 3861 // compared as signed or unsigned values. The partially 3862 // implemented changes that used this format in the past used 3863 // unsigned comparisons. 3864 for ( ; Low.ule(High); ++Low) 3865 CaseVals.push_back(ConstantInt::get(Context, Low)); 3866 } else 3867 CaseVals.push_back(ConstantInt::get(Context, Low)); 3868 } 3869 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3870 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3871 cve = CaseVals.end(); cvi != cve; ++cvi) 3872 SI->addCase(*cvi, DestBB); 3873 } 3874 I = SI; 3875 break; 3876 } 3877 3878 // Old SwitchInst format without case ranges. 3879 3880 if (Record.size() < 3 || (Record.size() & 1) == 0) 3881 return Error("Invalid record"); 3882 Type *OpTy = getTypeByID(Record[0]); 3883 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3884 BasicBlock *Default = getBasicBlock(Record[2]); 3885 if (!OpTy || !Cond || !Default) 3886 return Error("Invalid record"); 3887 unsigned NumCases = (Record.size()-3)/2; 3888 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3889 InstructionList.push_back(SI); 3890 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3891 ConstantInt *CaseVal = 3892 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3893 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3894 if (!CaseVal || !DestBB) { 3895 delete SI; 3896 return Error("Invalid record"); 3897 } 3898 SI->addCase(CaseVal, DestBB); 3899 } 3900 I = SI; 3901 break; 3902 } 3903 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3904 if (Record.size() < 2) 3905 return Error("Invalid record"); 3906 Type *OpTy = getTypeByID(Record[0]); 3907 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3908 if (!OpTy || !Address) 3909 return Error("Invalid record"); 3910 unsigned NumDests = Record.size()-2; 3911 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3912 InstructionList.push_back(IBI); 3913 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3914 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3915 IBI->addDestination(DestBB); 3916 } else { 3917 delete IBI; 3918 return Error("Invalid record"); 3919 } 3920 } 3921 I = IBI; 3922 break; 3923 } 3924 3925 case bitc::FUNC_CODE_INST_INVOKE: { 3926 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3927 if (Record.size() < 4) 3928 return Error("Invalid record"); 3929 unsigned OpNum = 0; 3930 AttributeSet PAL = getAttributes(Record[OpNum++]); 3931 unsigned CCInfo = Record[OpNum++]; 3932 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3933 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3934 3935 FunctionType *FTy = nullptr; 3936 if (CCInfo >> 13 & 1 && 3937 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3938 return Error("Explicit invoke type is not a function type"); 3939 3940 Value *Callee; 3941 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3942 return Error("Invalid record"); 3943 3944 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3945 if (!CalleeTy) 3946 return Error("Callee is not a pointer"); 3947 if (!FTy) { 3948 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3949 if (!FTy) 3950 return Error("Callee is not of pointer to function type"); 3951 } else if (CalleeTy->getElementType() != FTy) 3952 return Error("Explicit invoke type does not match pointee type of " 3953 "callee operand"); 3954 if (Record.size() < FTy->getNumParams() + OpNum) 3955 return Error("Insufficient operands to call"); 3956 3957 SmallVector<Value*, 16> Ops; 3958 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3959 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3960 FTy->getParamType(i))); 3961 if (!Ops.back()) 3962 return Error("Invalid record"); 3963 } 3964 3965 if (!FTy->isVarArg()) { 3966 if (Record.size() != OpNum) 3967 return Error("Invalid record"); 3968 } else { 3969 // Read type/value pairs for varargs params. 