1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GVMaterializer.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalIndirectSymbol.h" 47 #include "llvm/IR/GlobalObject.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 376 : Stream(std::move(Stream)), Strtab(Strtab) { 377 this->Stream.setBlockInfo(&BlockInfo); 378 } 379 380 BitstreamBlockInfo BlockInfo; 381 BitstreamCursor Stream; 382 StringRef Strtab; 383 384 /// In version 2 of the bitcode we store names of global values and comdats in 385 /// a string table rather than in the VST. 386 bool UseStrtab = false; 387 388 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 389 390 /// If this module uses a string table, pop the reference to the string table 391 /// and return the referenced string and the rest of the record. Otherwise 392 /// just return the record itself. 393 std::pair<StringRef, ArrayRef<uint64_t>> 394 readNameFromStrtab(ArrayRef<uint64_t> Record); 395 396 bool readBlockInfo(); 397 398 // Contains an arbitrary and optional string identifying the bitcode producer 399 std::string ProducerIdentification; 400 401 Error error(const Twine &Message); 402 }; 403 404 Error BitcodeReaderBase::error(const Twine &Message) { 405 std::string FullMsg = Message.str(); 406 if (!ProducerIdentification.empty()) 407 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 408 LLVM_VERSION_STRING "')"; 409 return ::error(FullMsg); 410 } 411 412 Expected<unsigned> 413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 414 if (Record.size() < 1) 415 return error("Invalid record"); 416 unsigned ModuleVersion = Record[0]; 417 if (ModuleVersion > 2) 418 return error("Invalid value"); 419 UseStrtab = ModuleVersion >= 2; 420 return ModuleVersion; 421 } 422 423 std::pair<StringRef, ArrayRef<uint64_t>> 424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 425 if (!UseStrtab) 426 return {"", Record}; 427 // Invalid reference. Let the caller complain about the record being empty. 428 if (Record[0] + Record[1] > Strtab.size()) 429 return {"", {}}; 430 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 431 } 432 433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 434 LLVMContext &Context; 435 Module *TheModule = nullptr; 436 // Next offset to start scanning for lazy parsing of function bodies. 437 uint64_t NextUnreadBit = 0; 438 // Last function offset found in the VST. 439 uint64_t LastFunctionBlockBit = 0; 440 bool SeenValueSymbolTable = false; 441 uint64_t VSTOffset = 0; 442 443 std::vector<std::string> SectionTable; 444 std::vector<std::string> GCTable; 445 446 std::vector<Type*> TypeList; 447 BitcodeReaderValueList ValueList; 448 Optional<MetadataLoader> MDLoader; 449 std::vector<Comdat *> ComdatList; 450 SmallVector<Instruction *, 64> InstructionList; 451 452 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 453 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 454 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 455 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 456 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 457 458 /// The set of attributes by index. Index zero in the file is for null, and 459 /// is thus not represented here. As such all indices are off by one. 460 std::vector<AttributeList> MAttributes; 461 462 /// The set of attribute groups. 463 std::map<unsigned, AttributeList> MAttributeGroups; 464 465 /// While parsing a function body, this is a list of the basic blocks for the 466 /// function. 467 std::vector<BasicBlock*> FunctionBBs; 468 469 // When reading the module header, this list is populated with functions that 470 // have bodies later in the file. 471 std::vector<Function*> FunctionsWithBodies; 472 473 // When intrinsic functions are encountered which require upgrading they are 474 // stored here with their replacement function. 475 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 476 UpdatedIntrinsicMap UpgradedIntrinsics; 477 // Intrinsics which were remangled because of types rename 478 UpdatedIntrinsicMap RemangledIntrinsics; 479 480 // Several operations happen after the module header has been read, but 481 // before function bodies are processed. This keeps track of whether 482 // we've done this yet. 483 bool SeenFirstFunctionBody = false; 484 485 /// When function bodies are initially scanned, this map contains info about 486 /// where to find deferred function body in the stream. 487 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 488 489 /// When Metadata block is initially scanned when parsing the module, we may 490 /// choose to defer parsing of the metadata. This vector contains info about 491 /// which Metadata blocks are deferred. 492 std::vector<uint64_t> DeferredMetadataInfo; 493 494 /// These are basic blocks forward-referenced by block addresses. They are 495 /// inserted lazily into functions when they're loaded. The basic block ID is 496 /// its index into the vector. 497 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 498 std::deque<Function *> BasicBlockFwdRefQueue; 499 500 /// Indicates that we are using a new encoding for instruction operands where 501 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 502 /// instruction number, for a more compact encoding. Some instruction 503 /// operands are not relative to the instruction ID: basic block numbers, and 504 /// types. Once the old style function blocks have been phased out, we would 505 /// not need this flag. 506 bool UseRelativeIDs = false; 507 508 /// True if all functions will be materialized, negating the need to process 509 /// (e.g.) blockaddress forward references. 510 bool WillMaterializeAllForwardRefs = false; 511 512 bool StripDebugInfo = false; 513 TBAAVerifier TBAAVerifyHelper; 514 515 std::vector<std::string> BundleTags; 516 517 public: 518 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 519 StringRef ProducerIdentification, LLVMContext &Context); 520 521 Error materializeForwardReferencedFunctions(); 522 523 Error materialize(GlobalValue *GV) override; 524 Error materializeModule() override; 525 std::vector<StructType *> getIdentifiedStructTypes() const override; 526 527 /// \brief Main interface to parsing a bitcode buffer. 528 /// \returns true if an error occurred. 529 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 530 bool IsImporting = false); 531 532 static uint64_t decodeSignRotatedValue(uint64_t V); 533 534 /// Materialize any deferred Metadata block. 535 Error materializeMetadata() override; 536 537 void setStripDebugInfo() override; 538 539 private: 540 std::vector<StructType *> IdentifiedStructTypes; 541 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 542 StructType *createIdentifiedStructType(LLVMContext &Context); 543 544 Type *getTypeByID(unsigned ID); 545 546 Value *getFnValueByID(unsigned ID, Type *Ty) { 547 if (Ty && Ty->isMetadataTy()) 548 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 549 return ValueList.getValueFwdRef(ID, Ty); 550 } 551 552 Metadata *getFnMetadataByID(unsigned ID) { 553 return MDLoader->getMetadataFwdRefOrLoad(ID); 554 } 555 556 BasicBlock *getBasicBlock(unsigned ID) const { 557 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 558 return FunctionBBs[ID]; 559 } 560 561 AttributeList getAttributes(unsigned i) const { 562 if (i-1 < MAttributes.size()) 563 return MAttributes[i-1]; 564 return AttributeList(); 565 } 566 567 /// Read a value/type pair out of the specified record from slot 'Slot'. 568 /// Increment Slot past the number of slots used in the record. Return true on 569 /// failure. 570 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 571 unsigned InstNum, Value *&ResVal) { 572 if (Slot == Record.size()) return true; 573 unsigned ValNo = (unsigned)Record[Slot++]; 574 // Adjust the ValNo, if it was encoded relative to the InstNum. 575 if (UseRelativeIDs) 576 ValNo = InstNum - ValNo; 577 if (ValNo < InstNum) { 578 // If this is not a forward reference, just return the value we already 579 // have. 580 ResVal = getFnValueByID(ValNo, nullptr); 581 return ResVal == nullptr; 582 } 583 if (Slot == Record.size()) 584 return true; 585 586 unsigned TypeNo = (unsigned)Record[Slot++]; 587 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 588 return ResVal == nullptr; 589 } 590 591 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 592 /// past the number of slots used by the value in the record. Return true if 593 /// there is an error. 594 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 595 unsigned InstNum, Type *Ty, Value *&ResVal) { 596 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 597 return true; 598 // All values currently take a single record slot. 599 ++Slot; 600 return false; 601 } 602 603 /// Like popValue, but does not increment the Slot number. 604 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 605 unsigned InstNum, Type *Ty, Value *&ResVal) { 606 ResVal = getValue(Record, Slot, InstNum, Ty); 607 return ResVal == nullptr; 608 } 609 610 /// Version of getValue that returns ResVal directly, or 0 if there is an 611 /// error. 612 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty) { 614 if (Slot == Record.size()) return nullptr; 615 unsigned ValNo = (unsigned)Record[Slot]; 616 // Adjust the ValNo, if it was encoded relative to the InstNum. 617 if (UseRelativeIDs) 618 ValNo = InstNum - ValNo; 619 return getFnValueByID(ValNo, Ty); 620 } 621 622 /// Like getValue, but decodes signed VBRs. 623 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 624 unsigned InstNum, Type *Ty) { 625 if (Slot == Record.size()) return nullptr; 626 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 627 // Adjust the ValNo, if it was encoded relative to the InstNum. 628 if (UseRelativeIDs) 629 ValNo = InstNum - ValNo; 630 return getFnValueByID(ValNo, Ty); 631 } 632 633 /// Converts alignment exponent (i.e. power of two (or zero)) to the 634 /// corresponding alignment to use. If alignment is too large, returns 635 /// a corresponding error code. 636 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 637 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 638 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 639 640 Error parseComdatRecord(ArrayRef<uint64_t> Record); 641 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 642 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 643 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 644 ArrayRef<uint64_t> Record); 645 646 Error parseAttributeBlock(); 647 Error parseAttributeGroupBlock(); 648 Error parseTypeTable(); 649 Error parseTypeTableBody(); 650 Error parseOperandBundleTags(); 651 652 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 653 unsigned NameIndex, Triple &TT); 654 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 655 ArrayRef<uint64_t> Record); 656 Error parseValueSymbolTable(uint64_t Offset = 0); 657 Error parseGlobalValueSymbolTable(); 658 Error parseConstants(); 659 Error rememberAndSkipFunctionBodies(); 660 Error rememberAndSkipFunctionBody(); 661 /// Save the positions of the Metadata blocks and skip parsing the blocks. 662 Error rememberAndSkipMetadata(); 663 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 664 Error parseFunctionBody(Function *F); 665 Error globalCleanup(); 666 Error resolveGlobalAndIndirectSymbolInits(); 667 Error parseUseLists(); 668 Error findFunctionInStream( 669 Function *F, 670 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 671 }; 672 673 /// Class to manage reading and parsing function summary index bitcode 674 /// files/sections. 675 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 676 /// The module index built during parsing. 677 ModuleSummaryIndex &TheIndex; 678 679 /// Indicates whether we have encountered a global value summary section 680 /// yet during parsing. 681 bool SeenGlobalValSummary = false; 682 683 /// Indicates whether we have already parsed the VST, used for error checking. 684 bool SeenValueSymbolTable = false; 685 686 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 687 /// Used to enable on-demand parsing of the VST. 688 uint64_t VSTOffset = 0; 689 690 // Map to save ValueId to ValueInfo association that was recorded in the 691 // ValueSymbolTable. It is used after the VST is parsed to convert 692 // call graph edges read from the function summary from referencing 693 // callees by their ValueId to using the ValueInfo instead, which is how 694 // they are recorded in the summary index being built. 695 // We save a GUID which refers to the same global as the ValueInfo, but 696 // ignoring the linkage, i.e. for values other than local linkage they are 697 // identical. 698 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 699 ValueIdToValueInfoMap; 700 701 /// Map populated during module path string table parsing, from the 702 /// module ID to a string reference owned by the index's module 703 /// path string table, used to correlate with combined index 704 /// summary records. 705 DenseMap<uint64_t, StringRef> ModuleIdMap; 706 707 /// Original source file name recorded in a bitcode record. 708 std::string SourceFileName; 709 710 /// The string identifier given to this module by the client, normally the 711 /// path to the bitcode file. 712 StringRef ModulePath; 713 714 /// For per-module summary indexes, the unique numerical identifier given to 715 /// this module by the client. 716 unsigned ModuleId; 717 718 public: 719 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 720 ModuleSummaryIndex &TheIndex, 721 StringRef ModulePath, unsigned ModuleId); 722 723 Error parseModule(); 724 725 private: 726 void setValueGUID(uint64_t ValueID, StringRef ValueName, 727 GlobalValue::LinkageTypes Linkage, 728 StringRef SourceFileName); 729 Error parseValueSymbolTable( 730 uint64_t Offset, 731 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 732 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 733 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 734 bool IsOldProfileFormat, 735 bool HasProfile); 736 Error parseEntireSummary(); 737 Error parseModuleStringTable(); 738 739 std::pair<ValueInfo, GlobalValue::GUID> 740 getValueInfoFromValueId(unsigned ValueId); 741 742 ModulePathStringTableTy::iterator addThisModulePath(); 743 }; 744 745 } // end anonymous namespace 746 747 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 748 Error Err) { 749 if (Err) { 750 std::error_code EC; 751 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 752 EC = EIB.convertToErrorCode(); 753 Ctx.emitError(EIB.message()); 754 }); 755 return EC; 756 } 757 return std::error_code(); 758 } 759 760 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 761 StringRef ProducerIdentification, 762 LLVMContext &Context) 763 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 764 ValueList(Context) { 765 this->ProducerIdentification = ProducerIdentification; 766 } 767 768 Error BitcodeReader::materializeForwardReferencedFunctions() { 769 if (WillMaterializeAllForwardRefs) 770 return Error::success(); 771 772 // Prevent recursion. 773 WillMaterializeAllForwardRefs = true; 774 775 while (!BasicBlockFwdRefQueue.empty()) { 776 Function *F = BasicBlockFwdRefQueue.front(); 777 BasicBlockFwdRefQueue.pop_front(); 778 assert(F && "Expected valid function"); 779 if (!BasicBlockFwdRefs.count(F)) 780 // Already materialized. 781 continue; 782 783 // Check for a function that isn't materializable to prevent an infinite 784 // loop. When parsing a blockaddress stored in a global variable, there 785 // isn't a trivial way to check if a function will have a body without a 786 // linear search through FunctionsWithBodies, so just check it here. 787 if (!F->isMaterializable()) 788 return error("Never resolved function from blockaddress"); 789 790 // Try to materialize F. 791 if (Error Err = materialize(F)) 792 return Err; 793 } 794 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 795 796 // Reset state. 797 WillMaterializeAllForwardRefs = false; 798 return Error::success(); 799 } 800 801 //===----------------------------------------------------------------------===// 802 // Helper functions to implement forward reference resolution, etc. 803 //===----------------------------------------------------------------------===// 804 805 static bool hasImplicitComdat(size_t Val) { 806 switch (Val) { 807 default: 808 return false; 809 case 1: // Old WeakAnyLinkage 810 case 4: // Old LinkOnceAnyLinkage 811 case 10: // Old WeakODRLinkage 812 case 11: // Old LinkOnceODRLinkage 813 return true; 814 } 815 } 816 817 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 818 switch (Val) { 819 default: // Map unknown/new linkages to external 820 case 0: 821 return GlobalValue::ExternalLinkage; 822 case 2: 823 return GlobalValue::AppendingLinkage; 824 case 3: 825 return GlobalValue::InternalLinkage; 826 case 5: 827 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 828 case 6: 829 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 830 case 7: 831 return GlobalValue::ExternalWeakLinkage; 832 case 8: 833 return GlobalValue::CommonLinkage; 834 case 9: 835 return GlobalValue::PrivateLinkage; 836 case 12: 837 return GlobalValue::AvailableExternallyLinkage; 838 case 13: 839 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 840 case 14: 841 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 842 case 15: 843 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 844 case 1: // Old value with implicit comdat. 845 case 16: 846 return GlobalValue::WeakAnyLinkage; 847 case 10: // Old value with implicit comdat. 848 case 17: 849 return GlobalValue::WeakODRLinkage; 850 case 4: // Old value with implicit comdat. 851 case 18: 852 return GlobalValue::LinkOnceAnyLinkage; 853 case 11: // Old value with implicit comdat. 854 case 19: 855 return GlobalValue::LinkOnceODRLinkage; 856 } 857 } 858 859 /// Decode the flags for GlobalValue in the summary. 860 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 861 uint64_t Version) { 862 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 863 // like getDecodedLinkage() above. Any future change to the linkage enum and 864 // to getDecodedLinkage() will need to be taken into account here as above. 865 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 866 RawFlags = RawFlags >> 4; 867 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 868 // The Live flag wasn't introduced until version 3. For dead stripping 869 // to work correctly on earlier versions, we must conservatively treat all 870 // values as live. 871 bool Live = (RawFlags & 0x2) || Version < 3; 872 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live); 873 } 874 875 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 876 switch (Val) { 877 default: // Map unknown visibilities to default. 878 case 0: return GlobalValue::DefaultVisibility; 879 case 1: return GlobalValue::HiddenVisibility; 880 case 2: return GlobalValue::ProtectedVisibility; 881 } 882 } 883 884 static GlobalValue::DLLStorageClassTypes 885 getDecodedDLLStorageClass(unsigned Val) { 886 switch (Val) { 887 default: // Map unknown values to default. 888 case 0: return GlobalValue::DefaultStorageClass; 889 case 1: return GlobalValue::DLLImportStorageClass; 890 case 2: return GlobalValue::DLLExportStorageClass; 891 } 892 } 893 894 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 895 switch (Val) { 896 case 0: return GlobalVariable::NotThreadLocal; 897 default: // Map unknown non-zero value to general dynamic. 898 case 1: return GlobalVariable::GeneralDynamicTLSModel; 899 case 2: return GlobalVariable::LocalDynamicTLSModel; 900 case 3: return GlobalVariable::InitialExecTLSModel; 901 case 4: return GlobalVariable::LocalExecTLSModel; 902 } 903 } 904 905 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 906 switch (Val) { 907 default: // Map unknown to UnnamedAddr::None. 908 case 0: return GlobalVariable::UnnamedAddr::None; 909 case 1: return GlobalVariable::UnnamedAddr::Global; 910 case 2: return GlobalVariable::UnnamedAddr::Local; 911 } 912 } 913 914 static int getDecodedCastOpcode(unsigned Val) { 915 switch (Val) { 916 default: return -1; 917 case bitc::CAST_TRUNC : return Instruction::Trunc; 918 case bitc::CAST_ZEXT : return Instruction::ZExt; 919 case bitc::CAST_SEXT : return Instruction::SExt; 920 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 921 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 922 case bitc::CAST_UITOFP : return Instruction::UIToFP; 923 case bitc::CAST_SITOFP : return Instruction::SIToFP; 924 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 925 case bitc::CAST_FPEXT : return Instruction::FPExt; 926 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 927 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 928 case bitc::CAST_BITCAST : return Instruction::BitCast; 929 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 930 } 931 } 932 933 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 934 bool IsFP = Ty->isFPOrFPVectorTy(); 935 // BinOps are only valid for int/fp or vector of int/fp types 936 if (!IsFP && !Ty->isIntOrIntVectorTy()) 937 return -1; 938 939 switch (Val) { 940 default: 941 return -1; 942 case bitc::BINOP_ADD: 943 return IsFP ? Instruction::FAdd : Instruction::Add; 944 case bitc::BINOP_SUB: 945 return IsFP ? Instruction::FSub : Instruction::Sub; 946 case bitc::BINOP_MUL: 947 return IsFP ? Instruction::FMul : Instruction::Mul; 948 case bitc::BINOP_UDIV: 949 return IsFP ? -1 : Instruction::UDiv; 950 case bitc::BINOP_SDIV: 951 return IsFP ? Instruction::FDiv : Instruction::SDiv; 952 case bitc::BINOP_UREM: 953 return IsFP ? -1 : Instruction::URem; 954 case bitc::BINOP_SREM: 955 return IsFP ? Instruction::FRem : Instruction::SRem; 956 case bitc::BINOP_SHL: 957 return IsFP ? -1 : Instruction::Shl; 958 case bitc::BINOP_LSHR: 959 return IsFP ? -1 : Instruction::LShr; 960 case bitc::BINOP_ASHR: 961 return IsFP ? -1 : Instruction::AShr; 962 case bitc::BINOP_AND: 963 return IsFP ? -1 : Instruction::And; 964 case bitc::BINOP_OR: 965 return IsFP ? -1 : Instruction::Or; 966 case bitc::BINOP_XOR: 967 return IsFP ? -1 : Instruction::Xor; 968 } 969 } 970 971 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 972 switch (Val) { 973 default: return AtomicRMWInst::BAD_BINOP; 974 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 975 case bitc::RMW_ADD: return AtomicRMWInst::Add; 976 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 977 case bitc::RMW_AND: return AtomicRMWInst::And; 978 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 979 case bitc::RMW_OR: return AtomicRMWInst::Or; 980 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 981 case bitc::RMW_MAX: return AtomicRMWInst::Max; 982 case bitc::RMW_MIN: return AtomicRMWInst::Min; 983 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 984 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 985 } 986 } 987 988 static AtomicOrdering getDecodedOrdering(unsigned Val) { 989 switch (Val) { 990 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 991 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 992 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 993 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 994 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 995 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 996 default: // Map unknown orderings to sequentially-consistent. 997 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 998 } 999 } 1000 1001 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 1002 switch (Val) { 1003 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 1004 default: // Map unknown scopes to cross-thread. 1005 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1006 } 1007 } 1008 1009 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1010 switch (Val) { 1011 default: // Map unknown selection kinds to any. 1012 case bitc::COMDAT_SELECTION_KIND_ANY: 1013 return Comdat::Any; 1014 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1015 return Comdat::ExactMatch; 1016 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1017 return Comdat::Largest; 1018 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1019 return Comdat::NoDuplicates; 1020 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1021 return Comdat::SameSize; 1022 } 1023 } 1024 1025 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1026 FastMathFlags FMF; 1027 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1028 FMF.setUnsafeAlgebra(); 1029 if (0 != (Val & FastMathFlags::NoNaNs)) 1030 FMF.setNoNaNs(); 1031 if (0 != (Val & FastMathFlags::NoInfs)) 1032 FMF.setNoInfs(); 1033 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1034 FMF.setNoSignedZeros(); 1035 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1036 FMF.setAllowReciprocal(); 1037 if (0 != (Val & FastMathFlags::AllowContract)) 1038 FMF.setAllowContract(true); 1039 return FMF; 1040 } 1041 1042 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1043 switch (Val) { 1044 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1045 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1046 } 1047 } 1048 1049 1050 Type *BitcodeReader::getTypeByID(unsigned ID) { 1051 // The type table size is always specified correctly. 1052 if (ID >= TypeList.size()) 1053 return nullptr; 1054 1055 if (Type *Ty = TypeList[ID]) 1056 return Ty; 1057 1058 // If we have a forward reference, the only possible case is when it is to a 1059 // named struct. Just create a placeholder for now. 1060 return TypeList[ID] = createIdentifiedStructType(Context); 1061 } 1062 1063 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1064 StringRef Name) { 1065 auto *Ret = StructType::create(Context, Name); 1066 IdentifiedStructTypes.push_back(Ret); 1067 return Ret; 1068 } 1069 1070 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1071 auto *Ret = StructType::create(Context); 1072 IdentifiedStructTypes.push_back(Ret); 1073 return Ret; 1074 } 1075 1076 //===----------------------------------------------------------------------===// 1077 // Functions for parsing blocks from the bitcode file 1078 //===----------------------------------------------------------------------===// 1079 1080 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1081 switch (Val) { 1082 case Attribute::EndAttrKinds: 1083 llvm_unreachable("Synthetic enumerators which should never get here"); 1084 1085 case Attribute::None: return 0; 1086 case Attribute::ZExt: return 1 << 0; 1087 case Attribute::SExt: return 1 << 1; 1088 case Attribute::NoReturn: return 1 << 2; 1089 case Attribute::InReg: return 1 << 3; 1090 case Attribute::StructRet: return 1 << 4; 1091 case Attribute::NoUnwind: return 1 << 5; 1092 case Attribute::NoAlias: return 1 << 6; 1093 case Attribute::ByVal: return 1 << 7; 1094 case Attribute::Nest: return 1 << 8; 1095 case Attribute::ReadNone: return 1 << 9; 1096 case Attribute::ReadOnly: return 1 << 10; 1097 case Attribute::NoInline: return 1 << 11; 1098 case Attribute::AlwaysInline: return 1 << 12; 1099 case Attribute::OptimizeForSize: return 1 << 13; 1100 case Attribute::StackProtect: return 1 << 14; 1101 case Attribute::StackProtectReq: return 1 << 15; 1102 case Attribute::Alignment: return 31 << 16; 1103 case Attribute::NoCapture: return 1 << 21; 1104 case Attribute::NoRedZone: return 1 << 22; 1105 case Attribute::NoImplicitFloat: return 1 << 23; 1106 case Attribute::Naked: return 1 << 24; 1107 case Attribute::InlineHint: return 1 << 25; 1108 case Attribute::StackAlignment: return 7 << 26; 1109 case Attribute::ReturnsTwice: return 1 << 29; 1110 case Attribute::UWTable: return 1 << 30; 1111 case Attribute::NonLazyBind: return 1U << 31; 1112 case Attribute::SanitizeAddress: return 1ULL << 32; 1113 case Attribute::MinSize: return 1ULL << 33; 1114 case Attribute::NoDuplicate: return 1ULL << 34; 1115 case Attribute::StackProtectStrong: return 1ULL << 35; 1116 case Attribute::SanitizeThread: return 1ULL << 36; 1117 case Attribute::SanitizeMemory: return 1ULL << 37; 1118 case Attribute::NoBuiltin: return 1ULL << 38; 1119 case Attribute::Returned: return 1ULL << 39; 1120 case Attribute::Cold: return 1ULL << 40; 1121 case Attribute::Builtin: return 1ULL << 41; 1122 case Attribute::OptimizeNone: return 1ULL << 42; 1123 case Attribute::InAlloca: return 1ULL << 43; 1124 case Attribute::NonNull: return 1ULL << 44; 1125 case Attribute::JumpTable: return 1ULL << 45; 1126 case Attribute::Convergent: return 1ULL << 46; 1127 case Attribute::SafeStack: return 1ULL << 47; 1128 case Attribute::NoRecurse: return 1ULL << 48; 1129 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1130 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1131 case Attribute::SwiftSelf: return 1ULL << 51; 1132 case Attribute::SwiftError: return 1ULL << 52; 1133 case Attribute::WriteOnly: return 1ULL << 53; 1134 case Attribute::Speculatable: return 1ULL << 54; 1135 case Attribute::Dereferenceable: 1136 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1137 break; 1138 case Attribute::DereferenceableOrNull: 1139 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1140 "format"); 1141 break; 1142 case Attribute::ArgMemOnly: 1143 llvm_unreachable("argmemonly attribute not supported in raw format"); 1144 break; 1145 case Attribute::AllocSize: 1146 llvm_unreachable("allocsize not supported in raw format"); 1147 break; 1148 } 1149 llvm_unreachable("Unsupported attribute type"); 1150 } 1151 1152 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1153 if (!Val) return; 1154 1155 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1156 I = Attribute::AttrKind(I + 1)) { 1157 if (I == Attribute::Dereferenceable || 1158 I == Attribute::DereferenceableOrNull || 1159 I == Attribute::ArgMemOnly || 1160 I == Attribute::AllocSize) 1161 continue; 1162 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1163 if (I == Attribute::Alignment) 1164 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1165 else if (I == Attribute::StackAlignment) 1166 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1167 else 1168 B.addAttribute(I); 1169 } 1170 } 1171 } 1172 1173 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1174 /// been decoded from the given integer. This function must stay in sync with 1175 /// 'encodeLLVMAttributesForBitcode'. 1176 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1177 uint64_t EncodedAttrs) { 1178 // FIXME: Remove in 4.0. 1179 1180 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1181 // the bits above 31 down by 11 bits. 1182 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1183 assert((!Alignment || isPowerOf2_32(Alignment)) && 1184 "Alignment must be a power of two."); 1185 1186 if (Alignment) 1187 B.addAlignmentAttr(Alignment); 1188 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1189 (EncodedAttrs & 0xffff)); 1190 } 1191 1192 Error BitcodeReader::parseAttributeBlock() { 1193 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1194 return error("Invalid record"); 1195 1196 if (!MAttributes.empty()) 1197 return error("Invalid multiple blocks"); 1198 1199 SmallVector<uint64_t, 64> Record; 1200 1201 SmallVector<AttributeList, 8> Attrs; 1202 1203 // Read all the records. 1204 while (true) { 1205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1206 1207 switch (Entry.Kind) { 1208 case BitstreamEntry::SubBlock: // Handled for us already. 1209 case BitstreamEntry::Error: 1210 return error("Malformed block"); 1211 case BitstreamEntry::EndBlock: 1212 return Error::success(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 switch (Stream.readRecord(Entry.ID, Record)) { 1221 default: // Default behavior: ignore. 1222 break; 1223 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1224 // FIXME: Remove in 4.0. 1225 if (Record.size() & 1) 1226 return error("Invalid record"); 1227 1228 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1229 AttrBuilder B; 1230 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1231 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1232 } 1233 1234 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1235 Attrs.clear(); 1236 break; 1237 } 1238 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1239 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1240 Attrs.push_back(MAttributeGroups[Record[i]]); 1241 1242 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1243 Attrs.clear(); 1244 break; 1245 } 1246 } 1247 } 1248 } 1249 1250 // Returns Attribute::None on unrecognized codes. 1251 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1252 switch (Code) { 1253 default: 1254 return Attribute::None; 1255 case bitc::ATTR_KIND_ALIGNMENT: 1256 return Attribute::Alignment; 1257 case bitc::ATTR_KIND_ALWAYS_INLINE: 1258 return Attribute::AlwaysInline; 1259 case bitc::ATTR_KIND_ARGMEMONLY: 1260 return Attribute::ArgMemOnly; 1261 case bitc::ATTR_KIND_BUILTIN: 1262 return Attribute::Builtin; 1263 case bitc::ATTR_KIND_BY_VAL: 1264 return Attribute::ByVal; 1265 case bitc::ATTR_KIND_IN_ALLOCA: 1266 return Attribute::InAlloca; 1267 case bitc::ATTR_KIND_COLD: 1268 return Attribute::Cold; 1269 case bitc::ATTR_KIND_CONVERGENT: 1270 return Attribute::Convergent; 1271 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1272 return Attribute::InaccessibleMemOnly; 1273 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1274 return Attribute::InaccessibleMemOrArgMemOnly; 1275 case bitc::ATTR_KIND_INLINE_HINT: 1276 return Attribute::InlineHint; 1277 case bitc::ATTR_KIND_IN_REG: 1278 return Attribute::InReg; 1279 case bitc::ATTR_KIND_JUMP_TABLE: 1280 return Attribute::JumpTable; 1281 case bitc::ATTR_KIND_MIN_SIZE: 1282 return Attribute::MinSize; 1283 case bitc::ATTR_KIND_NAKED: 1284 return Attribute::Naked; 1285 case bitc::ATTR_KIND_NEST: 1286 return Attribute::Nest; 1287 case bitc::ATTR_KIND_NO_ALIAS: 1288 return Attribute::NoAlias; 1289 case bitc::ATTR_KIND_NO_BUILTIN: 1290 return Attribute::NoBuiltin; 1291 case bitc::ATTR_KIND_NO_CAPTURE: 1292 return Attribute::NoCapture; 1293 case bitc::ATTR_KIND_NO_DUPLICATE: 1294 return Attribute::NoDuplicate; 1295 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1296 return Attribute::NoImplicitFloat; 1297 case bitc::ATTR_KIND_NO_INLINE: 1298 return Attribute::NoInline; 1299 case bitc::ATTR_KIND_NO_RECURSE: 1300 return Attribute::NoRecurse; 1301 case bitc::ATTR_KIND_NON_LAZY_BIND: 1302 return Attribute::NonLazyBind; 1303 case bitc::ATTR_KIND_NON_NULL: 1304 return Attribute::NonNull; 1305 case bitc::ATTR_KIND_DEREFERENCEABLE: 1306 return Attribute::Dereferenceable; 1307 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1308 return Attribute::DereferenceableOrNull; 1309 case bitc::ATTR_KIND_ALLOC_SIZE: 1310 return Attribute::AllocSize; 1311 case bitc::ATTR_KIND_NO_RED_ZONE: 1312 return Attribute::NoRedZone; 1313 case bitc::ATTR_KIND_NO_RETURN: 1314 return Attribute::NoReturn; 1315 case bitc::ATTR_KIND_NO_UNWIND: 1316 return Attribute::NoUnwind; 1317 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1318 return Attribute::OptimizeForSize; 1319 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1320 return Attribute::OptimizeNone; 1321 case bitc::ATTR_KIND_READ_NONE: 1322 return Attribute::ReadNone; 1323 case bitc::ATTR_KIND_READ_ONLY: 1324 return Attribute::ReadOnly; 1325 case bitc::ATTR_KIND_RETURNED: 1326 return Attribute::Returned; 1327 case bitc::ATTR_KIND_RETURNS_TWICE: 1328 return Attribute::ReturnsTwice; 1329 case bitc::ATTR_KIND_S_EXT: 1330 return Attribute::SExt; 1331 case bitc::ATTR_KIND_SPECULATABLE: 1332 return Attribute::Speculatable; 1333 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1334 return Attribute::StackAlignment; 1335 case bitc::ATTR_KIND_STACK_PROTECT: 1336 return Attribute::StackProtect; 1337 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1338 return Attribute::StackProtectReq; 1339 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1340 return Attribute::StackProtectStrong; 1341 case bitc::ATTR_KIND_SAFESTACK: 1342 return Attribute::SafeStack; 1343 case bitc::ATTR_KIND_STRUCT_RET: 1344 return Attribute::StructRet; 1345 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1346 return Attribute::SanitizeAddress; 1347 case bitc::ATTR_KIND_SANITIZE_THREAD: 1348 return Attribute::SanitizeThread; 1349 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1350 return Attribute::SanitizeMemory; 1351 case bitc::ATTR_KIND_SWIFT_ERROR: 1352 return Attribute::SwiftError; 1353 case bitc::ATTR_KIND_SWIFT_SELF: 1354 return Attribute::SwiftSelf; 1355 case bitc::ATTR_KIND_UW_TABLE: 1356 return Attribute::UWTable; 1357 case bitc::ATTR_KIND_WRITEONLY: 1358 return Attribute::WriteOnly; 1359 case bitc::ATTR_KIND_Z_EXT: 1360 return Attribute::ZExt; 1361 } 1362 } 1363 1364 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1365 unsigned &Alignment) { 1366 // Note: Alignment in bitcode files is incremented by 1, so that zero 1367 // can be used for default alignment. 1368 if (Exponent > Value::MaxAlignmentExponent + 1) 1369 return error("Invalid alignment value"); 1370 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1371 return Error::success(); 1372 } 1373 1374 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1375 *Kind = getAttrFromCode(Code); 1376 if (*Kind == Attribute::None) 1377 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1378 return Error::success(); 1379 } 1380 1381 Error BitcodeReader::parseAttributeGroupBlock() { 1382 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1383 return error("Invalid record"); 1384 1385 if (!MAttributeGroups.empty()) 1386 return error("Invalid multiple blocks"); 1387 1388 SmallVector<uint64_t, 64> Record; 1389 1390 // Read all the records. 1391 while (true) { 1392 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1393 1394 switch (Entry.Kind) { 1395 case BitstreamEntry::SubBlock: // Handled for us already. 1396 case BitstreamEntry::Error: 1397 return error("Malformed block"); 1398 case BitstreamEntry::EndBlock: 1399 return Error::success(); 1400 case BitstreamEntry::Record: 1401 // The interesting case. 1402 break; 1403 } 1404 1405 // Read a record. 1406 Record.clear(); 1407 switch (Stream.readRecord(Entry.ID, Record)) { 1408 default: // Default behavior: ignore. 1409 break; 1410 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1411 if (Record.size() < 3) 1412 return error("Invalid record"); 1413 1414 uint64_t GrpID = Record[0]; 1415 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1416 1417 AttrBuilder B; 1418 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1419 if (Record[i] == 0) { // Enum attribute 1420 Attribute::AttrKind Kind; 1421 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1422 return Err; 1423 1424 B.addAttribute(Kind); 1425 } else if (Record[i] == 1) { // Integer attribute 1426 Attribute::AttrKind Kind; 1427 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1428 return Err; 1429 if (Kind == Attribute::Alignment) 1430 B.addAlignmentAttr(Record[++i]); 1431 else if (Kind == Attribute::StackAlignment) 1432 B.addStackAlignmentAttr(Record[++i]); 1433 else if (Kind == Attribute::Dereferenceable) 1434 B.addDereferenceableAttr(Record[++i]); 1435 else if (Kind == Attribute::DereferenceableOrNull) 1436 B.addDereferenceableOrNullAttr(Record[++i]); 1437 else if (Kind == Attribute::AllocSize) 1438 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1439 } else { // String attribute 1440 assert((Record[i] == 3 || Record[i] == 4) && 1441 "Invalid attribute group entry"); 1442 bool HasValue = (Record[i++] == 4); 1443 SmallString<64> KindStr; 1444 SmallString<64> ValStr; 1445 1446 while (Record[i] != 0 && i != e) 1447 KindStr += Record[i++]; 1448 assert(Record[i] == 0 && "Kind string not null terminated"); 1449 1450 if (HasValue) { 1451 // Has a value associated with it. 1452 ++i; // Skip the '0' that terminates the "kind" string. 1453 while (Record[i] != 0 && i != e) 1454 ValStr += Record[i++]; 1455 assert(Record[i] == 0 && "Value string not null terminated"); 1456 } 1457 1458 B.addAttribute(KindStr.str(), ValStr.str()); 1459 } 1460 } 1461 1462 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1463 break; 1464 } 1465 } 1466 } 1467 } 1468 1469 Error BitcodeReader::parseTypeTable() { 1470 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1471 return error("Invalid record"); 1472 1473 return parseTypeTableBody(); 1474 } 1475 1476 Error BitcodeReader::parseTypeTableBody() { 1477 if (!TypeList.empty()) 1478 return error("Invalid multiple blocks"); 1479 1480 SmallVector<uint64_t, 64> Record; 1481 unsigned NumRecords = 0; 1482 1483 SmallString<64> TypeName; 1484 1485 // Read all the records for this type table. 1486 while (true) { 1487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1488 1489 switch (Entry.Kind) { 1490 case BitstreamEntry::SubBlock: // Handled for us already. 1491 case BitstreamEntry::Error: 1492 return error("Malformed block"); 1493 case BitstreamEntry::EndBlock: 1494 if (NumRecords != TypeList.size()) 1495 return error("Malformed block"); 1496 return Error::success(); 1497 case BitstreamEntry::Record: 1498 // The interesting case. 1499 break; 1500 } 1501 1502 // Read a record. 1503 Record.clear(); 1504 Type *ResultTy = nullptr; 1505 switch (Stream.readRecord(Entry.ID, Record)) { 1506 default: 1507 return error("Invalid value"); 1508 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1509 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1510 // type list. This allows us to reserve space. 1511 if (Record.size() < 1) 1512 return error("Invalid record"); 1513 TypeList.resize(Record[0]); 1514 continue; 1515 case bitc::TYPE_CODE_VOID: // VOID 1516 ResultTy = Type::getVoidTy(Context); 1517 break; 1518 case bitc::TYPE_CODE_HALF: // HALF 1519 ResultTy = Type::getHalfTy(Context); 1520 break; 1521 case bitc::TYPE_CODE_FLOAT: // FLOAT 1522 ResultTy = Type::getFloatTy(Context); 1523 break; 1524 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1525 ResultTy = Type::getDoubleTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1528 ResultTy = Type::getX86_FP80Ty(Context); 1529 break; 1530 case bitc::TYPE_CODE_FP128: // FP128 1531 ResultTy = Type::getFP128Ty(Context); 1532 break; 1533 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1534 ResultTy = Type::getPPC_FP128Ty(Context); 1535 break; 1536 case bitc::TYPE_CODE_LABEL: // LABEL 1537 ResultTy = Type::getLabelTy(Context); 1538 break; 1539 case bitc::TYPE_CODE_METADATA: // METADATA 1540 ResultTy = Type::getMetadataTy(Context); 1541 break; 1542 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1543 ResultTy = Type::getX86_MMXTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_TOKEN: // TOKEN 1546 ResultTy = Type::getTokenTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1549 if (Record.size() < 1) 1550 return error("Invalid record"); 1551 1552 uint64_t NumBits = Record[0]; 1553 if (NumBits < IntegerType::MIN_INT_BITS || 1554 NumBits > IntegerType::MAX_INT_BITS) 1555 return error("Bitwidth for integer type out of range"); 1556 ResultTy = IntegerType::get(Context, NumBits); 1557 break; 1558 } 1559 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1560 // [pointee type, address space] 1561 if (Record.size() < 1) 1562 return error("Invalid record"); 1563 unsigned AddressSpace = 0; 1564 if (Record.size() == 2) 1565 AddressSpace = Record[1]; 1566 ResultTy = getTypeByID(Record[0]); 1567 if (!ResultTy || 1568 !PointerType::isValidElementType(ResultTy)) 1569 return error("Invalid type"); 1570 ResultTy = PointerType::get(ResultTy, AddressSpace); 1571 break; 1572 } 1573 case bitc::TYPE_CODE_FUNCTION_OLD: { 1574 // FIXME: attrid is dead, remove it in LLVM 4.0 1575 // FUNCTION: [vararg, attrid, retty, paramty x N] 1576 if (Record.size() < 3) 1577 return error("Invalid record"); 1578 SmallVector<Type*, 8> ArgTys; 1579 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1580 if (Type *T = getTypeByID(Record[i])) 1581 ArgTys.push_back(T); 1582 else 1583 break; 1584 } 1585 1586 ResultTy = getTypeByID(Record[2]); 1587 if (!ResultTy || ArgTys.size() < Record.size()-3) 1588 return error("Invalid type"); 1589 1590 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1591 break; 1592 } 1593 case bitc::TYPE_CODE_FUNCTION: { 1594 // FUNCTION: [vararg, retty, paramty x N] 1595 if (Record.size() < 2) 1596 return error("Invalid record"); 1597 SmallVector<Type*, 8> ArgTys; 1598 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1599 if (Type *T = getTypeByID(Record[i])) { 1600 if (!FunctionType::isValidArgumentType(T)) 1601 return error("Invalid function argument type"); 1602 ArgTys.push_back(T); 1603 } 1604 else 1605 break; 1606 } 1607 1608 ResultTy = getTypeByID(Record[1]); 1609 if (!ResultTy || ArgTys.size() < Record.size()-2) 1610 return error("Invalid type"); 1611 1612 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1613 break; 1614 } 1615 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1616 if (Record.size() < 1) 1617 return error("Invalid record"); 1618 SmallVector<Type*, 8> EltTys; 1619 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1620 if (Type *T = getTypeByID(Record[i])) 1621 EltTys.push_back(T); 1622 else 1623 break; 1624 } 1625 if (EltTys.size() != Record.size()-1) 1626 return error("Invalid type"); 1627 ResultTy = StructType::get(Context, EltTys, Record[0]); 1628 break; 1629 } 1630 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1631 if (convertToString(Record, 0, TypeName)) 1632 return error("Invalid record"); 1633 continue; 1634 1635 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1636 if (Record.size() < 1) 1637 return error("Invalid record"); 1638 1639 if (NumRecords >= TypeList.size()) 1640 return error("Invalid TYPE table"); 1641 1642 // Check to see if this was forward referenced, if so fill in the temp. 1643 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1644 if (Res) { 1645 Res->setName(TypeName); 1646 TypeList[NumRecords] = nullptr; 1647 } else // Otherwise, create a new struct. 