3970 while (OpNum != Record.size()) { 3971 Value *Op; 3972 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3973 return Error("Invalid record"); 3974 Ops.push_back(Op); 3975 } 3976 } 3977 3978 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3979 InstructionList.push_back(I); 3980 cast<InvokeInst>(I) 3981 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3982 cast<InvokeInst>(I)->setAttributes(PAL); 3983 break; 3984 } 3985 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3986 unsigned Idx = 0; 3987 Value *Val = nullptr; 3988 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3989 return Error("Invalid record"); 3990 I = ResumeInst::Create(Val); 3991 InstructionList.push_back(I); 3992 break; 3993 } 3994 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3995 I = new UnreachableInst(Context); 3996 InstructionList.push_back(I); 3997 break; 3998 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3999 if (Record.size() < 1 || ((Record.size()-1)&1)) 4000 return Error("Invalid record"); 4001 Type *Ty = getTypeByID(Record[0]); 4002 if (!Ty) 4003 return Error("Invalid record"); 4004 4005 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4006 InstructionList.push_back(PN); 4007 4008 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4009 Value *V; 4010 // With the new function encoding, it is possible that operands have 4011 // negative IDs (for forward references). Use a signed VBR 4012 // representation to keep the encoding small. 4013 if (UseRelativeIDs) 4014 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4015 else 4016 V = getValue(Record, 1+i, NextValueNo, Ty); 4017 BasicBlock *BB = getBasicBlock(Record[2+i]); 4018 if (!V || !BB) 4019 return Error("Invalid record"); 4020 PN->addIncoming(V, BB); 4021 } 4022 I = PN; 4023 break; 4024 } 4025 4026 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4027 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4028 unsigned Idx = 0; 4029 if (Record.size() < 4) 4030 return Error("Invalid record"); 4031 Type *Ty = getTypeByID(Record[Idx++]); 4032 if (!Ty) 4033 return Error("Invalid record"); 4034 Value *PersFn = nullptr; 4035 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4036 return Error("Invalid record"); 4037 4038 bool IsCleanup = !!Record[Idx++]; 4039 unsigned NumClauses = Record[Idx++]; 4040 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4041 LP->setCleanup(IsCleanup); 4042 for (unsigned J = 0; J != NumClauses; ++J) { 4043 LandingPadInst::ClauseType CT = 4044 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4045 Value *Val; 4046 4047 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4048 delete LP; 4049 return Error("Invalid record"); 4050 } 4051 4052 assert((CT != LandingPadInst::Catch || 4053 !isa<ArrayType>(Val->getType())) && 4054 "Catch clause has a invalid type!"); 4055 assert((CT != LandingPadInst::Filter || 4056 isa<ArrayType>(Val->getType())) && 4057 "Filter clause has invalid type!"); 4058 LP->addClause(cast<Constant>(Val)); 4059 } 4060 4061 I = LP; 4062 InstructionList.push_back(I); 4063 break; 4064 } 4065 4066 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4067 if (Record.size() != 4) 4068 return Error("Invalid record"); 4069 uint64_t AlignRecord = Record[3]; 4070 const uint64_t InAllocaMask = uint64_t(1) << 5; 4071 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4072 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4073 bool InAlloca = AlignRecord & InAllocaMask; 4074 Type *Ty = getTypeByID(Record[0]); 4075 if ((AlignRecord & ExplicitTypeMask) == 0) { 4076 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4077 if (!PTy) 4078 return Error("Old-style alloca with a non-pointer type"); 4079 Ty = PTy->getElementType(); 4080 } 4081 Type *OpTy = getTypeByID(Record[1]); 4082 Value *Size = getFnValueByID(Record[2], OpTy); 4083 unsigned Align; 4084 if (std::error_code EC = 4085 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4086 return EC; 4087 } 4088 if (!Ty || !Size) 4089 return Error("Invalid record"); 4090 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4091 AI->setUsedWithInAlloca(InAlloca); 4092 I = AI; 4093 InstructionList.push_back(I); 4094 break; 4095 } 4096 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4097 unsigned OpNum = 0; 4098 Value *Op; 4099 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4100 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4101 return Error("Invalid record"); 4102 4103 Type *Ty = nullptr; 4104 if (OpNum + 3 == Record.size()) 4105 Ty = getTypeByID(Record[OpNum++]); 4106 if (std::error_code EC = 4107 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4108 return EC; 4109 if (!Ty) 4110 Ty = cast<PointerType>(Op->getType())->getElementType(); 4111 4112 unsigned Align; 4113 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4114 return EC; 4115 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4116 4117 InstructionList.push_back(I); 4118 break; 4119 } 4120 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4121 