1648 Res = createIdentifiedStructType(Context, TypeName); 1649 TypeName.clear(); 1650 1651 SmallVector<Type*, 8> EltTys; 1652 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1653 if (Type *T = getTypeByID(Record[i])) 1654 EltTys.push_back(T); 1655 else 1656 break; 1657 } 1658 if (EltTys.size() != Record.size()-1) 1659 return error("Invalid record"); 1660 Res->setBody(EltTys, Record[0]); 1661 ResultTy = Res; 1662 break; 1663 } 1664 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1665 if (Record.size() != 1) 1666 return error("Invalid record"); 1667 1668 if (NumRecords >= TypeList.size()) 1669 return error("Invalid TYPE table"); 1670 1671 // Check to see if this was forward referenced, if so fill in the temp. 1672 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1673 if (Res) { 1674 Res->setName(TypeName); 1675 TypeList[NumRecords] = nullptr; 1676 } else // Otherwise, create a new struct with no body. 1677 Res = createIdentifiedStructType(Context, TypeName); 1678 TypeName.clear(); 1679 ResultTy = Res; 1680 break; 1681 } 1682 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1683 if (Record.size() < 2) 1684 return error("Invalid record"); 1685 ResultTy = getTypeByID(Record[1]); 1686 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1687 return error("Invalid type"); 1688 ResultTy = ArrayType::get(ResultTy, Record[0]); 1689 break; 1690 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1691 if (Record.size() < 2) 1692 return error("Invalid record"); 1693 if (Record[0] == 0) 1694 return error("Invalid vector length"); 1695 ResultTy = getTypeByID(Record[1]); 1696 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1697 return error("Invalid type"); 1698 ResultTy = VectorType::get(ResultTy, Record[0]); 1699 break; 1700 } 1701 1702 if (NumRecords >= TypeList.size()) 1703 return error("Invalid TYPE table"); 1704 if (TypeList[NumRecords]) 1705 return error( 1706 "Invalid TYPE table: Only named structs can be forward referenced"); 1707 assert(ResultTy && "Didn't read a type?"); 1708 TypeList[NumRecords++] = ResultTy; 1709 } 1710 } 1711 1712 Error BitcodeReader::parseOperandBundleTags() { 1713 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1714 return error("Invalid record"); 1715 1716 if (!BundleTags.empty()) 1717 return error("Invalid multiple blocks"); 1718 1719 SmallVector<uint64_t, 64> Record; 1720 1721 while (true) { 1722 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1723 1724 switch (Entry.Kind) { 1725 case BitstreamEntry::SubBlock: // Handled for us already. 1726 case BitstreamEntry::Error: 1727 return error("Malformed block"); 1728 case BitstreamEntry::EndBlock: 1729 return Error::success(); 1730 case BitstreamEntry::Record: 1731 // The interesting case. 1732 break; 1733 } 1734 1735 // Tags are implicitly mapped to integers by their order. 1736 1737 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1738 return error("Invalid record"); 1739 1740 // OPERAND_BUNDLE_TAG: [strchr x N] 1741 BundleTags.emplace_back(); 1742 if (convertToString(Record, 0, BundleTags.back())) 1743 return error("Invalid record"); 1744 Record.clear(); 1745 } 1746 } 1747 1748 /// Associate a value with its name from the given index in the provided record. 1749 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1750 unsigned NameIndex, Triple &TT) { 1751 SmallString<128> ValueName; 1752 if (convertToString(Record, NameIndex, ValueName)) 1753 return error("Invalid record"); 1754 unsigned ValueID = Record[0]; 1755 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1756 return error("Invalid record"); 1757 Value *V = ValueList[ValueID]; 1758 1759 StringRef NameStr(ValueName.data(), ValueName.size()); 1760 if (NameStr.find_first_of(0) != StringRef::npos) 1761 return error("Invalid value name"); 1762 V->setName(NameStr); 1763 auto *GO = dyn_cast<GlobalObject>(V); 1764 if (GO) { 1765 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1766 if (TT.isOSBinFormatMachO()) 1767 GO->setComdat(nullptr); 1768 else 1769 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1770 } 1771 } 1772 return V; 1773 } 1774 1775 /// Helper to note and return the current location, and jump to the given 1776 /// offset. 1777 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1778 BitstreamCursor &Stream) { 1779 // Save the current parsing location so we can jump back at the end 1780 // of the VST read. 1781 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1782 Stream.JumpToBit(Offset * 32); 1783 #ifndef NDEBUG 1784 // Do some checking if we are in debug mode. 1785 BitstreamEntry Entry = Stream.advance(); 1786 assert(Entry.Kind == BitstreamEntry::SubBlock); 1787 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1788 #else 1789 // In NDEBUG mode ignore the output so we don't get an unused variable 1790 // warning. 1791 Stream.advance(); 1792 #endif 1793 return CurrentBit; 1794 } 1795 1796 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1797 Function *F, 1798 ArrayRef<uint64_t> Record) { 1799 // Note that we subtract 1 here because the offset is relative to one word 1800 // before the start of the identification or module block, which was 1801 // historically always the start of the regular bitcode header. 1802 uint64_t FuncWordOffset = Record[1] - 1; 1803 uint64_t FuncBitOffset = FuncWordOffset * 32; 1804 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1805 // Set the LastFunctionBlockBit to point to the last function block. 1806 // Later when parsing is resumed after function materialization, 1807 // we can simply skip that last function block. 1808 if (FuncBitOffset > LastFunctionBlockBit) 1809 LastFunctionBlockBit = FuncBitOffset; 1810 } 1811 1812 /// Read a new-style GlobalValue symbol table. 1813 Error BitcodeReader::parseGlobalValueSymbolTable() { 1814 unsigned FuncBitcodeOffsetDelta = 1815 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1816 1817 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1818 return error("Invalid record"); 1819 1820 SmallVector<uint64_t, 64> Record; 1821 while (true) { 1822 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1823 1824 switch (Entry.Kind) { 1825 case BitstreamEntry::SubBlock: 1826 case BitstreamEntry::Error: 1827 return error("Malformed block"); 1828 case BitstreamEntry::EndBlock: 1829 return Error::success(); 1830 case BitstreamEntry::Record: 1831 break; 1832 } 1833 1834 Record.clear(); 1835 switch (Stream.readRecord(Entry.ID, Record)) { 1836 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1837 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1838 cast<Function>(ValueList[Record[0]]), Record); 1839 break; 1840 } 1841 } 1842 } 1843 1844 /// Parse the value symbol table at either the current parsing location or 1845 /// at the given bit offset if provided. 1846 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1847 uint64_t CurrentBit; 1848 // Pass in the Offset to distinguish between calling for the module-level 1849 // VST (where we want to jump to the VST offset) and the function-level 1850 // VST (where we don't). 1851 if (Offset > 0) { 1852 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1853 // If this module uses a string table, read this as a module-level VST. 1854 if (UseStrtab) { 1855 if (Error Err = parseGlobalValueSymbolTable()) 1856 return Err; 1857 Stream.JumpToBit(CurrentBit); 1858 return Error::success(); 1859 } 1860 // Otherwise, the VST will be in a similar format to a function-level VST, 1861 // and will contain symbol names. 1862 } 1863 1864 // Compute the delta between the bitcode indices in the VST (the word offset 1865 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1866 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1867 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1868 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1869 // just before entering the VST subblock because: 1) the EnterSubBlock 1870 // changes the AbbrevID width; 2) the VST block is nested within the same 1871 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1872 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1873 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1874 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1875 unsigned FuncBitcodeOffsetDelta = 1876 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1877 1878 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1879 return error("Invalid record"); 1880 1881 SmallVector<uint64_t, 64> Record; 1882 1883 Triple TT(TheModule->getTargetTriple()); 1884 1885 // Read all the records for this value table. 1886 SmallString<128> ValueName; 1887 1888 while (true) { 1889 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1890 1891 switch (Entry.Kind) { 1892 case BitstreamEntry::SubBlock: // Handled for us already. 1893 case BitstreamEntry::Error: 1894 return error("Malformed block"); 1895 case BitstreamEntry::EndBlock: 1896 if (Offset > 0) 1897 Stream.JumpToBit(CurrentBit); 1898 return Error::success(); 1899 case BitstreamEntry::Record: 1900 // The interesting case. 1901 break; 1902 } 1903 1904 // Read a record. 1905 Record.clear(); 1906 switch (Stream.readRecord(Entry.ID, Record)) { 1907 default: // Default behavior: unknown type. 1908 break; 1909 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1910 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1911 if (Error Err = ValOrErr.takeError()) 1912 return Err; 1913 ValOrErr.get(); 1914 break; 1915 } 1916 case bitc::VST_CODE_FNENTRY: { 1917 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1918 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1919 if (Error Err = ValOrErr.takeError()) 1920 return Err; 1921 Value *V = ValOrErr.get(); 1922 1923 // Ignore function offsets emitted for aliases of functions in older 1924 // versions of LLVM. 1925 if (auto *F = dyn_cast<Function>(V)) 1926 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1927 break; 1928 } 1929 case bitc::VST_CODE_BBENTRY: { 1930 if (convertToString(Record, 1, ValueName)) 1931 return error("Invalid record"); 1932 BasicBlock *BB = getBasicBlock(Record[0]); 1933 if (!BB) 1934 return error("Invalid record"); 1935 1936 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1937 ValueName.clear(); 1938 break; 1939 } 1940 } 1941 } 1942 } 1943 1944 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1945 /// encoding. 1946 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1947 if ((V & 1) == 0) 1948 return V >> 1; 1949 if (V != 1) 1950 return -(V >> 1); 1951 // There is no such thing as -0 with integers. "-0" really means MININT. 1952 return 1ULL << 63; 1953 } 1954 1955 /// Resolve all of the initializers for global values and aliases that we can. 1956 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1957 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1958 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1959 IndirectSymbolInitWorklist; 1960 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1961 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1962 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1963 1964 GlobalInitWorklist.swap(GlobalInits); 1965 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1966 FunctionPrefixWorklist.swap(FunctionPrefixes); 1967 FunctionPrologueWorklist.swap(FunctionPrologues); 1968 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1969 1970 while (!GlobalInitWorklist.empty()) { 1971 unsigned ValID = GlobalInitWorklist.back().second; 1972 if (ValID >= ValueList.size()) { 1973 // Not ready to resolve this yet, it requires something later in the file. 1974 GlobalInits.push_back(GlobalInitWorklist.back()); 1975 } else { 1976 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1977 GlobalInitWorklist.back().first->setInitializer(C); 1978 else 1979 return error("Expected a constant"); 1980 } 1981 GlobalInitWorklist.pop_back(); 1982 } 1983 1984 while (!IndirectSymbolInitWorklist.empty()) { 1985 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1986 if (ValID >= ValueList.size()) { 1987 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1988 } else { 1989 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1990 if (!C) 1991 return error("Expected a constant"); 1992 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1993 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1994 return error("Alias and aliasee types don't match"); 1995 GIS->setIndirectSymbol(C); 1996 } 1997 IndirectSymbolInitWorklist.pop_back(); 1998 } 1999 2000 while (!FunctionPrefixWorklist.empty()) { 2001 unsigned ValID = FunctionPrefixWorklist.back().second; 2002 if (ValID >= ValueList.size()) { 2003 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2004 } else { 2005 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2006 FunctionPrefixWorklist.back().first->setPrefixData(C); 2007 else 2008 return error("Expected a constant"); 2009 } 2010 FunctionPrefixWorklist.pop_back(); 2011 } 2012 2013 while (!FunctionPrologueWorklist.empty()) { 2014 unsigned ValID = FunctionPrologueWorklist.back().second; 2015 if (ValID >= ValueList.size()) { 2016 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2017 } else { 2018 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2019 FunctionPrologueWorklist.back().first->setPrologueData(C); 2020 else 2021 return error("Expected a constant"); 2022 } 2023 FunctionPrologueWorklist.pop_back(); 2024 } 2025 2026 while (!FunctionPersonalityFnWorklist.empty()) { 2027 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2028 if (ValID >= ValueList.size()) { 2029 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2030 } else { 2031 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2032 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2033 else 2034 return error("Expected a constant"); 2035 } 2036 FunctionPersonalityFnWorklist.pop_back(); 2037 } 2038 2039 return Error::success(); 2040 } 2041 2042 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2043 SmallVector<uint64_t, 8> Words(Vals.size()); 2044 transform(Vals, Words.begin(), 2045 BitcodeReader::decodeSignRotatedValue); 2046 2047 return APInt(TypeBits, Words); 2048 } 2049 2050 Error BitcodeReader::parseConstants() { 2051 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2052 return error("Invalid record"); 2053 2054 SmallVector<uint64_t, 64> Record; 2055 2056 // Read all the records for this value table. 2057 Type *CurTy = Type::getInt32Ty(Context); 2058 unsigned NextCstNo = ValueList.size(); 2059 2060 while (true) { 2061 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2062 2063 switch (Entry.Kind) { 2064 case BitstreamEntry::SubBlock: // Handled for us already. 2065 case BitstreamEntry::Error: 2066 return error("Malformed block"); 2067 case BitstreamEntry::EndBlock: 2068 if (NextCstNo != ValueList.size()) 2069 return error("Invalid constant reference"); 2070 2071 // Once all the constants have been read, go through and resolve forward 2072 // references. 2073 ValueList.resolveConstantForwardRefs(); 2074 return Error::success(); 2075 case BitstreamEntry::Record: 2076 // The interesting case. 2077 break; 2078 } 2079 2080 // Read a record. 2081 Record.clear(); 2082 Type *VoidType = Type::getVoidTy(Context); 2083 Value *V = nullptr; 2084 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2085 switch (BitCode) { 2086 default: // Default behavior: unknown constant 2087 case bitc::CST_CODE_UNDEF: // UNDEF 2088 V = UndefValue::get(CurTy); 2089 break; 2090 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2091 if (Record.empty()) 2092 return error("Invalid record"); 2093 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2094 return error("Invalid record"); 2095 if (TypeList[Record[0]] == VoidType) 2096 return error("Invalid constant type"); 2097 CurTy = TypeList[Record[0]]; 2098 continue; // Skip the ValueList manipulation. 2099 case bitc::CST_CODE_NULL: // NULL 2100 V = Constant::getNullValue(CurTy); 2101 break; 2102 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2103 if (!CurTy->isIntegerTy() || Record.empty()) 2104 return error("Invalid record"); 2105 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2106 break; 2107 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2108 if (!CurTy->isIntegerTy() || Record.empty()) 2109 return error("Invalid record"); 2110 2111 APInt VInt = 2112 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2113 V = ConstantInt::get(Context, VInt); 2114 2115 break; 2116 } 2117 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2118 if (Record.empty()) 2119 return error("Invalid record"); 2120 if (CurTy->isHalfTy()) 2121 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2122 APInt(16, (uint16_t)Record[0]))); 2123 else if (CurTy->isFloatTy()) 2124 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2125 APInt(32, (uint32_t)Record[0]))); 2126 else if (CurTy->isDoubleTy()) 2127 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2128 APInt(64, Record[0]))); 2129 else if (CurTy->isX86_FP80Ty()) { 2130 // Bits are not stored the same way as a normal i80 APInt, compensate. 2131 uint64_t Rearrange[2]; 2132 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2133 Rearrange[1] = Record[0] >> 48; 2134 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2135 APInt(80, Rearrange))); 2136 } else if (CurTy->isFP128Ty()) 2137 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2138 APInt(128, Record))); 2139 else if (CurTy->isPPC_FP128Ty()) 2140 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2141 APInt(128, Record))); 2142 else 2143 V = UndefValue::get(CurTy); 2144 break; 2145 } 2146 2147 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2148 if (Record.empty()) 2149 return error("Invalid record"); 2150 2151 unsigned Size = Record.size(); 2152 SmallVector<Constant*, 16> Elts; 2153 2154 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2155 for (unsigned i = 0; i != Size; ++i) 2156 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2157 STy->getElementType(i))); 2158 V = ConstantStruct::get(STy, Elts); 2159 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2160 Type *EltTy = ATy->getElementType(); 2161 for (unsigned i = 0; i != Size; ++i) 2162 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2163 V = ConstantArray::get(ATy, Elts); 2164 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2165 Type *EltTy = VTy->getElementType(); 2166 for (unsigned i = 0; i != Size; ++i) 2167 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2168 V = ConstantVector::get(Elts); 2169 } else { 2170 V = UndefValue::get(CurTy); 2171 } 2172 break; 2173 } 2174 case bitc::CST_CODE_STRING: // STRING: [values] 2175 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2176 if (Record.empty()) 2177 return error("Invalid record"); 2178 2179 SmallString<16> Elts(Record.begin(), Record.end()); 2180 V = ConstantDataArray::getString(Context, Elts, 2181 BitCode == bitc::CST_CODE_CSTRING); 2182 break; 2183 } 2184 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2185 if (Record.empty()) 2186 return error("Invalid record"); 2187 2188 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2189 if (EltTy->isIntegerTy(8)) { 2190 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2191 if (isa<VectorType>(CurTy)) 2192 V = ConstantDataVector::get(Context, Elts); 2193 else 2194 V = ConstantDataArray::get(Context, Elts); 2195 } else if (EltTy->isIntegerTy(16)) { 2196 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2197 if (isa<VectorType>(CurTy)) 2198 V = ConstantDataVector::get(Context, Elts); 2199 else 2200 V = ConstantDataArray::get(Context, Elts); 2201 } else if (EltTy->isIntegerTy(32)) { 2202 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2203 if (isa<VectorType>(CurTy)) 2204 V = ConstantDataVector::get(Context, Elts); 2205 else 2206 V = ConstantDataArray::get(Context, Elts); 2207 } else if (EltTy->isIntegerTy(64)) { 2208 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2209 if (isa<VectorType>(CurTy)) 2210 V = ConstantDataVector::get(Context, Elts); 2211 else 2212 V = ConstantDataArray::get(Context, Elts); 2213 } else if (EltTy->isHalfTy()) { 2214 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2215 if (isa<VectorType>(CurTy)) 2216 V = ConstantDataVector::getFP(Context, Elts); 2217 else 2218 V = ConstantDataArray::getFP(Context, Elts); 2219 } else if (EltTy->isFloatTy()) { 2220 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2221 if (isa<VectorType>(CurTy)) 2222 V = ConstantDataVector::getFP(Context, Elts); 2223 else 2224 V = ConstantDataArray::getFP(Context, Elts); 2225 } else if (EltTy->isDoubleTy()) { 2226 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2227 if (isa<VectorType>(CurTy)) 2228 V = ConstantDataVector::getFP(Context, Elts); 2229 else 2230 V = ConstantDataArray::getFP(Context, Elts); 2231 } else { 2232 return error("Invalid type for value"); 2233 } 2234 break; 2235 } 2236 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2237 if (Record.size() < 3) 2238 return error("Invalid record"); 2239 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2240 if (Opc < 0) { 2241 V = UndefValue::get(CurTy); // Unknown binop. 