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4122 unsigned OpNum = 0; 4123 Value *Op; 4124 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4125 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4126 return Error("Invalid record"); 4127 4128 Type *Ty = nullptr; 4129 if (OpNum + 5 == Record.size()) 4130 Ty = getTypeByID(Record[OpNum++]); 4131 if (std::error_code EC = 4132 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4133 return EC; 4134 if (!Ty) 4135 Ty = cast<PointerType>(Op->getType())->getElementType(); 4136 4137 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4138 if (Ordering == NotAtomic || Ordering == Release || 4139 Ordering == AcquireRelease) 4140 return Error("Invalid record"); 4141 if (Ordering != NotAtomic && Record[OpNum] == 0) 4142 return Error("Invalid record"); 4143 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4144 4145 unsigned Align; 4146 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4147 return EC; 4148 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4149 4150 InstructionList.push_back(I); 4151 break; 4152 } 4153 case bitc::FUNC_CODE_INST_STORE: 4154 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4155 unsigned OpNum = 0; 4156 Value *Val, *Ptr; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4158 (BitCode == bitc::FUNC_CODE_INST_STORE 4159 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4160 : popValue(Record, OpNum, NextValueNo, 4161 cast<PointerType>(Ptr->getType())->getElementType(), 4162 Val)) || 4163 OpNum + 2 != Record.size()) 4164 return Error("Invalid record"); 4165 4166 if (std::error_code EC = TypeCheckLoadStoreInst( 4167 DiagnosticHandler, Val->getType(), Ptr->getType())) 4168 return EC; 4169 unsigned Align; 4170 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4171 return EC; 4172 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4173 InstructionList.push_back(I); 4174 break; 4175 } 4176 case bitc::FUNC_CODE_INST_STOREATOMIC: 4177 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4178 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4179 unsigned OpNum = 0; 4180 Value *Val, *Ptr; 4181 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4182 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4183 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4184 : popValue(Record, OpNum, NextValueNo, 4185 cast<PointerType>(Ptr->getType())->getElementType(), 4186 Val)) || 4187 OpNum + 4 != Record.size()) 4188 return Error("Invalid record"); 4189 4190 if (std::error_code EC = TypeCheckLoadStoreInst( 4191 DiagnosticHandler, Val->getType(), Ptr->getType())) 4192 return EC; 4193 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4194 if (Ordering == NotAtomic || Ordering == Acquire || 4195 Ordering == AcquireRelease) 4196 return Error("Invalid record"); 4197 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4198 if (Ordering != NotAtomic && Record[OpNum] == 0) 4199 return Error("Invalid record"); 4200 4201 unsigned Align; 4202 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4203 return EC; 4204 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4205 InstructionList.push_back(I); 4206 break; 4207 } 4208 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4209 case bitc::FUNC_CODE_INST_CMPXCHG: { 4210 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4211 // failureordering?, isweak?] 4212 unsigned OpNum = 0; 4213 Value *Ptr, *Cmp, *New; 4214 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4215 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4216 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4217 : popValue(Record, OpNum, NextValueNo, 4218 cast<PointerType>(Ptr->getType())->getElementType(), 4219 Cmp)) || 4220 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4221 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4222 return Error("Invalid record"); 4223 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4224 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4225 return Error("Invalid record"); 4226 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4227 4228 if (std::error_code EC = TypeCheckLoadStoreInst( 4229 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4230 return EC; 4231 AtomicOrdering FailureOrdering; 4232 if (Record.size() < 7) 4233 FailureOrdering = 4234 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4235 else 4236 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4237 4238 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4239 SynchScope); 4240 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4241 4242 if (Record.size() < 8) { 4243 // Before weak cmpxchgs existed, the instruction simply returned the 4244 // value loaded from memory, so bitcode files from that era will be 4245 // expecting the first component of a modern cmpxchg. 