2242 } else { 2243 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2244 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2245 unsigned Flags = 0; 2246 if (Record.size() >= 4) { 2247 if (Opc == Instruction::Add || 2248 Opc == Instruction::Sub || 2249 Opc == Instruction::Mul || 2250 Opc == Instruction::Shl) { 2251 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2252 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2253 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2254 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2255 } else if (Opc == Instruction::SDiv || 2256 Opc == Instruction::UDiv || 2257 Opc == Instruction::LShr || 2258 Opc == Instruction::AShr) { 2259 if (Record[3] & (1 << bitc::PEO_EXACT)) 2260 Flags |= SDivOperator::IsExact; 2261 } 2262 } 2263 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2264 } 2265 break; 2266 } 2267 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2268 if (Record.size() < 3) 2269 return error("Invalid record"); 2270 int Opc = getDecodedCastOpcode(Record[0]); 2271 if (Opc < 0) { 2272 V = UndefValue::get(CurTy); // Unknown cast. 2273 } else { 2274 Type *OpTy = getTypeByID(Record[1]); 2275 if (!OpTy) 2276 return error("Invalid record"); 2277 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2278 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2279 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2280 } 2281 break; 2282 } 2283 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2284 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2285 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2286 // operands] 2287 unsigned OpNum = 0; 2288 Type *PointeeType = nullptr; 2289 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2290 Record.size() % 2) 2291 PointeeType = getTypeByID(Record[OpNum++]); 2292 2293 bool InBounds = false; 2294 Optional<unsigned> InRangeIndex; 2295 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2296 uint64_t Op = Record[OpNum++]; 2297 InBounds = Op & 1; 2298 InRangeIndex = Op >> 1; 2299 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2300 InBounds = true; 2301 2302 SmallVector<Constant*, 16> Elts; 2303 while (OpNum != Record.size()) { 2304 Type *ElTy = getTypeByID(Record[OpNum++]); 2305 if (!ElTy) 2306 return error("Invalid record"); 2307 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2308 } 2309 2310 if (PointeeType && 2311 PointeeType != 2312 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2313 ->getElementType()) 2314 return error("Explicit gep operator type does not match pointee type " 2315 "of pointer operand"); 2316 2317 if (Elts.size() < 1) 2318 return error("Invalid gep with no operands"); 2319 2320 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2321 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2322 InBounds, InRangeIndex); 2323 break; 2324 } 2325 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2326 if (Record.size() < 3) 2327 return error("Invalid record"); 2328 2329 Type *SelectorTy = Type::getInt1Ty(Context); 2330 2331 // The selector might be an i1 or an <n x i1> 2332 // Get the type from the ValueList before getting a forward ref. 2333 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2334 if (Value *V = ValueList[Record[0]]) 2335 if (SelectorTy != V->getType()) 2336 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2337 2338 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2339 SelectorTy), 2340 ValueList.getConstantFwdRef(Record[1],CurTy), 2341 ValueList.getConstantFwdRef(Record[2],CurTy)); 2342 break; 2343 } 2344 case bitc::CST_CODE_CE_EXTRACTELT 2345 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2346 if (Record.size() < 3) 2347 return error("Invalid record"); 2348 VectorType *OpTy = 2349 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2350 if (!OpTy) 2351 return error("Invalid record"); 2352 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2353 Constant *Op1 = nullptr; 2354 if (Record.size() == 4) { 2355 Type *IdxTy = getTypeByID(Record[2]); 2356 if (!IdxTy) 2357 return error("Invalid record"); 2358 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2359 } else // TODO: Remove with llvm 4.0 2360 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2361 if (!Op1) 2362 return error("Invalid record"); 2363 V = ConstantExpr::getExtractElement(Op0, Op1); 2364 break; 2365 } 2366 case bitc::CST_CODE_CE_INSERTELT 2367 : { // CE_INSERTELT: [opval, opval, opty, opval] 2368 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2369 if (Record.size() < 3 || !OpTy) 2370 return error("Invalid record"); 2371 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2372 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2373 OpTy->getElementType()); 2374 Constant *Op2 = nullptr; 2375 if (Record.size() == 4) { 2376 Type *IdxTy = getTypeByID(Record[2]); 2377 if (!IdxTy) 2378 return error("Invalid record"); 2379 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2380 } else // TODO: Remove with llvm 4.0 2381 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2382 if (!Op2) 2383 return error("Invalid record"); 2384 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2385 break; 2386 } 2387 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2388 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2389 if (Record.size() < 3 || !OpTy) 2390 return error("Invalid record"); 2391 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2392 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2393 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2394 OpTy->getNumElements()); 2395 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2396 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2397 break; 2398 } 2399 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2400 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2401 VectorType *OpTy = 2402 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2403 if (Record.size() < 4 || !RTy || !OpTy) 2404 return error("Invalid record"); 2405 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2406 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2407 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2408 RTy->getNumElements()); 2409 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2410 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2411 break; 2412 } 2413 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2414 if (Record.size() < 4) 2415 return error("Invalid record"); 2416 Type *OpTy = getTypeByID(Record[0]); 2417 if (!OpTy) 2418 return error("Invalid record"); 2419 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2420 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2421 2422 if (OpTy->isFPOrFPVectorTy()) 2423 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2424 else 2425 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2426 break; 2427 } 2428 // This maintains backward compatibility, pre-asm dialect keywords. 2429 // FIXME: Remove with the 4.0 release. 2430 case bitc::CST_CODE_INLINEASM_OLD: { 2431 if (Record.size() < 2) 2432 return error("Invalid record"); 2433 std::string AsmStr, ConstrStr; 2434 bool HasSideEffects = Record[0] & 1; 2435 bool IsAlignStack = Record[0] >> 1; 2436 unsigned AsmStrSize = Record[1]; 2437 if (2+AsmStrSize >= Record.size()) 2438 return error("Invalid record"); 2439 unsigned ConstStrSize = Record[2+AsmStrSize]; 2440 if (3+AsmStrSize+ConstStrSize > Record.size()) 2441 return error("Invalid record"); 2442 2443 for (unsigned i = 0; i != AsmStrSize; ++i) 2444 AsmStr += (char)Record[2+i]; 2445 for (unsigned i = 0; i != ConstStrSize; ++i) 2446 ConstrStr += (char)Record[3+AsmStrSize+i]; 2447 PointerType *PTy = cast<PointerType>(CurTy); 2448 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2449 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2450 break; 2451 } 2452 // This version adds support for the asm dialect keywords (e.g., 2453 // inteldialect). 2454 case bitc::CST_CODE_INLINEASM: { 2455 if (Record.size() < 2) 2456 return error("Invalid record"); 2457 std::string AsmStr, ConstrStr; 2458 bool HasSideEffects = Record[0] & 1; 2459 bool IsAlignStack = (Record[0] >> 1) & 1; 2460 unsigned AsmDialect = Record[0] >> 2; 2461 unsigned AsmStrSize = Record[1]; 2462 if (2+AsmStrSize >= Record.size()) 2463 return error("Invalid record"); 2464 unsigned ConstStrSize = Record[2+AsmStrSize]; 2465 if (3+AsmStrSize+ConstStrSize > Record.size()) 2466 return error("Invalid record"); 2467 2468 for (unsigned i = 0; i != AsmStrSize; ++i) 2469 AsmStr += (char)Record[2+i]; 2470 for (unsigned i = 0; i != ConstStrSize; ++i) 2471 ConstrStr += (char)Record[3+AsmStrSize+i]; 2472 PointerType *PTy = cast<PointerType>(CurTy); 2473 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2474 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2475 InlineAsm::AsmDialect(AsmDialect)); 2476 break; 2477 } 2478 case bitc::CST_CODE_BLOCKADDRESS:{ 2479 if (Record.size() < 3) 2480 return error("Invalid record"); 2481 Type *FnTy = getTypeByID(Record[0]); 2482 if (!FnTy) 2483 return error("Invalid record"); 2484 Function *Fn = 2485 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2486 if (!Fn) 2487 return error("Invalid record"); 2488 2489 // If the function is already parsed we can insert the block address right 2490 // away. 2491 BasicBlock *BB; 2492 unsigned BBID = Record[2]; 2493 if (!BBID) 2494 // Invalid reference to entry block. 2495 return error("Invalid ID"); 2496 if (!Fn->empty()) { 2497 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2498 for (size_t I = 0, E = BBID; I != E; ++I) { 2499 if (BBI == BBE) 2500 return error("Invalid ID"); 2501 ++BBI; 2502 } 2503 BB = &*BBI; 2504 } else { 2505 // Otherwise insert a placeholder and remember it so it can be inserted 2506 // when the function is parsed. 2507 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2508 if (FwdBBs.empty()) 2509 BasicBlockFwdRefQueue.push_back(Fn); 2510 if (FwdBBs.size() < BBID + 1) 2511 FwdBBs.resize(BBID + 1); 2512 if (!FwdBBs[BBID]) 2513 FwdBBs[BBID] = BasicBlock::Create(Context); 2514 BB = FwdBBs[BBID]; 2515 } 2516 V = BlockAddress::get(Fn, BB); 2517 break; 2518 } 2519 } 2520 2521 ValueList.assignValue(V, NextCstNo); 2522 ++NextCstNo; 2523 } 2524 } 2525 2526 Error BitcodeReader::parseUseLists() { 2527 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2528 return error("Invalid record"); 2529 2530 // Read all the records. 2531 SmallVector<uint64_t, 64> Record; 2532 2533 while (true) { 2534 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2535 2536 switch (Entry.Kind) { 2537 case BitstreamEntry::SubBlock: // Handled for us already. 2538 case BitstreamEntry::Error: 2539 return error("Malformed block"); 2540 case BitstreamEntry::EndBlock: 2541 return Error::success(); 2542 case BitstreamEntry::Record: 2543 // The interesting case. 2544 break; 2545 } 2546 2547 // Read a use list record. 2548 Record.clear(); 2549 bool IsBB = false; 2550 switch (Stream.readRecord(Entry.ID, Record)) { 2551 default: // Default behavior: unknown type. 2552 break; 2553 case bitc::USELIST_CODE_BB: 2554 IsBB = true; 2555 LLVM_FALLTHROUGH; 2556 case bitc::USELIST_CODE_DEFAULT: { 2557 unsigned RecordLength = Record.size(); 2558 if (RecordLength < 3) 2559 // Records should have at least an ID and two indexes. 2560 return error("Invalid record"); 2561 unsigned ID = Record.back(); 2562 Record.pop_back(); 2563 2564 Value *V; 2565 if (IsBB) { 2566 assert(ID < FunctionBBs.size() && "Basic block not found"); 2567 V = FunctionBBs[ID]; 2568 } else 2569 V = ValueList[ID]; 2570 unsigned NumUses = 0; 2571 SmallDenseMap<const Use *, unsigned, 16> Order; 2572 for (const Use &U : V->materialized_uses()) { 2573 if (++NumUses > Record.size()) 2574 break; 2575 Order[&U] = Record[NumUses - 1]; 2576 } 2577 if (Order.size() != Record.size() || NumUses > Record.size()) 2578 // Mismatches can happen if the functions are being materialized lazily 2579 // (out-of-order), or a value has been upgraded. 2580 break; 2581 2582 V->sortUseList([&](const Use &L, const Use &R) { 2583 return Order.lookup(&L) < Order.lookup(&R); 2584 }); 2585 break; 2586 } 2587 } 2588 } 2589 } 2590 2591 /// When we see the block for metadata, remember where it is and then skip it. 2592 /// This lets us lazily deserialize the metadata. 2593 Error BitcodeReader::rememberAndSkipMetadata() { 2594 // Save the current stream state. 2595 uint64_t CurBit = Stream.GetCurrentBitNo(); 2596 DeferredMetadataInfo.push_back(CurBit); 2597 2598 // Skip over the block for now. 2599 if (Stream.SkipBlock()) 2600 return error("Invalid record"); 2601 return Error::success(); 2602 } 2603 2604 Error BitcodeReader::materializeMetadata() { 2605 for (uint64_t BitPos : DeferredMetadataInfo) { 2606 // Move the bit stream to the saved position. 2607 Stream.JumpToBit(BitPos); 2608 if (Error Err = MDLoader->parseModuleMetadata()) 2609 return Err; 2610 } 2611 DeferredMetadataInfo.clear(); 2612 return Error::success(); 2613 } 2614 2615 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2616 2617 /// When we see the block for a function body, remember where it is and then 2618 /// skip it. This lets us lazily deserialize the functions. 2619 Error BitcodeReader::rememberAndSkipFunctionBody() { 2620 // Get the function we are talking about. 2621 if (FunctionsWithBodies.empty()) 2622 return error("Insufficient function protos"); 2623 2624 Function *Fn = FunctionsWithBodies.back(); 2625 FunctionsWithBodies.pop_back(); 2626 2627 // Save the current stream state. 2628 uint64_t CurBit = Stream.GetCurrentBitNo(); 2629 assert( 2630 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2631 "Mismatch between VST and scanned function offsets"); 2632 DeferredFunctionInfo[Fn] = CurBit; 2633 2634 // Skip over the function block for now. 2635 if (Stream.SkipBlock()) 2636 return error("Invalid record"); 2637 return Error::success(); 2638 } 2639 2640 Error BitcodeReader::globalCleanup() { 2641 // Patch the initializers for globals and aliases up. 2642 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2643 return Err; 2644 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2645 return error("Malformed global initializer set"); 2646 2647 // Look for intrinsic functions which need to be upgraded at some point 2648 for (Function &F : *TheModule) { 2649 MDLoader->upgradeDebugIntrinsics(F); 2650 Function *NewFn; 2651 if (UpgradeIntrinsicFunction(&F, NewFn)) 2652 UpgradedIntrinsics[&F] = NewFn; 2653 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2654 // Some types could be renamed during loading if several modules are 2655 // loaded in the same LLVMContext (LTO scenario). In this case we should 2656 // remangle intrinsics names as well. 2657 RemangledIntrinsics[&F] = Remangled.getValue(); 2658 } 2659 2660 // Look for global variables which need to be renamed. 2661 for (GlobalVariable &GV : TheModule->globals()) 2662 UpgradeGlobalVariable(&GV); 2663 2664 // Force deallocation of memory for these vectors to favor the client that 2665 // want lazy deserialization. 2666 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2667 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2668 IndirectSymbolInits); 2669 return Error::success(); 2670 } 2671 2672 /// Support for lazy parsing of function bodies. This is required if we 2673 /// either have an old bitcode file without a VST forward declaration record, 2674 /// or if we have an anonymous function being materialized, since anonymous 2675 /// functions do not have a name and are therefore not in the VST. 2676 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2677 Stream.JumpToBit(NextUnreadBit); 2678 2679 if (Stream.AtEndOfStream()) 2680 return error("Could not find function in stream"); 2681 2682 if (!SeenFirstFunctionBody) 2683 return error("Trying to materialize functions before seeing function blocks"); 2684 2685 // An old bitcode file with the symbol table at the end would have 2686 // finished the parse greedily. 2687 assert(SeenValueSymbolTable); 2688 2689 SmallVector<uint64_t, 64> Record; 2690 2691 while (true) { 2692 BitstreamEntry Entry = Stream.advance(); 2693 switch (Entry.Kind) { 2694 default: 2695 return error("Expect SubBlock"); 2696 case BitstreamEntry::SubBlock: 2697 switch (Entry.ID) { 2698 default: 2699 return error("Expect function block"); 2700 case bitc::FUNCTION_BLOCK_ID: 2701 if (Error Err = rememberAndSkipFunctionBody()) 2702 return Err; 2703 NextUnreadBit = Stream.GetCurrentBitNo(); 2704 return Error::success(); 2705 } 2706 } 2707 } 2708 } 2709 2710 bool BitcodeReaderBase::readBlockInfo() { 2711 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2712 if (!NewBlockInfo) 2713 return true; 2714 BlockInfo = std::move(*NewBlockInfo); 2715 return false; 2716 } 2717 2718 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2719 // v1: [selection_kind, name] 2720 // v2: [strtab_offset, strtab_size, selection_kind] 2721 StringRef Name; 2722 std::tie(Name, Record) = readNameFromStrtab(Record); 2723 2724 if (Record.size() < 1) 2725 return error("Invalid record"); 2726 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2727 std::string OldFormatName; 2728 if (!UseStrtab) { 2729 if (Record.size() < 2) 2730 return error("Invalid record"); 2731 unsigned ComdatNameSize = Record[1]; 2732 OldFormatName.reserve(ComdatNameSize); 2733 for (unsigned i = 0; i != ComdatNameSize; ++i) 2734 OldFormatName += (char)Record[2 + i]; 2735 Name = OldFormatName; 2736 } 2737 Comdat *C = TheModule->getOrInsertComdat(Name); 2738 C->setSelectionKind(SK); 2739 ComdatList.push_back(C); 2740 return Error::success(); 2741 } 2742 2743 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2744 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2745 // visibility, threadlocal, unnamed_addr, externally_initialized, 2746 // dllstorageclass, comdat, attributes] (name in VST) 2747 // v2: [strtab_offset, strtab_size, v1] 2748 StringRef Name; 2749 std::tie(Name, Record) = readNameFromStrtab(Record); 2750 2751 if (Record.size() < 6) 2752 return error("Invalid record"); 2753 Type *Ty = getTypeByID(Record[0]); 2754 if (!Ty) 2755 return error("Invalid record"); 2756 bool isConstant = Record[1] & 1; 2757 bool explicitType = Record[1] & 2; 2758 unsigned AddressSpace; 2759 if (explicitType) { 2760 AddressSpace = Record[1] >> 2; 2761 } else { 2762 if (!Ty->isPointerTy()) 2763 return error("Invalid type for value"); 2764 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2765 Ty = cast<PointerType>(Ty)->getElementType(); 2766 } 2767 2768 uint64_t RawLinkage = Record[3]; 2769 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2770 unsigned Alignment; 2771 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2772 return Err; 2773 std::string Section; 2774 if (Record[5]) { 2775 if (Record[5] - 1 >= SectionTable.size()) 2776 return error("Invalid ID"); 2777 Section = SectionTable[Record[5] - 1]; 2778 } 2779 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2780 // Local linkage must have default visibility. 2781 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2782 // FIXME: Change to an error if non-default in 4.0. 2783 Visibility = getDecodedVisibility(Record[6]); 2784 2785 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2786 if (Record.size() > 7) 2787 TLM = getDecodedThreadLocalMode(Record[7]); 2788 2789 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2790 if (Record.size() > 8) 2791 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2792 2793 bool ExternallyInitialized = false; 2794 if (Record.size() > 9) 2795 ExternallyInitialized = Record[9]; 2796 2797 GlobalVariable *NewGV = 2798 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2799 nullptr, TLM, AddressSpace, ExternallyInitialized); 2800 NewGV->setAlignment(Alignment); 2801 if (!Section.empty()) 2802 NewGV->setSection(Section); 2803 NewGV->setVisibility(Visibility); 2804 NewGV->setUnnamedAddr(UnnamedAddr); 2805 2806 if (Record.size() > 10) 2807 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2808 else 2809 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2810 2811 ValueList.push_back(NewGV); 2812 2813 // Remember which value to use for the global initializer. 2814 if (unsigned InitID = Record[2]) 2815 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2816 2817 if (Record.size() > 11) { 2818 if (unsigned ComdatID = Record[11]) { 2819 if (ComdatID > ComdatList.size()) 2820 return error("Invalid global variable comdat ID"); 2821 NewGV->setComdat(ComdatList[ComdatID - 1]); 2822 } 2823 } else if (hasImplicitComdat(RawLinkage)) { 2824 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2825 } 2826 2827 if (Record.size() > 12) { 2828 auto AS = getAttributes(Record[12]).getFnAttributes(); 2829 NewGV->setAttributes(AS); 2830 } 2831 return Error::success(); 2832 } 2833 2834 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2835 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2836 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2837 // prefixdata] (name in VST) 2838 // v2: [strtab_offset, strtab_size, v1] 2839 StringRef Name; 2840 std::tie(Name, Record) = readNameFromStrtab(Record); 2841 2842 if (Record.size() < 8) 2843 return error("Invalid record"); 2844 Type *Ty = getTypeByID(Record[0]); 2845 if (!Ty) 2846 return error("Invalid record"); 2847 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2848 Ty = PTy->getElementType(); 2849 auto *FTy = dyn_cast<FunctionType>(Ty); 2850 if (!FTy) 2851 return error("Invalid type for value"); 2852 auto CC = static_cast<CallingConv::ID>(Record[1]); 2853 if (CC & ~CallingConv::MaxID) 2854 return error("Invalid calling convention ID"); 2855 2856 Function *Func = 2857 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2858 2859 Func->setCallingConv(CC); 2860 bool isProto = Record[2]; 2861 uint64_t RawLinkage = Record[3]; 2862 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2863 Func->setAttributes(getAttributes(Record[4])); 2864 2865 unsigned Alignment; 2866 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2867 return Err; 2868 Func->setAlignment(Alignment); 2869 if (Record[6]) { 2870 if (Record[6] - 1 >= SectionTable.size()) 2871 return error("Invalid ID"); 2872 Func->setSection(SectionTable[Record[6] - 1]); 2873 } 2874 // Local linkage must have default visibility. 2875 if (!Func->hasLocalLinkage()) 2876 // FIXME: Change to an error if non-default in 4.0. 2877 Func->setVisibility(getDecodedVisibility(Record[7])); 2878 if (Record.size() > 8 && Record[8]) { 2879 if (Record[8] - 1 >= GCTable.size()) 2880 return error("Invalid ID"); 2881 Func->setGC(GCTable[Record[8] - 1]); 2882 } 2883 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2884 if (Record.size() > 9) 2885 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2886 Func->setUnnamedAddr(UnnamedAddr); 2887 if (Record.size() > 10 && Record[10] != 0) 2888 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2889 2890 if (Record.size() > 11) 2891 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2892 else 2893 upgradeDLLImportExportLinkage(Func, RawLinkage); 2894 2895 if (Record.size() > 12) { 2896 if (unsigned ComdatID = Record[12]) { 2897 if (ComdatID > ComdatList.size()) 2898 return error("Invalid function comdat ID"); 2899 Func->setComdat(ComdatList[ComdatID - 1]); 2900 } 2901 } else if (hasImplicitComdat(RawLinkage)) { 2902 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2903 } 2904 2905 if (Record.size() > 13 && Record[13] != 0) 2906 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2907 2908 if (Record.size() > 14 && Record[14] != 0) 2909 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2910 2911 ValueList.push_back(Func); 2912 2913 // If this is a function with a body, remember the prototype we are 2914 // creating now, so that we can match up the body with them later. 2915 if (!isProto) { 2916 Func->setIsMaterializable(true); 2917 FunctionsWithBodies.push_back(Func); 2918 DeferredFunctionInfo[Func] = 0; 2919 } 2920 return Error::success(); 2921 } 2922 2923 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2924 unsigned BitCode, ArrayRef<uint64_t> Record) { 2925 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2926 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2927 // dllstorageclass] (name in VST) 2928 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2929 // visibility, dllstorageclass] (name in VST) 2930 // v2: [strtab_offset, strtab_size, v1] 2931 StringRef Name; 2932 std::tie(Name, Record) = readNameFromStrtab(Record); 2933 2934 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2935 if (Record.size() < (3 + (unsigned)NewRecord)) 2936 return error("Invalid record"); 2937 unsigned OpNum = 0; 2938 Type *Ty = getTypeByID(Record[OpNum++]); 2939 if (!Ty) 2940 return error("Invalid record"); 2941 2942 unsigned AddrSpace; 2943 if (!NewRecord) { 2944 auto *PTy = dyn_cast<PointerType>(Ty); 2945 if (!PTy) 2946 return error("Invalid type for value"); 2947 Ty = PTy->getElementType(); 2948 AddrSpace = PTy->getAddressSpace(); 2949 } else { 2950 AddrSpace = Record[OpNum++]; 2951 } 2952 2953 auto Val = Record[OpNum++]; 2954 auto Linkage = Record[OpNum++]; 2955 GlobalIndirectSymbol *NewGA; 2956 if (BitCode == bitc::MODULE_CODE_ALIAS || 2957 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 2958 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2959 TheModule); 2960 else 2961 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2962 nullptr, TheModule); 2963 // Old bitcode files didn't have visibility field. 2964 // Local linkage must have default visibility. 2965 if (OpNum != Record.size()) { 2966 auto VisInd = OpNum++; 2967 if (!NewGA->hasLocalLinkage()) 2968 // FIXME: Change to an error if non-default in 4.0. 2969 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 2970 } 2971 if (OpNum != Record.size()) 2972 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 2973 else 2974 upgradeDLLImportExportLinkage(NewGA, Linkage); 2975 if (OpNum != Record.size()) 2976 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 2977 if (OpNum != Record.size()) 2978 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 2979 ValueList.push_back(NewGA); 2980 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 2981 return Error::success(); 2982 } 2983 2984 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2985 bool ShouldLazyLoadMetadata) { 2986 if (ResumeBit) 2987 Stream.JumpToBit(ResumeBit); 2988 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2989 return error("Invalid record"); 2990 2991 SmallVector<uint64_t, 64> Record; 2992 2993 // Read all the records for this module. 