4246 CurBB->getInstList().push_back(I); 4247 I = ExtractValueInst::Create(I, 0); 4248 } else { 4249 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4250 } 4251 4252 InstructionList.push_back(I); 4253 break; 4254 } 4255 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4256 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4257 unsigned OpNum = 0; 4258 Value *Ptr, *Val; 4259 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4260 popValue(Record, OpNum, NextValueNo, 4261 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4262 OpNum+4 != Record.size()) 4263 return Error("Invalid record"); 4264 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4265 if (Operation < AtomicRMWInst::FIRST_BINOP || 4266 Operation > AtomicRMWInst::LAST_BINOP) 4267 return Error("Invalid record"); 4268 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4269 if (Ordering == NotAtomic || Ordering == Unordered) 4270 return Error("Invalid record"); 4271 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4272 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4273 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4274 InstructionList.push_back(I); 4275 break; 4276 } 4277 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4278 if (2 != Record.size()) 4279 return Error("Invalid record"); 4280 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4281 if (Ordering == NotAtomic || Ordering == Unordered || 4282 Ordering == Monotonic) 4283 return Error("Invalid record"); 4284 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4285 I = new FenceInst(Context, Ordering, SynchScope); 4286 InstructionList.push_back(I); 4287 break; 4288 } 4289 case bitc::FUNC_CODE_INST_CALL: { 4290 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4291 if (Record.size() < 3) 4292 return Error("Invalid record"); 4293 4294 unsigned OpNum = 0; 4295 AttributeSet PAL = getAttributes(Record[OpNum++]); 4296 unsigned CCInfo = Record[OpNum++]; 4297 4298 FunctionType *FTy = nullptr; 4299 if (CCInfo >> 15 & 1 && 4300 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4301 return Error("Explicit call type is not a function type"); 4302 4303 Value *Callee; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4305 return Error("Invalid record"); 4306 4307 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4308 if (!OpTy) 4309 return Error("Callee is not a pointer type"); 4310 if (!FTy) { 4311 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4312 if (!FTy) 4313 return Error("Callee is not of pointer to function type"); 4314 } else if (OpTy->getElementType() != FTy) 4315 return Error("Explicit call type does not match pointee type of " 4316 "callee operand"); 4317 if (Record.size() < FTy->getNumParams() + OpNum) 4318 return Error("Insufficient operands to call"); 4319 4320 SmallVector<Value*, 16> Args; 4321 // Read the fixed params. 4322 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4323 if (FTy->getParamType(i)->isLabelTy()) 4324 Args.push_back(getBasicBlock(Record[OpNum])); 4325 else 4326 Args.push_back(getValue(Record, OpNum, NextValueNo, 4327 FTy->getParamType(i))); 4328 if (!Args.back()) 4329 return Error("Invalid record"); 4330 } 4331 4332 // Read type/value pairs for varargs params. 4333 if (!FTy->isVarArg()) { 4334 if (OpNum != Record.size()) 4335 return Error("Invalid record"); 4336 } else { 4337 while (OpNum != Record.size()) { 4338 Value *Op; 4339 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4340 return Error("Invalid record"); 4341 Args.push_back(Op); 4342 } 4343 } 4344 4345 I = CallInst::Create(FTy, Callee, Args); 4346 InstructionList.push_back(I); 4347 cast<CallInst>(I)->setCallingConv( 4348 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4349 CallInst::TailCallKind TCK = CallInst::TCK_None; 4350 if (CCInfo & 1) 4351 TCK = CallInst::TCK_Tail; 4352 if (CCInfo & (1 << 14)) 4353 TCK = CallInst::TCK_MustTail; 4354 cast<CallInst>(I)->setTailCallKind(TCK); 4355 cast<CallInst>(I)->setAttributes(PAL); 4356 break; 4357 } 4358 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4359 