2994 while (true) { 2995 BitstreamEntry Entry = Stream.advance(); 2996 2997 switch (Entry.Kind) { 2998 case BitstreamEntry::Error: 2999 return error("Malformed block"); 3000 case BitstreamEntry::EndBlock: 3001 return globalCleanup(); 3002 3003 case BitstreamEntry::SubBlock: 3004 switch (Entry.ID) { 3005 default: // Skip unknown content. 3006 if (Stream.SkipBlock()) 3007 return error("Invalid record"); 3008 break; 3009 case bitc::BLOCKINFO_BLOCK_ID: 3010 if (readBlockInfo()) 3011 return error("Malformed block"); 3012 break; 3013 case bitc::PARAMATTR_BLOCK_ID: 3014 if (Error Err = parseAttributeBlock()) 3015 return Err; 3016 break; 3017 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3018 if (Error Err = parseAttributeGroupBlock()) 3019 return Err; 3020 break; 3021 case bitc::TYPE_BLOCK_ID_NEW: 3022 if (Error Err = parseTypeTable()) 3023 return Err; 3024 break; 3025 case bitc::VALUE_SYMTAB_BLOCK_ID: 3026 if (!SeenValueSymbolTable) { 3027 // Either this is an old form VST without function index and an 3028 // associated VST forward declaration record (which would have caused 3029 // the VST to be jumped to and parsed before it was encountered 3030 // normally in the stream), or there were no function blocks to 3031 // trigger an earlier parsing of the VST. 3032 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3033 if (Error Err = parseValueSymbolTable()) 3034 return Err; 3035 SeenValueSymbolTable = true; 3036 } else { 3037 // We must have had a VST forward declaration record, which caused 3038 // the parser to jump to and parse the VST earlier. 3039 assert(VSTOffset > 0); 3040 if (Stream.SkipBlock()) 3041 return error("Invalid record"); 3042 } 3043 break; 3044 case bitc::CONSTANTS_BLOCK_ID: 3045 if (Error Err = parseConstants()) 3046 return Err; 3047 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3048 return Err; 3049 break; 3050 case bitc::METADATA_BLOCK_ID: 3051 if (ShouldLazyLoadMetadata) { 3052 if (Error Err = rememberAndSkipMetadata()) 3053 return Err; 3054 break; 3055 } 3056 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3057 if (Error Err = MDLoader->parseModuleMetadata()) 3058 return Err; 3059 break; 3060 case bitc::METADATA_KIND_BLOCK_ID: 3061 if (Error Err = MDLoader->parseMetadataKinds()) 3062 return Err; 3063 break; 3064 case bitc::FUNCTION_BLOCK_ID: 3065 // If this is the first function body we've seen, reverse the 3066 // FunctionsWithBodies list. 3067 if (!SeenFirstFunctionBody) { 3068 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3069 if (Error Err = globalCleanup()) 3070 return Err; 3071 SeenFirstFunctionBody = true; 3072 } 3073 3074 if (VSTOffset > 0) { 3075 // If we have a VST forward declaration record, make sure we 3076 // parse the VST now if we haven't already. It is needed to 3077 // set up the DeferredFunctionInfo vector for lazy reading. 3078 if (!SeenValueSymbolTable) { 3079 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3080 return Err; 3081 SeenValueSymbolTable = true; 3082 // Fall through so that we record the NextUnreadBit below. 3083 // This is necessary in case we have an anonymous function that 3084 // is later materialized. Since it will not have a VST entry we 3085 // need to fall back to the lazy parse to find its offset. 3086 } else { 3087 // If we have a VST forward declaration record, but have already 3088 // parsed the VST (just above, when the first function body was 3089 // encountered here), then we are resuming the parse after 3090 // materializing functions. The ResumeBit points to the 3091 // start of the last function block recorded in the 3092 // DeferredFunctionInfo map. Skip it. 3093 if (Stream.SkipBlock()) 3094 return error("Invalid record"); 3095 continue; 3096 } 3097 } 3098 3099 // Support older bitcode files that did not have the function 3100 // index in the VST, nor a VST forward declaration record, as 3101 // well as anonymous functions that do not have VST entries. 3102 // Build the DeferredFunctionInfo vector on the fly. 3103 if (Error Err = rememberAndSkipFunctionBody()) 3104 return Err; 3105 3106 // Suspend parsing when we reach the function bodies. Subsequent 3107 // materialization calls will resume it when necessary. If the bitcode 3108 // file is old, the symbol table will be at the end instead and will not 3109 // have been seen yet. In this case, just finish the parse now. 3110 if (SeenValueSymbolTable) { 3111 NextUnreadBit = Stream.GetCurrentBitNo(); 3112 // After the VST has been parsed, we need to make sure intrinsic name 3113 // are auto-upgraded. 3114 return globalCleanup(); 3115 } 3116 break; 3117 case bitc::USELIST_BLOCK_ID: 3118 if (Error Err = parseUseLists()) 3119 return Err; 3120 break; 3121 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3122 if (Error Err = parseOperandBundleTags()) 3123 return Err; 3124 break; 3125 } 3126 continue; 3127 3128 case BitstreamEntry::Record: 3129 // The interesting case. 3130 break; 3131 } 3132 3133 // Read a record. 3134 auto BitCode = Stream.readRecord(Entry.ID, Record); 3135 switch (BitCode) { 3136 default: break; // Default behavior, ignore unknown content. 3137 case bitc::MODULE_CODE_VERSION: { 3138 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3139 if (!VersionOrErr) 3140 return VersionOrErr.takeError(); 3141 UseRelativeIDs = *VersionOrErr >= 1; 3142 break; 3143 } 3144 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3145 std::string S; 3146 if (convertToString(Record, 0, S)) 3147 return error("Invalid record"); 3148 TheModule->setTargetTriple(S); 3149 break; 3150 } 3151 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3152 std::string S; 3153 if (convertToString(Record, 0, S)) 3154 return error("Invalid record"); 3155 TheModule->setDataLayout(S); 3156 break; 3157 } 3158 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3159 std::string S; 3160 if (convertToString(Record, 0, S)) 3161 return error("Invalid record"); 3162 TheModule->setModuleInlineAsm(S); 3163 break; 3164 } 3165 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3166 // FIXME: Remove in 4.0. 3167 std::string S; 3168 if (convertToString(Record, 0, S)) 3169 return error("Invalid record"); 3170 // Ignore value. 3171 break; 3172 } 3173 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3174 std::string S; 3175 if (convertToString(Record, 0, S)) 3176 return error("Invalid record"); 3177 SectionTable.push_back(S); 3178 break; 3179 } 3180 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3181 std::string S; 3182 if (convertToString(Record, 0, S)) 3183 return error("Invalid record"); 3184 GCTable.push_back(S); 3185 break; 3186 } 3187 case bitc::MODULE_CODE_COMDAT: { 3188 if (Error Err = parseComdatRecord(Record)) 3189 return Err; 3190 break; 3191 } 3192 case bitc::MODULE_CODE_GLOBALVAR: { 3193 if (Error Err = parseGlobalVarRecord(Record)) 3194 return Err; 3195 break; 3196 } 3197 case bitc::MODULE_CODE_FUNCTION: { 3198 if (Error Err = parseFunctionRecord(Record)) 3199 return Err; 3200 break; 3201 } 3202 case bitc::MODULE_CODE_IFUNC: 3203 case bitc::MODULE_CODE_ALIAS: 3204 case bitc::MODULE_CODE_ALIAS_OLD: { 3205 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3206 return Err; 3207 break; 3208 } 3209 /// MODULE_CODE_VSTOFFSET: [offset] 3210 case bitc::MODULE_CODE_VSTOFFSET: 3211 if (Record.size() < 1) 3212 return error("Invalid record"); 3213 // Note that we subtract 1 here because the offset is relative to one word 3214 // before the start of the identification or module block, which was 3215 // historically always the start of the regular bitcode header. 3216 VSTOffset = Record[0] - 1; 3217 break; 3218 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3219 case bitc::MODULE_CODE_SOURCE_FILENAME: 3220 SmallString<128> ValueName; 3221 if (convertToString(Record, 0, ValueName)) 3222 return error("Invalid record"); 3223 TheModule->setSourceFileName(ValueName); 3224 break; 3225 } 3226 Record.clear(); 3227 } 3228 } 3229 3230 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3231 bool IsImporting) { 3232 TheModule = M; 3233 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3234 [&](unsigned ID) { return getTypeByID(ID); }); 3235 return parseModule(0, ShouldLazyLoadMetadata); 3236 } 3237 3238 3239 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3240 if (!isa<PointerType>(PtrType)) 3241 return error("Load/Store operand is not a pointer type"); 3242 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3243 3244 if (ValType && ValType != ElemType) 3245 return error("Explicit load/store type does not match pointee " 3246 "type of pointer operand"); 3247 if (!PointerType::isLoadableOrStorableType(ElemType)) 3248 return error("Cannot load/store from pointer"); 3249 return Error::success(); 3250 } 3251 3252 /// Lazily parse the specified function body block. 3253 Error BitcodeReader::parseFunctionBody(Function *F) { 3254 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3255 return error("Invalid record"); 3256 3257 // Unexpected unresolved metadata when parsing function. 3258 if (MDLoader->hasFwdRefs()) 3259 return error("Invalid function metadata: incoming forward references"); 3260 3261 InstructionList.clear(); 3262 unsigned ModuleValueListSize = ValueList.size(); 3263 unsigned ModuleMDLoaderSize = MDLoader->size(); 3264 3265 // Add all the function arguments to the value table. 3266 for (Argument &I : F->args()) 3267 ValueList.push_back(&I); 3268 3269 unsigned NextValueNo = ValueList.size(); 3270 BasicBlock *CurBB = nullptr; 3271 unsigned CurBBNo = 0; 3272 3273 DebugLoc LastLoc; 3274 auto getLastInstruction = [&]() -> Instruction * { 3275 if (CurBB && !CurBB->empty()) 3276 return &CurBB->back(); 3277 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3278 !FunctionBBs[CurBBNo - 1]->empty()) 3279 return &FunctionBBs[CurBBNo - 1]->back(); 3280 return nullptr; 3281 }; 3282 3283 std::vector<OperandBundleDef> OperandBundles; 3284 3285 // Read all the records. 3286 SmallVector<uint64_t, 64> Record; 3287 3288 while (true) { 3289 BitstreamEntry Entry = Stream.advance(); 3290 3291 switch (Entry.Kind) { 3292 case BitstreamEntry::Error: 3293 return error("Malformed block"); 3294 case BitstreamEntry::EndBlock: 3295 goto OutOfRecordLoop; 3296 3297 case BitstreamEntry::SubBlock: 3298 switch (Entry.ID) { 3299 default: // Skip unknown content. 3300 if (Stream.SkipBlock()) 3301 return error("Invalid record"); 3302 break; 3303 case bitc::CONSTANTS_BLOCK_ID: 3304 if (Error Err = parseConstants()) 3305 return Err; 3306 NextValueNo = ValueList.size(); 3307 break; 3308 case bitc::VALUE_SYMTAB_BLOCK_ID: 3309 if (Error Err = parseValueSymbolTable()) 3310 return Err; 3311 break; 3312 case bitc::METADATA_ATTACHMENT_ID: 3313 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3314 return Err; 3315 break; 3316 case bitc::METADATA_BLOCK_ID: 3317 assert(DeferredMetadataInfo.empty() && 3318 "Must read all module-level metadata before function-level"); 3319 if (Error Err = MDLoader->parseFunctionMetadata()) 3320 return Err; 3321 break; 3322 case bitc::USELIST_BLOCK_ID: 3323 if (Error Err = parseUseLists()) 3324 return Err; 3325 break; 3326 } 3327 continue; 3328 3329 case BitstreamEntry::Record: 3330 // The interesting case. 3331 break; 3332 } 3333 3334 // Read a record. 3335 Record.clear(); 3336 Instruction *I = nullptr; 3337 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3338 switch (BitCode) { 3339 default: // Default behavior: reject 3340 return error("Invalid value"); 3341 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3342 if (Record.size() < 1 || Record[0] == 0) 3343 return error("Invalid record"); 3344 // Create all the basic blocks for the function. 3345 FunctionBBs.resize(Record[0]); 3346 3347 // See if anything took the address of blocks in this function. 3348 auto BBFRI = BasicBlockFwdRefs.find(F); 3349 if (BBFRI == BasicBlockFwdRefs.end()) { 3350 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3351 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3352 } else { 3353 auto &BBRefs = BBFRI->second; 3354 // Check for invalid basic block references. 3355 if (BBRefs.size() > FunctionBBs.size()) 3356 return error("Invalid ID"); 3357 assert(!BBRefs.empty() && "Unexpected empty array"); 3358 assert(!BBRefs.front() && "Invalid reference to entry block"); 3359 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3360 ++I) 3361 if (I < RE && BBRefs[I]) { 3362 BBRefs[I]->insertInto(F); 3363 FunctionBBs[I] = BBRefs[I]; 3364 } else { 3365 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3366 } 3367 3368 // Erase from the table. 3369 BasicBlockFwdRefs.erase(BBFRI); 3370 } 3371 3372 CurBB = FunctionBBs[0]; 3373 continue; 3374 } 3375 3376 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3377 // This record indicates that the last instruction is at the same 3378 // location as the previous instruction with a location. 3379 I = getLastInstruction(); 3380 3381 if (!I) 3382 return error("Invalid record"); 3383 I->setDebugLoc(LastLoc); 3384 I = nullptr; 3385 continue; 3386 3387 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3388 I = getLastInstruction(); 3389 if (!I || Record.size() < 4) 3390 return error("Invalid record"); 3391 3392 unsigned Line = Record[0], Col = Record[1]; 3393 unsigned ScopeID = Record[2], IAID = Record[3]; 3394 3395 MDNode *Scope = nullptr, *IA = nullptr; 3396 if (ScopeID) { 3397 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3398 if (!Scope) 3399 return error("Invalid record"); 3400 } 3401 if (IAID) { 3402 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3403 if (!IA) 3404 return error("Invalid record"); 3405 } 3406 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3407 I->setDebugLoc(LastLoc); 3408 I = nullptr; 3409 continue; 3410 } 3411 3412 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3413 unsigned OpNum = 0; 3414 Value *LHS, *RHS; 3415 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3416 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3417 OpNum+1 > Record.size()) 3418 return error("Invalid record"); 3419 3420 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3421 if (Opc == -1) 3422 return error("Invalid record"); 3423 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3424 InstructionList.push_back(I); 3425 if (OpNum < Record.size()) { 3426 if (Opc == Instruction::Add || 3427 Opc == Instruction::Sub || 3428 Opc == Instruction::Mul || 3429 Opc == Instruction::Shl) { 3430 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3431 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3432 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3433 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3434 } else if (Opc == Instruction::SDiv || 3435 Opc == Instruction::UDiv || 3436 Opc == Instruction::LShr || 3437 Opc == Instruction::AShr) { 3438 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3439 cast<BinaryOperator>(I)->setIsExact(true); 3440 } else if (isa<FPMathOperator>(I)) { 3441 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3442 if (FMF.any()) 3443 I->setFastMathFlags(FMF); 3444 } 3445 3446 } 3447 break; 3448 } 3449 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3450 unsigned OpNum = 0; 3451 Value *Op; 3452 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3453 OpNum+2 != Record.size()) 3454 return error("Invalid record"); 3455 3456 Type *ResTy = getTypeByID(Record[OpNum]); 3457 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3458 if (Opc == -1 || !ResTy) 3459 return error("Invalid record"); 3460 Instruction *Temp = nullptr; 3461 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3462 if (Temp) { 3463 InstructionList.push_back(Temp); 3464 CurBB->getInstList().push_back(Temp); 3465 } 3466 } else { 3467 auto CastOp = (Instruction::CastOps)Opc; 3468 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3469 return error("Invalid cast"); 3470 I = CastInst::Create(CastOp, Op, ResTy); 3471 } 3472 InstructionList.push_back(I); 3473 break; 3474 } 3475 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3476 case bitc::FUNC_CODE_INST_GEP_OLD: 3477 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3478 unsigned OpNum = 0; 3479 3480 Type *Ty; 3481 bool InBounds; 3482 3483 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3484 InBounds = Record[OpNum++]; 3485 Ty = getTypeByID(Record[OpNum++]); 3486 } else { 3487 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3488 Ty = nullptr; 3489 } 3490 3491 Value *BasePtr; 3492 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3493 return error("Invalid record"); 3494 3495 if (!Ty) 3496 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3497 ->getElementType(); 3498 else if (Ty != 3499 cast<PointerType>(BasePtr->getType()->getScalarType()) 3500 ->getElementType()) 3501 return error( 3502 "Explicit gep type does not match pointee type of pointer operand"); 3503 3504 SmallVector<Value*, 16> GEPIdx; 3505 while (OpNum != Record.size()) { 3506 Value *Op; 3507 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3508 return error("Invalid record"); 3509 GEPIdx.push_back(Op); 3510 } 3511 3512 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3513 3514 InstructionList.push_back(I); 3515 if (InBounds) 3516 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3517 break; 3518 } 3519 3520 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3521 // EXTRACTVAL: [opty, opval, n x indices] 3522 unsigned OpNum = 0; 3523 Value *Agg; 3524 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3525 return error("Invalid record"); 3526 3527 unsigned RecSize = Record.size(); 3528 if (OpNum == RecSize) 3529 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3530 3531 SmallVector<unsigned, 4> EXTRACTVALIdx; 3532 Type *CurTy = Agg->getType(); 3533 for (; OpNum != RecSize; ++OpNum) { 3534 bool IsArray = CurTy->isArrayTy(); 3535 bool IsStruct = CurTy->isStructTy(); 3536 uint64_t Index = Record[OpNum]; 3537 3538 if (!IsStruct && !IsArray) 3539 return error("EXTRACTVAL: Invalid type"); 3540 if ((unsigned)Index != Index) 3541 return error("Invalid value"); 3542 if (IsStruct && Index >= CurTy->subtypes().size()) 3543 return error("EXTRACTVAL: Invalid struct index"); 3544 if (IsArray && Index >= CurTy->getArrayNumElements()) 3545 return error("EXTRACTVAL: Invalid array index"); 3546 EXTRACTVALIdx.push_back((unsigned)Index); 3547 3548 if (IsStruct) 3549 CurTy = CurTy->subtypes()[Index]; 3550 else 3551 CurTy = CurTy->subtypes()[0]; 3552 } 3553 3554 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3555 InstructionList.push_back(I); 3556 break; 3557 } 3558 3559 case bitc::FUNC_CODE_INST_INSERTVAL: { 3560 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3561 unsigned OpNum = 0; 3562 Value *Agg; 3563 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3564 return error("Invalid record"); 3565 Value *Val; 3566 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3567 return error("Invalid record"); 3568 3569 unsigned RecSize = Record.size(); 3570 if (OpNum == RecSize) 3571 return error("INSERTVAL: Invalid instruction with 0 indices"); 3572 3573 SmallVector<unsigned, 4> INSERTVALIdx; 3574 Type *CurTy = Agg->getType(); 3575 for (; OpNum != RecSize; ++OpNum) { 3576 bool IsArray = CurTy->isArrayTy(); 3577 bool IsStruct = CurTy->isStructTy(); 3578 uint64_t Index = Record[OpNum]; 3579 3580 if (!IsStruct && !IsArray) 3581 return error("INSERTVAL: Invalid type"); 3582 if ((unsigned)Index != Index) 3583 return error("Invalid value"); 3584 if (IsStruct && Index >= CurTy->subtypes().size()) 3585 return error("INSERTVAL: Invalid struct index"); 3586 if (IsArray && Index >= CurTy->getArrayNumElements()) 3587 return error("INSERTVAL: Invalid array index"); 3588 3589 INSERTVALIdx.push_back((unsigned)Index); 3590 if (IsStruct) 3591 CurTy = CurTy->subtypes()[Index]; 3592 else 3593 CurTy = CurTy->subtypes()[0]; 3594 } 3595 3596 if (CurTy != Val->getType()) 3597 return error("Inserted value type doesn't match aggregate type"); 3598 3599 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3600 InstructionList.push_back(I); 3601 break; 3602 } 3603 3604 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3605 // obsolete form of select 3606 // handles select i1 ... in old bitcode 3607 unsigned OpNum = 0; 3608 Value *TrueVal, *FalseVal, *Cond; 3609 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3610 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3611 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3612 return error("Invalid record"); 3613 3614 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3615 InstructionList.push_back(I); 3616 break; 3617 } 3618 3619 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3620 // new form of select 3621 // handles select i1 or select [N x i1] 3622 unsigned OpNum = 0; 3623 Value *TrueVal, *FalseVal, *Cond; 3624 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3625 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3626 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3627 return error("Invalid record"); 3628 3629 // select condition can be either i1 or [N x i1] 3630 if (VectorType* vector_type = 3631 dyn_cast<VectorType>(Cond->getType())) { 3632 // expect <n x i1> 3633 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3634 return error("Invalid type for value"); 3635 } else { 3636 // expect i1 3637 if (Cond->getType() != Type::getInt1Ty(Context)) 3638 return error("Invalid type for value"); 3639 } 3640 3641 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3642 InstructionList.push_back(I); 3643 break; 3644 } 3645 3646 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3647 unsigned OpNum = 0; 3648 Value *Vec, *Idx; 3649 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3650 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3651 return error("Invalid record"); 3652 if (!Vec->getType()->isVectorTy()) 3653 return error("Invalid type for value"); 3654 I = ExtractElementInst::Create(Vec, Idx); 3655 InstructionList.push_back(I); 3656 break; 3657 } 3658 3659 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3660 unsigned OpNum = 0; 3661 Value *Vec, *Elt, *Idx; 3662 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3663 return error("Invalid record"); 3664 if (!Vec->getType()->isVectorTy()) 3665 return error("Invalid type for value"); 3666 if (popValue(Record, OpNum, NextValueNo, 3667 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3668 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3669 return error("Invalid record"); 3670 I = InsertElementInst::Create(Vec, Elt, Idx); 3671 InstructionList.push_back(I); 3672 break; 3673 } 3674 3675 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3676 unsigned OpNum = 0; 3677 Value *Vec1, *Vec2, *Mask; 3678 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3679 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3680 return error("Invalid record"); 3681 3682 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3683 return error("Invalid record"); 3684 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3685 return error("Invalid type for value"); 3686 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 3691 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3692 // Old form of ICmp/FCmp returning bool 3693 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3694 // both legal on vectors but had different behaviour. 