if (Record.size() < 3) 4360 return Error("Invalid record"); 4361 Type *OpTy = getTypeByID(Record[0]); 4362 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4363 Type *ResTy = getTypeByID(Record[2]); 4364 if (!OpTy || !Op || !ResTy) 4365 return Error("Invalid record"); 4366 I = new VAArgInst(Op, ResTy); 4367 InstructionList.push_back(I); 4368 break; 4369 } 4370 } 4371 4372 // Add instruction to end of current BB. If there is no current BB, reject 4373 // this file. 4374 if (!CurBB) { 4375 delete I; 4376 return Error("Invalid instruction with no BB"); 4377 } 4378 CurBB->getInstList().push_back(I); 4379 4380 // If this was a terminator instruction, move to the next block. 4381 if (isa<TerminatorInst>(I)) { 4382 ++CurBBNo; 4383 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4384 } 4385 4386 // Non-void values get registered in the value table for future use. 4387 if (I && !I->getType()->isVoidTy()) 4388 ValueList.AssignValue(I, NextValueNo++); 4389 } 4390 4391 OutOfRecordLoop: 4392 4393 // Check the function list for unresolved values. 4394 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4395 if (!A->getParent()) { 4396 // We found at least one unresolved value. Nuke them all to avoid leaks. 4397 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4398 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4399 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4400 delete A; 4401 } 4402 } 4403 return Error("Never resolved value found in function"); 4404 } 4405 } 4406 4407 // FIXME: Check for unresolved forward-declared metadata references 4408 // and clean up leaks. 4409 4410 // Trim the value list down to the size it was before we parsed this function. 4411 ValueList.shrinkTo(ModuleValueListSize); 4412 MDValueList.shrinkTo(ModuleMDValueListSize); 4413 std::vector<BasicBlock*>().swap(FunctionBBs); 4414 return std::error_code(); 4415 } 4416 4417 /// Find the function body in the bitcode stream 4418 std::error_code BitcodeReader::FindFunctionInStream( 4419 Function *F, 4420 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4421 while (DeferredFunctionInfoIterator->second == 0) { 4422 if (Stream.AtEndOfStream()) 4423 return Error("Could not find function in stream"); 4424 // ParseModule will parse the next body in the stream and set its 4425 // position in the DeferredFunctionInfo map. 4426 if (std::error_code EC = ParseModule(true)) 4427 return EC; 4428 } 4429 return std::error_code(); 4430 } 4431 4432 //===----------------------------------------------------------------------===// 4433 // GVMaterializer implementation 4434 //===----------------------------------------------------------------------===// 4435 4436 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4437 4438 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4439 if (std::error_code EC = materializeMetadata()) 4440 return EC; 4441 4442 Function *F = dyn_cast<Function>(GV); 4443 // If it's not a function or is already material, ignore the request. 4444 if (!F || !F->isMaterializable()) 4445 return std::error_code(); 4446 4447 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4448 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4449 // If its position is recorded as 0, its body is somewhere in the stream 4450 // but we haven't seen it yet. 4451 if (DFII->second == 0 && LazyStreamer) 4452 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4453 return EC; 4454 4455 // Move the bit stream to the saved position of the deferred function body. 4456 Stream.JumpToBit(DFII->second); 4457 4458 if (std::error_code EC = ParseFunctionBody(F)) 4459 return EC; 4460 F->setIsMaterializable(false); 4461 4462 if (StripDebugInfo) 4463 stripDebugInfo(*F); 4464 4465 // Upgrade any old intrinsic calls in the function. 4466 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4467 E = UpgradedIntrinsics.end(); I != E; ++I) { 4468 if (I->first != I->second) { 4469 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4470 UI != UE;) { 4471 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4472 UpgradeIntrinsicCall(CI, I->second); 4473 } 4474 } 4475 } 4476 4477 // Bring in any functions that this function forward-referenced via 4478 // blockaddresses. 4479 return materializeForwardReferencedFunctions(); 4480 } 4481 4482 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4483 const Function *F = dyn_cast<Function>(GV); 4484 if (!F || F->isDeclaration()) 4485 return false; 4486 4487 // Dematerializing F would leave dangling references that wouldn't be 4488 // reconnected on re-materialization. 4489 if (BlockAddressesTaken.count(F)) 4490 return false; 4491 4492 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4493 } 4494 4495 void BitcodeReader::dematerialize(GlobalValue *GV) { 4496 Function *F = dyn_cast<Function>(GV); 4497 // If this function isn't dematerializable, this is a noop. 4498 if (!F || !isDematerializable(F)) 4499 return; 4500 4501 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4502 4503 // Just forget the function body, we can remat it later. 4504 F->dropAllReferences(); 4505 F->setIsMaterializable(true); 4506 } 4507 4508 std::error_code BitcodeReader::materializeModule(Module *M) { 4509 assert(M == TheModule && 4510 "Can only Materialize the Module this BitcodeReader is attached to."); 4511 4512 if (std::error_code EC = materializeMetadata()) 4513 return EC; 4514 4515 // Promise to materialize all forward references. 4516 WillMaterializeAllForwardRefs = true; 4517 4518 // Iterate over the module, deserializing any functions that are still on 4519 // disk. 4520 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4521 F != E; ++F) { 4522 if (std::error_code EC = materialize(F)) 4523 return EC; 4524 } 4525 // At this point, if there are any function bodies, the current bit is 4526 // pointing to the END_BLOCK record after them. Now make sure the rest 4527 // of the bits in the module have been read. 4528 if (NextUnreadBit) 4529 ParseModule(true); 4530 4531 // Check that all block address forward references got resolved (as we 4532 // promised above). 4533 if (!BasicBlockFwdRefs.empty()) 4534 return Error("Never resolved function from blockaddress"); 4535 4536 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4537 // delete the old functions to clean up. We can't do this unless the entire 4538 // module is materialized because there could always be another function body 4539 // with calls to the old function. 4540 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4541 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4542 if (I->first != I->second) { 4543 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4544 UI != UE;) { 4545 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4546 UpgradeIntrinsicCall(CI, I->second); 4547 } 4548 if (!I->first->use_empty()) 4549 I->first->replaceAllUsesWith(I->second); 4550 I->first->eraseFromParent(); 4551 } 4552 } 4553 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4554 4555 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4556 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4557 4558 UpgradeDebugInfo(*M); 4559 return std::error_code(); 4560 } 4561 4562 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4563 return IdentifiedStructTypes; 4564 } 4565 4566 std::error_code BitcodeReader::InitStream() { 4567 if (LazyStreamer) 4568 return InitLazyStream(); 4569 return InitStreamFromBuffer(); 4570 } 4571 4572 std::error_code BitcodeReader::InitStreamFromBuffer() { 4573 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4574 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4575 4576 if (Buffer->getBufferSize() & 3) 4577 return Error("Invalid bitcode signature"); 4578 4579 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4580 // The magic number is 0x0B17C0DE stored in little endian. 4581 if (isBitcodeWrapper(BufPtr, BufEnd)) 4582 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4583 return Error("Invalid bitcode wrapper header"); 4584 4585 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4586 Stream.init(&*StreamFile); 4587 4588 return std::error_code(); 4589 } 4590 4591 std::error_code BitcodeReader::InitLazyStream() { 4592 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4593 // see it. 4594 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4595 StreamingMemoryObject &Bytes = *OwnedBytes; 4596 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4597 Stream.init(&*StreamFile); 4598 4599 unsigned char buf[16]; 4600 if (Bytes.readBytes(buf, 16, 0) != 16) 4601 return Error("Invalid bitcode signature"); 4602 4603 if (!isBitcode(buf, buf + 16)) 4604 return Error("Invalid bitcode signature"); 4605 4606 if (isBitcodeWrapper(buf, buf + 4)) { 4607 const unsigned char *bitcodeStart = buf; 4608 const unsigned char *bitcodeEnd = buf + 16; 4609 