3695 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3696 // FCmp/ICmp returning bool or vector of bool 3697 3698 unsigned OpNum = 0; 3699 Value *LHS, *RHS; 3700 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3701 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3702 return error("Invalid record"); 3703 3704 unsigned PredVal = Record[OpNum]; 3705 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3706 FastMathFlags FMF; 3707 if (IsFP && Record.size() > OpNum+1) 3708 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3709 3710 if (OpNum+1 != Record.size()) 3711 return error("Invalid record"); 3712 3713 if (LHS->getType()->isFPOrFPVectorTy()) 3714 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3715 else 3716 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3717 3718 if (FMF.any()) 3719 I->setFastMathFlags(FMF); 3720 InstructionList.push_back(I); 3721 break; 3722 } 3723 3724 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3725 { 3726 unsigned Size = Record.size(); 3727 if (Size == 0) { 3728 I = ReturnInst::Create(Context); 3729 InstructionList.push_back(I); 3730 break; 3731 } 3732 3733 unsigned OpNum = 0; 3734 Value *Op = nullptr; 3735 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3736 return error("Invalid record"); 3737 if (OpNum != Record.size()) 3738 return error("Invalid record"); 3739 3740 I = ReturnInst::Create(Context, Op); 3741 InstructionList.push_back(I); 3742 break; 3743 } 3744 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3745 if (Record.size() != 1 && Record.size() != 3) 3746 return error("Invalid record"); 3747 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3748 if (!TrueDest) 3749 return error("Invalid record"); 3750 3751 if (Record.size() == 1) { 3752 I = BranchInst::Create(TrueDest); 3753 InstructionList.push_back(I); 3754 } 3755 else { 3756 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3757 Value *Cond = getValue(Record, 2, NextValueNo, 3758 Type::getInt1Ty(Context)); 3759 if (!FalseDest || !Cond) 3760 return error("Invalid record"); 3761 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3762 InstructionList.push_back(I); 3763 } 3764 break; 3765 } 3766 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3767 if (Record.size() != 1 && Record.size() != 2) 3768 return error("Invalid record"); 3769 unsigned Idx = 0; 3770 Value *CleanupPad = 3771 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3772 if (!CleanupPad) 3773 return error("Invalid record"); 3774 BasicBlock *UnwindDest = nullptr; 3775 if (Record.size() == 2) { 3776 UnwindDest = getBasicBlock(Record[Idx++]); 3777 if (!UnwindDest) 3778 return error("Invalid record"); 3779 } 3780 3781 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3782 InstructionList.push_back(I); 3783 break; 3784 } 3785 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3786 if (Record.size() != 2) 3787 return error("Invalid record"); 3788 unsigned Idx = 0; 3789 Value *CatchPad = 3790 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3791 if (!CatchPad) 3792 return error("Invalid record"); 3793 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3794 if (!BB) 3795 return error("Invalid record"); 3796 3797 I = CatchReturnInst::Create(CatchPad, BB); 3798 InstructionList.push_back(I); 3799 break; 3800 } 3801 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3802 // We must have, at minimum, the outer scope and the number of arguments. 3803 if (Record.size() < 2) 3804 return error("Invalid record"); 3805 3806 unsigned Idx = 0; 3807 3808 Value *ParentPad = 3809 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3810 3811 unsigned NumHandlers = Record[Idx++]; 3812 3813 SmallVector<BasicBlock *, 2> Handlers; 3814 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3815 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3816 if (!BB) 3817 return error("Invalid record"); 3818 Handlers.push_back(BB); 3819 } 3820 3821 BasicBlock *UnwindDest = nullptr; 3822 if (Idx + 1 == Record.size()) { 3823 UnwindDest = getBasicBlock(Record[Idx++]); 3824 if (!UnwindDest) 3825 return error("Invalid record"); 3826 } 3827 3828 if (Record.size() != Idx) 3829 return error("Invalid record"); 3830 3831 auto *CatchSwitch = 3832 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3833 for (BasicBlock *Handler : Handlers) 3834 CatchSwitch->addHandler(Handler); 3835 I = CatchSwitch; 3836 InstructionList.push_back(I); 3837 break; 3838 } 3839 case bitc::FUNC_CODE_INST_CATCHPAD: 3840 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3841 // We must have, at minimum, the outer scope and the number of arguments. 3842 if (Record.size() < 2) 3843 return error("Invalid record"); 3844 3845 unsigned Idx = 0; 3846 3847 Value *ParentPad = 3848 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3849 3850 unsigned NumArgOperands = Record[Idx++]; 3851 3852 SmallVector<Value *, 2> Args; 3853 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3854 Value *Val; 3855 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3856 return error("Invalid record"); 3857 Args.push_back(Val); 3858 } 3859 3860 if (Record.size() != Idx) 3861 return error("Invalid record"); 3862 3863 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3864 I = CleanupPadInst::Create(ParentPad, Args); 3865 else 3866 I = CatchPadInst::Create(ParentPad, Args); 3867 InstructionList.push_back(I); 3868 break; 3869 } 3870 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3871 // Check magic 3872 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3873 // "New" SwitchInst format with case ranges. The changes to write this 3874 // format were reverted but we still recognize bitcode that uses it. 3875 // Hopefully someday we will have support for case ranges and can use 3876 // this format again. 3877 3878 Type *OpTy = getTypeByID(Record[1]); 3879 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3880 3881 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3882 BasicBlock *Default = getBasicBlock(Record[3]); 3883 if (!OpTy || !Cond || !Default) 3884 return error("Invalid record"); 3885 3886 unsigned NumCases = Record[4]; 3887 3888 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3889 InstructionList.push_back(SI); 3890 3891 unsigned CurIdx = 5; 3892 for (unsigned i = 0; i != NumCases; ++i) { 3893 SmallVector<ConstantInt*, 1> CaseVals; 3894 unsigned NumItems = Record[CurIdx++]; 3895 for (unsigned ci = 0; ci != NumItems; ++ci) { 3896 bool isSingleNumber = Record[CurIdx++]; 3897 3898 APInt Low; 3899 unsigned ActiveWords = 1; 3900 if (ValueBitWidth > 64) 3901 ActiveWords = Record[CurIdx++]; 3902 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3903 ValueBitWidth); 3904 CurIdx += ActiveWords; 3905 3906 if (!isSingleNumber) { 3907 ActiveWords = 1; 3908 if (ValueBitWidth > 64) 3909 ActiveWords = Record[CurIdx++]; 3910 APInt High = readWideAPInt( 3911 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3912 CurIdx += ActiveWords; 3913 3914 // FIXME: It is not clear whether values in the range should be 3915 // compared as signed or unsigned values. The partially 3916 // implemented changes that used this format in the past used 3917 // unsigned comparisons. 3918 for ( ; Low.ule(High); ++Low) 3919 CaseVals.push_back(ConstantInt::get(Context, Low)); 3920 } else 3921 CaseVals.push_back(ConstantInt::get(Context, Low)); 3922 } 3923 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3924 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3925 cve = CaseVals.end(); cvi != cve; ++cvi) 3926 SI->addCase(*cvi, DestBB); 3927 } 3928 I = SI; 3929 break; 3930 } 3931 3932 // Old SwitchInst format without case ranges. 3933 3934 if (Record.size() < 3 || (Record.size() & 1) == 0) 3935 return error("Invalid record"); 3936 Type *OpTy = getTypeByID(Record[0]); 3937 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3938 BasicBlock *Default = getBasicBlock(Record[2]); 3939 if (!OpTy || !Cond || !Default) 3940 return error("Invalid record"); 3941 unsigned NumCases = (Record.size()-3)/2; 3942 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3943 InstructionList.push_back(SI); 3944 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3945 ConstantInt *CaseVal = 3946 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3947 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3948 if (!CaseVal || !DestBB) { 3949 delete SI; 3950 return error("Invalid record"); 3951 } 3952 SI->addCase(CaseVal, DestBB); 3953 } 3954 I = SI; 3955 break; 3956 } 3957 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3958 if (Record.size() < 2) 3959 return error("Invalid record"); 3960 Type *OpTy = getTypeByID(Record[0]); 3961 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3962 if (!OpTy || !Address) 3963 return error("Invalid record"); 3964 unsigned NumDests = Record.size()-2; 3965 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3966 InstructionList.push_back(IBI); 3967 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3968 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3969 IBI->addDestination(DestBB); 3970 } else { 3971 delete IBI; 3972 return error("Invalid record"); 3973 } 3974 } 3975 I = IBI; 3976 break; 3977 } 3978 3979 case bitc::FUNC_CODE_INST_INVOKE: { 3980 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3981 if (Record.size() < 4) 3982 return error("Invalid record"); 3983 unsigned OpNum = 0; 3984 AttributeList PAL = getAttributes(Record[OpNum++]); 3985 unsigned CCInfo = Record[OpNum++]; 3986 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3987 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3988 3989 FunctionType *FTy = nullptr; 3990 if (CCInfo >> 13 & 1 && 3991 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3992 return error("Explicit invoke type is not a function type"); 3993 3994 Value *Callee; 3995 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3996 return error("Invalid record"); 3997 3998 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3999 if (!CalleeTy) 4000 return error("Callee is not a pointer"); 4001 if (!FTy) { 4002 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4003 if (!FTy) 4004 return error("Callee is not of pointer to function type"); 4005 } else if (CalleeTy->getElementType() != FTy) 4006 return error("Explicit invoke type does not match pointee type of " 4007 "callee operand"); 4008 if (Record.size() < FTy->getNumParams() + OpNum) 4009 return error("Insufficient operands to call"); 4010 4011 SmallVector<Value*, 16> Ops; 4012 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4013 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4014 FTy->getParamType(i))); 4015 if (!Ops.back()) 4016 return error("Invalid record"); 4017 } 4018 4019 if (!FTy->isVarArg()) { 4020 if (Record.size() != OpNum) 4021 return error("Invalid record"); 4022 } else { 4023 // Read type/value pairs for varargs params. 4024 while (OpNum != Record.size()) { 4025 Value *Op; 4026 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4027 return error("Invalid record"); 4028 Ops.push_back(Op); 4029 } 4030 } 4031 4032 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4033 OperandBundles.clear(); 4034 InstructionList.push_back(I); 4035 cast<InvokeInst>(I)->setCallingConv( 4036 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4037 cast<InvokeInst>(I)->setAttributes(PAL); 4038 break; 4039 } 4040 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4041 unsigned Idx = 0; 4042 Value *Val = nullptr; 4043 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4044 return error("Invalid record"); 4045 I = ResumeInst::Create(Val); 4046 InstructionList.push_back(I); 4047 break; 4048 } 4049 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4050 I = new UnreachableInst(Context); 4051 InstructionList.push_back(I); 4052 break; 4053 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4054 if (Record.size() < 1 || ((Record.size()-1)&1)) 4055 return error("Invalid record"); 4056 Type *Ty = getTypeByID(Record[0]); 4057 if (!Ty) 4058 return error("Invalid record"); 4059 4060 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4061 InstructionList.push_back(PN); 4062 4063 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4064 Value *V; 4065 // With the new function encoding, it is possible that operands have 4066 // negative IDs (for forward references). Use a signed VBR 4067 // representation to keep the encoding small. 4068 if (UseRelativeIDs) 4069 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4070 else 4071 V = getValue(Record, 1+i, NextValueNo, Ty); 4072 BasicBlock *BB = getBasicBlock(Record[2+i]); 4073 if (!V || !BB) 4074 return error("Invalid record"); 4075 PN->addIncoming(V, BB); 4076 } 4077 I = PN; 4078 break; 4079 } 4080 4081 case bitc::FUNC_CODE_INST_LANDINGPAD: 4082 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4083 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4084 unsigned Idx = 0; 4085 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4086 if (Record.size() < 3) 4087 return error("Invalid record"); 4088 } else { 4089 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4090 if (Record.size() < 4) 4091 return error("Invalid record"); 4092 } 4093 Type *Ty = getTypeByID(Record[Idx++]); 4094 if (!Ty) 4095 return error("Invalid record"); 4096 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4097 Value *PersFn = nullptr; 4098 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4099 return error("Invalid record"); 4100 4101 if (!F->hasPersonalityFn()) 4102 F->setPersonalityFn(cast<Constant>(PersFn)); 4103 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4104 return error("Personality function mismatch"); 4105 } 4106 4107 bool IsCleanup = !!Record[Idx++]; 4108 unsigned NumClauses = Record[Idx++]; 4109 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4110 LP->setCleanup(IsCleanup); 4111 for (unsigned J = 0; J != NumClauses; ++J) { 4112 LandingPadInst::ClauseType CT = 4113 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4114 Value *Val; 4115 4116 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4117 delete LP; 4118 return error("Invalid record"); 4119 } 4120 4121 assert((CT != LandingPadInst::Catch || 4122 !isa<ArrayType>(Val->getType())) && 4123 "Catch clause has a invalid type!"); 4124 assert((CT != LandingPadInst::Filter || 4125 isa<ArrayType>(Val->getType())) && 4126 "Filter clause has invalid type!"); 4127 LP->addClause(cast<Constant>(Val)); 4128 } 4129 4130 I = LP; 4131 InstructionList.push_back(I); 4132 break; 4133 } 4134 4135 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4136 if (Record.size() != 4) 4137 return error("Invalid record"); 4138 uint64_t AlignRecord = Record[3]; 4139 const uint64_t InAllocaMask = uint64_t(1) << 5; 4140 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4141 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4142 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4143 SwiftErrorMask; 4144 bool InAlloca = AlignRecord & InAllocaMask; 4145 bool SwiftError = AlignRecord & SwiftErrorMask; 4146 Type *Ty = getTypeByID(Record[0]); 4147 if ((AlignRecord & ExplicitTypeMask) == 0) { 4148 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4149 if (!PTy) 4150 return error("Old-style alloca with a non-pointer type"); 4151 Ty = PTy->getElementType(); 4152 } 4153 Type *OpTy = getTypeByID(Record[1]); 4154 Value *Size = getFnValueByID(Record[2], OpTy); 4155 unsigned Align; 4156 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4157 return Err; 4158 } 4159 if (!Ty || !Size) 4160 return error("Invalid record"); 4161 4162 // FIXME: Make this an optional field. 4163 const DataLayout &DL = TheModule->getDataLayout(); 4164 unsigned AS = DL.getAllocaAddrSpace(); 4165 4166 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4167 AI->setUsedWithInAlloca(InAlloca); 4168 AI->setSwiftError(SwiftError); 4169 I = AI; 4170 InstructionList.push_back(I); 4171 break; 4172 } 4173 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4174 unsigned OpNum = 0; 4175 Value *Op; 4176 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4177 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4178 return error("Invalid record"); 4179 4180 Type *Ty = nullptr; 4181 if (OpNum + 3 == Record.size()) 4182 Ty = getTypeByID(Record[OpNum++]); 4183 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4184 return Err; 4185 if (!Ty) 4186 Ty = cast<PointerType>(Op->getType())->getElementType(); 4187 4188 unsigned Align; 4189 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4190 return Err; 4191 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4192 4193 InstructionList.push_back(I); 4194 break; 4195 } 4196 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4197 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4198 unsigned OpNum = 0; 4199 Value *Op; 4200 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4201 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4202 return error("Invalid record"); 4203 4204 Type *Ty = nullptr; 4205 if (OpNum + 5 == Record.size()) 4206 Ty = getTypeByID(Record[OpNum++]); 4207 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4208 return Err; 4209 if (!Ty) 4210 Ty = cast<PointerType>(Op->getType())->getElementType(); 4211 4212 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4213 if (Ordering == AtomicOrdering::NotAtomic || 4214 Ordering == AtomicOrdering::Release || 4215 Ordering == AtomicOrdering::AcquireRelease) 4216 return error("Invalid record"); 4217 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4218 return error("Invalid record"); 4219 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4220 4221 unsigned Align; 4222 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4223 return Err; 4224 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4225 4226 InstructionList.push_back(I); 4227 break; 4228 } 4229 case bitc::FUNC_CODE_INST_STORE: 4230 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4231 unsigned OpNum = 0; 4232 Value *Val, *Ptr; 4233 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4234 (BitCode == bitc::FUNC_CODE_INST_STORE 4235 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4236 : popValue(Record, OpNum, NextValueNo, 4237 cast<PointerType>(Ptr->getType())->getElementType(), 4238 Val)) || 4239 OpNum + 2 != Record.size()) 4240 return error("Invalid record"); 4241 4242 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4243 return Err; 4244 unsigned Align; 4245 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4246 return Err; 4247 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4248 InstructionList.push_back(I); 4249 break; 4250 } 4251 case bitc::FUNC_CODE_INST_STOREATOMIC: 4252 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4253 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4254 unsigned OpNum = 0; 4255 Value *Val, *Ptr; 4256 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4257 !isa<PointerType>(Ptr->getType()) || 4258 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4259 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4260 : popValue(Record, OpNum, NextValueNo, 4261 cast<PointerType>(Ptr->getType())->getElementType(), 4262 Val)) || 4263 OpNum + 4 != Record.size()) 4264 return error("Invalid record"); 4265 4266 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4267 return Err; 4268 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4269 if (Ordering == AtomicOrdering::NotAtomic || 4270 Ordering == AtomicOrdering::Acquire || 4271 Ordering == AtomicOrdering::AcquireRelease) 4272 return error("Invalid record"); 4273 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4274 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4275 return error("Invalid record"); 4276 4277 unsigned Align; 4278 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4279 return Err; 4280 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4281 InstructionList.push_back(I); 4282 break; 4283 } 4284 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4285 case bitc::FUNC_CODE_INST_CMPXCHG: { 4286 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4287 // failureordering?, isweak?] 4288 unsigned OpNum = 0; 4289 Value *Ptr, *Cmp, *New; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4291 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4292 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4293 : popValue(Record, OpNum, NextValueNo, 4294 cast<PointerType>(Ptr->getType())->getElementType(), 4295 Cmp)) || 4296 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4297 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4298 return error("Invalid record"); 4299 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4300 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4301 SuccessOrdering == AtomicOrdering::Unordered) 4302 return error("Invalid record"); 4303 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4304 4305 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4306 return Err; 4307 AtomicOrdering FailureOrdering; 4308 if (Record.size() < 7) 4309 FailureOrdering = 4310 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4311 else 4312 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4313 4314 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4315 SynchScope); 4316 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4317 4318 if (Record.size() < 8) { 4319 // Before weak cmpxchgs existed, the instruction simply returned the 4320 // value loaded from memory, so bitcode files from that era will be 4321 // expecting the first component of a modern cmpxchg. 4322 CurBB->getInstList().push_back(I); 4323 I = ExtractValueInst::Create(I, 0); 4324 } else { 4325 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4326 } 4327 4328 InstructionList.push_back(I); 4329 break; 4330 } 4331 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4332 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4333 unsigned OpNum = 0; 4334 Value *Ptr, *Val; 4335 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4336 !isa<PointerType>(Ptr->getType()) || 4337 popValue(Record, OpNum, NextValueNo, 4338 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4339 OpNum+4 != Record.size()) 4340 return error("Invalid record"); 4341 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4342 if (Operation < AtomicRMWInst::FIRST_BINOP || 4343 Operation > AtomicRMWInst::LAST_BINOP) 4344 return error("Invalid record"); 4345 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4346 if (Ordering == AtomicOrdering::NotAtomic || 4347 Ordering == AtomicOrdering::Unordered) 4348 return error("Invalid record"); 4349 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4350 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4351 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4352 InstructionList.push_back(I); 4353 break; 4354 } 4355 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4356 if (2 != Record.size()) 4357 return error("Invalid record"); 4358 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4359 if (Ordering == AtomicOrdering::NotAtomic || 4360 Ordering == AtomicOrdering::Unordered || 4361 Ordering == AtomicOrdering::Monotonic) 4362 return error("Invalid record"); 4363 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4364 I = new FenceInst(Context, Ordering, SynchScope); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 case bitc::FUNC_CODE_INST_CALL: { 4369 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4370 if (Record.size() < 3) 4371 return error("Invalid record"); 4372 4373 unsigned OpNum = 0; 4374 AttributeList PAL = getAttributes(Record[OpNum++]); 4375 unsigned CCInfo = Record[OpNum++]; 4376 4377 FastMathFlags FMF; 4378 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4379 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4380 if (!FMF.any()) 4381 return error("Fast math flags indicator set for call with no FMF"); 4382 } 4383 4384 FunctionType *FTy = nullptr; 4385 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4386 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4387 return error("Explicit call type is not a function type"); 4388 4389 Value *Callee; 4390 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4391 return error("Invalid record"); 4392 4393 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4394 if (!OpTy) 4395 return error("Callee is not a pointer type"); 4396 if (!FTy) { 4397 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4398 if (!FTy) 4399 return error("Callee is not of pointer to function type"); 4400 } else if (OpTy->getElementType() != FTy) 4401 return error("Explicit call type does not match pointee type of " 4402 "callee operand"); 4403 if (Record.size() < FTy->getNumParams() + OpNum) 4404 return error("Insufficient operands to call"); 4405 4406 SmallVector<Value*, 16> Args; 4407 // Read the fixed params. 4408 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4409 if (FTy->getParamType(i)->isLabelTy()) 4410 Args.push_back(getBasicBlock(Record[OpNum])); 4411 else 4412 Args.push_back(getValue(Record, OpNum, NextValueNo, 4413 FTy->getParamType(i))); 4414 if (!Args.back()) 4415 return error("Invalid record"); 4416 } 4417 4418 // Read type/value pairs for varargs params. 4419 if (!FTy->isVarArg()) { 4420 if (OpNum != Record.size()) 4421 return error("Invalid record"); 4422 } else { 4423 while (OpNum != Record.size()) { 4424 Value *Op; 4425 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4426 return error("Invalid record"); 4427 Args.push_back(Op); 4428 } 4429 } 4430 4431 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4432 OperandBundles.clear(); 4433 InstructionList.push_back(I); 4434 cast<CallInst>(I)->setCallingConv( 4435 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4436 CallInst::TailCallKind TCK = CallInst::TCK_None; 4437 if (CCInfo & 1 << bitc::CALL_TAIL) 4438 TCK = CallInst::TCK_Tail; 4439 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4440 TCK = CallInst::TCK_MustTail; 4441 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4442 TCK = CallInst::TCK_NoTail; 4443 cast<CallInst>(I)->setTailCallKind(TCK); 4444 cast<CallInst>(I)->setAttributes(PAL); 4445 if (FMF.any()) { 4446 if (!isa<FPMathOperator>(I)) 4447 return error("Fast-math-flags specified for call without " 4448 "floating-point scalar or vector return type"); 4449 I->setFastMathFlags(FMF); 4450 } 4451 break; 4452 } 4453 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4454 if (Record.size() < 3) 4455 return error("Invalid record"); 4456 Type *OpTy = getTypeByID(Record[0]); 4457 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4458 Type *ResTy = getTypeByID(Record[2]); 4459 if (!OpTy || !Op || !ResTy) 4460 return error("Invalid record"); 4461 I = new VAArgInst(Op, ResTy); 4462 InstructionList.push_back(I); 4463 break; 4464 } 4465 4466 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4467 // A call or an invoke can be optionally prefixed with some variable 4468 // number of operand bundle blocks. These blocks are read into 4469 // OperandBundles and consumed at the next call or invoke instruction. 4470 4471 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4472 return error("Invalid record"); 4473 4474 std::vector<Value *> Inputs; 4475 4476 unsigned OpNum = 1; 4477 while (OpNum != Record.size()) { 4478 Value *Op; 4479 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4480 return error("Invalid record"); 4481 Inputs.push_back(Op); 4482 } 4483 4484 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4485 continue; 4486 } 4487 } 4488 4489 // Add instruction to end of current BB. If there is no current BB, reject 4490 // this file. 4491 if (!CurBB) { 4492 I->deleteValue(); 4493 return error("Invalid instruction with no BB"); 4494 } 4495 if (!OperandBundles.empty()) { 4496 I->deleteValue(); 4497 return error("Operand bundles found with no consumer"); 4498 } 4499 CurBB->getInstList().push_back(I); 4500 4501 // If this was a terminator instruction, move to the next block. 4502 if (isa<TerminatorInst>(I)) { 4503 ++CurBBNo; 4504 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4505 } 4506 4507 // Non-void values get registered in the value table for future use. 4508 if (I && !I->getType()->isVoidTy()) 4509 ValueList.assignValue(I, NextValueNo++); 4510 } 4511 4512 OutOfRecordLoop: 4513 4514 if (!OperandBundles.empty()) 4515 return error("Operand bundles found with no consumer"); 4516 4517 // Check the function list for unresolved values. 4518 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4519 if (!A->getParent()) { 4520 // We found at least one unresolved value. Nuke them all to avoid leaks. 4521 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4522 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4523 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4524 delete A; 4525 } 4526 } 4527 return error("Never resolved value found in function"); 4528 } 4529 } 4530 4531 // Unexpected unresolved metadata about to be dropped. 4532 if (MDLoader->hasFwdRefs()) 4533 return error("Invalid function metadata: outgoing forward refs"); 4534 4535 // Trim the value list down to the size it was before we parsed this function. 4536 ValueList.shrinkTo(ModuleValueListSize); 4537 MDLoader->shrinkTo(ModuleMDLoaderSize); 4538 std::vector<BasicBlock*>().swap(FunctionBBs); 4539 return Error::success(); 4540 } 4541 4542 /// Find the function body in the bitcode stream 4543 Error BitcodeReader::findFunctionInStream( 4544 Function *F, 4545 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4546 while (DeferredFunctionInfoIterator->second == 0) { 4547 // This is the fallback handling for the old format bitcode that 4548 // didn't contain the function index in the VST, or when we have 4549 // an anonymous function which would not have a VST entry. 4550 // Assert that we have one of those two cases. 4551 assert(VSTOffset == 0 || !F->hasName()); 4552 // Parse the next body in the stream and set its position in the 4553 // DeferredFunctionInfo map. 4554 if (Error Err = rememberAndSkipFunctionBodies()) 4555 return Err; 4556 } 4557 return Error::success(); 4558 } 4559 4560 //===----------------------------------------------------------------------===// 4561 // GVMaterializer implementation 4562 //===----------------------------------------------------------------------===// 4563 4564 Error BitcodeReader::materialize(GlobalValue *GV) { 4565 Function *F = dyn_cast<Function>(GV); 4566 // If it's not a function or is already material, ignore the request. 4567 if (!F || !F->isMaterializable()) 4568 return Error::success(); 4569 4570 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4571 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4572 // If its position is recorded as 0, its body is somewhere in the stream 4573 // but we haven't seen it yet. 4574 if (DFII->second == 0) 4575 if (Error Err = findFunctionInStream(F, DFII)) 4576 return Err; 4577 4578 // Materialize metadata before parsing any function bodies. 4579 if (Error Err = materializeMetadata()) 4580 return Err; 4581 4582 // Move the bit stream to the saved position of the deferred function body. 4583 Stream.JumpToBit(DFII->second); 4584 4585 if (Error Err = parseFunctionBody(F)) 4586 return Err; 4587 F->setIsMaterializable(false); 4588 4589 if (StripDebugInfo) 4590 stripDebugInfo(*F); 4591 4592 // Upgrade any old intrinsic calls in the function. 4593 for (auto &I : UpgradedIntrinsics) { 4594 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4595 UI != UE;) { 4596 User *U = *UI; 4597 ++UI; 4598 if (CallInst *CI = dyn_cast<CallInst>(U)) 4599 UpgradeIntrinsicCall(CI, I.second); 4600 } 4601 } 4602 4603 // Update calls to the remangled intrinsics 4604 for (auto &I : RemangledIntrinsics) 4605 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4606 UI != UE;) 4607 // Don't expect any other users than call sites 4608 CallSite(*UI++).setCalledFunction(I.second); 4609 4610 // Finish fn->subprogram upgrade for materialized functions. 4611 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4612 F->setSubprogram(SP); 4613 4614 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4615 if (!MDLoader->isStrippingTBAA()) { 4616 for (auto &I : instructions(F)) { 4617 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4618 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4619 continue; 4620 MDLoader->setStripTBAA(true); 4621 stripTBAA(F->getParent()); 4622 } 4623 } 4624 4625 // Bring in any functions that this function forward-referenced via 4626 // blockaddresses. 4627 return materializeForwardReferencedFunctions(); 4628 } 4629 4630 Error BitcodeReader::materializeModule() { 4631 if (Error Err = materializeMetadata()) 4632 return Err; 4633 4634 // Promise to materialize all forward references. 4635 WillMaterializeAllForwardRefs = true; 4636 4637 // Iterate over the module, deserializing any functions that are still on 4638 // disk. 4639 for (Function &F : *TheModule) { 4640 if (Error Err = materialize(&F)) 4641 return Err; 4642 } 4643 // At this point, if there are any function bodies, parse the rest of 4644 // the bits in the module past the last function block we have recorded 4645 // through either lazy scanning or the VST. 4646 if (LastFunctionBlockBit || NextUnreadBit) 4647 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4648 ? LastFunctionBlockBit 4649 : NextUnreadBit)) 4650 return Err; 4651 4652 // Check that all block address forward references got resolved (as we 4653 // promised above). 4654 if (!BasicBlockFwdRefs.empty()) 4655 return error("Never resolved function from blockaddress"); 4656 4657 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4658 // delete the old functions to clean up. We can't do this unless the entire 4659 // module is materialized because there could always be another function body 4660 // with calls to the old function. 4661 for (auto &I : UpgradedIntrinsics) { 4662 for (auto *U : I.first->users()) { 4663 if (CallInst *CI = dyn_cast<CallInst>(U)) 4664 UpgradeIntrinsicCall(CI, I.second); 4665 } 4666 if (!I.first->use_empty()) 4667 I.first->replaceAllUsesWith(I.second); 4668 I.first->eraseFromParent(); 4669 } 4670 UpgradedIntrinsics.clear(); 4671 // Do the same for remangled intrinsics 4672 for (auto &I : RemangledIntrinsics) { 4673 I.first->replaceAllUsesWith(I.second); 4674 I.first->eraseFromParent(); 4675 } 4676 RemangledIntrinsics.clear(); 4677 4678 UpgradeDebugInfo(*TheModule); 4679 4680 UpgradeModuleFlags(*TheModule); 4681 return Error::success(); 4682 } 4683 4684 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4685 return IdentifiedStructTypes; 4686 } 4687 4688 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4689 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4690 StringRef ModulePath, unsigned ModuleId) 4691 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4692 ModulePath(ModulePath), ModuleId(ModuleId) {} 4693 4694 ModulePathStringTableTy::iterator 4695 ModuleSummaryIndexBitcodeReader::addThisModulePath() { 4696 return TheIndex.addModulePath(ModulePath, ModuleId); 4697 } 4698 4699 std::pair<ValueInfo, GlobalValue::GUID> 4700 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4701 auto VGI = ValueIdToValueInfoMap[ValueId]; 4702 assert(VGI.first); 4703 return VGI; 4704 } 4705 4706 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4707 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4708 StringRef SourceFileName) { 4709 std::string GlobalId = 4710 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4711 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4712 auto OriginalNameID = ValueGUID; 4713 if (GlobalValue::isLocalLinkage(Linkage)) 4714 OriginalNameID = GlobalValue::getGUID(ValueName); 4715 if (PrintSummaryGUIDs) 4716 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4717 << ValueName << "\n"; 4718 ValueIdToValueInfoMap[ValueID] = 4719 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4720 } 4721 4722 // Specialized value symbol table parser used when reading module index 4723 // blocks where we don't actually create global values. The parsed information 4724 // is saved in the bitcode reader for use when later parsing summaries. 4725 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4726 uint64_t Offset, 4727 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4728 // With a strtab the VST is not required to parse the summary. 4729 if (UseStrtab) 4730 return Error::success(); 4731 4732 assert(Offset > 0 && "Expected non-zero VST offset"); 4733 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4734 4735 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4736 return error("Invalid record"); 4737 4738 SmallVector<uint64_t, 64> Record; 4739 4740 // Read all the records for this value table. 4741 SmallString<128> ValueName; 4742 4743 while (true) { 4744 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4745 4746 switch (Entry.Kind) { 4747 case BitstreamEntry::SubBlock: // Handled for us already. 4748 case BitstreamEntry::Error: 4749 return error("Malformed block"); 4750 case BitstreamEntry::EndBlock: 4751 // Done parsing VST, jump back to wherever we came from. 4752 Stream.JumpToBit(CurrentBit); 4753 return Error::success(); 4754 case BitstreamEntry::Record: 4755 // The interesting case. 4756 break; 4757 } 4758 4759 // Read a record. 4760 Record.clear(); 4761 switch (Stream.readRecord(Entry.ID, Record)) { 4762 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4763 break; 4764 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4765 if (convertToString(Record, 1, ValueName)) 4766 return error("Invalid record"); 4767 unsigned ValueID = Record[0]; 4768 assert(!SourceFileName.empty()); 4769 auto VLI = ValueIdToLinkageMap.find(ValueID); 4770 assert(VLI != ValueIdToLinkageMap.end() && 4771 "No linkage found for VST entry?"); 4772 auto Linkage = VLI->second; 4773 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4774 ValueName.clear(); 4775 break; 4776 } 4777 case bitc::VST_CODE_FNENTRY: { 4778 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4779 if (convertToString(Record, 2, ValueName)) 4780 return error("Invalid record"); 4781 unsigned ValueID = Record[0]; 4782 assert(!SourceFileName.empty()); 4783 auto VLI = ValueIdToLinkageMap.find(ValueID); 4784 assert(VLI != ValueIdToLinkageMap.end() && 4785 "No linkage found for VST entry?"); 4786 auto Linkage = VLI->second; 4787 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4788 ValueName.clear(); 4789 break; 4790 } 4791 case bitc::VST_CODE_COMBINED_ENTRY: { 4792 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4793 unsigned ValueID = Record[0]; 4794 GlobalValue::GUID RefGUID = Record[1]; 4795 // The "original name", which is the second value of the pair will be 4796 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4797 ValueIdToValueInfoMap[ValueID] = 4798 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4799 break; 4800 } 4801 } 4802 } 4803 } 4804 4805 // Parse just the blocks needed for building the index out of the module. 4806 // At the end of this routine the module Index is populated with a map 4807 // from global value id to GlobalValueSummary objects. 4808 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4809 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4810 return error("Invalid record"); 4811 4812 SmallVector<uint64_t, 64> Record; 4813 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4814 unsigned ValueId = 0; 4815 4816 // Read the index for this module. 4817 while (true) { 4818 BitstreamEntry Entry = Stream.advance(); 4819 4820 switch (Entry.Kind) { 4821 case BitstreamEntry::Error: 4822 return error("Malformed block"); 4823 case BitstreamEntry::EndBlock: 4824 return Error::success(); 4825 4826 case BitstreamEntry::SubBlock: 4827 switch (Entry.ID) { 4828 default: // Skip unknown content. 4829 if (Stream.SkipBlock()) 4830 return error("Invalid record"); 4831 break; 4832 case bitc::BLOCKINFO_BLOCK_ID: 4833 // Need to parse these to get abbrev ids (e.g. for VST) 4834 if (readBlockInfo()) 4835 return error("Malformed block"); 4836 break; 4837 case bitc::VALUE_SYMTAB_BLOCK_ID: 4838 // Should have been parsed earlier via VSTOffset, unless there 4839 // is no summary section. 4840 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4841 !SeenGlobalValSummary) && 4842 "Expected early VST parse via VSTOffset record"); 4843 if (Stream.SkipBlock()) 4844 return error("Invalid record"); 4845 break; 4846 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4847 assert(!SeenValueSymbolTable && 4848 "Already read VST when parsing summary block?"); 4849 // We might not have a VST if there were no values in the 4850 // summary. An empty summary block generated when we are 4851 // performing ThinLTO compiles so we don't later invoke 4852 // the regular LTO process on them. 4853 if (VSTOffset > 0) { 4854 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4855 return Err; 4856 SeenValueSymbolTable = true; 4857 } 4858 SeenGlobalValSummary = true; 4859 if (Error Err = parseEntireSummary()) 4860 return Err; 4861 break; 4862 case bitc::MODULE_STRTAB_BLOCK_ID: 4863 if (Error Err = parseModuleStringTable()) 4864 return Err; 4865 break; 4866 } 4867 continue; 4868 4869 case BitstreamEntry::Record: { 4870 Record.clear(); 4871 auto BitCode = Stream.readRecord(Entry.ID, Record); 4872 switch (BitCode) { 4873 default: 4874 break; // Default behavior, ignore unknown content. 4875 case bitc::MODULE_CODE_VERSION: { 4876 if (Error Err = parseVersionRecord(Record).takeError()) 4877 return Err; 4878 break; 4879 } 4880 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4881 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4882 SmallString<128> ValueName; 4883 if (convertToString(Record, 0, ValueName)) 4884 return error("Invalid record"); 4885 SourceFileName = ValueName.c_str(); 4886 break; 4887 } 4888 /// MODULE_CODE_HASH: [5*i32] 4889 case bitc::MODULE_CODE_HASH: { 4890 if (Record.size() != 5) 4891 return error("Invalid hash length " + Twine(Record.size()).str()); 4892 auto &Hash = addThisModulePath()->second.second; 4893 int Pos = 0; 4894 for (auto &Val : Record) { 4895 assert(!(Val >> 32) && "Unexpected high bits set"); 4896 Hash[Pos++] = Val; 4897 } 4898 break; 4899 } 4900 /// MODULE_CODE_VSTOFFSET: [offset] 4901 case bitc::MODULE_CODE_VSTOFFSET: 4902 if (Record.size() < 1) 4903 return error("Invalid record"); 4904 // Note that we subtract 1 here because the offset is relative to one 4905 // word before the start of the identification or module block, which 4906 // was historically always the start of the regular bitcode header. 4907 VSTOffset = Record[0] - 1; 4908 break; 4909 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4910 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4911 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4912 // v2: [strtab offset, strtab size, v1] 4913 case bitc::MODULE_CODE_GLOBALVAR: 4914 case bitc::MODULE_CODE_FUNCTION: 4915 case bitc::MODULE_CODE_ALIAS: { 4916 StringRef Name; 4917 ArrayRef<uint64_t> GVRecord; 4918 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4919 if (GVRecord.size() <= 3) 4920 return error("Invalid record"); 4921 uint64_t RawLinkage = GVRecord[3]; 4922 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4923 if (!UseStrtab) { 4924 ValueIdToLinkageMap[ValueId++] = Linkage; 4925 break; 4926 } 4927 4928 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4929 break; 4930 } 4931 } 4932 } 4933 continue; 4934 } 4935 } 4936 } 4937 4938 std::vector<ValueInfo> 4939 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4940 std::vector<ValueInfo> Ret; 4941 Ret.reserve(Record.size()); 4942 for (uint64_t RefValueId : Record) 4943 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 4944 return Ret; 4945 } 4946 4947 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4948 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4949 std::vector<FunctionSummary::EdgeTy> Ret; 4950 Ret.reserve(Record.size()); 4951 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4952 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4953 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 4954 if (IsOldProfileFormat) { 4955 I += 1; // Skip old callsitecount field 4956 if (HasProfile) 4957 I += 1; // Skip old profilecount field 4958 } else if (HasProfile) 4959 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4960 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 4961 } 4962 return Ret; 4963 } 4964 4965 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4966 // objects in the index. 4967 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 4968 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4969 return error("Invalid record"); 4970 SmallVector<uint64_t, 64> Record; 4971 4972 // Parse version 4973 { 4974 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4975 if (Entry.Kind != BitstreamEntry::Record) 4976 return error("Invalid Summary Block: record for version expected"); 4977 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4978 return error("Invalid Summary Block: version expected"); 4979 } 4980 const uint64_t Version = Record[0]; 4981 const bool IsOldProfileFormat = Version == 1; 4982 if (Version < 1 || Version > 3) 4983 return error("Invalid summary version " + Twine(Version) + 4984 ", 1, 2 or 3 expected"); 4985 Record.clear(); 4986 4987 // Keep around the last seen summary to be used when we see an optional 4988 // "OriginalName" attachement. 4989 GlobalValueSummary *LastSeenSummary = nullptr; 4990 GlobalValue::GUID LastSeenGUID = 0; 4991 4992 // We can expect to see any number of type ID information records before 4993 // each function summary records; these variables store the information 4994 // collected so far so that it can be used to create the summary object. 4995 std::vector<GlobalValue::GUID> PendingTypeTests; 4996 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 4997 PendingTypeCheckedLoadVCalls; 4998 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 4999 PendingTypeCheckedLoadConstVCalls; 5000 5001 while (true) { 5002 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5003 5004 switch (Entry.Kind) { 5005 case BitstreamEntry::SubBlock: // Handled for us already. 5006 case BitstreamEntry::Error: 5007 return error("Malformed block"); 5008 case BitstreamEntry::EndBlock: 5009 return Error::success(); 5010 case BitstreamEntry::Record: 5011 // The interesting case. 5012 break; 5013 } 5014 5015 // Read a record. The record format depends on whether this 5016 // is a per-module index or a combined index file. In the per-module 5017 // case the records contain the associated value's ID for correlation 5018 // with VST entries. In the combined index the correlation is done 5019 // via the bitcode offset of the summary records (which were saved 5020 // in the combined index VST entries). The records also contain 5021 // information used for ThinLTO renaming and importing. 