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4610 Bytes.dropLeadingBytes(bitcodeStart - buf); 4611 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4612 } 4613 return std::error_code(); 4614 } 4615 4616 namespace { 4617 class BitcodeErrorCategoryType : public std::error_category { 4618 const char *name() const LLVM_NOEXCEPT override { 4619 return "llvm.bitcode"; 4620 } 4621 std::string message(int IE) const override { 4622 BitcodeError E = static_cast<BitcodeError>(IE); 4623 switch (E) { 4624 case BitcodeError::InvalidBitcodeSignature: 4625 return "Invalid bitcode signature"; 4626 case BitcodeError::CorruptedBitcode: 4627 return "Corrupted bitcode"; 4628 } 4629 llvm_unreachable("Unknown error type!"); 4630 } 4631 }; 4632 } 4633 4634 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4635 4636 const std::error_category &llvm::BitcodeErrorCategory() { 4637 return *ErrorCategory; 4638 } 4639 4640 //===----------------------------------------------------------------------===// 4641 // External interface 4642 //===----------------------------------------------------------------------===// 4643 4644 /// \brief Get a lazy one-at-time loading module from bitcode. 4645 /// 4646 /// This isn't always used in a lazy context. In particular, it's also used by 4647 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4648 /// in forward-referenced functions from block address references. 4649 /// 4650 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4651 /// materialize everything -- in particular, if this isn't truly lazy. 4652 static ErrorOr<Module *> 4653 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4654 LLVMContext &Context, bool WillMaterializeAll, 4655 DiagnosticHandlerFunction DiagnosticHandler, 4656 bool ShouldLazyLoadMetadata = false) { 4657 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4658 BitcodeReader *R = 4659 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4660 M->setMaterializer(R); 4661 4662 auto cleanupOnError = [&](std::error_code EC) { 4663 R->releaseBuffer(); // Never take ownership on error. 4664 delete M; // Also deletes R. 4665 return EC; 4666 }; 4667 4668 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4669 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4670 return cleanupOnError(EC); 4671 4672 if (!WillMaterializeAll) 4673 // Resolve forward references from blockaddresses. 4674 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4675 return cleanupOnError(EC); 4676 4677 Buffer.release(); // The BitcodeReader owns it now. 4678 return M; 4679 } 4680 4681 ErrorOr<Module *> 4682 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4683 LLVMContext &Context, 4684 DiagnosticHandlerFunction DiagnosticHandler, 4685 bool ShouldLazyLoadMetadata) { 4686 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4687 DiagnosticHandler, ShouldLazyLoadMetadata); 4688 } 4689 4690 ErrorOr<std::unique_ptr<Module>> 4691 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4692 LLVMContext &Context, 4693 DiagnosticHandlerFunction DiagnosticHandler) { 4694 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4695 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4696 M->setMaterializer(R); 4697 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4698 return EC; 4699 return std::move(M); 4700 } 4701 4702 ErrorOr<Module *> 4703 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4704 DiagnosticHandlerFunction DiagnosticHandler) { 4705 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4706 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4707 std::move(Buf), Context, true, DiagnosticHandler); 4708 if (!ModuleOrErr) 4709 return ModuleOrErr; 4710 Module *M = ModuleOrErr.get(); 4711 // Read in the entire module, and destroy the BitcodeReader. 4712 if (std::error_code EC = M->materializeAllPermanently()) { 4713 delete M; 4714 return EC; 4715 } 4716 4717 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4718 // written. We must defer until the Module has been fully materialized. 4719 4720 return M; 4721 } 4722 4723 std::string 4724 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4725 DiagnosticHandlerFunction DiagnosticHandler) { 4726 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4727 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4728 DiagnosticHandler); 4729 ErrorOr<std::string> Triple = R->parseTriple(); 4730 if (Triple.getError()) 4731 return ""; 4732 return Triple.get(); 4733 } 4734