5022 Record.clear(); 5023 auto BitCode = Stream.readRecord(Entry.ID, Record); 5024 switch (BitCode) { 5025 default: // Default behavior: ignore. 5026 break; 5027 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5028 uint64_t ValueID = Record[0]; 5029 GlobalValue::GUID RefGUID = Record[1]; 5030 ValueIdToValueInfoMap[ValueID] = 5031 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5032 break; 5033 } 5034 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 5035 // n x (valueid)] 5036 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 5037 // numrefs x valueid, 5038 // n x (valueid, hotness)] 5039 case bitc::FS_PERMODULE: 5040 case bitc::FS_PERMODULE_PROFILE: { 5041 unsigned ValueID = Record[0]; 5042 uint64_t RawFlags = Record[1]; 5043 unsigned InstCount = Record[2]; 5044 unsigned NumRefs = Record[3]; 5045 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5046 // The module path string ref set in the summary must be owned by the 5047 // index's module string table. Since we don't have a module path 5048 // string table section in the per-module index, we create a single 5049 // module path string table entry with an empty (0) ID to take 5050 // ownership. 5051 static int RefListStartIndex = 4; 5052 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5053 assert(Record.size() >= RefListStartIndex + NumRefs && 5054 "Record size inconsistent with number of references"); 5055 std::vector<ValueInfo> Refs = makeRefList( 5056 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5057 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5058 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5059 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5060 IsOldProfileFormat, HasProfile); 5061 auto FS = llvm::make_unique<FunctionSummary>( 5062 Flags, InstCount, std::move(Refs), std::move(Calls), 5063 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5064 std::move(PendingTypeCheckedLoadVCalls), 5065 std::move(PendingTypeTestAssumeConstVCalls), 5066 std::move(PendingTypeCheckedLoadConstVCalls)); 5067 PendingTypeTests.clear(); 5068 PendingTypeTestAssumeVCalls.clear(); 5069 PendingTypeCheckedLoadVCalls.clear(); 5070 PendingTypeTestAssumeConstVCalls.clear(); 5071 PendingTypeCheckedLoadConstVCalls.clear(); 5072 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5073 FS->setModulePath(addThisModulePath()->first()); 5074 FS->setOriginalName(VIAndOriginalGUID.second); 5075 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5076 break; 5077 } 5078 // FS_ALIAS: [valueid, flags, valueid] 5079 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5080 // they expect all aliasee summaries to be available. 5081 case bitc::FS_ALIAS: { 5082 unsigned ValueID = Record[0]; 5083 uint64_t RawFlags = Record[1]; 5084 unsigned AliaseeID = Record[2]; 5085 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5086 auto AS = 5087 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5088 // The module path string ref set in the summary must be owned by the 5089 // index's module string table. Since we don't have a module path 5090 // string table section in the per-module index, we create a single 5091 // module path string table entry with an empty (0) ID to take 5092 // ownership. 5093 AS->setModulePath(addThisModulePath()->first()); 5094 5095 GlobalValue::GUID AliaseeGUID = 5096 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5097 auto AliaseeInModule = 5098 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5099 if (!AliaseeInModule) 5100 return error("Alias expects aliasee summary to be parsed"); 5101 AS->setAliasee(AliaseeInModule); 5102 5103 auto GUID = getValueInfoFromValueId(ValueID); 5104 AS->setOriginalName(GUID.second); 5105 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5106 break; 5107 } 5108 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5109 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5110 unsigned ValueID = Record[0]; 5111 uint64_t RawFlags = Record[1]; 5112 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5113 std::vector<ValueInfo> Refs = 5114 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5115 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5116 FS->setModulePath(addThisModulePath()->first()); 5117 auto GUID = getValueInfoFromValueId(ValueID); 5118 FS->setOriginalName(GUID.second); 5119 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5120 break; 5121 } 5122 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 5123 // numrefs x valueid, n x (valueid)] 5124 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 5125 // numrefs x valueid, n x (valueid, hotness)] 5126 case bitc::FS_COMBINED: 5127 case bitc::FS_COMBINED_PROFILE: { 5128 unsigned ValueID = Record[0]; 5129 uint64_t ModuleId = Record[1]; 5130 uint64_t RawFlags = Record[2]; 5131 unsigned InstCount = Record[3]; 5132 unsigned NumRefs = Record[4]; 5133 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5134 static int RefListStartIndex = 5; 5135 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5136 assert(Record.size() >= RefListStartIndex + NumRefs && 5137 "Record size inconsistent with number of references"); 5138 std::vector<ValueInfo> Refs = makeRefList( 5139 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5140 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5141 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5142 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5143 IsOldProfileFormat, HasProfile); 5144 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5145 auto FS = llvm::make_unique<FunctionSummary>( 5146 Flags, InstCount, std::move(Refs), std::move(Edges), 5147 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5148 std::move(PendingTypeCheckedLoadVCalls), 5149 std::move(PendingTypeTestAssumeConstVCalls), 5150 std::move(PendingTypeCheckedLoadConstVCalls)); 5151 PendingTypeTests.clear(); 5152 PendingTypeTestAssumeVCalls.clear(); 5153 PendingTypeCheckedLoadVCalls.clear(); 5154 PendingTypeTestAssumeConstVCalls.clear(); 5155 PendingTypeCheckedLoadConstVCalls.clear(); 5156 LastSeenSummary = FS.get(); 5157 LastSeenGUID = VI.getGUID(); 5158 FS->setModulePath(ModuleIdMap[ModuleId]); 5159 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5160 break; 5161 } 5162 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5163 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5164 // they expect all aliasee summaries to be available. 5165 case bitc::FS_COMBINED_ALIAS: { 5166 unsigned ValueID = Record[0]; 5167 uint64_t ModuleId = Record[1]; 5168 uint64_t RawFlags = Record[2]; 5169 unsigned AliaseeValueId = Record[3]; 5170 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5171 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5172 LastSeenSummary = AS.get(); 5173 AS->setModulePath(ModuleIdMap[ModuleId]); 5174 5175 auto AliaseeGUID = 5176 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5177 auto AliaseeInModule = 5178 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5179 if (!AliaseeInModule) 5180 return error("Alias expects aliasee summary to be parsed"); 5181 AS->setAliasee(AliaseeInModule); 5182 5183 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5184 LastSeenGUID = VI.getGUID(); 5185 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5186 break; 5187 } 5188 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5189 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5190 unsigned ValueID = Record[0]; 5191 uint64_t ModuleId = Record[1]; 5192 uint64_t RawFlags = Record[2]; 5193 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5194 std::vector<ValueInfo> Refs = 5195 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5196 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5197 LastSeenSummary = FS.get(); 5198 FS->setModulePath(ModuleIdMap[ModuleId]); 5199 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5200 LastSeenGUID = VI.getGUID(); 5201 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5202 break; 5203 } 5204 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5205 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5206 uint64_t OriginalName = Record[0]; 5207 if (!LastSeenSummary) 5208 return error("Name attachment that does not follow a combined record"); 5209 LastSeenSummary->setOriginalName(OriginalName); 5210 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5211 // Reset the LastSeenSummary 5212 LastSeenSummary = nullptr; 5213 LastSeenGUID = 0; 5214 break; 5215 } 5216 case bitc::FS_TYPE_TESTS: { 5217 assert(PendingTypeTests.empty()); 5218 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5219 Record.end()); 5220 break; 5221 } 5222 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5223 assert(PendingTypeTestAssumeVCalls.empty()); 5224 for (unsigned I = 0; I != Record.size(); I += 2) 5225 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5226 break; 5227 } 5228 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5229 assert(PendingTypeCheckedLoadVCalls.empty()); 5230 for (unsigned I = 0; I != Record.size(); I += 2) 5231 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5232 break; 5233 } 5234 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5235 PendingTypeTestAssumeConstVCalls.push_back( 5236 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5237 break; 5238 } 5239 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5240 PendingTypeCheckedLoadConstVCalls.push_back( 5241 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5242 break; 5243 } 5244 } 5245 } 5246 llvm_unreachable("Exit infinite loop"); 5247 } 5248 5249 // Parse the module string table block into the Index. 5250 // This populates the ModulePathStringTable map in the index. 5251 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5252 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5253 return error("Invalid record"); 5254 5255 SmallVector<uint64_t, 64> Record; 5256 5257 SmallString<128> ModulePath; 5258 ModulePathStringTableTy::iterator LastSeenModulePath; 5259 5260 while (true) { 5261 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5262 5263 switch (Entry.Kind) { 5264 case BitstreamEntry::SubBlock: // Handled for us already. 5265 case BitstreamEntry::Error: 5266 return error("Malformed block"); 5267 case BitstreamEntry::EndBlock: 5268 return Error::success(); 5269 case BitstreamEntry::Record: 5270 // The interesting case. 5271 break; 5272 } 5273 5274 Record.clear(); 5275 switch (Stream.readRecord(Entry.ID, Record)) { 5276 default: // Default behavior: ignore. 5277 break; 5278 case bitc::MST_CODE_ENTRY: { 5279 // MST_ENTRY: [modid, namechar x N] 5280 uint64_t ModuleId = Record[0]; 5281 5282 if (convertToString(Record, 1, ModulePath)) 5283 return error("Invalid record"); 5284 5285 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5286 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5287 5288 ModulePath.clear(); 5289 break; 5290 } 5291 /// MST_CODE_HASH: [5*i32] 5292 case bitc::MST_CODE_HASH: { 5293 if (Record.size() != 5) 5294 return error("Invalid hash length " + Twine(Record.size()).str()); 5295 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5296 return error("Invalid hash that does not follow a module path"); 5297 int Pos = 0; 5298 for (auto &Val : Record) { 5299 assert(!(Val >> 32) && "Unexpected high bits set"); 5300 LastSeenModulePath->second.second[Pos++] = Val; 5301 } 5302 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5303 LastSeenModulePath = TheIndex.modulePaths().end(); 5304 break; 5305 } 5306 } 5307 } 5308 llvm_unreachable("Exit infinite loop"); 5309 } 5310 5311 namespace { 5312 5313 // FIXME: This class is only here to support the transition to llvm::Error. It 5314 // will be removed once this transition is complete. Clients should prefer to 5315 // deal with the Error value directly, rather than converting to error_code. 5316 class BitcodeErrorCategoryType : public std::error_category { 5317 const char *name() const noexcept override { 5318 return "llvm.bitcode"; 5319 } 5320 std::string message(int IE) const override { 5321 BitcodeError E = static_cast<BitcodeError>(IE); 5322 switch (E) { 5323 case BitcodeError::CorruptedBitcode: 5324 return "Corrupted bitcode"; 5325 } 5326 llvm_unreachable("Unknown error type!"); 5327 } 5328 }; 5329 5330 } // end anonymous namespace 5331 5332 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5333 5334 const std::error_category &llvm::BitcodeErrorCategory() { 5335 return *ErrorCategory; 5336 } 5337 5338 static Expected<StringRef> readStrtab(BitstreamCursor &Stream) { 5339 if (Stream.EnterSubBlock(bitc::STRTAB_BLOCK_ID)) 5340 return error("Invalid record"); 5341 5342 StringRef Strtab; 5343 while (1) { 5344 BitstreamEntry Entry = Stream.advance(); 5345 switch (Entry.Kind) { 5346 case BitstreamEntry::EndBlock: 5347 return Strtab; 5348 5349 case BitstreamEntry::Error: 5350 return error("Malformed block"); 5351 5352 case BitstreamEntry::SubBlock: 5353 if (Stream.SkipBlock()) 5354 return error("Malformed block"); 5355 break; 5356 5357 case BitstreamEntry::Record: 5358 StringRef Blob; 5359 SmallVector<uint64_t, 1> Record; 5360 if (Stream.readRecord(Entry.ID, Record, &Blob) == bitc::STRTAB_BLOB) 5361 Strtab = Blob; 5362 break; 5363 } 5364 } 5365 } 5366 5367 //===----------------------------------------------------------------------===// 5368 // External interface 5369 //===----------------------------------------------------------------------===// 5370 5371 Expected<std::vector<BitcodeModule>> 5372 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5373 auto FOrErr = getBitcodeFileContents(Buffer); 5374 if (!FOrErr) 5375 return FOrErr.takeError(); 5376 return std::move(FOrErr->Mods); 5377 } 5378 5379 Expected<BitcodeFileContents> 5380 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5381 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5382 if (!StreamOrErr) 5383 return StreamOrErr.takeError(); 5384 BitstreamCursor &Stream = *StreamOrErr; 5385 5386 BitcodeFileContents F; 5387 while (true) { 5388 uint64_t BCBegin = Stream.getCurrentByteNo(); 5389 5390 // We may be consuming bitcode from a client that leaves garbage at the end 5391 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5392 // the end that there cannot possibly be another module, stop looking. 5393 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5394 return F; 5395 5396 BitstreamEntry Entry = Stream.advance(); 5397 switch (Entry.Kind) { 5398 case BitstreamEntry::EndBlock: 5399 case BitstreamEntry::Error: 5400 return error("Malformed block"); 5401 5402 case BitstreamEntry::SubBlock: { 5403 uint64_t IdentificationBit = -1ull; 5404 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5405 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5406 if (Stream.SkipBlock()) 5407 return error("Malformed block"); 5408 5409 Entry = Stream.advance(); 5410 if (Entry.Kind != BitstreamEntry::SubBlock || 5411 Entry.ID != bitc::MODULE_BLOCK_ID) 5412 return error("Malformed block"); 5413 } 5414 5415 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5416 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5417 if (Stream.SkipBlock()) 5418 return error("Malformed block"); 5419 5420 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5421 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5422 Buffer.getBufferIdentifier(), IdentificationBit, 5423 ModuleBit}); 5424 continue; 5425 } 5426 5427 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5428 Expected<StringRef> Strtab = readStrtab(Stream); 5429 if (!Strtab) 5430 return Strtab.takeError(); 5431 // This string table is used by every preceding bitcode module that does 5432 // not have its own string table. A bitcode file may have multiple 5433 // string tables if it was created by binary concatenation, for example 5434 // with "llvm-cat -b". 5435 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5436 if (!I->Strtab.empty()) 5437 break; 5438 I->Strtab = *Strtab; 5439 } 5440 continue; 5441 } 5442 5443 if (Stream.SkipBlock()) 5444 return error("Malformed block"); 5445 continue; 5446 } 5447 case BitstreamEntry::Record: 5448 Stream.skipRecord(Entry.ID); 5449 continue; 5450 } 5451 } 5452 } 5453 5454 /// \brief Get a lazy one-at-time loading module from bitcode. 5455 /// 5456 /// This isn't always used in a lazy context. In particular, it's also used by 5457 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5458 /// in forward-referenced functions from block address references. 5459 /// 5460 /// \param[in] MaterializeAll Set to \c true if we should materialize 5461 /// everything. 5462 Expected<std::unique_ptr<Module>> 5463 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5464 bool ShouldLazyLoadMetadata, bool IsImporting) { 5465 BitstreamCursor Stream(Buffer); 5466 5467 std::string ProducerIdentification; 5468 if (IdentificationBit != -1ull) { 5469 Stream.JumpToBit(IdentificationBit); 5470 Expected<std::string> ProducerIdentificationOrErr = 5471 readIdentificationBlock(Stream); 5472 if (!ProducerIdentificationOrErr) 5473 return ProducerIdentificationOrErr.takeError(); 5474 5475 ProducerIdentification = *ProducerIdentificationOrErr; 5476 } 5477 5478 Stream.JumpToBit(ModuleBit); 5479 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5480 Context); 5481 5482 std::unique_ptr<Module> M = 5483 llvm::make_unique<Module>(ModuleIdentifier, Context); 5484 M->setMaterializer(R); 5485 5486 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5487 if (Error Err = 5488 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5489 return std::move(Err); 5490 5491 if (MaterializeAll) { 5492 // Read in the entire module, and destroy the BitcodeReader. 5493 if (Error Err = M->materializeAll()) 5494 return std::move(Err); 5495 } else { 5496 // Resolve forward references from blockaddresses. 5497 if (Error Err = R->materializeForwardReferencedFunctions()) 5498 return std::move(Err); 5499 } 5500 return std::move(M); 5501 } 5502 5503 Expected<std::unique_ptr<Module>> 5504 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5505 bool IsImporting) { 5506 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5507 } 5508 5509 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5510 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5511 unsigned ModuleId) { 5512 BitstreamCursor Stream(Buffer); 5513 Stream.JumpToBit(ModuleBit); 5514 5515 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5516 ModuleIdentifier, ModuleId); 5517 return R.parseModule(); 5518 } 5519 5520 // Parse the specified bitcode buffer, returning the function info index. 5521 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5522 BitstreamCursor Stream(Buffer); 5523 Stream.JumpToBit(ModuleBit); 5524 5525 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5526 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5527 ModuleIdentifier, 0); 5528 5529 if (Error Err = R.parseModule()) 5530 return std::move(Err); 5531 5532 return std::move(Index); 5533 } 5534 5535 // Check if the given bitcode buffer contains a global value summary block. 5536 Expected<bool> BitcodeModule::hasSummary() { 5537 BitstreamCursor Stream(Buffer); 5538 Stream.JumpToBit(ModuleBit); 5539 5540 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5541 return error("Invalid record"); 5542 5543 while (true) { 5544 BitstreamEntry Entry = Stream.advance(); 5545 5546 switch (Entry.Kind) { 5547 case BitstreamEntry::Error: 5548 return error("Malformed block"); 5549 case BitstreamEntry::EndBlock: 5550 return false; 5551 5552 case BitstreamEntry::SubBlock: 5553 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5554 return true; 5555 5556 // Ignore other sub-blocks. 5557 if (Stream.SkipBlock()) 5558 return error("Malformed block"); 5559 continue; 5560 5561 case BitstreamEntry::Record: 5562 Stream.skipRecord(Entry.ID); 5563 continue; 5564 } 5565 } 5566 } 5567 5568 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5569 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5570 if (!MsOrErr) 5571 return MsOrErr.takeError(); 5572 5573 if (MsOrErr->size() != 1) 5574 return error("Expected a single module"); 5575 5576 return (*MsOrErr)[0]; 5577 } 5578 5579 Expected<std::unique_ptr<Module>> 5580 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5581 bool ShouldLazyLoadMetadata, bool IsImporting) { 5582 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5583 if (!BM) 5584 return BM.takeError(); 5585 5586 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5587 } 5588 5589 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5590 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5591 bool ShouldLazyLoadMetadata, bool IsImporting) { 5592 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5593 IsImporting); 5594 if (MOrErr) 5595 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5596 return MOrErr; 5597 } 5598 5599 Expected<std::unique_ptr<Module>> 5600 BitcodeModule::parseModule(LLVMContext &Context) { 5601 return getModuleImpl(Context, true, false, false); 5602 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5603 // written. We must defer until the Module has been fully materialized. 5604 } 5605 5606 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5607 LLVMContext &Context) { 5608 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5609 if (!BM) 5610 return BM.takeError(); 5611 5612 return BM->parseModule(Context); 5613 } 5614 5615 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5616 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5617 if (!StreamOrErr) 5618 return StreamOrErr.takeError(); 5619 5620 return readTriple(*StreamOrErr); 5621 } 5622 5623 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5624 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5625 if (!StreamOrErr) 5626 return StreamOrErr.takeError(); 5627 5628 return hasObjCCategory(*StreamOrErr); 5629 } 5630 5631 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5632 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5633 if (!StreamOrErr) 5634 return StreamOrErr.takeError(); 5635 5636 return readIdentificationCode(*StreamOrErr); 5637 } 5638 5639 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5640 ModuleSummaryIndex &CombinedIndex, 5641 unsigned ModuleId) { 5642 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5643 if (!BM) 5644 return BM.takeError(); 5645 5646 return BM->readSummary(CombinedIndex, ModuleId); 5647 } 5648 5649 Expected<std::unique_ptr<ModuleSummaryIndex>> 5650 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5651 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5652 if (!BM) 5653 return BM.takeError(); 5654 5655 return BM->getSummary(); 5656 } 5657 5658 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5659 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5660 if (!BM) 5661 return BM.takeError(); 5662 5663 return BM->hasSummary(); 5664 } 5665 5666 Expected<std::unique_ptr<ModuleSummaryIndex>> 5667 llvm::getModuleSummaryIndexForFile(StringRef Path, 5668 bool IgnoreEmptyThinLTOIndexFile) { 5669 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5670 MemoryBuffer::getFileOrSTDIN(Path); 5671 if (!FileOrErr) 5672 return errorCodeToError(FileOrErr.getError()); 5673 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5674 return nullptr; 5675 return getModuleSummaryIndex(**FileOrErr); 5676 } 5677